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Abstract: Accurate determination of rock mass deformation modulus is very important in rock
engineering projects. The plate loading test (PLT) is a method that is generally used in dam construc-
tion projects to determine rock mass modulus. Numerical simulation was used to investigate the
mechanisms involved in this test. The first objective of the paper was to employ 3D modeling in the
interpretation of plate load tests conducted at the Bazoft dam site in Iran. Additionally, a parametric
study of the effects of key parameters such as displacement measuring depth and loading plate diam-
eter on the test results was another objective of the study. The moduli values determined numerically
were compared against actual filed testing data determined from in-situ test data conducted at the
Bazoft dam site, and the values determined from the ISRM suggested formula. The analysis showed
that the optimum measurement depth for rock mass modulus calculation is approximately equal to
the loading plate diameter and the data determined from measurement depths beyond one plate
diameter can be unrealistic. Moreover, the plate diameter can have a significant effect on test results.
As the measurement depth increases, the determined modulus values increase at a much more rapid
pace when employing smaller size loading plates.

Keywords: rock deformation modulus; numerical modelling; plate loading test; Bazoft dam

1. Introduction

Rocks in-situ have properties that can vary significantly over short distances. To
identify and map out these variations in properties, a series of site investigation activities
are a necessity on every rock engineering project. This includes both a series of laboratory
tests to assess the intact rock properties, as well as a range of in situ tests, conducted
directly on the undisturbed material to measure the in-situ properties of the rock mass.
In situ testing has the advantage of not disturbing the material and can therefore be a
useful way of determining the actual characteristics and behavior of rock mass. The static
deformation modulus of the rock mass is a key parameter in the design of geotechnical
structures like dams, tunnels, and caverns. This parameter represents the deformational
behavior of rock mass in response to any loading and unloading. Empirical relationships
such as those established by Bieniawski [1], Barton [2], and Hoek and Diederichs [3] and
summarized by Palmstrom and Singh [4] that relate the rock mass deformation modulus
to different rock mass classifications are estimations that can be used in the preliminary
stages of the design. Furthermore, these relations do not indicate modulus anisotropy in
different directions. Because of the effect of discontinuities in the rock mass, the modulus
obtained from laboratory tests for intact rock does not represent the in situ deformational
behavior of the rock mass. Therefore, in situ tests are typically more reliable procedures
and employed in major rock engineering projects.

The plate load test is one of the most commonly used in-situ tests since it involves a
large volume of the rock mass to be tested. The rock mass is loaded by a set of hydraulic
jacks by two circular steel plates and the associated rock mass deformations are measured
by extensometers installed within the boreholes drilled within the rock mass beneath the
loading plates. Then elasticity theory (Boussinesq relation) for a semi-infinite medium
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is used to calculate the deformation modulus. This is the suggested method by ISRM to
calculate the deformation modulus of the rock mass [5].

The assumptions used in the ISRM method are not in harmony with the actual mecha-
nism involved in rock mass deformation. In this method, it is assumed that the rock mass
is continuous, isotropic, and has a linear elastic behavior. In the real world, the behavior of
rock is more complex, in particular when the structure goes through loading/unloading
stages, some plastic deformation occurs within the rock mass. In this paper, a parametric
study of key parameters in the plate load test was investigated. The plate load tests con-
ducted at the Bazoft concrete dam site (Iran) were simulated numerically to demonstrate
the governing test mechanisms and to interpret data for the determination of deformation
modulus. The effect of plate diameter, location of anchors, and the amount of plastic strain
in each loading-unloading cycle on the values of moduli were investigated employing
sophisticated 3D numerical modeling considering the governing boundary conditions of
the plate load test.

2. Background Studies and Plate Load Test Technique Principles

Since the definition of rock deformability by ISRM [6], various authors have inves-
tigated different aspects of the plate load test as a means of measuring in-situ rock mass
deformation modulus. Unal [7] gave a review of test principles and discussed the prob-
lems associated with commonly used modulus determination approaches. A stiff plate
loading system and a multi-borehole displacement-measuring system were introduced.
Emphasis was given to the description of the test set-up, test theory, and the interpretation
of the test results. To illustrate this, typical results obtained from a test carried out in an
underground test drift, are presented in the form of a stress-strain relation. The drawbacks
of the ISRM-suggested method was discussed and alternative solutions were proposed.
A comprehensive application of the plate load test at the Yucca Mountain project was
presented by George et al. [8].

The obtained results from sets of plate loading tests conducted by Sandia National
Laboratories at the Yucca Mountain test site (Nevada, USA) was presented. The findings
of these in situ tests as well as approaches undertaken for the determination of rock mass
modulus were described. The obtained field data were compared against existing empirical
methods and numerical modeling results. In this study, the in-situ rock mass stiffness was
evaluated for both ambient temperature and thermally perturbed rock masses. Rock mass
deformation modulus was estimated employing empirical techniques, borehole jacking
test, numerical modeling, and the plate load test. The study suggests that the PLT rock
mass modulus values better represent the actual response of the rock mass.

Palmestrom and Singh [4] presented a comprehensive comparison between in situ
tests and indirect estimates of rock mass deformation modulus. The Goodman jacking
test, rock mass classification-based methods (RMR, Q, RMi), and plate load test method
of deformation modulus assessment were compared. The existing equations for indirect
estimates of the rock mass deformation modulus from classification systems have been
analyzed and adjustments are suggested. It was concluded that provided that a good
in-situ characterization of the rock mass is carried out, these methods may determine
comparable or possibly better modulus values taking into consideration the uncertainties
associated with in situ deformation measurements caused by blast damage, test procedure,
and test method. Estimates based on the RMR and RMi systems show better deformation
modulus values for jointed rock masses than the Q system. It was suggested that the RMR
system overestimates the rock mass modulus in massive and competent rock masses. RMi
system gives better estimates of modulus for massive rock than the Q and the RMR systems.
It was concluded that the plate jacking test, in which the deformations are measured by
extensometers in drill holes, produces more realistic results compared with other direct
measurement techniques.

Kayabasi et al. [9] presented a comparison of empirical methods used in rock mass
deformation modulus assessment. The plate load test data from a dam construction site
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was used in conjunction with a fuzzy interface system for the comparison of the results.
A set of statistical analyses was conducted and it was concluded that a combination of
empirical and fuzzy methods produces satisfactory results provided enough input that is
available for the fuzzy interface system. The study concluded that the elasticity modulus of
the intact rock, RQD, and weathering degree are the most important parameters affecting
the rock mass deformation modulus.

Agharazi et al. [10] presented a comprehensive interpretation of plate load test data
conducted at the Bakhtiary Dam site project in Iran. The results of 26 plate load tests carried
out at the Bakhtiary dam site were investigated to delve into the mechanisms involved
in the plate load test. The test data were categorized based on the orientation of the rock
mass discontinuity sets to the loading direction. The study showed that part of the scatter
commonly observed in the moduli calculated from plate load tests is due to varying rock
mass deformation mechanisms that occur during the test. Furthermore, it was concluded
that the theoretical assumptions behind the plate load test are not in full harmony with the
observed deformation mechanisms leading to scattering in plate load test data.

Yang et al. [11] conducted an investigation of the in-situ viscoelastic properties of a
weak rock layer at the Dagangshan hydropower dam project in southwest China employing
time-dependent plate load tests. To assess the deformation characteristics of a weak diabase
dike layer, in situ large-scale compressive creep tests, using a rigid bearing plate, were
carried out. The loading direction was perpendicular to the weak layer. A five-parameter
Kelvin model was considered and mathematical equations were derived based on the
Boussinesq problem through Laplace transform and inverse transform to describe the
deformation-time history considered in the Kelvin model under three-dimensional stress-
strain conditions. The finite-difference modeling was used for verification of the results.
Based on the derived equations, the rock mass rheological parameters were estimated
and it was concluded that the proposed five-parameter Kelvin model produces more
realistic results compared to the three-parameter generalized Kelvin model or the standard
Burgers model.

Amorosi et al. [12] developed a new constitutive model for the analysis of plate
load test results in pyroclastic soft rocks. The developed model has a generalized yield
surface including the known criteria and the elastic stiffness is related to stress by a
hyper elastic formulation. The model is capable of simulating plastic strain by a set of
appropriate isotropic hardening laws. The model was implemented into a finite element
code and was used to simulate the plate load tests conducted in pyroclastic rocks. The
test results showed specific features of rock response under applied loading conditions,
including non-linear elastic behavior and structure degradation which was indicated by the
reduction of shear strength parameters. The modeling results showed good agreement with
the test data demonstrating the relevance of the developed model for soft rock material
investigated. The damage to the rock mass, during loading and unloading cycles, was
disclosed by irreversible straining which appeared in the form of plastic strain-induced
damaged within the intact rock material. The macro-scale damage was demonstrated in
the form of stiffness reduction and strength degradation by the reduction in rock mass
cohesion and friction angle.

Kavur et al. [13] presented a comprehensive comparison of plate load test (PLT) data
versus large flat jack (LFJ) data which was carried out side-by-side at the Karun III hydro-
electric project in Iran. The comparison included 16 plate load tests and 12 large flat jack
tests. PLT moduli obtained from displacements measured in depth were much higher
than the LFJ moduli and were sometimes even higher than the modulus of the intact rock
material. The analyses showed that the uncertainties associated with plate load tests are
caused by the confining effects of the adjoining rock, blast-induced damages induced to
test gallery walls, distressing of gallery walls, and the insufficient volume of rock tested.

In the plate load test, a cyclic load is applied to the rock mass in small test tunnels,
audits, or at the ground surface and the rock mass deformation is measured at various
depths beneath the loading plates. The loading system consists of four hydraulic jacks, steel
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spacers, and circular steel plates of 1 m in diameter which are fitted to flat rock surfaces
prepared on the test gallery walls (for horizontal tests) or gallery roof/floor (for vertical
tests). Rock mass deformations are measured in boreholes behind each loaded area and
across the test gallery as illustrated in Figure 1. Two types of plate load tests exist: “flexible
plate loading method” which is associated with uniform stress boundary conditions and
“rigid plate loading method” which implies uniform displacement boundary conditions.
When testing rock, then the plate may not have adequate stiffness leading to complex stress
distributions, thus, the plate stiffness should be at least 100% more than the stiffness of the
rock mass [14].
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The loading and unloading deformation moduli are calculated from the data deter-
mined from the cyclic loading of the rock mass. Based on elasticity theory, deformation
measurements for various load cycles are utilized to compute the deformation moduli.
Depending upon the type of the test, i.e., rigid or flexible loading, the following equations
are used respectively [10]. These equations are commonly used in practice to determine
rock mass modulus from in-situ testing data:
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where Em : De f ormation modulus, ν = Poisson ratio of the rock mass, WZ = Measured
displacement at depth Z under a loaded surface, a = radius of the loaded rock mass surface,
qav = average applied stress and Z = depth of the displacement measurements.
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where w is the vertical displacement, a is the radius of the loading plate, q is the applied
stress, E is the modulus of elasticity, v is the Poisson’s ratio and z is the depth of deformation
measurement along the loading plate axis.

3. Plate Load Test Data Interpretation

In the interpretation of test results, several parameters can affect the test results
and lead to incorrect determination of the deformation modulus. These parameters are
classified into two groups [10]; operational factors which are directly related to the quality
of the test components such as the resolution of the measuring instruments, and the quality
of site preparation and installation of the test apparatus. Blast damage and rock disturbance
around the test gallery are important examples of this category. In this case, the effect of
blast damage will vary with several features, such as rock properties, amount of explosive
used, number of holes detonated at the same time, and the quality of site preparation [4].

The incompatibility between assumptions made within the ISRM suggested method
and the actual mechanisms involved in the practice, leads to some errors in the interpreta-
tion of test data. In the ISRM method, it is assumed that the rock masse is homogenous,
isotropic, and continuum with linear elastic behavior which is not in harmony with actual
rock mass conditions. Moreover, the effects of test gallery boundary conditions and in-
duced stress state around the test location are not considered in calculations. Besides, these
equations require prior knowledge of Poisson’s ratio of the rock as input, which is difficult
to determine at the rock mass scale. The other important issue in this test is the scale effect
on the test results. Oh and Vanapalli [15] presented a study looking into the scale effects in
plate load tests in unsaturated soils. A good description of scale effects on plate load testing
results in rock is given by Palmstrom and Singh [4]. Martin et al. [16] further discussed the
significance of scale in in-situ measurement. In the study by Kavur et al. [13], it was shown
that the uncertainties associated with plate load tests are caused by the confining effects
of the adjoining rock, blast-induced damages induced to test gallery walls, distressing of
gallery walls, and the insufficient volume of rock tested.

The dependency of calculated modulus magnitude to the displacement measurement
depth in the borehole is another shortcoming of the ISRM suggested method. Furthermore,
in the PLT procedure, the load is measured at the plate surface while displacements are mea-
sured by extensometers installed at varying depths within the borehole. Accordingly, the
calculated moduli at higher depths may be significantly higher and sometimes unrealistic
for a given test.

In another attempt, Agharazi et al. [17] employed continuum modeling to overcome
the limitations proposed by the ISRM-suggested approach in the interpretation of plate load
test data. They postulated that because of the inconsistency of the test gallery geometry
with the half-space medium assumption embedded in the analytical relations, a systematic
error occurs in the calculation of the deformation modulus. Furthermore, when the tests are
conducted on jointed rock masses, the test results show a considerable scatter, mainly due
to the anisotropy of the deformability of the jointed rock masses. Accordingly, numerical
modeling was used to interpret the results of a series of PLTs conducted at the Bakhtiary
dam site in southwest Iran. An equivalent continuum model was used to back-calculate the
stiffness of bedding planes from the test results. The equivalent continuum deformation
moduli of the rock mass were determined numerically for various directions of loading
relative to the orientation of major joint sets. Their numerical study showed that the defor-
mation of the rock mass is highly anisotropic and highly dependent on the geometry and
mechanical properties of the discontinuities. The developed continuum model overesti-
mates the stiffness of the jointed rock mass. The proposed model’s application is limited to
the rock media where the rock mass deformation does not involve large dislocation and
detachments of blocks.

Zhao et al. [18] employed the distinct element method (DEM) using the PFC code
to simulate the in-situ deformability of jointed rock mass. The mechanical behavior of a
jointed rock mass with varying joint configurations was evaluated numerically. The effect
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of rock mass confinement on rock deformability was also evaluated. They concluded that
an increase in confining stress changes the deformation mode from tension to shear. The
confinement issue has a controlling role in the plate load test results.

4. Plate Load Testing at the Bazoft Dam Site

The Bazoft Dam and Hydroelectric Power plant project include the design and con-
struction of a 211 m high, double curvature, concrete dam, and an underground power-
house, located 200 km SW of ShareKord, Chaharmahal and Bakhtiary Province in south-
western Iran. The bedrock consists of two geological units from the Eocene, Oligocene, and
Miocene. The Asmari formation (As’s in Figure 2b) forms the left abutment consisting of
marly-limestone and thin layers of limestone. The right abutment and the lower part of the
left abutment are built over the Jahrom formation (Ja in Figures 2b and 3) which consists of
crystalline massive limestone with interlayers of marly limestone. Figure 2 shows the plan
and longitudinal views of the Bazoft dam site illustrating the site topography, abutment
geometry, and site general geology. In Figure 3 a magnified view of the right abutment, the
location of the test gallery, overall view of the Jahrom (Ja) formation, and modeling domain
considered in the 3D analyses are shown.

Three plate load tests were carried out in the right abutment of the Bazoft dam. Two
PLTs were set-up in a horizontal direction and one in a vertical direction. The plate load
test conducted in the lower gallery (PLH3-RG1) was set up in the horizontal direction
and located at about mid-length of the test gallery as illustrated in Figure 3. The test was
carried out with five loading and unloading cycles. Figure 4 shows a summary of the test
results obtained. Figure 4a illustrates the stress levels that are applied to rock mass in
five consecutive cycles. These stress levels are typical of plate load testing practices and
are typically selected by the dam design team based on the probable stress levels that are
going to be applied to the abutment by the dam once it is constructed and in operation.
Once the load is increased to the predefined level in each cycle, it will be kept constant
to allow the rock mass to reach an equilibrium state with the applied load and no further
deformation has occurred in the rock mass. The flat portion on all graphs is indicative of
this stage. After the last cycle, the rock is reloaded to the last cycle stress level and the creep
behavior of the rock mass is assessed. Further details on the testing procedure can be found
in [5–7,10]. Figure 4b,c illustrate the change in rock mass deformation at varying depths
beneath the loading plate for the right and left plates respectively. As can be seen from the
results, the displacement magnitude at sensor A location which is closer to the surface is
significantly higher than the other sensors which are installed further deep into the rock
mass. Looking at these figures indicates the significance of displacement measuring depth
on the determined final deformation modulus. This issue is investigated numerically in the
next sections. In Figure 5 the peak displacement at the end of each loading cycle is plotted
for all sensors comparatively for the right and left test gallery walls. Referring to this
figure, the displacement variations for the right and left plate are different which means
that the rock mass deformational behavior on test gallery sides are different. Furthermore,
the significance of deformation at the shallow anchoring points is noticeable compared
to deeper measuring points. This indicates that the displacement data recorded at higher
depths are not realistic in terms of rock mass behavior given the applied load level.
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Figure 4. A horizontal plate load test results at the Bazoft dam right abutment: (a) Pressure-time his-
tory, (b) Displacement-time variations (right plate), (c) Displacement-time variations (left plate) [19].
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Figure 5. Rock displacement changes beneath the plates as a function of depth for all loading
cycles [19].

5. Numerical Simulation of Plate Load Test Mechanisms

In this study the plate load tests conducted at the Bazoft dam were simulated numeri-
cally aiming at illustrating the key parameters and mechanisms involved in the test. The
sophisticated 3D finite difference code Flac-3D developed by Itasca Inc. [20] was used to
simulate the test condition at actual scale. This code is equipped with sophisticated mesh
generation, material behavior modeling, etc. capabilities and is capable of considering com-
plex boundary conditions. The Bazoft dam right abutment geometry, test gallery geometry
and location, test gallery-induced stress regime, PL test geometry and condition (loading
and unloading cycles) were considered in the simulations and the effects of loading plate
diameter and depth of displacement measurements locations on the calculated moduli
were investigated.

Based on conducted geological and geotechnical assessments, the rock mass of the
right abutment consists of massive limestone. Standard rock mechanics tests (uniaxial com-
pressive test, Brazilian test, triaxial test) were conducted on representative rock samples
obtained from geotechnical boreholes. Moreover, a comprehensive survey and mapping of
dam abutments was carried out to determine the in-situ rock mass conditions. Combina-
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tion of obtained laboratory data and in-situ mappings enabled the determination of rock
mass ins-situ parameters (Table 1). Two exploration galleries were excavated in the right
abutment and in-situ plate load tests were carried out in these galleries. The estimated
Poisson’s ratio and RMR for the rock mass were 0.3 and 68–78, respectively [19]. A 3D
model of the right abutment of the Bazoft dam and its test gallery was constructed. Figure 3
illustrates the actual view of the right abutment and the modelling domain considered
for 3D modelling. In Figure 6 the actual PLT set up and the constructed 3D model of the
right abutment and test gallery are illustrated. Figure 7 shows a magnified view of the con-
structed numerical model of the jacking test location and the displacement measurement
borehole. In line with the pattern and location of displacement measuring points in actual
test, measuring points were considered within the model and (Figure 7).

Table 1. Physical and mechanical properties of the Bazoft dam right abutment rock [19].

Properties Density
(gr/cm3)

UCS
(MPa)

Elastic/Deformation
Modulus (GPa)

Cohesion
(MPa)

Friction Angle
(Degree)

Intact Rock 2.6 48.2 14.2 2.8 41
Rock Mass 2.6 7.3 9.6 2.1 42
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In the conducted numerical analysis, the Mohr-Coulomb constitutive model was used
to simulate the rock mass behavior. Because of the plastic deformations associated with
loading/unloading cycles, which affect the slope of the stress-strain curve (deformation
modulus), this simple model was selected for the PLT simulations. The model geometry,
material properties, and boundary conditions used in the analysis were selected based
on Bazoft dam site conditions. To determine the load-displacement curve, five loading-
unloading cycles were simulated. The simulated loading cycles were applied as was
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instructed for the in-situ tests and based on standard guidelines. At the last cycle, the rock
mass loaded up to 25 MPa. In the base run model, the simulated circular loading area had
a diameter of 80 cm which is equal to the diameter of loading plates used in the actual
in-situ tests.
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6. Numerical Simulation Results

To understand the mechanisms of the plate load test, three tests were simulated con-
sidering the location of actual in situ tests conducted in the Bazoft dam right abutment [21].
To compare the test results with numerical simulation results, the load-displacement curves
were calculated at ten measuring points (see Figure 7) within the rock mass and below the
loading plate. Figure 8 shows the load-displacement curve of a simulated test at a point
located 60 cm beneath the loading plate.
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To calculate the deformation modulus, a linear strain variation during loading/unload-
ing cycles was assumed. Figure 9 shows a stress-strain curve determined at a measurement
point 60 cm beneath the plate. The slope of each loading and unloading cycles represents
the loading and unloading deformation modulus respectively.

A linear fit function was used to determine the slope of each curve. These linear
functions were fitted in the linear part of the curves. As can be seen from the determined
curves, the initial part of the recorded data is associated with stiffness of the testing system
components and matching between loading system and rock surface. This portion of
the data, which is indicative of very high and sometimes infinitive modulus values, do
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not represent the rock mass behavior and was not considered in modulus calculations.
According to [21] at the beginning of unloading, due to a time lag between loading and
unloading phases, and concerning the distance between the plate and the measurement
points, stress relaxation due to plate movement at the beginning of the unloading process
is not transferred to the measurement points instantaneously. Therefore, displacement
contours near the plate move back to the direction of the plate movement (unloading direc-
tion), but displacement contours far from the plate move in the opposite direction (loading
direction) due to the loading process at the previous cycle. As a result, a transitional zone,
with zero displacements, develops between these two areas as illustrated in Figure 10. This
transitional zone causes the vertical slope in the beginning parts of all unloading cycles.
Similarly, when the unloading process is finished and a new loading cycle is initiated, this
phenomenon causes a vertical slope at the beginning part of the loading curves. Linear fit
functions for five loading/unloading cycles at a depth of 60 cm below the loading surface
are shown in Figure 11. Unal [7] suggested a new method for the determination of rock
mass modulus based on the least square method. This method postulates an advantage
to use all displacement measurements in modulus calculation, but as mentioned earlier,
some portion of the displacement measurements should not be taken into account for
modulus calculations.
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Figure 9. Stress-strain curve determined at a measuring point 60 cm below the loading plate.
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Figure 11. Stress-Strain curves and linear fits for five loading-unloading cycles; determined at a
depth of 60 cm: (a) 1st cycle, (b) 2nd cycle, (c) 3rd cycle, (d) 4th cycle, (e) 5th cycle [21].

6.1. Parametric Analysis of Displacement Measurement Depth on Deformation Modulus

With regard to the common practices of plate load testing, in which the load is
measured on the surface of the plate and displacements are measured at varying depths
within the rock mass, there is an apparent trend of increasing moduli with the depth of
deformation measurement for a given test. In some cases, this will cause significant error
such that the calculated rock mass moduli are much greater than that of the intact rock.
This issue was investigated numerically. The constructed Flac-3D model represents the
dam right abutment fairly well and the simulated test location was selected at a chainage of
about 30 m from the test gallery entrance as in the actual test. Accordingly, it was assured
that the test boundary conditions (from rock type variation, in-situ stress, excavation
induced stress, abutment geometry, etc. points of view) were considered properly. The
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variation of deformation modulus as a function measurement depth was calculated and
illustrated in Figure 12. It is observed that at a depth equal and beyond plate diameter, the
calculated modulus is greater than that of the intact rock. With regard to the conducted
numerical analyses, the plate diameter is the maximum depth at which displacement
measurement should be conducted to determine the rock mass deformation modulus.
Concerning the rock mass conditions, several parameters affect the maximum suitable
measurement depth. To evaluate the effect of plate diameter on test results, a series of
numerical analyses were carried out. The results are presented in the next section.
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Figure 12. The sensitivity of the deformation modulus to measurement depth in the plate load test.

6.2. Parametric Analysis of Loading Plate Diameter on Plate Load Test Results

From a continuum mechanics point of view, the plate load test mechanism and associ-
ated stress distribution can be considered as an elastic half-space and a rigid foundation
problem. The stress distribution underneath the plate is fairly complex and difficult to
characterize. The loading system-rock interface properties control the stress distribution
beneath the loading plate. The contact stress distribution is complex and can become
singular at some points on the half-space surface. The geometry of the problem can be
illustrated as in Figure 13.
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Figure 13. Free diagram of a rigid loading plate problem.

Assuming a constant displacement distribution, the stress beneath the plate can be
expressed by the following equation which its resultant is equal to the applied load:∫ 2π

0

∫ a

0
P(r)rdrdθ = P (6)

Similarly, the vertical displacement beneath the plate can be determined by integrating
the appropriate equation provided that the correct stress distribution is known at the depth
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of interest. Boussinesq was the first person which provided the stress distribution beneath
the plate as below:

P(r) =
P

2πa
1√

a2 − r2
f or 0 ≤ r ≤ a (7)

With regard to the above equation, from a theoretical point of view, the stress is
minimum at r = 0 and increases to infinity as r approaches a. However, in practice, rock
plastic deformations and failures at the plate edge lead to stress drop and redistribution at
the plate boundaries. Moreover, Equation (6) can be verified by the necessary integrations.
The stress distribution given in Equation (7) will result in a constant settlement beneath
the plate. To see how displacement is related to load (P), we can use Boussinesq’s solution
and integrate the given stress distribution. The displacement beneath the plate can be
calculated at the plate center from the following equation [22]:

w(r = 0) =
x P(r)rdrdθ(1− v)

2πGr
=
∫ 2π

0

∫ a

0

P(1− v)
4π2Ga

drdθ√
a2 − r2

=
P(1− v)

4Ga
(8)

With regard to the above equation, displacement beneath the plate depends only on
the applied load, P, the plate radius, a, and the elastic properties of the half-space. In order
to determine displacement analytically at higher depths below the plate, a much more
complicated integration must be carried out. The complexity of the stress distribution
below the plate is a function of plate-rock interface frictional properties which is very
difficult to characterize and measure. Therefore, numerical modeling is a viable alternative
to assess the stress and displacement fields as a function of depth below the loading plate.
In common practices of plate load testing, it is seen that the loading plate diameter is
changed by contractors without knowing its effect on the calculated displacements and,
thus, the determined in-situ moduli.

In order to shed some light on the effects of plate diameter and displacement mea-
surement depth on plate load test results, numerical simulations were carried out. For this
purpose, considering three different plate diameters of 60, 80, and 100 cm, three sets of 3D
simulations were carried out to investigate the effect of plate diameter on the calculated
rock mass moduli. The displacement for larger diameters should be greater than that of
smaller diameters in the same load at the surface of the plate. The contours of horizontal
stress distribution on the test gallery wall for two plate diameters of 80 and 100 cm are
plotted in Figure 14. The stresses were evaluated at the PLT measurement points and it
was observed that for the same load at the surface of the plate, at a given point, the stress
value for larger plate diameters is greater than the stress value for smaller plate diameters
(see Figure 14). This extra stress produces larger displacements at the measurement point
and consequently leads to a reduction in the magnitude of modulus.

To further illustrate the issue, the sensitivity of the calculated loading modulus to
loading plate diameter was computed as a function of displacement measurement depth
and plotted in Figure 15. The obtained results show that larger plate diameters result
in smaller values of moduli. Looking at the obtained results as the measurement depth
increases the sensitivity of modulus value to plate diameter increases at a more rapid rate
and can lead to an overestimation of the modulus value.
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6.3. Parametric Analysis of the Effect of Plastic Strains on Loading/Unloading Moduli

In the standard uniaxial compression test on rock samples, the linear portion of the
stress-strain curve represents the elastic modulus of the rock. As loading is increased
beyond the elastic limit, micro-cracks propagation and coalescence lead to the formation
of larger cracks and shear bands which appear in the form of plastic deformations within
the rock. Plastic deformations cause the reduction of rock mass deformation modulus and
rock mass damage. The computed plastic strains that occurred during loading/unloading
cycles were analyzed to see how the occurred plasticity affects the PLT results. Variations
of plastic strain, as a function of change in loading plate diameter, for the three simulated
plate diameter scenarios are illustrated in Figure 16. Moreover, plastic strain variations
were evaluated at varying depths beneath the plate. As can be seen from this figure, by
an increase in plate diameter, the amount of plastic strain at a given measurement point is
increased leading to the reduction of the rock mass stiffness and consequently deformation
modulus. Referring to Figure 16, the plastic strain increases in a linear fashion as a function
of loading plate diameter. This increase is more pronounced at shallower depths beneath
the loading plate. At greater depths, less plastic deformations occur and the applied load
level (loading cycle) does not influence the rock deformation and plastic failure as such.
This can be seen from Figure 16b,c.
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Figure 16. Variations of plastic strain as a function of change in loading plate diameter measured at a
depth of; (a) 20 cm beneath the plate, (b) 40 cm beneath the plate, and (c) 60 cm beneath the plate.

7. Comparison and Discussion of Results

To verify the conducted numerical study, the obtained results were compared against
the actual in-situ tests conducted at the Bazoft concrete dam site and also the ISRM sug-
gested method which is based on elasticity theory. Two objectives were the focus of this
comparison. The first goal was to validate the numerical results and demonstrate the
accuracy of 3D modeling for PLT simulation. The second objective was to compare the
modulus calculation results obtained based on elasticity theory (the ISRM method) and the
application of the Mohr-Coulomb model within the 3D numerical methods. The modulus
values calculated at varying depths below the plate by the ISRM method, 3D simulation
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of an actual horizontal plate load test in a test gallery at the Bazoft dam right abutment,
and the actual in-situ PLT test conducted at the same location, were compared against one
another and presented in Figure 17.
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Figure 17. A Comparison of modulus values determined for Bazoft dam right abutment employing
different methods.

Referring to Figure 17, the ISRM suggested method determines larger modulus values
in comparison to the other two methods. Concerning the fundamental limitation associated
with this method, the values predicted at higher measurement depths are unrealistic and
should be avoided. For example, the calculated modulus for the massive limestone of
Bazoft dam right abutment, at a depth of about 170 cm below the loading plate, is measured
to be slightly over 200 GPa which is higher than the stiffness of steel. These values are
incorrect and must be excluded when reporting the test results. Also, it can be seen that
for measurement depths of up to the loading plate radius, the in-situ data and numerical
modeling data are in good harmony and match each other. At measurement depths beyond
plate radius, the pattern of modulus variation as a function of depth changes significantly.
The modulus obtained from the test data is solely based on the deformation measured
at a single point below the plate. Depending on the load level, plate diameter, and the
quality of rock, at depths beyond one plate diameter, the recorded displacements can be
very small and sometimes negligible. Regardless of the method of modulus calculations
(e.g., [5,7], etc.), the data reported for higher depths are unrealistic and must not be reported
as the rock mass modulus. This problem becomes more pronounced if smaller size plates
are used in the plate load tests. The numerically produced data show a different trend for
modulus variation as a function of depth. In the constructed Flac-3D model, the test key
boundary conditions were considered properly. These conditions are dam right abutment
geometry and height, test gallery shape and dimension and associate gallery induced
stress change at the test location, and the PLT geometry and direction. Moreover, a Mohr-
Coulomb constitutive model was used for the rock mass to allow for plastic deformations
as a function of loading. Accordingly, it is believed that the in-situ confining effects of the
rock mass, significantly enhances the rock load-bearing capacity and its in-situ stiffness.
The modeling results show that the depth has a much more pronounced effect on rock
mass in-situ stiffness as can be seen from Figure 17.

8. Conclusions

The validity of the determination of the rock mass deformation modulus using the
plate load tests conducted at the Bazoft dam project site was evaluated numerically. The
3D numerical simulation, using the Mohr-Coulomb constitutive model, was successfully
used to simulate the in-situ PLT conducted at the Bazoft dam. The analysis showed that
the optimum measurement depth for rock mass modulus calculation is approximately
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equal to the loading plate radius. The data determined from measurement depths beyond
one plate diameter can be erroneously high and unrealistic. In practical applications of
the plate load test, the diameter of the loading platen is reduced from the standard size to
smaller values to ease the test. This affects the stress field provided by the loading plate and
significantly influences the test data and leads to erroneous results in the calculation of rock
mass modulus. The analysis results show that the plate diameter can have a significant
effect on test results. As the measurement depth increases, the determined modulus values
increase at a much more rapid pace when employing smaller loading plates as illustrated
in Figure 17. By measuring plastic strains in each loading/unloading cycle, it was shown
that by an increase in plate diameter, the amount of plastic strain, for a given measuring
point, would increase leading to the reduction of the rock mass stiffness and consequently
deformation modulus. Based on obtained results, it is concluded that the initial vertical
parts of the load-displacement curves or consequently stress-strain curves (vertical slope)
are due to a time lag between loading and unloading phases and also the distance between
loading plates and measurement points. Therefore, the vertical parts should not be taken
into account in the determination of rock mass modulus. Considering the fundamental
shortcomings of the ISRM suggested method in the interpretation of test results, the best
way for modulus calculation is the depiction of stress-strain curves and measuring the slope
of these curves. With regard to the capabilities of sophisticated numerical methods, which
enable the consideration of PLT governing boundary conditions, a combination of standard
in-situ tests and 3D numerical modeling is recommended for the in-situ characterization of
rock masses for important projects.
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