

Burt Look

Handbook of Geotechnical Investigation and Design Tables

BALKEMA – Proceedings and Monographs in Engineering, Water and Earth Sciences

Handbook of Geotechnical Investigation and Design Tables

Burt G. Look
Consulting Geotechnical Engineer

Taylor & Francis is an imprint of the Taylor & Francis Group, an informa business

© 2007 Taylor & Francis Group, London, UK

This edition published in the Taylor & Francis e-Library, 2007.

"To purchase your own copy of this or any of Taylor & Francis or Routledge's collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk."

All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the publishers.

Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers nor the author for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein.

Published by: Taylor & Francis/Balkema

P.O. Box 447, 2300 AK Leiden, The Netherlands e-mail: Pub.NL@tandf.co.uk www.balkema.nl, www.taylorandfrancis.co.uk, www.crcpress.com

Library of Congress Cataloging-in-Publication Data Look, Burt.

Handbook of geotechnical investigation and design tables / Burt G. Look. p. cm.

ISBN 978-0-415-43038-8 (hardcover : alk. paper) 1. Engineering geology—Handbooks, manuals, etc. 2. Earthwork. I. Title.

TA705.L66 2007 624.1′51—dc22

2006102474

ISBN 0-203-94660-X Master e-book ISBN

ISBN 13: 978-0-415-43038-8 (hardback) ISBN 13: 978-0-203-94660-2 (e-book)

Table of Contents

	Preface		xxi
I	Site inv	vestigation	1
	1.1	Geotechnical involvement	1
	1.2	Geotechnical requirements for the different project phases	2
	1.3	Relevance of scale	3
	1.4	Planning of site investigation	3
	1.5	Planning of groundwater investigation	4
	1.6	Level of investigation	4
	1.7	Planning prior to ground truthing	4
	1.8	Extent of investigation	6
	1.9	Volume sampled	9
	1.10	Relative risk ranking of developments	9
	1.11	Sample amount	9
	1.12	Sample disturbance	11
	1.13	Sample size	12
	1.14	Quality of site investigation	12
	1.15	Costing of investigation	13
	1.16	Site investigation costs	14
	1.17	The business of site investigation	15
2	Soil cla	ssification	17
	2.1	Soil borehole record	17
	2.2	Borehole record in the field	18
	2.3	Drilling information	19
	2.4	Water level	19
	2.5	Soil type	19
	2.6	Sedimentation test	20
	2.7	Unified soil classification	20
	2.8	Particle description	22

				_		
νi	Tab	le.	ot	Cor	nter	1ts

	2.9	Gradings	22
	2.10	Colour	22
	2.11	Soil plasticity	23
	2.12	Atterberg limits	23
	2.13	Structure	24
	2.14	Consistency of cohesive soils	25
	2.15	Consistency of non cohesive soils	25
	2.16	Moisture content	26
	2.17	Origin	26
	2.18	Classification of residual soils by its primary mode	
		of occurrence	27
3	Rock o	lassification	29
	3.1	Rock description	29
	3.2	Field rock core log	30
	<i>3.3</i>	Drilling information	31
	3.4	Rock weathering	31
	<i>3.5</i>	Colour	32
	3.6	Rock structure	32
	<i>3.7</i>	Rock quality designation	34
	3.8	Rock strength	34
	3.9	Rock hardness	34
	3.10	Discontinuity scale effects	35
	3.11	Rock defects spacing	35
	3.12	Rock defects description	35
	3.13	Rock defect symbols	36
	3.14	Sedimentary and pyroclastic rock types	36
	3.15	Metamorphic and igneous rock types	38
4	Field s	ampling and testing	39
	4.1	Types of sampling	39
	4.2	Boring types	39
	4.3	Field sampling	40
	4.4	Field testing	41
	4.5	Comparison of in situ tests	41
	4.6	Standard penetration test in soils	41
	4.7	Standard penetration test in rock	44
	4.8	Overburden correction factors to SPT result	44
	4.9	Equipment and borehole correction factors for SPT result	45
	4.10	Cone penetration test	45
	4.11	Dilatometer	46

			Table of Contents	vii
	4.12	Pressuremeter test		47
	4.13	Vane shear		47
	4.14	Vane shear correction factor		48
	4.15	Dynamic cone penetrometer tests		48
	4.16	Surface strength from site walk over		48
	4.17	Surface strength from vehicle drive over		50
	4.18	Operation of earth moving plant		50
5	Soil str	rength parameters from classification and testing		53
	5.1	Errors in measurement		53
	5.2	Clay strength from pocket penetrometer		53
	5.3	Clay strength from SPT data		54
	5.4	Clean sand strength from SPT data		55
	5.5	Fine and coarse sand strength from SPT data		55
	5.6	Effect of aging		55
	5.7	Effect of angularity and grading on strength		56
	5.8	Critical state angles in sands		57
	5.9	Peak and critical state angles in sands		57
	5.10	Strength parameters from DCP data		58
	5.11	CBR value from DCP data		59
	5.12	Soil classification from cone penetration tests		59
	5.13	Soil type from friction ratios		60
	5.14	Clay parameters from cone penetration tests		60
	5.15	Clay strength from cone penetration tests		62
	5.16	Simplified sand strength assessment from cone		
		penetration tests		62
	5.17	Soil type from dilatometer test		63
	5.18	Lateral soil pressure from dilatometer test		63
	5.19	Soil strength of sand from dilatometer test		64
	5.20	Clay strength from effective overburden		64
6	Rock s	trength parameters from classification and testing		65
	6.1	Rock strength		65
	6.2	Typical refusal levels of drilling rig		65
	6.3	Parameters from drilling rig used		66
	6.4	Field evaluation of rock strength		67
	6.5	Rock strength from point load index values		68
	6.6	Strength from Schmidt Hammer		69
	6.7	Relative change in strength between rock		
		weathering grades		70
	6.8	Parameters from rock weathering		70
	6.9	Rock classification		71

	6.10	Rock strength from slope stability	72
	6.11	Typical field geologists rock strength	72
	6.12	Typical engineering geology rock strengths	72
	6.13	Relative strength – combined considerations	73
	6.14	Parameters from rock type	74
	6.15	Rock durability	75
	6.16	Material use	76
7	Soil pr	operties and state of the soil	77
	7.1	Soil behaviour	77
	7.2	State of the soil	78
	7.3	Soil weight	79
	7.4	Significance of colour	79
	7.5	Plasticity characteristics of common clay minerals	80
	7.6	Weighted plasticity index	81
	7.7	Effect of grading	81
	7.8	Effective friction of granular soils	81
	7.9	Effective strength of cohesive soils	82
	7.10	Overconsolidation ratio	83
	7.11	Preconsolidation stress from cone penetration testing	83
	7.12	Preconsolidation stress from Dilatometer	83
	7.13	Preconsolidation stress from shear wave velocity	85
	7.14	Over consolidation ratio from Dilatometer	85
	7.15	Lateral soil pressure from Dilatometer test	85
	7.16	Over consolidation ratio from undrained strength ratio	
		and friction angles	86
	7.17	Overconsolidation ratio from undrained strength ratio	86
	7.18	Sign posts along the soil suction pF scale	86
	7.19	Soil suction values for different materials	87
	7.20	Capillary rise	88
	7.21	Equilibrium soil suctions in Australia	88
	7.22	Effect of climate on soil suction change	88
	7.23	Effect of climate on active zones	89
	7.24	Effect of compaction on suction	89
8	Perme	ability and its influence	91
	8.1	Typical values of permeability	91
	8.2	Comparison of permeability with various	
		engineering materials	91
	8.3	Permeability based on grain size	92
	8.4	Permeability based on soil classification	92
	8.5	Permeability from dissipation tests	93

	-	_	_			
ГaН	nle	of	Co	nter	nts	is

		-	Table of Contents	ix
	8.6	Effect of pressure on permeability		94
	8.7	Permeability of compacted clays		94
	8.8	Permeability of untreated and asphalt treated aggregation	tes	94
	8.9	Dewatering methods applicable to various soils		95
	8.10	Radius of influence for drawdown		95
	8.11	Typical hydrological values		96
	8.12	Relationship between coefficients of permeability		
		and consolidation		96
	8.13	Typical values of coefficient of consolidation		96
	8.14	Variation of coefficient of consolidation with liquid lin	nit	97
	8.15	Coefficient of consolidation from dissipation tests		97
	8.16	Time factors for consolidation		98
	8.17	Time required for drainage of deposits		99
	8.18	Estimation of permeability of rock		99
	8.19	Effect of joints on rock permeability		99
	8.20	Lugeon tests in rock	1	100
9	Rock p	properties	1	101
	9.1	General engineering properties of common rocks	1	101
	9.2	Rock weight	1	103
	9.3	Rock minerals	1	103
	9.4	Silica in igneous rocks	1	104
	9.5	Hardness scale	1	104
	9.6	Rock hardness	1	104
	9.7	Mudstone – shale classification based on		
		mineral proportion	1	104
	9.8	Relative change in rock property due to discontinuity	1	105
	9.9	Rock strength due to failure angle	1	106
	9.10	Rock defects and rock quality designation	1	106
	9.11	Rock laboratory to field strength	1	106
	9.12	Rock shear strength and friction angles of		
		specific materials	1	107
	9.13	Rock shear strength from RQD values	1	107
	9.14	Rock shear strength and friction angles based on		
		geologic origin	1	107
	9.15	Friction angles of rocks joints	1	109
	9.16	Asperity rock friction angles	1	109
	9.17	Shear strength of filled joints	1	109
0	Materi	al and testing variability	1	111
	10.1	Variability of materials	1	111
	10.2	Variability of soils	1	111
		- 1		

x Table of Content	
x Table of Content	c

	10.3	Variability of in-situ tests	112
	10.4	Soil variability from laboratory testing	113
	10.5	Guidelines for inherent soil variability	114
	10.6	Compaction testing	114
	10.7	Guidelines for compaction control testing	114
	10.8	Subgrade and road material variability	114
	10.9	Distribution functions	115
	10.10	Effect of distribution functions on rock strength	116
	10.11	Variability in design and construction process	117
	10.12	Prediction variability for experts compared with	
		industry practice	117
	10.13	Tolerable risk for new and existing slopes	118
	10.14	Probability of failures of rock slopes	118
	10.15	Acceptable probability of slope failures	119
	10.16	Probabilities of failure based on	
		lognormal distribution	119
	10.17	Project reliability	120
	10.18	Road reliability values	120
П	Deform	nation parameters	121
	11.1	Modulus definitions	121
	11.2	Small strain shear modulus	123
	11.3	Comparison of small to large strain modulus	123
	11.4	Strain levels for various applications	123
	11.5	Modulus applications	125
	11.6	Typical values for elastic parameters	126
	11.7	Elastic parameters of various soils	126
	11.8	Typical values for coefficient of	
		volume compressibility	128
	11.9	Coefficient of volume compressibility derived	
		from SPT	128
	11.10	Deformation parameters from CPT results	129
	11.11	Drained soil modulus from cone penetration tests	129
	11.12	Soil modulus in clays from SPT values	130
	11.13	Drained modulus of clays based on	
		strength and plasticity	130
	11.14	Undrained modulus of clays for varying over	
		consolidation ratios	130
	11.15	Soil modulus from SPT values and plasticity index	131
	11.16	Short and long term modulus	131
	11.17	Poisson ratio in soils	131
	11.18	Typical rock deformation parameters	132

	11.19	Rock deformation parameters	132
	11.20	Rock mass modulus derived from the intact rock modulus	133
	11.21	Modulus ratio based on open and closed joints	133
	11.22	Rock modulus from rock mass ratings	133
	11.23	Poisson ratio in rock	134
	11.24	Significance of modulus	135
12	Earthw	orks	137
	12.1	Earthworks issues	137
	12.2	Excavatability	137
	12.3	Excavation requirements	137
	12.4	Excavation characteristics	139
	12.5	Excavatability assessment	139
	12.6	Diggability index	139
	12.7	Diggability classification	140
	12.8	Excavations in rock	140
	12.9	Rippability rating chart	141
	12.10	Bulking factors	142
	12.11	Practical maximum layer thickness	143
	12.12	Rolling resistance of wheeled plant	143
	12.13	Compaction requirements for various applications	144
	12.14	Required compaction	145
	12.15	Comparison of relative compaction and	
		relative density	146
	12.16	Field characteristics of materials used in earthworks	146
	12.17	Typical compaction characteristics of materials used	
		in earthworks	146
	12.18	Suitability of compaction plant	146
	12.19	Typical lift thickness	149
	12.20	Maximum size of equipment based on permissible	
		vibration level	150
	12.21	Compaction required for different height of fill	150
	12.22	Typical compaction test results	150
	12.23	Field compaction testing	150
	12.24	Standard versus modified compaction	152
	12.25	Effect of excess stones	152
13	Subgrad	des and pavements	153
	13.1	Types of subgrades	153
	13.1	Subgrade strength classification	154
	13.3	Damage from volumetrically active clays	154
	10.0	I OIL CONNINCTIVONNY WOULD CHAYS	101

	13.4	Subgrade volume change classification	154
	13.5	Minimising subgrade volume change	155
	13.6	Subgrade moisture content	156
	13.7	Subgrade strength correction factors to soaked CBR	157
	13.8	Approximate CBR of clay subgrade	157
	13.9	Typical values of subgrade CBR	157
	13.10	Properties of mechanically stable gradings	158
	13.11	Soil stabilisation with additives	159
	13.12	Soil stabilisation with cement	159
	13.13	Effect of cement soil stabilisation	160
	13.14	Soil stabilisation with lime	160
	13.15	Soil stabilisation with bitumen	161
	13.16	Pavement strength for gravels	161
	13.17	CBR values for pavements	162
	13.18	CBR swell in pavements	162
	13.19	Plasticity index properties of pavement materials	162
	13.20	Typical CBR values of pavement materials	163
	13.21	Typical values of pavement modulus	163
	13.22	Typical values of existing pavement modulus	164
	13.23	Equivalent modulus of sub bases for	
		normal base material	164
	13.24	Equivalent modulus of sub bases for high standard	
		base material	165
	13.25	Typical relationship of modulus with subgrade CBR	166
	13.26	Typical relationship of modulus with base course CBR	166
	13.27	Elastic modulus of asphalt	167
	13.28	Poisson ratio	167
4	Slopes		169
	14.1	Slope measurement	169
	14.2	Factors causing slope movements	170
	14.3	Causes of slope failure	171
	14.4	Factors of safety for slopes	172
	14.5	Factors of safety for new slopes	172
	14.6	Factors of safety for existing slopes	173
	14.7	Risk to life	173
	14.8	Economic and environmental risk	174
	14.9	Cut slopes	174
	14.10	Fill slopes	175
	14.11	Factors of safety for dam walls	175
	14.12	Typical slopes for low height dam walls	176
	14.13	Effect of height on slopes for low height dam walls	176

			Table of Contents xiii
1	14.14	Design elements of a dam walls	177
1	14.15	Stable slopes of levees and canals	177
1	14.16	Slopes for revetments	178
1	14.17	Crest levels based on revetment type	179
1	14.18	Crest levels based on revetment slope	179

14.18	Crest levels based on revetment slope	1/5
14.19	Stable slopes underwater	179
14.20	Side slopes for canals in different materials	180

14.21	Seismic slope stability	180
14.22	Stable topsoil slopes	183

	and the free transfer of the first transfer	
14.23	Design of slopes in rock cuttings and embankments	182
14 24	Factors affecting the stability of rock slopes	182

I	Tuesore uffecting the etholity of rock stopes	102
14.25	Rock falls	183
1126	Conflictment of martitution	101

11.20	Goefficient of restitution	101
14.27	Rock cut stabilization measures	184
1120	Double to the distribution	105

14.28	Rock trap ditch	185
14.29	Trenching	185

15	Terrain	assessment, drainage and erosion	187
	15.1	Terrain evaluation	187
	15.2	Scale effects in interpretation of aerial photos	188
	15.3	Development grades	188
	15.4	Equivalent gradients for construction equipment	189
	15.5	Development procedures	189
	156	Terrain categories	190

15.7	Landslide classification	190
15.8	Landslide velocity scales	190
159	Slope erodibility	190

15.10	Typical erosion velocities based on material	192
15.11	Typical erosion velocities based on depth of flow	192

13.12	Erosion control	1/2
15.13	Benching of slopes	193
15.14	Subsurface drain designs	194

13.13	Subsurface arains basea on soil types	193
15.16	Open channel seepages	195

15.17	Comparison between open channel flows and	
	seepages through soils	196
1510	During an annual factory of exfets	107

15.18	Drainage measures factors of safety	197
15.19	Aggregate drains	197

	00 0	
15.20	Aggregate drainage	19
4504	D: 1	(11 1 1 1)

13.21	Disenting e cupacity of stone fined aranis	17
15.22	Slopes for chimney drains	19
15.23	Drainage blankets	19

	Tabl	~ ~ f	Cont	onto
XIV	Iabi	e or	C.Ont	ents

	15.24	Resistance to piping	199
	15.25	Soil filters	199
		Seepage loss through earth dams	200
		Clay blanket thicknesses	200
		•	
16	Geosyn	thetics	203
	16.1	Type of geosynthetics	203
	16.2	Geosynthetic properties	203
	16.3	Geosynthetic functions	204
	16.4	Static puncture resistance of geotextiles	205
	16.5	Robustness classification using the G-rating	205
	16.6	Geotextile durability for filters, drains and seals	205
	16.7	Geotextile durability for ground conditions and	
		construction equipment	206
	16.8	Geotextile durability for cover material and	
		construction equipment	207
	16.9	Pavement reduction with geotextiles	208
	16.10	Bearing capacity factors using geotextiles	208
	16.11	Geotextiles for separation and reinforcement	208
	16.12	Geotextiles as a soil filter	209
	16.13	Geotextile strength for silt fences	209
	16.14	Typical geotextile strengths	210
	16.15	Geotextile overlap	210
17	Fill spec	cifications	213
	17.1	Specification development	213
	17.2	Pavement material aggregate quality requirements	214
	17.3	Backfill requirements	214
	17.4	Typical grading of granular drainage material	215
	17.5	Pipe bedding materials	215
	17.6	Compacted earth linings	216
	17.7	Constructing layers on a slope	216
	17.8	Dams specifications	217
	17.9	Frequency of testing	218
	17.10	Rock revetments	219
	17.11	Durability	219
	17.12	Durability of pavements	219
	17.13	Durability of breakwater	220
	17.14	Compaction requirements	220
	17.15	Earthworks control	220
	17.16	Typical compaction requirements	221
		7. L I	

			Table of Contents	XV.
	17.17	Compaction layer thickness		222
	17.18	Achievable compaction		222
18	Rock m	ass classification systems		225
	18.1	The rock mass rating systems		225
	18.2	Rock mass rating system – RMR		226
	18.3	RMR system – strength and RQD		226
	18.4	RMR system – discontinuities		226
	18.5	RMR – groundwater		227
	18.6	RMR – adjustment for discontinuity orientations		227
	18.7	RMR – application		228
	18.8	RMR – excavation and support of tunnels		228
	18.9	Norwegian Q system		229
	18.10	Relative block size		230
	18.11	RQD from volumetric joint count		230
	18.12	Relative frictional strength		231
	18.13	Active stress – relative effects of water, faulting,		
		strength/stress ratio		232
	18.14	Stress reduction factor		232
	18.15	Selecting safety level using the Q system		234
	18.16	Support requirements using the Q system		234
	18.17			234
	18.18	Prediction of bolt and concrete support		
		using Q values		235
	18.19	Prediction of velocity using Q values		236
	18.20	Prediction of lugeon using Q values		237
	18.21	Prediction of advancement of tunnel using		
		Q values		237
	18.22	Relative cost for tunnelling using Q values		238
	18.23	Prediction of cohesive and frictional strength		
		using Q values		238
	18.24	Prediction of strength and material parameters		
		using Q Values		239
	18.25	Prediction of deformation and closure using Q value	es	239
	18.26	Prediction of support pressure and unsupported spa-		
		using Q values		240
19	Earth D	ressures		241
	-			
	19.1	Earth pressures		241
	19.2	Earth pressure distributions		242
	19.3	Coefficients of earth pressure at rest		243

	19.4	Variation of at rest earth pressure with OCR	243
	19.5	Variation of at rest earth pressure with OCR	
		using the elastic at rest coefficient	244
	19.6	Movements associated with earth pressures	245
	19.7	Active and passive earth pressures	246
	19.8	Distribution of earth pressure	247
	19.9	Application of at rest and active conditions	247
	19.10	Application of passive pressure	248
	19.11	Use of wall friction	248
	19.12	Values of active earth pressures	249
	19.13	Values of passive earth pressures	250
20	Retainir	ng walls	251
	20.1	Wall types	251
	20.2	Gravity walls	251
	20.3	Effect of slope behind walls	253
	20.4	Embedded retaining walls	253
	20.5	Typical pier spacing for embedded retaining walls	253
	20.6	Wall drainage	254
	20.7	Minimum wall embedment depths for reinforced	
		soil structures	256
	20.8	Reinforced soil wall design parameters	256
	20.9	Location of potential failure surfaces for	
		reinforced soil walls	257
	20.10	Sacrificial thickness for metallic reinforcement	258
	20.11	Reinforced slopes factors of safety	258
	20.12	Soil slope facings	259
	20.13	Wall types for cuttings in rock	259
	20.14	Drilled and grouted soil nail designs	260
	20.15	Driven soil nail designs	261
	20.16	Sacrificial thickness for metallic reinforcement	261
	20.17	Design of facing	261
	20.18	Shotcrete thickness for wall facings	262
	20.19	Details of anchored walls and facings	262
	20.20	Anchored wall loads	262
21	Soil fou	indations	265
	21.1	Techniques for foundation treatment	265
	21.2	Types of foundations	266
	21.3	Strength parameters from soil description	266
	21.4	Bearing capacity	267
			-07

			Table of Contents	xvii
	21.5	Bearing capacity factors		268
	21.6	Bearing capacity of cohesive soils		269
	21.7	Bearing capacity of granular soils		270
	21.8	Settlements in granular soils		271
	21.9	Factors of safety for shallow foundations		271
	21.10	Pile characteristics		272
	21.11	Working loads for tubular steel piles		273
	21.12	Working loads for steel H piles		273
	21.13	Load carrying capacity for piles		273
	21.14	Pile shaft capacity		274
	21.15	Pile frictional values from sand		275
	21.16	End bearing of piles		275
	21.17	Pile shaft resistance in coarse material based		
		on N – value		276
	21.18	Pile base resistance in coarse material based		
		on N – value		276
	21.19	Pile interactions		276
	21.20	Point of fixity		277
	21.21	Uplift on piles		277
	21.22	Plugging of steel piles		278
	21.23	Time effects on pile capacity		279
	21.24	Piled embankments for highways and high		
		speed trains		279
	21.25	Dynamic magnification of loads on piled rafts		
		for highways and high speed trains		280
	21.26	Allowable lateral pile loads		280
	21.27	Load deflection relationship for concrete piles		
		in sands		281
	21.28	Load deflection relationship for concrete piles		
		in clays		281
	21.29	Bending moments for PSC piles in stiff clays		281
22	Rock fo	pundations		283
	22.1	Deal Leading of the Lead of DOD		202
	22.1	Rock bearing capacity based on RQD		283
	22.2	Rock parameters from SPT data		283
	22.3	Bearing capacity modes of failure		284
	22.4	Compression capacity of rock for		205
	22.5	uniaxial failure mode		285
	22.5	Ultimate compression capacity of rock for		205
	22.6	shallow foundations		285
	22.6	Compression capacity of rock for a shear zone		201
		failure mode		286

	22.7	Rock bearing capacity factors	286
	22.8	Compression capacity of rock for splitting failure	287
	22.9	Rock bearing capacity factor for	
		discontinuity spacing	287
	22.10	Compression capacity of rock for flexure and	
		punching failure modes	287
	22.11	Factors of safety for design of deep foundations	288
	22.12	Control factors	288
	22.13	Ultimate compression capacity of rock for	
		driven piles	289
	22.14	Shaft capacity for bored piles	289
	22.15	Shaft resistance roughness	290
	22.16	Shaft resistance based on roughness class	290
	22.17	Design shaft resistance in rock	291
	22.18	Load settlement of piles	291
	22.19	Pile refusal	292
	22.20	Limiting penetration rates	292
23	Movem	ents	293
	23.1	Types of movements	293
	23.2	Foundation movements	293
	23.3	Immediate to total settlements	294
	23.4	Consolidation settlements	294
	23.5	Typical self weight settlements	295
	23.6	Limiting movements for structures	296
	23.7	Limiting angular distortion	297
	23.8	Relationship of damage to angular distortion and	,,
		horizontal strain	297
	23.9	Movements at soil nail walls	298
	23.10	Tolerable strains for reinforced slopes and	
		embankments	298
	23.11	Movements in inclinometers	299
	23.12	Acceptable movement in highway bridges	299
	23.13	Acceptable angular distortion for highway bridges	299
	23.14	Tolerable displacement for slopes and walls	300
	23.15	Observed settlements behind excavations	300
	23.16	Settlements adjacent to open cuts for various	
		support systems	301
	23.17	Tolerable displacement in seismic slope stability	
		analysis	301
	23.18	Rock displacement	301
	23.19	Allowable rut depths	302

			Table of Contents	xix
	23.20	Levels of rutting for various road functions		302
	23.21	Free surface movements for light buildings		302
	23.22	Free surface movements for road pavements		303
	23.23	Allowable strains for roadways		303
24	Append	lix – loading		305
	24.1	Characteristic values of bulk solids		305
	24.2	Surcharge pressures		305
	24.3	Construction loads		306
	24.4	Ground bearing pressure of construction equipmen	t	306
	24.5	Vertical stress changes		306
25	Referen	nces		309
	25.1	General – most used		309
	25.2	Geotechnical investigations and assessment		309
	25.3	Geotechnical analysis and design		314
Ind	ex			321

Preface

This is intended to be a reference manual for Geotechnical Engineers. It is principally a data book for the practicing Geotechnical Engineer and Engineering Geologist, which covers:

- The planning of the site investigation.
- The classification of soil and rock.
- Common testing, and the associated variability.
- The strength and deformation properties associated with the test results.
- The engineering assessment of these geotechnical parameters for both soil and rock.
- The application in geotechnical design for:
 - Terrain assessment and slopes
 - Earthworks and its specifications
 - Subgrades and pavements
 - Drainage and erosion
 - Geotextiles
 - Retention systems
 - Soil and rock foundations
 - Tunnels
 - Movements

This data is presented by a series of tables and correlations to be used by experienced geotechnical professionals. These tables are supplemented by dot points (notes style) explanations. The reader must consult the references provided for the full explanations of applicability and to derive a better understanding of the concepts. The complexities of the ground cannot be over-simplified, and while this data book is intended to be a reference to obtain and interpret essential geotechnical data and design, it should not be used without an understanding of the fundamental concepts. This book does not provide details on fundamental soil mechanics as this information can be sourced from elsewhere.

The geotechnical engineer provides predictions, often based on limited data. By cross checking with different methods, the engineer can then bracket the results as often different prediction models produces different results. Typical values are provided for various situations and types of data to enable the engineer to proceed with the

site investigation, its interpretation and related design implications. This bracketing of results by different methods provides a validity check as a geotechnical report or design can often have different interpretations simply because of the method used. Even in some sections of this book a different answer can be produced (for similar data) based on the various references, and illustrates the point on variations based on different methods. While an attempt has been made herein to rationalise some of these inconsistencies between various texts and papers, there are still many unresolved issues. This book does not attempt to avoid such inconsistencies.

In the majority of cases the preliminary assessments made in the field are used for the final design, without further investigation or sometimes, even laboratory testing. This results in a conservative and non-optimal design at best, but also can lead to under-design. Examples of these include:

- Preliminary boreholes used in the final design without added geotechnical investigation.
- Field SPT values being used directly without the necessary correction factors, which can change the soil parameters adopted.
- Preliminary bearing capacities given in the geotechnical report. These allowable
 bearing capacities are usually based on the soil conditions only for a "typical"
 surface footing only, while the detailed design parameter requires a consideration
 of the depth of embedment, size and type of footing, location, etc.

Additionally there seems to be a significant chasm in the interfaces in geotechnical engineering. These are:

- The collection of geotechnical data and the application of such data. For example, Geologists can take an enormous time providing detailed rock descriptions on rock joints, spacing, infills, etc. Yet its relevance is often unknown by many, except to say that it is good practice to have detailed rock core logging. This book should assist to bridge that data-application interface, in showing the relevance of such data to design.
- Analysis and detailed design. The analysis is a framework to rationalise the intent
 of the design. However after that analysis and reporting, this intent must be transferred to a working drawing. There are many detailing design issues that the
 analysis does not cover, yet has to be included in design drawings for construction
 purposes. These are many rules of thumbs, and this book provides some of these
 design details, as this is seldom found in a standard soil mechanics text.

Geotechnical concepts are usually presented in a sequential fashion for learning. This book adopts a more random approach by assuming that the reader has a grasp of fundamentals of engineering geology, soil and rock mechanics. The cross-correlations can then occur with only a minor introduction to the terminology.

Some of the data tables have been extracted from spreadsheets using known formulae, while some date tables are from existing graphs. This does mean that many users who have a preference for reading of the values in such graphs will find themselves in an uncomfortable non visual environment where that graph has been "tabulated" in keeping with the philosophy of the book title.

Many of the design inputs here have been derived from experience, and extrapolation from the literature. There would be many variations to these suggested values, and I look forward to comments to refine such inputs and provide the inevitable exceptions, that occur. Only common geotechnical issues are covered and more specialist areas have been excluded.

Again it cannot be overstated, recommendations and data tables presented herein, including slope batters, material specifications, etc are given as a guide only on the key issues to be considered, and must be factored for local conditions and specific projects for final design purposes. The range of applications and ground conditions are too varied to compress soil and rock mechanics into a cook-book approach.

These tabulated correlations, investigation and design rules of thumbs should act as a guideline, and is not a substitute for a project specific assessment. Many of these guidelines evolved over many years, as notes to myself. In so doing if any table inadvertently has an unacknowledged source then this is not intentional, but a blur between experience and extrapolation/application of an original reference.

Acknowledgements

I acknowledge the many engineers and work colleagues who constantly challenge for an answer, as many of these notes evolved from such working discussions. In the busy times we live, there are many good intentions, but not enough time to fulfil those intentions. Several very competent colleagues were asked to help review this manual, had such good intentions, but the constraints of ongoing work commitments, and balancing family life is understood. Those who did find some time are mentioned below.

Dr. Graham Rose provided review comments to the initial chapters on planning and investigation and Dr. Mogana Sundaram Narayanasamy provided review comments to the full text of the manual. Alex Lee drew the diagrams. Julianne Ryan provided the document typing format review.

I apologise to my family, who found the time commitments required for this project to be unacceptable in the latter months of its compilation. I can only hope it was worth the sacrifice.

B.G.L. October 2006

Site investigation

I.I Geotechnical involvement

- There are two approaches for acquiring geotechnical data:
 - Accept the ground conditions as a design element, ie based on the structure/development design location and configuration, then obtain the relevant ground conditions to design for/against. This is the traditional approach.
 - Geotechnical input throughout the project by planning the structure/development with the ground as a considered input, ie the design, layout and configuration is influenced by the ground conditions. This is the recommended approach for minimisation of overall project costs.
- Geotechnical involvement should occur throughout the life of the project. The input varies depending on phase of project.
- The phasing of the investigation provides the benefit of improved quality and relevance of the geotechnical data to the project.

Table 1.1 Geot	technical	involvement.
----------------	-----------	--------------

Duningt blagge	(Geotechnical study for types	chnical study for types of projects	
Project phase	Small	Medium	Large	
Feasibility/IAS		Dealman and	Desktop study	
Planning	Desktop study/	Desktop study	Definition of needs	
Preliminary engineering	Site investigation	Site investigation (S.I.)	Preliminary site investigation	
Detailed design			Detailed site investigation	
Construction	l	Monitoring/Inspection	Maninaria	
Maintenance	Inspection	Inspection	Monitoring/Inspection	

- Impact Assessment Study (IAS).
- Planning may occur before or after IAS depending on the type of project.

1.2 Geotechnical requirements for the different project phases

- The geotechnical study involves phasing of the study to get the maximum benefit. The benefits (~20% per phase) are approximately evenly distributed throughout the lifecycle of the project.
- Traditionally (currently in most projects), most of the geotechnical effort (>90%) and costs are in the investigation and construction phases.
- The detailed investigation may make some of the preliminary investigation data redundant. Iteration is also part of optimisation of geotechnical investigations.
- The geotechnical input at any stage has a different type of benefit. The Quality Assurance (QA) benefit during construction, is as important as optimising the location of the development correctly in the desktop study. The volume of testing as part of QA, may be significant and has not been included in the Table. The Table considers the Monitoring/Instrumentation as the engineering input and not the testing (QA) input.
- The observational approach during construction may allow reduced factors of safety to be applied and so reduce the overall project costs. That approach may also be required near critical areas without any reduction in factors of safety.

Table 1.2 Geotechnical requirements.

Geotechnical	Key Model	Relative (10	00% total)	Key data	Comments
Study		Effort	Benefit		
Desktop study	Geological model	<5%	~20%	Geological setting, existing data, site history, aerial photographs and terrain assessment.	Minor SI costs (site reconnaissance) with significant planning benefits.
Definition of needs		<5%	~20%	Justify investigation requirements and anticipated costs.	Safety plans and services checks. Physical, environmental and allowable site access.
Preliminary investigation	Geological and geotechnical model	15%	~20%	Depth, thickness and composition of soils and strata.	Planning/Preliminary Investigation of \sim 20% of planned detailed site investigation.
Detailed site investigation	Geotechnical model	75%	~20%	Quantitative, and characterisation of critical or founding strata.	Laboratory analysis of 20% of detailed soil profile.
Monitoring/ Inspection		<10%	~20%	Instrumentation as required. QA testing.	Confirms models adopted or requirements to adjust assumptions. Increased effort for observational design approach.

- Construction costs ~85% to 95% of total capital project costs.
- Design costs \sim 5% to 10% of total capital costs.
- Geotechnical costs $\sim 0.1\%$ to 4% of total capital costs.
- Each peaks at different phase as shown in Figure 1.1.

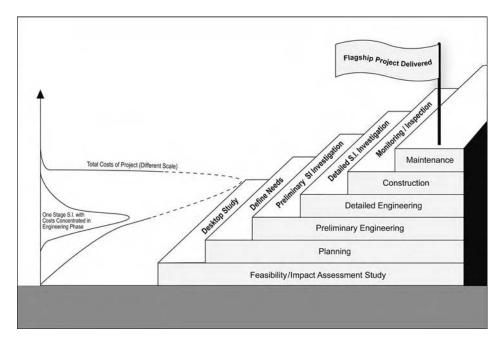


Figure 1.1 Steps in effective use of geotechnical input throughout all phases of the project.

Relevance of scale

At each stage of the project, a different scale effect applies to the investigation.

Table	13	Relevance of scale.

Size study	Typical scale	Typical phase of project	Relevance
Regional Medium Large Detailed	1: 100,000 1: 25,000 1: 10,000 1: 2,000	Regional studies Feasibility studies Planning /IAS Detailed design	GIS analysis/Hazard assessment Land units/Hazard analysis Terrain/Risk assessment Detailed development. Risk analysis

GIS – Geographic Information Systems

1.4 Planning of site investigation

- The SI depends on the phase of the project.
- The testing intensity should reflect the map scale of the current phase of the study.

Phase of project	Typical map scale	Boreholes per hectare	Approximate spacing
IAS	1:10,000	0.1 to 0.2	200 m to 400 m
Planning	1:5,000	0.5-1.0	100 m to 200 m
Preliminary design	1:4,000 to 1:2,500	I to 5	50 m to 100 m
Detailed design	1:2,000 (Roads)	5 to 10	30 m to 100 m
ŭ	I: 1,000 (Buildings or Bridges)	10 to 20	20 m to 30 m

Table 1.4 Suggested test spacing.

- A geo-environmental investigation has different requirements. The following Tables would need to be adjusted for such requirements.
- 1 Hectare = $10,000 \,\mathrm{m}^2$.

1.5 Planning of groundwater investigation

- Observation wells are used in large scale groundwater studies.
- The number of wells required depends on the geology, its uniformity, topography and hydrological conditions and the level of detail required.
- The depth of observation well depends on the lowest expected groundwater level for the hydrological year.

5555. Yadion points	(
Size of area under study (hectare)	No. of groundwater observation points
100	20
1,000	40
10,000	100
100,000	200

Table 1.5 Relation between size of area and number of observation points (Ridder, 1994).

1.6 Level of investigation

- The following steps are required in planning the investigation:
 - Define the geotechnical category of the investigation. This determines:
 - The level of investigation required;
 - Define the extent of investigation required; and
 - Hire/use appropriate drilling/testing equipment.

1.7 Planning prior to ground truthing

 Prepare preliminary site investigation and test location plans prior to any ground truthing. This may need to be adjusted on site.

Table 1.6 Geotechnical category (GC) of investigati	Table 1.6	Geotechnical	category (GC)	of investigatio
---	-----------	--------------	---------------	-----------------

	etechnical egory	GCI	GC2	GC3
1.	Nature and size of construction	Small & relatively simple – conventional loadings.	Conventional structures — no abnormal loadings.	Large or unusual structures.
2.	Surroundings	No risk of damage to neighbouring buildings, utilities, etc.	Risk of damage to neighbouring structures	Extreme risk to neighbouring structures.
3.	Ground conditions	Straightforward. Does not apply to refuse, uncompacted fill, loose or highly compressible soils.	Routine procedures for field and laboratory testing.	Specialist testing.
4.	Ground water conditions	No excavation below water table required.	Below water table. Lasting damage cannot be caused without prior warning	Extremely permeable layers.
5.	Seismicity	Non Seismic	Low seismicity	High Seismic areas.
6.	Cost of project	<\$0.5 M (Aus – 2005)		>\$50 M (Aus – 2005)
7.	SI Cost as % of capital cost	0.1%-0.5%	0.25%-1%	0.5%–2%
8.	Type of study	Qualitative investigation may be adequate.	Quantitative geotechnical studies.	Two stage investigation required.
9.	Minimum level of expertise	Graduate civil engineer or engineering geologist under supervision by an experienced geotechnical specialist.	Experienced Geotechnical engineer/ Engineering geologist.	Specialist geotechnical Engineer with relevant experience. Engineering geologist to work with specialist geotechnical/tunnel/geo-environmental engineer/etc.
10.	Examples	 Sign supports Walls < 2 m Single or 2-storey buildings Domestic buildings; light structures with column loads up to 250 kN or walls loaded to 100 kN/m Some roads 	 Industrial/ commercial some buildings Roads > I km Small/medium bridges 	 Dams Tunnels Ports Large bridges & buildings Heavy machinery foundations Offshore platforms Deep basements

- Services searches are mandatory prior to ground truthing.
- Further service location tests and/or isolations may be required on site. Typically mandatory for any service within 3 m of the test location.
- Utility services plans both above and below the ground are required. For example, an above ground electrical line may dictate either the proximity of the borehole,

- or a drilling rig with a certain mast height and permission from the electrical safety authority before proceeding.
- The planning should allow for any physical obstructions such as coring of a concrete slab, and its subsequent repair after coring.

Table 1.7 Planning checklists.

Туре	Items	
Informative	Timing. Authority to proceed. Inform all relevant stakeholders. Environmental approvals. Access. Site history. Physical obstructions. Positional accuracy required.	
Site specific safety plans	Traffic controls. Services checks. Possible shut down of nearby operational plant. Isolations required.	
S.I Management	Checklists. Coordination. Aims of investigation understood by all. Budget limits where client needs to be advised if additional SI required.	

1.8 Extent of investigation

- The extent of the investigation should be based on the relationship between the competent strata and the type of loading/sensitivity of structure. Usually this information is limited at the start of the project. Hence the argument for a 2 phased investigation approach for all but small (GC1) projects. For example in a piled foundation design:
 - The preliminary investigation or existing nearby data (if available) determines the likely founding level; and
 - The detailed investigation provides quantitative assessment, targeting testing at that founding level.
- The load considerations should determine the depth of the investigation:
 - >1.5 × width (B) of loaded area for square footings (pressure bulb \sim 0.2 q where q = applied load).
 - >3.0 × width (B) of loaded area for strip footings (pressure bulb \sim 0.2 q).
- The ground considerations intersected should also determine the depth of the investigation as the ground truthing must provide:
 - Information of the competent strata, and probe below any compressible layer.
 - Spacing dependent on uniformity of sub-surface conditions and type of structure.
- Use of the structure also determines whether a GC 2 or GC 3 investigation applies. For example, a building for a nuclear facility (GC3) requires a closer spacing than for an industrial (GC2) building.

Table 1.8 Guideline to extent of investigation.

Development	Test spacing	Approximate depth of investigation
Building	20 m to 50 m	 2B–4B for shallow footings (Pads and Strip, respectively) 3 m or 3 pile diameters below the expected founding level for piles. If rock intersected ensure – N* > 100 and RQD > 25% I.5B (building width) for rafts or closely spaced shallow footings I.5B below 2/3D (pile depth) for pile rafts
Bridges	At each pier location	 4B–5B for shallow footings 10 pile diameters in competent strata, or Consideration of the following if bedrock intersected 3 m minimum rock coring 3 Pile diameters below target founding level based on N* > 150 RQD > 50% Moderately weathered or better Medium strength or better
Embankments	25 m to 50 m (critical areas) 100 m to 500 m as in roads	Beyond base of compressible alluvium at critical loaded/suspect areas, otherwise as in roads.
Cut Slopes	25m to $50m$ for $H>5m$ $50m$ to $100m$ for $H<5m$	5 m below toe of slope or 3 m into bedrock below toe whichever is shallower.
Landslip	3 BHs or test pits minimum along critical section	Below slide zone. As a guide (as the slide zone may not be known) use 2 × height of slope or width of zone of movement. 5 m below toe of slope or 3 m into bedrock below toe whichever is shallower.
Pavements/roads Local roads < 150 m Local roads > 150 m	250 m to 500 m 2 to 3 locations 50 m to 100 m (3 minimum)	2 m below formation level.
Runways	250 m to 500 m	3 m below formation level.
Pipelines	250 m to 500 m	I m below invert level.
Tunnels	25 m to 50 m Deep tunnels need special consideration	3 m below invert level or I tunnel diameter, whichever is deeper: greater depths where contiguous piles for retentions Target 0.5–1.5 linear m drilling per route metre of alignment. Lower figure over water or difficult to access urban areas.

Table 1.8 (Continued)

Development	Test spacing	Approximate depth of investigation		
Dams	25 m to 50 m	2 × height of dam, 5 m below toe or of slope 3 m into bedrock below toe whichever is greater. Extend to zone of low permeability.		
Canals	100 m to 200 m	3 m minimum below invert level or to a zone of low permeability.		
Culverts <20 m width 20 m-40 m >40 m	I Borehole One at each end One at each end and I in the middle with maximum spacing of 20 m between boreholes	2 B-4 B but below base of compressible layer.		
Car Parks	2 Bhs for < 50 parks 3 Bhs for 50-100 4 Bhs for 100-200 5 Bhs for 200-400 6 Bhs for > 400 parks	2 m below formation level.		
Monopoles and transmission towers 6 Bns for > 400 parks At each location towers		0 m to 20 m high: D = 4.5 m 20 m to 30 m high: D = 6.0 m 30 m to 40 m high: D = 7.5 m 40 m to 50m high: D = 9.0 m 60 m to 70 m high: D = 10.5 m 70 m to 80 m high: D = 15.0 m Applies to medium dense to dense sands and stiff to very stiff clays. Based on assumption on very lightly loaded structure and lateral loads are the main considerations. Reduce D by 20% to 50% if hard clays, very dense sands or competent rock. Increase D by > 30% for loose sands and soft clays.		

- N* Inferred SPT value.
- RQD-Rock Quality Designation.
- H-Height of slope.
- D-Depth of investigation.
- Ensure boulders or layers of cemented soils are not mistaken for bedrock by penetrating approximately 3m into bedrock.
- Where water bearing sand strata, there is a need to seal exploratory boreholes especially in dams, tunnels and environmental studies.
- Any destructive tests on operational surfaces (travelled lane of roadways) needs repair.
- In soft/compressible layers and fills, the SI may need to extend BHs in all cases to the full depth of that layer.
- Samples/Testing every 1.5m spacing or changes in strata.
- Obtain undisturbed samples in clays and carry out SPT tests in granular material.

1.9 Volume sampled

- The volume sampled varies with the size of load and the project.
- Overall the Volume sampled/volume loaded ratio varied from 10⁴ to 10⁶.
- Earthen systems have a greater sampling intensity.

Table 1.9 Relative volume sampled (simplified from graph in Kulhawy, 1993).

Type of development	Typical volume sampled	Typical volume loaded	Relative volume sampled/ Volume loaded
Buildings	$0.4{\rm m}^3$	$2 \times 10^4 \mathrm{m}^3$	I
Concrete dam	$10\mathrm{m}^3$	$5 \times 10^5 m^3$	1
Earth dam	$100\mathrm{m}^3$	$\textrm{5}\times10^6\textrm{m}^3$	10

1.10 Relative risk ranking of developments

- The risk is very project and site specific, ie varies from project to project, location and its size.
- The investigation should therefore theoretically reflect overall risk.
- Geotechnical Category (GC) rating as per Table 1.6 can also be assessed by the development risk.
- The variability or unknown factors has the highest risk rank (F), while certainty has the least risk rank (A):
 - Projects with significant environmental and water considerations should be treated as a higher risk development.
 - Developments with uncertainty of loading are also considered higher risk, although higher loading partial factors of safety usually apply.
- The table is a guide in assessing the likely risk factor for the extent and emphasis of the geotechnical data requirements.
- The table has attempted to sub-divide into approximate equal risk categories. It is therefore relative risk rather than absolute, ie there will always be unknowns even in the low risk category.

I.II Sample amount

- The samples and testing should occur every 1.5 m spacing or changes in strata.
- Obtain undisturbed samples in clays and carry out penetration tests in granular material.
- Do not reuse samples e.g. do not carry out another re-compaction of a sample after completing a compaction test as degradation may have occurred.

Table 1.10 Risk categories.

Development	Risk factor considerations						
	Loading	Environment	Water	Ground	Economic	Life	Overall
Offshore Platforms Earth dam > 15 m Tunnels Power stations Ports & coastal developments Nuclear, chemical, & biological complexes	F E E F D	F E E E F	F E E D F	F E D F D	F E E F E	E F E E	High GC3
Concrete dams Contaminated land Tailing dams Mining Hydraulic structures Buildings storing hazardous goods	D B D E D	D F E D D	E D E D E C	E E D E C	E C D D C	E F D D D	
Landfills Sub – stations Rail embankments Earth dams 5 m–15 m Cofferdams Cuttings/walls >7 m Railway bridges Petrol stations	B D D D E D D C	D	D C D D E D C C	D C D D E D C C	D D D C D D C	E E D D D	Serious GC3
Road embankments Mining waste Highway bridges Transmission lines Deep basements Office buildings > 15 levels Earth dams < 5m Apartment buildings > 15 levels Roads/ Pavements Public buildings	000000000	С D С D С С С С В В	D D C A E B D B D B	D D C D C A C C D в	C C D D C E C D C D		Moderate GC2
Furnaces Culverts Towers Silos Heavy machinery Office buildings 5–15 levels Warehouses, buildings storing non	D C C E E B C	C C C C B C	B D B C C B	C C D D D A C	B C C C B D B	C B B A B C B	Usual GC2
hazardous goods Apartment buildings 5–15 Levels Apartment buildings < 5 Levels	B A	В	В	В	D C	C C	
Office Buildings < 5 Levels Light industrial buildings Sign supports Cuttings/Walls < 2 m Domestic buildings	B B D A B	B C A A	C A B C	A B C C B	C B A A B	C B A A	Low GCI

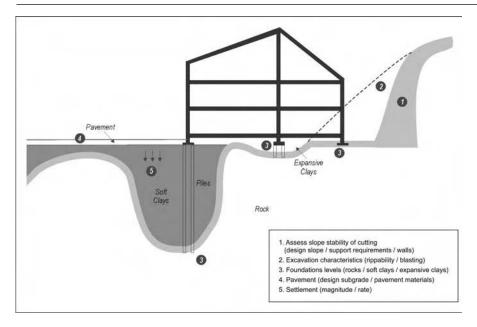


Figure 1.2 Site ground considerations.

Table 1.11 Disturbed sample quantity.

Test	Minimum quantity
Soil stabilisation	100 kg
CBR	40 kg
Compaction (Moisture Density Curves)	20 kg
Particle sizes above 20 mm (Coarse gravel and above)	10 kg
Particle sizes less than 20 mm (Medium gravel and below)	2 kg
Particle sizes less than 6 mm (Fine gravel and below)	0.5 kg
Hydrometer test – particle size less than 2 mm (Coarse sand and below)	0.25 kg
Atterberg tests	0.5 kg

1.12 Sample disturbance

• Due to stress relief during sampling, some changes in strength may occur in laboratory tests.

Table 1.12 Sample disturbance (Vaughan et al., 1993).

Material type	Plasticity	Effect on undrained shear strength
Soft clay	Low High	Very large decrease Large decrease
Stiff clay	Low High	Negligible Large increase

1.13 Sample size

- The sample size should reflect the intent of the test and the sample structure.
- Because the soil structure can be unknown (local experience guides these decisions), then prudent to phase the investigations as suggested in Table 1.1.

Table 1.13 Specimen size (Rowe, 1972).

Clay type	Macro-fabric	Mass, permeability, km/s	Parameter	Specimen size (mm)		
Non fissured sensitivity < 5	None	10-10	$C_u, C'\Phi'$ m_v, c_v	37 76		
	High pedal, silt, sand layers, inclusions, organic veins.	10^{-9} to 10^{-6}	$egin{array}{c} C_{u}, \ C'\Phi' \ m_{v} \ c_{v} \end{array}$	100–250 37 75 250		
	Sand layers $> 2 \text{mm}$ at $< 0.2 \text{m}$ spacing.	10^{-6} to 10^{-5}	$C'\Phi'$ $m_{v_{r}}c_{v}$	37 75		
Sensitivity > 5	Cemented with any above.		$C_{u}, \ C'\Phi', \ m_{v,}\ c_{v}$	50–250		
Fissured	Plain fissures	10-10	$C_{u}, \ C'\Phi', \ m_{v_{v}}c_{v}$	250 100 75		
	Silt or sand fissures	10^{-9} to 10^{-6}	$C_{u}, \ C'\Phi', \ m_{v,}\ c_{v}$	250 100 75		
Jointed	Open joints		Φ'	100		
Pre-existing slip			C_r, Φ_r	150 or remoulded		

1.14 Quality of site investigation

- The quality of an investigation is primarily dependent on the experience and ability of the drilling personnel, supervising geotechnical engineer, and adequacy of the plant being used. This is not necessarily evident in a cost only consideration.
- The Table below therefore represents only the secondary factors upon which to judge the quality of an investigation.
- A good investigation would have at least 40% of the influencing factors shown, ie does not necessarily contain all the factors as this is project and site dependent.
- An equal ranking has been provided although some factors are of greater importance than others in the Table. This is however project specific.
- The table can be expanded to include other factors such a local experience, prior knowledge of project/site, experience with such projects, etc.

Table 1.14 Quality of a detailed investigation.

Influencing factors	Quali	ty of site invest	igation	Comments
	Good	Fair/Normal	Poor	
Quantity of factors	>70%	40% to 70%	<40%	10 factors provided herein
Phasing of investigation		Yes	No	Refer Table 1.2
Safety and environmental plan		Yes	No	Refer Table 1.7
Test/Hectare • Buildings/Bridges • Roads	>20 >10	≥10 ≥5	<10 <5	Refer Table 1.4 for detailed design. Tests can be boreholes, test pits, cone penetration tests, etc. Relevant tests from previous phasing included.
Extent of investigation reflects type of development		Yes	No	Refer Table 1.8
Depth of investigation adequate to ground		Yes	No	Refer Table 1.8
Sample amount sufficient for lab testing		Yes	No	Refer Table 1.11
Specimen size accounting for soil structure		Yes	No	Refer Table 1.13
% of samples testing in the laboratory	≥20%	≥10%	<10%	Assuming quality samples obtained in every TP and every 1.5 m in BHs.
Sample tested at relevant stress range		Yes	No	This involves knowing the depth of sample (for current overburden pressure), and expected loading.
Budget as % of capital works	;	≥0.2%	<0.2%	Value should be significantly higher for dams, and critical projects (Table 1.16).

1.15 Costing of investigation

- The cost of an investigation depends on the site access, local rates, experience of driller and equipment available. These are indicative only for typical projects. For example, in an ideal site and after mobilisation, a specialist Cone Penetration Testing rig can produce over 200 m/day.
- There would be additional cost requirements for safety inductions, traffic control, creating site access, distance between test locations.
- The drilling rate reduces in gravels.

Table 1.15	Typical p	productivity	for costing	(Queensland Australia).

	Drilling	Soil	Soj	ft rock	Hard rock		
Land base	ed drilling	20 m/day	15	m/day	10 m coring/day		
Cone penetration testing (excludes dissipation testing)		100 m/day	Not applicable		Not applicable		
		(Highly depend	ent on	weather/ti	des/location)		
Floating		Non Cyclonic Mo	nths	Cyclonic Month			
barge	Open water	Land based $ imes$ 50%		Land based $ imes$ 30%			
	Sheltered water	Land based \times 70%		Land based $ imes$ 50%			
		(Dependent on weather/location)					
lack up		Non Cyclonic Mo	nths	Cyclonic Month			
barge	Open water	Land based \times 70%		Land based $ imes$ 50%			
	Sheltered water	Land based $ imes$ 90%		Land based × 70%			

- Over water drilling costed on daily rates as cost is barge dependent rather than metres drilled.
- Jack up barge has significant mobilisation cost associated depends on location from source.

1.16 Site investigation costs

- Often an owner needs to budget items (to obtain at least preliminary funding). The cost of the SI can be initially estimated depending on the type of project.
- The actual SI costs will then be refined during the definition of needs phase depending on the type of work, terrain and existing data.
- A geo-environmental investigation is costed separately.

Table 1.16 Site investigation costs (Rowe, 1972).

Type of work	% of capital cost of works	% of earthworks and foundation costs					
Earth dams	0.89–3.30	1.14–5.20					
Railways	0.60-2.00	3.5					
Roads	0.20-1.55	1.60-5.67					
Docks	0.23-0.50	0.42-1.67					
Bridges	0.12-0.50	0.26-1.30					
Embankments	0.12-0.19	0.16-0.20					
Buildings	0.05-0.22	0.50-2.00					
Overall mean	0.7	1.5					

- Overall the % values for buildings seem low and assume some prior knowledge
- A value of 0.2% of capital works should be the minimum budgeted for sufficient information.
- The laboratory testing for a site investigation is typically 10% to 20% of the testing costs, while the field investigation is the remaining 80% to 90%, but this varies depending on site access. This excludes the professional services of supervision and reporting. There is an unfortunate trend to reduce the laboratory testing, with inferred properties from the visual classification and/or field testing only.

1.17 The business of site investigation

- The geotechnical business can be divided into 3 parts (professional, field and laboratory).
- Each business can be combined, ie consultancy with laboratory, or exploratory with laboratory testing:
 - There is an unfortunate current trend to reduce the laboratory testing, and base the recommended design parameters on typical values based on field soil classifications. This is a commercial/ competitive bidding decision rather than the best for project/optimal geotechnical data. It also takes away the field/laboratory check essential for calibration of the field assessment and for the development and training of geotechnical engineers.

Table 1.17 The three "businesses" of site investigation (adapted from Marsh, 1999).

The services	Provision of professional services	Exploratory holes	Laboratory testing
Employ Use Live in QA with Invest in Worry about achieving	Engineers and Scientists Brain power and computers Offices CPEng CPD and software < 1600 chargeable hours a year per member of staff	Drillers and fitters Rigs, plant and equipment Plant Yards and workshops Licensed Driller, ADIA Plant and equipment < 1600 m drilled a year per drill rig	Lab technicians Equipment Laboratories and stores NATA Lab equipment < 1600 Plasticity Index tested per year per technician

CPENG Chartered Professional Engineer; CPD Continuous Professional Development; NATA National Association of Testing Authorities; ADIA Australian Drilling Industry Association.

Soil classification

2.1 Soil borehole record

- Soils are generally described in the borelog (borehole record) using the following sequence of terms:
 - Drilling Information
 - Soil Type
 - Unified Soil Classification (USC) Symbol
 - Colour
 - Plasticity/Particle Description
 - Structure
 - Consistency (Strength)
 - Moisture Condition
 - Origin
 - Water Level
- The Borelog term is liberally used here for, but can be a Test Pit or Borehole log.

Table 2.1 Borelog.

Drill	ing in	form	ation		Soil description					Field testing				Strata information			
Depth	Drilling method	Water level	Sample type	USC symbol/soil type	Colour	Plasticity/particle description	Structure	Consistency	Moisture	Standard penetration type	Shear vane test	Pocket penetrometer	Dynamic cone penetrometer	Origin	Graphic log	Elevation	Depth

- Identification of the Test log is also required with the following data:
 - Client.
 - Project Description.

- Project Location.
- Project Number.
- Sheet No. of –.
- Reference: Easting, Northing, Elevation, Inclination.
- Date started and completed.
- Geomechanical details only. Environmental details not covered.

2.2 Borehole record in the field

- The above is an example of a template of a final log to be used by designer. The sequence of entering field data, its level of detail and relevance can be different.
- Advantages of the dissimilar borehole template in the field are:
 - A specific field log allows greater space to capture field information relevant to a quality log but also administrative details not relevant to the designer (final version).
 - The design engineer prefers both a different sequence of information and different details from the field log, ie the field log may include some administrative details for payment purpose that is not relevant to the designer.
 - A designer often uses the borelog information right to left, ie assessing key issues on the right of he page when thumbing through logs, then looking at details to the left, while the field supervisor logs left to right, ie, progressively more details are added left to right.
 - In this regard a landscape layout is better for writing the field logs while a
 portrait layout is better for the final report.
- However, many prefer the field log to look the same as the final produced borehole record.

Drill	ling info	ormat	ion	Sampling and testing				Soil description				Comments and origin	
Depth	Drilling method	Time of drilling	Water level	Sample type	Amount of recovery	Field test — type (PP < SPT, SV, PP, DCP)	USC symbol/soil type	Colour	Plasticity/particle description	Structure	Consistency	Moisture	

Pocket and Palm PCs are increasingly being used. Many practitioners prefer not
to rely only on an electronic version. These devices are usually not suitable for
logging simultaneously with fast production rates of drilling, even with coded

entries. These devices are useful in mapping cuttings and for relatively slow rock coring on site, or for cores already drilled.

2.3 Drilling information

The table shows typical symbols only. Many consultants may have their own variation.

Table 2.3 Typical drilling data symbols.

Symbol	Equipment
BH EX	Backhoe bucket (rubber tyred machine) Excavator bucket (tracked machine)
HA	Hand auger
AV	Auger drilling with steel "V" bit
AT	Auger drilling with tungsten carbide (TC) bit
HOA	Hollow auger
R RA RM RC	Rotary drilling with flushing of cuttings using – air circulation – bentonite or polymer mud circulation – water circulation
C M W	Support using - Casing - Mud - Water

2.4 Water level

- The importance of this measurement on all sites cannot be over-emphasised.
- Weather/rainfall conditions at the time of the investigation are also relevant.

Table 2.4 Water level.

Symbol	Water measurement
$\overline{\nabla}$	Measurement standing water level and date
∇	Water noted
⊳	Water inflow
⊲	Water/drilling fluid loss

2.5 Soil type

- The soil type is the main input in describing the ground profile.
- Individual particle sizes < 0.075 mm (silts and clays), are indistinguishable by the eye alone.
- Some codes use the 60 µm instead of the 75 µm, which is consistent with the numerical values of the other particle sizes.

• Refer Australian Standard (AS1726 – 1993) on Site Investigations for many of the following Tables.

Table 2.5 Soil type and particle size.

Major Divisions			Subdivision	Particle size
	Boulders			>200 mm
	Cobbles			60 mm-200 mm
	Gravels		Coarse	20 mm-60 mm
Coarse grained soils	(more than half of coarse	G	Medium	6 mm–20 mm
(more than half of material is larger than 0.075 mm).	fraction is larger than 2 mm).		Fine	2 mm–6 mm
	Sands (more than half of coarse	S	Coarse	0.6 mm-2 mm
			Medium	0.2 mm–0.6 mm
	fraction is smaller than 2 mm).		Fine	75 mm-0.2 mm
Fine grained soils	Silts	М		
(more than half of material	Clays	C High/low plasticity		$<$ 75 μ m
is smaller than 0.075 mm).	Organic	0	,	

2.6 Sedimentation test

- The proportion of sizes >2 mm (gravel sizes) can be easily distinguished within the bulk samples.
- Sizes <2 mm (sands, silts and clays) are not easily distinguished in a bulk sample.
- A sedimentation test is useful in this regard for an initial assessment.
- For a full classification, a hydrometer and sieve test is required.

Table 2.6 Sedimentation tests for initial assessment of particle sizes.

Material type	Approximate time for particles to settle in 100 mm of water
Coarse sand	I second
Fine sand	I0 seconds
Silt	I–I0 minutes
Clay	I hour

• Shaking the jar with soil sample +100 mm of water should show the coarse particles settling after 30 seconds. Clear water after this period indicates little to no fine sizes.

2.7 Unified soil classification

• The soil is classified in the field initially, but must be validated by some laboratory testing.

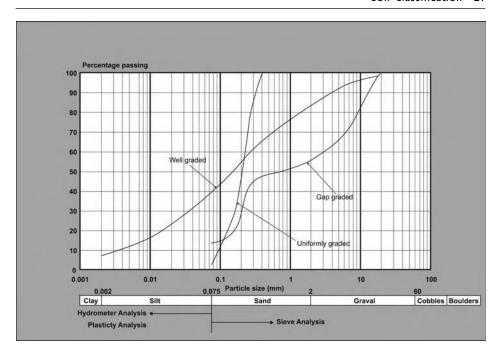


Figure 2.1 Grading curve.

Without any laboratory validation test, then any classification is an "opinion". Even with confirmatory laboratory testing, then the log is still an interpolation on validity.

Table 2.7 Unified soil classification (USC) group symbols.

Soil type	Description	USC symbol
Gravels	Well graded Poorly graded Silty Clayey	GW GP GM GC
Sands	Well graded Poorly graded Silty	SW SP SM
Inorganic silts	Clayey Low plasticity High plasticity	SC ML MH
Inorganic clays	Low plasticity High plasticity	CL CH
Organic	with silts/clays of low plasticity with silts/clays of high plasticity	OL OH
Peat	Highly organic soils	Pt

- Laboratory testing is essential in borderline cases, eg silty sand vs sandy silt.
 - Once classified many inferences on the behaviour and use of the soil is made.
 - Medium Plasticity uses symbols mixed or intermediate symbols eg CL/CH or CI (Intermediate).

2.8 Particle description

• The particle description is usually carried out in the field.

Table 2.8 Particle distribution.

Particle description	Subdivision
Large size (Boulders, cobbles, gravels, sands) Fine size (Silts, clays) Spread (gradation) Shape	Coarse/medium/fine Plasticity Well/poorly/gap/uniform Rounded/sub-rounded/sub-angular/angular

 These simple descriptions can influence the design considerably. For example an angular grain has a larger frictional value than a rounded grain.

2.9 Gradings

• While some field descriptions can be made on the spread of the particle distribution, the laboratory testing provides a quantitative assessment for design.

Table 2.9 Gradings.

Symbol	Description	Comments
D ₁₀ (mm) D ₆₀ (mm) U C	Effective size $-$ 10% passing sieve Median size $-$ 60% passing sieve Uniformity coefficient $=$ D_{60}/D_{10} Coefficient of curvature $=$ $D_{30}^2/(D_{60}D_{10})$	Uniformly graded U $<$ 5 Well graded U $>$ 5 and C $=$ 1 to 3

2.10 Colour

 Colour Charts may be useful to standardise descriptions and adjacent to core photos.

Table 2.10 Colour description.

Parameter	Description
Tone Shade Hue Distribution	Light/dark/mottled Pinkish/reddish/yellowish/brownish/greenish/bluish/greyish Pink/red/yellow/orange/brown/green/blue/purple/white/grey/black Uniform/non — uniform (spotted/mottled/streaked/striped)

2.11 Soil plasticity

- Typically a good assessment can be made of soil plasticity in the field.
- Some classification systems uses the Intermediate (I) symbol instead of the L/H. The latter is an economy of symbols.

Table 2.11 Soil plasticity.

Term	Symbol	Field assessment	
Non plastic	–	Falls apart in hand Cannot be rolled into (3 mm) Can be rolled into threads when moist.	threads when moist
Low plasticity	L		Shows some shrinkage on drying
Medium plasticity	L/H		Considerable shrinkage on drying.
High plasticity	H		Greasy to touch. Cracks in dry material

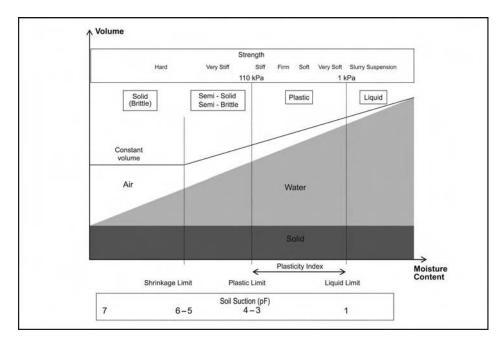


Figure 2.2 Consistency limits.

2.12 Atterberg limits

- Laboratory Testing for the Atterberg confirms the soil plasticity descriptors provided in the field.
- These tests are performed on the % passing the 425 micron sieve. This % should be reported. There are examples of "rock" sites having a high PI, when 90% of the sample has been discarded in the test.

Table 2.12 Atterberg limits.

Symbol	Description	Comments
LL	Liquid limit – minimum moisture content at which a soil will flow under its own weight.	Cone penetrometer test or casagrande apparatus.
PL	Plastic limit — Minimum moisture content at which a 3 mm thread of soil can be rolled with the hand without breaking up.	Test
SL	Shrinkage limit – Maximum moisture content at which a further decrease of moisture content does not cause a decrease in volume of the soils.	Test.
PI	Plasticity Index = LL-PL	Derived from other tests.
LS	Linear shrinkage is the minimum moisture content for soil to be mouldable.	Test. Used where difficult to establish PL and LL. $PI = 2.13$ LS.

2.13 Structure

- This descriptor can significantly affect the design.
- For example, the design strength, a fissured clay is likely to have only 2/3 of the design strength of a non fissured clay; the design slope is considerably different from fissured and non fissured; the permeability is different.

Table 2.13 Structure.

Term applies to soil type		be	Field identification	
Coarse grained	Fine grained	Organic	rieia idenufication	
F	Heterogenous		A mixture of types.	
Homoge	enous		Deposit consists of essentially of one type.	
Interstratifi interlamina	ed, interbedded, ted	×	Alternating layers of varying types or with bands or lenses of other materials.	
Х	Intact	Х	No fissures.	
Х	Fissured	X	Breaks into polyhedral fragments.	
×	Slickensided	×	Polished and striated defects caused by motion of adjacent material.	
Х	×	Fibrous	Plant remains recognisable and retainssome strength.	
X	Х	Amorphous	No recognisable plant remains.	
Saprolytic/Residual Soils		×	Totally decomposed rock with no identifiable parent rock structure.	

2.14 Consistency of cohesive soils

- Field assessments are typically used with a tactile criterion. The pocket penetrometer can also be used to quantify the values, but it has limitations due to scale effects, conversions, sample used on and the soil type. Refer Section 5.
- These strength terms are different for British Standards.

Table 2.14 Consistency of cohesive soil.

Term	Symbol	Field assessment	Thumb pressure penetration	Undrained shear strength (kPa)
Very soft	VS	Exudes between fingers when squeezed.	>25 mm	<12
Soft	S	Can be moulded by light finger pressure.	>10 mm	12-25
Firm	F	Can be moulded by strong finger pressure.	< 10 mm	25-50
Stiff	St	Cannot be moulded by fingers. Can be indented by thumb pressure.	<5mm	50–100
Very stiff	VSt	Can be indented by thumbnail.	< I mm	100-200
Hard	Н	Difficult to be indented by thumbnail.	\sim 0 mm	>200

Hard Clays can have values over 500 kPa. However above that value the material may be referred to as a claystone or mudstone, i.e an extremely low strength rock.

2.15 Consistency of non cohesive soils

- The SPT value in this Table is a first approximation only using the uncorrected SPT value.
- The SPT values in this Table are an upper bound for coarse granular materials for field assessment only. Correction factors are required for detailed design.
- The SPT needs to be corrected for overburden, energy ratio and particle size. This correction is provided in later chapters.

Table 2.15 Consistency of non-cohesive soil.

Term	Symbol	Field assessment		SPT N — value	Density index (%)
Very loose Loose	VL L	50 mm peg easily driven. 12 mm reinforcing bar easily pushed by hand.	Foot imprints easily. Shovels easily.	<4 4–10	<15 15–35
Medium dense	MD	12 mm bar needs hammer to drive > 200 mm.	Shovelling difficult.	10–30	35–65
Dense	D	50 mm peg hard to drive. 12 mm bar needs hammer to drive <200 mm.	Needs pick for excavation.	30–50	65–85
Very dense	VD	12 mm bar needs hammer to drive <60 mm.	Picking difficult.	>50	>85
Cemented	С	12mm bar needs hammer to drive $<\!20\text{mm}$.	Cemented, indurated or large size particles.	>50	N/A

- Cemented is shown in the Table, as an extension to what is shown in most references.
- N Values >50 often considered as rock.
- Table applies to medium grain size sand. Material finer or coarser may have a different value. Correction factors also need to be applied. Refer Tables 5.4 and 5.5.

2.16 Moisture content

- This is separate from the water level observations. There are cases of a soil described as wet above the water table and dry below the water table.
- The assessor must distinguish between natural moisture content and moisture content due to drilling fluids used.

Table 2.16 Moisture content.

Term	Symbol	Field assessment	t	
		Cohesive soils	Granular soils	
Dry	D	Hard and friable or powdery	Runs freely through hands	
Moist	M	Feels cool, darkened in colour	, 3	
		Can be moulded	Tend to cohere	
Wet	W	Feels cool, darkened in colour		
		Free water forms on hands when handling	Tend to cohere	

Some reports provide the moisture content in terms of the plastic limit.
 This however introduces the possibility of 2 errors in the one assessment,
 Refer Table 10.2 for inherent variability in soil measurement for the moisture content and plastic limit.

2.17 Origin

- This can be obtained from geology maps as well as from site and material observations.
- Soils are usually classified broadly as transported and residual soils.

Table 2.17 Classification according to origin.

Classification	Process of formation and nature of deposit
Residual	Chemical weathering of parent rock. More stony and less weathering with increasing depth.
Alluvial	Materials transported and deposited by water. Usually pronounced stratification. Gravels are rounded.
Colluvial	Material transported by gravity. Heterogenous with a large range of particle sizes.
Glacial	Material transported by glacial ice. Broad gradings. Gravels are typically angular.
Aeolian	Material transported by wind. Highly uniform gradings. Typically silts or fine sands.
Organic	Formed in place by growth and decay of plants. Peats are dark coloured.
Volcanic	Ash and pumice deposited in volcanic eruptions. Highly angular. Weathering produces a highly plastic, sometimes expansive clay.
Evaporites	Materials precipitated or evaporated from solutions of high salt contents. Evaporites form as a hard crust just below the surface in arid regions.

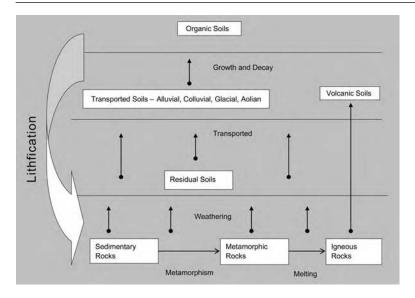


Figure 2.3 Soil and rock origins.

- The transporting mechanism determines its further classification:
 - Alluvial deposited by water
 - Glacial deposited by ice
 - Aeolian deposited by wind
 - Colluvial deposited by gravity
 - Fill deposited by man

2.18 Classification of residual soils by its primary mode of occurrence

- Residual soils are formed in situ.
- The primary rock type affects its behaviour as a soil.

Table 2.18 Classification of residual soils by its primary origin (Hunt, 2005).

Primary occurrence	Secondary occurrence	Typical residual soils
Granite	Saprolite	Low activity clays and granular soils.
Diorite	·	, , ,
Gabbro	Saprolite	High activity clays.
Basalt	·	• .
Dolerite		
Gneiss	Saprolite	Low activity clays and granular soils.
Schist	·	, , ,
Phyllite		Very soft rock.
Sandstone		Thin cover depends on impurities. Older sandstones would have thicker cover.
Shales	Red	Thin clayey cover.
	Black, marine	Friable and weak mass high activity clays.
Carbonates	Pure	No soil, rock dissolves.
	Impure	Low to high activity clays.

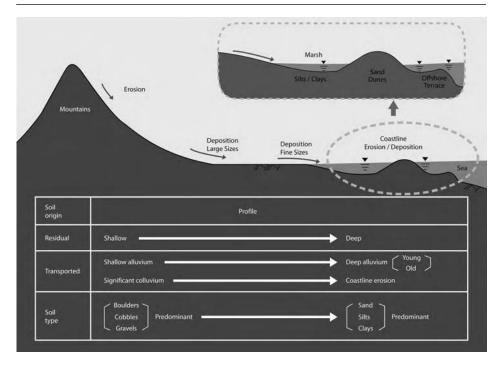


Figure 2.4 Predominance of soil type.

Rock classification

3.1 Rock description

- Rocks are generally described in the borelog using the following sequence of terms:
 - Drilling Information
 - Rock Type
 - Weathering
 - Colour
 - Structure
 - Rock Quality Designation (RQD)
 - Strength
 - Defects

Table 3.1 Borelog.

Drilling information	Rock description	Intact strength	Rock mass defects	Strata information
Depth Drilling method Water level Core recovery	Weathering grade Colour Structure Rock quality designation (RQD) Moisture	Estimated strength Point load index (axial) Point load index (diametral) Unconfined compressive strength	Defect spacing Defect description (depth, type, angle, roughness, infill, thickness)	Origin Graphic log Elevation Depth

- Identification of the test log is also required with the following data:
 - Client
 - Project Description
 - Project Location

- Project Number
- Sheet No. ___ of ___
- Reference: Easting, Northing, Elevation, Inclination
- Date started and completed

3.2 Field rock core log

- The field core log may be different from the final report log. Refer previous notes (Section 2.2) on field log versus final log.
- The field log variation is based on the strength tests not being completed at the time of boxing the cores.
- Due to the relatively slow rate of obtaining samples (as compared to soil) then
 there would be time to make some assessments. However, some supervisors prefer
 to log all samples in the laboratory, as there is a benefit in observing the full core
 length at one session.
 - For example, the rock quality designation (RQD). If individual box cores are used, the assessment is on the core run length. If all boxes for a particular borehole are logged simultaneously, the assessment RQD is on the domain length (preferable).

ı	Drilling information		Drilling information Rock description		Tes	ting	Rock me	ass defects	Comments and origin					
Depth	Drilling method	Time of drilling	Water level	Core recovery	Weathering grade	Colour	Structure	Estimated strength	Rock quality designation (RQD)	Point load index (axial/diametral)	Other	Defect spacing	Defect description (depth, type angle, roughness, infill, thickness)	ong

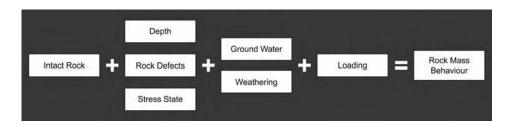


Figure 3.1 Rock mass behaviour.

- Rock origins are in 3 Groups:
 - Sedimentary Rocks.
 - Igneous Rocks.
 - Metamorphic Rocks.

3.3 Drilling information

The typical symbols only are shown. Each consultant has his or her own variation.

Table 3.3 Typical symbols used for rock drilling equipment.

Symbol	Equipment
HQ	Coring using 85 mm core barrel
HQ	Coring using 63 mm core barrel
NMLC	Coring using 52 mm core barrel
NQ	Coring using 47 mm core barrel
RR	Tricone (rock roller) bit
DB	Drag bit

3.4 Rock weathering

- The rock weathering is the most likely parameter to be assessed.
- Weathering is often used to assess strength as a quick and easily identifiable approach – but should not be use as a standalone. This approach must be first suitably calibrated with the assessment of other rock properties such as intact strength, and defects.

Table 3.4 Rock weathering classification.

Term	Symbol	Field assessment
Residual soil	RS	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported. Described with soil properties on the log.
Extremely weathered	XW	Soil is weathered to such an extent that it has 'soil' properties ie it either disintegrates or can be remoulded, in water. May be described with soil properties.
Distinctly weathered	DW (MW/HW)	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by ironstaining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Slightly weathered	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh	FR	Rock shows no sign of decomposition or staining.

- RS is not a rock type and represents the completely weathered product in situ.
- Sometimes aspect is important with deeper weathering in the warmth of northern sunlight (for countries in the Southern hemisphere).
- Distinctly weathered may be further classified into Highly (HW) and Moderately weathered (MW). The former represents greater than 50% soil, while the latter represents less than 50% soil.

• This table is appropriate for field assessment. Detailed testing on rock strength (Table 6.7) show that rock strength can vary between intact samples of SW and FR weathered rock.

3.5 Colour

• Colour Charts are useful for core photography.

Table 3.5 Colour description.

Parameter	Description
Tone Shade Hue Distribution	Light/dark/mottled Pinkish/reddish/yellowish/brownish/greenish/bluish/greyish Pink/red/yellow/orange/brown/green/blue/purple/white/grey/black Uniform/non — uniform (spotted/mottled/streaked/striped)

 For core photographs ensure proper lighting/no shadows and damp samples to highlight defects and colours.

3.6 Rock structure

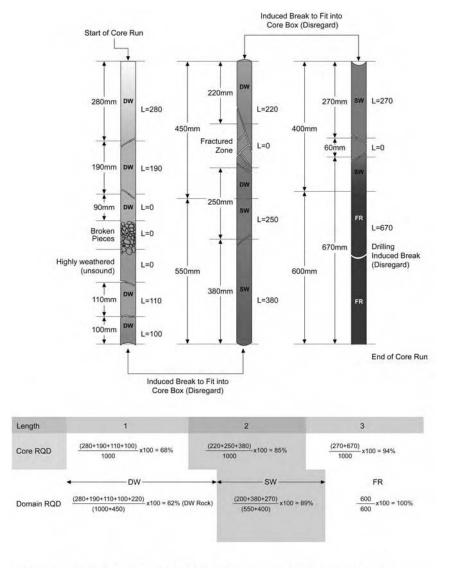

- The rock structure describes the frequency of discontinuity spacing and thickness of bedding.
- The use of defects descriptors typically used in place of below individual descriptors.
- Persistence reflects the joint continuity.

Table 3.6 Rock structure.

Rock structure	Description	Dimensions
Thickness of bedding	Massive	>2.0 m
G	Thick – bedded	0.6 to 2.0 m
	Mid – bedded	0.2 to 0.6 m
	Thin – bedded	$0.06\mathrm{m}$ to $0.2\mathrm{m}$
	Very thinly bedded/laminated	<0.06 m
Degree of fracturing/jointing	Unfractured	>2.0 m
3, 3	Slightly fractured	0.6 to 2.0 m
	Moderately fractured	0.2 to 0.6 m
	Highly fractured	0.06-0.2 m
	Intensely fractured	<0.06 m
Dip of bed or fracture	Flat	0 to 15 degrees
•	Gently dipping	15 to 45 degrees
	Steeply dipping	45 to 90 degrees
Persistence	Very high	>20 m
	High	10-20 m
	Medium	3–10 m
	Low	I-3 m
	Very low	> I m

Table 3.7 Rock quality designation.

RQD (%)	Rock description	Definition
0–25 25–50 50–75 75–90 >90	Very poor Poor Fair Good Excellent	$RQD = \frac{Sound core pieces > 100 mm}{Total core run length} * 100$

NOTE: MINOR DIFFERENCES IN LOGGING CORE LENGTH (1000 mm IN EXAMPLE) AND LOGGING DOMAIN

Figure 3.2 RQD measurement.

3.7 Rock quality designation

- RQD (%) is a measure of the degree of fracturing. This is influenced also by quality of drilling, and handling of the rock cores.
 - Many variations for measurement of this supposedly simple measurement.
 - Drilling induced fractures should not be included in the RQD measurement.
 - The domain rather then the core length should be used to assess the RQD.
 Different values result if the RQD is measured in a per- metre length or a domain area. The latter represents the true RQD values while the former would have an averaging effect.
 - RQD is dependent on the borehole orientation. An inclined borehole adjacent to a vertical borehole is expected to give a different RQD value.

3.8 Rock strength

This Table refers to the strength of the intact rock material and not to the strength
of the rock mass, which may be considerably weaker due to the effect of rock
defects.

Table 3.8 Rock strength.

Strength	Symbol	Field assessment			
		By hand	Hammer with hand held specimen		
Extremely low Very low Low Medium High Very high Extremely high	EL VL L M H VH EH	Easily remoulded to a material wit Easily crumbled in 1 hand. Broken into pieces in 1 hand. Broken with difficulty in 2 hands.	Easily broken with light blow (thud). I firm blow to break (rings). > I blow to break (rings) Many blows to break (rings).		

3.9 Rock hardness

• The rock hardness is not the same as the rock strength.

Table 3.9 Field assessment of hardness.

Description of hardness	Moh's hardness	Characteristic using pocket knife				
		Rock dust	Scratch marks	Knife damage		
Friable	I-2	Little powder	None. Easily crumbled. Too soft to cut. Crumbled by hand	No damage		
Low	2–4	Heavy trace	Deeply gouged			
Moderately hard	4–6	Significant trace of powder	Readily visible (after powder blown away)			
Hard	6–8	Little powder	Faintly visible	Slight damaged; trace of steel on rock		
Very hard	8–10	None	None	Damaged; steel left on rock		

3.10 Discontinuity scale effects

The scale effects are an order of magnitude only, with significant overlap.

Table 3.10 Discontinuity scale effects.

Discontinuity group	Typical range	Typical scale		
Defect thickness	2 mm to 60 cm	20 mm		
Bedding, foliation, jointing	0.2 m to 60 m	2 m		
Major shear zones, seams	20 m to 6 km	200 m		
Regional fault zones	2 km to 600 km	20 km		

3.11 Rock defects spacing

- The rock defects are generally described using the following sequence of terms.
- [Defect Spacing]; [Depth (metres from surface), Defect Type, Defect Angle (degrees from horizontal), Surface roughness, Infill, Defect thickness (mm)].

Table 3.11 Defect spacing.

Description	Spacing
Extremely closely spaced (crushed)	<20 mm
Very closely spaced	20 mm to 60 mm
Closely spaced (fractured)	60 mm to 200 mm
Medium spaced	0.2 m to 0.6 m
Widely spaced (blocky)	0.6 m to 2.0 m
Very widely spaced	2.0 m to 6.0 m
Extremely widely spaced (solid)	>6.0 m

3.12 Rock defects description

- The defects are also called discontinuities.
- The continuity of discontinuities is difficult to judge in rock cores. An open exposure is required to evaluate (trench, existing cutting).
- Even in an existing cutting, the defects in the vertical and on lateral direction can be measured, but the continuity into the face is not readily evident.

Table 3.12 Rock defect descriptors.

Descriptors	Typical details
Type	Bedding, cleavage, foliation, schistiosity Open (size of open) or closed (zero size) filled or clean
Roughness	Macro surface (stepped, curved, undulating. irregular, planar) micro surface (rough, smooth, slickensided)
Infilling	Clays (low friction); Crushed rock (medium to high friction); Calcite/Gypsum (May Dissolve)
Extent Character	Thickness Coating, infill, crushed rock, clay infilling
	Type Joint wall separation Roughness Infilling Extent

- Continuity may be relative to the type of structure, loading or cutting.
- Discontinuities considered continuous under structures if it is equal to the base width, when sliding can be possible.

3.13 Rock defect symbols

• Typical symbols only. Each consultant has his or her own variation.

Table 3.13 Defect description.

Defect type	Surface r	Coating or infill	
	Macro-surface geometry	Micro-surface geometry	
Bp - Bedding parting Fp - Foliation parting Jo - Joint Sh - Sheared zone Cs - Crushed seam Ds - Decomposed seam Is - Infilled seam	St – Stepped Cu – Curved Un – Undulating Ir – Irregular Pl – Planar	Ro – Rough Sm – Smooth SI – Slickensided	cn – clean sn – stained vn – veneer cg – coating

- The application of this data is considered in later chapters.
- For example, friction angle of an infill fracture < for a smooth fracture and > for a rough fracture. But the orientation and continuity of the defects would determine whether it is a valid release mechanism.
- The opening size and number of the joints would determine its permeability.

3.14 Sedimentary and pyroclastic rock types

- The grain size and shape as used to describe soils can be also used for rocks.
- Sedimentary rocks are the most common rock type at the earth's surface and sea floor. They are formed from soil sediments or organic remains of plants and animals that have been lithified under significant heat and pressure of the overburden, or by chemical reactions.
- This rock type tends to be bedded.
- Pyroclastic Rocks are a type of igneous rock. Pyroclasts have been formed by an explosive volcanic origin, falling back to the earth, and becoming indurated. The particle sizes thrown into the air can vary from 1000 tonne block sizes to a very fine ash (Tuff).
 - Even for rocks in a similar descriptor other factors may determine its overall strength properties.
 - For example, Sandstone, Arkose and Greywacke are similarly classed, but sandstone would usually have rounded grains, which are one size, Arkose would be Sub – angular and well graded while Greywacke would be angular and well graded. This results in an intact Greywacke being stronger than a sandstone.

Table 3.14 Rock type descriptor (adapted from AS 1726–1993, Mayne, 2001 and Geoguide 3, 1988).

Descriptio	Description Sedimentary			γ		
Superficial deposits	Grain size mm	Clastic (s	ediment)	Chemically formed	Organic remains	Pyroclastic
Boulders	200.00		merate fragments)			Agglomerate (round grains)
Cobbles	60.00	(1 Outlided	ii agiiieiics)			(round grains)
Coarse gravel	20.00		ccia	Halite gypsum		Volcanic breccia
Medium gravel	6.00	angular f	ragments)			(angular grains)
Fine gravel	2.00					
Coarse sand	0.60	Sand	stone			Coarse grained
Medium sand	0.20		rtzite :ose		Chalk,	tuff
Fine sand	0.06	Grey	wacke		lignite, coal	
Silt	0.002	Mudstone Siltstone				Fine grained tuff
Clay		Shale Claystone				Very fine grained tuff

Table 3.15 Rock type descriptor (adapted from AS 1726 – 1993, Mayne, 2001 and Geoguide 3, 1988).

Description	on	_	ous (quartz conte	Metamorphic			
Superficial deposits	Grain size mm	Acid (much)	Intermediate (some)	Basic (little to none)	Foliated	Non- foliated	
Boulders	200.00						
Cobbles	60.00	Granite	Granodiorite	Babbro	Gneiss Migmatite	Marble	
Coarse gravel	20.00	Aplite	Diorite	Periodotite		Quartzite Granulite Hornfels	
Medium gravel	6.00						
Fine gravel	2.00						
Coarse sand	0.60						
Medium sand	0.20	Microgranite	Microdiorite	Dolerite	Schist	Serpentine	
Fine sand	0.06						
Silt	0.002	Rhyolite	Andesite	Basalt	Phyllite		
Clay		Dacite	Quartz Trachyte		Slate		

3.15 Metamorphic and igneous rock types

- The grain sizes are more appropriate (measurable) for the assessment of the sedimentary rocks. However the size is shown in the table below for comparison purposes.
- Igneous rocks are formed when hot molten rock solidifies. Igneous rocks are classified mainly on its mineral content and texture.
- Metamorphic rocks are formed from other rock types, when they undergo pressure and/or temperature changes. Metamorphic rocks are classed as foliated and non foliated.

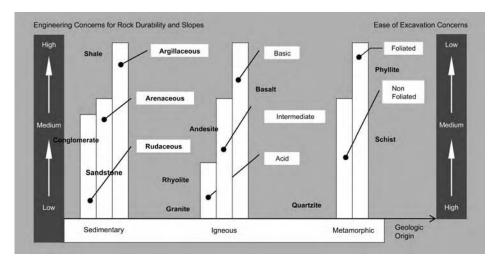


Figure 3.3 Preliminary engineering concerns of various rock types for durability, slope stability and excavatability. Aggregate and stones are seldom selected on basis of rock type alone.

Field sampling and testing

4.1 Types of sampling

- The samples are recovered to classify the material and for further laboratory testing.
- Refer Chapter 1 for the effect of size of sampling and disturbance.

Table 4.1 Types of sampling.

Sample type	Quality	Uses
Disturbed	Low	Samples from the auger and wash boring, which may produce mixing of material. Complete destruction of the fabric and structure. Identify strata changes.
Representative	Medium	Partially deformed such as in split barrel sampler. Fabric/Structure, strength compressibility and permeability expected to be changed. Classification tests.
Continuous	Medium/high	Hole is advanced using continuous split barrel or tube sampling. Obtains a full strata profile.
Undisturbed	High	Tube or Block samples for strength and deformation testing. Tube samples are obtained from boreholes and block samples from test pits.

- Disturbed samples obtained from augers, wash boring returns on chippings from percussion drilling.
- Split barrel sampler used in the standard penetration test (SPT).
- Tube samplers are usually thin walled with a cutting edge, but with piston samplers in soft to firm material.
- Undisturbed tube samples are not possible in sands, and split barrel sampling is used.

4.2 Boring types

- Various operations are used to advance the borehole, before obtaining samples.
- Hole clean outs are required before sampling.

Table 4.2 Boring types.

Boring type	Uses
Solid stem auger	Used in dry holes in competent materials. May need to use casing for collapsing material.
Hollow stem auger	Similar to solid stem (continuous flight) auger drilling, except hollow stem is screwed into to ground and acts as casing. Sampling and testing from inside of auger. Penetration in strong soils/gravel layers difficult.
Wash boring	Used to advance the borehole and keep the hole open below the water table. Fluid may be mud (polymer) or water depending on the soil conditions. Maintains hydrostatic head.
Rock coring	Hardened cutting bit with a core barrel used to obtain intact rock samples.
Air track probes	Provides a rapid determination of rock quality/depth to rock based on the time to advance the hole. Rock assessment is difficult as rock chippings only obtained.

- Common drilling methods are presented in the Table.
- Maintaining a hydrostatic head below the water prevents blow out of the base of the hole, with a resulting inconsistency in the SPT result.
- Similarly if the base of the hole is loosened by over washing in sands.

4.3 Field sampling

- Typical symbols only. Each consultant has his or her own variation.
- The symbols are used to speed up on site documentation.
- This requires an explanatory note on symbols to accompany any test record.

Table 4.3 Type of sampling.

Symbol	Sample or test
TP	Test pit sample
W	Water sample
D	Disturbed sample
В	Bulk disturbed sample
SPT	Standard penetration test sample
С	Core sample
U (50)	Undisturbed sample (50 mm diameter tube)
U (75)	Undisturbed sample (75 mm diameter tube)
U (100)	Undisturbed sample (100 mm diameter tube)

- The use of electronic hand held devices for logging, is becoming more popular. These devices are useful for static situations such as existing rock cuttings and exposures, or laboratory core logging.
- In dynamic situations such as field logging with a high production rate of say 20metres/day, these electronic devices are not as efficient and flexible as

the conventional handwritten methods. The preferences of having a hard copy and not relying on electronic logging in these situations are another argument not in its favour in such cases. The use of coded symbols aids in faster input of the data.

4.4 Field testing

The common field testing is shown in the table.

Table	44	Type	of field	testing.
IUDIC	7.7	1700	OI IICIU	CC3CITIE.

Symbol	Test	Measurement
DCP	Dynamic cone penetrometer	Blows/100 mm
SPT	Standard penetration test	Blows/300 mm
CPT	Cone penetration test	Cone resistance q _c (MPa); friction ratio (%);
CPTu	Cone penetration test with	Cone resistance q _c (MPa); friction ratio (%); pore
	pore pressure measurement	Pressure (kPa). Time for pore pressure
	(Piezocone)	dissipation t (sec)
PT	Pressuremeter test	Lift-off and limit pressures (kPa), Volume change (cm³)
PLT	Plate loading test	Load (kN), deflection (mm)
DMT	Dilatometer test	Lift-off and expansion pressures (kPa)
PP	Pocket penetrometer test	kPa
VST	Vane shear test	Nm, kPa
WPT	Water pressure (Packer) test	Lugeons

- There are many variations of tests in different countries. For examples the DCP, has differences in weight, drop and rods used. The CPT has mechanical and electric types with differences in interpretation.
- Vane shear test may have a direct read out for near surface samples, but with rods with a torque measurement for samples at depth.

4.5 Comparison of in situ tests

- The appropriateness and variability of each test should be considered. An appropriate test for ground profiling may not be appropriate for determining the soil modulus.
- Variability in testing is discussed in section 10.

4.6 Standard penetration test in soils

- In soils, the SPT is usually terminated with 30 blows/100 mm in the seating drive as a refusal level for the Australian Standard AS 1289 - 6.3.1 – 1993.
- In rock this refusal level is insufficient data. British Standards BS 1377:1990 and ASTM Standard D1586-84 allows further blows before discontinuing the test.

Table 4.5 In situ test methods and general application (Bowles, 1996).

Test					Are	ea of §	ground	l inter	est				
	Soil identification	Establish vertical profile	Relative density D _r	Angle of friction ϕ	Undrained shear strength S _u	Pore pressure u	Stress history OCR and Ko	Modulus: Es, G'	Compressibility mv and Cc	Consolidation ch and cv	Permeability k	Stress-strain curve	Liquefaction resistance
Acoustic probe Borehole permeability	C	В	В	С	С	Α	С	С		В	Α		С
Cone Dynamic Electrical friction Electrical piezocone Mechanical Seismic down hole Dilatometer (DMT) Hydraulic fracture	C B A B C B	AAACA	В В В С В	С В С	C B B B	A B	C A C B B	B B B A B	C B C	A C	В	B B C	C B A B B
Nuclear density tests Plate load tests Pressure meter menard Self-boring pressure Screw plate Seismic down-hole Seismic refraction Shear vane Standard penetration test (SPT)	C B B C C B B	C B B C C C B	A B C A B C	B B A C	C B A B	Α	B C A B	C A B A A B	B B A B	C A C	C B C	B C A B	B C A B B B

 C_h = Vertical consolidation with horizontal drainage: C_v = Vertical consolidation with vertical drainage. Code: A = most applicable.

- The first 150 mm is the seating drive, which allows for possible material fall in at the base of the hole and/or loosening of base material. Comparison between each 150 mm increment should be made to assess any inconsistencies. For example N values 1, 7, 23 suggests:
 - An interface (examine sample recovery if possible); or
 - Loose material falling into the base of the borehole, and the initial seating and first increment drive represents blow counts in a non in situ material.
- The SPT is the most common in situ test. However it is not repeatable, ie
 2 competent drillers testing next to each other would not produce the same
 N -Value.
- Correction factors need to be applied for overburden in granular soils and type of hammers.

B = may be used.

C = least applicable.

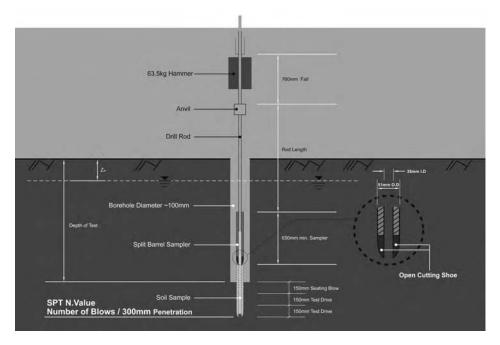


Figure 4.1 Standard penetration test.

Table 4.6 Standard penetration test in soils.

Symbol	Test
7, 11, 12 (eg)	Example of blows per 150 mm penetration.
N = 23 (eg)	Penetration resistance (blows for 300 mm penetration following 150 mm
or N _{SPT}	seating drive, example of $11 + 12 = 23 = N_{SPT}$ (actual field value with no correction factors).
N > 60	Total hammer blows exceed 60.
7, 11, 25/20 mm (eg)	Partial penetration, example of blows for the measured penetration (examine sample as either change in material here or fall in at top of test).
N'	Corrected N – value for silty sands below the water table.
N*	Inferred SPT value.
RW	Rod weight only causing penetration ($N < I$).
HW	Hammer and rod weight only causing full penetration ($N < I$).
НВ	Hammer bouncing (typically $N^* > 50$).
(N _o) ₆₀	Penetration resistance normalized to an effective overburden of 100 kPa, and an energy of 60% of theoretical free fall energy. $(N_o)_{60} = C_N C_{ER} N_{SPT}$.
C _N C _{ER}	Correction factor for overburden (C_N) and energy ratio (C_{ER}) .

Typically $(N_0)_{60}$ < 60 for soils. Above this value, the material is likely cemented sand, coarse gravels, cobbles, boulders or rock. However these materials may still be present for N – values less than 60.

• While the SPT N – value is the summation of the 300 mm test drive, the incremental change should also be noted, as this may signify loose fall in of material (ie incorrect values) or change in strength (or layer) profile over that 450 mm.

4.7 Standard penetration test in rock

- The SPT procedure in rock is similar to that in soils but extending the refusal blows to refusal. This requires at least 30 blows in less than 100 mm, for both a seating and a test drive before discontinuing the test.
- Tabulate both the seating and the test drive. The driller may complain about damage to the equipment.
- A solid cone (apex angle of 60°) is used for tests in gravelly soils, boulders and soft weathered rock.
- Values of N > 60 that cannot be extrapolated to a value of 120 or above is of very little quantitative value to the designer or assessing rock strength.

Table 4.7 Standard penetration test in rock.

Symbol	Test
N = 23 (eg)	Penetration resistance (blows for 300 mm penetration following 150 mm seating drive, example of $11 + 12 = 23$).
-30/50 mm, 30/20 mm (eg) N*	Partial penetration, example of blows for the measured penetration, but allowing for measuring both seating and test drive. Inferred SPT Value.

• There is a debate on whether inferred values should be placed on a factual log. However, the debate then extends to how much on the log is factual. For example, is the colour description (person dependent) more factual than N*.

4.8 Overburden correction factors to SPT result

- An overburden correction factor applies for granular materials.
- $N_0 = C_N N$.

Table 4.8 SPT correction factors to account for overburden pressure (adapted from Skempton, 1986).

Effective overburden (kPa)	Correction factor, C _N		Approximate depth of soil (metres) to achieve nominated effective overburden pressure for various ground water level (z_w)			
(Ki u)	Fine sands	Coarse sands	At surface $z_w = 0 m$	$z_w = 2 m$	$z_w = 5 m$	$z_w = 10 m$
0	2.0	1.5	0.0 m	0.0 m	0.0 m	0.0 m
25	1.6	1.3	3.1m	1.4 m	1.4 m	1.4 m
50	1.3	1.2	6.2 m	3.7 m	2.8 m	2.8 m
100	1.0	1.0	12.5 m	10.0 m	6.2 m	5.6 m
200	0.7	8.0	25.0 m	22.5 m	18.8 m	12.5 m
300	0.5	0.6	37.5 m	35.0 m	31.2 m	25.0 m
400	0.5	0.5	50.0 m	47.5 m	43.7 m	37.5 m

- Average saturated unit weight of 18 kN/m³ used in Table. Unit weight can
- Borehole water balance is required for tests below the water table to avoid blow out at the base of the hole with loosening of the soil, and a resulting non representative low N - value.
- In very fine or silty sands below the water table, a pore pressure may develop and an additional correction factor applies for N' > 15. N = 15 + 1/2 (N' - 15).

4.9 Equipment and borehole correction factors for SPT result

- An equipment correction and borehole size correction factors apply.
- The effect of borehole diameter is negligible for cohesive soils, and no correction factor is required.
- The energy ratio is normalized to 60% of total energy.
- $(N_0)_{60} = C_N C_{ER} N.$
- $C_{ER} = C_H C_R C_s C_B$

Table 4.9 Energy ratio correction factors to be applied to SPT value to account for equipment and borehole size (adapted from Skempton, 1986 and Takimatsu and Seed, 1987).

To account for	Parameter	Correction factor
	Hammer — release — country	
Hammer (C _H)	Donut – free fall (Tombi) – Japan	1.3
, ,	 Donut – rope and pulley – Japan 	1.1
	 Safety – rope and pulley – USA 	1.0
	 Donut – free fall (Trip) – Europe, China, Australia 	1.0
	 Donut – rope and pulley – China 	8.0
	 Donut – rope and pulley – USA 	0.75
Rod length (C_R)	• 10 m	1.0
3 (,	 10 m to 6 m 	0.95
	• 6 m to 4 m	0.85
	• 4 m to 3 m	0.75
Sampler (C _s)	 Standard 	1.0
1 (3/	 US sampler without liners 	1.2
Borehole	• 65 mm – 115 mm	1.0
Diameter (C _B)	• 150 mm	1.05
, 2 <i>7</i>	• 200 mm	1.15

4.10 Cone penetration test

- There are several variations of the cone penetration test (CPT). Electric and mechanical cones should be interpreted differently.
- The CPTu data is tabled below. The CPT would not have any of the pore pressure measurements.
- The CPT has a high production rate (typically 100 m/day but varies depending on number, soil type, distance between tests, accessibility, etc) compared to other profile testing.

Table 4.10 Cone penetration tests.

Symbol	Test
q _c	Measured cone resistance (MPa)
q _T	Corrected cone tip resistance (MPa): $q_T = q_c + (1 - a_N) u_h$
a _N	Net area ratio provided by manufacturer
	$0.75 < a_N < 0.82$ for most 10 cm^2 penetrometers
	$0.65 < a_N < 0.8$ for most 15 cm ² penetrometers
F,	Sleeve frictional resistance
FR	Friction ratio = F_s/q_c
u_0	In – situ pore pressure
\mathbf{B}_{q}	Pore pressure parameter – excess pore pressure ratio
1	$B_{q} = (u_{d} - u_{0})/(q_{T} - P_{q}')$
P_o'	Effective overburden pressure
\mathbf{u}_{d}^{o}	Measured pore pressure (kPa)
Δu	$\Delta u = u_d - u_0$
Т	Time for pore pressure dissipation (sec)
t ₅₀	Time for 50% dissipation (minutes)

• The dissipation tests which can take a few minutes to a few hours has proven more reliable in determining the coefficient of consolidation, than obtaining that parameter from a consolidation test.



Figure 4.2 Cone penetration test.

4.11 Dilatometer

- A Dilatometer test is most useful when used with a CPT.
- It has a very high production rate, but below that of the CPT.

Table 4.11	Dilatometer	testing.
------------	-------------	----------

Symbol	Test
Po (MPa) PI (MPa) ID U0 ED KD	Lift – off pressure (corrected A – reading) Expansion pressure (corrected B – reading) Material index $(I_D) = (p_1 - p_o)/(p_o - u_0)$ Hydrostatic pore water pressure Dilatometer modulus $(E_D) = 34.7 \; (p_1 - p_o)$ Horizontal stress index $(K_D) = (p_o - u_0)/\sigma'_{vo}$ Effective vertical overburden stress

4.12 Pressuremeter test

- The Pressuremeter test should be carried out with the appropriate stress range.
- It is useful for in situ measurement of deformation.

Table 4.12 Pressuremeter testing.

Symbol	Test
P _o (MPa)	Lift – off pressure
P _L (MPa)	Limit pressure
P_0	Total horizontal stress $\sigma_{ho} = P_0$
E _{PMT}	Young's modulus $(E_{PMT}) = 2(1 + \nu)(V/\Delta V)\Delta P$
ν	Poisson's ratio
V	Current volume of probe = $V_0 + \Delta V$
V_0	Initial probe volume = V_0
ΔV	Measured change in volume
ΔP	Change in pressure in elastic region

4.13 Vane shear

- Some shear vanes have a direct read out (kPa). These are usually limited to shallow depth testing.
- Values change depending on shape of vane.

Table 4.13 Vane shear testing.

Symbol	Test
s _{uv} (kPa)	Vane strength ($s_{uv} = 6 T_{max} / (7\pi D^3)$ for H/D = 2
Ď ĺ	Blade diameter
Н	Blade height
T_{max}	Maximum recorded torque
s _{uv} (peak)	Maximum strength
s _{uv} (remoulded)	Remoulded strength (residual value) -
,	vane is rotated through 10 revolutions)
μ	Vane shear correction factor
s _{uv} (corr)	s_{uv} (corr) = μs_{uv}

4.14 Vane shear correction factor

• A correction factor should be applied to the vane shear test result for the value to be meaningful.

Table 4.14 Vane shear correction factor (based on Bjerrum, 1972).

Plasticity index (%)	Vane correction factor (μ)		
<20%	1.0		
30%	0.9		
40%	0.85		
50%	0.75		
60%	0.70		
70%	0.70		
80%	0.65		
90%	0.65		
100%	0.65		

- Rate of shear can influence the result.
- Embankments on soft ground using large equipment are usually associated with 1 week construction time (loading) – 10,000 minutes. Chandler (1988).

4.15 Dynamic cone penetrometer tests

- This DCP test is measured in two ways as shown in the table.
- There are different variations of the DCP in terms of its hammer weight and drop height. Two variations with similar energy characteristics are shown in Figure 4.3.
- The DCP is most useful as profiling tool, although it is used to determine the strength properties and with correlations to the CBR. The blows/100 mm is the profiling approach, while the penetration/blow is the strength approach.

Table 4.15 Dynamic cone penetrometer tests.

Measurement	Example	Comments	
Blows/100 mm	10 Blows/100 mm	Equivalent reading	
Penetration (mm)/blow	10 mm/blow		

4.16 Surface strength from site walk over

- The pressure exerted by a person walking on the ground is based on their mass and foot size.
- For the Table below:
 - a heavy person is used as above 80 kg with small shoe size.
 - a light is person is below 60 kg with a large shoe size.
- All others are medium pressure

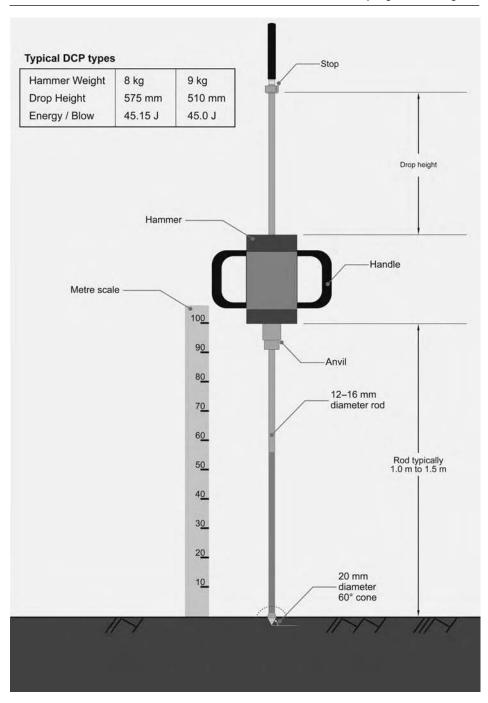


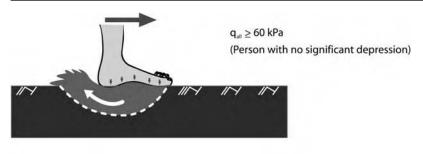
Figure 4.3 Dynamic cone penetrometer test.

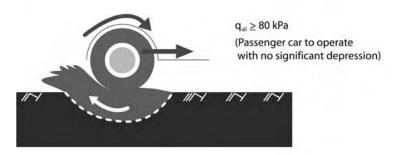
Table 4.16 Surface strength from site walk over.

Pressure from person	Typical undrained shear strength (kPa) support			Factor of safety (bearing)
	Light	Medium	Heavy	
Typical pressure	20 kPa	30–40 kPa	50 kPa	
No visible depressions	15 kPa	20–25 kPa	30 kPa	2.0
Some and visible depressions	10 kPa	15–20 kPa	25 kPa	1.5
Large depressions	5 kPa	10–15 kPa	15 kPa	1.0

- Very Soft Clays (<12 kPa) will have some to large depressions even with a light person pressure.
- Soft Clays will have visible depressions except for a light person. Depressions for all other persons.
- Firm to stiff clay typically required for most (medium) pressure persons so as not to leave visible depressions.
- A heavy person pressure requires a stiff clay, so as not to leave visible depressions.

4.17 Surface strength from vehicle drive over


The likely minimum strength of the ground may also be assessed from the type of vehicle used.


Table 4.17 Trafficability of common vehicles.

Vehicle type	Minimum strength for vehicle to operate
Passenger car	40 kPa
10 tonne (6 * 4) truck	30 kPa
3 tonne (4 * 4) truck	25 kPa
I tonne 4 wheel drive vehicle	20 kPa

4.18 Operation of earth moving plant

- Many earth moving equipment use large tyres or tracks to reduce the ground pressure. The table provides the shear strength requirement for such equipment to operate:
 - Feasible Deepest rut of 200 mm after a single pass of machine.
 - Efficient Rut \leq 50 mm after a single pass.

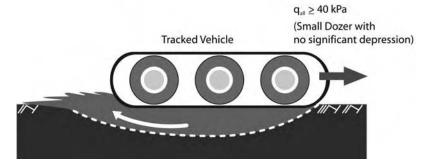


Figure 4.4 Surface depression from human and traffic movement.

Table 4.18 Typical strength required for vehicle drive over (from Farrar and Daley, 1975).

	Plant	Minimum shear strength (kPa)	
Туре	Description		Efficient
Small Dozer	Wide tracks	20	
	Standard tracks	30	
Large Dozer	Wide tracks	30	
· ·	Standard tracks	35	
Scrapers	Towed and small ($<$ 15 m ³)	60	140
•	Medium and large $(>15 \mathrm{m}^3)$	100	170

Soil strength parameters from classification and testing

5.1 Errors in measurement

- The industry trend is to minimise laboratory testing in favour of correlations from borelogs. This is driven by commercial incentives to reduce the investigation costs and win the project.
- This approach can often lead to conservative, but sometimes incorrect designs.

T			
Table 5.	/ t	rrors in	measurement.

Type of error	Comment
Inherent soil variability	Sufficient number of tests can minimise this error.
Sampling error	Correct size sample/type of sampler to account for soil structure and sensitivity in situ testing for granular material.
Measurement error	Not all test results from even accredited laboratories should be used directly. Sufficient number of laboratory tests to show up "outliers". Understand limitation of the tests. Validate with correlation tests. Appreciate significant variation correlations however.
Statistical variation	Use results knowing that results do vary (Chapter 10). Use of values appropriate to the risk and confidence of test results.

- Clay strength is typically 50% to 100% of value obtained from a 38 mm sample. Larger samples capture the soil structure effect (refer Table 1.13).

5.2 Clay strength from pocket penetrometer

- The pocket penetrometer (PP) is the simplest quantitative test used as an alternative to the tactile classification of strength (Table 2.14).
- The approximation of PP value = 2 C_u is commonly used. C_u (kPa) = $q_u/2$. However this varies for the type of soil as shown in the table.

- Some considerations in using this tool are:
 - It does not consider scale effects
 - Caution on use of results when used in gravelly clays. This is not an appropriate test in granular materials.
 - Do not use PP on an SPT sample, which are disturbed from the effects of driving (Table 4.1). Soft to firm samples are compressed and often provide stiff to very stiff results and hard samples are shattered and also provide stiff to very stiff results.

Table 5.2 Evaluating strength from PP values (Look, 2004).

Material	Unconfined compressive strength $q_{\scriptscriptstyle u}$
In general Fills	0.8 PP 1.15 PP
Fissured clays	0.6 PP

- For Soils: Three Pocket Penetrometer (PP) Readings on Undisturbed tube sample (base of tube): Report the PP value do not convert to a C_u on the borelog.
- Some field supervisors are known to use the PP on SPT samples this practice is to be avoided as the PP value is meaningless on a disturbed sample.

5.3 Clay strength from SPT data

- As a first approximation C_u = 5 SPT is commonly used. However this correlation is known to vary from 2 to 8.
- The overburden correction is not required for SPT values in clays.
- Sensitivity of clay affects the results.

Table 5.3 Clay strength from SPT data.

Material	Description	SPT - N (blows/300 mm)	Strength
Clay	V. Soft	<u><2</u>	0–12 kPa
,	Soft	- 2–5	12–25 kPa
	Firm	5–10	25–50 kPa
	Stiff	10–20	50–100 kPa
	V. Stiff	20-40	100-200 kPa
	Hard	>40	>200 kPa

- An indication of the variability of the correlation in the literature is as follows
 - Sower's graphs uses $C_u = 4 N$ for high plasticity clays and increasing to about 15 N for low plasticity clays.
 - Contrast with Stroud and Butler's (1975) graph which shows Cu = 4.5 N for PI > 30%, and increasing to Cu = 8 N for low plasticity clays (PI = 15%).
- Therefore use with caution, and with some local correlations.

5.4 Clean sand strength from SPT data

- The values vary from corrected to uncorrected N values and type of sand.
- The SPT value can be used to determine the degree of compactness of a cohesionless soil. However, it is the soil friction angle that is used as the strength parameter.

Table 5.4 Strength from SPT on clean medium size sands on	Table 5.4
---	-----------

Description Relative density D _r		SPT - N (blows/300 mm)		Strength	
	density D _r	Uncorrected field value	Corrected value	Friction angle	
V. Loose	<15%	N ≤ 4	(N₀) ₆₀ ≤ 3	φ < 28°	
Loose	15–35%	N = 4-10	$(N_o)_{60} = 3-8$	ϕ = 28–30 $^{\circ}$	
Med dense	35–65%	N = 10-30	$(N_o)_{60} = 8-25$	$\phi = 30-40^{\circ}$	
Dense	65–85%	N = 30-50	$(N_o)_{60} = 25-42$	$\phi = 40-45^{\circ}$	
V. Dense	>85%	N > 50	$(N_o)_{60} > 42$	$\phi = 45^{\circ} - 50^{\circ}$	
V. Dense	>85% 100%	N > 50	$(N_o)_{60} > 42$ $(N_o)_{60} = 60$	$ \phi = 45^{\circ} $ $ \phi = 50^{\circ} $	

- Reduce ϕ by 5° for clayey sand.
- Increase ϕ by 5° for gravely sand.

5.5 Fine and coarse sand strength from SPT data

- Fine sands have reduced values from the table above while coarse sand has an increased strength value.
- The corrected N value is used in the table below.

Table 5.5 Strength from corrected SPT value on clean fine and coarse size sands.

Description	Relative density D,	Corrected SPT – N (blows/300 mm)			Strength
	density D_r	Fine sand	Medium	Coarse sand	
V. Loose Loose Med dense Dense V. Dense	<15% 15–35% 35–65% 65–85% >85% 100%	$\begin{array}{c} (N_{\circ})_{60} \leq 3 \\ (N_{\circ})_{60} = 3-7 \\ (N_{\circ})_{60} = 7-23 \\ (N_{\circ})_{60} = 23-40 \\ (N_{\circ})_{60} > 40 \\ (N_{\circ})_{60} = 55 \end{array}$	$\begin{array}{c} (N_{o})_{60} \leq 3 \\ (N_{o})_{60} = 3 - 8 \\ (N_{o})_{60} = 8 - 25 \\ (N_{o})_{60} = 25 - 43 \\ (N_{o})_{60} > 43 \\ (N_{o})_{60} = 60 \end{array}$	$(N_o)_{60} \le 3$ $(N_o)_{60} = 3-8$ $(N_o)_{60} = 8-27$ $(N_o)_{60} = 27-47$ $(N_o)_{60} > 47$ $(N_o)_{60} = 65$	

- Above is based on Skempton (1988):
 - $(N_o)_{60}/D_r^2 = 55$ for Fine Sands.
 - $(N_0)_{60}/D_r^2 = 60$ for Medium Sands.
 - $(N_0)_{60}/D_r^2 = 65$ for Coarse Sands.

5.6 Effect of aging

- The SPT in recent fills and natural deposits should be interpreted differently.
- Typically the usual correlations and interpretations are for natural materials. Fills and remoulded samples should be assessed different.

Table 5.6 Effect of aging (Skempton, 1988).

Description	Age (years)	$(N_o)_{60}/D_r^2$
Laboratory tests	10 ⁻²	35
Recent fills	10	40
Natural deposits	>10 ²	55

• Fills can therefore be considered medium dense with a corrected N value of 5, while in a natural deposit, this value would be interpreted as a loose sand.

5.7 Effect of angularity and grading on strength

- Inclusion of gradations and particle description on borelogs can influence strength interpretation.
- These two factors combined affect the friction angle almost as much as the density itself as measured by the SPT N value.

Table 5.7 Effect of angularity and grading on siliceous sand and gravel strength BS 8002 (1994).

Particle description	Sub division	Angle increase
Angularity	Rounded Sub – Angular	A = 0 A = 2
Grading	Angular Uniform soil $(D_{60}/D_{10} < 2)$ Moderate grading $(2 \le D_{60}/D_{10} \le 6)$ Well graded $(D_{60}/D_{10} > 6)$	A = 4 $B = 0$ $B = 2$ $B = 4$

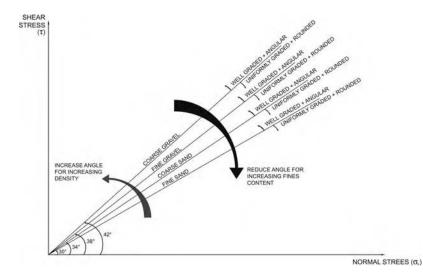


Figure 5.1 Indicative variation of sand friction angle with gradation, size and density.

Figure 5.2 Indicative variation of clay strength with changing granular content.

5.8 Critical state angles in sands

- The critical state angle of soil $(\phi_{crit}) = 30 + A + B$.
- This is the constant volume friction angle. The density of the soil provides an additional frictional value but may change depending on its strain level.

Table 5.8 Critical state angle.

Particle distribution	Critical state angle of soil $(\phi_{crit}) = 30 + A + B$					
	Angularity					
		Rounded	Sub – Angular	Angular		
Grading	В	A = 0	A = 2	A = 4		
Uniform soil $(D_{60}/D_{10} < 2)$	B = 0	30	32	34		
Moderate grading $(2 \le D_{60}/D_{10} \le 6)$	B = 2	32	34	36		
Well graded ($D_{60}/D_{10} > 6$)	B = 4	34	36	38		

5.9 Peak and critical state angles in sands

- The table applies for siliceous sands and gravels.
- Using above Table for A and B, the peak friction angle $(\phi_{peak}) = 30 + A + B + C$.

Table 5.9 Peak friction angle (adapted from correlations in BS 8002, 1994).

Description	Corrected SPT – N' (blows/300 mm)		Critical state angle of soil $(\phi_{crit}) = 30 + A + B$				
			Angularity/shape (A)			Grading (B)	
	(N _o) ₆₀	N'	С	Rounded	Sub – Angular	Angular	
V. Loose	<3	<10	0	30	32	34	Uniform
				32	34	36	Moderate
Loose	3–8			34	36	38	Well graded
Med dense	8–25	20	2	32	34	36	Uniform
				34	36	38	Moderate
				36	38	40	Well graded
Dense	25–42	40	6	36	38	40	Uniform
				38	40	42	Moderate
				40	42	44	Well graded
V. Dense	>42	60	9	39	41	43	Uniform
				41	43	52	Moderate
				43	45	47	Well graded

5.10 Strength parameters from DCP data

- The Dynamic Cone Penetrometer (DCP) is 1/3 the energy of the SPT, but the shape of the cone results in less friction than the Split Spoon of the SPT.
- $n \sim 1/3$ (N_o)₆₀ used in the Table below.
- The top 0.5 m to 1.0 m of most clay profiles can have a lower DCP value for a given strength than shown in the Table, and is indicative of the depth of desiccation

Table 5.10 Soil and rock parameters from DCP data.

Material	Description	DCP – n (Blows/100 mm)	Strength
Clays	V. Soft	0–I	C., = 0-12 kPa
,	Soft	I-2	$C_{11} = 12-25 \text{kPa}$
	Firm	2–3	$C_{11} = 25 - 50 \text{ kPa}$
	Stiff	3–7	$C_{11} = 50 - 100 \text{ kPa}$
	V. Stiff	7–12	$C_{II} = 100-200 \text{ kPa}$
	Hard	> 12	$C_u > 200 kPa$
Sands	V. Loose	0–I	φ < 30°
	Loose	I-3	$\dot{\Phi} = 30-35^{\circ}$
	Med dense	3–8	$\dot{\Phi} = 35-40^{\circ}$
	Dense	8–15	$\dot{\Phi} = 40 - 45^{\circ}$
	V. Dense	>15	$\dot{\phi} > 45^{\circ}$
Gravels, C	Cobbles, Boulders*	>10	φ = 35°
		>20	$\phi > 40^{\circ}$
Rock		>10	$C' = 25 \text{ kPa}, \phi > 30^{\circ}$
		>20	$C' > 50 kPa, \phi > 30^\circ$

 $^{^{}st}$ Lowest value applies, erratic and high values are common in this material.

 $<4 \, \text{mm}$

cracks. Recently placed fills may also have lower values for a given strength than shown in the Table.

5.11 CBR value from DCP data

- The DCP is often used for the determination of the in situ CBR.
- Various correlations exist depending on the soil type. Site specific correlation should be carried out where possible.
- The correlation is not as strong for values ≥ 10 blows/100 mm (10 mm/blow), ie CBR > 20%.

,,	•		
Blows/100 mm	In situ CBR (%)	mm/blow	
<i< td=""><td><2</td><td>> 100 mm</td></i<>	<2	> 100 mm	
I-2	2–4	100-50 mm	
2–3	4–6	50–30 mm	
3–5	6–10	30–20 mm	
5–7	10–15	20-15 mm	
7–10	15–25	15-10 mm	
10–15	25–35	10–7 mm	
15–20	35–50	7–5 mm	
20–25	50–60	5–4 mm	

Table 5.11 Typical DCP - CBR relationship.

>25

5.12 Soil classification from cone penetration tests

This is an ideal tool for profiling to identify lensing and thin layers.

>60

Table 5.12 Soil classification	(adapted from Meigh,	1987 and Robertson et al., 1986).	
--------------------------------	----------------------	-----------------------------------	--

Parameter	Value	Non cohesive soil type	Cohesive soil type
Measured cone	< I.2 MPa	-	Normally to lightly overconsolidated
Resistance, q_c	> 1.2 MPa	Sands	Overconsolidated
Friction ratio (FR)	<1.5% >3.0%	Non cohesive	_ Cohesive
Pore pressure Parameter B _q	0.0 to 0.2 0.0 to 0.4	Dense sand $(q_T > 5 \text{ MPa})$ Medium/loose sand $(2 \text{ MPa} < q_T < 5 \text{ MPa})$	Hard/stiff soil (O.C) $(q_T > 10 \text{ MPa})$ Stiff clay/silt $(1 \text{ MPa} < q_T < 2 \text{ MPa})$
	0.2 to 0.8 0.8 to 1.0 >0.8		Firm clay/fine silt ($q_T < I$ MPa) Soft clay ($q_T < 0.5$ MPa) Very Soft clay ($q_T < 0.2$ MPa)
Measured pore Pressure (u _d – kPa)	~0	Dense sand $(q_T - P'_o > 12 \text{ MPa})$ Medium sand $(q_T - P'_o > 5 \text{ MPa})$ Loose sand $(q_T - P'_o > 2 \text{ MPa})$	
(40 14 4)	50 to 200 kPa > 100 kPa	20050 541.12 (4) 10 / 211114)	Silt/stiff clay (q _T $-P'_o > I$ MPa) Soft to firm clay (q _T $-P'_o < I$ MPa)

- It is most useful in alluvial areas.
- The table shows simplified interpretative approach. The actual classification and strength is based on the combination of both the friction ratio and the measured cone resistance, and cross checked with pore pressure parameters.
- Applies to electric cone and different values apply for mechanical cones. Refer to Figures 5.3 and 5.4 for different interpretations of the CPT results.

5.13 Soil type from friction ratios

- The likely soil types based on friction ratios only are presented in the table below.
- This is a preliminary assessment only and the relative values with the cone resistance, needs to be also considered in the final analysis.

Friction ratio (%)	Soil type
<1	Coarse to medium sand
I – 2	Fine sand, silty to clayey sands
2–5	Sandy clays. Silty clays, clays, organic clays
>5	Peat

Table 5.13 Soil type based on friction ratios.

5.14 Clay parameters from cone penetration tests

- The cone factor conversion can have significant influence on the interpretation of results.
- For critical conditions and realistic designs, there is a need to calibrate this testing with a laboratory strength testing.

Table 5.14	Clay parameters	from cone	penetration test.
------------	-----------------	-----------	-------------------

Parameter	Relationship	Comments
Undrained strength (C _u – kPa)	$\begin{aligned} C_u &= q_c/N_k \\ C_u &= \Delta u/N_u \end{aligned}$	Cone factor $(N_k) = 17$ to 20 17–18 for normally consolidated clays 20 for over-consolidated clays Cone factor $(N_u) = 2$ to 8
Undrained strength (C_u – kPa), corrected for overburden	$C_u = (q_c - P_o')/N_k'$	Cone factor $(N'_k) = 15$ to 19 15–16 for normally consolidated clays 18–19 for over-consolidated clays
Coefficient of horizontal consolidation $(c_h - sq m/year)$	$c_h = 300/t_{50}$	t_{50} – minutes (time for 50% dissipation)
Coefficient of vertical consolidation $(c_v - sq m/year)$	$c_h = 2 \; c_v$	Value may vary from 1 to 10

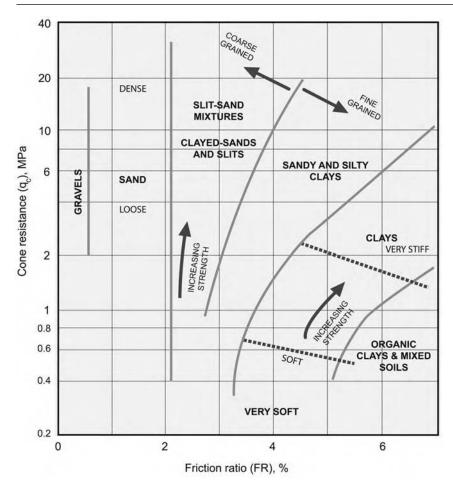


Figure 5.3 CPT properties, and strength changes for mechanical cones (Schertmann, 1978).

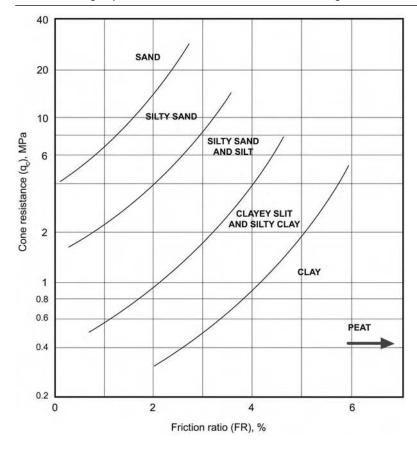


Figure 5.4 CPT properties, and strength changes for electrical cones (Robertson and Campanella, 1983).

5.15 Clay strength from cone penetration tests

• The table below uses the above relationships to establish the clay likely strength.

Table 5.15 Soil strength from cone penetration test.

Soil class	fication	Approximate q_c (MPa)	Assumptions. Not corrected for overburden.
V. Soft	$C_u = 0-12 \text{ kPa}$	<0.2	$N_k = 17$ (Normally consolidated)
Soft Firm	$C_u = 12-25 \text{ kPa}$ $C_u = 25-50 \text{ kPa}$	0.2–0.4 0.4–0.9	$N_k = 17$ (Normally consolidated) $N_k = 18$ (Lightly overconsolidated)
Stiff	$C_u = 25 - 30 \text{ Kr } a$ $C_u = 50 - 100 \text{ kPa}$	0.9–2.0	$N_k = 18$ (Lightly overconsolidated)
V. Stiff	$C_u = 100-200 \text{kPa}$	2.0-4.2	$N_k = 19$ (Overconsolidated)
Hard	$C_u = > 200 \text{kPa}$	>4.0	$N_k = 20$ (Overconsolidated)

5.16 Simplified sand strength assessment from cone penetration tests

• A simplified version is presented below for a preliminary assessment of soil strength in coarse grained material.

This may vary depending on the depth of the effective overburden and type of coarse grained material.

Relative density	Dr (%)	Cone resistance, q_c (MPa)	Typical ϕ°
V. Loose	$D_r < 15$	<2.5	<30°
Loose	$D_r = 15-35$	2.5–5.0	30–35°
Med dense	$D_r = 35-65$	5.0-10.0	35 –4 0°
Dense	$D_r = 65 - 85$	10.0-20.0	40–45°
V. Dense	$D_r > 85$	>20.0	> 45 °

- The cone may reach refusal in very dense/cemented sands, depending on the thrust of the rigs.
- Rigs with the CPT pushed though its centre of gravity are usually expected to penetrate stronger layers than CPTs pushed from the back of the rigs.
- Portable CPT variations have less push although added flexibility for some difficult to access sites.

5.17 Soil type from dilatometer test

The soil type can be determined from the material index parameter (I_D).

Table 5.17 Soil description from dilatometer testing (Marchetti, 1980).

I_D	< 0.6	0.6–1.8	>1.8
Material type	Clayey soils	Silty soils	Sandy soils

5.18 Lateral soil pressure from dilatometer test

- The DMT can be used to determine the lateral stress.
- Lateral stress coefficient K_o = effective lateral stress/effective overburden stress.

Table 5.18 Lateral soil pressure from dilatometer test (Kulhawy and Mayne, 1990).

Type of clay	Empirical	Lateral stress coefficient K_{\circ}					
	þarameter eta_k	Formulae	2	5	10	15	
Insensitive clays	1.5	$(K_D/1.5)^{0.47} - 0.6$	0.5	1.2	1.8	2.4	
Sensitive clays	2.0	$(K_D/2.0)^{0.47} - 0.6$	0.4	0.9	1.5	N/A	
Glacial till	3.0	$(K_D/3.0)^{0.47} - 0.6$	N/A	0.7	1.2	1.5	
Fissured clays	0.9	$(K_D/0.9)^{0.47} - 0.6$	N/A	1.6	2.5	3.2	

- Lateral Stress index $K_D = (p_o u_0)/\sigma_{vo}$.
- $K_D < 2$ indicates a possible slip surface in slope stability investigations (Marchetti et al, 1993).

5.19 Soil strength of sand from dilatometer test

• Local relationships should always be developed to use with greater confidence.

Table 5.19 Soil strength of sand from dilatometer testing.

Description	Strei	ngth	K _D
V. Loose Loose Med dense Dense V. Dense	$\begin{array}{l} D_r < 15\% \\ D_r = 1535\% \\ D_r = 3565\% \\ D_r = 6585\% \\ D_r > 85\% \end{array}$	$\phi < 30^{\circ}$ $\phi = 30-35^{\circ}$ $\phi = 35-40^{\circ}$ $\phi = 40-45^{\circ}$ $\phi > 45^{\circ}$	<1.5 1.5–2.5 2.5–4.5 4.5–9.0 >9.0

5.20 Clay strength from effective overburden

• This relationship is also useful to determine degree of over consolidation based on measured strength.

Table 5.20 Estimate of a normally consolidated clay shear strength from effective overburden (adapted from Skempton, 1957).

Effective overburden (kN/m³)		Undrained shear strength of a normally consolidated clay $C_u = (0.11 + 0.0037 Pl) \ \sigma_{ m v}'$					
	$C_u/\sigma'_v =$	0.18	0.26	0.30	0.33	0.41	0.48
	Likely OCR	<2		2–4		3–8	
	PI =	20%	40%	50%	60%	80%	100%
10–50	Very soft to soft	2–9	3–13	3–15	3–17	4–20	5–24
50–100	Very soft to firm	9–18	13–26	15–30	17–33	20-41	2 4_4 8
150-200	Firm to Stiff	28–37	39–52	44–59	50–66	61–81	72–96
300	Stiff to very stiff	55	77	89	100	122	144

- For values of $C_u/\sigma_v' > 0.5$, the soil is usually considered heavily overconsolidated.
- Lightly overconsolidated has OCR 2–4
- OCR Overconsolidation ratio
- Typically $C_u/\sigma'_v = 0.23$ used for near normally consolidated clays (OCR < 2)
- C_u/σ_v' is also dependent on the soil type and the friction angle (refer Chapter 7).

Rock strength parameters from classification and testing

6.1 Rock strength

- There are many definitions of strengths.
- The value depends on the extent of confinement and mode of failure.

Table 6.1 Rock strength descriptors.

Rock strength	Description
Intact strength	Intact specimen without any defects
Rock mass strength	Depends on intact strength factored for its defects
Tensile strength	\sim 5% to 25% UCS – use 10% UCS
Flexural strength	$\sim\!\!2\! imes$ tensile strength
Point load index strengths	~UCS/20 but varies considerably. A tensile test
Brazilian strengths	A tensile test
Schmidt Hammer strengths	Rebound value. A hardness test
Unconfined compressive strengths	A compression test strength under uniaxial load in an unconfined state UCS or $q_{\mbox{\scriptsize u}}$
Soft rock	UCS < 10 MPa
Medium rock	UCS = 10 to $20 MPa$
Hard rock, typical concrete strength	$UCS \geq 20MPa$

6.2 Typical refusal levels of drilling rig

- The penetration rate, the type of drilling bit used and the type and size of drilling rig are useful indicators into the strength of material.
- Typical materials and strengths in south east Queensland is shown in the table.

Table 6.2 Typical refusal levels of drilling rigs in south east queensland.

Property	Typical material						
Drill rig	Weight of rig	V — Bit refusal	TC – Bit refusal	RR — Bit refusal			
Jacro 105	3.15 t	Very stiff to hard clays DCP = 8-10	XW sandstone DCP = Refusal (\sim 20)	N/A			
Gemco HP7/ Jacro 200	6 t	XW sandstone/ phyllite SPT *= 60–80	XW sandstone/DW Phyllite SPT $* = 200-700$				
Jacro 500	12 t	DW phyllite SPT *= 200-700		DW metasiltstone SPT *= 300–500			

- SPT * = Inferred N value:
 - V Bit is hardened steel.
 - TC bit is a tungsten carbide.
- RR Rock roller.

6.3 Parameters from drilling rig used

- This table uses the material strength implications from the refusal levels to provide an on site indicator of the likely bearing capacity a first assessment only.
- This must be used with other tests and observations.
- The intent throughout this text is to bracket the likely values in different ways, as any one method on its own may be misleading.

Table 6.3 Rock parameters from drilling rig.

Property		Allowable bearing capacity (kPa)					
Drill rig	Weight of rig	V- Bit re	fusal	TC - Bit refu	sal RR — Bit refusal		
Jacro 105	3.15 t	300		500	N/A		
Gemco HP7/Jacro200	6 t	450		750	1500		
Jacro 500	12 t	600		1000	2000		
Typical material	Hard clay: C _u = XW phyllite	= 250 kPa		mudstone greywacke	DW sandstone DW tuff		

- Weight and size of drilling rig has different strength implications.
- Drilling Supervisor should ensure the driller uses different drill bits (T.C. / V Bit) as this is useful information.

6.4 Field evaluation of rock strength

- During the site investigation, various methods are used to assess the intact rock strength.
- Often SPT refusal is one of the first indicators of likely rock. However, the same SPT value in a different rock type or weathering grade may have different strength implications.

Table 6.4 Field evaluation of rock strength.

Strength		Description		Арргох. SPT	I _s (50) (MPa)
	By hand	Point of pick	Hammer with hand held specimen	N-value	
Extremely low	Easily crumbled in I hand	Crumbles		<100	Generally N/A
Very low				60-150	<0.1
Low	Broken into pieces in 1 hand	Deep indentations to 5 mm		100–350	0.1-0.3
Medium	Broken with difficulty in 2 hands	I mm to 3 mm indentations	Easily broken with light blow (thud)	250–600	0.3–I
High			I firm blow to break (rings)	500	I-3
Very high			> I blow to break (rings)	>600	3–10
Extremely high			Many hammer blows to break (rings) – sparks		>10

- Anisotropy of rock material samples may affect the field assessment of strength.
- I_s (50) Point load index value for a core diameter of 50 mm.
- The unconfined compressive strength is typically about $20 \times I_s$ (50), but the multiplier may vary widely for different rock types.

6.5 Rock strength from point load index values

- Point load index value is an index of strength. It is not a strength value.
- Multiplier typically taken as 23, but 20 as a simple first conversion. This is for high strength (Hard) rock. For lower strength rocks (UCS < 20 MPa, I_s (50) < 1 MPa) the multiplier can be significantly less than 20.

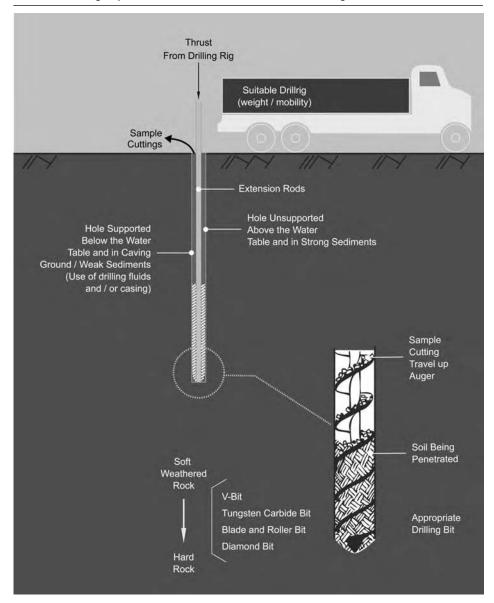


Figure 6.1 Use of drilling rigs.

Rock type	Weathering	UCS/I _s (50) ratio	Location/ description
Argillite/metagreywacke	DW	5 8	Brisbane, Queensland, Australia Gold coast, Queensland, Australia
Metagreywacke	DW	15	Gold coast, Queensland, Australia
Tuff	DW SW/FR	24 18	Brisbane, Queensland, Australia
Basalt	DW	25	Brisbane, Queensland, Australia
Phyllite/arenite	DW SW/FR	9 4	Brisbane, Queensland, Australia
Sandstones	DW	12 10 11	Brisbane, Queensland, Australia Gold coast, Queensland, Australia Central Queensland, Australia
Magnesian limestone		25	UCS = 37 MPa average
Upper chalk Carbonate siltstone/mudstone		18 12	Humberside/UCS = 3–8 MPa average UAE/UCS = 2 MPa
Mudstone/siltstone (coal measures)		23	UCS = 23 MPa
Tuffaceous rhyolite		10	Korea/UCS = 20-70 MPa
Tuffaceous andesite		10	Korea/UCS = 40-140 MPa

Table 6.5 UCS/Point load multiplier for weak rocks (Tomlinson, 1995; Look and Griffiths, 2004).

- A value of 10 would be recommended as a general conversion, but the values above shown that the multiplier is dependent on rock type and is site specific.
- Queensland has a tropical weathered profile.

6.6 Strength from Schmidt Hammer

- There are "N" and "L" Type Schmidt Hammers.
- $R_L = 0.605 + 0.677 R_N$.
- The value needs to be corrected for verticality.
- Minimum of 10 values at each sample location. Use 5 highest values.

Table 6.6 Rock strength using schmidt "N" type hammer.

Strength	Low	Medium	High	Very high	Extremely high
UCS value (mpa) Schmidt Hammer rebound value	<6 <10	6–20 10–25	20–60 25–40	60–200 40–60	>200 >60
Typical weathering	XW	HW	MW	SW	FR

6.7 Relative change in strength between rock weathering grades

- The rock strengths change due to weathering and vary significantly depending on the type of rock.
- Rock weathering by itself, is not sufficient to define a bearing capacity. Phyllites do not show significant change in intact rock strength but often have a significant change in defects between weathering grades.

Table 6.7 Relative change in rock strengths between rock weathering grades (Look and Griffiths, 2004).

Rock		Relative change
Туре	Weathering	in intact strength
Argillite/greywacke	DW	1.0
	SW FR	2.0 6.0
Sandstone/siltstone	DW SW	1.0 2.0
	FR	4.0
Phyllites	DW SW FR	1.0 1.5 2.0
Conglomerate/agglomerate	DW SW FR	1.0 2.0 4.0
Tuff	DW SW FR	1.0 4.0 8.0

• The table shows a definite difference between intact rock strength for SW and FR rock despite that weathering description by definition, suggests that there is little difference in strength in the field (refer Table 3.4).

6.8 Parameters from rock weathering

- A geotechnical engineer is often called in the field to evaluate the likely bearing capacity of a foundation when excavated. Weathering grade is simple to identify, and can be used in conjunction with having assessed the site by other means (intact strength and structural defects).
- The field evaluation of rock weathering in the table presents generalised strengths.
- Different rock types have different strengths e.g. MW sandstone may have similar strength to HW granite. The table is therefore relative for a similar rock type.
- Including rock type can make a more accurate assessment.

Table 6.8 F	ield e	valuation	of rock	weathering.
-------------	--------	-----------	---------	-------------

Properties	Weathering					
	XW	DW	SW	FR		
Field description	Total discolouration. Readily disintegrates when gently shaken in water	Discolouration & strength loss, but not enough to allow small dry pieces to be broken across the fabric – MW Broken and crumbled by hand – HW	Strength seems similar to fresh rock, but more discoloured	No evidence of chemical weathering		
Struck by hammer		Dull thud	Rings	Rings		
Allowable bearing capacity Q _{all,} other than rocks below	≤I MPa	HW: I–2 MPa MW: 2–4 MPa	5–6 MPa	8 MPa		
Allowable bearing capacity Q_{all} of argillaceous, organic and chemically formed sedimentary and foliated metamorphic rocks	≤0.75 MPa	HW: 0.75–1.0 MPa MW: 1.0–1.5 MPa	2–3 MPa	4 MPa		

- Use of presumed bearing pressure from weathering only is simple but not very accurate – use only for preliminary estimate of foundation size.
- Weathered shales, sandstones and siltstones can deteriorate rapidly upon exposure or slake and soften when in contact with water. Final excavation in such materials should be deferred until just before construction of the retaining wall/foundation is ready to commence.
- Alternatively the exposed surface should be protected with a blinding layer immediately after excavation, provided water build up behind a wall is not a concern.
- A weathered rock can have a higher intact rock strength than the less weathered grade of the same rock type, as a result of secondary cementation.

6.9 Rock classification

- The likely bearing capacity can be made based on the rock classification.
- There is approximately a ten fold increase in allowable bearing capacity from an extremely weathered to a fresh rock.
- The table is for shallow footings.

Table 6.9 Rock classification.

Rock type	Descriptor	Examples	Allowable bearing capacity (kPa)
Igneous	Acid	Granite, Microgranite	800–8000
	Basic	Basalt, Dolerite	600–6000
	Pyroclastic	Tuff, Breccia	400–4000
Metamorphic	Non foliated	Quartzite, Gneiss	1000–10,000
	Foliated	Phyllite, Slate, Schist	400–4000
Sedimentary	Hard	Limestone, Dolomite, Sandstone	500–5000
	Soft	Siltstone, Coal, Chalk, Shale	300–3000

6.10 Rock strength from slope stability

- The intact strength between different rock types is shown.
- For this book, the tables that follow are used to illustrate the relative strength. However this varies depending on the reference used.

Uniaxial compressive Strength Rock classification strength (MPa) Sedimentary Metamorphic Igneous 40 Lowest **Phyllites** 50 Clay – Shale 60 **Dolomites** 70 Siltstones Micaschists 80 Serpentinites 100 **Ouartzites** 110 Sandstones Marbles 120 **Pegmatites** 140 Granadiorites 150 Granites 170 **Rhyolites** Highest

Table 6.10 Variation of rock strength (Hoek and Bray, 1981).

6.11 Typical field geologists rock strength

• Another example of rock strength variation, but with some variations to the previous table.

6.12 Typical engineering geology rock strengths

• Another example of rock strength variation, but with some variations to the previous table.

Uniaxial compressive	Strength	Strength Rock classification		on
strength (MPa)		Sedimentary	Metamorphic	Igneous
15	Lowest			Welded Tuff
20		Sandstone		Porphyry
25	_ ↑	Shale		Granadiorite
30		Sandstone		
45		Limestone	Schist	
60	↓ ↓	Dolomite		Granadiorite
70			Quartzite	Granite
80				Rhyolite
90		Limestone		Granite
100		Dolomite, Siltstone. Sandstone	Schist	
150				Granite
200			Quartzite	
220	Highest			Diorite

Table 6.11 Variation of rock strength (Berkman, 2001).

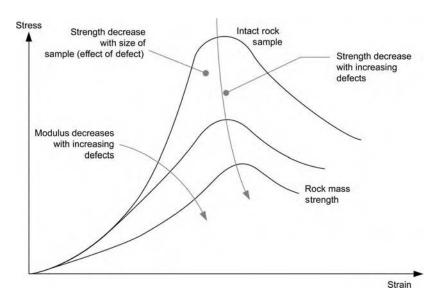


Figure 6.2 Rock type properties.

6.13 Relative strength - combined considerations

- The above acknowledges that the description of rock strength from various sources does vary.
- Combining the rock strengths from various sources is included in this table.

Table 6.12 Variation of rock strength (Walthman, 1994).

Uniaxial compressive	Strength	Rock classification		
strength (MPa)		Sedimentary	Metamorphic	Igneous
10	Lowest	Salt, Chalk		
20	<u></u>	Shale, Coal, Gypsum, Triassic sandstone, Jurassic limestone		
40		Mudstone		
60] ↓	Carboniferous sandstone	Schist	
80			Slate	
100		Carboniferous limestone	Marble	
150		Greywackes	Gneiss	
200				Granite
250	Highest		Hornfels	Basalt

Table 6.13 Relative rock strength combining above variations.

Uniaxial compressive	Strength	Rock classification		
strength (MPa)		Sedimentary	Metamorphic	Igneous
10	Lowest	Salt, Chalk		Welded tuff
20	1	Shale, Coal, Gypsum, (2) Triassic sandstone, Jurassic limestone		Porphyry, Granadiorite
40		Mudstone, Sandstone, Clay – Shale	Phyllites	
60		Carboniferous sandstone, Limestone, (2) Dolomite, Siltstones	(2) Schist, Micaschists	Granadiorite
80			Slate, Quartzite	Granite, Rhyolite Serpentinite
100	+	(2) Carboniferous limestone, Dolomite, Siltstone, (2) Sandstone	(2) Marble, Schist Quartzites	Granite, Pegmatites
150		Greywackes	Gneiss	(2) Granite, Granadiorite, Rhyolite
200			Quartzite	Granite, Diorite
250	Highest		Hornfels	Basalt

6.14 Parameters from rock type

• The table below uses the above considerations, by combining intact rock strengths with, rock type, structure and weathering.

- The rock weathering affects the rock strength. This table uses this consideration to provide the likely bearing capacity based on the weathering description, and rock type.
- The design values are a combination of both rock strength and defects.

Table 6.14 Estimate of allowable bearing capacity in rock.

	Presumed allowable bearing capacity (kPa)			
	XW	DW	SW	FR
Igneous				
Tuff	500	1,000	3,000	5,000
Rhyolite, Andesite, Basalt	800	2,000	4,000	8,000
Granite, Diorite	1,000	3,000	7,000	10,000
Metamorphic				
Schist, Phyllite, Slate	400	1,000	2,500	4,000
Gneiss, Migmatite	800	2,500	5,000	8,000
Marble, Hornfels, Quartzite	1,200	4,000	8,000	12,000
Sedimentary				
Shale, Mudstone, Siltstone	400	800	1,500	3,000
Limestone, Coral	600	1,000	2,000	4,000
Sandstone, Greywacke, Argillite	800	1,500	3,000	6,000
Conglomerate, Breccia	1,000	2,000	4,000	8,000

- The Igneous rocks which cooled rapidly with deep shrinkage cracks, such as the Basalts, tend to have a deep weathering profile.
- The foliated metamorphic rocks such as Phyllites can degrade when exposed with a resulting softening and loss of strength.

6.15 Rock durability

- Rock durability is important when the rock is exposed for a considerable time (in a cutting) or when to be used in earthworks (breakwater, or compaction).
- Sedimentary rocks are the main types of rocks which can degrade to a soil when exposed, examples:
 - shales, claystone.
 - but also foliated metamorphic rock such as phyllites.
 - and igneous rocks with deep weathering profiles such as basalts.

Table 6.15 Rock degradation (Walkinshaw and Santi, 1996).

Test	Strong and durable	Weak and non durable
Point load index (MPa)	>6 MPa	<2 MPa
Free swell (%)	≤4%	>4%

6.16 Material use

- Rocks In situ can perform differently when removed and placed in earthworks.
- Its behaviour as a soil or rock will determine its slope and compaction characteristics.

Table 6.16 Rock degradation (Strohm et al. 1978).

Test	Rock like	Intermediate	Soil like
Slake durability test (%) Jar slake test Comments	>90 6 Unlikely to degrade with time	60–90 3–5	<60 ≤2 Susceptible to weathering and long term degradation

Soil properties and state of the soil

7.1 Soil behaviour

- A geotechnical model is often based on its behaviour as a sand (granular) or a clay (fine grained), with many variations in between these 2 models.
- A sand with a fine content of 20% to 30% (depending on the gradation and size of the coarse material) will likely behave as fine grained material, although it has over 50% granular material.
- The table provides the likely behaviour for these 2 models.

Table 7.1 Comparison of behaviour between sands and clays.

Property	Sands	Clays	Comments
Permeability (k)	High k. Drains quickly (assumes < 30% fines).	Low K. Drains slowly (assumes non fissured or no lensing in clay).	Permeability affects the long term (drained) and short term (undrained) properties.
Effect of time	Drained and undrained responses are comparable.	Drained and undrained response needs to be considered separately.	Settlement and strength changes are immediate in sands, while these occur over time in clays.
Water	Strength is reduced by half when submerged.	Relatively unaffected by short term change in water.	In the long term the effects of consolidation, or drying and wetting behaviour may affect the clay.
Loading	Immediate response. Not sensitive to shape.	Slow response. 30% change in strength from a strip to a square/circular footing.	See Table 21.4 for N_c bearing capacity factor (shape influenced).
Strength	Frictional strength governs.	Cohesion in the short term often dominates, while cohesion and friction to be considered in the long term.	In clay materials both long term and short term analysis are required, while only one analysis is required for sands.
Confinement	Strength increases with confining pressure, and depth of embedment.	Little dependence on the confining pressure. However, some strain	If overburden is removed in sands a considerable loss in strength may occur at

(Continued)

Table 7.1 (Continued)

Property	Sands	Clays	Comments
		softening may occur in cuttings and softened strength (cohesion loss) then applies.	the surface. See Table 21.4 for N_q bearing capacity factor (becomes significant at $\phi > 30^\circ$).
Compaction	Influenced by vibration. Therefore a vibrating roller is appropriate.	Influenced by high pressures. Therefore a sheepsfoot roller is appropriate.	Deeper lifts can be compacted with sands, while clays require small lifts. Sands tend to be self compacting.
Settlement	Occurs immediately (days or weeks) on application of the load.	Has a short and long term (months or years) settlement period.	A self weight settlement can also occur in both. In clays the settlement is made up of consolidation and creep.
Effect of climate	Minor movement for seasonal moisture changes.	Soil suction changes are significant with volume changes accompanying.	These volume changes can create heave, shrinkage uplift pressures. In the longer term this may lead to a loss in strength.

- In cases of uncertainty of clay/sand governing property, the design must consider both geotechnical models. The importance of simple laboratory classification tests becomes evident.
- Given the distinct behaviour of the two types of soils, then the importance of the soil classification process is self-evident. The requirement for carrying out laboratory classification tests on some samples to validate the field classification is also evident. Yet there are many geotechnical reports that rely only on the field classification due to cost constraints.

7.2 State of the soil

• The state of the soil often governs the soil properties. Therefore any discussion of soil property assumes a given state.

Table 7.2 Some influences of the state of the soil.

Soil property		State of soil		Relative influence
Strength	Dry Wet	High compaction Low compaction	High OCR Low OCR	Higher strength Reduced strength
Colour	Dry Wet			Lighter colour Dark colour
Suction	Dry Wet	High compaction Low compaction	High OCR Low OCR	High suction Low suction
Density		High compaction Low compaction	High OCR Low OCR	High density Lower density

- OCR Overconsolidation Ratio.
- The above is for a given soil as a clay in a wet state can still have a higher soil suction than a sand in a dry state.

7.3 Soil weight

- The soil unit weight varies depending on the type of material and its compaction
- Rock in its natural state has a higher unit weight than when used as fill (Refer chapters 9 and 12).
- The unit weight for saturated and dry soils varies.

Table 7.3 Representative range of dry unit weight.

Туре	Soil description	Unit weight range (kN/m^3)			
		Dry	Saturated		
Cohesionless	Soft sedimentary (chalk, shale, siltstone, coal)	12	18		
Compacted Broken rock	Hard sedimentary (Conglomerate, sandstone)	14	19		
	Metamorphic	18	20		
	Igneous	17	21		
Cohesionless	Very loose	14	17		
	Loose	15	18		
Sands and gravels	Medium dense	17	20		
Dense		19	21		
	Very dense	21	22		
Cohesionless	Loose				
	Uniformly graded	14	17		
Sands	Well graded Dense	16	19		
	Uniformly graded	18	20		
	Well graded	19	21		
Cohesive	Soft – organic	8	14		
	Soft – non organic	12	16		
	Stiff	16	18		
	Hard	18	20		

- Use saturated unit weight for soils below the water table and within the capillary fringe above the water table.
- Buoyant unit weight = Saturated unit weight unit weight of water (9.81 kN/m^3) .
- The compacted rock unit weight shown is lower than the in situ unit weight.

7.4 Significance of colour

The colour provides an indication of likely soil properties.

Table 7.4 Effect of colour.

Colour effect	Significance
Light to dark	Increasing moisture content. Dry soils are generally lighter than a wet soil
Black, dark shades of brown and grey	Organic matter likely
Bright shades of brown and grey. Red, yellow and whites	Inorganic soils
Mottled colours	Poor drainage
Red, yellow – brown	Presence of iron oxides

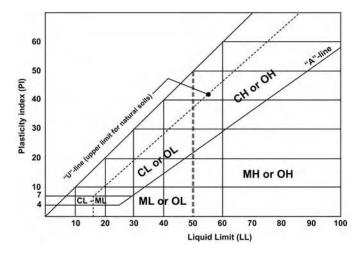


Figure 7.1 Soil plasticity chart.

7.5 Plasticity characteristics of common clay minerals

- Soils used to develop the plasticity chart tended to plot parallel to the A Line (Refer Figure).
- A Line divides the clays from the silt in the chart.
- A Line: PI = 0.73 (LL 20).
- The upper limit line U line represents the upper boundary of test data.
- U Line: PI = 0.9 (LL 8).

Table 7.5 Plasticity characteristics of common clay minerals (from Holtz and Kovacs, 1981).

Clay mineral	Plot on the plasticity chart
Montmorillonites Illites Kaolinites Halloysites	Close to the U – Line. LL = 30% to Very High LL > 100% Parallel and just above the A – Line at LL = $60\% \pm 30\%$ Parallel and at or just below the A – Line at LL = $50\% \pm 20\%$ In the general region below the A – Line and at or just above LL = 50%

• Volcanic and Bentonite clays plot close to the U Line at very high LL.

7.6 Weighted plasticity index

- The plasticity index by itself can be misleading, as the test is carried out on the % passing the 425 micron sieve, ie any sizes greater than 425 µm is discarded. There have been cases when a predominantly "rocky/granular" site has a high PI test results with over 75% of the material discarded.
- The weighted plasticity index (WPI) considers the % of material used in the test.
- WPI = PI \times % passing the 425 micron sieve.

Table 7.6 Weighted plasticity index classification (Look, 1994).

Volume change classification	Weighted plasticity index %
Very low	<1200
Low	1200-2200
Moderate	2200-3200
High	3200-5000
Very high	>5000

7.7 Effect of grading

- The grading affects the strength, permeability and density of soils.
- Different grading requirements apply to different applications.

Table 7.7 Effect of grading.

Grading	Benefits	Application	Comments			
Well graded Low porosity with low permeability.		Structural concrete, to minimize cement content	Well graded $U > 5$ and $C = I$ to 3			
Uniformly graded	Single sized or open – graded aggregate has high porosity with a high permeability.		Uniform grading $U < 2$ Moderate grading: $2 < U < 5$. Open graded identified by their nominal size through which all of nearly all of material (D_{90})			
P (%) = $(D/D_{max})^n \times 100$ Maximum density P - % passing size D (mm)		Road base/sub – base specification grading	$n = 0.5$ (Fuller's curves) $D_{max} = maximum particle$ size			
Well graded	/ell graded Increased friction Hi angle ca		Most common application			

- $D_{90} = 19 \text{ mm}$ is often referred to as 20 mm drainage gravel.
- $D_{90} = 9.5$ mm is often referred to as 10 mm drainage gravel.

7.8 Effective friction of granular soils

The friction depends on the size and type of material, its degree of compaction and grading.

Table 7.8 Typical friction angle of granular soils.

Туре	Description/state	Friction angle (degrees)
Cohesionless	Soft sedimentary (chalk, shale, siltstone, coal)	30–40
Compacted Broken rock	Hard sedimentary (conglomerate, sandstone) Metamorphic Igneous	35–45 35–45 40–50
Cohesionless Gravels	Very loose/loose Medium dense Dense Very dense	30–34 34–39 39–44 44–49
Cohesionless Sands	Very loose/loose Medium dense Dense Very dense	27–32 32–37 37–42 42–47
Cohesionless Sands	Loose Uniformly graded Well graded Dense Uniformly graded Well graded	27–30 30–32 37–40 40–42

- Particle shape (rounded vs angular) also has an effect, and would change the above angles by about 4 degrees.
- When the percentage fines exceed 30%, then the fines govern the strength.
- Refer Figure 5.1.

7.9 Effective strength of cohesive soils

- The typical peak strength is shown in the table.
- Allowance should be made for long term softening of the clay, with loss of effective cohesion.
- Remoulded strength and residual strength values would have a reduction in both cohesion and friction.

Table 7.9 Effective strength of cohesive soils

Туре	Soil description/state	Effective cohesion (kPa)	Friction angle (degrees)
Cohesive	Soft – organic	5–10	10–20
	Soft – non organic	10–20	15–25
	Stiff	20–50	20–30
	Hard	50–100	25–30

- Friction may increase with sand and stone content, and for lower plasticity clays.
- When the percentage coarse exceeds 30%, then some frictional strength is present.
- In some cases (eg cuttings) the cohesion may not be able to be relied on for the long term. The softened strength then applies.
- Refer Figure 5.2.

7.10 Overconsolidation ratio

- The Overconsolidation ratio (OCR) provides an indication of the stress history of the soil. This is the ratio of its maximum past overburden pressure to its current overburden pressure.
- Material may have experienced higher previous stresses due to water table fluctuations or previous overburden being removed during erosion.

Table 7.10 Overconsolidation ratio.

Overconsolidation ratio (OCR)	$OCR = P'_c/P'_o$
Preconsolidation pressure = Maximum stress ever placed on soil	P'
Present effective overburden	$ \mathbf{P}_{\mathbf{c}}' \\ \mathbf{P}_{\mathbf{c}}' = \Sigma \gamma' \mathbf{z} $
Depth of overlying soil	z –/ –
Effective unit weight	γ'
Normally consolidated	$OCR \sim 1 \text{ but} < 1.5$
Lightly overconsolidated	OCR = 1.5 - 4
Heavily overconsolidated	OCR > 4

- For aged glacial clays OCR = 1.5 2.0 for PI > 20% (Bjerrum, 1972).
- Normally consolidated soils can strengthen with time when loaded.
- Overconsolidated soils can have strength loss with time when unloaded (a cutting or excavation) or when high strains apply.

7.11 Preconsolidation stress from cone penetration testing

- The Preconsolidation stress is the maximum stress that has been experienced in its previous history.
- Current strength would have been based on its past and current overburden.

Table 7.11 Preconsolidation pressure from net cone tip resistance (from Mayne et al., 2002).

Net cone stress	$q_{\rm T}-P_{\rm o}'$	kPa	100	200	500	1000	1500	3000	5000
Preconsolidation pressure Excess pore water pressure	C		33 67			333 667	500 1000	1000 2000	

- For intact clays only.
- For fissured clays $P'_c = 2000$ to 6000 with $\Delta u_1 = 600$ to 3000 kPa.
- The electric piezocone (CPTu) only is accurate for this type of measurement. The mechanical CPT is inappropriate.

7.12 Preconsolidation stress from Dilatometer

The Dilatometer should theoretically be more accurate than the CPTu in measuring the stress history. However, currently the CPTu is backed by greater data history with a resulting greater prediction accuracy.

Table 7.12 Preconsolidation pressure from net cone tip resistance (from Mayne et al., 2002).

Net contact pressure	$P_o - u_0$	kPa	100	200	500	1000	1500	3000	5000
Preconsolidation pressure	P_{c}^{\prime}	kPa	50	100	250	500	750	1500	2500

- For intact clays only.
- For fissured clays $P'_c = 1000$ to 5000 with $P_o u_0 = 600$ to 4000 kPa.

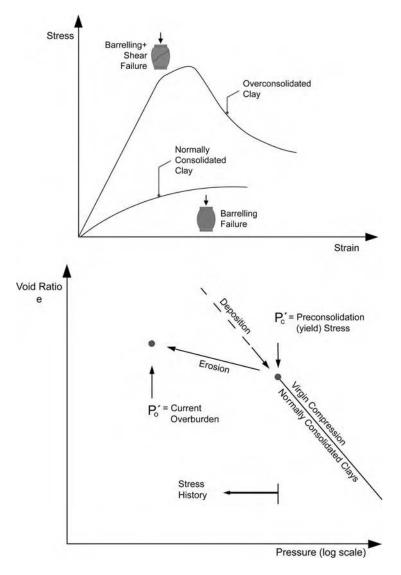


Figure 7.2 Overconsolidation concept.

7.13 Preconsolidation stress from shear wave velocity

The shear wave velocity for low preconsolidation pressures would require near surface (Rayleigh) waves to be used.

Table 7.13 Preconsolidation pressure from shear wave velocity (from Mayne et al., 2002).

Shear wave velocity	Vs	m/s	20	40	70	100	150	250	500
Preconsolidation pressure	P_{c}^{\prime}	kPa	9	24	55	92	168	355	984

- For intact clays only
- For fissured clays $P'_c = 2000$ to 4000 with $V_s = 150$ to 400 m/s

7.14 Over consolidation ratio from Dilatometer

- Many correlation exists for OCR to dilatometer measurement of K_D
- $K_D = 1.5$ for a naturally deposited sand (Normally Consolidated)
- $K_D = 2$ for a Normally Consolidated clays
- $OCR = (0.5 \text{ K}_D)^{.56}$ (Kulhawy and Mayne, 1990)
- Table is for insensitive clays only

Table 7.14 Over consolidation from dilatometer testing using the above relationship.

$K_D =$	1.5–3.0	2.5–6	3–8	5–10	8–20	12–35	20–50
OCR	1	2	3	5	10	20	30

- For intact clays only
- For fissured clays OCR = 25 to 80 with $K_D = 7$ to 20.

7.15 Lateral soil pressure from Dilatometer test

The Dilatometer is useful to determine the stress history and degree of over consolidation of a soil.

Table 7.15 Lateral soil pressure from Dilatometer test (Kulhawy and Mayne, 1990).

Type of clay	/pe of clay Empirical parameter eta_o		Over consolidation ratio (OCR)						
	purumeter ρ_0	Formulae	2	5	10	15			
Insensitive clays Sensitive clays Glacial till Fissured clays	0.5 0.35 0.27 0.75	$(K_D * 0.5)^{1.56}$ $(K_D * 0.35)^{1.56}$ $(K_D * 0.27)^{1.56}$ $(K_D * 0.75)^{1.56}$	1.0 N/A N/A 1.9	4.2 2.4 1.6 7.9	12 7 4.7 23	23 13 9 44			

- $K_D \sim 2$ or less then the soil is normally consolidated. A useful indicator in determining the slip zones in clays.
- Parameter β_0 used in the formulae shown.

7.16 Over consolidation ratio from undrained strength ratio and friction angles

- The friction angle of the soil influences the OCR of the soil.
- Sensitive CH clays are likely to have a lower friction angle.
- CL sandy clays are likely to have the 30 degree friction angles.
- Clayey sands are likely to have the higher friction angles.

Table 7.16 Over consolidation from undrained strength ratio (after Mayne et al., 2001).

C_u/σ_v'	0.2	0.22	0.3	0.4	0.5	0.7	1.0	1.25	1.5	2.0
Friction angle				Ov	er consoli	idation ra	tio			
20°	1.5	1.7	2.3	3.1	3.8	5	8	10	П	15
30°	1.0	1.0	1.4	1.9	2.4	3.3	5	6	7	10
40°	1.0	1.0	1.0	1.4	1.7	2.4	3.5	4	5	7

- Applies for unstructured and uncemented clays.
- Value of 0.22 highlighted in the table as this is the most common value typically adopted.

7.17 Overconsolidation ratio from undrained strength ratio

The undrained strength ratio is dependent on the degree of over consolidation.

Table 7.17 Overconsolidation from undrained strength ratio (after Ladd et al., 1977).

Overconsolidation ratio		${\cal C}_u/\sigma_{ m v}'$	
	OH Clays	CH Clays	CL Clays/silts
	0.25 to 0.35	0.2 to 0.3	0.15 to 0.20
2	0.45 to 0.55	0.4 to 0.5	0.25 to 0.35
4	0.8 to 0.9	0.7 to 0.8	0.4 to 0.6
8	1.2 to 1.5	0.9 to 1.2	0.7 to 1.0
10	1.5 to 1.7	1.3 to 1.5	0.8 to 1.2

7.18 Sign posts along the soil suction pF scale

- Soil suction occurs in the unsaturated state. It represents the state of the soil's ability to attract water.
- Units are pF or KPa (negative pore pressure). PF = 1 + Log S (kPa).

Soil suction		State	Soil–plant–atmosphere continuum
рF	kPa		
ī	ı	Liquid limit	
2	10	Saturation limit of soils in the field	15 kPa for lettuce
3	100	Plastic limit of highly plastic clays	Soil/stem
4	1,000	Wilting point of vegetation (pF = 4.5)	Stem/leaf: I 500 kPa for citrus trees
5	10,000	Tensile strength of water	Atmosphere; 75% relative humidity (pF = 5.6)
6	100,000	Air dry	45% Relative humidity
7	1,000,000	Oven dry	,

Table 7.18 Soil suction values (Gay and Lytton, 1972; Hillel, 1971).

- Equilibrium moisture condition is related to equilibrium soil suction. Refer to section 13.
- Soil suction contributes to strength in the soil. However, this strength cannot be relied upon in the long term and is often not directly considered in the analysis.

7.19 Soil suction values for different materials

The soil suction depends on the existing moisture content of the soil. This soilwater retention relationship (soil water characteristic curve) does vary depending on whether a wetting or a drying cycle.

Volumetric moisture content (%)		Soil suction (pF)	
Content (%)	Sand	Clay	Peat
0	7.0	7.0	7.0
10	1.8	6.3	5.7
20	1.5	5.6	4.6
30	1.3	4.7	3.6
40	0.0	3.7	3.2
50		2.0	2.8
60		0.0	2.2
70			0.3

Table 7.19 Typical soil suction values for various soils (Braun and Kruijne, 1994).

- Volumetric moisture content is the ratio of the volume of water to the total volume.
- Soils in its natural state would not experience the soil suction pF = 0, as this is an oven dried condition. Thus for all practical purpose the effect of soil suction in sands are small.
- Greater soil suction produces greater moisture potential change and possible movement/swell of the soil.

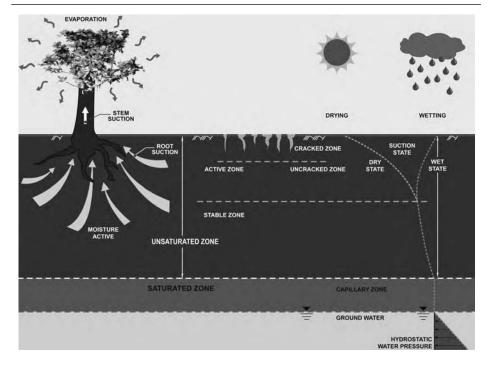


Figure 7.3 Saturated and unsaturated zones.

7.20 Capillary rise

- The capillary rise depends on the soil type, and whether it is in a drying or wetting phase.
- The table presents a typical capillary rise base on the coefficient of permeability and soil type.

Table 7.20	Capillary	rise basec	on the soil	type	(Vaughan et al,	1994).

Type of soil	Coefficient of permeability m/s	Approximate capillary rise
Sand	10 ⁻⁴	0.1–0.2 m
Silt	10 ⁻⁶	1–2 m
Clay	10 ⁻⁸	10–20 m

7.21 Equilibrium soil suctions in Australia

• The equilibrium soil suction depends on the climate and humidity.

7.22 Effect of climate on soil suction change

The larger soil suction changes are expected in the drier climates.

Equilibrium soil suction (pF) Climatic environment Annual average rainfall (mm) Location Darwin 2 to 3 Tropical 1666 3 to 4 Wet Coastal 1220 Sydney Brisbane 3 to 4 Wet Coastal 1189 Townsville Tropical 1136 Perth 2 to 3 Temperate 869 Melbourne 2 to 3 Temperate 661 Canberra Temperate 63 I Adelaide 2 to 3 Temperate 553 Hobart 2 to 3 Temperate 624 Alice Springs >4.0 Semi - Arid 274

Table 7.21 Equilibrium soil suctions in Australia (NAASRA, 1972: Australian Bureau of Meteorology).

Table 7.22 Soil suction based on climate (AS 2870, 1996).

Climate description	Soil suction change (∆u, pF)	Equilibrium soil suction, pF
Alpine/wet coastal	1.5	3.6
Wet temperate	1.5	3.8
Temperate	1.2–1.5	4.1
Dry temperate	1.2–1.5	4.2
Semi arid	1.5–1.8	4.4

7.23 Effect of climate on active zones

- The deeper active zones are expected in drier climates.
- Thornwaithe Moisture Index (TMI) based on rainfall and evaporation rates.

Table 7.23 Active zones based on climate (Walsh et al., 1998).

Climate description	H _s (metres)	Thornwaithe moisture index (TMI)
Alpine/west coastal	1.5	>40
Wet temperate	1.8	10 to 40
Temperate	2.3	-5 to 10
Dry temperate	3.0	-25 to -5
Semi arid	4.0	<-25

7.24 Effect of compaction on suction

- The compaction affects the soil suction.
- Soils compacted wet of optimum has less suction than those dry of optimum.
- Heavier compaction induces greater soil suction.

Table 7.24 Effect of compaction and suction (Bishop and Bjerrum, 1960; Dineen et al., 1999).

Soil type	Compaction	Moisture content	Soil suction
OMC = 9%-10% MDD = 2.05 Mg/m ³	Standard	2% Dry of OMC OMC 2% Wet of OMC	150 kPa 30 kPa < 10 kPa
Bentonite enriched soil	Standard	% Dry of OMC OMC 2% Wet of OMC	550 kPa 200 kPa 150 kPa
	Modified	% Dry of OMC OMC 2% Wet of OMC	I 000 kPa

Permeability and its influence

8.1 Typical values of permeability

- The void spaces between the soil grains allow water to flow through them.
- Laminar flow is assumed.

Table 8.1 Typical values of coefficient of permeability (k).

Soil type	D	escription	k, m/s	Drainage
Cobbles and boulders	Flow may be turbulent,	Ι.		
Gravels	Coarse Clean	Uniformly graded coarse aggregate	10^{-1} 10^{-2} 10^{-3}	Very good
Gravel sand mixtures	Clean	Well graded without fines	10-4	
Sands	Clean, very fine Silty Stratified clay/silts	Fissured, desiccated, weathered clays Compacted clays – dry of	$ \begin{array}{c} 10^{-5} \\ 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 10^{-10} \end{array} $	Good
Silts	Homogeneous below zone of weathering	optimum		Poor
Clays		Compacted clays – wet of optimum	10 ⁻¹¹	Due estica III.
Artificial	Bituminous, cements st Geosynthetic clay liner concrete		Practically impermeable	

- Granular material is no longer considered free draining when the fines >15%.
- Granular material is often low permeability (if well compacted) when the fines >30%.

8.2 Comparison of permeability with various engineering materials

- Material types have different densities.
- Materials with a higher density (for that type) generally have a lower permeability.

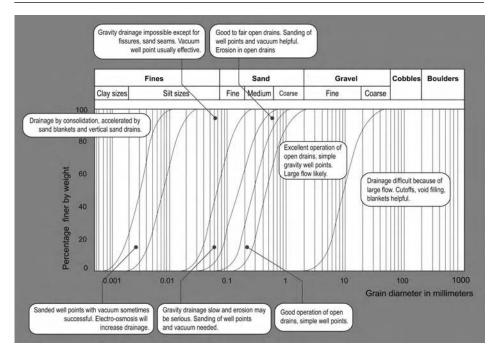


Figure 8.1 Drainage capability of soils (after Sowers, 1979).

Table 8.2 Variability of permeability compared with other engineering materials (Cedergren, 1989).

Material	Permeability relative to soft clay
Soft clay	I
Soil cement	100
Concrete	1,000
Granite	10,000
High strength steels	100,000

8.3 Permeability based on grain size

- The grain size is one of the key factors affecting the permeability.
- Hazen Formula applied below is the most commonly used correlation for determining permeability.
- Hazen's formula appropriate for coarse grained soils only (0.1 mm to 3 mm).
- Ideally for uniformly graded material with U < 5.
- Inaccurate for gap graded or stratified soils.

8.4 Permeability based on soil classification

• If the soil classification is known, this can be a first order check on the permeability magnitude.

Coarse grained size	>Fine sands		>Medium sands				>Coarse sands			
Effective grain size d ₁₀ ,mm	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Permeability (k = Cd ₁₀ ²)	10 ⁻⁴ m/s		10 ⁻³ m/s						10 ⁻² m/s	
C = 0.10 (above equation)	I	4	0.9	1.6	2.5	3.6	4.9	6.4	0.8	1.0
C=0.15	1.5	6	1.4	2.4	3.8	5.4	7.4	9.6	1,2	1.5

Table 8.3 Permeability based on Hazen's relationship.

Table 8.4 Permeability based on soils classification.

Soil type	Description	USC symbol	Permeability, m/s
	Well graded	GW	10 ⁻³ to 10 ⁻¹
Consta	Poorly graded	GP	10^{-2} to 10
Gravels	Silty	GM	$10^{-7} ext{ to } 10^{-5}$
	Clayey	GC	10^{-8} to 10^{-6}
	Well graded	SW	$10^{-5} \text{ to } 10^{-3}$
C d-	Poorly graded	SP	10^{-4} to 10^{-2}
Sands	Silty	SM	$10^{-7} ext{ to } 10^{-5}$
	Clayey	SC	10^{-8} to 10^{-6}
l	Low plasticity	ML	10^{-9} to 10^{-7}
Inorganic silts	High plasticity	MH	10^{-9} to 10^{-7}
la caracte elem	Low plasticity	CL	10^{-9} to 10^{-7}
Inorganic clays	High plasticity	CH	10^{-10} to 10^{-8}
Organic	with silts/clays of low plasticity	OL	$10^{-8} ext{ to } 10^{-6}$
-	with silts/clays of high plasticity	OH	10^{-7} to 10^{-5}
Peat	Highly organic soils	Pt	10^{-6} to 10^{-4}

Does not account for structure or stratification.

8.5 Permeability from dissipation tests

- The measurement of in situ permeability by dissipation tests is more reliable than the laboratory testing, due to the scale effects.
- The laboratory testing does not account for minor sand lenses, which can have significant effect on permeability.

Table 8.5 Coefficient of permeability from measured time to 50% dissipation (Parez and Fauriel, 1988).

Hydraulic conductivity, k (m/s)	10^{-3} to 10^{-5}	10^{-4} to 10^{-6}	10 ⁻⁶ to 10 ⁻⁷	10 ⁻⁷ to 10 ⁻⁹	10^{-8} to 10^{-10}
Soil Type	Sand and gravel	Sand	Silty sand to sandy silt	Silt	Clay
t ₅₀ (sec) t ₅₀ (min/hrs)	0.1 to 1	0.3 to 10 min	5 to 70 0.1 to 1.2 min	30 to 7000 0.5 min to 2 hrs	>5000 >1.5 hrs

- Pore water pressure u₂ measured at shoulder of piezocone.
- Soil mixtures would have intermediates times.

8.6 Effect of pressure on permeability

• The permeability of coarse materials are affected less by overburden pressure, as compared with finer materials.

Table 8.6 Permeability change with application of consolidation pressure (Cedergren, 1989).

Soil type	Change ii	ressure	
	0.1 kPa	100 kPa	Comment
Clean gravel Coarse sand	50×10^{-2} m/s I $\times10^{-2}$ m/s	$\begin{array}{c} 50\times10^{-2}\text{ m/s} \\ 1\times10^{-2}\text{ m/s} \end{array}$	No change
Fine sand Silts Sllty clay Fat clays	5×10^{-4} m/s 5×10^{-6} m/s 1×10^{-8} m/s 1×10^{-10} m/s	$1 \times 10^{-4} \text{ m/s}$ $5 \times 10^{-7} \text{ m/s}$ $1 \times 10^{-9} \text{ m/s}$ $1 \times 10^{-11} \text{ m/s}$	Some change

8.7 Permeability of compacted clays

- Permeability is a highly variable parameter.
- At large pressure there is a small change in permeability. This minor change is neglected in most analysis.

Table 8.7 Laboratory permeability of compacted cooroy clays - CH classification (Look, 1996).

Stress range (kPa)	40–160	160–640	640–1280	1280–2560
Typical soil depth (m) Permeability, k (m /s) Median value, k (m /s)	$\begin{array}{c} 2.08.0\text{m} \\ 0.470\times10^{-10} \\ 2\times10^{-10} \end{array}$	$\begin{array}{c} 8.0\text{m32}\text{m} \\ 0.46\times10^{-10} \\ 0.8\times10^{-10} \end{array}$	$\begin{array}{c} 3264\text{m} \\ 0.20.7\times10^{-10} \\ 0.4\times10^{-10} \end{array}$	$>64 \text{ m}$ $0.1-0.4 \times 10^{-10}$ 0.2×10^{-10}

8.8 Permeability of untreated and asphalt treated aggregates

Permeability of asphalt aggregates is usually high.

Table 8.8 Permeability of untreated and asphalt treated open graded aggregates (Cedergren, 1989).

Aggregate Size	Permeability (m/s)				
	Untreated	Bound with 2% Asphalt			
38 mm to 25 mm	0.5	0.4			
19 mm to 9.5 mm	0.13	0.12			
4.75 mm to 2.36 mm	0.03	0.02			

8.9 Dewatering methods applicable to various soils

- The dewatering techniques applicable to various soils depend on its predominant soil type.
- Refer to Figure 8.1 for the drainage capabilities of soils.

Table 8.9 Dewatering techniques (here from Hausmann, 1990; Somerville, 1986).

Predominant soil type	Clay		Silt So		nd		Gravel	Cobbles	
Grain size (mm)	<	0.002	(0.06	2			60	>60
Dewatering method		Electr	•	Wells a well po with va	oints	Gra draii	,	Subaqueous excavation or grout curtain may be required. Heavy yield. Sheet piling or other cut off and pumping	
Drainage impractical	(Gravity drainage slow		Sum		Range may be extended by usin large sumps with gravel filters	

Well points in fine sands require good vacuum. Typical 150 mm pump capacity: 60 L/s at 10 m head.

8.10 Radius of influence for drawdown

- The Drawdown at a point produces a cone of depression. This radius of influence is calculated in the table.
- There is an increase in effective pressure of ground within cone of depression.
- Consolidation of clays if depression is for a long period.
- In granular soils, settlement takes place almost immediately with drawdown.

Table 8.10 Radius of drawdown (Somerville, 1986).

Drawdown (m)	Radius of influence (metres) for various soil types and permeability (m/s)					
	Very fine sands 10 ⁻⁵ m/s	Clean sand and gravel mixtures 10 ⁻⁴ m/s	Clean gravels 10 ⁻³ m/s			
1	9	30	95			
2	19	60	190			
3	28	90	285			
4	38	120	379			
5	47	150	474			
7	66	210	664			
10	95	300	949			
12	114	360	1138			
15	142	450	1423			

8.11 Typical hydrological values

• Specific Yield is the % volume of water that can freely drain from rock.

Table 8.11	Typical hydrological	values	(Waltham,	1994).
------------	----------------------	--------	-----------	--------

	Peri	meability	
Material	m/day	m/s	Specific yield (%)
Granite	0.0001	1.2 × 10 ⁻⁹	0.5
Shale	0.0001	1.2×10^{-9}	1
Clay	0.0002	$2.3 imes 10^{-9}$	3
Limestone (Cavernous)	Er	ratic	4
Chalk	20	$2.3 imes 10^{-4}$	4
Sandstone (Fractured)	5	$5.8 imes 10^{-5}$	8
Gravel	300	$3.5 imes 10^{-3}$	22
Sand	20	$2.3 imes 10^{-5}$	28

- An aquifer is a source with suitable permeability that is suitable for groundwater extraction.
- Impermeable Rock k < 0.01 m/day.
- Exploitable source k > 1 m/day.

8.12 Relationship between coefficients of permeability and consolidation

- The coefficient of consolidation (c_v) is dependent on both the soil permeability and its compressibility.
- Compressibility is a highly stress dependent parameter. Therefore c_v is dependent on stress level.
- Permeability can be determined from the coefficient of consolidation. This is from a small sample size and does not account for overall mass structure.

Table 8.12 Relationship between coefficients of permeability and consolidation.

Parameter	Symbol and relationship
Coefficient of vertical consolidation Coefficient of permeability	$c_v = k/(m_v \gamma_w)$ K
Unit weight of water Coefficient of compressibility	$\gamma_{w} = m_{v}$
Coefficient of horizontal consolidation Coefficient of vertical permeability	$c_h = 2 \text{ to } 10 c_v$ k_v
Coefficient of horizontal permeability	$k_h = 2 \text{ to } 10 \text{ k}_v$

8.13 Typical values of coefficient of consolidation

 The smaller value of the coefficient of consolidation produces a longer time for consolidation to occur.

Soil	Classification	Coefficient of consolidation, c _v , m ² /yr
Boston blue clay	CL	12±6
Organic silt	ОН	0.6–3
Glacial lake clays	CL	2.0-2.7
Chicago silty clays	CL	2.7
Swedish medium	CL-CH	0.1-1.2 (Laboratory)
Sensitive clays		0.2-I.0 (Field)
San francisco bay mud	CL	0.6–1.2 `
Mexico city clay	MH	0.3–0.5

Table 8.13 Typical values of the coefficient of consolidation (Carter and Bentley, 1991).

8.14 Variation of coefficient of consolidation with liquid limit

- The coefficient of consolidation is dependent on the liquid limit of the soil.
- c_v decreases with strength improvement, and with loss of structure in remoulding.

				•	`		,		
Liquid limit, %	30	40	50	60	70	80	90	100	110
			Coeffic	cient of o	consoli	lation, d	c _v , m²/yr		
Undisturbed – virgin compression	120	50	20	10	5	3	1.5	1.0	0.9
Undisturbed – Recompression	20	10	5	3	2	I	8.0	0.6	0.5
Remoulded .	4	2	1.5	1.0	0.6	0.4	0.35	0.3	0.25

Table 8.14 Variation of coefficient of consolidation with liquid limit (NAVFAC, 1988).

- LL > 50% is associated with a high plasticity clay/silt.
- LL < 30% is associated with a low plasticity clay/silt.

8.15 Coefficient of consolidation from dissipation tests

- The previous sections discussed the measurement of permeability and the dissipation tests carried out with the piezocone. This also applies to testing for the coefficient of consolidation. The measurement of in situ coefficient of permeability by dissipation tests is more reliable than laboratory testing.
- Laboratory testing does not account for minor sand lenses, which can have a significant effect on permeability.

Table 8.15 Coefficient of consolidation from measured time to 50% dissipation (Mayne, 2002).

Coefficient of consolidation, C_h	0.001 to 0.01 0.05 to 0.5	0.01 to 0.1 0.5 to 5.3	0.1 to 1 5.3 to 53	I to IO 53 to 525	10 to 200 525 to 10,500
t ₅₀ (mins) t ₅₀ (hrs)	400 to 20,000 6.7 to 330 hrs		4 to 200 0.1 to 3.3 hrs	0.4 to 20 <0	0.1 to 2).3 hrs

- Pore water pressure u₂ measured at shoulder of 10 cm² piezocones.
- Multiply by 1.5 for 15 cm² piezocones.
- Soil mixtures would have intermediates times.

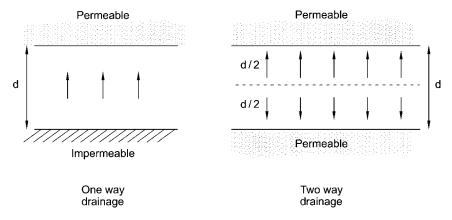


Figure 8.2 Drainage paths.

8.16 Time factors for consolidation

- The time to achieve a given degree of consolidation = $t = T_v d^2/c_v$.
- Time Factor = T_v .
- D = maximum length of the drainage path = ½ layer thickness for drainage top and bottom.
- Degree of Consolidation = U = Consolidation settlement at a given time (t)/Final consolidation settlement.
- $\alpha = u_0(top)/u_0(bottom)$, where $u_0 = initial$ excess pore pressure.

Table 8.16 Time factor values (from NAVFAC DM 7-1, 1982).

Degree of consolidation		Time factor T_{ν}	
consolidation	$\alpha = 1.0$ (two way drainage)	lpha = 0 (one way drainage – bottom only)	$\alpha = \infty$ (one way drainage - top only)
10%	0.008	0.047	0.003
20%	0.031	0.100	0.009
30%	0.071	0.158	0.024
40%	0.126	0.221	0.048
50%	0.197	0.294	0.092
60%	0.287	0.383	0.160
70%	0.403	0.500	0.271
80%	0.567	0.665	0.440
90%	0.848	0.940	0.720

8.17 Time required for drainage of deposits

- The drainage time depends on the coefficient of consolidation, and the drainage
- t₉₀ time for 90% consolidation to occur

Table 8.17 Time required for drainage.

Material	Approximate	Approx. time fo	r consolidation bas	ed on drainage po	ath length (m)
	coefficient of consolidation, C_v (m ² /yr)	0.3	1	3	10
Sands & Gravels Sands	100,000	<la>< I hr<la>< I hr</la></la>	< I hr I to I0 hrs	I to 10 hrs 10 to 100 hrs	10 to 100 hrs 1 to 10 days
Clayey sands Silts CL clays	1000 100 10	3 to 30 hours 10 to 100 hours 10 to 100 days	10 to 100 hrs 3 to 30 days 1 to 10 months	3 to 30 days I to 10 mths I to 10 yrs	I to 10 mths 10 to 100 mths 10 to 100 yrs
CH clays	I	3 to 30 months	I to 10 months	30 to 100 yrs	100 to 1000 yrs

- Silt and sand lensing in clays influence the drainage path length.
- Vertical drains with silt and sand lensing can significantly reduce the drainage paths and hence times for consolidation.
- Conversely without some lensing wick drains are likely to be ineffective for thick layers, with smearing of the wicks during installation, and possibly reducing the permeability.

8.18 Estimation of permeability of rock

- The primary permeability of rock (intact) condition is several orders less than in situ permeability.
- The secondary permeability is governed by discontinuity frequency, openness and infilling.

Table 8.18 Estimation of secondary permeability from discontinuity frequency (Bell, 1992).

Rock mass description	Term	Permeability (m/s)
Very closely to extremely closely spaced discontinuities Closely to moderately widely spaced discontinuities Widely to very widely spaced discontinuities No discontinuities	Highly permeable Moderately permeable Slightly permeable Effectively impermeable	$ \begin{array}{c c} 10^{-2} - 1 \\ 10^{-5} - 10^{-2} \\ 10^{-9} - 10^{-5} \\ < 10^{-9} \end{array} $

8.19 Effect of joints on rock permeability

The width of joints, its openness, and the joint sets determine the overall permeability.

 The likely permeability for various joints features would have most of the following characteristics.

Table 8.19 Effect of joint characteristics on permeability.

Typical joint char	racteristics			Permeability m/s
Joint openness	Filling	Width	Fractures	mis
Open Gapped Closed	Sands and gravels Non plastic fines Plastic clays	>20 mm 2–20 mm <2 mm	≥3 interconnecting Joint sets I to 3 interconnecting Joint sets ≤I Joint sets	$> 10^{-5}$ 10^{-5} to 10^{-7} $< 10^{-7}$

8.20 Lugeon tests in rock

- The Lugeon test (also know as a Packer Test) is a water pressure test, where a section of the drill hole is isolated and water is pumped into that section until the flow rate is constant.
- A Lugeon is defined as the water loss of 1 litre/minute/length of test section at an effective pressure of 1 MPa.
- 1 Lugeon $\sim 10^{-7}$ m/s.

Table 8.20 Indicative rock permeabilities from the lugeon test.

Lugeon	Joint condition
<1	Closed or no joints
I-5	Small joint openings
5-50	Some open joints
>50	Many open joints

Rock properties

9.1 General engineering properties of common rocks

- The engineering characteristics are examined from 3 general conditions:
 - Competent rock Fresh, unweathered and free of discontinuities, and reacts to an applied stress as a solid mass.
 - Decomposed rock Weathering of the rock affecting its properties, with increased permeability, compressibility and decrease in strength.
 - Non intact rock Defects in the rock mass governing its properties. Joint spacing, opening, width, and surface roughness are some features to be considered.
- Table 9.1 is for fresh intact condition only.
- Basalts cool rapidly, while Granites cool slowly. The rapid cooling produces temperature induced cracks, which acts as the pathway for deep weathering.

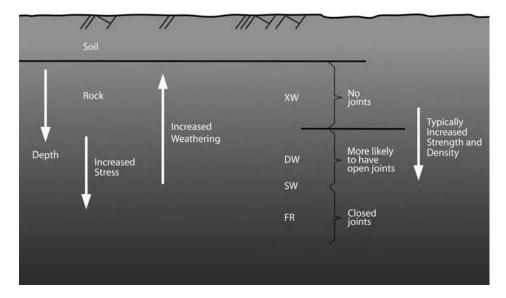


Figure 9.1 Typical changes in rock properties with depth.

	÷
Ĺ	n`
¢	0
¢	Ö
(7
	ť
	≧
	_
-	Т
5	=
	S
	Ď
	Ö
	_
	⊆
	ō
	Ĕ
	Ē
	8
	_
`	₽
	_
	က
•	≝
	置
	Θ
	Δ
	5
	Δ.
	፵
	≐
	<u>_</u>
	e e
•	Ξ,
	ngli
	ᡖ
	_
	بق
	ē
	ĕ
	ā
(ĭ
١	_
	_
	٠.
(ъ
	Ð
	ã
	в
۲	_

Rock origin	Туре	Characteristics	Permeability	Deformability	Strength
Igneous coarse to medium grained – very slow to slow cooling	Granite, granadiorite, diorite, peridiotite	Welded interlocking grains, very little pore space	Essentially impermeable	Very low	Very high
Igneous fine grained – rapid cooling	Rhyolite, trachyte, quartz, dacite, andesite, basalt	Similar to above, or can contain voids	With voids can be highly permeable	Very low to low	Very high to high
Igneous glassy – very rapid chilling	Pumice, scoria, vesicular basalt	Very high void ratio	Very high	Relatively low	Relatively low
Sedimentary – arenaceous clastic	Sandstones	Voids cement filled. Partial filling of voids by cement coatings	Low very high	Low moderate to high	High Moderate to low
Sedimentary – argillaceous clastic	Shales	Depends on degree of lithification	Impermeable	High to low, can be highly expansive	Low to high
Sedimentary – arenaceous chemically formed	Limestone	Pure varieties normally develop caverns	High through caverns	Low except for cavern arch	High except for cavern arch
Sedimentary – argillaceous chemically formed	Dolomite	Seldom develops cavities	Impermeable	Lower than limestone	Higher than limestone
Metamorphic	Gneiss	Weakly foliated	Essentially impermeable	Low	High
		Strongly foliated	Very low	Moderate normal to foliations. Low parallel to foliations	High normal to foliations. Low parallel to foliations
Metamorphic	Schist	Strongly foliated	Low	As for gneiss	
Metamorphic	Phyllite	Highly foliated	Low	Weaker than gneiss	
Metamorphic	Quartzite	Strongly welded grains	Impermeable	Very low	Very high
Metamorphic	Marble	Strongly welded	Impermeable	Very low	Very high

9.2 Rock weight

- The rock unit weight would vary depending on its type, and weathering.
- Table 9.2 is for intact rock only. Compacted rock would have reduced values.
- Specific Gravity, $G_s = 2.70$ typically, but varies from 2.3 to 5.0.

Table 9.2 Representative range of dry unit weight.

Origin	Rock type	Unit weight range (kN/m³)			
	Weathering	XW	DW	SW	Fr
Sedimentary	Shale	20–22	21–23	22–24	23–25
	Sandstone	18–21	20–23	22–25	24–26
	Limestone	19–21	21–23	23–25	25–27
Metamorphic	Schist	23–25	24–26	25–27	26–28
	Gneiss	23–26	24–27	26–28	27–29
Igneous	Granite	25–27	26–27	27–28	28–29
	Basalt	20–23	23–26	25–28	27–30

9.3 Rock minerals

- The rock minerals can be used as a guide to the likely rock properties.
- Rock minerals by itself do not govern strength.
- For example, Hornfels (non foliated) and schists (foliated) are both metamorphic rocks with similar mineralogical compositions, but the UCS strengths can vary by a factor of 4 to 12. Hornfels would be a good aggregate, while schist would be poor as an aggregate.
- Quartz is resistant to chemical weathering.
- Feldspar weathers easily into clay minerals.
- Biotite, Chlorite produces planes of weaknesses in rock mass.

Table 9.3 Typical predominant minerals in rocks (after Waltham, 1994).

Origin	Rock type		Approximate primary mineralogical composition (secondary minerals not shown to make up 100% of composition)						
		Quartz	Feldspar	Micas	Mafics	Calcite	Kaolinite	<i>Illi</i> te	Chlorite
Sedimentary	Sandstone Limestone Mudstone	80%	>10%			95%	20%	60%	
Metamorphic	Schist Hornfels	25% 30%		35% 30%					20%
Igneous	Granite Basalt	25% <10%	50% 50%		10% 50%				

9.4 Silica in igneous rocks

• Silica has been used to distinguish between groups as it is the most important constituent in igneous rocks.

Table 9.4 Silica in igneous rocks (Bell, 1992).

Igneous rock group	Silica
Acid/Silicic Intermediate Basic/mafic Ultra-basic/ultramafic	>65 % 55–65 % 45–55 % <45 %

9.5 Hardness scale

- The rock hardness is related to drillability, but is not necessarily a strength indicator.
- Each mineral in scale is capable of scratching those of a lower order.
- Attempts to deduce hardness by summing hardness of rock minerals by its relative proportion has not proved satisfactory.

Table 9.5 Moh's hardness values.

Material	Hardness	Common objects scratched
Diamond	10	_
Corundum	9	Tungsten carbide
Topaz	8	G
Quartz	7	Steel
Orthoclase	6	Glass
Apatite	5	Penknife scratches up to 5.5
Fluorspar	4	·
Calcite	3	Copper coin
Gypsum	2	Fingernail scratches up to 2.5
Talc	I	

9.6 Rock hardness

• Rock Hardness depends on mineral present.

9.7 Mudstone - shale classification based on mineral proportion

- Shale is the commonest sedimentary rock characterised by its laminations.
- Mudstones are similar grain size as shales but non laminated.
- Shale may contain significant quantities of carbonates.

Hardness Mineral Specific gravity Origin Sedimentary Metamorphic Igneous 7 2.7 Quartz 6 Feldspar 2.6 6 Hematite 5.1 5.0 6 Pyrite 3.3 6 **Epidote** 5.5 Mafics > 3.05.0 Limonite 3.6 3.5 Dolomite 2.8 3.0 Calcite 2.7 2.5 2.8 Muscovite 2.5 **Biotite** 2.9 2.5 Kaolinite 2.6 2.5 Illite 2.6 2.5 Smectite 2.6 2.0 Chlorite 2.7

Table 9.6 Typical main mineral hardness values of various rock types (after Waltham, 1994).

Table 9.7 Mudstone - shale classification (Spears, 1980).

Gypsum

2.3

2.0

Quartz content	Fissile	No fissile
>40%	Flaggy (parting planes 10–50 mm apart) Siltstone	Massive siltstone
30–40%	Very coarse shale	Very coarse mudstone
20–30%	Coarse shale	Coarse mudstone
10–20%	Fine shale	Fine mudstone
<10%	Very fine shale	Very fine mudstone

9.8 Relative change in rock property due to discontinuity

- The discontinuities in a rock have a significant effect on its engineering properties.
- Rock mass strength = intact strength factored for discontinuities. Similarly for other properties.

Table 9.8 Relative change in rock property.

Rock property	Change in intact property due to discontinuity			
	Typical range	Typical magnitude change		
Strength	I-10	5		
Deformation	2–20	10		
Permeability	10-1000	100		

9.9 Rock strength due to failure angle

- The confining stress affects the rock strength but is not as significant a factor as with the soil strength.
- The table is for zero confining stress.

Table 9.9 Relative strength change due to discontinuity inclination (after Brown et al. 1977).

Angle between failure plane and major principal stress direction	Major principal stress at failure (relative change)	Comments
0 °	100%	Horizontal
15°	70%	Sub-horizontal
30°	30%	
45°	15%	
60°	20%	
75°	40%	Sub-vertical
90°	70%	Vertical

9.10 Rock defects and rock quality designation

- The RQD is an indicator of the rock fracturing.
- RQD measurement methods do vary. Measure according to the methods described in Chapter 3.

Table 9.10 Correlation between Rock Quality Designation (RQD) and discontinuity spacing.

RQD (%)	Description	Fracture frequency per metre	Typical mean discontinuity spacing (mm)
0–25	Very poor	>15	<60
25-50	Poor	15–8	60–120
50-75	Fair	8–5	120-200
75–90	Good	5–I	200-500
90–100	Excellent	≤I	>500

9.11 Rock laboratory to field strength

• The RQD does not take into account the joint opening and condition.

Table 9.11 Design values of strength parameters (Bowles, 1996).

RQD (%)	Rock description	Field/laboratory compressive strength
0–25	Very poor	0.15
25-50	Poor	0.20
50-75	Fair	0.25
75–90	Good	0.3-0.7
>90	Excellent	0.7–1.0

9.12 Rock shear strength and friction angles of specific materials

- The geologic age of the rock may affect the intact strength for sedimentary rocks.
- The table assumes fresh to slightly weathered rock.
- More weathered rock can have significantly reduced strengths.

Table 9.12 Typical shear strength of intact rock.

Origin	Rock type	Shear strength		
		Cohesion (MPa)	Friction angle°	
Sedimentary – soft	Sandstone (triassic), coal, chalk, shale, limestone (triassic)	I-20	25–35	
Sedimentary – hard	Limestone, dolomite, greywacke sandstone (carborniferous), Limestone (carborniferous)	10–30	35–45	
Metamorphic – non-foliated	Quartzite, marble, gneiss	20-40	30-40	
Metamorphic – foliated	Schist, slate, phyllite	10-30	25-35	
Igneous – acid	Granite	30–50	45–55	
Igneous – basic Basalt		30–50	30–40	

9.13 Rock shear strength from RQD values

The rock strength values from RQD can be used in rock foundation bearing capacity assessment.

Table 9.13 Rock mass properties (Kulhaway and Goodman, 1988).

Rock mass properties				
Design compressive strength	Cohesion	Angle of friction		
0.33 q _u	0.1 q _u	30° 30–60°		
	Design compressive strength	Design compressive strength Cohesion		

- $q_u = UCS = Uniaxial$ Compressive Strength of intact rock core.
- When applied to bearing capacity equations for different modes of failure (refer later chapters), the design compressive strength seems to be high. Chapter 22 provides comparative values.

9.14 Rock shear strength and friction angles based on geologic origin

- The geology determines the rock strength.
- Values decrease as the weathering increases.

Table 9.14 Likely shear strength of intact fresh to slightly weathered rock.

Origin	Grain type	Rock Type	Shear strength		
			Cohesion (MPa)	Friction angle°	
Sedimentary	Rudaceous (>2 mm)	Clastic	30	45	
,	,	Chemically formed	20	40	
		Organic remains	10	40	
	Arenaceous (0.06–2 mm)	Clastic	15	35	
	` ,	Chemically formed	10	35	
		Organic remains	5	35	
	Argillaceous (>2 mm)	Clastic	5	25	
		Chemically formed	2	30	
		Organic remains	I	30	
Metamorphic	Coarse	foliated	20	35	
·		Non-foliated	30	40	
	Medium	Foliated	10	30	
		Non-foliated	15	35	
	Fine	Foliated	2	25	
		Non-foliated	5	30	
Igneous	Coarse (large intrusions)	Pyroclastic	20	40	
· ·	, ,	Non pyroclastic	40	50	
	Medium (small intrusions)	Pyroclastic	10	35	
	,	Non pyroclastic	30	45	
	Fine (extrusions)	Pyroclastic	5	30	
	,	Non pyroclastic	20	40	

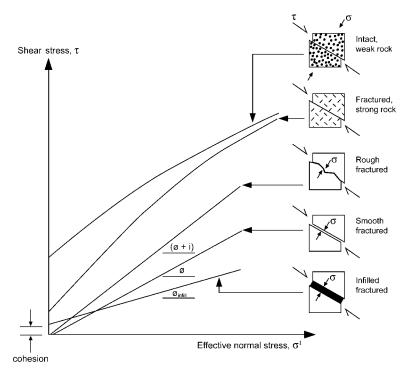


Figure 9.2 Variation of rock strength for various geological conditions (TRB, 1996).

9.15 Friction angles of rocks joints

At rock joints the friction angle is different from the intact friction angles provided in the previous tables.

Table 9.15 Typical range of friction angles (TRB, 1990).

Rock class	Friction angles range (degrees)	Typical rock types
Low friction	20 to 27	Schists, shale
Medium friction	27 to 34	Sandstones, siltstone, chalk, gneiss, slate
High friction	34 to 40	Basalt, granite, limestone, conglomerate

- Effective Rock Friction Angle = Basic Friction angle (ϕ) + Roughness Angle (i).
- Above table assumes no joint infill is present.

9.16 Asperity rock friction angles

The wavelength of the rock joint determines the asperity angle.

Table 9.16 Effect of asperity on roughness angles, (Patton, 1966).

Order of asperities	Wavelength	Typical asperity angle (i°)	
First Second	500 mm <50 to 100 mm	10 to 15 20 to 30	
Jecond	< 30 to 100 11111	20 10 30	

9.17 Shear strength of filled joints

- The infill of the joints can affect the friction angle.
- If movements in clay infill has occurred then the residual friction angle is relevant.

Table 9.17 Shear strength of filled joints (Barton, 1974).

Material	Description	Peak		Residual	
		c (kPa)	ϕ°	c _r (kPa)	ϕ_{r}°
Granite	Clay filled joint	0–100	24–45		
	Sand-filled joint	50	40		
	Fault zone jointed	24	42		
Clays	Overconsolidated clays	180	12–18	0–30	10–16

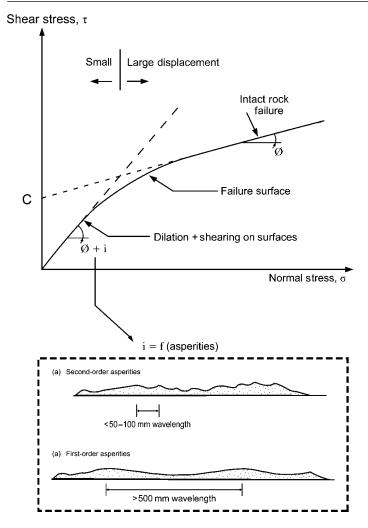


Figure 9.3 Effect of surface roughness on friction.

Material and testing variability

10.1 Variability of materials

- Nature offers a significantly larger variability of soil and rock than man made materials.
- A structural engineer can therefore predict with greater accuracy the performance of the structural system.

Table 10.1 Variability of materials (Harr, 1996).

Material	Coefficient of variation	Comments
Structural steel – tension members	11%	Man made
Flexure of reinforced concrete – grade 60	11%	
Flexure of reinforced concrete – grade 40	14%	
Flexure strength of wood	19%	Nature resistance
Standard penetration test	26%	Field testing
Soils – unit weight	3%	Nature
Friction angle – sand	12%	
Natural water content (silty clay)	20%	
Undrained shear strength, Cu	40%	
Compression index, Cc	30%	

- Coefficient of variation (%) = Standard Deviation/Mean.
- For a wind loading expect COV > 25%.

10.2 Variability of soils

- The variability of the soil parameters must always be at the forefront in assessing its relevance, and emphasis to be placed on its value.
- Greater confidence can be placed on index parameters than strength and deformation parameters.
- This does not mean that strength correlations derived from index parameters are more accurate, as another correlation variable is introduced.

Table 10.2 Variability of soils (Kulhawy, 1992).

Property	Test	Mean COV without outliers
Index	Natural moisture content, wn	17.7
	Liquid limit, LL	11.1
	Plastic limit, PL	11.3
	Initial void ratio, e _o	19.8
	Unit weight, γ	7.1
Performance	Rock uniaxial compressive strength, qu	23.0
	Effective stress friction angle, ϕ'	12.6
	Tangent of ϕ'	11.3
	Undrained shear strength C _u	33.8
	Compression index C _c	37.0

10.3 Variability of in-situ tests

- The limitations of in-situ test equipment needs to be understood.
- The likely measurement error needs to be considered with the inherent soil variability.
- The SPT is a highly variable in-situ test.
- Electric cone penetrometer and Dilatometer has the least variability.
- The table shows cumulative effect of equipment, procedure, random.

Table 10.3 Variability of in - situ tests (From Poon and Kulhawy, 1999).

Test	Coefficient of variation (%)
Standard penetration test	15–45
Mechanical come penetration test	15–25
Self boring pressure meter test	15–25
Vane shear test	10-20
Pressure meter test, prebored	10-20
Electric cone penetration test	5–15
Dilatometer test	5–15

PROBABILITY DENSITY FUNCTION

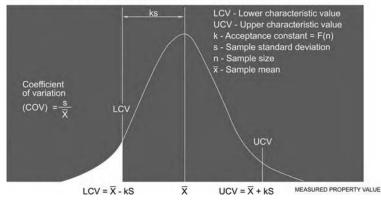


Figure 10.1 Normal distribution of properties.

10.4 Soil variability from laboratory testing

- The density of soils can be accurately tested.
- There is a high variability on the shear strength test results of clays and the Plasticity Index.

Table 10.4 Variability from laboratory testing (Poon and Kulhawy, 1999).

Test	Property	Soil type	Coefficient of variation (%)	
			Range	Mean
Atterberg tests	Plasticity index	Fine grained	5–51	24
Triaxial compression	Effective angle of friction	Clay, silt	7–56	24
Direct shear	Shear strength, C _u	Clay, silt	19-20	20
Triaxial compression	Shear strength, Cu	Clay, silt	8–38	19
Direct shear	Effective angle of friction	Sand	13–14	14
Direct shear	Effective angle of friction	Clay	6–22	14
Direct shear	Effective angle of friction	Clay, silt	3–29	13
Atterberg tests	Plastic limit	Fine grained	7–18	10
Triaxial compression	Effective angle of friction	Sand, silt	2-22	8
Atterberg tests	Liquid limit	Fine grained	3–11	7
Unit weight	Density	Fine grained	I-2	1

Table 10.5 Guidelines for inherent soil variability (Poon and Kulhawy, 1999).

Test type	Property	Soil type	Coefficie	ent of variation (%)
			Range	Estimated mean
Lab strength UC	Shear strength, C _u	Clay	20–55	40
CIUC			20 -4 0	30
UU			10–30	20
Lab strength	Effective angle of friction	Clay and sand	5-15	10
Standard penetration to	est N-value		25-50	40
Pressuremeter test	P_L	Clay	10-35	25
		Sand	20-50	35
	E _{PMT}	Sand	15–65	40
Dilatometer	A B	Clay	10–35	25
	A B	Sand	20–50	35
	I _D	Sand	20–60	40
	K_D		20–60	
	E _D		15–65	
Pressuremeter	P_L	Clay	10-35	25
		Sand	20–50	35
	E _{PMT}	Sand	15–65	40
Cone penetrometer te	st q _c	Clay	20 -4 0	30
		Sand	20–60	40
Vane shear test	Shear strength, Cu	Clay	10-40	25
Lab index	Natural moisture content	Clay and silt	8–30	20
	Liquid limit		6–30	
	Plastic limit		6–30	

10.5 Guidelines for inherent soil variability

• Variability is therefore the sum of natural variability and the testing variability.

10.6 Compaction testing

- In a compaction specification, the density ratio has less variation than the moisture ratio.
- The density ratio controls can be based on a standard deviation of 3% or less (Hilf, 1991).

Table 10.6 Precision values (MTRD, 1994).

Conditions	Maximum dry density	Optimum moistu	ıre content
		Granular materials	Clay
Repeatability Reproducibility	1% of mean 2.5% of mean	10% of mean 12% of mean	13% of mean 19% of mean

• The placement moisture is therefore only a guide to achieving the target density, and one should not place undue emphasis on such a variable parameter.

10.7 Guidelines for compaction control testing

- Clays tend to be more variable than granular materials.
- At higher moisture contents, the variation in densities is reduced.

Table 10.7 Guidelines for compaction control testing.

Test control	Coefficie	ent of variation	
	Homogeneous conditions	Typical	Highly variable
Maximum dry density	1.5%	3%	5%
Optimum moisture content	15%	20%	30%

10.8 Subgrade and road material variability

• Testing for road materials is the more common type of test.

Table 10.8 Coefficient of variations for road materials (extracted from Lee et al., 1983).

Test type	Test	Coefficient of variation
Strength	Cohesion (undrained) Angle of friction (clays) Angle of friction (sands) CBR	20–50% 12–50% 5–15% 17–58%

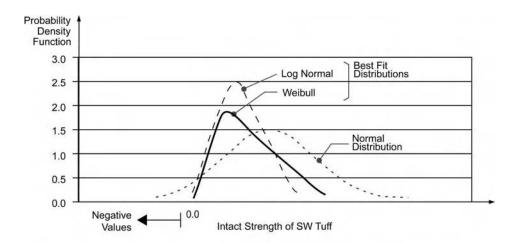
(Continued)

Table 10.0 (Continued)			
Test type	Test	Coefficient of variation	
Compaction	Maximum dry density	I–7%	
·	Optimum moisture content	200-300%	
Durability	Absorption	25%	
,	Crushing value	8–14%	
	Flakiness	13 -4 0%	
	Los angeles abrasion	31%	
	Sulphate soundness	92%	
Deformation	Compressibility	18–73%	
	Consolidation coefficient	25-100%	
	Elastic modulus	2–42%	
Flow	Permeability	200-300%	
	•		

Table 10.8 (Continued)

10.9 Distribution functions

- Variability can be assessed by distribution functions.
- The Normal distribution is the taught fundamental distribution, in maths and engineering courses. It is the simplest distribution to understand, but is not directly relevant to soils and rocks.
- When applied to soil or rock strength properties, negative values can result at say lower 5 percentile if a normal distribution used (Look and Griffiths, 2004).
- The assumed distribution can affect the results considerably. For example the probability of failure of a slope can vary by a factor of 10 if a normally distributed or gamma distribution used.


Table 10.9 Appropriate distribution functions in Rock property assessment (Look and Griffiths, 2004).

Distribution type	Overall rank	Typical application outside of geotechnical engineering
Pearson VI	ı	Time to perform a task.
Lognormal	2	Measurement errors. Quantities that are the product of a large number of other quantities. Distribution of physical quantities such as the size of an oil field.
Gamma	3	Time to complete some task, such as building a facility, servicing a request.
Weibull	4	Lifetime of a service for reliability index.
Beta	5	Approximate activity time in a PÉRT network. Used as a rough model in the absence of data.
Normal	11	Distribution characteristics of a population (height, weight); size of quantities that are the sum of other quantities (because of central limit theorem).

- Above rank is based on various goodness of fit tests for 25 distribution types.
- Due to non normality of distribution, the median is recommended instead of mean in characterisation of a site.

10.10 Effect of distribution functions on rock strength

- An example of the effect of the distribution type on a design value obtained from point load index results.
- Typically a characteristic value at the lower 5% adopted for design in limit state codes.
- Using an assumption of a normal distribution resulted in negative values.
- Mean values are similar in these distributions.
- A lognormal distribution is recommended for applications in soils and rock. Although, depending on the application different distributions may be relevant.
- The lognormal distribution is highly ranked overall and offers a simplicity in its application that is not found in more rigorous distribution functions.

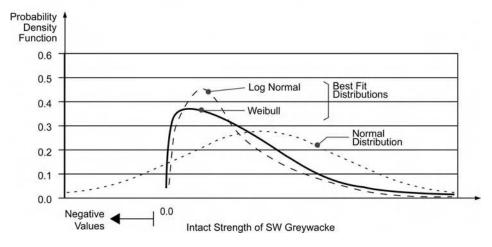


Figure 10.2 Typical best fit Distribution functions for rock strength compared with the normal distribution.

Rock		Distribution applied to point load index test results								
Туре	Weathering	Normal		Lognormal		Weibul				
		5%	Mean	95%	5%	Mean	95%	5%	Mean	95%
Argillite/	DW	-0.4	1.0	2.4	0.1	1.0	2.6	0.2	1.1	3. I
Greywacke	SW	-0.8	2.0	4.8	0.2	2.0	5.2	0.3	2.1	6.3
Sandstone/	DW	-0.3	0.6	1.5	0.1	0.6	1.7	0.1	0.7	2.1
Siltstone	SW	-1.1	1.1	3.2	0.0	1.1	3.3	0.1	1.1	3.1
Tuff	DW	-0. I	0.4	0.8	0.1	0.4	0.9	0.1	0.4	1.2
	SW	-1.5	3.3	8.0	0.3	3.3	8.5	0.6	3.2	8.7
Phyllites	DW	-0.3	0.9	2.0	0.1	0.9	2.2	0.1	0.9	2.7
	SW	-0.4	1.0	2.5	0.1	1.0	2.6	0.2	1.0	2.8

Table 10.10 Effect of distribution type on statistical values ((Look and Griffiths, 2004).

10.11 Variability in design and construction process

- Section 5 provided comment on the errors involved in the measurement of soil properties.
- The table shows the variation in the design and construction process.

Table 10.11 Variations in Design and construction process based on fundamentals only (Kay, 1993).

Variability component	Coefficient of variation
Design model uncertainty Design decision uncertainty Prototype test variability Construction variability	0–25% 15–45% 0–15% 0–15%
Unknown unknowns	0–15%

- Natural Variation over site (state of nature) is 5 to 15% typically.
- Sufficient statistical samples should be obtained to asses the variability in ground conditions.
- Ground profiling tools (boreholes, CPT) provide only spatial variability. Use of broad strength classification systems (Chapters 2 and 3) are of limited use in an analytical probability model.
- Socially acceptable risk is outside the scope of this text, but the user must be aware
 that voluntary risks (Deaths from smoking and alcohol) are more acceptable than
 involuntary risks (eg death from travelling; on a construction project), and the following probability of failures should not be compared with non engineering risks.

10.12 Prediction variability for experts compared with industry practice

This is an example of the variability in prediction in practice.

- Experts consisted of 4 eminent engineers to predict the performance characteristic, including height of fill required to predict the failure of an embankment on soft clays.
- 30 participants also made a prediction.
- Table shows the variation in this prediction process.

Table 10.12 Variations in prediction of height difference at failure (after Kay, 1993).

Standard of prediction	No. of participants	Coefficient of variation
Expert level	4	14%
Industry practice	30	32%

- A much lower variation of experts also relates to the effort expended, which would not normally occur in the design process.
- The experts produced publications, detailed effective stress and finite element analyses, including one carried out centrifuge testing. These may not be cost effective in industry where many designs are cost driven.

10.13 Tolerable risk for new and existing slopes

- The probabilities of failure are more understandable to other disciplines and clients than factors of safety. A factor of safety of 1.3 does not necessarily mean that system has a lower probability of failure than a factor of safety of 1.4.
- Existing and new slopes must be assessed by different criteria.

Table 10.13 Tolerable risks for slopes (AGS, 2000).

Situation	Tolerable risk probability of failure	Loss of life
Existing slope	10 ⁻⁴ 10 ⁻⁵	Person most at risk Average of persons at risk
New slopes	10^{-5} 10^{-6}	Person most at risk Average of persons at risk

10.14 Probability of failures of rock slopes

 A guidance on catastrophic versus minor failures probabilities are provide in the Table.

Table 10.14 Probability of failure in rock slope analysis (Skipp, 1992).

Failure category	Annual probability	Comment
Catastrophic Major Moderate Minor	$\begin{array}{c} 0.0001 \; (1\times 10^{-4}) \\ 0.0005 \; (5\times 10^{-4}) \\ 0.001 \; (1\times 10^{-3}) \\ 0.005 \; (5\times 10^{-3}) \end{array}$	For unmonitored permanent urban slopes with free access

10.15 Acceptable probability of slope failures

The acceptable probability depends on its effect on the environment, risk to life, cost of repair, and cost to users.

Table 10.15 Slope Stability – acceptable probability of failure (Santamarina et al., 1992).

Conditions	Risk to life	Costs	Probability of failure (P _f)
Unacceptable in most cases Temporary structures Nil consequences of failure bench slope, open pit mine	No potential life loss No potential life loss	Low repair costs High cost to lower P _f	$<10^{-1}$ 10^{-1} I to 2×10^{-1}
Existing slope of riverbank at docks. Available alternative docks	No potential life loss	Repairs can be promptly done. Do — nothing attractive idea.	5 × 10 ⁻²
To be constructed: same condition			$<5 imes 10^{-2}$
Slope of riverbanks at docks no alternative docks	No potential life loss	Pier shutdown threatens operations.	I to 2×10^{-2}
Low consequences of failure	No potential life loss	Repairs can be done when time permits. Repair costs $<$ costs to lower P_f .	10 ⁻²
Existing large cut – interstate highway	No potential life loss	Minor	I to 2×10^{-2}
To Be constructed: same condition	No potential life loss	Minor	$< 10^{-2}$
Acceptable in most cases	No potential life loss	Some	10^{-3}
Acceptable for all slopes Unnecessarily low	Potential life loss	Some	10^{-4} < 10^{-5}

10.16 Probabilities of failure based on lognormal distribution

- The factor of safety can be related to the probability of failure based on different coefficients of variations (COV).
- A lognormal distribution is used.
- The factor of safety is the most likely value.
- For layered soils, different COVs are likely to apply to each layer.

Table 10.16 Probability of Failure based on lognormal distribution (Duncan and Wright, 2005).

Factor of safety	Probability of failures (%) based on COV					
	COV = 10%	20%	30%	40%	50%	
1.2	3.8	21	32	39	44	
1.3	0.5	11	23	31	37	
1.4	0.04	5.5	16	25	32	
1.5	\sim I 0^{-3}	2.6	11	20	27	
2.0	$< 10^{-3}$	0.03	1.3	5	11	
2.5		\sim l 0^{-3}	0.15	1.4	4.4	
3.0		$< 10^{-3}$	0.02	0.39	1.8	

10.17 Project reliability

- Reliability is based on the type of project and structure.
- Lowest value of strength is not used in design unless only limited samples.
- Design values are references to a normal distribution as this is what is applied to steel and concrete design, and many codes apply this normality concept also to soil and rock. As commented above non normality of soils and rock applies.
- Ultimate conditions (strength criteria) and serviceability (deformation criteria) requires a different acceptance criterion. The literature is generally silent on this issue and a suggested criteria is provided in the table.

Table 10.17 Ground conditions acceptance based on type of project.

Type of	Typical design values		Comment
project	Ultimate	Serviceability	
Structure	1%	5%	5% for a normal distribution is likely to be 10% to 30% for a lognormal distribution.
Road	5%	10%	10% for a normal distribution is likely to be 30% to 50% for a lognormal distribution: 20% is typically close to the median value.

- Correct Distribution needs to be applied, ie non normal.
- At interfaces such as embankments next to a bridge structure then tighter controls would be required. This would be 1% to 5% serviceability for major to minor roads, respectively.
- If the above is translated into a physical criteria, then this in terms of absolute conditions, eg if 10% design is used then no more than 1 m in 10 m of road length would be above a criteria of say 50 mm acceptable movement.

10.18 Road reliability values

- The desired road reliability level is based on the type of road.
- A normal distribution is assumed, and comments on the non normality of soil and rocks apply.

Table 10.18 Typical road reliability levels.

Road class	Traffic	Project reliability (typical)
Highway	Lane AADT $>$ 2000 Lane AADT \le 2000 (rural)	90–97.5% (95%) 85–95% (90%)
Main roads	Lane AADT > 500	85-95% (90%)
Local roads	Lane AADT \leq 500	80–90% (85%)

These values do vary between road authorities.

Deformation parameters

11.1 Modulus definitions

- The stiffness of a soil or rock is determined by its modulus value. The modulus is the ratio of the stress versus strain at a particular point or area under consideration.
- Materials with the same strength can have different stiffness values.
- The applicable modulus is dependent on the strain range under consideration.
- The long term and short term modulus is significantly different for fine grained soils, but slightly different for granular soils. The latter is considered approximately similar for all practical purposed.
- Additional modulus correlations with respect to roads are provided in Chapter 13 for subgrades and pavements.
 - Modulus usually derived from strength correlations. The 2 most common are:
 - Secant modulus is usually quoted type for soil structure interaction models.
 - Resilient modulus applies for roads.

Table 11.1 Modulus definitions.

Modulus type	Definition	Strain	Comment
Initial tangent modulus	Slope of initial stress concave line	Low	Due to closure in micro-cracks from sampling relief (laboratory) or existing discontinuities (in-situ).
Elastic tangent modulus	Slope of linear point (near linear)	Medium	Also elastic modulus. Can be any specified on the stress strain curve, but usually at a specified stress levels such as 50% of maximum or peak stress.
Deformation modulus	Slope of line between zero and maximum or peak stress	Medium to high	Also secant modulus.
Constrained modulus	Slope of line between zero and constant volume stress	High	This is not mentioned in the literature. But values are lower than a secant modulus, and it is obtained from odeometer tests where the sample is prevented from failure, therefore sample has been take to a higher strain level.
Recovery modulus	Slope of unload line	High	Insitu tests seldom stressed to failure, and unload line does not necessarily mean peak stress has been reached. Usually concave in shape.
			(Continued)

(Continued)

Table 11.1 (Continued)

Modulus type	Definition	Strain	Comment
Reload modulus	Slope of reload line	High	Following unloading the reload line takes a different stress path to the unload line. Usually convex in shape. Also resilient modulus.
Cyclic modulus	Average slope of unload/reload line	High	Strain hardening can occur with increased number of cycles.
Equivalent modulus	A combination of various layers into on modulus	Various	A weighted average approach is usually adopted.

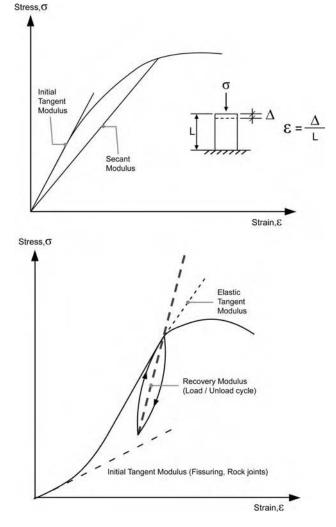


Figure 11.1 Stress strain curve showing various modulus definitions.

11.2 Small strain shear modulus

- The small strain shear modulus is significantly higher than at high strains.
- The table provides small strain typical values.

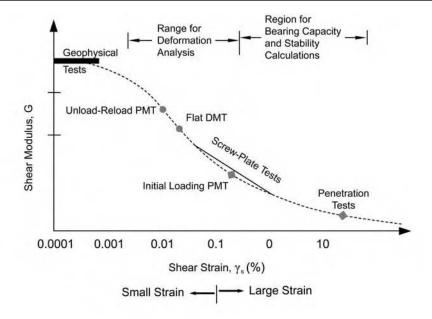
Table 11.2 Typical values of small - shear modulus (Sabatani et al., 2002).

Shear modulus, G	Small – strain shear modulus G_0 (MF		
Soft clays	3 to 15		
Firm clays	7 to 35		
Silty sands	30 to 140		
Dense sands and gravels	70 to 350		

- For large strains $G_{ls} = E/2.5$.
- For small strains $G_{ss} = 2E = 5 G_{ls}$.

11.3 Comparison of small to large strain modulus

- The applicable modulus is dependent on the strain level.
- The table provides the modulus values at small and large strains.


Table 11.3 Stiffness degradation range for various materials (summarised from Heymann, 1998).

Strain level comparison	Stiffness ratio
E _{0.01} /E ₀	0.8 to 0.9
E _{0.1} /E ₀	0.4 to 0.5
E _{1.0} /E ₀	0.1 to 0.2

- Modulus at 0% strain = E_0 .
- Modulus at 0.01% strain = $E_{0.01}$ (small strain).
- Modulus at 1.0% strain = $E_{0.01}$ (large strain).
- Materials tested were intact chalk, London clay and Bothkennar clay.
- Figure 11.2 (from Sabatani et al., 2002) shows the types of tests appropriate at various strain levels.

11.4 Strain levels for various applications

- The modulus value below a pavement, is different from the modulus at a pile tip even for the same material.
- Different strain level produces different modulus values.
- Jardine et al., (1986) found shear strain levels for excavations to be <0.1% for walls and as low as 0.01% if well restrained.
- The modulus value for the design of a pavement is significantly different from the modulus values used for the support of a flexible pipe in a trench.

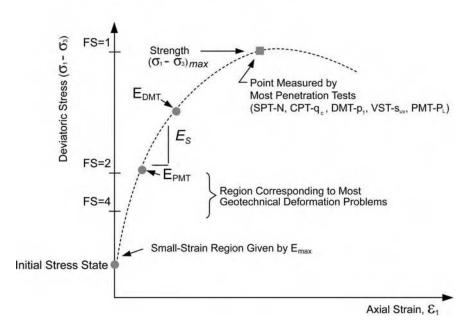


Figure 11.2 Variation of modulus with strain level (Sabatani et al., 2002).

Application	Туре	Strain level	Typical movement (mm)	Shear strain (%)	Applicable testing
Pavement	Rigid	Very small	5–10	<0.001	Dynamic methods
	Flexible base Sub base Subgrade	Large Small/large Small/very small	5–30 5–20 5–10	>0.1 0.01–0.1 0.001–0.01	Dynamic methods/ local gauges
	Haul/access Unpaved road	Very large Large	50–200 25–100	>0.5 >0.1	Conventional soil testing
Foundations	Pile shaft Pile tip	Small Small/medium	5–20 10– 4 0	0.01–0.1	Local gauges
	Shallow	Small/large	10-50	0.05-0.5	Local gauges
	Embankments	Large/very large	>50	>0.1	Conventional soil testing
Retention systems	Retaining wall	Active – Small Passive – Large	10-50 >50	0.01–0.1 >0.1	Local gauges
	Tunnel	Large	10–100	>0.1	Conventional soil testing

Table 11.4 Strain levels.

- Retention Systems and tunnels have both horizontal and vertical movements.
- Horizontal movement typically 25% to 50% of vertical movement.
- Different modulus values also apply for plane strain versus axisymetric conditions.
- The modulus values for fill can be different for in situ materials for the same soil description.

11.5 Modulus applications

- There is much uncertainty on the modulus values, and its application.
- The table provides a likely relative modulus ranking. Rank is 1 for smallest values and increasing in number to larger modulus. However this can vary between materials. For example, an initial tangent modulus without micro cracks in clay sample could have a higher modulus than the secant modulus at failure, which is different from the rank shown in the table.
- The relative values depend on material type, state of soil and loading factors.
- Some applications (eg pavements) may have a high stress level, but a low strain level. In such cases a strain criteria applies. In other applications, such as foundations, a stress criterion applies in design.
- In most cases, only 1 modulus is used in design although the structure may experience several modulus ranges.
- Modulus values between small strain and large strain applications can vary by a factor of 5 to 10.
- The dynamic modulus can be greater than 2, 5 and 10 times that of a static modulus value for granular, cohesive material and rock, respectively.

Table 11.5 Modulus applications.

Rank	Modulus type	Application	Comments
I (Low)	Initial tangent modulus	 Fissured clays. At low stress levels. Some distance away from loading source, eg at 10% q_{applied} Low height of fill 	Following initial loading and closing of micro-cracks, modulus value then increases significantly. For an intact clay, this modulus can be higher than the secant modulus.
2	Constrained modulus	Wide loading applications such as large fillsWide embankments	Used where the soil can also fail, ie exceed peak strength.
3	Deformation (secant) modulus	Spread footingPile tip	Most used "average" condition, with secant value at ½ peal load (ie working load).
4	Elastic tangent modulus	 Movement in incremental loading of a multi-storey building Pile shaft 	The secant modulus can be 20% the initial elastic tangent modulus for an intact clay.
5	Reload (resilient) modulus	 Construction following excavation Subsequent loading from truck/train 	Difficult to measure differences between Reload/Unload or cyclic. Resilient modulus term interchangeably used for all of them.
6	Cyclic modulus	 Machine foundations Offshore structures/ waveloading Earthquake/blast loading 	Also called dynamic modulus of elasticity.
7	Recovery (unload) modulus	 Heave at the bottom of an excavation After loading from truck/train Excavation in front of wall and slope 	
Varies	Equivalent modulus	 Simplifying overall profile, where some software can have only I input modulus 	Uncertainty on thickness of bottom layer (infinite layer often assumed). Relevant layers depend on stress influence.

11.6 Typical values for elastic parameters

- The strength of metals is significantly higher than the ground strength. Therefore movements from the ground tend to govern the performance of the structure.
 - Modulus values of 30,000 MPa for industrial concrete floors would apply.

11.7 Elastic parameters of various soils

• Secant modulus values are used for foundations. This can be higher or lower depending on strain levels.

Table 11.6 Typical values for Young's modulus of various materials (after Gordon, 1978).

Classification	Material	Young's modulus, E (MPa)
Human	Cartilage	24
	Tendon	600
	Fresh bone	21,000
Timber	Wallboard	1,400
	Plywood	7,000
	Wood (along grain)	14,000
Metals	Magnesium	42,000
	Aluminium	70,000
	Brasses and bronzes	120,000
	Iron and steel	210,000
	Sapphire	420,000
	Diamond	1,200,000
Construction	Rubber	7
	Concrete	20,000
Soils	Soft clays	5
	Stiff clays, loose sands	20
	Dense sands	50
Rocks	Extremely weathered, soft	50
	Distinctly weathered, soft	200
	Slightly weathered, fresh, hard	50,000

Table 11.7 Elastic parameters of various soils.

Туре	Strength of soil	Elastic modulus, E (MPa)				
		Short term	Long term			
Gravel	Loose	25-	-50			
	Medium	50–100				
	Dense	100-	-200			
Medium to	Very loose	<	5			
coarse	Loose	3–	10			
sand	Medium dense	8–	30			
	Dense	25-	-50			
	Very dense	40–100				
Fine sand	Loose	5–10				
	Medium	10-				
	Dense	25–50				
Silt	Soft	<10	<8			
	Stiff	10–20	8–15			
	Hard	>20	>15			
Clay	Very soft	<3	<2			
,	Soft	2–7	I-5			
	Firm	5–12	4–8			
	Stiff	10–25	7–20			
	Very stiff	20–50	15–35			
	Hard	40–80	30–60			

- These modulus values should not be used in a different application, ie non foundations.
- For example, the modulus values of similar soils in a trench as backfill surrounding a pipe would be significantly less than the above values.

11.8 Typical values for coefficient of volume compressibility

- The coefficient of volume compressibility (m_v) is used to compute settlements for clay soils.
- The m_v value is obtained from the consolidation (odeometer) test. This test is one dimensional with rigid boundaries, ie the Poisson Ratio v' = 0 and $E' = 1/m_v$.
- The elastic modulus is referred to as the constrained modulus and is based on the assumption that negligible lateral strain occurs (in odeometer), so that Poisson's ratio is effectively zero.
- One-dimensional settlements = ρ_{od} .

Table 11.8 Typical values for coefficient of volume compressibility (after Carter, 1983).

Type of clay	Descriptive term		Coefficient of volume	Constrained	
	Strength	Compressibility	compressibility, m _v (10 ⁻³ kPa ⁻¹)	modulus, 1/m _v , (MPa)	
Heavily overconsolidated boulder clays, weathered mudstone.	Hard	Very low	<0.05	>20	
Boulder clays, tropical red clays, moderately overconsolidated.	Very stiff	Low	0.05 to 0.1	10–20	
Glacial outwash clays, lake deposits, weathered marl, lightly to normally consolidated clays.	Firm	Medium	0.1-0.3	3.3–10	
Normally consolidated alluvial clays such as estuarine and delta deposits, and sensitive clays.	Soft	High	0.3–1.0 (non sensitive) 0.5–2.0 (organic, sensitive)	0.7–3.3	
Highly organic alluvial clays and peat.	Very soft	Very high	>1.5	<0.7	

11.9 Coefficient of volume compressibility derived from SPT

- The m_v value is inversely proportional to the strength value. The correlation
 with the SPT N-value is provided in the table for clays with varying plasticity
 index
- The table was based on data for stiff clays.

Plasticity index (%)	Conversion factor (f ₂)	$m_v (10^{-3} \text{ kPa}^{-1})$ based on N-value: $m_v = 1/(f_2 \text{N})$				
		N = 10	20	30	40	50
10	800	0.12	0.06	0.04	0.03	0.02
20	525	0.19	0.09	0.06	0.05	0.04
30	475	0.21	0.10	0.07	0.05	0.04
40	450	0.22	0.11	0.07	0.06	0.04

Table 11.9 Coefficient of volume compressibility derived from SPT N-value (after Stroud and Butler,

11.10 Deformation parameters from CPT results

The Coefficient of volume change and the constrained modulus (ie large strain condition) values can be derived from the CPT results.

Table 11.10 Deformation parameters from CPT results (Fugro, 1996; Meigh, 1987).

Parameter	Relationship	Comments
Coefficient of volume change, m _v	$m_v = I/(\alpha \; q_c)$	For normally and lightly overconsolidated soils $\alpha=5$ for classifications CH, MH. ML $\alpha=6$ for classifications CL, OL $\alpha=1.5$ for classifications OH with moisture >100% for overconsolidated soils $\alpha=4$ for classifications CH, MH. CL, ML $\alpha=2$ for classifications ML, CL with $q_c>2$ MPa
Constrained modulus, M	$M = 3 q_c$	$M = I/m_v$
Elastic (Young's) modulus, E	$E = 2.5 \ q_c \\ E = 3.5 \ q_c$	Square pad footings – axisymetric Strip footings – plane strain

Drained soil modulus from cone penetration tests

The approximate relationship between CPT value and drained elastic modulus for sands is provided in the table.

Table 11.11 Preliminary drained elastic modulus of sands from cone penetration tests.

Relative density	Cone resistance, q_c (MPa)	Typical drained elastic modulus E', MPa
V. loose	<2.5	<10
Loose	2.5–5.0	10-20
Med dense	5.0-10.0	20–30
Dense	10.0-20.0	30–60
V. dense	>20.0	>60

11.12 Soil modulus in clays from SPT values

• The modulus varies significantly between small strain and large strain applications.

Table 11.12 Drained E' and undrained E_u modulus values with SPT N-value (CIRIA, 1995).

Material	E'/N (MPa)	E _u /N (MPa)
Clay	0.6 to 0.7 0.9 for $q/q_{ult} = 0.4$ to 0.1	1.0 to 1.2 6.3 to 10.4 for small strain values $(q/q_{uir} < 0.1)$
Weak rocks	1 July	0.5 to 2.0 for N ₆₀

- $E_u/N = 1$ is appropriate for footings.
- For rafts, where smaller movements occur $E_u/N = 2$.
- For very small strain movements for friction piles $E_u/N = 3$.

11.13 Drained modulus of clays based on strength and plasticity

The drained modulus of soft clays is related to its undrained strength C_u and its
plasticity index.

Table 11.13 Drained modulus values (from Stroud et al., 1975).

Soil plasticity (%)	E'/C _u
10–30	270
20-30	200
30-40	150
40-50	130
50–60	110

11.14 Undrained modulus of clays for varying over consolidation ratios

• The undrained modulus E_u depends on the soil strength, its plasticity and overconsolidation ratio (OCR).

Table 11.14 Variation of the undrained modulus with overconsolidation ratio (Jamiolkowski et al., 1979).

Overconsolidation ratio	Soil plasticity	E_u/C_u
<2 2–4	PI < 30%	600–1500 400–1400
4–6 6–10		300–1000 200–600
<2 2-4 4-10	PI = 30-50%	300–600 200–500 100–400
<2 2–10	PI > 50%	100–300 50–250

- The table below is for a secant modulus at a Factor of safety of 2, ie 50% of the peak strength.
- The E_u/C_u value is dependent on the strain level.
- For london clays (Jardine et al., 1985) found a E_u/C_u ratio of 1000 to 500 for foundations but a larger ratio for retaining walls, when smaller strains apply.

11.15 Soil modulus from SPT values and plasticity index

- These values correlate approximately with previous tables for large strain applications.
- This applies to rigid pavements.
- Do not use for soft clays.

Table 11.15 Modulus values (Industrial Floors and Pavements Guidelines, 1999).

Es/N	Material
3.5	Sands, gravels and other cohesionless soils
2.5	Low PI (< I2%)
1.5	Medium PI (12% < PI < 22%)
1.0	High PI (22% < PI < 32%)
0.5	Extremely high PI (PI $> 32\%$)

11.16 Short and long term modulus

- For granular materials the long term and short term strength and modulus values are often considered similar. However for these materials there can still be minor change between the long and short term state.
- Short term Young's modulus $E_s = \text{Long Term Modulus } E_l = \beta E_s$.

Table 11.16 Long term vs short term (Industrial Floors and Pavements Guidelines, 1999).

ρ	 Material	
$\frac{\beta}{}$	Material	
0.9	Gravels	
0.8	Sands	
0.7	Silts, silty clays	
0.6	Stiff clays	
0.4	Soft clays	

11.17 Poisson ratio in soils

- A clay in an undrained state has a Poisson ratio of 0.5.
- In the Odeometer test with negligible (near zero) lateral strain the Poisson ratio is effectively 0.0.

Table 11.17 Poisson's ratio for soils (Industrial floors and pavements guidelines, 1999).

Material	Short term	Long term
Sands, gravels and other cohesionless soils	0.30	0.30
Low PI (< 12%)	0.35	0.25
Medium PI (12% < PI < 22%)	0.40	0.30
High PI (22% < PI < 32%)	0.45	0.35
Extremely high PI (PI > 32%)	0.45	0.40

11.18 Typical rock deformation parameters

- The higher density rocks have a larger intact modulus.
- This needs to be factored for the rock defects to obtain the in-situ modulus.

Table 11.18 Rock deformation based on rock description (adapted from Bell, 1992).

Rock density (kg/m³)	Porosity (%)	Deformability (10 ³ MPa)
<1800	>30	<5
1800-2200	30–15	5–15
2200-2550	15–5	15–30
2550-2750	5—I	30–60
>2750	<1	>60

11.19 Rock deformation parameters

• This table is for intact rock properties, and compares the Young's modulus (E) to the unconfined strength (q_u).

Table 11.19 Rock modulus values (Deere and Miller, 1966).

$E/q_{\rm u}$	Material	Comments
1000	Steel, concrete	Man made materials
500	Basalts & other flow rocks (Igneous rocks) Granite (Igneous)	$High\ modulus\ ratio-UCS>100\ MPa$
	Schist: low foliation (Metamorphic) Marble (Metamorphic)	Basalt in Brisbane was 300 Phyllite (Foliated metamorphic) in Brisbane was 500
200	Gneiss, Quartzite (Hard metamorphic rocks) Limestone (Sedimentary) Dolomite (Calcareous sedimentary: coral)	High modulus ratio – UCS = 60–100 MPa
100	Shales, sandstones (Sedimentary rocks) Schist: steep foliation	Low modulus ratio $-$ UCS $<$ 60 MPa Horizontal bedding: Lower the E values tuff (Pyroclastic Igneous) in Brisbane was 150

• Intact rock properties would vary from in-situ conditions depending on the defects.

- Rock modulus correlations and the above general relationship should be calibrated with local conditions.
- The Brisbane relationships are from laboratory measurements.

11.20 Rock mass modulus derived from the intact rock modulus

- Reduction factors needs to be applied to use the intact rock modulus in design.
- When the Young's modulus of the in-situ rock = E_r

$$E_r = K_E E_i$$

where E_i = Intact rock modulus.

Table 11.20 Modulus reduction ratio (after Bieniawski, 1984).

RQD (%)	Modulus reduction ratio, K_E	
0–50	0.15	
50–70	0.2	
70–80	0.30	
80–90	0.40	
>90	0.70	

Modulus ratio based on open and closed joints

- The modulus ratio (intact rock modulus/rock mass modulus) can be derived from the RQD combined with the opening of the rock joints, if known.
- Open joints have a higher reduction value at high RQD values.

Table 11.21 Estimation of the rock modulus based on the RQD values (after Carter and Kulhawy, 1988).

RQD (%)	$K_E = E_i/E_r$	
	Closed joints	Open joints
20	0.05	
50	0.15	0.10
70	0.70	
100	1.00	0.60

11.22 Rock modulus from rock mass ratings

The modulus values can be derived from rock mass ratings systems (described in later sections).

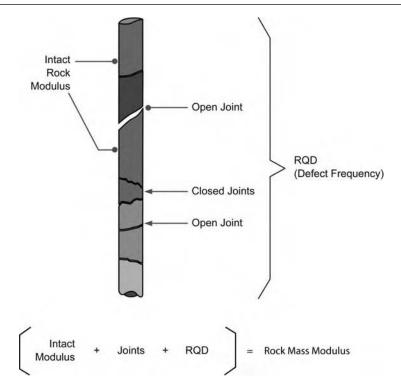


Figure 11.3 Rock mass modulus.

Table 11.22 Modulus values from rock mass rating (Barton, 1983; Serafim and Pereira, 1983).

Rock mass rating	Relationship with deformation modulus (GPa)	Comment
Rock mass rating (RMR)	$E_d = 10 (RMR - 10)/40$	Derived from plate bearing tests with RMR = 25 to 85
Q – Index	$\begin{split} E_d &= 25 \text{ Log Q (Mean)} \\ E_d &= 10 \text{ Log Q (Minimum)} \\ E_d &= 40 \text{ Log Q (Maximum)} \end{split}$	Derived from in-situ tests

11.23 Poisson ratio in rock

 These correlate approximately with the modulus ratios. Rocks with high modulus ratios tend to have lower Poisson's ratio than rocks with low modulus ratios (see previous table).

Table 11.23 Poisson's ratio for rock.

Rock type	Poisson's ratio	
Basalt Granite Sandstone Limestone	0.1 to 0.2 0.15 to 0.25 0.15 to 0.3 0.25 to 0.35	

- Poisson's ratio of concrete \sim 0.15.
- Use a value of 0.15 for competent unweathered bedrock, and 0.3 for highly fractured and weathered bedrock.

11.24 Significance of modulus

The relevant modulus value depends on the relative stress influence.

Table 11.24 Significance of modulus (Deere et al., 1967).

Modulus ratios for rock	Comments
$\overline{E_d/E_{conc}>0.25}$	Foundation modulus has little effect on stresses generated within the concrete mass.
$0.06 < E_d/E_{conc} < 0.25$	Foundation modulus becomes significant with respect to stresses generated within the concrete mass.
$0.06 < E_d/E_{conc}$	Foundation modulus completely dominates the stresses generated within the concrete mass.

Earthworks

12.1 Earthworks issues

- The designs construction issues are covered in the table below.
- Issues related to pavements are discussed in the next chapter.
- Related issues on slopes and retaining walls are covered in later chapters.

Table 12.1 Earthworks issues.

Earthwork Issues	Comments
Excavatability	Covered in this chapter. The material parameter is only I indicator of excavatability. Type of excavation and plant data also required.
Compaction characteristics	Covered in this chapter. Depends on material, type of excavation/operating space and plant.
Bulk up	Covered in this chapter. Depends on material.
Pavements	Refer chapter 13
Slopes	Refer chapter 14
Retaining walls	Refer chapter 20
Drainage and erosion	Refer chapter 15
Geosynthetics	Refer chapter 16

12.2 Excavatability

- The excavatability depends on the method used as well as the material properties.
- Some of these are not mutually exclusive, ie strength may be affected by degree of
 weathering, and run direction is relevant mainly for large open excavations, and
 when dip direction is an issue.
- Geological definition of rock is different form the contractual definition, where production rates are important.

12.3 Excavation requirements

- The strength of the material is one of the key indicators in assessing the excavation requirements.
- The table provides a preliminary assessment of the likely excavation requirements.

Table 12.2 Controlling factors.

Factor	Parameter
Material	 Degree of weathering Strength Joint spacing Bedding spacing Dip direction
Type of excavation	Large open excavationTrench excavationDrilled shaftTunnels
Type of plant	SizeWeight
Space	Run directionRun up distance

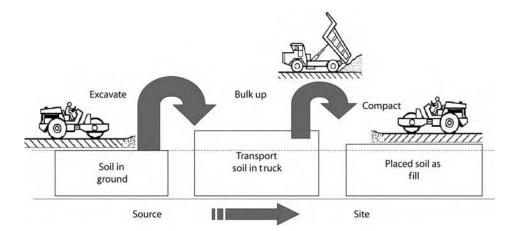


Figure 12.1 Earthworks process.

Table 12.3 Preliminary assessment of excavation requirements.

Material type	Excavation requirements
Very soft to firm clays Very loose to medium dense sands	Hand tools
Stiff to hard clays Dense to very dense sands Extremely low strength rocks – typically XW	Power tools
Very low to low strength rocks – typically XW/DW	Easy ripping
Medium to high strength rocks – typically DW	Hard ripping
Very high to extremely high – typically SW/Fr	Blasting

The blasting term as used here refers to the difficulty level and can include rock breakers, or expanding grouts.

12.4 Excavation characteristics

- The excavatability characteristics based on rock hardness and strength.
- The above is combined with its bulk properties (seismic velocity) and joint spacing.

Rock hardness description	Unconfined compressive strength (MPa)	Seismic wave velocity (m/s)	Spacing of joints (mm)	Excavation characteristics
Very soft	1.7–3.0	450–1200	<50	Easy ripping
Soft	3.0-10	1200-1500	50-300	Hard ripping
Hard	10–20	1500-1850	300-1000	Very hard ripping
Very hard	20–70	1850–2150	1000–3000	Extremely hard Ripping or blasting
Extremely hard	>70	>2150	>3000	Blasting

Table below combines both factors of strength and fractures into one assessment.

12.5 Excavatability assessment

- The excavatability data shown are extracted from charts. It is therefore approximate values only.
- Higher strengths combined with closer discontinuity spacing shifts the excavatability rating.

Table 12.5 Excavatability assessment (Franklin et al. 1971 with updates from Walton and Wong, 1993).

Parameter	Easy digging	Marginal digging without blasting	Blast to loosen	Blast to fracture
Strength, I _s (50) (MPa) Discontinuity spacing (m) RQD (%)	<0.1	<0.3	>0.3	>0.3
	<0.02	<0.2	0.2 to 0.6	>0.6
	<10%	<90%	>90%	>90%

- Blast to loosen can be equated to using a rock breaker.
- Ripping involves using a tine attached to the rear of the bulldozer.

12.6 Diggability index

- The rock weathering term is another term incorporated in this table as well as the type of equipment (backhoe or excavator).
- This table classifies the diggability only. The following table provides the implication for the type of equipment.

· /	0 (•		0	,	
Parameter	Symbol	Ranking				
Weathering	W	Complete	High	Moderately	Slight	Fresh
	Rating	0	5	15	20	25
Strength (MPa): UCS	s	<20	20–50	40–60	60-100	>100
Is (50)		<0.5	0.5-1.5	1.5-2.0	2-3.5	>3.5
,	Rating	0	5	15	20	25
Joint spacing (m)	J	<0.3	0.3-0.6	0.6-1.5	1.5–2	>2
	Rating	5	15	30	45	50
Bedding spacing (m)	В	<0.1	0.1-0.3	0.3-0.6	0.6-1.5	>1.5
	Rating	0	5	10	20	30

Table 12.6 Diggability index rating (adapted from, Scoble and Muftuoglu, 1984).

12.7 Diggability classification

• The Diggability in terms of the type of plant required uses the Index obtained from the previous table.

lable 12.7 Diggability classification for excavators (adapted from, Scoble and Muftuoglu, 198

Class	Ease of	Index	Typical plant which may be used without blasting			
	digging	(W+S+J+B)	Туре	Example		
I	Very Easy	<40	Hydraulic backhoe <3 m ³	CAT 235D		
II	Easy	40–50	Hydraulic shovel or backhoe <3 m ³	CAT 235FS, 235 ME		
Ш	Moderately	50–60	Hydraulic shovel or backhoe > 3 m ³	CAT 245FS, 245 ME		
IV	Difficult	60–70	Hydraulic shovel or backhoe >3 m³: Short boom of a backhoe	CAT 245, O&K RH 40		
٧	Very difficult	70–95	Hydraulic shovel or backhoe > 4 m ³	Hitachi EX 100		
VI	Extremely difficult	95–100	Hydraulic shovel or backhoe > 7 m ³	Hitachi EX 1800, O&K RH 75		

12.8 Excavations in rock

- The assessment of open excavations is different from excavations in limited space, such as trenches or drilled shafts.
- Seismic Wave Velocity SWV
- Unconfined Compressive Strength UCS
- For drilled shafts:
 - Limit of earth auger is 15cm penetration in a 5 − minute period → Replace with Rock Auger.
 - Rock Auger to Down-the-hole hammers (Break).

Type of	Parameter	Dig	Rip	Break/Blast
excavation	Relative cost	1	2 to 5	5 to 25
Large open excavations	N –Value RQD SWV	$N \le 50 \text{ to } 70$ RQD < 25% < 1500 m/s		N = 100/100 mm, Use N* = 300 RQD > 50% 1850-2750 m/s
Trench excavations	SWV	750–1200 m/s Using backhoe		1850–2750 m/s Excavators in large excavations, rock breakers
Drilled shafts	N – Value UCS SWV	N < 100/75 mm Use N* < 400 UCS < 20 MPa < 1200 m/s		N* > 600 UCS > 28 MPa > I 500 m/s
Tunnels	UCS	UCS < 3 MPa		UCS > 70 MPa

Table 12.8 Excavation in rock (part data from Smith, 2001).

- For tunnelling shields:
 - Backhoes mounted inside tunnel shields must give way to road headers using drag pick cutters (similar to rock auger teeth for drilled shafts). Occurs at about UCS = 1.5 MPa.
 - Road Headers \rightarrow Drill and Blast or TBM with disk cutters at about UCS = 70 to 80 MPa. Specialist road headers can excavate above that rock strength.

12.9 Rippability rating chart

Weaver's charts combine concepts of strength, discontinuity, plant and joint characteristics.

Table 12.9	Rippabilit	y rating	chart	(after	Weaver	1975).
------------	------------	----------	-------	--------	--------	--------

Rock class	1	II	III	IV	V
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock
Seismic velocity (m/s)	>2150	2150-1850	1850–1500	1500–1200	1200-450
Rating	26	24	20	12	5
Rock hardness	Extremely hard rock	Very hard rock	Hard rock	Soft rock	Very soft rock
Rating	10	5	2	1	0
Rock weathering	Unweathered	Slightly weathered	Weathered	Highly weathered	Completely weathered
Rating	9	7	5	3	1
Joint spacing (mm)	>3000	3000-1000	1000–300	300–50	<50

(Continued)

142 Earthworks

Rock Class	1	II .	III	IV	V
Rating	30	25	20	10	5
Joint continuity	Non- continuous	Slightly continuous	Continuous – no gouge	Continuous – some gouge	Continuous – with gouge
Rating	5	5	3	0	0
Joint gouge	No separation	Slight separation	Separation < I mm	Gouge <5 mm	Gouge >5 mm
Rating	5	5	4	3	1
*Strike and dip orientation	Very unfavourable	Unfavourable	Slightly unfavourable	Favourable	Very favourable
Rating	15	13	10	5	3
Total rating	100–90	90–70+	70–50	50–25	<25
Rippability assessment	Blasting	Extremely hard ripping and blasting	Very hard ripping	Hard ripping	Easy ripping
Tractor selection	_	DD9G/D9G	D9/D8	D8/D7	D7
Horsepower	_	770/385	385/270	270/180	180
Kilowatts	_	575/290	290/200	200/135	135

- Original strike and dip orientation now revised for rippability assessment.
- +Ratings in excess of 75 should be regarded as unrippable without pre-blasting.

12.10 Bulking factors

• The bulking factor for excavation to transporting to placement and compaction:

Table 12.10 Bulking factors for excavation to transporting.

Material	Bulk density (in –situ t/m³)	Bulk up on excavation (%)
Granular soils Uniform sand Well graded sand Gravels	• 1.6–2.1 • 1.7–2.2 • 1.7–2.3	10–15
Cohesive Clays Gravelly clays Organic clays	• 1.6–2.1 • 1.7–2.2 • 1.4–1.7	20–40
Peat/topsoil	• I.I–I.4	25–45
Rocks Igneous Metamorphic Sedimentary Soft rocks	 2.3-2.8 2.2-2.7 2.1-2.6 1.9-2.4 	• 50–80 • 30–60 • 40–70 • 30–40

- 0%-10% soils and soft rocks.
- 5%-20% hard rocks.
- Typically wastage is $\sim 5\%$.

12.11 Practical maximum layer thickness

- The practical maximum layer thickness for compaction depends on the material to be compacted and equipment used.
- The table below is for large equipment in large open areas.

Table 12.11 Practical maximum layer thickness for different roller types (Forssblad, 1981).

Roller type static weight (drum module weight in brackets)		Practical n	Practical maximum layer thickness (m)						
			Embankn	Pavement					
Туре	Weight (ton)	Rock fill	Sand/gravel	Silt	Clay	Subbase	Base		
Towed	6	0.75	+0.60	+0.45	0.25	-0.40	+0.30		
vibratory	10	+1.50	+1.00	+0.70	-0.35	-0.60	+0.40		
rollers	15	+2.00	+1.50	+1.00	-0.50	-0.80	_		
	6 Padfoot	_	0.60	+0.45	+0.30	0.40	_		
	10 Padfoot	_	1.00	+0.70	+0.40	0.60	_		
Self	7 (3)	_	+0.40	+0.30	0.15	+0.30	+0.25		
propelled	10 (Ś)	0.75	+0.50	+0.40	0.20	+0.40	+0.30		
roller	15 (10)	+1.50	+1.00	+0.70	+0.35	+0.60	+0.40		
	8 (4) padfoot	_	0.40	+0.30	+0.20	0.30	_		
	II (7) padfoot	_	0.60	+0.40	+0.30	0.40	_		
	15 (10) padfoot	_	1.00	+0.70	+0.40	0.60	_		
Vibratory	2	_	0.30	0.20	0.10	0.20	+0.15		
tandem	7	_	+0.40	0.30	0.15	+0.30	+0.25		
rollers	10	_	+0.50	+0.35	0.20	+0.40	+0.30		
	13	_	+0.60	+0.45	0.25	+0.45	+0.35		
	18 Padfoot	_	0.90	+0.70	+0.40	0.60	-		

- Most suitable applications marked +.
- Thickness in confined areas should be 200 mm maximum loose lift thickness.
- For small sized equipment (<1.5 ton) the applicable thickness is 1/2 to 1/3 of the above.

12.12 Rolling resistance of wheeled plant

- Rolling resistance = Force that must be overcome to pull a wheel load.
- It depends on gradient of site and nature of trafficked area.
- Rolling resistance = Rolling resistance factor \times gross vehicle weight.
- Table 12.12 indicates that maintenance of haul road helps to reduce operational cost of plant.
- A surface with no maintenance is expected to have 5 to 10 times the operating cost of a good well maintained surface.

Table 12.12 Rolling resistance of wheeled plant (Horner, 1988).

	Haul road conditions	Rolling resistance Factor		
Surface	Condition	Kg/t	An equivalent gradient	
Hard, smooth	Stabilized surface roadway, no penetration under load, well maintained	20	2%	
Firm, smooth	Rolling roadway with dirt or light surfacing, some flexing under load, periodically maintained	32.5	3%	
With snow	Packed	25	2.5%	
	Loose	45	4.5%	
Dirt roadway	Rutted, flexing under load, little maintenance, 25–50 mm tyre penetration	50	5	
Rutted dirt roadway	Rutted, soft under travel, no maintenance, 100–150 mm tyre penetration	75	7.5%	
Sand/gravel surface	Loose	100	10%	
Clay surface	Soft muddy rutted, no maintenance	100-200	10-20%	

12.13 Compaction requirements for various applications

- The compaction levels should be based on the type of application.
- Compaction assumes a suitable material, as well as adequate support from the underlying material.
- A very high compaction on a highly expansive clay can have an adverse effect in increasing swelling potential.
- The subgrade thickness is typically considered to be 1.0 m, but this varies depending on the application. Refer Section 13.1.

Table 12.13 Compaction levels for different applications.

Class	Application	Compaction level
I	PavementsUpper 0.5 m of subgrade under buildings	Extremely high
2	 Upper 1.5 m of subgrade under airport pavements Upper 1.0 m of subgrade under rail tracks Upper 0.75 m of subgrade under pavements Upper 3 m of fills supporting 1 or 2 story buildings 	Very high
3	 Deeper parts to 3 m of fills under pavements Deeper arts of ills under buildings Lining for canal or small reservoir Earth dams Lining for landfills 	High
4	 All other fills requiring some degree of strength or incompressibility Backfill in pipe or utility trenches Drainage blanket or filter (Gravels only) 	Normal
5	 Landscaping material Capping layers (not part of pavements) Immediately behind retaining walls (self compacting material "Drainage Gravel" typical) 	Nominal

• The compaction level may be related to a specified value of CBR strength.

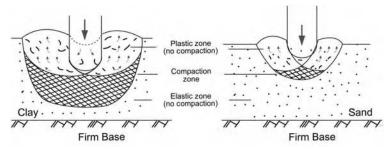


Figure 12.2 Effect of sheepsfoot roller on clays and sands (Here from Holts and Kovacs, 1981 Spangler and Handy, 1982).

12.14 Required compaction

fine grained

OH

- Relative compaction is the ratio of the field density with the maximum dry density.
- The relative compaction is required in an end product specifications.
- Typically many specifications simply use 95% relative compaction. The table shows that this should vary depending on the application. The table is therefore

Cail tub a	Soil	Required compaction (% Standard MDD)					
Soil type	classification	Class I	Class 2	Class 3	Class 4	Class 5	
Rock sizes	>60 mm	Compaction standards do not apply					
	GW	96					
Gravels	GP	76	94				
Graveis	GM			_			
	GC		96		90	_	
	SW	98		92			
C d-	SP						
Sands	SM						
	SC						
	ML	100					
Low plasticity fine grained	CL					88	
8. 2	OL		98		92	88	
	МН			96			
High plasticity	СН	_		70			

Table 12.14 Required compaction level based on various soil types (adapted and modified from Sower's 1979).

- a guide only. A movement sensitive building would require a higher level of compaction, than a less sensitive building such as a steel framed industrial building.
- When the percentage of gravel sizes (>200 mm) exceeds 15%, and the percentage of cobble sizes (60 mm) exceeds 30%, then use a method specification.
- Method specifications require the type and weight of roller to be defined with the number of passes and the lift thickness.

12.15 Comparison of relative compaction and relative density

- The relative compaction applies to material with some fines content.
- The relative density applies to material that is predominantly granular.

Table 12.15 Approximation of relative density to relative compaction (Lee and Singh, 1971).

Granular consistency	Relative density	Relative compaction
Very dense	100	100
•	90	98
	80	96
Dense	70	94
	60	92
Medium	50	98
	40	88
Loose	30	86
	20	84
Very loose	10	82
,	0	80

12.16 Field characteristics of materials used in earthworks

- Different material types are required depending on the application.
- Table 12.16 provides the typical field characteristics for different materials.

12.17 Typical compaction characteristics of materials used in earthworks

- Table 12.17 provides a guide to the use of different materials in a method specifications.
- Thickness of compacted layers depends on type of plant used.
- Different plant types would need to be used for different materials and operating room.

12.18 Suitability of compaction plant

- Effective compaction requires consideration of the type of plant, materials being compacted and environment. Refer Table 12.18.
- Tamping rollers includes sheepsfoot and pad rollers.

Table 12.16 Field characteristics of materials used in earthworks (adapted from BS 6031 - 1981).

уре	uo	lod	restics	or verties	road	Before e	density xcavation	t of %
Material type	Description	USC symbol	Drainage characteristics	Shrinkage or swelling properties	Value as a road foundation	Dry or moist Mg/m³	Submerged Mg/m³	Coefficient of bulking %
Boulders and cobbles	Boulder gravels	_	Good	Almost	Good to excellent	_	_	_
Other	Hard broken rock	_	Excellent	none	Very good to excellent	-	_	20–60
materials	Soft rocks, rubble	_	Fair to practically impervious	Almost none to slight	Good to excellent	1,10 to 2.00	0.65 to 1.25	40
	Well graded	GW	Excellent	Almost	Excellent	1.90 to 2.10	1.15 to 1.30	
Gravels	Poorly graded	GP	LXCelleric	none	Good	1.60 to 2.00	0.90 to 1.25	
and gravelly soils	Silty	GM	Fair to practically impervious	Almost none to slight	Good to excellent	1.80 to 2.10	1.10 to 1.30	10–20
	Clayey	GC	Practically impervious	Very slight	Excellent	2.00 to 2.25	1.00 to 1.35	
	Well graded	SW	Excellent	Almost none	Good to excellent	1.80 to 2.10	1.05 to 1.30	
Sands	Poorly graded	SP	Excellent			1.45 to 1.70	0.90 to 1.00	
and sandy soils	Silty	SM	Fair to practically impervious	Almost none to medium	Fair to good	1.70 to 1.90	1.00 to 1.15	5 to 15
	Clayey	sc	Practically impervious	Very slight	Good to excellent	1.90 to 2.10	1.15 to 1.30	
Inorganic	Low plasticity	ML	Fair to poor	Slight to medium	Fair to poor	1.70 to 1.90	1.00 to 1.15	20 to 40
silts	High plasticity	МН	Poor	High	Poor	1.75	1.00	_
Inorganic	Low plasticity	CL	Practically	Medium	Fair to poor	1.60 to 1.80		20 to 40
clays	High plasticity	СН	impervious	High	Poor to very poor			_
Organia	with silts/clays of low plasticity	OL	Practically	Medium to high	Poor	1.45 to 1.70	0.90 to 1.00	20 to 40
Organic	with silts/clays of high plasticity	ОН	Impervious	High	Very poor	1.50	0.50	-
Peat	highly organic soils	Pt	Fair to poor	Very high	Extremely poor	1.40	0.40	_

Table 12.17 Compaction characteristics of materials used in earthworks (adapted from BS 6031 - 1981).

Material	Suitable type of compaction plant	Minimum number of passes required	Maximum thickness of compacted layer	Remarks
Natural rocks Chalk other rock fills	Heavy vibratory roller – 1800 kg/m or Grid rollers – >8000 kg/m or Self propelled tamping rollers	• 3 (for Chalk) • 4 to 12	500 to 1500 mm depending on plant used	Maximum dimension of rock not to exceed 2/3 of layer thickness
 Waste material Burnt and unburnt colliery shale Pulverised fuel ash Broken concrete, bricks, steelworks slag 	 Vibratory roller, or Smooth wheeled rollers or Self propelled tamping rollers Pneumatic tyred rollers for pulverised fuel ash only 	4 to 12	300 mm	
Coarse grained soils • Well graded gravels and gravely soils • Well graded sands and sandy soils	 Grid rollers - >5400 kg/m or Pneumatic tyred rollers >2000 kg/wheel or Vibratory plate compactor >1100 kg/m² of baseplate Smooth wheeled rollers or Vibratory roller, or Self propelled tamping rollers 	3 to 12	75 mm to 275 mm	
Coarse grained soils • Uniform sands and gravels	Grid rollers - <5400 kg/m or Pneumatic tyred rollers < 1500 kg/wheel or Vibratory plate compactor Smooth wheeled rollers < 500 Kg/m or Vibratory roller	3 to 16	75 mm to 300 mm	
Fine grained soils • Well graded gravels and gravely soils • Well graded sands and sandy soils	 Sheepsfoot roller Pneumatic tyred rollers or Vibratory plate compactor > I 400 kg/m² of baseplate Smooth wheeled rollers or Vibratory roller >700 kg/m 	4 to 8	100 mm to 450 mm	High plasticity soils should be avoided where possible

Table	12.18	Suitability	of compact	ion plant (I	Hoerner,	1990).
-------	-------	-------------	------------	--------------	----------	--------

Compaction plant	Principal soil type							
	Cohesive		Granular				Rock	
	Wet Others		Well graded U		Unifo	Jniform Sc		Hard
			Coarse	Fine	Coarse	Fine		
Smooth wheeled roller Pneumatic tyred roller Tamping roller Grid roller	√√ √√	√√ √√ √√	√√ √√ 0 √√	\\ \\ \\ \\	√√ 0 √√	0	√√ 0 0 √√	0
Vibrating roller Vibrating plate Vibro – tamper	0	√√ 0 √√	√√ √√ √√	√√ √√ √√	√√ √√ √√	√√ √√ √√	0 0 0	√√ √√ √√
Power rammer	0	$\sqrt{}$	\sqrt{N}	$\sqrt{}$			0	0
Dropping weight Dynamic consolidation	0	$\sqrt{\checkmark}$	√√ √√	\/\ \/\			$\sqrt{\checkmark}$	√√ √√

 $[\]sqrt{\sqrt{}}$ Most suited.

12.19 Typical lift thickness

- The lift thickness is dependent on the type of material and the plant.
- In limited operating room (eg backfill of trenches) small plant are required and the thickness must be reduced from to achieve the appropriate compaction level.
- Adjacent to area sensitive to load and/or vibration (eg over services, adjacent to buildings), then medium sized compaction equipment applies. The thickness levels would be smaller than in an open area, but not as small as in the light equipment application.

Table 12.19 Typical lift thickness.

Equipment weight	Material type	Typical lift thickness	Comments
Heavy ≥ 10 tonnes	Rock fill Sand & Gravel Silt Clay	750–2000 mm 500–1200 mm 300–700 mm 200–400 mm	Applies to open areas
Medium (1.5 to 10 tonnes)	Rock fill Sand & Gravel Silt Clay	400–1000 mm 300–600 mm 200–400 mm 100–300 mm	Some controls required, eg
Small (<1.5 tonnes)	Rock fill Sand & Gravel Silt Clay	200–500 mm 150–400 mm 150–300 mm 100–250 mm	In limited areas, egIn trenchesAround InstrumentationAdjacent to walls

O Can be used but les efficiently.

12.20 Maximum size of equipment based on permissible vibration level

- Different weight rollers are required adjacent to buildings. This must be used with a suitable offset distance.
- The table is based on a permissible peak particle velocity of 10 mm/second. Commercial and industrial buildings may be able to tolerate a larger vibration level (20 mm/sec). Conversely, historical buildings and buildings with existing cracks would typically be able to tolerate significantly less vibration (2 to 4 mm/sec).

Table 12.20 Minimum recommended distance from vibrating rollers (Tynan, 1973).

Roller class	Weight range	Minimum distance to nearest building
Very light	<1.25 tonne	Not restricted for normal road use. 3 m
Light	I–2 tonnes	Not restricted for normal road use. 5 m
Light to medium	2–4 tonnes	5–10 m
Medium to heavy	4–6 tonnes	Not advised for city and suburban streets 10–20 m
Heavy	7–11 tonnes	Not advised for built up areas 20–40 m

12.21 Compaction required for different height of fill

- The height of fill should also determine the level of compaction, and number of passes.
- The table below shows an example of such a variation, assuming similar materials being used throughout the full height.

Table 12.21 Typical number of roller passes needed for 150 mm thick compacted layer.

Height of fill (m)	Number of passes of roller for material type			
	Clayey gravel (GC)	Sandy clay (CL), clayey sand (SC)	Clay, CH	
<2.5 m	3	3	4	
2.5 to 5.0 m	4	5	6	
5.0 to 10.0 m	5	7	8	

The optimum compaction thickness depends on the type of equipment used.

12.22 Typical compaction test results

- Granular material tends to have a higher maximum dry density and lower optimum moisture content.
- The optimum moisture content increases with increasing clay content.

12.23 Field compaction testing

• The sand cone replacement is a destructive test. For large holes or rock fill, water or oil of known density is used.

Table 12.22 Typical compaction test results (Hoerner, 1990).

Material	Type of compaction test	Optimum moisture content (%)	Maximum dry density (t/m³)
Heavy clay	Standard (2.5 kg Hammer)	26	1.47
	Modified (4.5kg Hammer)	18	1.87
Silty clay	Standard	21	1.57
	Modified	12	1.94
Sandy clay	Standard	13	1.87
	Modified	11	2.05
Silty gravelly clay	Standard	17	1.74
	Modified	11	1.92
Uniform sand	Standard	17	1.69
	Modified	12	1.84
Gravelly sand/sandy gravel	Standard	8	2.06
	Modified	8	2.15
	Vibrating hammer	6	2.25
Clayey sandy gravel	Standard Vibrating hammer		1.90 2.00
Pulverised fuel ash	Standard	25	1.28
Chalk	Standard	20	1.56
Slag	Standard	6	2.14
Burnt shale	Standard	17	1.70
	Modified	14	1.79

The nuclear density gauge is a non destructive test. Direct Transmission or Back Scatter Techniques used.

Table 12.23 Field compaction testing.

Equipment	Sand cone	Nuclear density gauge
Equipment cost	Low	High
Advantages	Large sampleDirect measurementConventional approach	FastEasy to redoMore tests can be done
Disadvantages	 More procedural steps Slow Less repeatable	No sampleRadiationMoisture content results unreliable
Potential problems	 Vibration 	 Presence of trenches and objects within Im affects results

- Calibration required for nuclear density gauge:
 - Bi-annual manufacturers certificate.
 - Quarterly checks using standard blocks.
 - Material calibration as required.
- For nuclear density moisture content: Every tenth test should be calibrated with results of standard oven drying.

 For nuclear density measurement: Every 20 tests should be calibrated with results of sand cone.

12.24 Standard versus modified compaction

- There is no direct conversion between modified and standard compactions.
- The table below is a guide, but should be checked for each local site material.
- In general modified compaction is applicable mainly to pavements. It should be avoided in subgrade materials, and especially in expansive clay materials.

Table 12.24 Equivalence of modified and standard compactions (MDD).

Material	Standard/modified compactions	Modified/standard
Clays/silts	105-115%	85 to 95%
Sandy clays/clayey sands	110-100%	90 to 100%
Sands/gravels/crushed rock	105-100%	95 to 100%

12.25 Effect of excess stones

- The compaction tests are carried out for material passing the 20 mm sieve.
- If the stone fraction is included, it is likely that density and CBR would be higher, but with a lower OMC.
- The field density test that passes could be due to stone sizes influencing the results rather than an acceptable test result as compared to the laboratory reference density.
- The effect of stone size can be calculated, and depends on the quantity and type
 of material.

Table 12.25 Typical stone size effects.

% of Stone sizes (% > 20 mm)	Actual density compared with lab density
<10% 20% 40%	Negligible \sim 10% Higher \sim 20% Higher

Subgrades and pavements

13.1 Types of subgrades

- The subgrade is the natural material immediately below the pavement.
- The depth of subgrade varies depending on the type of load applications and the pavement type.

Table 13.1 Depth of sub	grades.
-------------------------	---------

Application	Type of load	Pavement type	Subgrade depth
Airport	Dynamic/extra heavy	Flexible	2.0 m
•	,	Rigid	1.5 m
Mine haul access	Dynamic/very heavy	Flexible	1.5 m
Rail	Dynamic/very heavy	Flexible/rigid	1.25 m
Major roads	Dynamic/heavy	Flexible	1.0 m
•	, ,	Rigid	0.75 m
Industrial building	Dynamic/static/heavy	Rigid	0.75 m
Minor roads	Dynamic/medium	Flexible	0.75 m
	,	Rigid	0.5 m
Commercial and Residential buildings	Static/medium	Rigid	0.5 m
Walkways/bike paths	Static/light	Rigid/flexible	0.25 m

- Contact pressures for flexible foundations on sands and clays approximately similar
- Contact pressures for rigid foundations:
 - On sands, maximum pressure is at middle.
 - On clays, maximum pressure is at edge.
- Test location layout should reflect the above considerations.
- Subgrade refers to only direct bearing pressures, while material below the subgrade should also provide adequate support, although at reduced pressures. This underlying material can also affect movement considerations.
- Arguably for thick pavement designs/capping layers, the subgrade is now reduced to the top 0.5 m depth.

13.2 Subgrade strength classification

- The subgrade strength is here defined in terms of the soaked CBR.
- The soaked CBR may not be necessarily applicable at a given site.

Table 13.2 Subgrade strength classification.

Soaked CBR	Strength classification	Comments
<1%	Extremely weak	Geotextile reinforcement and separation layer with a working platform typically required.
1%–2%	Very weak	Geotextile reinforcement and/or separation layer and/or a working platform typically required.
2%–3%	Weak	Geotextile separation layer and/or a working platform typically required.
3%-10%	Medium	, , , ,
10%–30% >30%	Strong Extremely strong	Good subgrade to Sub – base quality material. Sub – base to base quality material.

- Extremely weak to weak layers need a capping layer.
- Capping layer also referred to as a working platform.
- Design subgrade CBR values above 20% seldom used irrespective of test results.

13.3 Damage from volumetrically active clays

 Volumetrically active materials are also called shrinkage clays, expansive clays, reactive clays, and plastic clays.

Table 13.3 Damage to roadways resulting from volumetrically active clays.

Mechanism	Effect on roadway
Swelling due to wetting/ Shrinkage due to drying	Longitudinal cracks on pavements and/or Unevenness of riding surface Culverts can rise out of ground
Swelling pressures where movement is prevented	Cracking of culverts High Pressures of retaining walls greater than at rest earth pressure coefficient
Loss of strength due to swelling or shrinkage	Localised failure of subgrade Slope failures of embankments

13.4 Subgrade volume change classification

- A subgrade strength criteria may be satisfied, but may not be adequate for volume change criteria, which must be assessed separately.
- The Weighted Plasticity Index (WPI) can be used for an initial assessment although
 the soaked CBR swell provides a better indicator of movement potential for design
 purposes.

- An approximate comparative classification is provided in this table.
- Swell is based on sample compacted to MDD (Standard Proctor) at its OMC and using a 4 day soak.

Table 13.4 Subgrade volume change classification for embankments.

Weighted Plasticity index %	Soaked CBR swell	Subgrade volume change classification	Comments
<1200	<1%	Very Low	Generally acceptable for base sub – base
1200–2200	1%–2%	Low	Applicable for capping layers
2200–3200	2%–3%	Moderate	Design for some movements
3200–5000	3%–5%	High	Unsuitable directly below pavements
>5000	>5%	Very High	Should be removed and replaced or stabilised

- Materials with a very low volume change potential tends to be high CBR material (strong to very strong).
- Clayey materials may still have swell after 4 days. Any WPI > 3200 should use a 7 day soaked test.

13.5 Minimising subgrade volume change

- Providing a suitable non volumetrically active capping layer is the most cost effective way to minimise volume change.
- If sufficient non reactive materials are unavailable then stabilisation of the subgrade may be required, for the thickness indicated.
- Indicative thickness only. Depends also on climatic environment, which influences active zone.

Table 13.5 Typical improved subgrade to minimise volume change.

Subgrade volume change classification	Thickness of non reactive overlying layer		
ciassification	Fills	Cuts	
Very Low Low Moderate	Subgrade strength governs pavement design Subgrade strength governs pavement design 0.5 m to 1.0 m 0.25 m to 0.5 m		
High Very High	1.0 m–2.0 m >2.0 m	0.5 m to $1.0 m$ $> 1.0 m$	

- Thickness of overlying layer includes pavement in addition to improved subgrade laver.
- Pavement thickness (based on strength design) may be sufficient for no improved subgrade layer.
- Remoulded clays (fills) have a higher potential for movement (in its first few years of wet/dry cycles) than undisturbed clay subgrades (cuts).
- However the potential for rebound must also be checked for deep cuttings. Rebound is not a cyclic movement.
- Non Reactive material has WPI < 1200.

Figure 13.1 Seasonal and initial movements.

13.6 Subgrade moisture content

- The key to minimising initial volume change is to place the material as close as possible to its equilibrium moisture content and density.
- Equilibrium moisture content depends on its climatic environment as well the material properties itself.
- The data below was established for equilibrium conditions in Queensland, Australia.

Table 13.6	Equilibrium	moisture	conditions	based o	on annual	rainfall	(Look, 2005).

Median annual	Equilibrium moisture content					
rainfall (mm)	WPI < 1200 (Low correlation)	WPI = 1200–3200 (Medium correlation)	WPI > 3200 (High correlation)			
Median value for all rainfall	80% OMC	100% OMC	115% OMC			
≤500 500–1000	50%* to 90% OMC	70% to 100% OMC	50% to 80% OMC 70% to 120% OMC			
1000-1500 ≥1500	70% to 110% OMC	100% to 130% OMC	110% to 140% OMC 130% to 160%* OMC			

^{*} Beyond practical construction limits

- The above equilibrium conditions also influence the strength of the subgrade.
- Use above EMC to obtain corresponding CBR value.

- Or apply correction factor to soaked CBR as in next section.
- The above can be summarised as:
 - For low WPI material, the EMC is dry or near OMC.
 - For medium WPI material, the EMC is near OMC.
 - For high WPI material, the EMC is sensitive to climate, and varies from dry of OMC for dry climates to wet of OMC for wet of climates.

13.7 Subgrade strength correction factors to soaked CBR

- The CBR value needs to be factored to be used appropriately in its climatic environment.
- In many cases the soaked CBR may not be appropriate, and the unsoaked value should be used.

Table 13.7 Correction factor to soaked CBR to estimate the equilibrium In-situ CBR (Mulholland et al, 1985).

Climatic zone	Soil t	type
	Soil with PI < 11	Soil with PI > I I
Rainfall \leq 600 mm	1.0–1.5	1.4–1.8
$600 \text{mm} < \text{Rainfall} \le 1000 \text{mm}$	0.6-1.1	1.0–1.4
Rainfall > 1000 mm	0.4–0.9	0.6–1.0

13.8 Approximate CBR of clay subgrade

- The CBR can be approximately related to the undrained strength for a clay.
- The remoulded strength is different from the undisturbed strength.

Table 13.8 Consistency of cohesive soil.

Term	Field assessment	Undrained shear	Approximate CBR %	
		strength (kPa)	Undisturbed	Remoulded
Very soft	Exudes between fingers when squeezed	<12	<i< td=""><td><u>< </u></td></i<>	<u>< </u>
Soft	Can be moulded by light finger pressure	12-25		_ I–2
Firm	Can be moulded by strong finger pressure	25-50	I-2	2–4
Stiff	Cannot be moulded by fingers Can be indented by thumb pressure	50-100	2–4	4–10
Very stiff	Can be indented by thumb nail	100-200	4–10	10-20
Hard	Difficult to indented by thumb nail	>200	>10	>20

13.9 Typical values of subgrade CBR

- The design subgrade modulus depends on:
 - Site drainage.
 - Site Rainfall/Climate.

- Soil classification.
- Compaction level.
- Confinement.

Table 13.9 Typical values of subgrade CBR.

Soil type	USC symbol	Description	Drainage	CBR % (standard)
Competent broken rock, Gravel sizes	GW, GP	eg Sandstone, granite, greywacke Well graded, poorly graded	All	20
Competent broken rock – some fines formed during construction Gravel sizes, sands	GM, GC SW, SP	eg Phyllites, siltstones Silty, Clayey, well graded, Poorly graded	All	15
Weathered Rock likely to weather or degrade during construction	ALL	eg Shales, mudstones	All	Treat as soil below
Sands	SM, SC	Silty, clayey	Good	10
Sands	SM, SC	Silty, clayey	Poor	7
Inorganic silts	ML	Low plasticity	Good	
Inorganic silts	ML	Low plasticity	Poor	5
Inorganic clays	CL	Low plasticity	Good	
Inorganic clays	CH	High plasticity	Good	
Inorganic silts	MH	High plasticity	Good	3
Inorganic clays	CL	Low plasticity	Poor	
Inorganic silts Inorganic clays	MH CH	High plasticity High plasticity	Poor Poor	<3

- The issues with converting CBR to modulus values are discussed in later sections.
- Underlying support is also required to obtain the above CBR values (Chapter 11).
- At the edge of an embankment (lack of edge support), CBR value is not applicable.

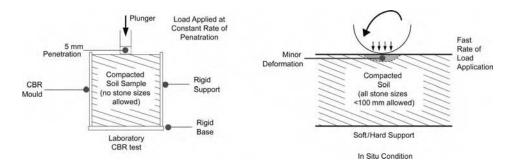


Figure 13.2 Laboratory CBR model versus field condition.

13.10 Properties of mechanically stable gradings

- The gradation is the key aspect to obtaining a mechanically stable pavement.
- This is the first step in development of a suitable specifications.

20% to 10%

60% to 70%

(1947)).			
Application	% passing 75 micron "Fine material"	% passing 425 micron Medium sand or less	% >2 mm Gravel size
Unstable in wet due to high volume change Light traffic	>50% 40% to 20%	>80% 70% to 40%	0% 0% to 40%
Heavy traffic wearing course	20% to 10%	40% to 20%	40% to 60%

15% to 10%

Table 13.10 Properties of mechanically stable gradings for pavements (adapted from Woolorton

Soil stabilisation with additives 13.11

The main types of additives are lime, cement and bitumen.

Table 13.11 Soil stabilisation with additives.

Heavy traffic base course

Soil property		Typical additive
% Passing 75 micron	Atterberg	
>25%	PI < 10% PI > 10%	Bitumen, cement Cement, lime
<25%	PI < 10% PI = 10-30% PI > 30%	Cement Lime, Cement, lime + bitumen Cement, lime + cement

- Cement additive typically 5 to 10%, but can vary from 0.5 to 15%. Best suited to Clayey Sands (SC).
- Lime additives typically 1.5% to 8%. Best suited to Silts and Clays.
- Bitumen additives typically 1 to 10%. Best suited to Clayey Gravels (GC).

13.12 Soil stabilisation with cement

If the subgrade has insufficient strength then stabilisation of the subgrade may be required.

Table 13.12 Typical cement content for various soil types (Ingles, 1987).

Soil type	Cement requirement	
Fine crushed rock Well graded and poorly graded gravels Silty and clayey gravels Well graded sands	GW, GP GM, GC, SW	0.5%–3% 2%–4%
Poorly graded sand, silty sands, clayey sands Sandy clay, silty clays Low plasticity inorganic clays and silts	SP, SM, SC ML, CL	4%–6% 6%–8%
Highly plastic inorganic clays and silts Organic clays Highly organic	MH, CH OL, OH Pt	8%–12% 12%–15% (pre treatment with lime) Not suitable

- Adding cement is just one of the means of acquiring additional strength.
- Above 10% cement may be uneconomical, and other methods should be considered.
- The table presents a typical range, but a material specific testing programme should be carried out to conform the most economical cement content.

13.13 Effect of cement soil stabilisation

- The stabilisation of pavement layers is also used to produce higher strengths, and minimise the pavement thickness.
- These may be cement treated base (CTB) or cement treated sub bases (CTSB).

Table 13.13 Soil stabilisation (Lay, 1990; Ingles, 1987).

Stages	Soil	Modified soil	Cemented soil	Lean mix	Concrete
Cement content for granular material Tensile strength Failure mode	0% Plasti	<80	<5% kPa		> 15% O kPa → Brittle

- For each 1% cement added, an extra unconfined compressive strength of 500 kPa to 1000 kPa may be achieved.
- Shrinkage concerns for cement >8%.
- Tensile strength $\sim 10\%$ Unconfined compressive strength.

13.14 Soil stabilisation with lime

- Applicable mainly to high plasticity materials.
- The table presents a typical range, but a material specific testing programme should be carried out to conform the most economical lime content.
- Use the lime demand test first, before testing for other material properties. Without this test, there would be uncertainty on the permanent nature of the lime stabilisation.

Table 13.14 Typical lime content for various soil types (Ingles, 1987).

Soil type		Lime requirement
Fine crushed rock		0.5%–1%
Well graded and poorly graded gravels	GW, GP	0.5-2%
Silty and clayey gravels	GM, GC,	
Well graded and poorly graded sands	SW, SP	
Silty sands, clayey sands	SM, SC	2%–4%
Sandy clay, silty clays, low plasticity inorganic clays and silts Highly plastic inorganic silts	ML, CL, MH	4%–6%
Highly plastic inorganic clays Highly organic	CH OL, OH, Pt	5%–8% Not recommended

- For strength improvements requirements, the UCS or CBR test is used in the literature.
- Test results may show CBR values above 100%. Irrespective of test results a subgrade design CBR of 20% maximum should be used.
- For strength, a target CBR value (at 7 days) of 60% used.
- For strength, a target UCS value (at 28 days) of 1MPa used. 7Day UCS ~½ 28Day UCS.
- Add 1% additional lime above the laboratory test requirements to account for unevenness in mixing in the field.

13.15 Soil stabilisation with bitumen

- Bitumen is a good waterproofing agent, and preserves the natural dry strength.
- Asphalt, Bitumen and Tar should be distinguished (Ingles, 1987). These material properties are temperature dependent:
 - Asphalt most water repellent, but most expensive.
 - Bitumen most widely available.

Table 13.15 Typical bitumen content for various soil types (Ingles, 1987).

Soil type		Bitumen requirement
Fine crushed rock – open graded		3.5%-6.5%
Fine crushed rock – dense graded		4.5–7.5%
Well graded and poorly graded gravels	GW, GP	
Silty and clayey gravels	GM, GC,	
Well graded and poorly graded sands	SW, SP	2%–6%
Silty sands	SM	
Clayey sands	SC	
Sandy clay, silty clays, low plasticity inorganic clays and silts	ML, CL,	
Highly plastic inorganic silts	MH	
Highly Plastic inorganic clays	СН	4%–7%
Highly organic	OL, OH, Pt	Not recommended

13.16 Pavement strength for gravels

The pavement strength requirement is based on the type of road.

Table 13.16 Typical pavement strength requirements.

Conditions	CBR strength	Comments
"Standard" requirements	80% Soaked	On major roads at least 100 mm of pavement layer >80% CBR
Low traffic roads	60% unsoaked 30%	Top 100 mm of base layer Sub base
Rural traffic roads/arid to semi – arid regions	>30% unsoaked >15%	Upper sub base Lower sub base

13.17 CBR values for pavements

• The applicable CBR values depend on both the pavement layer and closeness to the applied load.

Table 13.17 CBR values for pavements.

Pavement layer	Design traffic (ESA repetitions)	Minimum CBR %
Base	>106	80
	<106	60
Upper Sub base	>10 ⁶	45
	<106	35
Lower Sub base	>106	35
	<106	25
Capping	N/A	10

13.18 CBR swell in pavements

The CBR swell should also be used to assess pavement quality.

Table 13.18 Soaked CBR swell in pavement materials.

Pavement layer	Pavement type	Soaked CBR swell (%)
Base	Rigid, Flexible, CTB	<0.5
Sub base	Rigid, CTSB	<1.0
	Flexible	<1.5
Capping	Rigid overlying	<1.5
11 0	CTB overlying with granular sub base	< 2.0
	CTSB overlying	<1.5
	Flexible overlying	<2.5

• For low rainfall areas (<500 mm), soaked CBR <1.5% may be acceptable for the base layer.

13.19 Plasticity index properties of pavement materials

• Plasticity index of the pavement influences its performance.

Table 13.19 Plasticity index for non standard materials (adapted from Vic Roads 1998).

Pavement type	Pavement layer	Rain	nfall
		<500 mm	>500 mm
Unsealed	Base/shoulder Sub base	PI < 15% PI < 18%	PI < 10% PI < 12%
Sealed	Base/shoulder Sub base	$\begin{array}{l} PI < 10\% \\ PI < 12\% \end{array}$	PI < 6% PI < 10%

- Pavements for unsealed roads/rural roads/light traffic based on 80% probability
- Pavements for sealed roads/moderate to high traffic based on 90% probability level – slighter thicker pavement.

13.20 Typical CBR values of pavement materials

- The modified compaction is typically applied to paving materials.
- The achieved density and resulting CBR is higher than the standard compaction result.
- The modified CBR result for the full range of USC materials is provided for completeness, but non granular materials would not be applicable to paving materials.

Soil type	Description	USC symbol	CBR % (Modified)
Gravels	Well graded	GW	40–80
	Poorly graded	GP	30–60
	Silty	GM	20-50
	Clayey	GC	20 -4 0
Sands	Well graded	SW	20-40
	Poorly graded	SP	10 -4 0
	Silty	SM	10-30
	Clayey	SC	5–20
Inorganic silts	Low plasticity	ML	10–15
· ·	High plasticity	MH	<10
Inorganic clays	Low plasticity	CL	10-15
	High plasticity	CH	<10
Organic	With silt/clays of low plasticity	OL	<5
-	With silt/clays of high plasticity	ОН	<5
Peat	Highly organic silts	Pt	<5

Table 13.20 Typical CBR values for paying materials.

Actual CBRs depends on the grading, maximum size and percentage fines.

13.21 Typical values of pavement modulus

- Pavements require compaction to achieve its required strength and deformation properties. The level of compaction produces different modulus.
- Existing pavements would have reduced values for asphalt and cemented materials.
- Degree of anisotropy = Ratio of vertical to horizontal modulus.
- Degree of anisotropy = 1 for asphalt and cemented material.
- Degree of anisotropy = 2 for unbound granular material.
- Flexural modulus applies to pavement layers, while compressive modulus applies to subgrade in pavement design.

Table 13.21 Typical elastic parameters of pavement layers (Austroads, 2004 and 1992).

Pavement layer			Typical modulus (MPa)	Typical Poisson's ratio
Asphalt at temperature	10°C 25°C 40°C		11,500 3,500 620	0.4 0.4 0.4
Unbound granular (Modified/standard compaction) below thin bituminous surfacings	High quality crushed rock Base quality gravel Sub base gravel	Over granular material	500/350 400/300 300/250	0.35 0.35 0.35
Cemented material (Standard compaction)	Crushed Rock, 2 to 3% cen Base quality natural gravel 4 Sub base quality natural gra	to 5% cement	7,000 5,000 2,000	0.2 0.2 0.2

13.22 Typical values of existing pavement modulus

- The moduli for existing asphalt and cemented materials is reduced due to cracking.
- Apply cracked value when used with clay subgrades with WPI > 2200.

Table 13.22 Typical elastic parameters of pavement layers (Austroads, 2004).

Existing pavement layer	Cracked modulus (MPa)	
Asphalt at temperature	I5°C	1,050
	25°C	880
	40°C	620
Cemented material	Post fatigue phase	500

13.23 Equivalent modulus of sub bases for normal base material

• The equivalent modulus combines the effect of different layer. A minimum support requirement is required.

Table 13.23 Selecting of maximum modulus of sub – base materials (Austroads, 2004).

Thickness of	Suggested vertical modulus (MPa) of top sub-layer of normal base material					
overlying material	Modulus of cover material (MPa)	1000	2000	3000	4000	5000
40 mm		350	350	350	350	350
75 mm		350	350	340	320	310
100 mm		350	310	290	270	250
125 mm		320	270	240	220	200
150 mm		280	230	190	160	150
175 mm		250	190	150	150	150
200 mm		220	150	150	150	150
225 mm		180	150	150	150	150
\geq 250 mm		150	150	150	150	150

- The table applies for sub base materials with a laboratory soaked CBR value of less than 30% with a value of E = 150 MPa.
- These values apply in the back-analysis of an existing pavement system.
- Cover material is either asphalt or cemented material or a combination of these materials.

13.24 Equivalent modulus of sub bases for high standard base material

- As above for normal base material.
- The table applies for sub base materials with a laboratory soaked CBR value greater than 30% with a value of $E = 210 \,\text{MPa}$ used.

Thickness of	Suggested vertical modulus (MPa) of top sub-layer of high standard base material					
overlying material	Modulus of cover material (MPa)	1000	2000	3000	4000	5000
40 mm		500	500	500	500	500
75 mm		500	500	4 80	460	440
100 mm		500	450	410	390	360
125 mm		450	390	350	310	280
150 mm		400	330	280	240	210
175 mm		360	270	210	210	210
200 mm		310	270	210	210	210
225 mm		260	210	210	210	210
>250 mm		210	210	210	210	210

Table 13.24 Selecting of maximum modulus of sub - base materials (Austroads, 2004).

• Cover material is either asphalt or cemented material or a combination of these materials.

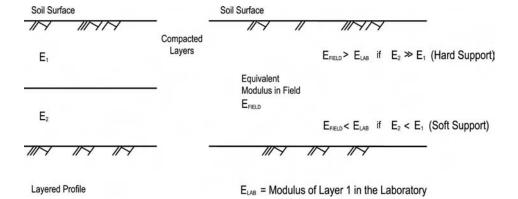


Figure 13.3 Equivalent modulus.

13.25 Typical relationship of modulus with subgrade CBR

- This is the resilient modulus value (dynamic modulus of elasticity), which is significantly higher than the foundation (secant) modulus.
- The CBR Test is carried out at a high strain level and low strain rate while subgrades under pavements experience a relatively low strain level and higher stress rates.
- Design Modulus = Equivalent Modulus, which is dependent on materials above and below.

Table 13.25 CBR/modulus subgrade relationships.

Reference	erence Relationship Comments		Е (MPa) based	on
			CBR = 2%	CBR = 5%	CBR = 10%
Heukelom and Klomp (1998)	$E \sim 10 \text{ CBR}$ (actually 10.35 CBR)	Most common relationship (Range of 20 to 5 for upper to lower bound). CBR < 10%	20	50	N/A
Croney and Croney (1991)	E = 6.6 CBR (from repeat load test data – significant strain)	Zone defined by $E = 10$ CBR to $E = 20$ CBR using wave velocity tests – low strain	13	33	66
NAASRA (1950)	$E = 16.2 \text{ CBR}^{0.7}$ $E = 22.4 \text{ CBR}^{0.5}$	For CBR < 5% For CBR > 5%	26	50	81
Powell, Potter, Mayhew and Nunn (1984)	E = 17.6 CBR ^{0.64}	A lower bound relationship (TRRL Study) For CBR < 12%	27	49	77
Angell (1988)	$E = 19 \text{ CBR}^{0.68}$	For CBR < 15%	30	57	91

- For weathered rock subgrade E = 2,000 MPa (typically)
- For competent unweathered rock subgrade E = 7,000 MPa (typically)

13.26 Typical relationship of modulus with base course CBR

• A laboratory CBR value can be achieved in the field only with a suitable underlying subgrade.

Table 13.26 CBR/modulus base relationships.

Reference	Relationship	Comments	E (MPa) based on		n
			CBR = 20%	CBR = 50%	CBR = 80%
AASHTO (1993)		For CBR > 10%	88	109	134
NAASRA (1950)		For CBR > 5%	100	142	200
Queensland Main Roads (1988)	$E = 21.2 \text{ CBR}^{0.64}$	For CBR > 15% Maximum of 350 MPa	144	225	350
Minimum Subgrad	e Modulus for Base	CBR modulus to apply	3.5%	7.5%	15%

- A minimum subgrade modulus for base course CBR modulus to apply (Hammitt, 1970).
- $CBR_{BC} = 5.23 CBR_{SG}$.

13.27 Elastic modulus of asphalt

- Asphalt strength varies with temperature.
- Weighted Mean annual temperature (WMAPT) is used. These temperatures correspond to depth of 50 mm to 75 mm for the asphalt layer.
- Asphalt is a visco-elastic material but at normal operating temperatures, it may be treated as an elastic solid.
- Asphalt response is linear below 1000 microstrain.
- Other variables such as air voids, asphalt content, loading rate, age of asphalt, etc, also affect the modulus values.
- Poisson's Ratio of 0.4 typical.

Table 13.27 Asphalt temperature zones and corresponding modulus.

Typical queensland area	Temperature range °C	Representative temperature °C	Asphalt modulus MPa
Western Queensland, Mt Isa, Cairns, Townsville, Barcaldine	WMAPT > 35	36	970
Roma, Gladstone, Mackay, Gladstone	35 > WMAPT > 32	30	1400
Brisbane, South East Queensland	32 > WMAPT > 29	30	2000
Toowoomba, Warwick, Stanthorpe	29 < WMAPT	28	2500

13.28 Poisson ratio

Some variability is likely in the vertical, horizontal and cross direction for all materials.

Table 13.28 Poisson ratio of road materials.

Material	Poisson ratio
Asphaltic	0.40
Granular	0.35
Cement Treated	0.20
Subgrade soils	0.25 to 0.40
Weathered Rock Subgrade	0.3
Unweathered Bedrock Subgrade	0.15

Variation of Poisson Ratio values close to the above values typically has little effect on the analysis.

Slopes

14.1 Slope measurement

• Slopes are commonly expressed as 1 Vertical: Horizontal slopes as highlighted. This physical measurement is easier to construct (measure) in the field, although for analysis and design purpose the other slope measurements may be used.

Table 14.1 Slope measurements.

Descriptor	Degrees	Radians	Tangent	Percentage	l Vertical: Horizontal	Design considerations
Flat	0	0.000	0.000	0%	∞	Drainage
Moderate	5 10	0.087 0.174	0.087 0.176	9% 18%	11.43 5.67	
Steep	11.3 15 18.4 20 25	0.197 0.262 0.322 0.349 0.436	0.200 0.268 0.333 0.364 0.466	20% 27% 33% 36% 47%	5.00 3.73 3.00 2.75 2.14	Slope design
Very steep	26.6 30 33.7 35 40	0.464 0.524 0.588 0.611 0.698	0.500 0.577 0.667 0.700 0.839	50% 58% 67% 70% 84%	2.00 1.73 1.50 1.43 1.19	
Extremely steep	45 50 55 60 63 65	0.785 0.873 0.960 1.047 1.107 1.134	1.000 1.192 1.428 1.732 2.000 2.145	100% 119% 143% 173% 200% 214%	1.00 0.84 0.70 0.58 0.50 0.47	Reinforced design if a soil slope
Sub-Vertical	70 75 76 80 85	1.222 1.309 1.326 1.396 1.483	2.747 3.732 4.000 5.671 11.430	275% 373% 400% 567% 1143%	0.36 0.27 0.25 0.18 0.09	Wall design if a soil slope
Vertical	90	1.571	∞	∞	0.00	

 Typically soil slopes do not exceed very steep unless some reinforcement or wall is used.

- Rock slopes can be extremely steep to vertical.
- Typically only slightly weathered or fresh natural slopes are sub-vertical to vertical.

14.2 Factors causing slope movements

• The macro factors causing slope movements are outlined below.

Table 14.2 Macro factors causing slope movements.

Macro factor	Effects
Tectonics	Increased height that results in an angle change.
Weathering	Chemical and physical processes resulting in disintegration and break down of material. Subsequent removal of the material by water.
Water	Removes material, either in a small-scale surface erosion or major undercutting of cliffs and gullies. Aided by wind and gravity. Water Increases dead weight of material and /or increased internal pressure to dislodge the material.
Gravitational	Downward movements of material due to its dead weight.
Dynamic	Due to natural vibrations such as earthquakes, waves or man made such as piling and blasting.

Figure 14.1 Slope definitions.

14.3 Causes of slope failure

- The micro scale effects causing slope movement are covered in the next table.
- Slope failure occurs either due to an decrease in soil strength or an increase in stress.
- Slopes are affected by load, strength, geometry and water conditions.
- The load may be permanent, such its own weight or transient (dynamic from a blast).

Table 14.3 Causes of slope failure (adapted from Duncan and Wright, 2005).

Decrease in soil strength

Increased pore pressure (reduced effective stress). Change in water levels. High permeability soils have rapid changes. This includes coarse grained soils, clays with cracks, fissures and lenses.

- Cracking. Tension in the soil at the ground surface. Applies only in soils with tensile strength. Strength is zero in the cracked zone.
- Swelling. Applies to highly plastic and overconsolidated clays. Generally a slow process (10 to 20 years). Low confining pressures and long periods of access to water promote swell.
- Development of Slickensides. Applies mainly to highly plastic clays. Can develop as a result of tectonic movement.
- Decomposition of clayey rock fills.
 Clay shales and claystone may seem like hard rock initially, but when exposed to water may slake and degrade in strength.
- Creep under sustained load.
 Applies to highly plastic clays. May be caused by cyclic loads such as freeze thaw or wet dry variations.
- Leaching. Change in chemical composition. Salt leaching from marine clays contributes to quick clays, which have negligible strength when disturbed.
- Strain Softening. Applies to brittle soils.
- Weathering. Applies to rocks and indurated soils.
- Cyclic Loading. Applies to soils with loose structure. Loose sands may liquefy.

Increase in shear stress

- Loads at the top of the slope. Placement of fill and construction of buildings on shallow foundation near crown of slope.
- Water pressure in cracks at the top of the slope.
 Results in hydrostatic pressures. If water in cracks for extended periods seepage results with an increase in pore pressures.
- Increase in soil weight. Change in water content due to changes in the water table, infiltration or seepage. Increasing weight of growing trees and wind loading on those trees. Vegetation has a stabilising effect initially (cohesion effect of roots).
- Excavation at the bottom of the slope. Can be man made or due to erosion at base of slope.
- Change of slope grade.
 Steepening of slope either man made (mainly) or by natural processes.
- Drop in water level at base of slope.
 Water provides a stabilising effect. Rapid drawdown effect when this occurs rapidly.
- Dynamic loading. Usually associated with earthquake loading or blasting. A horizontal or vertical acceleration results. This may also result in a reduction in soil strength.

- The analytical model and its interpretation influence the perceived stability.
- Shallow (surficial) failures occur often following rainfall events. An infinite slope analysis with steady state seepage parallel to the slope applies. Note that a

significant volume of soil mass can be mobilised in surficial failures, and surficial does not necessarily mean a small slide.

- Deep seated failures use both translational and rotational slope stability analysis.
- Water is involved in most of the above factors that cause instability.

14.4 Factors of safety for slopes

- The factor of safety is the ratio of the restoring over the activating condition.
- The condition may be forces or moments being analysed.
- Moment equilibrium is generally used for the analysis of rotational slides. Circular slip surfaces are analysed.
- Force equilibrium is generally used for rotational or translational slides. Circular, plane, wedge or polygonal slip surfaces may be analysed.
- The requirement for different factors of safety depending on the facility and its affect on the environment.

Table 14.4 Factor of safety dependency.

Variable	Effect on Factor of safety	Comment
Strength Lowest value Lower quartile Median	Lower quartile should be typically used. Higher or lower should have corresponding changes on acceptable factor of safety.	Mean values should not be used due to the non normality of soil and rock strength parameters.
Geometry Height Slope Benching Stratification/ Discontinuities	Higher slopes at a given angle would be more unstable than a low height slope. Dip of weakness plane towards slope face influences result.	Benching also useful to reduce erosion, provides rock trap area, and as a maintenance platform.
Load • Weight • Surcharge • Water Conditions	Water is the most significant variable in design. Buoyant unit weight then applies at critical lower stabilizing part of slope, i.e. soil above is heavier than soil below.	The weight acts both as an activating and restoring force.
Analytical methods	Different methods (and some software programs) give different outputs for the same data input. Moment equilibrium and force equilibrium methods can sometimes produce different results, especially with externally applied loads.	Probability of failures/ displacement criteria should also be considered in critical cases. Factor of safety for $3-$ dimensional effect $\sim 15\%$ greater than 2-D analysis.

- Choice of factor of safety also depends on quality of available geotechnical information and choice of parameters, i.e. worst credible to probabilistic mean, or conservative best estimate.
- Temporary works may use reduced factors of safety.
- Critical areas projects would use higher factors of safety.

14.5 Factors of safety for new slopes

New slopes have a higher factor of safety applied as compared with existing slopes.

This accounts for possible future (minor) changes, either in load on strength reductions with time due to weathering or strain softening.

Table 14.5	Factors of safet	y for new slopes	(adapted from	GEO, 1984).

Economic risk	Required factor of safety with loss of life for a 10 years return period rainfall			
		Low	High	
Negligible	>1.1	1.2	1.4	
Low	1.2	1.3	1.5	
High	1.4	1.5	1.6	

14.6 Factors of safety for existing slopes

- Existing slopes generally have a lower factor of safety than for new slopes.
- An existing slope has usually experienced some environmental factors and undergone some equilibration.

Table 14.6 Factors of safety for new slopes (adapted from GEO, 1984).

Risk	Required factor of safety with loss of life for a 10 years return period rainfall
Negligible	>1.1
Low	1.2
High	1.3

14.7 Risk to life

The risk to life includes both the number of people exposed as well as the length of time exposed to the hazard.

Table 14.7 Risk to life (adapted from GEO, 1984).

Situation	Risk to life
Open farmland	Negligible
Country parks, lightly used recreation areas	Negligible
Country roads and low traffic intensity B roads	Negligible
Storage compounds (non hazardous goods)	Negligible
Town squares, sitting out areas, playgrounds and car parks	Negligible
High traffic density B roads	Low
Public waiting areas (e.g. railway stations, bus stops)	Low
Occupied buildings (residential, commercial, industrial and educational)	High
All A roads, by- passes and motorways, including associated slip roads, petrol stations and service areas	High
Buildings storing hazardous goods, power stations (all types), nuclear, chemical, and biological complexes	High

14.8 Economic and environmental risk

• Environmental risk can also include political risk, and consequences to the perception of the project.

Table 14.8 Economic and environmental risk (adapted from GEO, 1984).

Situation	Risk
Open farmland, country parks, lightly used recreation areas of low amenity value	Negligible
Country roads and low traffic intensity B roads, open air car parks	Negligible
Facilities whose failure would cause only slight pollution	Negligible
Essential services (eg gas, electricity, water, whose failure would cause loss of service)	Low
Facilities whose failure would cause significant pollution or severe loss of amenity (cultivated public gardens, with established and mature trees)	Low
High traffic density B roads and all A roads, residential, low rise commercial, industrial and educational properties	Low
Facilities whose failure would cause significant pollution	High
Essential services whose failure would cause loss of service for a prolonged period	High
All A Roads, by- passes and motorways, including associated slip roads, petrol stations and service areas	High
Buildings storing hazardous goods, power stations (all types), nuclear, chemical, and biological complexes	High

14.9 Cut slopes

- The stability is dependent on the height of the slope. Table applies only to low to medium height slopes.
- Benches may be required.

Table 14.9 Typical batters of excavated slopes (Hoerner, 1990).

Material	Slope batters (Vertical : Horizontal)		
	Permanent	Temporary	
Massive rock	1.5V: 1H to Vertical	1.5V: 1H to Vertical	
Well jointed/bedded rock	IV: 2H to 2V: IH	IV: 2H to 2V: IH	
Gravel	IV: 2H to IV: IH	IV: 2H to IV: IH	
Sand	IV: 2.5H to IV: 1.5H	IV: 2.5H to IV: IH	
Clay	IV: 6H to IV: 2H	IV: 2H to 2V: IH	

- Water levels often dictate the slope stability.
- Table assumes no surcharge at the top.
- A guide only. Slope stability analysis required.

The strength of underlying materials often dictates the slope stability.

Table 14.10 Typical batters of fi	ll slopes (Hoerner	, 1990).
-----------------------------------	--------------------	----------

Material	Slope batters (Vertical : Horizontal)
Hard rock fill	IV: I.5H to IV: IH
Weak rock fill	IV: 2H to IV: I.25H
Gravel	IV: 2H to IV: I.25H
Sand	IV: 2.5H to IV: I.5H
Clay	IV: 4H to IV: I.5H

- Table assumes no surcharge at the top.
- A guide only. Depends on risk acceptable, surcharge, water table and ground underlying embankment. Slope stability analysis required.

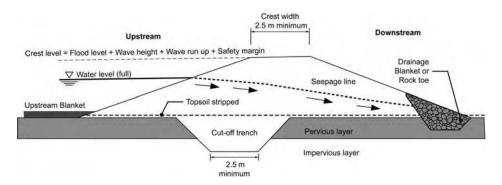


Figure 14.2 Typical small earth dam.

14.11 Factors of safety for dam walls

• Dam walls can typically have complex geometry with cores and outer zones.

Table 14.11 Factors of safety for dam walls.

Seepage condition	Storage	Required factor of safety	Design consideration
Steady seepage	With maximum storage pool	1.5	Long term condition
Sudden drawdown	From maximum pool From spillway crest	1.1 1.3	Short term condition
End of construction	Reservoir empty	1.3	Short term condition
Earthquake	With maximum storage pool	1.1	Pseudo-static approach. Long term condition

- A guide only. Depends on risk level.
- Use of dynamic analysis where F.S. < 1.1. Deformations then govern.

14.12 Typical slopes for low height dam walls

- The size of dams discussed herein as <5 m (low); 5 to 15 m medium; >15 m High.
- In a risk-based design, size is judged on volume of water retained, and its effect on the people and environment. Typically a dam with height less than 5 m is a low risk to the community, although it can affect those locally on the property.

Table 14.12 Typical slopes of low height, homogeneous dam walls (USDI, 1965).

Subject to drawdown	Soil classification	Upstream slope	Downstream slope
No	GW, GP, SW, SP	N/A (Pervious)	N/A (Pervious)
Usual farm design storage Designs	GC, GM, SC, SM CL. CH	IV: 2.5H IV: 3.0H	IV: 2.0H IV: 2.5H
Designs	CH, MH	IV: 3.5H	IV: 2.5H
Yes	GW, GP, SW, SP	N/A (Pervious)	N/A (Pervious)
Drawdown rates > 150 mm/	GC, GM, SC, SM	IV: 3.0H	IV: 2.0H
day	CL, CH	IV: 3.5H	IV: 2.5H
	CH, MH	IV: 4.0H	IV: 2.5H

- Other dam considerations on seepage below and through dam walls, as well as overtopping needs to be considered.
- Drawdown rates as low as 100 mm/day can be considered rapid in some cases.

14.13 Effect of height on slopes for low height dam walls

- In the design of dam walls, zoned embankments provide the advantage of steeper slopes, and to control drawdown/ seepage effects.
- Zoned embankments are recommended for dam heights exceeding 6 m.
- Slope stability analysis required for zoned walls. The slope guidance shown is for homogeneous earth dams.

Table 14.13 Typical slopes of homogeneous dam walls (Nelson, 1985).

Height of wall	Location	Slope			
(m)		GC	SC	CL	СН
	Upstream		IV: 2.5 H		IV: 3.0 H
<3	Downstream		IV: 2.0 H		IV: 2.5 H
2.4	Upstream		IV: 2.5 H		IV: 3.0 H
3 to 6	Downstream		IV: 2.5 H		IV: 3.0 H
	Upstream		IV: 3.0 H		IV: 3.5 H
6 to 10	Downstream	IV: 2.5 H		IV: 3.0 H	

14.14 Design elements of a dam walls

- Some design elements of dam walls are summarised below.
- Dam design and construction for medium to high walls needs detailed considerations of all elements. These are covered in Fells et al. (2005).
- Dam walls experience an unsymmetrical loading, yet many (small to medium) dam walls are constructed as symmetrical. These cross-sections are relevant only for ease of construction, and with an abundant supply of the required material.
- Diaphragm walls are the most material efficient design, where sources of clayey material are limited.

Table 14.14 Design elements of dam walls.

Design element	Consideration	Some dimensions for H $<$ 10 m $$	Comments
Туре	HomogeneousZonedDiaphragm	 Applicable for < 6 m Minimum core width = H Thickness = 1.5 m for H < 10 m 	Type cross-section depends on the availability of material.
Seepage cut offs	 Horizontal Upstream Blanket Cut-off at base 	 0.5 m minimum thick extending for >5H Minimum 3 m width 	Blanket not effective on highly permeable sands or gravels. See section 15.
Crest widths	 Maintenance 	 Not less than 3 m 	Capping layers at top.
Free board	 Overtopping 	I m for small dams (0.5 m for flood flows + 0.5 m wave action)	This is a critical design element for dam walls. Most dams fail by overtopping.
Settlement	 Height dependent 	Allow 5% H for well- constructed dam wall	Allow for this in free board.
Slope protection	• Rip rap	• 300 mm minimum thickness	Angular stones.
Outlet pipes	Cut-off collars	• Placed every 3 m, typically 1.2 m square for 150 mm diameter pipe	Compaction issues.

In a staged raising the capping layers still required in the years between each stage.
 However it must be removed prior to each lift.

14.15 Stable slopes of levees and canals

• The stability of a slope needs consideration of factors, other than limit equilibrium type analysis. Some other factors are listed in the table below.

Table 14.15 Typical stable slopes for levees and canals.

Criteria	Slope	Comments
Ease of construction	IV: 2H	For stability of riprap layers
Maintenance	IV: 3H	Conveniently traversed with mowing equipment and walked on during construction
Seepage	IV: 5H	To prevent damage from seepage with a uniform sandy material
Seepage	IV: 6H	To prevent damage from seepage with a uniform clayey material

- Steeper slopes are possible, than those indicated.
- Minimum width for maintenance and feasible for construction with heavy earthmoving equipments = 3.0 m.

14.16 Slopes for revetments

- Revetments are require to protect the slope against erosion, and based on the type
 of material may govern the slope design.
- Safety aspects may also influence the slope angle, e.g. adjacent to recreational water bodies.

Revetment type	Optimum slope	Maximum slope
Rip – Rap Rock armour Concrete blocks Concrete mattresses	IV: 3H	IV: 2H to IV: 5H IV: 1.5H IV: 2.0H IV: 1.5H
Asphalt – OSA on LSA filter layer Asphalt – OSA on geotextile anchored at top Asphalt – Mastic grout	IV: 3H	IV: 2.0H IV: 1.5H IV: 1.5H

- OSA Open Stone Asphalt is a narrowly graded stone precoated with an asphalt mastic, typically 80% aggregate (20–40 mm) and 20% mastic.
- LSA Lean sand asphalt typically 96% sand and 4% bitumen 100 pen.
- Mastic Grout is a mixture of sand, filler and bitumen, typically 60% sand, 20% filler and 20% bitumen 100 pen.

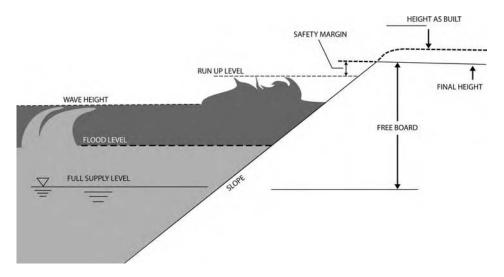


Figure 14.3 Freeboard requirements.

14.17 Crest levels based on revetment type

- The crest levels are based principally on design wave heights (based on fetch, wind and water depths).
- Significant water depth = H_s .
- Other controlling factors are slope and revetment type.
- The required freeboard is then based on consideration of all of the above factors.
- Design wave height factored according to the next 2 tables.

Table 14.17 Design wave height, H_D (McConnell, 1998).

Revetment type	Crest configuration	Design wave height, H_D
Concrete/Masonry	_	0.75 H _s
Rockfill	Surfaced road	I.0 H _s
Earthfill with reinforced downstream face	Surfaced road	I.I H,
Earthfill with grass downstream face	Surfaced road	1.2 H _s
C	Grass crest	1.3 H _s
All embankment types – no still water or wave surcharge carryover permitted		1.67 H _s

14.18 Crest levels based on revetment slope

- The design wave height is factored according to the run-up factor \times H_D.
- The run-up factor is based on the dam slope provided in table below.

Table 14.18 Run-up factor based on slope (adapted from McConnell, 1998).

Dam slope	Run-up factor			
	Maximum (smooth slope)	Intermediate (rough stone or shallow rubble)	Minimum (thick permeable rip—rap)	
IV: 5H	1.0	0.85	0.65	
IV: 4H	1.25	1.05	0.8	
IV: 3H	1.7	1.35	1.05	
IV: 2.5H	1.95	1.55	1.2	
IV: 2H	2.2	1.75	1.35	

Different overtopping limit apply based on the access requirements, type of structure and land use immediately behind.

14.19 Stable slopes underwater

- Slope stability analysis alone does not capture the stability of slope under water.
- Slopes fully underwater tend to be stable at much flatter angles than indicated by slope stability analysis.
- This is due to the activity of the water and continuous erosion effects under water.

Table 14.19 Typical slopes under water (ICE, 1995).

Type of material	Description	Slo	ppes in still water	Slo	opes in active water
Rock		Nearly ve	rtical	Nearly	vertical
Clay	Stiff	45°	IV: IH	45°	IV: IH
	Firm Sandy	35° 25°	IV: I.4H IV: 2.1H	30° 15°	IV: I.7H IV: 3.7 H
Sand	Coarse Fine	20° 15°	IV: 2.7H IV: 3.7H	10° 5°	IV: 5.7H IV: II.4H
Silt	Mud	10–1°	IV: 5.7H to 57H	<5°	IV: II.4 H or les

14.20 Side slopes for canals in different materials

- The side slopes in canals depends on the type of natural materials, and the canal depth.
- A canal that is 1.0 m in depth may have material that can have a 1V: 1.0H slopes, while at 2.0 m depth a slope of 1V: 2.0H may be required.
- The flow velocity in the canal may require revetment protection, and that may govern the slope.

Table 14.20 Typical slopes for earthen canals in different soil materials.

Group symbol	Material type	Minimum side slope	Comments
	Rock	IV: 0.25 H	Extent of weathering and joints may affect slope design
	Boulders, cobbles	IV:1.5H	Good erosion resistance Seepage loss
GW, GP SW, SP	Gravels, well or poorly graded Sands, well or poorly graded	IV: 2.5H	Good erosion resistance Seepage loss
SC SM	Clayey sands Silty sands	IV: 2.5H	Fine sands have poor erosion resistance
GM GC	Silty gravels Clayey gravels	IV: I.5H	Medium erosion resistance Medium seepage loss
ML CL OH	Inorganic low plasticity silts Inorganic low plasticity clays Organic low plasticity clays	IV: I.5H	Poor erosion resistance for low Plasticity index Low seepage loss
MH CH OH	Inorganic high plasticity silts Inorganic high plasticity clays Organic high plasticity clays	IV: 3.0H	Low seepage loss

14.21 Seismic slope stability

- Pseudo-static analysis is performed by applying an acceleration coefficient in the analysis.
- The long term parameters are considered appropriate, however both types of analysis are presented in the table below. There seems to be a divided opinion in the literature in using long term or short-term analysis.
- Horizontal seismic coefficient $(k_h) = a_{max}/g$.

Table 14.21 Seismic slope stability.

Consideration	Long term seismic	Short term seismic
Reasons for	The soil has reached its long-term strength parameters, when the seismic event is likely to occur. Short-term (undrained) parameters are appropriate only during construction	Seismic load, therefore soils (except for some coarse gravels and cobbles) will not drain properly during seismic shaking. The event is short term
Method	 Use effective stress parameters. Softened (Constant volume) values Apply a horizontal seismic coefficient 	 Use undrained shear strength, that has reached its equilibrium, i.e. due to swelling/consolidation Apply a shear strength reduction factor of 0.8 Apply a horizontal seismic coefficient
Factor of safety	>1.15 (OBE) >1.0 (MCE)	>1.0 (OBE)
Liquefiable zone	Use $c' = 0$, $\phi' = 0$ for a layer that is liquefiable, i.e. no strength	
Comments		Due to the rapid rate of loading (period of I sec), conventional strength tests (with time to failure of 10 minutes) may not be appropriate. Typically this rate of loading effect can increase the soil strength by 15% to 20% (Duncan and Wright, 2005). This offsets the above strength reduction factor

- Peak Ground acceleration (a_{max}) is derived from the Operational Basis Earthquake (OBE) or Maximum Credible Event (MCE).
- OBE derived from probability of occurrence, and usually provided in local codes. However those codes may be 1 in 50 year occurrence and for buildings, which may not be appropriate for some structures e.g. dams.
- MCE derived from consideration of all available fault lengths, near sites, and attenuated acceleration to the site.

14.22 Stable topsoil slopes

This is a surficial failure common during construction and following rainfall events, when the vegetation has not been established to stabilise the slopes.

Table 14.22 Topsoil placement considerations.

Consideration	Slope requirements	Comments
Placing by machine Adhering to slope	Slopes > 1 in 5 (19 degrees) required Slopes > 1 in 3.5 (27 degrees) required	
Grassing and Planting	Slopes > I V in 2H	Lesser slopes has increasing difficulty to plant and adherence of topsoil
Thickness	Slopes < IV in 2H: Use 200 mm maximum Slopes IV in 2H to IV in 3H: Use 300 mm maximum Slopes > IV in 3H: Use 400 mm maximum	Greater thickness may be used with geocell or geo mats.

- This surface sliding is common as the topsoil is meant to promote vegetation growth and has been loosely placed on the compacted embankment/slope.
- The short-term conditions governs the soil thickness. Greater thickness usually results in gullying and slumping of the topsoil. Once the vegetation has been established the overall slope stability and erosion resistance increases.

14.23 Design of slopes in rock cuttings and embankments

- The slopes for embankments and cuttings are different even for the same type of material.
- Materials of the same rock type but different geological age may perform differently when exposed in a cutting or used as fill.

Table 14.23 Typical slopes in rock cuttings and embankments (adapted from BS 6031 - 1981).

Types of rock/geological age	Cuttings: Safe slopes	Embankments: Angle of repose	Resistance to weathering
Sedimentary			
 Sandstones: strong, massive 	70° to 90°	38° to 42°	Very resistant
Triassic; Carboniferous; Devonian			
 Sandstones; Weak, bedded 	50° to 70°	33° to 37°	Fairy resistant
Cretaceous			
• Shales	45° to 60°	34° to 38°	Moderately resistant
Jurassic; Carboniferous			
Marls	55° to 70°	33° to 36°	Softening may occur with time
Triassic; Cretaceous			
 Limestones; strong massive 	70° to 90°	38° to 42°	Fairly resistant
Permian; Carboniferous			
 Limestones; weak 	70° to 90°	33° to 36°	Weathering properties vary
Jurassic			considerably
Chalk	45° to 80°	37° to 42°	Some weathering
Cretaceous			
Igneous	80° to 90°	37° to 42°	
Granite, Dolerite, Andesite, Gabbro			Excellent resistant.
Basalt			Basalts exfoliate after long
			periods of exposure
Metamorphic	60° to 90°	34° to 38°	
Gneiss, Quartzite,			Excellent resistant
Schist, Slate			Weathers considerably

- Angles referred to the horizontal.
- Consider if weaker layer underneath.
- Even in weather resistant rocks, tree roots may open joints causing dislodgement of blocks.

14.24 Factors affecting the stability of rock slopes

- The stability of rock slopes is sensitive to the slope height.
- For a given height the different internal parameters may govern as shown in the table.

D /-		Slope height		
Rank 10 m			1000 m	
ı	<	Joint inclination>		
2	Cohesion	<>		
3	Unit weight	Cohesion Water pressur		
4	Friction angle	Water pressure Cohesion		

<---->

Table 14.24 Sensitivity of rock slopes to various factors (after Richards et al., 1978).

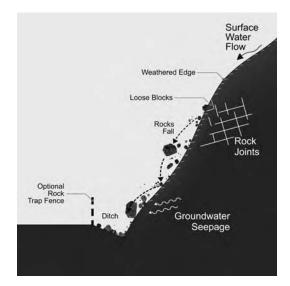


Figure 14.4 Rockfalls.

14.25 Rock falls

5

Water pressure

The rock fall motion governs rock trajectory, and design of rock traps (fences and ditches)

Table 14.25 Rockfall motions and effect on slope heights up to 40 m (Ritchie, 1963).

Slopes	Rock fall motion	Effect on trap depth	Effect on trap width
> 75 °	Falling	1.0 m to 1.5 m	1.0 m (Low H) to 5.5 m (High H)
45 to 75°	Bouncing	Largest depth at a given height 1.0 m to 2.5 m	1.0 m (Low H) to 5.5 m (High H)
< 45 °	Rolling	1.0 m to 1.5 m	$<\!1.0m$ (Low H) to 2.5 m (High H)

• Computing the rock fall motion and remedial measures allows greater flexibilities, in terms of rock sizes, probabilities, varying slope changes, benching, etc. The coefficient of restitution is required in such analysis.

14.26 Coefficient of restitution

 There are some inconsistencies in various quoted values in referenced paper from various sources.

Table 14.26 Coefficient of restitution (Richards, 1991).

Type of material on slope surface	Coefficient of restitution		
	r	Normal r _n	Tangential r_t
Impact between competent materials (Rock–rock)	0.75-0.80		
Impact between competent rock and soil scree material	0.20-0.35		
Solid rock		0.9-0.8	0.75-0.65
Detrital material mixed with large rock boulders		0.8-0.5	0.65-0.45
Compact detrital material mixed with small boulders		0.5-0.4	0.45-0.35
Grass covered slopes or meadows		0.4-0.2	0.3-0.2

14.27 Rock cut stabilization measures

 Rock slopes that are considered unstable need stabilization or protective measures needs to be considered.

Table 14.27 Rock slope stabilization considerations.

Consideration	Solution	Methods	Comment
Eliminate Problem	Rock Removal	 Relocate structure/service/road/rail Resloping Trimming and scaling 	Relocation is often not possible. Resloping requires additional land
Stabilization	Reinforcement	 Drainage Berms Rock Bolting and Dowels Tied Back walls Shotcrete facings 	Often expensive solutions
Reduce Hazard	Protection Measures	 Mesh over slope Rock Trap ditches Fences Berms Barriers and impact walls False Tunnels 	Controls the rock falls. Usually cheapest solution. Requires some maintenance e.g. clearing rock behind mesh

14.28 Rock trap ditch

5 m 10 m

15 m

20 m

30 m

- The ditch depth and widths are provided in the table for rock trap measures.
- These can also be used to design fences, e.g. a 1.5 m fence placed 3.0 m from the toe slope provides an equivalent design for a 20 m high slope at 75-55°. Fence must now be designed for impact forces.
- Rock trap benches can be designed from these dimensions, e.g. for a bench of 3 m width plus an suitable factor of safety (additional width, fence, berm) provides an equivalent design for a 20 m high slope at 75–55°.

	Whiteside, 1986).		
Slope height	Dit	ch depth * width for slop	e angles
neignt	90–75°	75–55°	55–40°

0.75 *I.0 m

1.0 *2.0 m

1.25 *3.0 m

1.25 *3.5 m

1.5 *4.5 m

Table 14.28 Typical rock trap measures (adapted from graphs from

Some inconsistency in the literature here, with various interpretations of Ritchie's (1963) early work.

1.0 * 1.0 m

1.25 * 2.0 m

1.25 * 2.5 m

1.5 * 3.0 m

1.75 * 4.0 m

0.75 * 1.5 m

1.0 * 1.5 m

1.25 * 2.0 m

1.25 * 2.5 m

1.75 * 3.0 m

A significantly greater widths are provided in some interpretations.

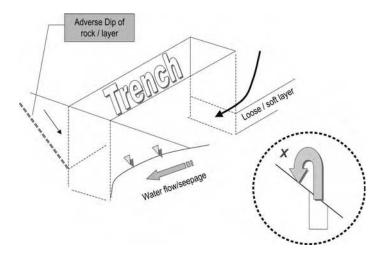


Figure 14.5 Safety in trenching.

14.29 Trenching

- Trenching Depth = H.
- Trench Width = B.

- Trenching > 1.0 m deep typically requires shoring before it is considered safe to enter an excavation.
- When B > 5H, ie a wide open cutting, this excavation is now considered an open cutting rather than a trench.

Table 14.29 Safety in trenching.

Risk	Distance from edge of trench
High Medium	<(H + B) (H + B) to 2 (H + B)
Low	>2 (H + B)

- Stockpile/Equipment must be placed to minimise risk to the trench, unless trench bracing designed to accommodate the loads.
- Structures/Services at the above distance need to be also considered.
- Movements when placed at <2 (H + B) discussed in later chapters.
- To minimise risk, corrective action and continuous observations for:
 - Adverse dip of rock/soil layers.
 - Loose/soft layers intersected.
 - Water flow and seepage into trenches.

Terrain assessment, drainage and erosion

15.1 Terrain evaluation

- Terrain evaluation is particularly useful in linear developments and large projects.
- This involves an extensive desktop study of aerial photos, geology maps, topography, etc, before any need for extensive ground truthing. Phasing of the study is important here. Refer Chapter 1 as various corridor/site options are still under consideration at this stage of the study.

Table 15.1 Terrain evaluation considerations.

Consideration	Terrain evaluation	Comments
Accuracy of data scale	Geology maps Aerial photos Orthophotos Development plan	The maps are likely to be at different accuracy scales. using this data in a GIS analysis for example, is likely to produce inconsistencies in accuracy. A trade off between the largest useable scale and some loss of data accuracy is here made.
Development	Grades Size	Construction/Access as well as long term.
Geology	Lithology Structure	Rock/soil type. Dip/orientation with respect to proposed slope.
Drainage	Surface Ground Erosion Catchment area	Hydrology considerations. Also affected by vegetation and land cover.
Slope	Transverse batters Longitudinal grades	Affects horizontal resumptions/stability measure required.
Height	Above flood levels Cuttings	Affects vertical alignments, which could mean a horizontal alignment shift if significant cut/fill/stability issues.
Aspect of slope	Orientation	With respect to development as well as true north. southern aspect wetter in southern hemisphere (Greater landslide potential).
Land use	Existing proposed	Roads, rails, services, and developments. Environmental considerations. Adjacent affects considered here.
Vegetation	Type, intensity	Forested, agricultural, barren.

15.2 Scale effects in interpretation of aerial photos

 The recognition of instability with aerial photographs can only occur at a suitable scale.

Table 15.2 Relative suitability of different scales of aerial photography (Soeters and van Westen, 1996).

Recognition	Size (m)		Scale		
		1:20,000	1:10,000	1:5,000	
Instability	<20 m	0	0	2	
•	20–75 m	$0 \rightarrow I$	$I \rightarrow 2$	3	
	>75 m	$I \rightarrow 2$	2	3	
Activity of unstable area	<20 m	0	0		
•	20–75 m	0	0→ I	2	
	>75 m	I	$I \rightarrow 2$	3	
Instability elements (Cracks,	<20 m	0	0	0	
steps, depressions, etc)	20–75 m	0	$0 \rightarrow I$	$I\rightarrow 2$	
, , ,	>75 m	I	2	3	

15.3 Development grades

• The different types of developments require different grades. Typical grades for various developments provided in the table.

Table 15.3 Grades required for development (part from Cooke and Doornkamp, 1996).

Development type	Grade %	Deg. $^{\circ}$	Vert. : Horiz.
International airport runways	I	0.6	IV:100H
Main line passenger and freight rail transport Local aerodrome runways To minimize drainage problems for site development Acceptable for playgrounds	2	1.2	IV:50H
Major roads	4	2.3	IV : 25H
Agricultural machinery for weeding, seeding Soil erosion begins to become a problem Land development (construction) becomes difficult	5	2.9	IV : 20H
Industrial roads Upper limit for playgrounds	6	3.4	IV : I7H
Housing roads Acceptable for camp and picnic areas	8	4.6	IV : 12.5H
Absolute maximum for railways	9	5.1	IV:11.1H
Heavy agricultural machinery Large scale industrial development	10	5.7	IV:10.0H

(Continued)

50

26.6

IV: 2.0H

Table 15.3 (Continued)				
Development type	Grade %	Deg. °	Vert. : Horiz.	
Site development Standard wheel tractor Acceptable for recreational paths and trails Upper limit for camp and picnic areas	15	8.5	IV : 6.7H	
Housing site development Lot driveways Upper limit for recreational paths and trails Typical limit for rollers to compact	20 25	11.3 14.0	IV : 5.0H IV : 4.0H	
Benching into slopes required	33	18.4	IV:3.0H	

 Construction equipment has different levels of operating efficiency depending on grade, and riding surface.

15.4 Equivalent gradients for construction equipment

Planting on slopes become difficult without mesh/benches

- The rolling resistance is the force that must be overcome to pull a wheel on the ground. This depends on the gradient of the site and the nature of the road.
- Rolling Resistance = Rolling Resistance Factor × Gross Vehicle Weight.

Table 15.4 Rolling resistance and equivalent gradient of wheeled plant (Horner, 1988).

Haul road conditions			Rolling resistance factor	
Surface	Description	Kg/t	An equivalent gradient	
Hard, smooth	Stabilized surfaced roadway, no penetration under load, well maintained	20	2.0%	
Firm, smooth	Rolling roadway with dirt or light surfacing, some flexing under load, periodically maintained	32.5	3.0%	
With snow	Packed Loose	25 45	2.5% 4.5%	
Dirt roadway	Rutted, flexing under load, little maintenance, 25 to 50 mm tyre penetration	50	5.0%	
Rutted dirt roadway	Rutted, soft under travel, no maintenance, 100 to 150 mm tyre penetration	75	7.5%	
Sand/Gravel surface	Loose	100	10%	
Clay surface	y surface Soft muddy rutted. No maintenance		10-20%	

15.5 Development procedures

• The slope is usually the key factor in consideration of stability. However geology, aspect, drainage etc also affect the stability of the slopes.

Table 15.5 Development procedures based on slope gradients only.

Vert. : Horiz.	Deg. °	Grade %	Slope risk	Comments on site development
> IV : 2H	>27	>50	Very high	Not recommended for development
IV : 2H to IV : 4H	27 to 14	50 to 25	High	Slope stability assessment report
IV : 4H to IV : 8H	14 to 7	25 to 12.5	Moderate	Standard procedures apply
< IV : 8H	<7	<12.5	Low	Commercially attractive

15.6 Terrain categories

• Categorisation of the terrain is the first stage in its assessment.

Table 15.6 Terrain categories.

Terrain category	Slope			Common elements	
	%	Deg.°	Vert. : Horizontal		
Steep hill slopes	>30%	> 16.7	IV:3.3H		
High undulating rises	20–30	11.3–16.7	IV : 5.0H to IV : 3.3H	Ridges, crests and upper slopes	
Moderate undulating rises	10–20	5.7–11.3	IV : 10H to IV : 5H	Mid slopes	
Gently undulating to level plains	<10%	5.7	IV:10H	Lower and foot slopes	

15.7 Landslide classification

- The different slopes have a different potential for landslides.
- This does not cover rock falls, which was covered in previous chapters.

Table 15.7 Typical landslide dimensions in soils (Skempton and Hutchinson, 1969).

Landslide type	Depth/Length ratio (%)	Slope inclination lower limit (Deg. $^{\circ}$)
Debris slides, avalanches	5–10	22–38
Slumps	15–30	8–16
Flows	0.5–3.0	3–20

15.8 Landslide velocity scales

 Rapid landslides cause greater damage and loss of life than slow landslides. See Table 15.8.

15.9 Slope erodibility

- The slope erodibility is controlled by the grades and type of soil. The latter is provided in later tables.
- The minimum gradients are usually required for drainage purposes, eg 1% gradient for drainage a cleansing velocity, but higher velocities are required to minimise flood conditions on higher ground.

• The greater slope lengths produce greater erosion potential. See Table 15.9.

Table 15.8 Landslide velocity scale (Cruden and Varnes, 1996).

Description	Velocity (mm/s)	Typical velocity	Probable destructive significance
Extremely rapid	5 × 10 ³	5 m/second	Catastrophe of major violence; buildings destroyed by impact of displaced material; many deaths, escape unlikely.
Very rapid			Some lives lost; velocity too great to permit all persons to escape.
Rapid	5 × 10 l	3 m/minute	Escape evacuation possible; structures, possessions, and equipment destroyed.
Moderate	5 × 10 ⁻¹	1.8 m/hour	Some temporary and insensitive structures
	$5 imes 10^{-3}$	13 m/month	can be temporarily maintained.
Slow	5 × 10 ⁻⁵	1.6 m/year	Remedial construction can be undertaken during movement; insensitive structures require frequent maintenance work if total movement is not large during a particular acceleration phase.
Very slow			Some permanent structures undamaged by movement.
Extremely slow	$<5\times10^{-7}$	16 mm/year	Imperceptible without instruments; construction possible with precautions.

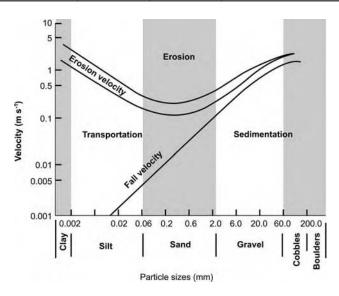


Figure 15.1 Erosion and deposition process (Here from Bell, 1998, after Hjulstrom, 1935).

Table 15.9 Slope erodibility with grades.

Erosion potential	Grade %
High	>10%
Moderate	10-5%
Low	<5%

15.10 Typical erosion velocities based on material

- The definition of erosion depends on its application, ie whether internal or surface erosion. Surface erosion against rainfall is also different from erosion in channels.
- The ability of a soil to reduce erosion depends on its compactness.
- The soil size (gradation characteristics), plasticity and cohesiveness also affect its erodibility.
- Fine to medium sand and silts are the most erodible, especially if uniformly graded.
- The table is based on Hjulstrom's Chart (Figure 15.1) based only on particle size for stream flow velocities. However the state of the soil (compactedness) and the relative proportion of materials also influence its allowable velocity.

Table 15.10 Typical erosion velocities.

Soil type	Grain size	Erosion velocity (m/s) particle size only
Cobbles, cemented gravels, conglomerate.	>60 mm	3.0
Soft sedimentary rock		
Gravels (coarse)	20 mm to 60 mm	2.0
Gravels (medium)	6 mm to 20 mm	1.0
Gravels (fine)	2 mm to 6 mm	0.5
Sands (coarse)	0.6 mm to 2 mm	0.25
Sands (medium)	0.2 mm to 0.6 mm	0.15
Sands (coarse)	0.06 mm to 0.2 mm	0.25
Silts (coarse to medium)	0.006 mm to 0.06 mm	0.5
Silts (fine)	0.002 mm to 0.006 mm	1.0
Clays	<0.002 mm	3.0

- Hard silts and clays (C_u > 200 kPa) and high plasticity (PI > 30%) is expected to have a higher allowable velocity than that shown. Conversely, very soft materials of low plasticity may have a lower velocity.
- Very dense sands and with high plasticity material mixed is expected to have a higher allowable velocity.

15.11 Typical erosion velocities based on depth of flow

• In channels, the depth of flow also determines its erosion velocity.

15.12 Erosion control

Erosion control depends on the size and slope of the site.

Bed material	Description Competer		nt mear	velocity	y (m/s)	
		Depth of	1.5	3	6	15
		flow (m)				
Cohesive	Low values – easily erodible PI < 10% and C _u < 50 kPa		0.6	0.65	0.7	0.8
	Average values PI > 10% and C	u < 100 kPa	1.0	1.2	1.3	1.5
	High values – re PI > 20% and C		1.8	2.0	2.3	2.6
Granular	Medium sand	0.2–0.6 mm	0.65	1.0	1.4	2.2
	Coarse sand	0.6–2.0 mm	0.75	1.1	1.5	2.2
	Fine gravel	2.0–6 mm	0.9	1.2	1.6	2.3
	Medium gravel	6–20 mm	1.2	1.5	1.8	2.5
	Coarse gravel	20–60 mm	1.7	2.0	2.2	2.9
	Cobbles	60–200 mm	2.5	2.8	3.3	4.0
	Boulders	>200 m	3.3	3.7	4.2	5

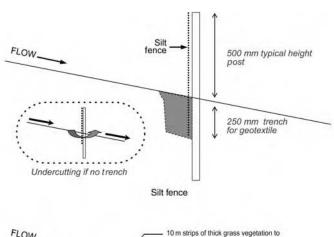
Table 15.11 Suggested competent mean velocities for erosion (after TAC, 2004).

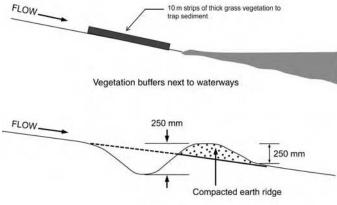
The uses of contour drains, silt fences or vegetation buffers are typical control measures.

Table 15.12 Erosion control measures.

Consideration	Typical erosion control measures spacing				
	Vegetation buffers	Contour drains	Silt fences		
Slope					
5%	75 m	50 m	25 m		
10%	50 m	40 m	15 m		
15%	25 m	30 m	10 m		
Typical details	10 m strips of thick grass vegetation to trap sediment	250 mm ditch to divert flow with soil excavated from the formed ditch placed as compacted earth ridge behind	0.5 m high posts with filter fabric buried 250 mm at the bottom		
Application	Adjacent to waterways	Temporary protection at times of inactivity. Diverts water runoff to diversion channels	Temporary sediment barrier for small sites		

- Suitably sized vegetation buffers and contour drains may also be used as permanent erosion control features.
- Refer Chapter 16 for added details on silt fences.


15.13 Benching of slopes


Benching of slopes reduces concentrated run off - which reduces erosion.

- Apply a reverse slope of 10–15%, and a minimum depth of 0.3 m.
- The bench width is typically 2–4 m. But this should consider rock fall bench width requirements, and maintenance access requirements.
- Benching also aids in slope stability.
- The bench height is dependent on the run off, type of material and overall risk associated with the slope.

Table 15.13 Typical benching requirements.

Slope	Vertical height between benches
IV:4H	20 m
IV:3H	15–20 m
IV:2H	10–15 m
IV:1H	5–10 m

Contour drains

Figure 15.2 Erosion protection.

15.14 Subsurface drain designs

• A subsurface drain reduces the effects of saturation of the pavement subgrade.

- Pipe under drains should have grades $\geq 0.5\%$ (Desirable >1%).
- Minimum local Grades = 0.25%.

Table 15.14 Sizing of perforated pipe underdrains.

Length	Diameter
<25 m	100 mm
25 m–100 m	150 mm
100 m–150 m	200 mm

Outlets should have a maximum interval of 150 m.

15.15 Subsurface drains based on soil types

The permeability of the soil determines the required subsurface drain spacing.

Table 15.15 Suggested depth and spacing of pipe underdrains for various soil types (Highway design manual, 2001).

Soil class	Soil composition		Drain spacing				
	% Sand	% Silt	% Clay	I.0 m Deep	1.25 m Deep	1.50 m Deep	1.75 m Deep
Clean sand	80-100	0–20	0–20	35–45	45–60	_	_
Sandy Ioam	50-80	0-50	0-20	15-30	30-45	_	_
Loam	30-50	30-50	0-20	9–18	12-24	15-30	18–36
Clay Ioam	20-50	20-50	20-30	6–12	8–15	9–18	12-24
Sandy clay	50-70	0-20	30-50	4–9	6–12	8–15	9–18
Silty clay	0-20	50-70	30-50	3–8	4–9	6–12	8–15
Clay	0–50	0–50	30–100	4 (max)	6 (max)	8 (max)	I2 (max)

- Trench widths should be 300 mm minimum.
- Minimum depth below surface level = 500 mm in soils and 250 mm in rock.

15.16 Open channel seepages

Earthen channels are classified as lined or unlined.

Table 15.16 Seepage rates for unlined channels (Typical data extracted from ANCID, 2001).

Type of material	Existing seepage rates (Litres/m²/day)
Clays and clay loams	75–150
Gravelly clays, silty and silty loams, fine to medium sand	150–300
Sandy loams, sandy soils with some rock	300–600
Gravelly soils	600–900
Very gravelly	900-1800

- A seepage of 20 Litres/m²/day is the USBR Benchmark for a water-tight channel with sealed joints.
- Concrete linings are typically 75 mm to 100 mm thick.
- Refer Section 17 for typical compacted earth linings.

- Compacted Clay linings at the bottom of a channel typically 0.5 m thick can reduce the seepage by 80% to 50% for very gravelly soils to fine sand materials, respectively.
- Geosynthetic Clay Liners (GCLs) and Geomembranes can also be used with 250 mm minimum soil cover.

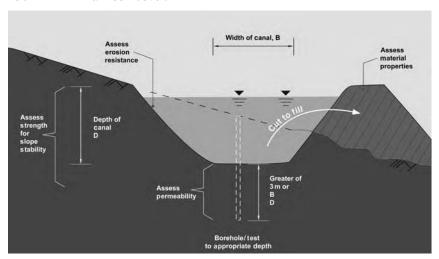


Figure 15.3 Canal issues to be assessed during investigation.

15.17 Comparison between open channel flows and seepages through soils

Hydraulic Gradient of 0.01 in all cases.

Table 15.17 Comparisons between flows in open channels and pipes and seepage through soils and aggregates, Cedergren (1989).

Flow medium	Effective channel diameter	Flow (m ³ /s)	Area (m²) for discharge of 50 mm þiþe
Smooth channel	$24 \mathrm{m} = 2 \mathrm{R}$	12,000	
Smooth pipe	2.4 m = d	20	
	0.30 m = d	0.1	
	50 mm = d	$4 imes 10^{-4}$	50 mm pipe (0.2 m ²)
25 mm to 40 mm gravel	5 mm	$\#$ 4 $ imes$ 10 $^{-4}$	0.1
12 mm to 25 mm gravel	2.5 mm	$\# \ I \times I0^{-4}$	0.3
5 mm to 10 mm gravel	0.75 mm	$\#~2 imes 10^{-5}$	2.0
Coarse sand	0.25 mm	$\#~3 imes 10^{-6}$	17
Fine sand, or graded filter aggregate	0.05 mm	$\#~3 imes 10^{-8}$	$1.7 imes 10^3$
Silt	0.006 mm	# 3×10^{-11}	$1.7 imes 10^6$
Fat clay	0.001 mm	$\#$ 3 $ imes$ 10 $^{-13}$	1.8×10^8

• # Per 0.93×10^{-3} square metre area.

15.18 Drainage measures factors of safety

Large factors of safety are applied in drainage situations due to the greater uncertainties with ground water associated issues.

Table 15.18 Factors of safety for drainage measures.

Drainage element	Factor of safety	Comments
Pipes	2	To avoid internal piezometric pressures.
Granular material	10	To avoid permeability reduction due to fines or turbulent flows.
Geotextiles	10	To account for distortion and clogging.
Blanket drain on flat slope	10	To avoid permeability reduction due to fines or turbulent flows.
Blanket drain on steep slope	5	eg chimney drains, which uses graded filter or geotextile.
Geocomposite	4	To account for crushing.

15.19 Aggregate drains

Aggregate drains are often used for internal drainage of the soil.

Table 15.19 Aggregate drains.

Aggregate type	Advantages	Disadvantages
Open graded gravels – french drain	Good flow capacity	Clogging by piping from surrounding soils
Well graded sands – filter sands	Resists piping. Useful in reduction in pore water pressures	Low flow capacity
Open graded gravels wrapped in geotextile	Resists piping. Reasonable flow capacity	Depth limitation

15.20 Aggregate drainage

- Aggregate drains are sometimes used with or in place of agricultural perforated pipes. The pipes channel the already collected water while the aggregate drains the surrounding soils.
- The equivalent permeability for various size aggregate is provided in the table.
- There is a significant advantage of using large size aggregate in terms of increased permeability (flows) and reduced size.
- No factors of safety apply.
- I = 1% to minimise turbulent effects in the aggregate.

Table 15.20 Equivalent aggregate cross sections as a 100 mm OD corrugated plastic pipe (Forrester, 2001).

Drainage element	Size	Area (m²)	Comments/Permeability
Corrugated plastic pipe	100 mm, ID = 85.33 mm	0.0057	Flow Q = 2.7 Litres/sec: piezometric gradient, i = 1%
20 mm aggregate	1.87 m * 1.87 m	3.5	k = 0.075 m/s
14 mm aggregate	2.45 m * 2.45 m	6	k = 0.045 m/s
10 mm aggregate	3.32 m * 3.32 m	П	k = 0.025 m/s
7 mm aggregate	4.24 m * 4.24 m	18	k = 0.015 m/s
5 mm aggregate	5.83 m * 5.83 m	34	k = 0.008 m/s

15.21 Discharge capacity of stone filled drains

• The aggregate size affects the flow capacity. Following seepage analysis, the appropriate stone sizing may be adopted.

Table 15.21 Discharge capacity of 0.9 m * 0.6 m cross-section stone filled drains (Cedergren, 1989).

Size of stone	Slope	Capacity (m³/s)
19 mm to 25 mm	0.01 0.001	200 20
9 mm to 12 mm	0.01 0.001	50 5
6 mm to 9 mm	0.01 0.001	10 1

15.22 Slopes for chimney drains

 Chimney drains are used to cut of the horizontal flow paths through an earth dam.

Table 15.22 Slope for chimney drains.

Drainage material	Slope (1 Vertical : Horizontal)
Sand	IV : 1.75H
Gravel	IV : I.5 H
Sand/Gravel	IV:1.75H
Gravel wrapped in geotextile	IV : I.5H

15.23 Drainage blankets

- Drainage blankets are used below roads or earth dams.
- The size should be based on the expected flow and length of the flow path.

Criteria	Thickness of drainage blanket	Comment
No settlement With settlement	300 mm minimum compacted 500 mm minimum	Or allowance for expected consolidation settlement

Table 15.23 Drainage blanket design requirements below roads.

15.24 Resistance to piping

- Piping is the internal erosion of the embankment or dam foundation caused by seepage.
- Erosion starts at the downstream toe and works backwards towards the inner reservoir forming internal channels pipes.

Table 15.24 Resistance of a soil to piping.

Resistance controlled by	Suitability	Property
Plasticity of the soil	Suitable Poor	PI = 15-20% PI < 12%; PI > 30%
Gradation	Suitable Poor	Well graded Uniformly graded
% Stones	Suitable Poor	10% to 20% <10% or >20%
Compaction level	Suitable Poor	$\begin{array}{l} \text{Relative compaction} = 95\% \\ \text{Relative compaction} < 90\% \end{array}$

15.25 Soil filters

The permeability of the filter should be greater than the soil it is filtering, while preventing washing out of the fine material.

Table 15.25 Filter design.

Criterion	Design criteria	Comments
Piping	$D_{15~(Filter)} < 5~D_{85~(soil)}$ Maximum sizing	Filter must be coarser than soil yet small enough to prevent soil from passing through filter – and forming pipe
Permeability	$D_{15 \text{ (Filter)}} > 5 D_{15 \text{ (soil)}}$ Minimum sizing	Filter must be significantly more permeable than soil. Filter should contain < 5% Fines
Segregation	$\begin{array}{l} \text{Moderately graded} \\ 2 < U < 5 \\ D_{50 \; (\text{Filter})} > 25 \; D_{50 \; (\text{soil})} \end{array}$	Avoid gap graded material, but with a low uniformity coefficient U For Granular filters below revetments

- Medium and High Plasticity clays not prone to erosion, filter criteria can be relaxed.
- Dispersive clays and silts prone to erosion, filter criteria should be more stringent.

- Refer to Chapter 16 for use of geotextiles as a filter.
- Thickness of filter typically > 20 D_{max}.

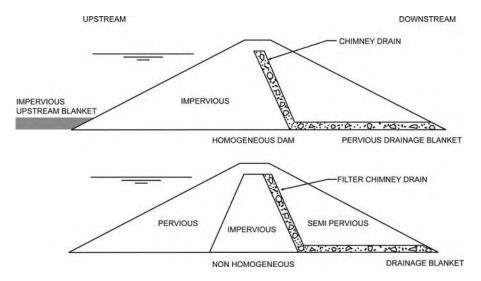


Figure 15.4 Seepage control.

15.26 Seepage loss through earth dams

- All dams leak to some extent. Often this is not observable. Design seeks to control that leakage to an acceptable level.
- Guidance on the acceptable seepage level is vague in the literature.
- The following is compiled from the references, but interpolating and extrapolating for other values. This is likely to be a very site and dam specific parameter.

Dam height (m)	Seepage, litres/day/metre, (Litres/minute/metre)		
	O.K.	Not O.K.	
<5	<25 (0.02)	>50 (0.03)	
5-10	<50 (0.03)	>100 (0.07)	
10-20	<100 (0.07)	>200 (0.14)	
20-40	<200 (0.14)	>400 (0.28)	
>40	<400 (0.28)	>800 (0.56)	

Table 15.26 Guidance on typical seepage losses from earth dams (Quies, 2002).

15.27 Clay blanket thicknesses

• A clay blanket can be used at the base of a canal or immediately inside of a dam wall to increase the seepage path (L), thus reducing the hydraulic gradient (i = h/l).

- The actual thickness should be based on permeability of cover material and more permeable materials underlying, head of water and acceptable seepage loss.
- In canals allowance should be made for scour effect.

Table 15.27 Clay blanket thickness for various depths of water (Nelson, 1985).

Water depth (m)	Thickness of blanket (mm)
<3.0	300
3.0 to 4.0	450
4.0 to 5.0	650
5.0 to 6.0	800
6.0 to 7.0	950
7.0 to 8.0	1150
8.0 to 9.0	1300
9.0 to 10.0	1500

Geosynthetics

16.1 Type of geosynthetics

- The type of geosynthetics to be used depends on the application.
- The terms geosynthetics and geotextiles are sometimes used interchangeably although geosynthetics is the generic term and geotextile is a type of product.

Table 16.1 Geosynthetic application.

	Typical types	Examples
Reinforcement	Geogrids, Geotextiles	Stabilization of steep slopes and walls Foundation of low bearing capacity
Filter	Non woven geotextiles, Geocomposites	 Filters beneath revetments and drainage blankets Separation layer beneath embankment
Drainage	Geonets, Geocomposites	Erosion control on slope facesDrainage layer behind retaining walls
Screen	Geomembranes, Geosynthetic clay liner (GCL)	

- Geogrids are usually biaxial and uniaxial types. The latter usually has a higher strength, but in one direction only.
- Geonets differ from geogrids in terms of its function, and are generally diamond shaped as compared to geogrids, which are planar.
- Geocomposites combine one or more geosynthetic product to produce a laminated or composite product. GCL is a type of geocomposite.
- Geomembrane is a continuous membrane of low permeability, and used as a fluid/barrier liner. It has a typical permeability of 10^{-13} to 10^{-15} m/s.

16.2 Geosynthetic properties

- The main Polymers used in the manufacture of geosynthetics shown below.
- The basic elements are carbon, hydrogen and sometimes nitrogen and chlorine (PVC). They are produced from coal and oil.
- PP is the main material used in geotextile manufacture due to its low cost.
- PP is therefore cost effective for non critical structures and has good chemical and pH resistance.

Table 16.2 Basic materials (Van Santvoort, 1995).

Material	Symbol	Unit mass (kg/m³)	Tensile strength at 20°C (N/mm²)	Modulus of elasticity (N/mm²)	Strain at break (%)
Polyester	PET	1380	800-1200	12000-18000	8–15
Polypropylene	PP	900	400–600	2000-5000	10 -4 0
Polyethylene	PE	920	80-250	200-1200	20–80
 High density 	HDPE	950	350-600	600-6000	10 -4 5
 Low density 	LDPE	920	80-250	200-1200	20-80
Polyamide	PA	1140	700-900	3000-4000	15-30
Polyvinylchloride	PVC	1250	20–50	10–100	50–150

• For higher loads and for critical structures PP loses its effectiveness due to its poor creep properties under long term and sustained loads. PET is usual in such applications.

16.3 Geosynthetic functions

• The geosynthetic usually fulfils a main function shown in the table below, but often a minor function as well.

Table 16.3 Functional applications.

Material	Application					
	Reinforcement/Filter		Drainage Screen	Screen	Properties	
	Geotextile	Geogrid	Geonet	Geomembrane	High	Low
PET	Х	Х			Strength modulus cost, Unit weight	Creep resistance to alkalis
PP	×	X			Creep resistance to alkalis	Cost, Unit weight, Resistance to fuel
PE - HDPE - MDPE - LDPE - CSPE - CPE	X	X	X X	X X X	(PE) Strain at failure creep, resistance to alkalis	(PE) Unit weight, Strength, Modulus, Cost
PA	X				Resistance to alkalis and detergents	
PVC				×	Strain at failure, Unit weight	Strength, modulus

- The table highlights the key properties. Strength, creep, cost and resistance to chemicals are some of the considerations.
 - PET is increasingly being used for geogrids. It has an excellent resistance to chemicals, but low resistance to high pH environments. It is inherently stable to ultra violet light.
 - PP and PE have to be stabilised to be resistant against ultra violet light.

16.4 Static puncture resistance of geotextiles

- An increased geotextile robustness required for an increase in stone sizes.
- An increased robustness is also required for the weaker subgrades.

Table 16.4 Static puncture resistance requirement (adapted from Lawson, 1994).

Subgrade strength CBR %	Geotextile CBR puncture resistance (N) for maximum stone size d_{max}			
	$d_{max} = 100 \text{mm}$	$d_{max} = 50 mm$	$d_{max} = 30 mm$	
1	2500	2000	1500	
2	1800	1500	1200	
3	1200	1000	800	

Table applies for geotextiles with CBR puncture extensions $\geq 40\%$.

16.5 Robustness classification using the G-rating

- G-Rating = $(\text{Load} \times \text{Drop Height})^{0.5}$.
- Load (Newtons) on CBR plunger at failure.
- Drop Height (mm) required to make a hole 50 mm in diameter.

Table 16.5 Robustness classification of geotextile -G rating (Waters et al., 1983)

Classification	G-Rating
Weak	<600
Slightly robust	600-900
Moderately robust	900-1350
Robust	1350-2000
Very robust	2000-3000
Extremely robust	>3000

This robustness rating is used mainly in Australia. It is used to assess the survivability during construction.

16.6 Geotextile durability for filters, drains and seals

The construction stresses often determine the durability requirements for the geotextile.

• A non woven geotextile required in the applications of the table below.

Table 16.6	Geotextile robustness	requirements fo	or filters and drains	(Austroads, 1990).

Application	Typical G rating	Typical minimum mass (g/m²)
Subsoil drains and tenches	900	100
Filter beneath rock filled gabions, mattresses and drainage blankets	1350	180
Geotextile reinforced chip seals	950	140

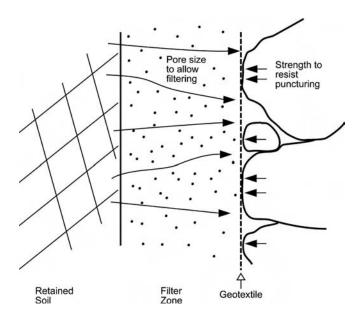


Figure 16.1 Strength and filtering requirements.

16.7 Geotextile durability for ground conditions and construction equipment

- The construction stresses are based on 150 mm to 300 mm initial lift thickness.
- For lift thickness of:
 - 300–450 mm: Reduce Robustness requirement by 1 level.
 - 450–600 mm: Reduce Robustness requirement by 2 levels.
 - >600 mm: Reduce Robustness requirement by 3 levels.
- The design requirements for bearing capacity failure must be separately checked.
- The lift thickness suggests a maximum particle size of 75 mm to 150 mm. Therefore for boulder size fills (>200 mm) the increased robustness is required.

Ground conditions		Robustness for construction equipment ground pressures		
Natural ground clearance	Depressions and humps	Low (<25 kPa)	Medium (25–50 kPa)	High (>50 kPa)
Clear all obstacles except grass, weeds, leaves and fine wood debris	<150 mm in depth and height. Fill any larger depressions	Slightly robust (600–900)	Moderate to robust (900–2,000)	Very robust (2,000–3,000)
Remove obstacles larger than small to moderate sized tree limbs and rocks	<450 mm in depth and height. Fill any larger depressions	Moderate to robust (900–2,000)	Very robust (2,000–3,000)	Extremely robust (>3,000)
Minimal site preparation. Trees felled and left in place. Stumps cut to no more than 150 mm above ground	over tree trunks, depressions, holes, and boulders	Very robust (2,000–3,000)	Extremely robust (>3,000)	Not recommended

Table 16.7 Robustness required for ground conditions and construction equipment (Austroads, 1990).

16.8 Geotextile durability for cover material and construction equipment

- The table above was based on 150 mm to 300 mm initial lift thickness for the cover material.
- The size, angularity and thickness of the cover material also affect the G Rating Requirement.
- For Pre-rutting increase robustness by one level.

Table 16.8 Robustness for cover material and construction equipment (modified from Austroads, 1990).

Ground conditions				for construction es (kPa)and lift	n equipment thickness (mm)	
Cover material	Material shape				Medium (25–50 kPa)	High (>50 kPa)
		150–300 mm	300–450 mm	>450 mm	150–300 mm	300–450 mm
Fine sand to ±50 mm gravel	Rounded to subangular	Slightly robust (600–900)		Moderately to robust (900–2,000)		
Coarse gravel with diameter up to ½ proposed lift thickness	May be angular	Moderate to robust (900–2,000)			Very r (2,000-	robust -3,000)
Some to most aggregate > ½ proposed lift thickness	Angular and sharp-edged, few fines	Very robust (2,000–3,000)		1	ly robust 000)	

16.9 Pavement reduction with geotextiles

- The pavement depth depends on ESAs and acceptable rut depth.
- Elongation of geotextile = ε .
- Secant Modulus of geotextile = k.

Table 16.9 Typical pavement thickness reduction due to geotextile (adapted from Giroud and Noiray, 1981).

In situ	Maximum pavement reduction for acceptable rut depth						
CBR (%)	30–75 mm			250 mm (ε = 5%)		250 mm (k = 100 kN/m)	250 mm (k = 300 kN/m)
0.5	175 mm	450 mm	300 mm	100 mm	150 mm	200 mm	300 mm
1	125 mm	250 mm	100 mm	0 mm	125 mm	150 mm	225 mm
2	100 mm	100 mm	0 mm		75 mm	125 mm	100 mm
3	40 mm	30 mm			30 mm	30 mm	30 mm
4	0 mm	0 mm			0 mm	0 mm	0 mm

16.10 Bearing capacity factors using geotextiles

- The geotextiles provide an increase in allowable bearing capacity due to added localised restraint to the subgrade.
- The strength properties of the geotextile often do not govern, provided the geotextile survives construction and the number of load cycles is low.
- Subgrade strength $C_u = 23$ CBR for undisturbed condition.
- Ultimate Bearing Capacity $q_{ult} = N_c C_u$.

Table 16.10 Bearing capacity factors for different ruts and traffic conditions (Richardson, 1997: Steward et al., 1977).

Geotextile	Ruts (mm)	Traffic (passes of 80 kN axle equivalent)	Bearing capacity factor, N _c
Without	<50	<1000	2.8
	>100	<100	3.3
With	<50	<1000	5.0
	>100	<100	6.0

- During construction 50 to 100 mm rut depth is generally acceptable.
- Dump truck (8 m³) with tandem axles would have a dual wheel load of 35 kN.
- Motor Grader would have a wheel load approximately 20 kN to 40 kN.
- Placement of the geogrid at the subgrade surface does not have a beneficial effect. Grids perform better when placed at the lower third of aggregate.

16.11 Geotextiles for separation and reinforcement

- A geotextile is used as separation and reinforcement depending on the subgrade strength.
- A geotextile separator is of little value over sandy soils.

A geogrid over a loose sand subgrade reduces the displacement.

Table 16.11 Geotextile function in roadways (Koerner, 1995).

Geotextile function	Unsoaked CBR value	Soaked CBR value
Separation Separation with some nominal reinforcement Reinforcement and separation	≥8 3–8 ≤3	≥3 I-3 ≤I

16.12 Geotextiles as a soil filter

- The geotextile filter pore sizes should be small enough to prevent excessive loss of
- The geotextile filter pore size should be large enough to allow water to filter through.
- The geotextile should be strong enough to resist the stresses induced during construction and from the overlying materials.
- Geotextile permeability is approximately equivalent to a clean coarse gravel or uniformly graded coarse aggregate ($>10^{-2}$ m/s).

Table 16.12 Criteria for selection of geotextile as a filter below revetments (McConnell, 1998).

Soil type		Pore size of geotextile O ₉₀	
Cohesive		$O_{90} \leq 10D_{50}$	
	Uniform (U $<$ 5), uniform	$O_{90} \le 2.5 D_{50}$	$O_{90} \leq D_{90}$
NI	Uniform (U $<$ 5), Well graded	$O_{90} \leq 10D_{50}$	
Non cohesive	Little or no cohesion and 50% by weight of silt	$O_{90} \leq 200 \mu m$	

- Uniformity Coefficient, $U = D_{60}/D_{10}$.
- Geotextiles should have a permeability of 10 times the underlying material to allow for in service clogging.
- Geotextile filters can be woven or non-woven that meet the above specifications.
- Woven geotextiles are less likely to clog, however have a much narrower range of applicability (medium sand and above). However, non-woven geotextiles predominate as filters due to its greater robustness and range of application. Non-woven geotextiles are therefore usually specified for filters.

16.13 Geotextile strength for silt fences

- The geotextile strength required depends on the posts spacing and the height of impoundment (H).
 - The ultimate strength of a typical non reinforced silt fence geotextile is 8-15 kN/m.

- For unreinforced geotextiles, impoundment height is limited to 0.6 m and post spacing to 2 m.
- For greater heights, use of plastic grid/mesh reinforcement to prevent burst failure of geotextile.

Table 16.13 Geotextile strength for varying post spacing (adapted from Richardson and Middlebooks, 1991).

Post spacing (m)	Tension	in silt fence geotextile	(kN/m)
	H = 0.5 m	H = 0.6 m	H = 0.9 m
ī	5 kN/m	7 kN/m	I2kN/m
1.5	N/A	10 kN/m	18 kN/m
2	N/A	12 kN/m	25 kN/m
2.5	N/A	N/A	30 kN/m

16.14 Typical geotextile strengths

• The Geotextile strength depends on the application, with the greatest strength required below embankments founded on compressible clays.

Table 16.14 Typical geotextile reinforcement strengths (adapted from Hausman, 1990).

Application	Description	Fabric wide strength, kN/m	Fabric modulus, kN/m
Retaining structures	Low height Moderate height High	10–15 15–20 20–30	35–50 40–50 60–175
Slope stabilization	Close spacing Moderate spacing Wide spacing	10–20 15–25 25–50	25–50 35–70 40–175
Unpaved roads	$\label{eq:cbr} \begin{split} CBR &\leq 4\% \\ CBR &\leq 2\% \\ CBR &\leq 1\% \end{split}$	10–20 15–25 35–50	50–90 90–175 175–525
Foundations	Nominal	25–70	175–350
(Increase in bearing capacity)	Moderate Large	40–90 70–175	350–875 875–1750
Embankments over soft soils	$\begin{split} &C_u > 10 \text{ kPa} \\ &C_u > 5 \text{ kPa} \\ &C_u > 2 \text{ kPa} \end{split}$	100–200 175–250 250–500	875–1750 1750–3500 3500–7000

16.15 Geotextile overlap

- The Geotextile overlap depends on the loading and the ground conditions.
- A 500 mm minimum overlap required in repairing damaged areas.

Table 16.15 Geotextile overlap based on load type and in situ CBR value (adapted from Koerner, 1995).

CBR value	Required overlap distance for traffic loading				
	Light duty – access roads	Medium duty — typical loads	Heavy duty – earth moving equipment		
<0.5%	800 mm	1000 mm or sewn			
0.5-1.0%	700 mm	900 mm	1000 mm or sewn		
1.0-2.0%	600 mm	750 mm	900 mm		
2.0-3.0	500 mm	600 mm	700 mm		
3.0-4.0	400 mm	450 mm	550 mm		
4.0-5.0	300 mm	350 mm	400 mm		
>5.0	250 mm minimum				
All roll ends	800 mm or sewn	100 mm or sewn			

Fill specifications

17.1 Specification development

- Specifications typically use the grain size as one of the key indicators of likely performance.
- The application determines the properties required. For example, greater fines content would be required for an earthworks water retention system, while low fines would be required for a road base pavement.

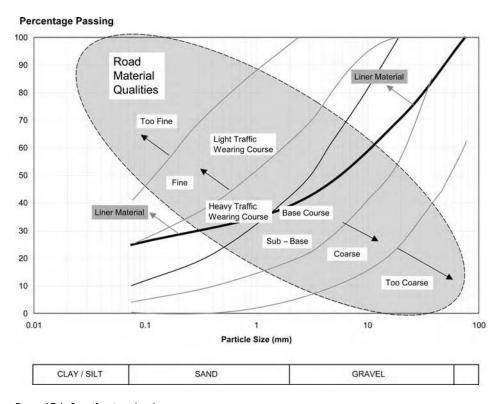


Figure 17.1 Specification development.

- Applying a specification provides a better confidence in the properties of the fill.
- Importing a better quality fill can provide a better consistency than using a stabilised local fill. However, the latter may be more economical and this has to be factored into the design performance.

Table 17.1 Desirable material properties.

Requirement	Typical	Desirable material property			
	application		Gravel size	Gradation	Fines
High strength Low permeability High permeability Durability	Pavement Liner Drainage layer Breakwater	Increase Reduce Increase Increase	Increase Reduce Increase Increase	Well graded Well graded Uniformly/Poorly graded –	Reduce Increase Reduce Reduce

17.2 Pavement material aggregate quality requirements

- Pavement materials are typically granular with low fines content.
- Larger nominal sizing has the greatest strength, but an excessive size creates pavement rideabilty and compaction issues.
- The optimum strength is obtained with a well graded envelope.
- Some fines content is useful in obtaining a well graded envelope but an excessive amount reduces the

Table 17.2 Developing a specification for pavement materials.

Nominal Material		Aggregate quality required			
sizing property	High (Base)	Medium (Sub — Base)	Low (Capping)	Poor	
40 mm	% Gravel	>20%	>20%	>20%	<20%
	% Fines	<10%	<15%	<20%	>20%
30 mm	% Gravel	>25%	>25%	>20%	<20%
	% Fines	<15%	<20%	<25%	>25%
20 mm	% Gravel	>30%	>30%	>20%	<20%
	% Fines	<20%	<25%	<30%	>30%

 Natural River gravels may have about 10% more fines than the crushed rock requirements shown in the table, but 10% to 20% more gravel content.

17.3 Backfill requirements

- Backfill shall be free from organic or deleterious materials.
- A reinforced soil structure should have a limit on the large sizes to avoid damage to the reinforcing material. Water should be drained from the system, with a limitation on the percentage fines.

A reinforced soil slope can tolerate greater fines. This limits water intruding into the sloping face.

	•	•	,
Property		Specification re	quirement
	Reinforce	soil structure	Reinforced soil slope
Sieve size		Percent passir	ng
100 mm	100		100
20 mm	100		100-75
4.75 mm	100-20		100-20
0.425 mm	60–0		60–0
0.075 mm	15–0		50–0
Plasticity index	PI < 12%		PI < 22%

Table 17.3 Backfill requirements (Holtz et al. 1995).

17.4 Typical grading of granular drainage material

Granular drainage materials should be uniformly graded and be more permeable than the surrounding soil, as well as prevent washing of fines from the material being drained.

Table 17.4	Grading of filter material (Department
	of transport, 1991).

0%
-100
25
5

When used as a drainage layer below sloping faces such as revetments or chimney drains, angular material should be used.

17.5 Pipe bedding materials

- A well-graded envelope provides the optimum strength and support for the pipes. However, this requires compaction to be adequate. Pipes in trenches may not have a large operating area and obtaining a high compaction is usually
- A reduced level of compaction is therefore usually specified and with a single size granular material which would be self compacting.
- The larger size provides a better pipe support, but is unsuitable for small size pipes.

Table 17.5 Granular materials for pipe beddings.

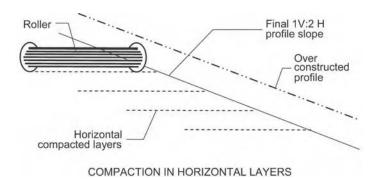
Pipe size	Maximum particle size
<100 mm	I0 mm
100-200 mm	I5 mm
200-300 mm	20 mm
300-500 mm	30 mm
>500 mm	40 mm

- Proper compaction at the haunches of pipes is difficult to achieve and measure.
 - Pipes are usually damaged during construction and proper cover needs to be achieved, before large equipment is allowed to cross over.
 - Typically 300 mm minimum cover, but 750 mm when subjected to heavy construction equipment loads.

17.6 Compacted earth linings

- The key design considerations for earth linings are adequate stability and impermeability.
- The low permeability criteria requires the use of materials with >30% clay fines.
- Density of 95% of Standard Maximum Dry Density typically used.
- Control Tests of at least 1 per 1000 m³ placed would be required.

Table 17.6 Typical compacted earth lining requirements.


Depth of water	Canal design		
	Side slope (IV:H)	Side thickness	Bottom thickness
<0.5 m	IV:1.5 H	0.75 m	0.25 m
1.5 m	IV:1.75 H	1.50 m	0.50 m
3.0 m	IV:2.0 H	2.50 m	0.75 m

17.7 Constructing layers on a slope

- Inadequate compaction may result at the edges or near sloping faces. Large equipments are unable to compact on steep slopes. Layers are placed either horizontally or on a minor slope. Benching may be required to control the water run off, and hence erosion.
- Proper compaction requires moisture content of soil near to its plastic limit.
- The thickness of placed layers is typically 0.40 m (compacted) for a 10 tonne roller, but depends on the type of material being placed.
- The thickness of placed layers is typically 0.20 m (compacted) for 3 tonne roller.

Table 17.7 Constructing layers on a sl-	ope.
---	------

Method	Place and compact material in horizontal layers	Place layers on a IV:4H slope
Advantage Disadvantage Remedy	Fast construction process Edge not properly compacted Over construct by • 0.5 m for light weight rollers • 1.0 m for heavy rollers And trim back to final design profile	For limited width areas Side profile variability Regular check on side profile

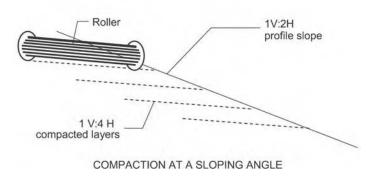


Figure 17.2 Placement and compaction of materials.

17.8 Dams specifications

- The dam core material should be impermeable have a significant fines proportion.
- The core should also be able to resist internal erosion.
- Dam cores should have a material with a minimum clay content of 20%, and preferably 30%.
- While the presence of some stones reduces erosion potential, a significant quantity of stones will increase the water flow, which is undesirable.

Table 17.8 Dam core material classification to minimise internal erosion.

Consideration	Reduc	e erosion	Erosion res	istance
Criteria	Rate of erosion decreases with increasing plasticity Index (PI)	Higher compacted density reduces rate of erosion	Addition or inclusion of stone chips improves erosion resistance	Maximum stone size to allow compaction
Measure ideal	PI = 15% to 20%	Dry Density (DD) ≥98% (Standard proctor)	Stones = 10% to 20%	Stone size = 2 mm to 60 mm
Fair	$PI \geq 12\%$	DD ≥ 95%	$\begin{array}{l} \text{Stones} \geq 5\% \\ \text{Stones} \leq 25\% \end{array}$	$Stones \leq 100mm$
Poor	PI < 12%	DD < 95%	Stones < 5%	Stones > 100mm
Very poor	PI < 10%	DD < 90%	Stones > 25%	Stones > I 20 mm

17.9 Frequency of testing

• The frequency of testing is based on the size of the area and project, uniformity of material and overall importance of the layer being tested.

Table 17.9 Guidelines to frequency of testing.

Test	Field density	Grading and plasticity index
Frequency for large scale operations	For selected material imported to site – Not less than a) I test per 1000 m³, and b) 4 tests per visit c) I test per 250 mm layer per material type per 4000 m²	I test per 2000 m ³ at selected source before transporting to site. I test per 1000 m ³ for using locally available material on site
	For on site material imported – Not less than a) I test per 500 m³, and b) 3 tests per visit c) I test per 250 mm layer per material type per 2000 m²	
Frequency for medium scale operations eg residential lots	Not less than a) I test per 250 m³, and b) 2 tests per visit, and c) I test per 250 mm layer per material type per 1000 m²	I test per 500 m ³ at selected source before transporting to site I test per 250 m ³ for using locally available material on site
Frequency for small scale operations using small or hand operated equipment eg backfilling, confined operations, trenches	Not less than a) I test per 2 layers per 50 m ² , and b) I test per 2 layers per 50 linear m	I test per 100 m ³ , at selected source before transporting to site I test per 50 m ³ , for using locally available material on site

17.10 Rock revetments

Rock revetments can be selected rock armour, rip rap or stone pitching.

Table 17.10 Rock revetments (McConnell, 1998).

Revetment type	Specification	Porosity	Thickness
Rip – Rap Rock armour	$D_{85}/D_{15} \sim$ 2 to 2.5 $D_{85}/D_{15} \sim$ 1.25 to 1.75		2 to 3 stones/rock sizes thick 2 rock sizes thick

Durability 17.11

- The degradable materials decompose when exposed to air, as they take on water.
- Sedimentary rocks are the most common rock types, which degrade rapidly, such as shales and mudstones.
- Foliated Metamorphic rocks such as slate and phyllites are also degradable.

Table 17.11 Indicators of rock durability.

Test	Strong and durable	Weak and non durable – Soil like	
	Rock like behaviour in long term	Soil like behaviour in the long term	
Point load index	>2 MPa	< I MPa	
Free swell		>5%	
Slake durability test		<60	
Jar slake test	_ >6	<2	
Los angeles abrasion		>40%	
Weathering	Fresh to slightly weathered	Extremely weathered	
RQD	>50%	<25%	

Several of the above indicators should be in place before classed as a likely non durable material.

17.12 Durability of pavements

- The pavement material is usually obtained from crushed aggregate.
- The wearing and base courses would have a higher durability requirements than the sub base.

Table 17.12 Durability requirements for a pavement.

Parameter	Wearing course	Base	Sub base	
	course	course	Upper	Lower
Water absorption	<2 %	<3%	<4 %	<5%
Aggregate crushing value	<25%	<30%	<35%	<40%
Los angeles abrasion	<30%	<35%	<40%	<45%
Sodium sulphate soundness	<10%	<15%	<20%	<25% Loss
Flakiness index	<35	<40	<40	<45
Ten percent fines (Wet)	> 150 kN	> 100 kN	>75 kN	>50 kN
Wet/Dry strength variation	<30%	<40%	<50%	<50%

17.13 Durability of breakwater

- The durability should be assessed on the material function.
- Primary armours have a higher durability requirements than a secondary armour.

Table 17.13 Durability requirements for a breakwater.

Parameter	Stone core	Stone armour		Comments
		Secondary	Primary	
Rock weathering	DW	DW/SW	SW/FR	Field assessment
RQD	>50%	>75%	>90%	for suitability
Joint spacing	>0.2 m	>0.6 m	>2.0 m	,
Water absorption	< 5 %	<2 %	<1%	Control testing
Aggregate crushing value	>25%	>20%	>15%	J
Uniaxial compressive strength	> 10 MPa	>20 MPa	>30 MPa	
Los angeles abrasion	<40%	<30%	<20%	
Magnesium sulphate soundness	<15%	<10%	<5% Loss	
Nominal rock sizing	> $100 kg$	> 500 kg	> 1000 kg	

17.14 Compaction requirements

- The placement density and moisture content depends on the material type and its climatic environment.
- Material with WPI > 2200 are sensitive to climate, and can wet up or dry back, if compacted at OMC and MDD. This results in a change of density and moisture content with an accompanying volume changes.

Table 17.14 Acceptance zones for compaction.

Property	Typical application	Density (wrt MDD)	Moisture content
Shear strength – High Permeability – Low	Pavement Dams, Canals	High at or > MDD MDD, but governed by placement moisture content	Low, at or below OMC High, at or above OMC
Shrinkage – Low	General embankment fill in dry environments	Low but >90% MDD	At EMC
Swelling – Low	General embankment fill in wet environments	Low but > 90% MDD	At EMC

- EMC Equilibrium Moisture Content.
- WPI Weighted Plasticity Index.

17.15 Earthworks control

• Earthworks is controlled mainly by end – result specifications, ie measuring the relative compaction.

Other measures may also be used as shown in the Table.

Table 17.15 Earthworks control measures.

Method	Measurement	Typical value	Comment
Relative Compaction (RC)	Insitu density and maximum dry density	Trenches : RC 90% Subgrade RC > 95% Pavements RC > 98%	This can be an expensive process due to the large number of tests required
Method specification	Equipment $+$ Lift thickness $+$ No. of passes	250 mm 5 No. passes	Useful in rocky material
Degree Of Saturation (DOS)	Density, Moisture content and specific gravity	Base DOS < 70% Sub – base DOS < 80% Subgrade DOS ~ 95%	Near OMC
Modulus	Direct eg plate load test	Base E > 400 MPa Sub – base E > 200 MPa Rocky subgrade E > 100 MPa	Useful in rocky material

17.16 Typical compaction requirements

The minimum compaction requirements depends on the type of layer, thickness, operating area, proximity to services/structures and equipment used.

Table 17.16 Typical compaction requirements.

Type of construction			% Standard compaction	Placement moisture content
Roads and rail	Heavily loaded pavement	Base	>100%	Dry of OMC, DOS < 70%
	Lightly loaded pavement	Subbase	>98 %	Dry of OMC, DOS < 80%
	Subgrade	WPI < 2200	>95%	OMC
	General embankment fill	WPI < 2200	>90%	OMC
	Subgrade	WPI > 2200 ,	92% to 98%	EMC
	General embankment fill ≤3 m	but < 3200	90% to 96%	EMC
	General embankment fill > 3 m		>90%	OMC
	Subgrade	WPI > 3200	92% to 98%	EMC
	General embankment fill ≤5 m	WPI > 3200	90% to 96%	EMC
	General embankment fill > 5 m	WPI > 3200	>90%	OMC
Structure	Subgrade	WPI < 2200	>98%	EMC
	General fill	WPI < 3200	92% to 98%	EMC to OMC
Walls	Backfill, in trenches		90% to 95%	OMC to dry of OMC
Dams	Small		94% to 100%	OMC to wet of OMC
	Large		>97%	OMC to wet of OMC
Landfills	Capping		88% to 94%	EMC
	Liners		94% to 100%	OMC to wet of OMC
Canals	Clay		90% to 95%	OMC to wet of OMC

- DOS Degree of Saturation.
- If placement at EMC not practical then equilibration period, stabilisation or zonation of material required.
- EMC can be wet of OMC for climates with rainfall >1000 mm, but dry of OMC for rainfalls <500 mm.

17.17 Compaction layer thickness

- The compaction layer thickness depends on the material type and equipment being used. The operating space for equipment also needs consideration.
- There is a "compact to 200 mm thickness" fixation in many specifications. This assumes only light equipment is available and clay material.

Table 17.17 Compaction layer thickness.

Equipment size	Material type			
	Rock fill	Sand & Gravel	Silt	Clay
Heavy (>10 tonne) Light (<1.5 tonne)	1500 mm 400 mm	1000 mm 300 mm	500 mm 250 mm	300 mm 200 mm

- Above assumes appropriate plant eg sheepsfoot roller for clays and grid rollers for rock.
- Light equipment typically required behind walls, over or adjacent to services, and in trenches.

17.18 Achievable compaction

- The compaction achievable depends on the subgrade support below.
- Lab CBR values and/or specified compactions may not be achieved without the required subgrade support.
- Typical achievable compactions with respect to layer thicknesses are provided for a firm clay.

Table 17.18 Achievable compaction for a granular material placed over a low strength support.

Relative compaction (Standard proctor)	Thickness required to achieve density		
	Minimum	ТурісаІ	
90%	100 mm	150 mm	
92%	150 mm	225 mm	
95%	200 mm	350 mm	
97%	300 mm	400 mm	
100%	400 mm	500 mm	
102%	500 mm	550 mm	

- Lower strength subgrade materials would require an increased thickness specified.
 - The significant depths of material for the support can only apply to granular and rocky material with a suitable compaction equipment.
 - Reduced thickness would require the use of a geotextile and/or capping layer to prevent punching and loss of the material being compacted into the soft support.

Rock mass classification systems

18.1 The rock mass rating systems

Rock Mass Rating systems are used to classify rock and subsequently use this
classification in the design of ground support systems. A few such ratings are
provided below.

Table 18.1 Rock mass rating systems.

Rock mass rating system	Key features	Comments	Reference
Terzaghi's Rock classification	7 No. Classifications of in situ rock for predicting tunnel support from Intact, stratified, moderately jointed, blocky and seamy, crushed, squeezing and swelling. Method did not account for similar classes could having different properties	One of the first rock mass classifications	Terzaghi, 1946
Rock structure Rating (RSR)	Quantitative method that uses Parameter A — Geological structure Parameter B — Joint pattern and Direction of drive Parameter C — Joint condition and Groundwater	Specifically related to tunnels	Wickham et al., 1972
Rock mass rating (RMR) or geomechanics classification	Quantitative method that uses	Based on the RMR classification one can determine: Average stand up time, cohesion and friction angle of the rock mass	Bieniawski, 1973 and 1989
Q System or Norwegian Geotechnical institute (NGI) Method	Quantitative method that uses Rock quality designation Joint set number joint roughness number Joint alteration number Joint water factor Stress reduction factor	The log scale used provides insensitivity of the solutions to any individual parameter, and emphasizes the combined effects. Extensive correlations	Barton et al., 1974

- Methods developed from the need to provide on site assessment empirical design of ground support based on the exposed ground conditions.
- Relationships exist between the various methods.
- Only the 2 main classification systems in use are discussed further. These are the Q and RMR Systems.

18.2 Rock mass rating system - RMR

- The classes provided in the table below are the final output. The derivation of that rating is provided in the subsequent tables.
- This RMR class provides the basis for strength assessment and support requirements.

RMR class no.	Description	Rating
1	Very good rock	100–81
II	Good rock	80–61
III	Fair rock	60 -4 1
IV	Poor rock	40–21
V	Very poor rock	<20

Table 18.2 Rock mass classes (Bieniawski, 1989).

18.3 RMR system - strength and RQD

- The strength is assessed in terms of both the UCS and Point Load index strengths. A conversion of 25 is assumed, however this relationship can vary significantly for near surface and soft rock. Refer Chapter 6.
- The RQD use the standard classification of poor (<25%) to excellent (>90%).

Table 18.3	Effect of strength	and ROD	(Bieniawski.	1989).

Parameter			Range	of values				
Strength of rock	Point – Load strength index, MPa	>10 MPa intact	4–10	2–4	I-2		For this low range – UG preferred	
	Uniaxial compressive strength (UCS), MPa	>250 MPa	100–250	50-100	25–50	5–25	I-5	<1
	Rating	15	10	7	4	2	1	0
Drill core quality RQD, %		90-100	75–90	50-75	25–50		<25	
	Rating	20	17	13	8		3	

18.4 RMR system - discontinuities

• The discontinuity rating shows it to be the most more important parameter in evaluating the rock rating.

Persistence is difficult to judge from borehole data, and needs to be reassessed during construction.

Table 18.4 Effect of discontinuities (Bieniawski, 1989).

Parameter	Range of values						
Discontinuity	Spacing Rating	>2 m	0.6–2 m 15	200–600 mm 10	60–200 mm 8	<60 mm	
Discontinuity condition	Surfaces	Very rough 6	Rough 5	Slightly rough	Smooth I	Slickenslided 0	
	Persistence	< l m 6	I–3 m 4	3–10 m 2	10–20 m I	>20 m 0	
	Separation	None 6	<0.1 5	0.1–1 mm 4	I – 5 mm I	>5 mm 0	
	Infilling (Gouge)	None 6	Hard filling <5 mm 4	Hard filling >5 mm 2	Soft filling <5 mm thick 2	Soft filling > 5 mm	
	Weathering	FR 6	SW 5	MW 3	HW I	XW 0	
	Rating	30	25	20	10	0	

18.5 RMR - groundwater

The groundwater flow would be dependent on the discontinuity (eg persistence and separation).

Table 18.5 Effect of groundwater (Bieniawski, 1989).

Parameter	values					
Groundwater	Inflow per 10 m tunnel length (m)	None	<10	10–25	25–125	>125
	Joint water pressure/ Major principal axis	0	<0.1	0.1–0.2	0.2–0.5	>0.5
	General conditions Rating	Completely dry	Damp 10	Wet 7	Dripping 4	Flowing 0

18.6 RMR - adjustment for discontinuity orientations

The discontinuity arrangement effect is based on the type of construction.

Table 18.6 Rating adjustment for discontinuity orientations (Bieniawski, 1989).

Parameter			Range of values					
Strike and dip of discontinuities	Tunnels and mines	0	-2	−5	-19	-12		
	Foundations	0	-2	−7	-15	-25		
	Slopes	0	-5	−25	-50	-60		

18.7 RMR - application

The classes and its meaning are provided in the table below.

Table 18.7 Meaning of rock mass c	classes (Bieniawski,	1989).
-----------------------------------	----------------------	--------

RMR class no.	Average stand up time	Rock mass strength				
		Cohesion of rock mass, kPa	Friction angle (deg)			
I	20 yr for 15 m span	>400	>45			
II	I yr for 10 m span	300 -4 00	35 -4 5			
III	I wk for 5 m span	200-300	25-35			
IV	10 h for 2.5 m span	100-200	15-25			
V	30 min for 1 m span	<100	< 15			

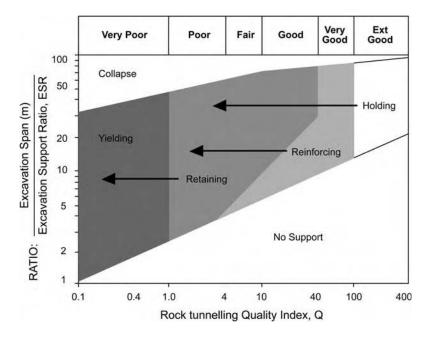


Figure 18.1 Support function (Kaiser et al., 2000).

18.8 RMR - excavation and support of tunnels

- The classes and its application to tunnel design are provided in the table below.
 - 20 mm diameter fully grouted rock bolts assumed.

Table 18.8 Guidelines for excavation and support of 10 m span rock tunnels using RMR classes (after Bieniawski, 1989).

RMR class	Excavation			Support		
no.		Ro	ock bolts	Sł	otcrete	Steel sets
		Location	Length × Spacing	Location	Thickness	
I	Full face. 3 advance	Ge	nerally no support	required e	except spot bol	lting
II	Full face. I-1.5 m advance. Complete support 20 m from face	Locally. In Crown with occasional wire mesh	$3 \text{ m} \times 2.5 \text{ m}$	Crown where required	50 mm	None
III	Top heading and bench. 1.5–3 m advance in top heading. Commence support after each blast. Complete support 10 m from face	Systematic bolts with wire mesh in crown	$4\text{m}\times\text{I.52}\text{m}$	Crown sides	50–100 mm 30 mm	None
IV	Top Heading and bench 1.0–1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face	Systematic bolts with wire mesh in crown and walls	4–5 m \times 1–1.5 m	Crown sides	100–150 mm 100 mm	Light to medium ribs spaced 1.5 m where required
٧	Multiple drifts 0.5–1.5 m advance in top heading. Install support concurrently with excavation. Shotcrete as soon as possible after blasting	Systematic bolts with wire mesh in crown and walls. Bolt invert	$5-6 \text{ m} \times 1-1.5 \text{ m}$	Crown sides face	150–200 mm 150 mm 50 mm	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert

18.9 Norwegian Q system

- The Rock Mass Quality Q values is based on a formula with the relationship shown in the table.
- The Q values are then used to predict rock support design.
- $Qc = Q \times UCS/100$.
- Unconfined Compressive Strength = UCS.
- The tables that follow are based principally on the 1974 work but with a few later updates as proposed by Barton.

Table 18.9 Norwegian Q system (Barton et al., 1974).

Parameter	Symbol	Description
Rock mass quality Rock quality designation Joint set number	Q=(I RQD J _n	$RQD/J_n) \times (J_r/J_a) \times (J_w/SRF)$ $(RQD/J_n) = Relative Block Size: Useful for distinguishing massive, rock bursts prone rock$
Joint roughness number Joint alteration number	J _r J _a	(J_r/J_a) = Relative Frictional strength (of the least favourable joint set or filled discontinuity)
Joint water factor Stress reduction factor	J _w SRF	$(J_w/SRF) = Relative effects of water, faulting, strength/stress ratio, squeezing or swelling (an "active" stress term)$

18.10 Relative block size

- The relative block size is based on the RQD and the Joint set number.
- Number value based on RQD \geq 10.

Table 18.10 Relative block size (Barton et al., 1974).

Parameter/symbol	Description		Number value
	Quality	RQD value	
Rock	Very poor	0%-10%	10
Quality	Very poor	10%–25%	15,20,25
Designation	Poor	25%–50%	30, 35, 40, 45, 50
RQĎ	Fair	50%–75%	55, 60, 65, 70, 75
-	Good	75%–90%	80, 85, 90
	Excellent	90%–100%	95, 100
	Joint set number	Joint randomness	
oint sets	No or few joints	Massive	0.5-1.0
Number	One		2.0
J_n	One	+random	3.0
	Two		4.0
	Two	+random	6.0
	Three		9.0
	Three	+random	12
	Four or more	+random, heavily jointed earth-like	15
	Crushed rock	• •	20

- RQD in intervals of 5.
- RQD can be measured directly or obtained from volumetric joint count.
- For tunnel intersections use $3.0 \times J_n$.
- For portals use $2.0 \times J_n$.

18.11 RQD from volumetric joint count

• The RQD may also be assessed by the volumetric joint count.

Block sizes	Volumetric joint count (J _v) no./m ³		POD	POD quality
DIOCK SIZES	Range	Likely	RQD	RQD quality
Massive	≤I			
Large	I-3	≤4	100%	Excellent
Medium				
riedium	3–10		90%–100%	Excellent
Small		8–12	75%–90%	Good
Siliali	I0–30		50%–75% 25%–50%	Fair poor
		27–32	10%–25%	V
Very small	>30	32–35	0%-10%	Very poor

Table 18.11 Volumetric joint rock (adapted from Barton, 2006).

18.12 Relative frictional strength

The ratio of the joint roughness number and the alteration number represents the inter - block shear strength.

Table 18.12 Relative frictional strength from joint roughness and alteration (Barton et al., 1974).

Parameter/ symbol		Description					
	Rock wall contact	Micro-Surface		Macro-Surfa	Macro-Surface		
Joint roughness number J _r	Rock – wall contact and contact before 10 cm shear	Any Rough or irregular Smooth, Slickenslided Rough or irregular Smooth, Slickenslided		Discontinuous Undulating Undulating Undulating Planar Planar Planar	Undulating Undulating Undulating Planar Planar		
	None when sheared		ains minera ck – wall co	ls or crushed zone thick ontact	enough to	1.0	
	Rock wall contact	Particles	Filling	Fillings type	ϕ_r		
Joint alteration number J _a	No mineral fillings, only coatings	non softening, impermeable Si Unaltered joint walls, Sa		Quartz Surfacing staining only Sandy particles, clay free disintegrated rock	>35° 25–35° 25–30°	0.75 1.0 2.0	

(Continued)

Table 18.12 (Continued)

Parameter/ symbol			Description					
	Rock wall contact	Particles	Filling	Fillings type	ϕ_r			
No mineral fillings, only coatings		Slightly altered joint walls, non softening mineral coatings Non softening		Silty or sandy - clay coatings, small clay fraction Low friction clay mineral coatings ie Kaolinite, mica	20–25°	3.0		
		Softening			8–16°	4.0		
				Sandy particles, clay – free disintegrated rock	25–30°	4.0		
Joint alteration	Thin mineral	Strongly over consolidate softening fill		clay mineral (continuous, but <5 mm thickness)	16–24°	6.0		
number J _a	number fillings.		r low olidation,	clay mineral fillings (continuous, but <5 mm thickness)	12–16°	8.0		
	10 cm shear	Depends of to water a swelling cla	nd % of	Swelling – clay fillings ie montmorillonite (continuous, but				
		particles	,	<5 mm thickness)	6–12°	8–12		
		Zones or I	oands	Disintegrated or crushed rock and clay	6–24°	6, 8 or 8–12		
	No rock wall contact when sheared (thick	Zones or l small clay t (non softe	fraction	Silty or sandy clays	6–24°	5.0		
	mineral fillings)		Thick continuous zones or bands of clay		10,13 or 13–20			

18.13 Active stress - relative effects of water, faulting, strength/stress ratio

- The active stress is the ratio of the joint water reduction factor and the stress reduction factor.
- The joint water reduction factor accounts for the degree of water seepage (Table 18.13).

18.14 Stress reduction factor

- The stress reduction factor is a measure of (Table 18.14):
 - The loosening load where excavations occur in shear zones and clay bearing rock,

Table 18.13 Joint water reduction factor (Barton et al., 1974).

Flow	Joint flow	Approx. water pressure (kPa)	J _w value
Dry excavations or minor inflow	ie <5 L/min locally	<100	1.0
Medium inflow or pressure	Occasional outwash of joint fillings	100–250	0.66
Large inflow or high pressure in competent rock	With unfilled joints	250-1000	0.5
Large inflow or high pressure	Considerable outwash of joint fillings		0.33
Exceptionally high inflow	Or water pressure at blasting, decaying with time Or water pressure continuing without noticeable delay	>1000	0.2–0.1 0.1–0.05

Table 18.14 Stress reduction factor (Barton et al., 1974 with updates).

Rock type		Zone characteristics					SRF
Nock type	N	Veakness zones	Material in zone			Depth	value
Weakness zones intersecting excavations which may cause loosening of rock mass	Single Single Multiple shear zones, loose surrounding rock Single Shear zones		Chemically disintegrated rock		Any ≤50m >50m	10 5 2.5	
when tunnel is excavated			No clay			Any ≤50m >50m Any	7.5 5.0 2.5 5.0
	Stress				UCS/σ ₁	$\sigma_{\varphi}/\sigma_{c}$	
Competent rock, rock stress problems	Low Medium High	Near surface, open joints favourable stress condition very tight structure. Usually favourable to stability, may be unfavourable for wall stability moderate slabbing after > 1 hour in massive rock Slabbing and rock bursts after a few minutes in massive rock		<0.01 0.01- 0.3 0.3-0.4 0.5-0.65 0.65-1	2.5 I 0.5–2 5–50 50– 200 200– 400		
Squeezing rock, plastic flow of incompetent rock under the influence of high rock pressure	Mild squeezing rock pressure Heavy squeezing rock pressure			I–5 >5	5–10 10–20		
Swelling rock, chemical swelling activity depending on pressure of water		elling rock pressure welling rock pressure	!				5–10 10–15

- Squeezing loads in plastic incompetent rock, and
- Rock stresses in competent rock.
- Major and minor principal stresses σ_1 and σ_3 .

18.15 Selecting safety level using the Q system

• The excavation support ratio (ESR) relates the intended use of the excavation to the degree of support system required for the stability of the excavation.

Table 18.15 Recommended ESR for selecting safety level (Barton et al., 1974 with subsequent modifications).

Type of excavation	ESR
Temporary mine openings	2–5
Permanent mine openings, water tunnels for hydropower, pilot tunnels	1.6–2.0
Storage caverns, water treatment plants, minor road and railway tunnels, access tunnels	1.2–1.3
Power stations, major road and railway tunnels, portals, intersections	0.9–1.1
Underground nuclear power stations, railway stations, sport and public facilities, factories	0.5–0.8

18.16 Support requirements using the Q system

- The stability and support requirements are based on the Equivalent Dimension (D_e) of the excavation.
- $D_e = Excavation Span, diameter or height/ESR.$

Table 18.16 Support and no support requirements based on equivalent dimension relationship to the Q value (adapted from Barton et al., 1974).

Q value	Equivalent dimension (D _e)	Comments
0.001	0.17	Support is required above the D _e
0.01	0.4	value shown. No support is required
0.1	0.9	below that value. The detailed
1	2.2	graph provides design guidance on
10	5.2	bolts spacing and length, and
100	14	concrete thickness requirements
1000	30	•

18.17 Prediction of support requirements using Q values

Additional details as extracted from Barton's 2006 graphs are presented below.

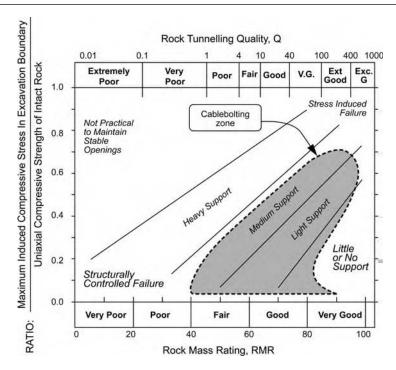


Figure 18.2 Cable bolt support (Hutchinson and Diederichs, 1996).

Table 18.17 Approximate support required using Q value (adapted from Barton et al., 1974).

		-	_					-	
Q Value	< 0.01	0.01-0.1	0.1-1.0	1–10		10-1	00	100-1000	
Describtion		Poor		Poor	oor Fair		Good		od
Description	Exception	Extremely	Very	roor	ruii	OK/V	'ery	Ext./Exc.	
Equivalent span/			No rock support						
height	0.15	0.25-0.8	0.8–2	2–5		5–1	2	12–30	
4–100					4 <	Spot b	olting	> 100	
1.5–70			0.15 <-	Systema	atic bolting	> 50	0		
0.3–60		0.3 < Bolts and shotcrete> 60							
0.15–50	0.15 <	Bolts and fibercrete> 50							
3–40	3 < Cast	concrete lini	ng> 40						

18.18 Prediction of bolt and concrete support using Q values

 Additional details as extracted from Barton's 2006 graphs are presented below.

Table 18.18 Approximate support required using Q value (adapted from Barton at al., 1974).

Q Va	lue	< 0.01	(0.01 0.01-0.1 0.1-1.0 1-		10	0 10–100		100-1000	
Daggiba	i		Poor		Poor	Fair		Go	od
Descript	ion	Exception	Extremely	Extremely Very		OK/	very	Ext./Exc.	
Bolt	Shotcreted		1.0-1.3 m	1.3–1.7 m	1.7–2	2.3 m	2.3–3	3.0 m	N/R
spacing	No shotcrete			1.0-1.3 m	1.3–2	2.0 m	2.0-4	ł.0 m	N/R
Typical sh thicki		300 mm	250 mm	150 mm	120	mm	90 r	nm	N/R
		I< I50	mm shotcr	ete> 50					
Span or	Bolt length	I<	120 mm sh	otcrete	> 70				
height (m) /ESR	(m)		I < 90 mm shotcrete				-> 80		
			1.5 < 50 mm shotcrete -			> 60			
I	1.2	150 mm	I I 0 mm	75 mm					
2	1.5	200 mm	140 mm	90 mm	45	mm			
5	2.4	250 mm	175 mm	120 mm	60	mm	40	mm	
10	3.0	300 mm	225 mm	150 mm	90	90 mm		mm	
20	5		300 mm	210 mm	120 mm		50	mm	N/R
30	7			300 mm	135 mm		135 mm 75 mm		
50	П				150	mm	100	mm	
100	20								
Steel	ribs	0.5 m	0.5-I.0 m	1.0–2.5 m	2.5-	-5 m		N	/R

- Barton et al.'s research was primarily for tunnel support requirements. Since
 that time many relationships to other parameters have been developed. Many
 practitioners have suggested this is beyond its initial scope. However as in
 many engineering relationships it does provide useful initial guidance to other
 parameters.
- Some of these relationships are presented in Table 18.18.

18.19 Prediction of velocity using Q values

- The prediction of the P wave velocity based on the Q value is shown in the Table 18.19.
- This is for hard rock, near the surface.

Rock mass quality, Q value	<0.01	0.01-0.1	0.1–1.0	1–10	10-100	100-1000
Doggwintion	Poor			Poor/Fair	G	ood
Description	Exception.	Extremely	Very		OK/very	Ext./Exc.
P – wave velocity V _P (km/s)	<1.5	1.5–2.5	2.5–3.5	3.5-4.5	4.5–5.5	
RQD %	<5%	5–10%	10-40%	40–80%	80–95%	>95%
Fractures/metre	>2	.7	27–14	14–7	7–3	<3

Table 18.19 P - wave velocity estimate using Q value (adapted from Barton, 2006).

18.20 Prediction of lugeon using Q values

- The Lugeon values provide an indication of the rock permeability.
- Chapter 8 related the Lugeon value to the rock jointing characteristics a key parameters in the Q value assessment see Table 18.20.

$Qc = Q \times UCS/100$	< 0.001	0.01-0.1	0.1-1.0	1-10	10–100	100-1000
		Poor		Poor/Fair	Good	
Description	Exception.	Extremely	Very		OK/very	Ext./Exc.
,	Major fault	Minor	fault	Hard porous	Hard jointed	Hard massive
Typical lugeon value	1000-100	100–10	10–1	I-0.I	0.1-0.01	.01–0.001
Lugeon value at depth						
1000 m	0.01-0.1	~0.	01	0.01-0.001	0.01-0.001	
500 m	0.1-1.0	0.01-	-0. I	0.1-0.01	0.01-0.001	
100 m	1.0-10	0.1-	1.0	0.1-0.01	0.01-0.001	
50 m	10-100	1.0–10		1.0-0.1	0.1-0.01	0.01–0.001
25 m	100-1000	10-	100	~1.0	0.1-0.01	

Table 18.20 Average lugeon estimate using Qc value (adapted from Barton, 2006).

18.21 Prediction of advancement of tunnel using Q values

- The tunnel advancement is proportional to the rock quality.
- The Q value has therefore been used by Barton to estimate the average tunnel advancement.
- The TBM rates decline more strongly with increasing tunnel length.

Rock mass quality, Q value	<0.01	0.01-0.1	0.1–1.0	1–10	10–100	100–1000
	Poor			Poor/Fair	Good	
Description	Exception.	Extremely	Very		OK/Very	Ext./Exc.
	Delays du	e to support	required		Lack	of joints
Tunnel boring machine	≤10	10-40	40–200	200-140	140-80	80–40 m/wk
Drill and blast	≤10	10–25	25–50	50-120	120 :	m/week

Table 18.21 Average tunnel advancement estimate using Q value (adapted from Barton, 2006).

18.22 Relative cost for tunnelling using Q values

- The lower quality rock would require greater tunnel support and hence costs.
- The Q value has therefore been used by Barton to estimate the relative tunnelling cost.

Rock mass quality, Q value	<0.01	0.01-0.1	0.1-1.0	1–10	10–100	100-1000	
		Poor		Poor/Fair	Good		
Description	Exception. Extremely Very			roor/rair	OK/Very	Ext./Exc.	
	Delays	due to support	required		Lack	of joints	
Relative cost	>1100%	1100-400%	400–200%	200-100%	100%		
Relative time	>900%	900–500%	500-150%	150-100%	100%		

Table 18.22 Relative cost estimate using Q value (adapted from Barton, 2006).

18.23 Prediction of cohesive and frictional strength using Q values

- Barton used the Q value to estimate the rock strength based on the relationships shown in the Table below.
- The Hoek Brown failure criterion can be used to directly assess specific shear strength situations based on the relationship major (σ_1) and minor (σ_3) principal stresses, and other material characteristics as shown in Figure 9.2. (Hoek et al., 2002)
- $\sigma'_1 = \sigma'_3 + \sigma'_{ci} (m_b \sigma'_3 / \sigma'_{ci} + s)^a$
- a = 0.5 for hard rock

		<u> </u>
Strength component	Relationship	Relevance
Cohesive strength (CC)	$CC = (RQD/J_n) \times (I/SRF) \times (UCS/100)$	Component of rock mass requiring concrete, shotcrete or mesh support.
	$FC = \tan^{-1} \left(J_r / J_a \right) \times \left(J_w \right)$	Component of rock mass requiring bolting.

Table 18.23 Average cohesive and frictional strength using Q value (adapted from Barton, 2006).

The Geological Strength Index (GSI) was introduced by Hoek et al. (1995) to allow for the rock mass strength of different geological settings. The GSI can be related to rock mass rating systems such as the RMR or Q systems.

18.24 Prediction of strength and material parameters using **Q** Values

The interrelationship between the Q values and the various parameters provide the following values.

Table 18.24	Typical strength	values using	O value	(adapted from	Barton, 2006).

RQD	Q	UCS (MPa)	Qc	Cohesive strength (CC) (MPa)	Frictional Strength (FC)°	V _p (km/s)	E _{mass} (GPa)
100	100	100	100	50	63	5.5	46
90	10	100	10	10	45	4.5	22
60	2.5	55	1.2	2.5	26	3.6	10.7
30	0.13	33	0.04	0.26	9	2.1	3.5
10	0.008	10	0.0008	0.01	5	0.4	0.9

18.25 Prediction of deformation and closure using Q values

Barton used the Q value to estimate the rock deformation based on the relationships shown in the Table below.

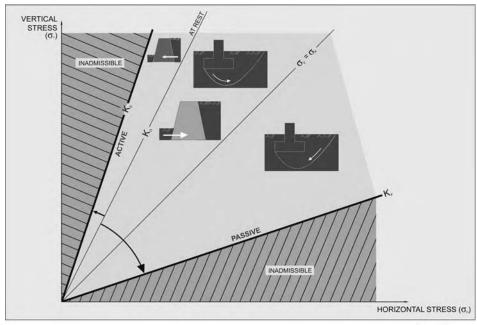
Table 18.25 Typical deformation and closure using Q value (adapted from Barton, 2006).

Movement	Relationship
Deformation, Δ (mm) Vertical deformation, $\Delta_{\rm v}$ Horizontal deformation, $\Delta_{\rm h}$ At Rest pressure, $K_{\rm o}$	$\begin{array}{l} \Delta = \text{Span (m)/Q} \\ \Delta_{v} = \text{Span (m)/(100 Q)} \times \sqrt{(\sigma_{v}/\text{UCS})} \\ \Delta_{h} = \text{Height (m)/(100 Q)} \times \sqrt{(\sigma_{h}/\text{UCS})} \\ \text{K}_{o} = \text{Span (m)/Height (m)}^{2} \times (\Delta_{h}/\Delta_{v})^{2} \end{array}$

Figure 18.3 Hoek - brown criteria.

18.26 Prediction of support pressure and unsupported span using Q values

The support as recommended by Barton et al. (1974) was based on the following pressures and spans.


Table 18.26 Approximate support pressure and spans using Q value (adapted from Barton, 2006).

Rock mass quality, Q value	< 0.01	0.01-0.1	0.1-1.0	1–10	10–100	100–1000
Support pressure (kg/sq cm)	5–30	3–15	I-7	0.5–3	0.1–2	0.01-0.2
Unsupported span (m)	≤0.5 m	0.5–1.0 m	I.0-2 m	2–4 m	4–12 m	> 12 m

Earth pressures

19.1 Earth pressures

- Retaining walls experience lateral pressures from:
 - The earth pressures on the wall.
 - Water Pressure.
 - Surcharges above the wall.
 - Dynamic Loading.
 - Horizontal Earth Pressure = σ'_h . Vertical Earth Pressure = σ'_v .

Ground Stresses

Figure 19.1 Vertical and horizontal stresses.

- $K_o = \sigma_b'/\sigma_v'$.
- Water pressures can have a significant effect on the design of the walls.

Table 19.1 Earth pressures.

Туре	Movement	Earth pressure coefficient	Stresses	Comment
Active At rest Passive	Soil → Wall None Wall → Soil	$\begin{aligned} &K_a < K_o \\ &K_o \\ &K_p > K_o \end{aligned}$	$\sigma_{h}' < \sigma_{v}' $ $\sigma_{h}', \sigma_{v}' $ $\sigma_{h}' > \sigma_{v}' $	$K_a = I/K_p$ Fixed and unyielding Large strains required to mobilise passive resistance

19.2 Earth pressure distributions

- The earth pressure depends primarily on the soil type.
- The shape of the pressure distribution depends on the surcharge, type of wall, restraint and its movement.

Table 19.2 Types of earth pressure distribution.

Type of wall	No. of props	Example	Pressure distribution	Comments
Braced	Multi > 2	Open strutted trench	Trapezoidal/ Rectangular	Fully restrained system H > 5 m
Semi flexible	Two	Soldier pile with two anchors	Trapezoidal/ Rectangular/ Triangular	Partially restrained system $H < 5 \text{ m}$
Flexible system – no bracing	One None	Soldier pile with one anchor Sheet piling, Gravity wall	Triangular	Shape changes depends on type of wall movement
Any with uniform surcharge load at top of wall	Any	Concrete platform at top of wall with 20 kPa traffic	Rectangular	Added to triangular or other pressure distribution
Any with load offset at top of wall	Any	Point load – pad footing Line load – narrow strip footing Strip load – strip footing	Irregular with maximum near top half of wall	Based on the theory of elasticity. This is added to the other loads
During wall construction	Any	Compaction induced pressure distribution	Passive line at the top with vertical drop to the active line	Applies when a heavy static or dynamic construction load is within 1/2 height of wall

- A triangular distribution while used for the analysis of any non-braced wall, strictly applies only to walls with no movement (at rest condition) and free to rotate about the base.
- When rotation occurs about the top and/or sliding (translating) occurs, then the shape of the triangular distribution changes with arching near the top.

This effect is accounted for by applying a higher factor of safety to overturning as the force is not applied one-third up from the base.

19.3 Coefficients of earth pressure at rest

- The coefficient of at rest earth pressure (K_o) is based on negligible wall movement.
- For lightly overconsolidated clays $K_o \sim 1.0$.
- For highly overconsolidated (OC) and swelling clays $K_0 \gg 1$.
- As plastic clays may have high swelling pressures, this material should be avoided where possible.
- The OC formula shown for granular soils and clays produce the same at rest value values for $\phi = 30^{\circ}$. Below this friction value the clay $K_{o (OC)}$ value is higher, especially for low friction angles.

Table 19.3 Relationships for at rest earth pressure coefficients (part from Brooker and Ireland, 1965).

Soil type	Relationship
Normally consolidated	$\begin{array}{l} K_{o\;(NC)} = I - sin\; \varphi \; (Granular\; soils) \\ K_{o\;(NC)} = 0.95 - sin\; \varphi \; (Clays) \\ K_{o\;(NC)} = 0.4 + 0.007\; PI \; (PI = 0-40\%) \\ K_{o\;(NC)} = 0.64 + 0.001\; PI \; (PI = 40-80\%) \end{array}$
Overconsolidated	$K_{o (OC)} = (I - \sin \phi) OCR^{\sin \phi}$ (Granular soils) $K_{o (OC)} = (I - \sin \phi) OCR^{1/2}$ (Clays)
Elastic	$K_o = v/(1-v)$

- ϕ angle of wall friction.
- NC normally consolidated.
- OC overconsolidated.
- ν Poisson ratio.
- PI plasticity index.
- Values applied in above relationship presented below.

19.4 Variation of at rest earth pressure with OCR

- The at-rest earth pressure varies with the plasticity index and the overconsolidation ratio (OCR).
- The formulae in Table 19.3 are used to produce Table 19.4.
- The table illustrates that the at rest pressure coefficient value can change significantly with change of OCR.
- * Approximate "Equivalent" Friction angle from cross calibration of elastic and friction angle formula to obtain K_o. Note the slight difference in friction angle using this method as compared to that presented in Chapter 5.

Table 19.4 Variation of (K_o) with OCR.

Material type	Parameter	Value	K_o for varying	overco	nsolidat	ion ratio	(OCR)	
			$\overline{\text{OCR} = 1 \text{ (N.C.)}}$	2	3	5	10	20
Sands and	Friction	25	0.58	0.77	0.92	1.14	1.53	2.05
gravels	angle	30	0.50	0.71	0.87	1.12	1.58	2.24
		35	0.43	0.63	0.80	1.07	1.60	2.38
		40	0.36	0.56	0.72	1.01	1.57	2.45
		45	0.29	0.48	0.64	0.91	1.49	2.44
Clays	Friction	10	0.78	1.10	1.35	1.74	2.46	3.47
-	angle	15	0.69	0.98	1.20	1.55	2.19	3.09
	J	20	0.61	0.86	1.05	1.36	1.92	2.72
		25	0.53	0.75	0.91	1.18	1.67	2.36
		30	0.45	0.64	0.78	1.01	1.42	2.01
Clays	Plasticity	0 (33)*	0.40	0.57	0.69	0.89	1.27	1.79
-	index	10 (29)	0.47	0.67	0.81	1.05	1.49	2.10
		20 (24)	0.54	0.76	0.94	1.21	1.71	2.42
		30 (20)	0.61	0.86	1.06	1.36	1.93	2.73
		40 (16)	0.68	0.96	1.18	1.52	2.15	3.04
		50 (15)	0.69	0.98	1.20	1.54	2.18	3.09
		60 (14.5)	0.70	0.99	1.21	1.57	2.21	3.13
		70 (14)	0.71	1.00	1.23	1.59	2.25	3.18
		80 (I3)	0.72	1.02	1.25	1.61	2.28	3.22

19.5 Variation of at rest earth pressure with OCR using the elastic at rest coefficient

- The at rest earth pressure for overconsolidated soils varies from K_o OCR^{sin ϕ} to K_o OCR^{1/2} for granular to cohesive soil respectively.
- These formulae are applied below using the K_o derived from elastic parameters, then subsequently using the formulae but an "equivalent" friction angle for the case of sands, gravels and rocks.
- Both formulae are used in the tabulation below to show an inconsistency at low Poisson ratio/high friction angle materials.

Table 19.5 Variation of (K_o) with OCR.

Material type	Poisson Formulae used		K_o for varying overconsolidation ratio (OCR)					
	ratio	for OCR	OCR = I (N.C.)	2	3	5	10	20
Rocks Rock/Gravels Gravel/Sand Sands	0.1 (63)* 0.2 (49) 0.3 (35) 0.4 (20)	$K_{o (OC)} = K_{o (NC)} OCR^{\sin \phi}$	0.11 0.25 0.43 0.67	0.21 0.42 0.64 0.84		0.46 0.84 1.07 1.14		2.37 2.37
Rocks Rock/Gravels Gravel/Sand Sands	0.1 (63)* 0.2 (49) 0.3 (35) 0.4 (20)	$K_{o (OC)} = K_{o (NC)} OCR^{1/2}$	0.11 0.25 0.43 0.67	0.16 0.35 0.61 0.94	0.19 0.43 0.74 1.16	0.25 0.56 0.96 1.49	0.35 0.79 1.36 2.11	0.50 1.12 1.92 2.98

(Continued)

		·- · ·
lable	19.5	(Continued)

Material type	Poisson Formulae used		$K_{ m o}$ for varying overconsolidation ratio (OCR)					
	ratio	for OCR	OCR = I (N.C.)	2	3	5	10	20
Clay - PI < 12% Clay - PI = 12-22% Clays - PI > 32% Undrained Clay	0.3 (35)* 0.4 (20) 0.45 (8) 0.5 (0)	$\begin{array}{l} K_{o (OC)} \\ = K_{o (NC)} \ OCR^{1/2} \end{array}$	0.43 0.67 0.82 1.00	0.94 1.16	0.74 1.16 1.42 1.73	1.49 1.83	2.11 2.59	2.98 3.67

- The strike out has been used to remove the discrepancy.
- * Approximate "Equivalent" Friction angle.

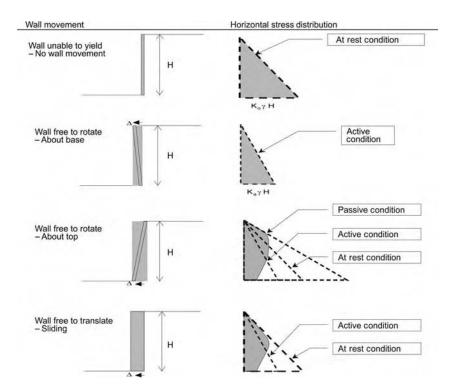


Figure 19.2 Lateral earth pressures associated with different wall movements.

19.6 Movements associated with earth pressures

- The active earth pressures (K_a) develop when the soil pushes the wall.
- The passive earth pressures (K_p) develop when the wall pushes into the soil.
- Wall movement is required to develop these active and passive states, and depends on the type and state of the soil.

Table 19.6 Wall movements required to develop the active and passive pressures (GEO, 1993).

Soil	State of stress	Type of movement	Necessary o	displacement
Sand	Active	Parallel to wall Rotation about base	0.001 H	0.1% H
	Passive	Parallel to wall Rotation about base	0.05 H >0.10 H	5% H >10% H
Clay	Active	Parallel to wall Rotation about base	0.004 H	0.4% H
	Passive	-	_	

- Due to the relative difference in displacements required for the active and passive states for the one wall the passive force should be suitable factored or downgraded to maintain movement compatibility.
- Above is for rigid walls, other wall types have other displacement criteria. Refer Chapter 23.
- Soil nail walls deform at the top.
- Reinforced soil walls deform at the base.

19.7 Active and passive earth pressures

- Active and passive earth pressures are based on some movement occurring.
- Rankine and Coulomb developed the earth pressure theories with updates by Caquot and Kerisel.
- Assumptions and relationship provided below.

Table 19.7 Earth pressure theories.

Theory	Rankine	Coulomb	Caquot and Kerisel	
Based on	Equilibrium of an element	Wedge of soil		
Failure surface	Planar	Planar	Log spiral	
Wall friction δ	$\delta = i : i = 0$ when ground surface is horizontal	8		
Pressure distribution	Increases linearly with depth	Provides limiting forces on the wall, but no explicit equivalent pressure distribution		
Resultant active force	At horizontal. At i when ground surface is sloping	δ to normal to back of wall δ to horizontal (wall with a vertical back).		
Active pressure		b and Caquot only at $\delta\!=\!0$. As eximately similar at higher φ va		
Resultant passive force	At horizontal. At i when ground surface is sloping	7		
Passive pressure	Similar only at	$\delta = 0$:Varies significantly for ϕ	o > 30°	

- i = slope of backfill surface.
- Passive pressures based on Coulomb Theory can overestimate passive resistance.
- Basic Rankine pressures are based on active pressure $K_a = (1 \sin \phi)/(1 + \sin \phi)$.
- Rankine Passive Pressure $(K_p) = 1/K_a$.
- Coulomb Theory includes wall friction angle, and slope of backfill.
- Active pressure increases considerably for a sloping backfill $i > 10^{\circ}$.
- Passive pressure decreases considerably for a sloping backfill i > 10°.

19.8 Distribution of earth pressure

- The wall pressure depends on the wall movement. For a rigid wall on a competent foundation the movement is reduced considerably.
- The Rankine earth pressure distribution is based on a triangular pressure distribution with the resultant force acting at 1/3 up from the base. This point of application can vary in some cases. Therefore calculations should allow for this possibility by either shifting the point of application or factoring the overturning moments accordingly.

Table 19.8 Distribution of earth pressure.

Type of wall foundation material	Backfill	Point of application of resultant force
Wall founded on soil	Horizontal, i = 0° Sloping at i upwards	0.33 H above base 0.38 H above base
Wall founded on rock	Horizontal, i = 0° Sloping at i upwards	0.38 H above base 0.45 H above base

- The triangular earth pressure distribution is not applicable for multi-propped/ strutted walls with little movement along its full height.
- Use of FS = 2.0 for overturning and 1.5 for sliding accounted for this possibility with previous approaches. Limit state procedures factoring strength only do not currently account for the above condition explicitly.

19.9 Application of at rest and active conditions

- While the concept of no wall movement suggests that the at-rest condition should apply, the application is not as self-evident. The cases below illustrate when the higher at rest earth pressure condition applies instead of the active case.
- Tied back walls may be considered rigid or non-rigid depending on the deflections. If the wall movement calculations (based on section modulus) show little to no deflections then the at rest condition should apply.
- Walls over designed (with high factors of safety) and based on the active earth pressure condition, may not deflect. The at rest condition must then be checked for stability.
- Some designers use a value average between the Ko and Ka conditions where uncertainty on the earth pressure condition exists.

Table 19.9 Wall types when the at rest condition applies instead of the active condition.

Earth pressure condition	Movement	Wall type
Active	Wall movement occurs	Sheet piles
At rest	No/Negligible wall movement	Cantilever with stiff basal stems Rigid counterfort walls Founded on rigid bases eg founded on strong rock or on piles Culvert wing walls Bridge abutments Basement walls Tanks

19.10 Application of passive pressure

• The passive pressure can provide a significant resisting force based on Rankine and Coulomb theories. However this pressure should be applied with consideration shown in the table below.

Table 19.10 Approaches to consider in application of the passive state.

Issue	Approach	Typical details	Comments
Wall movement incompatibility between the active and passive state	Reduction factor applied to the passive pressure	Reduction factor of 1/3	Approximately ½ of the passive stress would apply for ¼ of the strain.
Desiccation cracks ion front of wall	Passive resistance starts below the depth of the crackled zone	0.5 m cracked zone minimum (typical alpine temperate and coastal areas) to 3.0 m in arid regions	Cracked zone as a proportion of Active zone (H_a) varies from \sim I/3 of in temperate areas \sim ½ H_a in wet coastal areas \sim ¾ H_a in arid regions
Non triangular distribution for rotation about the top and sliding	Passive embedment ≥10% H	Wall is unlikely to move in sliding or about the base. Therefore a triangular active condition now applies with rotation about the base	The passive pressure is approximately 10 times the active pressure. Hence 10% H. Similar factors of safety (or partial factors) may then be used for both sliding and overturning. Refer Table 19.8 & Fig 19.2
Excavation or erosion in front of wall	Reduce passive resistance to that depth	No passive resistance for the top 0.5 m typically used	A heel below the middle or back third of wall can use the full passive resistance

19.11 Use of wall friction

- Coulomb theory considers the effect of wall friction, which reduces the pressure in the active state and increases the passive resistance.
- Application of wall friction to the design should have the following due considerations.

Table I	9.1	l Us	se of	wall	friction.
---------	-----	------	-------	------	-----------

Consideration	Value of wall friction, δ	Comment
Active state	0.67 ϕ maximum	0.5 φ for small movements
Passive state	0.5 ϕ maximum	0.33
Vibration	$\delta = 0$	Adjacent to machinery, railways, vehicular traffic causing vibration
Anchored walls	$\delta = 0$	Negligible movement to mobilise wall friction
Wall has tendency to settle	$\delta = 0$	Uncertainty on the effects of wall friction
Wall supported on foundation slab	$\delta = 0$	Example, cantilever reinforced concrete wall, where virtually no movement of soil relative to back of wall

- The magnitude of δ does not often significantly affect the value of the active force. However the direction is affected and can significantly affect the size of the wall bases.
- Avoid Coulomb values for $\delta > 0.5 \phi$.

19.12 Values of active earth pressures

- The log spiral surface approximates the active and passive failure surfaces rather than the straight line.
- The value of the active earth pressure coefficient (K_a) is dependent on the soil, friction angle and the slope behind the wall.

Table 19.12 Active earth pressure coefficients (after Caquot and Kerisel, 1948).

Angle of friction		Active earth pressure coefficient for various slope (i) behind wall		
Soil (ϕ)	Wall (δ)	i = 0°	i = 15°	i = 20°
20	0 2/3 φ φ = 20°	0.49 0.45 0.44	0.65 0.59 0.58	0.99 0.91 0.89
25	0 2/3 φ φ = 25°	0.41 0.36 0.35	0.51 0.46 0.40	0.58 0.56 0.50
30	$0 \ 2/3 \ \varphi \ \phi = 30^{\circ}$	0.33 0.29 0.28	0.41 0.35 0.33	0.46 0.39 0.37
35	$0 \ 2/3 \ \varphi \ \phi = 35^{\circ}$	0.27 0.23 0.22	0.32 0.28 0.27	0.35 0.30 0.28
40	$\begin{matrix} 0 \\ 2/3 \ \varphi \\ \varphi = 40^{\circ} \end{matrix}$	0.22 0.18 0.17	0.25 0.22 0.19	0.30 0.23 0.21

- $i = 0^{\circ}$ is usually considered valid for $i < 10^{\circ}$.
- An increase in the active coefficient of 1.5 to 3 times the value with a flat slope is evident.
- If the ground dips downwards, a decrease in K_a occurs. This effect is more pronounced for the K_p value.

19.13 Values of passive earth pressures

• A slope dipping away from the wall affects the passive earth pressure values.

Table 19.13 Passive earth pressure coefficients (after Caquot and Kerisel, 1948).

Angle of friction		Passive earth pressure coefficient for various slope (i) behind wall				
Soil (ϕ)	Wall (δ)	$i = -20^{\circ}$	i = −15°	i = 0°	i = +15°	i = +20°
20	0 1/3 φ 1/2φ	? ? ?	? 1.2 1.4	2.0 2.3 2.6	2.7 3.3 3.7	3.1 3.6 4.0
25	0	?	?	2.5	3.7	4.2
	1/3 φ	1.2	1.7	3.0	4.2	5.0
	1/2 φ	1.4	1.8	3.4	5.0	6.1
30	0	?	1.7	3.0	4.5	5.1
	1/3 φ	1.5	2.2	4.0	6.1	9.0
	1/2 φ	1.7	2.4	4.5	7.0	10
35	0	1.5	2.0	3.7	5.5	10
	1/3 φ	2.1	2.9	5.4	8.8	16
	1/2 φ	2.2	3.1	6.0	10	12
40	0	1.8	2.3	4.6	7.2	9
	1/3 φ	2.8	3.8	7.5	12	17
	1/2 φ	3.3	4.3	9.0	17	21

- $i = 0^{\circ}$ is usually considered valid for $i < 10^{\circ}$.
- An increase in the active coefficient of 1.5 to 3 times the value with a flat slope is evident.
- Conversely the values can half for 15° dipping slope.
- ? is shown when the interpolated values are outside the graph range provided.

Retaining walls

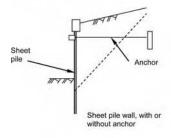
20.1 Wall types

- The classification of earth retention systems can be used to determine the type of analysis.
- Hybrid systems from those tabulated are also available.

Table 20.1 Classification for earth retention systems (adapted from O'Rouke and Jones, 1990).

Stabilization system	Туре	Examples
External	ln-situ	Sheet piles
	(Embedded)	Soldier piles
	,	Cast – in situ (slurry walls, secant and contiguous piles)
		Soil – cement
		Precast concrete
		Timber
	Gravity	Masonry
	•	Concrete
		Cantilever
		Countefort
		Gabion
		Crib
		Bin
		Cellular cofferdam
Internal	ln-situ	Soil nailing
		Soil dowelling
		Reticulated micro piles
	Reinforced	Metallic strip
		Wire mesh
		Geotextile
		Geogrid
		Organic inclusions

• The external walls may be braced / tied back or free standing walls.


20.2 Gravity walls

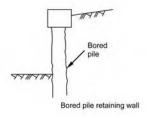
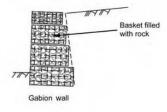
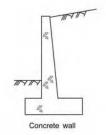
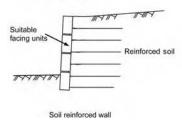

• Gravity or concrete walls tend to be economical for wall heights <3 m.

Table 20.2 Typical gravity wall designs.


Gravity wall type	Top width	Base width	Heights	Other design elements
Gravity masonry	300 mm (minimum)	0.4 H to 0.7 H	Common for $H = 2-3$ m Uneconomic for $H = 4$ m Rare for $H = 7$ m	0.1H to 0.2H base thickness I Horizontal to 50 Vertical face batter
Reinforced concrete	300 mm (minimum)	0.4 H to 0.7 H	Suitable for H < 7 m Counterforts for H > 5 m Counterfort spacing 2/3H but > 2.5 m	0.1H Base thickness I Horizontal to 50 Vertical face batter
Crib wall	0.5 H to 1.0 H	0.5 H to 1.0 H	Suitable for H <5 m	I Horizontal to 6 Vertical face batter
Gabion wall	0.5 m (minimum)	0.4 H to 0.6 H	Suitable for $H < 10 m$	I Horizontal to 8 Vertical face batter


a. Embeded walls



b. Gravity walls

c. Internal walls

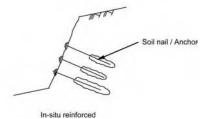


Figure 20.1 Type of walls.

- Reinforced soil walls are generally economical for walls >3 m.
- A face batter is recommended for all major walls in an active state. Movement forward is required for the active state. The face batter compensates for this effect.

20.3 Effect of slope behind walls

- The slope (α) behind the wall can have a significant effect on the wall pressures.
- The slope of the wall itself can also affect the design.
- The embedment (d) and slope (β) in front of wall can also have a significant effect on the passive wall pressures.

Table 20.3 Typical minimum wall dimension for various sloping conditions.

Sloping area	Effect on wall dimensions for various slopes			
$\alpha=$ slope behind the wall Vertical wall $\beta=0^{\circ}$	$\alpha < 10^{\circ}$ B \geq 0.5 H	$lpha \ge 10^\circ$ B \ge 0.6 H	$\alpha \ge 25^{\circ}$ B \ge 0.7 H	
$\alpha=$ slope behind the wall Wall with slope 6V: IH $\beta=0^{\circ}$	$\alpha < 10^{\circ}$ B \geq 0.4 H	$\begin{array}{c} \alpha \geq 10^{\circ} \\ \text{B} \geq \text{0.5 H} \end{array}$	$\alpha \ge 25^{\circ}$ B \ge 0.6 H	
$\begin{array}{c} \hline \\ \alpha = 0^{\circ} \\ \text{Vertical wall} \\ \beta = \text{slope in front of wall} \\ \end{array}$	$\begin{array}{l} \beta < 10^{\circ} \\ \text{B} \geq 0.5 \text{ H} \\ \text{d} = \text{I}\text{0}\% \text{ H or} \\ \text{0.5}\text{m} \text{ which ever} \\ \text{is the greater} \end{array}$	$\begin{array}{l} \beta \geq 10^{\circ} \\ \text{B} \geq \text{0.6 H} \\ \text{(10\% H or 0.5 m} \\ \text{which ever is the} \\ \text{greater)} + 300 \text{mm} \end{array}$	$\begin{array}{c} \beta \geq 25^{\circ} \\ \text{B} \geq 0.7 \text{ H} \\ \text{(10\% H or 0.5 m} \\ \text{which ever is the} \\ \text{greater)} + 600 \text{ mm} \end{array}$	

20.4 Embedded retaining walls

- The type of soil, load and surcharge determines the embedment depth.
- Propped walls would have reduced embedment requirements.
- The table below is based on the free standing wall height (H) and a nominal surcharge for preliminary assessment purpose only.

Table 20.4 Typical embedded wall details.

Type of wall	Loading	Typical embedment depth
Free cantilever	No surcharge or water	I.5H
	With surcharge or water	2.0H
	With surcharge and water	2.5H
Propped	No surcharge or water	0.5H
	With surcharge or water	1.0H
	With surcharge and water	1.5H

20.5 Typical pier spacing for embedded retaining walls

The type of soil and its ability to arch determines the pier spacing for embedded retaining walls.

- The table below is based on the pier Diameter (D).
- Sands and gravels assume some minor clay content.
- Without some clay content and where a high water table exist, the pier spacing would need to be reduced.

Table 20.5 Typical pier spacing.

Type of material	Strength	Typical pier spacing
Intact rock	High	>5D
	Low	5D
Fractured rock	High	5D
	Low	4D
Gravel	Dense	3D
	Loose	2.5D
Sand	Dense	2.5D
	Loose	2.0D
Silts	Very stiff	2.0D
	Firm	1.5D
Clays	Very stiff	2.0D
,	Firm	1.5D

20.6 Wall drainage

• All walls should have a drainage system.

Table 20.6 Typical wall drainage measures.

Wall boight	Drainage measure	Typical design detail for rainfall environment		
height		< 1000 mm	> 1 000 mm	
< l m	 Weep holes at 250 mm from base of wall or as low as practical Geotextile wrapped 75 mm perforated pipe at base of wall with outlet. 	50 mm Weep holes at 3.0 m spacing, or 200 mm drainage gravel behind wall	 75 mm Weep holes at 3.0 m spacing, or 200 mm drainage gravel behind wall 	
I–2 m	Weep holes and Geotextile wrapped 75 mm perforated pipe at base of wall with outlet.	 50 mm Weep holes at 3.0 m spacing, and 200 mm drainage gravel behind wall 	 75 mm Weep holes at 3.0 m spacing, and 200 mm drainage gravel behind wall 	
2–5 m	 Weep holes and Geotextile wrapped 100 mm perforated pipe at base of wall with outlet. 	 75 mm Weep holes at 3.0 m horizontal and vertical spacing (staggered), and 200 mm drainage gravel behind wall 	 75 mm Weep holes at 2.0 m horizontal and vertical spacing (staggered), and 300 mm drainage gravel behind wall 	
	Internal drainage system to be considered	 Filter drainage material inclined with a minimum thickness of 300 mm 	 Filter drainage material inclined with a minimum thickness of 300 mm 	
			(Continued)	

Table 2	Table 20.6 (Continued)				
Wall	Drainage measure	Typical design detail for rainfall environment			
height		< 1000 mm	> 1 000 mm		
>5 m	Weep holes and Geotextile wrapped 150 mm perforated pipe at base of wall with outlet. Internal drainage system necessary Horizontal drains wrapped in filter to be considered	 75 mm Weep holes at 2.0 m horizontal and vertical spacing (staggered), and 300 mm drainage gravel behind wall Typically 5 m long * 75 mm with spacing of 5 m vertically and 5 m horizontally 	 75 mm Weep holes at 1.5 m horizontal and vertical spacing (staggered) 300 mm drainage gravel behind wall 5 m long * 100 mm with spacing of 3 m vertically and 5 m horizontally 		

- Even walls above the groundwater table must be designed with some water pressure. For a dry site a water pressure of ¼ wall height should be used.
- Drainage layers at rear of gabions and crib walls (free draining type walls) are not theoretically required. The 200 mm minimum thickness of the drainage layer behind these and the low height/low rainfall walls shown above is governed by the compaction requirement more than the drainage requirement.
- Compaction against the back of walls must be avoided, hence the use of a self compacting "drainage layer" is used behind all walls, without the need to compact against the wall.
- A geotextile filter at the back of the wall drainage gravel (if used) is required to prevent migration of fines.
- For intensity rainfall >2500 mm and/or large catchments (sloping area behind wall) more drainage systems than shown may be required.

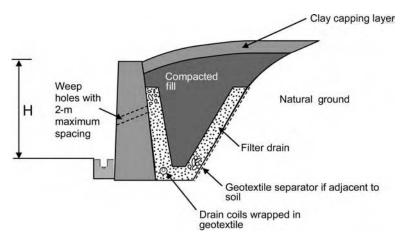


Figure 20.2 Drainage of walls.

• For wall lengths >100 m, then 200 mm and 150 mm perforated pipes are typically required for walls ≥5 m, and <5 m respectively. Refer Chapter 15 for added details.

20.7 Minimum wall embedment depths for reinforced soil structures

- A minimum embedment of 0.5 m should be provided to allow for shrinkage and swelling potential of foundation soils, global stability and seismic activity.
- Embedment deepening is required to allow for scour or future trenching. Typically 0.5 m or 10% of H, whichever is greater. Reduced embedment may occur where a high level competent rock is at the surface.
- The table provides the minimum embedment depth at the front of the wall.
 - For a slope in front of wall a horizontal distance of 1 m minimum, shall be provided to the front of the wall and deepen as required.

Slope in front of wall	Minimum embedment (m)	
Horizontal		
- Walls	H/20	
Abutments	H/10	
IV: 3H	H/10	
IV: 2H	H/7	
2V: 3H	H/5	

Table 20.7 Minimum embedment for reinforced soil structures (Holtz et al. 1995).

20.8 Reinforced soil wall design parameters

- Reinforced soil walls (RSW) are constrained at the top resulting in an increased earth pressure.
- The earth pressure tends towards the at rest condition at the surface top, and decreases linearly to the active condition at 6 m depth.
- The earth pressure at the top depends on the soil reinforcement. Rigid inclusions move less, with a resulting higher earth pressure.

Earth pressure		Type of reinforcem	ent with friction angle	
coefficient with depth	Geotextile 2/3 ϕ	Geogrid ϕ	Metal strip ¾ φ	Wire mesh ϕ
0 m (surface)	K _a	I.5 K _a	2.0 K _a	3.0 K _a

Table 20.8 Variation of earth pressure with depth of wall (TRB, 1995).

- The table also shows the soil reinforcement interface friction angle, based on the friction angle (ϕ) of the soil.
- The geogrids and geotextiles would have to consider the effects of creep and resistance to chemical attack with suitable reduction factors applied to the strength.
- The metallic reinforcement thickness needs to take into account the effects of corrosion.

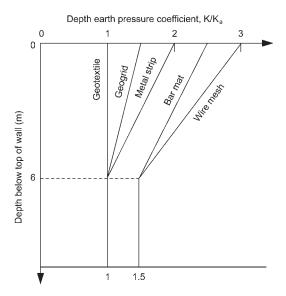


Figure 20.3 Coefficients for reinforced soils walls.

20.9 Location of potential failure surfaces for reinforced soil walls

- The location of the potential failure surface depends on the type of movement.
- Inextensible reinforcement has less movement with an active zone close to the wall face.
- Extensible reinforcement has greater capacity for movement with the typical Rankine active zone.

<i>lable 20.9</i>	Location of	i potential	failure surfaces	tor RSVV	(TRB, 1995).
-------------------	-------------	-------------	------------------	----------	--------------

Type of reinforcement	Failure surface from base H = Height of wall	Distance from wall to failure surface at top	Example
Inextensible	$Tan^{-1}\{0.3 \text{ H/(H/2)}\} = Tan^{-1} 0.6$	0.3 H	Wire mesh, metal strip
Extensible	extending to 0.5H from base (45 $^{\circ}+\phi/2$) extending to surface	H tan (45° $-\phi$ /2)	Soil nails Geotextile, Geogrids

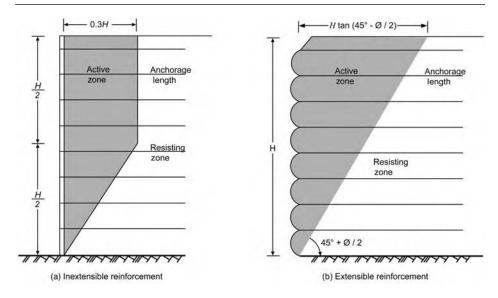


Figure 20.4 Location of potential failure surfaces.

20.10 Sacrificial thickness for metallic reinforcement

 A sacrificial thickness needs to be applied for corrosion protection with metallic soil reinforcement.

Type of steel	Environment	Sacrificial thickness (mm) for minimum service life (yrs)					
		5 yrs	30 yrs	70 yrs	100 yrs		
Black steel	Out of water	0.5	1.5	3.0	4.0		
	Fresh water	0.5	2.0	4.0	5.0		
	Coastal structure	1.0	3.0	5.0	7.0		
Galvanised steel	Out of water	0	0.5	1.0	1.5		
	Fresh water	0	1.0	1.5	2.0		
	Coastal structure	0	N/A	N/A	N/A		

Table 20.10 Sacrificial thickness for reinforcing strips (Schlosser and Bastick, 1991).

20.11 Reinforced slopes factors of safety

- Different factors of safety are calculated depending on whether the soil reinforcement is considered an additional reducing moment or an reduction to the overturning moments.
- Both are valid limit equilibrium equations.

	• ` `	
Factor of safety using limit equilibrium equation form	Application to reinforcement design	Comment
Soil resisting moment	Allowable force	Preferable
Overturning moment — reinforcement moment		
Soil resisting moment $+$ reinforcement moment	Ultimate force	Divide by FS calculated
Overturning moment		in analysis

Table 20.11 Use of the different factors of safety for a reinforced slope (Duncan and Wright, 1995).

20.12 Soil slope facings

- A facing is required on soil slopes depending on the batter.
- A face protection is required to prevent erosion.

Table 20.12	Soil slope	stabilisation.
-------------	------------	----------------

Consideration	Wall type and facing required						
Slope	IV: 0.01H	IV: 0.36	н	IV: IH	~IV:2H 1	to IV:I.7H	<iv:2h< td=""></iv:2h<>
Typical slope angle	~90°	70°		45°	¢	ocv°	$<<\!\phi_{cv}^{}{}^{\circ}$
Design	Vertical wall	Battered wall		Reinforce	d slope	Unreinfor	ced slope
Type of facing	Active facing			Pass	ive facing	No fa	acing
Wall type	Concrete, Gabion, Embedded Crib		Ι,	Geo		ments, rock omesh,	facings
	Soil nail, Reinforced soil wall			Rein	nail, forced slope	Veget	ation

- A soil nail process is a usually a top down process while a reinforced soil wall is a bottom up construction.
- Soil nails have some stiffness that can take up shear forces and bending moments while reinforced earth strips are flexible.

20.13 Wall types for cuttings in rock

- The wall types and facing required is dependent on the stability based on the joint orientations.
- If flattening the slope is not a feasible option at a given site then a facing unit and wall is required.

Consideration	Wall type and facing required							
Rock weathering				, ,		,		ctremely to
Typical cut slope	IV: 0.01H	H IV: 0.27H IV: 0.58H		8H	IV: I.00H		IV:1.73H	
Maximum slope angle	~90°	7 5°	75° 6		0	45	0	30°
Design if adverse jointing or space limitations	Vertical wall	Battered wall			R	einforced	slope	
Type of facing	Active facing			Passive facing		١	No facing	

Table 20.13 Wall type and facings required for cut slopes.

- Berms for maintenance may be required with a steeper slope.
- Actual slope is governed by the rock strength, joint orientation and rock type.
- Rock trap fences/netting may be required at any slope.

20.14 Drilled and grouted soil nail designs

- Soil nails are either driven or drilled and grouted type. The latter has a larger area and tensile strength, and with a larger spacing.
- An excavated face of 1.0 to 1.5 m is progressively made with soil nails installed with a shotcrete face before excavating further. About 5 kPa cohesion in a clayey sand has show to be sufficient to allow 1 m of excavation to proceed.
- For soils without sufficient cohesion the order can be reversed ie, shotcrete before nailing.

Table 20.14	Drilled and grouted nails – typical designs (adapted from Phear et al., 2005 and Clouterre,
	1991).

Material type	Typical slope angle	Facing type	Length	Area per nail (m²)	Nails per m²
Weak rocks	70 to 90°	Hard	0.6 to 1.0 H	1.5 to 2.5	0.4 to 0.7
Soils	70 to 90°	Hard	0.8 to 1.2 H	0.7 to 2	0.5 to 1.4
Natural soils	45 to 70°	Flexible	0.6 to 1.0 H	I to 3	0.3 to 1.0
Natural soils and fills	30 to 45°	None	0.8 to 1.2 H	2 to 6	0.1 to 0.5

- Typical strength of a drilled and grouted nail is 100 to 600 kN.
- Table assumes a level ground at the top.
- In high plasticity clays the length may need to be increased to account for creep. An active bar (ie bar with a plate) instead of a passive facing (ie bent bar) may be required.

- Limitation of soil nails:
 - Some minor movement is acceptable.
 - No water table, or water table can be reduced.

20.15 Driven soil nail designs

- Driven or fired soil nails have a lower tensile capacity than driven or drilled and grouted type. The latter has a larger area and tensile strength, and with a larger spacing.
- Driven nails are usually not applicable in weak rocks.

Table 20.15 Driven nails - typical designs (adapted from Phear et al., 2005 and Clouterre, 1991).

Typical slope angle	Facing type	Length	Area per nail (m²)	Nails per m²
70 to 90°	Hard	0.5 to 0.7 H	0.4 to 1.0	l to 2.5
45 to 70°	None	0.5 to 0.7 H	0.7 to 1.2	0.8 to l.4

- Typical strength of a driven nail is 50 to 200 kN.
- Table assumes a level ground at the top.
- Gravel or Rock fills would typically have some difficulty. Using a sharpened edge angle iron instead of a bar provides a stiffer inclusion that may work for small enough particle sizes.

20.16 Sacrificial thickness for metallic reinforcement

- Sacrificial nail thickness or other barriers need to be applied for corrosion protection based on service life.
- For driven nail barriers are not possible.

Table 20.16 Corrosion protection for soil nails (Schlosser et al., 1992).

Environment	Sacrificial thickness (mm) for minimum service life (yrs)				
	≤ 18 months	1.5 to 30 yrs	100 yrs		
A little corrosive	0	2 mm	4 mm		
Fairly corrosive	0	4 mm	8 mm		
Corrosive	2 mm	8 mm	Plastic barrier		
Strongly corrosive	${\bf Compulsory\ plastic\ barrier + Sacrificial\ thickness\ above}$				

20.17 Design of facing

- The design of the facing depends on the uniform pressure acting on the facing and tension in the nails at the facing To.
- Spacing (S) = maximum of S_V and S_H .

Table 20.17 Design of facing (Clouterre, 1991).

Spacing (S)	T _o /T _{max}	Comments
S ≤ I m	0.6	Usually driven nails
$\begin{array}{l} I \ m < S < 3 \ m \\ S \ge 3 \ m \end{array}$	0.5 + (S - 0.5)/5 1.0	Grouted Nails

- T_{max} = maximum tension in the nail in service = ultimate nail pull-out force.
- S_V and S_H = Vertical and Horizontal spacing, respectively.
- Nails are designed with an overall factor of safety against pull out of 1.5 and
 1.3 for permanent and temporary walls, respectively.

20.18 Shotcrete thickness for wall facings

• The shotcrete facing for soil nails depends on the load, and the slope angle.

Table 20.18 Typical shotcrete requirements.

Condition	Shotcrete thickness and design details		
Life Slope	Temporary: 75 mm to 150 mm <70°: 50–150 mm	Permanent: 125 mm to 250 mm Near vertical 70° to 90°: 150–275 mm	
Typical nail Typical mesh	Bent bars < 28 mm 100 mm to 200 mm opening	Bent bars > 28 mm or plate head 75 mm to 100 mm opening size	
Typical layers of mesh	Steel mesh on one side to side with soil	Steel mesh on either side Mandatory for thickness > 150 mm Additional mesh locally behind plate if significant torque	
Embedment below finished level	No requirements	0.2 m in rock 0.4 m in soil or H/20 whichever is higher	

20.19 Details of anchored walls and facings

- Where horizontal movement needs to be constrained, prestressing is required.
- Soil nail and anchored walls experience different pressures, with the latter designed for greater loads.
- These two types of walls are designed differently. Table below is for walls with near vertical faces.
- The cost of soil nailing may be 50% of the cost of a tieback wall.
- Greater movement can be expected in a soil wall than the tieback wall.

20.20 Anchored wall loads

 Anchor loads depend on the wall height, material behind the wall, groundwater conditions and surcharge.

Table 20.19 Typical details of nails and facings.

Design consideration	Wall type		
	Soil nailed wall	Tieback anchored walls	
Prestressing load	Nominal	Significant	
Nuts	Torque to 20 kN load vertical system, reducing to 5 kN at 70° slope. In some cases a bent bar may be used instead of plates	Torque to 150 kN to 400 kN typically	
Bondage	Along entire length	Over free length	
Typical length	0.5 to 1.5 slope height	Long – to competent strata at depth	
Typical inclination	10 to 15° to horizontal	20 to 30° to horizontal	
Typical plates	150-250 mm square,	200 mm to 300 mm square,	
,, ,	15 mm to 20 mm thick	20 to 25 mm thick	
	Grade 43 Steel	Grade 43 steel	
Anchorage	24 to 36 mm diameter	Strands or specialist bars with plate	
Typical shotcrete face	150 mm to 250 mm	200 mm to 300 mm	

- Table below is for wall anchor inclined at 15° to horizontal and with a factor of safety of 1.5.
 - Groundwater condition is for a flat top
 - Table based on:
 - Soil cohesion of 10 kPa.
 - Soil Unit Weight of 18 kN/m³.

Table 20.20 Typical anchor loads (Taken from graphs in Ortiago and Sayao, 2004).

Height of wall (m)	Loading	Typical anchor load (kN)	
		$\phi = 25^{\circ}$	$\phi = 35^{\circ}$
3	Horizontal top + 20 kPa surcharge	50	40
	Slope at 30° behind wall + surcharge	120	100
	Groundwater at 50% wall height + surcharge	60	50
	Groundwater at 100% wall height $+$ surcharge	70	70
4	Horizontal top + 20 kPa surcharge	80	70
	Slope at 30° behind wall + surcharge	180	150
	Groundwater at 50% wall height + surcharge	110	90
	Groundwater at 100% wall height $+$ surcharge	130	130
5	Horizontal top + 20 kPa Surcharge	130	110
	Slope at 30° behind wall + surcharge	260	220
	Groundwater at 50% wall height + surcharge	170	150
	Groundwater at 100% wall height $+$ surcharge	200	200
6	Horizontal top + 20 kPa surcharge	190	160
	Slope at 30° behind wall + surcharge	350	300
	Groundwater at 50% wall height + surcharge	240	220
	Groundwater at 100% wall height + surcharge	280	280

Soil foundations

21.1 Techniques for foundation treatment

- The soil foundation supports structures such as rigid concrete footings for a building or an embankment for a road. Techniques for fill loading are covered in the table below.
- The foundation soil may often require some treatment prior to loading.

Table 21.1 Dealing with problem foundation grounds with fill placed over.

Improved by	Specific methods
Reducing the load	Reducing height of fill Use light weight fill
Replacing the problem materials with more competent materials	 Removal of soft or problem materials. Replace with suitable fill/bridging layer Bridging layer may be a reinforced layer Complete replacement applicable only to shallow depths (3 m to 5 m depending on project scale) Partial replacement for deeper deposits
Increasing the shear strength by inducing consolidation/ settlement	 Preloading Surcharging Staged loading Use of wick drains with the above Vacuum consolidation For predominantly granular materials: vibro – compaction, impact compaction, dynamic compaction
Reinforcing the embankment or its foundation	 Berms or flatter slopes for slope instability Sand drains, stone columns Lime and cement columns Grouting Electroosmosis Thermal techniques (heating, freezing) Geotextiles, geogrids or geocells at the interface between the fill and ground
Transferring the loads to more competent layers	 Pile supported structures such as bridges and viaducts Load relief piled embankments

- Treatment by compaction was covered previously.
- Relative order of cost depends on the site specifics and proposed development.
 Time and land constraints often govern rather than the direct costs.
- Further discussions on specialist ground treatments are not covered.

21.2 Types of foundations

- The foundations are classified according to their depth.
- Typically when the embedded length > $5 \times \text{Bearing surface dimension}$, then the foundation is considered deep.
- Deep foundations are more expensive but are required where the surface layer is not competent enough to support the loads in terms of bearing strength or acceptable movement.

Table 21.2 Foundation types.

Classification	Foundation type	Typically use
Shallow	Strip Pad Raft	Edge beams for lightly loaded buildings To support internal columns of buildings To keep movements to a tolerable amount
Deep	Driven piles Bored piles	Significant depth to competent layer Large capacity required

 Combinations and variations of the above occur, ie piles under some edge beams, or pad foundations connected by ground beams.

21.3 Strength parameters from soil description

The bearing value is often assessed from the soil description in the borelog. The
presumed bearing value is typically given in the geotechnical engineering assessment report based on the site conditions, but often without the benefit of specifics

Table 21.3 Preliminary estimate of bearing capacity.

Material	Description	Strength		Presumed bearing value (kPa)
Clay	V. Soft Soft Firm Stiff V. Stiff Hard	0-12 kPa 12-25 kPa 25-50 kPa 50-100 kPa 100-200 kPa >200 kPa		<25 25–50 50–100 100–200 200–400 >400
Sands*	V. Loose Loose Med dense Dense V. dense	$\begin{array}{l} D_{\rm r} < 15\% \\ D_{\rm r} = 1535\% \\ D_{\rm r} = 3565\% \\ D_{\rm r} = 6585\% \\ D_{\rm r} > 85\% \end{array}$	$ \phi < 0^{\circ} $ $ \phi = 30-35^{\circ} $ $ \phi = 35-40^{\circ} $ $ \phi = 40-45^{\circ} $ $ \phi > 45^{\circ} $	<50 50-100 100-300 300-500 >500

- on the loading condition, depth of embedment, foundation geometry, etc. Considerations of these factors can optimise the design and is required for detailed design.
- The use of presumed bearing pressure from the soil description is simple but not very accurate. Therefore use only for preliminary estimate of foundation size.
- The table is for natural material and assumes that an allowable settlement of
- When the material is placed as structural fill and compacted to 98% relative compaction, the bearing value in the table should be halved.

Sands

- * For Clayey Sands reduce Φ by 5° .
- * For Gravelly Sands increase Φ by 5° .
- * Water level assumed to be greater than B (width of footing) below bottom of footing.
- * For saturated or submerged conditions half the value in the Table.
- Based on a foundation width greater than 1m and settlement = 25 mm. Divide by 1.2 for strip foundation. The bearing value in sands can be doubled, if settlement $= 50 \,\mathrm{mm}$ is acceptable.
- For B < 1 m, the bearing pressure is reduced by a ratio of B (Peck, Hanson and Thornburn, 1974).

21.4 Bearing capacity

- Terzaghi presented the general bearing capacity theory, with the ability of the soil to accept this load dependent on:
 - The soil properties cohesion (c), angle of friction (ϕ) and unit weight (γ).
 - The footing geometry embedment (D_f) and width (B).
 - Surcharge (q) resisting movement = γD_f
 - Modifications of the above relationship occurs for:
 - Water table.
 - Shape, depth and inclination factors.
 - Soil layering.
 - Adjacent to slopes.

Table 21.4 Bearing capacity equation.

Consideration	Cohesion	Embedment	Unit weight	Comments
Bearing capacity factors	N _c	N _q	Νγ	These factors are non dimensional and depend on φ. See next Table
Ultimate bearing capacity (q _{ult})	$\begin{array}{l} \text{c N}_{\text{c}} + \\ \text{I.3 c N}_{\text{c}} + \\ \text{I.3 c N}_{\text{c}} + \end{array}$	$\begin{array}{l} q \; N_q + \\ q \; N_q + \\ q \; N_q + \end{array}$	$\begin{array}{c} \textbf{0.5}\gamma \; \textbf{B} \; \textbf{N}_{\gamma} \\ \textbf{0.4}\gamma \; \textbf{B} \; \textbf{N}_{\gamma} \\ \textbf{0.3}\gamma \; \textbf{B} \; \textbf{N}_{\gamma} \end{array}$	Strip footing Square footing Circular footing

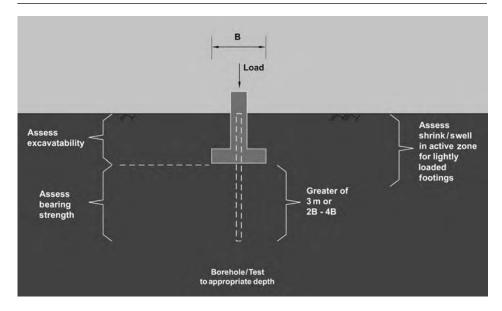


Figure 21.1 Foundation investigation.

21.5 Bearing capacity factors

- The original bearing capacity factors by Terzaghi (1943) have been largely superseded by those of later researchers using different rupture surfaces and experimental data.
- For piles, a modified version of these bearing capacity factors is used.
- The Terzaghi bearing capacity factors are higher then those of Vesic and Hansen.
- The next 2 sections provide simplified versions of the above for the bearing capacity of cohesive and granular soils.

Table 21.5 Bearing capacity factors (Vesic, 1973 and Hansen, 1970).

Friction angle	Bearing cap	acity factors	Vesic	Hansen N_{γ}	
ϕ	N _c	N _q	N_{γ}		
0 (Fully undrained condition)	5.14	1.00	0.00	0.00	
ı '	5.4	1.09	0.07	0.00	
2	5.6	1.20	0.15	0.01	
3	5.9	1.31	0.24	0.02	
4	6.2	1.43	0.34	0.05	
5	6.5	1.57	0.45	0.07	
6	6.8	1.72	0.57	0.11	
7	7.2	1.88	0.71	0.16	
8	7.5	2.06	0.86	0.22	
9	7.9	2.25	1.03	0.30	

(Continued)

Table 21.5 (Continued)

Friction angle	Bearing ca	pacity factors	Vesic	Hansen
φ	N _c	N _q	N_{γ}	N_{γ}
10 (Clay undrained condition)	8.3	2.47	1.22	0.39
H ´ ´	8.8	2.71	1.44	0.50
12	9.3	2.97	1.69	0.63
13	9.8	3.26	1.97	0.78
14	10.4	3.59	2.29	0.97
15 (Clay undrained condition)	11.0	3.94	2.65	1.18
16	11.6	4.34	3.06	1.43
17	12.3	4.77	3.53	1.73
18	13.1	5.3	4.07	2.08
19	13.9	5.8	4.68	2.48
20 (Soft clays effective strength)	14.8	6.4	5.4	2.95
21	15.8	7. I	6.2	3.50
22	16.9	7.8	7.1	4.13
23	18.0	8.7	8.2	4.88
24	19.3	9.6	9.4	5.75
25 (Very stiff clays)	20.7	10.7	10.9	6.76
26	22.2	11.9	12.5	7.94
27	23.9	13.2	14.5	9.32
28	25.8	14.7	16.7	10.9
29	27.9	16.4	19.3	12.8
30 (Loose sand)	30.1	18.4	22.4	15.1
31	32.7	20.6	26.0	17.7
32	35.5	23.2	30.2	20.8
33	38.6	26.1	35.2	24.4
34	42.2	29.4	41.1	28.8
35 (Medium dense sand)	46. l	33.3	48.0	33.9
36	51	37.8	56	40.0
37	56	42.9	66	47.4
38	61	48.9	78	56
39	68	56	92	67
40 (Dense sand)	75	64	109	80
41	84	74	130	95
42	94	85	155	114
43	105	99	186	137
44 45 O/	118	115	225	166
45 (Very dense gravel)	134	135	272	201

21.6 Bearing capacity of cohesive soils

- For a fully undrained condition in cohesive soils $\phi = 0^{\circ}$ and $N_c = 5.14$.
- For a surface footing the Ultimate Bearing Capacity $(q_{ult}) = N_c C_u(strip footing)$.
- The bearing capacity increases with the depth of embedment. The change of N_c with the depth of embedment and the type of footing is provided in the table below.
- Often this simple calculation governs the bearing capacity as the undrained condition governs for a clay.

Embedment	Bearing capacity coefficient (N _c)				
ratio (z/B)	Strip footing	Circular or squar			
0	5.14	6.28			
1	6. 4	7.7			
2	7.0	8.4			
3	7.3	8.7			
4	7.4	8.9			
5	7.5	9.0			

Table 21.6 Variation of bearing capacity coefficient (N_c) with the depth (Skempton, 1951).

- z = Depth from surface to underside of footing.
- B = Width of footing.

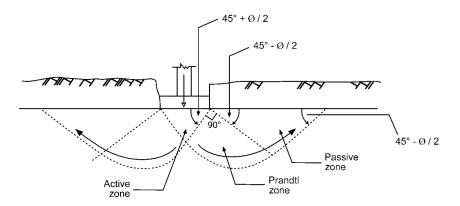


Figure 21.2 General shear failure.

21.7 Bearing capacity of granular soils

- In granular soils, the friction angle is often determined from the SPT N value. Methods that directly use the N value to obtain the bearing capacity, therefore can provide a more direct means of obtaining that parameter.
- The table below assumes the foundation is unaffected by water. Where the water is within B or less below the foundation then the quoted values should be halved. This practice is considered conservative as some researchers believe that effect may already be accounted for in the N value.
- The allowable capacity (FS = 3) is based on settlements no greater than 25 mm. For acceptable settlements of 50 mm say, the capacity can be doubled while for settlements of 12 mm the allowable capacity in the Table should be halved.
- The footing is assumed to be at the surface. There is an increase bearing with embedment depth. This can be up to 1/3 increase, for an embedment = Footing width (B).
- The corrected N value should be used.

Note the above is based on Meyerhof (1956), which is approximately comparable to the charts in Terzaghi and Peck (1967). Meyerhof (1965) later suggests values $\sim 50\%$ higher, due to the conservatism found.

Table 21.7 Allowable bearing capacity of granular soils (adapted from Meyerhof, 1956).

5 1	Allowable bearing capacity (kPa)										
Foundation width	Very loose Lo		Loose Medium dense		е	Dense		Very dense			
B (m)	N = 5		N = 10		N = 20	N = 30	N = 40		N = 50		
I	50		100		225	350	475		600		
2	50	100		30 100			200	300	425		525
3			75			275	375		475		
4	25				75	75		175	2/3	350	
5						250	350		450		

21.8 Settlements in granular soils

- Settlements may be estimated from the SPT N- value in granular soils.
- The settlement estimate is based on the size and type of foundation.

Table 21.8 Settlements in granular soils (Meyerhof, 1965).

Footing size	Relationship for settlement
B < 1.25 m	1.9 q/N
B > 1.25 m	2.84 q/N [B/(B + 0.33] ²
Large Rafts	2.84 q/N

- N = average over a depth = width of footing (B).
- q = applied foundation pressure.

21.9 Factors of safety for shallow foundations

- Factor of Safety (FS) accounts for uncertainties in loading, ground conditions, extent of site investigation (SI) and consequences of failure. This is the traditional "working stress" design.
- FS = Available Property/Required Property. A nominal (expected, mean or median) value is used.
- Allowable Bearing Capacity = q_{ult}/FS .
- The industry trend is to use FS = 3.0 irrespective of the above conditions.
- For temporary structures, the FS can be reduced by 75% with a minimum value of 2.0.

Table 21.9	Factors of	safety fo	or shallow	foundations (Vesic,	1975).

Loading and consequences of failure	Factor of safety be	ased on extent of SI	Typical structure	
	Thorough SI Limited SI			
 Maximum design loading likely to occur often. Consequences of failure high. 	3.0	4.0	Hydraulic structures Silos Railway bridges Warehouses Retaining walls	
 Maximum design loading likely to occur occasionally. Consequences of failure serious. 	2.5	3.5	Highway bridges Light industrial buildings Public buildings	
 Maximum design loading unlikely to occur. 	2.0	3.0	Apartments Office buildings	

- Limit state design uses a partial load factor on the loading and a partial performance factor on the Resistance. Design Resistance Effect ≥ Design Action effect.
- Ultimate limit states are related to the strength. Characteristic values are used.
- Serviceability limit states are related to the deformation and durability.
- Shear failure usually governs for narrow footing widths, while settlement governs for large footings (typically 2.0 m or larger).

21.10 Pile characteristics

- The ground and load conditions, as well as the operating environment determine a pile type.
- The table provides a summary of some of the considerations in selecting a particular pile type.
- Prestressing concrete piles reduces cracking due to tensile stresses during driving. Prestressing is useful when driving through weak and soft strata. The pile is less likely to be damaged during handling as compared to the precast concrete piles.
- Piles with a high penetration capability would have high driving stresses capability.
- There are many specialist variations to those summarised in the table.

Table 21.10 Pile selection considerations.

Pile type		Typical working load (kN)	Cost/ metre	Penetration	Lateral/Tension capacity	Vibration level
Driven Cast In situ	Precast Prestressed Steel H - pile Timber Bored auger Steel tube	250–2000 kN 500–2500 kN 500–2500 kN 100–500 kN Up to 6 MPa on shaft Up to 8 MPa on shaft	Low Medium High Low High Medium	Low Medium High Low Medium/High High	Low Low High Medium High Medium	High High High Medium Low High

21.11 Working loads for tubular steel piles

- Steel tube piles are useful where large lateral load apply, eg jetties and mooring dolphins.
- They can accommodate large working loads and have large effective lengths.
- The working load depends on the pile size, and grade of steel.

Table 21.11 Maximum working loads for end bearing steel tubular piles (from Weltman and Little, 1977).

Outside diameter	Typical working load (kN) per pile		Approximate maximum effective length (m)	
(mm)	Mild steel (kN)	High yield stress steel (kN)	Mild steel	High yield stress steel
300	400–800	600–1200	П	9
450	800-1500	1100-2300	16	14
600	1100-2500	1500-3500	21	19
750	1300-3500	1900-5000	27	24
900	1600-5000	2400–7000	32	29

- Loads are based on a maximum tress of 0.3 × minium yield stress of the steel.
- The effective length is based on axial loading only.
- The loads shown are reduced when the piles project above the soil level.

21.12 Working loads for steel H piles

- Steel tube piles are useful as tension piles.
- They can accommodate large working loads. While H-piles have high driveability, it is prone to deflection if boulders are struck, or at steeply inclined rock head levels.

Table 21.12 Maximum working loads for end bearing steel H - piles (from Weltman and Little, 1977).

Size (mm)	Typical working	g load (kN) per pile	Approximate maximum effective length (m)	
(11111)	Mild steel (kN)	High yield stress steel (kN)	Mild steel	High yield stress steel
200 × 200	400–500	600–700	5	4
250×250	600-1500	800-2000	7	6
300 × 300	700–2400	1000–3500	8	7

21.13 Load carrying capacity for piles

- The pile loads are distributed between the base and shaft of the pile.
- Piles may be referred to as end bearing or frictional piles. These represent material idealisations since end- bearing would have some minor frictional component, and frictional piles would have some minor end-bearing component. The terms

- are therefore a convenient terminology to describe the dominant load bearing component of the pile.
- The % shared between these two load carrying element depends on the pile movement and the relative stiffness of the soil layers and pile.

Table 21.13 Pile loads and displacements required to mobilise loads.

Load carrying element	Symbols	Required displacements
Shaft	Q _s = Ultimate shaft load (Skin friction in sands and adhesion in clays)	0.5 to 2% of pile diameter – typically 5 mm to 10 mm
Base	$Q_b = Ultimate base load$	5% to 10% of pile diameter – typically 25 mm to 50 mm
Total	Ultimate load (Q _{ult}) = $Q_s + Q_b$	Base displacement governs

- Choice of the Factor of Safety should be made based on the different response of pile and base. Maximum capacity of shaft is reached before the base.
- If the foundation is constructed with drilling fluids and there is uncertainty on the base conditions, then design is based on no or reduced load carrying capacity on the base.
- If the movement required to mobilise the base is unacceptable then no base bearing capacity is used.
- The shaft would carry most of the working load in a pile in uniform clay, while for a pile in a uniform granular material the greater portion of the load would be carried by the base.

21.14 Pile shaft capacity

- The pile shaft capacity varies from sands and clays.
- Driven piles provide densification of the sands during installation while bored piles loosen the sands.
- The surface of bored piles provides a rougher pile surface/soil interface (δ), but this effect is overridden by the loosening/installation (k_s) factor.

Table 21.14 Shaft resistance for uniform soils (values adapted from Poulos, 1980).

Soil type	Relationship	Values		
		Bored	Driven	
Clay	Shaft adhesion $C_a = \alpha C_u$	α = 0.45 (Non fissured) α = 0.3(Fissured) C_a = 100 kPa maximum	α = 1.0 (Soft to firm) α = 0.75 (Stiff to very stiff) α = 0.25(Very stiff to hard)	
Sands	Skin friction $f_s = k_s$ tan δ σ'_v $k_s =$ Earth pressure coefficient $\delta =$ Angle of friction between pile surface and soil $\sigma'_v =$ Vertical effective stress	Not recommended (Loose) $\begin{aligned} k_s & \tan\delta = 0.1 \text{ (Medium dense)} \\ k_s & \tan\delta = 0.2 \text{ (Dense)} \\ k_s & \tan\delta = 0.3 \text{ (Very dense)} \end{aligned}$	$\begin{array}{l} k_s \ tan \ \delta = 0.3 \ (Loose) \\ k_s \ tan \ \delta = 0.5 \ (Medium \\ dense) \\ k_s \ tan \ \delta = 0.8 \ (Dense) \\ k_s \ tan \ \delta = 1.2 \ (Very \ dense) \end{array}$	

- Values shown are approximate only for estimation. Use charts for actual values in a detailed analysis.
- In layered soils and driven piles, the shaft capacity varies:
 - The adhesion decreases for soft clays over hard clays due to smear effects for drag down.
 - The adhesion increases for sands over clays.
 - Table in sands applies for driven displacement piles (eg concrete). For low displacement (eg steel H piles) the values reduce by 50%.

Pile frictional values from sand

- For sands, the frictional values after installation of piles is different than before the installation (ϕ_1) .
- The in situ frictional value before installation is determined from correlations provided in previous chapters.

	١	•	<u> </u>	
Consideration	Design parameter	Value of ϕ after installation		
		Bored piles	Driven piles	
Shaft friction	k_s tan δ	Фі	$\frac{3}{4}\phi_1 + 10$	
End hearing	Ň	$\phi_1 = 3$	$(4. \pm 40)/2$	

Table 21.15 Change of frictional values with pile installation (Poulos, 1980).

21.16 End bearing of piles

- The end bearing resistance (q_b) of a pile depends on the cohesion (C_u) for clays and the effective overburden (σ'_v) for sands.
- There is currently an ongoing discussion in the literature on critical depths, ie whether the maximum capacity is achieved at a certain depth.
- N_q values from Berezantsev et al. (1961).
- The bearing capacity of bored piles in sands are ½ to 1/3 that of the bearing capacity of a driven pile.

Table 2	1.	16	Fnd	bearing	of piles.
---------	----	----	-----	---------	-----------

Soil type	Relationship	Values		
		Bored	Driven	
Clay	$q_b = N_c C_u \omega$	$N_c = 9$ $\omega = 1.0$ (Non fissured) $\omega = 0.75$ (Fissured)	$N_c = 9$ $\omega = 1.0$	
Sands	$q_b = N_q \ \sigma_v'$ $q_b = 10 \ \text{MPa maximum}$	$N_q = 20 \text{ (Loose)}$ $N_q = 30 \text{ (Medium dense)}$ $N_q = 60 \text{ (Dense)}$ $N_q = 100 \text{ (Very dense)}$	$\begin{array}{l} N_q = 70 \; (Loose) \\ N_q = 90 \; (Medium \; dense) \\ N_q = 150 \; (Dense) \\ N_q = 200 \; (Very \; dense) \end{array}$	

- Assumptions on frictional angles:
 - Loose 30° .
 - Medium Dense 33°.
 - Dense 37° .
 - Very Dense − 40°.

21.17 Pile shaft resistance in coarse material based on N - value

- Estimates of the pile shaft resistance in granular materials can be determined from the corrected SPT N – value.
- The N value is the average corrected value along the length of the pile.

Table 21.17 Pile shaft resistance in granular materials (Meyerhof, 1976)

Type of pile	Displacement	Shaft resistance (kPa)
Driven	High to average eg concrete and including sheet piles	2 N
Driven	Low eg Steel H piles	N
Bored	Negligible	0.67 N

21.18 Pile base resistance in coarse material based on N - value

- Estimates of the pile base resistance in granular materials can be determined from the corrected SPT N – value.
- The N value is the corrected value for 10D below and 4 D above the pile point.
- D = Diameter of pile.
- L = Length of pile in the granular layer.

Table 21.18 Pile base resistance in granular materials (Meyerhof, 1976).

Type of pile	Type of soil	Base resistance (kPa)
Driven Driven Bored	Fine to medium sand Coarse sand and gravel Any granular soil	$40 \ N \ L/D \le 400 \ N \\ 40 \ N \ L/D \le 300 \ N \\ 14 \ N \ L/D$

21.19 Pile interactions

- The driving of piles in sands increases the density around the piles depending on the soil displaced (depending on the diameter of pile). Adjacent and later piles are then more difficult to install. Steel H piles are considered low displacement.
- The driving of piles in clays may produce heave.
- The spacing can be reduced if pre-drilling is used.

Table 21.19 Influence of driven piles (after Broms, 1996).					
Location	Influence zone at which density increases	Typical pile spacing			
Along shaft	4-6 pile diameters	3B for frictional piles with lengths = 10 m 5B for frictional piles with lengths = 25 m			
At base of pile	3-5 pile diameters below pile	2B for end bearing piles			

T-61- 21 10 1-4. ع :1-- /-4-1007

- The above should be considered when driving piles in groups or adjacent to existing piles.
- Pile groups in a granular soil should be driven from the centre outwards to allow for this densification effect.
- Bored Piles have 2B or 750 mm minimum spacing, while driven piles are 2.5B spacing in sands.
- Screw piles would be nominally less than for end bearing piles, approximately 1.5B.
- 10 pile diameters is the distance often conservatively used to avoid the effects of pile installation on adjacent services and buildings.

21.20 Point of fixity

- The point of fixity needs to be calculated to ensure suitable embedment when lateral loads apply. For reinforced concrete piles this point is required to determine the extent of additional reinforcement at the top of the pile.
- The point of fixity is based on the load, pile type, size, and soil condition. The table below is therefore a first approximation only.

Strength	Depth to point of fixity
Very loose	IIB
Loose	9B
Medium dense	7B
Dense	5B
Very dense	3B
Soft	9B
Firm	7B
Stiff	6B
Very stiff	5B
Hard	4B
	Very loose Loose Medium dense Dense Very dense Soft Firm Stiff Very stiff

Table 21.20 Typical depth to the point of fixity for pile width (B).

21.21 Uplift on piles

- The uplift capacity is taken as 75% of the shaft resistance due to cyclic softening.
- Piles on expansive clay sites experience uplift. The outer sleeve (permanent casing) may be used to resist uplift in the active zone.

Table	21.2	ΙU	olift	design.

Depth	Load		Comment
Surface to depth of desiccation cracking	No shaft capacity resistance	Uplift	Use I/3 of active zone
Surface to depth of active zone	Swelling pressures (U_s) from swelling pressure tests. Apply U_s to slab on ground $+$ 0.15 U_s to shaft use C_u if no swell test	Uplift	Typically 1.5 m to 5.0 m depending on climate and soil
Below active zone	75% Downward shaft resistance + dead load	Resistance	Due to cyclic softening

• Air space may be used below the main beam (a suspended floor system) or a void former below the slab may be used to resist slab uplift.

21.22 Plugging of steel piles

- The pile shaft capacity is determined from the perimeter, and its length.
- The pile base capacity is determined from the cross sectional area.
- The pile must be assessed if in plugged or unplugged mode, as this determines the applied area for adhesion and end bearing.
- For H Pile sections, the soil is plugged if sufficient embedment occurs. The outer "plugged" perimeter and area is used.
- For open ended steel pile sections, a soil plug occurs if sufficient embedment and the full plugged cross sectional area is used.
- The plugging should be estimated from the type of soil and its internal friction. The plug forms when the internal side resistance exceeds the end bearing resistance of the pile cross sectional area.
- The table below is a first estimation guide only and subject to final design calculations as pile pugging can be highly variable.
- Internal soil plugging for very soft clay showed the internal soil plug moved down
 with the plug and achieved a final length of 70% of the length of pile for 400 mm
 diameter pile.
- For dense sand 40 to 50% of driven length likely.

Table 21.22 Initial estimate guidance pile plugs based on diameter of open pile.

Strength of material	Likely pile plug	Comment
Very soft clay	25 to 35 Pile diameters	10 m to 14 m plug formed for a 400 mm diameter tubular pile (Trenter and Burt, 1981). Under weight of hammer
Soft to stiff clays Very stiff to hard clays Very loose to loose sands Medium dense to dense sands Very dense sands	10 to 20 Pile diameters <15 pile diameters >30 pile diameters 20 to 35 Pile diameters <20 pile diameters	Paikowsky and Whitman (1990) Assumed Assumed Paikowsky and Whitman (1990) Assumed

The above is highly variable and caution is required. Other calculations must be performed. Refer to Jardine et al. (2005) for detailed design calculations.

21.23 Time effects on pile capacity

- Pile driving often produces excess pore water pressures, which takes some time to dissipate. Pile capacities often increase with time as a result.
- The time to achieve this increased capacity can vary from a few days in sands to a few weeks in clays.

Table 21.23	Soil set up	factors	(adapted fr	om Rausche	et al., 1996).

Predominant soil type along pile shaft	Range in soil set up factor	Recommended soil set up factor
Clay	1.2–5.5	2.0
Clay – sand	1.0-6.0	1.5
Sand – silt	1.2-2.0	1.2
Fine sand	1.2-2.0	1.2
Sand	0.8–2.0	1.0
Sand – gravel	1.2–2.0	1.0

Time dependent changes can be assessed only on a site specific basis, as in some materials eg shales and silts, some relaxation can also occur. This results in a reduction in capacity.

21.24 Piled embankments for highways and high speed trains

- Piled supported embankments provide a relatively quick method of constructing embankments on soft ground.
- The design consists of determining the pile size (length and width), the pile cap, the load transfer platform (thickness and number of layers and strength of geotextile) for the height of fill and the ground conditions.
- There is a minimum fill height where the load may be low, but the support may require closer pile spacing than a higher fill height. This may seem contradictory to the client.
- A minimum fill height allows for arching within the embankment and keeps the settlement throughs between the piles at a reasonably small size.

Table 21.24 Piled embankment design dimensions for low embankments (Brandl, 2001).

Design element	Minimum fill height (H_o) between pile top (surface of piled caps) and surface of railway sleepers/roadway surface				
$\overline{\text{Pile cap size} = \text{a} - \text{s}}$	Typical applications	Movement sensitive systems eg. High speed trains (v > 160 m/hr)			
Pile spacing (a) Spacing between pile caps (s) Fill height	$\begin{aligned} &H_o \geq a \\ &H_o \geq 1.5 \text{ s} \\ &H_o \geq 1.0 \text{ m} \end{aligned}$	$H_o \ge 1.25 a$ $H_o \ge 2.0 s$ $H_o \ge 1.5 m$			

- Load Transfer Platform (LTP) used to transfer the load on to the pile.
- Typically LTP thickness = 500 mm with at least 2 No. biaxial geogrids.
- For geosynthetics used to cap the deep foundations, the allowable strain <3% in long term creep.
- For low embankments, there may be dynamic effects of loading on ground:
 - 2-3 m for highways.
 - 4-5 m for high speed trains.

21.25 Dynamic magnification of loads on piled rafts for highways and high speed trains

- The LTP acts as a geosynthetic soil cushion. This reduces the dynamic load on piles for low embankments.
- The table provides this dynamic magnification factor for the loads.

Table 21.25 Dynamic magnification factor for dynamic loads on top of piled railway embankment (Brandl, 2001).

Height of fill	Dynamic magnification factor Φ						
	Without geosynthetic cushion	With geosynthetic cushion on top of pile caps					
$H_0 \ge 4.0 \text{ m}$	1.0	1.0					
$H_0 \ge 3.0 \text{ m}$	1.5	1.0					
$H_o \ge 2.0 \text{ m}$	2.5	1.5					
$H_0 \ge 1.5 \mathrm{m}$	3.0	2.0					
$H_o \ge 1.0 \text{ m}$	Not applicable	2.5					

21.26 Allowable lateral pile loads

• The allowable lateral pile loads depends on the pile type and deflection.

Table 21.26 Allowable lateral pile loads (USACE, 1993).

Pile type	Considerations	Deflection (mm)	Allowable lateral load (kN)
Timber	No deflection	_	45
Concrete	criteria	_	65
Steel		_	90
Timber	Some deflection	6	40
	limitations	12	60
Concrete		6	50
		12	75
Timber – 300 mm Free	Deflection	6	7
Timber – 300 mm Fixed	constrained	6	20
Concrete 400 mm – Medium sand		6	30
Concrete 400 mm – Fine sand		6	25
Concrete 400 mm – Clay		6	20

21.27 Load deflection relationship for concrete piles in sands

The deflection is limited by the pile sizes and strength of the soil.

Table 21.27 Load deflection for prestressed concrete piles in sands (From graphs in Barker et al., 1991).

Pile size			Deflection	n (mm) fo	r friction a	ngle (°) and	d load (kN	I)	
	$\phi = 30^{\circ}$ (Loose)			ϕ = 35° (Medium dense)			ϕ = 40 $^{\circ}$ (Very dense)		
	50 kN	100 kN	150 kN	50 kN	100 kN	150 kN	50 kN	100 kN	150 kN
250 * 250 mm	10	30	>30	7	22	>30	5	15	30
300 * 300 mm	5	17	30	4	П	20	4	9	15
350 * 350 mm	4	10	18	3	7	13	3	6	9
400 * 400 mm	3	7	12	3	5	8	2	4	7
450 * 450 mm	2	5	8	2	3	6	2	3	4

- Bending Moments for the piles range from approximately:
 - 225 kNm to 75 kNm for 150 kN to 50 kN load in loose sands.
 - 200 kNm to 50 kNm for 150 kN to 50 kN load in medium dense sands.
 - 175 kNm to 50 kNm for 150 kN to 50 kN load in very dense sands.
- No significant differences in bending moments for various pile sizes in sands.

21.28 Load deflection relationship for concrete piles in clays

The deflection of piles in clays are generally less than in sands.

Table 21.28 Load deflection for prestressed concrete piles in clays (From graphs in Barker et al., 1991).

Pile size	Deflection (mm) for undrained strength (kPa) and load (kN)									
	$C_u = 70 \text{ kPa (Stiff)}$		$C_u = 140 \text{kPa} \text{(Very stiff)}$			C _u = 275 kPa (Hard)				
	50 kN	100 kN	150 kN	50 kN	100 kN	150 kN	50 kN	100 kN	150 kN	
250 * 250 mm	5	17	>30	3	8	14	ı	3	6	
300 * 300 mm	3	10	21	2	5	9	< l	2	4	
350 * 350 mm	2	7	14	- 1	4	6	< l	- 1	3	
400 * 400 mm	2	5	10	< l	3	4	< l	< l	2	
450 * 450 mm	1	4	7	< l	2	3	< l	< l	2	

Bending moments for PSC piles in stiff clays

- The induced bending moments of PSC clays is dependent on the deflection and pile size.
- In sands the pile size did not have a significant difference in bending moments.

Table 21.29 Bending moments for prestressed concrete piles in clays (From graphs in Barker et al., 1991).

Pile size	Bending moment (kNm) for undrained strength (kPa) and load (kN)									
	$C_u = 70 \text{ kPa (Stiff)}$			$C_u = 140 \text{kPa}$ (Very stiff)			$C_u = 275 \text{ kPa (Hard)}$			
	50 kN	100 kN	150 kN	50 kN	100 kN	150 kN	50 kN	100 kN	150 kN	
250 * 250 mm 450 * 450 mm	•••••	125 175	225 275	25 75	75 125	150 200	25 50	50 100	100 175	

Rock foundations

22.1 Rock bearing capacity based on RQD

- The rock bearing capacity is dependent on the rock strength, defects and its geometry with respect to the footing size.
- The table below is a first approximation based on RQD, which is a function of the defects and the strength to a minor extent.

Table 22.1 Bearing pressures (Peck, Hansen and Thorburn, 1974).

RQD (%)	Rock description	Allowable bearing pressures(Mi lesser of below values			
0–25 25–50 50–75 75–90 >90	Very poor Poor Fair Good Excellent	I-3 3-6 6-I2 I2-20 20-30	UCS or allowable stress of concrete		

 This method is commonly used but not considered appropriate for detailed design.

22.2 Rock parameters from SPT data

• The SPT values in rock are usually the extrapolated values, as driving refusal would have occurred before the given values.

Table 22.2 Rock parameters from SPT data.

is (50) (M Extremely low EL <0.03		Point load index is (50) (MPa)	Extrapolated SPT value $(N_o)_{60}^*$	Allowable bearing capacity
		0.03 - 0.1	60–150	500 kPa to 1.5 MPa
Medium High	M H	0.3-1.0 1.0-3.0	100–350 250–600	I to 5 MPa
Very high Extremely high	VH EH	3.0-10 >10	>500	>5 MPa

- To obtain N* values, SPT refusal values are required in both seating and test drive (refer Chapter 4). Note that some procedures recommend refusal in the seating drive only but this is insufficient data.
- Higher values of allowable bearing capacity are likely with more detailed testing from rock core samples.
- The bearing capacity of some non durable rocks can decrease when its overburden is removed and the rock is exposed and subject to weathering and/or moisture changes.

22.3 Bearing capacity modes of failure

- The mode of failure depends on the joint spacing in relation to the footing size.
- Driven Piles therefore have a higher bearing capacity due to its relative size to joint spacing.
- Bored Piles (Drilled Shafts) have a lower bearing capacity than driven piles due to its relative size.

Relation of joint spacing (S) to footing width (B)	Joints	Orientation	Failure mode
S < B S < B S > B	Open Closed Wide	Vertical to subvertical 90° to 70°	Uniaxial compression Shear zone Splitting
S > B. Thick rigid layer over weaker layer	N/A	Horizontal to sub-horizontal	Flexure
S < B. Thin rigid layer over weaker layer	N/A		Punching

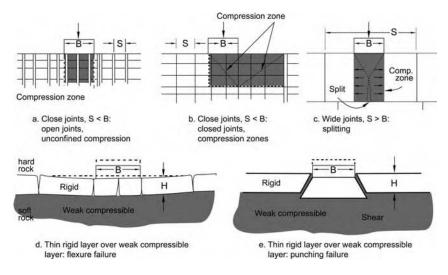


Figure 22.1 Bearing capacity failures modes (Sowers, 1979).

- A different bearing strength applies for all of the above, for a rock with similar rock strength. This is presented in the Tables that follow.
- When RQD --> 0, one should treat as a soil mass and above concepts do not apply.
- These failure modes form the basis for evaluating the rock bearing capacity.

22.4 Compression capacity of rock for uniaxial failure mode

- This is a Uniaxial Compression Failure condition (S < B).
- The table applies for a open vertical to sub-vertical joints.

Table 22.4 Ultimate bearing capacity with failure in uniaxial compression.

Failure mode	Strength range	Design ultimate strength
Uniaxial compression with RQD <70% Uniaxial compression with RQD >70%	15% to 30% UCS 30% to 80% UCS	Use 15% UCS Use 30% UCS

- Factors of Safety to be applied to shallow foundations.
- For deep foundations, piles have the effect of confinement, and the Design Ultimate Strength ~ Allowable Bearing Capacity.
- An alternative approach to this uniaxial failure condition is presented below.

22.5 Ultimate compression capacity of rock for shallow foundations

- This applies for the uniaxial compression failure mode ie open joints with S < B.
- It uses the Ultimate Bearing Capacity = $q_{ult} = 2 c \tan (45^{\circ} + \phi/2)$. This is the Mohr Coulomb Failure criterion for the confining stress $\sigma_3 = 0$.
- The table assumes the cohesion, c = 10% q_u (Chapter 9) for all RQD Values.
- This applies to shallow foundations only, and a factor of safety is required for the allowable case.

Table 22.5 Ultimate bearing capacity (using above equation from Bell, 1992).

Angle of friction	q_{ult} (kPa) using q_u values 1 MPa–40 MPa							
	Low	Mediu	ım strength	High	Very high			
	I MPa	5	10	20	40 MPa			
30°	0.2	0.8	1.5	3.1	6.1			
40°	0.2	1.1	2.2	4.4	8.7			
50°	0.3	1.6	3.1	6.3	13			
60°	0.5	2.4	4.8	9.7	19			

The ultimate capacity seems unrealistically low for values of low strength rock, ie where $q_u = 1\,\text{MPa}$. However it is approximately consistent for 15% UCS (RQD < 70%) given in the previous Table.

• This suggests that these methods are not applicable for rocks classified as low to extremely low strength (Is (50) < 0.3 MPa).

22.6 Compression capacity of rock for a shear zone failure mode

- This condition applies for closely spaced joints (S < B).
- A Terzaghi type general bearing capacity theory is used with the following parameters:
 - The soil properties cohesion (c), angle of friction (ϕ) and unit weight (γ).
 - The footing geometry embedment (D_f) and width (B).
- However, the shape factors for square and circular footings are different, as well as the bearing capacity factors.
- The bearing capacity factors for rock are derived from wedge failure conditions, while the slip line for soils are based on an active triangular zone, a radial shear zone and a Rankine passive zone.

Table 22.6 Bearing capacity equation.

Consideration	Cohesion	Embedment	Unit weight	Comments
Bearing capacity factors	N _c	N _q	Νγ	These factors are non dimensional and depend on φ. See next Table
Ultimate Bearing capacity (q _{ult})	$1.00 c N_c + 1.05 c N_c + 1.12 c N_c +$	$\gamma \; D_f \; N_q + $	0.5 γ B N $_{\gamma}$	Strip footing (L/B = 10) Strip Footing (L/B = 5) Strip Footing (L/B = 2)
	1.25 c N _c + 1.2 c N _c +	$\begin{array}{l} \gamma \; D_f \; N_q + \\ \gamma \; D_f \; N_q + \end{array}$	0.8 γ B N γ 0.7 γ B N γ	Square Footing Circular Footing

- Most shallow rock foundations have $D_f \sim 0$ (ie at the rock surface) and the embedment term becomes zero irrespective of the N_q value.
- The unit weight term is usually small due to the width (B) term and is usually neglected except in the case of high frictional rock, ie $\phi \ge 50^{\circ}$.

22.7 Rock bearing capacity factors

• These bearing capacity factors have been based on wedge theory. It is different from the bearing capacity factors of soils.

Table 22.7 Bearing capacity factors (from graphs in Pells and Turner, 1980).

Friction angle		ors	
$\overline{\phi^{\circ}}$	N _c	N _q	N _γ
0	4	l	0
10	6	2	1
20	8	4	5
30	15	9	15
40	25	20	45
50	50	60	160
60	110	200	1000

22.8 Compression capacity of rock for splitting failure

- A splitting failure condition applies for widely spaced and near vertically oriented
- Joint spacing (S) > Footing width (B). The joint extends below the below footing for a depth H.
- The ratio of the joint depth to the footing width (H/B) is used to provide a joint correction factor for the bearing capacity equation.

Table 22.8 Ultimate bearing capacity with failure in splitting (Bishnoi, 1968; Kulhawy and Goodman,

Foundation type	Ultimate bearing capacity (q _{ult})	Correction factor (J) based on discontinuity spacing (H/B)									
Circular Square Continuous strip	1.0 J c N _{cr} 0.85 J c N _{cr} 1.0 J c N _{cr} / (2.2 + 0.18 L/B)	H/B J	0 0.41	l 0.52	2 0.67	3 0.77	4 0.85	5 0.91	6 0.97	7 1.0	8 1.0

- J = Joint Correction Factor.
- N_{cr} = Bearing Capacity Factor.
- L = Length of footing.
- B = Width of footing.

22.9 Rock bearing capacity factor for discontinuity spacing

- The bearing capacity factor in Table 22.7 for the wedge failure does not allow for discontinuity spacing.
- This table is to be used with Table 22.8, and applies when the joints are more widely spaced than the foundation width.

Table 22.9 Bearing capacity factors (from graphs in Bishnoi, 1968; Kulhawy and Goodman, 1980).

Friction angle	Bearing capacity factors (N_{cr}) with discontinuity spacing (S/B)									
$\overline{\phi^{\circ}}$	Previously tabulated N _c (Table 22.7)	0.5	1.0	2	5	10	20			
0	4	4	4	4	4	4	4			
10	6	4	4	4	6	6	6			
20	8	4	4	5	9	9	8			
30	15	4	4	6	15	15	15			
40	25	4	4	8	20	25	25			
50	50	4	6	10	25	40	50			
60	110	4	8	15	35	50	110			

22.10 Compression capacity of rock for flexure and punching failure modes

This table applies for a rigid layer over weaker layers. The top layer is considered rigid for S > B while the layer is thin for S < B.

- The stress of the underlying layer also needs to be considered.
- Factor of safety needs to be applied and is the same for piles and shallow foundations.

Table 22.10 Ultimate bearing capacity with failure in flexure or punching.

Failure mode Strength range		Design ultimate strength
Flexure Punching	Flexural strength \sim 5% to 25% UCS Tensile strength \sim 50% flexural strength	Use 10% UCS Use 5% UCS

22.11 Factors of safety for design of deep foundations

- The factor of safety depends on:
 - Type and importance of structure.
 - Spatial variability of the soil.
 - Thoroughness of the subsurface program.
 - Type and number of soil tests performed.
 - Availability of on site or nearby full scale load test results.
 - Anticipated level of construction inspection and quality control.
 - Probability of the design loads actually occurring during the life of the structure.

Table 22.11 Typical factors of safety for design of deep foundations for downward loads (Coduto, 1994).

Classification of structure	Design life	Acceptable probability of failure	Design factors of safety, F.S.				
			Good control	Normal control	Poor control	Very poor control	
Monumental	> 100 yrs	10 ⁻⁵	2.3	3.0	3.5	4.0	
Permanent	25-100 yrs	10^{-4}	2.0	2.5	2.8	3.4	
Temporary	<25 yrs	10^{-3}	1.4	2.0	2.3	2.8	

- Monumental Structures are large bridges or extraordinary buildings.
- Permanent structures are ordinary rail and highway bridges and most large buildings.
- Temporary structures are temporary industrial or mining facilities.

22.12 Control factors

- The control factors referenced in the above table are dependent on the reliability of data derived from subsurface conditions, load tests and construction inspections.
- Examples of good and very poor control are:
 - Bored piles constructed with down the hole inspection for clean out and confirmation of founding layers – good control.

Factors	Good control	Normal control	Poor control	Very poor control
Subsurface conditions Subsurface exploration Load tests Construction inspection	Uniform Thorough Available Constant monitoring and testing	Not uniform Thorough Not available Periodic monitoring	Erratic Good Not available Limited	Very erratic Limited Not available None

Table 22.12 Typical factors of safety for design of deep foundations for downward loads (Coduto, 1994).

Bored piles constructed with drilling fluids without the ability for even a down the hole camera inspection – very poor control.

22.13 Ultimate compression capacity of rock for driven piles

- The Ultimate Bearing Capacity = $q_{ult} = 2 q_u tan^2 (45^\circ + \phi/2)$.
- The design compressive strength = $0.33-0.8 \text{ q}_{\text{u}}$ (Chapter 9).
- The table below uses 0.33 q_u for RQD <70% and 0.5 q_u for RQD >70%.

Table 22.13 Ultimate bearing capacity for driven piles (using above equation from Tomlinson, 1996).

Angle of friction	RQD%	q_{ult} (kPa) using q_u values I MPa-40 MPa				
		I MPa	5	10	20	40 MPa
30°	<70 >70	0.4 0.6	1.9 2.9	3.9 5.9	7.8 12	15 24*
40 °	<70 >70	0.8 1.2	3.9 6.0	7.9 12	16 24*	Concrete strength governs*
50°	<70 >70	1.6 2.5	8.0 12	16 25*	Concrete strength governs*	
60°	<70 >70	3.8 5.8	19 29*		Concrete strength governs*	

- Note this ultimate capacity is significantly higher capacity than the previous table for shallow foundations.
- A passive resistance term, $\tan^2 (45^\circ + \phi/2)$, enhances the pile capacity.
- The capacities are 1 to 8 times the previous table based on low to high friction angles respectively for RQD <70% and 3 to 12 times for the RQD >70%.

22.14 Shaft capacity for bored piles

- The shaft capacity increases as the rock quality increases.
- Seidel and Haberfield (1995) provides the comparison between soils and rock capacity.
- The shaft adhesion = $\psi(q_u P_a)^{1/2}$.
- $P_a = \text{atmospheric pressure } \sim 100 \text{ kPa}.$
- ψ = adhesion factor based on quality of material.
- q_u = Unconfined Compressive Strength of Intact Rock (MPa).

Adhesion τ = Ultimate side shear resistance (MPa) factor ψ (Seidel and Haberfield, 1995) Other researchers $0.1 (q_u)^{0.5}$ 0.5 $0.225 (q_u)^{0.5}$ 1.0 (Lower Lesser of 0.15 q_u (Carter and Kulhawy, 1987) and bound) $0.2 (q_u)^{0.5}$ (Horvath and Keney, 1979) Dyveman & Valsangkar, 1996 2.0 (Mean) $0.45 (q_u)^{0.5}$ $0.70 (q_u)^{0.5}$ 3.0 (Upper bound)

Table 22.14 Shaft capacity for bored piles in rock (adapted from Seidel and Haberfield, 1995).

22.15 Shaft resistance roughness

- The shaft resistance is dependent on the shaft roughness.
- The table below was developed for Sydney Sandstones and Shales.

Roughness class		rooves	
	Depth	Width	Spacing
RI	< I mm	<2 mm	Straight, smooth sided
R2 R3	I-4 mm 4-10 mm	>2 mm >5 mm	50–200 mm
R4	> 10 mm	> 10 mm	

Table 22.15 Roughness class (after Pells et al., 1980).

- Roughness can be changed by the type of equipment and procedures used in constructing the pile shaft in the rock.
- Above R4 condition is used in Rowe and Armitage (1984) for a rough joint.
 Therefore a universality of the above concept may be used although specific groove numbers can be expected to vary.

22.16 Shaft resistance based on roughness class

- The shaft resistance for Sydney Sandstones and Shales can be assessed by applying the various formulae based on he roughness class.
- $\tau =$ Ultimate Side Shear Resistance (MPa).
- $q_u = Unconfined Compressive Strength of Intact Rock (MPa).$

Table 22.16 Shaft resistance (Pells et al., 1980).

Roughness class	$\tau =$ Ultimate side shear resistance (MPa)
RI R2	0.45 (q _u) ^{0.5}
R3 R4	Intermediate 0.6 $(q_u)^{0.5}$

Design shaft resistance in rock

- The table below combines the concepts provided above by the various authors.
- The formula has to be suitably factored for a mix of conditions, eg low quality rock with no slurry and grooving of side used.

Typical material properties	Construction condition	$\tau =$ Ultimate side shear resistance (MPa)
Soil, RQD << 25%		0.1 (q _u) ^{0.5}
Low quality rock RQD <25%, clay seams defects <60 mm	Slurry used, straight, smooth sides	0.2 (q _u) ^{0.5}
Medium quality rock RQD = 25%-75% defects 60-200 mm		0.45 (q _u) ^{0.5}
High quality rock RQD >75% defects >200 mm	Artificially roughened by grooving	0.70 (q _u) ^{0.5}

Table 22.17 Shaft capacity for bored piles in rock (modified from above concepts).

22.18 Load settlement of piles

- Some movement is necessary before the full load capacity can be achieved. The full shaft capacity is usually mobilized at approximately 10mm.
- Due to the large difference in movement required to mobilise the shaft and base, some designs use either the shaft capacity or the base capacity but not both.
- Reese and O'Neil (1989) use the procedure of movement > 10 mm, then the load is carried entirely by base while displacement <10 mm then the load is carried by shaft. Therefore calculation of the settlement is required to determine the load bearing element of the pile.
- Often 50% to 90% of the load is required by the shaft capacity.
- The base resistance should be ignored where boreholes do not extend beyond below foundation or in limestone areas where solution cavities are possible.
- Factor of safety to consider the above relative movements.

Load carrying element	Displacement required			
	Турісаl	Material specific eg bored piers in clay/mudstones		
Shaft	0.5% to 2% Shaft diameter 5–10 mm	1% to 2% of Shaft diameter 10 mm maximum for piles with diameters > 600 mm		
Base	5% to 10% Shaft diameter	10% to 20% of Base diameter		

22.19 Pile refusal

- Piles are often driven to refusal in rock
- The structural capacity of the pile then governs.
- There is often uncertainty on the pile founding level.
- The table can be used as guide, where all the criteria are satisfied, and suitably factored when not all of the factors are satisfied.

Table 22.19 Estimate of driven pile refusal in rock.

	Likely pile penetration				
SPT value, N*	Is (50)MPa	RQD (%)	Defect spacing (mm)	into rock (m)	
>400	>1.0	>75%		< <b< td=""></b<>	
/ 4 00	0. 3–1.0	50–75%	>600	<b< td=""></b<>	
200–400	0. 3–1.0		200–600	B-3B	
200-400	0.1-0.3	25 500/	200-800	2B-4B	
100–200	0.1-0.3	25–50%	60–200	3B-5B	
100-200	<0.1	<25%	60-200	5B-7 B	
<100		~23%	<60	>5B	

• As the structural capacity and driving energy determines the pile refusal levels, the table should be factored downwards for timber piles and upwards for steel piles. For example a 450 mm prestressed concrete pile is expected to have arrived at refusal (set) within 3 m of an N \sim 100 material, but an H pile requires N >200 to achieve that set.

22.20 Limiting penetration rates

- The pile refusal during construction may be judged by the penetration rates.
- This varies according to the pile type.

Table 22.20 Penetration rate to assess pile refusal.

Pile type	Maximum blow count (mm/blow)
Concrete Timber Steel – H Steel – Pipe Sheet Piles	2–3 mm 6–8 mm 1–2 mm 1–2 mm 2–3 mm

Movements

23.1 Types of movements

- Some movements typically occur in practice, ie stress and strain are interrelated. If the load is applied and soil resistance occurs, then some nominal movement is often required to mobilise the full carrying capacity of the soil or material.
- The large factors of safety in the working stress design, typically captures the
 acceptable movement, ie deformations are assumed kept to an acceptable level.
 Limit equilibrium and conditions can then be applied in the analysis. However,
 many design problems (eg retaining walls) should also consider deformation within
 the zone of influence.
- In the limit state design, movements need to be explicitly checked against allowable for the serviceability design case.

Table 23.1 Types of movement.

Design application	Parameter	Typical movement
Shallow foundations	Allowable bearing capacity	25 mm for building
Deep foundations	Shaft friction	10 mm for shaft friction to be mobilised
Retaining walls	Active and passive earth	0.1% H for K _a to be mobilised in dense sands
	Pressure coefficient	1% H for K_p to be mobilised in dense sands
Reinforced soil walls	Frictional and dilatancy to transfer load to soil reinforcement	25 to 50 mm for geogrids 50 to 100 mm for geotextiles
Pavements	Rut depth based on a strain criterion related to number of repetitions	20 mm rut depths in major roads – paved 100 mm rut depths in mine haul roads
Embankment	Self weight settlement	0.1% height of embankment
Drainage	Total settlement	Varies with crossfall. 100 to 500 mm

23.2 Foundation movements

- The immediate settlement is calculated using elastic theory.
- Consolidation settlements occur with time as water is expelled from the soil.

 Creep settlement (also called secondary compression) occurs as a change of structure occurs.

Table 23.2	Types of	movements.
------------	----------	------------

Principal soil types	Type of movements				
	Immediate	Consolidation	Creep	Swell	
Rock	Yes	No	No	Some	
Gravels	Yes	No	No	No	
Sands	Yes	No	No	No	
Silts	Yes	Minor	No	Minor	
Clays	Yes	Yes	Yes	Yes	
Organic	Yes	Minor	Yes	Minor	

- Immediate and consolidation settlements are dependent on the applied load and the foundation size.
- Self weight settlement can also occur for fill constructed of the above materials.
 The settlement will depend on the material type, level of compaction and height of the fill.

23.3 Immediate to total settlements

- The settlement estimates are usually based on the settlement parameters from the oedometer test.
- This is mainly for consolidation settlements, but may also be applied to elastic settlements for overconsolidated soils.
- For stiff elastic soils, a factor of safety of 2.5 is assumed.
- Secondary settlement is neglected in this table. Saturated soil is assumed.

Table 23.3 Immediate, consolidation and total settlement ratio estimates (after Burland et al., 1978).

Type of soil	Immediate settlement, (undrained) ρ_{u}	Consolidation settlement ρ_c	Total settlement $\rho_T = \rho_u + \rho_c$	Ratio $ ho_u/ ho_T$
Soft yielding	0.1 ρ_{oed}	$ ho_{\sf oed}$	I.I ρ_{oed}	<10-15%
Stiff elastic	$0.6~ ho_{ m oed}$	0.4 ρ_{oed}	$ ho_{\sf oed}$	33–67%

- $\rho_{u/\rho_T} \rightarrow 70\%$ for deep layers of overconsolidated clays.
- $\rho_{u/}\rho_T \rightarrow 25\%$ for decreasing thickness of layer and increasing non homogeneity and anisotropy.

23.4 Consolidation settlements

• One – dimensional settlements = $\rho_{od} = \rho_{oed}$ from the odeometer test (refer chapter 11).

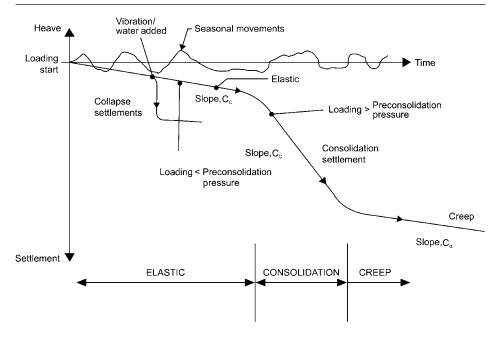


Figure 23.1 Foundation movements.

- Consolidation settlement $(\rho_c) = \mu \rho_{oed}$.
- μ = settlement coefficient based on Skempton's pore pressure coefficient and the loading geometry.
- The table shows a simplified version of this consideration.

Table 23.4 Correction factors based on Skempton and Bjerrum (Tomlinsor	. 1995).	
--	----------	--

Type of clay	Description	Correction factor
Very sensitive	Soft alluvial, estuarine and marine	1.0–1.2
Normally consolidated		0.7-1.0
Overconsolidated	London Clay, Weald, Oxford and Lias	0.5-0.7
Heavily overconsolidated	Glacial Till, Keuper Marl	0.2-0.5

23.5 Typical self weight settlements

- The self weight settlements occur for all placed fills even if well compacted.
- The self weight settlement of general fills is assumed to occur over 10 years, although refuse fills take over 30 years to stabilise.
- Depth of fill H.

Table 23.5 Typical potential self weight settlements (Goodger and Leach, 1990).

Compaction	Material	Self weight settlement
Well compacted	Well graded sand and gravel	0.5% H
•	Shale, chalk and rock fills	0.5% H
	Clay	0.5% H
	Mixed refuse	30% H
	Well controlled domestic refuse placed in layers	10% H
Medium compacted	Rockfill	I.0% H
Lightly compacted	Clay and chalk	1.5% H
0 / 1	Clay placed in deep layers	1.0-2.0% H
Compacted by scrapers	Opencast backfill	0.6-0.8% H
Nominally compacted	Opencast backfill	1.2% H
Uncompacted	Sand	3.5% H
•	Clay fill (pumped)	12.0% H
Poorly compacted	Chalk	I.0% H

23.6 Limiting movements for structures

The maximum allowable movement depends on the type of structure.

Table 23.6 Typical Limiting settlements for structures.

Type of structure	Maximum allowable vertical movement	Reference
Isolated foundations on clays Isolated foundations on sands	65 mm 40 mm	Skempton and Macdonald (1955)
Rafts clays Rafts on sands	65 to 100 mm 40 to 65 mm	
Buildings with brick walls		Wahls, 1981
 L/H ≥ 2.5 L/H ≤ 1.5 	75 mm 100 mm	
Buildings with brick walls, reinforced with reinforced concrete or reinforced brick	150 mm	
Framed structures	100 mm	
Solid reinforced concrete foundations of smokestacks, silos, towers	300 mm	
Bridges	50 mm	Bozozuk, 1978
At base of embankments on soft ground Rail Road	100 mm 200 mm	

- Movements at the base of an embankment is not equivalent to movement at the running surface, which can be 10% or less of that movement. High embankments provide a greater differential between the movements at the top and base, although high embankments now experience greater self weight settlement.
- Irrespective of the magnitude of the movements, often the angular distortion may dictate the acceptable movements. Cracks may become visible at values

significantly below these values shown. These cracks may be aesthetic and can affect the market value of the property although the function of the building may not be compromised.

23.7 Limiting angular distortion

The angular distortion is the ratio of the differential settlement to the length.

Table 23.7	Limiting angular	distortion	(Wahls, 1981)	١.
IUDIC ZJ./	Lilling aligular	distol tion	(* * ai ii 3, i 70 i)	

Category of potential damage	δ/L
Machinery sensitive to movement	1/750
Danger to frames with diagonals	1/600
Safe limit for no cracking of buildings	1/500
First cracking of panel walls	1/300
Difficulties with overhead cranes	
Tilting of high rigid building becomes visible	1/250
Considerable cracking of panel and brick walls	1/150
Danger of structural damage to general buildings	
Safe limit for flexible brick walls L/H > 4	

23.8 Relationship of damage to angular distortion and horizontal strain

- The damage is usually a combination of different strains.
- The relationship between horizontal strains, $\varepsilon_h(\times 10^{-3})$ and angular distortion ($\times 10^{-3}$) is shown in Boscardin and Cording (1989) for different types of construction and severity.

Table 23.8 Distortion factors (after Boscardin and Cording 1989).

Distortion factor	Type of construction	Upper limit of		
		Angular distortion (\times 10 ⁻³)	Horizontal strains, $\epsilon_h (\times 10^{-3})$	
Negligible	All	<1.6	0	
Slight		<3.2	0	
Moderate to severe		<6.6	0	
Severe to very severe		≥6.6	0	
Negligible	All	0	< 0.7	
Slight		0	<1.5	
Moderate to severe		0	<3.0	
Severe to very severe		0	≥3.0	
Moderate to severe	Deep mines	0	3	
	'	2	2.7	
Moderate to severe	Shallow mines	2	2.7	
	and tunnels, Braced cuts	4.5	1.5	
Moderate to severe	Building settlement	6.1	0.4	
	ŭ	6.6	0.0	

23.9 Movements at soil nail walls

- The wall movements are required for the active and passive state to apply. The type of soil and its wall movement governs the displacement. This was Tabled in Chapter 19.
- The displacement of the wall facing depends on the type of soil and the wall geometry.
- At the top of a wall, the Horizontal Displacement $(\delta_h) = \delta_v(L/H)$.

0.8 H (I – $\tan \eta$)

Movement	Soil type		
	Intermediate soils (rock)	Sand	Clay
Vertical displacement (δ_{v})	H/1000	2H/1000	4H/1000

0.8 H (I – $\tan \eta$)

0.8 H (I – $\tan \eta$)

Table 23.9 Displacements of soil nail wall (Clouterre, 1991).

- High Plasticity clays may produce greater movements.
- Batter angle of facing = η .

Distance from wall to

zero movement

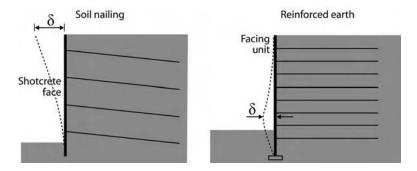


Figure 23.2 Comparison of movement between soil nailing and reinforced soil walls.

23.10 Tolerable strains for reinforced slopes and embankments

- The reinforcing elements must be stiff enough to mobilise reinforcement forces without excessive strains.
- The allowable long term reinforcement tension load = $T_{lim} \le E_{secant} \times \varepsilon_{tol}$.
- Secant modulus of reinforcement = E_{secant}.
- Tolerable strain = ε_{tol} .
- Steel reinforcement is inextensible for all practical purposes, and reinforcement stiffness is not a governing criteria.

Table 23.10 Tolerable strains for reinforced slopes and embankments (Duncan and Wright, 2005).

Reinforced application	Considerations	Tolerable strains, $\varepsilon_{\text{tol}}(\%)$
Reinforced soil walls		10
Reinforced slopes	Embankments on firm foundation	10
Reinforced embankments	On non sensitive clay, moderate crest deformation tolerable On non sensitive clay, moderate crest deformation not tolerable On highly sensitive clays	10 5–6 2–3

23.11 Movements in inclinometers

The loading from the embankment results in a lateral movement.

Table 23.11 Relative movements below embankment.

Measurement	Symbols/relationship
Horizontal movement	δ_{H}
Vertical movement	$\delta_{\sf v}$
Inclinometer at side of embankment on soft clay	$\delta_{H}/\delta_{v} \sim$ 0.3

23.12 Acceptable movement in highway bridges

The movement criteria for bridges stated below do not consider the type or size of bridge.

Table 23.12 Movement criteria for bridges (Barker at al., 1992, Moulton et al., 1978, Bozozuk, 1978).

Movement criteria	Acceptable movement (mm)		
	Vertical	Horizontal	
Not harmful	<50	<25	
Ride quality affected	60		
Harmful but tolerable	100-50	50-25	
Usually intolerable	>100	>50	

23.13 Acceptable angular distortion for highway bridges

- Angular Distortion (A) = δ /S:
 - δ Differential settlement between foundations.
 - S Span length.

Volume of an order distantion	C	C:lb
Table 23.13 Angular distortion criteria	for bridges (Barker at al., 1992	, Moulton et al., 1978).

Value of angular distortion	Continuous span	Single span
0.000 to 0.001	100%	100%
0.001 to 0.003	97%	100%
0.003 to 0.005	92%	100%
0.005 to 0.008	85%	95%

- $A \le 0.004$ is acceptable for continuous span bridges.
- A < 0.008 is acceptable for single span bridges.

23.14 Tolerable displacement for slopes and walls

• The literature is generally vague on tolerable movements.

Table 23.14 Movements just before a slide (data from Skempton and Hutchinson, 1969).

Type of system	Total movement (cm)
Small to large walls	20–40
Medium to large landslides	40–130

23.15 Observed settlements behind excavations

- The settlements behind a wall depend on the type of soil, and distance from the excavation face.
- The table applies to soldier piles or braced sheet piles with cross bracing or tie backs

Table 23.15 Observed settlements behind excavations for various soils (Peck, 1969, O'Rouke et al., 1976).

Type of soil	Settlement/maximum depth of excavation (%)	Distance from excavation/ maximum depth of excavation (%)
Medium To Dense	sands with interbedded stiff clays with a	verage to good workmanship
	0.3	0
	0.1	1.2
	0.0	2.0
Sand and Soft to H	ard Clay with average workmanship	
	, I	0
	0.5	0.7
	0.0	2.5
Very Soft to Soft C	lay to a limited depth with construction	difficulties
,	2	0
	1	1.2
	0.5	2.3
	0.0	4.0
Very Soft to Soft C	lay to a significant depth below the bott	om of excavation

Settlements adjacent to open cuts for various support systems

- These are empirically derived values for horizontal movements at the crest of an excavation.
- This may be conservative for residual soils, and with recent advances in construction procedures.

Table 23.16 Horizontal movements for varying support systems (Peck, 1969).

Type of wall		Horizontal movement as % of excavation height
Externally stabilised	Cantilever retaining walls Propped retaining walls Tied back walls	0.5% 0.2–0.5% 0.05–0.15%
Internally stabilised	Soil nails	0.1-0.3%

23.17 Tolerable displacement in seismic slope stability analysis

When seismic factors of safety < 1.15 then this initial screening should be replaced by a displacement analysis.

Table 23.17 Tolerable displacement (after Duncan and Wright, 2005).

Slope type	Tolerable displacement
Typical slopes and dams	1.0 m
Landfill covers	0.30 m
Landfill base	0.15 m

23.18 Rock displacement

A probability of failure of less than 0.5% could be accepted for unmonitored permanent urban slopes with free access (Skipp, 1992).

Table 23.18 Permanent rock displacement for rock slope analysis (Skipp, 1992).

Failure category	Annual probability	Permanent displacement
Catastrophic	0.0001	3
Major	0.0005	1.5
Moderate	0.001	0.3
Minor	0.005	0.15

23.19 Allowable rut depths

- The allowable rut depth depends on the type of road.
- The allowable rut depth is a serviceability criterion and does not correspond to actual failure of a base course or subgrade material.

Table 23.19 Typical allowable rut depths (QMRD, 1981: AASHTO, 1993).

Type of road	Paving	Allowable rut depth
Haul type	Unpaved	100 mm
Access	Unpaved	75 mm
Low volume	Unpaved	30 to 70 mm
	Paved	20 to 50 mm
Major roads	Paved	10 to 30 mm

23.20 Levels of rutting for various road functions

 The rutting criteria are based on the design speed of the road to ensure the safety of road users.

Table 23.20 Indicative investigation levels of rutting (Austroads, 2004).

Road function	Speed	Percentage or road length with rut depth exceeding 20 mm
Freeways and other high class facilities		10%
Highways and main roads	100 km/h	10%
Highways and main roads	$\leq \! 80\mathrm{km/h}$	20%
Other local roads (sealed)	60 km/h	30%

• Rut measured with a 1.2 metre straight edge.

23.21 Free surface movements for light buildings

 Australian Standards (AS2870) is based on a free surface movement (y_s) calculated from the shrink – swell index test (I_{ss}), the depth of active and cracked zone and the soil suction.

Table 23.21 Free surface movements for light buildings.

Class	Site classification	Surface movement (y _s , mm)
A	Competent rock	
S	Slight	<20
M	Moderate	20 to 40
Н	High	40 to 60
E	Extreme	>60
P	Problem	

- The free surface movement is used to classify the site reactivity.
- This applies for residential buildings and lightly loaded foundations.
- Competent rock excludes extremely weathered rocks, mudstones, and clay shales.

23.22 Free surface movements for road pavements

- The free surface movement can be used to classify the road subgrade movement potential.
- Calculations should include the depth of pavement based on the strength criteria design. Should pavements be excessive, a non reactive subgrade layer (capping layer) is required below the pavement to reduce the reactive movement to an acceptable value.

Table 23.22 Free surface movements for road subgrades (Look, 1992).

Road performance	Surface movement (y _s , mm)	
	Flexible pavements	Rigid pavements
Acceptable	≤10	<u>≤</u> 5
Marginal	10 to 20	5 to 15
Unacceptable	≥20	≥15

Higher movements would be acceptable at the base of the embankment eg 100 mm for a high embankment on soft ground. That movement does not necessarily translate to the surface area. This should be checked based on the embankment height.

23.23 Allowable strains for roadways

- The allowable rutting is based on the number of cycles applied to the pavement
- The design is based on ensuring each layer has not exceeded its allowable strain.

Table 23.23 Typical allowable strains for pavement layers (Austroads, 2004).

Material	Allowable strains
Asphalt	1000 microstrain
Base at 0 to 10,000 cycles	2500 microstrain
Sub Base at 0 to 10,000 cycles	2000 microstrain
Base at 10,000 to 20,000 cycles	3500 microstrain
Sub Base at 10,000 to 20,000 cycles	4000 microstrain
Base at 0 to 20,000 to 30,000 cycles	5000 microstrain
Sub Base at 0 to 20,000 to 30,000 cycles	7000 microstrain

Appendix - loading

24.1 Characteristic values of bulk solids

• The physical properties of bulk solids are often required in design calculations.

Table 24.1 Characteristic values of bulk solids (AS 3774 – 1996).

Type of bulk solid	Unit weight (kN/m³)	Effective angle of internal friction (°)
Alumina	10.0–12.0	25–40
Barley	7.0–8.5	26–33
Cement	13.0-16.0	40–50
Coal (Black)	8.5-11.0	40–60
Coal (Brown)	7.0–9.0	45–65
Flour (Wheat)	6.5–7.5	23–30
Fly ash	8.0-11.5	30–35
Iron ore, pellets	19.0-22.0	35 -4 5
Hydrated lime	6.0–8.0	35–45
Limestone powder	11.0-13.0	40–60
Maize	7.0–8.5	28–33
Soya beans	7.0–8.0	25–32
Sugar	8.0-10.0	33–38
Wheat	7.5–9.0	26–32

24.2 Surcharge pressures

• Uniform surcharge loads are applied in foundation and slope stability analysis.

Table 24.2 Surcharge loads (AS 4678, 2002).

Loading source	Equivalent uniformly distributed pressure
Railways	20 kPa
Major roads and highways	20 kPa (Permanent) 10 kPa (Temporary)
Minor roads and ramps	10 kPa
Footpaths	5 kPa
Buildings	10 kPa per storey

24.3 Construction loads

- Wheel vehicles provide the greatest load.
- Tracked vehicles may be heavier, but provide a reduced load. This is useful in trafficking low strength areas.

Table 24.3 Typical wheel loads from construction traffic.

Equipment	Size	Approximate mass		Tyre inflation pressure (kPa)
		Fully laden (tonnes)	Per wheel (tonnes)	
Scrapers	Small	25	6	200–400
	Large	110	28	500–600
Dump trucks	Small	25	4	350–700
	Large	80	20	600–800

24.4 Ground bearing pressure of construction equipment

• The table above is simplified below with some additional equipment shown.

Table 24.4 Ground bearing pressure.

Type of equipment		Typical bearing pressure (kl	P a)
	Small	60	
Bulldozer	Large	70	
Wheeled tractor		180	
	Small	150	
Loaded s	craper		
	Medium	200	
	Large	300	
Sheepsfoot roller		1750	

24.5 Vertical stress changes

- Soil stresses decrease with increased distance from the loading.
- The shape and type of the foundation, and the layering of the underlying material affects the stress distribution.
- The table below is for a uniform elastic material under a uniformly loaded flexible footing. These Boussinesq solutions are for a uniform pressure in an isotropic homogeneous semi-infinite material.
- There is a 10% change in normal stress at approximately 2B (square foundation). Hence the guideline for the required depth of investigation (Refer Chapter 1).
- For a strip footing the 10% change in stress occurs at approximately 6B.

For layered systems and/or non uniform loading, the above stress distribution does not apply. Poulos and Davis (1974) is the standard reference for these alternative solutions.

Table 24.5 Vertical stress changes (originally from Janbu, Bjerium and Kjaernsli, 1956, but here from graphs in Simons and Menzies, 1977).

Depth below base of footing (z) in terms of width (B)	Footing shape in terms of length (L)	Change in stress Δp in terms of applied stress q
z/B = 0.5	Square $(L = B)$ L = 2B L = 5B L = 10B $L = \infty$	$\Delta p/q = 0.70$ $\Delta p/q = 0.82$ $\Delta p/q = 0.82$ $\Delta p/q = 0.82$ $\Delta p/q = 0.82$
z/B = 1.0	Square (L = B) L = 2B L = 5B L = 10B $L = \infty$	$\Delta p/q = 0.33$ $\Delta p/q = 0.49$ $\Delta p/q = 0.56$ $\Delta p/q = 0.56$ $\Delta p/q = 0.56$
z/B = 2.0	Square (L = B) L = 2B L = 5B L = 10B $L = \infty$	$\Delta p/q = 0.12$ $\Delta p/q = 0.20$ $\Delta p/q = 0.28$ $\Delta p/q = 0.30$ $\Delta p/q = 0.30$
z/B = 3.0	Square (L = B) L = 2B L = 5B L = 10B $L = \infty$	$\Delta p/q = 0.06$ $\Delta p/q = 0.11$ $\Delta p/q = 0.17$ $\Delta p/q = 0.20$ $\Delta p/q = 0.22$
z/B = 5.0	Square (L = B) L = 2B L = 5B L = 10B $L = \infty$	$\Delta p/q = 0.02$ $\Delta p/q = 0.04$ $\Delta p/q = 0.08$ $\Delta p/q = 0.11$ $\Delta p/q = 0.14$

References

- References have been tabulated as essential background (General) to understanding the background of the data tables provided.
- References specific to whether investigations and assessment, or analysis and design. The references in the latter may not be repeated if already in investigations and assessments

25.1 General - most used

- Barnes G.E. (2000) "Soil Mechanics Principles and Practice" 2nd Edition Macmillan Press.
- Barker R.M., Duncan J.M., Rojiani K.N., Ooi P.S.K., Tan C.K. and Kim S.G. (1991), "Manuals for the design of bridge foundations" National Cooperative Highway Research Program Report No 343, Transportation Research Board, Washington.
- Bowles J.E. (1996), "Foundation Analysis and Design" 5th Edition Mcgraw Hill.
- Carter M. (1983), "Geotechnical Engineering Handbook" Pentech Press.
- Das B.M. (1999), "Principles of Foundation Engineering" 4th Edition, Brooks/Cole Publishing Company.
- Hausmann M.R. (1990), "Engineering Principles of Ground Modification" McGraw – Hill Publishers.
- Mayne P., Christopher B. and Defomg J. (2001), "Manual on subsurface Investigations" National Highway Institute, Publication No. FHWA NH1-01-031, Federal Highway Administration, Washington, DC.
- Sowers G.F. (1979) "Introductory Soil Mechanics and Foundations" 4th Edition, Macmillan Publishing Co Inc., New York.
- Tomlinson M.J. (1995) "Foundation Design and Construction" 6th Edition, Longman.
- Waltham A.C. (1994), "Foundations of Engineering Geology" Blackie Academic & Professional.

25.2 Geotechnical investigations and assessment

• AASHTO (1993), "Guide for the Design of Pavement Structures" American Association of State and Highway Officials.

- AGS Anon (2000), "New focus on landslide risk management" The earthmover & Civil Contractor, December feature article, pp 53–54.
- ASCE (1993). "Bearing Capacity of Soils" Technical Engineering and Design Guides. US Corps of Engineers No. 7.
- Australian Standard (AS 1726–1993), "Geotechnical Site Investigations" Standards Australia.
- Austroads (1992) "Section 3: Foundations" Bridge Design Code
- Austroads (2004), "Pavement Design A guide to the structural design of road pavements" Australian Road Research Board.
- Austroads (2004), "Pavement Rehabilitation Manual" Australian Road Research Board.
- Barton N. (1983), "Application of Q System and index test to estimate Shear Strength and Deformability of Rock Masses", Proceedings International Symposium of Engineering Geology and Underground Construction, Portugal.
- Bell F.G. (1992), "Description and Classification of rock masses" Chapter 3 in Engineering in Rock Masses edited by FG Bell, Butterworth Heinemann.
- Bell F.G. (1992), "Properties and Behaviour of rocks and rock masses" Chapter 1 in Engineering in Rock Masses edited by FG Bell, Butterworth Heinemann.
- Berkman D.A. (2001), "Field Geologists' Manual" 4th Edition, Monograph No. 9, The Australasian Institute of Mining and Metallurgy, Victoria.
- Bienawski Z.T. (1984), "Rock Mechanics Design in mining and tunnelling" A.A. Balkema, Rotterdam.
- Bishop A.W. and Bjerrum L. (1960), "The relevance of the triaxial test to the solution of stability problems" ASCE Conference on Shear Strength of Cohesive Soils, Boulder pp 43–501.
- Bjerrum L. (1972), "Embankments on soft ground" Proceedings of ASCE Speciality Conference on Performance of Earth and Earth Supported Structure, Purdue University, pp 1–54.
- Braun H.M.M. and Kruijne R. (1994), "Soil Conditions" Drainage Principles and Applications (Ed., H.P, Ritzema), International Institute for Land Reclamation and Management Publication, The Netherlands, 2nd Edition.
- Brown E.T., Richards L.R. and Barr R.V. (1977), "Shear strength characteristics of the Delabole Slates", Proceedings of the Conference in Rock Engineering, Newcastle University, Volume 1, pp 33–51.
- British Standards 8002 (1994), "Code of Practice for Earth Retaining Structures"
 British Standards Institution.
- Carter M. and Bentley S.P. (1991), "Correlation of Soil Properties" Pentech Press.
- Cedergren H.R. (1989), "Seepage, Drainage and flow nets" 3rd Edition, John Wiley & sons.
- Chandler R.J. (1988), "The in-situ measurement of the undrained shear strength of clays using the filed vane" Vane Shear Strength testing in soils: Field and Laboratory studies, ASTM STP 10154, American Society of Testing and Methods.
- Clayton C.R.I. (1995). "The Standard Penetration Test (SPT): Methods and Use" CIRIA Report 143.
- Concrete Institute (1999), "Industrial Floors and Pavements Guidelines".
- Croney D. and Croney P. (1991), "The design and performance of road pavements" 2nd Edition Mcgraw Hill.

- Deere D.U., Hendron A.J., Patton F.D. and Cording E.J. (1967), "Design of Surface and Near Surface Construction in Rock", Proceedings 8th U.S. Symposium in Rock Mechanics on Failure and Breakage of Rock (Ed. C. Fairhurst), New York, pp 237–302.
- Deere D.U. and Miller R.P. (1966), "Engineering Classification and Index Properties for Intact Rock" Technical Report AFWL-TR-65-115, Air Force Weapons Laboratory, New Mexico.
- Duncan J.M. and Wright S.G. (2005), "Soil Strength and slope Stability" Wiley Publishers.
- Farrar D. M. and Daley P. (1975), "The operation of earth moving plant on wet fill" Transport and Road Research Laboratory Report 688.
- Fugro Ltd (1996), "Cone Penetration Test: Simplified Description of the Use and Design Methods for CPTs in Ground Engineering".
- Gay D.A. and Lytton R.L. (1992), "El Paso moisture barrier study" Texas A & M University Report for the Texas Department of Transport.
- Geotechnical Engineering Office (1987), "Geoguide 2: Guide to Site Investigation" Hong Kong.
- Geotechnical Engineering Office (1988), "Geoguide 3 Guide to rock and soil descriptions", Hong Kong Government.
- Gordon J.E. (1979), "Structures or why things don't fall down" Penguin Books.
- Harr M.E. (1996), "Reliability Based Design in Civil Engineering" Dover publications, New York.
- Heymann G. (1988), "The stiffness of soils and weak rocks at very small strains" PhD Thesis, Department of Civil Engineering, University of Surrey.
- Hilf J.W. (1991), "Compacted Fill" Foundation Engineering Handbook, 2nd edition, Edited by Hsai – Yang Fang, Chapman and Hall, pp 249–316.
- Hillel D. (1972), "Soil and Water: Physical Principles and Processes" Academic Press.
- Hoek E. and Bray J.W. (1981), "Rock Slope Engineering" 3rd Edition, Institution of Mining and Metallurgy, London.
- Holtz R.D. and Kovacs W.D. (1981), "An introduction to geotechnical engineering" Prentice Hall.
- Hunt R.E. (2005), "Geotechnical Engineering Investigation Handbook" 2nd edition, Taylor and Francis.
- Jaimolkowski M., Lancellotta R., Pasqualini E., Marchetti S. and Nova R. (1979), "Design Parameters for soft clays" General Report, Proceedings 7th European Conference on Soil Mechanics and Foundation Engineering, No. 5, pp 27–57.
- Kay J.N. (1993), "Probabilistic Design of Foundations and Earth Structures" Probabilistic Methods in Geotechnical Engineering, Li & Lo (eds), Balkema, p 49-62.
- Kulhawy F.H. (1992), "On the evaluation of static soil properties", Proceedings of a Speciality ASCE Conference on Stability and Performance of Slopes and Embankments – II, Volume 1, Berkley, California, pp 95–115.
- Kulhawy F.H. and Goodman R.E. (1987), "Foundations in Rock" Ground Engineering Reference Book (Ed F.G. Bell), Butterworths, London, pp 55/1–13.

- Kulhawy F.H. and Mayne P.W. (1990), "Manual on estimating soil properties for foundation design" Report EL - 6800, Electric Power Research Institute, California.
- Ladd C.C., Foote R., Ishihara K., Schlosser F. and Poulos H.G. (1977), "Stress deformation and strength characteristics", State of the art report, Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Volume 2, pp 421–494.
- Lee I.K., White W. and Ingles O.G. (1983), "Geotechnical Engineering" Pitman Publishers.
- Look B.G. (1997). "The Standard Penetration Test Procedure in Rock" Australian Geomechanics Journal. No. 32, December pp 66–68.
- Look B.G. (2004), "Effect of Variability and Disturbance in the measurement of Undrained Shear Strength" 9th Australia New Zealand Conference in Geomechanics, Auckland, New Zealand, Vol. 1, pp 302–308.
- Look B.G. and Griffiths S.G. (2004), "Characterization of rock strengths in south east Queensland" 9th Australia New Zealand conference in Geomechanics, Auckland, New Zealand, pp 187–194.
- Look B.G. and Griffiths S.G. (2004), "Rock strength properties in south east Queensland" 9th Australia New Zealand conference in Geomechanics, Auckland, New Zealand, pp 196–203.
- Look B.G. (2005), "Equilibrium Moisture Content of volumetrically active clay earthworks in Queensland" Australian Geomechanics Journal, Vol. 40, No. 3, pp 55–66
- Marchetti S. (1980), "In situ tests by the flat Dilatometer" Journal of Geotechnical Engineering, ASCE, Vol. 106, GT3, pp 299–321.
- Marchetti S. (1997), "The Flat Dilatometer: Design Applications" Proceedings of the 3rd International Geotechnical Engineering Conference, Cairo, pp 421–448.
- Marsh A.H. (1999), "Divided Loyalties" January, Ground Engineering, p 9. Meigh A.C. (1987), "Cone Penetration Testing: Methods and Interpretation" CIRIA Ground Engineering Report: In - situ Testing.
- MTRD Report No. 2-2 (1994), "Precision of soil compaction tests: Maximum dry density and optimum moisture content" Department of Road Transport, South Australia.
- NAVFAC (1986), "Soil Mechanics" Design Manual 7.01, Naval Facilities Engineering Command, Virginia
- NAVFAC (1986), "Foundations and Earth Structures Design Manual" Design Manual DM 7.02, Naval Facilities Engineering Command, Virginia.
- Patton F.D. (1966), "Multiple Modes of Shear Failure in Rock" Proceedings 1st Congress of the International Society for Rock Mechanics, Lisbon, Vol. 1, pp 509-513.
- Peck R.B., Hanson W.E. and Thornburn T.H. (1974), "Foundation Engineering" 2nd Edition, John Wiley and Sons, New York.
- Phoon K. and Kulhawy F.H. (1999), "Characterization of geotechnical variability" Canadian Geotechnical Journal, Volume 36, pp 612–624.
- Powell W.D., Potter J.F., Mayhew H.C. and Nunn M.E. (1984), "The Structural Design of Bituminous Roads" Transportation Road Research Laboratory Report RL 1132, TRL, UK.

- Riddler N.A. (1994), "Groundwater Investigations" Drainage Principles and Applications (Ed., H.P., Ritzema), International Institute for Land Reclamation and Management Publication, The Netherlands, 2nd Edition.
- Robertson P.K. and Campanella R.G. (1983), "Interpretation of Cone Penetration Tests", Canadian Geotechnical Journal, Vol. 31, No. 3, pp 335–432.
- Robertson P.K., Campanella R.G., Gillespie D. and Greig J. (1986), "Use of piezometer cone data: Use of in situ tests in Geotechnical Engineering", ASCE Geotechnical Special Publication No. 6, pp 1263–1280
- Rowe, P.W. (1972), "The Relevance of Soil Fabric to Site Investigation Practice" Geotechnique, Vol. 22, No. 2, pp 195-300.
- Sabatani P.J., Bachus R.C., Mayne P.W., Schnedier J.A. and Zettler T.E. (2002), "Evaluation of Soil and Rock properties Geotechnical Engineering Circular No. 5, Report No. HHWA-IF-02-034", Federal Highway Administration, Washington.
- Santamarina C., Altschaeffl A.G. and Chameau J.L. (1992), "Reliability of Slopes: Incorporating Qualitative Information" Transportation research Record 1343, Rockfall, Prediction, control and landslide case histories, pp 1–5.
- Schmertmann J.H. (1978), "Guidelines for cone penetration testing Performance and Design", U.S. Department of Transportation, Federal Highways Administration, Washington DC.
- Serafim J.L. and Pereira J.P. (1983), "Considerations of the Geomechanics Classification of Bieniawski" Proceedings of the International Symposium of Engineering Geology and Underground Construction, Lisbon, pp 1133–1144.
- Skempton A.W. (1957), "Discussion on the design and planning of Hong Kong Airport" Proceedings of the Institution of Civil Engineers, Vol. 7.
- Skempton A.C. (1986), "Standard Penetration Test Procedures and the effects in sands of overburden pressure, relative density, particles size aging and overconsolidation" Geotechnique 36, No. 3, pp 425–447.
- Skipp B.O. (1992), "Seismic Movements and rock masses" Chapter 14 in Engineering in Rock Masses edited by FG Bell, Butterworth Heinemann.
- Spears (1980), "Towards a classification of shales" Journal of The Geological Society, No. 137, pp 125-130.
- Somerville S.H. (1986), "Control of Groundwater for temporary works" CIRIA Report 113.
- Strohm WE Jr, Bragg GH JR and Zeigler TH (1978), "Design and construction of Compacted Clay Shale Embankments" Technical Guidelines Report FHWA-RD-78-141, Vol. 4.
- Stroud M.A. and Butler F.G. (1975), "The standard penetration test and the engineering properties of glacial materials" Proceedings of the symposium on Engineering Properties of glacial materials, Midlands, U.K.
- Stroud M.A. (1974), "The Standard Penetration Test: Introduction Part 2" Penetration Testing in the U.K., Thomas Telford, London, pp 29–50.
- Takimatsu K. and Seed H.B. (1984), "Evaluation of settlements in sands due to earthquake shaking" Journal of Geotechnical Engineering, Vol. 113, pp 861-878.
- Walsh P., Fityus S. and Kleeman P. (1998), "A note on the Depth of Design Suction Changes in South Western Australia and South Eastern Australia" Australian Geomechanics Journal, No. 3, Part 3, pp 37–40.

- Vaughan P.R., Chandler R.J., Apted J.P., Maguire W.M. and Sandroni S.S. (1993), "Sampling Disturbance – with particular reference to its effect on stiff clays" In Predictive Soil Mechanics, Ed. G.T. Houlsby and A.N. Schofield, Thomas Telford Publishers London, pp 685–708.
- Vaughan P.R. (1994), "Assumption, Prediction and reality in Geotechnical Engineering" Geotechnique Vol. 44, No. 4, pp 573–609.
- Walkinshaw J.L. and Santi P.M. (1996), "Shales and Other Degradable Materials" Transportation Research Board, Landslides: Investigations and Mitigation, Special Report 247, National Academy Press, Washington, pp 555–576.

25.3 Geotechnical analysis and design

- Angell D.J. (1988), "Technical Basis for the Pavement Design Manual" Queensland Main Roads, Pavements Branch, Report RP165.
- Australian Standard (AS 2870 1988), "Residential Slabs and Footings Part 1: Construction" Standards Australia.
- Australian Standard (AS 2870 1990), "Residential Slabs and Footings Part 2: Guide to design by engineering principles" Standards Australia.
- Australian Standard (AS3774 1996), "Loads on bulk solids containers" Standards Australia.
- Australian Standard (AS4678 2002), "Earth Retaining Structures" Standards Australia.
- AUSTROADS (2004), "Pavement Rehabilitation a guide to the design of rehabilitation treatments for road pavements" Standards Australia.
- Austroads (1990), "Guide To Geotextiles" Technical Report.
- Australian National Committee of Irrigation and Drainage (2001), "Open Channel Seepage and Control" Volume 2.1: Literature Review of earthen channel seepage.
- Barton N., Lien R. and Lunde J. (1974), "Engineering Classification of rock masses for design of tunnel support" Rock Mechanics, No. 6, pp 189–239, Norwegian Geotechnical Institute Publishers.
- Barton N. (2006), "Lecture Series on Rock Mechanics and Tunnelling" School of Engineering, Griffith University, Gold Coast Campus.
- Bell F.G. (1992), "Open excavation in rock masses" Chapter 21 in Engineering in Rock Masses edited by FG Bell, Butterworth Heinemann.
- Bell F.G. (1998), "Environmental Geology Principles and Practice" Blackwell Science.
- Boscardin M.G. and Cording E.J. (1989), "Building response to excavation induced settlement", Journal of Geotechnical engineering, ASCE, Vol. 124, No.5, pp 463–465.
- Bishnoi B.L. (1968), "Bearing Capacity of a closely Jointed Rock" PhD Dissertation, Georgia Institute of Technology, Atlanta.
- Bozozuk M. (1978), "Bridge Foundations Move" Transportation Research Record 678, Transportation Research Board, Washington, pp 17–21.

- Brandtl H. (2001), "Low Embankments on soft soil for highways and high speed trains" Geotechnics for Roads, Rail tracks and Earth structures, Ed. A Gomes Correia and H. Brandtl, Balkema Publishers.
- British Standards BS6031 (1991), "Code of Practice for Earthworks" British Standards Institution.
- Broms B.B. (1981), "Precast Piling Practice" Thomas Telford Ltd, London.
- Brooker E.W. and Ireland H.O. (1965), "Earth Pressures at rest related to stress history" Canadian Geotechnical Journal, Volume 2, No. 1 pp 1–15.
- Burland J.B., Broms B.B. and De Mello V.F.B. (1978), "Behaviour of Foundations and Structures" Proceedings 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, pp 495–546.
- Carter J.P. and Kulhawy F.H. (1988), "Analysis and design of drilled shaft foundations socketed into rock" Final Report Project 1493-4, EPRI EL-5918, Cornell University, Ithaca, New York.
- Cedergren H.R. (1989), "Seepage, Drainage and flow nets" 3rd Edition, John Wiley & sons.
- Clouterre (1991), "Soil Nailing Recommendations For Designing calculating, constructing and inspection Earth Support Systems using soil nailing" French National Research, English Translation from the Federal Highway Administration, FHWA-SA-93-026, Washington, USA.
- Coduto D.P. (1994), "Foundation Design, Principles and Practices" Prentice Hall.
- Cooke R.U. and Doornkamp J.C. (1990), "Geomorphology in Environmental Management" 2nd Edition, Oxford University Press, Oxford.
- Cruden D.M. and Varnes D.J. (1996), "Landslides Types and Processes" Landslides Investigations and Mitigations, Ed. Turner and Schuster, Special Report 247, Transportation Research Board, pp 36–75.
- Department of Transport (1991) "Specification for highway works", HMSO London, UK.
- Delpak R., Omer J.R. and Robinson R.B. (2000) "Load/settlement prediction for large diameter bored piles in Mercia Mudstone" Geotechnical Engineering, Proceedings Institution of Engineers, 143, pp 201–224.
- Duncan J.M. and Wright S.G. (2005), "Soil Strength and slope Stability" Wiley Publishers.
- Dykeman P. and Valsangkar A.J. (1996), "Model Studies of Socketed Caissons in Soft Rock" Canadian Geotechnical Journal Volume 33, pp 347–375.
- Duncan J.M. and Wright S.G. (2005), "Soil Strength and slope Stability" Wiley Publishers.
- Fell R., MacGregor P., Stapledon D. and Bell G. (2005), "Geotechnical Engineering of Dams" AA Balkema Publishers.
- Fleming W.G., Weltman A.J., Randolph M.F. and Elson W.K. (1992) "Piling Engineering" 2nd Edition, Blackie Academic and Professional Service.
- Forrester K. (2001), "Subsurface drainage for slope stabilization" American Society of Civil Engineers Publishers.
- Forssblad L. (1981), "Vibratory soil and rock fill compaction" Robert Olsson Tryckeri Publishers, Sweden
- Geotechnology of waste management, p 354.

- Giroud J.P. and Noirway L. (1981), "Design of geotextile reinforced unpaved roads" Journal Of Geotechnical Engineering, ASCE Journal, Volume 107, No. GT9, pp 1233–1254.
- Goodger H.K. and Leach B.A. (1990), "Building on derelict land" Construction Industry Research and Information Association, London.
- Hannigan P.J., Goble G.G., Thendean G., Likins G.E. and Rausche F. (1998), "Design and Construction of piled Foundations Volumes 1 and 2", Federal Highway Administration Report No. FHWA–HI-97-013, Washington, DC.
- Hansen J.B. (1970), "A revised and extended formula for bearing capacity" Danish Geotechnical Institute Bulletin, No. 28.
- Highway design Manual 840-3 (2001).
- Hoek E., Kaiser P.K. and Bawden W.F. (1997), "Support of Underground Excavations in Hard Rock" A.A. Balkema, Rotterdam.
- Horner P.C. (1988) "Earthworks" ICE Construction Guides, Thomas Telford London 2nd Edition.
- Holtz R., Barry P. and Berg R. (1995), "Geosynthetic design and construction guidelines" National Technical Information.
- Holtz R.D., Christopher B.R. and Berg R.R. (1995), "Geosynthetic design and construction guidelines" Federal Highway Administration, Virginia.
- Holtz R., Barry P. and Berg R. (1995), "Geosynthetic design and construction guidelines" National Technical Information Service.
- Horner P.C. (1988), "Earthworks" ICE Works Construction Guides, 2nd edition, Thomas Telford, London.
- Hutchinson D.J. and Dideerichs M.S. (1996), "Cablebolting in Underground Mines" Bi-Tech Publishers, Richmond, Canada.
- Jardine R., Chow F., Overy R. and Standing J. (2005), "ICP Design methods for driven piles in sands and clays" Thomas Telford Publishing.
- Jardine R., Fourie A., Maswose J. and Burland J.B. (1985), "Field and Laboratory measurements of soil stiffness" Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Volume 2, pp 511–514.
- Jardine R.J., Potts D.M., Fourie D.M. and Burland J.B. (1986), "Studies of the influence of non linear stress strain characteristics in soil structure interaction" Geotechnique, Volume 36, No. 3, pp 377–396.
- Ingles O.G. (1987), "Soil Stabilization" Ground Engineer's Reference Book, Ed. F.G. Bell, Butterworths Heinemann Publishers.
- Kaiser P.K., Diederichs M.S., Martin C.D., Sharp J. and Steiner W. (2000), "Underground works in hard rock Tunnelling and Mining", GeoEng 2000 Melbourne, Vol. 1, Technomic Publishing Co., pp 841–926.
- Koerner R. (1998), "Designing with Geosynthetics" (4th Edition) Prentice Hall Publishers.
- Kimmerling R. (2002), "Shallow Foundations" Geotechnical Engineering Circular No. 6, Federal Highway Administration Report No. FHWA–SA–02–054, Washington.
- Kulhawy F.H. and Goodman R.E. (1980), "Design of Foundations on discontinuous rock", Proceedings of the International Conference on Structural Foundations on Rock, International Society for Rock Mechanics, Vol. 1, Sydney, pp 209–220.

- Kulhawy F.H. and Carter J.P. (1980), "Settlement and Bearing Capacity of Foundations on Rock Masses" Engineering in Rock Masses (Edited by FG Bell), Butterworth Heinemann, pp 231–245.
- Lawson C.R. (1994), "Subgrade Stabilisation with geosynthetics" Ground Modification Seminar, University of Technology, Sydney.
- Lay M.G. (1990), "Handbook of Road Technology, Volume 1: Planning and Pavements" Gordon and Breach Science Publishers, 2nd Edition.
- Lee K.L. and Singh A. (1971), "Relative Density ad Relative Compaction of Soils" Bulletin No. 272, Highway Research Board, National Academy of Science, Washington.
- Look B.G., Wijeyakulasuriya V.C. and Reeves I.N. (1992), "A method of risk assessment for roadway embankments utilising expansive materials" 6th Australia - New Zealand Conference on Geomechanics, New Zealand, February, pp 96–105.
- Look B.G., Reeves I.N. and Williams D.J. (1994), "Development of a specification for expansive clay road embankments" 17th Australian Road Research Board Conference, August, Part 2, pp 249-264.
- Look B.G. (2004), "Rock Strength at the coring interface" Australian Geomechanics Journal, Vol. 39, No. 2, pp 105-110.
- Mayne P.W. and Kulhawy F.H. (1982), "Ko OCR Relationships in soil" ASCE Journal of the Geotechnical Engineering Division, Vol. 108, GT6, pp 851–872.
- McConnell K. (1998), "Revetment systems against wave attack a design manual" Thomas Telford Publishing.
- Meyerhof G.G. (1956), "Penetration Test and bearing capacity of cohesion-less soils" Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 19, No. SM2, pp 1–19.
- Meyerhof G.G. (1965), "Shallow Foundations" Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 91, No. SM2, pp 21–31.
- Meyerhof G.G. (1976), "Bearing Capacity and settlement of pile foundations" Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 102, No. GT3, pp 197–228.
- Moulton L.K., Gangarao H.V.S. and Halvorsen G.T. (1985), "Tolerable movement criteria for highway bridges" Report No. FHRA/RD-85/107, Federal Highway Administration, Washington.
- Mulholland P.J., Schofield G.S. and Armstrong P. (1986), "Structural design criteria for residential street pavements: interim report based on Stage 1 of ARRB project 392", Australian Road Research Board.
- NAVFAC (1986) "Foundations and Earth Structures" Design Manual 7.02.
- Nelson K.D. (1985), "Design and Construction of small earth dams" Inkata Press, Melbourne.
- O'Rouke T.D. (1975), "The ground movements relate to braced excavation and their influence on adjacent buildings", US Department of Transport DOT-TST76, T-23.
- Ortiago JAR, and Sayao ASFJ, (2004), "Handbook of Slope Stabilisation" Springer Publishers.

- Paikowsky S.G. and Whitman R.V. (1990), "The effects of plugging on pile performance and design" Canadian Geotechnical Journal, Volume 27, No. 4, pp 429–440.
- Peck R.B. (1969), "Deep excavations and tunnelling in soft ground", Proceedings of the 7th International Conference I Soil Mechanics and Foundation engineering, Mexico, State of the Art Volume, pp 225–290.
- Phear A., Dew C., Ozsoy B., Wharmby N.J., Judge J. and Barley A.D. (2005), "Soil Nailing best practice Guidance" CIRIA Publication C637, London.
- Poulos H.G. and Davis E.H. (1980), "Pile Foundation Analysis and Design" John Wiley and Sons, New York.
- Poulos H.G. and Davis E.H. (1974), "Elastic Solutions for Soil and Rock Mechanics" John Wiley and Sons, New York.
- Queensland Main Roads (1990), "Pavement Design Manual" 2nd Edition with amendments to 2005.
- Quies J. (2002), "A Dam for a dam" Civil Engineering (February).
- Rausche F., Thendean G., Abou-matar H., Likins G. and Goble G. (1996), "Determination of pile driveability and capacity from penetration tests" Federal Highway Administration Report, No. DTFH61-91-C-00047, Washington.
- Reese L.C. and O' Neil M.W. (1989), "Drilled shafts: Construction and Design, FHWA Publication No. HI-88-042.
- Richards L.R., Whittle R.A. and Ley G.M.M. (1978), "Appraisal of stability conditions in rock slopes", Foundation Engineering in Difficult Ground (Ed. Bell F.G.), Butterworth, London, pp 192–228.
- Richards L. (1992), "Slope Stability and rockfall problems in rock masses" Chapter 11 in Engineering in Rock Masses edited by FG Bell, Butterworth Heinemann.
- Richardson G.R. and Middlebrooks P. (1991), "A simplified Design Method for silt fences" Geosynthetics Conference, St Paul, MN, pp 879–885.
- Ritchie A.M. (1963), "Evaluation of rockfall and its control" Highway Research Board record, No. 17, Washington pp 13–28.
- Schlosser F. and Bastick M. (1991), "Reinforced Earth" Foundation Engineering Handbook, 2nd Edition (Ed. Hsai–Yang Fang) Chapman and Hall Publishers, pp 778–795.
- Selby M.J. "Hill Slope Materials and Processes" 2nd Edition, Oxford University Press, Oxford.
- Singer M.J. and Munns D.N. (1999), "Soils: An Introduction" 4th Edition, Prentice – Hall.
- Simons N.E. and Menzies B.K. (1977), "A short Course in Foundation Engineering" Butterworth & Co. Publishers.
- Singh B. and Varshney R.S. (1995), "Engineering for Embankment dams" AA Balkema Publishers, Rotterdam.
- Skempton A.W. (1951), "The bearing capacity of clays" Building Research Congress.
- Skempton A.W. and Bjerrum L. (1957), "A contribution to the settlement analysis of foundations on clay" Geotechnique, No. 7 pp 168–178.
- Skempton A.W. and Hutchnison J.N. (1969), "Stability of natural slopes and embankment foundations" Proceedings of the 7th International Conference of

- Soil Mechanics and Foundation Engineering, Mexico, State of the Art Volume, pp 291-340.
- Skempton A.W. and Macdonald (1956), "The allowable settlement of buildings" Proceedings of the I.C.E., Vol. 5, No. 3, Pt 3, pp 737–784.
- Skipp B.O. (1992), "Seismic Movements and rock masses" Chapter 14 in Engineering in Rock Masses edited by FG Bell, Butterworth Heinemann.
- Smith R. (2001) "Excavations in the Atlantic Piedmont" Foundations and Ground Improvement, ASCE Geotechnical Special Publication No. 113, Virginia.
- Soeters R. and van Westen C.J. (1996) "Slope instability: recognition, analysis and zonation" Landslides Investigations and Mitigations, Ed. Turner and Schuster, Special Report 247, Transportation Research Board, National Academy Press, Washington, pp 129–177.
- Steward J., Williamson R. and Mahoney J. (1977), "Guidelines for use of Fabrics in construction and maintenance of low volume roads" USDA Forest Service Portland Oregon and FHWA Report # TS-78-205.
- Terzaghi K. and Peck R.B. (1967), "Soil Mechanics in Engineering Practice" 2nd Edition, John Wiley and sons, New York.
- The Institution of Civil Engineers (1995), "Dredging: ICE design and practice guide" Thomas Telford Publishing.
- Thompson C.D. and Thompson D.E. (1985), "Real and Apparent relaxation of driven piles" American Society of Civil Engineers, Journal of Geotechnical Engineering, Vol. 11, No. 2, pp 225–237.
- Transportation Association of Canada (2004), "Guide to Bridge Hydraulics" Thomas Telford Publishing, London, 2nd Edition.
- Transportation Research Board (1996), "Landslides: Investigations and Mitigation" Special Report 247, National Academy Press, Washington.
- Trenter N.A. and Burt N.J. (1981) "Steel pipe piles in silty clay soils at Belawan, Indonesia" Tenth International Conference on Soil Mechanics and Foundation Engineering, Volume 2, pp 873–880.
- Tynan A.E. (1973) "Ground Vibrations: Damaging effects to Buildings" Australian Road Research Board.
- US Army Corps of Engineers (1993), "Bearing Capacity of Soils" Technical Engineering and Design Guides, No. 7, ASCE Press.
- United States Department of the Interior (1965), "Design of Small Dams" Bureau of Reclamation.
- Van Santvoort G. (1995), "Geosynthetics in Civil Engineering" Centre for Civil engineering Research and Codes Report 151, Balkema Publishers.
- Vesic A.S. (1973), "Analysis of ultimate loads of shallow foundations" Journal of Soil Mechanics and Foundation Division", American Society of Civil Engineers, Vol. 99, No. SM1, pp 45–73.
- Vesic A.S. (1975), "Bearing Capacity of Shallow Foundations" Chapter 3, Foundation Engineering Handbook, 1st Edition, Editors H F Winterkorn and H Y Fang, Van Nostrand Reinhold Company Publishers.
- Waters T., Robertson N. and Carter (1983), "Evaluation of Geotextiles" Main Roads Department, Queensland, Internal report R1324.

- Weltman A.J. and Little J.A. (1977), "A review of bearing pile types" DOE and CIRIA Piling Development Group Report PG1, Construction Industry Research and Information Association (CIRIA), London.
- Whiteside PGD (1986), "Discussion on rockfall protection measures" Proceedings Conference of Rock engineering and Excavation in an Urban Environment, Institution of Mining and Metallurgy, Hong Kong, pp 490–492.
- Woolorton F.L.D. (1947), "Relation between the plasticity index, and the percentage of fines in granular soil stabilization" Proceedings of the 27th HRB Annual Meeting, pp 479–490 Highway Research Records, Washington D.C.
- Wyllie D.C. and Norrish N.I. (1996), "Rock Strength Properties and their Measurements" Landslides Investigations and Mitigations, Ed. Turner and Schuster, Special Report 247, Transportation Research Board, National Academy Press, Washington, pp 372–390.
- Wyllie D.C. (1999), "Foundations on Rock" Routledge, New York.

Index

Letter	Description	Table	Page
Α	A-Line	7.5	80
	Active Earth Pressure	19.1	242
		19.7	246
		19.9	248
		19.12	249
	Active Zone	7.23	89
	Adhesion	21.14	274
		22.14	290
	Aeolian	2.17	26
	Aggregate	8.8	95
		15.19-15.20	197–8
	Allowable Bearing capacity	6.3	66
	3 1	6.8–6.9	71–2
		6.14	75
		21.3	266
		21.7	271
		22.1-22.2	283
	Allowable Movements	23.6	296
		23.12	299
	Alluvial	2.17	26
	Anchor Loads	20.20	263
	Angular Distortion	23.7–23.8	297
		23.13	300
	Angularity	2.8	22
	6 . ,	5.7–5.8	56–7
	Asperity	9.16	109-110
	Atterberg Limits	2.12	23
	-		
В	Backfill Specifications	17.3	215
	Bearing Capacity Factor	16.10	208
		21.4–21.6	267–270
		21.15–21.16	275
		22.6–22.9	286–7
	Bearing Capacity in Rock	22.1-22.10	283–8
		22.13-22.14	289-290
	Benches	15.13	194
	Blanket	15.23	199
		15.27	201

Letter	Description	Table	Page
	Blasting	12.5 12.7–12.8	139 140–1
	Borehole Record	2.1–2.2 3.1 3.2	17–18 29 30
	Borehole Spacing	1.4	4 7–8
	Boring Types Boulders	4.2 1.8 2.5	40 8 20
	Bridges	1.8 23.12–23.13	7 299–300
	Building	1.8 1.9 23.6	7 9 296
	Bulking	12.10 12.16	142 147
	Business of site investigation	1.17	15
C (a–n)	California Bearing Ratio	5.11 13.7–13.9 13.16–13.18 13.20 13.25–13.26 16.11 16.15	59 157–8 161–2 163 166 209 211
	Canals	1.8 14.15 14.20 17.6	8 177 180 216
	Capillary Rise Car Parks CBR (see California Bearing Ratio)	7.20 1.8	88 8
C (o-z)	Coefficient of Consolidation	5.14 8.12–8.15	60 96–7
	Coefficient of Earth Pressures Coefficient of Permeability	19.3–19.5 8.1 8.3–8.8	243–4 91 93–4
	Coefficient of Restitution Coefficient of Volume Compressibility Colluvial Colour	8.12 14.26 11.8–11.9 2.17 2.10 3.5	96 184 128–9 26 22 32
	Compaction	7.4 7.24 10.6–10.7 12.11 12.13–12.15	80 90 114 143 144–6
	Cone Penetration Test	12.17–12.19 12.21–12.23 17.14 17.16–17.18 4.10	148-9 150-1 220 221-2 46
	Cone i cheu auon lest	5.12–5.16 7.11	59–63 83

Letter	Description	Table	Page
	Consistency Limits Consistency of Soils Construction Costs	10.5 11.10–11.11 2.11 2.14–2.15 1.1 1.15–1.16	113 129 23 25 1
	CPT (see Cone Penetration Test) Critical State Angle Culverts Cut Slopes	5.8–5.9 1.8 1.8 14.9 14.23 14.27 23.16	57–8 8 7 174 182 184 301
D (a–h)	Dams	1.8–1.9 14.11–14.14 17.8	8–9 175–7 217
	DCP (see Dynamic Cone Penetrometer) Defects (see also discontinuities) Defect Symbols Deformation Parameters Degree of Saturation Density (see unit weight)	3.10–3.12 3.13 11 17.15–17.16	35 36 121–35 221
	Density (see that Weight) Density Index Desktop Study Detailed Site Investigation Developments Dewatering	2.15 1.1–1.2 1.2 15.3 15.5 8.9	25 I-2 2 I88 I89 95
D (i–z)	Diggability (see also excavation) Dilatometer	12.6–12.7 4.11	140 47
	Discontinuities (see also Defects)	5.17–5.19 7.12 7.14–7.15 10.5 9.8 9.10 12.4–12.5 18.4–18.6	63–4 84 85 113 105 106 139 227
	Dissipation Tests Distribution Functions Drains	8.5 8.15 10.9–10.10 8.16–8.17 15.14–15.15 15.18 15.21–15.23	94 97 115–16 98–9 195 197 198–9
	Drainage (see Terrain Assessment, Drainage and Erosion) Drainage Path Drainage Material Drawdown Drilling Information	8.15–8.17 17.4 8.10 2.1–2.3 3.1–3.3	98–9 215 96 17–19 29–31
	Drilling Rigs Durability	6.2–6.3 6.15–6.16 16.6–16.8	66–7 75–6 206–7

Letter	Description	Table	Page
	Dynamic Cone Penetrometer Tests	4.15 5.10–5.11	48–9 58–9
E	Earth Pressures Earth Pressure Distribution	19 19.2 19.8	241–50 242 247
	Earth Retention Systems (see Retaining Walls) Earthworks	12 12.1 17.15	137–52 137 221
	Earth Moving Plant	4.18 12.16–12.18 12.20	51 147–9 150
	Embankments Embedded Retaining Walls Engineering Properties of Rock	1.8 20.4 3.15 9.1	7 253 38 102
	Equilibrium Soil Suction (see Soil Suction) Erosion (see also Terrain Assessment, Drainage and Erosion) Errors (see also variability) Evaporites Excavation	15.9–15.12 17.8 5.1 2.17 12.2–12.5 12.8	191–3 217 53 26 137–9 141
	Excess Stones Extent of Investigation	12.25 1.6 1.8	152 5 6–8
F	Factors of Safety Failure Modes in rock Feasibility (see IAS)	14.4—14.6 14.11 15.18 21.9 22.11 22.3	172–3 175 197 272 288 284
	Fill Specifications	5.6 14.10 17	56 175 213–24
	Field Testing Field Sampling & Testing	2.1 4.4–4.5 4	17 41–2 39–52
	Fissured	1.13 2.13 5.2 7.11	12 24 54 83
	Floating Barge Foundation Treatments Foundation Types Frequency of Testing Friction Angle	1.15 21.1 21.2 17.9 5.4–5.10 5.16 5.19 7.8–7.9 9.12–9.17 21.14–21.15	14 265 266 218 55–8 63 64 82 107–9 274–5

Letter	Description	Table	Page
G	Geotechnical Category Geosynthetics Geosynthetic Properties Geotextile Durability (see G-Rating)	1.6 1.10 16 16.2	5 10 203–11 204
	Geotextile Overlap Geotextile Strength Glacial G-Rating Grades Grading Grading	16.15 16.13–16.14 2.17 16.5–16.8 15.3–15.5 2.7–2.9 5.7 7.7 13.10 20.2	211 210 26 205–7 188–9 21–2 56 81 159 252
	Groundwater Investigation	1.5	4
H, I	Hydraulic Conductivity (see coefficient of permeability) Hydrological Values Igneous Rocks	8.11 3.15	96 37–8
	igneous rocks	6.10–6.14 9.2–9.4 9.12 9.14	72–5 103–4 107 108
	Impact Assessment Study (IAS) Inclinometers In Situ Tests (see also Field Tests)	1.1 1.3–1.4 23.11 10.3	I 3–4 299 I I 2
J, K	Jack Up Barge Joints (see defects)	1.15	14
L	Landslip Lugeon	1.8 15.7–15.8 8.20	7 190–1 100
	Loading Load Deflection	18.20 24 21.27–21.28 22.18	237 305–7 281 291
М	Macro Fabric Maintenance Map Scale Metamorphic Rocks	1.13 1.1 1.4 2.17 3.15 6.10–6.14	12 1 3 27 37–8 72–5
	Minerals Modified Compaction Modulus (see also Deformation)	9.1 9.14 9.3–9.4 12.24 13.20 11.1–11.3	103 108 103–4 152 163 121–3
		11.5-11.7 11.11-11.16 13.21-13.27	126–7 129–31 164–7

Letter	Description	Table	Page
	Moisture Content	2.16 13.6	26 156
	Monopoles Movements	1.8	8 293–304
	Mudstone	19.6 9.7	245–6 105
N, O	OCR (see Over Consolidation Ratio) Organic Origin Over Consolidation Ratio	2.17 2.17 3.2 9.1 9.6 9.14 5.20 7.2 7.10	26 26–7 30 102 105 108 64 78 83
		7.14–7.17 19.4–19.5	85-6 2 44
P (a–l)	Particle Description Particle Size Passive Earth Pressure	2.8 2.5 19.1 19.7 19.10	22 20 242 246 248 250
	Pavements (see also Subgrades and Pavements)	1.8 13.1 13.16–13.22 16.9	7 153 161–4 208
	Pavement Specifications	17.2	214 219
	Permeability and its influence Permeability of various materials	8 8.1–8.8 8.18–8.19	91-100 91-5 100
	Pier Spacing Piles	20.5 21.10–21.29 22.13–22.20	254 272–82 289–92
	Pile Interactions Pile Refusal Pile Set Up Pipelines Pipe Bedding Piping Planning	21.19 22.19–22.20 21.23 1.8 17.5 15.24–15.25 1.1 1.3–1.5	277 292 279 7 215 199 1 3–4
	Plasticity	1.7 2.11 11.13–11.14	6 23 130
P (o-z)	Plugging Pocket Penetrometer Point of Fixity Point Load Index	5.2 21.20 6.4–6.5 6.15 12.5	278 54 277 67–9 75 139

Letter	Description	Table	Page
	Poisson Ratio Preconsolidation Preliminary Engineering Preliminary Investigation Pressuremeter Test	18.3 22.2 11.17 11.23 13.28 7.10–7.13 1.1 1.2	226 283 132 135 167 83–5 1 2
	Presumed Bearing Value (see Allowable Bearing Capacity) Probability of Failure Pyroclastic Rocks	10.5 10.13–10.16 3.14	113 118–119 36
Q	Q-System Quality of Investigation Quartz	18.9–18.26 1.14 9.3 9.7	230–40 13 103 105
R (a-i)	Reactive Clays Reinforced Soil Structures Relative Compaction Relative Density (see also density index) Reliability Residual Retaining Walls Revetments Rippability (see also excavation) Risk RMR (see Rock Mass Rating)	13.3 13.5 20.7–20.10 12.15 5.4–5.5 5.16 5.19 12.15 10.17–10.18 2.17–2.18 3.4 20 14.16–14.18 17.10 12.9 1.10 10.13 14.7–14.8	154 155 256–8 146 55 63 64 146 120 26–8 31 251–64 178–9 219 141–2 10 118 173–4
R (o-z)	Roads (see also pavements and subgrades) Robustness (see G-Rating) Rock Classification Rock Description Rock Falls Rock Foundations Rock Hardness Rock Mass Classification Systems Rock Mass Defects Rock Mass Rating Rock Modulus	1.8 10.17–10.18 23.19–23.20 23.22–23.23 16.5 3 3.1–3.2 14.25 22 3.9 9.5–9.6 18 3.1–3.2 11.22 18.1–18.8 11.18–11.22	7 120 302 303 205 29–38 29–30 183 283–92 34 104–5 225–40 29–30 134 225–9 132–4 135

Letter	Description	Table	Page
	Rock Properties Rock Quality Designation Rock Revetments Rock Strength	9 1.8 3.7 9.10–9.11 9.13 11.20–11.21 12.5 12.8 18.3 18.10–18.11 22.1 22.17 17.10 3.8	101-10 8 33 106 107 133 139 141 226 230-1 283 291 218 34
	Rock Strength Parameters Rolling Resistance Roughness	6.1 6.4 6.7 6.10–6.13 9.9 9.12–9.14 18.3 6 12.12 22.15–22.16	65 67 70 72–4 106 107–8 226 65–76 144 290
	RQD (see Rock Quality Designation) Runways Rut	1.8 16.9–16.10 23.19–23.20	7 208 302
S (a-o)	Sacrificial Thickness	20.10 20.16	258 261
	Sampling	2.2 4.1 4.3	18 39 40
	Sample (Quantity, Disturbance, Size) Scale	1.11–1.13 1.3–1.4 3.10 15.2	11–12 3–4 35 188
	Schmidt Hammer Sedimentation Test Sedimentary Rocks	6.6 2.6 2.17 3.14–3.15 6.10–6.14 9.2 9.12 9.14	69 20 27 36–8 72–5 103 107 108
	Seepage	15.16–15.17 15.26	195–6 200
	Seismic	1.6 14.21 23.17	5 181 301
	Seismic Wave Velocity	12.4 12.8	139 141

Letter	Description	Table	Page
	State of Soil (see also Soil Properties) Strain Level	7.1–7.2 11.2–11.4	78 123–5
	Strata	2.1	17
	Structure	2.13	24 32
	Subgrade	13.1–13.2 13.5–13.9	153–4 155–8
	Subgrades and Pavements	13 10.8	153–68 114–15
	Subsurface Drain	15.14–15.15	195
	Surface Strength	4.16–4.17	50–I
	Surface Movements	23.21-23.22	302–3
	Symbols	2.3	19
		3.3	31
		3.13	36
		4.3–4.4	40–I
Т	Tolerable Displacement	23.14	300
		23.17	301
	Topsoil	14.22	181
	Terrain Assessment, Drainage and Erosion Terrain	15 15.1	187–202 187
	ierrain	15.6	190
	Thumb Pressure	2.14	25
ı	Time Factor	8.16–8.17	99
	Transmission Towers	1.8	8
	Transported Soils	2.17	27–8
	Trenching	14.29	186
	Tunnels	1.8	7
		12.8	141
U	Unconfined Compressive Strength	6.1	65
		6.5	69
	U-Line	7.5	80
	Undisturbed Samples (see also sample)	1.8	8
	Undrained Shear Strength Ultimate Bearing Capacity (see Bearing capacity)	2.14	25
	Underwater	14.19	180
	Unified Soil Classification	2.7	21
	Onlined Son Glassification	8.4	93
		13.9	158
	Unit Weight	7.3	79
		9.2	103
		12.16	147
	Uplift	21.21	278
	USC (see Unified Soil Classification)		
٧	Vane Shear	4.13-4.14	47–8
	Variability (Material & Testing)	10	111–20
	Variability	5.1	53
		10.1–10.8	111–15
		10.11–10.12	117–18

Letter	Description	Table	Page
	Vibration	12.20	150
	Volcanic	2.17	26
	Volume Sampled	1.9	9
	Volumetrically Active (see reactive clays)		
W	Wall Drainage	20.6	254–5
	Wall Facings	20.12-20.13	259-60
		20.17–20.19	262–3
	Wall Types	20.1	251
	,,	20.13	260
	Wall Friction	19.11	249
	Water Absorption	17.12–17.13	219–20
	Water Level	2.4	19
	Weathering	3.4	31
	-	6.5–6.8	69–7 I
		6.14	75
		9.2	103
	Weighted Plasticity Index	7.6	81
	,	13.4	155
		13.6	156
		17.16	221
	Wet / Dry Strength Variation	17.12	219
	Working Loads	21.10–21.12	272–3
X,Y,Z	Young's Modulus (see Elastic Modulus)		