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Introduction

Due to their disposition, most rocks of sedimentary origin which occur in the upper layers
of the earth’s crust exhibit some degree of anisotropy when subjected to stress.  Since the
deformation and fracture of these rocks is of importance to engineers concerned with the
design of shallow mining excavations or of foundations for civil engineering structures, it
is obvious that research into the effects of anisotropy on rock behaviour is necessary.

Most of the published research on anisotropic rock is of an experimental nature 1, 2, 3 and
in this paper an attempt is made to formulate a theoretical explanation for the observed
fracture behaviour.  This theoretical approach is based upon Griffith’s postulate that
fracture initiates from exiting cracks and flaws inherent in any brittle material 4,  5,  6.   In
the case of an anisotropic rock, these cracks are assumed to be oriented preferentially
along bedding planes.  The effect of anisotropy on the deformation and stress distribution
prior to fracture is not considered in this paper.

Results of triaxial strength tests on a South African slate are in good agreement with the
theoretical predictions.

Griffith’s theory of brittle fracture

The currently accepted interpretation of Griffith’s theory of brittle fracture 4,  5 is that
fracture initiates when the molecular cohesive strength of the material is exceeded by the
tensile stresses at the tips of inherent cracks and flaws in the material 6, 7.  If it is assumed
that these cracks and flaws are elliptical in shape, then the results presented by Inglis 8

can be used to calculate the stresses induced around the boundary of these very flat
elliptical cracks.

The stress system acting upon an elliptical crack is illustrated Figure 1.  The ellipse and
the surrounding stress field are related to the elliptical coordinates  and  which are
defined by the following equations of transformation of a rectangular system of
coordinates x  and z :

coscosh
,sinsinh

cz
cx

The stress system acting on the crack is given by two normal components xx and zz and
a shear component xz .  The stress zz , which acts parallel to the major axis of the crack,
has a negligible influence upon the stresses induced near the crack tip and need not be
considered in the following analysis,  The stresses xx and xz  are related to the principal
stresses 1 and 3 by the following equations:
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2cos2 3131xx (1)
2sin2 31xz (2)

Where  is the angle between the major axis of the elliptical crack and the direction of
the major principal stress 1 .  Note that 1  is defined as the algebraically largest and 3

the algebraically smallest of the three principal stresses.  The sign convention used in this
paper is such that compressive stresses are taken as positive.

Figure 1.  Stresses acting upon a crack which is inclined at an angle  to the direction of
the major principal stress 1
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The stresses n and n which act on the surface of the crack as shown in Figure 1 exist
only when closure of the crack has occurred and their influence is considered in a later
section of this paper which deals with the effects of crack closure.

The tangential stress n  at the boundary of an open elliptical crack, due to the applied
stresses xx and xx , neglecting zz  is given by the following equation 8:

2cos2cosh
2sin212cos2sinh

0

0
2

0
2

0 ee xzxx (3)

Where 0 is the value of the elliptical coordinate on the crack boundary.

The maximum tangential stresses, both tensile and compressive, occur near the ends of
the crack, i.e. when the value of  is small.  Since the value of 0 is also small for a very
flat ellipse, equation (3) may be simplified by series expansion in which terms of the
second order and higher which appear in the numerator are neglected.  This simplification
results in the following equation, valid only for the stresses near the crack tip:

22
0

02 xzxx (4)

Differentiation of equation (4) with respect to and equating  to zero results in
a quadratic equation in  from which the positions on the crack boundary at  which the
maximum and minimum stresses occur can be determined. Substituting these values of
into equation (4) gives the maximum and minimum stresses on the crack boundary as

22
0 xzxxxxN (5)

Where N  is the maximum value of .

Expressing equation (5) in terms of the principal stresses 1  and 3  from equations (1)
and (2) gives

2cos
2
12cos

2
1 2

3
2
1

2
3

2
131310N      (6)

The critical crack orientation c at which the maximum and minimum stresses are
induced at or near the crack tip is found by differentiating equation (6) with respect to
and letting 0 .  This gives
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Where 13k .

Note that equation (7) is only meaningful if 33.0k . When 33.0k  then
.12cos c Substituting this value into equation (6) gives

30 2c (8)

Where c  is the maximum value of the tangential stress  at the critical crack
orientation c .

In other words, for 33.0k  the maximum tensile stress at the crack tip depends upon
the magnitude of the minor principal stress 3  only and, since this stress is tensile
because k  is negative, fracture occurs when the minor principal stress attains the uniaxial
tensile strength of the material.  Since the strength of a material cannot be lower than its
uniaxial tensile strength, the fracture condition expressed in equation (8) holds for the
entire range 33.0k .  The critical crack orientation c  remains unchanged at
zero .12cos c

Denoting the uniaxial tensile strength of the material by t , equation (8) can be re-
written as

tc 20 (9)

The term 0c  which appears in equations (8) and (9) is a product of the cohesive
strength c  of the material and the parameter 0 which  defines  the  shape  of  the  crack.
Both of these parameters are difficult to evaluate under practical conditions but equation
(9) offers the opportunity of determining their product fairly readily.

Substituting equation (9) into equation (6) gives the following relationship between the
stresses required to initiate fracture from a crack inclined at the angle  to the direction
of 1 and the uniaxial tensile strength of the material.

2cos
2
12cos

2
12 2

3
222

3131 131t   (10)

In the case of a homogeneous, isotropic material, it is normally assumed that the inherent
cracks are randomly distributed throughout the specimen and that fracture will initiate
from those cracks which are inclined at the angle c  defined by equation (7).
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Substituting equation (7) into equation (10) results in the following fracture criterion for
such a material:

21
1

)1(8

k

kt (11)

In the case of an anisotropic material where the weakest cracks are assumed to lie in the
bedding planes, it is necessary to consider the orientation of these cracks in relation to the
applied stress system in order to determine the fracture conditions.  In this case, the
fracture criterion is expressed by equation (10) where  is the orientation of the weakest
cracks to the direction of the major principal stress 1 .  A graphical representation of this
equation is given in Figure 2.

Modified fracture criterion for closed cracks

In deriving the fracture criterion outlined above, it has been assumed that the shape of the
crack does not change until fracture occurs.  In other words, the elliptical crack remains
open under all conditions of applied stress.  While this may be true for predominantly
tensile stress fields, it certainly does not hold for the case of very flat cracks which are
subjected to compressive stress.  Consequently, it is necessary to consider the effects of
crack closure upon the Griffith’s fracture criterion.

In the following analysis, based upon the modification to Griffith’s theory by McClintock
and Walsh 9, it is assumed that the initial crack in an unstressed body is uniformly closed
over its entire length.  If the normal stress xx is tensile, the crack opens and the Griffith’s
criterion holds.  If the normal stress xx  is compressive (positive) then a stress xxn

results from the reaction between the crack surfaces.  Under these conditions, the stress
xx  is transmitted across the crack without influencing the stresses induced at the crack

tips and, hence, it plays no direct part in the fracture process.

In addition, however, a frictional shear resistance n  occurs  parallel  to  the  crack  as  a
result of the contact pressure between the crack surfaces.  Denoting the coefficient of
friction between these surfaces by ;

xxnn (12)
The shear stress xz can only induce tensile stresses at the crack tip when this frictional
resistance has been overcome and when relative movement between the crack surfaces
can occur.  Consequently, the net shear stress which is effective in inducing tensile
stresses at the crack boundary is nxz  or xxxz .

From Equation (4), the tangential stress on the boundary of a closed crack due to the
net shear stress xxxz is

22
0

2 xxxz (13)
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Figure 2.  Fracture initiation from a single open Griffith crack inclined at an angle  to
the major principal stress 1 .
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Differentiating equation (13) with respect to  and equating  to zero gives the
position on the crack boundary at which the maximum and minimum stresses occur as

0 .  Substituting these values into equation (13) gives the maximum and minimum
tangential stresses on the crack boundary as

xxxzN 0 (14)

Since crack propagation occurs as a result of tensile stress, only the negative value given
by this equation need be considered.

Expressing equation (14) in terms of the principal stresses and the uniaxial tensile
strength of the material:

2cos2sin
2
12 313131t (15)

Differentiating equation (15) with respect to  and equating N  to zero gives the
critical crack orientation at which the highest tensile stresses are induced at the tip of a
closed crack as

12 cTan (16)

Substituting this critical crack orientation into equation (15) gives the fracture criterion
for a material in which the highest tensile stresses are induced at the tip of a closed crack
as

)111

4
21

kk
t (17)

Where k is the principal stress ratio 13 .

As in the case of the original Griffith criterion, it is generally assumed that the specimen
contains a sufficient number of randomly oriented cracks for fracture to initiate from
those cracks which are inclined at an angle defined by equation (16).  If, however, the
cracks are oriented preferentially as in the case of a highly antistrophic material, it is
necessary to consider the inclination of the cracks with respect to the applied stress
system.  In this case the case the conditions for fracture are determined from equation
(15).

In using the modified criterion outlined above, it must be remembered that equations (15)
and (17) apply only when the normal stress xx is compressive. When xx is tensile the
original Griffith theory must be applied.  A detailed discussion on the transition from the
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original to the modified fracture criteria has been given by the author in a previous
paper6.

Mohr envelopes for original and modified Griffith Theories

Murrell10 has  shown  that  the  original  Griffith  theory  can  be  represented  by  a  Mohr
fracture envelope which is defined by the following equation:

tt42 (18)

Brace11  has shown that the fracture criterion, modified to account for the effects of crack
closure in compression, can be represented by a limiting Mohr envelope which is a
straight line having the equation

t2 (19)

Fracture criterion for anisotropic rock

Brace12 has presented evidence which indicates that the cracks, from which the fracture
of rock propagates, probably lie within the grain boundaries of the material.  Even in
rocks of sedimentary origin which exhibit marked foliation and planar anisotropy, the
constituent lamellae are made up of grains which are cemented together and hence
randomly oriented grain boundary cracks are likely to be present.

In the case of an anisotropic rock, two distinct systems of inherent cracks can be
visualized:

a) A set of relatively large preferentially oriented cracks which lie along bedding
planes and which may sometimes be in the form of mica flakes;

b) A randomly oriented matrix of grain boundary cracks which are probably several
times smaller than the bedding plane cracks.

In the following analysis, the preferentially oriented bedding plane cracks will be referred
to as the primary crack system while the grain boundary cracks will be termed secondary
cracks.

In deciding upon the stress required to cause fracture of a particular specimen, it is
necessary  to  consider  the  inclination  of  the  primary  cracks  to  the  applied  stress  system
and to determine whether the tensile stresses induced at the tips of these primary cracks
are higher than those which occur at the tips of the most favourably oriented secondary
cracks.  If the primary cracks are oriented at an angle approaching the critical angle c ,
defined by equation (7) or (16), then fracture will generally initiate at the tips of these
cracks.  If, on the other hand, the primary cracks are parallel or perpendicular to the



Fracture of Anisotropic Rock 10

direction of the major principal stress 1 , then the tensile stresses induced at the tips of
these cracks will be relatively low and very high applied stresses will be necessary to
initiate fracture from these cracks (see Figure 2).   In this case, fracture will initiate at the
tips of the most favourably oriented secondary cracks.

Obviously, the transition from fracture initiation from primary cracks to the propagation
of secondary cracks depends upon the physical characteristics of the material, particularly
upon the relative crack lengths ( 0 ) and upon whether either or both of the crack systems
close under compressive stress ( ).   These  details  are  best  illustrated  by  means  of  a
practical example.

A study of the fracture of a South African slate

In order to illustrate the application of the theoretical considerations proposed in this
paper and to check their validity, a series of strength determination was carried out on a
sample of slate obtained from the Pretoria area.  These tests included uniaxial tensile tests
parallel to and perpendicular to the bedding planes as well as triaxial compression tests
on samples in which the bedding plane orientation was varied, in steps of 15º, from

0 º  to 90 º.

Details of the test procedures used by the National mechanical Engineering Research
institute for determining the strength of rock materials have not been published
previously and a brief description of these techniques is included as an appendix to this
paper.

Results of the tests on the slate material are given in Table I.  Note that, wherever
possible, two specimens were tested for each applied stress condition.

The uniaxial tensile strength of the material perpendicular to the bedding planes can be
assumed to be predominantly influenced by the primary crack system (bedding plane
cracks).  Consequently, this value of tensile strength is denoted by tp . The tensile
strength parallel to the bedding planes will not be influenced by the primary cracks and
fracture can be assumed to initiate at secondary cracks, hence this value of tensile
strength is denoted by ts .

In order that the results of these tests may readily be compared with the theoretical
predications (see Figure 2 for example), the strength values are reduced to dimensionless
form by dividing each by the uniaxial tensile strength perpendicular to bedding planes

tp .
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Table 1.  Fracture data for a South African slate

1.  Uniaxial tensile tests
a) Tensile strength perpendicular to bedding planes ( 0 º), tp 660 and

570 lb/sq.in.,  average 615 lb/sq.in.
b) Tensile strength parallel to bedding planes ( 90 º), ts = 2,780 and

3,000 lb/sq.in., average 2,880 lb/sq.in.

2)  Triaxial compression tests

13k k = 0 (uniaxial) k = 0.113 k = 0.171

1

lb/sq.in.
tp1 1

lb/sq.in.
tp1 1

lb/sq.in.
tp1

0 17,600
21,600

  28.6
  35.2

39,200
36,000

  63.7
  59.5

  55,700
  49,300

    90.8
    80.0

15   6,900
  8,700

  11.2
  14.2

18,300
30,000

  29.8
  48.0

  34,200
  39,000

    55.6
    63.4

30   4,500
  4,150

    7.3
    6.8

  7,300
     --

  11.8
    --

    8,730
    7,840

    14.2
    12.8

45   5,540
  6,560

    9.0
  10.7

13,900
11,000

  22.6
  17.9

  15,000
  16,300

    24.4
    26.7

60 11,850
11,600

  19.3
  18.8

24,600
19,400

  40.0
  31.6

  29,600
  32,400

    48.2
    52.6

75 16,000
16,600

  26.0
  27.0

31,200
31,900

  50.7
  52.0

  41,400
  42,900

    67,2
    69.7

90 15,600
16,100

  25.3
  26.2

30,600
     --

  49.8
    --

  41,700
  39,300

    68.0
    64.0

From the results presented in Table 1, the behaviour of the primary and secondary crack
systems of the slate can be approximated.

In the case of the primary cracks, the compressive fracture behaviour of the specimen
will be most strongly influenced by these cracks when they are oriented at between 30º
and 35º if the cracks remain open (equation (7)).  If the cracks close under compression,
they will exert their strongest influence when inclined at an angle defined by equation
(16).

Examination of the experimental results reveals that the compressive strength of the slate
is lowest when the bedding planes are inclined at approximately 30º to the direction of
the major principal stress.  Consequently, it can be concluded that the cracks have either
remained  open  or  that,  if  they  have  closed,  the  coefficient  of  internal  friction  has  a
value of approximately 0.6.
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In an attempt to establish which of these two possibilities is most likely, a Mohr fracture
diagram for the primary crack system was plotted and is illustrated in Figure 3.  In
plotting the Mohr circles, the tensile strength used is that obtained fro tests perpendicular
to the bedding planes.  The Mohr circles for uniaxial and triaxial compressive values are
taken as those given for tests in which the bedding planes were inclined at 30º to the
direction of the major principal stress.

On the  basis  of  the  limited  number  of  test  results  available,  the  indications  are  that  the
primary cracks have remained open and that the original Griffith fracture criterion can be
applied to them.  However, caution must be exercised in drawing definite conclusions
from so few results and, in the following analysis, both possibilities outlined above will
be explored.

Figure 3.  Mohr fracture diagram for primary crack system of slate

Behaviour of the secondary crack system is fairly clearly defined by the Mohr fracture
diagram presented in Figure 4.  In this case, it can be anticipated that the cracks will be
initially  closed  and  it  will  be  seen  that  the  modified  Griffith  fracture  criterion  offers  a
reasonably good prediction of the observed behaviour.  In plotting the Mohr diagram
illustrated in Figure 4, the tensile strength parallel to the bedding planes ( ts ) has been
used. Compressive fracture data for specimens tested at 0 º and 90 º are included
since these values should not be influenced by the primary cracks.
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Figure 4.  Mohr fracture diagram for secondary crack system of slate

The influence of the bedding plane orientation upon the uniaxial compressive strength
and upon the strength of the slate, when subjected to triaxial stress conditions in which
the principal stress ratio k = 0.171, is illustrated in Figures 5 and 6.  In these graphs, the
experimental results are compared with the behaviour predicted by both the original
Griffith theory and by the modified fracture criterion.

The dipping portions of the theoretical curves are obtained by solving equation (10) for
the original Griffith theory and equation (15) for the modified fracture theory.  In both
cases t  is taken as tp  = 615 lb/sq.in.  The value of the coefficient of internal friction

substituted into equation (15) is 0.6 as deduced above.

The straight line portions of the theoretical curves are obtained from equation (17),
substituting tptst 7.4 .   The  coefficient  of  internal  friction  used  in  this  case  was
determined form the slope of the Mohr envelope presented in Figure 4 and was found to
be 0.61.
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Figure 5.  Influence of bedding plane orientation on the uniaxial compressive strength of
South African slate

Figure 6.  Influence of bedding plane orientation on triaxial compressive strength
(K = 0.171) of South African slate
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Discussion of results

The primary purpose of attempting to formulate a theoretical fracture criterion such as
that outlined in this paper is to facilitate the interpretation and rationalisation of
experimental results.  Unless such a fundamental theory exists, the results presented in
Table 1 are merely an interesting example of material behaviour which applies to this
particular sample of slate only. If, however, the experimental results can be compared
with and are found to substantiate the theoretical predictions, then they become part of a
rational behaviour pattern which can be extended to cover other materials.

Note that equations (10), (15) and (17), which have been used to predict the theoretical
fracture behaviour of this sample of slate, depend only upon two material constants,
namely the uniaxial tensile strength and the coefficient of internal friction.  If these
equations are found to be generally applicable to materials of this type, a reliable
prediction of their fracture behaviour could be made on the basis of a few simple physical
tests.

In spite of the approximations which have been made in deriving this theory the
agreement between the predicted and observed facture behaviour of slate is encouraging.
Results of similar tests on Martinsburg slate from Pennsylvania in the United States of
America have been presented by Donath 1, 2. Although the results have been presented in
a form which makes a complete analysis difficult, a number of approximate checks have
indicated that Donath’s results would also be in good agreement with the theory.

Considering the present empirical nature of the science of rock mechanics, the accuracy
of prediction offered by these theoretical considerations is adequate for most practical
purposes. It is believed that more detailed experiments as well as more sophisticated
mathematical  treatment  could  be  used  to  refine  the  existing  theory,  if  and  when  an
improvement in accuracy becomes necessary.

Although  the  present  theory  is  based  upon  the  assumption  that  only  two  distinct  crack
systems are present in an anisotropic material, it is obvious that these arguments can be
extended to the case where two or more major crack systems are superimposed upon the
randomly distributed grain boundary cracks.  Such an extension would probably prove
useful  in  the  analysis  of  fracture  of  coal  where  cleats  as  well  as  bedding  planes  are
present.

An important conclusion which can be drawn from the results presented in this paper is
that compression tests parallel to and perpendicular to the bedding planes are not
sufficient to define the fracture behaviour of an anisotropic material.  There is a tendency
to conclude that a material is isotropic with respect to strength if its compressive strength
perpendicular and parallel to the bedding planes is the same.  Examination of Figures 5
and 6 reveals that this deduction can be grossly in error.

The simplest test for strength isotropy is to compare the uniaxial tensile strength parallel
to and perpendicular to the bedding planes.  Failing this, a compression test in which the
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bedding planes are included at approximately 30º to the major principal stress direction
should be included in the test programme.

The  author  wishes  to  avail  himself  of  this  opportunity  to  emphasize  the  importance  of
choosing the correct specimen geometry and test conditions for strength determination of
rock materials.  If the calculated stress at fracture requires anything more than a simple
division of applied load by cross-sectional area, the results of strength tests will probably
be unreliable.  This is particularly true of an anisotropic material where not only the
strength but also the stress distribution in the specimen are markedly influenced by
anisotropy.

As  an  example  of  an  uncertainty  involved  in  indirect  strength  tests,  the  case  of  the
uniaxial tensile strength of the specimen of slate discussed in this paper is quoted.

Direct tensile tests on carefully designed and prepared specimens (see Appendix) gave
the tensile strength perpendicular to the bedding planes as 615 lb/sq.in. and that parallel
to the bedding planes as 2,880 lb/sq.in..

Indirect  tests  in  which  a  tensile  stress  is  induced  in  the  centre  of  a  disc  subjected  to
diametral compression3 gave values of 438 lb/sq.in. perpendicular to the bedding planes
and 1,310 lb/sq.in. in parallel to the bedding planes.

Correct specimen design is equally important for compression specimens and the same
laws apply whether the specimen being tested is a single rock grain or a block of rock of
10 ft cube.  Only if the stress conditions in the specimen are accurately known can the
results be interpreted with any degree of certainty.

Conclusions

It has been shown that Griffith’s theory of brittle fracture, modified where necessary to
account for the effects of crack closure in compression, can be used to predict the fracture
behaviour of a material such as slate which exhibits a high degree of planar anisotropy.

It is suggested that this theory could be extended to the case of a material such as coal
which may have several major weakness planes oriented at various angles to each other.

While the accuracy of the present theory is regarded as adequate for most practical
purposes, it is believed that, if necessary, refinements to this theory are possible.

As a result of this study, it is concluded that special care should be exercised in planning
strength tests on anisotropic material.  It is particularly important that deductions should
not be made unless adequate experimental data is available.
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Appendix – Equipment and experimental techniques used for the determination of
strength of rock materials

Experimental verification of the theoretical postulates contained in this and in a previous
paper6, necessitates the loading of specimens of rock to fracture under various accurately
known and controlled stress conditions.  This appendix contains a brief description of the
triaxial test apparatus, designed by the author and used by the Rock Mechanics division
of the National Mechanical Engineering Research Institute for compressive tests on rock
material.  Details of the specimens used for the determination of tensile strength are also
given.

Triaxial test apparatus

The triaxial test apparatus, illustrated diagrammatically in Figure 7, is designed to apply a
constant  ratio  of  lateral  hydraulic  pressure  to  axial  stress  in  the  specimen.   This  is
achieved by loading the specimen in series with a piston and cylinder unit which
generates the hydraulic pressure.

If  the diameters of the loading piston, specimen and pressure piston are denoted by DL,
DS and Dp respectively, then the lateral stress 3 , which is equal to the hydraulic pressure
acting on the specimen, is given by

23
4

pD
L (1A)

Where L is the total load applied to the loading and pressure pistons.

The axial stress 1  in the specimen is given by the following equation

2

22

21 14

p

SL

S D

DD

D
L (2A)
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Figure 7.  Triaxial test apparatus

18
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The apparatus, illustrated in Figure 7, for testing EX core specimens (0.85 in. diameter)
has been designed for applying axial stresses ( 1 ) of up to 350,000 lb/in.2  and lateral
stresses ( 3 ) of up to 35,000 lb/in.2 .  The ratio of 13 , which is chosen for any
particular test depends upon the diameter of the pressure piston pD which is used.

Changes in the stress ratio 13  are achieved by replacing the entire oil pressure
cylinder  and  piston  unit  with  another  of  a  different  diameter.   Sealing  between  the  oil
pressure cylinder and the body of the test cell is achieved by a method which was
originally suggested to the author by Professor G.T. van Rooyen at Pretoria University.
The principal features of this method are illustrated in Figure 8.

The oil pressure cylinder is attached to the test cell body by means of a loosely fitting
thread – designed to provide location and initial sealing only.  A thin deformable gasket
of the impregnated paper type is placed between the sealing faces and serves to
compensate for any irregularities of these faces and to provide initial sealing.

Once the oil pressure is generated by the application of load, the thread load is relieved
and the gasket is acted upon by a force which is directly proportional to the oil pressure.
Since the area A of the sealing face is smaller than the area B of the step in the cylinder
wall, the sealing pressure on the gasket is always greater than the pressure of the oil
trying to escape and hence the device is self-sealing.

The moving seals on the loading and pressure pistons are a combination of neoprene
rubber ‘O’–rings and brass anti-extrusion rings as illustrated in Figure 9.  At the high
pressures dealt with in this application, extrusion of the rubber rings into the clearance
gap between piston and cylinder becomes a serious problem unless special steps are taken
to prevent it.  The provision of an anti-extrusion ring of the type illustrated ensures that
there is virtual metal to metal contact between this ring and the cylinder wall and
extrusion of the rubber is thereby prevented.  The anti-extrusion ring is made from a
softer metal than the cylinder to prevent scoring of the ground cylinder wall.

Figure 8.  Detail of self-sealing joint
between oil pressure and test cell body.

Figure 9.  Detail of high pressure moving
seal.
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These sealing devices have proved to be completely reliable for the range of pressures
generated in this apparatus.  Measurements have shown that the frictional resistance due
to the moving seals is very low – of the order of 1 per cent of the hydraulic pressure.

Although the neoprene rings and anti-extrusion rings are regarded as expendable items
and can easily be replaced, it has not been found necessary to replace the original sealing
units in spite of the fact that several hundred triaxial tests have already been completed.

The specimens used for the triaxial tests described in this paper consist of 1.7 in. length
of  standard  EX  diamond  drill  core  (0.85  in.  diameter).   The  ends  of  the  specimen  are
ground flat and parallel but no additional grinding of the cylindrical surface is necessary.
The specimen is loaded between hardened steel platens as illustrated in Figure 7.  A
spherical seat at the base of one of these platens eliminates bending in the specimen.

The specimen is sheathed in a thin rubber sleeve as illustrated and this effectively
prevents ingress of the pressurized hydraulic fluid.

The load applied to the specimen is measured by means of a strain gauge type load cell
which is loaded in series with the specimen.  Provision is also made of measurement of
the hydraulic pressure.  The deformation of the specimen is measured by means of a
linear potentiometer which measures the displacement between the loading piston and the
test cell body.

During a test, the electrical outputs of the load cell (or pressure gauge) and the linear
potentiometer are plotted automatically on an X-Y recorder.  The resulting load-
deformation graph is then converted to a stress-strain graph by applying experimentally
determined calibration factors.

The triaxial test apparatus together with its loading frame and the X-Y recorder are
shown in the photograph which is reproduced in Figure 10.

Figure 10.  Triaxial compression test apparatus set
up in a 100 ton loading frame.
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Tensile test specimens

Tensile testing of rock materials is generally regarded as difficult because of the problem
of gripping the specimen.  After a great deal of unsuccessful effort had been devoted to
devising methods for gripping specimens, the author came to the conclusion that, if the
results  of  tensile  tests  are  to  have  any  meaning,  correctly  shaped  tensile  specimen  are
essential.

The shape of the tensile specimen which is used by the Rock Mechanics Division of the
national mechanical Engineering Research institute is illustrated in Figure 11.

Figure 11.  Detail of tensile specimen

Note that the actual ‘test section’ is 0.85 in. diameter by 1.7 in. long, in other words, it
has the same dimensions as the compression specimen.  The fillets forming the transition
between the test section and the gripping section are designed to reduce the stress
concentration at this transition to a minimum.  The specimen is gripped by means of
conventional wedge type grips and the tests which have been carried out on such
specimens are regarded as completely successful.

The specimens are prepared by grinding with a high speed water-cooled diamond wheel.
The  grinding  attachment  is  carried  on  the  tool  post  of  a  lathe  and  the  profile  of  the
specimen is generated by a profile and follower device which is actuated by the lead
screw of the lathe.  This grinding attachment, illustrated in Figure 12, was designed by
Mr. J. B. Kennard of the rock Mechanics Division of the National Mechanical
Engineering Research Institute.
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Figure 12.  Grinding attachment for the preparation of tensile specimens of rock materials
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Abstract 

 

The results of studies of the initiation and propagation of fracture from a single 

Griffith crack in a biaxial compressive stress field are reported. It is concluded that 

Griffith's theory of brittle fracture offers a reliable prediction of the fracture 

initiation stress but that the resulting fracture propagation from a single crack can-

not account for the macroscopic fracture of a specimen. Some preliminary results 

of studies on crack arrays and on the effects of crack closure in compression are 

presented. The applicability of these results to the prediction of rock fracture in 

predominantly compressive stress fields is discussed. 

 

 

Introduction 

 

One of the most serious problems encountered in deep-level gold mining in South 

Africa is the sudden and violent fracture of rock, known in the mining industry as a 

rockburst. Seismic location of the foci of these rock-bursts (Cook, 1963) has 

established that they occur most frequently in the zones of high compressive stress 

which surround the working faces of the mining excavations. Since the mining 

industry is constantly striving to minimize the hazards created by these rockbursts, an 

understanding of the mechanism of rock fracture under compressive stress conditions 

is of vital interest. 

 

Previous research (Brace, 1964; Hoek, 1964) has shown that Griffith's brittle fracture 

theory (Griffith, 1924) modified to account for the effects of crack closure in 

compression (McClintock and Walsh, 1962), is a useful basis for the study of the 

fracture of hard rock. Brace (Brace, 1964), in discussing the nature of the pre-existing 

cracks in rock, suggests that the grain boundaries act as or contain micro-cracks while 

joints and faults can be regarded as macro-cracks. 

 

An analysis of the stress distribution around a crack (Erdogan and Sih, 1963) 

indicates the points of fracture initiation as well as the initial direction of crack propa-

gation. As a result of the change in stress distribution associated with fracture 

propagation it is, however, impossible to predict the final path of the propagating 

crack. Consequently, a serious limitation of the Griffith theory lies in the fact that it 

can only be used to predict fracture initiation. In its usual form, it yields no 

information on the rate or direction of fracture propagation. 
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In studying the fracture of brittle materials subjected to tension, fracture is normally 

expected in a direction perpendicular to the applied tension, in other words, in the 

plane of the critically oriented crack. In the case of a brittle material subjected to 

compressive stress, one might therefore expect that fracture propagation will also 

follow the direction of the most critically oriented crack, i.e. the one which is inclined 

at 20-30° to the major principal field stress direction. It will be shown in this paper 

that this anticipated result is incorrect and that there is no simple relationship between 

the critical orientation of the original "Griffith crack" and the orientation of the 

macroscopic fracture surface of a specimen. 

 

Theoretical conditions for fracture initiation 

 

Griffith's original postulate on fracture initiation was based on energy considerations 

and his equations contained a surface energy term (Griffith, 1924).  Because of the 

difficulty of evaluating experimentally the surface energy of a material, an alternative 

approach, which considers the stress concentration at the crack tip, has been adopted 

by most workers in rock mechanics. 

 

The current interpretation (Orowan, 1949) of Griffith's theory is that fracture initiates 

when tensile stress induced at or near the tip of an inherent crack exceeds the 

molecular cohesive strength of the material. Since the molecular cohesive strength is 

difficult to determine by direct measurement, the fracture criterion is expressed in 

terms of the uniaxial tensile strength of the material (Hoek, 1964). 

 

In order that the reader may readily follow the equations which are used in this paper, 

a brief derivation of these equations, based upon the work by Griffith and McClintock 

and Walsh, follows. 

 

It is assumed that the crack from which the fracture of a brittle rock originates can be 

regarded as a flat elliptical opening in a two-dimensional body which is subjected to a 

stress system
1
 as illustrated in Figure 1. 

 

The stress field around an elliptical opening is related to the elliptical coordinates ε  

and η  which are defined by the following equations of transformation of a 

rectangular system of coordinates x and z: 

 

    
ηε

ηε

coscosh

sinsinh

cy

cx

=

=
 

 

                                                           
1
 Because of the predominance of compressive stress in rock mechanics problems, comprehensive 

stress is taken as positive. 
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Figure 1.  Stresses acting upon a crack which is inclined at an 

angle ψ  to the direction of the major principal stress 1σ . 

 

In Figure 1, the system of rectangular coordinates x, z is parallel to the axes of the 

elliptical opening: it is inclined at an angle ψ  with respect to the system of 

rectangular coordinates x', z' which is parallel to the directions of the principal 

stresses 1σ  and 3σ . Of these, 1σ  is algebraically largest and 3σ  algebraically 

smallest of the three principal stresses
2
.
 

 

 

The normal stress xxσ  and the shear stress xzτ  are related to the principal stresses 1σ  

and 3σ  by the following equations: 

 

( ) ( ) ψσσσσσ 2cos2 3131 −−+=xx    (1) 

 

( ) ψσστ 2sin2 31 −=xz     (2) 

 

The stress zzσ , parallel to the major axis of the crack, has a negligible influence upon 

                                                           
2
 In this analysis, the intermediate principal stress σ3 is assumed to have a negligible influence 

upon fracture. 
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the stresses induced near the crack tip and need not be considered in the following 

analysis. 

 

The stresses ησ  and ητ  which act on the surface of the crack as shown in Figure 1, 

exist only when closure of the crack has occurred and their influence was considered 

by McClintock and Walsh (1963) in deriving their modification to Griffith theory. 

 

The tangential stress ησ  around the boundary of an open elliptical crack, due to the 

stresses xxσ  and xzτ  can be calculated from the results presented by Inglis (1913) 

and is found to be: 

 

( )
ηε

ητηεσ
σ

εε

η
2cos2cosh

2sin212cos2sinh
22

−

+−+
=

o

xzoxx
oo ee

  (3) 

 

where oε  is the value of the elliptical coordinate ε  on the crack boundary. The 

maximum boundary stresses, both tensile and compressive, occur near the ends of the 

crack (i.e., when the value of η  is small). Since the value of oε  is also small for a flat 

ellipse, (3) may be simplified by series expansion in which terms of the second order 

and higher which appear in the numerator are neglected. This simplification results in 

the following equation, valid only for the stresses near the crack tip: 

 

( )
ηε

τεσ
σ

η
η

2cos2cosh

2

−

+
=

o

xzoxx
    (4) 

 

Differentiation of (4) with respect to η  and equating ηση ∂∂ /  to zero results in a 

quadratic equation in η  from which the positions on the crack boundary at which the 

maximum and minimum stresses occur can be determined. Substituting these values 

of η  into (4) gives the maximum and minimum stresses on the boundary of the crack 

as: 

( ) 2
1

22
xzxxxxo τσσεσ +±=Ν     (5) 

 

where Nσ  is the maximum or minimum value of the tangential stress ησ  of the  

ellipse boundary. 

 

Expressing equation (5) in terms of the principal stresses 1σ  and 3σ  from equations 

(1) and (2) gives 

 

( ) ( )[ ] 2

1

2cos2
3

2
1

2
3

2
12

1
2cos31312

1





































−−+±−−+=Ν ψσσσσψσσσσεσ o

 (6) 



Brittle Rock Fracture Propagation  

 6 

 

The critical crack orientation cψ  at which the maximum and minimum stresses are 

induced near the crack tip is found by differentiating equation (6) with respect to ψ  

and letting ψσ ∂∂ /N   = 0.  This gives: 

( )31

31

2
2cos

σσ

σσ
ψ

+

−
=c      (7) 

 

Note that this equation is only meaningful for values of 33.0/ 13 −≥σσ  and the 

critical crack orientation for smaller values of 13 /σσ  must be determined from other 

considerations. 

 

The maximum and minimum stresses at the boundary of a crack oriented at the 

critical angle cψ  under conditions where 33.0/ 13 −≥σσ  are found by substituting 

cψ  from equation (7) for ψ  in equation (6). If it is accepted that fracture occurs as a 

result of tensile stress at or near the crack tip, only the minimum (negative) stress 

given by this substitution need be considered. Hence, 
 

( )
( )31

31

4

2

σσ

σσ
εσ

+

−−
=⋅ oo     (8) 

 

where oσ  denotes the minimum (algebraically smallest) value of the tangential stress 

on the boundary of the ellipse. 

 

If it is postulated that the fracture of a brittle material initiates when the maximum 

tensile stress at the crack tip is equal to the molecular cohesive strength of the 

material (Orowan 1949), then equation (8) expresses a fracture criterion for a brittle 

material under conditions where 33.0/ 13 −≥σσ , if oσ  is taken as the molecular 

cohesive strength of the material. 

 

The molecular strength, oσ , and the crack geometry, oε , cannot be determined by 

direct physical measurements. However, their product can be expressed in terms of 

the uniaxial tensile strength, tσ , determined on a laboratory specimen. Since, for 

uniaxial tension ( 03 <σ , 1σ  = 0), −∞=13 /σσ  equations (7) and (8), which are 

only valid for 33.0/ 13 −≥σσ , cannot be used to find a relationship between oσ , oε  

and tσ  and equation (6) must be resorted to for finding this relationship. 

 

If the plane body containing the crack, illustrated in Figure 1, is subjected to a 

uniaxial tensile stress (i.e. 0,0 13 =< σσ ), the maximum stress at the crack tip ( Νσ ) 

is dependent upon the minor principal stress 3σ  only. Hence, equation (6) simplifies 

to 
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( ) ( )




















+±+=⋅Ν

2

1

2cos1
2

1
2cos1

2

1
3 ψψσεσ o   (9) 

 

The maximum tensile stress at the crack tip occurs when the bracketed term on the 

right hand side of equation (9) is a maximum. This occurs when 12cos =ψ  or when 

0=ψ , giving 

 

32σεσ =⋅ oo      (10) 

( )0,01 == ψσ    

 

If the minor principal stress 3σ  is tensile (negative), equation (10) defines the 

fracture criterion for uniaxial tensile stress conditions in terms of the molecular 

cohesive strength of the material ( oσ  ) and the crack geometry ( oε ). Denoting the 

uniaxial tensile strength of the material, measured on a laboratory specimen, as tσ (3)
, 

equation (10) may, with 3σ  = tσ , be re-written as: 

12σεσ =⋅ oo  (11) 

 

Equation (8), which is valid for 33.0/ 13 −≥σσ , is of limited practical use because 

the term oσ . oε  cannot be evaluated in the laboratory. If, however, this term is 

expressed in terms of the uniaxial tensile strength of the material ( tσ ), according to 

equation (11), the fracture criterion becomes 

 

 

( )
( ) 1

31

31 8
2

σ
σσ

σσ
−=

+

−
     (12) 

 

The authors have found that the most useful interpretation of this equation is in 

expressing the major principal stress ( 1σ ), at fracture, in terms of the principal stress 

ratio 13 /σσ  and the uniaxial tensile strength ( 1σ ) or the uniaxial compressive 

strength ( cσ ). 

 

Thus: 























 −+−= 2

1

1

3
31 114

σ
σσσσ t    (13) 

or 

 

                                                           
3
 Note that the uniaxial tensile strength is negative by definition. Hence, in substituting a numerical 

value for tσ ,  the negative sign must be shown; e.g. tσ  = - 100 lb/sq. in. 
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c
c

c σ
σ

σσσσ
2

1

4

1
2 2

1

3
31 +








++=    (14) 

 

 

Equation (14) is obtained by putting 03 =σ  and cσσ =1  in equation (12) and 

substituting thus obtained result ( tc σσ 8−= ) in equation (13). 

 

Equations (7), (13) and (14) are valid only when the principal stress ratio 

33.0/ 13 −≥σσ .  For, 33.0/ 13 −<σσ fracture occurs when the minor principal 

stress equals the uniaxial tensile strength of the material, i.e. when tσσ =3 . 

 

The Griffith fracture theory can also be represented by a parabolic Mohr envelope 

defined by the following equation: 

 

  ( )σσστ −= tt42
     (15) 

 

where τ  is shear stress acting along the fracture surface; σ  is normal stress 

perpendicular to the fracture surface. 

 

Studies of rock fracture suggest that the inherent cracks from which fracture 

propagates are contained within grain boundaries (Brace, 1961) and can be simulated 

by very long elliptical openings.  Under compressive stress conditions, closure of 

these cracks can occur before the tensile stress at the crack tip is high enough to 

initiate fracture.  When crack closure has occurred, the shear resistance resulting from 

the contact pressure between the crack faces has to be overcome before propagation 

of the crack can occur. 

 

McClintock and Walsh (1962) modified Griffith’s original theory to account for the 

effects of crack closure in compression.  If it is assumed that the inherent cracks are 

initially closed, the relationship between the principal stresses required to initiate 

fracture is 

 
( )

( )
Cσ

µµ

µµ
σσ +

−+

++
=

2

1

2

1

31

2

2

1

1
   (16) 

 

where µ  is the coefficient of friction between the crack faces and cσ  is the uniaxial 

compressive strength of the material. 

 

The critical orientation of a closed crack is given by 

 

µ
σ 12 =cTan     (17) 
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Equations (16) and (17) are valid when the normal stress nσ  acting across the crack 

is compressive, i.e. when 

 

 ( ) ( )[ ] 02cos
2

1
3131

>−−+= ψσσσσσ n   (18) 

 

When nσ  is tensile, the original Griffith theory, defined by equations (7) and (12) is 

applicable. 

 

The modified Griffith theory can be represented by a straight-line Mohr envelope 

having the following equation: 

 

tσµστ 2−=       (19) 

 

In order to establish whether the original and modified Griffith theories are applicable 

to the prediction of rock fracture behaviour, a survey of published rock fracture data 

was  undertaken .  To facilitate  comparison  of the results , they  were  reduced  to a 

dimensionless  form by dividing  each strength  value of a particular  rock by its 

uniaxial  compressive  strength . These  dimensionless  strength  values  are plotted  in 

Figure  2 together  with the original  and modified  Griffith  fracture  loci derived  from 

equations (14) and (16). 
 

It is evident from Figure 2 that, in spite of the wide variety of materials included 

(listed in Table 1), there is a remarkable agreement between the experimental results 

and the fracture initiation behaviour predicted by the modified Griffith theory.  

Detailed examination of the results reveals that the coefficient of internal friction, µ , 

given by the slope of the modified Griffith fracture locus, is closely related to the 

rock type tested.   The igneous and metamorphosed sedimentary rocks (granites, 

dolerite, quartzites) are characterized by coefficients of friction of greater than 1.0; 

the sedimentary rocks (sandstones, limestones and shales) have coefficients of 

friction between 1.0 and 0.5. 
 

A coefficient of internal friction of greater than unity implies that the shear resistance 

is greater than the normal stress acting across the crack.  This apparent anomaly is 

probably due to interlocking of surface irregularities or, carrying the thought to the 

extreme, due to the fracture initiating from an elastic discontinuity rather than an 

actual crack. 
 

It must be emphasized that both the original and modified fracture theories predict 

fracture initiation from a single crack and that, strictly, they cannot be applied to the 

fracture of a specimen as a whole.  It has already been suggested by Brace and 

Bombolakis (1963) that a fracture propagation from a single crack follows a more 

complex path than is generally assumed and that it is the presence of favourable crack 

arrays which  coalesce  to  form  the  macroscopic  fracture  surface  that  make  the  Griffith

 theory  applicable  to  predicting  fracture  of  rock  and  rock  specimens.  
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Figure 2.  Triaxial fracture data for rock materials. 
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Table 1.  Summary of triaxial test results on rock and concrete. 
 
 

Graph 

Point  
 

Material  c
σ  

lb/sq. in  

Tested by  

 

1  Marble  13 700  Ros. and Eichinger  

2  Marble  18 000  Ros and Eichinger  
3  Marble  20 000  Von Karman  
4  Carthage Marble  10 000  Bredthauer  
5  Carthage Marble  7 500  Bredthauer  
6  Wombeyan Marble  10 000  Jaeger  
1  Concrete  2 380  McHenry and Kami  
8  Concrete  3 200  Akroyd  
9  Concrete  6 000  Jaeger  

10  Concrete  5 700  Fumagalli  
11  Concrete (28 day)  3 510  Balmer  
12  Concrete (90 day)  4 000  Balmer  
13  Granite Gneiss  25  500  Jaeger  
14  Barre Granite  24 200  Robertson  
15  Granite (slightly alt)  10  000  Wreuker  
16  Westerly Granite  33 800  Brace  
17 Iwaki Sandstone  1 780  Horibe & Kobayashi  
18  Rush Springs Sandstone  26 000  Bredthauer  
19  Pennant Sandstone  22 500  Price  
20  Darley Dale Sandstone  5 780  Price  
21  Sandstone  9 000  Jaeger  
22  Oil Creek Sandstone  **  Handin  
23  Dolomite  24 000  Bredthauer  
24  White Dolomite  12 000  Bredthauer  
25  Clear Fork Dolomite  * Handin  
26  Blair Dolomite  **  Handin  
27  Blair Dolomite  75 000  Brace  
28  Webtuck Dolomite  22 000  Brace  
29  Chico Limestone  10 000  Bredthauer  
30  Virginia Limestone  48 000  Bredthauer  

31  Limestone  20 000  Jaeger  
32  Anhydrite  6 000  Bredthauer  
33  Knippa Basalt  38  000  Bredthauer  
34  Sandy Shale  8 000  Bredthauer  
35  Shale  15 000  Bredthauer  
36  Porphry  40 000  Jaeger  

3-7  Sioux Quartzite  **  
Handin  

38  Frederick Diabase  71 000  Brace  
39  Cheshire Quartzite  68 000  Brace  
40  Chert dyke material  83 000  Hoek  
41  Quartzitic Shale (Dry)  30 900  Colback and Wiid  
42  Quartzitic Shale (Wet)  17  100  Colback and Wiid  
43  Quartzitic Sandstone (Dry)  9 070  Colback and Wiid  
44  Quartzitic Sandstone (Wet)  4 970  Colback and Wiid  
45  Slate (primary cracks)  4 300  Hoek  
46  Slate (secondary cracks)  15 900  Hoek  
47  Dolerite  37  000  CSIR  
48  Quartzite (ERPM Footwall)  31 000  CSIR  
49  Quartzite (ERPM Hanging wall)  43 200  CSIR  
50  Glass  91 000  CSIR  

* Uniaxial compressive strength  

** Presented in dimensionless form by McClintock and Walsh 
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Fracture propagation from a single crack 

 

In order to study the propagation of fracture from a single crack, 6 inch square by ¼ 

inch thick plates of annealed grass were carefully prepared.  Open “Griffith cracks” 

were ultrasonically machined into these plates.  The length of the crack was kept 

constant at ½ inch and its axis ratio at 25:1.  The cracks were oriented at their critical 

angles as determined by Equation (7). 

 

The plates were subjected to uniformly distributed edge loading in the tension and 

compression loading devices described in the Appendix to this paper.  The specimens 

were studied photo-elastically  while under load and the stress at which fracture 

initiated  as well  as the direction  of crack  propagation  was  noted .  A typical 

isochromatic  pattern  obtained  in a plate  subjected  to the uniaxial  compression  is 

reproduced in Figure 3.  
 

The stresses at which fracture is initiated are plotted in terms of the major and minor 

principal stresses, in Figure 4 and as Mohr circles in Figure 5.  The theoretical 

fracture loci according to the original Griffith fracture initiation criterion, defined by 

equations (13) and (15), are given by the curves in Figures 4 and 5.  The agreement 

between these and the experimental plots is considered satisfactory. 
 

 
 

Figure 3.  Photo-elastic pattern in a glass plate containing 

an elliptical crack from which fracture has propagated. 
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In uniaxial tension, fracture initiation and fracture of the specimen occurred in the 

period of a few milliseconds.  As can be expected, the fracture propagated in a 

direction normal to the direction of applied tension. 

 

In biaxial compression, the fracture propagation followed a consistent pattern.  

Fracture initiated at a point on the crack boundary near, but not at the crack tip, (Ode, 

1963) and followed a curved path (e.g. Figure 6, or upon careful observation, Figure 

3).  Generally, fracture propagation  ceased when the crack path had become parallel 

to the major principal stress direction.  In all cases, the applied stress was increased to 

at least three times the fracture initiation stress and, if the cracks showed no tendency 

to propagate further, the test was discontinued  on the assumption  that fracture of the 

specimen would not occur except at much higher stress levels. 
 

The lengths of the stable cracks were found to be related to the ration of the applied 

principal stresses as illustrated in Figure 6.  This finding is similar to that previously 

reported by Hoek (1965) for the propagation of cracks from a circular hole in a 

biaxial compressive stress field. 
 

Under uniaxial compressive stress conditions, fracture propagation commenced with 

the sudden appearance of a small cracks of approximately 0.2 times the original crack 

length.  Normally a crack would appear at only one end of the initial crack but would 

be followed, within a period of a few seconds
4
 and at the same applied stress level, by 

a mirror image crack at the other end of the initial crack.  Further propagation of 

these cracks required increased applied stress and this is plotted against crack length 

in Figure 7. 
 

In the case of biaxial compression, insufficient information is available to permit 

plotting graphs similar to that shown in figure 7.  From examination of available 

records, however, it appears that the length of the initial and final cracks did not 

differ by more than a few percent.   This implies that, if the crack can be propagated, 

the stress required to do so would be as much as about ten times greater than the 

initiation stress and, as such, ceases to be of practical interest. 
 

From these results, it can be concluded
5
 that a single Griffith crack cannot account for 

the failure of a specimen in a compressive field unless the ration of applied principal 

stress is less than or equal to zero i.e. in uniaxial compression or when one principal 

stress in tensile.  It is also suggested that, where failure of the specimen originates 

from a single crack, the direction of macroscopic fracture is normal to the minor 

(algebraically smallest) principal stress direction, i.e. in uniaxial compression parallel 

to the compressive stress direction. 
 

                                                           
4
 In many of these tests fracture initiation was observed to be significantly time-dependent but no 

conclusions can be drawn from the present results because of a lack of adequate records in this respect. 
5
 Somewhat similar conclusions have been reached by Brace and Bombolakis (1963). 
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Figure 4.   Relationship between principal stresses at fracture initiation at the 

boundary of an open crack.  

 

 
 

Figure 5.  Mohr circles for fracture initiation at the boundary 

of an open crack. 
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Figure 6.  Relationship between stable crack length and ratio of applied principal 

stresses. 

 

 

Since it appears reasonable to assume that the inherent cracks form which the fracture 

of hard rock initiates are initially closed (Brace and Bombolakis, 1963), an attempt 

was made to produce initially closed cracks in annealed glass plates. 

 

The method used to produce theses cracks involves inducing a hairline crack of the 

required length on the surface of the glass plate.  A hardened roller type glass tool 

which induces this crack as a result of the stress distribution  under the contact  point 

has been  found  preferable  to a diamond  tool  which  scores  the glass  surface .  The 

shallow hairline crack is propagated throughout the thickness of the plate by reflected 

tensile  stress  waves  generated  by impacting  the plate  on the face  opposite  to that 
containing the crack. 
 

At the time of writing it has not been possible to produce closed cracks of the same 

length in sufficient quantity to permit similar tests to those described in the previous 

section to be carried out.   However, the authors feel that precise control of the main 

parameters involved in the process of closed crack formation, namely the quality of 

the initial hairline crack and the magnitude of the impact required to propagate it 

though the plate, will ultimately enable them to reproduce these cracks as required. 
 

A few of the better quality cracks which have been obtained were tested in uniaxial 

compression and a typical result obtained is illustrated in Figure 8. 
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Figure 7.  Relationship between propagating crack length and 

applied uniaxial compressive stress. 
 

 
 

 Figure 8.  Fracture propagation from a closed crack in glass. 
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This photograph suggests some modification of the mechanism of fracture 

propagation assumed by McClintock and Walsh (1962). In their study of the friction 

effects on closed cracks, they postulated that the shear stress acting parallel to the 

crack surfaces exceeds the shear resistance due to friction, relative movement of the 

crack faces will occur and fracture will propagate from the crack tip. 

 

The authors’ observations of fracture propagation from closed cracks in glass leads to 

the conclusion that the crack tip itself plays a very minor role in the fracture

 

process.

  The  primary  factor  responsible  for  fracture  initiation  is  the  relative  movement

 

of

 

the

 crack  faces .   Slight  irregularities  in  the  crack  surface  result  in  an  uneven
 

stress
 distribution  along  the  crack  surfaces  and  tensile  fracture  initiates  in  the  tensile

 
stress

 zones  which  occur  at  points  where  the  crack  surface  is  relatively  free  to  move .
  

The
 formation  of  these  tensile  cracks  is  clearly  illustrated  in  Figure  8.  

 

In all the tests carried out by the authors it was found that these short tensile cracks 

formed at regular intervals over a fairly wide stress range.  Fracture propagation 

occurred which the cracks closest to the tips of the initial crack propagated as 

illustrated in Figure 8.  Once this state of fracture propagation had commenced, 

initiation  and propagation  of the other short tensile cracks ceased. 
 

While the actual 
fracture  initiation  process  may  differ  from  that  postulated  by McClintock  and 
Walsh , the  authors  feel  that  it may  eventually  be possible  to express  the fracture 

initiation criterion by means of an equation very similar in form to equation (16). 

Once sufficient experimental evidence is available, the theoretical conditions for 

fracture initiation will be re-examined and, if necessary, modified. 

 

 
 

Figure 9.  Reflected light photoelastic pattern showing strain 

distribution in a large grained granite plate subjected to 

uniaxial compression. 
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Preliminary studies of crack arrays 

 

It is evident  from  the results  presented  in this  paper  that  fracture  of a specimen  is 

unlikely to occur unless a large number of cracks are present.  Obviously, the spatial 

distribution  of the cracks  will  influence  the mechanism  of fracture  initiation  and 

propagation  and  it is considered  essential  that  this  aspect  of the problem  be 

investigated if the fracture mechanism of rock is to be fully understood.  
 

The results of a preliminary study of arrays of open cracks are included in Table 2.  It 

is evident from these results that the interaction of cracks within the array influences 

both the initiation stress and the mechanism of crack propagation.  The future 

research problem calls for a detailed study of the various parameters which influence 

the behaviour of crack arrays. 
 

In addition to the tests on glass plates described above, the authors are also studying 

the mechanism of crack initiation and propagation in plates of rack.  The plates, 

measuring 6 inches square by ¼ inch thick, have a dish-shaped central portion ground 

out of each face, giving a three inch diameter section of 1/8 inch thickness. One side 

of this reduced section is covered with a birefringent layer and the strain pattern 

associated with fracture initiation is studied by means of reflected polarised light 

(Hoek and Bieniawski, 1963).  A typical photoelastic pattern obtained in these studies 

is illustrated in Figure 9 which shows stress concentrations around individual grains 

and the point of fracture initiation. 
 

A study of the reverse side of the plates used for these tests permits detailed 

examination of the crack path.  A low magnification micrograph of a typical crack in 

quartzite is reproduced in Figure 10.  The stepped path followed by the propagation 

crack is evident in this photograph and the authors hope that, by studying the fracture 

paths in such specimens, a rational picture of rack fracture can be built up. 
 

Conclusions 
 

The results presented in this paper have shown that the Griffith theory offers a 

reliable basis for the prediction of fracture initiation from a single open crack.  It is 

concluded, however, that a single crack cannot account for the failure of a specimen 

unless  one of the applied  principal  stresses  is zero  or tensile . 
 

The  effects  of crack 
closure in compression have been shown to differ from those assumed by McClintock 

and Walsh but it is anticipated that this difference will not significantly influence the 

final fracture criterion. 

 Examples have been given of studies of crack arrays and of fracture propagation in 

rock which indicate the direction of future research. 
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Table 2.  Preliminary study of arrays of open cracks. 
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Figure 10. Crack path in a quartzite specimen subjected to 

uniaxial compression. 
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Appendix:  Apparatus for the application of uniformly distributed edge loads to 

plate models 

 

Tensile apparatus 

 

The apparatus for applying uniformly distributed uniaxial tension to 6 inch square by 

¼ inch thick plate models is illustrated in Figure 11.  Load distribution is achieved by 

means of a “whipple tree” arrangement of pinjointed segments.  The eight small 

segments which transmit the load to the model itself are bonded onto the model edge 

with epoxy resin. 

 

Loading of the model and the photoelastic study of the stress distribution around the 

crack is carried out on the 12 inch diameter lens polariscope which has been 

described elsewhere by Hoek (1965). 

 

 
 

 

Figure 11.  Apparatus for subjecting plate models to uniaxial 

tension. 
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Biaxial compression loading apparatus 

 

The biaxial compression loading apparatus which was used in the tests described in 

this paper was designed for general rock mechanics model studies and extreme care 

was taken to ensure uniformity of the load distribution. 

 

The load is applied to the accurately ground edges of the model though stacks of 

semi-circular segments.  These segments are held in alignment by means of a set of 

copperberryllium leaf springs.  The photograph of the partially dismantled load 

distribution frame reproduced in Figure 12 shows the arrangement of these segments 

and springs. 

 

 

 
 

Figure 12. Partially dismantled biaxial loading frame showing 

details of the load distribution mechanism. 
 

The load is applied onto the large segments by means of 4 hydraulic jacks, designed 

to exert a thrust of 100 tons each.  These jacks are located in a circular frame 

illustrated in Figure 13.  All the jacks are interconnected and fed by a single variable 

volume high pressure hydraulic pump. 
 

Load control is achieved by means of a needle bleed-off valve in the hydraulic 

circuit.  The horizontal jacks can be isolated to allow the application of uniaxial 

compression in the vertical direction.  Alternatively, different diameter pistons can be 

fitted into the horizontal jacks to give a constant ratio of vertical to horizontal load.   
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The applied load is measured by means of strain gauges bonded onto the four large 

segments onto which the jacks act.  The signals from these gauges are displayed on a 

digital voltmeter which permits direct load read-out in tens of pounds. 

 

 

 
 

Figure 13.  Apparatus for subjecting plate models to biaxial 

compression. 

 

 

Submitted June 14, 1965. 
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4.1  Introduction 

 

In chapters 1 and 2 the mechanical properties of rock materials have been discussed in 

some detail and it has been shown that most rocks exhibit patterns of behaviour which 

can be usefully employed by the practical engineer.  Since most of the conclusions 

presented in chapters 1 and 2 are based upon empirical studies it is of interest to examine 

the basic mechanism of brittle failure of rock in order to gain some understanding of the 

underlying reasons for the behaviour patterns which are observed.  Not only does such an 

examination satisfy the curiosity of the academically inclined but it also provides a basis 

for meaningful extrapolation from available experimental results. 

 

A comprehensive review of the research effort which has been devoted to the study of the 

brittle failure of rock has recently been presented by Jaeger (1966).  Rather than present 

yet another review on the theoretical aspects of this subject the author has chosen to 

present the known physical facts in a form which will be both meaningful and useful to 

the practical engineer.  In order to achieve this end within the limited space available in 

this chapter, the dynamic aspects of rock fracture have been ignored and the discussion is 

limited to failure under quasi-static loading conditions such as those which can be 

expected to occur in rock structures. 

 

4.2  Fracture initiation 

 

A rock material contains a large number of randomly oriented zones of potential failure 

in the form of grain boundaries.  Let us assume that one such grain boundary, illustrated 

in figure 4.1, contains a number of open flaws and that, in accordance with the concept 

postulated by Griffith (1921, 1924), these flaws are approximately elliptical in shape.  It 

can be shown that very high tensile stresses occur on the boundary of a suitably oriented 

elliptical opening, even under compressive stress conditions, and it is assumed that 

fracture initiates from the boundary of an open flaw when the tensile stress on this 

boundary exceeds the local tensile strength of the material. 

 

In order to obtain an estimate of the stresses around the boundary of an open elliptical 

flaw it is necessary to make the following simplifying assumptions: 

 

a)  The ellipse can be treated as a single opening in a semi-infinite elastic medium, i.e. 

adjacent flaws do not interact and local variations in material properties are ignored. 

b)  The ellipse and the stress system which acts upon the material surrounding it can be 

treated two dimensionally, i.e. the influence of the three-dimensional shape of a flaw and 

of the stress zσ   in the crack plane can be ignored. 

 



Brittle fracture of rock 

 

 

 

3 

 

Figure 4.1  Stress system acting on a potential failure plane in rock. 

 

Although these assumptions do introduce certain errors (Jaeger 1966), the magnitude of 

these errors is estimated to be less than ± 10% which is within the order of accuracy 

aimed at in this analysis. 

 

The stress system acting upon the grain boundary under consideration is shown in Figure 

4.1.  The convention adopted in this analysis is such that compression is regarded as 

positive and that 321 σσσ >>  where 21, σσ  and 3σ  are the three principal stresses 

acting on the rock body.  The elliptical flaw is inclined at an angle β  to the major stress 

direction, i.e. the direction of maximum compressive stress.  The normal stress yσ  and 

the shear stress xyτ  which act on the material surrounding the elliptical flaw are related 

to the maximum and minimum principal stresses 1σ  and 3σ  by the following equations: 

 

 ( ) ( ) βσσσσσ 2cos2 3131 −−+=y          (4.1) 

 

( ) βσστ 2sin2 31 −=xy     (4.2) 
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Equation of ellipse: 

 

  
,sin

,cos

α

α

⋅=

⋅=

by

ax
 

 

 where α  is the eccentric angle; 

 

  ,tantan αθ ⋅= m  

 

 where ./ abm =  

 

Figure 4.2  Stresses acting on the material surrounding a two-dimensional 

elliptical flaw. 

 

 

The stress xσ  which acts parallel to the axis of the elliptical flaw and the intermediate 

principal stress zσ  which acts in the z direction will be shown to have a negligible 

influence upon the stresses near the tip of the flaw and can be ignored. 
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In the discussion which follows, the stress system will be discussed in terms of the 

normal and shear stresses yσ  and xyτ  only.  The interested reader can revert to the 

principal stresses 1σ  and 3σ  at any stage of the analysis by substitution of the relations 

given in equations (4.1) and (4.2). 

 

The parameters which define the boundary of the elliptical flaw are given in Figure 4.2 

and, of these, the most important are the ratio of the minor to the major axis of the ellipse 

mab =/  and the eccentric angle α  which defines the position of a point on the boundary 

of the ellipse.  The tangential stress on the boundary of the ellipse bσ  is given by the 

following equation (Inglis 1913; Denkhaus 1964): 

 

( ){ } ( ){ } ( ){ }
αα

ααταασαασ
σ

222

222222

sincos

cossin12cossin21sincos2

+

+−−++−+
=

m

mmmmm xyxy
b

(4.3) 

 

In a material such as rock it can be assumed that the elliptical flaws will have a very 

small axis ratio m , i.e. they will be very flat in shape.  This means that the maximum 

tensile stress will occur near the tip of the elliptical flaw, i.e. when the eccentric angle α  

is very small.  When ααα →→ sin,0  and 1cos →α .  Substitution of these relations 

into equation (4.3) and neglecting terms of the second order and higher which appear in 

the numerator gives the following approximate expression for the boundary stress bσ  

near the tip of the elliptical flaw: 

 

( )
22

2

α

ατσ
σ

+

⋅−⋅
=

m

m xyy
b      (4.4) 

 

An important fact which emerges from this simplification is that the stress xσ , which lies 

parallel to the major axis of the ellipse, has a negligible influence upon the boundary 

stress near the tip of the flaw.  By analogy the influence of the intermediate principal 

stress zσσ =2  can also be ignored.   

The maximum tangential stress on the boundary of the elliptical flaw is given when 

 

,0=
α

σ

d

d b         

i.e. when 
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αατστα 2)(2)2)(( 22 ⋅−⋅=−+ xyyxy mm       

Giving 

,
α

τ
σ

xy
b

−
=      (4.5) 

Or, rearranging in terms of 1/ :α  

 

0
1

1
21

22
=−⋅

⋅
+

mm xy

y

τ

σ

α
    (4.6) 

 

Solving equation (4.6) for 1/α : 

( )








+±
⋅

= 2211
xyyy

xym
τσσ

τα
   (4.7) 

 

From equations (4.5) and (4.7) 

( )22
xyyyb m τσσσ +±−=⋅      (4.8) 

 

The assumed criterion for fracture initiation is that a crack will propagate from the 

boundary of the elliptical flaw when the tangential stress bσ  reaches a limiting value 

equal to the tensile strength of the material at that point.  Since it is not practical to 

measure either the local tensile strength of the material surrounding the flaw or the axis 

ratio m, it is convenient to express the term mb ⋅σ  in equation (4.8) in terms of a quantity 

which can be measured more readily.  Such a quantity is the uniaxial tensile strength tσ  

of the rock body which contains the flaw under consideration and this is obtained when 

ty σσ = and 0=xyτ  giving 

 

tb m σσ 2−=⋅      (4.9) 

 

Substituting this relation into equation (4.8) and squaring both sides of the resulting 

equation gives 

 

( )yttxy σσστ −= 42     (4.10) 

 

This equation, which is the equation of a parabola in the yxy στ −  plane, defines the 
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relation between the shear and normal stresses xyτ  and yσ  at which fracture initiates on 

the boundary of an open elliptical flaw.  Note that, in substituting a numerical value for 

the uniaxial tensile strength tσ , it is necessary to include a negative sign in order to 

satisfy the sign convention adopted in this chapter.  Hence a particular rock will have a 

uniaxial tensile strength of -2000 lb/in
2
. 

 

4.3  Fracture propagation 

 

If it is assumed that the inclination β  of the elliptical flaw is such that the boundary 

stress bσ  is a maximum for any combination of the principal stresses 1σ and 3σ  then 

equation (4.10) becomes the equation of an envelope to a number of Mohr circles, one of 

which is illustrated in Figure 4.3.  

 

 

Figure 4.3.  Relation between the normal and shear stresses required to 

initiate tensile fracture from an elliptical flaw. 

 

 From the geometry of this circle and from the slope of the normal to the envelope 

defined by equation (4.10) it follows that 

 

t

xy

xy

y

d

d

σ

τ

τ

σ
β

2
2tan =

−
=    (4.11) 
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From equations (4.5) and (4.9) 

 

α

τ
σσ

xy
tb

m
m

⋅−
==⋅ 2 , 

hence 

β
σ

τ
α 2tan

2
⋅−=

⋅−
= m

m

t

xy
,    (4.12) 

 

which defines the relations between the position of the maximum tensile stress on the 

boundary of the elliptical flaw (α ) and the inclination of this flaw ( β ) to the direction of 

the minimum principal stress 3σ . 

 

Since fracture is assumed to occur when the tangential stress on the boundary of the flaw 

exceeds the local tensile strength of the material, it can be assumed that the crack will 

propagate in a direction which is normal to the boundary of the ellipse.  The normal to the 

ellipse defined by the equation given in Figure 4.2 is defined by 

 

dy

dx−
=γtan , 

where 

   




⋅⋅=

⋅⋅−=

αα

αα

dmady

dadx

cos

sin
                 (4.13) 

Hence 

m

α
γ

tan
tan =     (4.14) 

 

But, since α is small, tan αα → , hence 

 β
α

γ 2tantan −==
m

    (4.15) 

or 

βγ 2−=  or ( )βπ 2−      (4.16) 

 

This relation is illustrated in Figure 4.4.  From equation (4.11) it can be seen that as soon 

as  ,0,0 >> βτ xy  therefore 0>γ  and hence the crack which initiates on the boundary 

of the flaw will tend to propagate out of the plane of the flaw.  This is a very important 

result and it is interesting to investigate the propagation of this crack in greater detail. 
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Figure 4.4  Direction of crack propagation from the tip of an elliptical flaw 

under compressive stress conditions. 

 

4.3.1  Fracture propagation when 0=xyτ  

 

From equations (4.11) and (4.16), when 0,0 == βτ xy  and 0=λ .  In other words, under 

conditions of uniaxial tensile stress to which the crack is perpendicular, a crack is 

initiated at the tip ( 0=α ) of the elliptical flaw and it will propagate in the plane of the 

initial flaw. 

 

Substituting 0=xyτ  and 0=α  in equation (4.4) gives 

 

mm

y
b

322 σσ
σ ==      (4.17) 

 

If it assumed that the radius of curvature of the propagating crack is of the same order of 

magnitude as the radius of curvature of the original elliptical flaw, then propagation of 

this crack has the same effect as decreasing the axis ratio m of the original flaw.  From 
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equation (4.17) it will be seen that this results in an increase in the boundary stress bσ  

and hence the crack will continue to propagate, even if the applied stresses are decreased.  

 

Under these conditions the propagation of this crack results in tensile rupture
1
 of the 

specimen.  An important conclusion which can be drawn form this discussion is that 

tensile rupture will occur in a plane defined by 0=β , i.e. in a plane which is 

perpendicular to the direction of the applied tensile stress 3σ . 

  

4.3.2  Fracture propagation when 0>xyτ  

 

As already discussed, when 0>xyτ , the crack which initiates on the boundary of the 

elliptical flaw propagates out of the plane of this flaw.  It has been demonstrated 

experimentally (Brace & Bombolakis 1963; Hoek & Bieniawski 1965) and theoretically 

(Paul & Gangal 1966; Bray, personal communication) that this propagating crack will 

follow a curved path as indicated in Figure 4.4.  This crack path tends to align itself along 

the direction of the major principal stress 1σ  which, in effect, gives rise to a situation in 

which the equivalent elliptical flaw is inclined at 0=β  and the stress at the tip of the 

propagating crack can be approximated from equation (4.17). 

 

When 3σ  > 0, i.e. when 3σ  is compressive, an entirely different situation occurs in that 

the stress at the tip of the propagating crack becomes compressive when the crack is 

aligned in the direction of the major principal stress 1σ .  Under these conditions 

propagation of the crack will cease and the new flaw so created will be stable under the 

existing conditions of applied stress. 

 

The length of the crack which propagates from an open elliptical flaw for a given 

combination of applied stresses has been determined experimentally by Hoek and 

Bieniawski (1965) and the results of these experiments are plotted in Figure 4.5. 

 

The important conclusion to be drawn from these results is that a single open elliptical 

flaw cannot cause rupture of a rock specimen under conditions in which that applied 

stresses ( 1σ  and 3σ ) are both compressive. 

 

                                                 
1
 In this discussion the disintegration of the specimen into two or more separate pieces will be termed 

rupture. 
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4.4   Rock fracture in compression 

 

When the principal stresses 1σ and 3σ  applied to a rock body containing an open 

elliptical flaw are both compressive, the crack which is initiated on the boundary of this 

flaw will only propagate a short distance before it stops and becomes stable (Figure 4.5). 

In considering the problem of rupture under compressive stress, it is necessary to 

determine the conditions necessary to propagate the stable crack described above or the 

conditions necessary lo initiate some new failure mode. 

 

Experimental evidence obtained by Hoek and Bieniawski (1965) suggests that 

propagation of the stable cracks which were initiated from open flaws occurs when the 

shear resistance of the zone containing these flaws is overcome and shear movement 

occurs as suggested in Figure 4.6.  

 

The condition for the onset of shear movement may be expressed by the following 

equation: 

yoxy µσττ +=      (4.18) 

 

where oτ  is the intrinsic shear resistance of the material, i.e. the shear resistance when 

the normal stress yσ  = 0 and which is due to interlocking of asperities and to cohesive 

forces. The coefficient of internal friction µ  is the ratio between the shear stress xyτ  

required to sustain movement, once the intrinsic shear resistance oτ  has been overcome, 

and the normal stress yσ . 

 

The criterion expressed by equation (4.18) is familiar to most engineers and is most 

commonly associated with the names of Navier, Coulomb and Mohr (see Jaeger's 1966 

review for historical details). 

 

Since the condition expressed by equation (4.18) is that required to initiate shear 

movement, it does not follow automatically that this equation defines the conditions for 

rupture of the specimen. Consequently it is necessary to consider the events which follow 

initiation of the shear movement in order to establish whether rupture of the specimen 

will occur. 
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Figure 4.5  Length of stable crack propagated from an elliptical flaw under 

compressive stress conditions Hoek & Bieniawski 1965 

 

Figure 4.6    Mechanism of fracture propagation caused by displacement on a 

shear plane 
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In applying the Navier-Coulomb criterion, equation (4.18), to a rock failure problem it is 

usual to assume that rupture of the specimen takes place as a result of shear movement 

along a plane inclined at an angle β  to the minor principal stress direction as suggested 

in Figure 4.7(a). The relation between the angle β  and the coefficient of internal friction 

µ  can be found by considering the slope of the Mohr envelope as was done earlier in this 

paper in the case of the Griffith criterion (Figure 4.3): 

 

µτ

σ
β

1
2tan

−
=

−
=

xy

y

d

d
     (4.19) 

 

While it is accepted that simultaneous movement on the shear plane is a valid failure 

mode it is suggested that interlocking of asperities on this plane can also give rise to 

differential shear movement which results in the propagation of existing vertical cracks, 

as suggested in Figure 4.6. This would result in the vertical tensile type of rupture 

illustrated in Figure 4.7(b). 

 

A third possibility is that rupture can occur as a result of some combination of the two 

modes discussed above, giving a rupture surface which is intermediate between the 

direction of the major principal stress al and the direction of the shear plane which is 

inclined at an angle β  to the major principal stress direction. 

 

A final possibility is that the propagation of either of the above modes could be inhibited 

by changes in either the stress field or the material properties in the crack path, resulting 

in a stable crack configuration such as that illustrated in Figure 4.7(c).  Propagation of 

this stable crack system would require a further increase in the applied compressive 

stress 1σ . 

 

It will be evident to the reader, from the discussion given above, that the final appearance 

of a rock specimen which has been tested to rupture under compressive stress conditions 

will depend upon the size of the specimen and upon the degree of restraint imposed by 

the testing machine platens. The influence of laboratory test procedures upon the results 

of rupture tests on rock specimens will be discussed in a later section of this chapter in 

which the application of such results to practical rock mechanics problems is discussed. 

 

Factors which influence the material 'constants' ot τσ ,  and µ  and the effect of changes in 
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these constants upon the behaviour of the material will also be discussed in a later section 

of this chapter. 

 

 

Figure 4.7    Suggested rupture modes under compressive stress conditions, 

(a) Shear failure; (b) Tensile failure; (c) Stable crack configuration. 

 

4.5   A rupture criterion for brittle rock 

 

In order to obtain the simplest possible rupture criterion for a brittle rock, consider the 

behaviour of a specimen which contains a large number of randomly oriented flaws of 

similar size and shape, for example, a carefully selected sample of a homogeneous fine-
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grained rock, such as Witwatersrand quartzite (Hoek 1966). Such a material will exhibit 

no significant anisotropy in its strength behaviour and will have a uniaxial compressive 

strength of approximately ten times its uniaxial tensile strength. 

 

The rupture criterion for such a material can be expected to be a logical extension of the 

fracture initiation criteria already discussed and the complete rupture criterion is 

illustrated in Figure 4.8.   

 

 

Figure 4.8   A rupture criterion for brittle rock. 

 

In deriving this rupture criterion the following factors were taken into consideration. 

  

(a) The simplest type of tensile rupture occurs when the minor principal stress equals the 

uniaxial tensile strength of the material, i.e. tσσ =3 . This rupture is caused by the 

propagation of a crack which initiates at the tip (α  = 0) of the flaw which is 

perpendicular to the minor principal stress direction ( β  = 0). The conditions under which 

this type of rupture occurs can be deduced from figure 4.3, from which it can be seen that 

the radius of curvature of the Mohr envelope at the point of its intersection with the 
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normal stress axis ( xyτ  = 0) is equal to 2 tσ . Consequently, all Mohr stress circles which 

fall within this circle of radius 2 tσ  (see Figure 4.8) can only touch the rupture envelope 

at one point which is defined by xyτ  = 0 and tσσ =3 . This implies that pure tensile 

rupture occurs when 31 3 σσ −≤ . 

 

b) Rupture of a rock specimen, when the normal stress acting on the potential shear 

surface is compressive ( yσ > 0), is assumed to occur when the shear resistance of this 

plane is overcome, i.e. when equation (4.18) is satisfied. Shear movement on this plane 

can induce shear and/or tensile rupture of the specimen as suggested in Figure 4.7. 

 

c) The transition between the conditions which govern pure tensile rupture and the 

conditions under which rupture is induced as a result of shear displacement cannot be 

derived directly from the fracture initiation criteria already discussed in this chapter. This 

difficulty is caused by the fact that the crack which initiates on the boundary of a flaw 

subjected to a finite shear stress will tend to propagate out of the plane of the flaw (see 

Figure 4.4).  Although this crack will tend to align itself along the major principal stress 

direction it is not possible to calculate the magnitude of the minor principal stress 3σ  

which is required to cause rupture of the specimen. In order to overcome this difficulty it 

is proposed, on purely phenomenological grounds, that this transition should take the 

form suggested by the heavy dashed line in Figure 4.8,  i.e. it is assumed that the straight-

line rupture criterion which defines shear-induced rupture is tangential to the parabolic 

Mohr envelope which defines fracture initiation from open elliptical flaws. 

 

From the geometry of the rupture diagram presented in Figure 4.8, it is possible to 

estimate the relation between the intrinsic shear strength oτ  and the uniaxial tensile 

strength tσ : 









+−= µ

µ
στ

1
to      (4.20) 

The practical significance of this relation is that it enables an estimate of the maximum 

uniaxial tensile strength of a particular material to be obtained from the value of the 

intercept oτ  of a Mohr rupture envelope fitted to a number of triaxial compression or 

shear test results. 

 

Practical experience (Hoek 1966) confirms that the rupture criterion proposed in Figure 

4.8 provides an adequate basis for predicting the stresses required to cause rupture of a 
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brittle rock material under the conditions normally encountered in mining or civil 

engineering rock mechanics problems
2
.  However, from the discussion on the direction of 

fracture propagation (Figure 4.7), it is evident that no reliable estimate of the angle of 

rupture of a rock specimen can be made from the Mohr rupture diagram presented in 

Figure 4.8.  In other words, the angle 2 β  subtended by the normal to the rupture 

envelope (see Figure 4.3) defines the orientation of the flaw from which fracture initiates 

or upon which shear displacement occurs but it gives no information on the subsequent 

path which the fracture will follow. The author believes that the angle of rupture of an 

element of rock is critically dependent upon the restraints imosed upon it by the testing 

machine platens, in the case of a laboratory test, or by the surrounding material in the 

case of a rock structure. A great deal of careful thought and experimentation has still to 

be devoted to this problem in order to clarify the current confusion which exists in 

relation to the angle of rupture of rock materials. 

 

 

4.6   Factors which influence the rupture behaviour of rock 

 

The 'ideal' brittle material upon which the derivation of the fracture initiation and rupture 

criteria presented above is based cannot be considered representative of the material 

which would be found in a rock structure, such as a dam foundation or the rock 

surrounding a mine excavation.  Nor can the conditions to which a carefully selected 

laboratory test specimen is subjected be regarded as representative of the wide variety of 

conditions which are likely to be encountered in the field. 

 

Obviously, a theoretical rupture criterion which accounts for all possible deviations from 

the ‘ideal’ would be far too complex to have any practical value.  On the other hand, the 

‘ideal’ would be far to complex to have any practical value if some estimate can be made 

of the extent to which the rock behaviour is likely to be influenced by deviation from the 

idealized assumptions. 

 

 

                                                 
2
  Deviations from the linear Mohr envelope defined by equation (4.18) are discussed in a later section of 

this chapter. 
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4.6.1  Influence of moisture on the strength of rock 

 

The presence of moisture in a rock body can influence the rupture behaviour of the rock 

in two important ways: 

 

a)  The moisture can reduce the strength of the rock by chemical or physical alternation 

of its inherent properties.  This strength reduction can be very important; for example, the 

results obtained by Colback and Wiid (Colback & Wiid 1965) for tests on a quartzitic 

shale (Figure 4.9) show that the strength of specimens which had been dried over calcium 

chloride for several weeks.  This finding emphasizes the need to simulate field conditions 

as closely as possible in the laboratory and, if in doubt, to assume the worst conditions 

and to test the specimens in a saturated state. 

 

 

 

Figure 4.9.  Mohr rupture envelopes showing the effect of moisture on the 

compressive strength of quartzite shale (Colback & Wiid 1965) 

 

 

 (b) If the moisture is present under pressure, the strength of rock is further reduced. 

Numerous experimental observations (e.g. Murreli 1966 and Byerlee in press) have 
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confirmed the theoretical prediction that the influence of pore pressure can be allowed for 

in the rupture criteria discussed in this chapter by replacing the normal stress yσ  by an 

effective stress ( py −σ ). Noting that a compressive stress of magnitude p balances the 

internal pore pressure, it is clear that only the excess py −σ  can be effective in 

developing tensions. Consequently, equation (4.10) becomes 

 

( ){ }pyttxy −−= σσστ 42     (4.21) 

while equation (4.18) becomes 

 

( )pyoxy −+= σµττ     (4.22) 

 

It is important to note that in any testing involving a study of the influence of moisture or 

of pore-pressure effects, the rate of loading of the specimen is a critical factor. The 

discussion presented above is based upon static stress conditions and unless the rate of 

loading is low enough to permit the pore pressure to distribute itself uniformly throughout 

the volume of the specimen or, in the case of a drained test, to prevent the build up of 

dynamic pore pressures, the conclusions presented above will not be valid
3
. 

  

 

4.6.2   Influence of the normal stress upon the frictional behaviour of rock 

 

The envelope fitted to a set of Mohr circles obtained from low pressure triaxial 

compression tests on brittle rocks is usually adequately represented by a straight line as 

suggested by equation (4.18) (Wuerker 1959).  Since many civil and mining engineering 

applications involve low confining pressures (up to say one-half the uniaxial compressive 

strength of the rock), the assumption that the coefficient of friction µ  is a constant is 

sufficiently accurate for these applications. 

 

 

However, in the case of problems involving high confining pressures such as those which 

may be encountered in deep-level mining or in problems of interest to the geologist, this 

                                                 
3
 Professor W. F. Brace of the Massachusetts Institute of Technology, in a personal communication to the 

author, gives the critical strain rate for the loading of a small specimen (approximately 0.5 inch diameter x 

1.5 inches long) of Westerly granite as approximately 10
-7

 in/in/s. 
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assumption can be seriously in error. The assumption that the coefficient of friction is a 

constant can also be misleading in the case of 'soft' rocks, such as shales and siltstones, 

which exhibit non-linear rupture envelopes, even at very low confining pressures. 

 

Experimental evidence obtained by Murrell (1966), Hobbs (1966), Patton (1966) and 

Byerlee (in press) suggests that the coefficient of internal friction µ  in equation (4.18) is 

not a constant but depends upon the magnitude of the normal compressive stress yσ . The 

reason for this breakdown of Amonton's law of friction is associated with the interlocking 

of the asperities on the shear plane (see Figure 4.6). This interlocking depends upon the 

intimacy of the contact of the asperities which, in turn, depends upon the magnitude of 

the normal stress yσ . 

 

Although a number of theoretical models of this interlocking behaviour have been 

considered (Murrell 1966; Hobbs 1966; Byerlee in press), the problem has not been 

adequately solved and, in the author's opinion, a considerable amount of theoretical work 

is still necessary. However, in the absence of a rigorous theoretical solution, a useful 

empirical solution can be obtained by assuming that the rupture behaviour of a brittle 

rock can be characterized by the following equation: 

 
b
mo Aσττ += maxmax     (4.23) 

 

where            ( )
312

1
max σστ −=   is the maximum shear stress, 

  ( )
312

1
σσσ +=m  is the mean normal stress 

 and  omaxτ  is the intercept of the maxτ  versus mσ  plot when mσ  = 0. 

 

The reasons for the choice of the maximum shear stress  maxτ  and the mean normal stress 

mσ  in place of the shear and normal stresses xyτ  and yσ  as suggested by (Murrell 1966) 

and (Hobbs 1966) are important and are worthy of some consideration. 

 

In analysing the results of conventional triaxial compression tests, we are faced with the 

problem of determining the values of the shear and normal stresses xyτ  and yσ  from the 

experimentally determined values of the applied axial and lateral stresses 1σ  and 3σ    ( = 

2σ ). If the inclination β  of the plane upon which the shear and normal stresses act is 
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known, their values can be calculated from equations (4.1) and (4.2). However, as 

discussed earlier in this chapter, available evidence suggests that the fracture path is a 

complex one which may have no direct relation to the shear and normal stresses which 

were responsible for its initiation and propagation (see Figure 4.7b). In addition, current 

triaxial testing techniques are such that the fracture path is almost certainly influenced by 

platen effects and by the non-uniformity of the stress distribution in the specimen at the 

final stages of rupture. Consequently, any attempt to determine the inclination β  of the 

rupture surface from the configuration of a ruptured triaxial specimen must be treated 

with suspicion. 

 

In order to overcome these difficulties, the author suggests the use of the maximum shear 

stress and the mean normal stress which can be calculated directly from the axial stress 

1σ  and  confining pressure 3σ  values obtained from a set of triaxial tests. It will be seen 

from Figure 4.11 that, for an actual set of experimental results, the maxτ  versus yσ  plot 

is closely related to the xyτ  versus yσ  relation which is assumed to be defined by the 

Mohr envelope.  This suggests that the relation proposed in equation (4.23) and a similar 

relation between xyτ  and yσ  proposed by Murrell (1966) and Hobbs (1966) are not 

contradictory and that the advantage of using equation (4.23) depends solely upon its 

practical convenience
4
. 

 

In order to evaluate the constants A and b in equation (4.23) for a given material, it is 

convenient to rewrite the equation in the following form: 

 

c

m

c

o bA
σ

σ

σ

ττ
1010

maxmax
10 logloglog +=

−
  (4.24) 

 

where cσ  is the uniaxial compressive strength of the material. 

 

The advantage of normalizing the experimental results by dividing each measured value 

by the uniaxial compressive strength of a number of tests on the same plot.  This 

advantage is obvious in Figure 4.10 in which the results of triaxial tests on the eight 

                                                 
4
 An interesting application of the maximum shear stress versus mean normal stress plot has been described 

by the author (Hoek 1966) in connection with the analysis of rock fracture around underground excavations 

by means of photoelastic models 
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sandstones listed in Table 4.1 are plotted on the same graph.  Normalizing the results has 

the additional advantage of minimizing the influence of testing techniques, specimen 

sizes and environmental conditions since these conditions are usually common to both 

numerator and denominator of the dimensionless ratios. 

 

 

Figure 4.10    Relation between the maximum shear and mean normal stresses 

at rupture for sandstones 

 

Plotting the experimental results on logarithmic scales permits a direct evaluation of the 

constants A and b since A is given by the value of  cσττ )( 0max −  when 1=cm σσ , 

)0)((log10 =cm σσ , and the value of b is given by the slope of the straight line through 

the experimental points.  However, complete evaluation of the constants requires that the 

value of the intercept 0maxτ  be known and, in the absence of experimental values, the 

author suggests that a reasonable estimate is given by 1.00max =cστ . 

 

Fitting the best straight line to the experimental points plotted in Figure 4.10 by the 

method of least squares and substitution of the resulting values of A and b into equation 

(4.23) gives 



Brittle fracture of rock 

 

 

 

23 

85.0
max 76.01.0 
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τ
    (4.25) 

 

which, as shown in Figure 4.11, adequately defines the rupture behaviour of the 

sandstones listed in Table 4.1. 

 

 

Table 4.1  Sandstones included in Figure 4.10 

 

Uniaxial compressive strength Name Experimenter Country 

       lb.in
2  

                    kg/cm
2 

--- Jaeger Australia 9,000 633 

Darley Dale 1 Price England 5,780 406 

Pennant Price England 22,500 1,582 

Rush Springs Bredthauer America 25,000 1,758 

Iwaki Horibe and 

Kobayashi 

Japan 1,780 125 

---- Everling Germany 18,500 1,300 

Darley Dale II Murrell England 11,500 1,300 

Warmbaths Wiid South Africa 14,750 1,037 

 

 

In Figure 4.11, a set of idealized Mohr circles and their envelope are shown and it will be 

noted that, having defined the relation between the maximum shear stress and mean 

normal stress, the construction of these circles and the fitting of the envelope is reduced 

to a simple and reliable graphical operation.  This is in contrast to the difficulties of 

fitting an envelope by eye to a set of experimentally determined Mohr circles since such 

an envelope is invariably fitted to the circles of maximum diameter and does not take into 

account the scatter of the experimental values
5
. 

                                                 
5
 The interested reader can easily check this difficulty for himself by constructing a few Mohr circles from 

the experimental values given in Figure 4.11 and noting the exaggerated curvature of the envelope fitted to 

the maximum diameter circles. 
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Figure 4.11  Mohr stress diagram for the rupture of sandstone. 

 

 

Although no attempt is made here to develop the theoretical relation between the Mohr 

envelope and the maxτ  versus yσ  plot, it is interesting to examine the relation between 

the intrinsic shear strength oτ  and the maximum shear stress intercept omaxτ .  As 

discussed earlier in this chapter, pure tensile rupture is assumed to occur when 

31 3σσ −≤  which means that all Mohr stress circles within this stress range touch the 

envelope at one point defined by tσσ =3  (see Figure 4.8).  Rupture under conditions of 

pure shear, i.e. 31 σσ −= , falls into this category and it can be seen from Figure 4.,8 that 

the radius of the Mohr circle defining this condition is equal to tσ  and, since this circle 

defines the maximum shear stress intercept ( 0=mσ ), it follows that  

 

to στ ±=max       (4.26) 

Comparing equations (4.20) and (4.26) gives 

 









+= µ

µτ

τ 1

max o

o     (4.27) 

 

and substitution of a range of values for µ  between 0.5 and 2 shows that a reasonable 

estimate for the relation between oτ and omaxτ is given by 
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oo max2ττ ≅      (4.28) 

 

Although the prime purpose of plotting the triaxial test results for sandstone in Figures 

4.10 and 4.11 is to demonstrate the influence of the normal stress upon the frictional 

behaviour of rock, these figures cannot be left without noting the remarkable similarity in 

the rupture behaviour of the eight sandstones which, from the information given in Table 

4.1, have widely varying geographical locations and geologic materials, any attempt at an 

explanation of this similarity would be based on pure speculation and would be out of 

place in this chapter.  However, since similar patterns of behaviour have been noted for 

many other rock types (Hoek & Bieniawski 1965; Hoek 1966), the practical significance 

of such patterns, even if they can only be defined by empirical relations such as that 

suggested by Equation (4.23), is important. 

 

Following the thoughts which probably motivated Wuerker (1959) when he prepared his 

annotated tables of rock strength, it is suggested that the availability of a collection of 

dimensionless results, such as those presented in figure 4.10, could be of considerable 

assistance to the practical engineer who may have neither the time nor the facilities to 

carry out the large number of triaxial tests necessary to define the behaviour of the 

material with which he is concerned.  In order to obtain an estimate of the behaviour of a 

particular material, it would only be necessary to determine the uniaxial compressive 

strength cσ , under the environmental conditions and using the testing technique and size 

of specimen most appropriate to the particular problem under consideration.  Substitution 

of this value of cσ   into the characteristic equation of that type of material (e.g. equation 

(4.25) for sandstone) would give a maxτ  versus mσ  plot, and if necessary the Mohr 

circles and envelope, which would be sufficiently accurate for most practical purposes
6
. † 

 

                                                 
6
 The author wishes to make it quite clear that he does not advocate the procedure suggested above as a 

solution to all problems of rock testing.  The curve which defines the rupture behaviour of a rock may be an 

extremely useful tool but it cannot replace the ‘feel’ of his material which an engineer can only obtain by 

working with it and observing its behaviour under test conditions.  However, since the ever-increasing 

demands of progress restrict the time which the modern engineer can afford to spend on the luxury of 

getting to know his material, the suggested procedure, while academically unattractive to the physicist, may 

still prove very practical in engineering application. In order to implement the ideas outlined above, a 

research project has been initiated at Imperial College, London, which involves the collection and computer 

analysis of all available results for triaxial rock tests, using published data and whatever raw data it proves 

practical to obtain. 
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4.6.2 Influence of anisiotropy on the strength of rock 

 

The ideal brittle rock, upon which most of the discussion presented thus far has been 

based, is assumed to contain a large number of randomly oriented flaws of equal size.  

These conditions would very seldom be found in practical rock mechanics problems and, 

hence, it is necessary to make an estimate of the probable influence of anisotropy would 

exceed the scope of this chapter and it will suffice to illustrate the main points of practical 

interest by one example. 

 

Figure 4.12  Mohr envelopes defining the rupture behaviour of the bedding 

planes (dashed line) and parent material (solid line) of a South African state. 

 

Figure 4.12 shows the rupture behaviour of a South African slate (Hoek 1964).  The solid 

line is for tests carried out on specimens in which the bedding planes were oriented in 

such a way as to minimize their influence ( °= 90β for tensile tests and °= 90β  or 0° for 

compressive tests).  The dashed envelope represents the results obtained from specimens 

in which the bedding planes were oriented to exert their maximum influence 0=β  for 

tensile tests and 
µ

β 1arctan
2

1
=  for compression tests). 

 

It is evident from this figure that the rupture envelope of the slate in its weakest state is 

merely a scaled down version of the rupture envelope for the strongest state.  Plotting 

these results on dimensionless logarithmic scales as was done in figure 4.29 confirms that 

the constants A and  b (equation 4.23) are not significantly different for these two rupture 

envelopes but Figure 4.10 shows that the value of the uniaxial compressive strength cσ  



Brittle fracture of rock 

 

 

 

27 

varies by a factor of approximately 4, depending upon the orientation of the bedding 

planes to the principal stress directions. 

 

The practical significance of these findings is that, in problems in which the principal 

stress directions and major weakness planes in the material are known, the appropriate 

value of cσ  can be determined and used in analysing the rupture behaviour of the rock.  

Hence, for example, the analysis of the stability of a slope in which the rock contains 

well-defined planes of weakness must take the orientation of these planes into account.  

Note that, in such cases, the weakness planes may contain soft filling material which may 

reduce the frictional resistance of this plane, i.e. the values of A and b will differ from 

those of the parent material and must be determined independently. 

 

In cases in which the orientations of the weakness planes in relation to the principal stress 

directions are not known, it can only be assumed that the rupture behaviour of the 

material will lie somewhere between the two envelopes representing its weakest and 

strongest states (e.g. Figure 4.12 for slate).  Since this would be the case in many 

practical rock mechanics problems, it is suggested that, where the stability of a structure 

is at stake, the only safe course to follow is to use the envelope defining the weakest state 

of the material. 

 

4.6.4  Influence of laboratory testing techniques upon the rupture of rock 

 

A large proportion of the research effort which has gone into building up the science of 

rock mechanics has been devoted to the detailed study of laboratory testing techniques.  

Jaeger (1966) has given an excellent review of this work which includes studies of the 

influence of specimen geometry, platen friction, rate of loading, size of specimen and of 

the stiffness of the testing machine upon the behaviour of the rock specimen.  No useful 

purpose would be served by attempting to repeat the details of this review and the 

following discussion will be confined to certain basic principles of rock testing. 

 

The results of presented in Figures 4.10 and 4.11 suggest that the shape of the 

characteristic curve which defines the rupture behaviour of a rock is largely independent 

of the method of testing.  Consequently, in choosing a testing technique, which 

determines the position of the characteristic curve on the στ −  plane, it is necessary to 

consider: 
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 a) the basic principles of materials testing which have to be fulfilled and  

 

 b) the purpose for which the test results are required. 

 

The most important requirement which must be met in carrying out a test is that it must 

be possible to determine the stresses acting on the specimen.  Since most rocks exhibit 

some degree of anisotropy and all rock become anisotropic as a point of rupture is 

approached (Walsh 1965; Brace, Pauling & Scholz 1966), any test specimen in which 

there are significant stress gradients and for which the stress at rupture has to be 

calculated on the basis of the theory of elasticity must be treated with suspicion.  This 

applies to specimens tested in bending, torsion and to certain indirect tests which involve 

high stress gradients, e.g. indentation of the specimen with a steel ball or diamond point.  

The simplest solution to the problem is to choose a specimen geometry which permits 

calculation of the applied stresses from a simple load/area relation.  However, even when 

this condition is met, e.g. in the case of a cylindrical specimen subjected to direct 

compressive stress, it is still necessary to ensure that stress gradients are not induced as a 

result of poor end conditions (Hoek 1966,  Mogi, 1966). 

 

The purpose for which the results of laboratory tests on rock specimens is required can 

have an important bearing upon the test method chosen.  This is particularly true in 

relation to the direction of the most important failure surface in a ruptured specimen 

(Figure 4.7).  For example, if the results of a set of laboratory tests are to be applied to a 

slope stability problem in which the shear rupture mode (Figure 4.7a) is of prime 

importance, an applied stress condition which encourages the development of this shear 

mode, i.e. a shear-box test, would be a logical choice for the test method. 

 

In the case of the rock surrounding underground mine excavations, both tensile and shear 

modes may be important.  An even more important consideration may be the stress 

redistribution associated with fracture which may result in the load on an element being 

relieved if it tends to deform by a large amount in relation to the surrounding rock.  An 

appreciation of this problem has led to the development of ‘stiff-machine’ testing 

techniques (Cook and Hojem 1966; Bieniawski in submission) which restrict the strain 

which takes place in the specimen. 

 

The conclusion to be drawn from the discussion presented above is that, while it is 
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important to exercise care in preparing and testing rock specimens, it is even more 

important to give serious consideration to the use to which the results are to be put.  

Unless the test method chosen bears a direct relation to the problem under consideration, 

a great deal of effort can be expended on obtaining information which may have little or 

no practical significance. 
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The initiation and propagation of failure in intact rock are a matter of fundamental importance in rock
engineering. At low confining pressures, tensile fracturing initiates in samples at 40%e60% of the uniaxial
compressive strength and as loading continues, and these tensile fractures increase in density, ultimately
coalescing and leading to strain localization and macro-scale shear failure of the samples. The Griffith
theory of brittle failure provides a simplified model and a useful basis for discussion of this process. The
HoekeBrown failure criterion provides an acceptable estimate of the peak strength for shear failure but a
cutoff has been added for tensile conditions. However, neither of these criteria adequately explains the
progressive coalition of tensile cracks and the final shearing of the specimens at higher confining
stresses. Grain-based numerical models, in which the grain size distributions as well as the physical
properties of the component grains of the rock are incorporated, have proved to be very useful in
studying these more complex fracture processes.
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1. Introduction

In order to understand the characteristics of rock and rock
masses as engineering materials, it is necessary to start with the
behavior of intact rock. From an engineering point of view, this
involves studying laboratory-scale samples, such as diamond drill
core, with dimensions in the range of 50 mm diameter. For many
rock types, the grain size is small enough that samples of this scale
can be considered homogeneous and isotropic.

The characteristics that will be discussed in the following text
are the strength and deformation characteristics of intact rock. As
illustrated in Fig. 1, a number of stress states need to be considered
and, as is common in most discussions on this topic, it will be
assumed that these stress states can be considered in two di-
mensions. In other words, it is assumed that the intermediate
principal stress s2 has a minimal influence on the initiation and
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propagation of failure in the samples. While some authors consider
this to be an over-simplification, a full three-dimensional treatment
of the topic would result in complex text which would defeat the
purpose of this presentation which is designed to be as clear and
understandable as possible.
2. Theoretical fracture initiation: background

2.1. Griffith tensile theory

Griffith (1921) proposed that tensile failure in brittle materials
such as glass initiates at the tips of minute defects which he rep-
resented by flat elliptical cracks. His original work dealt with frac-
ture inmaterial subjected to tensile stress but later he extended this
concept to include biaxial compression loading (Griffith, 1924). The
equation governing tensile failure initiation in a biaxial compres-
sive stress field is

s1 ¼
�8st

�
1þ s3

s1

�
ð1� s3=s1Þ2

(1)

where st is the uniaxial tensile strength of the material. Note that
tensile stresses are negative.

Murrell (1958) proposed the application of Griffith theory to
rock. In the 1960s, Griffith’s two-dimensional theory was extended
to three dimensions by a number of authors including Murrell
(1958), Sack and Kouznetsov whose work was summarized in
books on brittle failure of rock materials by Andriev (1995) and
nd propagation in intact rock e A review, Journal of Rock Mechanics
014.06.001

mailto:ehoek@xsmail.com
mailto:derek.martin@ualberta.ca
http://dx.doi.org/10.1016/j.jrmge.2014.06.001
www.sciencedirect.com/science/journal/16747755
http://www.rockgeotech.org
http://dx.doi.org/10.1016/j.jrmge.2014.06.001
http://dx.doi.org/10.1016/j.jrmge.2014.06.001


Fig. 1. Typical failure characteristics of intact rock plotted in terms of major and minor
principal stresses and Mohr circles and envelope.
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Paterson and Wong (2005). These extensions involve examining
the stresses induced around open penny-shaped cracks in a semi-
infinite body subjected to triaxial compressive stresses s1, s2 and
s3. It was shown that the intermediate principal stress s2 has no
significant influence on the crack tip stresses inducing tensile fail-
ure initiation. Hence, this criterion is essentially equivalent to
loading a penny-shaped crack in a biaxial stress field, as shown in
Fig. 2.

The equation governing tensile failure initiation is

s1 ¼
�12st

�
1þ 2

s3
s1

�
ð1� s3=s1Þ2

(2)
Fig. 2. Tensile crack propagation from an inclined elliptical Griffith crack in a biaxial
compressive stress field.
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Note that, whereas the original Griffith theory predicts a ratio of
compressive to tensile strength sc=jstj ¼ 8, the penny-shaped
crack version predicts sc=jstj ¼ 12. The corresponding Mohr en-
velope for the penny-shaped crack version is

s2 ¼ jstjðjstj þ sÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sc
jstj þ 1

r
� 1

�2

(3)

where sc is the uniaxial compressive strength of the material.
The Griffith theory deals only with the initiation of tensile fail-

ure. It cannot be extended to deal with failure propagation and
eventual shear failure in compression. However, under certain
conditions when tensile stresses exceed the tensile strength, tensile
failure initiation can lead to crack propagation. In these cases the
tensile cracks propagate along the major principal stress (s1) tra-
jectory as shown in Fig. 2.
2.2. Modifications to Griffith theory for closed cracks

The original Griffith theory was derived from analyses of crack
initiation at or near the tips of open elliptical cracks. In the case of
rocks, most of the defects from which tensile cracks originate are
grain boundaries which are usually cemented and have to be
considered as closed cracks. McClintock and Walsh (1962) pro-
posed that tensile fracture from closed Griffith cracks can be pre-
dicted on the basis of the conventional MohreCoulomb
equation:where f is the angle of friction and s0 is the shear strength
at zero normal stress.

s ¼ s0 þ stanf (4)

Hoek (1965) discussed the transition from the Griffith theory for
open cracks, which applies for confining stresses s3 < 0, and the
modified theory for closed cracks which applies for compressive
confining stresses. For the principal stress plot, this transition oc-
curs at s3 ¼ 0, while for the Mohr envelope, the transition occurs at
the tangent points on the Mohr circle representing the uniaxial
compressive strength sc of the intact rock. The transition is illus-
trated in Fig. 3 in which the principal stress plots are shown for
friction angles of 35�, 45� and 55�.

A much more comprehensive discussion on this topic is given in
Paterson and Wong (2005) but the plotted results are essentially
the same as those shown in Fig. 3. Hence, for the purpose of this
discussion, Eq. (4) above is adequate.

Zuo et al. (2008) examined the growth of microcracks in rock-
like materials on the basis of fracture mechanics considerations.
They assumed a sliding-crack model which generates wing cracks,
similar to those shown in Fig. 2, from close to the crack tips when
the frictional strength of the sliding surfaces is overcome. They
found that the failure initiation criterion can be expressed by the
following equation:

s1 ¼ s3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

k

sc
jstj scs3 þ s2c

r
(5)

where m is the coefficient of frictionwhich is equal to the tangent of
the friction angle, i.e. m ¼ tanf.

The coefficient k is used for mixed mode fracture and it can
be derived from various approximations based on a maximum
stress criterion or a maximum energy release criterion (Zuo
et al., 2008). Plots for Eq. (5), when m ¼ 0.7, 1 and 1.43
(f ¼ 35�, 45� and 55�), k ¼ 1 and sc=jstj ¼ 12, are included in
Fig. 3. Note that the same transition from open to closed crack
behavior has been assumed as for the MohreCoulomb criterion
(Eq. (4)) discussed above.
nd propagation in intact rock e A review, Journal of Rock Mechanics
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Fig. 3. Principal stress plots for various criteria for tensile failure initiation from closed
cracks in brittle materials such as rock.

Fig. 4. Dependence of length of tensile cracks on principal stress ratio s3/s1.
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2.3. Length of induced tensile cracks

Hoek (1965) carried out experiments inwhich flat open “cracks”
were machined ultrasonically into annealed glass plates which
were then loaded biaxially. The initiation of tensile cracks fromnear
the tips of these simulated cracks, as predicted by Griffith’s original
theory, was confirmed. However, it was found that the length of the
tensile cracks was limited by the ratio of the applied biaxial stresses
s3/s1. As reported by Cho et al. (2007), theoretical studies on closed
cracks have been carried out by several authors including Ashby
and Hallam (1986), Kemeny and Cook (1987), Germanovich and
Dyskin (1988), Martin (1997) and Cai et al. (1998). These studies,
the results of which are plotted in Fig. 4, confirm the importance of
confinement in limiting the length of induced tensile cracks from
pre-existing flaws in brittle materials subjected to compressive
loading. Fig. 5 summarizes some of this information in a different
form and shows a principal stress plot andMohr’s diagram for open
penny-shaped cracks subjected to different biaxial compressive
stress loadings.
Fig. 5. Plots of principal stresses defining tensile failure initiation from open penny-
shaped cracks in a homogeneous isotropic elastic solid loaded biaxially.
2.4. Summary

Griffith theory of brittle fracture initiation and its modifications
have been discussed in hundreds of technical papers. A particularly
useful review was presented by Fairhurst (1972) which is recom-
mended reading for anyone interested in pursuing this topic in
greater depth. While there can be no dispute that this is very
important background material for an understanding of the
Please cite this article in press as: Hoek E, Martin CD, Fracture initiation and propagation in intact rock e A review, Journal of Rock Mechanics
and Geotechnical Engineering (2014), http://dx.doi.org/10.1016/j.jrmge.2014.06.001
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mechanics of brittle failure initiation, it is of limited practical value
in the field of rock engineering.

This is because an isolated Griffith crack in a semi-infinite plate
is an inadequate model of the grain boundary network in which
tensile failure originates and propagates in intact rock as shown in
Fig. 6. This photograph shows that, while it would always be
possible to find a critically oriented grain boundary from which
tensile failure could initiate, it is unlikely that the induced crack
would follow the path suggested in Fig. 2 for homogeneous
isotropic materials. Rather, the tensile crack path would follow a
path dictated by grain boundaries with only isolated cracks running
across intact grains. This means that we have to explore other more
complicated models in order to fully understand the fracture pro-
cess in rock.

Before leaving the topic of Griffith theory and its modifications,
it is worth summarizing what we have learned from the discussion
given earlier since the same or similar issues will apply to the nu-
merical analysis of fracture initiation and propagation:

(1) The brittle failure process initiates and is, to a very large extent,
controlled by the tensile strength of intact rock or of its
component grains.

(2) The initiation of tensile cracks at or near the tip of a Griffith
crack, whether this crack is open or closed, depends upon the
orientation of the Griffith crack in relation to the applied
stresses. Fracture will initiate at or close to the tip of a critically
oriented crack when the conditions defined by Eqs. (1)e(5) are
satisfied, depending upon the assumptions made in deriving
these equations.
Fig. 6. Crack path in a specimen of Witwatersrand Quartzite from a deep gold mine in
South Africa, sectioned after uniaxial compressive loading to about 75% of the uniaxial
compressive strength.
Photograph reproduced from Hoek and Bieniawski (1965).
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(3) This process is extremely sensitive to the degree of confinement
and the extent of failure reduces quickly as the minor principal
stress (s3) increases from s3 ¼ st to s3 > 0, as shown in Figs. 1
and 5.

(4) At some level of confinement, in the range of s3=s1z0:2, ten-
sile failure can be suppressed completely and the peak strength
of the intact rock is controlled by shear failure for higher
confinement.

(5) For applications to confined rock materials, the closed Griffith
crackmodel (Eqs. (4) and (5)) is themost appropriate. The shear
strength of the confined defects (typically grain boundaries) is a
controlling parameter in the initiation and propagation of the
tensile failure.

(6) The ratio of uniaxial compressive to tensile strength (sc=jstj) is
an important parameter in understanding the failure of rock
and similar brittle materials.

3. Fracture initiation and propagation: laboratory tests

3.1. Peak strength and the HoekeBrown criterion

Hoek and Brown (1980) and Hoek (1983) described the devel-
opment of the HoekeBrown failure criterion as a trial-and-error
process using the Griffith theory as a starting point. They were
seeking an empirical relationship that fitted observed shear failure
conditions for brittle rock subjected to triaxial compressive
stresses. The equation chosen to represent the failure of intact rock
was

s1 ¼ s3 þ sc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

s3
sc

þ 1
r

(6)

where mi is a material constant.
Zuo et al. (2008) pointed out that the substitution of

ðm=kÞðsc=jstjÞ ¼ mi in their failure criterion (Eq. (5)) leads to the
HoekeBrown criterion for intact rock (Eq. (6)). They suggested that
the constant mi is not simply an empirical constant but that it has
real physical meaning.

During the 1970s, when the HoekeBrown criterion was devel-
oped, there was little interest in the tensile strength of rock and, in
fact, it was frequently assumed to be zero. The emphasis was on
confined shear failure which was assumed to control the stability of
the relatively small slopes and shallow tunnels that were con-
structed at the time. However, with the increase in depth of exca-
vations in civil and mining engineering projects and the depth of
boreholes in oil exploration and recovery, the issue of the tensile
strength of rock became increasingly important. In particular, the
process of brittle fracture which results in splitting, popping,
spalling and rockbursting in pillars and tunnels, and “breakouts” in
boreholes is a tensile failure process which is not adequately dealt
with by the HoekeBrown failure criterion. Simply projecting the
HoekeBrown equation (Eq. (6)) back to its s3 intercept with s1 ¼ 0
does not give an acceptable value for the tensile strength of the
rock.

Ramsey and Chester (2004) and Bobich (2005) have investigated
this issue in a series of experiments in which they used dogbone-
shaped specimens as shown in Fig. 7. By choosing appropriate di-
ameters for the ends and center of the specimen and by adjusting
the values of the confining pressure Pc and the axial stress Pa, a
range of values of s3 and s1 can be generated in the test section.

The results of tests on Carrara marble are reproduced in Fig. 8.
The HoekeBrown criterion (Eq. (6)) has been fitted to the shear
data obtained in these tests and the resulting curve has been pro-
jected back to give an intercept of s3 ¼ �17.2 MPa for s1 ¼ 0. As can
be seen in Fig. 8, this does not correspond to the tensile failure data
nd propagation in intact rock e A review, Journal of Rock Mechanics
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Fig. 7. Dogbone-shaped specimen used by Ramsey and Chester (2004) to investigate
tensile failure of Carrara marble.
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which gives an average tensile strength s3 ¼ �7.75 MPa. In other
words, the HoekeBrown criterion has no provision for predicting
the tensile strength shown in Fig. 8, and highlighted by the “Ten-
sion cutoff”.

3.2. Fairhurst’s generalized Griffith fracture criterion

Fairhurst (1964) proposed that the Griffith failure criterion,
discussed in Section 2 of this paper, could be generalized in terms of
the ratio of compressive to tensile strength sc=jstj as follows (a
detailed derivation is given in the Appendix):

(1) If w(w � 2) s3 þ s1 � 0, failure occurs when s3 ¼ st;
(2) If w(w � 2) s3 þ s1 � 0, failure occurs when

s1 ¼
ð2s3 � AstÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAst � 2s3Þ2 � 4

�
s23 þ Asts3 þ 2ABs2t

�q
2

(7)
Fig. 8. Results from confined extension tests and triaxial compression tests by Ramsey
and Chester (2004).
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A ¼ 2ðw� 1Þ2
2

9>>>=

B ¼ ½ðw� 1Þ=2� � 1

w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sc=jstj þ 1

p >>>;
(8)

Fitting Eq. (7) to the results plotted in Fig. 8 gives the combined
plot shown in Fig. 9.

Reliable direct tensile test data on rock are very rare and the
authors have only been able to assemble the limited number of
results included in Table 1. However, by fitting both HoekeBrown
and Fairhurst curves to these data, as shown in Fig. 9, it has been
possible to arrive at a preliminary relationship between the Fair-
hurst tension cutoff (defined by sc=jstj) and the HoekeBrown
parameter mi plotted in Fig. 10. While more work remains to be
done on this topic, particularly more tests of the type carried out by
Ramsey and Chester (2004) and Bobich (2005), the authors suggest
that Fig. 10 provides a useful practical tool for estimating a tensile
cutoff for the HoekeBrown criterion.

Examination of Table 1 shows that, for lowmi values, the Hoeke
Brown criterion over-estimates the tensile strength compared with
the Fairhurst criterion. However, for mi > 25 the HoekeBrown
criterion under-estimates the tensile strength by an amount that is
generally small enough to be ignored for most engineering
applications.

Hoek (1965) assembled a significant quantity of laboratory
triaxial test data for a variety of rock types and concrete and these
results (peak strength values) are plotted in a dimensionless form
in Fig. 11. It can be seen that individual data sets plot on parabolic
curves and that a family of such curves, covering all of the shear
data collected, can be generated for different values of the Hoeke
Brown constantmi. The constantmi is an indicator of the brittleness
of the rock with weaker and more ductile rocks having low mi

values while stronger and more brittle rocks have highmi values. A
few data points for s3 < 0 are included in Fig. 11 and these are dealt
with adequately by the tension cutoff discussed above.
Fig. 9. Combined plot of HoekeBrown and Fairhurst failure criteria with tension cutoff.
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Table 1
Analysis of data containing reliable tensile values.

Fairhurst (st � 2 MPa) HoekeBrown (shear data) Data set and reference

sc (MPa) st (MPa) sc=jstj sc
(MPa)

st
(MPa)

mi

128.5 �7.74 16.6 129 �15.6 8.25 Carrara marble
(Ramsey and Chester,
2004)

516.5 �33.72 13.9 557 �65.9 8.45 Blair dolomite
(Brace, 1964)

95.5 �6.41 14.9 102 �10.6 9.65 Berea sandstone
(Bobich, 2005)

125.5 �8.72 14.4 131 �12.4 10.60 Webtuck dolomite
(Brace, 1964)

614.0 �25.5 24.1 592 �28.7 20.65 Granite aplite
(Hoek, 1965)

220 �7.06 31.1 227 �6.01 32.4 Lac du Bonnet granite
(Lau and Gorski, 1992)

Fig. 11. Dimensionless plot of triaxial test results from laboratory tests on samples
from a wide range of rock types and concrete.

E. Hoek, C.D. Martin / Journal of Rock Mechanics and Geotechnical Engineering xxx (2014) 1e146
3.3. Interpretation of laboratory triaxial tests

In order to understand the application of the HoekeBrown
failure criterion to intact rock behavior, it is useful to consider a
practical example which involves uniaxial and triaxial tests on
specimens of Lac du Bonnet granite from the site of the Atomic
Energy of Canada Limited Underground Research Laboratory at
Pinawa inManitoba, Canada (Read andMartin,1991). The specimen
preparation and testing were carried out by the CANMET Mining
and Mineral Sciences Laboratories in Ottawa, Canada, which has a
long-standing international reputation for high quality testing
services.

Using strain and acoustic emission measurements, Lau and
Gorski (1992) determined the crack initiation, onset of strain
localization and peak strengths for each confining pressure in a
series of triaxial tests carried out in a servo-controlled stiff testing
machine, based on the procedure summarized in Fig. 12 (Martin
and Chandler, 1994). The results of these tests are plotted in
Fig. 13. The HoekeBrown failure criterion (Eq. (6)) has been fitted to
each data set and the fitted parameters are included in Table 2. Note
that, because the mi value for the peak strength is 32.4, no
correction has been made for the measured tensile strength, as
discussed above.

It is clear from Figs. 12 and 13 that fracturing in laboratory
samples is a complex process and that simply measuring the peak
stress does not capture this fracturing process. However, it is also
clear from Fig.13 that we can define the boundaries for this process,
i.e. fracture initiation, onset of fracture localization and collapse
Fig. 10. Relationship between sc=jst j and mi from Table 1.
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peak stress. In the next section, a numerical approach that can
simulate this process is examined.

3.4. Numerical approaches

Since the early 1980s, there has been an exponential growth in
the sophistication and power of numerical programs which have
been increasingly applied to the study of failure initiation and
propagation processes in soil, rock and concrete. Fig. 14 illustrates
two phenomenological approaches that are typically used to
replicate the failure process numerically. The early approaches
often used the sliding-crackmodel to capturemany of the elements
discussed in the earlier section on Griffith theory. More recently,
there has been an increasing focus on the force-chain crack model
using discrete element formulations (Fig. 14). A small selection of
some of the more significant papers in this latter field includes:
Cundall and Strack (1979), Diederichs (1999, 2003), Potyondy and
Cundall (2004), Pierce et al. (2007), Lorig (2007), Cho et al.
(2007), Cundall et al. (2008), Lan et al. (2010), Potyondy (2012)
and Scholtès and Donzé (2013).

Potyondy and Cundall (2004) pointed out that systems
composed of many simple objects commonly exhibit behavior that
is muchmore complicated than that of the constituents. They listed
the following characteristics that need to be considered in devel-
oping a rock mass model:
nd propagation in intact rock e A review, Journal of Rock Mechanics
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Fig. 12. Stages in the progressive failure of intact rock specimens subjected to compressive loading.
Modified from Martin and Christiansson (2009).
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(1) Continuously nonlinear stressestrain response, with ultimate
yield, followed by softening or hardening.

(2) Behavior that changes in character, according to stress state;
for example, crack patterns quite different in tensile, uncon-
fined- and confined-compressive regimes.

(3) Memory of previous stress or strain excursions, in both
magnitude and direction.

(4) Dilatancy that depends on history, mean stress and initial
state.

(5) Hysteresis at all levels of cyclic loading/unloading.
(6) Transition from brittle to ductile shear response as the mean

stress is increased.
(7) Dependence of incremental stiffness on mean stress and

history.
(8) Induced anisotropy of stiffness and strength with stress and

strain path.
(9) Nonlinear envelope of strength.
(10) Spontaneous appearance of microcracks and localized macro

fractures.
(11) Spontaneous emission of acoustic energy.

Within the limitations of this document, it is clearly not feasible
to present a summary of the many approaches that have been
adopted in the numerical modeling of intact rock fracture initiation
Please cite this article in press as: Hoek E, Martin CD, Fracture initiation a
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and propagation. Nor it is possible to judge the extent to which the
requirements outlined above by Potyondy and Cundall (2004) have
been met in these studies. A most useful DEM (discrete element
method) approach is considered to be that given by Lan et al. (2010)
who presented results of a study of fracture initiation and propa-
gation in Äspö diorite and Lac du Bonnet granite. The mineral grain
structures for these two crystalline rocks are shown in Fig. 15.

The program UDEC (Itasca, 2013) was used in this study and a
Voronoi tessellation scheme was employed to create polygonal
structures which closely simulated the mineral grain structures
shown in Fig. 15. Each grain has a unique identity, location and
material type and the average grain size distribution has also been
simulated in these models. The properties of the principal grain
minerals (plagioclase, K-feldspar and quartz with biotite in the Lac
du Bonnet granite and with chlorite in the Äspö diorite) were
exported to an ASCII file which was then imported into the UDEC
model using the FISH internal macro-language. The model geom-
etry is then created automatically in UDEC and the grains are made
deformable by discretizing, each polygon using triangular zones.
These deformable grains, which were unbreakable in the Lan et al.
(2010) study, are then cemented together along their adjoining
sides as shown in Fig. 16.

Fig. 17 shows the results of two uniaxial compression tests
carried out by Lan et al. (2010) on UDEC models of Äspö diorite and
nd propagation in intact rock e A review, Journal of Rock Mechanics
014.06.001



Fig. 13. Tensile crack initiation, strain localization and peak strength for Lac du Bonnet
granite from tests by Lau and Gorski (1992).

Fig. 14. Two models commonly used to simulate cracking observed in heterogeneous
assemblages of polygonal shaped minerals.
Modified from Nicksiar and Martin (2013).
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Lac du Bonnet granite. The stressestrain response, the crack initi-
ation stress (sci), the crack damage stress scd and the peak stress sf
show excellent agreement with those defined from laboratory tests
on Äspö diorite by Staub and Andersson (2004) and on Lac du
Bonnet granite by Martin and Chandler (1994).
Table 2
Results of triaxial tests on Lac du Bonnet granite.

Confining stress (MPa) Crack initiation (MPa) Strain localizatio

0 131 108
2 157 121
4 159 136
6 219 168
8 199 165
10 264 197
15 258 205
20 286 220
30 e 269
40 354 284
60 533 394

HoekeBrown
parameters used

sc ¼ 106 MPa, mi ¼ 15 sc ¼ 140 MPa, m
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The paper by Lan et al. (2010) is a good example of the appli-
cation of numerical modeling to the study of fracture initiation and
propagation in intact rock and is recommended reading for anyone
interested in this field. Much more work is required to bring this
approach to maturity.

Professor E.T. Brown, in a foreword to the scoping study for the
application of numerical methods to mass mining wrote: “In my
opinion, the development of the bonded particle model based on
the PFC and PFC3D distinct element codes by Dr. Peter Cundall and
his co-workers at Itasca represents one of the most significant
contributions made to modern rock mechanics research. It is now
well established that this model has the ability to reproduce the
essential, and some more subtle, features of the initiation and
propagation of fracturing in rocks and rock masses.” Numerical
modeling has now progressed beyond the original bonded particle
models developed by Itasca but Brown’s comments remain valid as
we look ahead to the research that remains to be done on these
n (MPa) Peak strength (MPa) Average tensile strength
(direct tension) (MPa)

220 �7
255
298
344
368
391
432
471
591
593
712

i ¼ 20 sc ¼ 227 MPa, mi ¼ 32.4
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Fig. 15. Example of mineral grain structure observed in polarized light thin section. (a) Äspö diorite. Width of the image is 4 mm (modified from Lampinen (2006)). (b) Lac du
Bonnet granite. Combined polarized and fluorescent microscope image of specimen from Underground Research Laboratory in Canada. Width of image is 4 mm (modified from
Åkesson (2008)).
Images reproduced from Lan et al. (2010).
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complex fundamental processes of failure initiation and
propagation.

A word of warning. In the rush to get into print, many authors
have published papers on numerical modeling in which pictures of
fracture propagation in Brazilian disk tests or uniaxial compression
tests have been included as a demonstration of the validity of the
numerical approach used. It is relatively easy to produce results
which appear to be credible for these tests but, unfortunately, in
many cases the numerical methods used are immature and fail
when applied to more complex problems.

In the following section, we briefly consider two approaches
that may be used to evaluate fracture initiation and propagation in
situ. The process is commonly referred to as spalling.
4. Fracture initiation and propagation in situ: spalling

There are two practical issues associated with spalling: (1)
identifying the conditions that will initiate spalling, and (2)
defining the extent and depth of spalling. The results from two
well-documented in situ experiments in crystalline rock are used to
examine these practical issues.
Fig. 16. Layout for an unconfined compression test for a Lac du Bonnet granite sample
and an Äspö diorite sample using the UDEC model. The different gray scales indicate
the degree of mineral grain strength. Higher strength grains have a darker color.
Reproduced from Lan et al. (2010).

Please cite this article in press as: Hoek E, Martin CD, Fracture initiation a
and Geotechnical Engineering (2014), http://dx.doi.org/10.1016/j.jrmge.2
4.1. Test tunnel of the URL Mine-by experiment

Martin et al. (1997) have described spalling observed in a test
tunnel (Fig.18) inmassive Lac du Bonnet granite at a depth of 420m
below surface in the Underground Research Laboratory. The intent
of the experiment was to study the damage resulting from stress
redistribution associated with the full-face mining of 3.5 m diam-
eter tunnel. The mining was carried out using line drilling and rock
splitters to avoid the potential for blasting-induced damage. This
technique allowed full-face 1-m advance increments.

An extensive program of in situ stress measurements was car-
ried out at this site and the rock mass surrounding the test tunnel.
The in situ rock mass stresses at this location were a sub-vertical
stress sv ¼ 11 MPa and a sub-horizontal stress of ksv ¼ 60 MPa,
inclined at 11� to the horizontal, with an intermediate sub-
horizontal stress of 44 MPa.

The spalling which occurred after excavation of the test tunnel is
illustrated in Fig. 19. This spalling occurred as a relatively gentle
fracture process during the excavation advance. The full extent of
Fig. 17. Calibrated stressestrain response with laboratory data for (a) Äspö diorite and
(b) Lac du Bonnet granite. The drawings at the right show the damage pattern of the
specimen.
Images reproduced from Lan et al. (2010).
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Fig. 18. Layout of the Mine-by experiment at the 420 m level of the Underground
Research Laboratory.
Modified from Martin and Read (1996).

Fig. 20. Definition of the zone of potential spalling in massive Lac du Bonnet granite,
from Fig. 13. The changes in the stresses in the rock surrounding the tunnel are also
shown as points A and B in this plot.
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the spalling was only evident once the tunnel had been cleaned and
loose spall remnants removed by scaling. When these remnants
were removed in the floor, it was sufficient to trigger minor
amounts of new spalling, suggesting the important role of small
confining stress in controlling the spalling process.

Fig. 20 shows the zone of potential spalling for the Lac du Bonnet
granite in which the test tunnel was mined as well as the stress
changes associated with the tunnel excavation. The measured in
situ stresses, denoted by point A in Fig. 20, are equal to the principal
stresses s1 ¼ 60 MPa and s3 ¼ 11 MPa in the rock before the tunnel
was mined. The 11� inclination of the stress field can be ignored in
the discussion which follows. After excavation, the minor principal
stress in the tunnel wall is reduced to s3 ¼ 0. The maximum
principal stress on the tunnel roof and floor is given by
Fig. 19. Spalling in the roof and floor of a circular test tunnel in the Underground
Research Laboratory at Pinawa in Manitoba, Canada.
Photo courtesy of AECL.
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smax¼ 3sv(k� 1)¼ 169MPa. These stresses are plotted as point B in
Fig. 20.

These roof and floor stresses fall just above the curve defining
strain localization and well above the tensile failure initiation
curve. Martin and Christiansson (2009) concluded that in the
absence of in situ results, the laboratory crack initiation stress (see
Fig. 13) could be taken as a lower bound for the spalling strength.
More recently, Nicksiar and Martin (2013) compiled the crack
initiation stress for a range of rock types. The results are illustrated
in Fig. 21 and demonstrate the consistency of tensile crack initiation
observed in laboratory tests. Using a spalling initiation criterion
based on this approach is a useful first step and supported by recent
experience. Diederichs et al. (2010) implemented this approach in a
continuum model with good success.

Knowing that spalling may occur, the next step is to establish
the severity of the failure. The depth of the notch created by spal-
ling is dependent upon the ratio of the maximum boundary stress
to the uniaxial compressive strength (peak) or smax/sc as shown in
Fig. 22 (Martin et al., 1999). In the case of the test tunnel under
discussion here, this ratio is 169/227 ¼ 0.74 and hence the notch
depth is approximately 0.3e0.4 times the tunnel radius according
to Fig. 22.

Experience with the application of the trend line in Fig. 22 in-
dicates that the uniaxial compressive strength should be the mean
uniaxial compressive strength value (Rojat et al., 2009). Deter-
mining the mean uniaxial compressive strength may appear
straightforward. The scatter in the values for 13 samples of Lac du
Bonnet granite is shown in Fig. 23. Notice that the mean value of
211 MPa is less than the sc value of 227 MPa given in Table 2 using
the HoekeBrown equations. This is a typical finding and in this case
reflects the effect of the microcracks common in Lac du Bonnet
nd propagation in intact rock e A review, Journal of Rock Mechanics
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Fig. 21. Tensile crack initiation in various rocks.
Modified from Nicksiar and Martin (2013).

Fig. 23. Example of the distribution of uniaxial compressive strength for 13 samples of
Lac du Bonnet granite.

Fig. 24. Mild spalling in the sidewalls of a vertical raise bored shaft in an underground
mine.

E. Hoek, C.D. Martin / Journal of Rock Mechanics and Geotechnical Engineering xxx (2014) 1e14 11
granite. Despite the suggestions in the ISRM Suggested Methods,
conducting uniaxial tests requires significant care in order to
reduce the effect of uneven and/or misaligned sample ends. Simply
conducting a large number of tests is no substitute for properly
preparing the samples, and in many cases can be misleading as the
mean value often decreases as the number of samples increases,
due to poor quality control with sample preparation.

Figs. 24 and 25 show examples of mild spalling and severe
rockbursting in underground excavations, representing the ex-
tremes of the process under discussion here. Practical experience
suggests that shallow spalls are generally associated with pure
tensile failure which causes thin slivers or plates of rock to peel off
the tunnel surface. These occur with little “popping” and, once the
maximum depth of the spall has been achieved, they remain stable
provided that there are no changes in the surrounding stress field
due, for example, to excavation of adjacent openings.

Deeper spalls, such as that in the Mine-by tunnel described
above, are somewhat more complicated in that shear failure
probably becomes involved as the notch tip moves away from the
excavation boundary. Numerical analyses of this failure process
have proved to be extremely challenging and it has to be said that
much work remains to be done before the complex interaction of
Fig. 22. Observed spalling notch depths plotted against the ratio of maximum
boundary stress to uniaxial compressive strength (Martin et al., 1999).
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tensile and shear processes associated with deep spall notches can
be predicted with any degree of confidence.

Rockbursts, such as that illustrated in Fig. 25, are probably
associated with conditions in which the maximum induced
boundary stress approaches the uniaxial compressive strength of
the surrounding massive rock. These events involve implosion of
the rock into the tunnel with the release of significant amounts of
Fig. 25. Severe rockbursting in an access tunnel in a deep level gold mine in South
Africa.
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energy. The authors are not aware of any currently available nu-
merical tools that offer any credible means of explaining or pre-
dicting the rockburst process.

4.2. Numerical simulation of spalling

The approach described above to estimate the onset and depth
of spalling is a reasonable first step. But to make progress in the
support interaction needed for tunnel design, proper numerical
approaches are needed. While this is still an on-going research
topic, one approach that goes from the laboratory calibration to
spall prediction is described briefly below.

The nuclear industry in Finland and Sweden is preparing for
the construction of a geological repository for used nuclear fuel at
a depth of about 450 m. Their concept requires excavation of 1.75-
m-diameter 8-m-deep boreholes and spalling is a design issue
that must be addressed. Andersson et al. (2009) described and
reported the results of a full-scale experiment (APSE) that
examined the development of spalling around two of the large
diameter boreholes. The APSE experiment was carried out at the
450-m level of the Äspö Hard Rock Laboratory in southern Swe-
den. Lan et al. (2013) described how the UDEC modeling work
originally described by Lan et al. (2010) was used to model the
spalling process. Fig. 26 shows the model configuration and the
grain-scale geometry. The approach and the properties of the
grains and the contacts were exactly the same as that given in Lan
et al. (2010).

The APSE experiment was unique because the magnitude of the
stresses on the boundary of the large boreholes was controlled by
excavation-induced and thermally induced stresses. The experi-
ment demonstrated that in situ experiments could follow the same
Fig. 26. Grain-based UDEC model developed by Lan et al. (2010) and used to simulate the
Modified from Lan et al. (2013).
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loading conditions and control that are normally associated with
laboratory tests.

The configuration of the experiment allowed the boundary
stresses to be applied gradually. This facilitated observing the
spalling process at different stages. Fig. 27 provides comparison of
the results from the UDEC model with the visual observations at
two loading stages. An important conclusion from the APSE work is
that the findings related to fracture initiation and propagation that
were observed in the Mine-by test tunnel in massive un-fractured
granite were applicable to the fractured water-bearing rock mass
of the APSE experiment.

The approach described by Lan et al. (2010, 2013) demonstrated
that the properties of the laboratory tests can be used to evaluate
the in situ spalling process when coupled with numerical ap-
proaches that capture all stages of brittle failure, i.e. from fracture
initiation through to fracture propagation. While this approach
holds much promise, it is still limited to two dimensions, and much
work needs to be done before this approach becomes state of
practice.

5. Conclusions

Our understanding of initiation and propagation of fracturing in
intact rock has resulted from detailed analysis of the stressestrain
data from laboratory-scale samples with dimensions in the range of
50 mm diameter. At low confining pressures, tensile fracturing
initiates in these samples at 40%e60% of the uniaxial compressive
strength and as loading continues, these tensile fractures increase
in density and ultimately coalesce, leading to strain localization and
macro-scale shear failure of the sample. The Griffith theory of
brittle failure provides a simplified model assuming that all
spalling process observed by Andersson et al. (2009).
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Fig. 27. Modeled damage at stages III and IV compared with observation. Modeling
result shows the distribution of tensile cracking and shear cracking at different damage
stages.
The photograph and illustration are modified from Lan et al. (2013).
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fractures initiate from the tips of inclined flaws, namely grain
boundaries in the sliding-crack model. The HoekeBrown failure
envelope is used to capture the collapse load associated with this
localized macro-scale shear fracture. However, it has been neces-
sary to add a tension cutoff, based on a generalized fracture theory
proposed by Fairhurst (1964) in order to accommodate the tensile
failure observed in detailed laboratory tests.

Fracture initiation while tensile in nature is more difficult to be
modeled.With the improvements in computing power, the discrete
element codes have shown that the force-chain crack model is a
viable alternative to explain the tensile fracture initiation coalition
of tensile cracks and the final shearing of the specimens at higher
confining stresses. Grain-based numerical models, based on the
discrete element formulation, in which the grain size distributions
as well as the physical properties of the component grains of the
rock are incorporated, have proved to be very useful in studying
these complex processes. They have also demonstrated that the
approach based on laboratory processes is useful for capturing
spalling, the in situ process of fracture initiation and coalescence.
While this approach holds much promise, the current grain-based
models are still limited to two dimensions, and much research
needs to be carried out before this approach becomes state of
practice.
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Appendix

According to the generalized Fairhurst criterion:

(1) If w(w � 2) s3 þ s1 � 0, failure occurs when s3 ¼ st;
(2) If w(w � 2) s3 þ s1 � 0, failure occurs when
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¼ �2stðw� 1Þ2
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Let A ¼ 2(w � 1)2 and B ¼ [(w � 1)/2]2 � 1, and rearrange
Fairhurst’s equation:

s21 þ s1ðAst � 2s3Þ þ
�
s23 þ Asts3 þ 2ABs2t

�
¼ 0 (A3)

s1 can be written by

s1 ¼
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