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Preface to the first edition

In recent years an increasing emphasis has been placed on numerically based
methods of structural analysis. This has been reflected in the production of
structural mechanics texts which are orientated towards particular numerical
methodologies, especially the finite element method. Whilst this approach
serves the needs of potential ‘research’ engineers, a concentration on the
numerical analysis aspects of structural mechanics is of less relevance to
future ‘professional’ engineers, who are likely to be concerned with the use
and interpretation of numerical analyses, but not in the development of the
methodol ogies.

Itisto thislatter group that the present text is especially addressed, and the
intention isto give abroad introduction to the principal themes of continuum
mechanics and structural dynamics, with an emphasis on the description of
physical behaviour and on the use of analytical techniques to illumine and
quantify the performance of structural systems.

Inanintroductory work such asthis, abreadth of coverageisdesirablefrom
the standpoints of both the needs of the student and of the possibilities
provided for exploring the relevance of structural concepts to differing geo-
metric forms. Breadth, within a manageabl e text, does, however, require that
rather brutal decisions be made in the selection of the material to be covered.
Inadditionto thevery limited treatment of the theory, asopposed to the use, of
numerical methods, it has only been possible to mention solutions based on
classical methods of differential calculus due to the limited applicability of
such solutions and the often lengthy and intricate nature of the mathematical
arguments involved.

A perhaps more serious cause for regret isthat space has required arestric-
tionto alinear elastic behavioural model. Whilst commonly used for practical
analysis purposes, and convenient as amodel which can be readily adapted to
different structural forms and materials, linear elasticity is, of course, unable
to represent many aspects of structural behaviour which are of practical
concern, especially when non-metallic materials are employed. As a partial
remedy for thisand other deficiencies, the author has been able to do no more
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than indicate at the end of each chapter a selection of texts which may be used
to augment the material covered.

In brief, then, the text aims to be a ‘taster’ in linear elastic continuum
mechanics and structural dynamics, and it is hoped that, having acquired the
taste, the student will be encouraged to tackle the more substantial farethat is
availablein thetextscited in the further reading sections of the book. The pre-
liminary knowledge assumed is that usually covered in the first two years of
undergraduate courses in structural mechanics, strength of materials and
mathematics. In particular, an acquaintance with matrix algebra and the finite
difference and element methods is presumed, athough outlines of the latter
two topics are included as appendices for the benefit of those who may not
have been previously exposed to these techniques.

For the purely numerical analysis operations of linear equation solution and
eigenvalue determination, it has been assumed that standard computer rou-
tines are readily available. For the more structurally orientated aspects of nu-
merical methods, it has, however, been considered desirable to give and set
examples solved by ‘hand’ in order to develop a feel for the techniques in-
volved. For solutionsto be practical by hand, coarse nets must be used so that
the results may be liable to substantial error. Asfar as possible, the nets used
have been sufficiently fine so as to produce acceptable approximations, but
thisis not the case for some of the problems for student solution, which must
be accepted as being of teaching value only.

Finally, apleasant task: to acknowledge those whose assi stance has been so
generously given in the preparation of this book. Professor Arthur Bolton of
Heriot-Watt University, Costas loannou of NELP and Dave Phillips of
Glasgow University haveal read chaptersin proof and | have profited greatly
from their advice and comments. Fred Marris and Brian Whiting, both of
NELP, patiently provided ‘driving instruction’” on the MEDUSA drafting
system and DIABLO printer used to prepare the diagrams and text respec-
tively. Anauthor’ sfamily haveto tolerate an even greater than normal level of
absence and abstraction of mind, and | am grateful to record that this has been
cheerfully accorded me. In particular, | must thank my daughter Ruth, who
prepared some of the diagrams and a considerable number of the equations.



Preface to the second edition

The aims of the text have remained unchanged for this edition, although the
major addition, that of covering the application of isoparametric finite ele-
ments to plane elasticity, has inevitably tended to increase the proportion of
material devoted to the numerical analysisaspect of thistopicinrelationto the
material treating the structural behavioural aspect. Thisis a cause for minor
regret but has been accepted due to the wide use made of this particular finite
element and the need therefore for future ‘ professional’ engineers to have at
least an outline appreciation of its theoretical foundations. In common with
the other elements covered, a numerical example of the use of an iso-
parametric element has been provided, although this certainly represents the
limit to which it is reasonably possible to contemplate example hand
solutions.

The number of problems for student solution has been increased to provide
awider range and the opportunity has been taken to update material and to
correct errors in the previous editions, without, it is hoped, introducing too
many new ones. Comments on this edition are always welcome and | am
grateful, in particular, for advice from Professor lan May of Heriot-Watt
University and Dr Angus Ramsay of Nottingham Trent University regarding
its preparation.



Examination question sources

A number of the problems for student solution have been taken from degree,
or equivalent, examination questions set by different institutions and are
reproduced by kind permission of therelevant authorities. The sources of such
problems are indicated in the text as follows:

BRIGHTON: University of Brighton

CITY: City University, London

EC: Engineering Council

KCL: King's College (University of London)
LIVERPOOL: Liverpool University

NTU: Nottingham Trent University

UCL: University College (University of London)
UEL: University of East London

The solutions provided are, however, my own and the responsibility for any
errorsin these therefore lies solely with myself.



|. Elasticity

I.l1 Introduction

Elementary structural mechanicsis primarily concerned with the behaviour of
line elements, such asrods or beams, and with assemblies of these elementsin
the form of skeletal structures. Line elements are characterized by having
cross-sectional dimensions which are of a different order to the length of the
element. Thestructural analysisof line elementsissimplified by several prop-
erties, the most pertinent of which is that the deformed shape of the element
may often be completely described by the displaced shape of its longitudinal
axis. Thisissoif the deformation of the cross-section may be assumed to bear
asimple geometric relationship to the axis deformation. An example of sucha
relationship is the plane sections assumption of simple bending theory in
which sections normal to the axis are presumed to remain normal in the
deformed position. In these circumstances, the displacement of the element
may be expressed in terms of one independent position variable, namely
distance along the axis, and theresulting differential equation for the displace-
ment will be of the ordinary form, asin the case of beam bending.

As the name suggests, continuum mechanics is concerned with structures
which are continuous in space. The simplest elements of thistype are surface
elements which have a thickness of a different order to the other two dimen-
sions. Surface elements aretermed platesif they have aplaneform, and shells
if theformisageneral surface. The deformation throughout the thickness of a
plate or shell may still usually be related to the deformation of a single point
within the thickness by the assumption of suitable geometric relationships. It
isnot therefore necessary to treat these elements as three-dimensional solids,
it being sufficient to examine the deformation of a, usually central, surface. At
|east two independent variableswill, however, be needed to specify a position
on such a surface, and the differential equations governing its deformation
therefore become more complex than for line elements and are also of the
partial variety. The deformed state of ageneral solidisvariablethroughout its
volume, and three independent position variables are involved with corre-
spondingly more complex governing partial differential equations.



Advanced structural mechanics

Overal geometric form thus allows structures to be categorized into line,
surface or solid elements, and analytic models may then be developed which
are best suited to the different types. In producing models, the nature of the
constructional material must, however, be carefully considered. If the struc-
tural geometry, material and loads are such that the displacements under the
expected loads can reasonably be expected to be so small as not to influence
the structural behaviour, then a small-deflection/small-strain theory is pro-
duced in which, in particular, elastic instability (buckling) effects are ex-
cluded. If the loads and material are also such that the deformations are of a
linear elastic nature (as assumed throughout this volume), so that plasticity,
for example, does not occur, then the analysis of plates, shells and solids on
this basisis simply termed the theory of elasticity.

The purposes of the present chapter are to develop some fundamental
theory of elasticity ideas and relationships and to apply these to the analysis of
structural forms which are such that either the stresses or the strains are con-
fined to a plane. Chapter 2 considers line elements but again uses elasticity
theory, since the subject matter is torsion, for which it is not possible to
assume a simpl e relationship between the axial and cross-sectional displace-
ments in the case of non-circular sections. Chapter 3 deals with plates which
are normally loaded so that bending and twisting actions predominate. Shells
are discussed in Chapter 4, where the detailed treatment is restricted to
axisymmetric forms and loading. Finaly, line elements are considered once
morein Chapter 5, which deal swith the dynamic response of, mainly, skeletal
structures.

1.2 Elasticity theory

Instructural analysis, the objectiveisto determinethe response (deformations
and stresses) to a specified causation effect, which will here be taken to be

(b)

Fig. 1.1 (a) Solid body. (b) Part body

2



Elasticity

Fig. 1.2 Direct stress components

applied loading but could, more generally, include temperature changes,
support movements and similar influences. This section defines the response
variables which are of interest in the theory of elasticity and establishes
general relationships between these variables, based on both geometrical and
elastic material law considerations.

1.2.1 Stress

The solid of Fig. 1.1(a) is considered to consist of the two parts A and B sepa-
rated by the plane shown dotted. The effect of part A on asmall element dA of
the separation plane on B may be represented by aforce, dP, and dP may be
represented by components dN and dT (Fig. 1.1(b)) which act aong the
normal to the plane and within the plane respectively. Thedirect (normal) and
shear (tangential) components of stress at O are then defined to be

o=li To[%) (1.1)
=il ) @

If astressed element in a set of rectangular Cartesian axes is now consid-
ered, then the direct stress on the element may be represented by the three
pairs of self-equilibrating stress components shown, in their positive direc-
tions, in Fig. 1.2. The shear stress may be represented by the three sets of pairs
of stress components shown, also in their positive directions, in Fig. 1.3. In
Fig. 1.3, it should be noted that the two pairs of shear stress components
involved in each set are of equal magnitude. This complementary property of

3
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shear stress components is required for the moment equilibrium of the
element, since, for example, in Fig. 1.3(a), taking the element sides to be dx,
dy and dz

By moments about the z-axis:
—T(dzdx)dy + 7., (dzdy)dx =0
Hence

Ty = Txy

InFig. 1.3, it should be noted that the planes on which the shear stresses act
are perpendicular to the plane formed by the pair of axes specified by therele-
vant double suffix. Thus 7, for example, acts on planes which are normal to
the y—z plane.

yz?

1.2.2 Displacements and strains

The deformation at any point of a body will be defined by its displacement
components u, v and w parallel to the x, y and z axes respectively. The defor-
mation of an element of a body will be represented by a set of strain compo-
nents corresponding to the stress components which have just been described.
If the deformation of an element in the x-y plane, for example, is considered
thenitispossibleto geometrically relate strain and displacement components.

In Fig. 1.4(a), direct strain in the x-direction isillustrated, extension being
considered positive so as to correspond to the tensile positive stress conven-
tion adopted earlier. The x-displacement component at the beginning of the
element isu and, since the rate of increase in u is mathematically represented
by du/ox, the total increase in u over the length of the element, dx, will be

() (b) (©

Fig. 1.3 Shear stress components

4
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y y

(a) (b)

Fig. 1.4 (a) Direct strain. (b) Shear strain

(du/ox)dx. The x-direction strain may therefore be represented as

. (du/ox)dx _ du
§ dx %

Theshear strainillustrated in Fig. 1.4(b) may also berelated to the displace-
ment components. It isfirst noted that positive shear strain is caused by posi-
tive shear stress (Fig. 1.3) and is defined as the change in the angle ABC in
Fig. 1.4(b). The shear stress components have, in fact, been taken such that a
positive shear stress causes a decreasein the relevant element angle closest to
(or furthest from) the origin. The expressionsgiveninFig. 1.4(b) for theu and
v displacementsof A”and C’ relativeto B’ follow from asimilar mathematical
argument to that used for direct strain. Thus, to obtain the x-displacement of
A’ relative to B’ it is necessary to consider the rate of increase of u with 'y
which is given by du/dy, the total relative displacement then being as indi-
cated inthefigure. A corresponding argument resultsin the expression shown
for the relative y-displacement of C” to B’. Assuming small angles, the shear
strain may therefore be determined as

1y =PB'A’+C'B'Q
_ (E)ulay)dy+ (av/ox)dx

dy dx
Hence
Ju dv
T oy o
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Fig. 1.5 x-direction stress

From similar considerations to the above, the complete three-dimensional
strain—displacement relationships are

_adu oV _ow

EX—&, Ey—a—y, EZ—E (13)
for direct strains and
_u, v
T =5y T ox
ov ow

A 14

Yy az+ay (14
_w u
T2 ox oz

for shear strains.

1.2.3 Stresses and strains

In seeking relationships between stresses and strains, material law consider-
ations must be employed. Under linear conditions, a direct stress produces a
proportional strain, so that, for astressin the x-direction (Fig. 1.5), stress and
strain may, typically, be related by

wherethe material constant E is known as Young' s modulus or the modul us of
elasticity.

From experience of rubbery materials, it may however be visualized that a
positive x-direction stresswill cause acontraction in the y-direction aswell as
an extension in the x-direction. This phenomenon is known as the Poisson’s
ratio effect and the two strains are related by

UX

€y =-ve = —Z/E

where the material constant v is known as Poisson’ s ratio.

6



Elasticity

The effects of Poisson’s ratio are significant in the case of metals, which
have an average ratio of approximately 0.3, but are of less importance, and
can sometimes be neglected, for concrete and masonry, which, typically,
have ratios in the range 0.1-0.2. As already noted, rubber has a particularly
high ratio, approaching 0.5. If the general three-dimensional direct stress
caseisconsidered (Fig. 1.2), then the total strain in any given direction may
be obtained by superimposing theindividual strainsin the specified direction
dueto thethree stress components. If arestriction is made to ahomogeneous,
isotropic material, that is, one which is uniform throughout its volume and
has identical material propertiesin al directions, then, at any point in the
material

€, = E(O'x —vo,—vo,)
1
g, = E(_VUX to,~vo,) (1.5)
€, = é(—vax —vo,+0,)
A linear rel ationship between shear stressand strainisal so presumed, so that
1 1 1
’7xy:67—xy’ ,szzaTyZ’ ,YZXZETZX (16)

where the material constant G is known as the shear modulus or modulus of
rigidity.

Thethree elastic material constants E, v and G cannot, in fact, be specified
independently and it is shown in elementary strength of materials texts
(Megson, 1996) that

E
G=
2(1+v)

It is sometimes necessary to determine stresses from known strains, in
which case the dependent and independent variables of equations (1.5) and
(1.6) may be changed to give (as the reader may verify)

(1.7)

;= Ed=V) '€+,/6+V€
vy -v) Y 1-v) 7]
o, = (1+E1,()l(1f)2y) _(1—Vv) e te,+ F”y)az_ (1.8a)
El-v) [ v v ]
7T W2 a0 @) YT
Ty =GV Ty =06V T =Gy (1.8b)
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Fig. 1.6 (a) Normal beam. (b) Deep beam

(a)

Fig. 1.7 (@) Corbel. (b) Pile cap
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(d)
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(a)

Fig. 1.8 (a) Tie. (b) Simple beam
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Elasticity

1.3 Plane stress

1.3.1 Introduction

The relationships devel oped in the previous section provide a basis on which
specific, more restricted elasticity problems may be studied. The limitations
are imposed in the interests of simplicity, and perhaps the most straightfor-
ward caseto study isthat of plane stressin which all stresses other than those
acting in aparticular plane are assumed to be zero. Plane stress occurswhen a
thin plateis subjected to loading initsown planeonly, say along itsedges. The
faces of the plate are then free of normal or tangential stresses and, for athin
plate, it may reasonably be presumed that this situation persiststhroughout the
plate thickness. A classic problem of thistype isto determine the stress con-
centration around a hole introduced into the stressed hull of aship or aircraft.
Similar stress concentrations occur around a notch or idealized crack and also
in the neighbourhood of re-entrant plate corners, all of which situations fall
within the scope of plane stress analysis.

Ancther way of producing plane stress problems is to take a plane line
element and make two of itsleading dimensions be of the same order so asto
produce aplate problem. Thus, if the depth of the beam element of Fig. 1.6(a)
ismade of the same order asthe span, while the thickness remains small, then
a plane stress problem of the deep beam variety (Fig. 1.6(b)) is produced.
Deep beams cannot be accurately analysed by simple bending theory, since
|oads tend to be resisted by internal ‘truss’ action (Fig. 1.6(b)) rather than by
the familiar combined shear and bending action of normal beam theory. Deep
beams occur in practice whenever loads are relatively large and spans short.
Typical examplesarethe crane supporting corbel and thepilecap of Fig. 1.7.

Even when the overall behaviour of line elements may be satisfactorily de-
scribed by simpletheories, elasticity theory may be needed to investigatelocal
effects. Thus, while thetensile stressin thetie of Fig. 1.8(a) is uniform along
the major part of its length, a non-uniform stress distribution will exist on
cross-sections close to the ends, since the end cross-sections must be stress-
free, and high bearing stresses will exist at the points of load application. A
further example of animportant local effect is provided by the simple beam of
Fig. 1.8(b). Normal bending theory predicts that the load is resisted by longi-
tudinal direct stressesand shear stresses, there being no direct stressin thever-
tical direction. Clearly thisis not the case in the neighbourhood of the applied
load (or near the supports) where direct vertical compressive stresses must
exist and can cause local buckling if the web isinsufficiently stiff.

The region in which local effects need to be considered may be identified
from Saint—Venant’ sprinciple. Thisprinciplestatesthat if aloading system be
replaced by astatically equivalent system, then the responseis unaffected at a
distancewhichisof theorder of thelength over which the statically equivalent
systemisapplied. So, if theload T in Fig. 1.8(a) werereplaced by astatically

9



Advanced structural mechanics

equivalent set of uniform direct stresses of magnitude T/A distributed over the
end cross-sections, then uniform stress would persist throughout the tie, and
Saint—V enant’ s principle indicates that the non-uniformity due to point appli-
cation of T can be expected to be small at adistance along thetie of about once
or twice its width.

1.3.2 Theory

If the faces of a plate are stress-free (Fig. 1.9), then only the three co-planar
stress components o,, o, and 7, are non-zero and these stresses may be con-
sidered to be uniformly distributed through the (small) plate thickness, t. The
plate displacement, at any given point, will be constant throughout its thick-
ness and will bein the plane of the plate. Thus, the displacement at any point
will be fully represented by the two displacement components u and v. The
determination of the stresses o,, o, and 7,, and the displacements u and v
throughout the plate for a specified in-plane loading constitutes the general
plane stress problem.

It should be emphasized that the stress and di splacement components deter-
mined will relate only to the chosen x- and y-axes. The components in any
other directions, say x” and y’ of Fig. 1.10(a), may, however, be determined by
suitable resolution. In the case of stresses, it may be shown (Megson, 1996)
that there will exist two mutually perpendicular directions at any point, for
which the shear stress component disappears, leaving only two direct prin-
cipal stressesin these directions. The principal stresses may further be shown
to be the algebraically greatest and smallest stresses acting at the point. The
orientation angle of the principal stressesis given by

2
tan2 = —=

(19)

o, =0y

Fig. 1.9 Plane stress components

10
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Fig. 1.10 (a) Axesrotation. (b) Principal stress directions
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Fig. 1.11 Stress component variation

The solution to equation (1.9) provides two mutually perpendicular orienta-
tion angles:

0,=0, 0,=0+90° (1.10)

where—45° < 0 < 45°. Using these two angles successively, thetwo principal
stresses are given by

Oppa = Oy cos’ 0, + o, cos’ 0, — Ty SN20, , (1.11)

The direction of the first principal stress makes an angle 6, (clockwise posi-
tive) with the positive x-axis (Fig. 1.10(b)), and the direction of the second
principal stress is perpendicular to that of the first. As with the analysis of
skeletal structures, the solution of a plane stress problem requires simulta-
neous sati sfaction of conditions of equilibrium, compatibility and material be-
haviour. The governing equations for these three sets of conditions are
therefore developed in the following sections.
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Equilibrium

Using the same sort of differential technique aswith displacementsand strains
(see Section 1.2.2), the variation of the plane stress components acting on a
rectangular element of size dx, dy (thickness, t) may be represented in the
manner shown in Fig. 1.11. In Fig. 1.11, it has been assumed, for simplicity,
that the plate is not subjected to body forces which are distributed throughout
its volume. Gravitational, pore pressure, magnetic and inertial fields all give
rise to body forces, for the treatment of which the reader is referred to more
advanced texts (e.g. see Timoshenko and Goodier, 1982). The equilibrium of
the element may be ensured by:

Resolving horizontal forces:

do, or
( 8 dx)(tdy) a(tdy)+(7 +—dyj(tdx) T, (tdX) =0

Whence

85; aaTy -0 (1.123)
Similarly, resolving vertical forces:

aa;;v . a;_;y 0 (1.12b)
Compatibility

In a state of plane stress, the deformation at any point may either be repre-
sented by the two displacement components u and v or by thethree strain com-
ponentse,, €, and -, and, by extraction from equations (1.3) and (1.4), these
variables are related by
ou ov ou adv
=, =, + - .

STk Y oy T = dy ox (113)
Thedisparity inthe numbers of the displacement and strain variablesindicates
that aunique deformation may be specified by only two independent deforma-
tion variables and that the three strain variables must be inter-related. Thisis
indeed the case, since:

From equations (1.13)
%, u  d%e v v, u oV
dy*  oy’ox’ ax2 Ty’ axdy  xay T oy
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Hence
2. % azyxy

X + Yy _
ay>  ox*  oxoy
Equation (1.14) isthe compatibility equation, since it expresses the geometric
integrity requirement that the plate material remain free from discontinuities
such as‘gaps or ‘overlaps between adjacent elements.

(1.14)

Material laws

Therelevant material laws assumed here are those of linear elasticity, and the
relationships for plane stress may be obtained by setting o, 7,, and 7, to zero
in the more general equations (1.5) and (1.6) to give

1 1

— — 1 —
Ex = E(ax - Vay)’ 5y - E(_VUX +Uy)! r}/xy - aTxy (115)

X

Also, if stressesarerequired intermsof strains, then, by changing the subjects
of equations (1.15),

o, = 1—Eu2 (e trey), o
The strain—stress rel ationships may be combined with the compatibility equa-
tion to produce a general condition in terms of the stress components. Thus,
substituting in equation (1.14) from equation (1.15) yields

YT 2 (e, te)), Ty =Gy (1.16)

2 2 2 2 2

il isy
But, from the equilibrium equations (1.12a) and (1.12b),

aszy _ oo,

oxady  ox°

azrxy B 820y

dyox oy’
So that

827'xy o 820y

=——>- 1.18
oxay  ox* oy’ (1.18)

Substituting in equation (1.17) from equations (1.18) and (1.7):

1( 9% %, ) 1 ( Ro. %o j —1+v)[ %0, %
- X _ v y + = —v X + Y | =7 X + Yy
ElayY 9y ) EU o ox? E (ox* oy
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Whence
? 9
[ﬁ'ka—yzj(gx“r‘(?'y):o (119)

Equation (1.19) is of the Laplace form and is of fundamental importance,
not only in elasticity but also in wave and flow mechanics as well as several
other physical fields.

Virtual work

I'n connection with the finite element method, it will be necessary to make use
of the principle of virtual displacements, and it is convenient to consider here
how internal virtual work may be determined for aplane stress system. An ex-
pression will therefore be established for the virtual work expended when the
plane stress system of Fig. 1.9 is subjected to aset of virtua strains (g, €,, 75\
Itisfirst noted that only corresponding strains and stresses produce net work,
since, for example, x-direction strain produces no displacement in the direc-
tion of the normal y-direction stresses and the works done by the shear stresses
onthe upper and lower horizontal edges of the element are equal and opposite.
Taking the element sides to be dx, dy and t, it is therefore found that, for
x-direction strain,

x-direction virtual work = force x displacement
=o,(tdy) x (g, dX) =0, AV
where dv is the volume of the element. Similarly,
y-direction virtual work =¢,,0, dv

Inthe case of work dueto shear strain, the contributionsfrom the distortions
shown in Figs 1.12(a) and 1.12(b) will be summed. Thus, for the distortion of
Fig. 1.12(a):

shear, virtual work = shear force x AA’ = (7, tdx) x (ady)
=T atdxdy =7, adv
Similarly for the distortion of Fig. 1.12(b):
shear, virtual work =7, 3av
Hence
shear virtual work= 7, (a+ B) dv =7, 7,, dv
and, by summing contributions,

total virtual work = (g,,0, +€,0, + YTy, )V (1.20)
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xy

(a) (b)

Fig. 1.12 Shear distortions

Equation (1.20) therefore provides the required expression for the virtual
work undertaken by the stresses o, o, and 7, acting on an element of volume
dv when the element is subjected to a set of virtual strains (¢, &,, 7,),-

1.3.3 Stress function solution

Toachieveasolutionto aplane stress problem, it isnecessary to satisfy simul-
taneously the equations of equilibrium (1.12), compatibility (1.14) and the
material laws (1.15) at every point in the plate and also to ensure that whatever
specia conditions may exist at the edges (boundaries) of the plate are al so sat-
isfied. Initially, the closed-form (analytical) solution of the governing equa-
tions by the methods of classical calculus will be considered. The most
convenient approach here isto make use of a stress function so that the equi-
librium eguations are automatically satisfied and attention may be concen-
trated on the two remaining sets of conditions. In the plane stress case, this
desirable object may be achieved by defining astressfunction, ¢, such that, at
any point in the plate,

2 2 2
L X
a7 o Y oxay
Substitution from equations (1.21) into the equilibrium equations (1.12)
provesthe adequacy of the stressfunction. If these stressfunction expressions
are now substituted in the compatibility equation in terms of stresses (equa-

tion (1.19), which subsumes the material law conditions), the general plane
stress equation in terms of the stress function may be obtained as

d'p d'¢ '

ZY .9 +-7=0 1.22
ox'  oxPoy’ oy’ (1.22)

Thus, if astressfunction isfound which satisfies equation (1.22) and also the

boundary conditions for a given plane stress problem, then the problem is

(1.21)
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Advanced structural mechanics

solved, since the stress components may be obtained from equations (1.21),
the strains from equations (1.15), and, by integration, the displacements from
equations (1.13).

Direct solutions along theselines, using the methods of classical calculus,
are, however, extremely arduous in rectangular coordinates and the com-
monest approach isto use asemi-inverse method (Timoshenko and Goodier,
1982), in which an assumed form of stress function is employed (usually a
polynomial) which incorporates a number of undetermined coefficients.
The coefficients are determined by enforcement of the general plane stress
eguation (1.22) and the boundary conditions. The stress function is then
fully defined and the solution proceeds as just described. Even with this ap-
proach, the problems which may be tackled are restricted to relatively
simple rectangular or triangular shapes. The use of different coordinate
systems allows the range of problems to be extended, but many features of
practical importance such asboundary irregularities, variable material prop-
erties, complex loadings or cut-outs cause insuperable difficulties. Non-
standard problems, the normin practice, are therefore usually tackled by the
perhaps less elegant but more versatile numerical methods. The stress func-
tion approach can be adapted to thefinite difference method but islimited by
the difficulties involved in expressing boundary conditions in terms of the
stress function and in automatically generating conditions along irregular
boundaries. The finite element method is much more amenable to general
automatic implementation and is therefore the usual current tool for plane
stress analysis.

1.4 Finite element method

The reader who has not studied the finite element method previously is
referred to Appendix B which gives an outline of the method and defines the
notation used here where the application of the method to plane stressanalysis
is presented.

1.4.1 Triangular element theory

As noted above, the distortion of a point, under plane stress conditions, may
be represented by the two displacement components u and v in the x- and y-
directions respectively. Thus, for atriangular element (Fig. 1.13), each node
has two di splacement components and the total number of nodal displacement
components to be considered is six. In choosing a polynomial displacement
function to represent the variation of the displacements throughout the
element, just six undetermined coefficients can therefore beincluded. Further,
since u and v are independent of each other, their polynomial functions should

16
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Fig. 1.13 Triangular element

not incorporate the same coefficients so that three distinct coefficients are
available for each of the two displacement component polynomials. The sim-
plest polynomial involving three coefficientsin the position variables x and y
is linear, so it will be assumed that the displacement of a general point, P,
within the element may be represented by

U= + X+ gy, V=oy +agX+agy (2.23)
Equations (1.23) may be expressed in the matrix form

_Jjul (1 xy 00O
{a}_{v}_[o 001 x y}{a} (1.24)

where {a} ={ay, a,, ..., g} is the column vector of undetermined
coefficients.

By successively letting P be the three element nodesi, j and m, the six nodal
displacement components may be related to the six undetermined coefficients

by

u] [L x vy 0 0 O]
v [0 0 0 1 x vy
T O e T PSS a1 (129
v 0 0 0 1 x Yy,
U, 1 x, vy, 0 0 O
Vo) [0 0 0 1 X, Yn]

For conveniencein inverting matrix [C°], equation (1.25) may be temporarily
rearranged as
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By using the co-factor (Stroud, 1995) or other method of inversion, the poly-
nomial coefficients may now be expressed in terms of the element nodal dis-
placements as shown by

(XY= Xy Xk = XY XY} = XY, 0 0 0 u
Yi = Ym Y~ Vi Yi =Y 0 0 0 U;
X = X X — X, X; =% 0 0 0 Uy,
fa} ==
2A 0 0 0 XiVYim = XnY) XY =XYm XY, = XY (| V
0 0 0 yj_Ym Y — ¥ yi_yj‘ Vj
I 0 0 0 X = X X — X, X =% |V
(1.27)
where
R
Azadet 1 Xj yj
1 X, Y.

which may be shown to be equal to the area of the triangular element i, j, m.
Reverting to the original ordering of the variables,

XY = X 0 X¥—%X¥Yn 0O  xy-xy O u

Y = Ym 0 Yo = Vi 0 Y- 0 v

X = X 0 X = X 0 X =% 0 u

{a}=— ’

2A 0 XY = Xm, 0 XY =XYm O XY= XY ]V

0 Y = Ym 0 Y =Y, 0 Y=Y ||Un

| 0 X = X; 0 X = X 0 X =% |V
=[CTH{0%} (1.28)

It is now necessary to relate the strain components at P which, for plane
stress, aree,, €,, v,, to theelement nodal displacement components. Thismay
be achieved by first substituting the expressions for u and v from equation
(1.24) into equations (1.13) to give
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du
e, gz 010000
@=151=y 5y (=0 0 0 0 0 1{a}=[QHa} (129
o au_ v 001010
dy oXx

Hence, using equation (1.28),
{e} =[QHC] {0%

yj ~Ym 0 Ym — Y 0 Yi— yj 0
X = X 0 X — X, 0 X; — %
m= X Y ™Ym XX YmmY XX YTy,
=[B{0%} (1.30)
It should be noted that the strain matrix [B] is independent of the variables x
and y and hence of the position of P. Thematrix [B] is, infact, afunction of the
known nodal coordinate positionsonly and hence, for agiven element, [B] isa
constant matrix and the strain is therefore constant throughout the element.
For this reason, the triangular plane stress element is often referred to as the

constant-strain element. Equations (1.16) provide the elasticity relationships,
which, recast in matrix form and incorporating equation (1.7), are

1

" 2A
X

o 1 v O
@={o,t=r2" * ° f3-=I0Ka (1.31)

To relate the stress components at P to the nodal displacement components,
substitution from equation (1.30) into equation (1.31) gives

{0} =[DI[BK{0% (1.32)
Having related both the stress and the strain components at P to the element
nodal displacement components by equations (1.30) and (1.32), the remainder
of the analysisfollowsdirectly from the general finite element theory givenin
Appendix B. In particular, it should be noted that the stress and strain vectors
defined above do satisfy the requirement (Appendix B, equation (B.7)) that
{€}{o} represent a work scalar (see equation (1.20)), and the principle of
virtual displacements may therefore be invoked to establish the element stiff-
ness matrix as (equation (B.11)):

[KI= [ [BI"[D][Bldv (133)

vol
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150 kN

N~

1 mm

J

150 mm

Vv

150 kN

Fig. 1.14 Concrete cube test

However, for this particular element, it has already been shown that [B] isin-
dependent of x and y as, if a homogeneous material and uniform element are
presumed, are [D] and t, hence

[K] =[B]"[DI[B]t [ dxdy = (A)[B]"[D][B] (1.34)

where A is the area of the triangular element.

For the case of zero Poisson’s ratio, an explicit form of the plane stress
element stiffnessmatrix isgiven asequation (1.35) (page 21); for the non-zero
Poisson’ sratio case, the reader isreferred to other texts (Ross, 1996). Aswith
al stiffness matrices, the reciprocal theorem assures the symmetry of the
matrix. The element stiffness matrix of equation (1.35) is, however, givenin
full for convenience of use.

For practical analysis purposes, finite element theory, such asthe above, is
incorporated into completely automated, standard, analysis ‘ packages which
are mounted on computers. The function of the engineer is to idealize the
structure, possibly to devise a suitable element sub-division and, most impor-
tantly, to critically assessthe validity of the results against engineering judge-
ment. The element sub-divisions required for acceptable accuracy are aways
so fine asto render hand solutionsimpractical. However, afull understanding
of the method, including the manner in which the complete structure stiffness
matrix is assembled from the element stiffness matrices, is perhaps most
easily obtained from numerical examples. The following hand solution is
therefore undertaken to illustrate the basic theory described above.

1.4.2 Example .1 — concrete cube analysis

Oneform of concretetest isto subject acubeto acentral compressivelineload
asillustrated in Fig. 1.14. Thisis usually done by placing square steel rods
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91 ‘(A —"K) = “A ‘(x— %) = "\ asoym

(Ge'T)

_ASorix | Wxso | MKso+'x"x | WUxso | MWiso+"x'x | W'xso |
AXS0 1 XS0+ .4 “a'xs0 1 "X"Xxs0+"AA “A'xso 1 "X'xs0+ "4
CAASO+ XX | AXS0 | TAS0+TX “T---@.@@:: XA+ XX MATXe0  |vr

\ngm.o | x"xs0+ "4’ XSO L XS0+ swswm 0 1 "x"xso+"x"x |
“xrs0+"x" x L "2xe0 "0+ "X ! “ sngm 0 “ico+tx 1 “4Mxeo
%o UM xeo+ x| MAxs0 D UxMxgo+ "k . .\\m@w.m.o. T Uxeo+ x|
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between the cube and the platens of the testing machine as shown in Fig.
1.15(a). The object of the present exampleisto analyse atypical 150 mm cube
under such loading conditions and to assess the likely failure behaviour of the
cubeinthelight of the results obtained. Thetotal load applied will betaken as
150 kN and plane stress conditions will be assumed with E = 30 kN/mm?
and v =0.

It may not be immediately apparent as to how as solid an object as a con-
crete block may be analysed as a plane stress problem. However, it should be
clear that, for the given loading, the stress distribution in the plane of a thin
slice such asthat shownin Fig. 1.14 will be independent of the position of the
dlice. Furthermore, it may be shown (see Section 1.5.1) that, for zero Pois-
son’ s ratio, the normal direct stress on the slice will be zero and plane stress
conditions will therefore prevail. For convenience, a 1 mm dlice of the
cube (Fig. 1.14) will be considered, so that the load on the slice is 1 kN
(Fig. 1.15(b)). Taking account of symmetry, only one quarter of the slice need
be analysed and this will be divided into triangular elements as shown
inFig. 1.15(b).

Idealization

The quarter-cube slice to be analysed is shown in Fig. 1.16 with a system of
node and element numbering. The numbering systemsarearbitrary, excepting
that there is some advantage in this case in making the element numbering
such that all the even-numbered elementsare similar and that the same applies
to the odd-numbered elements. A system of i, j and m element node designa-
tion is also shown. Again, odd- and even-numbered elements have been
treated consistently. The choice of an element nodei isarbitrary but, once des-
ignated, j and m must follow in an anti-clockwise sense, since the theory was
based on this assumption (Fig. 1.13). An arbitrary, but convenient, set of axes

< ‘leN

1

A ?lkN

(a) (b)

Fig. 1.15 (a) Cubetest. (b) Cubeidealization
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Fig. 1.16 Finite element sub-division

are shown, asistheload acting on the quarter slice, which, because of the use
of symmetry, is one half the load applied to the full slice.

The first stage of the analysisis to evaluate the element stiffness matrices
for the odd- and even-numbered elements. These element stiffness matrices
will then be assembled into structure stiffness equations, the solution of which
provides the nodal displacements. Finaly, the element stresses are deter-
mined from the nodal displacements.

Element stiffness matrices

For an odd-numbered element, using kilonewton and millimetre units
throughout:

Thestrain—nodal displacement matrix, [B], for the element may be obtained
by substitution in equation (1.30):

. Y, = Ym 0 Y =Y 0 Yi Y, 0
Bl=oi| © X=X 0 x-% 0 x-x
X=X Y =Ym X—Xu Y=Y X=X Y-V,
1 0 0 0 1 0
0O 0 0 -1 01 (1.36)

0 -1 -1 011

2A

where A = element area = 37.5%/2 mm®.
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The stress—strain (elasticity) matrix, [D], is produced by substituting the
specified material constantsin equation (1.31):

1 v O

E 1 0 E
[D]Zl—u ’ 1 _E
0 0 —%
2

The element stiffness matrix then follows by substitution for [B] and [D] from
equations (1.36) and (1.37) in equation (1.34) to give

[Kloe = (AD[B]"[D][B]

o N O

2 0
0 0 (sncev=0) (2.37)
0 1

375
-0 552
-1 0 O]
0 0 -1

200][-1 0 0 010
0 0 -1

020/l 0 0 0-101
0 -1 0

001/l 0 -1 -1 0 1 1
1 0 1
0 1 1]

Since the pre-multiplication of amatrix by adiagonal matrix resultsin scaling
the rows of the matrix by the corresponding diagonal terms:

-1 0 O]
0 0 -1
1x30x3752| 0 0 -1 2 0 0020
[Klogg = o> 0 0 0202
8x375/2 | 0 -1 O
0 -1 -1 011
1 0 1
0 1 1]
Whence
2 0] 0 0|2 O]
0 1|1 o0o/|-1 1
0 1|1 0]-1 1
Kl.. =75 1.38
(Ko 0 0|0 2|0 -2 (1.38)
2 -1/-1 0] 3 1
|0 -1]|-1 2| 1 3]
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Following the same procedure for the even-numbered elements, it may be
shown that
3 1|2 -1|-1 0O
1 3|0 -1|-1 -2
-2 0] 2 0|0 O

Kloyen = 7.5 1.39
[Kleven 4 alo 111 o (1.39)
-1 -1|0 1{1 O
0 2/0 0|0 2

The above element stiffness matrices could, of course, have alternatively
been produced by direct substitution in equation (1.35).

Structure stiffness matrix

The element stiffness matriceslink element nodal forcesto element nodal dis-
placement components. The element nodal forces must be such asto produce
a quantity of work (see Appendix B) when the force components are multi-
plied by the corresponding displacement components. Element nodal force
components in the x- and y-axes (Fig. 1.13) will therefore correspond to the
chosen u and v displacement components, and, by subdividing [K], equation
(B.11) may be rewritten as

Bl (ki [k [ km|[9
fie=IKi | Ki | Kim [9; (1.40)
fol 1K | Ko | Ko

QU

QO

and k; relates force components at node m due to displacement at node .
The structure stiffness equationsrel ate the total nodal force componentsfor
the complete structure to the nodal displacement components for the com-
plete structure. Since there are nine nodes in the present analysis and each
node has two force (or displacement) components, there will be a total of
18 dtiffness equations. However, it is convenient initialy to construct the
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stiffness matrix in terms of the element stiffness sub-matrices of equation
(1.40). Since these sub-matrices are 2 x 2, the structure stiffness matrix, so

formed, will be 9 x 9. The general form of the structure stiffness equationsis
then

I:l al
=[K] : (1.42)

the total force components at node 1.

To construct the structure stiffness matrix in terms of the element stiffness
sub-matrices, each node in turn is considered and the sum is obtained of the
force contributions made at the node by the elementswhich the nodeintercon-
nects. Thus, node 1 connectselements 1 and 2 so that it isthe sum of theforces
produced at node 1 by each of these two elementswhich givesthetotal forceat
the node.

For element 1, since thei, j, m designation for this element is 1, 5, 2 (Fig.
1.16), itselement stiffness equations, from equation (1.40), may bewritten as

1) [k [k | k][
fob=| K, [ K, | K |19 (1.42)
fz km km' krrm az

Thefirst of the above set of three equations relates the forces at node 1 to the
element nodal displacement components and may be written out in expanded
form as

{17} =[kil{o:} +[kj {0} + [k, {0} (1.43)

where * indicates eval uation for element 1.

It should be noted that, since node 1 isnode ‘i’ for element 1, it is the sub-
matrices with initial suffix i which are involved in equation (1.43). The first
row of the structure stiffness matrix may now be partially assembled by allo-
cating the sub-matrices of equation (1.43) to their appropriate column loca-
tions in the structure stiffness matrix. The columns of the structure stiffness
matrix arein nodal displacement order so that it isthe displacement suffixesin
equation (1.43) which identify the relevant columns. Thus, k; is located in
column 1 of the structure stiffness matrix; k; islocated in column 5; and k; ,is
in column 2. Hence, the partially completed first structure stiffness equation
becomes
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{f}=[K K. [0]0|K [o[o]o]0]{a (1.44)

where{ A} ={0,, 0, ..., g} "

Element 2 has its node ‘m’ at node 1 and it is therefore the third of its
element stiffness equations (equation (1.40)) which relates to the element
forcesat node 1. Thei, j, mdesignation for the element (Fig. 1.16) is4, 5, 1 so
that the expanded relationship between the element forces at node 1 and the
element nodal displacement componentsis

{17} =[kn1{0.} + k5 {0} + [krnl{0.} (1.45)

The total force components at node 1 are obtained by summing the contri-
butions from elements 1 and 2. Thus, adding equation (1.45) to eguation
(1.44), which involves alocating the stiffness sub-matrices of equation (1.45)
totheir appropriate columnsin equation (1.44), givesthe completed first stiff-
ness equation as

{Fl} :{ fll + f12}

=[Ki +K | ki [ O [ K +KE 0] 0] 0] 0fa

The same procedure is followed for al the nodes, nodes 2 and 4 having
three contributory elements, node 5 six elements, and so on. In this way, the
complete structure stiffness matrix, in sub-matrix form, may be built up as
given by equation (1.46) (page 28).

Several genera properties of stiffness matrices may be used to check a
matrix such as that of equation (1.46). The symmetrical property is perhaps
the most basic and may be used either for checking purposes or to reduce the
labour involved in matrix assembly by limiting the matrix formation to an
upper (or lower) triangular matrix.

Second, the number of sub-matricesin any diagonal position will be equal
to the number of elements which the relevant node interconnects, since dis-
placement of anodewill produceforce contributions at the same nodefrom all
the elements joined to it. Thus, node 6 of the example (Fig. 1.16) connects
three elements, and three sub-matrices are therefore located in the diagonal
position of the sixth row of equation (1.46). Also, all the sub-matrices on the
diagonal will possess repeated suffixes, since the forces and displacements
they relate occur at the same node.

Off-diagonal sub-matrices will not involve repeated suffixes since the
related forces and displacements are at separate nodes. Further, the number of
sub-matrices in any off-diagonal location will be equal to the number of ele-
ments which connect the node specified by the matrix column to the node
specified by thematrix row. For aplane set of elements, the maximum number
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of elementswhich can so connect two nodesistwo, so that amaximum of two
sub-matrices can occur in any off-diagonal position. For example, with refer-
ence to Fig. 1.16, two elements connect node 5 to node 2 so that two sub-
matrices are found in the fifth column of row two in equation (1.46).

To produce the full stiffness matrix in numeric form, substitution is made
for the element sub-matrices of equation (1.46) from equation (1.38) or (1.39),
according to whether an odd- or an even-numbered element is being dealt
with.

Thus, for example,

k7_'—2 -1

"o
and

., [00

kim‘_l o}

Theresulting complete structure stiffness matrix isgiven by equation (1.47)
(page 30).

Solution of the stiffness equations

Prior to solving the structure stiffness equations, the appropriate boundary
restraints must be applied to the stiffness matrix. Boundary restraints need
particular care when, as here, use of symmetry is being made. If the centre
point of theblock (Fig. 1.15(b)) isfully restrained to provide areference point,
then the vertical centre-line of the cube must remain vertical under sym-
metrical loading and the horizontal centre-line must remain horizontal. These
conditions imply that there is no horizontal displacement along the vertical
centre-line (although vertical displacement can occur along this line) and,
similarly, that vertical movements cannot take place along the horizontal
centre-line (but horizontal movements can). In terms of the chosen nodal
numbering, these conditions require that

b=U=U=V,=V=V,=0 (1.48)

Restraining boundary displacement components implies that, at the rele-
vant boundary points, there are restraint forces which physically represent the
reactions from the adjacent portions of the block. By making these reaction
components and the applied load equivalent to the total nodal forces, the stiff-
ness equations may be represented by equation (1.49) (page 31). In equation
(1.49), the restrained displacement components (equation (1.48)) have been
set to zero. Since these displacement components are effectively determined,
while the reaction components are unknown, the equations involving the
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v, —40.82

i, -8.16

v,|  |-12.34 1 5 3
u, -8.66 | —_aF- -
v, ~1.17 ja=" \ !
u, 0 ! ||I
v,| |-16.60

us| ) 208 %107 mm 14 2 — 8
vy =803 L === ="

g 1.52 ‘I

ve| | —0.67 | | )
u, 0 | '
v, 0 17 _ s 9 l:
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" 0 = = = = Displaced shape

iy 5.62

Vo 0

Fig. 1.17 Displacement solution

unknown reactions and the columns of the stiffness matrix corresponding to
the zero displacements may be deleted, to give a constrained set of stiffness
equations which is presented as

-0.5 (311 0 02 1 0 0O 0O O Of[wy
0 -1 6 1 -2 0 0-2-1 0 1 0 O0}|y
0 -1 1 6-1-1 0-1-4 1 0 0 0]|v
0 0-2-1 3 1 0 O -1 0 0 O]y
0 0 01 1 3 0 0 0-1-2 0 0]|v
0 _75 -2 0 0 0 0 61 -2 0 0 1 O0]|v
0 1 -2-1 0 0-1122 2 4 -1 -2 0|y
0 0-1 -4 0 0 -2 212 -1 -2 -1 1]||v
0 0 0 1-1-1 0-4-1 6 1 0-1]|y
0 0 1 0 0-2 0-1-2 1 6 0 -1]|v
0 0 0 0 0 0O1-2-1 0 0 6 -2]||y
0 10 0 0 0 0 0 0 1 -1-1-2 3]y
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A computer solution of equations (1.50), augmented by the restrained dis-
placement components, is given in Fig. 1.17. Once a finite element displace-
ment solution has been achieved, it is essential that the values are carefully
inspected for ‘reasonableness . Order of magnitude and general directions of
movement apart, checks are most easily made by sketching a displacement
diagram of thetype shownin Fig. 1.17. The diagram does agree with expecta-
tions in that the greatest vertical deflection occurs under the load, while
reducing vertical displacements are found at increasing distance from the
loaded node. It should also be noted that the horizontal displacements are
inward at the top of the block, but outward along the centre-line.

Element stress solution

Equation (1.32) relates element stresses to element nodal displacements.
Thus, for an odd-numbered element, substituting from equations (1.36) and
(1.37) in equation (1.32) gives
2 00f-1 0o 0 010
E 375
{o}=[D][B{0}==—-/0 2 0| O 0O O -1 0 1|{0%

2 2A
0010 -1 -1 011

Whence

2 0 0 0 2 0O

{0}=04x10°, 0 0 0 -2 0 2|{0 N/mm’ (1.51)
| 0 -1 -1 0 1 1

Similarly, for an even-numbered element,

-2 02000
{0}=04x10°| 0 -2 0 0 O 2 {90 N/mm? (1.52)
-1 -1 0110
Equations (1.51) and (1.52) allow the element stresses to be determined once
the nodal displacement vector for aparticular element has been extracted from

the structure nodal displacement component solution (Fig. 1.17). Thus, for
element 1,

{ae} z{al' asv az}T
={0, —40.82, 2.08, —8.03, —8.16, —12.34}T x107°% mm

So that, from equation (1.51),
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UX
{U}: Oy
TXY
0
-40.82
-2 0 0 020
3 = 2.08 )
=0.4x%x10°x10 0O 0 0 -2 0 2 8.03 N/mm
0 -1 -1 011 '
-8.16
-12.34
Whence
oy -6.53
, 1 =1-345; N/mm?
Ty 7.29

Repeating this procedure for the remaining elements, the full set of element
stresses can be shown to be asgivenin Table 1.1.

Thestresscomponents of Table 1.1 confirm expectationsin that the vertical
direct stress components are all compressive and increase in magnitude
towardsthe region under the applied load. The horizontal direct stress compo-
nents are compressive above the diagonal connecting nodes 1-5-9 (Fig. 1.16)
and tensile below this line. This behaviour may be directly related to the
displacement solution in this case, since, for zero Poisson’s ratio, stress is
directly related to the strain in the relevant direction and the presence of
horizontal contraction and extension, respectively, above and below the
quarter-cube diagonal may be confirmed from the displacement diagram
(Fig. 1.17).

The stress solution is, however, generally more easily inspected if ex-
pressed in terms of principal stresses. Equations (1.9) and (1.11) have been

Table 1.1 Element stresses (N/mm?)

Element o o T

X y Xy
1 —6.53 -3.45 7.29
2 1.67 -19.37 3.43
3 -0.40 -0.40 0.40
4 —0.45 -3.45 -1.16
5 1.67 —6.42 2.66
6 3.20 -13.28 0
7 -0.45 -0.54 1.30
8 1.30 —6.42 -0.77
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Fig. 1.18 Principal stress diagram
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Fig. 1.19 Splitting test

used to determine the principal stress directions and values corresponding to
the stress component solution of Table 1.1. The resulting values are shown on
avector principal stress plot as Fig. 1.18, where the stresses are located at the
element centroids, thisbeing usually considered the most appropriate location
for the stresses of a constant stress element.

As with the stress components, the magnitudes of the principal stresses
(Fig. 1.18) decay with distance from the point load. In each element, the nu-
merically greater principal stressis compressive and acts (with the exception
of elements4 and 8) towards the position of the point load. Thisisthe general
form of behaviour one might expect, but, of equal significancein view of the
low tensile strength of concrete, the smaller principal stressesaretensile. The
likely mode of failure of the block istherefore by tensile cracking initiated at
the point of greatest tensile principal stress, which the analysisindicatesisin
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the element closest to the centre of the complete block. Thisisindeed the type
of failure found experimentally, where this form of ‘splitting’ test resultsin
the formation of avertical tensile crack (Fig. 1.19) and can be used to estimate
the tensile strength of concrete.

[.4.3 Finite element types

The triangular constant-strain element used above is one of the simplest ele-
ments which may be employed for plane stress analysi s but many more possi-
bilities exist. Other element types may be based on different geometric shapes
of element, arectangle being an obvious possibility. For arectangular element
(Fig. 1.20(a)), there are eight nodal displacement componentsin total (two at
each of the four nodes), and eight undetermined coefficients are therefore
used in the displacement function (equation (B.1)). Asusually formulated, the
resulting finite element is such that strain, and stress, vary linearly over the
element. This represents an enhancement over the constant-strain—stress rep-
resentation of thetriangular element, but is obtained at the expense of reduced
geometric freedom, since rectangular elements cannot easily model irregu-
larly shaped plates, and the possibilitiesfor the production of graded, irregular
element meshes are much more limited than in the case of triangular elements
(Fig. B.1). If itisdesired to retain the triangular shape but improve the accu-
racy of the representation, then additional, mid-side nodes may be used (Fig.
1.20(b)) to give atotal of 12 nodal displacementsand a similar number of un-
determined coefficients.

A further refinement isto employ atransformation such that the element is
formulated in a set of local element coordinates and is then mapped onto its
true structural positionin aset of global coordinates (Fig. 1.21). The mapping
should be such that the nodes are exactly mapped onto their actual positions,
while other element locations will generally be approximately positioned.
One advantage of such a mapping is the ability it provides for the better ap-
proximation of curved boundaries. An elegant approach to this mapping oper-
ation is to use the same function for the transformation as is used for the
displacement function and elements so derived are termed isoparametric
(Zienkiewicz and Taylor, 1989).

@ (b)
Fig. 1.20 Element types: () rectangular; (b) triangular with mid-side nodes
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(a)

(b)

Fig. 1.21 Isoparametric elements: (a) linear; (b) quadratic

If an isoparametric transformation is applied to a four-noded rectangular
element, then the normal formulation for this element utilizeslinear displace-
ment functions aong the element boundaries. Consequently, the
isoparametric transformation will also be linear a ong the boundaries and will
allow the rectangular element to model a quadrilateral area on the structural
mesh (Fig. 1.21(a)). Similarly, a rectangular element with mid-side nodes
uses a quadratic displacement function along its edges, and the corresponding
transformation resultsin astructural mesh shape with curved boundaries (Fig.
1.21(b)), so permitting actual curved edges to be represented as a series of
guadratic approximations by the elements |ocated along the edge. The versa-
tility and accuracy of this eight-noded isoparametric element has made it one
of the most popular in practice. The formulation and use of the element is
given in the following section.

|.4.4 Eight-noded isoparametric element

The concrete splitting test described in relation to testing a concrete cube in
example 1.1 isin fact more usually undertaken with a cylindrical specimen.
Should it berequired to analyse thisform of thetest using triangular elements,
then a mesh such as that shown in Fig. 1.22(a) could be employed but the
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.

(a) (b)

Fig. 1.22 Element meshes: (a) triangular; (b) isoparametric

o
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>
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i J k
1 1

Fig. 1.23 Basis element

circular boundary would be rather crudely approximated. |soparametric ele-
ments provide the opportunity for much better boundary representation (Fig.
1.22(b)) and will, in general, produce a more accurate solution both for this
reason and also because the element is more powerful.

Theory

A central concept of the eight-noded isoparametric element is that, for sim-
plicity, its properties are established with reference to abasis element and the
properties are subsequently mapped (Fig. 1.21) onto the geometry each
element actually occupies in the finite element mesh. For the typical square
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basis element shownin Fig. 1.23, there are eight nodes with two displacement
components (u, V) at each node, so that atotal of 16 undetermined coefficients
can be used in the displacement component polynomials, or eight to each of u
and v. The lowest order of polynomial containing eight coefficients, whichis
also symmetricin x andy, isto take

U=y + o€ +agn+ 04452 +aén+ 045772 + 0475277 + 0485772 (1.53)

and

2 2 2 2
V=g + el + aggn+ agp” +agaln +agn” + s+ agdn

In the following, the formulation will be established with respect to the u dis-
placement component and the x-coordinate, since v, y expressions may be
inferred from the corresponding u, x ones. Thus, by letting the general point P
take the positions of the eight element nodes, i—p, in turn, the displacement
components may be related to the undetermined coefficients by

1-1-1 1 1 1 -1 1]
10-1 0 0 1 0 O
1 1-1 1-1 1-1 1
1 1 0 1 0 0 O
o5t = =[C*® 1.54
b= | | 1 1 1 1 1 qf=[CHa (1.54)
10 1 0 1 0 0
1-1 1 1-1 1 1-1
|11 0 1 0 0 0 O]
where {a} ={a,, a,, ..., ag', the column vector of undetermined u
coefficients.
A computer inversion of [C°] gives
-1 2 -1 2 -1 2 -1 2]
0O 0 0 2 0 0 0-2
0-2 0 0 0 2 0 O
11 1 -2 1 0 1-2 1 0
== o =[CTH{5 1.55
@=21 ] 0 1 0 1 o0 ofdd=ICTH} (159)
1 0 1-2 1 0 1-2
-1 2-1 0 1-2 1 O
-1 0 1-2 1 0 -1 2]

The determination of the strain components requires the evaluation of
du/ax, du/dy, which poses some immediate problems since the axes £ and
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are currently being employed. To overcome this difficulty, the chain rule of
differentiation may be used to give

u_dudx dudy

0§ oOXxdE adyd

1.56
u_aax udy =0
on oxon dydn

or
u) [ax dy](au ) (au
o | |05 a¢|[ox o ox

= ZJ
au[~|ax ay||au or au [J] au (1.57)
an on on|lay an ay

If it is presumed for the moment that it is possible to evaluate the Jacobian
matrix, [J], and that [J] is non-singular, then, since u derivatives with respect
to £ and n arereadily available from equation (1.53), the x- and y-derivatives
may be obtained as

) [
OX| 1) 98
u =[J] 2 (1.58)
ay an

The evaluation of [J] requires the - and 7-coordinates to be mapped onto the
X, Y system. The ‘iso-" prefix in the term isoparametric comes from the
concept of using the same function for this mapping as that used for the dis-
placement function (equation (1.53)). Thus, it is assumed that

X=oy +a,+ogn+ a4§2 +agn + aGnZ + 0475277 + agfnz (1.59)
and

2 2 2 2
Y =g+ el + gy + 08" + gl + agn” + g+ gl

Just as the displacement components are made to coincide exactly with the
nodal components, so the nodal geometric components are made to coincide
exactly with the nodal coordinate positions. Hence

{x}=[CTa}, {a}=[CT{x%} (1.60)
where

{XE}Z{Xi, XJ' Xy X Xy Xpy X Xp}T
Now, from equation (1.59),
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X

| |01 02 n 0 29 7
x| |0 01 0 ¢ 2p & 2y

an
But, using equations (1.60) and (1.55),
ox

G13
ox

an

{a,} =[Q{o} (1.61)

=[QICT {x} =[Sl{x?} (1.62)

where
Sy =A=-m)(2E+n)/4, S, ==EA=-n), S5 =A=-n)(2-n)/4,
S, =(1-1°)/2, S5 = @+ )2+ )4, S =—E(L+1),
Sy = @24, Sg=—~(1-1°)12, Sy =1-E)(E+2n)/4,
S, =—(1-€)12, Sy =(1+&)(=E+2n)/4, S, =-n(1+¢),
Ss = (L+E)(E+20)/4, Se=(1+E%)12, S; = (1-E)(=E+2)/4,
S =—n(1-¢)
The x-derivatives provided by equation (1.62), together with the corre-
sponding y-derivatives, enable the Jacobian matrix to be evaluated at any
given point within theisoparametric element from equation (1.57). Inturn, the
Jacobian allows the u displacement derivatives with respect to x and y to be
obtained from equation (1.58), since, by theiso- nature of the formulation, the
derivatives with respect to £ and n are given (see equation (1.62)) by
au
o€
au
an
Once the u displacement derivatives have been found, the v ones follow by

correspondence and the strain matrix, [B], is obtained by using the standard
plane stress expression (equation (1.13))

=[QIICT{u%} =[S{u} (1.63)

au

ox
o ov
€y = a—y (164)
o av

dy ox
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The standard concepts of the finite element method may then be invoked (see
Appendix B) but require some modification to adapt the method to &- and 7-
coordinates and aso due to the fact that [B] is no longer constant, as with the
previoustriangular element, but, as may be seen from equation (1.63) and the
form of [ (equation (1.61)), afairly complex function of £ and . To cope
with these features, the standard element stiffness relationship (equation
(B.11)) may be first converted to &- and n-coordinates by further use of the
Jacobian matrix, since it may be shown (Stroud, 1995) that

d¢ dn = det[J] dx dy (1.65)
Thus

[kl =t [[BI"[D][B] det[] d iy (1.66)

Equation 1.66 will obviously reflect [B] and be an even more complicated
function of ¢ and n than [B] itself. It istherefore necessary to resort to numer-
ical integration to evaluate the integral of equation (1.66), and Gaussian
integration is normally employed for this purpose. The Gauss method
(Zienkiewicz and Taylor, 1989) requires the function to be integrated to be
evaluated at anumber of Gauss points. The number of pointsemployed can be
varied according to the accuracy desired but acommon choiceis nine points.
Once the number of points has been selected, the integration rule designates

y A 69.29
53.03 (mm units)
n A
o n m
+7 +8 9+
4 5 6 1
P+ + >
$
1 2 3
+ + +
i J k
f T 1
(a) (b)

Fig. 1.24 (a) Gauss points. (b) Cylinder representation
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Table 1.2 Gauss point positions and weights

i & U W

1 -0.7746 -0.7746 0.3086
2 0 —0.7746 0.4938
3 0.7746 —0.7746 0.3086
4 -0.7746 0 0.4938
5 0 0 0.7901
6 0.7746 0 0.4938
7 —0.7746 0.7746 0.3086
8 0 0.7746 0.4938
9 0.7746 0.7746 0.3086

the position of these such that optimal accuracy results, and, for the basis
element (Fig. 1.24(a)) equation (1.66) would be evaluated as

[K] =ZV\4t[3]T[D][3]det[Ji] (1.67)

where the positions of the Gauss points and the values of the weights, w;, are,
for the nine-point rule, to be taken as given in Table 1.2.

Application to cylinder analysis

Since it is more powerful, the isoparametric element is consequently much
more complex than the linear triangular type and is certainly not intended for
hand calculations. However, for demonstration purposes only, the very sim-
plest one-element isoparametric representation of the quarter-cylinder anal-
ysis (Fig. 1.24(b)) will be undertaken in outline.

For this element, the nodal x-coordinates are given by

{x}={0 375 75 69.29 5303 287 0 O G} mm (1.68)
and at Gauss point 1, where £ =7 =-0.7746,
X
¢
= X
x [S{x%}
anj,

| -1.032 1376 -0.344 -0.200 -0.131 0.174 -0.044 -0.200 {Xe}
-1.032 -0.200 —-0.044 0.174 -0.131 0.200 -0.344 1.376

(3170 L69
1012 (1.69)

Using similar results for the derivatives of y, the Jacobian matrix becomes
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37.70 0.12
[J], = 012 3770 whence

. . (1.70)
L1 [3770 -012 |
[J]11=1421[—012 3770} el =

Hence

u
> ) 1 [3770 -0.12

R 171
au[ ~WITShYY 1421[—0.12 37.70}>< e
),

-1.031 1.375 -0.344 -0.200 -0.131 0.175 -0.044 —-0.200 {Ue}
-1.031 -0.200 -0.044 0.175 -0.131 0.200 -0.344 1.375

_ | -0.02726 0.03638 -0.00911 0.00529 -0.00346 0.0462 -0.00113 -0.00542 {Ue}
—0.02726 —0.00542 —0.00113 0.00462 —-0.00346 0.00529 -0.00911 0.03648

Using equation (1.71), and the corresponding result for the v-derivatives,
allowsthe strain matrix, [B], to be obtained by substitution in equation (1.64).
Equation (1.67) then provides the contribution from Gauss point 1 to the

Table 1.3 Comparative displacement solutions

Node (refer to Displacement (x10° mm)
Fig. 1.16)
8 tri. 9iso. 16 iso. 64 iso.
1 u 0 0 0 0
\Y —40.82 —76.72 —76.76 -91.47
2 u -8.16 -10.56 -10.59 -10.92
\Y -12.33 -10.11 -10.14 -10.10
3 u —8.66 -9.13 —-9.20 -9.24
\Y -1.17 2.53 2.46 2.48
4 u 0 0 0 0
\Y -16.60 -18.11 -18.18 -18.06
5 u 2.08 1.80 1.81 1.82
\Y -8.03 —7.72 —7.73 —7.75
6 u 151 1.23 1.34 1.33
\Y -0.67 1.29 1.27 1.27
7 u 0 0 0 0
Y 0 0 0 0
8 u 4.00 3.89 3.97 3.97
Y 0 0 0 0
9 u 5.62 4.70 4.66 4.66
\Y 0 0 0 0
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(a) (©) (©)

Fig. 1.25 Element meshes

element stiffness matrix, and the whole procedure must be repeated at the
other eight Gauss points to complete the stiffness matrix computation. Solu-
tion of the stiffness equations will then produce the nodal displacement
values. Element stresses are obtained from the genera relationship
{c} =[D][BI]{ 6% (equation (1.32)). Since the strain matrix is available at the
Gauss points, these are the obvious, and, in fact, by far the most accurate posi-
tionsat which to calculate the stresses. Computer packagestherefore calculate
the stress components at Gauss points but will then normally extrapolate these
values to the nodes of the element and may undertake various other ‘ smooth-
ing’ operations, to ensure, for instance, that stresses are continuous between
elements, which would not otherwise necessarily be the case.

1.4.5 Assessment of solution accuracy

Commercial packages often provide ‘error estimators which give an indica-
tion of the likely error in the results, particularly stresses, generated by an
analysis. There are then three principal waysin which the accuracy of afinite
element analysis may be improved. The simplest isto make the mesh finer so
that smaller elements are used. The elements may also be graded so that a
closer mesh isformed in areas where rapid changein strain is expected. Such
regions will be the most difficult to model and will have the greatest signifi-
cance on the overall accuracy achieved. The final possibility is to employ
more powerful elements, fewer of which may be needed. Some packages
provide ‘adaptive meshing’, which automatically generates an enhanced
mesh in order that improved accuracy can be obtained.

The application of these ideas for improved accuracy will be applied to the
concrete block analysis of example 1.1 to assess the adequacy of the solution
obtained previously, which was based on eight triangular elements.

The quarter block (Fig. 1.15) isnow divided into a mesh of nine rectangular
elements (Fig. 1.25(a)), graded such that the mesh is finest in the neighbour-
hood of the point load, where intuition and the previous solution suggest that
the strain changes most quickly. A quadrilateral isoparametric element with
mid-side nodes was used for this solution, and comparative nodal displace-
mentsare givenin Table 1.3.
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It will be seen that the displacements produced by the two solutions (‘8 tri.’
and ‘9iso.” in Table 1.3) generally correspond in sense and order of magni-
tude, but otherwise differ markedly, this being most pronounced at node 1, to
which the load was applied. The displacement under a perfect point load is
theoretically indeterminate, and the discrepancy at node 1 may therefore be
disregarded. To resolve the remaining differences, a further isoparametric
analysis was undertaken using the finer net of Fig. 1.25(b), and the displace-
ment results are given in Table 1.3 under the column headed ‘16 iso0.’. These
latter two sets of displacements correlate well, and the corresponding nodal
principal stressvalues are givenin Table 1.4.

The principal stress values derived from the two analyses (‘9 iso.” and ‘ 16
iso.” in Table 1.4) correlate lesswell than the displacement solutions, so that a
further, more refined analysis was performed in which the quarter block was
divided into 64 quadrilateral isoparametric elements as shownin Fig. 1.25(c).
The displacements and principal stresses resulting from this analysis are a'so
presented in Tables 1.3 and 1.4 respectively. Thereisgood agreement with the
displacement solutionsfrom the two previousisoparametric solutions, and the
principal stresses correlate with those of the 16-element solution in regions of

Table 1.4 Comparative principal stresses

Node (refer to Principal stress (N/mm?)
Fig. 1.16)
9iso. 16 iso. 64 iso.
1 o, 1.04 1.00 -1.57
o, —-149.3 —-149.0 -300.7
2 o, 6.18 6.35 3.48
o, -1.71 —2.37 -0.17
3 o, 131 0.33 -0.09
o, -0.36 -0.39 -0.12
4 o, 2.80 254 4.06
o, -15.2 -15.7 -18.0
5 o, 0.40 0.41 0.54
o, —6.22 -5.99 -6.13
6 o, 1.59 1.80 1.73
o, -0.22 0.10 0.02
7 o, 4.79 4.19 4.24
o, -11.94 -12.5 -12.8
8 o, 1.58 1.63 1.60
o, -7.30 —6.82 -6.77
9 o, 0.64 0.44 0.46
o -0.43 -0.09 -0.02
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Fig. 1.26 Principal stress diagrams

the block remote from the load. Close agreement will never be obtained at the
load position, but it is of some interest that the discrepancies persist until the
mid-points of the quarter-block sides (nodes2 and 4 in Fig. 1.16).

A principal stress diagram based on the 64-element resultsis given in Fig.
1.26, and it may be seen that all the compressive principal stressesareinclined
towards the general direction of the load, without the occasional anomalous
behaviour detected inthe earlier triangular element analysis (Fig. 1.18). From
the material behaviour point of view, the final analysis does substantiate ex-
perimental evidence that the greatest tensile principal stressis located at the
centre of the block, and not at node 2 as indicated by the 16-element analysis.
The 16- and 64-element analyses correlate in respect of the magnitude of this
maximum tensile stresswhich, under increasing load, will initiate the splitting
failure referred to previously.

The general conclusionsto be drawn from this exampl e assessment of solu-
tion accuracy are threefold. First, in the absence of prior experience, progres-
sion to successively finer nets is essential to ensure confidence in solution
accuracy. Second, correlation of displacements is an indication, but not a
guarantee, of stress correlation. Finally, solutions will generally not be reli-
ablein theimmediate vicinity of point loads. If thislatter featureis of signifi-
cance, then point loads should be represented as pressure loads over thelength
they can be expected to be applied to in practice. A detailed analysis of the
arealocd to the load should then be undertaken using a fine element mesh.
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1.5 Plane strain

1.5.1 Introduction

Just as stresses may be confined to act within aplane, so strains may be simi-
larly restricted, giving rise to problems of plane strain. Plane stress is associ-
ated with elementsin which the thickness of the element is of an order smaller
than its other dimensions, while the reverse appliesin plane strain, in that the
thicknessisof an order greater than the cross-sectional dimensions. The other
requirements for plane stress apply equally to plane strain, namely that the
loading on all cross-sections should be the same and should act in the plane of
the cross-section.

Plane strain conditions are encountered in practice in the analysis of long
dams, pipelines, culverts and other structures (Fig. 1.27). To appreciate that
these forms of structure and loading do imply a plane strain condition, con-
sider three equal, adjacent, thin slices from a typical structure (Fig. 1.27).
Then, given the constancy of the cross-section and |oading along the length of
the structure, the strains must be similar for each of the slices. However, equal
longitudinal extensional strains in the outer slices would imply a dissimilar
contraction in the central slice. Conversely, similar longitudinal contractional
strainsin the outer slicesimply an extension of the central slice. Henceit must
be concluded that direct longitudinal strain cannot exist in such circum-
stances, and the situation does indeed resolve itself into one in which the
strains are confined to the plane of the cross-section, since the symmetrical,
co-planar nature of the loading and the cross-sections al so prevents the devel -
opment of shear strains other than in the x—y plane.

To summarize, plane stressis characterized by the three stress components
o, o,and 7, which act in the x-y plane. The direct stress componentswill, in
general, produce strainsin the normal z-direction by the Poisson’ sratio effect
but the stress component in this direction will be zero everywhere. Plane
strain, on the other hand, is characterized by the three co-planar strain compo-
nentse,, e, and v, with zero strainin the longitudinal (z-) direction, but, asis
shown below, longitudinal direct stress components will generally exist for
non-zero Poisson’ sratio.

Fig. 1.27 Dam structure
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1.5.2 Stresses and strains

By using the zero z-direction strain condition in the relevant (third) stress—
strain relationship from general elasticity (equations (1.5)), the z-direction
direct stress component may be determined as

o,=v(o,+0o,) (2.72)

Equation (1.72) shows that longitudinal direct stress will exist under plane
strain conditions, provided that Poisson’ sratio is non-zero. The equation may
also be used to determine the longitudinal direct stresses, once a solution for
o, and o, has been established. The plane strain strain-stress relationships
may be obtained by substituting from equation (1.72) in the first two of equa-
tions (1.5) to give

6X=é[(1—1/2)ax—1/(l+u)o'y]=1_V2(a - ayj

E U* 1-v
1 1-0°
=t +a- A= (s, ) am
1
’nyzaTxy

By comparing eguations (1.73) with the corresponding plane stress strain—
stressrel ationships (equations (1.15)), it may be seen that the plane strain case
becomes analogous to one of plane stress if modified elastic constants are
used such that

124

E ’ ’
7 Ve, G'=G 2.74)
Equations (1.74) show that plane stress and plane strain solutions are identical
for the case of zero Poisson’s ratio. The concrete block example considered
earlier (example 1.1) is intermediate between plane stress and strain, since its
thicknessis equal to its other dimensions. However, since zero Poisson’sratio
was assumed, the plane stress solution obtained will be equally applicable to
plane strain conditions. The relationships given by equations (1.74) enable any
genera plane stress solution to be converted to plane strain by appropriate sub-
stitution for the elastic constants. It should be noted, however, that, in the
absence of body forces, the general plane stress equation in terms of the stress
components (equation (1.22)) is independent of the elastic constants. Conse-
quently, the stress solution will aso be independent of the elastic constants, so
that plane strain and plane stress result in identical o,, o, and 7, values if no
body forces are present. The strain and displacement solutions will obviously
differ due to the different stress—strain relationships, and a longitudinal direct
stress given by equation (1.72) will exist in the plane strain case but be absent
under plane stress conditions. Should rel ationshipsfor the stress componentsbe

EI
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required in terms of the corresponding plane strains, then changing the subject
of equations(1.73) yieldsthe el asticity relationshipsgiven by equations (1.75).

If the finite element method is being employed, then a purpose-made plane
strain program may be constructed by forming the stress—strain matrix, [D]
(see equation (1.31)) from

_ E@-v) v
T @ r)a-2) (EX ! EEVJ

__E@-v) v (1.75)
T 1 n)a-20) (1— oo Ey)
Ty = nyy

Alternatively, if there are no body forces, then a plane stress program may be
used for plane strain provided that use is made of the modified elastic con-
stants defined by equation (1.74).
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Chapters 5 and 14 cover the analysis of stress and strain.

Ove Arup and Partners (1977) The Design of Deep Beams in Reinforced
Concrete. CIRIA, London. Includes plane stress analyses of a variety of
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Zienkiewicz, O. Z. and Taylor, R. L. (1989) The Finite Element Method, 4th
edn, Vol. 1. Basic Formulation and Linear Problems. McGraw-Hill,
London. The most comprehensive of the many available finite element
texts.

Problems

1.1 Briefly describe, with appropriate matrix equations, the principal steps
in the construction of the stiffness matrix for aconstant-strain triangular
finite element for plane stress analysis. The [B] matrix for element 1,
[B], in the plane stress plate problem shown in Fig. 1.28 is given by

1 -1 0 0 010
[Bl=—| 0 1 0 -2 0 1
2A
1 -1 -2 011
where A isthe element area, and, for both elements 2 and 3,
1 -1 0 1 00O
[B*]=[B]=—| 0 -1 0 -1 0 2
2A
-1 -1 -1 1 2 0

If v =0, construct the two different stiffness matrices. What checks can
be made on these matrices?

(KCL)

t=1mm

Im  E=10kNm?

1 i@ J i 3
ANNNNNNW \\\\\?

B EPEELEN
1 v 0
__FE 1 0
[]—(l_yz)” a0

Fig. 1.28
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Fig. 1.29
1.2 Choose a suitable, simple finite element mesh (nho more than four

13

14

52

elements) of triangular plane strain stiffness elements for the stress
analysis of the plate problem shown in Fig. 1.29. With suitable node
numbering and referring to the global stiffness matrix components of an
element nas

K, i=1..,6 j=1..,6

(@) Givethe assembled global stiffness matrix.
(b) Modify the matrix for the displacement boundary conditions.
(KCL)

Figure 1.30(a) shows a finite element idedlization for a thin plate
analysis. If the element stiffness matrices are as given on Fig. 1.30(b),
construct the part of the structure stiffness matrix which relates the
forces at nodes 14 to the displacements at nodes 1-8.

(UEL)

Figure 1.31 shows a plane stress finite element idealization of a thin,
uniform plate analysis. The displacements obtained from the analysis
are given, in part, in Table 1.5. Calculate the stressesin elements 1, 5
and 9 and relate these stresses to the expected behaviour of the plate
(E =200 kN/mm?, v = 0, t = 2.5 mm).

(UEL)
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Table 1.5
Node 3 5 6 7 9 10 11
u (x10?% mm) 2.00 398 4.02 5.91 765 8.35 8.82
v (x10° mm) -3.34 -11.8 0 -34.5 -56.7 0 215
Y [r (mm units)
1 2 3
' i
o 20 ©
37.5
4 ©
5
25.0 '® @ __X
° ®
| 37.5
25.0
ICARNECH P
9 8 u
L 37.5 37.5
DL -
Fig. 1.32

1.5 A 1mm dlice of aquarter of the concrete block shown in Fig. 1.14 has
been analysed by the finite element method using constant-strain
triangul ar elementsarranged in the graded mesh showninFig. 1.32. The
displacement results from the analysis are given, in part, in Table 1.6.
Determine the stresses in elements 3, 4 and 5, and compare the values
obtained with those of Tables 1.1 and 1.3, giving reasons for any
discrepancies.
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Table 1.6
Node u (mm) v (mm)
4 0 -0.023132
5 0.001234 —0.007472
6 0 —0.010444
7 0.003067 0
1 kN
(total)
1 3 6
P kN @ @ 100
(total) @
ORI
2
) @
y 100
© ¢
5 AN
X
(mm units)
50 50 100 N

(@)

[97 53 22 57 46 12 14 13 -8 15]
53 169 -9 134 44 56 -5 54 -35 49
2 9 50 -10 13 0 21 0 12 1
57 134 -10 154 42 52 2 55 -38 51
. Lo L4644 13 42 49 11 11 14 -5 15
{A}=[KT"'{W} where [K]"' =10 mm/kN

12 5 0 52 11 54 0 36 -12 31
4 -5 21 =2 11 02 -1 11 2
13 54 0 55 14 36 -1 44 —-13 37
-8 35 12 -38 -5 —12 11 -13 50 -I8
115 49 1 51 15 31 2 37 -18 60]

(b)

Vi~V 0 y-y 0 y-y 0
[Bl=—| O X, =X, 0 X, =X, 0 X=X,
X =X V=V T Xy Va7 X7 YTV

(©)

Fig. 1.33
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16

17

Under the action of the 1 kN load alone, the x-direction direct stress
component in element 3 of the corbel analysis shown in Fig. 1.33 is
10.7 N/mn. It is proposed that this tensile stress component be
eliminated by application of the uniformly distributed pre-stress shown
inFig. 1.33(a). Determinetherequired value of P if theinverse structure
stiffness matrix for the analysis is as given in Fig. 1.33(b) and the
element strain matrix isasgivenin Fig. 1.33(c) (E = 30 kN/mm?, v = 0).

Would the pre-stress acting alone produce atensile principal stressin

element 77?
(UEL)

For the rectangular plane stress finite element shown in Fig. 1.34, it is
proposed to use an assumed displacement function such that the
displacement components u and v at a general point, P, are given by

U=, + X+ azy+a, Xy
V=g +agX+a,y+ agXy

Fig. 1.34
a a
C ,
W y
: ™ 2 3
b
w J "
b i i
X
s 7 3 9 <)—”——c>l
b
10 11 12
NYANNNANANANNNNFGHY
(a) (b)

Fig. 1.35
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18

19
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Determine the general form of the strain matrix, [B], which relates the
three strain components a P, ¢, ¢, and ~,, to the eight nodal
displacement components. What form of strain variation within the
element may be represented accurately? Indicate, without detailed
evaluation, how an expression for the element stiffness matrix could be
obtained.

A shear wall, ABCD, is fully restrained at the base and is loaded as
shown in Fig. 1.35(a). It is to be analysed with rectangular plane stress
finite elements of the form shown in Fig. 1.35(b). The dimensions and
the order of the nodal displacements are as shown in the figure.

The stiffness matrix for an element is

- :ji ‘ symmetric
[k]=t££[B]T[D][B]dxdy= K‘i' K "
ki Ky o K Ko

(@) Describe briefly the matrices [B] and [D] and define a typica
element 2 x 2 sub-matrix.
(b) Assemblethe global stiffness matrix for the wall.
(UEL)

An eight-noded isoparametric finite element mesh for a shear wall is
shown in Fig. 1.36(a). The structureis subjected to the horizontal nodal
loads shown in the figure. Figures 1.36(b) and 1.36(c) show output
results in the form of contours of absolute maximum principal stress
values and principal stress vectors, respectively.

Usethefiguresto describe the response of the structure to the applied
loading.



2. Torsion

2.1 Introduction

Thetwisting of rods used asdrive shafts, or of girderswhich support |oads ec-
centrictotheir longitudinal axes, isafamiliar concept. Lessobviousistherole
of torsionin slabsand grillages, wherethetorsiona stiffnessassistsin thedis-
tribution of load through the structure. Torsion is also an important aspect of
box girder design, sincethisform of section (Fig. 2.1(a)) isparticularly stiff in
torsion and is therefore well able to resist eccentric loads. Box girders also
possess the twisting rigidity required to avoid the torsional oscillationswhich
dramatically destroyed the Tacoma Narrows bridge. This suspension bridge
was susceptible to wind-induced vibrations and collapsed in amoderate wind
only months after its completion in 1939.

A somewhat curious feature of closed sections, such as box girders, isthat,
if they possess more than one cell and are therefore multiply connected
(Fig. 2.1(b)), then torsion theory is needed to determine the shear stress re-
sponse even if theload is applied through the girder axis and the section is not
therefore twisted.

The considerations applicable to box girder design are also relevant to the
analysis of multi-storey buildings constructed on the structural core principle
if the concrete core forms a closed section (Fig. 2.2(a)). Should a closed core
be architecturally inappropriate, then cores consisting of one or more open
sections (Fig. 2.2(b)) are used. Open sections are typically less stiff in torsion
than closed sections and the distribution of shear stress across the section also

\_/

() (b)

Fig. 2.1 (a) Singly-connected box girder. (b) Multiply-connected box girder
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differs in the two cases. Open sections therefore require separate consider-
ation from closed ones. Open section torsion theory will also apply to standard
structural steel sections, since, tubes and rectangular hollow sections apart,
these are of an open form.

Elastic stability problems (Trahair, 1993) also often require aknowledge of
torsional behaviour. The commonest example is lateral beam instability, in
which abeam bent about its major axis buckles sidewards by acombination of
twisting and minor axis bending.

Torsional actionisthereforeimportant in awide variety of applications, and
the purpose of this chapter is to describe how the torsional response of dif-
ferent structural sections may be evaluated.

Two-cell concrete core Open core walls

\

— 1 | oy e r— 1

1] 1

22222l

: Flooring steelwork

(@) (b)

Fig. 2.2 Concrete core construction plans

e
'Q—DI §\\\ NNNN\Y 0 is the shear centre

N |

T ;S F causes bending without twisting

- - -
0 S T causes twisting without bending

N !
N W causes both bending and twisting

l

Fig. 2.3 Shear centre

60



Torsion

7

~

N\

‘Warping

e

-

Fig. 2.4 Saint-Venant torsion

2.2 Torsional behaviour

When twisting occurs, it will do so about the centre of rotation of the section,
and it is about this point that the torque due to eccentric forces is calculated.
The centre of rotation coincides with the shear centre (Fig. 2.3), since, by the
reciprocal theorem, the point about which moments can be applied so as to
cause twisting without bending is the same as the point through which aload
must be applied to cause bending without twisting, that is, the shear centre
(Megson, 1996a).

Theform of thetorsional response depends upon both the type of torque and
the nature of the end restraints applied to the structural member. The simplest
caseiswhen the bar is subjected to uniformtorsion by the application of equal
and opposite twisting moments at its ends. It is assumed that the cross-section
does not deform in its own plane, so that the displacements in this plane may
be readily obtained from the twist as rigid-body movements. In addition to
thesein-plane displacements, however, nearly all sectionsdisplace alongtheir
axes when subjected to torsion (Fig. 2.4). If these war ping displacements are
free to occur unhindered, then the warping is said to be free or unrestrained.
Takentogether, the case of uniform torsion and unrestrained warping isgener-
aly referred to as Saint—Venant torsion and is such as to produce a uniform
rate of twist along the length of the bar. Saint—Venant torsion is the simplest
case to examine and is the only one to be considered in detail here.

The response required is usually the stresses caused by the torque, some-
times the twist, and, occasionally, the warping movements. The stress and
rotational characteristics are easier to determine for thin-walled sections
(Fig. 2.1) than for solid sections, since the limited wall thickness effectively
predetermines the direction of the stress at any point. The more general solid
section will be considered first, using the elasticity theory developed in
Chapter 1. Attention will then be given to the simplifications which are
possible for thin sections. Finally, some indication will be provided of the
(considerable) complicationswhich ensueif the Saint—V enant restrictions are
relaxed.
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2.3 Solid sections

2.3.1 Circular section

Thecircular section isthe only one normally considered in introductory texts
(Megson, 1996b), for the excellent reason that it is the only solid section
which may be simply discussed. For this case, the response to uniformtorsion
(Fig. 2.5) must be radially symmetric, which requires originally straight radii
to remain straight in the deformed position. Also, since warping does not
occur along lines of symmetry, thereis no warping displacement whatsoever,
so that plane sections remain plane.

Under these conditions, it may readily be demonstrated that the shearing
distortion suffered by elements on cylindrical surfaces concentric to the rod
axis (Fig. 2.5) corresponds to a shear stress distribution which varieslinearly
from the centre of the section (Fig. 2.6), actsin the plane of the element, and
the magnitude, 7, of which is given by

_T
J

where T isthe torque and J is the torsion constant (= second polar moment of
area (circular section only)).

2.1)

T

Fig. 2.5 Torsion of circular rod

vl
N
\

Fig. 2.6 Shear stresses on circular section
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Fig. 2.7 (a—) Cross-sectional warping distributions. (d) Elevation of square cross-section rod
under uniform torsion showing warping displacements

It may also be shown that the relative rotation between the ends of the rod,
0, isrelated to the applied torque by:
_TL
Y
where G isthe elastic shear modulus and L is the rod length.

0 (2.2)

2.3.2 Non-circular sections

The deformation of non-circular solid sectionsis more complicated, dueto the
presence of warping displacements. The warping displacement distribution
over the cross-section is divided into symmetrical and anti-symmetrical
regions by zero-warping cross-sectional lines of symmetry, as indicated in
Fig. 2.7.

The shear stress distribution is correspondingly more complex, and a
general solution may be sought either by a displacement approach in terms of
the warping or by aforce method utilizing a stress function.
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Displacement, strain and stress relationships

Taking axes x, y and z where x and y are cross-sectional axes as shown in
Fig. 2.8 and zisthe axis of the rod, then the corresponding displacements of a
genera point, P, are taken to be u, v and w. The original position of P is
defined by the polar coordinates(r, o) and it displacesto P’ dueto therotation,

which, at adistancezaong therod, isf (= 0’2), where 0" isthe (constant) rate
of twist. Since the cross-section is assumed rigid,

u=-ssina= —(re’z)%/ =-y0’z, v=scosa = (rH’z)r5 =X0'z (2.3)

The displacement components u and v may therefore be related to the position
of P and therate of twist, #’, by equations (2.3) but the strain—stress situation
must be further explored in order to find a solution for the warping displace-
ment, w. It is assumed that the warping on each cross-section of the rod is
identical, hence

w_

oz
Substituting from equations (2.3) and (2.4) in the strain—displacement rela-
tionships of general elasticity (equations (1.3) and (1.4)) gives

0 (2.4)

Jau ov ow
gxz—aX:O’ Ey:—ay: X EZ:—aZZO
ou ov
oy O
v ow , oW (29
g a5
ow du , OW
”f&*&:(—w *&)

Fig. 2.8 Typical cross-section
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(d)

Fig. 2.9 Torsional shear stress components

The stress—strain rel ationships (equations (1.8)) are now used to determinethe
stresses as

:O'Z:’]' :O

oy=0 Xy

y
, oW
TyZ = G’sz = G(XQ + a—y] (26)

T =Gy, = G(—y@’ + a—Wj
oX
Under Saint—Venant conditions, torsion is therefore resisted by shear stress
alone, the direct stress components being zero throughout the bar, and the
shear stress may be represented by the two normal components, 7., and 7.
These components both act in planes which are perpendicular to that of the
cross-sectional plane of the rod and may be combined to give aresultant shear
stress which also acts in a plane perpendicular to that of the cross-section
(Fig. 2.9(a)). It should be noted that the zero values of the stress components
00, and Tyy areadirect result of therigid cross-section assumption, whilethe
zero direct longitudinal stress, ,, follows from the unrestrained warping
assumption of uniform torsion.
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Equilibrium

In Fig. 2.9(b), the two non-zero sets of shear stress components are shown
acting on elementary blocks, having sides dx, dy and dz. The complementary
nature of these stresses ensures satisfaction of moment equilibrium; force
equilibrium may be ensured by resolution first in the x-, y-directions to give

9o _ 9 _
0z  dz
Thus, the shear stresses do not vary with position along the bar so that the
shear stress distribution on each cross-section of the bar isidentical, just asit
was earlier assumed (equation (2.4)) that the warping distribution is inde-
pendent of cross-section.
Resolving in the z-direction:

2.7)

J
It e (ayz) + % dy(ckciz) = O
oX ay
So that
or orT v
T, "2 _g )
0X " ay (28)

Equation (2.8) is the fundamental equilibrium equation of torsion.

Displacement formulation

To obtain a general torsion equation in terms of the warping displacements,
the shear stress components of equation (2.6) are substituted into the equilib-
rium equation (2.8) to give

Gi(—y9’+a—w)+ei(x0’+alvj =0

ox ox oy ay
Hence
’w  9*w
W, W _y )
Py oy’ 29

Since w is assumed to be a continuous function, compatibility is automati-
cally satisfied, so that a solution to the torsion problem is represented by a
function of w which satisfies equation (2.9) at all points on the section and
which also satisfies the boundary conditions. Warping will not be directly
subject to boundary restraints in the Saint—Venant case, but there will
usually be restrictions on the boundary values of the shear stress compo-
nents which may berelated to differential functions of w by equations (2.6).
The eguation of interest, equation (2.9), is of the Laplace type which was
encountered previously in connection with plane stress analysis (equation
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(1.19)). Unfortunately, closed-form solutions to the Laplace equation are
not readily derived for practical torsional boundary conditions, and numer-
ical methods are therefore usually employed. Once a warping displacement
solution has been obtained, the shear stress components may be calculated
from equations (2.6).

Sress function formulation

Thisapproach aimsto utilize astressfunction so that the equilibrium equation
is automatically satisfied. Such a function may be obtained for the torsion
problem by taking the shear stressin a given direction to be the derivative of
the stress function in the direction normal to that of the stress. Thus,
d¢ 99

Ty 3y v Ty o (2.10)
In equation (2.10), the negative sign in the 7, shear stress component arises
from the fact that its normal (which is generated by taking a positive (anti-
clockwise) rotation from the stress component) is in the negative x-direction
(Fig. 2.10).

By substitution from equations (2.10), it isreadily shownthat ¢ satisfiesthe
equilibrium equation (2.8). It remainsto ensure that the compatibility and ma-
terial laws are fulfilled. This may be achieved by noting that, at any given
point on the section, the two shear strain components, -, and v,,, arerelated to
a single independent displacement, w (see equation (2.5)). The two shear
strain components must therefore be related by a compatibility condition
which may be derived, interms of the shear stress components, by eliminating
w from equations (2.6) to give

Jr, O

X oGy _
x 3y (2.11)

Section boundary

Rod surface
(a) (b)
Fig. 2.10 Boundary condition: (a) quarter cross-section; (b) boundary enlargement
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Substituting in equation (2.11) for 7, and 7, from equation (2.10) produces
the general stress function equation of torsion as

o %9

— 4+ — =-2GV’

EYPY: (2.12)
Equation (2.12) is of the Poisson type and, to assess the expected difficulty of
itssolution, it isnecessary to explore the nature of the boundary conditions. At
aboundary (Fig. 2.10), the stress component normal to the boundary must be
zero or acomplementary component would exist on the exterior surface of the
bar which would conflict with the stress-free state of this surface. In stress
function terms, thisimplies that:

At aboundary
0¢
= —= O
Th 3s (2.13)

Integration of equation (2.13) shows that the stress function must have con-
stant value around the boundary. The choice of thisconstant isimmaterial, but
it isconveniently taken to be zero. The problem therefore requiresthe solution
of equation (2.12) subject to azero-valued stressfunction at the boundary. Al-
though thisis arelatively simple boundary condition, closed-form solutions
have only been derived for regular sections (Timoshenko and Goodier, 1982)
and numerical methods are used for more complex shapes. Once astressfunc-
tion solution has been obtained, the corresponding shear stress components
follow from equation (2.10).

Torgue and torsion constant determination

Thetorque required to produce a specified rate of twist, 6”, may be calculated
from the corresponding stress component solution. The torque, dT, acting on
the element shown in Fig. 2.11, isgiven by

[

Fig. 2.11 Torque determination
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dT =—yr, dxdy + xr,, dxdy (2.14)
And, thus, the total torque, T, by
T = [[(~yr, +xr,,)dxdy (2.15)

If a stress function approach is being used, then the torque may be found di-
rectly from the stressfunction by substituting in equation (2.15) from egquation
(2.10) to give

T- ”(—y% _ x%)dxdy (2.16)
Integrating equation (2.16) by parts shows that
T = [([=yol: + [ ody) o+ [ ([-x01¢ + [ o cx]cy (2.17)

where a, b, ¢c and d are points on the section boundary.
Making use of the zero ¢ boundary condition resultsin

T =2[ paxay (2.18)

Equation (2.18) allows T to be calculated from the stress function, and equa-
tion (2.17) incidentally demonstrates that the two shear stress components
make equal contributionsto thetotal torque. Asfor the circular section case, a

relationship exists between T and 6’ of the form (see equation (2.2))

T= GJ% =GJY (2.19)

Equation (2.19) can now be used to obtain thetorsion constant, J, if T hasbeen
calculated for the specified 6’ as just described (equation (2.15) or (2.18)).

2.3.3 Finite difference solutions

The need for anumerical method has been indicated above, and a convenient
approach is the finite difference method, which approximates the relevant
partial differential equations by sets of simultaneous linear equations. The
reader who has not studied this technique previously is referred to Appendix
A, where the characteristics of the method and some necessary basic relation-
ships are presented. In this section, the method is first applied to the warping
displacement formulation, and second to the stress function formulation, and
the results from the use of the two approaches are then compared.

Warping displacement approach

Example 2.1 —rectangular section. Thefinitedifference method will be used
to determine the shear stress distribution and the torsion constant for the
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6a
| 7).
o

(a) (b)

Fig. 2.12 (&) Rectangular section. (b) Finite difference grid

rectangular section of Fig. 2.12(a) when it is subjected to auniform torque, T,
producing a constant rate of twist, 8. By symmetry, only a quarter of the
section need be considered and the 3x 2 grid to be used is shown in
Fig. 2.12(b). To produce afinite difference model of thistorsion problem, dif-
ference approximations to the general warping displacement equation (2.9)
must be created at all relevant grid points and the appropriate boundary condi-
tions must be incorporated. It isfirst noted that warping does not occur on the
two lines of symmetry, so that only six independent points on the section need
be considered (Fig. 2.12(b)). However, the shear stress boundary conditions
(Fig. 2.10) require that the normal shear stress components along the edges
x =3aandy = 2a be zero so that along

x =33, Ty = 0 (2.203)
and along
y=2a, 71,=0 (2.20b)

From the shear stress expressions (equations (2.6)), it is seen that these
boundary conditionsinvolvefirst derivatives of thewarping displacement. To
evaluate the central difference expression (equation (A.5)) for atypical first
derivative, dw/dy, at point 1, for example, requires a grid position 7
(Fig. 2.12(b)) and points 8-11 are required for the evaluation of the deriva-
tives needed at the remaining boundary points. These fictitious points outside
the section have no physical significance but are mathematically legitimate,
since there is no reason why the warping displacement function should not
extend beyond the confines of the section, provided it obeys the boundary
conditions at the section edges.
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There are thus 11 independent warping displacementsto be calculated. Ap-
plying the Laplace operator (Appendix A, Fig. A.5(a)) to points 1-6 will
provide six of the necessary equations, while the remaining five result from
difference approximations to the stress component boundary conditions
(equations (2.6) and (2.20)). The difference approximation to the boundary
condition at point 1, for instance, is formed as follows:

ow W —W)
7,), =G| X0'+— | =G| &’ +———=|=0
Hence
—-W, +W, = —2a°¢’

The remaining boundary conditions may be developed in asimilar fashion,
and the full set of difference equationsis presented as

4 1 0 1 0 010000 0
1 -4-1 0 1 001000 0

0 14 0 0 100110 0

1 0 04 1 000000 0

0 1 0 1 -4 100000 0

0 0 1 1 -4 000 0 1fw={ 0}a%

0 0 0-1 0 010000 -2

0O 0 0 0-1 001000 -4

0O 0 00 0-100100 -6

0-1 0 0 0 00O0O0T1D0 4

0 0 0 0-1 00000 1] 2 (2.21)

where{w} ={w,, W,, ..., w,;} " isthewarping vector. The sol ution to equation
(2.21)is

{w} ={-1.275, —2.103 —1.694, —0.499,
—0.722,-0.284, —2.499, —4.722, (2.22)
-6.284, +1.897, +1.278 " a’0’

The shear stress components may be calculated from difference approxima-
tions to equations (2.6). For example, at point 5 (Fig. 2.12(b)),

W, — 0) — 0.95aG6’
a

Ty =G(x0’+%—vyvj =G(2a6’+

. (2.23)

Ty = G(—ye’ + —W) = G(—aﬁ’ + —Wﬁz‘ W j = -0.89aG¢’
a
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Figure 2.13(a) shows the shear stress components and, also, the direction of
the shear stress resultants, which may be compared with the expected trajec-
tory diagram of Fig. 2.13(b). It may also be observed from the shear stress so-
lution aong the centre-linesthat, unlike the circular section, shear stressisnot
linearly related to distance from the centroid. The maximum shear stressis, in
fact, at the centre of the longer side.

The torgue needed to produce 6" may be determined from the shear stress
components by numerical evaluation of the doubleintegral in equation (2.15).
The double integration may be accomplished by the familiar (Stroud, 1995)
Simpson’ srule, namely, for an odd number of stations at equal spacing, h, the
‘one-third rule’ is

| =jfdng[(fl+ £)+4(F, +..+ ) +2(f+...+ 1, )] (2.24)

A similar rule may be developed for an even number of equally spaced sta-
tions, in which case the ‘three-eighthsrule’ is

|:jfdxz3—;[(fl+fn)+3(f2+...+fn,1)] (2.25)

Theordinatevaluesof thefunction—yr,, + xr,,involvedinequation (2.15) are
giveninFig. 2.14(a). Applying equation (2.24) for each of thegrid-linesinthe
y-direction providesthe areas under the function along these lines, asgivenin
Fig. 2.14(b). Using equation (2.25) to integrate these areas into a volume for
the quarter section gives

V =2[(4.19+11.32+ 3(4.49+ 6.05)]a"GH’ = 17.67a"GH’
Thetotal torque is therefore

T =4x17.67a*GH’ = 70.7a°Go’

<150 136 \—0.89 0 i ’ ‘
0 +0.36 +0.95 +2.15 4a -
i

10 _ ?9 _?0 __do

0

+0.50 1128 x 4272
Multiplier: aG6’

(@) (®)
Fig. 2.13 (&) Shear stress solution. (b) Shear stress trajectories

72



Torsion

6.56 6.10 4.42

~1.50 1.72 2.79 6.45

Multiplier: a*G6’

Multiplier: a*G0’

(b)

Fig. 2.14 (a) Ordinates for torque computation. (b) Areas enclosed by ordinates

Stress function approach

From equation (2.19), it follows that the torsion constant, J = 70.7a*. A
closed-form series solution is available for this problem (Timoshenko and
Goodier, 1982) and comparative values are given in Table 2.1.

Example 2.2 —rectangular section. If example 2.1 is tackled using a stress
function, then six independent grid positions again need to be considered
(Fig. 2.15). However, the six pointsare now all interior points, since boundary
stress function values are known to be zero (see equation (2.13) et seq.).
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Symmetry requires that the shear stress components along the centre-lines be
zero. From the stress function definition (equation (2.10)), this implies that
thefirst derivatives of the stress function normal to the centre-lines must also
be zero. Equation (A.5) showsthat thistype of requirement ismet by symmet-
rical difference points. The points required are shown in Fig. 2.15, and this
symmetry of the stress function should be contrasted with the anti-symmetry
of the warping displacements.

Using equation (A.11) to model the general stress function equation (2.12)
at the six grid points, the difference equations are as presented below:

4 2 0 2 0 0 -1
14 1 0 2 0 -1
0 1 -4 0 0 2 -1

={ t2aGY 2.26
1 0 04 2 of?7)4 (2.26)
0 1 0 1 -4 1 -1
0 0 1 0 1 -4 -1

where {¢} ={b,, b5, ..., ¢} ' isthe stress function vector.

Table 2.1 Rectangular section solution comparison

Max. T J
Multiplier aGy’ a'
Finite difference 3.28 70.7
Closed form 3.40 75.3
a a a
y |<)————c>!<)—(>1<——4>|
]l ]

s

&

EEgEN

Fig. 2.15 Stress function finite difference grid
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Multiplier: a*G6’

(a)

v
_____ Vs

4.23 3.91 2.73 0

Multiplier: a*’GO’
(b)

Fig. 2.16 (a) Stress function ordinates. (b) Areas enclosed by ordinates

The solution to equations (2.26) is

{# ={3.317, 2.889, 1.997, 2.387, 2.206, 1.553  a’Go’ (2.27)

From the stress function solution, the shear stress components may be calcu-
lated by difference forms of equations (2.10). At interior points, the required
first derivatives may be calculated from central differences but, at boundary
points, the absence of exterior points requiresthe use of backward differences
(see Appendix A). Thus, at the point of maximum shear stress, P (Fig. 2.16),
by application of equation (A.10), the shear stressis

To=(1,)p = (a_ﬂ _3x0-4%239+314 iy - 32160 (2.29)

Y ), 2a

Simpson’s rules for numerical integration, equations (2.24) and (2.25), may
again be employed to calculate the torque from equation (2.18), using the
stressfunction values of Fig. 2.16(a). Applying equation (2.24) for each of the
grid-linesin the y-direction provides the areas under the stress function along

75



Advanced structural mechanics

these lines, as given in Fig. 2.16(b). Using equation (2.25) to integrate these
areas into avolume for the quarter section gives

V =2[(4.23+0) +3(3.91+ 2.73)] a’Go’ = 9.06a*GH’
Whence

T=2x4x9.06a"GH’ = 72.5a"G#’

The torsion constant, J, then follows from equation (2.19), and the resulting
value is compared with other solutionsin Table 2.2.

2.3.4 Comparison of solution methods

Regular solid sections are generally amenable to classical methods, often
resulting in a closed-form series solution (Timoshenko and Goodier, 1982)

Table 2.2 Rectangular section solution comparison

Max. 7 J
Multiplier aGy’ al
Finite difference — displacement method 3.28 70.7
Finite difference — stress method 321 725
Closed form 3.40 75.3
Table 2.3 Properties of solid sections
Max. 7 multiplier:
Section (T1J) or GO’ J Example
Circle 1.00(D/2) 0.098D*
D = diameter D
Square 1.35(s/2) 0.141s' N e
s=side & ’
Rectangle a(t/2) (Bt \\\Q
B = breadth N N !
t = thickness
B
For o, 3 see Table 2.4 L

Equilateral triangle 1.50(h/3) 0.0385h" b
h = height

Table 2.4 Rectangular section coefficients

B/t 1 12 15 2 25 3 4 5 10 oo
e 13 152 170 18 194 197 199 200 200 2.00
Ié; 0.141 0.166 0.196 0.229 0.249 0.263 0281 0.291 0.312 0.333
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Fig. 2.17 Open thin-walled section

Fig. 2.18 Closed thin-walled section

and resultsfor some common shapesaregivenin Table 2.3. Irregular sections
usually require anumerical approach, which can be based either on finite dif-
ferences, as used here, or on the finite element method.

If finite elements are used, then either an assumed warping displacement
function or an assumed stress function may be employed, athough the | atter
approach (Ross, 1986) is the more usual. If the finite difference method is
used, then, for agiven grid, the warping displacement approach will provide
somewhat superior accuracy (see Table 2.2) in respect of shear stress evalua-
tion, at the expense of generally requiring more equations and having more
awkward boundary conditions than the stress function method.

2.3.5 Properties of solid sections

For the non-circular sections, the maximal shear stress values given in Table
2.3 all occur at the edge of the section inthe middle of aside (thelonger onein
the case of arectangle). If the twist for a given torque is required, then equa-
tion (2.2) should be used with the appropriate torsion constant, J.

2.4 Thin-walled sections

Thin-walled sections are such that the structural thickness is everywhere
small as compared with the overall dimensions of the section. The behaviour
of an open thin-walled section (Fig. 2.17) is different from that of a closed
section (Fig. 2.18). In both cases, however, the restricted section thickness
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(@) (b)

Fig. 2.19 (a) Singly-closed section. (b) Element of the rod

ensures that the direction of the shear stressis generally paralel to the direc-
tion of the section contour (the mid-thickness ling). Under pure torsion, the
shear stress trajectories must form closed loops, as otherwise aresultant force
would ensue. For the closed section case, a closed stresstrajectory ispossible
following the section contour (Fig. 2.18). In the open case, a closed shear
stresstrajectory must form within the thickness of the thin section, giving rise
to restricted ‘lever-arms’ for the shear stresses and hence low torsional stiff-
ness, as compared with closed sections, which are characterized by their high
torsional stiffness. For example, if athin closed tubeis*opened’ by the intro-
duction of anarrow longitudinal dlit, then the torsional stiffness of the section
can be reduced several hundred times.

The treatment of singly closed sectionsis rather different from that of mul-
tiply closed sections. These two forms are therefore described separately, and
consideration is then given to open sections. In all cases, although warping
will occur, it is possible, and simplest, to calculate the shear stress and twist
responses without determining the warping displacements.

2.4.1 Singly closed sections
Shear stress response

For a closed section, a thin wall makes it reasonable to assume that, at any
point, the shear stressis constant across the thickness. Taking axessand zin
the contour and bar axis directions respectively, the equilibrium of an element
(Fig. 2.19(b)) of sides ds and dz may be considered as follows:

Resolving in the z-direction,

78



Torsion

(T+8—Td5)(t +idsjdz—7tdz= 0
Js Js

or (to afirst order)

(a—Tt+T ot

0
— |dsdz=—(rt)dsdz=0
0s BS) Js ()

Hence
7t = g = constant (2.29)

Thus the quantity rt, known as the shear flow, g, is constant around the
section. The shear flow may be related to the applied torque, T, by summing
the contributions to the torque from elements such as that shown in
Fig. 2.19(a).

Thus

dT = (rtd9R=gRds (2.30)

and

T= gSqus: qcﬁ Rds

since g is a constant.
But Rds= 2 dA (Fig. 2.19(a)), hence

T =2qpdA=20A (2.31)

where A is the area enclosed by the section contour.

Equation (2.31) alows the shear flow and, from equation (2.29), the shear
stress to be determined for a given torque. The twist response remains to be
examined, and, for this, the displacement of the section must be considered.

Rotational response

It will again be assumed that the cross-section remains rigid (which may
require the provision of transverse diaphragms for these non-solid sections).
At adistance, z, along therod, therotationis§’zand, following asimilar argu-
ment to that employed in the derivation of equations (2.3), the displacement,
u, along the contour is

u= Rz’ (2.32)
The z-direction (warping) displacement is again taken to be w, so that the
shear strain, -, by analogy to equation (1.4), is given by

_au, ow

7792 s

Using equation (2.32),

(2.33)
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ow
=R’ +— 2.34
gl s (2.34)
So that
ow
=G| R +— 2.35
! ( as) (239
Integrating equation (2.35) around the contour:
S
¢Tds=jG(Re'+a—"V)ds=Ge'gﬁ Rds+[Wg — W, ] (2.36)
0 0s

where Sisthe contour length.
However, since the value of w is identical at the start and finish of the
contour,

<_[>Tds= Ge'gﬁ Rds
but 7 = g/t and <j>Rd3= 2A, hence
gS%ds: 2AGH’ (2.37)

Equation (2.37) relates the rate of twist, 6”, to the shear flow, g, rather than to
the applied torque, T. This may be remedied, however, by substituting for q
from equation (2.31) to give

g[;l ds=2AGH’ (2.38)
2At
or
g+ T (2.39)
G[4A2/(<_|5 ds/t)} GJ
where
2
J_ AN
gﬁds/t
, (2.40)
(: 4gt iftis constant]

Thetorsional response of asingly connected closed section therefore presents
relatively few difficulties, not least because the problem is statically determi-
nate and, hence, only equilibrium considerations are needed to evaluate the
shear flow (equation (2.31)). Multiple connection introduces redundancy, so
that geometric as well as statical arguments are required to achieve a stress
solution.
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——raT——---- J—
q, q, qn
(@)
q, q, q
= ——u el com——
& 91— 49 qdr— 43 qn-1—4, 49n
- 15 i —— —
9 q, 4

(d)

Fig. 2.20 (a) n-cell box girder. (b) Shear flowsin n-cell girder

2.4.2 Multiply closed sections

As mentioned in the introduction to this chapter, amultiply closed section re-
quires the application of torsion theory to determine the distribution of the
shear stresses, even if the load passes through the shear centre (Fig. 2.3) and
hence does not cause the section to twist. Aswell as investigating the effects
of torsion on multiply connected girders, which is covered in the following
section, it is therefore necessary to consider the effects of a bending load,
which are subsequently described. Finally, an indication isgiven of how these
two analyses may be combined to determine the effects of ageneral load, such
asWin Fig. 2.3, which does not pass through the shear centre.

Box girder under applied torque

The analysis of amultiply closed section such as the n-cell box girder shown
in Fig. 2.20(a) is based on the following considerations:

(a) Shear flows exist within each cell due to torque application, as shown in
Fig. 2.20(a).

(b) FHows in common members are the resultant of the shear flows in the
adjoining cells (Fig. 2.20(b)), thusjustifying, by fluid analogy, the choice
of the term shear flow. This property of ‘shear flow into a junction
equalling shear flow out’ follows from the equilibrium of the shear flows
complementary to those shown in Fig 2.20(b). Thus, for the example
junction of Fig. 2.21:
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Resolving in the z-direction,
Q,dz—-q,dz-q,dz=0
or
Gh=0+0q
() The sum of the individual cell torques, which are determined from
equation (2.31), equilibratesthe applied torque, T. Thisprovidesasingle,
statical equation.
(d) The remaining (n—1) equations needed for the determination of the n
shear flows are obtained from the geometric observation that, in the
absence of section deformation, each cell rotates similarly. Hence,

applying equation (2.37) to each cell in turn and eliminating 6" from the
resulting n equations produces the required (n — 1) equations.

Example 2.3 — box girder under applied torque. The three-cell box girder of
Fig. 2.22(a) isto be analysed for the effects of a clockwise applied torque of
10 000 KN m. The symmetry of the section resultsin there being only two in-
dependent shear flows, which are shown in Fig. 2.22(b).
For this section,

A=A =(2x15/2)=15m’
and

A =(4x15=6m

Using equation (2.31) to express the cell torquesin terms of the shear flows,
the statical equationis

2(1.5q9, +6.0q, +1.5qg,) =10 000
or
q, + 20, = 1667 (2.41)

P/ Ve

—_—

dz

Fig. 2.21 Typical junction
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2.0m 4.0m 2.0m

i<t e
rzo mm e 47 20 mm \I] 20 mﬂ

I’<1)O_mmi @ 10 mm ? @ 15 mm

1.5m
f}—1>

o

3
B —
—

?40 mm

(b)
Fig. 2.22 (a) Box girder example. (b) Shear flows (kN/m) in box girder

Applying equation (2.37) to the first two cells in turn, taking due regard to
shear flow directions, yields:

For cell 1
g, X 2/(0.02) + (g, — g,) x1.5/(0.01) + g, x 2.5/(0.015) = 2G(1.5)¢"

or

417q, —150q, = 3Go’ (2.42)
For cell 2

g, x4/(0.02) + (g, — q,) x1.5/(0.01) + g, x 4/(0.04) +

(9, —g,) x1.5/(0.02) = 2G(6)0”

or

—300q, + 600q, = 12GH’ (2.43)
Eliminating 6’ from equations (2.42) and (2.43) gives

1968q, —1200q, =0 (2.44)

Solving equations (2.41) and (2.44) provides the solution
0, = 0, =390 kN/m
g, = 638 kN/m

The final shear flows are shown in Fig. 2.23, and the corresponding shear
stresses may be obtai ned by use of the shear flow definition (equation (2.29)).
If therate of twist isneeded, then equation (2.42) or (2.43) can beusedto give
6’ as0.279 x 107 rad/m (taking G = 80 x 10° kKN/m?).
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Box girder under shear load

A load applied through the shear centre of a beam is known as a shear load
and, as mentioned previously, such aload causes bending without twisting.
For singly connected sections, the shear flows due to this type of load may be
determined by considering the equilibrium of an elemental beam length. As
with torsion, multiply connected sections are not susceptible to a purely
statical approach. The method of attack is therefore as follows:

(@ A ‘cut’ is introduced in each cell so as to make the section singly
connected and hence statically determinate.

(b) The shear flows in the cut section are calculated by determinate theory
(Megson, 1996a) which gives the shear flow as

g= % (2.45)

where Q is the applied shear load, A is the area of the section from the
point under consideration to a free surface, y is the lever arm of area A,
and | isthe second moment of area of section. Note: the quantities y and |
are both related to the axis about which bending occurs, which is here
assumed to be aprincipal axis.

(c) Constant, redundant, correction shear flows are additionally assumed to
be present in each cell.

(d) Application of equation (2.37) to each cell in turn, together with the
condition of zero rotation for every cell, yields a set of linear equations
from which the redundant shear flows may be determined.

(kN/m units)
390 638 390
—_— | —— , | —&
39(?\ ?248 248& p/390
<

638

Fig. 2.23 Resultant box girder shear flows

4 JL s

Y r

Fig. 2.24 Cutsin three-cell girder
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Fig. 2.25 Determinate shear flow calculation. (a) Flange. (b) Web

(e) The resultant shear flows are obtained by summation of the determinate
and redundant solutions.

Example 2.4 —box girder under shear load. The three-cell box girder of
Fig. 2.22(a) isagain to be analysed under the action of adownwards shear load
of 2000 kN. Thesectionissuchthat itscentroid isat mid-depthand | = 0.2 m".

The first step is to introduce the ‘cuts’, which should generally be posi-
tioned so as to preserve whatever symmetry the section may possess. There
can also be some numerical ‘conditioning’ advantage in siting cuts in places
where the shear flow is expected to be small (near the centre of flange sec-
tions), since the determinate values should then be a reasonable approxima-
tion to the complete solution. Cuts close to junctions result in somewhat
simpler calculations, however, so that, in the present case, symmetrical cuts
close to the web/flange intersections will be used in the outer cells, while, to
preserve symmetry, a central cut is needed in the middle cell (Fig. 2.24).

The determinate shear flows may now be obtained from equation (2.45). In
the left-hand cell, for example, with reference to Fig. 2.25:

In the flange
3
g = X107 X000 X075 _ 1y vy
0.2
In the web
2x10°% 0.015x(5/3 x(0.75-y) X (1/2) X (0.75+Y) |, 1
0.2
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Hence
0, =300 +125(0.5625— y*) kN/m

Similar calculationsfor the central cell enable the full determinate shear flow
picture to be assembled as shown in Fig. 2.26. The direction of the flows may
be deduced by observing that a downwards shear load will produce down-
wardsflowsin thewebs. Theflange flow directionsthen follow from the con-
tinuous nature of shear flow.

Consideration of the symmetrical shear flowsin the central cell shows that
these flows satisfy the requirement for zero twist (equation (2.37)). Theintro-
duction of aredundant shear flow into this cell would therefore imply anon-
existent twist, and it must be concluded that no such redundant flow existsin
the central cell. The redundant flows in the outer cells must be numerically
equal, so that the problem reduces to the determination of this flow
(Fig. 2.27(a)) by application of the zero-twist requirement to an outer cell.

(kKN/m units)

300 300 300 300
300 <[l = { -~ P2 300
3281} ${328
370N - | - 300371
300 300
600 600

Fig. 2.26 Determinate shear flow

(kN/m units)

‘4 | 240

(a) (b)

Fig. 2.27 (a) Redundant shear flow (kN/m). (b) Resultant shear flows (kN/m)
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Thus, applying equation (2.37) to the left-hand cell in a clockwise sense
resultsin

~(1/2)x300x2  300x15 (2/3)x(328-300)x15 300x25 _

0.02 0.01 0.01 0.015
(2/3)><(371—300)><2.5+ qx2 N q><1.5+ q><2.5=
0.015 002 001 0.015
Whence
g=60 kN/m

Summing the now known redundant flow to the determinate flowsof Fig. 2.26
gives the resultant flows shown in Fig. 2.27(b).

Box girder under general load

A load which does not pass through the shear centre may be replaced by astat-
ically equivalent torque and shear load. Thus, the general load W of Fig. 2.3
may be replaced by a shear load (= W) together with a torque (= We). The
effects due to these statically equivalent loads may then be determined sepa-
rately by the procedures which have just been described. Superposition of the
two solutions gives the resultant values. An alternative, and much speedier,
approach (Megson, 1974) isto apply the shear load analysis using a non-zero
rate of twist, 6”. For an n-cell girder, eliminating 0’ from the resulting set of
linear equationsgives (n — 1) equationsin the n redundant shear flows. There-
quired additional equation is obtained by equating the moment of the redun-
dant and determinate shear flows about any specified point to the moment of
the applied load about the same point. If the position of the shear centre is
unknown, then this latter approach must be used, or a modified method may
befollowed, whereby the position of the shear centreis determined (Megson,
1974).

2.4.3 Open sections

It has already been observed that closed shear flow loops must form within
open sections subjected to pure torsion (section 2.4). The portions of theloop
shown in Fig. 2.28(a) which are parallel to the contour are of constant thick-
ness, dy, and are at constant distance, y, from the section contour. If it is
assumed that the section contour isfree from shear strain, while the Kirchhoff
assumption of linesnormal to the contour remaining normal isalso made, then
it may be shown that these premisesimply that the shear strain (and therefore
stress) is constant at constant distance from the section contour. Hence, given
the constant thickness, dy, the shear flow, q, is aso constant, and closed
section theory (equation (2.37)) may be used to give

87



Advanced structural mechanics

(d)

Fig. 2.28 General open section

- ds=2aGH" (2.46)
dy

If the section is thin, so that y is negligible in comparison with the contour
length, S, then

fds=25 A=2ys (2.47)
Also,

q=rdy (2.48)
Hence, from equation (2.46),

;- % —2yGO’ (2.49)

Equation (2.49) relates the shear stressto the rate of twist and also shows that
thestressislinearly related toy, the distance from the contour. Thus, the shear
stress distribution at any point takes the form shown in Fig. 2.28(b) and the
greatest stressisat the section surfaces. This contrasts strongly with the closed
section case, where the shear stress at any point is constant across the section
thickness. If the variation of shear stress along the length of a section surface
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is considered, then it may also be observed from equation (2.49) that the
greatest shear stresswill occur at the point wherey islargest, that is, wherethe
thickness is greatest. This reverses the singly closed section experience,
where, because of the constant shear flow around the section, the greatest
shear stressis found at the point of minimum thickness.

In respect of maximal shear stress, it should be mentioned that sections pos-
sessing re-entrant corners are subject to considerable stress concentration
effects which can be minimized, but not eliminated, by suitable fillet design
(Timoshenko and Goodier, 1982).

Torelatetherate of twist to the applied torque, the torsional resistances pro-
vided by shear flows acting on elementary loops (Fig. 2.28(b)) are summed,
since the normal shear flows in adjacent elements will cancel, except at the
ends, leaving aflow loop as before (Fig. 2.28(a)).

Applying equation (2.31) to an elementary loop:

dT, = 2(2yds) (2.50)

where dT, is the torque resistance of the elementary loop, and T, isthetorque
resistance of length ds of section.

Or
dT, = 4(rdy)yds (2.51)
And, using equation (2.49),
dT, = 8y’G#’ dyds (2.52)
Integrating:
t/2
T, =8G¢ [y’ dyds (2.53)
0
Integrating along the section contour:
S t3
T=G¢| 5 05=G30’ (2.54)
0
Hence
po T T
- s - GJ 2.55
G[(t*/13)ds (259
0
where
S
I=[(*/3)ds
0 (2.56)

(= %3 if t isconstant)
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Equation (2.55) providesthe desired rate of twist—torque relationship and may
be used to eliminate GA” from equation (2.49) to produce a surface shear
stress—torque relationship as

st T (2.57)
2J J
For the maximum surface shear stress in open sections under torsion,
Toax = Tt‘”]‘ax (2.58)

Equation (2.56) definesthetorsion constant, J, for ageneral open, thin-walled
section. For a section which ‘branches’, Fig. 2.29(a) for example, the torsion
constant may be obtained by summing contributions derived from equation
(2.56).

Thus, for the channel of Fig. 2.29(b),

J= il%tg (2.59)

For some standard, rolled steel sections, torsional constant values have
been accurately determined (Owen and Knowles, 1992). For non-standard
metal sections, the above type of application of equation (2.56) will give ap-
proximate values. For improved accuracy, the constant factor of (1/3) in
eguation (2.56) may be replaced by the section-dependent factor 3 of Table
2.4. It may, incidentally, be noted that the 3-value given in Table 2.4 for a
negligibly thin rectangle is in agreement with the (1/3) derived in this
section. Several techniques are available to improve the accuracy even
further, by including, for example, the effects of fillets and junctions
(Kollbrunner and Basler, 1969).

<l
o

.0

5| E—
oo _l
5

<>

(a) (b)
Fig. 2.29 (a) Branched open section. (b) Channel section
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Table 2.5 Properties of thin-walled sections

Section [ J Example
Closed T 4Nt S
Variable thickness, t 2AL,, §'>(ds/t)
Area enclosed by contour, A
A
Closed T 4N )
Constant thickness, t 2At S 2oy

I
Contour perimeter, S I |
Area enclosed by contour, A | |

Unbranched open Tt e Tt d
Variable thickness, t J J.E S s
Contour length, S 0 i

Unbranched open Tt 3T S°
Constant thickness, t J o 3

Contour length, S §
Unbranched open Tt 1N R g2 B
Consists of n unbranched, J 3 ;3 b [, '
open, constant-thickness E .
sections i - B,
3

2.4.4 Properties of thin-walled sections

Thetorsional properties of thin-walled sections are summarized in Table 2.5.
For closed sections, the maximum shear stress occurs at the thinnest point of
the section, but, for open sections, the maximum shear stressislocated at the
thickest point. If the twist for a given torque is required, then equation (2.2)
should be used with the appropriate torsion constant, J.

2.5 Soap-bubble (membrane) analogy

It may be shown (Timoshenko and Goodier, 1982) that the governing partial
differential equation for the deformation of a stretched membrane under
normal pressureisanalogousto that governing the stress function formulation
of the torsion problem (equation (2.12)). This Prandtl membrane analogy has
been used to provide experimental values of torsional properties by measuring
the deformation of either inflated soap films or rubber membranes, which are
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stretched across cut-outs of the section for which the properties are to be eval-
uated. Numerical techniques have superseded this practical approach but the
analogy can still provide a useful qualitative check on torsional properties.
Figure 2.30 shows the stress function distributions (or inflated membrane
shapes) for arectangular and L -shaped section. Equation (2.10) showsthat the
torsional shear stress component in any given direction is proportional to the
slope of the stress function in the normal direction. Thus, for the rectangular
section (Fig. 2.30(a)) the shear stress normal to the longer sides of the rect-
angle is essentially zero because the function has no slope (except near the
ends) in directions parallel to the longer sides. The shear stress component
parallel to the longer sides has a maximum value at the edge, where the func-
tion has maximal slope normal to the edge, and the stress then decreases until
the contour is reached where the normal slope is zero. The stress then in-
Ccreases once more, as progress is made to the opposite edge, but the direction
of the stressis reversed, since the sign of the function slope changes past the
summit. Consideration of the membrane shape therefore supports the tor-
sional shear stress distribution for the section previously established in
Section 2.4.3. Equation (2.18) indicates that the torsional constant is propor-
tional to the volume enclosed by the stress function. Clearly, therefore, the
broader arm of the L-shape section (Fig. 2.30(b)) provides the mgjority of the
contribution to the torsion constant (resistance) of this particular section.

,‘.’!’;
/,’.%'hvp‘l
) '.““!'

I

,,,,,,,

(a) *

. . ‘0\ ~‘ S
\“\\‘\\‘ "I": S —
\ 0 80525 72—
,,,;»., ot\\\\\s 'l/z;i:,"». >
07

11 10054295
g7/ ,' l,.l ‘\\‘ \\\ 77 Il
II;II[[IZI‘ 0.0“ \\\\ \\\‘ 1
Illllll ' ““
{25

(b)

Fig. 2.30 Prandtl membrane for: (&) rectangular section; (b) L-section
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Fig. 2.31 Prandtl membranesfor: (a) singly-closed sections; (b) multiply-closed sections

In the case of closed sections, it is necessary to represent the cut-outs of the
section by rigid plates which remain in the same plane when the membraneis
inflated. Using this concept, the membrane deformation (stress function) dis-
tributions for a single and a multiply closed section are shown in Fig. 2.31.
Fromthesingly closed section plot (Fig. 2.31(a)), it may be seen that the shear
stress parallel to the outline of the cut-out isalmost constant and isin aconsis-
tent direction, as verified by the approximately constant normal slope of the
membrane making the connection to the horizontal rigid surface above the
cut-out. From the minimal enclosed volumes, it may also be seen that the
‘open’ cantilever arms make a negligible contribution to the overall torsional
resistance of the section.

2.6 Non-uniform torsion

If warping displacements arerestrained at any point, or if the applied torqueis
not uniform, then the constant rate of twist assumption, which is central to
Saint—Venant’s theory, is no longer valid and the cross-sectional displace-
ments and stresses will vary with position along the structural length. Non-
uniform torsion occurs in many situations, including those in which the load
eccentricity varies, as in bow girders, or in which the warping is physically
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Fig. 2.32 Non-uniform torsion

restrained at a support. A single, central, eccentric load (Fig. 2.32) will also
produce non-uniform torsion. This may be viewed either as a case of non-
uniform torque, since thetorquesin thetwo halves are of opposite sense, or as
a case of restrained warping, since, by symmetry, no warping occurs on the
central cross-section.

The stress implications of non-uniform torsion are that, in addition to a
modified shear stress distribution, direct longitudinal stresses are also devel-
oped, as may readily be imagined from the restrained warping feature. The
effects of non-uniform torsion are particularly pronounced in the case of open
sections, but, even for closed sections, there can be a significant influence
over considerable lengths of the structural member, although the greatest
impact will be at positions of warping restraint. Non-uniform torsion can thus
neither be completely treated by Saint—Venant’ s torsion theory, nor is hislo-
calization principle (Section 1.3.1) valid. For the determination of stressesdue
to non-uniform torsion, the reader isreferred to specialized texts (e.g. Heins,
1975; Megson, 1974; Zbhirohowski-K oscia, 1967).
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Problems

2.1 Forasguaresection of sidea, make use of symmetry, and, adopting anet
of side a/6, use the finite difference method to determine the warping
displacements due to a uniform rate of twist, 6’.

Hence cal cul ate the shear stress components at each of the net points,
intermsof a, #” and the shear modulus, G, and use these components to
find the torsion constant for the section.
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2.2

2.3

Repeat the analysis using the stress function approach and compare
the values for maximum shear stress and torsion constant with the
values obtained by the warping displacement method and with the exact
values of Table 2.3.

Use the finite difference method to determine the stress function values
at the grid nodes of the L-section shown in Fig. 2.33 if the section is
subjected to a constant rate of twist, 6, and the shear modulusis G.

From the stress function values, determine the maximum shear stress
and the torsion constant for the section. Compare these values with
corresponding values obtained by application of a thin-walled
‘combined rectangles’ approximation (equations (2.58) and (2.59)) and
discuss how it might be established as to which of the solutions is the
more accurate.

For a rectangular grid, spacing a in the x-direction and b in the y-
direction, show that the finite difference module for the Laplace
equation is as shown in Fig. 2.34(a), where

A=Va?, B=1b?, C=-2(a®+1b%)

i

I
. |

|
Lt

Fig. 2.33

(@) (®)

Fig. 2.34
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2.5

Use the module of Fig. 2.34(a) to determine the warping
displacements at the node points of the grid shown in Fig. 2.34(b). The
section is an equilateral triangle of side, s. Hence determine the
maximum shear stress and compare your solution with the exact value
givenin Table 2.3.

For the pre-stressed concrete beam section shown in Fig. 2.35, make use
of symmetry, and, adopting a regular net of side 0.2 m, use the finite
difference method to determine the stress function values at the net
intersection points for a uniform rate of twist, #”. Hence determine an
approximation to the torsion constant, J.

(NTU)

Figure 2.36 shows the cross-section of an aluminium alloy bar. What
torque will cause amaximum shear stress of 60 N/mm?? Calculate, also,
the angle of twist (in degrees) in a length of 2 m when this torque is
applied if the modulus of rigidity is 25 KN/mmn.

97



Advanced structural mechanics

2.6

2.7

The section is now closed by rigidly sealing the gap at ‘A’ along the
full length of the bar. Determine the new maximum stress and rotation
under the same conditions as before and compare the two sets of results.

Figure 2.37 shows two concrete beam sections which have equal cross-
sectional areas. Determine the torsional constant for the closed section
based on the contour line for the section indicated in Fig. 2.37(a).
Determine, aso, the torsional constant for the open section using the
sub-division indicated in Fig. 2.37(b).

Figure 2.38 shows five rods (A-E) which all have the same cross-
sectional area. Sketch the expected stress function distributions for the
five rods. Hence, or otherwise, rank the sections according to their
expected torsiona stiffness, giving reasons for your decisions.

(NTU)
0.1 0.8 0.1 055 055
0.15 0.15
0 ! i ,JL
e — B
§ 1
' 0.1 I @) 0.1
0.7 | N ©) 0.85
|
i 0.1 !
LJ/—_J
— e — V || ||
b [)
015 ke 05 05 | 015 ||, 0.8 I CAE

(m units)

Fig. 2.37

Fig. 2.38
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2.8 Figure 2.39 shows the cross-section of along spar formed in an alloy
whose modulus of rigidity is 25 kN/mm?. On the right-hand side of the
section, themean lineisapproximately circular, ontheleft-hand sideit
is approximately elliptical, and the areas enclosed by these lines and
the mean line of the web are 4000 mm?* and 8000 mm? respectively.
The thickness of the wall and of the web is 2 mm. Given that
the lengths of the mean lines are PQR =240 mm, PSR = 160 mm
and POR =100 mm, estimate the torsiona rigidity (=T/6"), in
(kN m?/degree), about an axis perpendicular to the section.

(UCL)
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29

2.10

100

A bridge deck, which may be considered as thin-walled, has the singly
symmetric cross-section shown in Fig. 2.40. Determine the torsiona
stiffness of the section, T/6’, in (KN m*degree), if the shear modulusis
constant throughout and of value 70 000 N/mnv’.

(EC)

The two-cell box girder shown in Fig. 2.41 supports a downwards load
of 500 kN through its centroid. The webs and flanges are both of
constant 10 mm thickness. Determine the shear flow distribution for the
cross-section and comment on the rel ative magnitudes of the maximum
flows sustained by the central and outer webs.



3. Plates and slabs

3.1 Introduction

The plane stress analysis considered in Chapter 1 was concerned with plate
elements which were subjected to in-plane loading only. Plate bending anal-
ysisissimilarly concerned with planar elements but theloading isnow normal
to the plane of the element. It is presumed that the plate is free from in-plane
|oads, the effects of which, if present, may be analysed separately and aresul-
tant solution obtained by superposition.

Plate elements are usually of either metal or concrete construction. In the
former case the elements are referred to simply as plates, while the latter are
normally referred to as slabs. Both plates and slabs are used as flooring ele-
ments and as bridge decks. Other applications of these components are found
in retention structures of various forms. The ‘counterfort’ retaining wall
shown in Fig. 3.1(a), for example, incorporates vertical and horizontal slabs,
both of which are subjected to normal loading. The sameistrue of the rectan-
gular section hopper shown in Fig. 3.1(b).

(a) (b)

Fig. 3.1 (a) Counterfort retaining wall. (b) Hopper structure
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3.2 Physical behaviour

3.2.1 Beam analogy

A plate subject to normal loading may be considered as an extension of a
beam, in which the width of the beam has become of the same order as the
length, while the depth (thickness) remains of a smaller order. The discrete
supports applicable to beam analysis may also occur in plate problems but
supportsalong linesin the plane of the plate are commoner. With thisrelation-
ship between beam and plate elements, some correspondence between their
modes of structural behaviour can be expected. Thisis the case to the extent
that aplate element resists normal loading by bending and shearing actions, as
does a beam. However, in the case of a plate, the actions are clearly not re-
stricted to the single direction —that along its length, which is available to a
beam — but can occur in any direction in the plane of the plate. If rectangular
Cartesian coordinates are being used, a closer analogy to plate action is

Simple support

|

Fig. 3.2 Plan of example grid

B D
B’ D’ E
A
C F
A
o

E’

Fig. 3.3 Deformation of part of the grid

102



Plates and slabs

(a) (b)

Fig. 3.4 Forcesat typical grid node

provided by agrid of rigidly interconnected beam elements set out along the
coordinate directions. The behaviour of such agrid (Fig. 3.2) istherefore con-
sidered next.

3.2.2 Grid analogy

For the grid shown in Fig. 3.2, the edges parall el to the y-axis are presumed to
be continuously ‘simply’ supported (that is, normal displacement is prevented
but rotation about the support lineisfreeto occur). The sides parallel to the x-
axis are unsupported (free) and the behaviour of the grid to a concentrated
normal load applied to its central point (F) isto be examined. By the nature of
the supports, it may be presumed that resistance to theload is principally pro-
vided by the structural elementsalong theline AA. Theleft-hand half (AF) of
AA will be considered to deflect under load asshownin Fig. 3.3, whilethere-
mainder of the grid points are assumed undeflected, and the effect of AF sde-
flection on the more remote parts of the grid will be investigated. By
symmetry, the members along AF will not twist and the line FF" will remain
vertical when deflection takes place. EE” also remains vertical, since deflec-
tion along BE was not permitted, so that no twist isinduced in FE by deflec-
tion along AF. Bending is, however, induced in FE, since Fisnow lower than
E. Applying similar ideasto AB, it is deduced that thereis no bending in this
member since there is no twist in AC (and hence no bending rotation applied
to AB), while A” and B’ remain on the samelevel, that of the support. Thereis
atwist developed in AB because AA’ has rotated from its originaly vertical
orientation while BB’ has been kept upright. For the more general member,
CD, both twisting and bending effects will be present due to the relative rota-
tion of CC" and DD’ and the relative vertical displacement of C and D.

The reactions required at point D to ensure the assumed rigidity will be as
shown in Fig. 3.4(a). The moment T counteracts the torque in CD, while the
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force Q and the moment M balance the bending effects of CD. If point D is
now alowed to displace, it will be subjected to the effects shown in
Fig. 3.4(b), and deformation must occur until theinternal stressresultants gen-
erated by the deformation equilibrate the ‘out-of-balance’ force, Q, and
moments M and T. Thus, Q and T will tend to produce bending in members
BD and BE, while M will tend to twist these elements.

The complete structural action may now be described as follows. Grid
members along AA resist the load by bending alone and are stiffened by the
transverse grid members, typically CD, which assist by a combination of
bending and twisting actions. The transverse members, in turn, invoke resis-
tance from the neighbouring longitudinal members by causing them to bend
and twist. This process is repeated, with diminished effect, for the more
distant systems of transverse and longitudinal members.

The bending and twisting in the longitudinal and transverse grid members
at the general point D offersamodel for plate behaviour whereby the bending
of the plate, in a rectangular Cartesian coordinate system, may similarly be
represented by bending effects along both the coordinate directions accompa-
nied by twisting, also about both directions.

3.2.3 Poisson’s ratio effect

Although the grid analogy provides a helpful demonstration of how a plate
acts, true plate behaviour differsin one important respect due to the effect of
Poisson’ s ratio. In order that an appreciation of this effect may be obtained,
the behaviour of a small plate element under the effect of a constant distrib-
uted moment applied to two opposite sidesmay be considered. The grid model
would suggest that the effect of such aloading would be to produce a singly
curved deformed surface (Fig. 3.5(a)) in which the longitudinal members all
have similar deflected shapes and the transverse members are subjected to
rigid-body displacements only.

However, if the plate material has a non-zero Poisson’ sratio, the deflected
shapewill not beasin Fig. 3.5(a), since curvature in the z—x plane will induce
curvature in the z—y plane. Thisis accomplished as follows: sagging bending
of a plate element in the z—x plane produces compressive stress in the top of
the plate and tensile stressin the lower part. It follows from the Poisson’ sratio
effect (see Section 1.2.3) that tensile strain will therefore be produced trans-
versely in the top of the plate and compressive transverse strain will result in
the lower half of the plate. To accommodate this effect, the true deflected
surface must be of adoubly curved (anti-clastic) form (Fig. 3.5(b)).

The Poisson’s ratio effect therefore results in the curvature in a particular
direction being no longer solely caused by the bending moment in that direc-
tion. For example, there is no bending moment in the y-direction for the
element of Fig. 3.5(b) and yet curvature existsin thisdirection. The curvature
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ﬁ

(a) (b)

Fig. 3.5 Grid and plate deformed surfaces

in any direction is, in fact, made up of two components, one resulting from
bending in the direction considered and one produced by the Poisson’s ratio
effect. Since concrete has a substantially lower Poisson’s ratio than that of
metal s, the Poisson’ sratio effect is sometimes neglected in slab analysis. This
assumption makes the grid model exact and grid analogies are widely used in
bridge slab analysis. In the analysis of metal plates, however, the Poisson’s
ratio effect always needs to be considered.

3.3 Elastic plate theory

3.3.1 Introduction

Provided that the plate is thin, the three-dimensional plate problem may be
reduced to a two-dimensional problem provided that sufficient assumptions
areincorporated to allow the deformation at any point inthe plate to bereadily
derived from the deformation of a plane reference surface. The reference
surface is taken to be a middle surface which is defined by the locus of the
mid-thickness pointsof the plate. The required deformation assumptionsare:

(@) The middle surface does not deform in its own plane, that is, with the
notation of chapter 1, the displacement componentsu and v (Fig. 1.4) are
zero everywhere on amiddle plane which coincides with the x-y plane.

(b) The normals to the middle plane in the undeformed state remain straight
and normal to the middle surface in the deformed state.

The above assumptions are similar to those used in simple beam theory and
reduce the plate problem, when formulated in terms of displacements, to aone
independent displacement variable problem. For thisreason, it isusual to for-
mulate plate theory in terms of a displacement rather than a stress function,
and this approach will be followed here.
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The first of the above assumptions results in the displaced shape of the
middle surface being completely defined by its normal displacement, w, at
every point, so that wis the single independent variable. The second assump-
tion then allows the deformation at points other than those on the middle
surface to be related to the deformation of the middle surface. The way in
which thisis doneistreated in detail in the next section.

3.3.2 Displacements and strains

With the right-hand screw sign convention of Fig. 3.6(a), the rotations
(Figs 3.6(b) and 3.6(c)) at a general point on the middle surface (assuming
small angles) may be related to the normal displacement variable, w, by

w o, aw
Y ooooxT Y oy
wherethe negative sign arises due to the negative slope produced by apositive
rotation 6.
Making use of assumptions (a) and (b) above, the variation of the displace-

ments u and v through the thickness of the plate may be related to the normal
displacement variable, w, by (Figs 3.6(b) and 3.6(c))

(3.1)

ow
u= Zlgy = —Z& (32)
ow
v  =—Z 5 (33

where the negative sign in the displacement, v, arises from the negative sense
of v produced by a positive rotation 6, (Fig. 3.6(c)).
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o

Fig. 3.6 (&) Rotation sign convention. (b) Displacementsin x—z plane. (c) Displacementsin y—z
plane
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Elasticity theory (egquations (1.3) and (1.4)) may now be invoked to relate
the strains to the above displacements by

LU ow v dw_ow
X ox N GRL: Y o ¢t o9z’
ou ov o°w oV ow
ny:a_y x oxay’ vyz:E)_z-i-a_y
From equation (3.3)
ov  odw
oz ay

since dw/dy (=0,) is constant due to the straight normal assumption.
Therefore,

_ 9w, ow_
My ey
Similarly,
OW du ow ow
= —+—=—-2"-0 4
T 8x+az X  oX (34)

3.3.3 Strains, stresses and stress resultants

A further assumption is now made, namely that the normal stress, o, isevery-
where zero. Clearly this assumption cannot be strictly fulfilled in the vicinity
of applied loads or reactions but, provided that the plate is thin, the normal
stresses will be of alower order than the in-plane stresses and may therefore
be neglected. Adding thisfurther assumption to equations (3.4), the only non-
zero stresses at any given level in the plate are seen to be those of plane stress,
that is, o,, o, and ,,. Assuming an isotropic material, the stresses may there-
fore be related to the corresponding strains by the relevant plane stress equa-
tions (1.16), which, making use of equations (3.4) and (1.7), gives

o, = E (e, +ve,) = —E2 &VJrVﬂV
T T G o
E -Ez [ o°w d°w
O'y = ]_—T(VEX +€y) = 1—7[V87+W] (35)
-Ez 9*w

=Gy ==
Ty = 2y 1+v oxay

By summing the effects of these stresses through the thickness of the
plate, stress resultants may be obtained which are, in fact, the moments
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corresponding to the bending in the coordinate directions and the twisting
about both these directions which were discussed earlier in relation to the
physical behaviour of plates.

If the stress component sign convention used in Chapter 1 is adopted, then,
for apositive z-coordinate, the stress componentswill act positively as shown
inFig. 3.7. The sign convention for the momentswill be taken to be as shown
inFig. 3.8, wherethe equality of magnitude but opposing sense of thetwisting
moments arises from the complementary nature of the shear stresses shownin
Fig. 3.7(c). Themomentswill all be considered to be moments per unit length
of the plate in the direction about which the moment acts. The units of the
moments will therefore be, typically, kilonewton metres per metre (KN m/m)
and, if the element shown in Fig. 3.8 is of size dx, dy, then the total bending
moment in thex-direction will begiven by M, dy, inview of the per unit length
nature of the moment. The moment stress resultants may be related to their
tributary stresses, from Figs 3.7 and 3.8, by

t/2

M, dy= | Zo, dyd?)
t/2

M, dx= [ 2o, dxdz) (3.6)
~t/2
t/2

M, dy=- [ z(r,, dydz)
—t/2
where the negative sign in M, arises from the resultant moment due to the
stresses 7, being in the negative sense of M,
By use of equations (3.5), the moments may be related to the normal dis-
placement function, w, by

) '

T 7

dx dx
(@) (b)

Fig. 3.7 Stress sign conventions
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Fig. 3.8 Moment sign conventions

t/2 _ 2 t/2
MXZJZUXdZZ E2 ow, J-zzd
1-2( 0@ ay2

—t/2 —t/2

"o

t/2 _ 2 2 t/2
MyZJZO'de=—E2( 8\12v ow jffdz—— [ j
—t/2 1-v 0X t/2

W

t/2 2, t/2
E
J zr,, dz=—-— ow

—t/2

where D = Et¥12(1 — %) isthe flexural rigidity of the plate.

| Zdz=D@- V),

-t/2

3.7
1+ v oxay S

3.3.4 Moments, curvatures and stresses

Before proceeding further, it isconvenient to establish the relationshipswhich

relate the plate curvatures and stresses to the associated moments. For small

slopes, the curvaturesin the coordinate directions may be obtained asfollows.
From equation (3.7)

2 3 2
M, — oM, =-D(1—?) W= “ELIW

X 12 o
Hence
0*WIox? o*w 1
= L~ (M, -vM
X I Wit e B M)
Similarly,
o*w 1
Xyzﬁz_%(My_ny)
w9 , M M M
XXY axa a (9)()20 = iy = 3 2 = 3Xy (38)
v ox DA-v) EC/121+v) Gt6
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The first two expressions of equations (3.8) show that, under small-slope
assumptions, the second derivatives 0°w/ox” and 9°w/dy” represent the curva-
tures in the respective coordinate directions. The two equations also confirm
the earlier discussion that curvature in a given direction is dependent on both
the moment in the specified direction, and also, due to the Poisson’s ratio
effect, on the moment in the direction normal to the one specified. The last of
equations (3.8) shows that the second derivative 9°w/dx dy may be geometri-
cally interpreted asarate of change of twist, 8, about either of the axes, and 6
can hence be related to the twisting moment.

To obtain the stresses due to specified moments, substitution from equa-
tions (3.8) into equations (3.5) gives, for the maximum stresses (which occur
at the top and bottom surfaces),

2
Bt 1-v L1

+— ==
R T T R O S

1
yma =T 5 =M,y
t°/6

2
Ty max = = 1221 2 )MxyziziMxy
21+v) E°A-v) t/6

Equations (3.9) show that the maximum stresses are directly proportional to
the corresponding moments. It therefore follows that the concept of principal
values, discussed in Chapter 1 as applied to stresses (see Section 1.3.2), will
also apply to the set of moments M,, M, and M,,. The orientation of the prin-
cipal directions, in which the twisting moments are zero, may therefore be ob-
tained from amoment version of equation (1.9) and the values of the principal
moments from an equivalent to equation (1.10).

It may also be noted that the direct bending stresses given by thefirst two of
equations (3.9) have the same form as the corresponding stresses given by
simple beam theory, if beams of unit width are considered in each of the co-
ordinate directions.

g

(3.9)

I+

3.3.5 Equilibrium

A solution to the plate problem is to be established in terms of the displace-
ment function w. If this function is presumed to be continuous, then an ex-
plicit compatibility equation is not required. Equations (3.7) relate plate
moments to the displacement function and these equations make use of the
assumed stress—strain relationshipsfor the plate material . For acomplete so-
lution, it therefore remains to establish the equilibrium equations for a plate
element in terms of the plate moments. An amalgamation of these equilib-
rium conditions with equations (3.7) will then represent afull solution to the
plate problem.

110



Plates and slabs

Fig. 3.9 Plate element

Displacements due to vertical shearing effects have been ignored above,
since, for thin plates, these displacements are of a smaller order than the
bending and twisting deformations. If the equilibrium of the plateisto be cor-
rectly represented, it is, however, necessary toincludethevertical shear forces
which, as with the moments, are measured per unit length of plate and are
shown acting in their positive directionsin Fig. 3.9.

The element of the plate middle surface shown in Fig. 3.9 is also presumed
to be subjected to anormal loading of local intensity, g/unit area. The equilib-
rium equations for the plate element may be determined by

(@) Taking moments about aline paralel to Oy at A,
dx (oM
(Q dy)cx — (qdxy 3—( ! de)dy+

X
oM d
—Xydydx — &dydx % =0
ay ay 2
or, neglecting lower-order terms and dividing by dx dy,
M, oM, (310
0X ay

(b) Similarly, taking moments about aline parallel to Ox at B,
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_M, My (3.11)
Yoox ox

(c) Resolving vertically,

(qudy){ﬂdyjdx{ﬂdxjdy:o
ay X

d
Whence
0Q, dQ,
—X 2= 3.12
oX i ay a (312)

To obtain the general equilibrium equation in terms of the plate moments, the
vertical shear forces may be eliminated by substituting in equation (3.12) from
equations (3.10) and (3.11) to give
M. _*M_ 0°M
x_2— ¥4 Y —— 3.13
ox? oxady oy a (313)

3.3.6 General elastic plate equation

By substituting for the moments M,, M, and M, from equations (3.7) in the
equilibrium equation (3.13), the general elastic plate equation in terms of the
displacement function w may be obtained as

d*w d*w d*w d*w d*w

D2 _2D(-1) 2 DI D2 =
v -1 N o oox

ooy -

or

o'w od'w  d'w q

—+2———+—=—

ox*  oxfaoy’ oy* D
where D = Et¥12(1 — 4). Equation (3.14) is of the biharmonic form, as was
the stress function formulation of the plane stress problem (equation (1.22)).
If asolution for the normal displacement function w can be found which satis-
fies both equation (3.14) and the relevant boundary conditions, then the stress
resultants may be obtained from this displacement solution. The moments
follow from equations (3.7), while the shear forces may be obtained from the
moments by equations (3.10) and (3.11). Alternatively, the shear forces may

be obtained directly from the displacement solution by substituting into equa-
tions (3.10) and (3.11) from equations (3.7) to give

’w  dPw ’’w  d’w
=D| —+—n |, =D —— 3.15
* ( ox®  Ixoy? J Q ( a’  ox E)y] (315

(3.14)
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The stresses corresponding to the moment stress resultants may then be ob-
tained from equations (3.9), while the vertical shear stresses due to the shear
force stress resultants may be obtained by application of simple beam shear
stresstheory (Megson, 1996) as applied to arectangul ar section of unit width.
For a complete solution, it remains to obtain the reactions at the boundaries
and, in the next section, the determination of the reactions is considered, to-
gether with consideration of the appropriate boundary conditions for various
types of edge support.

3.3.7 Boundary conditions

The boundary conditions appropriate to three common forms of line support
will be established below. For convenience, the support will be presumed, in
each case, to lie along aline parallel to the y-axis but similar conditions may
readily be derived for supports parallel to the x-axis and, by suitable resolu-
tion, for oblique axes (Ghali and Neville, 1997).

Fixed (encastré) edge

It is here presumed that there is no deflection at any point along the edge and
nor is there any rotation of the plate about the support line. Thus, for afixed
edge parallel to the y-axis (Fig. 3.10), the two geometric boundary conditions
may be expressed as

ow
=0, —=0 3.16
w ™ (3.16)
along the edge.

7

Fig. 3.10 Fixed-edge support
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It may also be noted that w = 0 along the support implies that
dy oy
along the edge.
Also, ow/ox = 0 at all boundary pointsimplies that 9°w/ox dy = 0 along the
edge.
Thereactions provided by an edge along the y-axiswould, in general, bere-

quiredto balance M,, M, and Q, along the edge. In the case of afixed edge, the
above geometric considerations result in

o*w
M_=D(1- =0
v ( V)Bxay
Thus, the reactions required are
3 2 3
V,=Q,=-D a_v;/+i ow =_Da_V3V (3.17)
ox>  dy\ oxay oX

whereV, istheforcereaction (upwards positive) per unit length of support, and

2 2 2,
37‘2’+y3—y‘;"]=—o?37‘2’ (3.18)

where R, is the moment reaction (signsas for M,) per unit length of support.

&zsz—D(

Smply supported edge

Along such a support there is prevention of deflection but complete freedom
of rotation about an axis along the support, which implies zero bending
moment in a direction normal to the edge. Thus, for asimply supported edge
along the y-axis (Fig. 3.11), the two boundary conditions are

w=0, M, =0 (3.19)

y

A’\

Fig. 3.11 Smply supported edge
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Asin the fixed-support case, the zero-displacement condition along the edge
resultsin

2
w_Jw_ (3.20)
dy oy
aong the edge.
Also, the zero bending moment condition requires that
2 2 2
M, =D T, W0 hece 2W-0 (3.21)
ox oy’ ox
and
2 2
M, =-D| W, IWI_g (3.22)
ox° oy

The twisting moment will not, in general, be zero along a simply supported
boundary, sinceit is possible for the normal slopeto vary along the boundary,
so that, from equations (3.7) and (3.1),

o°w
oxay

Thus, the only non-zero stress resultants along the edge are Q, and M,, and
these two effects must be equilibrated by aforcereaction, sincethisistheonly

M,, =D(1-v) =D(1- V)%(—Hy) #0

X

Fig. 3.12 Reaction due to twisting moment
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type of reaction which can be provided by asimple support. Theaction of Q, is
straightforward, contributing directly to the support reaction. Theeffect of M,
needs more careful consideration and may be assessed by considering two
neighbouring boundary points, A and A’ (Fig. 3.12), which are separated by a
distance dy. The twisting moments at A and A’ are taken to be, respectively,
oM,
Mxy’ Mxy + a—y dy

These twisting moments may be represented by pairs of vertical forces as
shownin Fig. 3.12, since, if the separation of the forcesis also taken to be dy:
due to forces M,
M,, dy

=M

twisting moment/unit length = X

Resolving verticaly, it follows from Fig. 3.12 that the contribution to the
reaction over thelength AA” is—(dM, /oy)dy or, in terms of reaction/unit length,
—(0M,Jdy). Thus, the distributed force reaction along the edge is given by

V,=Q ——2 :
=Q-— (323)
or, in terms of the displacement function, from equations (3.15) and (3.7),
3 3 2
V=-p| LW, IW ) 9fpy )W
ox®  oxay’ ) ay oxay
o*w o*w
=-—D| —+(2- 3.24
(aXS ( ”)axayZJ (5.29

Fig. 3.13 Point reactions due to twisting moments
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The distributed reaction given by equation (3.23) will correctly represent the
reaction at al points along the edge except at itsends. At these points, the stat-
icaly equivalent force representation of the twisting moment (Fig. 3.12)
resultsin asingle point force, which needsto be equilibrated by a point reac-
tion at the end of the boundary. For twisting momentstaken in the positive di-
rections of Fig. 3.8, the corner reactions for aplate which is simply supported
aong all four edges will therefore be as shown in Fig. 3.13. For such aplate,
the corner twisting moments, under symmetric downward load, would, in
fact, be positive at corners A and C but negative at B and D. This leads to
downward point reactions being required at each corner and substantiates the
observed tendency of simply supported plates to curl upwards at corners
which are not tied down.

Free edge

An unsupported edge can provide neither aforce reaction nor amoment reac-
tion normal to the edge. For afree edge parallel to they-axis, thetwo boundary
conditions are, therefore,

V,=0, M =0

By using equations (3.24) and (3.7), the boundary conditions may be ex-
pressed geometrically as

o*w o’w
W 2-1)2W g
(ax3 +(@-n) axayZJ

’w  *w
=0
ox oy*

3.3.8 Classical solutions to the plate problem

As aready noted in Chapter 1, the biharmonic form of partial differential
equation is only soluble by the methods of classical calculus in reasonably
regular cases. Solutions to the general plate equation (Timoshenko and
Woinowsky-Krieger, 1981; Szilard, 1974) are hence only readily availablefor
regular plate shapes (circular or rectangular) subjected to reasonably simple
loadings and support conditions. For more complex loadings, use may be
made of influence surfaces (Pucher, 1964) but such cases, and irregular plates
generally, normally requirethe use of anumerical method. Both of the numer-
ical approaches described in Chapters 1 and 2 (the finite element and finite
difference methods) may be applied to the analysis of plates. Also, the
analogy between slab and grid behaviour described above may be used to
convert slab problems to grillage analyses. These three approaches are
described below and an indication of their relative meritsis given.

(3.25)
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3.4 Finite difference method

3.4.1 Introduction

Using a square net of the form described in Appendix A, the requirements of
the general plate equation (3.14) may be approximately fulfilled by the use of
the biharmonic difference operator (Appendix A, Fig. A.5(c)). The intensity
of loading (q) which occurs on the right-hand side of the plate equation will be
the actual intensity in the case of uniformly distributed loading or a statically
equivalent intensity in other cases. Thus, for a point load Q, situated at 0
(Fig. A.3), the load intensity at O is taken to be Q/h’. Application of the
biharmonic difference operator to each uniquely numbered, non-zero grid
point resultsin a set of equations equal in number to the number of unknown
displacements. Before proceeding to the sol ution of these equations, however,
the appropriate boundary conditions must be incorporated.

3.4.2 Boundary conditions
Fixed boundary

Therequired conditions (equations (3.16)) for fixity along aline parallel to the
y-axisare

w=0, M_g
oX
aong the edge.

The zero-deflection condition iseasily satisfied, sinceit providesasolution
for the unknown boundary displacement, and hencethiszero valueis assumed
and the biharmonic difference operator is not applied to points along a fixed
boundary. The zero-slope condition may be satisfied by extending the net one
spacing beyond the edge to produce a set of ‘fictitious' net points (Fig. 3.14),
as aready encountered in Section 2.3.2. The zero-slope requirement at a
typical net point, say 2, may be expressed in finite difference form as

(ai"j _We—We _ g (3.26)
oX /o 2h

whencew, = w,. Thus, if the additional pointsare provided and their displace-
ments are made equal to the displacements of their mirror image pointsin the
boundary, the zero-slope condition will be satisfied.

Smply supported boundary

In this case the conditions to be enforced along an edge parallel to the y-axis
may be expressed geometrically, from equations (3.19) and (3.21), as
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I

A\

N

Fig. 3.14 Net at plate boundary

2
w=0, v, =2¥_0
X (3.27)
along the edge.

The zero displacement condition is again treated by the assumption of zero
boundary displacements, asin the fixed case. The curvature condition at, for
example, point 2 (see Fig. 3.14), may be expressed in finite difference form,
using equation (A.6), as
(azwj _We =20 Wy

o J; h’ (3.28)
whence w, = —w,, sincew, = 0.

Thuszero normal curvatureisassured by making the displacement of an ad-
ditional point equal in magnitude but oppositein direction to the displacement
of its mirror image point.

Free edge

Equations (3.25) provide the relevant geometric boundary conditions for a
free edge parallel to the y-axis. In order to express the first of these equations
in finite differenceterms, it will be necessary to employ two additional points
opposite each boundary point (see Fig. 3.17). Since the boundary is free to
deflect, the biharmonic operator must be applied to the boundary pointsinthis
case. The additional points add two extra unknown displacements for each
boundary point but thisiscompensated for by the fact that two boundary equa-
tions are also available.
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3.4.3 Evaluation of moments and shear forces

Once the difference equations have been formed, they may be readily solved
by computer to yield the displacements at the net points. The displacements so
obtained may then be utilized to determine the moments and, if desired, the
shears at the net points from equations (3.7) and (3.15). The differential ex-
pressions occurring in these equations are evaluated by applying the appro-
priate difference operators to the known set of displacements.

3.4.4 Examples
Example 3.1 — simply supported slab

The slab to be considered (Fig. 3.15) is square, of side L, supports a uniform
load of intensity q over a central square of side L/2, and is simply supported
along all four edges. The flexural rigidity is taken to be a constant, D, while
Poisson’ sratio is presumed to be zero. The net used is of side L/4 and advan-
tage of symmetry may be taken to reduce the number of unknown displace-
ments to three (Fig. 3.15). Following the conventions of Section A.2, the
boundary pointsare given the reference number zero to indicate their zero dis-
placement, while the additional points outside the edges are given reference
numbers opposite in sign to that of their mirror image points to signify the

Fig. 3.15 Simply supported slab example
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presence of the curvature boundary condition (equation (3.28)). The load in-
tensity appropriateto point 3isclearly g, that for point 2 must betaken asq/2,
while that for 1 should be g/4 if the total load on a square of side h, about the
point considered, isto equal the load applied to such asquare. Application of
the biharmonic difference operator (Fig. A.5(c)) to the points 1, 2 and 3 yields
the following simultaneous equations:

20 -16 27w, (025

h—14 16 24 -8 llwl= 0.50% (3.29)
8 -32 20]|w,| [100
Solving equations (3.29) gives
4
(W™ ={w,, w,, w;} ={0.00101, 0.00146, 0.00214}% (3.30)

Moments, shears and reactions may now be evaluated at the net points. For
example, with referenceto Fig. 3.15:

At point 2, using the difference approximation of equation (A.6): sincev =0,

2 —

M, = _D(a_w) - _p— % 22W2
ox% J, h

= —(0.00214 — 2 x 0.00146)16qL* = 0.013qL>

At the lower left-hand point 1, using the difference operator of Fig. A.5(b):
sincerv =0,

o*w —W, )
M. D(axayl D e 0.00864qL
Anexact solutionisavailablefor this particular example, and theresults of the
finite difference solution are compared with the exact values in Fig. 3.16. It
may be seen that the agreement is good except in respect of twisting moments
and shear forces. Displacements and momentsin the slab follow the expected
pattern, being greatest at the centre and small at points close to the boundary.
In contrast, the twisting moment distribution shows that maximum twist
occurs at the corners of the slab, while the centre-lines have zero twist. The
zero twist along the centre-lines arises from these being lines of symmetry, in
the present case, along which thereis zero transverse slope and, hence, no rate
of change of this slope which would represent a twisting effect (equation
(3.8)). Along aboundary line such as AA (Fig. 3.16), however, the transverse
slope variesfrom zero at the slab corner to amaximum at the slab centre-line,
the greatest rate of change being at the corner. This distribution of twisting
moments explainswhy codes of practice normally require corner torsional re-
inforcement in simply supported slabs.
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Shear forces are not usually of importance in slab design but have been in-
cluded in Fig. 3.16 for completeness. The distribution approximates to that
which experience of beam behaviour might suggest, namely that the shear is
reasonably constant over the unloaded region of the slab and then decreases
uniformly over theloaded region. Oneinteresting feature of the exact distribu-
tion isthat the maximum shear force does not occur at the boundary. The ex-
planation for this is that the high torsional effects in the vicinity of the
boundary result in a rather reduced rate of increase in bending moment in
these areas, with consequently somewhat reduced shear forces. The rate of
moment increase (Fig. 3.16(c)) then accelerates somewhat around the slab
quarter points, giving rise to maximal shear forces at these locations. The re-
action distribution (Fig. 3.16(f)) shows that the majority of the load is sup-
ported by the central region of the slab, while the corner twisting moments
require the downward corner point reactions mentioned earlier if the slab
corners are not to rise under load.

Example 3.2 —fixed-edge slab

The same slab is now considered with fixed edges. The only ateration re-
quired to Fig. 3.15 is to change the signs of the additional net pointsin order
that the new boundary condition (equation (3.26)) be observed. If thisisdone,
then application of the biharmonic operator (Fig. A.5(c)) to points 1, 2 and 3
results in the equations

1 24 -16 2 ||w 0.25

=116 26 -8 [{w,}= 0.50% (3:31)
8 —32 20 ||w,| |L00

The solution to equations (3.31) is

L4
(" ={w,, w,, w;} ={0.00037, 0.000 63, 0.00105} %
Table 3.1 Comparative displacement solutions
w (x 10~°gL"/D)
Fixed Simple
Net point 4x4 8x8 4x 4 8x8
1 37 29 101 101
2 63 52 146 147
3 105 91 214 213
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An exact solution is not so easily obtained in the case of clamped edges. In
such cases, numerical solutions are normally verified by proceeding to afiner
net, the solution being presumed converged if the coarser and finer solutions
are in agreement. The results of the above 4 x 4 net are therefore compared
with those from an 8 x 8 net in Table 3.1.

Clearly, the solution obtained above is not close to the converged solution
in the fixed-edge case. The comparison values presented for the simply sup-
ported case indicate that the converged position has essentially been obtained
in the 4 x 4 case, as indeed has already been established by correlation with
the exact solution. In its present form then, the finite difference solution does
not represent fixed edges accurately. Two remedies are available, either to
insist on fine netswhenever fixed edges aretreated, or to utilize more accurate
difference operators (Cope and Clark, 1984) in such cases.

Example 3.3 — slab with free edges

The same slab will now be treated with the sides parallel to the y-axis being
unsupported, while those parallel to the x-axis are simply supported. The net
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Fig. 3.17 Slab with free edges
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for a4 x 4 solution then becomes as shown in Fig. 3.17, and the required dif-
ference equations are given as

227 8 2 -8 -8 2 1 0 0 0 0.25
16 21 -8 4 4 -8 0 1 0 O 0.50
8 16 20 16 0 2 0 0 0 O 1.00
16 4 -8 20 2 0 0 0 0 O 0.50
8 2 0 1 20 -8-8 2 1 0 |0 |g
4 8 1 0-162 48 0 1™ [D
1 0 0 0 2 0 1 0 0 0 0
O 1.0 0 0-2 01 0 O 0
6 2 0 1 0 0 6 -2 -1 0 0
| 4 6 1 0 0 0-4 6 0 -1 0
(3.32)

The first six of equations (3.32) represent the application of the biharmonic
difference operator to slab points 1-6. The seventh and eighth equations rep-
resent the zero bending moment condition at the free edge points 5 and 6 and
are based on a difference approximation to the second of equations (3.25)
using the stipulated zero value of Poisson’s ratio. The final two equations
occur due to the zero force boundary condition (the first of equations (3.25))
and areformed, in the zero Poisson’ sratio case, by the application of the oper-
ator of Fig. A.6(a) at points 5 and 6. A computer solution to equations (3.32)
provides the displacements:

4
{W}" ={345, 493 524, 366, 311, 443, 278, 393, 160, 194} x 10°° %

On proceeding to afiner net, the comparableresultsare asshownin Table 3.2.
As in the simply supported case, the 4 x 4 and 8 x 8 solutions are in good
agreement and it may be concluded that a fixed-edge support presents the
greatest difficulty for afinite difference solution.

Table 3.2 Comparative displacements

Net point
w(x107%qLYD) 1 2 3 4 5 6
4x4 345 493 524 366 311 443
8x8 332 474 503 353 298 422
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3.4.5 Extensions and refinements

Orthotropic plates, for which the stiffnessis different in two perpendicular di-
rections, may be investigated by use of the appropriate differential equation
(Timoshenko and Woinowsky-Krieger, 1981). More complex boundary con-
ditionsthan the ones covered above are encountered at curved boundaries and
at free internal or external corners (Wood, 1961). Oblique or triangular nets
(Fig. A.2) are particularly convenient in the case of skew slabs (Morley,
1963). Incorporation of the interaction of slabswith other structural elements,
edge beams for example, isnot particularly straightforward but has been con-
sidered in fairly simple cases (Wood, 1961).

3.5 Grid representation method

Grillages are readily analysed elastically by the stiffness method (Ghali and
Neville, 1997) and most structural computer packages, based on this ap-
proach, possess sub-systemswhich can analyse grids of essentially any sizeor
complexity. The similarity of grid and plate behaviour has already been uti-
lized in describing general plate response (see Section 3.2) and it isreasonable
to enquire asto whether plates may be analysed by standard grillage computer
programs. In fact, such arepresentation is particularly easy to formulatein the
case of aslab (zero Poisson’ sratio), and the presentation given herewill bere-
stricted to such a case.

3.5.1 Grid properties

It will be assumed that the slab is to be represented by a rectangular grid of
members, which are shown with uniform spacings, a and b, in Fig. 3.18, al-
though thisis not essential. It has been emphasized above that slab action is

\aB N

T 7

K

Fig. 3.18 Grid representations
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characterized by bending in the x- and y-directions, accompanied by twisting
about both of these directions. The object of a grid representation is to make
the grid members simulate the bending and twisting action of their sur-
rounding slab strips in either the x- or the y-direction, as appropriate. Thus,
member AA (Fig. 3.18), for example, must represent the x-direction bending
and twisting for the shaded part of the slab, while BB will perform the same
function in the y-direction for its shaded part. The relevant differential equa-
tions for slab bending and twisting in the x-direction may be obtained by
setting Poisson’ s ratio to zero in the first and third of equations (3.7) to give

’w  Et®o*w
=D e =" oo (333)
2 3 2
_ Jw  Gt® 9w (3.34)

Y axay=?axay

where G = E/2 for v = 0 (equation (1.7)).
Since M, and M, are moments/unit width, the total moments sustained by
the shaded strip, AA, of Fig. 3.18 are

3 32

M’ =bM, =— Elbzt 37‘? (3.35)
3 2

M/ =, = S IW (3.36)

Y Y6 oxoy

Thedifferential equationsrelating to the behaviour of agrid member inthe x-
direction arethose of beam bending (Megson, 1996) and el astic torsion (equa-
tion (2.2)):

o*w
M, =—g1 2 3.37
X v (3.37)
2
M, —cir =32 (0,)=c1 2V (3.39)
ox oxay

If equations (3.37) and (3.38) are to correctly represent equations (3.35) and
(3.36), then

3 3
B &
12 6
The bending constant, |, given by equation (3.39) will be recognized as that
appropriate to a rectangular section of width b and depth t. The suggested
torsion constant, J, isnot so readily interpreted, since arectangular section of
width b and depth t (small in comparison to b) has already been shown

(Table 2.5) to be twice the value given by equation (3.39). This factor of two
arises due to the different twist responses of an isolated rectangular section

| (3.39)
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Fig. 3.19 Torsional shear flows

and arectangular section which forms part of acontinuousslab. Intheisolated
case, the shear flow due to torsion is continuous around the section
(Fig. 3.19(a)), while, as shown above (see Section 3.3.3), the shear stresses
due to twisting within a slab are paralel to the slab middle surface
(Fig. 3.19(b)). It has already been shown (equation (2.17) et seq.) that the ver-
tical shear stresses in the isolated section case contribute one half of the total
torsion resistance, which accounts for the reduced torsiona stiffness of the
slab element.

On the basis of equations (3.39), the required properties of all the members
involved in the grid representation of Fig. 3.18 may now be readily estab-
lished as:

For interior x-direction members:

bt* bt®
l=—, J=— ,
o 6 (3.40a)
For edge x-direction members:
bt* bt®
I =—, = — .
24 T (3.40b)
For interior y-direction members:
at® at®
l=— J=— A
2 6 (3.40c)
For edge y-direction members:
at® at®
l=—, J=—o )
24 T (3.40d)

3.5.2 Boundary conditions

Boundary conditions present little difficulty with thisapproach. Jointsalong a
free edge are simply left unrestrained. Joints along a fixed edge are fully re-
strained against z-direction translation and against rotation about both the x-
and y-axes. Thistreatment resultsin the edge members becoming inoperative,
and they may be omitted from the analysisif so desired.

128



Plates and slabs

Simply supported edges require a little more care. Clearly, joint displace-
ments along asimply supported edge must be prevented and there must be no
restraint against rotation about the line of support. The difficulty concernsro-
tation about an axis perpendicular to the edge. Geometrically, there should be
no rotation about such an axis and yet, if rotation is prevented, there are no
bending moments in the edge members and hence no shear forces. The
absence of shear forcesin the edge membersresultsin theinability of thegrid
to accurately represent the reaction distribution along the support. Thus, ge-
ometry requires no rotation about an axis perpendicular to the edge, and yet a
satisfactory reaction distribution may only be obtained if such rotations are
allowed. These conflicting requirements may be compromised by allowing
the rotation but giving the edge members a high bending stiffness and so en-
suring that the rotations incurred are small. No alteration should be made to
the torsional stiffness of the edge members.

3.5.3 Load representation

Loads may be allocated to either the grid members, or to the joints, or to a
combination of both members and joints. The alocation of the load isusually
based on simple statical principles. In the examplestreated below, the loading
is alocated to the joints only, and, for comparison with the finite difference
method, the apportionment is based on the principles which were used in con-
nection with that method. Thus, for a given joint O (Fig. 3.18), any loads
acting within the surrounding shaded rectangle of dimensions axb are allo-
cated to O. If the shaded areawere subjected to auniformly distributed load of
intensity, g, for example, then an equivalent point load of (gab) would be
applied to O.

3.5.4 Evaluation of moments and shear forces

Once the grid has been analysed, slab moments and shears may be evaluated
directly from the computer analysis. The results presented will consist of joint
displacements and rotations, member shears, bending moments and torques,
and joint reactions. The member forces will not be in terms of force/unit
length but will be atotal force appropriateto the corresponding slab strip. This
being the caseg, it isdesirable to express all moments and forcesin unit width
terms before proceeding further. The reduction to unit length termsis readily
achieved by relationships such as

MM
b’ Y a
where the prime signifies a value from the computer analysis.

M

(3.41)
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The slab internal forces may then be obtained by averaging the appropriate
reduced forces at the joint considered. For example, at O in Fig. 3.18, two
values of M, will be available, one from the grid member to the left of O and
one from that to the right. The average of these two values will represent the
slabvaueof M, at O. Similarly, thevaluesof M,, Q, and Q,at O may be estab-
lished. Thereisonly onevalue of slab twisting moment at O, sincethetwisting
momentsin the x- and y-directions are complementary; thus M,  is obtained as
the mean of the torquesin al the four members meeting at O. Thisaveraging
processis of considerable importance, as the individual values may be a poor
approximation, but the meanswill generally give agood representation of the
slab behaviour.

3.5.5 Evaluation of reactions

Reactions at the boundary points may be obtained from the computed joint
reactions by reducing these values to unit length terms. Some difficulty is
experienced in the case of acorner forcereaction, sincethe analysisvaluewill
incorporate any point corner reaction with a contribution from the distributed
reaction over alength (a + b)/2 (presuming that support isprovided in both the
x- and y-directions). These two constituents may be separated by evaluating
the corner twisting moment, as described in the previous section, which then
provides the value of the point reaction (Fig. 3.13). The point reaction is then
subtracted from the analysis reaction to leave the distributed reaction
component.

3.5.6 Examples
Example 3.4 — fixed-edge slab

Theslab considered previously (example 3.2) isnow analysed by the grid rep-
resentation method. Due to symmetry, only a quarter of the slab need be ana-
lysed, and the member arrangement for a 4 x 4 analysis is as shown in
Fig. 3.20. The required member properties are;

For 3-6, 6-9, 7-8, 8-9:
3 3 3 3
O S S O £

"812 9%’ = 86 48
For 4-5, 5-6, 2-5, 5-8:

L e Le e

412 48° T 46 24

Members 12, 2-3, 1-4, 4—7 are not needed, and G = 0.5E for all members.
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Fig. 3.20 Fixed-edge slab

It should be noted in the above that the use of symmetry resultsin ahalving
of the tributary slab areas applicable to the members along the slab centre-
lines, and hence a halving of their member properties. To completely model
the symmetry condition, it is also necessary to enforce the requirement that
the slope normal to any line of symmetry be zero. If these restraint require-
ments are combined with the restraints due to the fixed edges, the full set of
joint restraints becomes:

At 1, 2, 3, 4, 7: no z-displacement; no rotation about x- or y-axis (fixed-edge
condition)

At 8: no rotation about x-axis (symmetry condition)

At 6: no rotation about y-axis (symmetry condition)

At 9: no rotation about x- or y-axis (symmetry conditions).

Using the load allocation procedure described above, the required joint loads
a5, 6,8and 9 areequal point loads of L*/64. These equal |oads contrast with
the dissimilar load intensities applied in the finite difference analysis (equa-
tions (3.31)). The reason for thisliesin the differing treatments of symmetry
employed by the two methods. The grid representation essentially discards
three-quarters of the slab, together with the loading applied to this part of the
structure. The effect of thisdiscarded portion on the quarter that isanalysed is
then represented by the enforcement of the symmetry restraints which were
detailed above. In the finite difference approach, however, the complete slab
is considered (Fig. 3.15) but the selected system of nodal numbering reflects
the symmetrical displacement of the slab and thereby reduces the size of the
analysis. Theresults of acomputer analysis based on the above grid represen-
tation are givenin Fig. 3.21, where they are compared with an 8 x 8 analysis
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Fig. 3.21 Fixed-edge slab: (a) reference plan of quarter slab; (b) w (x 10°qL*/D);
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132



Plates and slabs

by the same method. It may be observed that the agreement is good in respect
of displacements and bending moments, but is much less satisfactory in
respect of twisting moments, shear forces and reactions. The latter variables
are, in fact, the most difficult to model by any numerical method. It may also
be noted that there should be zero shear force (Fig. 3.21) along theline of sym-
metry CA (Fig. 3.21(a)) but this condition is rather poorly represented by the
analyses, particularly the coarser one.

The displacement and moment distributions, as would be anticipated, show
maximum hogging curvature and moment at the fixed supports and maximum
sagging curvature and moment at the centre of the slab. The distributions also
indicate that the central slab strips sustain most of the load, there being little
bending towards the corners of the slab.

The twisting moment distribution (Fig. 3.21(d)) is rather different from the
simply supported slab example (Fig. 3.16(d)), with which it may be con-
trasted. No twisting moment can exist along the lines of symmetry, CA and
CC, or dong the fixed edges, since there is no change of transverse slope
along such lines. The analyses do not represent these conditions particularly
well (Fig. 3.21(d)) but do show that the maximum twisting moment occurs
around the slab quarter point, with smaller twisting momentsin the regions of
the centre-lines and the supports. It may be noted that the magnitude of the
maximum twisting moment occurring in the fixed caseisonly about one-third
that of the ssmply supported maximum,; thus, twisting moments are of less
concern in continuous slabs than in simply supported ones.

The shear force and reaction distributions are somewhat similar in form to
those encountered in the simply supported case. No corner point reactions are
present in the fixed case, however, due to the absence of boundary twisting
moments. The reaction distribution confirms the earlier suggestion that the
majority of the load is carried by the central slab strips.

Example 3.5 — slab with free edges

The same slab will be analysed with the edges parallel to the y-axis being un-
supported (Fig. 3.22) while those parallel to the x-axis are simply supported.
Making use of symmetry, as before, the required member properties are:

For 1-4, 4-7, 3-6, 6-9, 7-8, 8-9:
Lt Lt Lt Lt
- t* Lt J- L

"812 %' = 86 48
For 4-5, 5-6, 2-5, 5-8:

Lo Le e

412 48’ 46 24
For 1-2, 2-3:
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Fig. 3.22 Slab with free edges
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The values of the members along the simple support have been increased by
anominal multiple of 100 (Section 3.5.2) and G = 0.5E for all members.
The required joint restraints are:

At 1, 2: no z-displacement

At 3: no z-displacement, no rotation about y-axis (symmetry condition)
At 6: no rotation about y-axis (symmetry condition)

At 7, 8: no rotation about x-axis (symmetry condition)

At 9: no rotation about x- or y-axis (symmetry conditions).

The loading arrangements remain the same as in the previous example,
namely vertical point loads of magnitude qL?/64 will be applied to joints 5, 6,
8and 9. Computer resultsfrom a4 x 4 analysisbased on the above representa-
tion are compared with values from an 8 x 8 grid analysis in Fig. 3.23 and
show satisfactory agreement. The bending moment and deflection distribu-
tions indicate that essentially ‘one-way’ bending occurs. The slab behaviour
approximates to that of a simply supported beam having the same width and
depth as the slab and loaded with a uniformly distributed load of intensity
(gL/2)/unit length over its central half-length. Such an approximation would
result in a maximum bending moment of 0.047qL?, which may be compared
with the value of 0.051qL? given by the 8 x 8 grid representation.

The beam-type behaviour results in the twisting and transverse moments
being small in comparison with the longitudinal moments. In respect of trans-
verse moments, it may be noted that the analyses indicate small hogging
moments close to the free edges where the unloaded longitudinal strips give
considerable support to the transverse strips.
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Fig. 3.23 Slab with free edges: (a) reference plan for quarter slab; (b) w (x 10°qL*/D);
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3.5.7 Extensions and refinements

Non-zero Poisson’ s ratio causes some difficulty with this approach, since, as
discussed aready, grids do not naturally model the Poisson’s ratio effect.
Thus, although suitable grid models have been suggested for plate analysis
with non-zero Poisson’ sratio, the finite difference or finite element methods
are generally more convenient. Variation in slab thickness causes no real
problems, since suitabl e adjustments to the member properties may bereadily
effected. Orthotropy may, similarly, be treated by adjustment of the member
properties, and one of the main applications of this method has been to
orthotropic bridge decks (Hambly, 1998).

Non-linear boundaries are not readily modelled on the basis presented here
and, again, athough triangular grid models have been proposed, other
methods are usually to be preferred, except in the case of curved-bridge decks,
where curved-beam theory can be effectively employed. Interaction effects
with beams, stiffeners, columns and similar line elements are easily catered
for by simply incorporating these membersin the analysis. If columnsarein-
troduced, then a space frame rather than a grid analysis program will, of
course, be required.

3.6 Finite element method

3.6.1 Rectangular element theory

For plate bending, the finite element method is most readily formulated for a
rectangular element (Fig. 3.24(a)). Although the deformation of a plate may
be uniquely represented in terms of the normal displacement variable, w,
alone, a more effective representation is achieved if the dependent x- and y-
axisrotations are also included in the formulation, so that the displacement of
agenera point, P, will be given by

i X
i k 0, fﬁyi
O foni
b, /

= =} y

V.

Vo VW’f_

(a) (b)
Fig. 3.24 (a) Rectangular plate bending element. (b) Nodal displacements and forces
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w

w oW
{&}=160,1=1 oy (3.42)

o) | ow

ox

There arethusthree displacement * components’ to be considered at each point
of the element and, in particular, since there are four nodes, atotal of 12 nodal
displacements will be involved. It follows that the polynomial displacement
function should have atotal of 12 terms. Unlike the triangular plane stress
element, the displacement components are not independent of each other and
it will therefore be sufficient for the normal displacement variable aloneto be
represented by the polynomia function, since the rotational displacements
may then be determined from the final two of equations (3.42). A suitable
polynomial representation for the normal displacement variableis

W=, + X +agy +a, X +agXy + gy +
aX* + Xy + Xy + gy’ + g, Xy + Xy (343

The polynomial representation of equation (3.43) includes a full cubic func-
tion which comprises ten terms, so only two fourth-order terms may beincor-
porated. The chosen two terms are selected on the basis of preserving a
symmetric representation in x, y and of keeping the order of the individual
variables x and y aslow as possible.

From equations (3.43) and (3.42), the complete displacement vector is
given by

w

ow

EX

ow
X
1 xy xX xwy X Xy vy xXy x°
001 0 x 2y 0 X 2y 3% x 3x{a
0 -10 2x -y 0 -3 —2xy -y 0 -3y -y
=[CKa} (3.44)
Inthefollowing, the detailed treatment will berestricted, for simplicity, toa
square slab bending element (Fig. 3.25). The same genera theory may,
however, be applied to rectangular isotropic or orthotropic plate bending ele-

ments. If the general point, P (Fig. 3.25), istaken to bethe nodesi, j, kand| in
turn, then substituting successively in egquation (3.44) allows the 12 nodal

{6}
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Fig 3.25 Square slab bending element

displacements to be related to the 12 undetermined coefficients by egquations
(3.45). It may be shown that [C®] isnon-singular, aswell as square, so that the
undetermined polynomial coefficients may be related to the nodal displace-
ments by equation (3.46), in which the inversion of [C 9] for the square slab
element has been achieved by computer:

5 G
=101 9 oy
6k Ck
5] g
(1 -h -h B® B h -h® - -h® -h® h* h* |

0 -h =2h 0 h®> 2h® 3n® -h® -3n®
2h h 0 -3n® 2h* -h®> 0 3h® n®
- n - K -n* -
0 -h 2h 0 h?> -2n* 3n® -h® -3n®
2h -h 0 -3n> 2h* -h®> 0 -3h* -h®

|
L oo

|
© =
O R T O P
=
N
|
-
N
=3
N

O O P, OO0 Fr OO0 Fr OO0k
|
=

h —-h h*> -h* h* h* -h* h* -h* -h* -h*

01 0 h —2h 0 h -=2n”3* h 3

-1 0 2h h 0 -3 20" -h* 0 3h h

h h h® W h» K h h ¥ n n

01 0 h 2h 0 h 20" 30 h 3

|0 -1 0 =2h -h 0 -3n* -2h®> -h* 0 -3n° -h’|
(3.45)
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{a} =[C°T{5%

[ oh* K5 —h5 2h* —h® —h® 2h* h® hP 2h* —hS K
3 —h* h* —3n® h* h* 3n® h* h* 30 —h* b
3 —h* h* 30 —h* —h* —3n® —h* —h* 3h® —h* b
O 0OhR 0 O 0 0 -h 0 0 -
A2 B —h® —4n? h® K —4h? —h?® —h° 4h? —h? h?
0 - 0 0 K 0 0 -h 0 0 K 0|
h 0 - h 0 - —-h 0 -h’ —h 0 -R?
O 0 - 0 0 K
0
h

0 0 W 0 0 -

R 0 0 -h> 0 0 -2 0 0 h 0

R 0 -h 2 0 h h 0 -h R 0

-1 0 h 1 0 -h 1 0 h -1 0 -h

|1 -h 0 1 -h 0 1 h O -1 h O]
(3.46)

The finite element method next requires that suitable ‘strains' be defined,
which may berelated to the nodal displacement variables and to appropriately
defined ‘ stress’ variablesby strain and el asticity relationships respectively. In
the case of plate bending, ‘stresses are perhaps more readily defined than
‘strains’, since the general theory given above suggests that the ‘stress’ at P
may be suitably represented by the moment stress resultants as

M

{}={M, (3.47)
M

xy

Equations (3.8) then suggest that the ‘strains' are appropriately defined in
terms of curvatures so that

_o'w
ox? —X
o*w X
{et= "o (T =Xy (3.48)
2x
PR v
oxay

The factor of two which occurs in the definition of the torsional strain arises
due to the requirement that {<}"{o} represent a quantity of work. It may, in
fact, be shownthat —x, M,, —x,M,, and —x,, M, all represent work/unit area of
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plate and, since the torsional moment occursin both coordinate directions, the
total work it produces is 2y, M,,. The strains may now be related to the un-
determined coefficients by substitution from equation (3.43) into equation
(3.48) to give
000-200 -6x -2y 0 O -6xy O
{¢=|0 00 0 02 0 0 -2x -6y 0 -6xy|{c}
000 020 0 4x 4y 0 66X 6y
=[Qla} (3.49)

Thestrain matrix then followsin the normal manner by substituting for theun-
determined coefficientsin equation (3.49) from equation (3.46). Hence

{e} =[QIC°T{6°1=[BI{¢%} (3:50)

The strain matrix for the square slab element, obtained by substituting in
equation (3.50) for [Q] and [C ™" from equations (3.49) and (3.46), respec-
tively, is

~x(h-y) 0 —h(h=-y)(h—3%)’
=3y(h—-x) h(h—x)(h—3y) 0

4h* —3(x* +y?) h(h—y)(h+3y) —h(h—x)(h+3x):
- 3x(h+y) 0 —h(h+y)(h—-3x) |
- 3y(h-x) —h(h—x)(h +3y) 0 |
g L T30 HY) R(hy)(h-3y)  hh-X(h+3x) ¢
4n*; 3x(h-y) 0 h(h—y)(h+3x) !
L =3y(h+x) h(h+ x)(h - 3y) 0 |
| —4h? +30¢ +Y?) —h(h—y)(h+3y) —h(h+x)(h-3X) !

. X(h+y) 0 h(h+y)(h+3x)

- 3y(h+x) —h(h+x)(h+3y) 0
L 47 —3(x +y?) —h(h+y)(h=3y) h(h+x)(h-3X)
(351)

It should be noted that the strain matrix [B], unlike itstriangular plane stress
element counterpart, is a variable matrix, since, although matrix [C?] is
constant, depending only on the known element size, the matrix [Q] depends
upon the variable coordinates x and y of the general point, P. It follows that
the strains, and hence stresses, vary with position for this type of element.
The relationship between the chosen stresses and strains may be obtained by
recasting equations (3.7) in matrix form to produce the elasticity
relationships:

140



Plates and slabs

_o'w
M 1 v O x>
§ B (v 1 0 o’w
R e BRI | v B C B o)
M, 00 —||
2 2aw
oxay

The stresses may now be related to the element nodal displacementsin the
normal way by eliminating the strains from equations (3.52) and (3.50) to
give

{0} =[DI[BN{&*]=[HKs% (3.53)
For the particul ar case of the square slab element, the elasticity matrix is ob-
tained by setting Poisson’ sratio to zero in equation (3.52) to produce
100
[D]l=—|0 1
00

(3.54)

NS )

Substituting in eguation (3.53) for [D] and [B] from equations (3.54) and

(3.51), respectively, produces the stress matrix for the square slab element:
=3x(h-vy) 0 —h(h-y)(h-3x) .
—3y(h-x) h(h—x)(h—3y) 0

207 —2(x* +y?) 2(h—y)(h+3y) —g(h—x)(h+3x)

-3x(h+Yy) 0 —h(h+y)(h-3x)

' 3y(h—x) —h(h—=x)(h+3y) 0 !
[H]_E_taii—zh%g(x%yz) g(h+y)(h—3y) g(h—x)(h+3x)i
12 4n* 3x(h-vy) 0 h(h-y)(h+3x) |
=3y(h+Xx) h(h+ x)(h—3y) 0 :

24306 +y) ~D(h-Y)(h+H) ~D(he (-39

3X(h+y) 0 h(h+y)(h+3x)
3y(h+Xx) —h(h+x)(h+3y) 0

207 —2(x% +y?) —g(h+y)(h—3y) g(h+x)(h—3x)
(3.55)
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Since [B] depends on the position of P, the stresses calculated from equation
(3.53) will vary and may be determined at any given point in the element by
substitution of therelevant coordinatesx andy. Itis, infact, usual to determine
the moments at the four nodes of each element by substituting successively in
eguation (3.53) for the coordinates of the nodesi, j, k and | to produce the
element stress matrix

o H,

o, H.

{o%} = a’ = H' {6 =[H"}6% (3.56)
H

0 I

The stressmatrix [H®] for asquare slab element may be obtained by following
the same procedure of successive coordinate substitution, in this casein equa-
tion (3.55), and the resulting element stress matrix is given in Fig. 3.26.

Since the strain and elasticity matrices are now available from equations
(3.50) and (3.52), general finite element theory (see Appendix B) may be
invoked to obtain the element stiffness matrix as

[KI= [ [BI"[D][B]da (357)
In equation (3.57), it should be noticed that the integral is taken over the area
of the rectangular element since, as noted earlier, the product {} { o} repre-
sentsaquantity of work/unit areain thiscase. Also, unlikethetriangular plane
stress element, the integrand is not constant, due to the variable nature of the
strain matrix. Nevertheless, theindicated integration may be evaluated to give
the element stiffness matrix and this will be exemplified by consideration of
the square slab element. First, the integration is simplified by substituting for
[B] in equation (3.57) from equation (3.50) since [C°]™ is a constant matrix,
hence

+h +h
[K= [ [ (QICT™)[DIIQIIC®T ™ dxdy

=T’ [ | [QroiiQ] dxdy][cerl
So that
[K]=(IC1 ™) "ISICeT™ (3.58)

where

+h +h

[SI= | [[QI"[DI[Q]dxdy
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The evaluation of the integrand is now relatively straightforward due to the
form of the elasticity matrix (equation (3.54)) and the fact that the origin of the
coordinate system was located at the centre of the element (Fig. 3.25). The
details of theintegrand evaluation aregivenin Fig. 3.27, and the element stiff-
ness matrix, derived by subsequent substitution in equation (3.58) for [C°]™
from equation (3.46) and [S] from Fig. 3.27, is presented in Fig. 3.26.

Plate analysis by thefinite element method therefore consists of assembling
a set of structure stiffness egquations based on the element stiffness matrices
derived from equation (3.57). Following the enforcement of the boundary
conditions, the solution to the stiffness equations provides the plate displace-
ments, which may be employed to obtain element stress solutions by use of
equation (3.56). The application of these processes is illustrated in the
example given below.

3.6.2 Example

Example 3.6 — fixed-edge slab

Theexampleslab considered previously will be analysed by thefinite element
method under the fixed-edge condition, using the element sub-division and
numbering systems shown in Fig. 3.28. Since the boundary conditionsrequire
that all the displacement components be zero at nodes5, 6, 7, 8 and 9 the con-
ditions may be enforced by not forming stiffness equations at these nodes,
where the displacements are known, and the structure stiffness matrix will
take the general form

5 2 X
) e e Ml
/ |
ZEO) ®
T r 3
L2 6} 21 Ly
i k K
10| o]
V /J' 11J I
7777777

L2

=

~

Fig. 3.28 Fixed-edge slab
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F o,
Cr=[K]S (3.59)
F4 64
where
le
F1 = Fxl
F

the total ‘force’ components at node 1.

Displacement solution

From Fig. 3.26, the element stiffness equations for the square slab element
may be written, in sub-matrix form, as

B [srkokerk] (8

Sl kK kK)o (3.60)
fol ke j K :_'%1' ka || 9 '

fi X ku X Ki ! X kﬂ o

To accord with general finite element theory, the nodal ‘forces' involved in
equation (3.60) must be such that {6,} "{f} represents awork quantity. With
the chosen * displacement’ components (equation (3.42)), thiswill besoif the
‘forces’ aretakento beaforceinthew-direction together with moments about
the x- and y-axes in the positive directions shown in Fig. 3.24(b).

The structure stiffness matrix will be formed, asin example 1.1, by consid-
ering each of the nodes 14 in turn, and summing the force contributions from
the elements which each node interconnects. Taking node 1 first (Fig. 3.28),
the only element involved is element 1. Since thei, j, k and | designation of
element 1is2, 3, 1 and 4, itselement stiffness equations, from equation (3.60),
take the form

Bl fkirk ke ki] (%
S ki kg kK[ ) 6 3.61
f%‘kmj:k‘f,:kk:kk 4 oo
f, N PR T A

Thethird of equations (3.61) relatesto node 1, and, sinceonly element 1isin-
volved, this provid& the first structure stiffness equation as

=[ kkk kk k@ ]{A} (3.62)
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where {A} ={6,, ..., §,} " and " indicates evaluation for element 1.

Node 2 interconnects elements 1 and 2, so that the force contributions from
these two elements need to be summed to produce the second structure stiff-
ness equation. In the case of element 1, the forces at node 2 are given by the
first of equations (3.61). Element 2 hasnode 2 asits‘k’ node and it will there-
fore bethethird of equations(3.60) which representsthe node 2 forcesfor this
element. When expanded, the relevant equation becomes

{17} =k {8} + [k 1{oa} + [ka {6} + kg 1{é}

= [ka {8} + [k 1{63} (3.63)

since {6} = {6 ={0, 0, 0} " (boundary conditions).
Combining the contributions from the two elements together resultsin the
second structure stiffness equation:

1 2 3 4
{R}={E}+{f} =[ki ki + ke K +kg  kH{A (3.64)
Similar consideration of nodes 3 and 4 enablesthe compl ete structure stiffness
matrix to be assembled, in sub-matrix form, as

ki ke o ke ok

K= i(-l-,-‘;-;i-z-.-----’f ------- (365
_.J‘S,'_l'_Jf_‘f K+ ‘ﬂ'_ ?L_k_kk_T_'ﬁ'_:_'fn__*_'ﬁk_
Akt koo kg kg Ky + kg

Since, in this example, al the elements are similar, the complete stiffness
equations may be obtained by direct substitution for the sub-matrices of equa-
tion (3.65) from Fig. 3.26(b). Such asubstitution would normally be made nu-
merically, but, for comparison with earlier solutions, algebraic geometric
representations will be used. Also, the same form of load allocation will be
employed asinthegrid representation, that is, equal point loads of (L/2)%/4 at
each of nodes 1, 2, 3 and 4. When formed in this way, the structure stiffness
equations are as given in Fig. 3.29(a).

Although the equations of Fig. 3.29(a) incorporate the boundary conditions
due to the fixed edge (by omission of nodes 5-9), there are additional re-
straints due to the use of symmetry. No rotation can occur about lines of sym-
metry, since this would produce non-symmetric twists, and the additional
restraints required to model these conditions are, with referenceto Fig. 3.28:

Along 5-2-1:60,=0
Along 9-4-1: 6,=0

It should be noted that, on lines of symmetry, rotation about lines normal to
the symmetry linesis acceptable and will, in general, occur dueto the bending
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[162 33a 3§a L -72 1§a 33a | -18 12a 12a | <72 33a 1§a' w, 1
#24a" 0 | 122 64 0 1-12a 625 0 !-33%a 9a> 0 ||6,| |Ru
e {Na 09 (-2 0 6@ |12 0 6@ ||by] |Ry
324 66 0 |—144 66a O | —18 12a —12a||w,
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96a> | 66a 0 184> ||0,; 0
symmetric (a = [/4, D= Et'/12) L737221”7)7"66; ;v; 1
* = restraint 484 0 ||0. 0
L *48&2_ 0»»4 R(M
(a)
(162  -72 33¢ -18 12a 12a -72 33a|(w, 1
324 0 -144 662 0 -I8 12a||w,| |1
48a 0 0 122 12 0 |0, |0
648 0 0 -144 0 [Jwy| |l|gd
154 9%a 0 0 12a|]6,[ o[ 4
' 9%a 66 0 |[0,] |0
symmetric 324 0 ||w| |1
L 484(16.,] |0
(b)
162 -72 33 -18 12 12 -712 337w 1
324 0 -144 66 0 -18 12| w 1
48 0 0 12 12 0|lad,| |0
648 0 0 —144 0 || w 1| ga®
15a 9% 0 0o 12|la0,[ o[ 4
, 9% 66  0|lad,| |0
symmetric 304 0] w, |
L 48 ||ab,, 0
(©)

Fig. 3.29 Example slab stiffness equations. (a) Unrestrained equations. (b) Restrained
equations. (c) Restrained equations (modified variables)

of the slab. At the centre point, 1, however, the slope in all directions will be
zero and hence both rotation components must be restrained.

The symmetry restraints are reflected in the equations of Fig. 3.29(a) by the
specification of restraint moments, R. These moments arise due to interaction
with the quarters of the slab which are not considered in the analysis. If the
known zero-rotation values due to symmetry areintroduced into the equations
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of Fig. 3.29(a), then the columns of the stiffness matrix corresponding to these
components become null and may be del eted. The equations corresponding to
the restrained rotations are also discarded to give the stiffness equations for
the restrained slab which are shown in Fig. 3.29(b), where equations relating
to moment equilibrium have, for convenience, been divided by a. To facilitate
the numerical solution of the equations, it is convenient to change the rota-
tional variables, ¢, to afd, in which case the restrained stiffness equations
become as given in Fig. 3.29(c). A computer solution to these equations
follows:

W, 53.94 79.02
W, 30.07 44.05

a,,| |-38.97 —57.08

wo|_| 1641 | o150a° | 2408| gl (3.66)
| |-2255 4D |-3303 4D

.| |-2255 -33.03

w, 30.07 44.05

a,,) |-38.97 —57.08

The displacement solution of equation (3.66) exhibits further symmetry prop-
erties of the slab, namely the equal displacement and rotation components at
nodes 2 and 4 and the equal rotation components at node 3. It would, in fact,
have been possible to take advantage of these relationships to reduce the
number of stiffness equations to be solved (see problem 3.10).

Stress solution

To exemplify the stress solution, the moments at node 2 will be determined.
These moments can be derived from either element 1 or element 2 (Fig. 3.28),
so that the normal practice of deriving the moments from both elements and
then averaging will befollowed. In the case of element 1, node 2 isnodei and,
from equation (3.55), the moments at the node are given by

M %
X2 (53
{‘72} = My2 = [Hi]{ée} = [Hi] s (3.67)
Mxyz !
by

By substituting in equation (3.67) for the stress sub-matrix from Fig. 3.26 and
for the nodal displacements from equation (3.66), the moments at node 2 may
be determined by
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M, 5 6 0 4w 00 0w
My2 _g 6 4 0 agxz + —6 2 0 agxg +
M, -1 -1 1 39y2 1 0 -1} 39y3

6 0 —47( 4405 0 0 O] 2403
Dz 6 4 0 0 (+|/-6 2 0/[-33.03;+
(L/4)
1 -1 1]|-57.08 1 0 -1||-3303
-6 0 -21(79.02 0 0 O( 4405 ,
00 O }+ 0 0 0[l-57.08!|x10°9
11 0 -1 00 0 b
29.6
={ 86.5;x10"qL? (3.68)
-14.6

Following asimilar procedurefor element 2, node 2 becomesnode 'k’ and the
moments are calculated as shown:

" 5 0
(o =1 Mo {=[H T =[H]] =[]
M 2 2
b3 b3
6 0 47 4405
(L/4)2 6 4 0 +
1 1 1||-57.08
00 24.03
6 2 }3303 «10° %
3303
57.6
={86.5; x10™qL? (3.69)
6.4
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Table 3.3 Comparative results from slab analyses

Central deflection Maximum bending moment
Analysis Net S E F S E F
Finitedifference 4x 4 214 105 524 220 —200 507
8x8 213 91 504 223 -238 507
Grid 4% 4 201 78 472 248 -243 519
representation 8x 8 210 82 491 232 —256 511
Finite element 4x4 201 79 471 231 —240 511
8x8 210 83 490 227 —252 507
Multiplier 10~°gL*/D 10gL?
Support types: S E F
NN\
Simple N N
NN\ Encastré @ : @ $ @
Free A e

Comparing equations (3.68) and (3.69) shows that only the y-direction
moments are in agreement, there being marked differences between the other
two pairs of moments. In addition, zero twisting moment would be expected at
node 2 but this symmetry condition is not well represented by the analysis.
More representative moments are obtained by averaging the two sets of
moments obtained already,

M, | [ 43.6
M, ¢4 86.5;x10™*qL? (3.70)
M, | -105

but the twisting moment is still significantly different from zero, although its
magnitude is small compared with the size of the maximum moments in the
slab (Table 3.3).

3.6.3 Extensions and refinements

Non-zero Poisson’ sratio and orthotropy (Zienkiewicz and Taylor, 1991) may
both betreated by use of appropriate elasticity matricesin place of theslab re-
lationships (equation (3.54)) used here. Beam elements may be used in con-
junction with slab elements, and the inclusion of slab elements in complete
structure analysis presents little theoretical difficulty. A more *consistent’
system of load allocation is possible, while non-rectangular plates and slabs
require triangular, oblique or isoparametric elements, for all of which aspects
the reader is referred to Zienkiewicz and Taylor (1991). It should be noted,
however, that many of these more versatile elements are based on Mindlin
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platetheory, rather than the Kirchhoff thin plate theory. Mindlin’ sformul ation
is athick plate theory, which incorporates shear deformations In using such
elements, it istherefore necessary that realistic plate thicknesses be employed
if reliable results are to be obtained.

3.7 Comparison of analyses

Results for the analysis of the slab used as an example in this chapter are
presented in Table 3.3. The results have been obtained by each of the three
numerical methods considered, for each of the three types of edge support
condition. In Table 3.3, the finite element and grid representation methods
may be observed to give agood indication of structural behaviour inall cases,
as judged by the correspondence between results from the finer and coarser
nets. The grid representation results correlate closely with the finite element
values, which might have been anticipated, since, in the forms presented
above, the methods are closely related. Both approaches form three equilib-
rium equations at each node of the net, and it may also be shown that both
methods assume that the displacement between adjacent nodes may be repre-
sented by a cubic polynomial.

As noted previously, the finite difference solution performs well in the
simply supported and free-edge cases but is considerably less satisfactory
when fixed edges are treated. The feature of the fixed support which creates
the difficulty is the presence of curvature reversal in this case, which can be
less effectively modelled by the quadratic displacement representation of the
difference approach (equation (A.1)) than by the cubic representation of the
two other methods. This deficiency may, however, be overcome by using
finer difference nets in regions of expected curvature reversal, and it is the
availability of large-scale standard computer packages and their enhanced
flexibility which explain the general preference for grid representation or
finite element methods for plate bending analysis.

3.8 Design moments

3.8.1 Introduction

Whichever method is used to determine the moment distribution in a slab or
plate, the next problem confronted is normally that of how to ensure that the
strength of the plate is adequate to resist the calculated moments. This
problem may be viewed asone of knowing how to design, in particular, for the
twisting moments, M,,.. If ametal plateisbeing designed, it isusual to convert
the moments into stresses using equations (3.9) and then to employ an appro-
priate failure criterion, often that due to von Mises (Megson, 1996), to ensure
the adequacy of the plate.
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In the case of areinforced concrete slab, which is reinforced by an ortho-
gonal system of bars placed in the x- and y-directions, the problem isto deter-
mine the design moments M., M the reinforcement should be designed for if
adequate strength isto be availablein all directions. Once M, , M|, have been
found, the reinforcement may be designed to resist these moments by the
normal analysis of a section in bending. The design moments are commonly
referred to asWood-Armer (Wood, 1968) moments, and the following recom-
mendations follow Wood' s suggestions.

3.8.2 Recommendations
Bottom reinfor cement

Generaly
M, =M, +[M,|, My =M, +M,]| (3.72)

If either M, or M in equations (3.71) isfound to be negative, it is changed to
zero, asfollows: either

o

2

|\/|;=|\/|X+M—xy with M, =0 (3.72)

y

or

M2
Xy - * _

X

M, =M, +

If, in these changed formul ae, the wrong algebraic sign results for M, or M.,
then no such reinforcement is required.
If bothM, and M; are negative, then no bottom reinforcement isrequired.

Top reinforcement
Generally
M, =M, =M, |, M, =M, —|M,| (3.74)

If either M or M, in equations (3.74) is found to be positive, then change to
either

M2
M, =M, —|==| with M, =0 (3.75)
X X M y
y
or
MZ
M;zMy—M—Xy with M, =0 (3.76)
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If, in these changed formulae, the wrong algebraic sign resultsfor M, or M;,
then no such reinforcement is required.
If both M and M, are negative then no top reinforcement is required.

3.8.3 Example 3.7 —simply supported slab design moments

Referringto Fig. 3.16, the design momentsat various points of the simply sup-
ported slab considered previously may be evaluated as follows:

At centre (C): M, =M, = +0.023qL* M,, =0
Bottom reinforcement: M, =M, =+0.023qL>
Top reinforcement: M, = M = O

At quarter point (1): M, = M, = +0. 009gL?, M, =-0.011qL
Bottom reinforcement: M = M = +0. 020qL2
Top reinforcement: M, —M —OOOZqL2

At corner (A): M, =M, =0, M,, =-0.019qL?
Bottom reinforcement: M, = M =+0.019qL?
Top reinforcement: M, = M —0019qL2

Fromthe above, it may be seen that top (torsional) reinforcement isonly re-
quired close to the corners, as would be expected, and that the bottom rein-
forcement requirements at the centre and cornersarerather similar. Naturally,
much less bottom steel is needed close to the centre point of an edge.

3.8.4 Example 3.8 — fixed-edge slab design moments

With referenceto Fig. 3.21, the design momentswill be calculated at point D,
not because thisis a particularly critical slab location, but smply to illustrate
the application of the design moment computations:

At point D: M, =-0.008qL% M, = +0. 002qL2 M, = —0.005qL
Bottom reinforcement: M, =-0.003qL% M, = = +0. 007qL?
Sotakeequation (3): M, = =0, M, = (+0.002 + 0.005%/0.008)qL* = +0.005qL

Note that the subsidiary cal culation resultsin some moment reduction but that
thiswill besmall if the design moment with the offending sign wasalso small.

Top reinforcement: M, =-0.013qL% M, =-0.003qL>.
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Problems

3.1 A sguare, isotropic slab of side’5 missuch that two opposite sides may
be presumed simply supported, while the other two sides are encastré.
The slab supports a central point load of 200 kN. Using a net of side
1.25m, employ the finite difference method to determine the
displacements at the net nodal points.
Hence determine the bending moment distributions in the direction
of, and along, both centre-lines and relate these distributions to the
expected behaviour of the slab. (E = 20 kN/mn?, v = 0, t = 100 mm)

3.2 A reinforced concrete foundation raft isused to resist axial loads P from
regularly spaced concrete columns by developing uniform bearing
stresses. A typical internal panel is shown in Fig. 3.30. Taking into
account all possible symmetry conditions, determine expressionsfor the
normal displacements of the panel at points 1 and 2.

Describe briefly how you would use the results from this type of
analysis to obtain the distribution of bending moments.
(UCL)

P P P
T B
JU JU N
ANNZZNNZANNZZ N\
Subgr{ /l; l)\?‘;\ / A>I Foundation slab
& & [h- X
2 3xI3 y ‘L_(>
A— o —0 Lo -
Column
S EEEEEY
3x1/3

Fig. 3.30
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3.3 Thesguare plate ABCD, of side a, shown in Fig. 3.31 is clamped along

34

AD, DC and simply supported along AB, BC. The plateisisotropic with
flexural rigidity D.

(a) Establish a set of equations for the solution of the plate when
subjected to transverse loading using finite difference
approximations, with a mesh size a/4 as shown, when the load is:
(i) uniformly distributed, q per unit area;

(ii) acentra point load, P.

(b) Discuss the principal sources of error in the proposed finite
difference idealization and the means by which the accuracy could
be improved.

(c) Describe the main differences in the solution if the edge AD were
free, the other support conditions being unchanged.

(CITY)

For a rectangular difference net such that the net spacing in the x-
direction is 3h, while that in the y-direction is h, show that the
biharmonic difference operator takes the form shown in Fig. 3.32(a).

The rectangular metal plate shown in Fig 3.32(b) has length 3L and
breadth L, and its edges may be assumed to be simply supported. The
plate has flexura rigidity D, may be presumed isotropic, and is
subjected to a uniformly distributed pressure load of intensity q.

Using the net shown, and making use of symmetry, calculate the
normal displacements at the net points 1, 2, 3 and 4 by the finite
difference method. Hence determine the bending moments along and in
the direction of sections AA and BB. Plot these bending moment
distributions and compare the results with those that might be expected
from a similar plate in which the length is infinitely greater than the
breadth. (v = 0.3).
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3.5 Thesquaresab showninFig. 3.33 carriesaload of uniform intensity, g,
over a centraly positioned square of side, L/4. The dab is simply
supported on two opposite edges. The other pair of edges are supported
by central columns which may be assumed to provide rotationally free
point supports. The slab has bending rigidity, D, and Poisson’sratio, v,

may be assumed zero.

Analyse the slab by the finite difference method, using agrid of side
L/4, and compare your results with the values given in Table 3.4, which
were obtained by afinite differenceanalysisusing agrid of sideL/8. Plot
distributions of w, M,, M, dong the grid lines and relate the

distributions to the expected structural response of the slab.

9 9" 9 1
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oxt  Toxay* oyt 81t
[ 81 ]
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Il I :40: 564 :—40:
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I | —J .
[ 81 ]
]
3h Y
(@)
1 FA | B
I ! !
______________ L e e e e e e -
T DR
|
_______ b e e e e ]
14 —}1 |
| L |
_______ i Rt
! 1A 'p
3L
< >
—————  Simple support
(b)
Fig. 3.32
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= support

Column 7

Simple

Fig. 3.33

Table 3.4 L/8 grid finite difference analysis results

Position w (x 10°gL"/D) M, (x 107qL?) M, (x 10 qL?)
Centre 69 89 90

Column 0 0 =77

3.6 A reinforced concrete water tank isto be 10 m square and 3 m high. The

3.7

tank isopen at thetop and haswallswhich vary inthicknessfrom 0.10 m
at the top to 0.25m at the base. By making use of symmetry, it is
intended to analyse one half of a wall slab for the effects of water
pressure when the tank isfull. A grid analogy approach isto be used for
the analysis. Y oung's modulus for concrete may be taken as 15 N/mm?
and Poisson’ sratio may be assumed to be zero.

Using no more than 25 joints, sketch and number a suitable layout for
the analogous grid members and specify:

(a) the section properties of the grid members;
(b) the loads to be applied to the grid;
(c) therestraints to be applied to the grid.
(UEL)

Figure 3.34 shows the plan view of a reinforced concrete water tank.
Theroof comprisesaflat slab which issupported by the tank wallsat its
edges and by columns at 4 m centresinternally, and carries auniformly
distributed load over its complete area. The column head detail is as
shown in the figure. It is proposed to analyse the slab by the use of
rectangular finite elements, no more than 36 in number. By making use
of appropriate symmetry assumptions, the analysisisto be applied to the
quarter panel shown hatched in the figure.
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(mm units)

Column head detail

Fig. 3.34

3.8

3.9

Sketch a suggested element sub-division and state the type of element
properties and nodal restraints which would be needed for the analysis.
Justify the choice of element sub-division made.

(UEL)

An isoparametric finite element mesh for a skew bridge slab analysisis
shown in Fig. 3.35(a). The slab is subjected to a uniformly distributed
load and is simply supported on opposite sides, as shown in the figure,
the other two sides, being unsupported. Figures 3.35(b) and 3.35(c)
show output results in the form of contours of absolute maximum
principal moment values and principal moment vectors, respectively.
Figure 3.35(d) shows the reaction distribution along the edge AB.

Discussthe structural response of the slab to the applied load. Sketch
distributions which are equivalent to Figs 3.35(b)—3.35(d), if the bridge
deck was constructed of parallel beam strips (as shown in Fig. 3.35(€))
which are structurally independent. Compare and contrast the structural
behaviour of the two types of deck construction.

Analyse the slab of problem 3.1 using rectangular plate bending finite
elements, adopting square elements of side 1.25 m.

Compare the displacement and bending moment results with those
obtained by use of the finite difference method, and state, with reasons,
which results would be expected to be the more accurate.

3.10 One quarter of a square, encastré slab is to be analysed by the finite

160
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Fig. 3.36
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shown in Fig. 3.36(a), with the displacement sign convention of
Fig. 3.36(b). The slab is subjected to a central, vertical, downwards
point load of 400 kN.

The stiffness equations for the quarter slab may be shown to be as
givenby Fig. 3.36(d). Use symmetry to eliminate 6, ;, w, and 0, from the
stiffness equations and hence produce areduced set of five equationsin
the displacement variables and w;, W, 0,,, W, and 6.

The solution to the reduced set of equationsis given in Fig. 3.36(c).
Use this solution to determine the moments at node 1 if the part stress
equations for the element used are as given in Fig. 3.36(€).

(UEL)
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4. Thin shells

4.1 Introduction

4.1.1 Generation, classification and application

A thin shell may be defined as comprising the material contained between two
closely separated three-dimensional surfaces. As with plates, provided the
two generating surfaces are sufficiently close, the deformation of the single
surface formed by the mid-thickness points will be sufficient to describe the
deformation of the complete shell. Only the behaviour of a single, middle
surface will therefore be considered in the following theory, and sufficient as-
sumptions will be made to enable the deformation of any point in the shell to
be determined from the deformation of such a middle surface.

Since general three-dimensional surfaces are of interest, the range of pos-
sible shell geometries is enormous. Some classification scheme is therefore
essential so that advantage may be taken of whatever similaritiesvarious shell
formsmay possess. Relevant strategies may then be adopted so that the poten-
tial analytical complexities are minimized by the use of appropriate coordi-
nate systemsand similar tactics. The most convenient primary classificationis
one based on shell geometry, and examples of the simplest geometric types
areshownin Table4.1. Theformsincluded in Table 4.1 do cover many of the
commonest types used in practice, but shells with other geometric regularity
features are also employed as, indeed, are shellsof irregular geometry. Aswill
be seen from Table 4.1, shellsfind awide range of application as storage and
pressure vessels on land and also on seaand in the air when employed as ship
or aeroplane hull structures. In civil engineering, the routine use of shell roofs
has been curtailed by increased labour costs, and shell roofing (Cronowicz,
1968) tendsto berestricted to structureswhich are of special architectural sig-
nificance, such asthe Sydney OperaHousein Australia. Major applications of
shells remain, however, in the construction of cooling towers and water
storage and retention structures (mainly circular tanks, cylindrical or conical
towers, and arch dams). Shell theory may also be used for the analysis of box
girders(seeFig. 2.1) and of core-supported buildings (see Fig. 2.2), so that the
fields of application are almost as diverse as the possible geometric forms.
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4.1.2 Structural behaviour

In general, shells resist loads by a combination of bending and in-plane
actions. In the case of shells, in-plane action is characterized by the plane
stress system of direct and shear stresses (see Fig. 1.9) and is normally
referred to as membrane action. Thisterminology derivesfrom theinability of
membrane materials, such as fabrics, to resist any bending whatsoever, and
their consequent total reliance on in-plane action. Examples of membrane
shellsare sails, tents, balloons and inflated structures, each of which can only
resist in-plane actions and must therefore adopt a shape which allows the
imposed |oading to be resisted in thismanner. Such structuresdo not therefore
have a unique non-loaded geometry, astheir rigid counterparts do, and deter-
mining the form of such structures under their initial prestressing and/or self-
weight effects becomes a problem in its own right (Firt, 1983).

Plates represent a special case of shell and may be considered to be the an-
tithesis of membranes in the sense that, when normally loaded, no membrane
stresses exist (see Chapter 3) and resistance is provided by bending alone.
Membrane resistance may be given to athin plate by folding it, and the effect
of thefoldingisto dramatically increasethe stiffness. Thus, if theflexiblethin
sheet of Fig. 4.1(a) is converted into the folded-plate type of shell shown in
Fig. 4.1(b), then the sheet is able to sustain quite substantial loads, whereasit
previously exhibited gross deformation under a much more modest load.
Closed shells, in particular, exhibit high strength and stiffness, as evidenced
by thefamiliar example of the‘nut whichishard to crack’, or, inrelationtoits
thickness, even an egg-shell. The high stiffnessis primarily due to membrane
action, bending often being of secondary or localized significance.

Theinfluence of bending effects on shell behaviour depends on the type of
restraints and loading which are involved as well as the shape of the shell. In
respect of shell shape, however, bending will always need to be considered in
the cases of folded plates and open cylindrical sections (see Table 4.1). For
axisymmetric shells, bending effects will tend to be localized, but the rate of
decay of these effects will depend upon the nature of the principal radii of

(a) (b)
Fig. 4.1 Flat and folded plate
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Fig. 4.2 Gaussian curvature of surfaces: (a) positive; (b) zero; (c) negative

curvature which describe the shape of the shell. The product of the two prin-
cipal curvatures of a surface is known as the Gaussian curvature of the
surface, so that
. 11
Gaussian curvature = y, x, = = (4.1)
172

where x,, x, are the principal curvatures, and r,, r, are the principal radii of
curvature.

If the two principal radii are of the same sign (Fig. 4.2(a)), as in a dome,
then the surface has positive Gaussian curvature, and bending effectswill tend
to decay rather rapidly. If one of the principal radii isinfinitely large, asin the
case of a cylindrical shell (Fig. 4.2(b)), then the surface has zero Gaussian
curvature and bending influence will persist over a greater region. Radii of
curvature of opposing signs, asin the cooling tower of Table4.1, produce neg-
ative Gaussian curvature (Fig. 4.2(c)), which is also susceptible to bending.
Axisymmetric shells are therefore conveniently sub-divided into positive,
zero, and negative Gaussian curvature types, it being anticipated that bending
influence will be greater for zero or negative Gaussian curvature forms than
for shells of positive curvature.

4.1.3 Scope of the chapter

Asjust described, membrane shells resist loads by in-plane forces alone, and
membrane effects are also generally predominant in closed axisymmetric
shells. The neglect of bending considerably simplifies shell analysis, and the
initial treatment will therefore be based on such an assumption. In addition,
for reasons of geometric simplicity, only axisymmetric shells will be consid-
ered. Thisrestriction excludes the open cylindrical and folded-plate varieties
of Table4.1, which has some consistency with the neglect of bending effects,
since bending is of greater significance in these cases.
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Further simplification of the analysisis produced if the loads are presumed
to be axisymmetric, as well as the shell shape. This further assumption will
therefore be made and will have the practical effect of restricting the discus-
sion to dead, snow, over-pressure, and similar loads which may be presumed
axisymmetric. Wind and other non-axisymmetric loads will have to be ex-
cluded. An analysisderived on the above basisistermed amembrane analysis
for thin elastic shells under axisymmetric loading.

A membrane analysis can be helpful even when significant bending occurs,
since, as described, the bending effects will sometimes be localized and a
membrane solution will then represent the shell behaviour at regions distant
from the areas of localized bending. Even when bending is significant
throughout the shell, use can be made of a membrane analysisasa ' primary’
solution to which ‘corrections’ are made to alow for the bending effects
(Baker et al., 1979; Billington, 1982; Zingoni, 1997). Shell analysis incorpo-
rating bending tendsto be complex, whether tackled in theway just mentioned
or by any other analytic closed-form approach. A numerical technique is
therefore often preferred, and the finite element method generally offers the
most flexible approach. Asan example of the application of the finite element
method to shell analysis, the method istherefore applied to the analysis of cir-
cular cylindrical shellsinthe later sections of this chapter. Such an analysisis
usually known as alinear thin shell bending analysis.

4.2 Membrane theory for axisymmmetric shells
4.2.1 Basic properties
Geometric preliminaries

An axisymmetric surface is generated by revolving acurve about an axisinits
own plane (Fig. 4.3). The generating curve and all curves formed by the
intersection of the surface and planes containing the axis are then known as
meridians. The intersections of the surface with planes which are normal to

Axis

Meridian

Parallel

Fig. 4.3 Axisymmetric surface geometry
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theaxiswill beaset of circleswhich aretermed parallels. If, for convenience,
the axis is taken in the vertical direction, then, for a genera point P on the
surface, the angle 6 may be defined asthe anglein ahorizontal plane between
an arbitrary fixed line and the perpendicular from P to the axis. An angle ¢
may also be defined asthe anglein avertical plane between the normal to the
surface at P and the axis. If the surfaceis such that its Gaussian curvatureis of
constant signit will then be possibleto uniquely definethe position of P by the
parameters § and ¢. An example of such asystem of position definition isthe
use of lines of longitude and latitude on the surface of the earth.

‘Lines’ of curvature on athree-dimensional surface are defined to be curves
which have the property that the normalsto the surface at adjacent pointson a
line of curvature are co-planar. Since the normals are co-planar, they will, in
general, intersect. A principal radius of curvature is then defined as the dis-
tance from the surface to such an intersection point. The lines of curvature at
any point on the surface may further be shown to be mutually perpendicular
(Wang, 1953).

A differential element of an axisymmetric surfaceis now considered which
is bounded by a pair of adjacent meridians and a pair of adjacent parallels
(Fig. 4.4(a)). The normal at the point A (Fig. 4.4(b)) will intersect the normal
at an adjacent point D on the meridian through A, because, by axisymmetry,
both the normalsto the surfaceliein the vertical plane containing the axis and
the meridian. The meridians are therefore lines of curvature for an axi-
symmetric surface. The normal to the surface at apoint B, whichisadjacent to
A and lies on the parallel through A, will, by axisymmetry, intersect with the
normal at A at apoint ontheaxis. The parallelsof an axisymmetric surface are
therefore also lines of curvature, and the meridians and parallels do possess
the orthogonal property of lines of curvature referred to previously.

rn=EA=ED, r,=FB =FA,
r=GB=GA

(a) (b)

Fig. 4.4 (@) Element of an axisymmetric surface. (b) Enlargement of the element
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(a) (b)

Fig. 4.5 (&) In-plane stresses. (b) In-plane resultants

With reference to Fig. 4.4(b), the following geometric relationships should
be noted for future use:

ds, =r, do (4.2
ds =rdd=r,ds (for smal angles) (4.3)
So that
d¢>:‘1ﬁ, dg:‘i—s* (4.4)
m t

Stressresultant preliminaries

As with plates (see Chapter 3), it is convenient, and usual in shell theory, to
work in terms of stress resultants rather than in terms of the stresses them-
selves. The stress resultants are taken to be the resultant forces and moments
acting on anormal section whichisof unit length. Since only in-plane stresses
are considered in membrane theory, the stresses on a plane shell element in
Cartesian coordinates will be the plane stress components considered in
Chapter 1 (Fig. 4.5(a)). The corresponding stress resultants are illustrated in
Fig. 4.5(b), and, since these resultants are taken to act on unit lengths, the
stresses are related to the corresponding stress resultants by equations of the
form
s N _N (4.5)
Ixt t
For axisymmetric shells, it is convenient to employ a curvilinear set of
coordinates based on the meridian and parallel directions. In this case, the
direct stress resultants are referred to as the meridional and tangential stress
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resultants; the tangential stress resultant being sometimes aternatively
termed the parallel, circumferential, or hoop stressresultant. If theloading is
axisymmetric as well as the shell geometry, as assumed here, then, by sym-
metry, the tangential stress resultant must be constant along any given
parallel. It aso follows that the shear stress resultants, which would produce
non-symmetric deformations, must be everywhere zero. The stress resultants
therefore take the formillustrated in Fig. 4.6(a) where the tangential compo-
nent has been assumed constant but the variation of the meridional component
has been differentially included. There is a geometric parallel to this stress
resultant situation in that the distance along any meridian between adjacent
parallels will be constant but the distance along parallels between adjacent
meridians will vary. Again, thisisreflected in the figure.

Equilibrium

Since only two stress resultants need to be determined at any point, asolution
may be obtained by statics alone. Equilibrium must be ensured in the parallel,
meridional and normal coordinate directions. The constancy of the tangential
stress resultant fulfils the equilibrium condition in the parallel direction, and
the appropriate conditions in the remaining two directions are then sufficient
for the determination of the two unknown stress resultants.

Equilibrium in the normal direction is considered first, and the component
of the external load in this direction is taken to be a pressure, p (Fig. 4.6(a)),
which ismeasured per unit areaof shell surface. To determine the components
of thetwo stressresultantsin the normal direction, it ishelpful to consider the

L
71N
/
[
/ \
/ v \
r |
/3\\ a //(l\'\
7
T 2 o7 27

(a) (b)
Fig. 4.6 (@) Element of shell. (b) Circular arc tension
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Fig. 4.7 Shell frustum

resultant of a constant tension, T, acting around acircular arc (Fig. 4.6(b)). In
this case, the radial resultant, F, is given by

F =2Tsin%=Ta (for small @) (4.6)

Using this result to calculate the components of the stress resultants in the
normal direction, the relevant equilibrium equation is established as

(N, ds;,)d3 +(Ny, ds)d¢ + pds, ds =0 (4.7)
where increments of N,, and ds have been neglected as second-order
quantities.

Substituting from equations (4.4) gives
ds;,

Ntdsmdr—S‘+destr—+ pds,ds =0
t

m

Whence
L + Ny +p=0 (4.8
oo

m

Equation (4.8) is the final form of the first equilibrium equation. As indi-
cated above, the second equilibrium equation could be obtained by resolution
in the meridional direction. It is, however, more convenient to consider the
vertical equilibrium of a frustum of the shell above an arbitrary parallel
(Fig. 4.7).

The advantage gained in using such afrustum of the shell isthat, by taking
the section along a parallel, only the meridional stress resultant is sectioned
(Fig. 4.8) and the vertical equilibrium equation istherefore independent of the
tangential stress resultant. Thus, resolving vertically for the frustum,

(2nr)N,, sn¢g+R=0 (4.9

where Risthe total vertical component of the applied load on the frustum.
For any given problem, therefore, the meridional stress resultant may be
determined directly from equation (4.9) and substitution in equation (4.8) then
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provides the tangential stress component. The total vertical component of the
applied loading, R, isin general obtained by suitable integration over the
surface of the frustum, but, for the particular cases of a constant normal pres-
sure or a fluid pressure, R may be obtained more simply from results
(Feodosyev, 1968) which are described in the next section. Examples of the
application of membrane theory to the analysis of a variety of thin
axisymmetric shells and loading conditions are then given.

Vertical load due to uniform normal pressure

An elementary portion of the shell surfaceis considered which is bounded by
the parallels defined by angles ¢” and d¢” (Fig. 4.8(a)). The vertical force
component, dR, dueto the uniform normal pressure, p, acting onthissurfaceis
then given by

dR = (pdA’) cos¢’ = p(dA’ cose”) (4.10)
The quantity in brackets in equation (4.10) can, however, be shown to be the
projected areaof dA” on ahorizontal plane at the base of the frustum, that isthe

annular area, dA (Fig. 4.8(a)). This follows from the area projection rule
which states that areas (Fig. 4.8(b)) project according to

dA = dA’ cosg’ (4.11)
Hence
R:J.dsz'p(dA’cosd):J‘pdA: pA=nrp (4.12)
0 0 0

where A isthe projected area of the shell frustrum on a horizontal plane.

Fig. 4.8 (&) Shell frustum. (b) Area projection
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Fig. 4.10 (@) Spherical dome example. (b) Frustum of the dome

(®)

Equation (4.12) provides the required expression for the vertical compo-
nent of load due to anormal pressure acting on ashell frustum, and use of this
expression is made in example 4.2 below.

Vertical load due to fluid pressure

If ashell frustum is now considered under hydrostatic pressure (Fig. 4.9(a)),
then the vertical force due to the normal hydrostatic pressure acting on an ele-
mentary area, dA’, will be given, by the previous theorem, as

dR= pdA= pghdA=pgdV (4.13)

where p isthe massdensity of thefluid, dA istheareadA” when projected onto
a horizontal plane, and dV is the tubular volume generated by rotation of the
hatched areain Fig. 4.9(a).

Equation (4.13) therefore showsthat the total vertical force, R, will beequal
to the weight of the fluid supported by the shell surface. Care is needed in
identifying the appropriate weight of supported fluid in cases such as that
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illustrated in Fig. 4.9(b), where it is the weight of the hatched volume that is
supported by the sides of the frustum shown, not the weight of the total con-
tained volume of fluid. Thisfeatureisillustrated in example 4.3 below.

4.2.2 Example 4.1 —spherical dome under dead load

The membrane theory of thin shells will be used to determine the membrane
forces due to a constant self-weight load, g/unit area, for a spherical dome of
radius a, which is simply supported and has a half-angle o (Fig. 4.10(a)).
Following the theory described above, the vertical equilibrium of afrustum
of the dome (Fig. 4.10(b)) is considered first. The vertical load acting on an
element of the frustum is given by
dR = q(2rasing’)(ad¢’)

Hence
R=2na’q= J'si ng’ d¢’ = 2na’q[—cos¢’]; = 2ma’q(l— cose)
0
Thus, for vertical equilibrium, either resolving directly or by substitution in
equation (4.9),
(2rasing)N, sin¢ + 2ra’q(1— cosp) = 0
Whence

N, - T cos0) _ -agl-coso) | -ag (4.14)
sin’ ¢ 1-cos¢  1+cos¢
Equation (4.14) shows that the meridional membrane force is compressive

at al points on the dome and that its magnitude increases with increasing ¢,
being bounded by

_% >N >-aq (4.15)
where the smallest compression occurs at the summit of the dome and the
greatest occurs at the base of a hemispherical dome (Fig. 4.11).

Equation (4.8) may now be used to find the tangential membraneforce. The
geometry of asphereisparticularly simple sincethe normalsat every point on
the sphere surface havethe samelength, namely the sphereradius, a. Thus, the
meridional and tangential radii of curvature are equal and are of length a, so
that substitution in equation (4.8) gives

N, N
—+—"+qcos¢p=0
a a
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Fig. 4.11 Membrane forcesin a hemispherical dome

Whence, substituting for N, from equation (4.14) gives

aq
N, = —agcosg =
" 1+coso qcose aq{

—COos 4.16
1+cosgp 4 (410
Equation (4.16) showsthat the tangential membraneforceisalso compressive
at the dome summit but can becometensileif ¢ issufficiently large, since the
limits for the magnitude of the tangential membrane force are given by
—% <N, <aq (4.17)

where the maximum compression occurs at the dome summit and the
maximum tension occurs at the base of a hemispherical dome (Fig. 4.11).

Comparison of equations (4.15) and (4.16) shows that the tangential and
meridional membrane forces are equal at the dome summit, aresult whichis,
infact, truefor all axisymmetric domes under axisymmetric loading, since, at
the summit, thetangential direction to any given meridianisitself inameridi-
onal direction. Thetransition from acompressive to atensile tangential mem-
brane force will take place when, from equation (4.16),

1 —
1+ coso

cos¢

or
cos’ ¢+ cosp—1=0

whence ¢ = 52°.

Thus, if the dome half-angle is greater than 52°, the tangential stress will
become tensile towards the base of the dome, reflecting the action of the tan-
gential fibres in restraining the tendency of the meridional fibres to ‘bulge’
outwards.
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4.2.3 Limitations of membrane theory

It will be noticed that the ‘simple supports (Fig. 4.10(a)) referred to in
example 4.1 consist of roller supports which are tangential to the meridian at
the base of the dome, so that the equivalent form of support based on rods
would be as shown in Fig. 4.12(a). Thistype of support is sometimes used in
practice, but more frequently the support provides a vertical reaction only
(Fig. 4.12(b)). In this case, the reaction cannot be equilibrated by the meridi-
onal force at the base, and a shear force (Fig. 4.12(b)), and hence bending,
must exist if equilibrium is to be ensured. One effect of vertical supportsis
thereforeto produce bending in the edge region but they will also substantially
modify the membraneforcesinthisarea, since theseforces, particularly inthe
tangentia (parallel) direction, must now provide the horizontal component of
restraint which was previously given by the support. The result is that very
substantial tangential tensileforces are devel oped towardsthe rim of thedome
(problem 4.1). To accommodate these tensile forces, it isnormal to provide a
ring beam at the support (Fig. 4.12(c)), which will absorb the tangential
tension by providing a horizontal restraint. Bending will, however, still be
produced in the neighbourhood of the connection of the ring to the shell, since
the strains in the ring and the base of the shell, as determined by membrane
theory, may be shown to be incompatible.

Non-meridional and (for obvious reasons) moment-resistant supports
therefore result in shell bending but these are by no meansthe only featuresto
have this effect. Bending will always exist close to lines of distortion on the
shell middle surface (Gol’ denveizer, 1961). Theselines of distortion occur at
points of discontinuity and, for axisymmetric shells, will take the form of par-
alel circles. Lines of distortion are created by:

(@) shell edges along which either no, or other than tangential, support is
provided;
(b) discontinuitiesin the applied loading;

® .~
AT S |
@ ©

) (©

Fig.4.12 (@) Meridionally (simply) supported dome. (b) Vertically supported dome. (c) Dome
with ring beam
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Fig. 4.13 Lines of distortion example shell

(c) curvature discontinuities,
(d) abrupt changesintheelastic propertiesor thickness of the shell material.

Thefluid container example shown in Fig. 4.13 will be used toillustrate the
various types of lines of distortion which will exist at the lettered sections: at
AA duetothefree edge, at BB dueto the changein thickness at the end of the
rim stiffener, at CC dueto thering point load, at DD dueto the discontinuity in
changing from an unloaded state to a fluid pressure load, at EE due to the
change from a straight to a curved generator, at FF also due to the abrupt
changein curvature, at GG due to the thickness change, and at HH dueto the
non-tangential, in fact encastré, support.

If no lines of distortion exist, then membrane theory can be expected to
provide an accurate solution for al points on the shell, except in the case of
‘shallow’ shells, the behaviour of which resemblesthat of platesand hencein-
volves bending. When lines of distortion do exist, then the question arises as
to whether the consequent bending will berestricted to an arealocal totheline
of distortion or not. If the bending islocalized, then amembrane solution will
be valid for all parts of the shell remote from the lines of distortion, in the
region of which a separate investigation will be needed. Clearly, no localiza-
tion of bending will take placeif the lines of distortion are close together asin
the example of Fig. 4.13. Gol’ denveizer (1961) shows that the spread of the
bending effects will be considerable whenever aline of distortion touches a
line of zero curvature on the shell. This concept explains the localized nature
of bending effects in shells of positive curvature referred to earlier (see
Section 4.1.2), since such forms do not possess lines of zero curvature. On the
other hand, shells of zero or negative curvature (see Fig. 4.2) will both exhibit
lines of zero curvature and hence be susceptible to widespread bending if a
zero-curvature line touches a line of distortion.
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4.2.4 Example 4.2 —paraboloid dome under internal pressure

The membraneforcesin aparabol oid dome under auniforminternal pressure,
p/unit area, will be determined. The dome is presumed to be ‘simply sup-
ported’ (Fig. 4.14(a)) so that membrane theory will be applicable to the
complete shell surface. Uniform internal pressure loads are encountered in
practice either when shells are used for the storage of gases or when flexible
inflated structures are subjected to their initial, prestressing over-pressure.
Itisassumed that the shell isgenerated from aparabolic curve of theform

2ay = x° (4.18)

where a is a constant.

Sinceit is convenient to work in terms of the parametric coordinate, ¢, the
Cartesian coordinates, x and y, and the principal radii of curvature must first
be expressed in terms of ¢.

Thus, from Fig. 4.14(a) and equation (4.18),

Y tanp=Lox=> (4.19)
dx 2a a

Hence
X =atan¢ (4.208)

and, from equation (4.18),
y= gtanz & (4.20b)

Then, from Fig. 4.14(a),
r=x=atan¢g (4.21)

‘R
W
s,

m

(b)

Fig. 4.14 (a) Paraboloid dome example. (b) Frustum of the dome
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and
= =2 (4.22)
sng cos¢
Now
_ [1+ (dy/dx)2]3’2 4.23
' = Ryl (423)
and, from equation (4.19),
Y tano (4.24)
dx
Also,
2
dy_ E(%) _ i(i) 1 (4.25)
dx* dx\dx/ dxla/ a

Substituting from equations (4.24) and (4.25) in equation (4.23) gives

(1+ tan?® )2 a
rm = =
1a cos’ ¢
With the aid of these geometric relationships, the membrane forces may be
determined in asimilar fashion to that employed previously. Since a uniform
normal pressureisinvolved, equation (4.12) may be used to determine the re-
sultant vertical component of theload on afrustum of the shell (Fig. 4.14(b)).

Thus, using equation (4.12) and subsequently substituting from equation
(4.21),

R=-nr’p=—na’tan’ ¢ p (4.27)

where the negative sign indicates the upward direction of R.
Then, resolving vertically for the shell frustum,

(4.26)

2nrN, sing —na® tan” ¢ p=0
Whence

__
" 2c0s0 (4.28)

Substitution in equation (4.8) for N, r,, and r, from equations (4.28), (4.23)
and (4.22), respectively, gives

apcos’ ¢ . N, cos¢

=0
2cos¢a a P

where the negative sign indicates the outward direction of p. Whence
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Fig. 4.15 Paraboloid dome membrane force distributions

N, =ﬂ[1_°';32¢j=i(1+sin2 ) (4.29)
CoSs¢ 2 2C0S¢

Equation (4.28) showsthat, asexpected for aninternal pressure, the meridi-
onal membrane force is tensile throughout and increases with increasing ¢.
The tangential membrane force (equation (4.29)) is aso tensile everywhere
and alsoincreaseswithincreasing ¢, but does so at afaster rate than the merid-
ional force. Typical distributions of the two membrane forces over the surface
of aparaboloid shell areshownin Fig. 4.15, where the equality of theforcesat
the dome summit, mentioned in the spherical case, should be noted.

4.2.5 Example 4.3 — conical shell under fluid pressure

The conical tank shownin Fig. 4.16(a) is presumed to befull of fluid, anditis
required to determinethe distribution of the membraneforcesinthetank walls
due to the fluid pressure.

Following the normal procedure, thetotal vertical component of the applied
load acting on a frustum of the shell (Fig. 4.16(b)) will be determined first.
Thus, for an element of the frustum (Fig. 4.16(b)),

dR = (2rX") pds’ cosa (4.30)
Thetank walls are generated from a straight line given by
y = tanax (4.31)
Hence
=Y (4.32)
tana
Also, from Fig. 4.16(b),
ds = ﬂ (4.33)
sna
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While the fluid pressure, p, is given by
p=pg(H-Y) (4.34)
where p is the mass density of the liquid. Thus

y dy’

dR=2p——— pg(H — y’) ——cos«
tana Sna

or
2rpg N g
dR=—7"Yy'(H-Y) dy
tan® «

Thetotal vertical component of the applied load acting on thefrustum isthere-
fore given by

21—( H e v e
R==T3 [y (H-y)dy (4.35)
tan ay
Hence
B ’2 ’3 H
R= 2129 HY” y } (4.36)
tana| 2 3
and
143
R= 218 H__ﬂ+q (4.37)
tan“a| 6 2 3

Alternatively, and more simply, the vertical load acting on the frustum may
be obtained by application of the theorem of supported fluid weight described
above. In this case, the weight of the fluid supported by the walls of the

Fig. 4.16 (a) Conical tank example. (b) Frustum of the tank
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frustumisthe weight of fluid contained in the volume swept out by rotation of
the hatched areain Fig. 4.17. Thus, with reference to Fig. 4.17,

Y (Hoy) Y

dR=pgdV = pg2nx’(H — y")dx’ = pg2r
tana tana

So that

tan o

2 H e v e
R=""29 [y(H-y)dy
y
Whence, as before,

R—ﬂ["'_s_ﬂJrﬁ}

“tnfal 6 2 3
Thus, resolving vertically for the frustum gives,

- -
(Z’KX)NmSinoz+t2ﬁpg H__ﬁJrﬁ =0

an‘al 6 2 3]
or
- -
LNmsinow pg H__ﬁJrﬁ =0
tana tan“a| 6 2 3]
Whence
N - P9 [H HY Y (4.39)
ySnatana| 6 2 3

To obtain the tangential membrane force, equation (4.8) is used once more.
Since the meridians of a cone are straight lines:

[ =o0

el

2
S~

Fig. 4.17 Vertical load on conical frustum
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Fig. 4.18 Membrane forcesin aconical tank

Also, from Fig. 4.17(a),
X
rt i ae—
Sna
Thus, from equation (4.8),

snaN, D=0
X
where the negative sign occurs due to the outward direction of p. Hence
N, = _DX _ PQ('T| —y)x _ PQ(H -y)y (4.39)
Sna Sna Snatana

Equations (4.38) and (4.39) show that the meridional and tangential mem-
brane forces are compressive and tensile respectively throughout the shell.
Differentiation of the two equations further shows that the maximum meridi-
onal force occurs at the base of the tank but that the maximum tangential force
occurswheny = H/2.

Thedistribution of the membraneforcestherefore takestheformillustrated
in Fig. 4.18 for atypical tank. It will be noted from Fig. 4.18 that the meridi-
onal membrane force becomes large towards the base of the tank and, indeed,
equation (4.38) predictsthat this force becomesinfinite at the apex of a cone.
Such infinite forces do not of course exist physically, since the membrane
force distribution in the neighbourhood of a cone apex is substantially modi-
fied dueto the bending effectswhich must exist in thisregion dueto the abrupt
geometric change at the apex. Also, if the base of thetank is provided with an
encastré support as indicated in this example, then bending effects will again
be present in the lower regions of the tank. The moment resistance provided
by such asupport will obviously induce bending moments but the membrane
force distributions will also be significantly modified. For example, the
tangential force distribution predicted by membrane theory includes a sub-
stantial force at the tank base (Fig. 4.18). If horizontal movement is prevented
at the base, however, the tangential strain at the base will be zero and, hence
(for zero Poisson’ s ratio), the tangential stress and membrane force will also
be zero.
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4.3 Bending of circular cylindrical shells

The inclusion of bending in classical shell theory considerably increases the
complexity of the problem. Nevertheless, solutions for a wide range of shell
geometries and loading conditions have been obtained (Gibson, 1980;
Timoshenko and Woinowsky-Krieger, 1981; Fligge, 1960). However, fea-
tures such as varying thickness, complex loading or irregular shell shapes can
all render solutionsby classical methods, at best, difficult and, at worst, intrac-
table. These situations therefore generally require the use of a numerical
approach, and a variety of methods is available. The relevant differential
equations may be numerically integrated directly (Kraus, 1967) or through a
finitedifference approximation (Ghali, 1979; Soare, 1967). Thefinite element
method is, however, currently the generally preferred technique and, as an
example of anumerical approach, the application of the finite element method
will be described, as applied to the bending analysis of closed, circular cylin-
drical shells under axisymmetric, radia loading. The chosen shell geometry
and loading are thus the simplest possible but the concepts established may be
extended to more general shells and loads.

4.3.1 Finite element method

Since, under axisymmetric conditions, the behaviour of a segment of a cylin-
drical shell isthe same as that of any other segment of the same arc length, a
segment of unit arc length (Fig. 4.19(a)) will be considered for convenience.
Also, themeridiansof acylindrical shell areparallel toitsaxis, anditisconve-
nient to usetheaxial coordinate, y, asthe singleindependent position variable.
For acircular cylinder of given radius, r, the distance y then locates a unique

Fig.4.19 (&) Circular cylindrical shell. (b) Finite element. (c) Finite element (diagrammatic)
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parallel, the position along which isimmaterial in view of the axisymmetry. A
length, L, of the segment of unit arc length will be taken as the basic finite
element (Fig. 4.19(b)), and the displacement variables at ageneral point Pwill
betheradial displacement, w, and therotation about atangential axis, 6. These
displacements are shown related to alocal set of meridional (s) and radial (n)
axesin Fig. 4.19(c). Aswith plates, the chosen displacement components are
not independent of each other, since (Fig. 4.19(c))

0= _dw (4.40)

ds

The element has two nodes and, hence, four nodal displacement variables.
Also, there is only one independent displacement variable, say w, so that the
relationship to be assumed between w and the position coordinate, s, must
contain four undetermined coefficients. Thus, using the simplest polynomial
with four undetermined coefficients,

W=aqy +,S+0,8 +a,S (4.41)
Hence, from equation (4.40),

0= —z‘—g’ =—a, — 20,8— 3,S (4.42)
Applying equations (4.41) and (4.42) to the nodes, i and j, the nodal displace-
ment variables may be related to the unknown coefficients by

W, 10 O 0
) 0-1 0 0
=< "t=

& wil |1 L 1» L

0] [0 -1 -2L -3

{o} =[C°Ha} (4.43)

Then, solving the linear eguations represented by equation (4.43), the
unknown coefficients may be related to the nodal displacements by

1 0 0 0

0 -1 0 0
@=_-2 2 2 1 ls-corysy (4.44)
2 L L L

2 1 2 1

(R

The next step in the genera finite element formulation technique (see
Appendix B) requires the strain vector at P to be related to the displacement
variables at that point. To establish a suitable strain vector for the present

element, itishelpful to consider initially the stress resultants which will act at
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apoint on the element. In Fig. 4.20(a), the bending moment in the tangential
direction, M,, is constant due to axisymmetry and hence thereis no shear force
in this direction. For similar reasons, there are no twisting moments, but the
bending moment in the meridional direction, M,., will vary and therefore be
accompanied by a shear force, Q,,. Aswith plates, all the stress resultants will
be measured per unit length of the shell element.

For the conditions considered, the meridional direct force may be readily
shown to be zero, since, with radia loading only (Fig. 4.21), vertical resolu-
tion for afrustum of the cylinder gives

21Ter =0 (445)
The cylinder istherefore subject to uni-axial direct force in the tangential di-
rection, so that

N, =o,(1xt) = Ete, (4.46)
Also, due to the uni-axial direct stress,
Em = Vg, (4.47)

It followsfrom equation (4.47) that thereisonly one independent direct strain
which may conveniently be taken to be the tangential one. The tangential
strain may be related to the independent displacement variable, w, by consid-
eration of Fig. 4.20(b), asfollows:

= 2n[(r+w)-r)] _w
- 2rr o

(4.48)

t

(a) (b)
Fig. 4.20 (a) Element stress resultants. (b) Radial displacement
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R =0 (for radial loading)

Fig. 4.21 Cylindrical shell frustum

Torelate the bending momentsto the corresponding curvaturesthefirst two
of equations (3.7) may be employed, provided that the negative signs in the
eguations are made positive to reflect the opposing rel ative orientations of the
normal axisand the momentsin Figs 3.7 and 3.8 and Figs 4.19(b) and 4.20(a).
Thus,

M, =D(xy +vxi), M, =D(x, +Xx) (4.49)
where D = Et¥12(1 — ). The meridional curvature may be related to the
radial displacement, w, by the normal small-slope relationship of

d’w
Xm = = (4.50)

The change in tangential curvature may be established from Fig. 4.20(b) as

_1 1 r-(wW) o w (4.51)

MW T r(r +w) r?

This curvature change is an order smaller than the tangential direct strain
(equation (4.48)), and therefore, to afirst order,
X, =0 (4.52)

Hence, there is only one independent curvature, that in the meridional direc-
tion, and equations (4.49) become

M., =Dxy, = E—tazxm (4.53a)
12(1-v)
and
M, =vDx,, =vM,, (4.53b)
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On the basis of the above, the independent ‘stress’ and ‘strain’ variables,
which may be shown to satisfy the internal virtual work requirement of
Appendix B if aunit length of element is considered, will be taken to be

_IN _J& 454
{o—}—{Mm}, {e}—{xm} (45

Also, using the strain—displacement relationships of equations (4.48) and
(4.50), in conjunction with equation (4.41), the strains may be related to the
undetermined coefficients by

w

Tl|tss s

{eg¢=1, (=(r r r r |{a} (4.55)
aw 0 0 2 6s
as’

So that, using equation (4.44),

1 0 0 0
1 s & 0 -1 0 0
- . 2 1 e e
@g=r |22 2 3 1isoeie)  (4s6)
00 26| - L L L
2 1 2 1
TR

The strain matrix [B] istherefore given, by expansion of equation (4.56), as
1-3p°+2p° L(-p+2p°-p°) 3p°-2p° L(p’-p’)
[B] = r r r r
—-6+12p 4-6p 6-12p 2-6p
L L L? L

(4.57)

where p = g/L. The elasticity relationships are obtained by combining equa-
tions (4.46) and (4.534) to give

Et 0

— Nt — 3 & =ID
{o} = M| o Et m}—[ I{} (4.58)
12(1- 1)

The stresses at the general point P (Fig. 4.19(c)) may now be related to the
element nodal displacements by substituting in equation (4.58) from equation
(4.56) to give the standard equation

{0} =[DI[BK{6%} =[H{&%} (4.59)
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Since the strain matrix, [B], varies with the position of P, the stresses will
also vary along the member. The practice of evaluating the stresses at the
element nodes will therefore be adopted, as was done in the case of the slab
element of Chapter 3. In this instance, the element (Fig. 4.19(c)) has two
nodes, so that substituting for nodesi (p=0) andj (p=1), inturn, in an ex-
panded form of equation (4.59), produces the desired relationship between
element nodal stresses and element nodal displacements as

w0 0 0]
Nti —
{o} = N, o o 4 o {67 =[H"K{&} (4.60)
My | B 55 =858 _
L L 2 L 45_
where
Et Et®
nE T P A AL

General finite element theory (equation (B.11)) may now be invoked to de-
terminethe element stiffnessmatrix. It should berecalled, however, that equa-
tion (B.11) presupposes the definition of element nodal force variables such
that { 6 {f } representsaquantity of work. It may be shown that thisrequire-
ment is satisfied if the nodal force variables (Fig. 4.19(c)) are as defined
below:

f
(£} ={ f} (4.61)

]
where

o

It should also berecalled, from the above, that the chosen element stressand
strain variables are such that {¢} "{ o} represents an amount of work per unit
length of element so that the integral of equation (B.11) is taken along the
length of the element and the element stiffness matrix is given by

L 1
[K]= [[BI"[D][B]ds= [[B]"[D][B]Ldp (4.62)
0 0
The expanded form of the element stiffness matrix may be derived by sub-
stituting in equation (4.62) from equations (4.57) and (4.58) and then evalu-
ating theintegral. As an example of this process, oneterm (k;,) of the element
stiffness matrix will now be derived. Thus,
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[BI'[D][B] =
2 3
1-3p*+2p° —6+12p | Et 0 1-3p+2p°
2 3 r
I: - E—tz -6+12p
12(1-v9) 2

So that

Et ¢ Et® (-6+12p)°
=— |(1-3p* +2p’)’Ldp+ Ld
K rzl( P +2p°)’Ldp 12(1_,/2)! T p

1 1
=04J'(1—6p2 +4p°+9p* —12p° +4p6)dp+§J'36(1—4p+4p2)dp
0 0

where
3
L=
r 12(1-12)L
Hence
1 1
9p° 4p7} 36/3[ 4p3}
=a|p-2p°+p'+—-2p° +— | +— | p-2p° + —
kn[ppp S e Lol |
_ 13 125
B L2

The remaining terms may be determined in a similar fashion, and the
resulting element stiffness matrix is

kI k2' k3 k4

k5'—k4 k6
K]=|------p-m- . 4.63
(K] - ke (4.63)
ym- K5
where
ol 128\, Uol B8 o S 126
3B L 210 L 70 L
2 2
=1L 68 e 0L s 6o Lo
420 L 105 140
and
EtL Et®
:—2, ﬁ:—z
r 12(1- %)L
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The 3-coefficientsin equation (4.63) may be observed to have the same form
as the element stiffness coefficients for a beam element, a property which
results from the adoption of a cubic displacement function in both instances.

Aswhen the finite element method was considered previously, anumerical
example will be provided to reinforce the theoretical description just given.
For the example considered below, it ispossibleto obtain asol ution of accept-
able accuracy by ‘hand’. It should, however, again be emphasized that this
will, in general, not be the case and the use of fully automated computer pack-
agesisnormally essential.

4.3.2 Example 4.4 — circular tank of uniform thickness

The circular cylindrical tank of Fig. 4.22(a) is monolithically connected to a
base slab which is sufficiently rigid for encastré support conditions to be
assumed at the base of the tank.

The tank is to be analysed for the effects of a ring moment of 10 kN m/m
applied to its rim. Such a moment could in practice arise from the effect of a
roof cover which is eccentrically supported by the tank walls. Since an
isolated bending load of this form can be expected to result in a localized
response, the element sub-division should coarsen with distance from the rim.
Accordingly, the sub-division shown in Fig. 4.22(b) is selected for analysis,
which resultsin four different types of element being involved, of lengths 0.5,
1,2and 4 m.

g
E=15KkN/mm?, v=0 Woe
g o
e} I =
S| E
20 m (ﬁ — T'I-
<} > é =)
10 KN m/m " C; <Er
[/ 10 kN m/m \Jle? ; “ !
.
<t
o ! M

(a) (®)
Fig. 4.22 (@) Uniform circular tank example. (b) Element sub-division
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Displacement solution

The element stiffness matrices for the four types of element may be obtained
by suitable substitution in equation (4.63). Thus, using the data of Fig. 4.22(a)
for an element of length 0.5 m, then, in kilonewton and metre units,

o 15% 10° x 0.4 0.5

> =30000
10
6 3
= 15%10° x 0.4 — 160000
12%x0.5
So that
7691.1 —-1920.8 -7676.1 —-1919.5
640.1 19195 3195
[K]ys = 10° (4.64)
: sym. 7691.1 1920.8
640.1

In asimilar fashion, the remaining three element stiffness matrices may be
shown to be

082.3 -483.1 -952.3 -478.1

320.6 4781 159.6

sym. 9823 4831

320.6

[164.6 -132.6 -104.6 -112.6

1646 1126 76.6

sym. 1646 1326

| 164.6
[1041 -803 159 -0.3
1166 03 126
sym. 104.1 80.3
116.6

[K], = 10°
[K], =10°

(4.65)

[K], =10°

The structure stiffness matrix is relatively straightforward to assemble in
the present case, dueto the nature of the element interconnections. If the nodes
are numbered sequentially, starting with node 1 at therim (Fig. 4.23(a)), then
it is first noted that the final node, 8, is fully restrained on account of the
assumed encastré base conditions. Accordingly, the displacements at node 8
are both zero, and this node need not be included in the stiffness equations,
since its displacements are prescribed. The structure stiffness matrix, in sub-
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(a) ()

Fig. 4.23 (@) Element and node numbering. (b) Typical element interconnection

matrix form, will therefore relate the total forces acting at the seven unre-
strained nodes to the displacement components at these same seven nodes,
and will, hence, be 7 x 7 in size.

The element stiffness equations (equation (B.11)) for atwo-noded element
take the form

f i ki |[6
{fe}={fl}=[k]{5e}=|:'::_",'::_'_H6} (4.66)

If atypical node, n, isconsidered (Fig. 4.23(b)), then node nisonly connected
tomembersx — 1 and x. Thus, thetotal force at node nisobtained by summing
the force contributions at this node from members x — 1 and x. In the case of
member X — 1, itsi, j designationisn — 1, n. It istherefore the second of equa-
tions (4.66) which relatesto the forces which this member produces at noden,
and the equation may be expressed, in expanded form, as

{127 = [k 8- + 1k 10} (4.67)

For member x, itsi, j designation isn, n + 1, and hence the first of equations
(4.66) isrelevant in this case. Adding the contribution of element x to that of
element x— 1 (equation (4.67)) produces the stiffness equation at node n as
follows:

{7+ =1 How ) +1KS T + KT8 + Ik 180} (4.68)

Nodenistypical of al the nodes (Fig. 4.23(a)) except thefirst and last, so that
eguation (4.68) shows that the structure stiffness matrix istri-diagonal in this
case and will take the form
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KoK 0
2 2
ki ki+ki? K 0
2 2 3 3
0 K K+k k¥ 0

(4.69)

KK +K!

Substitution into equation (4.69) from equations (4.64) or (4.65), as appro-
priate, produces the structure stiffness equation, in numeric form, as given by
eguation (4.70) (page 197). Theload vector corresponding to the specified rim
moment at node 1 is given as equation (4.71), and a computer solution of the
resulting stiffness equationsis presented in Fig. 4.24.

{W}={0, 10,0, 0,0, 0,0, 0, 0, 0, 0, 0, 0, O} (4.71)

Figure 4.24 al so shows a sketch of the displacement solution, from which it
may be observed that, as expected, the effect of the applied moment isgreatest
in the vicinity of the tank rim and decays rapidly in the lower regions of the
tank, there being no significant displacement in the lower half of thetank. To
confirm that this behaviour also extendsto the stress resultants, it is necessary
to use equation (4.60) to determine the bending moments and direct forcesin
the tank, which is done in the next section.

w|  (-0.1443

6, |-0.1899

w, -0.0647f me= === Displaced shape

0, |-0.1293

wy|  |-0.0134 == =<
0, |-0.0778 " \'
w,| | 0.0276] X107 m \ ,
0, |-0.0128 irm,s rad ! ]
W 0.0262

0, 0.0104

Wy 0.0044

wy | |-0.0012

0, 0.0001

(a) (®)

Fig. 4.24 Circular tank displacement solution
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Stress resultant solution

As an example of the element stress resultant calculation, element 1 will be
considered. For this element, from Fig. 4.24,

~0.1443 m
B ~0.1899 rad
=t = %107 4.72
3 {52} ~0.0647 m (4.72)
~0.1293 rad

Thus, from equation (4.60) (using the properties of the element 1 from
Fig. 4.22) in kilonewton and metre units,

_ Bt _15x10°x04

= 600000
r 10
3 6 3
= Et i =15><10 x 0.4 160000
12(1-v°)L 12x 0.5
Whence
Ny 600 0 0 0 |[-0.1443
N M 5| 1920 640 1920 320 ||-0.1899 =

{o7}= =10 x10
N, 0 0 600 0 ||-0.0647
M, 1920 -320 -1920 -640 ||-0.1293

So that

N,| [-86.6] kN/m
M -10.1{ kNm/m

{o}=1 ™i= 4.73)
N, [ |-388[ kN/m
M., -9.3] kNm/m

—86.6 KN/m —10.1 KN m/m
- - ——— ’
-~ e
) e
N| \\ I‘ Mm

A\

Fig. 4.25 Stressresultant solution
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E=15kN/mm? v=0

- |

20 m

I¢ 025m l |

4x1m
4x0.5m

f———=

4x0.25m

8x0.125 m

BT T

(@ (b)

Fig. 4.26 (a) Non-uniform circular tank example. (b) Element sub-division (enlarged scale)

Proceeding in the same way for the rest of the elements gives the complete
stressresultant solution. The nature of the formulation ensuresthat thetangen-
tial forces will be continuous from element to element, provided that all the
elements have the same thickness. There will, however, be a discrepancy in
the meridional moment values as computed from adjacent elements. In the
present exampl e these discrepancies are small and are not therefore indicated
on Fig. 4.25, which shows sketches of the stressresultant solution and is based
on nodal average values. It should be noted that the distribution of the tangen-
tial direct force is similar to that of the radial displacement solution
(Fig. 4.24). Thisfeaturefollowsfrom thelinear rel ationship between theforce
and radial displacement (equations (4.46) and (4.48)) adopted in thisformula-
tion. The meridional bending moment islinearly related to the meridional cur-
vature (equation (4.53a)) rather than the radial displacement, but still decays
with distance from thetank rim, although at aslightly reduced rate (Fig. 4.25).

4.3.3. Example 4.5 —circular tank of non-uniform thickness

The circular tank shown in Fig. 4.26(a) has walls of linearly varying thick-
ness. To obtain bounds on the effect of the varying degrees of rotational re-
straint which might be provided by the base slab, full restraint will be assumed
initially and the analysis will then be repeated under a condition of zero rota-
tional base restraint. The tank is to be analysed for water pressure effects, it
being assumed that the tank isfilled to itsrim. The loading is severest at the
base of the tank and, certainly in the fully restrained base case, the bending
moment will tend to have its greatest rate of change at the bottom of the tank.
Thefinite elements should therefore be smallest towards the tank base and, to
meet this requirement, the element sub-division shownin Fig. 4.26(b) isto be
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adopted. There are thus four types of element lengths to be considered,
namely 1, 0.5, 0.25 and 0.125 m and there are 20 elements in total.

The varying wall thickness is accommodated by using the constant-
thickness element derived above, with the thickness of each element being the
average wall thickness over its length. The thicknesses to be used for the
elements, using successive element numbering from the rim, arethen asgiven
in Table 4.2. The varying thickness could alternatively (Ross, 1998) beincor-
porated within the finite element formulation and a rather more powerful
element thereby derived.

The loading effects of the water pressure will be represented by statically
equivalent, radial, nodal loads, although a more rigorous treatment of distrib-
uted loading would be to use equivalent nodal forces and moments, which are
derived in a manner which is consistent with the element formulation
(Zienkiewicz and Taylor, 1991). If atypical element isconsidered (Fig. 4.27),
then the statically equivalent nodal loads for the element may be determined
asindicated on the figure. Summing theloads produced by adjoining elements
givesthe total nodal loads givenin Table 4.2.

Finite element analysis

In this case, the analysis has been undertaken using a program based on the
finite element theory given above. The input data comprised the geometric

Table 4.2 Element thicknesses and nodal loads

Element or node Element thickness (m) Nodal load (kN/m)
1 0.266 164
0.297 9.81
3 0.328 19.63
4 0.359 29.43
5 0.383 28.21
6 0.398 22.08
7 0.414 24.52
8 0.430 26.98
9 0.441 21.77
10 0.449 15.33
11 0.457 15.94
12 0.465 16.56
13 0.471 12.80
14 0.475 8.73
15 0.479 8.89
16 0.482 9.04
17 0.486 9.19
18 0.490 9.35
19 0.494 9.51
20 0.498 9.65




Thin shells

n Do = PRY n Hp, XD +4(p,. = p)LXD]
| n = n P W—

O [ ANO)

! Hp, (LX) +2(p,., = p)LXD)]
n+ 11 Pri1 = P8YVns1 b L
e = Pt 2,0)

L
=Z@p, +
6( Pyt Pust)

y = depth from water surface
p =mass density of water

(@) (b)

Fig. 4.27 (a) Pressure distribution on a typical element. (b) Statically equivalent load
determination

= == = = Encastré — Pinned

Fig. 4.28 Displacement solutions

and load data of Fig. 4.26 and Table 4.2 from which the program determined
the displacement and stress resultant solutions for the two assumed base con-
ditions. For thefull rotational (encastré) support condition, the stiffness equa-
tions at the node at the base of the tank would be deleted in view of the
prescribed zero displacements. In the zero rotational support (pinned) base
condition, the radial force stiffness equation would be deleted, since radial
displacement is still prevented, but the moment stiffness equation at the base
would be retained in view of the non-zero rotation under these conditions.

The displacement solutions obtained from the two analyses are sketched in
Fig. 4.28, and the corresponding stress resultant solutions are given in
Fig. 4.29. The displacement solutions show the generally more flexible
response under the pinned-base condition, but also indicate that the solutions
tend to be independent of the base condition in, approximately, the upper half
of the tank.
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Thestressresultant solutions (Fig. 4.29) again demonstrate the similarity of
the tangential force and displacement distributions. The pinned support may
beseentoresultinrather larger tangential forces, and both solutions show that
bending effects become most pronounced towards the base, especialy in the
encastré case, where a substantial restraining moment is developed. It may
readily be shown that this restraining moment is significant in stress terms by
comparing the bending stress due to the moment with the stress due to the
maximum tangential force of 433 kN/m (Fig. 4.29). Thus, assuming a homo-
geneous structural material,

max. N, 433%10°
1xt,;  250[1+(4.5/8)]x10°

max. oy, = =1.1 N/mm?

and

max. M,  92.6x10°
(Ixt2)/6  (10° x 500%)/6

For this example, therefore, the maximum bending stress, under the
encastré base condition, considerably exceeds the maximum direct stress.

=22 N/mm?

MaX. Opeq =

Membrane analysis comparison

Tofulfil the conditionsfor amembrane solution to be exactly applicableto the
present example, the supports would have to provide a reaction only in the
meridional tangent (vertical) direction at the base (see Section 4.2.3), that is,
roller (free-sliding) supports are needed (Fig. 4.30).

Roller supports do not involve a horizontal reaction component at the base,
which is present in both the pinned and encastré supports. For these latter

—— —— —— Membrane solution

== == == = Encastré Pinned
N 45m M,
(kN/m) \ (kN m/m)
\3
\ 433
\
N L 4
/ \\ - -
— — P -

92.6
Fig. 4.29 Stress resultant distributions
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N

Fig. 4.30 Membrane analysis supports

P =pgy p=pgy ‘L

Fig. 4.31 Circular tank membrane analysis

supports, the tangential direct forceis zero at the base, since radial displace-
ment is prevented, so that the horizontal reaction component can only be pro-
vided by a shear force which implies significant bending in the baseregion, as
aready encountered above. Theimpact of thisbending on thetangential direct
force may beinvestigated by comparison with amembrane solution, whichis
readily obtained for the present example.

Sincethe meridional radius of curvatureisinfinite (equation (4.4)), the tan-
gential direct force, under membrane conditions, may be obtained directly
from the first membrane equilibrium equation (4.8). Thus, with reference to
the portion of the tank shown in Fig. 4.31 and noting the outward direction of
the pressure, p,

N
~ mry=0
Whence
N, = pgry (4.74)

The tangential force solution provided by equation (4.74) is shown in
Fig. 4.29 and it may be seen that the high tangential direct force, required by
the membrane solution to resist the radial base pressure, is absent in the other
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(a) (b)

Fig. 4.32 Finite element shell representations: (a) axisymmetric shell; (b) general shell

two solutions, where this horizontal thrust can, and must, be sustained by
shear forces. It may also be observed, however, that the pinned and encastré
solutions both tend to the membrane result in the upper half of the tank, where
the moment solution confirms the absence of significant bending in this
region. The height to which bending is of importance does, in fact, depend
upon the tank proportions (Manning, 1967). The walls of an encastré-
supported tank which is wide and shallow will essentially act as a vertical
cantilever, and bending effects will be significant over amost the full height.
Inanarrow, deep tank, on the other hand, membrane effectswill predominate
in the upper portions of the wall, and bending will only be significant in a
limited region close to the base.

4.4 Finite elements for non-cylindrical shells

The element employed above for a circular cylindrical shell may aso be
derived from a more general element (Ross, 1998) which models an
axisymmetric shell problem by a sequence of elements (Fig. 4.32(a)), each of
which has flat, sloping sides. Radially unsymmetric loading can be treated
without having recourse to a different element by a technique in which the
loading distribution is replaced by an approximating Fourier series
(Zienkiewicz and Taylor, 1991).

For more general shells, a wide variety of finite elements is available
(Zienkiewicz and Taylor, 1991). Perhapsthe simplest in concept isto take the
triangular plane stress element of Chapter 1, add a plate bending representa-
tion to the element, and so obtain a shell element which will model general
shell surfaces by planar triangular regions (Fig. 4.32(b)). The discontinuities
inherent in this facet approach can lead to significant inaccuracy, however,
and curved elements (Gould, 1998) are generally to be preferred.
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Problems

4.1 Use membrane thin shell theory to determine expressions for the
distributions of the meridional and tangential membrane forces in the
spherical dome shown in Fig. 4.33(a). For a spherical dome having
a=1430mm, t=60mm, p=2N/mm? and a =39°, supported as
shown in Fig. 4.33(b), a bending theory predicts the membrane stresses
tovary asshownin Fig. 4.33(c). Compare membrane theory resultswith
those of Fig. 4.33(c) and comment on any discrepancies.

4.2 The spherical, constant-thickness dome shown in Fig. 4.34(a) is open
for 0< ¢ < o, andissupported vertically at ¢ = a,. The dome carriesa
rim load of P/unit length in addition to its self-weight of g/unit area.
Show that, by membrane theory, the meridional and tangential direct
stress resultants are given by

_ga(cosa, —cosg) + Psinoy

N =
" sn® ¢
COSqy, — COS '
N, =ga —a_l 5 ¢—cos¢ + P_Sr;al
sin® ¢ sn® ¢
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Fig. 4.34

Why will this solution not be valid in regions close to ¢ = «, and
¢ = «,? If ring beams were provided as shown in Fig. 4.34(b), state,
with reasons, whether each ring would be in tension or compression
under the specified loading.

(UEL)
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4.3

4.4

45

The general axisymmetric dome shown in Fig. 4.35 is subjected to an
internal, uniform over-pressure, p per unit area. Show that the direct
stresses, as predicted by membrane thin shell theory, are given by

r
O = p_r , O =0, 2
2tsing r,sne

The paraboloid dome shown in Fig. 4.36 is generated by rotating a
portion of the parabola 2ay = x* (where a is a constant) about the y-axis.
The domeis subjected to a snow load which may be approximated as a
vertical load of variable intensity q per unit area, where g = g’ cos’ ¢
and q” is constant. Show that the direct forces due to thisload, as given
by thin shell membrane theory, are

_ —ga N _ —q'acos’ ¢
1+cos¢’ ' 1+cos¢

m

Sketch and comment on the distributions of these membrane forces.

A conical umbrella-shaped roof of uniform thickness is supported by a
central column as shown in Fig. 4.37.

(a) Determine general expressions for the membrane stress resultants
due to self-weight, g, per unit surface area and find the force in the
column.

(b) Sketch the variation of the membrane stress resultants, showing
their significant values. Calculatevaluesforp =0, 0.1, 0.5and 1.0.

(c) Interpret and discuss the results critically.

(UCL)

Normal pressure, p

Fig. 4.35
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q=q’cos’ ¢

Fig. 4.36

AN\

Fig. 4.37

4.6 A fluid container (Fig. 4.38(d)) is generated by rotating a portion of the
hyperbola b*¢ — a’y* = a’b’ about the y-axis. When the container is
filled with a fluid of mass density, p, show that the resultant vertical
force, R, due to the pressure of the fluid on the sides of a frustum of the
shell (Fig. 4.38(b)) isgiven by

el 55
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Fig. 4.38

(b)

Fig. 4.39
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4.7

4.8

4.9

Also, by considering the vertical equilibrium of the frustum, show that
aZpg(a4y2 +b4X2)2IJ2 H3 Hy2 y3
Nm = 7 2 _—
b*x 6 2 3
Hence determine the meridional force at the base of the container.
(UEL)
Consider the Intze-type fluid container generated by the rotation of the
cross-section shown in Fig. 4.39(a) about its central axis.

(a) Establish the criterion that the supporting ring should be loaded by
vertical forces only. (Neglect the self-weight of the structure.)

(b) Check if this criterion is satisfied (with reasonable approximation)
for the dimensions (in metres):

a, = 7.00, h, =5.50, h; =2.00
a,=5.00, h,=7.50, f,=2.07
a, = 1.00, h; = 5.50, f, = 0.07
(c) Explain briefly why and where a bending correction would be
necessary.

Note that for ashell cap (Fig. 4.39(b)):

v:%(3a2+f2)

(UCL)

Thecircular cylindrical shell shown in Fig. 4.40(a) isto be analysed by
the finite element method using the element sub-division indicated in
the figure. The shell is subjected to aradial rim load of 1 N/mm and is
fully fixed at the base. The element stiffness equations (in kilonewton
and metre units) for circular cylindrical shell elements of axial lengths
25 and 400 mmand 1 mm arc length are givenin Fig. 4.40(c), wherethe
sign convention of Fig. 4.40(b) has been used. Form, but do not solve,
the overall stiffness equations for the finite element analysis.

(UEL)

The cylindrical metal tank shown in Fig. 4.41(a) isfilled with liquid of
weight density 9 kN/m®. A finite element analysis of the tank has been
undertaken, and displacement results for the region of the tank adjacent
to the change in wall thickness are given in Fig. 4.41(b). Use the stress
matrix of Fig. 4.41(c) to determine the averaged stress resultants at
nodes 7, 8 and 9 using elements 7 and 8 only. Hence calculate the
maximum bending and membrane stresses in this region. Are bending
effects significant in this region? (E = 200 kN/mm?, v = 0).

(UEL)
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4.10 Thecircular cylindrical pressure vessel shown in Fig. 4.42(a) has ends
which are sufficiently rigid to prevent rotation or radial displacement at
the vessel wall/end junction. One half of the vessel has been analysed by
the finite element method for the effects of a uniform internal radial
pressure of 3000 kN/m?. The finite element mesh used was as shown in
Fig. 4.42(b) and displacement results from the analysis are given, in
part, in Fig. 4.42(c).
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(@) Comment on the element sub-division choice.

(b) Use the element ‘stress’ matrix (equation (4.60)) to determine the

stress resultants at nodes 1 and 13.

(c) Determine the stress resultants as given by membrane theory and
compare the finite element results with this membrane solution and
with the analytical solution givenin Fig. 4.42(d).
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(d) Discuss the relationship of the available solutions to the expected
physical behaviour of the vessel.

(e) What modifications would need to be made to the stress resultant
solution if it were required to incorporate the effects of the pressure

on the vessel ends, presuming that longitudinal movement is
unrestrained?

(UEL)
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5. Structural dynamics

5.1 Introduction

Inthe previous chaptersit has been assumed that the applied loads do not vary
with time and the analysis has therefore been undertaken on a static basis. If
the loading is dynamic, in the sense that it becomes time-dependent, then it
may be still be possible to use a static analysis, for design purposes, if stati-
cally equivalent loads are used to model the dynamic effects. In many cases,
however, either the effects of winds, waves, blasts, earthquakes and other
dynamic disturbances cannot be accurately represented by statically equiva-
lent loading, or the importance of the structure may be such that a consider-
ation of its dynamic behaviour is warranted.

A dynamic analysis can reveal the possibility of a serviceability failure
which it would be impossible to predict by a purely static treatment. There
have been cases, for example, of oil-rigs having to be abandoned in quite mild
seas dueto the onset of oscillationswhich wereintolerable to the crews. Elec-
tric transmission lines have been known to develop dynamic ‘galloping’ of
such severity that the lines touched, which did not necessarily result in struc-
tural distress, but which certainly represented a serviceability failure asfar as
the electricity supply consumers were concerned. Structures under construc-
tion are often particularly prone to dynamic effects, and temporary damping,
for example, was needed for the towers of the Forth Road Bridge in Scotland
to minimize dynamic effects prior to the main cables being spun.

Even on pure strength grounds, dynamic analysismay berequired if fatigue
islikely to be adetermining feature. In such cases, it is necessary to be ableto
predict not only the magnitude of the stresses within the structure but also the
frequency of occurrence of different stress levels, since aregularly sustained
low stress can have severer fatigue effects than an occasionally experienced
higher stress.

The aims of this chapter are therefore to describe the types of vibration
which may be experienced by engineering structures and to give an introduc-
tion to the analytical techniques which may be used both to predict the
likelihood of excessive oscillation and also to determine the dynamic
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displacements and stresses which are produced during the course of accept-
able vibration.

5.2 Types of vibration
5.2.1 Free, undamped vibration

Although dynamic behaviour has been introduced in terms of the structural
effects of time-dependent loading, it is most helpful to begin with an account
of the vibration of simple structures which are not subject to dynamic loads.
Thisform of vibration is termed free vibration and occurs whenever a struc-
ture is disturbed from its position of static equilibrium. Free vibrations are
initiated either by impulses, such as a collision impact or a blast, or by an
abrupt support movement. In experimental work, free vibrations may be
obtained by applying a constant disturbing force which is suddenly released,
leaving the structure free to vibrate naturally.

If, in addition to the absence of time-dependent forces, energy is not dissi-
pated from the vibrating system, then the motion is both free and undamped.
Energy losses occur due to friction, air-resistance and similar effects, so that
undamped vibration, rather impractically, assumes the absence of these fea-
tures, but is, nevertheless, avery helpful theoretical concept.

As asimple example of free, undamped vibration, the cantilever beam of
Fig. 5.1(a) will be considered. The beam will be assumed to be effectively
massless itself but capable of supporting a constant (time-independent) point
load at itsfree end, which will subsequently be referred to as amassto permit
a distinction from ‘loads’, which will be presumed to be dynamic (time-
dependent). If the beam is displaced laterally from its static position and then
released, vibration will ensue, and it is possible to obtain the instantaneous
shape of the beam from a single parameter, often termed a coordinate, which
is conveniently taken to be the lateral displacement of the mass fromits posi-
tion of static equilibrium. In the present example, therefore, there is just one
coordinate and the structure is said to possess one degree of freedom sinceits
displaced shape is uniquely determined by a single coordinate.

X=u

% . > -¢
—e ws @ -@
A ; 7

~ 1
S =

(a) (b)
Fig. 5.1 Cantilever beam example
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Fig. 5.2 Free undamped vibration

A sin

If the variation of the displacement, x, with time, t, is plotted (Fig. 5.2),
then, in the absence of damping, the vibration may be shown to be of a sinu-
soidal (harmonic) form and may be described mathematically by

X=Asin(wt + «) (5.1

where A, the amplitude, is the maximum displacement from the undisturbed
position, T, the period, isthetime required for one complete cycle of vibration
(), w (= 2n/T) isthecircular natural frequency (rad/s), f (= 1/T) isthe natural
frequency (cycles/s = Hz), and « is the phase angle (rad).

In equation (5.1), the amplitude and phase angle constants may be deter-
mined from the conditions under which the motion commenced. These condi-
tions may be represented by the initial displacement and velocity, and an
expression for the latter parameter can be obtained by differentiation of equa-
tion (5.1) with respect to time. The units suggested in equation (5.1) are those
which are most convenient and usual in the SI system. In particular, it should
be noted that the standard terminology for the frequency unit is hertz (Hz),
which replaces its more expressive equivalent of cycles per second.

Figure (5.2) showsthat the beam vibratesfrom side to side such that the am-
plitude and period (and hence frequency) remain constant. The magnitude of
the amplitude, however, is dependent on the initial conditions, as well as on
the physical properties of the beam and mass, while the frequency depends
solely on these two latter parameters. Natural frequencies, in fact, may be
shown, quite generally, to increase with structural stiffness and decrease with
mass. Thus, increasing the bending stiffness of the beam of Fig. 5.1(a) would
result in a higher frequency; but increasing the point mass would produce a
lower-frequency vibration.

So far it has been presumed that the manner, or mode, of vibration is pre-
scribed. The mode of vibration is, however, dependent on the nature of theini-
tiating disturbance. Had the beam, for example, been subjected to an initial
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elongation and then released (fig 5.1(b)), the subsequent free vibrationswoul d
have been in an axial mode, in contrast to the bending (or flexural) mode
described earlier. The system still possesses one degree of freedom, since, ina
purely axial mode, the motion may be described by a single coordinate, u, the
longitudinal displacement of the mass. In practice it would be necessary to
provide a sleeve guide (Fig. 5.1(b)) to prevent the accidental simultaneous
development of the bending mode and so ensure that pure axial vibration
occurred. With the help of the sleeve, yet another mode could be investigated
by giving the mass an initial twist and thereby producing atorsional mode of
vibration.

Different modes of structural action therefore result in differing modes of
vibration, each with its own natural frequency. The position becomes even
more complicated if multiple degrees of freedom are involved for a single
form of structural action. Thistype of situation may be explored by adding a
second massto the cantilever beam, asshownin Fig. 5.3(a). In free, undamped
vibration, the cantilever beam will still oscillate from side to side following a
lateral disturbance, but observations show that the vibration does not neces-
sarily possess constant frequency and mode shape. These featurescan, infact,
only be consistently maintained if theinitial disturbanceissuch asto displace
the beam exactly in one of the two shapesiillustrated in Fig. 5.3. In either of
these principal (or natural) modes, both the masses will vibrate harmonically
at asimilar natural frequency, which is different for the two modes. In addi-
tion, the mode shape will be maintained throughout the motion such that the
ratio of the displacements of the two masses remains constant at avaluewhich
is characteristic of the mode.

At first sight, principal modes may appear to be of little interest, sinceitis
highly unlikely that a disturbance would produce one or other of the principal
mode shapes exactly. Clearly, the mode of Fig. 5.3(b) resembles the effect of
therelease of anormal end-force. However, eveninthiscase, it may be shown
that the displaced shape produced by an end force does not correspond exactly
to the principal mode of vibration. The importance of principal modes and
natural frequencieslies, then, not intheir common occurrence, but in the facts
that it is possible to express any vibration as alinear combination of the prin-
cipal modes and that the natural frequencies characterize theway inwhich the

Z

_

() (®) (©

Fig. 5.3 Cantilever beam with two masses
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Fig. 5.4 (a) Damped cantilever beam. (b) Stiffened cantilever beam

structure responds to dynamic loading, features which will be explored in
some detail later in this chapter.

5.2.2 Free, damped vibration

Damping occurs due to aloss of energy during the vibration, the energy lost
being either dissipated as heat or transported from the structure by radiation
(sound, for example). Energy losses occur partly due to internal friction in
structural materials and partly dueto friction at structural joints, losses due to
air-resistance normally being secondary. The damping provided by internal
material friction varies considerably, being particularly high for a material
such as rubber, a property which can be utilized when rubber bearings are
specified. Other structural materials have lower intrinsic damping, with com-
posite materials such as reinforced concrete being rather better damping
agents than metals. In metal structuresthereis clearly more friction at bolted
joints than at welded ones, and bolted structures therefore exhibit higher
damping.

It is customary to represent damping effects by a‘dashpot’ system, which
might be incorporated into the cantilever system of Fig. 5.1(b) as shown in
Fig. 5.4(a). The dashpot can consist of a plunger inside atube, and the energy
lossthen arisesfrom the flow of air through the small gap between the plunger
and the tube walls. This type of arrangement results in the creation of a
damping forcewhich is of opposite senseto the velocity of the plunger, at any
instant, but which is proportional to the speed of the plunger. Thus, assuming
arigid connection between the mass and the plunger of Fig. 5.4(a),

damping force = —cx (5.2

where c is the coefficient of viscous damping, " indicates differentiation with
respect to time, and the negative sign indicates that the damping force and x
act in opposite directions.

Practical structures do not necessarily conform to the physical laws of
dashpot (or viscous) damping. However, since the dashpot model is mathe-
matically convenient to handle, it isusual to derive equivalent dashpot param-
eters so that the relative simplicity of this model may be utilized.
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If the system of Fig. 5.4(a) is disturbed axially and then allowed to vibrate
freely, the motion will be attenuated due to the damping and will gradually die
out. The rate of decay will depend on the severity of the damping, and, if the
dampingislarge enough, it is possible that the vibration does not occur at all,
in which case the system simply gradually returns to its undisturbed position
without oscillation. The value of damping at which this phenomenon is first
observed isknown ascritical damping. Practical structuresdo not possessthis
degree of damping and are therefore underdamped, it being convenient to
express the degree of damping as a proportion of the critical damping, thus

(=% (5.3)
C

cr

where ( isthe damping ratio, and c,, is the critical damping coefficient.

Structural damping ratios are generally towards the lower end of the range
0.5-20% (Blevins, 1977). The axia vibration of the massin Fig. 5.4(a), for
example, will be as shown by Fig. 5.5, in which two representative val ues of
damping ratio have been used. The characteristic decay of the vibration under
damping may be noted in Fig. 5.5, which also illustrates two further points of
particular importance. First it will be seen that, although damping produces a
significant progressive reduction in the amplitude of the vibration, the fre-
guency remainsvirtually unaffected. The analytical significance of thisisthat
the simpler free-vibration model may be used to determine natural frequen-
cies which will be equally applicable to the damped system. The second
feature isthat, since damping effects are progressive, alightly damped model
iscloseto an undamped onein the early stages of the motion, again a property
which can lead to analytical simplification.

Before leaving the topic of damping, it isworth emphasizing the difference
between damping and stiffness in respect of dynamic behaviour. The intro-
duction of damping to the cantilever beam example (Fig. 5.4(a)) has been seen
to lead to a characteristic attenuation of free vibration with little frequency
change, effects which arise due to loss of energy through the damper. If the
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Fig. 5.5 Damped and undamped free vibration
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Fig. 5.6 Forcing functions

beam is aternatively stiffened by the addition of a further elastic rod (Fig.
5.4(b)), then longitudinal free-vibration oscillations would not diminish with
time but the frequency of the vibration would certainly beincreased dueto the
increased stiffness. In energy terms, stiffness (or spring) elements are storers
rather than dissipators of energy —energy is continuously being stored as
elastic strain energy and subsequently released as kinetic energy.

5.2.3 Forced, damped vibration

If the structure is subject to sustained time-dependent |oads or support distur-
bances, then the resulting motion is said to be forced and the time-dependent
forcing effect is referred to as an excitation. The nature of aforced vibration
depends on the form of the excitation, and the effects of some common types
of excitation are described in this section.

Transient excitation

If theforcing effect is sustained for afinite period of time, then the excitation
is said to be transient. The effects of an isolated wave, wind gust or earth-
tremor could all betreated astransient excitations, and simple representations
of transient forcing functions are shown in Fig. 5.6.

The severity of the dynamic response to atransient excitation depends upon
therate at which the excitation changesin relation to the natural periods of the
structure. Should the time taken to devel op the maximum forcing load in Fig.
5.6(c), for example, be extremely brief, so that theload is* suddenly’ applied,
then the maximum dynamic displacements and stresses are likely to be
approximately double the values which would be obtained if the maximum
load acted statically, a result which is commonly used in the specification of
safety factorsfor abrupt loading. If, on the other hand, the time taken to apply
the dynamic load is more than about three times the longest natural period of
the structure, then there will be little difference between the dynamic and
static responses. If impact loading is considered a specia case, then the most
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significant types of transient loading will be cases where the excitation occurs
over alength of time which is of the same order as the natural period of the
mode which is of interest. The severest dynamic effects due to such transient
excitation will be experienced either during the application of the excitation or
shortly afterwards, when the motion becomes damped, free vibration, with, as
has been shown, agradually diminishing response intensity. The time of most
interest is therefore of the same order as the natural period and occurs at the
start of the motion. Under these circumstances, light damping will not have
developed a significant effect (Fig. 5.5) and an undamped assumption will
usually yield acceptable results.

Periodic excitation

A periodic forcing function is such that the excitation takes the form of a
function which is continuously repeated at a fixed frequency (Fig. 5.7(a)).
Should the forcing function be sinusoidal, then the excitation is harmonic

T/\/\/\/>T/\ /N /.
i \/ \/z

(a) (b)

Fig. 5.7 (a) Periodic forcing function. (b) Harmonic forcing function

direction

|

Forcing

Fig. 5.8 Harmonic forcing due to vortex shedding
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Fig. 5.9 (a) Harmonic force excitation of cantilever. (b) Harmonic support displacement
excitation

(Fig. 5.7(b)). Harmonic excitation is of special importance for a variety of
reasons. First, several practical excitation sources do produce harmonic
forcing effects. Thisisthe case for rotating machinery such as turbines, fans
and motorsand also ariseswhen achimney or cableisin asteady air-stream or
animmersed tubeisin asteady flow of fluid. The excitation in thesetwo latter
instances arises from vortex shedding on alternate sides of the circular section
(Fig. 5.8), which leadsto the generation of aharmonic forcing effect normal to
the flow direction.

Harmonic forcing isalso of importancefor theinvestigation of the phenom-
enon of resonance, which will be pursued further below, and because Fourier
series analysis allows any forcing function to be expressed as a series of har-
monic functions (Craig, 1987). General forcing effects need not therefore be
considered separately, since they may be represented as the sum of a set of
harmonic analyses. The single degree of freedom cantilever beam will now be
considered under the action of a harmonically varying lateral load applied to
theend mass (Fig. 5.9(a)). Such an excitation could be produced in practice by
attaching a small motor to the end of the beam and arranging for the motor to
cause a small eccentric mass to rotate. The dynamic motion of the beam will
be found to possess the following characteristics:

(@) Following a transient response at the commencement of the excitation,
the vibration settlesdown to asteady-state responsein whichitsmotionis
harmonic and is of the same frequency as that of the excitation.

(b) The beam’sresponse is not in phase with the excitation, that is, the mass
does not reach its displacement amplitude at the same time asthe forcing
effect acquires its maximum value, there being a constant phase
difference between these two events.
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If the frequency of the excitatory force is now gradually increased, the
amplitude of the beam’ s steady-state motion will be observed to increaseto a
maximum and subsequently to subside as the forcing frequency is increased
further. This behaviour may be conveniently examined in terms of a non-
dimensional dynamic magnification factor, which isdefined astheratio of the
beam’ s steady-state amplitude to the displacement which would be caused by
theforce amplitude of the excitation, P, acting statically. Figure 5.10(a) shows
the variation of the dynamic magnification factor with the ratio of the forcing
frequency to the natural frequency of the beam, and the following aspects of
the behaviour are of particular importance:

(8 Damping only significantly affects the dynamic magnification factor if
the forcing frequency isin the vicinity of the natural frequency.

(b) The dynamic magnification factor increases rapidly as the forcing
frequency approaches the natural frequency and peaks when the two
frequencies are equal (strictly, approximately so). The equal forcing and
natural frequency condition is referred to as resonance, and it will be
noticed from Fig. 5.10(a) that the effects of resonance are greatly
ameliorated by increased damping. Under light damping conditions,
resonance produces greatly enhanced displacements, which can result in
structural distress.

(c) Low frequency ratios result in an essentially ‘static’ response.

(d) The response at high frequency ratios is considerably diminished in
relation to the static response.

Figure 5.10(b) shows the variation in phase angle between the forcing and
response functions for a range of frequency ratios. Under low damping
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Fig. 5.10 Single degree of freedom—harmonic force excitation: (a) magnification factor
against frequency ratio; (b) phase angle against frequency ratio
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Fig. 5.11 (a) One degree of freedom—harmonic support excitation. Ratio of relative
displacement amplitude to support disturbance amplitude against frequency ratio. (b) Multiple
degree of freedom system. Typica amplitude against harmonic forcing frequency

conditions, it may be observed that the forcing function and the response are
in phase or 180° out of phase, except in the resonance region, where the phase
angle changes rapidly and is 90° at resonance. At resonance, therefore, the
forcing function attains its maximum value when the system is at its undis-
turbed position, and has zero value when the system is at its amplitude.
Figure5.11(a) showsaplot for forced motion of the beam in which the exci-
tation is provided by a harmonic support movement (Fig. 5.9(b)). In this case,
the response is most conveniently measured in terms of the relative displace-
ment, w, between the mass and the support, and the figure shows the variation
of the ratio of the amplitude of w, W, to the support movement amplitude, Z,
against frequency ratio. The presence of resonance at the natural frequency
may again be observed, and it will also be seen that low-frequency support
movements produce no relative displacement, so that the mass follows the
support displacement. High-frequency support excitation, however, tends to
producearelative displacement equal in magnitude to the support movement.

Random excitation

Many natural forcing effects (winds, waves and earthquakes, for example) fall
into this category and, while a simplified treatment may be possible on the
basis of a periodic forcing assumption, a complete analysis requires a statis-
tical treatment (Gould and Abu-sitta, 1980) which is beyond the scope of the
present text.
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Natural frequencies and forced vibration

If a multiple degree of freedom system is considered, for example the two-
mass cantilever of Fig. 5.3(a), then, under harmonic forcing, it will resonatein
both the mode of Fig. 5.3(b) at itsfirst natural frequency and also in the mode
of Fig. 5.3(c) at its second natural frequency. If a general multiple degree of
freedom system is subjected to harmonic forcing, then its response may beil-
lustrated diagrammatically by Fig. 5.11(b), where the amplitude of atypical
displacement is plotted against forcing frequency. The peaks correspond to
the system’ snatural frequencies, and thereis general trend towardslower res-
onance magnification at higher natural frequencies.

Since resonance involves magnified displacements and, hence, stresses, itis
usually of particular concern that the forcing frequencies at which resonance
occurs, especialy the lower ones, are identified, and it has been seen that these
frequencies are the natural frequencies of the structure. In addition to identi-
fying resonant states under harmonic forcing, however, natural frequenciesand
modes can also be used to investigate more general vibrations of a free, tran-
sient or periodic nature, so that the establishment of the natural frequenciesof a
structureisof paramount importance and will be considered in the next section.

5.3 Determination of natural frequencies and modes

5.3.1 Modelling

In the following, it will be assumed that the structure may be modelled by a
finite number of discrete masses (Fig 5.12) which areinterconnected by linear
elastic structural elements. The structural elements may be one-dimensional
elements in the case of skeletal structures or higher-dimensional finite ele-
ments in the case of continua. It will be further assumed that the masses are
concentrated into ‘ point’ masses so that their mass moments of inertiaare neg-
ligibly small, amodel whichisusually termed alumped-mass approximation.

5.3.2 Theory

A lumped-mass model will be assumed to be undergoing free vibration, and
its displaced shape, at any instant, will be defined by a set of coordinates, { X},
relative to its position of static equilibrium. In the static equilibrium position,
internal forces are developed in the structure which just balance the gravita-
tional forces on the point masses. The dynamic displacements, { X}, therefore
represent adisturbance from the static equilibrium position and will resultina
set of additional internal forces which will tend to restore the structure to its
equilibrium state. The additional internal forcesmay berelated to the dynamic
displacements by the usual stiffness relationship as

{F} =[K{x} (54)
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Fig. 5.12 Genera dynamic model

By virtue of the equality of damped and undamped free-vibration frequen-
cies, natural frequencies may be determined on the simpler undamped model,
so that theforces, { F}, are the only unbalanced forces acting on the structure.
These forces therefore produce a set of accelerations, { K}, to which they may
be related by Newton’s second law of motion as

F=-m%
Fr = _rnrxr (55)
I:n = _rnnxn

where the negative signs arise since the restoring forces { F} act in the oppo-
sitedirection to { %} . Or, in matrix terms,

{F} =MK%} (5.6)
where [M] is the diagonal mass matrix given by
'm, i,
: 0
[M]= m (5.7)
0
m, |

However, if the structure is undergoing vibration in a principal mode, then
each displacement component executes harmonic motion with the same
natural frequency. Hence

X = A sin(wt + ) (5.8

229



Advanced structural mechanics

So that

% =—w?A sn(wt +a) = —w’Xx. (5.9)
and

{8 =% (5.10)

Hence, by eliminating the unbal anced forces and accel erations from equations
(5.4), (5.6) and (5.10),

[KI{¥} = -[M]{x} = W*[M]{} (5.11)
or
[K —w’M]{%} ={C} (5.12)
An alternative form of equation (5.12) may be obtained by pre-multiplying
equation (5.11) by [K]™ to give
[11{3¢ = S’ [KIMI{%} (5.13)

where [K]™[M] is known as the dynamic matrix.
Upon re-arrangement,

[K‘lM —iz | }{x} ={0} (5.14)
w

Equation (5.14) representsastandard eigenval ue problem, asit takestheform

[A=XAT{} ={C} (5.15)

By applying standard solution techniques (Prentis and Leckie, 1963;
Jennings, 1977) to either equation (5.12) or (5.14) the eigenvalues and hence
the natural frequencies, may be determined. For each eigenvalue, it will be
possible to determine an associated principal mode of vibration by solving
equations (5.12) for the displacement vector, {x}, which, mathematically, is
termed an eigenvector. It is, in fact, only possible to determine relative dis-
placementsin thisway, aswill be apparent from the time-dependent nature of
the displacements. Any principal mode solution may therefore be multiplied
by an arbitrary constant to produce another solution. It isusual and convenient
to choose the arbitrary constant such that the principal mode is normalized,
which may be done in several different ways:

(@) A specific displacement component may be allocated a particular value,
normally unity.

(b) Thelargest displacement component may be allocated aparticular value,
again normally unity.

(c) The mode may be normalized such that the modal mass defined by

m, ={¢} IMI{¢} (5.16)

takes a specified value, often unity, where{¢,} isthe rth mode vector.
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The choice of normalization scheme, if any, is immaterial, and any scheme
may be used according to personal preference in the given circumstances.

The number of natural frequencies which may be obtained in the above
manner will be equal to the number of coordinatesin equations (5.5) which are
associated with non-zero masses. In formulating the dynamic model there is
generally somefreedom in the choice of the number and type of both the coor-
dinates and the masses empl oyed, and the selections made will affect both the
number and the types of the natural frequencieswhich are obtainable. Consid-
erable judgement may therefore be required in the establishment of a suitable
model, as will be demonstrated by the examples given in the following
sections.

5.3.3 Example 5.1 —single-storey sway frame

The natural frequencies and modes of the single-storey sway frame shown in
Fig. 5.13 are to be determined. It is assumed that standard computer routines
are available for the determination of eigenvalues and vectors, so that, from
equation (5.12), the problem becomes one of determining the stiffness and
mass matrices for an appropriate dynamic model.

Theusua planeframerepresentation (Ghali and Neville, 1997) using athree-
component joint displacement representation will be employed, so that, taking
the non-restrained displacement components only, the coordinate set becomes

= (5.17)

For all members: E = 200 kN/mm? = 200 x 10° N/m?
A=1x10"mm*=1x102m% /=3 x 10 mm*=3 x 10* m*

Fig. 5.13 Sway frame example
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For the plane frame element shown in Fig. 5.14, the element stiffness equa-
tionsare as given in equation (5.18) (page 232), while the sub-matrix form of
the overall structure stiffness matrix may be established (by the methods
described above) to be

1 2
KK K

[K]= [_ L. _'_:_-2. -J-.3] (5.19)
2|k | ki +K;

The stiffness matrix may be obtained in numeric form by appropriate sub-
stitution from equation (5.18) into equation (5.19). However, it must be borne
in mind that for dynamic equations of the form of equations (5.5) to bevalid, a
consistent set of units must be employed. Since a force of 1 N produces an
acceleration of 1 m/s* when acting on a mass of 1 kg, newtons, metres and
seconds are a consistent set of units and should be used throughout any
problem involving dynamics. Thus from equation (5.18), using newton and
metre units,

[ 1125 sym
[ki]=10° 0 5000
| —225 0 600
[ 2500 sym 2500 O 0
21_1A5 ) 21 _ 15
[k*]1=10 0 141 , [Ki1=10 0 -141 563
| 0 -56.3 300 0 -56.3 150
2500 oym 1125 sym
21 _ap5 ' 37 _1A5 '
[k]=10 0 141 . [ki]=10 0 5000
| 0 563 300 225 0 600

Fig. 5.14 Plane frame element

233



Advanced structural mechanics

Whence, by substituting into equation (5.19),

[K]=10°

[ 26125
0
-225
—2500
0
0

5014.1
-56.3 900
0 0
-141 563
-56.3 150

2612.5
0
-225

5014.1

(5.20)

56.3 900 |

The mass matrix may be formed by considering the nodal equations of
motion, which have the general form given in equations (5.5). For the sway
frame under consideration, these equations become

Fa =—-mu,

Fyl =-mV;

M, =l (5.22)
Fe =—my,

Fyz =-myV,

M, =~y éz

where |, is the mass moment of inertia
Since alumped-mass model isto be used, the mass moment of inertias will
be presumed to be zero, so that the mass matrix is given by

2000 _
0 2000 sym.
(M= 8 8 g 2000
0 0 O 0 2000
o 00 0 0 0]

_ diag[2000, 2000, 0, 2000, 2000, ] (5.22)

Sincethere arefour coordinates associated with anon-zero mass (equations
(5.21)), it will be possible to determine four natural frequencies and modes if
the stiffness and mass matrices given by equations (5.20) and (5.22) are sub-
stituted into equation (5.12). When eval uated from this equation by astandard
computer routine, the natural frequencies are

w? =3.21x10% 2.50x10°, 2.51x10° or 2.52x10° (5.233)
Whence, since f = w/2x,
f =9.01, 79.6, 79.7 or 79.8 Hz (5.23a)
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Fig. 5.15 Example 5.1—fundamental and higher modes

From the natural frequencies of equation (5.23), it may be observed that the
lowest frequency is considerably less than the remaining three natural fre-
quencies, which happen to be very close to each other in this case.

The mode associated with the lowest natural frequency is shown in Fig.
5.15(a), and is a flexural mode involving sidesway of the frame and conse-
guent bending of the columns and beam of the frame. The frame members do
not undergo axia deformation in this mode, since the column sidesways are
equal, at any instant, and hence the beam isnot distorted axially. Furthermore,
nodes 1 and 2 do not displace vertically during the motion, so that the columns
are also axially undistorted. The higher modes all involve axial deformation,
and atypical mode shapeisshownin Fig. 5.15(b), where the vertical displace-
ments of the nodes deform the columns axially, while the opposing sense
of the horizontal displacements results in axial deformation of the beam
member.

The lower natural frequencies of a system are commonly those of most
interest, since these modes tend to dominate in any general vibration of the
system, and, as seen already, resonance effects are most severe (Fig. 5.12(b))
at the lower natural frequencies. The lowest frequency of al is, in fact, often
termed the fundamental frequency to emphasize its significance. For this
sway frame example, it has aready been pointed out that the fundamental
mode is a purely flexural one, and it is therefore reasonable to consider the
possibility of constructing a simpler analytical model which treats bending
deformations only. The analysis of the frame under these conditionsistreated
in the next section, together with the dynamic analysis of beams, whereiit is
also reasonable to disregard axial modes.

5.3.4 Simplified analysis of sway frames

If axia deformations are assumed negligible, the nodes of a genera
sway frame (Fig. 5.16(a)) do not displace verticaly and the horizontal
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Fig. 5.16 (a) Genera sway frame. (b) Column element under sway

displacements of the nodes at any one storey are equal. A further simplifica-
tion may be madeif it is aso assumed that the nodes do not rotate, which will
bethe caseif the beam bending stiffnesses are very much greater than those of
the columns. In these circumstances, there is only one coordinate for each
storey —its horizontal displacement —and the element stiffness matrix for a
column element which sways without end rotation (Fig. 5.16(b)) is given by

G P Y

ki K
_{k_,l_k_ HA } [K]{5%} (5.24)

L]
Since there is one coordinate per storey, it is only necessary to use nodes at
each storey level of asway frame and thereis hencejust one nodeinvolvedin
the single-storey frame of example 5.1 (Fig. 5.17). Thetotal masswill also be
assumed to belocated at therigid beam level, asshowninFig. 5.17. If therigid
foundation node is excluded, the stiffness ‘matrix’ becomes the scalar of
equation (5.25) and the mass matrix the scalar of equation (5.26):

[K]=[kj +Ki]= 12 [2] (5.25)

[M] =[4000] kg (5.26)

Substituting for the stiffness and mass matrices from equations (5.25) and
(5.26) in the natural frequency equation (5.12), the circular natural frequen-
ciesare given by
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O
N

For both columns: E = 200 kN/mm? = 200 x 10° N/m?
A=1x10"mm*=1x102m? /=3 x 10 mm*=3x10* m*

Fig. 5.17 Example 5.1—simplified model

28 _ 2 xa000=0 (5.27)
L3

Since this model involves only one coordinate with an associated non-zero
mass, it is only possible to determine a single natural frequency, which is
given by the positive root of equation (5.27):

9 4 1/2
w=(24x203;<10 x3x10 j _ 75 radis (5.28)
x 4000
Whence
f=* _119 Hz (5.29)
27

The natural frequency of 11.9 Hz derived from this simplified model is not
a particularly good approximation to the fundamental frequency of 9.0 Hz
obtained earlier (equation (5.23)). However, due to its greater length, the
beam bending stiffness used in the earlier analysis was actually less than that
of the columnsand was hencefar from satisfactory in respect of therigid beam
assumption of the simplified model. Simplified models therefore need to be
used with care (Hurty and Rubinstein, 1964) and comparisons of calculated
with observed values can be poor (Ellis, 1980) unlessvery considerablecareis
taken with the modelling, which may have to include the stiffening effect of
non-structural building components.

Example 5.2 — two-storey sway frame

As a further example of the use of the simplified sway frame model, the
natural frequencies and modes for the two-storey frame shown in Fig. 5.18
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will be determined. Assuming consistent units, the stiffness matrix may be
established as shown by

1 2
_1@+ﬁ+@+w:@+W}

Kl= |-%--2.- 1 _h [Ep R

M= e e v

EI] 4 -2 2 -1
12— = 5.30
L‘{—Z 2} 5{—1 1} (530

where 3 = 24E1/L°. Assuming that the equal masses, m (Fig. 5.18), are con-
centrated at the beam levels, the mass matrix is given by

M1 = m O
[ ]—[0 m} (5.31)

For this case, the natural frequency relationship corresponding to equation
(5.12) becomes

2

2 m"? 1|,
[K —w’M]{x} =3 LR =10 (5.32)
mw Az
-1 1—-—
B

For an equation such as equation (5.32) to have a non-trivial solution:

det[K —w’M]=0 (5.33)
In this case then

mw? mw? J
2— 1- -1=0 (5.34)

)

or

EI is constant for
all the columns

Fig. 5.18 Example 5.2—two-storey sway frame

238



Structural dynamics

i T e
-
il e

I
I
I
I
|
I
I
/

AT N\ AN N\
@ ®)

Fig. 5.19 Example 5.2—principal modes

o —3u+1= -
2_30+1=0 (5.39)
where
rn.}‘)2
o=
B
Whence
a=0.382 o 262 (5.36)
So that
1/2 1/2
w=3.03(£||_3j or 7.93(%) (5.37)
m m

As expected, this two-coordinate problem has resulted in two natural fre-
guencies, and the associated modes may now be determined by substitutionin
equation (5.32) for the two frequencies. Since only ratios of the dynamic dis-
placements may be obtained from a set of equations such as equations (5.32),
normalization of the modes may be conveniently carried out at this stage by
alocating a particular displacement the value of unity according to the
normalization scheme (a) above. If the displacement at storey 1 is given the
value unity, then therelative displacement at storey 2 may be determined from
either of the equations (5.32), to give the modes for the two natural
frequencies:

1.00 1.00
{¢}:{1.62} o {—0.62} (5.38)

Thesimilar signsinvolvedinthefirst (fundamental) modefor theframeimply
that the frame vibrates such that the two storeys always sway in the same
direction (Fig. 5.19(a)), in contrast to the second mode, where the opposing
signs indicate dissimilar sway directions (Fig. 5.19(b)) for the two storeys.
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Fig. 5.20 Beam element

5.3.5 Analysis of beams

Modes involving axial components of vibration will normally have signifi-
cantly higher natural frequencies than purely flexural modes, and therefore
only bending stiffnesswill beincluded in beam problems. For abeam element
(Fig. 5.20), the element stiffness matrix is

f W
fi m kii :k”:| Gi 6i
T =1 T =[Kly (5.39)
{fi} f; [kji-kii W, o;
m, Hj
where
(12 6 ! 12 6 |
[ER T
6 416 2
2 T2
=g |-L.o Lo L b
12 6. 12 6
IR
6 2. 6 4
> L ® L |

Thestructure stiffness and mass matricesfor beam analysis may be assembled
inasimilar fashion to that employed previously to eventually yield the natural
frequencies and modes, as will beillustrated in the following example.

Example 5.3 — cantilever beam

Thebeam considered in thisexample (Fig. 5.21) isof the sameform asthe two-
mass cantilever beam discussed in general termsin theintroduction (Fig. 5.3 et
seq.). The general form of the stiffness matrix may be established either from
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first principles or by noting that the element interconnection for a beam has a
similar linear, unbranched form as the shell problems studied in Chapter 4:

1 2
K K2 K2

(k] = [-U---'_T_L} (5.40)
2 kai !kaj

and the stiffness matrices therefore al so take the same form (equation (4.69)).
For abeam structure, there are two resultant ‘forces’ at each node (Fig. 5.20),
a vertical force and a moment, so that, at a typical node i, the equations of
motion corresponding to equations (5.21) become

F,=-1500v;, M,=-I,,6;, F,=-1000v,, M,=-l,0,  (5.41)

Again assuming negligible mass moment of inertias for the point masses, the
mass matrix istherefore

[M] = diag[1500, O, 1000, O] (5.42)

The natural frequencies may now be evaluated either by using a standard
computer routine for eigenvalue determination or by using the condition of
equation (5.33), aswill be employed here. Using equations (5.41), (5.42) and
(5.39), the natural frequency relationship corresponding to equation (5.12)
may be expressed as

3 0i-2 2(w 1500 0' 0 0](w,
0 4:-3 1|la 00 00|68
=) [ At R i S Ll-{0 (543
LU I [T 0011000 0wy [T 649
3 11-2 2|l 00 0 0|6

The labour involved in determining the fourth-order determinant which
results from the application of equation (5.33) to this problem may be mini-
mized by the use of a‘reduction’ process. To see how such aprocessworks, a
generalization of equations (5.43) will be considered in which all the equa-
tions involving zero-mass components have been segregated as indicated in

1500 kg 1000 kg

E =200 kN/mm? = 200 x 10’ N/mm? I =2 x 10 mm*=2x 10~ m*

Fig. 5.21 Example 5.3—cantilever beam
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Ka Ky | [% ,| Mg 1 O [ X, 0
AT e

It is now possible to eliminate the coordinates associated with the zero-mass
components by use of thelower sub-matrix expressionin equation (5.44) to give

{X} = ~TKip] " [Keal{X} (5.45)
Substituting for the coordinates to be eliminated from equation (5.45) into the
upper sub-matrix expression of equation (5.44) gives

X
K. K, 14----- - 2 2 [\/laa ={0 5.46
[ aa d)]{_[Kbb] l[Kba]Xa} w [ ]{Xa} { } ( )
A natural frequency relationship involving a reduced set of coordinates may
now be established from equation (5.46) as

[Kaa = KoKipy K] (%} = 0’ [ Mg J{x,} ={0} (5.47)

To apply this reduction process to the example under consideration, equa-

tion (5.43) isfirst reorganized a ong the lines of equation (5.44). Thisrequires

the exchange of the second and third columns of each of the matricesto ensure

that the variables associated with non-zero massesarein the upper sub-matrix.

The second and third rows are then exchanged to ensure that the non-zero
masses occupy the upper sub-matrix position:

3-20 2w 1500 0:0 0](w,
3 2._.3 _3||lw 0 10000 O||w
Bl|-2--2:02 2720 2 T Fo-- |-2t={0} (5.48
03 e Y 0 oio ofja [T G
3201 2|lg 0 0:0 04
In this case then
4 1
K.]=El 5.493
(K] L 2} (5499
hence
12 -1
K 1__ = 5.49b
(K] 7EI[—1 4} (4%
and

. Bl o 32 -1]0 -3
(K 1[Kss] [Kba]:7|:_§ _4{_1 J{g _4

So that
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28 -147] [12 -9
[Km]—[Kab][Kbb]-l[KbahEﬂ H D

28(|-14 14| |9 12
16 -5

_E (5.50)
28|-5 2

By substituting from equation (5.50) in equation (5.47), the reduced natura
frequency relationship therefore becomes as shown in equation (5.51) and it
will be noted that it is the rotational dynamic displacements which have been
eliminated by the reduction process, since the rotations are associated with
zero contributions to the mass matrix.

W,
-4 } -{0 (5.51)

Applying the condition of equation (5.33) to equation (5.51) givesthe charac-
teristic equation:

(16-30)(2-2a)-25=0 (5.52)
where
a= ﬁ 500.°
3El
Whence
«=01899 or 6.143
So that
w=0.00638(E1)"? or 0.0363(El)"? (5.53)
and
f=2-642 or 365Hz (5.54)
27
taking

E=200x10° N/m*> and |=2x10"* m*

As previoudly, the corresponding modes may be obtained by setting the
vertical displacement coordinate at, say, node 1 to unity and then substituting
in either of the two equations (5.51) for the circular natural frequencies of
equation (5.53). The resulting modes are

1.000 1.000
{¢}:{3.086} o {—0.486} (5.58)

and have been displayed previously in Fig. 5.3.
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5.3.6 Example 5.4 — cantilever slab

Asafina example of natural frequency and mode determination, the square,
isotropic slab shown in Fig. 5.22 will be analysed by the finite element
method, using the division into four equal elements shown in the figure. It is
presumed that the natural frequencies are required for vibration under self-
mass only, the latter being presumed to be uniformly distributed and of inten-
sity metres per unit area. Following the procedures of example 3.6 (see
p. 145), the sub-matrix form of the stiffness matrix for the slab may be shown
to be

1 2 3 4 5 6_
ke ko kg kop 0 00
Akokivko Kk oK 0 10
sl K K+ ke KGR R kK K kG kK
Jet e T e ek k| ©®
000 1 Ktk K ikirki ik
0 TR R R

Appropriate substitutions from Fig. 3.26(b) (see p. 143) then give the numer-
ical form of the stiffness matrix to be as equation (5.57) (page 245), wherethe
modified type of displacement variablesused in example 3.6 (see Fig. 3.29(c),
p. 148) have again been employed.

To construct the mass matrix on the lumped-mass type of model described
aboveit isnecessary to obtain suitable nodal point masses, which will approx-
imate the uniformly distributed self-mass of the slab. The simplest way of
doing thisisto allocate to each node the mass of aregion of slab surrounding

7 2 1 X
! A i % =
2 @ @ a=L112
J 31 l
L ji ki k 4 _—X
1 @ ® a=Lp
Z
y J 1J 1 _\V
9 5 6
.
(r=0)

Fig. 5.22 Example 5.4—cantilever slab
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the node, the region being a square of the same side as the elements used. If
this procedure is followed, then the mass matrix becomes

[M]=diag[0.25, 0, 0, 05 0, 0, 1, 0, 0, 0.5, 0, 0, 0.5, 0, 0, 0.25, 0, O]ma?
(5.58)

In this model, it should be noted that there are three dynamic acceleration
components associated with each node, corresponding to the normal displace-
ment and two rotational displacements of the finite element used (see fig
3.24(b)). There are thus 18 possible mass components in equation (5.58), of
which 12 are zero, since they represent assumed negligible massinertias asso-
ciated with the rotational accelerations. It will hence be possible to determine
six natural frequencies, since there are six non-zero Mass components.

The natural frequency relationship may now be established from the stiff-
ness and mass matrices of equations (5.57) and (5.58) and standard computer
routines then used to determine the natural frequencies and modes. The
circular natural frequencies determined in thisway are

12
w=23.16, 7.64, 16.3, 16.8, 20.5 or 27.2(%) (5.59)
and the first four modes are shown in Fig. 5.23. It must, however, be empha-
sized that the approximationsinvolved in the finite element and lumped-mass
idealizations used in the analysis will result in errors which become progres-
sively more severe for the higher modes and are more pronounced for mode

Fig. 5.23 Example 5.4—first four modes
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shapes than for frequencies. The accuracy of an analysis such as that just
undertaken would therefore, in practice, need to be checked by progression to
a finer element net and, possibly, by the use of a more sophisticated mass
representation (see Section 5.3.9).

5.3.7 Orthogonadlity of the principal modes

The principal modes of vibration of a structure possess an orthogonal prop-
erty with respect to the structure’ s stiffness and mass matrices such that

{6} Koy =0  (r#9 (5.60)

and

{6} [Mi{e}=0 (r=9 (5.61)

These orthogonality relationships may be established by noting that two
distinct modes will both satisfy the natural frequency relationship of equation
(5.33) such that

[KI{¢} = w MI{} (562)
and

[KI{¢ = w,' IMI{e} (563)
Pre-multiplying equation (5.62) by { ¢ " gives

{63 K} =w {0 M} (5.64)
and, transposing both sides of equation (5.64),

{od Ko = w Ko IMH{ (5.65)
So that

{6} [KNed =w {6} Mo (5.66)

since [K] =[K]" and [M] =[M]" due to the symmetry of these matrices.
However, from equation (5.63),

{6} [KHod = w {8} [MH{od (5.67)
Hence, subtracting equations (5.66) and (5.67),
(W’ — w6} IM{e} =0 (5.68)

Equation (5.68) proves the orthogonality of the principal modes with respect
to the mass matrix, provided that the structure does not possess repeated
natural frequencies, a possibility which will not be considered here but which
can be accommodated (Craig, 1987). The orthogonality of the principal
modes with respect to the stiffness matrix follows by substitution from equa-
tion (5.61) into equation (5.64).
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Anillustration of these orthogonality properties may be obtained by consid-
ering the (reduced) stiffness and mass matrices of the cantilever beam treated
in example 5.3, together with the beam’ s principal modes (equation (5.46)). In
this case then

OISR find el

3El 18. 43}

=g (1000 3086}{ o

and

{6} [M){¢,} ={1.000 3.086}500

= 500{1.000 3086}{ 3000}:0

5.3.8 Rayleigh quotient
From equation (5.62), it follows that

i e {¢r}TT[K]{¢r} _k, (5.69)
{2} [M{s} m,

wherek, , m, arethe modal stiffness and mass for moder.

The expron of equation (5.69) is usualy known as the Rayleigh
quotient, since, on energy grounds, Lord Rayleigh suggested that equation
(5.69) could be used to evaluate the circular fundamental frequency, even if
the mode shape used was only an approximate representation of the actual
fundamental mode, provided that the approximating mode satisfied the
geometric constraints on the structure. This concept may be expressed as

.
ot = (0 KIO o (5.70)
{o=} MR}
where  indicates Rayleigh approximation.

In single-span beam analysis, the static displacements, which certainly
satisfy the beam’ s geometric constraints, will often provide asuitable approx-
imation to the fundamental mode. In the case of the cantilever beam
(Fig. 5.21), for example, the stiffness equations for the static displacement of
the beam (using the reduced stiffness matrix of equation (5.50)) are

3EI[16 -5](w)] _ [3
Bl 2l b o7
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By solving equations (5.71), it may be shown that the vertical displacements
at nodes 1 and 2 areintheratio of 1:2.94, so that an approximate fundamental
modeis

{¢e}" ={1.00, 2.94

Hence

16 -571(1.00
{6} [K1{0s} ={1.00 2.94}%[_5 2}{2.94}=0.416EI

and

. ~ 3 07(100|
{¢r} [MJ{¢x} ={1.00 2-94}500{0 2}{2.94}—10100

Whence

wg = 0.00642V(El), w,., = 0.00638V(EI) (5.72)

The approximate circular fundamental frequency of equation (5.72) may be
seen to compare very favourably with the exact value, which is reproduced
from equation (5.53).

For structures other than single-span beams, the static displacements will
not necessarily provide an approximation to the fundamental mode, as, for
example, in the case of the two-storey sway frame of Fig. 5.18. In such cases,
displacements from a hypothetical loading may be used, where the loading is
chosen such that the resulting displaced shape may be expected to approxi-
mate to the fundamental mode. The fundamental mode of the sway frame
might be expected to involve sways in the same direction for each storey, a
type of displacement whichwould result from a, perhapsimprobable, assump-
tion that gravity acts horizontally temporarily, so that the equal -storey masses
produce equal lateral forces. The stiffness equations for this loading may be
obtained, by use of the stiffness matrix from equation (5.30), as

B2 -1](4,) [1
2

From the equations (5.73), it may be shown that the storey sways produced by
thelateral loading areintheratio of 2:3, so that asuitable approximate modeis
{or}" ={2.3 (5.74)

Using this mode shape in the Rayleigh quotient of equation (5.70), together
with the stiffness and mass matrices from equations (5.30) and (5.31), results
in the approximate circular natural frequency

/ El / El
Wr =3.04 W, Wexact =3.03 W (575)

which is again close to the exact value, reproduced from equation (5.37).
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5.3.9 Distributed-mass models

Distributed masses may be approximated by lumped-mass modelsif the struc-
tural element issub-divided (see Fig. 5.24, for example). The accuracy of this
approximation obviously increases with the fineness of the sub-division but
also decreases significantly for higher modes. If the structure involves rela-
tively few nodes and/or distributed massesform asignificant proportion of the
total mass, then a more accurate distributed-mass representation iswarranted,
which may be obtained by the use of ‘ consistent’ mass matrices (Ross, 1998;
Zienkiewicz and Taylor, 1991).

5.4 Free, undamped vibration analysis

By combining equations (5.4) and (5.6), the equations of motion of an
undamped structural system undergoing free vibration may be expressed as

[KI{X =-[M[{%} (5.76)

It will be presumed that the free vibration commences from a prescribed dis-
placement configuration and that the effect causing the vibration produces
known initial velocities. If the coordinatesin equation (5.76) are the dynamic
displacements, then the problem of free, undamped vibration analysis results
in the solution of equations (5.76) subject to initial conditions which may be
represented by

{X}t:O Z{X}o and {X}tzo Z{X}o (5-77)

Equations (5.76) are interdependent (or coupled), since the stiffness matrix
contains off-diagonal terms, as may the mass matrix if the lumped-mass
approximation described above is not being employed. If formulated in
dynamic displacement coordinates, then the free, undamped vibration
problem involves the simultaneous solution of the set of second-order differ-
ential equations represented by equations (5.76), subject to the initial condi-
tions of equation (5.77). The problem may, however, be simplified by the use
of principal coordinates, which have the effect of uncoupling the equations so
that they may be considered individually rather than simultaneously.

n

/ mf/length / 4 4 4 8
% | ; ’—H—'——‘
I< L :>| |<H>‘<H>‘<H>|<H>I

Fig. 5.24 Lumping of adistributed mass
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5.4.1 Analysis by mode superposition

Principal coordinates may berelated to the dynamic displacement coordinates
by the transformation

{3 =[2]{n} (5.78)
where[?] = [, ..., &, ..., ¢,] iSthe modal matrix.

To seewhy equatlons (5.76) become uncoupled in principal coordinates, it
isfirst necessary to note that, by virtue of the orthogonality condition (equa-
tion (5.60)),

[P [KI[P]=[8) s s & oy S 1KLL ooy B ooy ]
=diag[${Kdy, ... 67K, ... 67K, (5.79)
=diaglk,, ... K, o0k 1=K, ]
where [K ] isthe modal stiffness matrix, and
[2]' [M][2]=[¢ M@, ..., ¢ Mgh, ..., oy My ] =[M,] (5.80)
where[M,] isthe modal mass matrix.
Transforming equations (5.76) to principal coordinates and pre-multiplying
by [¢]" gives
[2]"[KI[@){1} = 2] [M][]{7} (5.81)
or

(K, H{n} =M, I{i} (5.82)

Dueto the diagonal nature of the modal stiffness and mass matrices, equation
(5.82) represents the required set of uncoupled equations which may be
written as

k 771 ol ﬁl
K, 7, =—m, (5.83)
kon - on 77r

The solutionsto all these equations are similar, and the solution to atypical
equation (as may be verified by substitution in equation (5.83)) is

= A% Sin(w, t+ ;) (5.84)
where
mOr
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An equivalent and, for the present purpose, more convenient form of the solu-
tionis
N, =& co(w,t) +h sin(w,t) (5.85)

where a, and b, are constants.
The complete set of principal coordinatesis therefore given by

{n} =[cosut]{a} +[sinwt]{b} (5.86)
where

[coswt] = diag[coswyt, ..., COSw,t, ..., COSw,t]

[snwt] =diag[snwit, ..., Snw,t, ..., Snw,t]

To complete the solution, it remains to obtain the constants in equation
(5.86), which may be determined from theinitial conditions, since, from equa-
tion (5.86),

{n}o ={a
{n}o =diagwy, ..., w, ..., w,[{b} =[w]{b}
where {1}, {7}, are the modal initia conditions.

The solution may therefore be expressed, in terms of the nodal initial condi-
tions, as

{11 = [coswtl{n}, +[sinct][w] {7} (5.88)

Using equation (5.78), the modal initial conditions may be related to the
initial conditionsin the original coordinates by

(5.87)

%o =[2Kn}, and {X, =[2){}, (5.89)
10000 kg
: j
[=45% 10° m* 35m o
20 000 ke E=200x10° N/m
] ——X 9.91
2 {w}= (24‘92} rad/s
[=10% 10° m* im 08
w __X 0.463 ~0.677 —0.906
1 @] {o.gos ~0231 1.000}
I=10x 105 m* 4m 1.000  1.000 -0.771
0 ¥
YZZZ2222Z

Fig. 5.25 Example 5.5—three-storey sway frame
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Fig. 5.26 Example 5.5—principal modes

If the first of equations (5.89) is pre-multiplied by [¢] [M], then

[2]" [MI{%, = [2]" MI[{n}, = [M, }{ro (5.90)
Whence

{n}o =[M,I7[2]" [MI{X, (5.91)
Similarly,

{1}o =[M,I7[2]" [M]{%, (5.92)

Substitution from equations (5.91) and (5.92) into equation (5.88) therefore
providesthe full principal coordinate solution, and the dynamic displacement
solution follows from equation (5.78), a procedure which isillustrated in the
following example.

5.4.2 Example 5.5 —three-storey sway frame

It is required to determine the undamped motion of the three-storey sway
frame shown in Fig. 5.25 when the top storey isgiven aninitial sway velocity
of 0.5 m/sfromits static position while the lower two storeysremain at rest in
their static positions. The natural frequenciesand principal modesaregivenin
Fig. 5.25, and an illustration of the principal modesis provided as Fig. 5.26.

The modal mass matrix isfirst constructed from equation (5.80) by calcu-
lating the diagonal terms as, for example,

20 0 07(0.463
m, ={¢} [M]{¢,} ={0.463, 0.805, 1.000}10°| O 20 O |{0.805
0 0 10/|1000

=27.2x10°
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Whence
[M,]=diag 10°[27.2, 20.2, 42.4] (5.93)

Inthis case the dynamic displacement coordinates are the sway displacements
of thethree storeys, so that the stipulated initial conditionsmay be specified as

4
%o =74, ={0
2, 5.94
0 (5.94)
{%o=40 ={0
0.5
Hence, from equation (5.91),
{1ho = IM, I [2]" IMI{x}, ={C} (5.95)

and, from equation (5.92),

{}o =[M,I7[2]" [M1{%},
0463 0.805 1000 [20 0 o070
=[M,]™"|-0.677 -0.231 1.000|10°| 0 20 O
-0.906 1.000 -0.771) 0 0 10/|05

o

2720 0 0 5.000
=10°| 0 202" 0 |10°) 5.000
0 0  424° -3.855
0.184
=1 0.248 (5.96)
-0.091

Substituting from equations (5.95) and (5.96) in equation (5.88), the solution
in principal coordinates is therefore given by

991" O 0 0.184
{ny=[sinut]| 0 2492 0 0.248
0 0 34.087" ||-0.001
18.55sin9.91t
=10"°{ 9.93sin24.92t
—2.67sin34.08t

Finally, the solution in the original coordinates is obtained by substitution in
equation (5.78):
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All 3 modes included

————— First 2 modes only

A, (mm)
A First mode only
30
20
10 \
4 NG
| | | ] ] |
0.25 0.5 0.75 1.0 1.5 =

—10 =

20

30 +—

Fig. 5.27 Example 5.5—displacement solution

1 2 3

+859sn9.91t —6.725in24.92t +2.42sin34.08t
{X} =<+14.935in9.91t —2.29sin24.92t —2.67sin34.08t {10° m (5.97)
+18.555in9.91t +9.93sin24.92t +2.06sin34.08t

The solution given by equation (5.97) may be seen to consist of linear com-
binations of contributions (numbered 1-3) from the three principal modes, a
feature which gives mode superposition analysis its name. The top-storey
displacement solution is plotted in Fig. 5.27, which also shows the contribu-
tions of the modesto thisdisplacement. It will be seen that neglecting thethird
mode contribution has little effect on the solution, but that neglect of the
second and third mode contributions reduces the solution to the harmonic
form of the first mode, which cannot accurately model the full solution. It is
generally the case that higher modes have a reducing effect on the dynamic
response of a structure, and, when large numbers of coordinates are involved,
it isusual to determine the response using only afraction of the total number
of modes. In reducing the number of modes, however, it is obviously impor-
tant that all modes be included which are likely to be significantly excited.

5.5 Forced, undamped vibration analysis

If the structure is subjected to a set of time-dependent forcing functions, {p},
which correspond in type and positive directions to the coordinates, { X}, then
the equations of motion (equation (5.76)) become
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[MI{% +[K]{} ={p} (5.98)

5.5.1 Analysis by mode superposition

Using the procedures of Section 5.4.1 to transform to principal coordinates
gives

[2]" [MI[@){i} + (2] [KI[2){n} = [2]'{p} ={p.} (5.99)
where {p,} isthe vector of modal forcing functions, or
M, I} + K Kb ={p,} (5.100)

As before, equations (5.100) are uncoupled due to the diagonal nature of the
modal mass and stiffness matrices, so that the solutions of all the equationsare
similar and it suffices to consider atypical equation:

m, 7, +K, 1m =P, (5.101)

If the forcing function in equation (5.101) is an analyticaly straightforward
function of time, then a closed-form solution can be obtained by the use of
standard differential equation solution techniques. However, in the case of
more complex or non-analytically defined functions, amore general approach
is to interpret the forcing function as the sum of an infinite number of im-
pulses, sincethe responseto an isolated impul se may be readily determined as
follows.

A single degree of freedom system of stiffness, k, will be considered, in
which the position of amass, m, isdefined by a coordinate, x. The effect of an
impulse, |, applied to the mass under zero initial conditionswill betoimpart a
momentum to the mass given by

mx, =1
So that

|
( = — 102
X, (5.102)

Subsequent to the action of the impulse, the system is unforced, so that its
equation of motion takes the form

mX +kx=0 (5.103)
Equation (5.103) has the solution

X =acoswt + bsinwt (5.104)
where w?® = k/m. Using theinitial conditions

x=0 and X=X, when t=0
Then
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p.

>
ks ] |
=<3
t
<
Fig. 5.28 Forcing function idealization
a=0 and b=|— (5.105)
mw
So that the solution becomes
X= I—'s;inuf[ (5.106)
mw

If the action of a forcing function, p, on the mass is now considered, the
equation of motion is given by

mMX + kx=p (5.107)

The solution to equation (5.107) may be obtained by the idealization of the
forcing function into an infinite number of impulses. From equation (5.106),
the response due to the typical impulse shown in Fig. 5.28 is given by

)= P =) (5.108)
Mw

So that the total response is given by
1 t
x=-"[p sinw(t—7)dr (5.109)
Mw 0

where the integral is known as Duhamel’ sintegral.
Since equation (5.101) hasthe sameform asequation (5.107), itssolutionis

1 j.(pd) ). Sinw, (t—7)dr (5.110)
m, w v

4“6 0

Although closed-form solutionsto equation (5.110) are only readily obtain-
able for simple forcing functions, more complex functions may either be
represented as Fourier series or the integral may be evaluated numerically
(Craig, 1981).

=
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The solution provided by equation (5.110) isfor zero initial conditions but
may readily be generalized, sincethe effects of any non-zeroinitial conditions
may be treated as resulting in a free response (obtainable by the methods of
Section 5.4.1) which may be superimposed on the forced motion.

5.5.2 Example 5.6 —sway frame under ground motion

As an example of transiently forced, undamped vibration, the three-storey
sway frame of Fig. 5.25 will be considered under the influence of an isolated
horizontal ground movement. The dynamic history of the ground movement
is described by aground acceleration plot which will be taken to be as shown
inFig. 5.29.

Therestoring forces devel oped in the frame when the ground moveswill be
proportional to the relative sway displacements between the ground and the
storey levels, so that the equations of motion may be represented by

[KI{4} —{8 49 ={M{4} (5.111)
where{e} ={1,1,1}".
The most convenient coordinatesin this case arethe relative sway displace-
ments, so that
{}={A {84, and {={A} {84, (5.112)

Substituting in equation (5.111) for the relative displacement coordinates
gives

[KI{3 =-[MI( +{g A,) (5.113)
Hence, the equations of motion may be expressed as
20
[MI{3 +[K]{%} =—{M}{g A,=-10"120 t A, ={p} (5.114)
10

Equation (5.114) shows that the ground motion results in inertial forcing

A, (mfs)

A

1.0

0.5\ %:cos}nt:cosﬂt
1 L~

w L0 1)

Fig. 5.29 Example 5.6—ground acceleration plot
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functions at each storey, whose magnitudes are equal to the product of the
storey masses and the ground accel eration. On the assumption that the contri-
bution of mode 3 is negligible, only the first two modes will be used, so that
there will be just two principa coordinates, defined by the transformation

0463 —0.677
(X =|0805 -0.231 {”1}4@]{77} (5.115)
1000 1000 |\

Transforming the equations of motion (equation (5.114)) to principal coordi-
nates gives

[M, {7} + K, =[2]{ o ={p,} (5.116)
So that the modal forcing functions are

20
0.463 0.805 1.000

{p}=- 10°120 ¢ cos2t ={f } cos2t (5.117)
—0.677 -0.231 1.000 0 /

where{f,} =10%(-35.36, 8.16} ".
To obtain the solution for atypical principal coordinate, substitution from
equation (5.117) into equation (5.110) gives

f t
n =—2— | cosf2rsinw, (t—7)dr (5.118)
0

mcbr wobr

Since
cosAsnB = [sn(A+ B) —sin(A- B)]

f‘ t
= ot SN2 = )7 + ] - Sin[(2 + ) — w7

2m@ W%
Hence
f, [—cod(2-w)r+wt] cod(2+w)r—wt]]

= 2m, w, { 2-w, ! N+w, L
Whence

n = ot (cosw, — cosf2t)

Com (2" -w) '

or

n 5 (cosf2t—cosw,t) since k, =m, w,” (5.119)

Tk, 1-071w)
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The full principal coordinate solution may be obtained by substituting
successively in equation (5.119) for the modal forcing function amplitudes of
equation (5.117), themodal masses of equation (5.93) and the natural frequen-
ciesgivenin Fig. 5.25:

—22.14(cosf2t —coswit) | .,
{n}= 10° m
0.69(cosf2t — cosw,t)
Transforming back to the original relative displacement coordinates, by use of
equation (5.115), gives the final solution:
1 2
—10.25(cos2nt — c0s9.91t) —0.47(cos2wt — c0s24.92t)
{X} =1-17.82(cos2nt — c0s9.91t) —0.16(cos2nt — c0s24.92t) 110> m
—22.14(cos2wt — c0s9.91t)  +0.69(cos2nt — c0s24.92t)

(5.120)

(5.121)
since {2 = 2r.

Equation (5.121) shows that the first mode contribution predominates.
Also, since modal stiffness increases with frequency and the forcing
frequency is, in this case, less than any of the natural frequencies, the form of
equation (5.119) indicates that higher-mode contributions will rapidly
diminish, so that the omission of the third mode is retrospectively justified.
The solution obtained is only valid during the time the ground motion occurs
but may be readily extended beyond this. The subsequent mation is free, so
that one way of extending the solution is to determine the modal state of the
vibration at the end of the forced motion and use this state asthe initial condi-
tions for the free-vibration solution given by equation (5.88). Alternatively,
the upper limit in the solution of equation (5.118) may be amended to thetime
limit of the forcing effect (1 sin this case).

Theforced and freeregimesfor the vibration of thetop storey areillustrated
for theinitial stages of the motionin Fig. 5.30. It will be seen that the relative

A (mm)

100 t+
75

Fig. 5.30 Example 5.6—displacement solution
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displacement responseiscloseto being harmonic after approximately 0.5 s. In
practice, the vibration would decay due to damping, and the maximal
response would be at one of the peaks occurring during theforced motion. The
ground displacement profile may be obtained by integration of the accelera-
tion history (Fig. 5.29) and is given by

Ay= 4—12 (1-cos2rt) m (5.122)
T

By adding the ground and relative displacements during the forced motion,
the absolute displacement response may be obtained, and this is plotted, for
the top storey, in Fig. 5.30. From Fig. 5.30, it may be observed that the
maximum absolute displacement of the top storey occurs well within the
forced motion and issignificantly greater than subsequent peak values, in con-
trast to the approximately repeated peaks of the corresponding relative
displacement.

5.6 Harmonically forced, undamped vibration analysis

As described in Section 5.2.3, harmonic forcing will result in a transient
response on initiation of the excitation which is quickly damped into a steady-
state response such that the vibration becomes harmonic and has the same
frequency asthe excitation. Even on an undamped assumption, itispossibleto
assume a steady-state solution, since, although damping rapidly eliminates
transient effects, it hasrelatively littleimpact on the steady state, provided that
the excitation frequency is not close to any of the natural frequencies of the
system (Fig. 5.10(a)). The analysis presented below therefore assumes that
steady-state vibration has been achieved and that the forcing frequency is not
in the vicinity of any of the system’s natural frequencies.

5.6.1 Analysis by mode superposition

If the forcing function is harmonic, then the forcing function vector has the
form
{pt={f}sin2t (5.123)

where {f} isthe vector of the forcing function amplitudes.
Following transformation of the equations of motion to principal coordi-
nates, atypica equation of motion will be

m, 7, +K, n = f, singt (5.124)

¢

Due to the steady-state assumption, the solution must be harmonic and have
the same frequency as the excitation. Further, due to the undamped
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assumption, the response will be in phase (or 180° out of phase) with the exci-
tation (Fig. 5.10(b)), so that the solution must take the form

N, =48 sint (5.125)

The constant in equation (5.125) may be determined by substituting the solu-
tion in equation (5.124) to give

-m, a2’ +k, a =f,

Whence
a = b _ by (5.126)
k, —2°m,  k, (1-2%w?)
since

Substituting in equation (5.125) gives the solution as
f, sinet

=% 5.127
k, (1-2°w,%) ( )

Tl

Successive substitution in equation (5.127) for the various modes of the
system therefore produces the complete solution in principal coordinates.
This may then, as before, be transformed back to the origina coordinates by
use of equation (5.78).

5.6.2 Example 5.7 —harmonically forced cantilever beam

The two-mass cantilever beam of example 5.3 will be analysed for its steady-
state response to aharmonic force excitation appliedto node 2 (Fig. 5.31). The
analysis will utilize the reduced displacement coordinates only, that is, the
vertical nodal displacements.

o 1500 kg @ 1000 kg
Z i @ J i J 404
bl w= rad/s
% 229.6
1 2
51 1.000  1.000
[ b 2T T3.086 —0.486

Fig. 5.31 Example 5.7—two-mass cantilever beam
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From the system parameters given in Fig. 5.31, the modal mass and stiff-
ness matrices may be readily determined as

[M,] = diag[11.02, 1.74] x 10° (5.128)
and

[K,]=[w’][M,] = diag[17.94, 91.71] x 10° (5.129)
The modal forcing function vector is

{p,} =E i?fg{;}gnm:{fw}snm (5.130)

By substituting from equations (5.128), (5.129) and (5.130) into equation
(5.127), the solution in principal coordinates is obtained as equation (5.131)
which, in displacement coordinates, becomes equation (5.132):

10° 173 ;)48?2(22/ 2y SNt
M| _ 10717940 = 27) (5.131)
1, -0.486p, Nt
10° x 91.71(1 - 2%/w,’)
1 2
0172  0.0053
W, 1-%w)  1-QPwy) 6
{3 = = 10°snf2tp, m (5.132)
W, 0.531 0.0026
2y .2 + 2 2
1-2%w?  1- P,

Equation (5.132) shows that the first mode predominates, provided that the
forcing frequency is not close to the second natural frequency. In fact, as
pointed out already, the solution will not hold for forcing frequencies closeto
either of the natural frequencies, due to the sensitivity of the solution to
damping. In such circumstances, it therefore becomes imperative to include
damping effectsin the solution, and waysin which this may be accomplished
are outlined, with other more advanced topics, in the next section.

5.7 Specialized problems

If viscous damping is included in the analysis, damping forces of the type
described by equation (5.2) must beincorporated in the analysis, with the result
that the equations of motion, in displacement coordinates, will take the form

[MH{% +[CI{x} +[K]{x3 =0 (5.133)
If mode superposition isto be used, it is essential that the damping matrix,
[C], is orthogonal with respect to the modal matrix so that the equations
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(5.133) become uncoupled on transformation to principal coordinates. In
practice, it is often desirable to define damping coefficients (equation (5.2))
for the principal modes of a structure directly, and these therefore become the
modal damping coefficients in uncoupled equations of motion, a typical
example of which would be

m@, ﬁr + C¢, 7.7r + kor = 0 (5134)

wherec, isthe modal damping coefficient for moder.

In certain problems, however, notably soil—structure interaction investiga-
tions (Warburton, 1976), it becomes unrealistic to specify modal damping
coefficients, and the damping matrix, [C], will not be uncoupled on trans-
formation to principal coordinates. In such cases, the equations of motion may
be integrated numerically (Clough and Penzien, 1993) or approximating
solutions may be obtained by mode superposition, an approach which is often
preferred due to the greater efficiency of this method. Direct integration must
be used, however, if non-linear problems are to be tackled, since the super-
position process undertaken in the modal method is then invalid. Finally, it
should be emphasized that the analysis devel oped in this chapter has assumed
that the forcing effects are known functions of time alone. This excludes a
thorough treatment of random effects such as waves, wind and earthquakes,
which will often require a statistical treatment (Gould and Abu-sitta, 1980)
and self-excited vibration in which theforcing effect depends upon the state of
the vibration as well as on time. Self-excitation is experienced primarily by
structures subjected to fluid or air flow and requires specialized treatment
(Blevins, 1977).

References and further reading

Beards, C. F. (1996) Structural Vibration — Analysis and Damping, 2nd edn.
Arnold, London. A concise, introductory account which gives particular
emphasis to modelling and damping.

Bishop, R. E. D. (1979) Vibration, 2nd edn. Cambridge University Press,
Cambridge. A fascinating qualitative description of vibration phenomena;
Chapters 2 and 3 are most relevant to the above.

Blevins, R. D. (1977) Flow Induced Vibration. Van Nostrand Reinhold, New
York. A specialized text which includes (Chapter 8) data on the damping
properties of typical structures.

Chopra, A. K. (1981) Dynamics of Sructures— A Primer. EERI, Berkeley.
An excellent, mainly qualitative introduction which concentrates on multi-
storey buildings and earthquake response.

Clough, R. W. and Penzien, J. (1993) Dynamics of Structures, 2nd edn.
McGraw-Hill, New York. A comprehensive text which includes a treat-
ment of the linear-accel eration method of numerical integration.

264



Structural dynamics

Craig, R. R. (1981) Sructural Dynamics. Wiley, New York. A thorough but
accessible description which emphasizes computer applications and gives
an introduction to earthquake analysis.

Ellis, B. R. (1980) An assessment of the accuracy of predicting natural
frequencies of buildings and the implications concerning the dynamic
analysis of structures. Proceedings of the Institution of Civil Engineers 69,
Part 2, 763-776.

Ghali, A. and Neville, A. M. (1997) Sructural Analysis, 4th edn. Spon,
London. Chapter 21 includes an analytical treatment of single degree of
freedom vibration which may be used to supplement the qualitative
approach of this chapter. Chapter 4 describes the displacement method,
including its application to plane frames.

Gould, P. L. and Abu-sitta, S. H. (1980) Dynamic Response of Structures to
Wind and Earthquake Loading. Pentech Press, Plymouth. A practically
orientated introduction to the dynamic analysis of random loading.

Hurty, W. C. and Rubinstein, M. F. (1964) Dynamics of Sructures. Prentice
Hall, New Jersey. Chapter 12 includes an examination of the effects of
different theoretical assumptions on the analysis of alarge sway frame.

Irvine, H. M. (1986) Sructural Dynamics for the Practising Engineer. Allen
and Unwin, London. Basic theory supported by some intriguing examples
drawn from the author’ s practice.

Jennings, A. (1977) Matrix Computation for Engineersand Scientists. Wiley,
Chichester. Chapters 8-10 give a detailed treatment of eigenvalue and
mode determination methods.

Paz, M. (1991) Structural Dynamics, 3rd edn. Van Nostrand Reinhold, New
York. A genera text which emphasizes the use of response spectra and
includes random vibration.

Prentis, J. M. and Leckie, F. A. (1963) Mechanical Vibrations. An
Introduction to Matrix Methods. Longman, London. Chapter 2 gives an
introduction to the power (iterative) method of eigenvalue and mode
determination.

Ross, C. T. F. (1996) Finite Element Programsin Sructural Engineering and
Continuum Mechanics. Albion, Chichester. Includes BASIC programs for
the natural frequency and mode analysis of skeletal structures.

Ross, C. T. F. (1998) Advanced Applied Finite Element Methods. Horwood,
Chichester. Includes mass matrices for avariety of structural elements.

Warburton, G. B. (1976) The Dynamical Behaviour of Structures, 2nd edn.
Pergamon Press, Oxford. Chapter 6 gives an introduction to dynamic
interaction problems.

Zienkiewicz, O. Z. and Taylor, R. L. (1991) The Finite Element Method, 4th
edn, Vol. 2. Solid and Fluid Mechanics Dynamics and Non-linearity.
McGraw-Hill, London. Chapter 9 treats dynamic problemsandincludesthe
mass matrix for arectangular plate element.

265



Advanced structural mechanics

Problems

5.1 Figure 5.32 shows a structure housing ore-crushing machinery. Each

52

floor has a mass of 10000 kg and the column stiffness parameter
k = (12E1/L% = 1 MN/m. The ore-crusher is permanently fixed to the
lower floor, adding its mass of 10 000 kg to that floor. The crusher
operatesat 1.75 Hz but setsup large resonant vibrationsin the structure.
In an effort to reduce the vibrations it is proposed to attach a large
mass of 10 000 kg to the structure. Calculate whether it isbetter to attach
the extra mass to the upper or the lower floor.
(LIVERPOOL)

The plane structure shown in Fig. 5.33 consists of rigid beams of mass
m, rigidly joined to elastic columns having the second moments of area
shown. E is constant throughout. The top storeys are connected by a
member AB, hinged at A and B, having only axial stiffness. The cross-
sectional areaof AB is equivalent to 361/L% If k = 12EI/L®:

m;

[ >

Fig. 5.32

k k
m,
q —
2k 2k
ANN\\N AN\\N
m A A =36l/L* B m

Fig. 5.33
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Fig. 5.34
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(a) Calculate the circular natural frequencies, given that one of the
circular natural frequenciesis 2V(k/m).
(b) Given that the higher modes may be determined by symmetry/
asymmetry considerations, find the natural modes of vibration and

sketch their shapes.

(BRIGHTON)

The two-storey sway frame shown in Fig. 5.34 consists of similar,
rigidly jointed beam and stanchion members. Use the beam element
stiffness matrix of equation (5.39) to show that the structure stiffness
equations for the frame may be expressed as

F, 8 -4
F 4 4
M,| 6EI| O -3
M, | 0 -3
M, 3 -3
M, | 3 -3
Given that
18 3 3 o'
318 0 3
3 012 3
0 3 3 12

0 0 3 3]
3 -3 -3 -3
18 3 3 0
318 0 3
3 0 12 3
0 3 3 12]
86 -16

g9 L6 86
24 10

10 24

1
S = > b

NS

24 10
10 24
134 -3.6
-36 134
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55

determine the stiffness and mass matrices for the structure using the
storey sway displacementsonly asreduced dynamic coordinates. Hence
calculate the circular natural frequencies and principal modes for the
frame and comment on the comparison between the results obtained and
the corresponding values as cal culated from equations (5.37) and (5.38).

Theuniform cantilever beam of Fig. 5.35(a) isof length 2L and supports
apoint mass, m, at itsmid-point. The beam issupported at itsfree end by
aspring of axial stiffnesskEl wherel isthe second moment of areaof the
beam and E isthe Y oung’ s modulus of the beam material. Show that the
circular natural frequency of the beam is given by

w= {QE' ( 3+8KkL° H”Z

m® 12+ 7k
Hence determinethe circular natural frequenciesfor the beamsshownin
Figs 5.35(b) and 5.35(c).

(UEL)

Figure5.36 showsan idealization of an off-shore structureto be used for
a preliminary dynamic analysis. It includes the five coordinates and
associated lumped masses shown in the figure. The corresponding
stiffness matrix (in units of meganewtons per metre) is given by

[ 1166 -1216 -81 121 0
-1216 1544 -214 -100 -7

[K]=| -81 -214 1027 -756 17
121 -100 -756 1756 -—608
0 -7 17 -608 1366

(a) Obtain an approximation to the fundamental frequency of vibration
of the structure. You may use some results from a static analysis,

(a) (b) (©

Fig.5.35
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Masses (tonnes)

10 000 —
1400 —_—
2900 _—
3200 —
3500 —_—

N

Fig. 5.36

5.6

giving displacements {x} caused by aload of 1 MN applied at the
topmost degree of freedom, thus

{F}={1,0,0,0, 0}" MN
{x} ={8.20, 6.98, 3.10, 1.37, 0.6}" mm

are corresponding loads and displacements.
(b) What is the percentage change in fundamental natural frequency if
the 10 000 tonne massisincreased to 15 000 tonnes?
(UCL)

A structural system has mass and stiffness matrices as follows:

J1 0
[M]=10 {o 1.5} kg

[K]=108[_i _ﬂ N/m

For the system evaluate the natural frequencies and corresponding
mode shapes.

Assuming that the structure is undamped, derive expressions for the
displacements of the system when the system executes free vibration
following arbitrary initial conditions on displacement and velocity of

0.015
o = {0.014} m

Sy 0
%) —{0_1} mis
(UCL)
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5m

| l 1 M/N

P P(1)
- ‘-—(2— LR
>

k=100 MN/m r 0.1s

(a) (b)

Fig. 5.37

5.7

5.8

270

A water tower shown in Fig. 5.37(a) is5 m square in plan and has sides
4 mhigh. Themassof thetank itself is10 000 kg and thelateral stiffness
of the skeletal supporting structure is 100 MN/m.

As a result of an external explosion the tank is subjected to a
horizontal time-varying force of maximum vaue 1 MN as shown
in Fig. 5.37(b). Assuming zero damping, calculate the maximum
horizontal displacement of the tank when it is (a) empty and (b) full of
water.

(LIVERPOOL)
A system hasinertia and stiffness matrices given by
22 -4
=% 73

{7 ]

The principal modes may be expressed by

{od={1-27, {¢}={1 3"
Confirm that these satisfy the orthogonality relations and find the
corresponding natural frequencies. The system is excited by the forces

{F}={_31}sin(2t
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Obtain the resulting undamped displacement responses and comment
on the contribution from the second mode.
(UCL)

Figure 5.38 shows an idealization of afixed-fixed beam with threefinite
elements each of length L and flexural rigidity El. Using the element
stiffness matrix givenin equation (5.39), obtain thetotal stiffness matrix
corresponding to the coordinates shown in the figure.

In aparticular case L =1 m and the first two modes of vibration are
given as

{¢} ={0.719, 0.763, 0.719, —0.763
{¢,} ={0.863, —0.688, — 0.863, —0.688}

corresponding to circular natural frequencies of 2.496 rad/s and
6.989 rad/s. Obtain an expression for the harmonic response g, to the
load F sin 2t applied as shown, neglecting damping and ignoring
contributionsfrom all but the lowest two modes. It may be assumed that
¢, and ¢, are normalized to give the same modal mass in each mode.

lF sin (2t

QZV‘/ %V"
V q, V 43

S P SN

AN

y/////4

Fig. 5.38

— U,
m/2

k2

—_—{ u,
m

Fig. 5.39
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5.10

272

Show that at {2 = 1 rad/s the contribution to g, from the second mode
is approximately 14% of the total.

(UCL)

Thesingle-bay, two-storey building shown in Fig. 5.39 has concentrated
masses of mat first-storey level and my/2 in the second floor. If the shear
stiffness of the first floor is k, and k/2 for the second storey, and each
storey undergoes only horizontal displacement u, and u, as shown in
Fig. 5.39, find the natural frequenciesand principal modesof vibration.

If, initially, aforceisapplied to the second floor such that u,is 1, show
that u, is1/3. Thestructureisthen released from thisinitial position; use
modal summation to determine the subsequent motion of the floors.
Repeat the calculation with u, initially forced to have unit value.

If the ground oscillates in the horizontal direction according to
u= U, sin {t, determine the steady-state response of the building and
plot the displacement amplitude of the second floor against w,/2, where
w, isthe lower circular natural frequency.

(KCL)



Appendix A.  Finite difference method

A.l Theory
A.1.1 Functions of a single variable

Thefinite difference method replaces differential equations by a set of simul-
taneous linear equationsin terms of afinite number of values of the unknown
function. Inthe case of afunction of asinglevariable, thedifferential equation
will be of the ordinary variety and the unknown function values to be deter-
mined are taken to be those corresponding to prescribed intervalsin the inde-
pendent variable. In the following, equal prescribed intervals will be used,
but, more generally, unequal intervals can also be employed. Thus, in Fig.
A.1(a), equa spacings, h, in the independent variable, x, are used and the
values of the function w (= f(x)) to be determined are w,, w;, w, and so on.

To obtain afinite difference representation of a given differential expres-
sion, the function is locally replaced by an approximating function, which
could, ingeneral, beapolynomial of any order, but which will herebetakento
be of second order (parabolic). Hence, if point O is being considered, then a
unique parabolic curve can be constructed through 0 and theimmediately pre-
ceding (—1) and following (1) points (Fig. A.1(a)). If the approximating para-
bolic curve is assumed to have the form

W=, + X +aX (A1)
where o, o, and o, are constants, then the coefficients, o, may be expressed
in terms of unknown function values by substituting in equation (A.1) for the
points—1, O, 1:

W, =, —ha, +hay

Wy =y (A.2)

W, = oy + ha, + ha,

Solving equations (A.2) for the coefficients, «, gives
W, — W, W, — 2W, + W,

oh BT o (A-3)

o =Wy, @, =
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(a) (®)

w A
W Wi
7
W f (4
4
'
X
LLD
(c) (d
Fig. A1 Single-variable function
but, from equation (A.1), differentiation gives
dw d’w
& =, + 20[3X, y = 20(3 (A4)
so that, substituting from equations (A.3),
dw w-w, 1
- = = = —AW A.
(dx)o BT T (A-5)
2 —
(d_wj P -l . O B (A.6)
dx? Jo h h

Equation (A.5) may beinterpreted geometrically (Fig. A.1(c)) asrepresenting
the slope of the function at 0 by the slope of the chord connecting points —1
and 1. Also, if equation (A.6) isre-arranged as

(dzwj _ (W —wy)lh— (W, —w,)/h

e h
then equation (A.6) may be geometrically interpreted as representing the
small-slope curvature at 0 by the change of chord slope (Fig. A.1(d)) over the
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interval length, h, thus approximating the rate of change of slope (curvature)
at 0.

Higher-order differential functions may be readily obtained by use of the
first and second central difference operators (A and A?) defined by equations
(A.5) and (A.6) respectively. Thus

(d?’wj B i(dzwj AW 2w W,
o )y [axlax® )], 2h h?
= z—iIS[AWl —2Aw, + Aw,]

= S = Wo) =20~ W) + (W ~W )]

_ 1
2h°

(dw) [ ()] Loz,
dX4 o dXZ dX2 . h2 h2

1
= F[(W2 — 20, +W,) — 2(W, — 2W, +W ;) + (W, — 2w, +W,)]

[w, —2w, +2w , — W] (A.7)

and

= h—l4[w2 — 4w, +6W, — 4w, + W, ] (A.8)

Occasionally, especially at boundaries, points are not available to either
side of the point under consideration. The use of the above central difference
expressions then becomes impractical and recourse must be made to forward
difference expressions. Thus, with referenceto Fig. A.1(b), the points0, 1 and
2 may be substituted in equation (A.1) and, solving asbefore, it may be shown
that, for this case,

(d_"") _ 3wy +Aw —w, (A9)
dx Jo 2h

The corresponding backward expression may be similarly derived as

(dw) 3w 4w, W,
0

- A.10
dx 2h ( )

A.1.2 Functions of two variables

The extension of the method to the two-variable case requires the function
evaluation points to be located at the nodes of a finite difference net. The
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logical extension of the one-variable case, as described above, is to use a
square net (Fig. A.2(a)) but rectangular, oblique, triangular or other net shapes
(Salvadori and Baron, 1961) are all possible. The type of net employed will
principally depend upon the shape of the region to be considered.

The differential functions of interest are now of the partial variety, with
respect to two independent variables, say x and y. By straightforward exten-
sion of the one-variable case, partia difference operators A,, A, and so on
may be appropriately defined and used to determine any given partial differ-
ential function. Thus, using the portion of a sguare net shownin Fig. A.3, the
Laplace function may be approximated by

dw dPw) AP, AW, w 2w W, W, — 2w, +W,
et | T tT T 2 + 2
o aF ), . h h h

_ 4w, + (W, + W, + W, +W,)

2 (A.11)
While the biharmonic function may be constructed as follows:
With reference to Fig. A.3 and by analogy to equation (A.8),
4
(ﬂj = %[Wg — 4w, +6W, — 4w, + W, ] (A.12)
ox*Jy h
and
9*x 1
(WJO = F[W10 — 4w, + 6w, — 4w, + W, ] (A.13)
while
2°x _i(azw] A w - 2w+ wg
x> oy? o oy \lax? ), I h?

1
= F[(w5 — 20, 4+ W) — 2(W, — 2w, +W,) + (W — 2w, +W, )]

(a) (b) (c)

Fig. A.2 Finitedifference nets: (a) square; (b) oblique; (c) triangular
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12

7 la 3
11 2 O 11 9 ol
6 12 5

Fig. A.3 Part of difference net

1
ZFMWO —2(W, + W, + W, + W, ) + (W + W, + W, +W,)]

(A.19)
Hence, from equations (A.12), (A.13) and (A.14),

Pw , Bw )
ox* oxPay oy

1 20w, — 8(W, +W, + W, + W, ) + 2(W; + W +W, + W) +
h4 0 1 2 3 4 5 6 7 8

(Wo + Wy + Wy +W,)] (A.15)

A.2 Practical application

Single-variable function applications are generally straightforward, but appli-
cations involving two independent variables need some care, and an indica-
tion of the most effective procedures will be given in this section. First, a
suitable net (square in this case) is superimposed on the region to be consid-
ered. The node points so created are then numbered for reference with the
following conventions. All nodes at which the function values are expected to
differ are given unique reference numbers, normally sequentially numbered
from 1. However, should there be nodes at which symmetry, or other consid-
erations, require that the function take identical values at the stipul ated nodes,
then these nodes are given the same reference number. In Fig. A.4, for
instance, the values of afunction w (= f(x, y)) at the points on the first (top)
row of the net are being constrained to take the same values as the corre-
sponding points on thethird row of the net. Similarly, should there be nodes at
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T

L[ H

Fig. A4 Example difference net

which anti-symmetry requires the function to possess equal and opposite
values, then equal and opposite reference numbers are used. Referring to Fig.
A.4 again:

Wfl:_Wl’ W4:—W4, W7:—W7 (A16)

Also, should there be nodes at which the function is required to be zero, then
thisisindicated by a zero reference number. Thus, in Fig. A.4,

For all points0: w, =0 (A.17)

Once a suitable numbering scheme has been established, the next step isto
form the linear difference equations which approximate both the partial
differential equation and also the appropriate boundary conditions. This for-
mation processismost easily accomplished by the use of difference operators,
typical examplesof which areshowninFigsA.5and A.6. Thenumberson the
operatorsin thefiguresrefer to the coefficients by which the function values at
the respective nodes must be multiplied to produce the desired difference
approximation. It isto be understood that the approximations are being made
in respect of the central node of the operator in each case. The most reliable
technique for using the operators is to make tracings which are then superim-
posed on nets of the same scale, such asFig. A 4. If, for example, itisrequired
to approximate the L aplacefunction at node 2 of Fig. A.4, then superimposing
the appropriate operator (Fig. A.5(a)) gives

—AW, + W, + W, + W, +0=w, — 4w, + W, + W,
Similarly, if the biharmonic equation is to be represented at node 1, then
superimposition of Fig. A.5(c) gives
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i 1.
oxdy 4h’
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(b)
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Fig. A5 Finite difference operators
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’w I’w 1 o’w ’’w 1

-+ = + =—
ox’  Toxoy 2’ * ay’  ayox® 2K’ *

(a) (b)

Fig. A.6 Finite difference operators

20w, —8(wW, +wW, +0+0) +2(w; + 0+ 0+ 0) + (W +W, —w, +W,) =
20w, — 8w, + W, — 8w, + 2w + W,
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280



Appendix B.  Finite element method

B.l Introduction

Thefinite element method isoutlined here as applied to the stressanalysisof a
surface type of structural continuum. The presentation also assumes that the
method is being employed as a displacement (stiffness) type approach. For a
more general treatment of the finite element method the reader is referred to
other texts (Hinton and Owen, 1980; Reddy, 1985).

The finite element method seeks to replace a continuous type of structural
problem, which is alternatively represented by a set of partial differential
equations, by a set of discrete, smultaneous linear equations which may be
readily solved by computer. Thediscretization isachieved by sub-dividing the
surface to be considered into a number of regions and so creating a set of ele-
ments and nodes (Fig. B.1). It is important to realize that the sub-division
process is not a physical separation of the surface so that it becomes joined
only at the nodes. Theintentionis purely to create regions in which the defor-
mation will be assumed to be represented by a particular algebraic function of
position. The deformation within different regions (elements) will be repre-
sented by different functions, although these will all be of the same general

L

Fig. B.1 Finite element sub-division
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form and will normally be chosen such that displacement continuity is pre-
served along the element boundaries so that the possibility of element separa-
tion will not arise.

On the basis of the assumed displacement function, it is possible to derive
an element stiffness matrix linking element nodal ‘forces' to element nodal
‘displacements’. The analysis then closely follows the normal stiffness
method as applied to skeletal structures, in that the element stiffness matrices
are used to assemble a set of structure (system, overall) stiffness equations
which represent, in terms of the nodal displacements, the conditions of equi-
librium of thetotal forces acting at the nodeswith the applied nodal loads. The
solution of this set of linear equations yields the nodal displacements from
which the internal element forces may be determined.

B.2 Theory

For atypical element (Fig. B.2), an example displacement component, u, at a
general point P within the element is assumed to be represented by a polyno-
mial function of the position variables x and y. The function will include a
number of undetermined coefficients equal in number to the number of nodal
displacement components possessed by the element. Thus

u={c,Ha} (B.2)

where {c } isthe row vector of polynomial terms with unit coefficients, and
{a} isthe column vector of undetermined coefficients.

If the remaining displacement components are al so represented by polyno-
mial functions of position, which involvethe same undetermined coefficients,
{a}, then the complete displacement vector at P will be given by

{0} =[Cl{a} (B.2)

where {6} is the column vector of displacement components at P, and [C] is
the matrix of polynomial terms with unit coefficients.

Fig. B.2 Typical finite element
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Since Pisageneral point, it may be successively chosen to be each of the
element nodes in turn, and, by substituting the known nodal position coordi-
natessuccessively in[C], the element nodal displacement components may be
related to the undetermined coefficients by

{6% =[C*{o} (B.3)
where € indicates succesive evaluation at each node of an element.

Since the number of undetermined coefficients was (purposely) chosen to
be equal to the number of element nodal displacement components, matrix
[C®] issquare. Provided the matrix isalso non-singular, it istherefore possible
to relate the undetermined coefficients to the element nodal displacement
components by

{a} =[C°T{5% (B.4)

Thestainat Pwill berelated to the displacement at that point by known strain—
displacement relationships which may be applied to equation (B.2) to give

{e} =[Ql{o} (B.5)

where{ e} isthe column vector of strain componentsat P, and [Q] isthe matrix
derived from [C], or, using equation (B.4),

{e} =[QICT{5% =[BI{&} (B.6)
where [B] = [Q][C®] ™ is the strain matrix.
The stress—strain relationships of elasticity may aso be invoked to relate
the stress and strain components at P by

{0} =[D{e} (B.7)
where { ¢} isthe column vector of stress components at P, chosen such that
{e} { o} dvrepresentsawork scalar, and [ D] isthe el asticity matrix, and, using
eguation (B.6),

{0} =[DI[BI{6°} =[H]{6%} (B.8)
where [H] = [D][B] isthe stress matrix.

Equations (B.6) and (B.8) relate the strain and stress components at the
point, P, to the element nodal displacement components. An element stiffness
matrix relates element nodal forces to element nodal displacements. Such a
stiffness matrix may be derived by applying the principle of virtual displace-
mentsto the complete element to establish the element nodal forceswhich are
statically equivalent to the stressfield throughout the element. By use of equa-
tions (B.6) and (B.8), it isthen possible to rel ate these element nodal forcesto
the element nodal displacement components, as required for the construction
of an element stiffness matrix.

Thus, equating external and internal work by the principle of virtua
displacements,
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{637{1% = [{e}{o}dv (B.9)

where{f ¢} isthe column vector of statically equivalent nodal forces such that
{65}7{ £} representsawork scaar, , isavirtua quantity, and IVO, isan integral
through the element volume.

From equations (B.6) and (B.8)

{637{% = [{[BK5}} T [DI[BI{5} dv
. vol
{8} {1} = f{55}T[B]T[D][B]{5e}dV
o that ’
{637{1% ={&3}" | [BI"[DI[B]dv{5%
and, since the virtual d?oslpl acements are arbitrary,
{% = [ [BI"[DI[B]dv{5% (B.10)

vol
Equation (B.10) is the required relationship between element nodal forces
and displacement components and may be written as

{1 =[K{s%} (B.11)
where

[KI= [ [BI"[D][B]dv
vol
isthe element stiffness matrix.

The stiffness matrices for all the elements may therefore be determined by
repeated application of equation (B.11) and these may be used to assemble
(see example 1.1 or Astley (1992)) the complete structure stiffness equations
which link total structure nodal forces to the complete set of structure nodal
displacement components. Thus

{F}=[KK4} (B.12)

where { F} isthe column vector of structure nodal forces, { A} isthe column
vector of structure nodal displacements, and [K] is the structure stiffness
matrix.

Since the structure nodal forces must, for equilibrium, be equivalent to the
applied nodal forces

W} =[K{4} (B.13)
where {W} is the column vector of nodal applied loads.
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Solving equations (B.13) for the unknown nodal displacementsin terms of
the known applied loading and specified boundary conditions gives

{4} =[K]{wW} (B.14)
To complete the solution, it is necessary to evaluate the stresses in each
element. Equation (B.8) givesthe stresses at ageneral point within an element
in terms of the element nodal displacements. These element displacements
may be extracted from the complete set of structure displacements provided
by equation (B.14), and expressions for the stresses at a general point are
thereby generated. Often it is convenient to determine stresses at element
nodal positions, in which case equation (B.8) is used repeatedly, the coordi-
nates of the various nodes of the elements being successively substituted in
matrix [B]. If this procedure is followed for al the elements, it will result in
multiple values of nodal stresses being derived at any given node according to
the number of elements which the node interconnects. By the nature of the
finite element process, these nodal stresseswill not agree exactly, and normal
practice isto average the values obtained.

References and further reading

Astley, R. J. (1992) Finite Elementsin Solids and Structures. Chapman and
Hall, London. Chapter 4 covers displacement finite elements and, in partic-
ular, the assembly of stiffness matrices.

Hinton, E. and Owen, D. R. J. (1980) A Simple Introduction to Finite Ele-
ments. Pineridge Press, Swansea. The finite element method is explained
using variational and weighted residual methods, and the application of the
method isillustrated through heat flow examples.

Cook, R. D. (1995) Finite Element Modeling for Stress Analysis. Wiley,
Chichester. Concentrates on the use of finite element programs, emphasizing
topics such as modelling, mesh specification, element selection and assess-
ment of results.

Reddy, J. N. (1985) An Introduction to the Finite Element Method.
McGraw-Hill, New Y ork. Thorough account of thefinite element method ona
variational formulation basis.
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Solutions to problems

kN/mm

1.1
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1.2 Withreferenceto Fig. P.1:
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€Y
KL+ K '~ ki ke kS 0 0
K+, +ki, 0 Ki+KE Ky +ky K
[k]= R vl e o
;KK K] 0
> ¢ +k! K
Kj

(b) Final four rows and columns of the stiffness matrix of () should be
deleted in view of the constraints at nodes 3, 4, 5 and 6.

1.3 The part stiffness matrix is

[15 05 -05 0 0 0 -10 -05 O 0 0 0 o0 0 0 0]
15 05 10 0 0 O -05 0 0O O 0O 0O 0 0O
30 05 05 0 0 05 2005 0 O O O 00O
30 05 -10 05 0 05 -10 0 O O 0 0 O
1% 0 0 O 0 05-10 0 O 0 00O
sym. 15 0 0 05 0 -05-05 0 0 0O
30 05 -10 05 0 0 -10 05 0 O
30 05 20 0 0 0 -050 O]
1.4
160 154 94
{6}=1 0 t, {c°} =1 09}, {¢°} =1 -45; N/mm’
-01 25 =17
15
0.99 1.48 2.45
{6} =1{-152 }, {0*}={-5.98}, {¢°}=1-125 } N/mm?
3.73 145 0

1.6 P =1.21kN; small tensile principal stress (0.21 N/mm?) produced in
element 7 by the action of pre-stress alone.

1.7
.Y 0 _Y o 1Y o Y
ab ab a ab ab
[B]: 0 _:_L+i 0 }_i 0 _x 0 X
b ab b ab ab ab
l.ox 1y 1l x y _x 1y xy
L ab a ab b ab ab ab a ab ab ab|

288



Solutions to problems

1.8 Theglobal constrained stiffness matrix is

N, ke O Kk K, 0 0 0 0
Ktk ko K K +K; K, 0 0 0
k., 0 K, K, 0 0 0
k, +k; K+ 0 K, K, 0
ki +ki ko tk; Ktk Ko K + Ky k;
Kitkm O Ko Ko
Ssym. K‘ + k“» K| + kJm 0
Ktk + K tK; Ktk
L ki + Ko |
P 1 2 P
| I /
i 3 } 1 2 3
. [ a al2
| y / : 4 5|, /
| [ [
| V 6/
(a) (b) ©)
Fig. P.2

2.1 Withreferenceto Fig. P.2(b),
{w} ={-0.0256, —0.0342, — 0.0064} ' a*¢’
Toa = || = 0.6548G¢", J =0.135a"
With reference to Fig. P.2(c),
{¢} ={0.0856, 0.0781, 0.0528, 0.130, 0.118, 0.144}" a°G¢’
Toa = || = 0.6368G0", J=0.137a"

I
\\E 1
4a da 2
: 1

Fig. P.3

2.2 Withreferenceto Fig. P.3,
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{¢} ={0.731, 0.923 0.962}" a°GH”
T =|7p| =1.853G0", J =11.1a°
By ‘combined rectangles’,

Toa = || = 2.00aG0", J=16.0a"

' g

Fig. P.4

2.3 Withreferenceto Fig. P.4,
{w} ={0.0267, 0.0214, 0.0080} " s°6’
Tae = |Tp| = 0.4155G¢"

Fig. P.5

2.4 Withreferenceto Fig. P.5,
{¢} ={0.0308, 0.0431, 0.0308'G¢’
J =0.0137m"

2.5 For open section: T=0.86 KN m; # = 21.1°.
For closed section: 7, = 2.99 N/mm? 6 = 0.18°.

2.6 For closed section: J = 0.0791 m*.
For open section: J = 0.00245 m*.
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Solutions to problems

2.7 Inorder of increasing torsional stiffness, ranking isD, A, B, E, C.
2.8 Torsional rigidity = 1.27 kN m?/degree.
2.9 Torsional rigidity = 1.41 x 10° kN m?degree.

80

53
80 107
13 ‘ { 140)|  sym.
- @
80 107
53

80

Fig. P.6

2.10 Shear flowsin kilonewtons per metre are as shown in Fig. P.6.
S B
Ar3r A
-l s5m 2.5m 3| 4!
D .\\\\\\\\\\\B
Fig. P.7

-29.0
\.3
0 J

1.3

M, (kN m/m) M, (kN m/m)

30.0 v
Fig. P.8

3.1 Withreferenceto Fig. P.7, {w} ={29.33, 15.28, 7.83, 13.58} " mm.
Bending moments along and in the direction of AA and BB (Fig. P.7)
areasshowninFig. P.8.

3.2
1 P 1 PL?

w, = and w,
162 D 108 D
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3.3 The difference equations are as shown below where the aternative
vectors are for cases (i) and (ii):

20 -8 1 -8 2 1] 1 0

8 21 -8 3-8 0 1 0
1| 2-1618 0 2 0 1 g 0| 16P
@ay| - e _aW=105 9 Y0(2n
a4f| 8 3 0 28 -8 -8 1D o[ a?D

4 -16 2 -16 20 2 1 1

2 0 0-16 2 22 1 0

Fig. P.9

34

4
(w} ={0.01232, 0.00881, 0.00729, 0.01018}T%

Bending momentsalong and in the direction of AA and BB are as shown
inFig. P.9.
For aplate of infinite length

2
M, = % = 0.125qL%

TableP.1

Position w (x 10°gLY/D) M, (x 10™'qL?) M, (x 10°qL?)
Centre 88 118 116

Column 0 0 21

3.5 L/4 gridfinite difference analysis results are given in Table P.1.

3.6 For thetypical grid shown in Fig. P.10, sample member properties are
givenin Table P.2 and samplejoint loads, cal culated on the basis set out
inFig. 4.28 aregivenin Table P.3.

Restraints are: joints 10-16 are fully restrained; joints 1, 4 and 7 have 0,
restrained (symmetry).

3.7 With reference to the sample element mesh shown in fig. P.11:
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6 3] 2 1
2 y
0.5 20 é
0.5 Y,
g 15 6/ 5 41 h
14 9 8
A % (dimensions in m)
% 13 12 11 10
4\ I ST LIS I IV 7 777777777777,
1.0 | 1.01 3.0
Fig. P.10
Table P.2
Member I (x 10°m) J (x 10°m")
16-3 0.16 0.32
6-5 0.62 1.24
87 0.47 0.94
6-3 0.28 0.56
85 1.60 3.20
107 1.69 3.38
TableP.3
Joint Load (kN)
1 9.81
2 13.08
4 27.59
5 36.79
7 18.39
8 24.53

3.9

All elements have thickness t = 125 mm, except elements 1, 2 and 3,
where the column head may be roughly modelled by t, = t, = 200 mm
and t; = 162.5 mm.

Nodes 36, 42 and 43 (around the column) are fully restrained.

Along 148 and 3742, 6, = 0 (symmetry).

Along 1-37 and 43-48, 0, = 0 (symmetry).

Typical nodal loads due to a uniform applied load g (kN/m?) are shown
in Table P.4.

With reference to Fig. P.7:

{wy, w,, wy, w,} ={22.42, 12.51, 6.62, 10.39} mm.

Averaged bending moments along and in the direction of AA and BB
(Fig. P.7) areas shown in Fig. P.12.
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2x0.15 0.3 0.4 0.5 0.5
Fs - 7 T !
0.5
X
8 |
0.5
£ y
2.0 r |
0.4
21 (dimensions in m)
| ® | 0.3
43% 2x0.15
I< 2 a0 - - Zl -
2.0
Fig. P.11
TableP.4
Node Load (kN)
1 0.0625q
8 0.25q
21 0.1575q
40 0.02625q
-314
—4.8 -5.3
] —— J . |
M, (kN m/m) M, (kN m/m)
35.0
42.4
Fig. P.12

3.10 The reduced stiffness matrix is

(162 144 66
—72 306 12
3B 12 48
~18 -288 0
| 12 66 12
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Solutions to problems

M,| (731
My, t=1731¢ kN m/m
My | (131
41
ap
Nm = Nt = —7
For the given values: o,, = 0, = —23.8 N/mm?”,
4.5

n2 2
N _LA-p)q N__qusma

m t

2pcosa Ccoso
4.7 Thecriterionis

h,(af —a§)+%/(ai—a2)(2a2 +3)=

f f
hy(a; —a7) +(h, —h;)a; —32(385 + f22)+€3(3a§ +17)
4.8 The stiffness matrix is

(014 -1.72 -013 -1.68
2841 168 14.04
028 0 -013 -168
56.82 1.68 14.04
028 0 -013 -168
56.82 1.68 14.04
sym. 028 0 -013 -1.68
56.82 1.68 14.04
026 -533 004 4.15
54218 -4.15 -383.17
0.24 0
1027.54 |

N, 153.4 | N/mm Nig 131.4| N/mm
{MW} B {—111.8} N mm/mm’ {Mms} B {—90.0} N mm/mm
Ne | [110.3] N/mm
{Mmg} - {—47.7} N mm/mm
Maximum direct stress=10.2 N/mm? maximum bending stress=
2.98 N/mm?.

4.9
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4.10 (b)
N, 2998) kN/m
Mp | ] -01| kN m/m
Ny | | O [ kN/m

M. (27.2] kNmvm
(©) N, = 3000 kN/m

5.1 Without additional mass, fundamental frequency = 1.59 Hz.
With extra mass on lower storey, fundamental frequency = 1.46 Hz.
With extra mass on upper storey, fundamental frequency = 1.22 Hz
(best).

5.2
(W7 ={1 2 2Jkm

1 1 0
[f]=[1 -05 1
1 -05 -1

5.3
{w}" ={0.42, 1.33VEI/m

100 1.00
[2]=
2.04 -0.49
5.4

3El
=\
| 96El
We =403
7mL

5.5 For 10 000 tonne mass, fundamental circular frequency = 3.23 rad/s.
For 15 000 tonne mass, fundamental circular frequency = 2.70 rad/s, a
16.4% decrease.

5.6

233
tr= {49.6} reds
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(3] = 1.000 —0.689
10457  1.000

= 18.74c0s23.3t + 2.255n 23.3t — 3.74 cos49.6t — 1.06sin 49.6t m
| 8.56c0s23.3t +1.03sin23.3t + 5.43c0s49.6t + 1.535in49.6t

5.7 Maximum displacement when empty = 17.1 mm.
Maximum displacement when full = 11.7 mm.

5.8
0.707
{w} = rad/s
1.414
1| snat
=1 5 5on
-2 | 5(1-22%)
5.9 Constrained stiffness matrix is
24 L 12 6|
c Yo
0 % _8 %
Bl =|. ... L
12 6,24
= e °
6 21, 8
L L L ¢ L
_( 0719  0.863 |sint
w2 Wwi-2°) m,
5.10

P ot 3

U] 1 [4coswt—cosw,t
A o et

U,] 9|8cosw,t+ cosw,t

If aforceis applied to the lower storey such that u, = 1, then u, =1,
and

. {ul} 1 {2 cosw,t + cos%t}

U,] 3[4coswt—cosw,t
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The steady state responseis
2 1

4 1

2 2 2 2
wy =82 w; =12

2

+
{x}={Ul}= S A S L [T
u
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Index

adaptive meshing, 45

amplitude, 219

anti-clastic, 104

anti-symmetry, with finite
differences, 278

areaprojection rule, 174

axial mode, 220, 235, 240

axis, of axisymmetric shell, 169

axisymmetric shells, 166, 168—169,
204, 205

membrane analysis of, 169-185

axisymmetry, in shells, 171-172,

186, 188

backward differences, 275
basis element, 38-39
beam analogy, for plates, 102
beams, 9
by Rayleigh’s method, 248-249
harmonically forced vibration of,
262263
interaction of with slabs, 126, 136,
151
lateral instability of, 60
natural frequencies of, 240-243
bending,
in shells, 167-169, 178-179, 185,
186204
in shells, classical solutionsfor,
186
biharmonic equation, 112, 277, 279

body force, 12
boundary conditions, 15
for plates, 114-117, 118-119,
128-129, 145
for torsion, 68, 70-71, 73
modification of stiffness matrix
for, 29-32, 148-149, 201
box girders, 59, 94
under applied torque, 81-83
under general load, 87
under shear load, 84-87

central differences, 275
centre of rotation, 61
characteristic equation, 243
circular cylindrical shells, 166,186
finite element analysis of,
186-204, 211-215
circular natural frequency, 219
circular sections, torsion of, 62—63
circular tank
of non-uniform thickness,
199-204
of uniform thickness, 193-199
circumferential stress resultant, 172
closed cylindrical shells, 166
closed sections, 59, 77
closed-form solution, 15
co-factor method, 18, 50
coordinates, in dynamics, 218, 228,
231
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compatibility, 12

equation in plane stress, 13
complementary shear stress, 3
concrete core construction, 59
concrete cube analysis, 36, 4547
concrete cylinder analysis, 4345
conical shells, 208

under fluid pressure, 182185
consistent loads, 151,200
consistent mass matrix, 250
contour, 78
coupling, 251

of damping matrix, 263-264
critical damping, 222
curvature

in axisymmetric shells, 170

in circular cylindrical shells, 189

in plates, 104-105, 109-110, 119,

133, 139, 152

in shells, 168, 170, 179
curved boundaries

in plane stress, 36

in plates, 126, 136

damping, 218, 221223, 226-227,
264
coefficient of, 221, 264
critical coefficient of, 222
matrix, 263
ratio, 222
dashpot model, 221
deep beam, 9
degrees of freedom, 218, 220
design momentsin slabs, 152-154
direct strain, 4
direct stress, 3
in shells, 167, 171-172, 188, 202
distributed mass model, 250
Duhamel integral, 257
dynamic loading, 218
dynamic matrix, 230

eigenvalue, 230
determination of, 230, 265

300

eigenvector, 230
elasticity, 2
theory, 2—7
elasticity matrix, 283
circular cylindrical shell, 190
plate bending, 141
square slab bending, 141
triangular plane stress, 19, 24
element numbering, 22
element stiffness matrix, 282, 284
beam, 240
circular cylindrical shell, 192
plane frame, 232
square slab bending, 143
sway column, 236
triangular plane stress, 21
element stress solution, 285
circular cylindrical shell,
198-199
square slab, 149-151
triangular plane stress, 33-36
error estimators, 45
excitation, 223

fatigue, 218
finite difference method
for plates and slabs, 118-126
for shells, 186, 205, 206
for torsion, 69-76
nets for, 275-276
theory, 273-280
finite element method
accuracy of, 4548
for dynamic analysis, 228,
244247, 250
for plane strain, 50
for plane stress, 16
for plate bending, 136, 152
for shells, 186, 204, 206
for torsion, 71, 95
theory, 281-285
finite elements, 281
circular cylindrical shell,
186-204, 205, 211-215



Index

eight-noded isoparametric plane
stress, 3745
plane strain, 50
rectangular plane stress, 36, 56, 58
square slab, 136-151
triangular plane stress, 16-36
types of, 36-37
flexural mode, 220, 235, 240
flexural rigidity, 109
folded plates, 166, 167, 168
forced damped vibration, 223-228
forced undamped vibration, 255265
forcing frequency, 226
forcing function, 223-227, 256, 259,
261
forward differences, 275
Fourier series analysis, 204, 225, 257
free damped vibration, 221-223, 224
free undamped vibration, 218-221,
250-255
frequency, 219
of damped vibration, 222
ratio, 226
frustum of shell, 173
fundamental frequency, 235, 248

Gaussian curvature, 168
Gaussian integration, 42-45
grid analogy,
for plates and slabs, 103—105
for slabs, 126-136, 152, 155
ground motion, 258-261

harmonic excitation, 224-225, 262

harmonic vibration, 219

harmonically forced undamped
vibration, 261263

homogeneous material, 7

hoop stress resultant, 172

hyperboloid shell, under fluid
pressure, 209-211

impulse, dynamic response to,
256-258

Intze-type container, 210-211
isoparametric elements, 3645, 151
isotropic material, 7

Jacobian matrix, 4044
Kirchoff assumption, 87, 152

Laplace equation, 14, 66, 276, 279
line element, 1
line of curvature, 170
linear elastic behaviour, 2, 6-7
lines of distortion, 178-179
load representation
with finite differences, 118, 121
with finite elements, 147, 200
with grid analogy, 129, 131
lumped mass model, 228, 234

magnification factor, 226
mapping of co-ordinates, 36-37, 40
mass matrix, 229, 234, 265
mass moment of inertia, 234
membrane action, 167
membrane analogy for torsion,
91-93
membrane forces
incircular cylindrical shells, 188
in circular tank, 198-199, 202—-204
in conical tank, 184-185
in paraboloid dome, 181-182
in shells, 171-172, 178-179
in spherical dome, 176-177
membrane shell theory, 169-185,
202-204
limitations of, 178-179
meridian, 169
meridional stress resultant, 171, 173
see also membrane forces
middle surface, 106
Mindlin plate theory, 151-152
modal damping, 264
modal damping coefficients, 264
modal forcing function, 259
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modal mass, 230
modal mass matrix, 251, 253
modal matrix, 251
modal stiffness matrix, 251, 253
mode, 219
shape, 220
mode superposition analysis
of forced undamped vibration,
255-261
of free undamped vibration,
251-255
of harmonically forced undamped
vibration, 261-263
reduced modesin, 255
modulus of elasticity, 6
modulus of rigidity, 7
moments
in circular cylindrical shells, 186,
188-189
in circular tank, 198-199, 202
in plates, 107-110, 120
in slabs, 121-122, 129-130,
132-135
multiply-closed sections, 59
torsion of, 81-86, 95

natural frequencies, 219, 220, 230
by Rayleigh’s method, 248-249
determination of, 228-247, 265
number of, 231, 235, 239, 246
repeated, 247

natural mode, 220
see also principal mode

Newton’s second law, in dynamics,

229, 263

non-uniform torsion, 94-95

normal mode, see principal mode

normal mode method, see mode

superposition analysis

normal stress, 3

normalization of modes, 230-231,

239
numeric integration, 72, 75-76, 186,
257, 264

302

open sections, 59, 77-78
torsion of, 8790
under shear load, 84
orthogonality of modes, 247-248
orthotropic plates and slabs, 126,
136, 151, 155

packages, 20
paraboloid domes
under internal pressure, 180-182
under snow load, 208
paralel, 170
period, 219
periodic excitation, 224
phase angle, 219, 226
plane sections, assumption of, 1
plane strain, 48-50
plane stress, 9-10
elasticity theory, 10-14
plates, 101
beam analogy for, 102
bending theory, 105-117
classical solutions, 117, 155
grid analogy for, 103-105
see also slabs
Poisson equation, 68
Poisson’sratio, 6
effect in plates, 104-105, 110
Prandtl membrane analogy, 91-93
principal axes, 84
principal coordinates, 250-252,
256, 259261, 263
principal curvatures, 168
principal modes, 220
approximate, 248-249
determination of, 230, 265
inaccuracy in, 246, 250
see also orthogonality of modes
principal moments, 110
principal radii of curvature,
167-168, 170
of circular cylindrical shell, 203
of cone, 184-185
of paraboloid, 181
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of sphere, 176
principal stress, 10-11
plot, 34-35, 4647

radii of curvature, see principa radii
of curvature
random excitation, 227, 265
Rayleigh quotient, 248-249
reactions
in plates and slabs, 114-117
inslabs, 123, 129, 133
rectangular sections, torsion of,
69-76
reduced stiffness matrix, 248
reduction of natural frequency
relationship, 241-243, 268
resonance, 225-228
ring beam, 178, 207

Saint—Venant
principle of, 9-10, 50, 94
torsion, 61, 65, 94
self-excitation, 264
semi-inverse method, 16
shallow shells, 179
shear centre, 61, 81, 87
shear flow, 79, 80-82
direction of, 86
shear forces
in plates, 111, 113
in shells, 172, 178, 188, 203, 204
in slabs, 120, 122-123, 129-130,
132-133
shear load, 84
shear modulus, 7
shear strain, 5
shear stress, 34
for circular section under torsion,
62
in closed sections under torsion,
88, 91, 93
in open sections under torsion, 88,
90-91, 92
in shells, 167, 172

in singly-closed sections under
torsion, 78-79, 93
in solid sections under torsion,
6466, 71-72, 75
in thin-walled sections under
torsion, 78
sign convention, 3
trgjectoriesin torsion, 72, 77-78
shear wall analysis, 58
shells, classification of, 165, 166
shells of rotation, 165
simple support
in plates, 103, 114
in shells, 178
Simpson’srules for integration, 72,
75-76
singly-closed sections, 59
torsion of, 78-80
slabs, 102
design moments for, 152-154
finite difference analysis of,
118-126
finite element analysis of,
136-152
grid analogy for, 103-105,
126-136, 152, 155
natural frequencies of, 244246
torsional stiffness of, 127-128
see also plates
small deflection theory, 2
soap-bubble analogy, 91
soil—structure interaction, in
dynamics, 264
solid sections, 61
torsion of, 62—76
torsional properties of, 76
spherical domes
under dead load, 176-177
under normal pressure, 206
spring, 223
steady-state, 225, 261
frequency, 225
strain matrix, 283
circular cylindrical shell, 190

303



Advanced structural mechanics

sguare slab bending, 140
triangular plane stress, 19
stress concentration, in torsion, 89
stresses
in plates, 107-110
in shells, 167, 202
see also direct stress, shear stress
stress function
for plane stress, 15-16
for torsion, 67—69, 91-93
stress matrix, 283
circular cylindrical shell, 191
sgquare slab bending, 141-143
structure stiffness equations, 282
structure stiffness matrix, 284
construction of, 25-29, 146-147,
194-196, 284
genera properties of, 27, 29
sub-matrix, form of structure
stiffness matrix, 26—29
support excitation, 227
surface element, 1
sway frames
by Rayleigh’s method, 249
forced undamped vibration of,
258-261
free undamped vibration of,
253-255
natural frequencies of, 231-239
simplified analysis of, 235-239
under ground motion excitation,
258-261
symmetry
in plane stress, 22, 29, 32
in plates and slabs, 103, 120, 121,
130, 133
of shear flows, 82, 86
of stress function in torsion, 74
warping along lines of, 62, 63, 70
with finite differences, 120, 277
system stiffness matrix, see structure
stiffness matrix

Tacoma Narrows bridge, 48
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tangential stress resultant, 171-172,
174
see also membrane forces
tangential stress, 3
thick plate theory, 151-152
thin walled sections, 61
torsional properties of, 91
torsion of, 77-91
time-dependent loading, 223
torque, 61, 62
torsion, elasticity theory, 63-69
torsion constant, 62
for closed sections, 80, 91
for open sections, 89-91
for solid sections, 68-69, 72—73,
75-76
torsional mode, 220
transient excitation, 223

underdamping, 222
undetermined coefficients, 282
uniform torsion, 61
units, in dynamics, 219, 233
vertical load on shell, 174, 175
due to fluid pressure, 175-176,
183-184
due to normal pressure, 174-175,
181

virtual work
in plane stress, 14-15
principle of, 283-284
viscous damping, 221
von Mises failure criterion, 152

warping, 61
displacement distributions, 63,
6667, 6971, 77
of thin-walled sections, 78
restraint of, 93-94
Wood-Armer momentsin slabs,
153

Y oung’s modulus, 6
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