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Preface to the first edition

In recent years an increasing emphasis has been placed on numerically based
methods of structural analysis. This has been reflected in the production of
structural mechanics texts which are orientated towards particular numerical
methodologies, especially the finite element method. Whilst this approach
serves the needs of potential ‘research’ engineers, a concentration on the
numerical analysis aspects of structural mechanics is of less relevance to
future ‘professional’ engineers, who are likely to be concerned with the use
and interpretation of numerical analyses, but not in the development of the
methodologies.

It is to this latter group that the present text is especially addressed, and the
intention is to give a broad introduction to the principal themes of continuum
mechanics and structural dynamics, with an emphasis on the description of
physical behaviour and on the use of analytical techniques to illumine and
quantify the performance of structural systems.

In an introductory work such as this, a breadth of coverage is desirable from
the standpoints of both the needs of the student and of the possibilities
provided for exploring the relevance of structural concepts to differing geo-
metric forms. Breadth, within a manageable text, does, however, require that
rather brutal decisions be made in the selection of the material to be covered.
In addition to the very limited treatment of the theory, as opposed to the use, of
numerical methods, it has only been possible to mention solutions based on
classical methods of differential calculus due to the limited applicability of
such solutions and the often lengthy and intricate nature of the mathematical
arguments involved.

A perhaps more serious cause for regret is that space has required a restric-
tion to a linear elastic behavioural model. Whilst commonly used for practical
analysis purposes, and convenient as a model which can be readily adapted to
different structural forms and materials, linear elasticity is, of course, unable
to represent many aspects of structural behaviour which are of practical
concern, especially when non-metallic materials are employed. As a partial
remedy for this and other deficiencies, the author has been able to do no more
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than indicate at the end of each chapter a selection of texts which may be used
to augment the material covered.

In brief, then, the text aims to be a ‘taster’ in linear elastic continuum
mechanics and structural dynamics, and it is hoped that, having acquired the
taste, the student will be encouraged to tackle the more substantial fare that is
available in the texts cited in the further reading sections of the book. The pre-
liminary knowledge assumed is that usually covered in the first two years of
undergraduate courses in structural mechanics, strength of materials and
mathematics. In particular, an acquaintance with matrix algebra and the finite
difference and element methods is presumed, although outlines of the latter
two topics are included as appendices for the benefit of those who may not
have been previously exposed to these techniques.

For the purely numerical analysis operations of linear equation solution and
eigenvalue determination, it has been assumed that standard computer rou-
tines are readily available. For the more structurally orientated aspects of nu-
merical methods, it has, however, been considered desirable to give and set
examples solved by ‘hand’ in order to develop a feel for the techniques in-
volved. For solutions to be practical by hand, coarse nets must be used so that
the results may be liable to substantial error. As far as possible, the nets used
have been sufficiently fine so as to produce acceptable approximations, but
this is not the case for some of the problems for student solution, which must
be accepted as being of teaching value only.

Finally, a pleasant task: to acknowledge those whose assistance has been so
generously given in the preparation of this book. Professor Arthur Bolton of
Heriot-Watt University, Costas Ioannou of NELP and Dave Phillips of
Glasgow University have all read chapters in proof and I have profited greatly
from their advice and comments. Fred Marris and Brian Whiting, both of
NELP, patiently provided ‘driving instruction’ on the MEDUSA drafting
system and DIABLO printer used to prepare the diagrams and text respec-
tively. An author’s family have to tolerate an even greater than normal level of
absence and abstraction of mind, and I am grateful to record that this has been
cheerfully accorded me. In particular, I must thank my daughter Ruth, who
prepared some of the diagrams and a considerable number of the equations.

x

Preface to the first edition
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Preface to the second edition

The aims of the text have remained unchanged for this edition, although the
major addition, that of covering the application of isoparametric finite ele-
ments to plane elasticity, has inevitably tended to increase the proportion of
material devoted to the numerical analysis aspect of this topic in relation to the
material treating the structural behavioural aspect. This is a cause for minor
regret but has been accepted due to the wide use made of this particular finite
element and the need therefore for future ‘professional’ engineers to have at
least an outline appreciation of its theoretical foundations. In common with
the other elements covered, a numerical example of the use of an iso-
parametric element has been provided, although this certainly represents the
limit to which it is reasonably possible to contemplate example hand
solutions.

The number of problems for student solution has been increased to provide
a wider range and the opportunity has been taken to update material and to
correct errors in the previous editions, without, it is hoped, introducing too
many new ones. Comments on this edition are always welcome and I am
grateful, in particular, for advice from Professor Ian May of Heriot-Watt
University and Dr Angus Ramsay of Nottingham Trent University regarding
its preparation.

11



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:24

Examination question sources

A number of the problems for student solution have been taken from degree,
or equivalent, examination questions set by different institutions and are
reproduced by kind permission of the relevant authorities. The sources of such
problems are indicated in the text as follows:

BRIGHTON: University of Brighton
CITY: City University, London
EC: Engineering Council
KCL: King’s College (University of London)
LIVERPOOL: Liverpool University
NTU: Nottingham Trent University
UCL: University College (University of London)
UEL: University of East London

The solutions provided are, however, my own and the responsibility for any
errors in these therefore lies solely with myself.
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1. Elasticity

1.1 Introduction
Elementary structural mechanics is primarily concerned with the behaviour of
line elements, such as rods or beams, and with assemblies of these elements in
the form of skeletal structures. Line elements are characterized by having
cross-sectional dimensions which are of a different order to the length of the
element. The structural analysis of line elements is simplified by several prop-
erties, the most pertinent of which is that the deformed shape of the element
may often be completely described by the displaced shape of its longitudinal
axis. This is so if the deformation of the cross-section may be assumed to bear
a simple geometric relationship to the axis deformation. An example of such a
relationship is the plane sections assumption of simple bending theory in
which sections normal to the axis are presumed to remain normal in the
deformed position. In these circumstances, the displacement of the element
may be expressed in terms of one independent position variable, namely
distance along the axis, and the resulting differential equation for the displace-
ment will be of the ordinary form, as in the case of beam bending.

As the name suggests, continuum mechanics is concerned with structures
which are continuous in space. The simplest elements of this type are surface
elements which have a thickness of a different order to the other two dimen-
sions. Surface elements are termed plates if they have a plane form, and shells
if the form is a general surface. The deformation throughout the thickness of a
plate or shell may still usually be related to the deformation of a single point
within the thickness by the assumption of suitable geometric relationships. It
is not therefore necessary to treat these elements as three-dimensional solids,
it being sufficient to examine the deformation of a, usually central, surface. At
least two independent variables will, however, be needed to specify a position
on such a surface, and the differential equations governing its deformation
therefore become more complex than for line elements and are also of the
partial variety. The deformed state of a general solid is variable throughout its
volume, and three independent position variables are involved with corre-
spondingly more complex governing partial differential equations.
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Overall geometric form thus allows structures to be categorized into line,
surface or solid elements, and analytic models may then be developed which
are best suited to the different types. In producing models, the nature of the
constructional material must, however, be carefully considered. If the struc-
tural geometry, material and loads are such that the displacements under the
expected loads can reasonably be expected to be so small as not to influence
the structural behaviour, then a small-deflection/small-strain theory is pro-
duced in which, in particular, elastic instability (buckling) effects are ex-
cluded. If the loads and material are also such that the deformations are of a
linear elastic nature (as assumed throughout this volume), so that plasticity,
for example, does not occur, then the analysis of plates, shells and solids on
this basis is simply termed the theory of elasticity.

The purposes of the present chapter are to develop some fundamental
theory of elasticity ideas and relationships and to apply these to the analysis of
structural forms which are such that either the stresses or the strains are con-
fined to a plane. Chapter 2 considers line elements but again uses elasticity
theory, since the subject matter is torsion, for which it is not possible to
assume a simple relationship between the axial and cross-sectional displace-
ments in the case of non-circular sections. Chapter 3 deals with plates which
are normally loaded so that bending and twisting actions predominate. Shells
are discussed in Chapter 4, where the detailed treatment is restricted to
axisymmetric forms and loading. Finally, line elements are considered once
more in Chapter 5, which deals with the dynamic response of, mainly, skeletal
structures.

1.2 Elasticity theory
In structural analysis, the objective is to determine the response (deformations
and stresses) to a specified causation effect, which will here be taken to be

2

Advanced structural mechanics

W1 W2

W3

W2

dT

dN

A

B
0

(a) (b)

B
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applied loading but could, more generally, include temperature changes,
support movements and similar influences. This section defines the response
variables which are of interest in the theory of elasticity and establishes
general relationships between these variables, based on both geometrical and
elastic material law considerations.

1.2.1 Stress
The solid of Fig. 1.1(a) is considered to consist of the two parts A and B sepa-
rated by the plane shown dotted. The effect of part A on a small element dA of
the separation plane on B may be represented by a force, dP, and dP may be
represented by components dN and dT (Fig. 1.1(b)) which act along the
normal to the plane and within the plane respectively. The direct (normal) and
shear (tangential) components of stress at O are then defined to be

(1.1)

(1.2)

If a stressed element in a set of rectangular Cartesian axes is now consid-
ered, then the direct stress on the element may be represented by the three
pairs of self-equilibrating stress components shown, in their positive direc-
tions, in Fig. 1.2. The shear stress may be represented by the three sets of pairs
of stress components shown, also in their positive directions, in Fig. 1.3. In
Fig. 1.3, it should be noted that the two pairs of shear stress components
involved in each set are of equal magnitude. This complementary property of

3
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shear stress components is required for the moment equilibrium of the
element, since, for example, in Fig. 1.3(a), taking the element sides to be dx,
dy and dz:

By moments about the z-axis:

Hence

τyx = τxy

In Fig. 1.3, it should be noted that the planes on which the shear stresses act
are perpendicular to the plane formed by the pair of axes specified by the rele-
vant double suffix. Thus τyz, for example, acts on planes which are normal to
the y–z plane.

1.2.2 Displacements and strains

The deformation at any point of a body will be defined by its displacement
components u, v and w parallel to the x, y and z axes respectively. The defor-
mation of an element of a body will be represented by a set of strain compo-
nents corresponding to the stress components which have just been described.
If the deformation of an element in the x–y plane, for example, is considered
then it is possible to geometrically relate strain and displacement components.

In Fig. 1.4(a), direct strain in the x-direction is illustrated, extension being
considered positive so as to correspond to the tensile positive stress conven-
tion adopted earlier. The x-displacement component at the beginning of the
element is u and, since the rate of increase in u is mathematically represented
by ∂u/∂x, the total increase in u over the length of the element, dx, will be

4
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(∂u/∂x)dx. The x-direction strain may therefore be represented as

The shear strain illustrated in Fig. 1.4(b) may also be related to the displace-
ment components. It is first noted that positive shear strain is caused by posi-
tive shear stress (Fig. 1.3) and is defined as the change in the angle ABC in
Fig. 1.4(b). The shear stress components have, in fact, been taken such that a
positive shear stress causes a decrease in the relevant element angle closest to
(or furthest from) the origin. The expressions given in Fig. 1.4(b) for the u and
v displacements of A¢ and C¢ relative to B¢ follow from a similar mathematical
argument to that used for direct strain. Thus, to obtain the x-displacement of
A¢ relative to B¢ it is necessary to consider the rate of increase of u with y
which is given by ∂u/∂y, the total relative displacement then being as indi-
cated in the figure. A corresponding argument results in the expression shown
for the relative y-displacement of C¢ to B¢. Assuming small angles, the shear
strain may therefore be determined as

Hence
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From similar considerations to the above, the complete three-dimensional
strain–displacement relationships are

(1.3)

for direct strains and

(1.4)

for shear strains.

1.2.3 Stresses and strains
In seeking relationships between stresses and strains, material law consider-
ations must be employed. Under linear conditions, a direct stress produces a
proportional strain, so that, for a stress in the x-direction (Fig. 1.5), stress and
strain may, typically, be related by

where the material constant E is known as Young’s modulus or the modulus of
elasticity.

From experience of rubbery materials, it may however be visualized that a
positive x-direction stress will cause a contraction in the y-direction as well as
an extension in the x-direction. This phenomenon is known as the Poisson’s
ratio effect and the two strains are related by

where the material constant ν is known as Poisson’s ratio.

6

Advanced structural mechanics

y

x

σx σx

Fig. 1.5 x-direction stress

, ,x y z

u v w

x y z
ε ε ε

∂ ∂ ∂= = =
∂ ∂ ∂

xy

yz

zx

u v

y x

v w

z y

w u

x z

γ

γ

γ

∂ ∂= +
∂ ∂
∂ ∂= +
∂ ∂

∂ ∂= +
∂ ∂

x
x E

σ
ε =

σ
ε νε ν= - = - x

y x E

20



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:27

The effects of Poisson’s ratio are significant in the case of metals, which
have an average ratio of approximately 0.3, but are of less importance, and
can sometimes be neglected, for concrete and masonry, which, typically,
have ratios in the range 0.1–0.2. As already noted, rubber has a particularly
high ratio, approaching 0.5. If the general three-dimensional direct stress
case is considered (Fig. 1.2), then the total strain in any given direction may
be obtained by superimposing the individual strains in the specified direction
due to the three stress components. If a restriction is made to a homogeneous,
isotropic material, that is, one which is uniform throughout its volume and
has identical material properties in all directions, then, at any point in the
material

(1.5)

A linear relationship between shear stress and strain is also presumed, so that

(1.6)

where the material constant G is known as the shear modulus or modulus of
rigidity.

The three elastic material constants E, ν and G cannot, in fact, be specified
independently and it is shown in elementary strength of materials texts
(Megson, 1996) that

(1.7)

It is sometimes necessary to determine stresses from known strains, in
which case the dependent and independent variables of equations (1.5) and
(1.6) may be changed to give (as the reader may verify)

(1.8a)

(1.8b)
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1.3 Plane stress

1.3.1 Introduction

The relationships developed in the previous section provide a basis on which
specific, more restricted elasticity problems may be studied. The limitations
are imposed in the interests of simplicity, and perhaps the most straightfor-
ward case to study is that of plane stress in which all stresses other than those
acting in a particular plane are assumed to be zero. Plane stress occurs when a
thin plate is subjected to loading in its own plane only, say along its edges. The
faces of the plate are then free of normal or tangential stresses and, for a thin
plate, it may reasonably be presumed that this situation persists throughout the
plate thickness. A classic problem of this type is to determine the stress con-
centration around a hole introduced into the stressed hull of a ship or aircraft.
Similar stress concentrations occur around a notch or idealized crack and also
in the neighbourhood of re-entrant plate corners, all of which situations fall
within the scope of plane stress analysis.

Another way of producing plane stress problems is to take a plane line
element and make two of its leading dimensions be of the same order so as to
produce a plate problem. Thus, if the depth of the beam element of Fig. 1.6(a)
is made of the same order as the span, while the thickness remains small, then
a plane stress problem of the deep beam variety (Fig. 1.6(b)) is produced.
Deep beams cannot be accurately analysed by simple bending theory, since
loads tend to be resisted by internal ‘truss’ action (Fig. 1.6(b)) rather than by
the familiar combined shear and bending action of normal beam theory. Deep
beams occur in practice whenever loads are relatively large and spans short.
Typical examples are the crane supporting corbel and the pile cap of Fig. 1.7.

Even when the overall behaviour of line elements may be satisfactorily de-
scribed by simple theories, elasticity theory may be needed to investigate local
effects. Thus, while the tensile stress in the tie of Fig. 1.8(a) is uniform along
the major part of its length, a non-uniform stress distribution will exist on
cross-sections close to the ends, since the end cross-sections must be stress-
free, and high bearing stresses will exist at the points of load application. A
further example of an important local effect is provided by the simple beam of
Fig. 1.8(b). Normal bending theory predicts that the load is resisted by longi-
tudinal direct stresses and shear stresses, there being no direct stress in the ver-
tical direction. Clearly this is not the case in the neighbourhood of the applied
load (or near the supports) where direct vertical compressive stresses must
exist and can cause local buckling if the web is insufficiently stiff.

The region in which local effects need to be considered may be identified
from Saint–Venant’s principle. This principle states that if a loading system be
replaced by a statically equivalent system, then the response is unaffected at a
distance which is of the order of the length over which the statically equivalent
system is applied. So, if the load T in Fig. 1.8(a) were replaced by a statically
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equivalent set of uniform direct stresses of magnitude T/A distributed over the
end cross-sections, then uniform stress would persist throughout the tie, and
Saint–Venant’s principle indicates that the non-uniformity due to point appli-
cation of T can be expected to be small at a distance along the tie of about once
or twice its width.

1.3.2 Theory
If the faces of a plate are stress-free (Fig. 1.9), then only the three co-planar
stress components σx, σy and τxy are non-zero and these stresses may be con-
sidered to be uniformly distributed through the (small) plate thickness, t. The
plate displacement, at any given point, will be constant throughout its thick-
ness and will be in the plane of the plate. Thus, the displacement at any point
will be fully represented by the two displacement components u and v. The
determination of the stresses σx, σy and τxy and the displacements u and v
throughout the plate for a specified in-plane loading constitutes the general
plane stress problem.

It should be emphasized that the stress and displacement components deter-
mined will relate only to the chosen x- and y-axes. The components in any
other directions, say x¢ and y¢ of Fig. 1.10(a), may, however, be determined by
suitable resolution. In the case of stresses, it may be shown (Megson, 1996)
that there will exist two mutually perpendicular directions at any point, for
which the shear stress component disappears, leaving only two direct prin-
cipal stresses in these directions. The principal stresses may further be shown
to be the algebraically greatest and smallest stresses acting at the point. The
orientation angle of the principal stresses is given by

(1.9)
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The solution to equation (1.9) provides two mutually perpendicular orienta-
tion angles:

(1.10)

where –45° £ θ £ 45°. Using these two angles successively, the two principal
stresses are given by

(1.11)

The direction of the first principal stress makes an angle θ1 (clockwise posi-
tive) with the positive x-axis (Fig. 1.10(b)), and the direction of the second
principal stress is perpendicular to that of the first. As with the analysis of
skeletal structures, the solution of a plane stress problem requires simulta-
neous satisfaction of conditions of equilibrium, compatibility and material be-
haviour. The governing equations for these three sets of conditions are
therefore developed in the following sections.
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Equilibrium

Using the same sort of differential technique as with displacements and strains
(see Section 1.2.2), the variation of the plane stress components acting on a
rectangular element of size dx, dy (thickness, t) may be represented in the
manner shown in Fig. 1.11. In Fig. 1.11, it has been assumed, for simplicity,
that the plate is not subjected to body forces which are distributed throughout
its volume. Gravitational, pore pressure, magnetic and inertial fields all give
rise to body forces, for the treatment of which the reader is referred to more
advanced texts (e.g. see Timoshenko and Goodier, 1982). The equilibrium of
the element may be ensured by:

Resolving horizontal forces:

Whence

(1.12a)

Similarly, resolving vertical forces:

(1.12b)

Compatibility

In a state of plane stress, the deformation at any point may either be repre-
sented by the two displacement components u and v or by the three strain com-
ponents εx, εy and γxy and, by extraction from equations (1.3) and (1.4), these
variables are related by

(1.13)

The disparity in the numbers of the displacement and strain variables indicates
that a unique deformation may be specified by only two independent deforma-
tion variables and that the three strain variables must be inter-related. This is
indeed the case, since:

From equations (1.13)
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Hence

(1.14)

Equation (1.14) is the compatibility equation, since it expresses the geometric
integrity requirement that the plate material remain free from discontinuities
such as ‘gaps’ or ‘overlaps’ between adjacent elements.

Material laws

The relevant material laws assumed here are those of linear elasticity, and the
relationships for plane stress may be obtained by setting σz, τyz and τzx to zero
in the more general equations (1.5) and (1.6) to give

(1.15)

Also, if stresses are required in terms of strains, then, by changing the subjects
of equations (1.15),

(1.16)

The strain–stress relationships may be combined with the compatibility equa-
tion to produce a general condition in terms of the stress components. Thus,
substituting in equation (1.14) from equation (1.15) yields

(1.17)

But, from the equilibrium equations (1.12a) and (1.12b),

So that

(1.18)

Substituting in equation (1.17) from equations (1.18) and (1.7):
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Whence

(1.19)

Equation (1.19) is of the Laplace form and is of fundamental importance,
not only in elasticity but also in wave and flow mechanics as well as several
other physical fields.

Virtual work

In connection with the finite element method, it will be necessary to make use
of the principle of virtual displacements, and it is convenient to consider here
how internal virtual work may be determined for a plane stress system. An ex-
pression will therefore be established for the virtual work expended when the
plane stress system of Fig. 1.9 is subjected to a set of virtual strains (εx, εy, γxy)v.
It is first noted that only corresponding strains and stresses produce net work,
since, for example, x-direction strain produces no displacement in the direc-
tion of the normal y-direction stresses and the works done by the shear stresses
on the upper and lower horizontal edges of the element are equal and opposite.
Taking the element sides to be dx, dy and t, it is therefore found that, for
x-direction strain,

where dv is the volume of the element. Similarly,

In the case of work due to shear strain, the contributions from the distortions
shown in Figs 1.12(a) and 1.12(b) will be summed. Thus, for the distortion of
Fig. 1.12(a):

Similarly for the distortion of Fig. 1.12(b):

Hence

and, by summing contributions,

(1.20)

14

Advanced structural mechanics

σ ε ε σ
= ¥
= ¥ =

-direction virtual work force displacement

( d ) ( d ) dx xv xv x

x

t y x v

ε σ=-direction virtual work dyv yy v

τ α
τ α τ α

= ¥ = ¥¢
= =

ashear virtual work shear force AA ( d ) ( d )

d d d
xy

xy xy

t x y

t x y v

τ β=bshear virtual work dxy v

shear virtual work ( )d dxy xyv xyv vτ α β γ τ= + =

2 2

2 2
( ) 0x yx y
σ σ

Ê ˆ∂ ∂ + =+Á ˜Ë ¯∂ ∂

ε σ ε σ γ τ= + +total virtual work ( )dxv x yv y xyv xy v

28



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:27

Equation (1.20) therefore provides the required expression for the virtual
work undertaken by the stresses σx, σy and τxy acting on an element of volume
dv when the element is subjected to a set of virtual strains (εz, εy, γxy)v.

1.3.3 Stress function solution

To achieve a solution to a plane stress problem, it is necessary to satisfy simul-
taneously the equations of equilibrium (1.12), compatibility (1.14) and the
material laws (1.15) at every point in the plate and also to ensure that whatever
special conditions may exist at the edges (boundaries) of the plate are also sat-
isfied. Initially, the closed-form (analytical) solution of the governing equa-
tions by the methods of classical calculus will be considered. The most
convenient approach here is to make use of a stress function so that the equi-
librium equations are automatically satisfied and attention may be concen-
trated on the two remaining sets of conditions. In the plane stress case, this
desirable object may be achieved by defining a stress function, φ, such that, at
any point in the plate,

(1.21)

Substitution from equations (1.21) into the equilibrium equations (1.12)
proves the adequacy of the stress function. If these stress function expressions
are now substituted in the compatibility equation in terms of stresses (equa-
tion (1.19), which subsumes the material law conditions), the general plane
stress equation in terms of the stress function may be obtained as

(1.22)

Thus, if a stress function is found which satisfies equation (1.22) and also the
boundary conditions for a given plane stress problem, then the problem is
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solved, since the stress components may be obtained from equations (1.21),
the strains from equations (1.15), and, by integration, the displacements from
equations (1.13).

Direct solutions along these lines, using the methods of classical calculus,
are, however, extremely arduous in rectangular coordinates and the com-
monest approach is to use a semi-inverse method (Timoshenko and Goodier,
1982), in which an assumed form of stress function is employed (usually a
polynomial) which incorporates a number of undetermined coefficients.
The coefficients are determined by enforcement of the general plane stress
equation (1.22) and the boundary conditions. The stress function is then
fully defined and the solution proceeds as just described. Even with this ap-
proach, the problems which may be tackled are restricted to relatively
simple rectangular or triangular shapes. The use of different coordinate
systems allows the range of problems to be extended, but many features of
practical importance such as boundary irregularities, variable material prop-
erties, complex loadings or cut-outs cause insuperable difficulties. Non-
standard problems, the norm in practice, are therefore usually tackled by the
perhaps less elegant but more versatile numerical methods. The stress func-
tion approach can be adapted to the finite difference method but is limited by
the difficulties involved in expressing boundary conditions in terms of the
stress function and in automatically generating conditions along irregular
boundaries. The finite element method is much more amenable to general
automatic implementation and is therefore the usual current tool for plane
stress analysis.

1.4 Finite element method
The reader who has not studied the finite element method previously is
referred to Appendix B which gives an outline of the method and defines the
notation used here where the application of the method to plane stress analysis
is presented.

1.4.1 Triangular element theory

As noted above, the distortion of a point, under plane stress conditions, may
be represented by the two displacement components u and v in the x- and y-
directions respectively. Thus, for a triangular element (Fig. 1.13), each node
has two displacement components and the total number of nodal displacement
components to be considered is six. In choosing a polynomial displacement
function to represent the variation of the displacements throughout the
element, just six undetermined coefficients can therefore be included. Further,
since u and v are independent of each other, their polynomial functions should
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not incorporate the same coefficients so that three distinct coefficients are
available for each of the two displacement component polynomials. The sim-
plest polynomial involving three coefficients in the position variables x and y
is linear, so it will be assumed that the displacement of a general point, P,
within the element may be represented by

(1.23)

Equations (1.23) may be expressed in the matrix form

(1.24)

where {α} = {α1, α2, …, α6}
T is the column vector of undetermined

coefficients.
By successively letting P be the three element nodes i, j and m, the six nodal

displacement components may be related to the six undetermined coefficients
by

(1.25)

For convenience in inverting matrix [Ce], equation (1.25) may be temporarily
rearranged as
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(1.26)

By using the co-factor (Stroud, 1995) or other method of inversion, the poly-
nomial coefficients may now be expressed in terms of the element nodal dis-
placements as shown by

(1.27)

where

which may be shown to be equal to the area of the triangular element i, j, m.
Reverting to the original ordering of the variables,

(1.28)

It is now necessary to relate the strain components at P which, for plane
stress, are εx, εy, γxy, to the element nodal displacement components. This may
be achieved by first substituting the expressions for u and v from equation
(1.24) into equations (1.13) to give
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(1.29)

Hence, using equation (1.28),

(1.30)

It should be noted that the strain matrix [B] is independent of the variables x
and y and hence of the position of P. The matrix [B] is, in fact, a function of the
known nodal coordinate positions only and hence, for a given element, [B] is a
constant matrix and the strain is therefore constant throughout the element.
For this reason, the triangular plane stress element is often referred to as the
constant-strain element. Equations (1.16) provide the elasticity relationships,
which, recast in matrix form and incorporating equation (1.7), are

(1.31)

To relate the stress components at P to the nodal displacement components,
substitution from equation (1.30) into equation (1.31) gives

(1.32)

Having related both the stress and the strain components at P to the element
nodal displacement components by equations (1.30) and (1.32), the remainder
of the analysis follows directly from the general finite element theory given in
Appendix B. In particular, it should be noted that the stress and strain vectors
defined above do satisfy the requirement (Appendix B, equation (B.7)) that
{ε}T{σ} represent a work scalar (see equation (1.20)), and the principle of
virtual displacements may therefore be invoked to establish the element stiff-
ness matrix as (equation (B.11)):

(1.33)
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However, for this particular element, it has already been shown that [B] is in-
dependent of x and y as, if a homogeneous material and uniform element are
presumed, are [D] and t, hence

(1.34)

where A is the area of the triangular element.
For the case of zero Poisson’s ratio, an explicit form of the plane stress

element stiffness matrix is given as equation (1.35) (page 21); for the non-zero
Poisson’s ratio case, the reader is referred to other texts (Ross, 1996). As with
all stiffness matrices, the reciprocal theorem assures the symmetry of the
matrix. The element stiffness matrix of equation (1.35) is, however, given in
full for convenience of use.

For practical analysis purposes, finite element theory, such as the above, is
incorporated into completely automated, standard, analysis ‘packages’ which
are mounted on computers. The function of the engineer is to idealize the
structure, possibly to devise a suitable element sub-division and, most impor-
tantly, to critically assess the validity of the results against engineering judge-
ment. The element sub-divisions required for acceptable accuracy are always
so fine as to render hand solutions impractical. However, a full understanding
of the method, including the manner in which the complete structure stiffness
matrix is assembled from the element stiffness matrices, is perhaps most
easily obtained from numerical examples. The following hand solution is
therefore undertaken to illustrate the basic theory described above.

1.4.2 Example 1.1 – concrete cube analysis

One form of concrete test is to subject a cube to a central compressive line load
as illustrated in Fig. 1.14. This is usually done by placing square steel rods

20

Advanced structural mechanics

1 mm

150 kN

150 kN 

150 mm

Fig. 1.14 Concrete cube test

T T[ ] [ ] [ ][ ] d d ( )[ ] [ ][ ]k B D B t x y At B D B= =ÚÚ

34



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:27

21

Elasticity

(1
.3

5)

w
he

re
X

ji
=

(x
j
–

x i
),

Y
m

i
=

(y
m

–
y i

),
et

c.

[
]

.
.

.
.

k

E
t A

Y
X

X
Y

Y
Y

X
X

X
Y

Y
Y

jm
m

j
m

j
jm

jm
m

i
m

j
im

m
j

m
i

ij

=

+
+

4

0
5

0
5

0
5

0
5

2
2

jjm
ji

m
j

m
j

ij

m
j

jm
m

j
jm

im
jm

im
m

j

X
X

X
Y

X
Y

X
Y

X
Y

X
X

+
+

0
5

0
5

0
5

0
5

0
5

2
2

.
.

.
.

.
++

+
+

0
5

0
5

0
5

0
5

0
5

.
.

.

.
.

Y
Y

X
Y

X
X

Y
Y

Y
Y

X
X

X
jm

m
i

ji
jm

ji
m

j
ij

jm

jm
m

i
m

j
im

im
YY

Y
X

X
Y

Y
Y

X
X

X
Y

X
Y

jm
m

i
im

im
m

i
ij

m
i

im
ji

im
ij

m
j

m

2
2

0
5

0
5

0
5

0
5

0
5

+
+

.
.

.
.

.
ii

im
m

j
jm

m
i

im
m

i
im

m
i

ji
m

i
im

ji
X

X
Y

Y
X

Y
X

Y
X

Y
X

X
+

+
+

0
5

0
5

0
5

0
5

0
5

2
2

.
.

.
.

.
YY

Y

Y
Y

X
X

X
Y

Y
Y

X
X

X
Y

Y
ij

m
i

ij
jm

ji
m

j
ji

jm
ij

m
i

im
ji

ji
m

i
+

+
0

5
0

5
0

5
0

5
.

.
.

.
iij

ji
ji

ij

m
j

ij
ji

m
j

ij
jm

im
ij

im

X
X

Y

X
Y

X
X

Y
Y

X
Y

X

2
2

0
5

0
5

0
5

0
5

0
5

+
+

.
.

.
.

.
XX

Y
Y

X
Y

X
Y

ji
ij

m
i

ji
ij

ji
ij

+
+

È ÎÍ Í Í Í Í Í Í Í

˘ ˚˙ ˙ ˙ ˙ ˙ ˙ ˙ ˙
0

5
0

5
0

5
2

2
.

.
.

35



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:27

between the cube and the platens of the testing machine as shown in Fig.
1.15(a). The object of the present example is to analyse a typical 150 mm cube
under such loading conditions and to assess the likely failure behaviour of the
cube in the light of the results obtained. The total load applied will be taken as
150 kN and plane stress conditions will be assumed with E = 30 kN/mm2

and ν = 0.
It may not be immediately apparent as to how as solid an object as a con-

crete block may be analysed as a plane stress problem. However, it should be
clear that, for the given loading, the stress distribution in the plane of a thin
slice such as that shown in Fig. 1.14 will be independent of the position of the
slice. Furthermore, it may be shown (see Section 1.5.1) that, for zero Pois-
son’s ratio, the normal direct stress on the slice will be zero and plane stress
conditions will therefore prevail. For convenience, a 1 mm slice of the
cube (Fig. 1.14) will be considered, so that the load on the slice is 1 kN
(Fig. 1.15(b)). Taking account of symmetry, only one quarter of the slice need
be analysed and this will be divided into triangular elements as shown
in Fig. 1.15(b).

Idealization

The quarter-cube slice to be analysed is shown in Fig. 1.16 with a system of
node and element numbering. The numbering systems are arbitrary, excepting
that there is some advantage in this case in making the element numbering
such that all the even-numbered elements are similar and that the same applies
to the odd-numbered elements. A system of i, j and m element node designa-
tion is also shown. Again, odd- and even-numbered elements have been
treated consistently. The choice of an element node i is arbitrary but, once des-
ignated, j and m must follow in an anti-clockwise sense, since the theory was
based on this assumption (Fig. 1.13). An arbitrary, but convenient, set of axes
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Fig. 1.15 (a) Cube test. (b) Cube idealization
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are shown, as is the load acting on the quarter slice, which, because of the use
of symmetry, is one half the load applied to the full slice.

The first stage of the analysis is to evaluate the element stiffness matrices
for the odd- and even-numbered elements. These element stiffness matrices
will then be assembled into structure stiffness equations, the solution of which
provides the nodal displacements. Finally, the element stresses are deter-
mined from the nodal displacements.

Element stiffness matrices

For an odd-numbered element, using kilonewton and millimetre units
throughout:

The strain–nodal displacement matrix, [B], for the element may be obtained
by substitution in equation (1.30):

(1.36)

where A = element area = 37.52/2 mm2.
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The stress–strain (elasticity) matrix, [D], is produced by substituting the
specified material constants in equation (1.31):

(1.37)

The element stiffness matrix then follows by substitution for [B] and [D] from
equations (1.36) and (1.37) in equation (1.34) to give

Since the pre-multiplication of a matrix by a diagonal matrix results in scaling
the rows of the matrix by the corresponding diagonal terms:

Whence

(1.38)
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Following the same procedure for the even-numbered elements, it may be
shown that

(1.39)

The above element stiffness matrices could, of course, have alternatively
been produced by direct substitution in equation (1.35).

Structure stiffness matrix

The element stiffness matrices link element nodal forces to element nodal dis-
placement components. The element nodal forces must be such as to produce
a quantity of work (see Appendix B) when the force components are multi-
plied by the corresponding displacement components. Element nodal force
components in the x- and y-axes (Fig. 1.13) will therefore correspond to the
chosen u and v displacement components, and, by subdividing [k], equation
(B.11) may be rewritten as

(1.40)

where

the force components at node i;

and kmj relates force components at node m due to displacement at node j.
The structure stiffness equations relate the total nodal force components for

the complete structure to the nodal displacement components for the com-
plete structure. Since there are nine nodes in the present analysis and each
node has two force (or displacement) components, there will be a total of
18 stiffness equations. However, it is convenient initially to construct the
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stiffness matrix in terms of the element stiffness sub-matrices of equation
(1.40). Since these sub-matrices are 2 ¥ 2, the structure stiffness matrix, so
formed, will be 9 ¥ 9. The general form of the structure stiffness equations is
then

(1.41)

where

the total force components at node 1.
To construct the structure stiffness matrix in terms of the element stiffness

sub-matrices, each node in turn is considered and the sum is obtained of the
force contributions made at the node by the elements which the node intercon-
nects. Thus, node 1 connects elements 1 and 2 so that it is the sum of the forces
produced at node 1 by each of these two elements which gives the total force at
the node.

For element 1, since the i, j, m designation for this element is 1, 5, 2 (Fig.
1.16), its element stiffness equations, from equation (1.40), may be written as

(1.42)

The first of the above set of three equations relates the forces at node 1 to the
element nodal displacement components and may be written out in expanded
form as

(1.43)

where 1 indicates evaluation for element 1.
It should be noted that, since node 1 is node ‘i’ for element 1, it is the sub-

matrices with initial suffix i which are involved in equation (1.43). The first
row of the structure stiffness matrix may now be partially assembled by allo-
cating the sub-matrices of equation (1.43) to their appropriate column loca-
tions in the structure stiffness matrix. The columns of the structure stiffness
matrix are in nodal displacement order so that it is the displacement suffixes in
equation (1.43) which identify the relevant columns. Thus, kii is located in
column 1 of the structure stiffness matrix; kij is located in column 5; and kim is
in column 2. Hence, the partially completed first structure stiffness equation
becomes
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(1.44)

where {Δ} = {∂1, ∂2, …, ∂9}
T.

Element 2 has its node ‘m’ at node 1 and it is therefore the third of its
element stiffness equations (equation (1.40)) which relates to the element
forces at node 1. The i, j, m designation for the element (Fig. 1.16) is 4, 5, 1 so
that the expanded relationship between the element forces at node 1 and the
element nodal displacement components is

(1.45)

The total force components at node 1 are obtained by summing the contri-
butions from elements 1 and 2. Thus, adding equation (1.45) to equation
(1.44), which involves allocating the stiffness sub-matrices of equation (1.45)
to their appropriate columns in equation (1.44), gives the completed first stiff-
ness equation as

The same procedure is followed for all the nodes, nodes 2 and 4 having
three contributory elements, node 5 six elements, and so on. In this way, the
complete structure stiffness matrix, in sub-matrix form, may be built up as
given by equation (1.46) (page 28).

Several general properties of stiffness matrices may be used to check a
matrix such as that of equation (1.46). The symmetrical property is perhaps
the most basic and may be used either for checking purposes or to reduce the
labour involved in matrix assembly by limiting the matrix formation to an
upper (or lower) triangular matrix.

Second, the number of sub-matrices in any diagonal position will be equal
to the number of elements which the relevant node interconnects, since dis-
placement of a node will produce force contributions at the same node from all
the elements joined to it. Thus, node 6 of the example (Fig. 1.16) connects
three elements, and three sub-matrices are therefore located in the diagonal
position of the sixth row of equation (1.46). Also, all the sub-matrices on the
diagonal will possess repeated suffixes, since the forces and displacements
they relate occur at the same node.

Off-diagonal sub-matrices will not involve repeated suffixes since the
related forces and displacements are at separate nodes. Further, the number of
sub-matrices in any off-diagonal location will be equal to the number of ele-
ments which connect the node specified by the matrix column to the node
specified by the matrix row. For a plane set of elements, the maximum number
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of elements which can so connect two nodes is two, so that a maximum of two
sub-matrices can occur in any off-diagonal position. For example, with refer-
ence to Fig. 1.16, two elements connect node 5 to node 2 so that two sub-
matrices are found in the fifth column of row two in equation (1.46).

To produce the full stiffness matrix in numeric form, substitution is made
for the element sub-matrices of equation (1.46) from equation (1.38) or (1.39),
according to whether an odd- or an even-numbered element is being dealt
with.

Thus, for example,

and

The resulting complete structure stiffness matrix is given by equation (1.47)
(page 30).

Solution of the stiffness equations

Prior to solving the structure stiffness equations, the appropriate boundary
restraints must be applied to the stiffness matrix. Boundary restraints need
particular care when, as here, use of symmetry is being made. If the centre
point of the block (Fig. 1.15(b)) is fully restrained to provide a reference point,
then the vertical centre-line of the cube must remain vertical under sym-
metrical loading and the horizontal centre-line must remain horizontal. These
conditions imply that there is no horizontal displacement along the vertical
centre-line (although vertical displacement can occur along this line) and,
similarly, that vertical movements cannot take place along the horizontal
centre-line (but horizontal movements can). In terms of the chosen nodal
numbering, these conditions require that

(1.48)

Restraining boundary displacement components implies that, at the rele-
vant boundary points, there are restraint forces which physically represent the
reactions from the adjacent portions of the block. By making these reaction
components and the applied load equivalent to the total nodal forces, the stiff-
ness equations may be represented by equation (1.49) (page 31). In equation
(1.49), the restrained displacement components (equation (1.48)) have been
set to zero. Since these displacement components are effectively determined,
while the reaction components are unknown, the equations involving the
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unknown reactions and the columns of the stiffness matrix corresponding to
the zero displacements may be deleted, to give a constrained set of stiffness
equations which is presented as

(1.50)
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A computer solution of equations (1.50), augmented by the restrained dis-
placement components, is given in Fig. 1.17. Once a finite element displace-
ment solution has been achieved, it is essential that the values are carefully
inspected for ‘reasonableness’. Order of magnitude and general directions of
movement apart, checks are most easily made by sketching a displacement
diagram of the type shown in Fig. 1.17. The diagram does agree with expecta-
tions in that the greatest vertical deflection occurs under the load, while
reducing vertical displacements are found at increasing distance from the
loaded node. It should also be noted that the horizontal displacements are
inward at the top of the block, but outward along the centre-line.

Element stress solution

Equation (1.32) relates element stresses to element nodal displacements.
Thus, for an odd-numbered element, substituting from equations (1.36) and
(1.37) in equation (1.32) gives

Whence

(1.51)

Similarly, for an even-numbered element,

(1.52)

Equations (1.51) and (1.52) allow the element stresses to be determined once
the nodal displacement vector for a particular element has been extracted from
the structure nodal displacement component solution (Fig. 1.17). Thus, for
element 1,

So that, from equation (1.51),
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Whence

Repeating this procedure for the remaining elements, the full set of element
stresses can be shown to be as given in Table 1.1.

The stress components of Table 1.1 confirm expectations in that the vertical
direct stress components are all compressive and increase in magnitude
towards the region under the applied load. The horizontal direct stress compo-
nents are compressive above the diagonal connecting nodes 1–5–9 (Fig. 1.16)
and tensile below this line. This behaviour may be directly related to the
displacement solution in this case, since, for zero Poisson’s ratio, stress is
directly related to the strain in the relevant direction and the presence of
horizontal contraction and extension, respectively, above and below the
quarter-cube diagonal may be confirmed from the displacement diagram
(Fig. 1.17).

The stress solution is, however, generally more easily inspected if ex-
pressed in terms of principal stresses. Equations (1.9) and (1.11) have been
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Table 1.1 Element stresses (N/mm2)

Element σx σy τxy

1 –6.53 –3.45 7.29
2 1.67 –19.37 3.43
3 –0.40 –0.40 0.40
4 –0.45 –3.45 –1.16
5 1.67 –6.42 2.66
6 3.20 –13.28 0
7 –0.45 –0.54 1.30
8 1.30 –6.42 –0.77
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used to determine the principal stress directions and values corresponding to
the stress component solution of Table 1.1. The resulting values are shown on
a vector principal stress plot as Fig. 1.18, where the stresses are located at the
element centroids, this being usually considered the most appropriate location
for the stresses of a constant stress element.

As with the stress components, the magnitudes of the principal stresses
(Fig. 1.18) decay with distance from the point load. In each element, the nu-
merically greater principal stress is compressive and acts (with the exception
of elements 4 and 8) towards the position of the point load. This is the general
form of behaviour one might expect, but, of equal significance in view of the
low tensile strength of concrete, the smaller principal stresses are tensile. The
likely mode of failure of the block is therefore by tensile cracking initiated at
the point of greatest tensile principal stress, which the analysis indicates is in
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Fig. 1.19 Splitting test
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Fig. 1.18 Principal stress diagram
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the element closest to the centre of the complete block. This is indeed the type
of failure found experimentally, where this form of ‘splitting’ test results in
the formation of a vertical tensile crack (Fig. 1.19) and can be used to estimate
the tensile strength of concrete.

1.4.3 Finite element types
The triangular constant-strain element used above is one of the simplest ele-
ments which may be employed for plane stress analysis but many more possi-
bilities exist. Other element types may be based on different geometric shapes
of element, a rectangle being an obvious possibility. For a rectangular element
(Fig. 1.20(a)), there are eight nodal displacement components in total (two at
each of the four nodes), and eight undetermined coefficients are therefore
used in the displacement function (equation (B.1)). As usually formulated, the
resulting finite element is such that strain, and stress, vary linearly over the
element. This represents an enhancement over the constant-strain–stress rep-
resentation of the triangular element, but is obtained at the expense of reduced
geometric freedom, since rectangular elements cannot easily model irregu-
larly shaped plates, and the possibilities for the production of graded, irregular
element meshes are much more limited than in the case of triangular elements
(Fig. B.1). If it is desired to retain the triangular shape but improve the accu-
racy of the representation, then additional, mid-side nodes may be used (Fig.
1.20(b)) to give a total of 12 nodal displacements and a similar number of un-
determined coefficients.

A further refinement is to employ a transformation such that the element is
formulated in a set of local element coordinates and is then mapped onto its
true structural position in a set of global coordinates (Fig. 1.21). The mapping
should be such that the nodes are exactly mapped onto their actual positions,
while other element locations will generally be approximately positioned.
One advantage of such a mapping is the ability it provides for the better ap-
proximation of curved boundaries. An elegant approach to this mapping oper-
ation is to use the same function for the transformation as is used for the
displacement function and elements so derived are termed isoparametric
(Zienkiewicz and Taylor, 1989).
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(a) (b)

Fig. 1.20 Element types: (a) rectangular; (b) triangular with mid-side nodes
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If an isoparametric transformation is applied to a four-noded rectangular
element, then the normal formulation for this element utilizes linear displace-
ment functions along the element boundaries. Consequently, the
isoparametric transformation will also be linear along the boundaries and will
allow the rectangular element to model a quadrilateral area on the structural
mesh (Fig. 1.21(a)). Similarly, a rectangular element with mid-side nodes
uses a quadratic displacement function along its edges, and the corresponding
transformation results in a structural mesh shape with curved boundaries (Fig.
1.21(b)), so permitting actual curved edges to be represented as a series of
quadratic approximations by the elements located along the edge. The versa-
tility and accuracy of this eight-noded isoparametric element has made it one
of the most popular in practice. The formulation and use of the element is
given in the following section.

1.4.4 Eight-noded isoparametric element

The concrete splitting test described in relation to testing a concrete cube in
example 1.1 is in fact more usually undertaken with a cylindrical specimen.
Should it be required to analyse this form of the test using triangular elements,
then a mesh such as that shown in Fig. 1.22(a) could be employed but the
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Fig. 1.21 Isoparametric elements: (a) linear; (b) quadratic
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circular boundary would be rather crudely approximated. Isoparametric ele-
ments provide the opportunity for much better boundary representation (Fig.
1.22(b)) and will, in general, produce a more accurate solution both for this
reason and also because the element is more powerful.

Theory

A central concept of the eight-noded isoparametric element is that, for sim-
plicity, its properties are established with reference to a basis element and the
properties are subsequently mapped (Fig. 1.21) onto the geometry each
element actually occupies in the finite element mesh. For the typical square
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(a) (b)

Fig. 1.22 Element meshes: (a) triangular; (b) isoparametric
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Fig. 1.23 Basis element
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basis element shown in Fig. 1.23, there are eight nodes with two displacement
components (u, v) at each node, so that a total of 16 undetermined coefficients
can be used in the displacement component polynomials, or eight to each of u
and v. The lowest order of polynomial containing eight coefficients, which is
also symmetric in x and y, is to take

(1.53)

and

In the following, the formulation will be established with respect to the u dis-
placement component and the x-coordinate, since v, y expressions may be
inferred from the corresponding u, x ones. Thus, by letting the general point P
take the positions of the eight element nodes, i–p, in turn, the displacement
components may be related to the undetermined coefficients by

(1.54)

where {αu} = {α1, α2, …, α8}
T, the column vector of undetermined u

coefficients.
A computer inversion of [Ce] gives

(1.55)

The determination of the strain components requires the evaluation of
∂u/∂x, ∂u/∂y, which poses some immediate problems since the axes ξ and η
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are currently being employed. To overcome this difficulty, the chain rule of
differentiation may be used to give

(1.56)

or

(1.57)

If it is presumed for the moment that it is possible to evaluate the Jacobian
matrix, [J], and that [J] is non-singular, then, since u derivatives with respect
to ξ and η are readily available from equation (1.53), the x- and y-derivatives
may be obtained as

(1.58)

The evaluation of [J] requires the ξ- and η-coordinates to be mapped onto the
x, y system. The ‘iso-’ prefix in the term isoparametric comes from the
concept of using the same function for this mapping as that used for the dis-
placement function (equation (1.53)). Thus, it is assumed that

(1.59)

and

Just as the displacement components are made to coincide exactly with the
nodal components, so the nodal geometric components are made to coincide
exactly with the nodal coordinate positions. Hence

(1.60)

where

Now, from equation (1.59),
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(1.61)

But, using equations (1.60) and (1.55),

(1.62)

where

The x-derivatives provided by equation (1.62), together with the corre-
sponding y-derivatives, enable the Jacobian matrix to be evaluated at any
given point within the isoparametric element from equation (1.57). In turn, the
Jacobian allows the u displacement derivatives with respect to x and y to be
obtained from equation (1.58), since, by the iso- nature of the formulation, the
derivatives with respect to ξ and η are given (see equation (1.62)) by

(1.63)

Once the u displacement derivatives have been found, the v ones follow by
correspondence and the strain matrix, [B], is obtained by using the standard
plane stress expression (equation (1.13))

(1.64)
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The standard concepts of the finite element method may then be invoked (see
Appendix B) but require some modification to adapt the method to ξ- and η-
coordinates and also due to the fact that [B] is no longer constant, as with the
previous triangular element, but, as may be seen from equation (1.63) and the
form of [S] (equation (1.61)), a fairly complex function of ξ and η. To cope
with these features, the standard element stiffness relationship (equation
(B.11)) may be first converted to ξ- and η-coordinates by further use of the
Jacobian matrix, since it may be shown (Stroud, 1995) that

(1.65)

Thus

(1.66)

Equation 1.66 will obviously reflect [B] and be an even more complicated
function of ξ and η than [B] itself. It is therefore necessary to resort to numer-
ical integration to evaluate the integral of equation (1.66), and Gaussian
integration is normally employed for this purpose. The Gauss method
(Zienkiewicz and Taylor, 1989) requires the function to be integrated to be
evaluated at a number of Gauss points. The number of points employed can be
varied according to the accuracy desired but a common choice is nine points.
Once the number of points has been selected, the integration rule designates
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the position of these such that optimal accuracy results, and, for the basis
element (Fig. 1.24(a)) equation (1.66) would be evaluated as

(1.67)

where the positions of the Gauss points and the values of the weights, wi, are,
for the nine-point rule, to be taken as given in Table 1.2.

Application to cylinder analysis

Since it is more powerful, the isoparametric element is consequently much
more complex than the linear triangular type and is certainly not intended for
hand calculations. However, for demonstration purposes only, the very sim-
plest one-element isoparametric representation of the quarter-cylinder anal-
ysis (Fig. 1.24(b)) will be undertaken in outline.

For this element, the nodal x-coordinates are given by

(1.68)

and at Gauss point 1, where ξ = η = –0.7746,

(1.69)

Using similar results for the derivatives of y, the Jacobian matrix becomes
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Table 1.2 Gauss point positions and weights

i ξi ηi
wi

1 –0.7746 –0.7746 0.3086
2 0 –0.7746 0.4938
3 0.7746 –0.7746 0.3086
4 –0.7746 0 0.4938
5 0 0 0.7901
6 0.7746 0 0.4938
7 –0.7746 0.7746 0.3086
8 0 0.7746 0.4938
9 0.7746 0.7746 0.3086
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(1.70)

Hence

(1.71)

Using equation (1.71), and the corresponding result for the v-derivatives,
allows the strain matrix, [B], to be obtained by substitution in equation (1.64).
Equation (1.67) then provides the contribution from Gauss point 1 to the
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Table 1.3 Comparative displacement solutions

Node (refer to
Fig. 1.16)

Displacement (¥10–3 mm)

8 tri. 9 iso. 16 iso. 64 iso.

1 u 0 0 0 0
v –40.82 –76.72 –76.76 –91.47

2 u –8.16 –10.56 –10.59 –10.92
v –12.33 –10.11 –10.14 –10.10

3 u –8.66 –9.13 –9.20 –9.24
v –1.17 2.53 2.46 2.48

4 u 0 0 0 0
v –16.60 –18.11 –18.18 –18.06

5 u 2.08 1.80 1.81 1.82
v –8.03 –7.72 –7.73 –7.75

6 u 1.51 1.23 1.34 1.33
v –0.67 1.29 1.27 1.27

7 u 0 0 0 0
v 0 0 0 0

8 u 4.00 3.89 3.97 3.97
v 0 0 0 0

9 u 5.62 4.70 4.66 4.66
v 0 0 0 0
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element stiffness matrix, and the whole procedure must be repeated at the
other eight Gauss points to complete the stiffness matrix computation. Solu-
tion of the stiffness equations will then produce the nodal displacement
values. Element stresses are obtained from the general relationship
{σ} = [D][B]{δe}(equation (1.32)). Since the strain matrix is available at the
Gauss points, these are the obvious, and, in fact, by far the most accurate posi-
tions at which to calculate the stresses. Computer packages therefore calculate
the stress components at Gauss points but will then normally extrapolate these
values to the nodes of the element and may undertake various other ‘smooth-
ing’ operations, to ensure, for instance, that stresses are continuous between
elements, which would not otherwise necessarily be the case.

1.4.5 Assessment of solution accuracy
Commercial packages often provide ‘error estimators’ which give an indica-
tion of the likely error in the results, particularly stresses, generated by an
analysis. There are then three principal ways in which the accuracy of a finite
element analysis may be improved. The simplest is to make the mesh finer so
that smaller elements are used. The elements may also be graded so that a
closer mesh is formed in areas where rapid change in strain is expected. Such
regions will be the most difficult to model and will have the greatest signifi-
cance on the overall accuracy achieved. The final possibility is to employ
more powerful elements, fewer of which may be needed. Some packages
provide ‘adaptive meshing’, which automatically generates an enhanced
mesh in order that improved accuracy can be obtained.

The application of these ideas for improved accuracy will be applied to the
concrete block analysis of example 1.1 to assess the adequacy of the solution
obtained previously, which was based on eight triangular elements.

The quarter block (Fig. 1.15) is now divided into a mesh of nine rectangular
elements (Fig. 1.25(a)), graded such that the mesh is finest in the neighbour-
hood of the point load, where intuition and the previous solution suggest that
the strain changes most quickly. A quadrilateral isoparametric element with
mid-side nodes was used for this solution, and comparative nodal displace-
ments are given in Table 1.3.
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(a) (b) (c)

Fig. 1.25 Element meshes
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It will be seen that the displacements produced by the two solutions (‘8 tri.’
and ‘9 iso.’ in Table 1.3) generally correspond in sense and order of magni-
tude, but otherwise differ markedly, this being most pronounced at node 1, to
which the load was applied. The displacement under a perfect point load is
theoretically indeterminate, and the discrepancy at node 1 may therefore be
disregarded. To resolve the remaining differences, a further isoparametric
analysis was undertaken using the finer net of Fig. 1.25(b), and the displace-
ment results are given in Table 1.3 under the column headed ‘16 iso.’. These
latter two sets of displacements correlate well, and the corresponding nodal
principal stress values are given in Table 1.4.

The principal stress values derived from the two analyses (‘9 iso.’ and ‘16
iso.’ in Table 1.4) correlate less well than the displacement solutions, so that a
further, more refined analysis was performed in which the quarter block was
divided into 64 quadrilateral isoparametric elements as shown in Fig. 1.25(c).
The displacements and principal stresses resulting from this analysis are also
presented in Tables 1.3 and 1.4 respectively. There is good agreement with the
displacement solutions from the two previous isoparametric solutions, and the
principal stresses correlate with those of the 16-element solution in regions of
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Table 1.4 Comparative principal stresses

Node (refer to
Fig. 1.16)

Principal stress (N/mm2)

9 iso. 16 iso. 64 iso.

1 σ1
1.04 1.00 –1.57

σ2
–149.3 –149.0 –300.7

2 σ1
6.18 6.35 3.48

σ2
–1.71 –2.37 –0.17

3 σ1
1.31 0.33 –0.09

σ2
–0.36 –0.39 –0.12

4 σ1
2.80 2.54 4.06

σ2
–15.2 –15.7 –18.0

5 σ1
0.40 0.41 0.54

σ2
–6.22 –5.99 –6.13

6 σ1
1.59 1.80 1.73

σ2
–0.22 0.10 0.02

7 σ1
4.79 4.19 4.24

σ2
–11.94 –12.5 –12.8

8 σ1
1.58 1.63 1.60

σ2
–7.30 –6.82 –6.77

9 σ1
0.64 0.44 0.46

σ2
–0.43 –0.09 –0.02
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the block remote from the load. Close agreement will never be obtained at the
load position, but it is of some interest that the discrepancies persist until the
mid-points of the quarter-block sides (nodes 2 and 4 in Fig. 1.16).

A principal stress diagram based on the 64-element results is given in Fig.
1.26, and it may be seen that all the compressive principal stresses are inclined
towards the general direction of the load, without the occasional anomalous
behaviour detected in the earlier triangular element analysis (Fig. 1.18). From
the material behaviour point of view, the final analysis does substantiate ex-
perimental evidence that the greatest tensile principal stress is located at the
centre of the block, and not at node 2 as indicated by the 16-element analysis.
The 16- and 64-element analyses correlate in respect of the magnitude of this
maximum tensile stress which, under increasing load, will initiate the splitting
failure referred to previously.

The general conclusions to be drawn from this example assessment of solu-
tion accuracy are threefold. First, in the absence of prior experience, progres-
sion to successively finer nets is essential to ensure confidence in solution
accuracy. Second, correlation of displacements is an indication, but not a
guarantee, of stress correlation. Finally, solutions will generally not be reli-
able in the immediate vicinity of point loads. If this latter feature is of signifi-
cance, then point loads should be represented as pressure loads over the length
they can be expected to be applied to in practice. A detailed analysis of the
area local to the load should then be undertaken using a fine element mesh.
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Fig. 1.26 Principal stress diagrams
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1.5 Plane strain

1.5.1 Introduction
Just as stresses may be confined to act within a plane, so strains may be simi-
larly restricted, giving rise to problems of plane strain. Plane stress is associ-
ated with elements in which the thickness of the element is of an order smaller
than its other dimensions, while the reverse applies in plane strain, in that the
thickness is of an order greater than the cross-sectional dimensions. The other
requirements for plane stress apply equally to plane strain, namely that the
loading on all cross-sections should be the same and should act in the plane of
the cross-section.

Plane strain conditions are encountered in practice in the analysis of long
dams, pipelines, culverts and other structures (Fig. 1.27). To appreciate that
these forms of structure and loading do imply a plane strain condition, con-
sider three equal, adjacent, thin slices from a typical structure (Fig. 1.27).
Then, given the constancy of the cross-section and loading along the length of
the structure, the strains must be similar for each of the slices. However, equal
longitudinal extensional strains in the outer slices would imply a dissimilar
contraction in the central slice. Conversely, similar longitudinal contractional
strains in the outer slices imply an extension of the central slice. Hence it must
be concluded that direct longitudinal strain cannot exist in such circum-
stances, and the situation does indeed resolve itself into one in which the
strains are confined to the plane of the cross-section, since the symmetrical,
co-planar nature of the loading and the cross-sections also prevents the devel-
opment of shear strains other than in the x–y plane.

To summarize, plane stress is characterized by the three stress components
σx, σy and τxy which act in the x–y plane. The direct stress components will, in
general, produce strains in the normal z-direction by the Poisson’s ratio effect
but the stress component in this direction will be zero everywhere. Plane
strain, on the other hand, is characterized by the three co-planar strain compo-
nents εx, εy and γxy, with zero strain in the longitudinal (z-) direction, but, as is
shown below, longitudinal direct stress components will generally exist for
non-zero Poisson’s ratio.
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Fig. 1.27 Dam structure
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1.5.2 Stresses and strains

By using the zero z-direction strain condition in the relevant (third) stress–
strain relationship from general elasticity (equations (1.5)), the z-direction
direct stress component may be determined as

(1.72)

Equation (1.72) shows that longitudinal direct stress will exist under plane
strain conditions, provided that Poisson’s ratio is non-zero. The equation may
also be used to determine the longitudinal direct stresses, once a solution for
σx and σy has been established. The plane strain strain–stress relationships
may be obtained by substituting from equation (1.72) in the first two of equa-
tions (1.5) to give

(1.73)

By comparing equations (1.73) with the corresponding plane stress strain–
stress relationships (equations (1.15)), it may be seen that the plane strain case
becomes analogous to one of plane stress if modified elastic constants are
used such that

(1.74)

Equations (1.74) show that plane stress and plane strain solutions are identical
for the case of zero Poisson’s ratio. The concrete block example considered
earlier (example 1.1) is intermediate between plane stress and strain, since its
thickness is equal to its other dimensions. However, since zero Poisson’s ratio
was assumed, the plane stress solution obtained will be equally applicable to
plane strain conditions. The relationships given by equations (1.74) enable any
general plane stress solution to be converted to plane strain by appropriate sub-
stitution for the elastic constants. It should be noted, however, that, in the
absence of body forces, the general plane stress equation in terms of the stress
components (equation (1.22)) is independent of the elastic constants. Conse-
quently, the stress solution will also be independent of the elastic constants, so
that plane strain and plane stress result in identical σx, σy and τxy values if no
body forces are present. The strain and displacement solutions will obviously
differ due to the different stress–strain relationships, and a longitudinal direct
stress given by equation (1.72) will exist in the plane strain case but be absent
under plane stress conditions. Should relationships for the stress components be
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required in terms of the corresponding plane strains, then changing the subject
of equations (1.73) yields the elasticity relationships given by equations (1.75).

If the finite element method is being employed, then a purpose-made plane
strain program may be constructed by forming the stress–strain matrix, [D]
(see equation (1.31)) from

(1.75)

Alternatively, if there are no body forces, then a plane stress program may be
used for plane strain provided that use is made of the modified elastic con-
stants defined by equation (1.74).
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Problems
1.1 Briefly describe, with appropriate matrix equations, the principal steps

in the construction of the stiffness matrix for a constant-strain triangular
finite element for plane stress analysis. The [B] matrix for element 1,
[B1], in the plane stress plate problem shown in Fig. 1.28 is given by

where A is the element area, and, for both elements 2 and 3,

If ν = 0, construct the two different stiffness matrices. What checks can
be made on these matrices?

(KCL)
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1.2 Choose a suitable, simple finite element mesh (no more than four
elements) of triangular plane strain stiffness elements for the stress
analysis of the plate problem shown in Fig. 1.29. With suitable node
numbering and referring to the global stiffness matrix components of an
element n as

(a) Give the assembled global stiffness matrix.
(b) Modify the matrix for the displacement boundary conditions.

(KCL)

1.3 Figure 1.30(a) shows a finite element idealization for a thin plate
analysis. If the element stiffness matrices are as given on Fig. 1.30(b),
construct the part of the structure stiffness matrix which relates the
forces at nodes 1–4 to the displacements at nodes 1–8.

(UEL)

1.4 Figure 1.31 shows a plane stress finite element idealization of a thin,
uniform plate analysis. The displacements obtained from the analysis
are given, in part, in Table 1.5. Calculate the stresses in elements 1, 5
and 9 and relate these stresses to the expected behaviour of the plate
(E = 200 kN/mm2, ν = 0, t = 2.5 mm).

(UEL)
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1.5 A 1 mm slice of a quarter of the concrete block shown in Fig. 1.14 has
been analysed by the finite element method using constant-strain
triangular elements arranged in the graded mesh shown in Fig. 1.32. The
displacement results from the analysis are given, in part, in Table 1.6.
Determine the stresses in elements 3, 4 and 5, and compare the values
obtained with those of Tables 1.1 and 1.3, giving reasons for any
discrepancies.
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Table 1.5

Node 3 5 6 7 9 10 11

u (¥10–2 mm) 2.00 3.98 4.02 5.91 7.65 8.35 8.82
v (¥10–5 mm) –3.34 –11.8 0 –34.5 –56.7 0 215
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Fig. 1.32
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Table 1.6

Node u (mm) v (mm)

4 0 –0.023132
5 0.001234 –0.007472
6 0 –0.010444
7 0.003067 0
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1.6 Under the action of the 1 kN load alone, the x-direction direct stress
component in element 3 of the corbel analysis shown in Fig. 1.33 is
10.7 N/mm2. It is proposed that this tensile stress component be
eliminated by application of the uniformly distributed pre-stress shown
in Fig. 1.33(a). Determine the required value of P if the inverse structure
stiffness matrix for the analysis is as given in Fig. 1.33(b) and the
element strain matrix is as given in Fig. 1.33(c) (E = 30 kN/mm2, ν = 0).

Would the pre-stress acting alone produce a tensile principal stress in
element 7?

(UEL)

1.7 For the rectangular plane stress finite element shown in Fig. 1.34, it is
proposed to use an assumed displacement function such that the
displacement components u and v at a general point, P, are given by
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Determine the general form of the strain matrix, [B], which relates the
three strain components at P, εz, εy and γxy, to the eight nodal
displacement components. What form of strain variation within the
element may be represented accurately? Indicate, without detailed
evaluation, how an expression for the element stiffness matrix could be
obtained.

1.8 A shear wall, ABCD, is fully restrained at the base and is loaded as
shown in Fig. 1.35(a). It is to be analysed with rectangular plane stress
finite elements of the form shown in Fig. 1.35(b). The dimensions and
the order of the nodal displacements are as shown in the figure.

The stiffness matrix for an element is

(a) Describe briefly the matrices [B] and [D] and define a typical
element 2 ¥ 2 sub-matrix.

(b) Assemble the global stiffness matrix for the wall.
(UEL)

1.9 An eight-noded isoparametric finite element mesh for a shear wall is
shown in Fig. 1.36(a). The structure is subjected to the horizontal nodal
loads shown in the figure. Figures 1.36(b) and 1.36(c) show output
results in the form of contours of absolute maximum principal stress
values and principal stress vectors, respectively.

Use the figures to describe the response of the structure to the applied
loading.
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2. Torsion

2.1 Introduction
The twisting of rods used as drive shafts, or of girders which support loads ec-
centric to their longitudinal axes, is a familiar concept. Less obvious is the role
of torsion in slabs and grillages, where the torsional stiffness assists in the dis-
tribution of load through the structure. Torsion is also an important aspect of
box girder design, since this form of section (Fig. 2.1(a)) is particularly stiff in
torsion and is therefore well able to resist eccentric loads. Box girders also
possess the twisting rigidity required to avoid the torsional oscillations which
dramatically destroyed the Tacoma Narrows bridge. This suspension bridge
was susceptible to wind-induced vibrations and collapsed in a moderate wind
only months after its completion in 1939.

A somewhat curious feature of closed sections, such as box girders, is that,
if they possess more than one cell and are therefore multiply connected
(Fig. 2.1(b)), then torsion theory is needed to determine the shear stress re-
sponse even if the load is applied through the girder axis and the section is not
therefore twisted.

The considerations applicable to box girder design are also relevant to the
analysis of multi-storey buildings constructed on the structural core principle
if the concrete core forms a closed section (Fig. 2.2(a)). Should a closed core
be architecturally inappropriate, then cores consisting of one or more open
sections (Fig. 2.2(b)) are used. Open sections are typically less stiff in torsion
than closed sections and the distribution of shear stress across the section also

(a) (b)

Fig. 2.1 (a) Singly-connected box girder. (b) Multiply-connected box girder
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differs in the two cases. Open sections therefore require separate consider-
ation from closed ones. Open section torsion theory will also apply to standard
structural steel sections, since, tubes and rectangular hollow sections apart,
these are of an open form.

Elastic stability problems (Trahair, 1993) also often require a knowledge of
torsional behaviour. The commonest example is lateral beam instability, in
which a beam bent about its major axis buckles sidewards by a combination of
twisting and minor axis bending.

Torsional action is therefore important in a wide variety of applications, and
the purpose of this chapter is to describe how the torsional response of dif-
ferent structural sections may be evaluated.
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Two-cell concrete core Open core walls

Flooring steelwork

(a) (b)

Fig. 2.2 Concrete core construction plans

0 is the shear centre

F causes bending without twisting

T causes twisting without bending

W causes both bending and twisting

0

W F

T

e

Fig. 2.3 Shear centre
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2.2 Torsional behaviour

When twisting occurs, it will do so about the centre of rotation of the section,
and it is about this point that the torque due to eccentric forces is calculated.
The centre of rotation coincides with the shear centre (Fig. 2.3), since, by the
reciprocal theorem, the point about which moments can be applied so as to
cause twisting without bending is the same as the point through which a load
must be applied to cause bending without twisting, that is, the shear centre
(Megson, 1996a).

The form of the torsional response depends upon both the type of torque and
the nature of the end restraints applied to the structural member. The simplest
case is when the bar is subjected to uniform torsion by the application of equal
and opposite twisting moments at its ends. It is assumed that the cross-section
does not deform in its own plane, so that the displacements in this plane may
be readily obtained from the twist as rigid-body movements. In addition to
these in-plane displacements, however, nearly all sections displace along their
axes when subjected to torsion (Fig. 2.4). If these warping displacements are
free to occur unhindered, then the warping is said to be free or unrestrained.
Taken together, the case of uniform torsion and unrestrained warping is gener-
ally referred to as Saint–Venant torsion and is such as to produce a uniform
rate of twist along the length of the bar. Saint–Venant torsion is the simplest
case to examine and is the only one to be considered in detail here.

The response required is usually the stresses caused by the torque, some-
times the twist, and, occasionally, the warping movements. The stress and
rotational characteristics are easier to determine for thin-walled sections
(Fig. 2.1) than for solid sections, since the limited wall thickness effectively
predetermines the direction of the stress at any point. The more general solid
section will be considered first, using the elasticity theory developed in
Chapter 1. Attention will then be given to the simplifications which are
possible for thin sections. Finally, some indication will be provided of the
(considerable) complications which ensue if the Saint–Venant restrictions are
relaxed.
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Fig. 2.4 Saint-Venant torsion

75



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:29

2.3 Solid sections

2.3.1 Circular section
The circular section is the only one normally considered in introductory texts
(Megson, 1996b), for the excellent reason that it is the only solid section
which may be simply discussed. For this case, the response to uniform torsion
(Fig. 2.5) must be radially symmetric, which requires originally straight radii
to remain straight in the deformed position. Also, since warping does not
occur along lines of symmetry, there is no warping displacement whatsoever,
so that plane sections remain plane.

Under these conditions, it may readily be demonstrated that the shearing
distortion suffered by elements on cylindrical surfaces concentric to the rod
axis (Fig. 2.5) corresponds to a shear stress distribution which varies linearly
from the centre of the section (Fig. 2.6), acts in the plane of the element, and
the magnitude, τ, of which is given by

(2.1)

where T is the torque and J is the torsion constant (= second polar moment of
area (circular section only)).
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Fig. 2.5 Torsion of circular rod
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Fig. 2.6 Shear stresses on circular section

Tr

J
τ =

76



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:29

It may also be shown that the relative rotation between the ends of the rod,
θ, is related to the applied torque by:

(2.2)

where G is the elastic shear modulus and L is the rod length.

2.3.2 Non-circular sections
The deformation of non-circular solid sections is more complicated, due to the
presence of warping displacements. The warping displacement distribution
over the cross-section is divided into symmetrical and anti-symmetrical
regions by zero-warping cross-sectional lines of symmetry, as indicated in
Fig. 2.7.

The shear stress distribution is correspondingly more complex, and a
general solution may be sought either by a displacement approach in terms of
the warping or by a force method utilizing a stress function.
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(c)       (d)

Fig. 2.7 (a–c) Cross-sectional warping distributions. (d) Elevation of square cross-section rod
under uniform torsion showing warping displacements
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Displacement, strain and stress relationships

Taking axes x, y and z where x and y are cross-sectional axes as shown in
Fig. 2.8 and z is the axis of the rod, then the corresponding displacements of a
general point, P, are taken to be u, v and w. The original position of P is
defined by the polar coordinates (r, α) and it displaces to P¢ due to the rotation,
which, at a distance z along the rod, is θ (= θ¢z), where θ¢ is the (constant) rate
of twist. Since the cross-section is assumed rigid,

(2.3)

The displacement components u and v may therefore be related to the position
of P and the rate of twist, θ¢, by equations (2.3) but the strain–stress situation
must be further explored in order to find a solution for the warping displace-
ment, w. It is assumed that the warping on each cross-section of the rod is
identical, hence

(2.4)

Substituting from equations (2.3) and (2.4) in the strain–displacement rela-
tionships of general elasticity (equations (1.3) and (1.4)) gives

(2.5)
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The stress–strain relationships (equations (1.8)) are now used to determine the
stresses as

(2.6)

Under Saint–Venant conditions, torsion is therefore resisted by shear stress
alone, the direct stress components being zero throughout the bar, and the
shear stress may be represented by the two normal components, τyz and τzx.
These components both act in planes which are perpendicular to that of the
cross-sectional plane of the rod and may be combined to give a resultant shear
stress which also acts in a plane perpendicular to that of the cross-section
(Fig. 2.9(a)). It should be noted that the zero values of the stress components
σx, σy and τxy are a direct result of the rigid cross-section assumption, while the
zero direct longitudinal stress, σz, follows from the unrestrained warping
assumption of uniform torsion.
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Fig. 2.9 Torsional shear stress components
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Equilibrium

In Fig. 2.9(b), the two non-zero sets of shear stress components are shown
acting on elementary blocks, having sides dx, dy and dz. The complementary
nature of these stresses ensures satisfaction of moment equilibrium; force
equilibrium may be ensured by resolution first in the x-, y-directions to give

(2.7)

Thus, the shear stresses do not vary with position along the bar so that the
shear stress distribution on each cross-section of the bar is identical, just as it
was earlier assumed (equation (2.4)) that the warping distribution is inde-
pendent of cross-section.

Resolving in the z-direction:

So that

(2.8)

Equation (2.8) is the fundamental equilibrium equation of torsion.

Displacement formulation

To obtain a general torsion equation in terms of the warping displacements,
the shear stress components of equation (2.6) are substituted into the equilib-
rium equation (2.8) to give

Hence

(2.9)

Since w is assumed to be a continuous function, compatibility is automati-
cally satisfied, so that a solution to the torsion problem is represented by a
function of w which satisfies equation (2.9) at all points on the section and
which also satisfies the boundary conditions. Warping will not be directly
subject to boundary restraints in the Saint–Venant case, but there will
usually be restrictions on the boundary values of the shear stress compo-
nents which may be related to differential functions of w by equations (2.6).
The equation of interest, equation (2.9), is of the Laplace type which was
encountered previously in connection with plane stress analysis (equation
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(1.19)). Unfortunately, closed-form solutions to the Laplace equation are
not readily derived for practical torsional boundary conditions, and numer-
ical methods are therefore usually employed. Once a warping displacement
solution has been obtained, the shear stress components may be calculated
from equations (2.6).

Stress function formulation

This approach aims to utilize a stress function so that the equilibrium equation
is automatically satisfied. Such a function may be obtained for the torsion
problem by taking the shear stress in a given direction to be the derivative of
the stress function in the direction normal to that of the stress. Thus,

(2.10)

In equation (2.10), the negative sign in the τyz shear stress component arises
from the fact that its normal (which is generated by taking a positive (anti-
clockwise) rotation from the stress component) is in the negative x-direction
(Fig. 2.10).

By substitution from equations (2.10), it is readily shown that φ satisfies the
equilibrium equation (2.8). It remains to ensure that the compatibility and ma-
terial laws are fulfilled. This may be achieved by noting that, at any given
point on the section, the two shear strain components, γyz and γzx, are related to
a single independent displacement, w (see equation (2.5)). The two shear
strain components must therefore be related by a compatibility condition
which may be derived, in terms of the shear stress components, by eliminating
w from equations (2.6) to give

(2.11)
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Substituting in equation (2.11) for τyz and τzx from equation (2.10) produces
the general stress function equation of torsion as

(2.12)

Equation (2.12) is of the Poisson type and, to assess the expected difficulty of
its solution, it is necessary to explore the nature of the boundary conditions. At
a boundary (Fig. 2.10), the stress component normal to the boundary must be
zero or a complementary component would exist on the exterior surface of the
bar which would conflict with the stress-free state of this surface. In stress
function terms, this implies that:

At a boundary

(2.13)

Integration of equation (2.13) shows that the stress function must have con-
stant value around the boundary. The choice of this constant is immaterial, but
it is conveniently taken to be zero. The problem therefore requires the solution
of equation (2.12) subject to a zero-valued stress function at the boundary. Al-
though this is a relatively simple boundary condition, closed-form solutions
have only been derived for regular sections (Timoshenko and Goodier, 1982)
and numerical methods are used for more complex shapes. Once a stress func-
tion solution has been obtained, the corresponding shear stress components
follow from equation (2.10).

Torque and torsion constant determination

The torque required to produce a specified rate of twist, θ¢, may be calculated
from the corresponding stress component solution. The torque, dT, acting on
the element shown in Fig. 2.11, is given by

68

Advanced structural mechanics

0n s

φ
τ

∂= =
∂

2 2

2 2
2G

x y

φ φ
θ

∂ ∂+ = - ¢
∂ ∂

y
dx

x

dy

τyz

τzx

Fig. 2.11 Torque determination
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(2.14)

And, thus, the total torque, T, by

(2.15)

If a stress function approach is being used, then the torque may be found di-
rectly from the stress function by substituting in equation (2.15) from equation
(2.10) to give

(2.16)

Integrating equation (2.16) by parts shows that

(2.17)

where a, b, c and d are points on the section boundary.
Making use of the zero φ boundary condition results in

(2.18)

Equation (2.18) allows T to be calculated from the stress function, and equa-
tion (2.17) incidentally demonstrates that the two shear stress components
make equal contributions to the total torque. As for the circular section case, a
relationship exists between T and θ¢ of the form (see equation (2.2))

(2.19)

Equation (2.19) can now be used to obtain the torsion constant, J, if T has been
calculated for the specified θ¢ as just described (equation (2.15) or (2.18)).

2.3.3 Finite difference solutions
The need for a numerical method has been indicated above, and a convenient
approach is the finite difference method, which approximates the relevant
partial differential equations by sets of simultaneous linear equations. The
reader who has not studied this technique previously is referred to Appendix
A, where the characteristics of the method and some necessary basic relation-
ships are presented. In this section, the method is first applied to the warping
displacement formulation, and second to the stress function formulation, and
the results from the use of the two approaches are then compared.

Warping displacement approach

Example 2.1 – rectangular section. The finite difference method will be used
to determine the shear stress distribution and the torsion constant for the
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rectangular section of Fig. 2.12(a) when it is subjected to a uniform torque, T,
producing a constant rate of twist, θ¢. By symmetry, only a quarter of the
section need be considered and the 3 ¥ 2 grid to be used is shown in
Fig. 2.12(b). To produce a finite difference model of this torsion problem, dif-
ference approximations to the general warping displacement equation (2.9)
must be created at all relevant grid points and the appropriate boundary condi-
tions must be incorporated. It is first noted that warping does not occur on the
two lines of symmetry, so that only six independent points on the section need
be considered (Fig. 2.12(b)). However, the shear stress boundary conditions
(Fig. 2.10) require that the normal shear stress components along the edges
x = 3a and y = 2a be zero so that along

(2.20a)

and along

(2.20b)

From the shear stress expressions (equations (2.6)), it is seen that these
boundary conditions involve first derivatives of the warping displacement. To
evaluate the central difference expression (equation (A.5)) for a typical first
derivative, ∂w/∂y, at point 1, for example, requires a grid position 7
(Fig. 2.12(b)) and points 8–11 are required for the evaluation of the deriva-
tives needed at the remaining boundary points. These fictitious points outside
the section have no physical significance but are mathematically legitimate,
since there is no reason why the warping displacement function should not
extend beyond the confines of the section, provided it obeys the boundary
conditions at the section edges.
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There are thus 11 independent warping displacements to be calculated. Ap-
plying the Laplace operator (Appendix A, Fig. A.5(a)) to points 1–6 will
provide six of the necessary equations, while the remaining five result from
difference approximations to the stress component boundary conditions
(equations (2.6) and (2.20)). The difference approximation to the boundary
condition at point 1, for instance, is formed as follows:

Hence

The remaining boundary conditions may be developed in a similar fashion,
and the full set of difference equations is presented as

(2.21)

where {w} = {w1, w2, …, w11}
T is the warping vector. The solution to equation

(2.21) is

(2.22)

The shear stress components may be calculated from difference approxima-
tions to equations (2.6). For example, at point 5 (Fig. 2.12(b)),

(2.23)
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Figure 2.13(a) shows the shear stress components and, also, the direction of
the shear stress resultants, which may be compared with the expected trajec-
tory diagram of Fig. 2.13(b). It may also be observed from the shear stress so-
lution along the centre-lines that, unlike the circular section, shear stress is not
linearly related to distance from the centroid. The maximum shear stress is, in
fact, at the centre of the longer side.

The torque needed to produce θ¢ may be determined from the shear stress
components by numerical evaluation of the double integral in equation (2.15).
The double integration may be accomplished by the familiar (Stroud, 1995)
Simpson’s rule, namely, for an odd number of stations at equal spacing, h, the
‘one-third rule’ is

(2.24)

A similar rule may be developed for an even number of equally spaced sta-
tions, in which case the ‘three-eighths rule’ is

(2.25)

The ordinate values of the function –yτzx + xτyz involved in equation (2.15) are
given in Fig. 2.14(a). Applying equation (2.24) for each of the grid-lines in the
y-direction provides the areas under the function along these lines, as given in
Fig. 2.14(b). Using equation (2.25) to integrate these areas into a volume for
the quarter section gives

The total torque is therefore
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Fig. 2.13 (a) Shear stress solution. (b) Shear stress trajectories
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From equation (2.19), it follows that the torsion constant, J = 70.7a4. A
closed-form series solution is available for this problem (Timoshenko and
Goodier, 1982) and comparative values are given in Table 2.1.

Stress function approach

Example 2.2 – rectangular section. If example 2.1 is tackled using a stress
function, then six independent grid positions again need to be considered
(Fig. 2.15). However, the six points are now all interior points, since boundary
stress function values are known to be zero (see equation (2.13) et seq .).
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Symmetry requires that the shear stress components along the centre-lines be
zero. From the stress function definition (equation (2.10)), this implies that
the first derivatives of the stress function normal to the centre-lines must also
be zero. Equation (A.5) shows that this type of requirement is met by symmet-
rical difference points. The points required are shown in Fig. 2.15, and this
symmetry of the stress function should be contrasted with the anti-symmetry
of the warping displacements.

Using equation (A.11) to model the general stress function equation (2.12)
at the six grid points, the difference equations are as presented below:

(2.26)

where {φ} = {φ1, φ2, …, φ6}
T is the stress function vector.
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Table 2.1 Rectangular section solution comparison

Max. τ J

Multiplier aGθ¢ a4

Finite difference 3.28 70.7
Closed form 3.40 75.3
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The solution to equations (2.26) is

(2.27)

From the stress function solution, the shear stress components may be calcu-
lated by difference forms of equations (2.10). At interior points, the required
first derivatives may be calculated from central differences but, at boundary
points, the absence of exterior points requires the use of backward differences
(see Appendix A). Thus, at the point of maximum shear stress, P (Fig. 2.16),
by application of equation (A.10), the shear stress is

(2.28)

Simpson’s rules for numerical integration, equations (2.24) and (2.25), may
again be employed to calculate the torque from equation (2.18), using the
stress function values of Fig. 2.16(a). Applying equation (2.24) for each of the
grid-lines in the y-direction provides the areas under the stress function along
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these lines, as given in Fig. 2.16(b). Using equation (2.25) to integrate these
areas into a volume for the quarter section gives

Whence

The torsion constant, J, then follows from equation (2.19), and the resulting
value is compared with other solutions in Table 2.2.

2.3.4 Comparison of solution methods
Regular solid sections are generally amenable to classical methods, often
resulting in a closed-form series solution (Timoshenko and Goodier, 1982)
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Table 2.2 Rectangular section solution comparison

Max. τ J

Multiplier aGθ¢ a4

Finite difference – displacement method 3.28 70.7
Finite difference – stress method 3.21 72.5
Closed form 3.40 75.3

h

Table 2.3 Properties of solid sections

Section
Max. τ multiplier:
(T/J) or Gθ¢ J Example

Circle
D = diameter

1.00(D/2) 0.098D4

Square
s = side

1.35(s/2) 0.141s4

Rectangle
B = breadth
t = thickness
For α, β see Table 2.4

α(t/2) βBt3

Equilateral triangle
h = height

1.50(h/3) 0.0385h4

D

s

B

t

Table 2.4 Rectangular section coefficients

B/t 1 1.2 1.5 2 2.5 3 4 5 10 •

α 1.35 1.52 1.70 1.86 1.94 1.97 1.99 2.00 2.00 2.00
β 0.141 0.166 0.196 0.229 0.249 0.263 0.281 0.291 0.312 0.333
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and results for some common shapes are given in Table 2.3. Irregular sections
usually require a numerical approach, which can be based either on finite dif-
ferences, as used here, or on the finite element method.

If finite elements are used, then either an assumed warping displacement
function or an assumed stress function may be employed, although the latter
approach (Ross, 1986) is the more usual. If the finite difference method is
used, then, for a given grid, the warping displacement approach will provide
somewhat superior accuracy (see Table 2.2) in respect of shear stress evalua-
tion, at the expense of generally requiring more equations and having more
awkward boundary conditions than the stress function method.

2.3.5 Properties of solid sections
For the non-circular sections, the maximal shear stress values given in Table
2.3 all occur at the edge of the section in the middle of a side (the longer one in
the case of a rectangle). If the twist for a given torque is required, then equa-
tion (2.2) should be used with the appropriate torsion constant, J.

2.4 Thin-walled sections
Thin-walled sections are such that the structural thickness is everywhere
small as compared with the overall dimensions of the section. The behaviour
of an open thin-walled section (Fig. 2.17) is different from that of a closed
section (Fig. 2.18). In both cases, however, the restricted section thickness
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Fig. 2.17 Open thin-walled section

Fig. 2.18 Closed thin-walled section
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ensures that the direction of the shear stress is generally parallel to the direc-
tion of the section contour (the mid-thickness line). Under pure torsion, the
shear stress trajectories must form closed loops, as otherwise a resultant force
would ensue. For the closed section case, a closed stress trajectory is possible
following the section contour (Fig. 2.18). In the open case, a closed shear
stress trajectory must form within the thickness of the thin section, giving rise
to restricted ‘lever-arms’ for the shear stresses and hence low torsional stiff-
ness, as compared with closed sections, which are characterized by their high
torsional stiffness. For example, if a thin closed tube is ‘opened’ by the intro-
duction of a narrow longitudinal slit, then the torsional stiffness of the section
can be reduced several hundred times.

The treatment of singly closed sections is rather different from that of mul-
tiply closed sections. These two forms are therefore described separately, and
consideration is then given to open sections. In all cases, although warping
will occur, it is possible, and simplest, to calculate the shear stress and twist
responses without determining the warping displacements.

2.4.1 Singly closed sections

Shear stress response

For a closed section, a thin wall makes it reasonable to assume that, at any
point, the shear stress is constant across the thickness. Taking axes s and z in
the contour and bar axis directions respectively, the equilibrium of an element
(Fig. 2.19(b)) of sides ds and dz may be considered as follows:

Resolving in the z-direction,
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Fig. 2.19 (a) Singly-closed section. (b) Element of the rod
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or (to a first order)

Hence

(2.29)

Thus the quantity τt, known as the shear flow, q, is constant around the
section. The shear flow may be related to the applied torque, T, by summing
the contributions to the torque from elements such as that shown in
Fig. 2.19(a).

Thus

(2.30)

and

since q is a constant.
But R ds = 2 dA (Fig. 2.19(a)), hence

(2.31)

where A is the area enclosed by the section contour.
Equation (2.31) allows the shear flow and, from equation (2.29), the shear

stress to be determined for a given torque. The twist response remains to be
examined, and, for this, the displacement of the section must be considered.

Rotational response

It will again be assumed that the cross-section remains rigid (which may
require the provision of transverse diaphragms for these non-solid sections).
At a distance, z, along the rod, the rotation is θ¢z and, following a similar argu-
ment to that employed in the derivation of equations (2.3), the displacement,
u, along the contour is

(2.32)

The z-direction (warping) displacement is again taken to be w, so that the
shear strain, γ, by analogy to equation (1.4), is given by

(2.33)

Using equation (2.32),
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(2.34)

So that

(2.35)

Integrating equation (2.35) around the contour:

(2.36)

where S is the contour length.
However, since the value of w is identical at the start and finish of the

contour,

but τ = q/t and R ds = 2A, hence

(2.37)

Equation (2.37) relates the rate of twist, θ¢, to the shear flow, q, rather than to
the applied torque, T. This may be remedied, however, by substituting for q
from equation (2.31) to give

(2.38)

or

(2.39)

where

(2.40)

The torsional response of a singly connected closed section therefore presents
relatively few difficulties, not least because the problem is statically determi-
nate and, hence, only equilibrium considerations are needed to evaluate the
shear flow (equation (2.31)). Multiple connection introduces redundancy, so
that geometric as well as statical arguments are required to achieve a stress
solution.
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2.4.2 Multiply closed sections
As mentioned in the introduction to this chapter, a multiply closed section re-
quires the application of torsion theory to determine the distribution of the
shear stresses, even if the load passes through the shear centre (Fig. 2.3) and
hence does not cause the section to twist. As well as investigating the effects
of torsion on multiply connected girders, which is covered in the following
section, it is therefore necessary to consider the effects of a bending load,
which are subsequently described. Finally, an indication is given of how these
two analyses may be combined to determine the effects of a general load, such
as W in Fig. 2.3, which does not pass through the shear centre.

Box girder under applied torque

The analysis of a multiply closed section such as the n-cell box girder shown
in Fig. 2.20(a) is based on the following considerations:

(a) Shear flows exist within each cell due to torque application, as shown in
Fig. 2.20(a).

(b) Flows in common members are the resultant of the shear flows in the
adjoining cells (Fig. 2.20(b)), thus justifying, by fluid analogy, the choice
of the term shear flow. This property of ‘shear flow into a junction
equalling shear flow out’ follows from the equilibrium of the shear flows
complementary to those shown in Fig 2.20(b). Thus, for the example
junction of Fig. 2.21:
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Fig. 2.20 (a) n-cell box girder. (b) Shear flows in n-cell girder
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Resolving in the z-direction,

or

(c) The sum of the individual cell torques, which are determined from
equation (2.31), equilibrates the applied torque, T. This provides a single,
statical equation.

(d) The remaining (n – 1) equations needed for the determination of the n
shear flows are obtained from the geometric observation that, in the
absence of section deformation, each cell rotates similarly. Hence,
applying equation (2.37) to each cell in turn and eliminating θ¢ from the
resulting n equations produces the required (n – 1) equations.

Example 2.3 – box girder under applied torque. The three-cell box girder of
Fig. 2.22(a) is to be analysed for the effects of a clockwise applied torque of
10 000 kN m. The symmetry of the section results in there being only two in-
dependent shear flows, which are shown in Fig. 2.22(b).

For this section,

and

Using equation (2.31) to express the cell torques in terms of the shear flows,
the statical equation is

or

(2.41)
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Applying equation (2.37) to the first two cells in turn, taking due regard to
shear flow directions, yields:

For cell 1

or

(2.42)

For cell 2

or

(2.43)

Eliminating θ¢ from equations (2.42) and (2.43) gives

(2.44)

Solving equations (2.41) and (2.44) provides the solution

The final shear flows are shown in Fig. 2.23, and the corresponding shear
stresses may be obtained by use of the shear flow definition (equation (2.29)).
If the rate of twist is needed, then equation (2.42) or (2.43) can be used to give
θ¢ as 0.279 ¥ 10–3 rad/m (taking G = 80 ¥ 106 kN/m2).
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Box girder under shear load

A load applied through the shear centre of a beam is known as a shear load
and, as mentioned previously, such a load causes bending without twisting.
For singly connected sections, the shear flows due to this type of load may be
determined by considering the equilibrium of an elemental beam length. As
with torsion, multiply connected sections are not susceptible to a purely
statical approach. The method of attack is therefore as follows:

(a) A ‘cut’ is introduced in each cell so as to make the section singly
connected and hence statically determinate.

(b) The shear flows in the cut section are calculated by determinate theory
(Megson, 1996a) which gives the shear flow as

(2.45)

where Q is the applied shear load, A is the area of the section from the
point under consideration to a free surface, y is the lever arm of area A,
and I is the second moment of area of section. Note: the quantities y and I
are both related to the axis about which bending occurs, which is here
assumed to be a principal axis.

(c) Constant, redundant, correction shear flows are additionally assumed to
be present in each cell.

(d) Application of equation (2.37) to each cell in turn, together with the
condition of zero rotation for every cell, yields a set of linear equations
from which the redundant shear flows may be determined.
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(e) The resultant shear flows are obtained by summation of the determinate
and redundant solutions.

Example 2.4 – box girder under shear load. The three-cell box girder of
Fig. 2.22(a) is again to be analysed under the action of a downwards shear load
of 2000 kN. The section is such that its centroid is at mid-depth and I = 0.2 m4.

The first step is to introduce the ‘cuts’, which should generally be posi-
tioned so as to preserve whatever symmetry the section may possess. There
can also be some numerical ‘conditioning’ advantage in siting cuts in places
where the shear flow is expected to be small (near the centre of flange sec-
tions), since the determinate values should then be a reasonable approxima-
tion to the complete solution. Cuts close to junctions result in somewhat
simpler calculations, however, so that, in the present case, symmetrical cuts
close to the web/flange intersections will be used in the outer cells, while, to
preserve symmetry, a central cut is needed in the middle cell (Fig. 2.24).

The determinate shear flows may now be obtained from equation (2.45). In
the left-hand cell, for example, with reference to Fig. 2.25:

In the flange

In the web
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Hence

Similar calculations for the central cell enable the full determinate shear flow
picture to be assembled as shown in Fig. 2.26. The direction of the flows may
be deduced by observing that a downwards shear load will produce down-
wards flows in the webs. The flange flow directions then follow from the con-
tinuous nature of shear flow.

Consideration of the symmetrical shear flows in the central cell shows that
these flows satisfy the requirement for zero twist (equation (2.37)). The intro-
duction of a redundant shear flow into this cell would therefore imply a non-
existent twist, and it must be concluded that no such redundant flow exists in
the central cell. The redundant flows in the outer cells must be numerically
equal, so that the problem reduces to the determination of this flow
(Fig. 2.27(a)) by application of the zero-twist requirement to an outer cell.
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Thus, applying equation (2.37) to the left-hand cell in a clockwise sense
results in

Whence

Summing the now known redundant flow to the determinate flows of Fig. 2.26
gives the resultant flows shown in Fig. 2.27(b).

Box girder under general load

A load which does not pass through the shear centre may be replaced by a stat-
ically equivalent torque and shear load. Thus, the general load W of Fig. 2.3
may be replaced by a shear load (= W) together with a torque (= We). The
effects due to these statically equivalent loads may then be determined sepa-
rately by the procedures which have just been described. Superposition of the
two solutions gives the resultant values. An alternative, and much speedier,
approach (Megson, 1974) is to apply the shear load analysis using a non-zero
rate of twist, θ¢. For an n-cell girder, eliminating θ¢ from the resulting set of
linear equations gives (n – 1) equations in the n redundant shear flows. The re-
quired additional equation is obtained by equating the moment of the redun-
dant and determinate shear flows about any specified point to the moment of
the applied load about the same point. If the position of the shear centre is
unknown, then this latter approach must be used, or a modified method may
be followed, whereby the position of the shear centre is determined (Megson,
1974).

2.4.3 Open sections
It has already been observed that closed shear flow loops must form within
open sections subjected to pure torsion (section 2.4). The portions of the loop
shown in Fig. 2.28(a) which are parallel to the contour are of constant thick-
ness, dy, and are at constant distance, y, from the section contour. If it is
assumed that the section contour is free from shear strain, while the Kirchhoff
assumption of lines normal to the contour remaining normal is also made, then
it may be shown that these premises imply that the shear strain (and therefore
stress) is constant at constant distance from the section contour. Hence, given
the constant thickness, dy, the shear flow, q, is also constant, and closed
section theory (equation (2.37)) may be used to give
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(2.46)

If the section is thin, so that y is negligible in comparison with the contour
length, S, then

(2.47)

Also,

(2.48)

Hence, from equation (2.46),

(2.49)

Equation (2.49) relates the shear stress to the rate of twist and also shows that
the stress is linearly related to y, the distance from the contour. Thus, the shear
stress distribution at any point takes the form shown in Fig. 2.28(b) and the
greatest stress is at the section surfaces. This contrasts strongly with the closed
section case, where the shear stress at any point is constant across the section
thickness. If the variation of shear stress along the length of a section surface
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is considered, then it may also be observed from equation (2.49) that the
greatest shear stress will occur at the point where y is largest, that is, where the
thickness is greatest. This reverses the singly closed section experience,
where, because of the constant shear flow around the section, the greatest
shear stress is found at the point of minimum thickness.

In respect of maximal shear stress, it should be mentioned that sections pos-
sessing re-entrant corners are subject to considerable stress concentration
effects which can be minimized, but not eliminated, by suitable fillet design
(Timoshenko and Goodier, 1982).

To relate the rate of twist to the applied torque, the torsional resistances pro-
vided by shear flows acting on elementary loops (Fig. 2.28(b)) are summed,
since the normal shear flows in adjacent elements will cancel, except at the
ends, leaving a flow loop as before (Fig. 2.28(a)).

Applying equation (2.31) to an elementary loop:

(2.50)

where dTe is the torque resistance of the elementary loop, and Te is the torque
resistance of length ds of section.

Or

(2.51)

And, using equation (2.49),

(2.52)

Integrating:

(2.53)

Integrating along the section contour:

(2.54)

Hence

(2.55)

where

(2.56)
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Equation (2.55) provides the desired rate of twist–torque relationship and may
be used to eliminate Gθ¢ from equation (2.49) to produce a surface shear
stress–torque relationship as

(2.57)

For the maximum surface shear stress in open sections under torsion,

(2.58)

Equation (2.56) defines the torsion constant, J, for a general open, thin-walled
section. For a section which ‘branches’, Fig. 2.29(a) for example, the torsion
constant may be obtained by summing contributions derived from equation
(2.56).

Thus, for the channel of Fig. 2.29(b),

(2.59)

For some standard, rolled steel sections, torsional constant values have
been accurately determined (Owen and Knowles, 1992). For non-standard
metal sections, the above type of application of equation (2.56) will give ap-
proximate values. For improved accuracy, the constant factor of (1/3) in
equation (2.56) may be replaced by the section-dependent factor β of Table
2.4. It may, incidentally, be noted that the β-value given in Table 2.4 for a
negligibly thin rectangle is in agreement with the (1/3) derived in this
section. Several techniques are available to improve the accuracy even
further, by including, for example, the effects of fillets and junctions
(Kollbrunner and Basler, 1969).
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2.4.4 Properties of thin-walled sections

The torsional properties of thin-walled sections are summarized in Table 2.5.
For closed sections, the maximum shear stress occurs at the thinnest point of
the section, but, for open sections, the maximum shear stress is located at the
thickest point. If the twist for a given torque is required, then equation (2.2)
should be used with the appropriate torsion constant, J.

2.5 Soap-bubble (membrane) analogy

It may be shown (Timoshenko and Goodier, 1982) that the governing partial
differential equation for the deformation of a stretched membrane under
normal pressure is analogous to that governing the stress function formulation
of the torsion problem (equation (2.12)). This Prandtl membrane analogy has
been used to provide experimental values of torsional properties by measuring
the deformation of either inflated soap films or rubber membranes, which are
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Table 2.5 Properties of thin-walled sections
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stretched across cut-outs of the section for which the properties are to be eval-
uated. Numerical techniques have superseded this practical approach but the
analogy can still provide a useful qualitative check on torsional properties.

Figure 2.30 shows the stress function distributions (or inflated membrane
shapes) for a rectangular and L-shaped section. Equation (2.10) shows that the
torsional shear stress component in any given direction is proportional to the
slope of the stress function in the normal direction. Thus, for the rectangular
section (Fig. 2.30(a)) the shear stress normal to the longer sides of the rect-
angle is essentially zero because the function has no slope (except near the
ends) in directions parallel to the longer sides. The shear stress component
parallel to the longer sides has a maximum value at the edge, where the func-
tion has maximal slope normal to the edge, and the stress then decreases until
the contour is reached where the normal slope is zero. The stress then in-
creases once more, as progress is made to the opposite edge, but the direction
of the stress is reversed, since the sign of the function slope changes past the
summit. Consideration of the membrane shape therefore supports the tor-
sional shear stress distribution for the section previously established in
Section 2.4.3. Equation (2.18) indicates that the torsional constant is propor-
tional to the volume enclosed by the stress function. Clearly, therefore, the
broader arm of the L-shape section (Fig. 2.30(b)) provides the majority of the
contribution to the torsion constant (resistance) of this particular section.
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Fig. 2.30 Prandtl membrane for: (a) rectangular section; (b) L-section
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In the case of closed sections, it is necessary to represent the cut-outs of the
section by rigid plates which remain in the same plane when the membrane is
inflated. Using this concept, the membrane deformation (stress function) dis-
tributions for a single and a multiply closed section are shown in Fig. 2.31.
From the singly closed section plot (Fig. 2.31(a)), it may be seen that the shear
stress parallel to the outline of the cut-out is almost constant and is in a consis-
tent direction, as verified by the approximately constant normal slope of the
membrane making the connection to the horizontal rigid surface above the
cut-out. From the minimal enclosed volumes, it may also be seen that the
‘open’ cantilever arms make a negligible contribution to the overall torsional
resistance of the section.

2.6 Non-uniform torsion
If warping displacements are restrained at any point, or if the applied torque is
not uniform, then the constant rate of twist assumption, which is central to
Saint–Venant’s theory, is no longer valid and the cross-sectional displace-
ments and stresses will vary with position along the structural length. Non-
uniform torsion occurs in many situations, including those in which the load
eccentricity varies, as in bow girders, or in which the warping is physically
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Fig. 2.31 Prandtl membranes for: (a) singly-closed sections; (b) multiply-closed sections
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restrained at a support. A single, central, eccentric load (Fig. 2.32) will also
produce non-uniform torsion. This may be viewed either as a case of non-
uniform torque, since the torques in the two halves are of opposite sense, or as
a case of restrained warping, since, by symmetry, no warping occurs on the
central cross-section.

The stress implications of non-uniform torsion are that, in addition to a
modified shear stress distribution, direct longitudinal stresses are also devel-
oped, as may readily be imagined from the restrained warping feature. The
effects of non-uniform torsion are particularly pronounced in the case of open
sections, but, even for closed sections, there can be a significant influence
over considerable lengths of the structural member, although the greatest
impact will be at positions of warping restraint. Non-uniform torsion can thus
neither be completely treated by Saint–Venant’s torsion theory, nor is his lo-
calization principle (Section 1.3.1) valid. For the determination of stresses due
to non-uniform torsion, the reader is referred to specialized texts (e.g. Heins,
1975; Megson, 1974; Zbirohowski-Koscia, 1967).
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Problems

2.1 For a square section of side a, make use of symmetry, and, adopting a net
of side a/6, use the finite difference method to determine the warping
displacements due to a uniform rate of twist, θ¢.

Hence calculate the shear stress components at each of the net points,
in terms of a, θ¢ and the shear modulus, G, and use these components to
find the torsion constant for the section.
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Repeat the analysis using the stress function approach and compare
the values for maximum shear stress and torsion constant with the
values obtained by the warping displacement method and with the exact
values of Table 2.3.

2.2 Use the finite difference method to determine the stress function values
at the grid nodes of the L-section shown in Fig. 2.33 if the section is
subjected to a constant rate of twist, θ¢, and the shear modulus is G.

From the stress function values, determine the maximum shear stress
and the torsion constant for the section. Compare these values with
corresponding values obtained by application of a thin-walled
‘combined rectangles’ approximation (equations (2.58) and (2.59)) and
discuss how it might be established as to which of the solutions is the
more accurate.

2.3 For a rectangular grid, spacing a in the x-direction and b in the y-
direction, show that the finite difference module for the Laplace
equation is as shown in Fig. 2.34(a), where
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Use the module of Fig. 2.34(a) to determine the warping
displacements at the node points of the grid shown in Fig. 2.34(b). The
section is an equilateral triangle of side, s. Hence determine the
maximum shear stress and compare your solution with the exact value
given in Table 2.3.

2.4 For the pre-stressed concrete beam section shown in Fig. 2.35, make use
of symmetry, and, adopting a regular net of side 0.2 m, use the finite
difference method to determine the stress function values at the net
intersection points for a uniform rate of twist, θ¢. Hence determine an
approximation to the torsion constant, J.

(NTU)

2.5 Figure 2.36 shows the cross-section of an aluminium alloy bar. What
torque will cause a maximum shear stress of 60 N/mm2? Calculate, also,
the angle of twist (in degrees) in a length of 2 m when this torque is
applied if the modulus of rigidity is 25 kN/mm2.
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The section is now closed by rigidly sealing the gap at ‘A’ along the
full length of the bar. Determine the new maximum stress and rotation
under the same conditions as before and compare the two sets of results.

2.6 Figure 2.37 shows two concrete beam sections which have equal cross-
sectional areas. Determine the torsional constant for the closed section
based on the contour line for the section indicated in Fig. 2.37(a).
Determine, also, the torsional constant for the open section using the
sub-division indicated in Fig. 2.37(b).

2.7 Figure 2.38 shows five rods (A–E) which all have the same cross-
sectional area. Sketch the expected stress function distributions for the
five rods. Hence, or otherwise, rank the sections according to their
expected torsional stiffness, giving reasons for your decisions.

(NTU)
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2.8 Figure 2.39 shows the cross-section of a long spar formed in an alloy
whose modulus of rigidity is 25 kN/mm2. On the right-hand side of the
section, the mean line is approximately circular, on the left-hand side it
is approximately elliptical, and the areas enclosed by these lines and
the mean line of the web are 4000 mm2 and 8000 mm2 respectively.
The thickness of the wall and of the web is 2 mm. Given that
the lengths of the mean lines are PQR = 240 mm, PSR = 160 mm
and POR = 100 mm, estimate the torsional rigidity (= T/θ¢), in
(kN m2/degree), about an axis perpendicular to the section.

(UCL)
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2.9 A bridge deck, which may be considered as thin-walled, has the singly
symmetric cross-section shown in Fig. 2.40. Determine the torsional
stiffness of the section, T/θ¢, in (kN m2/degree), if the shear modulus is
constant throughout and of value 70 000 N/mm2.

(EC)

2.10 The two-cell box girder shown in Fig. 2.41 supports a downwards load
of 500 kN through its centroid. The webs and flanges are both of
constant 10 mm thickness. Determine the shear flow distribution for the
cross-section and comment on the relative magnitudes of the maximum
flows sustained by the central and outer webs.
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3. Plates and slabs

3.1 Introduction

The plane stress analysis considered in Chapter 1 was concerned with plate
elements which were subjected to in-plane loading only. Plate bending anal-
ysis is similarly concerned with planar elements but the loading is now normal
to the plane of the element. It is presumed that the plate is free from in-plane
loads, the effects of which, if present, may be analysed separately and a resul-
tant solution obtained by superposition.

Plate elements are usually of either metal or concrete construction. In the
former case the elements are referred to simply as plates, while the latter are
normally referred to as slabs. Both plates and slabs are used as flooring ele-
ments and as bridge decks. Other applications of these components are found
in retention structures of various forms. The ‘counterfort’ retaining wall
shown in Fig. 3.1(a), for example, incorporates vertical and horizontal slabs,
both of which are subjected to normal loading. The same is true of the rectan-
gular section hopper shown in Fig. 3.1(b).

(a)   (b)

Fig. 3.1 (a) Counterfort retaining wall. (b) Hopper structure
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3.2 Physical behaviour

3.2.1 Beam analogy
A plate subject to normal loading may be considered as an extension of a
beam, in which the width of the beam has become of the same order as the
length, while the depth (thickness) remains of a smaller order. The discrete
supports applicable to beam analysis may also occur in plate problems but
supports along lines in the plane of the plate are commoner. With this relation-
ship between beam and plate elements, some correspondence between their
modes of structural behaviour can be expected. This is the case to the extent
that a plate element resists normal loading by bending and shearing actions, as
does a beam. However, in the case of a plate, the actions are clearly not re-
stricted to the single direction – that along its length, which is available to a
beam – but can occur in any direction in the plane of the plate. If rectangular
Cartesian coordinates are being used, a closer analogy to plate action is
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provided by a grid of rigidly interconnected beam elements set out along the
coordinate directions. The behaviour of such a grid (Fig. 3.2) is therefore con-
sidered next.

3.2.2 Grid analogy

For the grid shown in Fig. 3.2, the edges parallel to the y-axis are presumed to
be continuously ‘simply’ supported (that is, normal displacement is prevented
but rotation about the support line is free to occur). The sides parallel to the x-
axis are unsupported (free) and the behaviour of the grid to a concentrated
normal load applied to its central point (F) is to be examined. By the nature of
the supports, it may be presumed that resistance to the load is principally pro-
vided by the structural elements along the line AA. The left-hand half (AF) of
AA will be considered to deflect under load as shown in Fig. 3.3, while the re-
mainder of the grid points are assumed undeflected, and the effect of AF’s de-
flection on the more remote parts of the grid will be investigated. By
symmetry, the members along AF will not twist and the line FF¢ will remain
vertical when deflection takes place. EE¢ also remains vertical, since deflec-
tion along BE was not permitted, so that no twist is induced in FE by deflec-
tion along AF. Bending is, however, induced in FE, since F is now lower than
E. Applying similar ideas to AB, it is deduced that there is no bending in this
member since there is no twist in AC (and hence no bending rotation applied
to AB), while A¢ and B¢ remain on the same level, that of the support. There is
a twist developed in AB because AA¢ has rotated from its originally vertical
orientation while BB¢ has been kept upright. For the more general member,
CD, both twisting and bending effects will be present due to the relative rota-
tion of CC¢ and DD¢ and the relative vertical displacement of C and D.

The reactions required at point D to ensure the assumed rigidity will be as
shown in Fig. 3.4(a). The moment T counteracts the torque in CD, while the
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force Q and the moment M balance the bending effects of CD. If point D is
now allowed to displace, it will be subjected to the effects shown in
Fig. 3.4(b), and deformation must occur until the internal stress resultants gen-
erated by the deformation equilibrate the ‘out-of-balance’ force, Q, and
moments M and T. Thus, Q and T will tend to produce bending in members
BD and BE, while M will tend to twist these elements.

The complete structural action may now be described as follows. Grid
members along AA resist the load by bending alone and are stiffened by the
transverse grid members, typically CD, which assist by a combination of
bending and twisting actions. The transverse members, in turn, invoke resis-
tance from the neighbouring longitudinal members by causing them to bend
and twist. This process is repeated, with diminished effect, for the more
distant systems of transverse and longitudinal members.

The bending and twisting in the longitudinal and transverse grid members
at the general point D offers a model for plate behaviour whereby the bending
of the plate, in a rectangular Cartesian coordinate system, may similarly be
represented by bending effects along both the coordinate directions accompa-
nied by twisting, also about both directions.

3.2.3 Poisson’s ratio effect

Although the grid analogy provides a helpful demonstration of how a plate
acts, true plate behaviour differs in one important respect due to the effect of
Poisson’s ratio. In order that an appreciation of this effect may be obtained,
the behaviour of a small plate element under the effect of a constant distrib-
uted moment applied to two opposite sides may be considered. The grid model
would suggest that the effect of such a loading would be to produce a singly
curved deformed surface (Fig. 3.5(a)) in which the longitudinal members all
have similar deflected shapes and the transverse members are subjected to
rigid-body displacements only.

However, if the plate material has a non-zero Poisson’s ratio, the deflected
shape will not be as in Fig. 3.5(a), since curvature in the z–x plane will induce
curvature in the z–y plane. This is accomplished as follows: sagging bending
of a plate element in the z–x plane produces compressive stress in the top of
the plate and tensile stress in the lower part. It follows from the Poisson’s ratio
effect (see Section 1.2.3) that tensile strain will therefore be produced trans-
versely in the top of the plate and compressive transverse strain will result in
the lower half of the plate. To accommodate this effect, the true deflected
surface must be of a doubly curved (anti-clastic) form (Fig. 3.5(b)).

The Poisson’s ratio effect therefore results in the curvature in a particular
direction being no longer solely caused by the bending moment in that direc-
tion. For example, there is no bending moment in the y-direction for the
element of Fig. 3.5(b) and yet curvature exists in this direction. The curvature
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in any direction is, in fact, made up of two components, one resulting from
bending in the direction considered and one produced by the Poisson’s ratio
effect. Since concrete has a substantially lower Poisson’s ratio than that of
metals, the Poisson’s ratio effect is sometimes neglected in slab analysis. This
assumption makes the grid model exact and grid analogies are widely used in
bridge slab analysis. In the analysis of metal plates, however, the Poisson’s
ratio effect always needs to be considered.

3.3 Elastic plate theory

3.3.1 Introduction

Provided that the plate is thin, the three-dimensional plate problem may be
reduced to a two-dimensional problem provided that sufficient assumptions
are incorporated to allow the deformation at any point in the plate to be readily
derived from the deformation of a plane reference surface. The reference
surface is taken to be a middle surface which is defined by the locus of the
mid-thickness points of the plate. The required deformation assumptions are:

(a) The middle surface does not deform in its own plane, that is, with the
notation of chapter 1, the displacement components u and v (Fig. 1.4) are
zero everywhere on a middle plane which coincides with the x–y plane.

(b) The normals to the middle plane in the undeformed state remain straight
and normal to the middle surface in the deformed state.

The above assumptions are similar to those used in simple beam theory and
reduce the plate problem, when formulated in terms of displacements, to a one
independent displacement variable problem. For this reason, it is usual to for-
mulate plate theory in terms of a displacement rather than a stress function,
and this approach will be followed here.
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The first of the above assumptions results in the displaced shape of the
middle surface being completely defined by its normal displacement, w, at
every point, so that w is the single independent variable. The second assump-
tion then allows the deformation at points other than those on the middle
surface to be related to the deformation of the middle surface. The way in
which this is done is treated in detail in the next section.

3.3.2 Displacements and strains

With the right-hand screw sign convention of Fig. 3.6(a), the rotations
(Figs 3.6(b) and 3.6(c)) at a general point on the middle surface (assuming
small angles) may be related to the normal displacement variable, w, by

(3.1)

where the negative sign arises due to the negative slope produced by a positive
rotation θy.

Making use of assumptions (a) and (b) above, the variation of the displace-
ments u and v through the thickness of the plate may be related to the normal
displacement variable, w, by (Figs 3.6(b) and 3.6(c))

(3.2)

(3.3)

where the negative sign in the displacement, v, arises from the negative sense
of v produced by a positive rotation θx (Fig. 3.6(c)).
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Elasticity theory (equations (1.3) and (1.4)) may now be invoked to relate
the strains to the above displacements by

From equation (3.3)

since ∂w/∂y (= θx) is constant due to the straight normal assumption.
Therefore,

Similarly,

(3.4)

3.3.3 Strains, stresses and stress resultants

A further assumption is now made, namely that the normal stress, σz, is every-
where zero. Clearly this assumption cannot be strictly fulfilled in the vicinity
of applied loads or reactions but, provided that the plate is thin, the normal
stresses will be of a lower order than the in-plane stresses and may therefore
be neglected. Adding this further assumption to equations (3.4), the only non-
zero stresses at any given level in the plate are seen to be those of plane stress,
that is, σx, σy and γxy. Assuming an isotropic material, the stresses may there-
fore be related to the corresponding strains by the relevant plane stress equa-
tions (1.16), which, making use of equations (3.4) and (1.7), gives

(3.5)

By summing the effects of these stresses through the thickness of the
plate, stress resultants may be obtained which are, in fact, the moments
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corresponding to the bending in the coordinate directions and the twisting
about both these directions which were discussed earlier in relation to the
physical behaviour of plates.

If the stress component sign convention used in Chapter 1 is adopted, then,
for a positive z-coordinate, the stress components will act positively as shown
in Fig. 3.7. The sign convention for the moments will be taken to be as shown
in Fig. 3.8, where the equality of magnitude but opposing sense of the twisting
moments arises from the complementary nature of the shear stresses shown in
Fig. 3.7(c). The moments will all be considered to be moments per unit length
of the plate in the direction about which the moment acts. The units of the
moments will therefore be, typically, kilonewton metres per metre (kN m/m)
and, if the element shown in Fig. 3.8 is of size dx, dy, then the total bending
moment in the x-direction will be given by Mx dy, in view of the per unit length
nature of the moment. The moment stress resultants may be related to their
tributary stresses, from Figs 3.7 and 3.8, by

(3.6)

where the negative sign in Mxy arises from the resultant moment due to the
stresses τxy being in the negative sense of Mxy.

By use of equations (3.5), the moments may be related to the normal dis-
placement function, w, by
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(3.7)

where D = Et3/12(1 – ν 2) is the flexural rigidity of the plate.

3.3.4 Moments, curvatures and stresses

Before proceeding further, it is convenient to establish the relationships which
relate the plate curvatures and stresses to the associated moments. For small
slopes, the curvatures in the coordinate directions may be obtained as follows.

From equation (3.7)

Hence

Similarly,

(3.8)
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The first two expressions of equations (3.8) show that, under small-slope
assumptions, the second derivatives ∂2w/∂x2 and ∂2w/∂y2 represent the curva-
tures in the respective coordinate directions. The two equations also confirm
the earlier discussion that curvature in a given direction is dependent on both
the moment in the specified direction, and also, due to the Poisson’s ratio
effect, on the moment in the direction normal to the one specified. The last of
equations (3.8) shows that the second derivative ∂2w/∂x ∂y may be geometri-
cally interpreted as a rate of change of twist, θ¢, about either of the axes, and θ¢
can hence be related to the twisting moment.

To obtain the stresses due to specified moments, substitution from equa-
tions (3.8) into equations (3.5) gives, for the maximum stresses (which occur
at the top and bottom surfaces),

(3.9)

Equations (3.9) show that the maximum stresses are directly proportional to
the corresponding moments. It therefore follows that the concept of principal
values, discussed in Chapter 1 as applied to stresses (see Section 1.3.2), will
also apply to the set of moments Mx, My and Mxy. The orientation of the prin-
cipal directions, in which the twisting moments are zero, may therefore be ob-
tained from a moment version of equation (1.9) and the values of the principal
moments from an equivalent to equation (1.10).

It may also be noted that the direct bending stresses given by the first two of
equations (3.9) have the same form as the corresponding stresses given by
simple beam theory, if beams of unit width are considered in each of the co-
ordinate directions.

3.3.5 Equilibrium

A solution to the plate problem is to be established in terms of the displace-
ment function w. If this function is presumed to be continuous, then an ex-
plicit compatibility equation is not required. Equations (3.7) relate plate
moments to the displacement function and these equations make use of the
assumed stress–strain relationships for the plate material. For a complete so-
lution, it therefore remains to establish the equilibrium equations for a plate
element in terms of the plate moments. An amalgamation of these equilib-
rium conditions with equations (3.7) will then represent a full solution to the
plate problem.
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Displacements due to vertical shearing effects have been ignored above,
since, for thin plates, these displacements are of a smaller order than the
bending and twisting deformations. If the equilibrium of the plate is to be cor-
rectly represented, it is, however, necessary to include the vertical shear forces
which, as with the moments, are measured per unit length of plate and are
shown acting in their positive directions in Fig. 3.9.

The element of the plate middle surface shown in Fig. 3.9 is also presumed
to be subjected to a normal loading of local intensity, q/unit area. The equilib-
rium equations for the plate element may be determined by

(a) Taking moments about a line parallel to 0y at A,

or, neglecting lower-order terms and dividing by dx dy,

(3.10)

(b) Similarly, taking moments about a line parallel to 0x at B,
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(3.11)

(c) Resolving vertically,

Whence

(3.12)

To obtain the general equilibrium equation in terms of the plate moments, the
vertical shear forces may be eliminated by substituting in equation (3.12) from
equations (3.10) and (3.11) to give

(3.13)

3.3.6 General elastic plate equation
By substituting for the moments Mx, My and Mxy from equations (3.7) in the
equilibrium equation (3.13), the general elastic plate equation in terms of the
displacement function w may be obtained as

or

(3.14)

where D = Et3/12(1 – ν2). Equation (3.14) is of the biharmonic form, as was
the stress function formulation of the plane stress problem (equation (1.22)).
If a solution for the normal displacement function w can be found which satis-
fies both equation (3.14) and the relevant boundary conditions, then the stress
resultants may be obtained from this displacement solution. The moments
follow from equations (3.7), while the shear forces may be obtained from the
moments by equations (3.10) and (3.11). Alternatively, the shear forces may
be obtained directly from the displacement solution by substituting into equa-
tions (3.10) and (3.11) from equations (3.7) to give

(3.15)
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The stresses corresponding to the moment stress resultants may then be ob-
tained from equations (3.9), while the vertical shear stresses due to the shear
force stress resultants may be obtained by application of simple beam shear
stress theory (Megson, 1996) as applied to a rectangular section of unit width.
For a complete solution, it remains to obtain the reactions at the boundaries
and, in the next section, the determination of the reactions is considered, to-
gether with consideration of the appropriate boundary conditions for various
types of edge support.

3.3.7 Boundary conditions

The boundary conditions appropriate to three common forms of line support
will be established below. For convenience, the support will be presumed, in
each case, to lie along a line parallel to the y-axis but similar conditions may
readily be derived for supports parallel to the x-axis and, by suitable resolu-
tion, for oblique axes (Ghali and Neville, 1997).

Fixed (encastré) edge

It is here presumed that there is no deflection at any point along the edge and
nor is there any rotation of the plate about the support line. Thus, for a fixed
edge parallel to the y-axis (Fig. 3.10), the two geometric boundary conditions
may be expressed as

(3.16)

along the edge.
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It may also be noted that w = 0 along the support implies that

along the edge.
Also, ∂w/∂x = 0 at all boundary points implies that ∂2w/∂x ∂y = 0 along the

edge.
The reactions provided by an edge along the y-axis would, in general, be re-

quired to balance Mx, Mxy and Qx along the edge. In the case of a fixed edge, the
above geometric considerations result in

Thus, the reactions required are

(3.17)

where Vx is the force reaction (upwards positive) per unit length of support, and

(3.18)

where Rx is the moment reaction (signs as for Mx) per unit length of support.

Simply supported edge

Along such a support there is prevention of deflection but complete freedom
of rotation about an axis along the support, which implies zero bending
moment in a direction normal to the edge. Thus, for a simply supported edge
along the y-axis (Fig. 3.11), the two boundary conditions are

(3.19)
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As in the fixed-support case, the zero-displacement condition along the edge
results in

(3.20)

along the edge.
Also, the zero bending moment condition requires that

(3.21)

and

(3.22)

The twisting moment will not, in general, be zero along a simply supported
boundary, since it is possible for the normal slope to vary along the boundary,
so that, from equations (3.7) and (3.1),

Thus, the only non-zero stress resultants along the edge are Qx and Mxy and
these two effects must be equilibrated by a force reaction, since this is the only
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type of reaction which can be provided by a simple support. The action of Qx is
straightforward, contributing directly to the support reaction. The effect of Mxy

needs more careful consideration and may be assessed by considering two
neighbouring boundary points, A and A¢ (Fig. 3.12), which are separated by a
distance dy. The twisting moments at A and A¢ are taken to be, respectively,

These twisting moments may be represented by pairs of vertical forces as
shown in Fig. 3.12, since, if the separation of the forces is also taken to be dy:
due to forces Mxy,

Resolving vertically, it follows from Fig. 3.12 that the contribution to the
reaction over the length AA¢ is –(∂Mxy/∂y)dy or, in terms of reaction/unit length,
–(∂Mxy/∂y). Thus, the distributed force reaction along the edge is given by

(3.23)

or, in terms of the displacement function, from equations (3.15) and (3.7),

(3.24)
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The distributed reaction given by equation (3.23) will correctly represent the
reaction at all points along the edge except at its ends. At these points, the stat-
ically equivalent force representation of the twisting moment (Fig. 3.12)
results in a single point force, which needs to be equilibrated by a point reac-
tion at the end of the boundary. For twisting moments taken in the positive di-
rections of Fig. 3.8, the corner reactions for a plate which is simply supported
along all four edges will therefore be as shown in Fig. 3.13. For such a plate,
the corner twisting moments, under symmetric downward load, would, in
fact, be positive at corners A and C but negative at B and D. This leads to
downward point reactions being required at each corner and substantiates the
observed tendency of simply supported plates to curl upwards at corners
which are not tied down.

Free edge

An unsupported edge can provide neither a force reaction nor a moment reac-
tion normal to the edge. For a free edge parallel to the y-axis, the two boundary
conditions are, therefore,

By using equations (3.24) and (3.7), the boundary conditions may be ex-
pressed geometrically as

(3.25)

3.3.8 Classical solutions to the plate problem
As already noted in Chapter 1, the biharmonic form of partial differential
equation is only soluble by the methods of classical calculus in reasonably
regular cases. Solutions to the general plate equation (Timoshenko and
Woinowsky-Krieger, 1981; Szilard, 1974) are hence only readily available for
regular plate shapes (circular or rectangular) subjected to reasonably simple
loadings and support conditions. For more complex loadings, use may be
made of influence surfaces (Pucher, 1964) but such cases, and irregular plates
generally, normally require the use of a numerical method. Both of the numer-
ical approaches described in Chapters 1 and 2 (the finite element and finite
difference methods) may be applied to the analysis of plates. Also, the
analogy between slab and grid behaviour described above may be used to
convert slab problems to grillage analyses. These three approaches are
described below and an indication of their relative merits is given.
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3.4 Finite difference method

3.4.1 Introduction

Using a square net of the form described in Appendix A, the requirements of
the general plate equation (3.14) may be approximately fulfilled by the use of
the biharmonic difference operator (Appendix A, Fig. A.5(c)). The intensity
of loading (q) which occurs on the right-hand side of the plate equation will be
the actual intensity in the case of uniformly distributed loading or a statically
equivalent intensity in other cases. Thus, for a point load Q, situated at 0
(Fig. A.3), the load intensity at 0 is taken to be Q/h2. Application of the
biharmonic difference operator to each uniquely numbered, non-zero grid
point results in a set of equations equal in number to the number of unknown
displacements. Before proceeding to the solution of these equations, however,
the appropriate boundary conditions must be incorporated.

3.4.2 Boundary conditions

Fixed boundary

The required conditions (equations (3.16)) for fixity along a line parallel to the
y-axis are

along the edge.
The zero-deflection condition is easily satisfied, since it provides a solution

for the unknown boundary displacement, and hence this zero value is assumed
and the biharmonic difference operator is not applied to points along a fixed
boundary. The zero-slope condition may be satisfied by extending the net one
spacing beyond the edge to produce a set of ‘fictitious’ net points (Fig. 3.14),
as already encountered in Section 2.3.2. The zero-slope requirement at a
typical net point, say 2, may be expressed in finite difference form as

(3.26)

whence w6 = w6¢. Thus, if the additional points are provided and their displace-
ments are made equal to the displacements of their mirror image points in the
boundary, the zero-slope condition will be satisfied.

Simply supported boundary

In this case the conditions to be enforced along an edge parallel to the y-axis
may be expressed geometrically, from equations (3.19) and (3.21), as
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(3.27)
along the edge.

The zero displacement condition is again treated by the assumption of zero
boundary displacements, as in the fixed case. The curvature condition at, for
example, point 2 (see Fig. 3.14), may be expressed in finite difference form,
using equation (A.6), as

(3.28)
whence w6 = –w6¢ since w2 = 0.

Thus zero normal curvature is assured by making the displacement of an ad-
ditional point equal in magnitude but opposite in direction to the displacement
of its mirror image point.

Free edge

Equations (3.25) provide the relevant geometric boundary conditions for a
free edge parallel to the y-axis. In order to express the first of these equations
in finite difference terms, it will be necessary to employ two additional points
opposite each boundary point (see Fig. 3.17). Since the boundary is free to
deflect, the biharmonic operator must be applied to the boundary points in this
case. The additional points add two extra unknown displacements for each
boundary point but this is compensated for by the fact that two boundary equa-
tions are also available.
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3.4.3 Evaluation of moments and shear forces
Once the difference equations have been formed, they may be readily solved
by computer to yield the displacements at the net points. The displacements so
obtained may then be utilized to determine the moments and, if desired, the
shears at the net points from equations (3.7) and (3.15). The differential ex-
pressions occurring in these equations are evaluated by applying the appro-
priate difference operators to the known set of displacements.

3.4.4 Examples

Example 3.1 – simply supported slab

The slab to be considered (Fig. 3.15) is square, of side L, supports a uniform
load of intensity q over a central square of side L/2, and is simply supported
along all four edges. The flexural rigidity is taken to be a constant, D, while
Poisson’s ratio is presumed to be zero. The net used is of side L/4 and advan-
tage of symmetry may be taken to reduce the number of unknown displace-
ments to three (Fig. 3.15). Following the conventions of Section A.2, the
boundary points are given the reference number zero to indicate their zero dis-
placement, while the additional points outside the edges are given reference
numbers opposite in sign to that of their mirror image points to signify the
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presence of the curvature boundary condition (equation (3.28)). The load in-
tensity appropriate to point 3 is clearly q, that for point 2 must be taken as q/2,
while that for 1 should be q/4 if the total load on a square of side h, about the
point considered, is to equal the load applied to such a square. Application of
the biharmonic difference operator (Fig. A.5(c)) to the points 1, 2 and 3 yields
the following simultaneous equations:

(3.29)

Solving equations (3.29) gives

(3.30)

Moments, shears and reactions may now be evaluated at the net points. For
example, with reference to Fig. 3.15:

At point 2, using the difference approximation of equation (A.6): since ν = 0,

At the lower left-hand point 1, using the difference operator of Fig. A.5(b):
since ν = 0,

An exact solution is available for this particular example, and the results of the
finite difference solution are compared with the exact values in Fig. 3.16. It
may be seen that the agreement is good except in respect of twisting moments
and shear forces. Displacements and moments in the slab follow the expected
pattern, being greatest at the centre and small at points close to the boundary.
In contrast, the twisting moment distribution shows that maximum twist
occurs at the corners of the slab, while the centre-lines have zero twist. The
zero twist along the centre-lines arises from these being lines of symmetry, in
the present case, along which there is zero transverse slope and, hence, no rate
of change of this slope which would represent a twisting effect (equation
(3.8)). Along a boundary line such as AA (Fig. 3.16), however, the transverse
slope varies from zero at the slab corner to a maximum at the slab centre-line,
the greatest rate of change being at the corner. This distribution of twisting
moments explains why codes of practice normally require corner torsional re-
inforcement in simply supported slabs.
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Shear forces are not usually of importance in slab design but have been in-
cluded in Fig. 3.16 for completeness. The distribution approximates to that
which experience of beam behaviour might suggest, namely that the shear is
reasonably constant over the unloaded region of the slab and then decreases
uniformly over the loaded region. One interesting feature of the exact distribu-
tion is that the maximum shear force does not occur at the boundary. The ex-
planation for this is that the high torsional effects in the vicinity of the
boundary result in a rather reduced rate of increase in bending moment in
these areas, with consequently somewhat reduced shear forces. The rate of
moment increase (Fig. 3.16(c)) then accelerates somewhat around the slab
quarter points, giving rise to maximal shear forces at these locations. The re-
action distribution (Fig. 3.16(f)) shows that the majority of the load is sup-
ported by the central region of the slab, while the corner twisting moments
require the downward corner point reactions mentioned earlier if the slab
corners are not to rise under load.

Example 3.2 – fixed-edge slab

The same slab is now considered with fixed edges. The only alteration re-
quired to Fig. 3.15 is to change the signs of the additional net points in order
that the new boundary condition (equation (3.26)) be observed. If this is done,
then application of the biharmonic operator (Fig. A.5(c)) to points 1, 2 and 3
results in the equations

(3.31)

The solution to equations (3.31) is
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Net point

w (¥ 10 – 5qL4/D)

Fixed Simple

4 ¥ 4 8 ¥ 8 4 ¥ 4 8 ¥ 8

1 37 29 101 101
2 63 52 146 147
3 105 91 214 213
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An exact solution is not so easily obtained in the case of clamped edges. In
such cases, numerical solutions are normally verified by proceeding to a finer
net, the solution being presumed converged if the coarser and finer solutions
are in agreement. The results of the above 4 ¥ 4 net are therefore compared
with those from an 8 ¥ 8 net in Table 3.1.

Clearly, the solution obtained above is not close to the converged solution
in the fixed-edge case. The comparison values presented for the simply sup-
ported case indicate that the converged position has essentially been obtained
in the 4 ¥ 4 case, as indeed has already been established by correlation with
the exact solution. In its present form then, the finite difference solution does
not represent fixed edges accurately. Two remedies are available, either to
insist on fine nets whenever fixed edges are treated, or to utilize more accurate
difference operators (Cope and Clark, 1984) in such cases.

Example 3.3 – slab with free edges

The same slab will now be treated with the sides parallel to the y-axis being
unsupported, while those parallel to the x-axis are simply supported. The net
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for a 4 ¥ 4 solution then becomes as shown in Fig. 3.17, and the required dif-
ference equations are given as

(3.32)

The first six of equations (3.32) represent the application of the biharmonic
difference operator to slab points 1–6. The seventh and eighth equations rep-
resent the zero bending moment condition at the free edge points 5 and 6 and
are based on a difference approximation to the second of equations (3.25)
using the stipulated zero value of Poisson’s ratio. The final two equations
occur due to the zero force boundary condition (the first of equations (3.25))
and are formed, in the zero Poisson’s ratio case, by the application of the oper-
ator of Fig. A.6(a) at points 5 and 6. A computer solution to equations (3.32)
provides the displacements:

On proceeding to a finer net, the comparable results are as shown in Table 3.2.
As in the simply supported case, the 4 ¥ 4 and 8 ¥ 8 solutions are in good
agreement and it may be concluded that a fixed-edge support presents the
greatest difficulty for a finite difference solution.
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3.4.5 Extensions and refinements
Orthotropic plates, for which the stiffness is different in two perpendicular di-
rections, may be investigated by use of the appropriate differential equation
(Timoshenko and Woinowsky-Krieger, 1981). More complex boundary con-
ditions than the ones covered above are encountered at curved boundaries and
at free internal or external corners (Wood, 1961). Oblique or triangular nets
(Fig. A.2) are particularly convenient in the case of skew slabs (Morley,
1963). Incorporation of the interaction of slabs with other structural elements,
edge beams for example, is not particularly straightforward but has been con-
sidered in fairly simple cases (Wood, 1961).

3.5 Grid representation method
Grillages are readily analysed elastically by the stiffness method (Ghali and
Neville, 1997) and most structural computer packages, based on this ap-
proach, possess sub-systems which can analyse grids of essentially any size or
complexity. The similarity of grid and plate behaviour has already been uti-
lized in describing general plate response (see Section 3.2) and it is reasonable
to enquire as to whether plates may be analysed by standard grillage computer
programs. In fact, such a representation is particularly easy to formulate in the
case of a slab (zero Poisson’s ratio), and the presentation given here will be re-
stricted to such a case.

3.5.1 Grid properties
It will be assumed that the slab is to be represented by a rectangular grid of
members, which are shown with uniform spacings, a and b, in Fig. 3.18, al-
though this is not essential. It has been emphasized above that slab action is

126

Advanced structural mechanics

B

B

A A

O

b

b

b

b

a

a a a a

x

y

Fig. 3.18 Grid representations

140



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:50

characterized by bending in the x- and y-directions, accompanied by twisting
about both of these directions. The object of a grid representation is to make
the grid members simulate the bending and twisting action of their sur-
rounding slab strips in either the x- or the y-direction, as appropriate. Thus,
member AA (Fig. 3.18), for example, must represent the x-direction bending
and twisting for the shaded part of the slab, while BB will perform the same
function in the y-direction for its shaded part. The relevant differential equa-
tions for slab bending and twisting in the x-direction may be obtained by
setting Poisson’s ratio to zero in the first and third of equations (3.7) to give

(3.33)

(3.34)

where G = E/2 for ν = 0 (equation (1.7)).
Since Mx and Mxy are moments/unit width, the total moments sustained by

the shaded strip, AA, of Fig. 3.18 are

(3.35)

(3.36)

The differential equations relating to the behaviour of a grid member in the x-
direction are those of beam bending (Megson, 1996) and elastic torsion (equa-
tion (2.2)):

(3.37)

(3.38)

If equations (3.37) and (3.38) are to correctly represent equations (3.35) and
(3.36), then

(3.39)

The bending constant, I, given by equation (3.39) will be recognized as that
appropriate to a rectangular section of width b and depth t. The suggested
torsion constant, J, is not so readily interpreted, since a rectangular section of
width b and depth t (small in comparison to b) has already been shown
(Table 2.5) to be twice the value given by equation (3.39). This factor of two
arises due to the different twist responses of an isolated rectangular section
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and a rectangular section which forms part of a continuous slab. In the isolated
case, the shear flow due to torsion is continuous around the section
(Fig. 3.19(a)), while, as shown above (see Section 3.3.3), the shear stresses
due to twisting within a slab are parallel to the slab middle surface
(Fig. 3.19(b)). It has already been shown (equation (2.17) et seq.) that the ver-
tical shear stresses in the isolated section case contribute one half of the total
torsion resistance, which accounts for the reduced torsional stiffness of the
slab element.

On the basis of equations (3.39), the required properties of all the members
involved in the grid representation of Fig. 3.18 may now be readily estab-
lished as:

For interior x-direction members:

(3.40a)

For edge x-direction members:

(3.40b)

For interior y-direction members:

(3.40c)

For edge y-direction members:

(3.40d)

3.5.2 Boundary conditions

Boundary conditions present little difficulty with this approach. Joints along a
free edge are simply left unrestrained. Joints along a fixed edge are fully re-
strained against z-direction translation and against rotation about both the x-
and y-axes. This treatment results in the edge members becoming inoperative,
and they may be omitted from the analysis if so desired.
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Simply supported edges require a little more care. Clearly, joint displace-
ments along a simply supported edge must be prevented and there must be no
restraint against rotation about the line of support. The difficulty concerns ro-
tation about an axis perpendicular to the edge. Geometrically, there should be
no rotation about such an axis and yet, if rotation is prevented, there are no
bending moments in the edge members and hence no shear forces. The
absence of shear forces in the edge members results in the inability of the grid
to accurately represent the reaction distribution along the support. Thus, ge-
ometry requires no rotation about an axis perpendicular to the edge, and yet a
satisfactory reaction distribution may only be obtained if such rotations are
allowed. These conflicting requirements may be compromised by allowing
the rotation but giving the edge members a high bending stiffness and so en-
suring that the rotations incurred are small. No alteration should be made to
the torsional stiffness of the edge members.

3.5.3 Load representation

Loads may be allocated to either the grid members, or to the joints, or to a
combination of both members and joints. The allocation of the load is usually
based on simple statical principles. In the examples treated below, the loading
is allocated to the joints only, and, for comparison with the finite difference
method, the apportionment is based on the principles which were used in con-
nection with that method. Thus, for a given joint O (Fig. 3.18), any loads
acting within the surrounding shaded rectangle of dimensions axb are allo-
cated to O. If the shaded area were subjected to a uniformly distributed load of
intensity, q, for example, then an equivalent point load of (qab) would be
applied to O.

3.5.4 Evaluation of moments and shear forces

Once the grid has been analysed, slab moments and shears may be evaluated
directly from the computer analysis. The results presented will consist of joint
displacements and rotations, member shears, bending moments and torques,
and joint reactions. The member forces will not be in terms of force/unit
length but will be a total force appropriate to the corresponding slab strip. This
being the case, it is desirable to express all moments and forces in unit width
terms before proceeding further. The reduction to unit length terms is readily
achieved by relationships such as

(3.41)

where the prime signifies a value from the computer analysis.
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The slab internal forces may then be obtained by averaging the appropriate
reduced forces at the joint considered. For example, at O in Fig. 3.18, two
values of Mx will be available, one from the grid member to the left of O and
one from that to the right. The average of these two values will represent the
slab value of Mx at O. Similarly, the values of My, Qx and Qy at O may be estab-
lished. There is only one value of slab twisting moment at O, since the twisting
moments in the x- and y-directions are complementary; thus Mxy is obtained as
the mean of the torques in all the four members meeting at O. This averaging
process is of considerable importance, as the individual values may be a poor
approximation, but the means will generally give a good representation of the
slab behaviour.

3.5.5 Evaluation of reactions

Reactions at the boundary points may be obtained from the computed joint
reactions by reducing these values to unit length terms. Some difficulty is
experienced in the case of a corner force reaction, since the analysis value will
incorporate any point corner reaction with a contribution from the distributed
reaction over a length (a + b)/2 (presuming that support is provided in both the
x- and y-directions). These two constituents may be separated by evaluating
the corner twisting moment, as described in the previous section, which then
provides the value of the point reaction (Fig. 3.13). The point reaction is then
subtracted from the analysis reaction to leave the distributed reaction
component.

3.5.6 Examples

Example 3.4 – fixed-edge slab

The slab considered previously (example 3.2) is now analysed by the grid rep-
resentation method. Due to symmetry, only a quarter of the slab need be ana-
lysed, and the member arrangement for a 4 ¥ 4 analysis is as shown in
Fig. 3.20. The required member properties are:

For 3–6, 6–9, 7–8, 8–9:

For 4–5, 5–6, 2–5, 5–8:

Members 1–2, 2–3, 1–4, 4–7 are not needed, and G = 0.5E for all members.
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It should be noted in the above that the use of symmetry results in a halving
of the tributary slab areas applicable to the members along the slab centre-
lines, and hence a halving of their member properties. To completely model
the symmetry condition, it is also necessary to enforce the requirement that
the slope normal to any line of symmetry be zero. If these restraint require-
ments are combined with the restraints due to the fixed edges, the full set of
joint restraints becomes:

At 1, 2, 3, 4, 7: no z-displacement; no rotation about x- or y-axis (fixed-edge
condition)
At 8: no rotation about x-axis (symmetry condition)
At 6: no rotation about y-axis (symmetry condition)
At 9: no rotation about x- or y-axis (symmetry conditions).

Using the load allocation procedure described above, the required joint loads
at 5, 6, 8 and 9 are equal point loads of qL2/64. These equal loads contrast with
the dissimilar load intensities applied in the finite difference analysis (equa-
tions (3.31)). The reason for this lies in the differing treatments of symmetry
employed by the two methods. The grid representation essentially discards
three-quarters of the slab, together with the loading applied to this part of the
structure. The effect of this discarded portion on the quarter that is analysed is
then represented by the enforcement of the symmetry restraints which were
detailed above. In the finite difference approach, however, the complete slab
is considered (Fig. 3.15) but the selected system of nodal numbering reflects
the symmetrical displacement of the slab and thereby reduces the size of the
analysis. The results of a computer analysis based on the above grid represen-
tation are given in Fig. 3.21, where they are compared with an 8 ¥ 8 analysis
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by the same method. It may be observed that the agreement is good in respect
of displacements and bending moments, but is much less satisfactory in
respect of twisting moments, shear forces and reactions. The latter variables
are, in fact, the most difficult to model by any numerical method. It may also
be noted that there should be zero shear force (Fig. 3.21) along the line of sym-
metry CA (Fig. 3.21(a)) but this condition is rather poorly represented by the
analyses, particularly the coarser one.

The displacement and moment distributions, as would be anticipated, show
maximum hogging curvature and moment at the fixed supports and maximum
sagging curvature and moment at the centre of the slab. The distributions also
indicate that the central slab strips sustain most of the load, there being little
bending towards the corners of the slab.

The twisting moment distribution (Fig. 3.21(d)) is rather different from the
simply supported slab example (Fig. 3.16(d)), with which it may be con-
trasted. No twisting moment can exist along the lines of symmetry, CA and
CC, or along the fixed edges, since there is no change of transverse slope
along such lines. The analyses do not represent these conditions particularly
well (Fig. 3.21(d)) but do show that the maximum twisting moment occurs
around the slab quarter point, with smaller twisting moments in the regions of
the centre-lines and the supports. It may be noted that the magnitude of the
maximum twisting moment occurring in the fixed case is only about one-third
that of the simply supported maximum; thus, twisting moments are of less
concern in continuous slabs than in simply supported ones.

The shear force and reaction distributions are somewhat similar in form to
those encountered in the simply supported case. No corner point reactions are
present in the fixed case, however, due to the absence of boundary twisting
moments. The reaction distribution confirms the earlier suggestion that the
majority of the load is carried by the central slab strips.

Example 3.5 – slab with free edges

The same slab will be analysed with the edges parallel to the y-axis being un-
supported (Fig. 3.22) while those parallel to the x-axis are simply supported.
Making use of symmetry, as before, the required member properties are:

For 1–4, 4–7, 3–6, 6–9, 7–8, 8–9:

For 4–5, 5–6, 2–5, 5–8:

For 1–2, 2–3:
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The I values of the members along the simple support have been increased by
a nominal multiple of 100 (Section 3.5.2) and G = 0.5E for all members.

The required joint restraints are:

At 1, 2: no z-displacement
At 3: no z-displacement, no rotation about y-axis (symmetry condition)
At 6: no rotation about y-axis (symmetry condition)
At 7, 8: no rotation about x-axis (symmetry condition)
At 9: no rotation about x- or y-axis (symmetry conditions).

The loading arrangements remain the same as in the previous example,
namely vertical point loads of magnitude qL2/64 will be applied to joints 5, 6,
8 and 9. Computer results from a 4 ¥ 4 analysis based on the above representa-
tion are compared with values from an 8 ¥ 8 grid analysis in Fig. 3.23 and
show satisfactory agreement. The bending moment and deflection distribu-
tions indicate that essentially ‘one-way’ bending occurs. The slab behaviour
approximates to that of a simply supported beam having the same width and
depth as the slab and loaded with a uniformly distributed load of intensity
(qL/2)/unit length over its central half-length. Such an approximation would
result in a maximum bending moment of 0.047qL2, which may be compared
with the value of 0.051qL2 given by the 8 ¥ 8 grid representation.

The beam-type behaviour results in the twisting and transverse moments
being small in comparison with the longitudinal moments. In respect of trans-
verse moments, it may be noted that the analyses indicate small hogging
moments close to the free edges where the unloaded longitudinal strips give
considerable support to the transverse strips.

134

Advanced structural mechanics

= = = =
3 3 3

3100
100 ,

8 12 96 8 6 48

L t L t Lt
I Lt J

7 8 9

4 5 6

1 2 3

L/2

L/2

x

y

Free edge

Simple
support

Fig. 3.22 Slab with free edges

148



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:50

135

Plates and slabs

(d)

(e)

4 ¥ 4 grid

8 ¥ 8 grid

(c)(b)

0

1

2

3

4

5

DD

EE

–1

0

1

2

CC
x

Mx

My

y

x

w w

y
0

1

2

3

4

5

CC

BB

AA
0

1

2

3

4

5
EE

DD

D
C

E
C

BB

ED

A A

Free edge

Simple support

y
x

(a)

6

Fig. 3.23 Slab with free edges: (a) reference plan for quarter slab; (b) w (¥ 10–3qL4/D);
(c) w (¥ 10–3qL4/D); (d) My (¥ 10–2qL2); (e) Mx (¥ 10–2qL2)

149



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:50

3.5.7 Extensions and refinements
Non-zero Poisson’s ratio causes some difficulty with this approach, since, as
discussed already, grids do not naturally model the Poisson’s ratio effect.
Thus, although suitable grid models have been suggested for plate analysis
with non-zero Poisson’s ratio, the finite difference or finite element methods
are generally more convenient. Variation in slab thickness causes no real
problems, since suitable adjustments to the member properties may be readily
effected. Orthotropy may, similarly, be treated by adjustment of the member
properties, and one of the main applications of this method has been to
orthotropic bridge decks (Hambly, 1998).

Non-linear boundaries are not readily modelled on the basis presented here
and, again, although triangular grid models have been proposed, other
methods are usually to be preferred, except in the case of curved-bridge decks,
where curved-beam theory can be effectively employed. Interaction effects
with beams, stiffeners, columns and similar line elements are easily catered
for by simply incorporating these members in the analysis. If columns are in-
troduced, then a space frame rather than a grid analysis program will, of
course, be required.

3.6 Finite element method
3.6.1 Rectangular element theory
For plate bending, the finite element method is most readily formulated for a
rectangular element (Fig. 3.24(a)). Although the deformation of a plate may
be uniquely represented in terms of the normal displacement variable, w,
alone, a more effective representation is achieved if the dependent x- and y-
axis rotations are also included in the formulation, so that the displacement of
a general point, P, will be given by
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(3.42)

There are thus three displacement ‘components’ to be considered at each point
of the element and, in particular, since there are four nodes, a total of 12 nodal
displacements will be involved. It follows that the polynomial displacement
function should have a total of 12 terms. Unlike the triangular plane stress
element, the displacement components are not independent of each other and
it will therefore be sufficient for the normal displacement variable alone to be
represented by the polynomial function, since the rotational displacements
may then be determined from the final two of equations (3.42). A suitable
polynomial representation for the normal displacement variable is

(3.43)

The polynomial representation of equation (3.43) includes a full cubic func-
tion which comprises ten terms, so only two fourth-order terms may be incor-
porated. The chosen two terms are selected on the basis of preserving a
symmetric representation in x, y and of keeping the order of the individual
variables x and y as low as possible.

From equations (3.43) and (3.42), the complete displacement vector is
given by

In the following, the detailed treatment will be restricted, for simplicity, to a
square slab bending element (Fig. 3.25). The same general theory may,
however, be applied to rectangular isotropic or orthotropic plate bending ele-
ments. If the general point, P (Fig. 3.25), is taken to be the nodes i, j, k and l in
turn, then substituting successively in equation (3.44) allows the 12 nodal
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displacements to be related to the 12 undetermined coefficients by equations
(3.45). It may be shown that [C e] is non-singular, as well as square, so that the
undetermined polynomial coefficients may be related to the nodal displace-
ments by equation (3.46), in which the inversion of [C e] for the square slab
element has been achieved by computer:

(3.45)
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(3.46)

The finite element method next requires that suitable ‘strains’ be defined,
which may be related to the nodal displacement variables and to appropriately
defined ‘stress’ variables by strain and elasticity relationships respectively. In
the case of plate bending, ‘stresses’ are perhaps more readily defined than
‘strains’, since the general theory given above suggests that the ‘stress’ at P
may be suitably represented by the moment stress resultants as

(3.47)

Equations (3.8) then suggest that the ‘strains’ are appropriately defined in
terms of curvatures so that

(3.48)

The factor of two which occurs in the definition of the torsional strain arises
due to the requirement that {ε}T{σ} represent a quantity of work. It may, in
fact, be shown that –χx Mx, –χy My, and –χxy Mxy all represent work/unit area of
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plate and, since the torsional moment occurs in both coordinate directions, the
total work it produces is 2χxy Mxy. The strains may now be related to the un-
determined coefficients by substitution from equation (3.43) into equation
(3.48) to give

(3.49)

The strain matrix then follows in the normal manner by substituting for the un-
determined coefficients in equation (3.49) from equation (3.46). Hence

(3.50)

The strain matrix for the square slab element, obtained by substituting in
equation (3.50) for [Q] and [C e]–1 from equations (3.49) and (3.46), respec-
tively, is

(3.51)

It should be noted that the strain matrix [B], unlike its triangular plane stress
element counterpart, is a variable matrix, since, although matrix [Ce] is
constant, depending only on the known element size, the matrix [Q] depends
upon the variable coordinates x and y of the general point, P. It follows that
the strains, and hence stresses, vary with position for this type of element.
The relationship between the chosen stresses and strains may be obtained by
recasting equations (3.7) in matrix form to produce the elasticity
relationships:
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(3.52)

The stresses may now be related to the element nodal displacements in the
normal way by eliminating the strains from equations (3.52) and (3.50) to
give

(3.53)

For the particular case of the square slab element, the elasticity matrix is ob-
tained by setting Poisson’s ratio to zero in equation (3.52) to produce

(3.54)

Substituting in equation (3.53) for [D] and [B] from equations (3.54) and
(3.51), respectively, produces the stress matrix for the square slab element:

(3.55)

141

Plates and slabs

e e{ } [ ][ ]{ ] [ ]{ }D B Hσ δ δ= =

3

1
2

1 0 0

0 1 0[ ]
12

0 0

Et
D

È ˘
Í ˙= Í ˙
Í ˙Î ˚

- - - - -È
Í - - - -Í
Í

- + - + - - +ÍÎ
- + - + -

- - - +

- + + + - - +
=

- -

2 2 23
2

2 2 23
3 2

4

3 ( ) 0 ( )( 3 )

3 ( ) ( )( 3 ) 0

2 ( ) ( )( 3 ) ( )( 3 )
2 2

3 ( ) 0 ( )( 3 )

3 ( ) ( )( 3 ) 0

2 ( ) ( )( 3 ) ( )( 3 )
1 2 2[ ]

12 4 3 ( ) 0 ( )(

x h y h h y h x

y h x h h x h y

h h
h x y h y h y h x h x

x h y h h y h x

y h x h h x h y

h h
h x y h y h y h x h x

Et
H

h x h y h h y +
- + + -

- + + - - + - + -

+ + + ˘
˙+ - + + ˙
˙

- + - + - + - ˙̊

2 2 23
2

2 2 23
2

3 )

3 ( ) ( )( 3 ) 0

2 ( ) ( )( 3 ) ( )( 3 )
2 2

3 ( ) 0 ( )( 3 )

3 ( ) ( )( 3 ) 0

2 ( ) ( )( 3 ) ( )( 3 )
2 2

h x

y h x h h x h y

h h
h x y h y h y h x h x

x h y h h y h x

y h x h h x h y

h h
h x y h y h y h x h x

2

2

23

22

2

1 0

1 0
{ } [ ]{ }

12(1 ) 1
0 0

2
2

x

y

xy

w

x
M

wEt
M D

y
M

w

x y

ν
νσ ε

ν ν

Ï ¸∂-Ô Ô∂È ˘Ô ÔÏ ¸ Í ˙Ô Ô∂Ô Ô Ô ÔÍ ˙ -= = =Ì ˝ Ì ˝∂- Í ˙-Ô Ô Ô ÔÍ ˙Ó ˛ Ô ÔÎ ˚ ∂
Ô Ô

∂ ∂Ô ÔÓ ˛

155



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:50

Since [B] depends on the position of P, the stresses calculated from equation
(3.53) will vary and may be determined at any given point in the element by
substitution of the relevant coordinates x and y. It is, in fact, usual to determine
the moments at the four nodes of each element by substituting successively in
equation (3.53) for the coordinates of the nodes i, j, k and l to produce the
element stress matrix

(3.56)

The stress matrix [H e] for a square slab element may be obtained by following
the same procedure of successive coordinate substitution, in this case in equa-
tion (3.55), and the resulting element stress matrix is given in Fig. 3.26.

Since the strain and elasticity matrices are now available from equations
(3.50) and (3.52), general finite element theory (see Appendix B) may be
invoked to obtain the element stiffness matrix as

(3.57)

In equation (3.57), it should be noticed that the integral is taken over the area
of the rectangular element since, as noted earlier, the product {ε}T{σ} repre-
sents a quantity of work/unit area in this case. Also, unlike the triangular plane
stress element, the integrand is not constant, due to the variable nature of the
strain matrix. Nevertheless, the indicated integration may be evaluated to give
the element stiffness matrix and this will be exemplified by consideration of
the square slab element. First, the integration is simplified by substituting for
[B] in equation (3.57) from equation (3.50) since [Ce]–1 is a constant matrix,
hence

So that

(3.58)

where
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Fig. 3.26 Square slab bending element matrices. (a) Element stress matrix. (b) Element
stiffness matrix
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The evaluation of the integrand is now relatively straightforward due to the
form of the elasticity matrix (equation (3.54)) and the fact that the origin of the
coordinate system was located at the centre of the element (Fig. 3.25). The
details of the integrand evaluation are given in Fig. 3.27, and the element stiff-
ness matrix, derived by subsequent substitution in equation (3.58) for [Ce]–1

from equation (3.46) and [S] from Fig. 3.27, is presented in Fig. 3.26.
Plate analysis by the finite element method therefore consists of assembling

a set of structure stiffness equations based on the element stiffness matrices
derived from equation (3.57). Following the enforcement of the boundary
conditions, the solution to the stiffness equations provides the plate displace-
ments, which may be employed to obtain element stress solutions by use of
equation (3.56). The application of these processes is illustrated in the
example given below.

3.6.2 Example

Example 3.6 – fixed-edge slab

The example slab considered previously will be analysed by the finite element
method under the fixed-edge condition, using the element sub-division and
numbering systems shown in Fig. 3.28. Since the boundary conditions require
that all the displacement components be zero at nodes 5, 6, 7, 8 and 9 the con-
ditions may be enforced by not forming stiffness equations at these nodes,
where the displacements are known, and the structure stiffness matrix will
take the general form
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Fig. 3.28 Fixed-edge slab
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(3.59)

where

the total ‘force’ components at node 1.

Displacement solution

From Fig. 3.26, the element stiffness equations for the square slab element
may be written, in sub-matrix form, as

(3.60)

To accord with general finite element theory, the nodal ‘forces’ involved in
equation (3.60) must be such that {δi}

T{fi} represents a work quantity. With
the chosen ‘displacement’ components (equation (3.42)), this will be so if the
‘forces’ are taken to be a force in the w-direction together with moments about
the x- and y-axes in the positive directions shown in Fig. 3.24(b).

The structure stiffness matrix will be formed, as in example 1.1, by consid-
ering each of the nodes 1–4 in turn, and summing the force contributions from
the elements which each node interconnects. Taking node 1 first (Fig. 3.28),
the only element involved is element 1. Since the i, j, k and l designation of
element 1 is 2, 3, 1 and 4, its element stiffness equations, from equation (3.60),
take the form

(3.61)

The third of equations (3.61) relates to node 1, and, since only element 1 is in-
volved, this provides the first structure stiffness equation as

(3.62)

146

Advanced structural mechanics

i ii ij ik il i

j ji jj jk jl j

k ki kj kk kl k

l li lj lk ll l

f k k k k

f k k k k

f k k k k

f k k k k

δ
δ
δ
δ

Ï ¸ Ï ¸Ï ¸
Ô Ô Ô ÔÔ Ô
Ô Ô Ô ÔÔ Ô=Ì ˝ Ì ˝Ì ˝
Ô Ô Ô ÔÔ Ô
Ô Ô Ô ÔÔ ÔÓ ˛ Ó ˛Ó ˛

2 2

3 3

1 1

4 4

ii ij ik il

ji jj jk jl

ki kj kk kl

li lj lk ll

f k k k k

f k k k k

f k k k k

f k k k k

δ
δ
δ
δ

Ï ¸ Ï ¸Ï ¸
Ô Ô Ô ÔÔ Ô
Ô Ô Ô ÔÔ Ô=Ì ˝ Ì ˝Ì ˝
Ô Ô Ô ÔÔ Ô
Ô Ô Ô ÔÔ ÔÓ ˛ Ó ˛Ó ˛

1

11

1

w

x

y

F

FF

F

Ï ¸
Ô Ô= Ì ˝
Ô Ô
Ó ˛

1 1

4 4

[ ]

F

K

F

δ

δ

Ï ¸ Ï ¸
Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô ÔÓ ˛ Ó ˛

� �

Δ=
1 2 3 4
1 1 1 1

1{ } [ : : : ]{ }kk ki kj klF k k k k

160



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:50

where {Δ} = {δ1, …, δ4}
T and 1 indicates evaluation for element 1.

Node 2 interconnects elements 1 and 2, so that the force contributions from
these two elements need to be summed to produce the second structure stiff-
ness equation. In the case of element 1, the forces at node 2 are given by the
first of equations (3.61). Element 2 has node 2 as its ‘k’ node and it will there-
fore be the third of equations (3.60) which represents the node 2 forces for this
element. When expanded, the relevant equation becomes

(3.63)

since {δ5} = {δ6} = {0, 0, 0}T (boundary conditions).
Combining the contributions from the two elements together results in the

second structure stiffness equation:

(3.64)

Similar consideration of nodes 3 and 4 enables the complete structure stiffness
matrix to be assembled, in sub-matrix form, as

(3.65)

Since, in this example, all the elements are similar, the complete stiffness
equations may be obtained by direct substitution for the sub-matrices of equa-
tion (3.65) from Fig. 3.26(b). Such a substitution would normally be made nu-
merically, but, for comparison with earlier solutions, algebraic geometric
representations will be used. Also, the same form of load allocation will be
employed as in the grid representation, that is, equal point loads of q(L/2)2/4 at
each of nodes 1, 2, 3 and 4. When formed in this way, the structure stiffness
equations are as given in Fig. 3.29(a).

Although the equations of Fig. 3.29(a) incorporate the boundary conditions
due to the fixed edge (by omission of nodes 5–9), there are additional re-
straints due to the use of symmetry. No rotation can occur about lines of sym-
metry, since this would produce non-symmetric twists, and the additional
restraints required to model these conditions are, with reference to Fig. 3.28:

Along 5–2–1: θx = 0
Along 9–4–1: θy = 0

It should be noted that, on lines of symmetry, rotation about lines normal to
the symmetry lines is acceptable and will, in general, occur due to the bending
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of the slab. At the centre point, 1, however, the slope in all directions will be
zero and hence both rotation components must be restrained.

The symmetry restraints are reflected in the equations of Fig. 3.29(a) by the
specification of restraint moments, R. These moments arise due to interaction
with the quarters of the slab which are not considered in the analysis. If the
known zero-rotation values due to symmetry are introduced into the equations
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of Fig. 3.29(a), then the columns of the stiffness matrix corresponding to these
components become null and may be deleted. The equations corresponding to
the restrained rotations are also discarded to give the stiffness equations for
the restrained slab which are shown in Fig. 3.29(b), where equations relating
to moment equilibrium have, for convenience, been divided by a. To facilitate
the numerical solution of the equations, it is convenient to change the rota-
tional variables, θ, to aθ, in which case the restrained stiffness equations
become as given in Fig. 3.29(c). A computer solution to these equations
follows:

(3.66)

The displacement solution of equation (3.66) exhibits further symmetry prop-
erties of the slab, namely the equal displacement and rotation components at
nodes 2 and 4 and the equal rotation components at node 3. It would, in fact,
have been possible to take advantage of these relationships to reduce the
number of stiffness equations to be solved (see problem 3.10).

Stress solution

To exemplify the stress solution, the moments at node 2 will be determined.
These moments can be derived from either element 1 or element 2 (Fig. 3.28),
so that the normal practice of deriving the moments from both elements and
then averaging will be followed. In the case of element 1, node 2 is node i and,
from equation (3.55), the moments at the node are given by

(3.67)

By substituting in equation (3.67) for the stress sub-matrix from Fig. 3.26 and
for the nodal displacements from equation (3.66), the moments at node 2 may
be determined by
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(3.68)

Following a similar procedure for element 2, node 2 becomes node ‘k’ and the
moments are calculated as shown:

(3.69)
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Comparing equations (3.68) and (3.69) shows that only the y-direction
moments are in agreement, there being marked differences between the other
two pairs of moments. In addition, zero twisting moment would be expected at
node 2 but this symmetry condition is not well represented by the analysis.
More representative moments are obtained by averaging the two sets of
moments obtained already,

(3.70)

but the twisting moment is still significantly different from zero, although its
magnitude is small compared with the size of the maximum moments in the
slab (Table 3.3).

3.6.3 Extensions and refinements
Non-zero Poisson’s ratio and orthotropy (Zienkiewicz and Taylor, 1991) may
both be treated by use of appropriate elasticity matrices in place of the slab re-
lationships (equation (3.54)) used here. Beam elements may be used in con-
junction with slab elements, and the inclusion of slab elements in complete
structure analysis presents little theoretical difficulty. A more ‘consistent’
system of load allocation is possible, while non-rectangular plates and slabs
require triangular, oblique or isoparametric elements, for all of which aspects
the reader is referred to Zienkiewicz and Taylor (1991). It should be noted,
however, that many of these more versatile elements are based on Mindlin
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Table 3.3 Comparative results from slab analyses

Central deflection Maximum bending moment

Analysis Net S E F S E F

Finite difference 4 ¥ 4 214 105 524 220 –200 507
8 ¥ 8 213 91 504 223 –238 507

Grid
representation

4 ¥ 4 201 78 472 248 –243 519
8 ¥ 8 210 82 491 232 –256 511

Finite element 4 ¥ 4 201 79 471 231 –240 511
8 ¥ 8 210 83 490 227 –252 507

Multiplier 10 –5qL4/D 10 –4qL2

Support types: S E F

Simple
Encastré
Free
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plate theory, rather than the Kirchhoff thin plate theory. Mindlin’s formulation
is a thick plate theory, which incorporates shear deformations In using such
elements, it is therefore necessary that realistic plate thicknesses be employed
if reliable results are to be obtained.

3.7 Comparison of analyses
Results for the analysis of the slab used as an example in this chapter are
presented in Table 3.3. The results have been obtained by each of the three
numerical methods considered, for each of the three types of edge support
condition. In Table 3.3, the finite element and grid representation methods
may be observed to give a good indication of structural behaviour in all cases,
as judged by the correspondence between results from the finer and coarser
nets. The grid representation results correlate closely with the finite element
values, which might have been anticipated, since, in the forms presented
above, the methods are closely related. Both approaches form three equilib-
rium equations at each node of the net, and it may also be shown that both
methods assume that the displacement between adjacent nodes may be repre-
sented by a cubic polynomial.

As noted previously, the finite difference solution performs well in the
simply supported and free-edge cases but is considerably less satisfactory
when fixed edges are treated. The feature of the fixed support which creates
the difficulty is the presence of curvature reversal in this case, which can be
less effectively modelled by the quadratic displacement representation of the
difference approach (equation (A.1)) than by the cubic representation of the
two other methods. This deficiency may, however, be overcome by using
finer difference nets in regions of expected curvature reversal, and it is the
availability of large-scale standard computer packages and their enhanced
flexibility which explain the general preference for grid representation or
finite element methods for plate bending analysis.

3.8 Design moments

3.8.1 Introduction
Whichever method is used to determine the moment distribution in a slab or
plate, the next problem confronted is normally that of how to ensure that the
strength of the plate is adequate to resist the calculated moments. This
problem may be viewed as one of knowing how to design, in particular, for the
twisting moments, Mxy. If a metal plate is being designed, it is usual to convert
the moments into stresses using equations (3.9) and then to employ an appro-
priate failure criterion, often that due to von Mises (Megson, 1996), to ensure
the adequacy of the plate.
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In the case of a reinforced concrete slab, which is reinforced by an ortho-
gonal system of bars placed in the x- and y-directions, the problem is to deter-
mine the design moments Mx

* , My
* the reinforcement should be designed for if

adequate strength is to be available in all directions. Once Mx
* , My

* have been
found, the reinforcement may be designed to resist these moments by the
normal analysis of a section in bending. The design moments are commonly
referred to as Wood–Armer (Wood, 1968) moments, and the following recom-
mendations follow Wood’s suggestions.

3.8.2 Recommendations
Bottom reinforcement

Generally

(3.71)

If either Mx
* or My

* in equations (3.71) is found to be negative, it is changed to
zero, as follows: either

(3.72)

or

(3.73)

If, in these changed formulae, the wrong algebraic sign results for Mx
* or My

* ,
then no such reinforcement is required.

If both Mx
* and My

* are negative, then no bottom reinforcement is required.

Top reinforcement

Generally

(3.74)

If either Mx
* or My

* in equations (3.74) is found to be positive, then change to
either

(3.75)

or

(3.76)
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If, in these changed formulae, the wrong algebraic sign results for Mx
* or My

* ,
then no such reinforcement is required.

If both Mx
* and My

* are negative then no top reinforcement is required.

3.8.3 Example 3.7 – simply supported slab design moments

Referring to Fig. 3.16, the design moments at various points of the simply sup-
ported slab considered previously may be evaluated as follows:

At centre (C): Mx = My = +0.023qL2, Mxy = 0
Bottom reinforcement: Mx

* = My
* = +0.023qL2

Top reinforcement: Mx
* = My

* = 0

At quarter point (1): Mx = My = +0.009qL2, Mxy = –0.011qL
Bottom reinforcement: Mx

* = My
* = +0.020qL2

Top reinforcement: Mx
* = My

* = –0.002qL2

At corner (A): Mx = My = 0, Mxy = –0.019qL2

Bottom reinforcement: Mx
* = My

* = +0.019qL2

Top reinforcement: Mx
* = My

* = –0.019qL2

From the above, it may be seen that top (torsional) reinforcement is only re-
quired close to the corners, as would be expected, and that the bottom rein-
forcement requirements at the centre and corners are rather similar. Naturally,
much less bottom steel is needed close to the centre point of an edge.

3.8.4 Example 3.8 – fixed-edge slab design moments

With reference to Fig. 3.21, the design moments will be calculated at point D,
not because this is a particularly critical slab location, but simply to illustrate
the application of the design moment computations:

At point D: Mx = –0.008qL2; My = +0.002qL2; Mxy = –0.005qL2

Bottom reinforcement: Mx
* = –0.003qL2; My

* = +0.007qL2

So take equation (3): Mx
* = 0; My

* = (+0.002 + 0.0052/0.008)qL2 = +0.005qL2

Note that the subsidiary calculation results in some moment reduction but that
this will be small if the design moment with the offending sign was also small.

Top reinforcement: Mx
* = –0.013qL2; My

* = –0.003qL2.
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Problems

3.1 A square, isotropic slab of side 5 m is such that two opposite sides may
be presumed simply supported, while the other two sides are encastré.
The slab supports a central point load of 200 kN. Using a net of side
1.25 m, employ the finite difference method to determine the
displacements at the net nodal points.

Hence determine the bending moment distributions in the direction
of, and along, both centre-lines and relate these distributions to the
expected behaviour of the slab. (E = 20 kN/mm2, ν = 0, t = 100 mm)

3.2 A reinforced concrete foundation raft is used to resist axial loads P from
regularly spaced concrete columns by developing uniform bearing
stresses. A typical internal panel is shown in Fig. 3.30. Taking into
account all possible symmetry conditions, determine expressions for the
normal displacements of the panel at points 1 and 2.

Describe briefly how you would use the results from this type of
analysis to obtain the distribution of bending moments.

(UCL)
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3.3 The square plate ABCD, of side a, shown in Fig. 3.31 is clamped along
AD, DC and simply supported along AB, BC. The plate is isotropic with
flexural rigidity D.

(a) Establish a set of equations for the solution of the plate when
subjected to transverse loading using finite difference
approximations, with a mesh size a/4 as shown, when the load is:
(i) uniformly distributed, q per unit area;
(ii) a central point load, P.

(b) Discuss the principal sources of error in the proposed finite
difference idealization and the means by which the accuracy could
be improved.

(c) Describe the main differences in the solution if the edge AD were
free, the other support conditions being unchanged.

(CITY)

3.4 For a rectangular difference net such that the net spacing in the x-
direction is 3h, while that in the y-direction is h, show that the
biharmonic difference operator takes the form shown in Fig. 3.32(a).

The rectangular metal plate shown in Fig 3.32(b) has length 3L and
breadth L, and its edges may be assumed to be simply supported. The
plate has flexural rigidity D, may be presumed isotropic, and is
subjected to a uniformly distributed pressure load of intensity q.

Using the net shown, and making use of symmetry, calculate the
normal displacements at the net points 1, 2, 3 and 4 by the finite
difference method. Hence determine the bending moments along and in
the direction of sections AA and BB. Plot these bending moment
distributions and compare the results with those that might be expected
from a similar plate in which the length is infinitely greater than the
breadth. (ν = 0.3).
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3.5 The square slab shown in Fig. 3.33 carries a load of uniform intensity, q,
over a centrally positioned square of side, L/4. The slab is simply
supported on two opposite edges. The other pair of edges are supported
by central columns which may be assumed to provide rotationally free
point supports. The slab has bending rigidity, D, and Poisson’s ratio, ν,
may be assumed zero.

Analyse the slab by the finite difference method, using a grid of side
L/4, and compare your results with the values given in Table 3.4, which
were obtained by a finite difference analysis using a grid of side L/8. Plot
distributions of w, Mx, Mxy along the grid lines and relate the
distributions to the expected structural response of the slab.
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3.6 A reinforced concrete water tank is to be 10 m square and 3 m high. The
tank is open at the top and has walls which vary in thickness from 0.10 m
at the top to 0.25 m at the base. By making use of symmetry, it is
intended to analyse one half of a wall slab for the effects of water
pressure when the tank is full. A grid analogy approach is to be used for
the analysis. Young’s modulus for concrete may be taken as 15 N/mm2

and Poisson’s ratio may be assumed to be zero.
Using no more than 25 joints, sketch and number a suitable layout for

the analogous grid members and specify:

(a) the section properties of the grid members;
(b) the loads to be applied to the grid;
(c) the restraints to be applied to the grid.

(UEL)

3.7 Figure 3.34 shows the plan view of a reinforced concrete water tank.
The roof comprises a flat slab which is supported by the tank walls at its
edges and by columns at 4 m centres internally, and carries a uniformly
distributed load over its complete area. The column head detail is as
shown in the figure. It is proposed to analyse the slab by the use of
rectangular finite elements, no more than 36 in number. By making use
of appropriate symmetry assumptions, the analysis is to be applied to the
quarter panel shown hatched in the figure.
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Table 3.4 L/8 grid finite difference analysis results

Position w (¥ 10–5qL4/D) Mx (¥ 10–4qL2) My (¥ 10–4qL2)

Centre 69 89 90
Column 0 0 –77
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Sketch a suggested element sub-division and state the type of element
properties and nodal restraints which would be needed for the analysis.
Justify the choice of element sub-division made.

(UEL)

3.8 An isoparametric finite element mesh for a skew bridge slab analysis is
shown in Fig. 3.35(a). The slab is subjected to a uniformly distributed
load and is simply supported on opposite sides, as shown in the figure,
the other two sides, being unsupported. Figures 3.35(b) and 3.35(c)
show output results in the form of contours of absolute maximum
principal moment values and principal moment vectors, respectively.
Figure 3.35(d) shows the reaction distribution along the edge AB.

Discuss the structural response of the slab to the applied load. Sketch
distributions which are equivalent to Figs 3.35(b)–3.35(d), if the bridge
deck was constructed of parallel beam strips (as shown in Fig. 3.35(e))
which are structurally independent. Compare and contrast the structural
behaviour of the two types of deck construction.

3.9 Analyse the slab of problem 3.1 using rectangular plate bending finite
elements, adopting square elements of side 1.25 m.

Compare the displacement and bending moment results with those
obtained by use of the finite difference method, and state, with reasons,
which results would be expected to be the more accurate.

3.10 One quarter of a square, encastré slab is to be analysed by the finite
element method using the sub-division into equal, square elements
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shown in Fig. 3.36(a), with the displacement sign convention of
Fig. 3.36(b). The slab is subjected to a central, vertical, downwards
point load of 400 kN.

The stiffness equations for the quarter slab may be shown to be as
given by Fig. 3.36(d). Use symmetry to eliminate θy3, w4 and θx4 from the
stiffness equations and hence produce a reduced set of five equations in
the displacement variables and w1, w2, θy2, w3 and θx3.

The solution to the reduced set of equations is given in Fig. 3.36(c).
Use this solution to determine the moments at node 1 if the part stress
equations for the element used are as given in Fig. 3.36(e).

(UEL)
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4. Thin shells

4.1 Introduction

4.1.1 Generation, classification and application
A thin shell may be defined as comprising the material contained between two
closely separated three-dimensional surfaces. As with plates, provided the
two generating surfaces are sufficiently close, the deformation of the single
surface formed by the mid-thickness points will be sufficient to describe the
deformation of the complete shell. Only the behaviour of a single, middle
surface will therefore be considered in the following theory, and sufficient as-
sumptions will be made to enable the deformation of any point in the shell to
be determined from the deformation of such a middle surface.

Since general three-dimensional surfaces are of interest, the range of pos-
sible shell geometries is enormous. Some classification scheme is therefore
essential so that advantage may be taken of whatever similarities various shell
forms may possess. Relevant strategies may then be adopted so that the poten-
tial analytical complexities are minimized by the use of appropriate coordi-
nate systems and similar tactics. The most convenient primary classification is
one based on shell geometry, and examples of the simplest geometric types
are shown in Table 4.1. The forms included in Table 4.1 do cover many of the
commonest types used in practice, but shells with other geometric regularity
features are also employed as, indeed, are shells of irregular geometry. As will
be seen from Table 4.1, shells find a wide range of application as storage and
pressure vessels on land and also on sea and in the air when employed as ship
or aeroplane hull structures. In civil engineering, the routine use of shell roofs
has been curtailed by increased labour costs, and shell roofing (Cronowicz,
1968) tends to be restricted to structures which are of special architectural sig-
nificance, such as the Sydney Opera House in Australia. Major applications of
shells remain, however, in the construction of cooling towers and water
storage and retention structures (mainly circular tanks, cylindrical or conical
towers, and arch dams). Shell theory may also be used for the analysis of box
girders (see Fig. 2.1) and of core-supported buildings (see Fig. 2.2), so that the
fields of application are almost as diverse as the possible geometric forms.
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4.1.2 Structural behaviour

In general, shells resist loads by a combination of bending and in-plane
actions. In the case of shells, in-plane action is characterized by the plane
stress system of direct and shear stresses (see Fig. 1.9) and is normally
referred to as membrane action. This terminology derives from the inability of
membrane materials, such as fabrics, to resist any bending whatsoever, and
their consequent total reliance on in-plane action. Examples of membrane
shells are sails, tents, balloons and inflated structures, each of which can only
resist in-plane actions and must therefore adopt a shape which allows the
imposed loading to be resisted in this manner. Such structures do not therefore
have a unique non-loaded geometry, as their rigid counterparts do, and deter-
mining the form of such structures under their initial prestressing and/or self-
weight effects becomes a problem in its own right (Firt, 1983).

Plates represent a special case of shell and may be considered to be the an-
tithesis of membranes in the sense that, when normally loaded, no membrane
stresses exist (see Chapter 3) and resistance is provided by bending alone.
Membrane resistance may be given to a thin plate by folding it, and the effect
of the folding is to dramatically increase the stiffness. Thus, if the flexible thin
sheet of Fig. 4.1(a) is converted into the folded-plate type of shell shown in
Fig. 4.1(b), then the sheet is able to sustain quite substantial loads, whereas it
previously exhibited gross deformation under a much more modest load.
Closed shells, in particular, exhibit high strength and stiffness, as evidenced
by the familiar example of the ‘nut which is hard to crack’, or, in relation to its
thickness, even an egg-shell. The high stiffness is primarily due to membrane
action, bending often being of secondary or localized significance.

The influence of bending effects on shell behaviour depends on the type of
restraints and loading which are involved as well as the shape of the shell. In
respect of shell shape, however, bending will always need to be considered in
the cases of folded plates and open cylindrical sections (see Table 4.1). For
axisymmetric shells, bending effects will tend to be localized, but the rate of
decay of these effects will depend upon the nature of the principal radii of

167

Thin shells

(a)             (b)

w

W

Fig. 4.1 Flat and folded plate
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curvature which describe the shape of the shell. The product of the two prin-
cipal curvatures of a surface is known as the Gaussian curvature of the
surface, so that

(4.1)

where χ1, χ2 are the principal curvatures, and r1, r2 are the principal radii of
curvature.

If the two principal radii are of the same sign (Fig. 4.2(a)), as in a dome,
then the surface has positive Gaussian curvature, and bending effects will tend
to decay rather rapidly. If one of the principal radii is infinitely large, as in the
case of a cylindrical shell (Fig. 4.2(b)), then the surface has zero Gaussian
curvature and bending influence will persist over a greater region. Radii of
curvature of opposing signs, as in the cooling tower of Table 4.1, produce neg-
ative Gaussian curvature (Fig. 4.2(c)), which is also susceptible to bending.
Axisymmetric shells are therefore conveniently sub-divided into positive,
zero, and negative Gaussian curvature types, it being anticipated that bending
influence will be greater for zero or negative Gaussian curvature forms than
for shells of positive curvature.

4.1.3 Scope of the chapter

As just described, membrane shells resist loads by in-plane forces alone, and
membrane effects are also generally predominant in closed axisymmetric
shells. The neglect of bending considerably simplifies shell analysis, and the
initial treatment will therefore be based on such an assumption. In addition,
for reasons of geometric simplicity, only axisymmetric shells will be consid-
ered. This restriction excludes the open cylindrical and folded-plate varieties
of Table 4.1, which has some consistency with the neglect of bending effects,
since bending is of greater significance in these cases.
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Further simplification of the analysis is produced if the loads are presumed
to be axisymmetric, as well as the shell shape. This further assumption will
therefore be made and will have the practical effect of restricting the discus-
sion to dead, snow, over-pressure, and similar loads which may be presumed
axisymmetric. Wind and other non-axisymmetric loads will have to be ex-
cluded. An analysis derived on the above basis is termed a membrane analysis
for thin elastic shells under axisymmetric loading.

A membrane analysis can be helpful even when significant bending occurs,
since, as described, the bending effects will sometimes be localized and a
membrane solution will then represent the shell behaviour at regions distant
from the areas of localized bending. Even when bending is significant
throughout the shell, use can be made of a membrane analysis as a ‘primary’
solution to which ‘corrections’ are made to allow for the bending effects
(Baker et al., 1979; Billington, 1982; Zingoni, 1997). Shell analysis incorpo-
rating bending tends to be complex, whether tackled in the way just mentioned
or by any other analytic closed-form approach. A numerical technique is
therefore often preferred, and the finite element method generally offers the
most flexible approach. As an example of the application of the finite element
method to shell analysis, the method is therefore applied to the analysis of cir-
cular cylindrical shells in the later sections of this chapter. Such an analysis is
usually known as a linear thin shell bending analysis.

4.2 Membrane theory for axisymmetric shells

4.2.1 Basic properties
Geometric preliminaries

An axisymmetric surface is generated by revolving a curve about an axis in its
own plane (Fig. 4.3). The generating curve and all curves formed by the
intersection of the surface and planes containing the axis are then known as
meridians. The intersections of the surface with planes which are normal to
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the axis will be a set of circles which are termed parallels. If, for convenience,
the axis is taken in the vertical direction, then, for a general point P on the
surface, the angle θ may be defined as the angle in a horizontal plane between
an arbitrary fixed line and the perpendicular from P to the axis. An angle φ
may also be defined as the angle in a vertical plane between the normal to the
surface at P and the axis. If the surface is such that its Gaussian curvature is of
constant sign it will then be possible to uniquely define the position of P by the
parameters θ and φ. An example of such a system of position definition is the
use of lines of longitude and latitude on the surface of the earth.

‘Lines’ of curvature on a three-dimensional surface are defined to be curves
which have the property that the normals to the surface at adjacent points on a
line of curvature are co-planar. Since the normals are co-planar, they will, in
general, intersect. A principal radius of curvature is then defined as the dis-
tance from the surface to such an intersection point. The lines of curvature at
any point on the surface may further be shown to be mutually perpendicular
(Wang, 1953).

A differential element of an axisymmetric surface is now considered which
is bounded by a pair of adjacent meridians and a pair of adjacent parallels
(Fig. 4.4(a)). The normal at the point A (Fig. 4.4(b)) will intersect the normal
at an adjacent point D on the meridian through A, because, by axisymmetry,
both the normals to the surface lie in the vertical plane containing the axis and
the meridian. The meridians are therefore lines of curvature for an axi-
symmetric surface. The normal to the surface at a point B, which is adjacent to
A and lies on the parallel through A, will, by axisymmetry, intersect with the
normal at A at a point on the axis. The parallels of an axisymmetric surface are
therefore also lines of curvature, and the meridians and parallels do possess
the orthogonal property of lines of curvature referred to previously.
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With reference to Fig. 4.4(b), the following geometric relationships should
be noted for future use:

(4.2)

(4.3)

So that

(4.4)

Stress resultant preliminaries

As with plates (see Chapter 3), it is convenient, and usual in shell theory, to
work in terms of stress resultants rather than in terms of the stresses them-
selves. The stress resultants are taken to be the resultant forces and moments
acting on a normal section which is of unit length. Since only in-plane stresses
are considered in membrane theory, the stresses on a plane shell element in
Cartesian coordinates will be the plane stress components considered in
Chapter 1 (Fig. 4.5(a)). The corresponding stress resultants are illustrated in
Fig. 4.5(b), and, since these resultants are taken to act on unit lengths, the
stresses are related to the corresponding stress resultants by equations of the
form

(4.5)

For axisymmetric shells, it is convenient to employ a curvilinear set of
coordinates based on the meridian and parallel directions. In this case, the
direct stress resultants are referred to as the meridional and tangential stress
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resultants; the tangential stress resultant being sometimes alternatively
termed the parallel, circumferential, or hoop stress resultant. If the loading is
axisymmetric as well as the shell geometry, as assumed here, then, by sym-
metry, the tangential stress resultant must be constant along any given
parallel. It also follows that the shear stress resultants, which would produce
non-symmetric deformations, must be everywhere zero. The stress resultants
therefore take the form illustrated in Fig. 4.6(a) where the tangential compo-
nent has been assumed constant but the variation of the meridional component
has been differentially included. There is a geometric parallel to this stress
resultant situation in that the distance along any meridian between adjacent
parallels will be constant but the distance along parallels between adjacent
meridians will vary. Again, this is reflected in the figure.

Equilibrium

Since only two stress resultants need to be determined at any point, a solution
may be obtained by statics alone. Equilibrium must be ensured in the parallel,
meridional and normal coordinate directions. The constancy of the tangential
stress resultant fulfils the equilibrium condition in the parallel direction, and
the appropriate conditions in the remaining two directions are then sufficient
for the determination of the two unknown stress resultants.

Equilibrium in the normal direction is considered first, and the component
of the external load in this direction is taken to be a pressure, p (Fig. 4.6(a)),
which is measured per unit area of shell surface. To determine the components
of the two stress resultants in the normal direction, it is helpful to consider the
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resultant of a constant tension, T, acting around a circular arc (Fig. 4.6(b)). In
this case, the radial resultant, F, is given by

(4.6)

Using this result to calculate the components of the stress resultants in the
normal direction, the relevant equilibrium equation is established as

(4.7)

where increments of Nm and dst have been neglected as second-order
quantities.

Substituting from equations (4.4) gives

Whence

(4.8)

Equation (4.8) is the final form of the first equilibrium equation. As indi-
cated above, the second equilibrium equation could be obtained by resolution
in the meridional direction. It is, however, more convenient to consider the
vertical equilibrium of a frustum of the shell above an arbitrary parallel
(Fig. 4.7).

The advantage gained in using such a frustum of the shell is that, by taking
the section along a parallel, only the meridional stress resultant is sectioned
(Fig. 4.8) and the vertical equilibrium equation is therefore independent of the
tangential stress resultant. Thus, resolving vertically for the frustum,

(4.9)

where R is the total vertical component of the applied load on the frustum.
For any given problem, therefore, the meridional stress resultant may be

determined directly from equation (4.9) and substitution in equation (4.8) then
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provides the tangential stress component. The total vertical component of the
applied loading, R, is in general obtained by suitable integration over the
surface of the frustum, but, for the particular cases of a constant normal pres-
sure or a fluid pressure, R may be obtained more simply from results
(Feodosyev, 1968) which are described in the next section. Examples of the
application of membrane theory to the analysis of a variety of thin
axisymmetric shells and loading conditions are then given.

Vertical load due to uniform normal pressure

An elementary portion of the shell surface is considered which is bounded by
the parallels defined by angles φ¢ and dφ¢ (Fig. 4.8(a)). The vertical force
component, dR, due to the uniform normal pressure, p, acting on this surface is
then given by

(4.10)

The quantity in brackets in equation (4.10) can, however, be shown to be the
projected area of dA¢ on a horizontal plane at the base of the frustum, that is the
annular area, dA (Fig. 4.8(a)). This follows from the area projection rule
which states that areas (Fig. 4.8(b)) project according to

(4.11)

Hence

(4.12)

where A is the projected area of the shell frustrum on a horizontal plane.
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Equation (4.12) provides the required expression for the vertical compo-
nent of load due to a normal pressure acting on a shell frustum, and use of this
expression is made in example 4.2 below.

Vertical load due to fluid pressure

If a shell frustum is now considered under hydrostatic pressure (Fig. 4.9(a)),
then the vertical force due to the normal hydrostatic pressure acting on an ele-
mentary area, dA¢, will be given, by the previous theorem, as

(4.13)

where ρ is the mass density of the fluid, dA is the area dA¢ when projected onto
a horizontal plane, and dV is the tubular volume generated by rotation of the
hatched area in Fig. 4.9(a).

Equation (4.13) therefore shows that the total vertical force, R, will be equal
to the weight of the fluid supported by the shell surface. Care is needed in
identifying the appropriate weight of supported fluid in cases such as that
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illustrated in Fig. 4.9(b), where it is the weight of the hatched volume that is
supported by the sides of the frustum shown, not the weight of the total con-
tained volume of fluid. This feature is illustrated in example 4.3 below.

4.2.2 Example 4.1 – spherical dome under dead load

The membrane theory of thin shells will be used to determine the membrane
forces due to a constant self-weight load, q/unit area, for a spherical dome of
radius a, which is simply supported and has a half-angle α (Fig. 4.10(a)).

Following the theory described above, the vertical equilibrium of a frustum
of the dome (Fig. 4.10(b)) is considered first. The vertical load acting on an
element of the frustum is given by

Hence

Thus, for vertical equilibrium, either resolving directly or by substitution in
equation (4.9),

Whence

(4.14)

Equation (4.14) shows that the meridional membrane force is compressive
at all points on the dome and that its magnitude increases with increasing φ,
being bounded by

(4.15)

where the smallest compression occurs at the summit of the dome and the
greatest occurs at the base of a hemispherical dome (Fig. 4.11).

Equation (4.8) may now be used to find the tangential membrane force. The
geometry of a sphere is particularly simple since the normals at every point on
the sphere surface have the same length, namely the sphere radius, a. Thus, the
meridional and tangential radii of curvature are equal and are of length a, so
that substitution in equation (4.8) gives
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Whence, substituting for Nm from equation (4.14) gives

(4.16)

Equation (4.16) shows that the tangential membrane force is also compressive
at the dome summit but can become tensile if φ is sufficiently large, since the
limits for the magnitude of the tangential membrane force are given by

(4.17)

where the maximum compression occurs at the dome summit and the
maximum tension occurs at the base of a hemispherical dome (Fig. 4.11).

Comparison of equations (4.15) and (4.16) shows that the tangential and
meridional membrane forces are equal at the dome summit, a result which is,
in fact, true for all axisymmetric domes under axisymmetric loading, since, at
the summit, the tangential direction to any given meridian is itself in a meridi-
onal direction. The transition from a compressive to a tensile tangential mem-
brane force will take place when, from equation (4.16),

or

whence φ = 52°.
Thus, if the dome half-angle is greater than 52°, the tangential stress will

become tensile towards the base of the dome, reflecting the action of the tan-
gential fibres in restraining the tendency of the meridional fibres to ‘bulge’
outwards.
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4.2.3 Limitations of membrane theory

It will be noticed that the ‘simple supports’ (Fig. 4.10(a)) referred to in
example 4.1 consist of roller supports which are tangential to the meridian at
the base of the dome, so that the equivalent form of support based on rods
would be as shown in Fig. 4.12(a). This type of support is sometimes used in
practice, but more frequently the support provides a vertical reaction only
(Fig. 4.12(b)). In this case, the reaction cannot be equilibrated by the meridi-
onal force at the base, and a shear force (Fig. 4.12(b)), and hence bending,
must exist if equilibrium is to be ensured. One effect of vertical supports is
therefore to produce bending in the edge region but they will also substantially
modify the membrane forces in this area, since these forces, particularly in the
tangential (parallel) direction, must now provide the horizontal component of
restraint which was previously given by the support. The result is that very
substantial tangential tensile forces are developed towards the rim of the dome
(problem 4.1). To accommodate these tensile forces, it is normal to provide a
ring beam at the support (Fig. 4.12(c)), which will absorb the tangential
tension by providing a horizontal restraint. Bending will, however, still be
produced in the neighbourhood of the connection of the ring to the shell, since
the strains in the ring and the base of the shell, as determined by membrane
theory, may be shown to be incompatible.

Non-meridional and (for obvious reasons) moment-resistant supports
therefore result in shell bending but these are by no means the only features to
have this effect. Bending will always exist close to lines of distortion on the
shell middle surface (Gol’denveizer, 1961). These lines of distortion occur at
points of discontinuity and, for axisymmetric shells, will take the form of par-
allel circles. Lines of distortion are created by:

(a) shell edges along which either no, or other than tangential, support is
provided;

(b) discontinuities in the applied loading;
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Fig. 4.12 (a) Meridionally (simply) supported dome. (b) Vertically supported dome. (c) Dome
with ring beam

192



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:55

(c) curvature discontinuities;
(d) abrupt changes in the elastic properties or thickness of the shell material.

The fluid container example shown in Fig. 4.13 will be used to illustrate the
various types of lines of distortion which will exist at the lettered sections: at
AA due to the free edge, at BB due to the change in thickness at the end of the
rim stiffener, at CC due to the ring point load, at DD due to the discontinuity in
changing from an unloaded state to a fluid pressure load, at EE due to the
change from a straight to a curved generator, at FF also due to the abrupt
change in curvature, at GG due to the thickness change, and at HH due to the
non-tangential, in fact encastré, support.

If no lines of distortion exist, then membrane theory can be expected to
provide an accurate solution for all points on the shell, except in the case of
‘shallow’ shells, the behaviour of which resembles that of plates and hence in-
volves bending. When lines of distortion do exist, then the question arises as
to whether the consequent bending will be restricted to an area local to the line
of distortion or not. If the bending is localized, then a membrane solution will
be valid for all parts of the shell remote from the lines of distortion, in the
region of which a separate investigation will be needed. Clearly, no localiza-
tion of bending will take place if the lines of distortion are close together as in
the example of Fig. 4.13. Gol’denveizer (1961) shows that the spread of the
bending effects will be considerable whenever a line of distortion touches a
line of zero curvature on the shell. This concept explains the localized nature
of bending effects in shells of positive curvature referred to earlier (see
Section 4.1.2), since such forms do not possess lines of zero curvature. On the
other hand, shells of zero or negative curvature (see Fig. 4.2) will both exhibit
lines of zero curvature and hence be susceptible to widespread bending if a
zero-curvature line touches a line of distortion.
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4.2.4 Example 4.2 – paraboloid dome under internal pressure

The membrane forces in a paraboloid dome under a uniform internal pressure,
p/unit area, will be determined. The dome is presumed to be ‘simply sup-
ported’ (Fig. 4.14(a)) so that membrane theory will be applicable to the
complete shell surface. Uniform internal pressure loads are encountered in
practice either when shells are used for the storage of gases or when flexible
inflated structures are subjected to their initial, prestressing over-pressure.

It is assumed that the shell is generated from a parabolic curve of the form

(4.18)

where a is a constant.
Since it is convenient to work in terms of the parametric coordinate, φ, the

Cartesian coordinates, x and y, and the principal radii of curvature must first
be expressed in terms of φ.

Thus, from Fig. 4.14(a) and equation (4.18),

(4.19)

Hence

(4.20a)

and, from equation (4.18),

(4.20b)

Then, from Fig. 4.14(a),

(4.21)
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Fig. 4.14 (a) Paraboloid dome example. (b) Frustum of the dome
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and

(4.22)

Now

(4.23)

and, from equation (4.19),

(4.24)

Also,

(4.25)

Substituting from equations (4.24) and (4.25) in equation (4.23) gives

(4.26)

With the aid of these geometric relationships, the membrane forces may be
determined in a similar fashion to that employed previously. Since a uniform
normal pressure is involved, equation (4.12) may be used to determine the re-
sultant vertical component of the load on a frustum of the shell (Fig. 4.14(b)).
Thus, using equation (4.12) and subsequently substituting from equation
(4.21),

(4.27)

where the negative sign indicates the upward direction of R.
Then, resolving vertically for the shell frustum,

Whence

(4.28)

Substitution in equation (4.8) for Nm, rm and rt from equations (4.28), (4.23)
and (4.22), respectively, gives

where the negative sign indicates the outward direction of p. Whence
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(4.29)

Equation (4.28) shows that, as expected for an internal pressure, the meridi-
onal membrane force is tensile throughout and increases with increasing φ.
The tangential membrane force (equation (4.29)) is also tensile everywhere
and also increases with increasing φ, but does so at a faster rate than the merid-
ional force. Typical distributions of the two membrane forces over the surface
of a paraboloid shell are shown in Fig. 4.15, where the equality of the forces at
the dome summit, mentioned in the spherical case, should be noted.

4.2.5 Example 4.3 – conical shell under fluid pressure
The conical tank shown in Fig. 4.16(a) is presumed to be full of fluid, and it is
required to determine the distribution of the membrane forces in the tank walls
due to the fluid pressure.

Following the normal procedure, the total vertical component of the applied
load acting on a frustum of the shell (Fig. 4.16(b)) will be determined first.
Thus, for an element of the frustum (Fig. 4.16(b)),

(4.30)

The tank walls are generated from a straight line given by

(4.31)

Hence

(4.32)

Also, from Fig. 4.16(b),

(4.33)
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While the fluid pressure, p, is given by

(4.34)

where ρ is the mass density of the liquid. Thus

or

The total vertical component of the applied load acting on the frustum is there-
fore given by

(4.35)

Hence

(4.36)

and

(4.37)

Alternatively, and more simply, the vertical load acting on the frustum may
be obtained by application of the theorem of supported fluid weight described
above. In this case, the weight of the fluid supported by the walls of the
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frustum is the weight of fluid contained in the volume swept out by rotation of
the hatched area in Fig. 4.17. Thus, with reference to Fig. 4.17,

So that

Whence, as before,

Thus, resolving vertically for the frustum gives,

or

Whence

(4.38)

To obtain the tangential membrane force, equation (4.8) is used once more.
Since the meridians of a cone are straight lines:
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Also, from Fig. 4.17(a),

Thus, from equation (4.8),

where the negative sign occurs due to the outward direction of p. Hence

(4.39)

Equations (4.38) and (4.39) show that the meridional and tangential mem-
brane forces are compressive and tensile respectively throughout the shell.
Differentiation of the two equations further shows that the maximum meridi-
onal force occurs at the base of the tank but that the maximum tangential force
occurs when y = H/2.

The distribution of the membrane forces therefore takes the form illustrated
in Fig. 4.18 for a typical tank. It will be noted from Fig. 4.18 that the meridi-
onal membrane force becomes large towards the base of the tank and, indeed,
equation (4.38) predicts that this force becomes infinite at the apex of a cone.
Such infinite forces do not of course exist physically, since the membrane
force distribution in the neighbourhood of a cone apex is substantially modi-
fied due to the bending effects which must exist in this region due to the abrupt
geometric change at the apex. Also, if the base of the tank is provided with an
encastré support as indicated in this example, then bending effects will again
be present in the lower regions of the tank. The moment resistance provided
by such a support will obviously induce bending moments but the membrane
force distributions will also be significantly modified. For example, the
tangential force distribution predicted by membrane theory includes a sub-
stantial force at the tank base (Fig. 4.18). If horizontal movement is prevented
at the base, however, the tangential strain at the base will be zero and, hence
(for zero Poisson’s ratio), the tangential stress and membrane force will also
be zero.
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4.3 Bending of circular cylindrical shells
The inclusion of bending in classical shell theory considerably increases the
complexity of the problem. Nevertheless, solutions for a wide range of shell
geometries and loading conditions have been obtained (Gibson, 1980;
Timoshenko and Woinowsky-Krieger, 1981; Flügge, 1960). However, fea-
tures such as varying thickness, complex loading or irregular shell shapes can
all render solutions by classical methods, at best, difficult and, at worst, intrac-
table. These situations therefore generally require the use of a numerical
approach, and a variety of methods is available. The relevant differential
equations may be numerically integrated directly (Kraus, 1967) or through a
finite difference approximation (Ghali, 1979; Soare, 1967). The finite element
method is, however, currently the generally preferred technique and, as an
example of a numerical approach, the application of the finite element method
will be described, as applied to the bending analysis of closed, circular cylin-
drical shells under axisymmetric, radial loading. The chosen shell geometry
and loading are thus the simplest possible but the concepts established may be
extended to more general shells and loads.

4.3.1 Finite element method

Since, under axisymmetric conditions, the behaviour of a segment of a cylin-
drical shell is the same as that of any other segment of the same arc length, a
segment of unit arc length (Fig. 4.19(a)) will be considered for convenience.
Also, the meridians of a cylindrical shell are parallel to its axis, and it is conve-
nient to use the axial coordinate, y, as the single independent position variable.
For a circular cylinder of given radius, r, the distance y then locates a unique
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parallel, the position along which is immaterial in view of the axisymmetry. A
length, L, of the segment of unit arc length will be taken as the basic finite
element (Fig. 4.19(b)), and the displacement variables at a general point P will
be the radial displacement, w, and the rotation about a tangential axis, θ. These
displacements are shown related to a local set of meridional (s) and radial (n)
axes in Fig. 4.19(c). As with plates, the chosen displacement components are
not independent of each other, since (Fig. 4.19(c))

(4.40)

The element has two nodes and, hence, four nodal displacement variables.
Also, there is only one independent displacement variable, say w, so that the
relationship to be assumed between w and the position coordinate, s, must
contain four undetermined coefficients. Thus, using the simplest polynomial
with four undetermined coefficients,

(4.41)

Hence, from equation (4.40),

(4.42)

Applying equations (4.41) and (4.42) to the nodes, i and j, the nodal displace-
ment variables may be related to the unknown coefficients by

(4.43)

Then, solving the linear equations represented by equation (4.43), the
unknown coefficients may be related to the nodal displacements by

(4.44)

The next step in the general finite element formulation technique (see
Appendix B) requires the strain vector at P to be related to the displacement
variables at that point. To establish a suitable strain vector for the present
element, it is helpful to consider initially the stress resultants which will act at
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a point on the element. In Fig. 4.20(a), the bending moment in the tangential
direction, Mt, is constant due to axisymmetry and hence there is no shear force
in this direction. For similar reasons, there are no twisting moments, but the
bending moment in the meridional direction, Mm, will vary and therefore be
accompanied by a shear force, Qm. As with plates, all the stress resultants will
be measured per unit length of the shell element.

For the conditions considered, the meridional direct force may be readily
shown to be zero, since, with radial loading only (Fig. 4.21), vertical resolu-
tion for a frustum of the cylinder gives

(4.45)
The cylinder is therefore subject to uni-axial direct force in the tangential di-
rection, so that

(4.46)

Also, due to the uni-axial direct stress,

(4.47)

It follows from equation (4.47) that there is only one independent direct strain
which may conveniently be taken to be the tangential one. The tangential
strain may be related to the independent displacement variable, w, by consid-
eration of Fig. 4.20(b), as follows:

(4.48)

188

Advanced structural mechanics

m tε νε= -

m t t(1 )N t Etσ ε= ¥ =

m2 0rN =π

t

2 [( ) )]

2

r w r w

r r
ε

+ -= =π
π

(a)  (b)

Nm

Qm Mm Nt

Mt

Mt

Nt Qm

Mm

Nm

(r + w)

r

Fig. 4.20 (a) Element stress resultants. (b) Radial displacement

202



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:55

To relate the bending moments to the corresponding curvatures the first two
of equations (3.7) may be employed, provided that the negative signs in the
equations are made positive to reflect the opposing relative orientations of the
normal axis and the moments in Figs 3.7 and 3.8 and Figs 4.19(b) and 4.20(a).
Thus,

(4.49)

where D = Et3/12(1 – ν2). The meridional curvature may be related to the
radial displacement, w, by the normal small-slope relationship of

(4.50)

The change in tangential curvature may be established from Fig. 4.20(b) as

(4.51)

This curvature change is an order smaller than the tangential direct strain
(equation (4.48)), and therefore, to a first order,

(4.52)

Hence, there is only one independent curvature, that in the meridional direc-
tion, and equations (4.49) become

(4.53a)

and

(4.53b)
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On the basis of the above, the independent ‘stress’ and ‘strain’ variables,
which may be shown to satisfy the internal virtual work requirement of
Appendix B if a unit length of element is considered, will be taken to be

(4.54)

Also, using the strain–displacement relationships of equations (4.48) and
(4.50), in conjunction with equation (4.41), the strains may be related to the
undetermined coefficients by

(4.55)

So that, using equation (4.44),

(4.56)

The strain matrix [B] is therefore given, by expansion of equation (4.56), as

(4.57)

where p = s/L. The elasticity relationships are obtained by combining equa-
tions (4.46) and (4.53a) to give

(4.58)

The stresses at the general point P (Fig. 4.19(c)) may now be related to the
element nodal displacements by substituting in equation (4.58) from equation
(4.56) to give the standard equation

(4.59)
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Since the strain matrix, [B], varies with the position of P, the stresses will
also vary along the member. The practice of evaluating the stresses at the
element nodes will therefore be adopted, as was done in the case of the slab
element of Chapter 3. In this instance, the element (Fig. 4.19(c)) has two
nodes, so that substituting for nodes i (p = 0) and j (p = 1), in turn, in an ex-
panded form of equation (4.59), produces the desired relationship between
element nodal stresses and element nodal displacements as

(4.60)

where

General finite element theory (equation (B.11)) may now be invoked to de-
termine the element stiffness matrix. It should be recalled, however, that equa-
tion (B.11) presupposes the definition of element nodal force variables such
that {δ e}T{f e} represents a quantity of work. It may be shown that this require-
ment is satisfied if the nodal force variables (Fig. 4.19(c)) are as defined
below:

(4.61)

where

It should also be recalled, from the above, that the chosen element stress and
strain variables are such that {ε}T{σ} represents an amount of work per unit
length of element so that the integral of equation (B.11) is taken along the
length of the element and the element stiffness matrix is given by

(4.62)

The expanded form of the element stiffness matrix may be derived by sub-
stituting in equation (4.62) from equations (4.57) and (4.58) and then evalu-
ating the integral. As an example of this process, one term (k11) of the element
stiffness matrix will now be derived. Thus,
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So that

where

Hence

The remaining terms may be determined in a similar fashion, and the
resulting element stiffness matrix is

(4.63)

where

and
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The β-coefficients in equation (4.63) may be observed to have the same form
as the element stiffness coefficients for a beam element, a property which
results from the adoption of a cubic displacement function in both instances.

As when the finite element method was considered previously, a numerical
example will be provided to reinforce the theoretical description just given.
For the example considered below, it is possible to obtain a solution of accept-
able accuracy by ‘hand’. It should, however, again be emphasized that this
will, in general, not be the case and the use of fully automated computer pack-
ages is normally essential.

4.3.2 Example 4.4 – circular tank of uniform thickness

The circular cylindrical tank of Fig. 4.22(a) is monolithically connected to a
base slab which is sufficiently rigid for encastré support conditions to be
assumed at the base of the tank.

The tank is to be analysed for the effects of a ring moment of 10 kN m/m
applied to its rim. Such a moment could in practice arise from the effect of a
roof cover which is eccentrically supported by the tank walls. Since an
isolated bending load of this form can be expected to result in a localized
response, the element sub-division should coarsen with distance from the rim.
Accordingly, the sub-division shown in Fig. 4.22(b) is selected for analysis,
which results in four different types of element being involved, of lengths 0.5,
1, 2 and 4 m.
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Displacement solution

The element stiffness matrices for the four types of element may be obtained
by suitable substitution in equation (4.63). Thus, using the data of Fig. 4.22(a)
for an element of length 0.5 m, then, in kilonewton and metre units,

So that

(4.64)

In a similar fashion, the remaining three element stiffness matrices may be
shown to be

(4.65)

The structure stiffness matrix is relatively straightforward to assemble in
the present case, due to the nature of the element interconnections. If the nodes
are numbered sequentially, starting with node 1 at the rim (Fig. 4.23(a)), then
it is first noted that the final node, 8, is fully restrained on account of the
assumed encastré base conditions. Accordingly, the displacements at node 8
are both zero, and this node need not be included in the stiffness equations,
since its displacements are prescribed. The structure stiffness matrix, in sub-
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matrix form, will therefore relate the total forces acting at the seven unre-
strained nodes to the displacement components at these same seven nodes,
and will, hence, be 7 ¥ 7 in size.

The element stiffness equations (equation (B.11)) for a two-noded element
take the form

(4.66)

If a typical node, n, is considered (Fig. 4.23(b)), then node n is only connected
to members x – 1 and x. Thus, the total force at node n is obtained by summing
the force contributions at this node from members x – 1 and x. In the case of
member x – 1, its i, j designation is n – 1, n. It is therefore the second of equa-
tions (4.66) which relates to the forces which this member produces at node n,
and the equation may be expressed, in expanded form, as

(4.67)
For member x, its i, j designation is n, n + 1, and hence the first of equations
(4.66) is relevant in this case. Adding the contribution of element x to that of
element x – 1 (equation (4.67)) produces the stiffness equation at node n as
follows:

(4.68)

Node n is typical of all the nodes (Fig. 4.23(a)) except the first and last, so that
equation (4.68) shows that the structure stiffness matrix is tri-diagonal in this
case and will take the form
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(4.69)

Substitution into equation (4.69) from equations (4.64) or (4.65), as appro-
priate, produces the structure stiffness equation, in numeric form, as given by
equation (4.70) (page 197). The load vector corresponding to the specified rim
moment at node 1 is given as equation (4.71), and a computer solution of the
resulting stiffness equations is presented in Fig. 4.24.

(4.71)

Figure 4.24 also shows a sketch of the displacement solution, from which it
may be observed that, as expected, the effect of the applied moment is greatest
in the vicinity of the tank rim and decays rapidly in the lower regions of the
tank, there being no significant displacement in the lower half of the tank. To
confirm that this behaviour also extends to the stress resultants, it is necessary
to use equation (4.60) to determine the bending moments and direct forces in
the tank, which is done in the next section.
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Fig. 4.24 Circular tank displacement solution
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Stress resultant solution

As an example of the element stress resultant calculation, element 1 will be
considered. For this element, from Fig. 4.24,

(4.72)

Thus, from equation (4.60) (using the properties of the element 1 from
Fig. 4.22) in kilonewton and metre units,

Whence

So that

(4.73)
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Proceeding in the same way for the rest of the elements gives the complete
stress resultant solution. The nature of the formulation ensures that the tangen-
tial forces will be continuous from element to element, provided that all the
elements have the same thickness. There will, however, be a discrepancy in
the meridional moment values as computed from adjacent elements. In the
present example these discrepancies are small and are not therefore indicated
on Fig. 4.25, which shows sketches of the stress resultant solution and is based
on nodal average values. It should be noted that the distribution of the tangen-
tial direct force is similar to that of the radial displacement solution
(Fig. 4.24). This feature follows from the linear relationship between the force
and radial displacement (equations (4.46) and (4.48)) adopted in this formula-
tion. The meridional bending moment is linearly related to the meridional cur-
vature (equation (4.53a)) rather than the radial displacement, but still decays
with distance from the tank rim, although at a slightly reduced rate (Fig. 4.25).

4.3.3. Example 4.5 – circular tank of non-uniform thickness

The circular tank shown in Fig. 4.26(a) has walls of linearly varying thick-
ness. To obtain bounds on the effect of the varying degrees of rotational re-
straint which might be provided by the base slab, full restraint will be assumed
initially and the analysis will then be repeated under a condition of zero rota-
tional base restraint. The tank is to be analysed for water pressure effects, it
being assumed that the tank is filled to its rim. The loading is severest at the
base of the tank and, certainly in the fully restrained base case, the bending
moment will tend to have its greatest rate of change at the bottom of the tank.
The finite elements should therefore be smallest towards the tank base and, to
meet this requirement, the element sub-division shown in Fig. 4.26(b) is to be
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adopted. There are thus four types of element lengths to be considered,
namely 1, 0.5, 0.25 and 0.125 m and there are 20 elements in total.

The varying wall thickness is accommodated by using the constant-
thickness element derived above, with the thickness of each element being the
average wall thickness over its length. The thicknesses to be used for the
elements, using successive element numbering from the rim, are then as given
in Table 4.2. The varying thickness could alternatively (Ross, 1998) be incor-
porated within the finite element formulation and a rather more powerful
element thereby derived.

The loading effects of the water pressure will be represented by statically
equivalent, radial, nodal loads, although a more rigorous treatment of distrib-
uted loading would be to use equivalent nodal forces and moments, which are
derived in a manner which is consistent with the element formulation
(Zienkiewicz and Taylor, 1991). If a typical element is considered (Fig. 4.27),
then the statically equivalent nodal loads for the element may be determined
as indicated on the figure. Summing the loads produced by adjoining elements
gives the total nodal loads given in Table 4.2.

Finite element analysis

In this case, the analysis has been undertaken using a program based on the
finite element theory given above. The input data comprised the geometric
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Table 4.2 Element thicknesses and nodal loads

Element or node Element thickness (m) Nodal load (kN/m)

1 0.266 1.64
2 0.297 9.81
3 0.328 19.63
4 0.359 29.43
5 0.383 28.21
6 0.398 22.08
7 0.414 24.52
8 0.430 26.98
9 0.441 21.77

10 0.449 15.33
11 0.457 15.94
12 0.465 16.56
13 0.471 12.80
14 0.475 8.73
15 0.479 8.89
16 0.482 9.04
17 0.486 9.19
18 0.490 9.35
19 0.494 9.51
20 0.498 9.65
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and load data of Fig. 4.26 and Table 4.2 from which the program determined
the displacement and stress resultant solutions for the two assumed base con-
ditions. For the full rotational (encastré) support condition, the stiffness equa-
tions at the node at the base of the tank would be deleted in view of the
prescribed zero displacements. In the zero rotational support (pinned) base
condition, the radial force stiffness equation would be deleted, since radial
displacement is still prevented, but the moment stiffness equation at the base
would be retained in view of the non-zero rotation under these conditions.

The displacement solutions obtained from the two analyses are sketched in
Fig. 4.28, and the corresponding stress resultant solutions are given in
Fig. 4.29. The displacement solutions show the generally more flexible
response under the pinned-base condition, but also indicate that the solutions
tend to be independent of the base condition in, approximately, the upper half
of the tank.
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The stress resultant solutions (Fig. 4.29) again demonstrate the similarity of
the tangential force and displacement distributions. The pinned support may
be seen to result in rather larger tangential forces, and both solutions show that
bending effects become most pronounced towards the base, especially in the
encastré case, where a substantial restraining moment is developed. It may
readily be shown that this restraining moment is significant in stress terms by
comparing the bending stress due to the moment with the stress due to the
maximum tangential force of 433 kN/m (Fig. 4.29). Thus, assuming a homo-
geneous structural material,

and

For this example, therefore, the maximum bending stress, under the
encastré base condition, considerably exceeds the maximum direct stress.

Membrane analysis comparison

To fulfil the conditions for a membrane solution to be exactly applicable to the
present example, the supports would have to provide a reaction only in the
meridional tangent (vertical) direction at the base (see Section 4.2.3), that is,
roller (free-sliding) supports are needed (Fig. 4.30).

Roller supports do not involve a horizontal reaction component at the base,
which is present in both the pinned and encastré supports. For these latter
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supports, the tangential direct force is zero at the base, since radial displace-
ment is prevented, so that the horizontal reaction component can only be pro-
vided by a shear force which implies significant bending in the base region, as
already encountered above. The impact of this bending on the tangential direct
force may be investigated by comparison with a membrane solution, which is
readily obtained for the present example.

Since the meridional radius of curvature is infinite (equation (4.4)), the tan-
gential direct force, under membrane conditions, may be obtained directly
from the first membrane equilibrium equation (4.8). Thus, with reference to
the portion of the tank shown in Fig. 4.31 and noting the outward direction of
the pressure, p,

Whence

(4.74)

The tangential force solution provided by equation (4.74) is shown in
Fig. 4.29 and it may be seen that the high tangential direct force, required by
the membrane solution to resist the radial base pressure, is absent in the other
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two solutions, where this horizontal thrust can, and must, be sustained by
shear forces. It may also be observed, however, that the pinned and encastré
solutions both tend to the membrane result in the upper half of the tank, where
the moment solution confirms the absence of significant bending in this
region. The height to which bending is of importance does, in fact, depend
upon the tank proportions (Manning, 1967). The walls of an encastré-
supported tank which is wide and shallow will essentially act as a vertical
cantilever, and bending effects will be significant over almost the full height.
In a narrow, deep tank, on the other hand, membrane effects will predominate
in the upper portions of the wall, and bending will only be significant in a
limited region close to the base.

4.4 Finite elements for non-cylindrical shells

The element employed above for a circular cylindrical shell may also be
derived from a more general element (Ross, 1998) which models an
axisymmetric shell problem by a sequence of elements (Fig. 4.32(a)), each of
which has flat, sloping sides. Radially unsymmetric loading can be treated
without having recourse to a different element by a technique in which the
loading distribution is replaced by an approximating Fourier series
(Zienkiewicz and Taylor, 1991).

For more general shells, a wide variety of finite elements is available
(Zienkiewicz and Taylor, 1991). Perhaps the simplest in concept is to take the
triangular plane stress element of Chapter 1, add a plate bending representa-
tion to the element, and so obtain a shell element which will model general
shell surfaces by planar triangular regions (Fig. 4.32(b)). The discontinuities
inherent in this facet approach can lead to significant inaccuracy, however,
and curved elements (Gould, 1998) are generally to be preferred.
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Fig. 4.32 Finite element shell representations: (a) axisymmetric shell; (b) general shell
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Problems
4.1 Use membrane thin shell theory to determine expressions for the

distributions of the meridional and tangential membrane forces in the
spherical dome shown in Fig. 4.33(a). For a spherical dome having
a = 1430 mm, t = 60 mm, p = 2 N/mm2 and α = 39°, supported as
shown in Fig. 4.33(b), a bending theory predicts the membrane stresses
to vary as shown in Fig. 4.33(c). Compare membrane theory results with
those of Fig. 4.33(c) and comment on any discrepancies.

4.2 The spherical, constant-thickness dome shown in Fig. 4.34(a) is open
for 0 £ φ £ α1 and is supported vertically at φ = α2. The dome carries a
rim load of P/unit length in addition to its self-weight of q/unit area.
Show that, by membrane theory, the meridional and tangential direct
stress resultants are given by
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Why will this solution not be valid in regions close to φ = α1 and
φ = α2? If ring beams were provided as shown in Fig. 4.34(b), state,
with reasons, whether each ring would be in tension or compression
under the specified loading.

(UEL)
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4.3 The general axisymmetric dome shown in Fig. 4.35 is subjected to an
internal, uniform over-pressure, p per unit area. Show that the direct
stresses, as predicted by membrane thin shell theory, are given by

4.4 The paraboloid dome shown in Fig. 4.36 is generated by rotating a
portion of the parabola 2ay = x2 (where a is a constant) about the y-axis.
The dome is subjected to a snow load which may be approximated as a
vertical load of variable intensity q per unit area, where q = q¢ cos2 φ
and q¢ is constant. Show that the direct forces due to this load, as given
by thin shell membrane theory, are

Sketch and comment on the distributions of these membrane forces.

4.5 A conical umbrella-shaped roof of uniform thickness is supported by a
central column as shown in Fig. 4.37.

(a) Determine general expressions for the membrane stress resultants
due to self-weight, q, per unit surface area and find the force in the
column.

(b) Sketch the variation of the membrane stress resultants, showing
their significant values. Calculate values for p = 0, 0.1, 0.5 and 1.0.

(c) Interpret and discuss the results critically.
(UCL)
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4.6 A fluid container (Fig. 4.38(a)) is generated by rotating a portion of the
hyperbola b2x2 – a2y2 = a2b2 about the y-axis. When the container is
filled with a fluid of mass density, ρ, show that the resultant vertical
force, R, due to the pressure of the fluid on the sides of a frustum of the
shell (Fig. 4.38(b)) is given by
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Also, by considering the vertical equilibrium of the frustum, show that

Hence determine the meridional force at the base of the container.
(UEL)

4.7 Consider the Intze-type fluid container generated by the rotation of the
cross-section shown in Fig. 4.39(a) about its central axis.

(a) Establish the criterion that the supporting ring should be loaded by
vertical forces only. (Neglect the self-weight of the structure.)

(b) Check if this criterion is satisfied (with reasonable approximation)
for the dimensions (in metres):

a1 = 7.00, h1 = 5.50, ′h2 = 2.00
a2 = 5.00, h2 = 7.50, f2 = 2.07
a3 = 1.00, h3 = 5.50, f3 = 0.07

(c) Explain briefly why and where a bending correction would be
necessary.

Note that for a shell cap (Fig. 4.39(b)):

(UCL)

4.8 The circular cylindrical shell shown in Fig. 4.40(a) is to be analysed by
the finite element method using the element sub-division indicated in
the figure. The shell is subjected to a radial rim load of 1 N/mm and is
fully fixed at the base. The element stiffness equations (in kilonewton
and metre units) for circular cylindrical shell elements of axial lengths
25 and 400 mm and 1 mm arc length are given in Fig. 4.40(c), where the
sign convention of Fig. 4.40(b) has been used. Form, but do not solve,
the overall stiffness equations for the finite element analysis.

(UEL)

4.9 The cylindrical metal tank shown in Fig. 4.41(a) is filled with liquid of
weight density 9 kN/m3. A finite element analysis of the tank has been
undertaken, and displacement results for the region of the tank adjacent
to the change in wall thickness are given in Fig. 4.41(b). Use the stress
matrix of Fig. 4.41(c) to determine the averaged stress resultants at
nodes 7, 8 and 9 using elements 7 and 8 only. Hence calculate the
maximum bending and membrane stresses in this region. Are bending
effects significant in this region? (E = 200 kN/mm2, ν = 0).

(UEL)
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4.10 The circular cylindrical pressure vessel shown in Fig. 4.42(a) has ends
which are sufficiently rigid to prevent rotation or radial displacement at
the vessel wall/end junction. One half of the vessel has been analysed by
the finite element method for the effects of a uniform internal radial
pressure of 3000 kN/m2. The finite element mesh used was as shown in
Fig. 4.42(b) and displacement results from the analysis are given, in
part, in Fig. 4.42(c).
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(a) Comment on the element sub-division choice.
(b) Use the element ‘stress’ matrix (equation (4.60)) to determine the

stress resultants at nodes 1 and 13.
(c) Determine the stress resultants as given by membrane theory and

compare the finite element results with this membrane solution and
with the analytical solution given in Fig. 4.42(d).

214

Advanced structural mechanics

2 m

3000 kN/m2

3000 kN/m2

2 
m

 d
ia

.

Rigid end

30
 m

m

(a)

E = 210 kN/mm2

ν = 0.3

(c)

1
2

(b)

Mm (kN m/m)

Nt (kN/m)

–0.02

2995

0

27.23
(d)

3 ¥ 0.15 = 0.45 m 3 ¥ 0.1 = 0.3 m 3 ¥ 0.05 = 

  0.15 m

3 ¥ 0.03333 = 0.1 m

w

w

w

w

θ

θ

θ

θ

◊
◊

Ï

Ì

Ô
Ô
Ô
Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô
Ô
Ô
Ô

¸

˝

Ô
Ô
Ô
Ô
Ô
ÔÔ

˛

Ô
Ô
Ô
Ô
Ô
Ô
Ô

=

0 4759

0

0 4735

.

.

00 0304

0 0249

1 3678

0

0

.

.

.

◊
◊

Ï

Ì

Ô
Ô
Ô
Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô
Ô
Ô
Ô

¸

˝

Ô
Ô
Ô
Ô
Ô
ÔÔ

˛

Ô
Ô
Ô
Ô
Ô
Ô
Ô

¥110

10

3

3

-

-¥

 m

or

 rad

13

12

12

12

13

13

1

1

2

2

Fig. 4.42

228



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:55

(d) Discuss the relationship of the available solutions to the expected
physical behaviour of the vessel.

(e) What modifications would need to be made to the stress resultant
solution if it were required to incorporate the effects of the pressure
on the vessel ends, presuming that longitudinal movement is
unrestrained?

(UEL)
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5. Structural dynamics

5.1 Introduction
In the previous chapters it has been assumed that the applied loads do not vary
with time and the analysis has therefore been undertaken on a static basis. If
the loading is dynamic, in the sense that it becomes time-dependent, then it
may be still be possible to use a static analysis, for design purposes, if stati-
cally equivalent loads are used to model the dynamic effects. In many cases,
however, either the effects of winds, waves, blasts, earthquakes and other
dynamic disturbances cannot be accurately represented by statically equiva-
lent loading, or the importance of the structure may be such that a consider-
ation of its dynamic behaviour is warranted.

A dynamic analysis can reveal the possibility of a serviceability failure
which it would be impossible to predict by a purely static treatment. There
have been cases, for example, of oil-rigs having to be abandoned in quite mild
seas due to the onset of oscillations which were intolerable to the crews. Elec-
tric transmission lines have been known to develop dynamic ‘galloping’ of
such severity that the lines touched, which did not necessarily result in struc-
tural distress, but which certainly represented a serviceability failure as far as
the electricity supply consumers were concerned. Structures under construc-
tion are often particularly prone to dynamic effects, and temporary damping,
for example, was needed for the towers of the Forth Road Bridge in Scotland
to minimize dynamic effects prior to the main cables being spun.

Even on pure strength grounds, dynamic analysis may be required if fatigue
is likely to be a determining feature. In such cases, it is necessary to be able to
predict not only the magnitude of the stresses within the structure but also the
frequency of occurrence of different stress levels, since a regularly sustained
low stress can have severer fatigue effects than an occasionally experienced
higher stress.

The aims of this chapter are therefore to describe the types of vibration
which may be experienced by engineering structures and to give an introduc-
tion to the analytical techniques which may be used both to predict the
likelihood of excessive oscillation and also to determine the dynamic
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displacements and stresses which are produced during the course of accept-
able vibration.

5.2 Types of vibration

5.2.1 Free, undamped vibration
Although dynamic behaviour has been introduced in terms of the structural
effects of time-dependent loading, it is most helpful to begin with an account
of the vibration of simple structures which are not subject to dynamic loads.
This form of vibration is termed free vibration and occurs whenever a struc-
ture is disturbed from its position of static equilibrium. Free vibrations are
initiated either by impulses, such as a collision impact or a blast, or by an
abrupt support movement. In experimental work, free vibrations may be
obtained by applying a constant disturbing force which is suddenly released,
leaving the structure free to vibrate naturally.

If, in addition to the absence of time-dependent forces, energy is not dissi-
pated from the vibrating system, then the motion is both free and undamped.
Energy losses occur due to friction, air-resistance and similar effects, so that
undamped vibration, rather impractically, assumes the absence of these fea-
tures, but is, nevertheless, a very helpful theoretical concept.

As a simple example of free, undamped vibration, the cantilever beam of
Fig. 5.1(a) will be considered. The beam will be assumed to be effectively
massless itself but capable of supporting a constant (time-independent) point
load at its free end, which will subsequently be referred to as a mass to permit
a distinction from ‘loads’, which will be presumed to be dynamic (time-
dependent). If the beam is displaced laterally from its static position and then
released, vibration will ensue, and it is possible to obtain the instantaneous
shape of the beam from a single parameter, often termed a coordinate, which
is conveniently taken to be the lateral displacement of the mass from its posi-
tion of static equilibrium. In the present example, therefore, there is just one
coordinate and the structure is said to possess one degree of freedom since its
displaced shape is uniquely determined by a single coordinate.
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If the variation of the displacement, x, with time, t, is plotted (Fig. 5.2),
then, in the absence of damping, the vibration may be shown to be of a sinu-
soidal (harmonic) form and may be described mathematically by

x = A sin(ωt + α) (5.1)

where A, the amplitude, is the maximum displacement from the undisturbed
position, T, the period, is the time required for one complete cycle of vibration
(s), ω (= 2π/T) is the circular natural frequency (rad/s), f (= 1/T) is the natural
frequency (cycles/s = Hz), and α is the phase angle (rad).

In equation (5.1), the amplitude and phase angle constants may be deter-
mined from the conditions under which the motion commenced. These condi-
tions may be represented by the initial displacement and velocity, and an
expression for the latter parameter can be obtained by differentiation of equa-
tion (5.1) with respect to time. The units suggested in equation (5.1) are those
which are most convenient and usual in the SI system. In particular, it should
be noted that the standard terminology for the frequency unit is hertz (Hz),
which replaces its more expressive equivalent of cycles per second.

Figure (5.2) shows that the beam vibrates from side to side such that the am-
plitude and period (and hence frequency) remain constant. The magnitude of
the amplitude, however, is dependent on the initial conditions, as well as on
the physical properties of the beam and mass, while the frequency depends
solely on these two latter parameters. Natural frequencies, in fact, may be
shown, quite generally, to increase with structural stiffness and decrease with
mass. Thus, increasing the bending stiffness of the beam of Fig. 5.1(a) would
result in a higher frequency; but increasing the point mass would produce a
lower-frequency vibration.

So far it has been presumed that the manner, or mode, of vibration is pre-
scribed. The mode of vibration is, however, dependent on the nature of the ini-
tiating disturbance. Had the beam, for example, been subjected to an initial
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elongation and then released (fig 5.1(b)), the subsequent free vibrations would
have been in an axial mode, in contrast to the bending (or flexural) mode
described earlier. The system still possesses one degree of freedom, since, in a
purely axial mode, the motion may be described by a single coordinate, u, the
longitudinal displacement of the mass. In practice it would be necessary to
provide a sleeve guide (Fig. 5.1(b)) to prevent the accidental simultaneous
development of the bending mode and so ensure that pure axial vibration
occurred. With the help of the sleeve, yet another mode could be investigated
by giving the mass an initial twist and thereby producing a torsional mode of
vibration.

Different modes of structural action therefore result in differing modes of
vibration, each with its own natural frequency. The position becomes even
more complicated if multiple degrees of freedom are involved for a single
form of structural action. This type of situation may be explored by adding a
second mass to the cantilever beam, as shown in Fig. 5.3(a). In free, undamped
vibration, the cantilever beam will still oscillate from side to side following a
lateral disturbance, but observations show that the vibration does not neces-
sarily possess constant frequency and mode shape. These features can, in fact,
only be consistently maintained if the initial disturbance is such as to displace
the beam exactly in one of the two shapes illustrated in Fig. 5.3. In either of
these principal (or natural) modes, both the masses will vibrate harmonically
at a similar natural frequency, which is different for the two modes. In addi-
tion, the mode shape will be maintained throughout the motion such that the
ratio of the displacements of the two masses remains constant at a value which
is characteristic of the mode.

At first sight, principal modes may appear to be of little interest, since it is
highly unlikely that a disturbance would produce one or other of the principal
mode shapes exactly. Clearly, the mode of Fig. 5.3(b) resembles the effect of
the release of a normal end-force. However, even in this case, it may be shown
that the displaced shape produced by an end force does not correspond exactly
to the principal mode of vibration. The importance of principal modes and
natural frequencies lies, then, not in their common occurrence, but in the facts
that it is possible to express any vibration as a linear combination of the prin-
cipal modes and that the natural frequencies characterize the way in which the

220

Advanced structural mechanics

(a)    (b)      (c)

Fig. 5.3 Cantilever beam with two masses
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structure responds to dynamic loading, features which will be explored in
some detail later in this chapter.

5.2.2 Free, damped vibration

Damping occurs due to a loss of energy during the vibration, the energy lost
being either dissipated as heat or transported from the structure by radiation
(sound, for example). Energy losses occur partly due to internal friction in
structural materials and partly due to friction at structural joints, losses due to
air-resistance normally being secondary. The damping provided by internal
material friction varies considerably, being particularly high for a material
such as rubber, a property which can be utilized when rubber bearings are
specified. Other structural materials have lower intrinsic damping, with com-
posite materials such as reinforced concrete being rather better damping
agents than metals. In metal structures there is clearly more friction at bolted
joints than at welded ones, and bolted structures therefore exhibit higher
damping.

It is customary to represent damping effects by a ‘dashpot’ system, which
might be incorporated into the cantilever system of Fig. 5.1(b) as shown in
Fig. 5.4(a). The dashpot can consist of a plunger inside a tube, and the energy
loss then arises from the flow of air through the small gap between the plunger
and the tube walls. This type of arrangement results in the creation of a
damping force which is of opposite sense to the velocity of the plunger, at any
instant, but which is proportional to the speed of the plunger. Thus, assuming
a rigid connection between the mass and the plunger of Fig. 5.4(a),

damping force = –c �x (5.2)

where c is the coefficient of viscous damping, · indicates differentiation with
respect to time, and the negative sign indicates that the damping force and �x
act in opposite directions.

Practical structures do not necessarily conform to the physical laws of
dashpot (or viscous) damping. However, since the dashpot model is mathe-
matically convenient to handle, it is usual to derive equivalent dashpot param-
eters so that the relative simplicity of this model may be utilized.
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Fig. 5.4 (a) Damped cantilever beam. (b) Stiffened cantilever beam
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If the system of Fig. 5.4(a) is disturbed axially and then allowed to vibrate
freely, the motion will be attenuated due to the damping and will gradually die
out. The rate of decay will depend on the severity of the damping, and, if the
damping is large enough, it is possible that the vibration does not occur at all,
in which case the system simply gradually returns to its undisturbed position
without oscillation. The value of damping at which this phenomenon is first
observed is known as critical damping. Practical structures do not possess this
degree of damping and are therefore underdamped, it being convenient to
express the degree of damping as a proportion of the critical damping, thus

ζ = c

c cr

(5.3)

where ζ is the damping ratio, and ccr is the critical damping coefficient.
Structural damping ratios are generally towards the lower end of the range

0.5–20% (Blevins, 1977). The axial vibration of the mass in Fig. 5.4(a), for
example, will be as shown by Fig. 5.5, in which two representative values of
damping ratio have been used. The characteristic decay of the vibration under
damping may be noted in Fig. 5.5, which also illustrates two further points of
particular importance. First it will be seen that, although damping produces a
significant progressive reduction in the amplitude of the vibration, the fre-
quency remains virtually unaffected. The analytical significance of this is that
the simpler free-vibration model may be used to determine natural frequen-
cies which will be equally applicable to the damped system. The second
feature is that, since damping effects are progressive, a lightly damped model
is close to an undamped one in the early stages of the motion, again a property
which can lead to analytical simplification.

Before leaving the topic of damping, it is worth emphasizing the difference
between damping and stiffness in respect of dynamic behaviour. The intro-
duction of damping to the cantilever beam example (Fig. 5.4(a)) has been seen
to lead to a characteristic attenuation of free vibration with little frequency
change, effects which arise due to loss of energy through the damper. If the
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Fig. 5.5 Damped and undamped free vibration
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beam is alternatively stiffened by the addition of a further elastic rod (Fig.
5.4(b)), then longitudinal free-vibration oscillations would not diminish with
time but the frequency of the vibration would certainly be increased due to the
increased stiffness. In energy terms, stiffness (or spring) elements are storers
rather than dissipators of energy – energy is continuously being stored as
elastic strain energy and subsequently released as kinetic energy.

5.2.3 Forced, damped vibration

If the structure is subject to sustained time-dependent loads or support distur-
bances, then the resulting motion is said to be forced and the time-dependent
forcing effect is referred to as an excitation. The nature of a forced vibration
depends on the form of the excitation, and the effects of some common types
of excitation are described in this section.

Transient excitation

If the forcing effect is sustained for a finite period of time, then the excitation
is said to be transient. The effects of an isolated wave, wind gust or earth-
tremor could all be treated as transient excitations, and simple representations
of transient forcing functions are shown in Fig. 5.6.

The severity of the dynamic response to a transient excitation depends upon
the rate at which the excitation changes in relation to the natural periods of the
structure. Should the time taken to develop the maximum forcing load in Fig.
5.6(c), for example, be extremely brief, so that the load is ‘suddenly’ applied,
then the maximum dynamic displacements and stresses are likely to be
approximately double the values which would be obtained if the maximum
load acted statically, a result which is commonly used in the specification of
safety factors for abrupt loading. If, on the other hand, the time taken to apply
the dynamic load is more than about three times the longest natural period of
the structure, then there will be little difference between the dynamic and
static responses. If impact loading is considered a special case, then the most
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Fig. 5.6 Forcing functions

237



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:59

significant types of transient loading will be cases where the excitation occurs
over a length of time which is of the same order as the natural period of the
mode which is of interest. The severest dynamic effects due to such transient
excitation will be experienced either during the application of the excitation or
shortly afterwards, when the motion becomes damped, free vibration, with, as
has been shown, a gradually diminishing response intensity. The time of most
interest is therefore of the same order as the natural period and occurs at the
start of the motion. Under these circumstances, light damping will not have
developed a significant effect (Fig. 5.5) and an undamped assumption will
usually yield acceptable results.

Periodic excitation

A periodic forcing function is such that the excitation takes the form of a
function which is continuously repeated at a fixed frequency (Fig. 5.7(a)).
Should the forcing function be sinusoidal, then the excitation is harmonic
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Fig. 5.8 Harmonic forcing due to vortex shedding
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(Fig. 5.7(b)). Harmonic excitation is of special importance for a variety of
reasons. First, several practical excitation sources do produce harmonic
forcing effects. This is the case for rotating machinery such as turbines, fans
and motors and also arises when a chimney or cable is in a steady air-stream or
an immersed tube is in a steady flow of fluid. The excitation in these two latter
instances arises from vortex shedding on alternate sides of the circular section
(Fig. 5.8), which leads to the generation of a harmonic forcing effect normal to
the flow direction.

Harmonic forcing is also of importance for the investigation of the phenom-
enon of resonance, which will be pursued further below, and because Fourier
series analysis allows any forcing function to be expressed as a series of har-
monic functions (Craig, 1987). General forcing effects need not therefore be
considered separately, since they may be represented as the sum of a set of
harmonic analyses. The single degree of freedom cantilever beam will now be
considered under the action of a harmonically varying lateral load applied to
the end mass (Fig. 5.9(a)). Such an excitation could be produced in practice by
attaching a small motor to the end of the beam and arranging for the motor to
cause a small eccentric mass to rotate. The dynamic motion of the beam will
be found to possess the following characteristics:

(a) Following a transient response at the commencement of the excitation,
the vibration settles down to a steady-state response in which its motion is
harmonic and is of the same frequency as that of the excitation.

(b) The beam’s response is not in phase with the excitation, that is, the mass
does not reach its displacement amplitude at the same time as the forcing
effect acquires its maximum value, there being a constant phase
difference between these two events.
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Fig. 5.9 (a) Harmonic force excitation of cantilever. (b) Harmonic support displacement
excitation
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If the frequency of the excitatory force is now gradually increased, the
amplitude of the beam’s steady-state motion will be observed to increase to a
maximum and subsequently to subside as the forcing frequency is increased
further. This behaviour may be conveniently examined in terms of a non-
dimensional dynamic magnification factor, which is defined as the ratio of the
beam’s steady-state amplitude to the displacement which would be caused by
the force amplitude of the excitation, P, acting statically. Figure 5.10(a) shows
the variation of the dynamic magnification factor with the ratio of the forcing
frequency to the natural frequency of the beam, and the following aspects of
the behaviour are of particular importance:

(a) Damping only significantly affects the dynamic magnification factor if
the forcing frequency is in the vicinity of the natural frequency.

(b) The dynamic magnification factor increases rapidly as the forcing
frequency approaches the natural frequency and peaks when the two
frequencies are equal (strictly, approximately so). The equal forcing and
natural frequency condition is referred to as resonance, and it will be
noticed from Fig. 5.10(a) that the effects of resonance are greatly
ameliorated by increased damping. Under light damping conditions,
resonance produces greatly enhanced displacements, which can result in
structural distress.

(c) Low frequency ratios result in an essentially ‘static’ response.
(d) The response at high frequency ratios is considerably diminished in

relation to the static response.

Figure 5.10(b) shows the variation in phase angle between the forcing and
response functions for a range of frequency ratios. Under low damping
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conditions, it may be observed that the forcing function and the response are
in phase or 180° out of phase, except in the resonance region, where the phase
angle changes rapidly and is 90° at resonance. At resonance, therefore, the
forcing function attains its maximum value when the system is at its undis-
turbed position, and has zero value when the system is at its amplitude.

Figure 5.11(a) shows a plot for forced motion of the beam in which the exci-
tation is provided by a harmonic support movement (Fig. 5.9(b)). In this case,
the response is most conveniently measured in terms of the relative displace-
ment, w, between the mass and the support, and the figure shows the variation
of the ratio of the amplitude of w, W, to the support movement amplitude, Z,
against frequency ratio. The presence of resonance at the natural frequency
may again be observed, and it will also be seen that low-frequency support
movements produce no relative displacement, so that the mass follows the
support displacement. High-frequency support excitation, however, tends to
produce a relative displacement equal in magnitude to the support movement.

Random excitation

Many natural forcing effects (winds, waves and earthquakes, for example) fall
into this category and, while a simplified treatment may be possible on the
basis of a periodic forcing assumption, a complete analysis requires a statis-
tical treatment (Gould and Abu-sitta, 1980) which is beyond the scope of the
present text.

227

Structural dynamics

W/Z

10
9
8
7
6
5
4
3
2
1

0 0.5 1.0 1.5 2.0

(a) (b)

ζ = 5%

ζ = 15%

Ω/ω

A
m

pl
itu

de

Frequency

Fig. 5.11 (a) One degree of freedom—harmonic support excitation. Ratio of relative
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Natural frequencies and forced vibration

If a multiple degree of freedom system is considered, for example the two-
mass cantilever of Fig. 5.3(a), then, under harmonic forcing, it will resonate in
both the mode of Fig. 5.3(b) at its first natural frequency and also in the mode
of Fig. 5.3(c) at its second natural frequency. If a general multiple degree of
freedom system is subjected to harmonic forcing, then its response may be il-
lustrated diagrammatically by Fig. 5.11(b), where the amplitude of a typical
displacement is plotted against forcing frequency. The peaks correspond to
the system’s natural frequencies, and there is general trend towards lower res-
onance magnification at higher natural frequencies.

Since resonance involves magnified displacements and, hence, stresses, it is
usually of particular concern that the forcing frequencies at which resonance
occurs, especially the lower ones, are identified, and it has been seen that these
frequencies are the natural frequencies of the structure. In addition to identi-
fying resonant states under harmonic forcing, however, natural frequencies and
modes can also be used to investigate more general vibrations of a free, tran-
sient or periodic nature, so that the establishment of the natural frequencies of a
structure is of paramount importance and will be considered in the next section.

5.3 Determination of natural frequencies and modes

5.3.1 Modelling
In the following, it will be assumed that the structure may be modelled by a
finite number of discrete masses (Fig 5.12) which are interconnected by linear
elastic structural elements. The structural elements may be one-dimensional
elements in the case of skeletal structures or higher-dimensional finite ele-
ments in the case of continua. It will be further assumed that the masses are
concentrated into ‘point’ masses so that their mass moments of inertia are neg-
ligibly small, a model which is usually termed a lumped-mass approximation.

5.3.2 Theory
A lumped-mass model will be assumed to be undergoing free vibration, and
its displaced shape, at any instant, will be defined by a set of coordinates, {x},
relative to its position of static equilibrium. In the static equilibrium position,
internal forces are developed in the structure which just balance the gravita-
tional forces on the point masses. The dynamic displacements, {x}, therefore
represent a disturbance from the static equilibrium position and will result in a
set of additional internal forces which will tend to restore the structure to its
equilibrium state. The additional internal forces may be related to the dynamic
displacements by the usual stiffness relationship as

{F} = [K]{x} (5.4)
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By virtue of the equality of damped and undamped free-vibration frequen-
cies, natural frequencies may be determined on the simpler undamped model,
so that the forces, {F}, are the only unbalanced forces acting on the structure.
These forces therefore produce a set of accelerations, {��x}, to which they may
be related by Newton’s second law of motion as

(5.5)

where the negative signs arise since the restoring forces {F} act in the oppo-
site direction to {��x}. Or, in matrix terms,

{F} = –[M]{��x} (5.6)

where [M] is the diagonal mass matrix given by

(5.7)

However, if the structure is undergoing vibration in a principal mode, then
each displacement component executes harmonic motion with the same
natural frequency. Hence

(5.8)
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So that

(5.9)

and

(5.10)

Hence, by eliminating the unbalanced forces and accelerations from equations
(5.4), (5.6) and (5.10),

(5.11)

or

(5.12)

An alternative form of equation (5.12) may be obtained by pre-multiplying
equation (5.11) by [K]–1 to give

(5.13)

where [K]–1[M] is known as the dynamic matrix.
Upon re-arrangement,

(5.14)

Equation (5.14) represents a standard eigenvalue problem, as it takes the form

(5.15)

By applying standard solution techniques (Prentis and Leckie, 1963;
Jennings, 1977) to either equation (5.12) or (5.14) the eigenvalues and hence
the natural frequencies, may be determined. For each eigenvalue, it will be
possible to determine an associated principal mode of vibration by solving
equations (5.12) for the displacement vector, {x}, which, mathematically, is
termed an eigenvector. It is, in fact, only possible to determine relative dis-
placements in this way, as will be apparent from the time-dependent nature of
the displacements. Any principal mode solution may therefore be multiplied
by an arbitrary constant to produce another solution. It is usual and convenient
to choose the arbitrary constant such that the principal mode is normalized,
which may be done in several different ways:

(a) A specific displacement component may be allocated a particular value,
normally unity.

(b) The largest displacement component may be allocated a particular value,
again normally unity.

(c) The mode may be normalized such that the modal mass defined by

(5.16)

takes a specified value, often unity, where {φr} is the rth mode vector.
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The choice of normalization scheme, if any, is immaterial, and any scheme
may be used according to personal preference in the given circumstances.

The number of natural frequencies which may be obtained in the above
manner will be equal to the number of coordinates in equations (5.5) which are
associated with non-zero masses. In formulating the dynamic model there is
generally some freedom in the choice of the number and type of both the coor-
dinates and the masses employed, and the selections made will affect both the
number and the types of the natural frequencies which are obtainable. Consid-
erable judgement may therefore be required in the establishment of a suitable
model, as will be demonstrated by the examples given in the following
sections.

5.3.3 Example 5.1 – single-storey sway frame
The natural frequencies and modes of the single-storey sway frame shown in
Fig. 5.13 are to be determined. It is assumed that standard computer routines
are available for the determination of eigenvalues and vectors, so that, from
equation (5.12), the problem becomes one of determining the stiffness and
mass matrices for an appropriate dynamic model.

The usual plane frame representation (Ghali and Neville, 1997) using a three-
component joint displacement representation will be employed, so that, taking
the non-restrained displacement components only, the coordinate set becomes

(5.17)
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For the plane frame element shown in Fig. 5.14, the element stiffness equa-
tions are as given in equation (5.18) (page 232), while the sub-matrix form of
the overall structure stiffness matrix may be established (by the methods
described above) to be

(5.19)

The stiffness matrix may be obtained in numeric form by appropriate sub-
stitution from equation (5.18) into equation (5.19). However, it must be borne
in mind that for dynamic equations of the form of equations (5.5) to be valid, a
consistent set of units must be employed. Since a force of 1 N produces an
acceleration of 1 m/s2 when acting on a mass of 1 kg, newtons, metres and
seconds are a consistent set of units and should be used throughout any
problem involving dynamics. Thus from equation (5.18), using newton and
metre units,
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Whence, by substituting into equation (5.19),

(5.20)

The mass matrix may be formed by considering the nodal equations of
motion, which have the general form given in equations (5.5). For the sway
frame under consideration, these equations become

(5.21)

where Im is the mass moment of inertia
Since a lumped-mass model is to be used, the mass moment of inertias will

be presumed to be zero, so that the mass matrix is given by

(5.22)

Since there are four coordinates associated with a non-zero mass (equations
(5.21)), it will be possible to determine four natural frequencies and modes if
the stiffness and mass matrices given by equations (5.20) and (5.22) are sub-
stituted into equation (5.12). When evaluated from this equation by a standard
computer routine, the natural frequencies are

(5.23a)

Whence, since f = ω/2π,

(5.23a)
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From the natural frequencies of equation (5.23), it may be observed that the
lowest frequency is considerably less than the remaining three natural fre-
quencies, which happen to be very close to each other in this case.

The mode associated with the lowest natural frequency is shown in Fig.
5.15(a), and is a flexural mode involving sidesway of the frame and conse-
quent bending of the columns and beam of the frame. The frame members do
not undergo axial deformation in this mode, since the column sidesways are
equal, at any instant, and hence the beam is not distorted axially. Furthermore,
nodes 1 and 2 do not displace vertically during the motion, so that the columns
are also axially undistorted. The higher modes all involve axial deformation,
and a typical mode shape is shown in Fig. 5.15(b), where the vertical displace-
ments of the nodes deform the columns axially, while the opposing sense
of the horizontal displacements results in axial deformation of the beam
member.

The lower natural frequencies of a system are commonly those of most
interest, since these modes tend to dominate in any general vibration of the
system, and, as seen already, resonance effects are most severe (Fig. 5.12(b))
at the lower natural frequencies. The lowest frequency of all is, in fact, often
termed the fundamental frequency to emphasize its significance. For this
sway frame example, it has already been pointed out that the fundamental
mode is a purely flexural one, and it is therefore reasonable to consider the
possibility of constructing a simpler analytical model which treats bending
deformations only. The analysis of the frame under these conditions is treated
in the next section, together with the dynamic analysis of beams, where it is
also reasonable to disregard axial modes.

5.3.4 Simplified analysis of sway frames

If axial deformations are assumed negligible, the nodes of a general
sway frame (Fig. 5.16(a)) do not displace vertically and the horizontal
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Fig. 5.15 Example 5.1—fundamental and higher modes
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displacements of the nodes at any one storey are equal. A further simplifica-
tion may be made if it is also assumed that the nodes do not rotate, which will
be the case if the beam bending stiffnesses are very much greater than those of
the columns. In these circumstances, there is only one coordinate for each
storey – its horizontal displacement – and the element stiffness matrix for a
column element which sways without end rotation (Fig. 5.16(b)) is given by

(5.24)

Since there is one coordinate per storey, it is only necessary to use nodes at
each storey level of a sway frame and there is hence just one node involved in
the single-storey frame of example 5.1 (Fig. 5.17). The total mass will also be
assumed to be located at the rigid beam level, as shown in Fig. 5.17. If the rigid
foundation node is excluded, the stiffness ‘matrix’ becomes the scalar of
equation (5.25) and the mass matrix the scalar of equation (5.26):

(5.25)

(5.26)

Substituting for the stiffness and mass matrices from equations (5.25) and
(5.26) in the natural frequency equation (5.12), the circular natural frequen-
cies are given by
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(5.27)

Since this model involves only one coordinate with an associated non-zero
mass, it is only possible to determine a single natural frequency, which is
given by the positive root of equation (5.27):

(5.28)

Whence

(5.29)

The natural frequency of 11.9 Hz derived from this simplified model is not
a particularly good approximation to the fundamental frequency of 9.0 Hz
obtained earlier (equation (5.23)). However, due to its greater length, the
beam bending stiffness used in the earlier analysis was actually less than that
of the columns and was hence far from satisfactory in respect of the rigid beam
assumption of the simplified model. Simplified models therefore need to be
used with care (Hurty and Rubinstein, 1964) and comparisons of calculated
with observed values can be poor (Ellis, 1980) unless very considerable care is
taken with the modelling, which may have to include the stiffening effect of
non-structural building components.

Example 5.2 – two-storey sway frame

As a further example of the use of the simplified sway frame model, the
natural frequencies and modes for the two-storey frame shown in Fig. 5.18
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will be determined. Assuming consistent units, the stiffness matrix may be
established as shown by

(5.30)

where β = 24EI/L3. Assuming that the equal masses, m (Fig. 5.18), are con-
centrated at the beam levels, the mass matrix is given by

(5.31)

For this case, the natural frequency relationship corresponding to equation
(5.12) becomes

(5.32)

For an equation such as equation (5.32) to have a non-trivial solution:

(5.33)

In this case then

(5.34)

or
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(5.35)
where

Whence

(5.36)

So that

(5.37)

As expected, this two-coordinate problem has resulted in two natural fre-
quencies, and the associated modes may now be determined by substitution in
equation (5.32) for the two frequencies. Since only ratios of the dynamic dis-
placements may be obtained from a set of equations such as equations (5.32),
normalization of the modes may be conveniently carried out at this stage by
allocating a particular displacement the value of unity according to the
normalization scheme (a) above. If the displacement at storey 1 is given the
value unity, then the relative displacement at storey 2 may be determined from
either of the equations (5.32), to give the modes for the two natural
frequencies:

(5.38)

The similar signs involved in the first (fundamental) mode for the frame imply
that the frame vibrates such that the two storeys always sway in the same
direction (Fig. 5.19(a)), in contrast to the second mode, where the opposing
signs indicate dissimilar sway directions (Fig. 5.19(b)) for the two storeys.
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5.3.5 Analysis of beams

Modes involving axial components of vibration will normally have signifi-
cantly higher natural frequencies than purely flexural modes, and therefore
only bending stiffness will be included in beam problems. For a beam element
(Fig. 5.20), the element stiffness matrix is

(5.39)

where

The structure stiffness and mass matrices for beam analysis may be assembled
in a similar fashion to that employed previously to eventually yield the natural
frequencies and modes, as will be illustrated in the following example.

Example 5.3 – cantilever beam

The beam considered in this example (Fig. 5.21) is of the same form as the two-
mass cantilever beam discussed in general terms in the introduction (Fig. 5.3 et
seq.). The general form of the stiffness matrix may be established either from
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first principles or by noting that the element interconnection for a beam has a
similar linear, unbranched form as the shell problems studied in Chapter 4:

(5.40)

and the stiffness matrices therefore also take the same form (equation (4.69)).
For a beam structure, there are two resultant ‘forces’ at each node (Fig. 5.20),
a vertical force and a moment, so that, at a typical node i, the equations of
motion corresponding to equations (5.21) become

(5.41)

Again assuming negligible mass moment of inertias for the point masses, the
mass matrix is therefore

(5.42)

The natural frequencies may now be evaluated either by using a standard
computer routine for eigenvalue determination or by using the condition of
equation (5.33), as will be employed here. Using equations (5.41), (5.42) and
(5.39), the natural frequency relationship corresponding to equation (5.12)
may be expressed as

(5.43)

The labour involved in determining the fourth-order determinant which
results from the application of equation (5.33) to this problem may be mini-
mized by the use of a ‘reduction’ process. To see how such a process works, a
generalization of equations (5.43) will be considered in which all the equa-
tions involving zero-mass components have been segregated as indicated in

241

Structural dynamics

i j i j1 2
1500 kg 1000 kg

1 2

2 m 2 m

E = 200 kN/mm2 = 200 ¥ 109 N/mm2, I = 2 ¥ 108 mm4 = 2 ¥ 10–4 m4

Fig. 5.21 Example 5.3—cantilever beam

3 3
1 12 2

3
1 122

3 3 3 3
2 22 2 2 2

3 3
2 22 2

3 0 1500 0 0 0

0 4 1 0 0 0 0
{0}

0 0 1000 0

1 2 0 0 0 0

w w

EI
w w

θ θ
ω

θ θ

È ˘- Ï ¸ Ï ¸È ˘
Í ˙ Í ˙Ô Ô Ô Ô- Ô Ô Ô ÔÍ ˙ Í ˙- =Ì ˝ Ì ˝Í ˙ Í ˙- - - Ô Ô Ô ÔÍ ˙ Í ˙Ô Ô Ô Ô- Í ˙Í ˙ Î ˚Ó ˛ Ó ˛Î ˚

[ ] diag[1500, 0, 1000, 0]M =

È ˘+
= Í ˙

Í ˙Î ˚

1 2

1 2 21

2 2
2

[ ] jj ijii

ji jj

k k k
k

k k

1 21 1 1 1 2 2 2 21500 , , 1000 ,M MF w M I F w M Iθ θ= - = - = - = -�� ���� ��

255



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:59

(5.44)

It is now possible to eliminate the coordinates associated with the zero-mass
components by use of the lower sub-matrix expression in equation (5.44) to give

(5.45)

Substituting for the coordinates to be eliminated from equation (5.45) into the
upper sub-matrix expression of equation (5.44) gives

(5.46)

A natural frequency relationship involving a reduced set of coordinates may
now be established from equation (5.46) as

(5.47)

To apply this reduction process to the example under consideration, equa-
tion (5.43) is first reorganized along the lines of equation (5.44). This requires
the exchange of the second and third columns of each of the matrices to ensure
that the variables associated with non-zero masses are in the upper sub-matrix.
The second and third rows are then exchanged to ensure that the non-zero
masses occupy the upper sub-matrix position:

(5.48)

In this case then

(5.49a)

hence

(5.49b)

and

So that
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(5.50)

By substituting from equation (5.50) in equation (5.47), the reduced natural
frequency relationship therefore becomes as shown in equation (5.51) and it
will be noted that it is the rotational dynamic displacements which have been
eliminated by the reduction process, since the rotations are associated with
zero contributions to the mass matrix.

(5.51)

Applying the condition of equation (5.33) to equation (5.51) gives the charac-
teristic equation:

(5.52)
where

Whence

So that

(5.53)

and

(5.54)

taking

As previously, the corresponding modes may be obtained by setting the
vertical displacement coordinate at, say, node 1 to unity and then substituting
in either of the two equations (5.51) for the circular natural frequencies of
equation (5.53). The resulting modes are

(5.55)

and have been displayed previously in Fig. 5.3.
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5.3.6 Example 5.4 – cantilever slab

As a final example of natural frequency and mode determination, the square,
isotropic slab shown in Fig. 5.22 will be analysed by the finite element
method, using the division into four equal elements shown in the figure. It is
presumed that the natural frequencies are required for vibration under self-
mass only, the latter being presumed to be uniformly distributed and of inten-
sity metres per unit area. Following the procedures of example 3.6 (see
p. 145), the sub-matrix form of the stiffness matrix for the slab may be shown
to be

(5.56)

Appropriate substitutions from Fig. 3.26(b) (see p. 143) then give the numer-
ical form of the stiffness matrix to be as equation (5.57) (page 245), where the
modified type of displacement variables used in example 3.6 (see Fig. 3.29(c),
p. 148) have again been employed.

To construct the mass matrix on the lumped-mass type of model described
above it is necessary to obtain suitable nodal point masses, which will approx-
imate the uniformly distributed self-mass of the slab. The simplest way of
doing this is to allocate to each node the mass of a region of slab surrounding
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the node, the region being a square of the same side as the elements used. If
this procedure is followed, then the mass matrix becomes

(5.58)

In this model, it should be noted that there are three dynamic acceleration
components associated with each node, corresponding to the normal displace-
ment and two rotational displacements of the finite element used (see fig
3.24(b)). There are thus 18 possible mass components in equation (5.58), of
which 12 are zero, since they represent assumed negligible mass inertias asso-
ciated with the rotational accelerations. It will hence be possible to determine
six natural frequencies, since there are six non-zero mass components.

The natural frequency relationship may now be established from the stiff-
ness and mass matrices of equations (5.57) and (5.58) and standard computer
routines then used to determine the natural frequencies and modes. The
circular natural frequencies determined in this way are

(5.59)

and the first four modes are shown in Fig. 5.23. It must, however, be empha-
sized that the approximations involved in the finite element and lumped-mass
idealizations used in the analysis will result in errors which become progres-
sively more severe for the higher modes and are more pronounced for mode
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Fig. 5.23 Example 5.4—first four modes
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shapes than for frequencies. The accuracy of an analysis such as that just
undertaken would therefore, in practice, need to be checked by progression to
a finer element net and, possibly, by the use of a more sophisticated mass
representation (see Section 5.3.9).

5.3.7 Orthogonality of the principal modes
The principal modes of vibration of a structure possess an orthogonal prop-
erty with respect to the structure’s stiffness and mass matrices such that

(5.60)

and

(5.61)

These orthogonality relationships may be established by noting that two
distinct modes will both satisfy the natural frequency relationship of equation
(5.33) such that

(5.62)

and

(5.63)

Pre-multiplying equation (5.62) by {φs}
T gives

(5.64)

and, transposing both sides of equation (5.64),

(5.65)

So that

(5.66)

since [K] = [K]T and [M] = [M]T due to the symmetry of these matrices.
However, from equation (5.63),

(5.67)

Hence, subtracting equations (5.66) and (5.67),

(5.68)

Equation (5.68) proves the orthogonality of the principal modes with respect
to the mass matrix, provided that the structure does not possess repeated
natural frequencies, a possibility which will not be considered here but which
can be accommodated (Craig, 1987). The orthogonality of the principal
modes with respect to the stiffness matrix follows by substitution from equa-
tion (5.61) into equation (5.64).
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An illustration of these orthogonality properties may be obtained by consid-
ering the (reduced) stiffness and mass matrices of the cantilever beam treated
in example 5.3, together with the beam’s principal modes (equation (5.46)). In
this case then

and

5.3.8 Rayleigh quotient
From equation (5.62), it follows that

(5.69)

where k
rφ , m

rφ are the modal stiffness and mass for mode r.
The expression of equation (5.69) is usually known as the Rayleigh

quotient, since, on energy grounds, Lord Rayleigh suggested that equation
(5.69) could be used to evaluate the circular fundamental frequency, even if
the mode shape used was only an approximate representation of the actual
fundamental mode, provided that the approximating mode satisfied the
geometric constraints on the structure. This concept may be expressed as

(5.70)

where R indicates Rayleigh approximation.
In single-span beam analysis, the static displacements, which certainly

satisfy the beam’s geometric constraints, will often provide a suitable approx-
imation to the fundamental mode. In the case of the cantilever beam
(Fig. 5.21), for example, the stiffness equations for the static displacement of
the beam (using the reduced stiffness matrix of equation (5.50)) are

(5.71)
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By solving equations (5.71), it may be shown that the vertical displacements
at nodes 1 and 2 are in the ratio of 1:2.94, so that an approximate fundamental
mode is

Hence

and

Whence

ωR = 0.00642÷(EI), ωexact = 0.00638÷(EI) (5.72)

The approximate circular fundamental frequency of equation (5.72) may be
seen to compare very favourably with the exact value, which is reproduced
from equation (5.53).

For structures other than single-span beams, the static displacements will
not necessarily provide an approximation to the fundamental mode, as, for
example, in the case of the two-storey sway frame of Fig. 5.18. In such cases,
displacements from a hypothetical loading may be used, where the loading is
chosen such that the resulting displaced shape may be expected to approxi-
mate to the fundamental mode. The fundamental mode of the sway frame
might be expected to involve sways in the same direction for each storey, a
type of displacement which would result from a, perhaps improbable, assump-
tion that gravity acts horizontally temporarily, so that the equal-storey masses
produce equal lateral forces. The stiffness equations for this loading may be
obtained, by use of the stiffness matrix from equation (5.30), as

(5.73)

From the equations (5.73), it may be shown that the storey sways produced by
the lateral loading are in the ratio of 2:3, so that a suitable approximate mode is

(5.74)

Using this mode shape in the Rayleigh quotient of equation (5.70), together
with the stiffness and mass matrices from equations (5.30) and (5.31), results
in the approximate circular natural frequency

(5.75)

which is again close to the exact value, reproduced from equation (5.37).
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5.3.9 Distributed-mass models

Distributed masses may be approximated by lumped-mass models if the struc-
tural element is sub-divided (see Fig. 5.24, for example). The accuracy of this
approximation obviously increases with the fineness of the sub-division but
also decreases significantly for higher modes. If the structure involves rela-
tively few nodes and/or distributed masses form a significant proportion of the
total mass, then a more accurate distributed-mass representation is warranted,
which may be obtained by the use of ‘consistent’ mass matrices (Ross, 1998;
Zienkiewicz and Taylor, 1991).

5.4 Free, undamped vibration analysis
By combining equations (5.4) and (5.6), the equations of motion of an
undamped structural system undergoing free vibration may be expressed as

(5.76)

It will be presumed that the free vibration commences from a prescribed dis-
placement configuration and that the effect causing the vibration produces
known initial velocities. If the coordinates in equation (5.76) are the dynamic
displacements, then the problem of free, undamped vibration analysis results
in the solution of equations (5.76) subject to initial conditions which may be
represented by

(5.77)

Equations (5.76) are interdependent (or coupled), since the stiffness matrix
contains off-diagonal terms, as may the mass matrix if the lumped-mass
approximation described above is not being employed. If formulated in
dynamic displacement coordinates, then the free, undamped vibration
problem involves the simultaneous solution of the set of second-order differ-
ential equations represented by equations (5.76), subject to the initial condi-
tions of equation (5.77). The problem may, however, be simplified by the use
of principal coordinates, which have the effect of uncoupling the equations so
that they may be considered individually rather than simultaneously.
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5.4.1 Analysis by mode superposition
Principal coordinates may be related to the dynamic displacement coordinates
by the transformation

(5.78)

where [Φ] = [φ1, …, φr , …, φn ] is the modal matrix.

To see why equations (5.76) become uncoupled in principal coordinates, it
is first necessary to note that, by virtue of the orthogonality condition (equa-
tion (5.60)),

(5.79)

where [Kφ] is the modal stiffness matrix, and

(5.80)

where [Mφ] is the modal mass matrix.
Transforming equations (5.76) to principal coordinates and pre-multiplying

by [φ]T gives

(5.81)

or

(5.82)

Due to the diagonal nature of the modal stiffness and mass matrices, equation
(5.82) represents the required set of uncoupled equations which may be
written as

(5.83)

The solutions to all these equations are similar, and the solution to a typical
equation (as may be verified by substitution in equation (5.83)) is

(5.84)

where
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An equivalent and, for the present purpose, more convenient form of the solu-
tion is

(5.85)

where ar and br are constants.
The complete set of principal coordinates is therefore given by

(5.86)

where

To complete the solution, it remains to obtain the constants in equation
(5.86), which may be determined from the initial conditions, since, from equa-
tion (5.86),

(5.87)

where are the modal initial conditions.
The solution may therefore be expressed, in terms of the nodal initial condi-

tions, as

(5.88)

Using equation (5.78), the modal initial conditions may be related to the
initial conditions in the original coordinates by

(5.89)
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If the first of equations (5.89) is pre-multiplied by [φ]T[M], then

(5.90)

Whence

(5.91)

Similarly,

(5.92)

Substitution from equations (5.91) and (5.92) into equation (5.88) therefore
provides the full principal coordinate solution, and the dynamic displacement
solution follows from equation (5.78), a procedure which is illustrated in the
following example.

5.4.2 Example 5.5 – three-storey sway frame
It is required to determine the undamped motion of the three-storey sway
frame shown in Fig. 5.25 when the top storey is given an initial sway velocity
of 0.5 m/s from its static position while the lower two storeys remain at rest in
their static positions. The natural frequencies and principal modes are given in
Fig. 5.25, and an illustration of the principal modes is provided as Fig. 5.26.

The modal mass matrix is first constructed from equation (5.80) by calcu-
lating the diagonal terms as, for example,
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Whence

(5.93)

In this case the dynamic displacement coordinates are the sway displacements
of the three storeys, so that the stipulated initial conditions may be specified as

(5.94)

Hence, from equation (5.91),

(5.95)

and, from equation (5.92),

(5.96)

Substituting from equations (5.95) and (5.96) in equation (5.88), the solution
in principal coordinates is therefore given by

Finally, the solution in the original coordinates is obtained by substitution in
equation (5.78):
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(5.97)

The solution given by equation (5.97) may be seen to consist of linear com-
binations of contributions (numbered 1–3) from the three principal modes, a
feature which gives mode superposition analysis its name. The top-storey
displacement solution is plotted in Fig. 5.27, which also shows the contribu-
tions of the modes to this displacement. It will be seen that neglecting the third
mode contribution has little effect on the solution, but that neglect of the
second and third mode contributions reduces the solution to the harmonic
form of the first mode, which cannot accurately model the full solution. It is
generally the case that higher modes have a reducing effect on the dynamic
response of a structure, and, when large numbers of coordinates are involved,
it is usual to determine the response using only a fraction of the total number
of modes. In reducing the number of modes, however, it is obviously impor-
tant that all modes be included which are likely to be significantly excited.

5.5 Forced, undamped vibration analysis
If the structure is subjected to a set of time-dependent forcing functions, {p},
which correspond in type and positive directions to the coordinates, {x}, then
the equations of motion (equation (5.76)) become
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(5.98)

5.5.1 Analysis by mode superposition
Using the procedures of Section 5.4.1 to transform to principal coordinates
gives

(5.99)

where {pφ} is the vector of modal forcing functions, or

(5.100)

As before, equations (5.100) are uncoupled due to the diagonal nature of the
modal mass and stiffness matrices, so that the solutions of all the equations are
similar and it suffices to consider a typical equation:

(5.101)

If the forcing function in equation (5.101) is an analytically straightforward
function of time, then a closed-form solution can be obtained by the use of
standard differential equation solution techniques. However, in the case of
more complex or non-analytically defined functions, a more general approach
is to interpret the forcing function as the sum of an infinite number of im-
pulses, since the response to an isolated impulse may be readily determined as
follows.

A single degree of freedom system of stiffness, k, will be considered, in
which the position of a mass, m, is defined by a coordinate, x. The effect of an
impulse, I, applied to the mass under zero initial conditions will be to impart a
momentum to the mass given by

So that

(5.102)

Subsequent to the action of the impulse, the system is unforced, so that its
equation of motion takes the form

(5.103)

Equation (5.103) has the solution

(5.104)

where ω2 = k/m. Using the initial conditions

Then

256

Advanced structural mechanics

T T T[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { } { }M K p pφΦ Φ η Φ Φ η Φ+ = =��

[ ]{ } [ ]{ } { }M K pφ φ φη η+ =��

r r rr rm k pφ φ φη η+ =��

[ ]{ } [ ]{ } { }M x K x p+ =��

0mx I=�

0

I
x

m
=�

+ =�� 0mx kx

cos sinx a t b tω ω= +

00 and when 0x x x t= = =� �

270



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:08:59

(5.105)

So that the solution becomes

(5.106)

If the action of a forcing function, p, on the mass is now considered, the
equation of motion is given by

(5.107)

The solution to equation (5.107) may be obtained by the idealization of the
forcing function into an infinite number of impulses. From equation (5.106),
the response due to the typical impulse shown in Fig. 5.28 is given by

(5.108)

So that the total response is given by

(5.109)

where the integral is known as Duhamel’s integral.
Since equation (5.101) has the same form as equation (5.107), its solution is

(5.110)

Although closed-form solutions to equation (5.110) are only readily obtain-
able for simple forcing functions, more complex functions may either be
represented as Fourier series or the integral may be evaluated numerically
(Craig, 1981).
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The solution provided by equation (5.110) is for zero initial conditions but
may readily be generalized, since the effects of any non-zero initial conditions
may be treated as resulting in a free response (obtainable by the methods of
Section 5.4.1) which may be superimposed on the forced motion.

5.5.2 Example 5.6 – sway frame under ground motion
As an example of transiently forced, undamped vibration, the three-storey
sway frame of Fig. 5.25 will be considered under the influence of an isolated
horizontal ground movement. The dynamic history of the ground movement
is described by a ground acceleration plot which will be taken to be as shown
in Fig. 5.29.

The restoring forces developed in the frame when the ground moves will be
proportional to the relative sway displacements between the ground and the
storey levels, so that the equations of motion may be represented by

(5.111)

where {e} = {1, 1, 1}T.
The most convenient coordinates in this case are the relative sway displace-

ments, so that

(5.112)

Substituting in equation (5.111) for the relative displacement coordinates
gives

(5.113)

Hence, the equations of motion may be expressed as

(5.114)

Equation (5.114) shows that the ground motion results in inertial forcing
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functions at each storey, whose magnitudes are equal to the product of the
storey masses and the ground acceleration. On the assumption that the contri-
bution of mode 3 is negligible, only the first two modes will be used, so that
there will be just two principal coordinates, defined by the transformation

(5.115)

Transforming the equations of motion (equation (5.114)) to principal coordi-
nates gives

(5.116)

So that the modal forcing functions are

(5.117)

where {fφ} = 103{–35.36, 8.16}T.
To obtain the solution for a typical principal coordinate, substitution from

equation (5.117) into equation (5.110) gives

(5.118)

Since

Hence

Whence

or

(5.119)
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The full principal coordinate solution may be obtained by substituting
successively in equation (5.119) for the modal forcing function amplitudes of
equation (5.117), the modal masses of equation (5.93) and the natural frequen-
cies given in Fig. 5.25:

(5.120)

Transforming back to the original relative displacement coordinates, by use of
equation (5.115), gives the final solution:

(5.121)
since Ω = 2π.

Equation (5.121) shows that the first mode contribution predominates.
Also, since modal stiffness increases with frequency and the forcing
frequency is, in this case, less than any of the natural frequencies, the form of
equation (5.119) indicates that higher-mode contributions will rapidly
diminish, so that the omission of the third mode is retrospectively justified.
The solution obtained is only valid during the time the ground motion occurs
but may be readily extended beyond this. The subsequent motion is free, so
that one way of extending the solution is to determine the modal state of the
vibration at the end of the forced motion and use this state as the initial condi-
tions for the free-vibration solution given by equation (5.88). Alternatively,
the upper limit in the solution of equation (5.118) may be amended to the time
limit of the forcing effect (1 s in this case).

The forced and free regimes for the vibration of the top storey are illustrated
for the initial stages of the motion in Fig. 5.30. It will be seen that the relative
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displacement response is close to being harmonic after approximately 0.5 s. In
practice, the vibration would decay due to damping, and the maximal
response would be at one of the peaks occurring during the forced motion. The
ground displacement profile may be obtained by integration of the accelera-
tion history (Fig. 5.29) and is given by

(5.122)

By adding the ground and relative displacements during the forced motion,
the absolute displacement response may be obtained, and this is plotted, for
the top storey, in Fig. 5.30. From Fig. 5.30, it may be observed that the
maximum absolute displacement of the top storey occurs well within the
forced motion and is significantly greater than subsequent peak values, in con-
trast to the approximately repeated peaks of the corresponding relative
displacement.

5.6 Harmonically forced, undamped vibration analysis

As described in Section 5.2.3, harmonic forcing will result in a transient
response on initiation of the excitation which is quickly damped into a steady-
state response such that the vibration becomes harmonic and has the same
frequency as the excitation. Even on an undamped assumption, it is possible to
assume a steady-state solution, since, although damping rapidly eliminates
transient effects, it has relatively little impact on the steady state, provided that
the excitation frequency is not close to any of the natural frequencies of the
system (Fig. 5.10(a)). The analysis presented below therefore assumes that
steady-state vibration has been achieved and that the forcing frequency is not
in the vicinity of any of the system’s natural frequencies.

5.6.1 Analysis by mode superposition

If the forcing function is harmonic, then the forcing function vector has the
form

(5.123)

where {f} is the vector of the forcing function amplitudes.
Following transformation of the equations of motion to principal coordi-

nates, a typical equation of motion will be

(5.124)

Due to the steady-state assumption, the solution must be harmonic and have
the same frequency as the excitation. Further, due to the undamped
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assumption, the response will be in phase (or 180° out of phase) with the exci-
tation (Fig. 5.10(b)), so that the solution must take the form

(5.125)

The constant in equation (5.125) may be determined by substituting the solu-
tion in equation (5.124) to give

Whence

(5.126)

since

Substituting in equation (5.125) gives the solution as

(5.127)

Successive substitution in equation (5.127) for the various modes of the
system therefore produces the complete solution in principal coordinates.
This may then, as before, be transformed back to the original coordinates by
use of equation (5.78).

5.6.2 Example 5.7 – harmonically forced cantilever beam

The two-mass cantilever beam of example 5.3 will be analysed for its steady-
state response to a harmonic force excitation applied to node 2 (Fig. 5.31). The
analysis will utilize the reduced displacement coordinates only, that is, the
vertical nodal displacements.
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From the system parameters given in Fig. 5.31, the modal mass and stiff-
ness matrices may be readily determined as

(5.128)

and

(5.129)

The modal forcing function vector is

(5.130)

By substituting from equations (5.128), (5.129) and (5.130) into equation
(5.127), the solution in principal coordinates is obtained as equation (5.131)
which, in displacement coordinates, becomes equation (5.132):

(5.131)

(5.132)

Equation (5.132) shows that the first mode predominates, provided that the
forcing frequency is not close to the second natural frequency. In fact, as
pointed out already, the solution will not hold for forcing frequencies close to
either of the natural frequencies, due to the sensitivity of the solution to
damping. In such circumstances, it therefore becomes imperative to include
damping effects in the solution, and ways in which this may be accomplished
are outlined, with other more advanced topics, in the next section.

5.7 Specialized problems
If viscous damping is included in the analysis, damping forces of the type
described by equation (5.2) must be incorporated in the analysis, with the result
that the equations of motion, in displacement coordinates, will take the form

(5.133)

If mode superposition is to be used, it is essential that the damping matrix,
[C], is orthogonal with respect to the modal matrix so that the equations
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(5.133) become uncoupled on transformation to principal coordinates. In
practice, it is often desirable to define damping coefficients (equation (5.2))
for the principal modes of a structure directly, and these therefore become the
modal damping coefficients in uncoupled equations of motion, a typical
example of which would be

(5.134)

where c
rφ is the modal damping coefficient for mode r.

In certain problems, however, notably soil–structure interaction investiga-
tions (Warburton, 1976), it becomes unrealistic to specify modal damping
coefficients, and the damping matrix, [C], will not be uncoupled on trans-
formation to principal coordinates. In such cases, the equations of motion may
be integrated numerically (Clough and Penzien, 1993) or approximating
solutions may be obtained by mode superposition, an approach which is often
preferred due to the greater efficiency of this method. Direct integration must
be used, however, if non-linear problems are to be tackled, since the super-
position process undertaken in the modal method is then invalid. Finally, it
should be emphasized that the analysis developed in this chapter has assumed
that the forcing effects are known functions of time alone. This excludes a
thorough treatment of random effects such as waves, wind and earthquakes,
which will often require a statistical treatment (Gould and Abu-sitta, 1980)
and self-excited vibration in which the forcing effect depends upon the state of
the vibration as well as on time. Self-excitation is experienced primarily by
structures subjected to fluid or air flow and requires specialized treatment
(Blevins, 1977).
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Problems
5.1 Figure 5.32 shows a structure housing ore-crushing machinery. Each

floor has a mass of 10 000 kg and the column stiffness parameter
k = (12EI/L3) = 1 MN/m. The ore-crusher is permanently fixed to the
lower floor, adding its mass of 10 000 kg to that floor. The crusher
operates at 1.75 Hz but sets up large resonant vibrations in the structure.

In an effort to reduce the vibrations it is proposed to attach a large
mass of 10 000 kg to the structure. Calculate whether it is better to attach
the extra mass to the upper or the lower floor.

(LIVERPOOL)

5.2 The plane structure shown in Fig. 5.33 consists of rigid beams of mass
m, rigidly joined to elastic columns having the second moments of area
shown. E is constant throughout. The top storeys are connected by a
member AB, hinged at A and B, having only axial stiffness. The cross-
sectional area of AB is equivalent to 36I/L2. If k = 12EI/L3:
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(a) Calculate the circular natural frequencies, given that one of the
circular natural frequencies is 2÷(k/m).

(b) Given that the higher modes may be determined by symmetry/
asymmetry considerations, find the natural modes of vibration and
sketch their shapes.

(BRIGHTON)

5.3 The two-storey sway frame shown in Fig. 5.34 consists of similar,
rigidly jointed beam and stanchion members. Use the beam element
stiffness matrix of equation (5.39) to show that the structure stiffness
equations for the frame may be expressed as

Given that
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determine the stiffness and mass matrices for the structure using the
storey sway displacements only as reduced dynamic coordinates. Hence
calculate the circular natural frequencies and principal modes for the
frame and comment on the comparison between the results obtained and
the corresponding values as calculated from equations (5.37) and (5.38).

5.4 The uniform cantilever beam of Fig. 5.35(a) is of length 2L and supports
a point mass, m, at its mid-point. The beam is supported at its free end by
a spring of axial stiffness kEI where I is the second moment of area of the
beam and E is the Young’s modulus of the beam material. Show that the
circular natural frequency of the beam is given by

Hence determine the circular natural frequencies for the beams shown in
Figs 5.35(b) and 5.35(c).

(UEL)

5.5 Figure 5.36 shows an idealization of an off-shore structure to be used for
a preliminary dynamic analysis. It includes the five coordinates and
associated lumped masses shown in the figure. The corresponding
stiffness matrix (in units of meganewtons per metre) is given by

(a) Obtain an approximation to the fundamental frequency of vibration
of the structure. You may use some results from a static analysis,
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giving displacements {x} caused by a load of 1 MN applied at the
topmost degree of freedom, thus

are corresponding loads and displacements.
(b) What is the percentage change in fundamental natural frequency if

the 10 000 tonne mass is increased to 15 000 tonnes?
(UCL)

5.6 A structural system has mass and stiffness matrices as follows:

For the system evaluate the natural frequencies and corresponding
mode shapes.

Assuming that the structure is undamped, derive expressions for the
displacements of the system when the system executes free vibration
following arbitrary initial conditions on displacement and velocity of

(UCL)
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5.7 A water tower shown in Fig. 5.37(a) is 5 m square in plan and has sides
4 m high. The mass of the tank itself is 10 000 kg and the lateral stiffness
of the skeletal supporting structure is 100 MN/m.

As a result of an external explosion the tank is subjected to a
horizontal time-varying force of maximum value 1 MN as shown
in Fig. 5.37(b). Assuming zero damping, calculate the maximum
horizontal displacement of the tank when it is (a) empty and (b) full of
water.

(LIVERPOOL)

5.8 A system has inertia and stiffness matrices given by

The principal modes may be expressed by

Confirm that these satisfy the orthogonality relations and find the
corresponding natural frequencies. The system is excited by the forces
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Obtain the resulting undamped displacement responses and comment
on the contribution from the second mode.

(UCL)

5.9 Figure 5.38 shows an idealization of a fixed-fixed beam with three finite
elements each of length L and flexural rigidity EI. Using the element
stiffness matrix given in equation (5.39), obtain the total stiffness matrix
corresponding to the coordinates shown in the figure.

In a particular case L = 1 m and the first two modes of vibration are
given as

corresponding to circular natural frequencies of 2.496 rad/s and
6.989 rad/s. Obtain an expression for the harmonic response qs to the
load F sin Ωt applied as shown, neglecting damping and ignoring
contributions from all but the lowest two modes. It may be assumed that
φ1 and φ2 are normalized to give the same modal mass in each mode.
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Show that at Ω = 1 rad/s the contribution to qs from the second mode
is approximately 14% of the total.

(UCL)

5.10 The single-bay, two-storey building shown in Fig. 5.39 has concentrated
masses of m at first-storey level and m/2 in the second floor. If the shear
stiffness of the first floor is k, and k/2 for the second storey, and each
storey undergoes only horizontal displacement u1 and u2 as shown in
Fig. 5.39, find the natural frequencies and principal modes of vibration.

If, initially, a force is applied to the second floor such that u2 is 1, show
that u1 is 1/3. The structure is then released from this initial position; use
modal summation to determine the subsequent motion of the floors.
Repeat the calculation with u1 initially forced to have unit value.

If the ground oscillates in the horizontal direction according to
u = U0 sin Ωt, determine the steady-state response of the building and
plot the displacement amplitude of the second floor against ω1/Ω, where
ω1 is the lower circular natural frequency.

(KCL)
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Appendix A. Finite difference method

A.1 Theory
A.1.1 Functions of a single variable
The finite difference method replaces differential equations by a set of simul-
taneous linear equations in terms of a finite number of values of the unknown
function. In the case of a function of a single variable, the differential equation
will be of the ordinary variety and the unknown function values to be deter-
mined are taken to be those corresponding to prescribed intervals in the inde-
pendent variable. In the following, equal prescribed intervals will be used,
but, more generally, unequal intervals can also be employed. Thus, in Fig.
A.1(a), equal spacings, h, in the independent variable, x, are used and the
values of the function w (= f(x)) to be determined are w0, w1, w2 and so on.

To obtain a finite difference representation of a given differential expres-
sion, the function is locally replaced by an approximating function, which
could, in general, be a polynomial of any order, but which will here be taken to
be of second order (parabolic). Hence, if point 0 is being considered, then a
unique parabolic curve can be constructed through 0 and the immediately pre-
ceding (–1) and following (1) points (Fig. A.1(a)). If the approximating para-
bolic curve is assumed to have the form

(A.1)

where α1, α2 and α3 are constants, then the coefficients, α, may be expressed
in terms of unknown function values by substituting in equation (A.1) for the
points –1, 0, 1:

(A.2)

Solving equations (A.2) for the coefficients, α, gives

(A.3)

2
1 2 3w x xα α α= + +

2
1 1 2 3

0 1

2
1 1 2 3

w h h

w

w h h

α α α

α

α α α

- = - +
=

= + +

1 0 11 1
1 0 2 3 2

2
, ,

2 2

w w ww w
w

h h
α α α -- - +-

= = =
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but, from equation (A.1), differentiation gives

(A.4)

so that, substituting from equations (A.3),

(A.5)

(A.6)

Equation (A.5) may be interpreted geometrically (Fig. A.1(c)) as representing
the slope of the function at 0 by the slope of the chord connecting points –1
and 1. Also, if equation (A.6) is re-arranged as

then equation (A.6) may be geometrically interpreted as representing the
small-slope curvature at 0 by the change of chord slope (Fig. A.1(d)) over the
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interval length, h, thus approximating the rate of change of slope (curvature)
at 0.

Higher-order differential functions may be readily obtained by use of the
first and second central difference operators (Δ and Δ2) defined by equations
(A.5) and (A.6) respectively. Thus

and

(A.7)

(A.8)

Occasionally, especially at boundaries, points are not available to either
side of the point under consideration. The use of the above central difference
expressions then becomes impractical and recourse must be made to forward
difference expressions. Thus, with reference to Fig. A.1(b), the points 0, 1 and
2 may be substituted in equation (A.1) and, solving as before, it may be shown
that, for this case,

(A.9)

The corresponding backward expression may be similarly derived as

(A.10)

A.1.2 Functions of two variables
The extension of the method to the two-variable case requires the function
evaluation points to be located at the nodes of a finite difference net. The
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logical extension of the one-variable case, as described above, is to use a
square net (Fig. A.2(a)) but rectangular, oblique, triangular or other net shapes
(Salvadori and Baron, 1961) are all possible. The type of net employed will
principally depend upon the shape of the region to be considered.

The differential functions of interest are now of the partial variety, with
respect to two independent variables, say x and y. By straightforward exten-
sion of the one-variable case, partial difference operators Δx, Δy and so on
may be appropriately defined and used to determine any given partial differ-
ential function. Thus, using the portion of a square net shown in Fig. A.3, the
Laplace function may be approximated by

(A.11)

While the biharmonic function may be constructed as follows:

With reference to Fig. A.3 and by analogy to equation (A.8),

(A.12)

and

(A.13)

while
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(A.14)

Hence, from equations (A.12), (A.13) and (A.14),

(A.15)

A.2 Practical application
Single-variable function applications are generally straightforward, but appli-
cations involving two independent variables need some care, and an indica-
tion of the most effective procedures will be given in this section. First, a
suitable net (square in this case) is superimposed on the region to be consid-
ered. The node points so created are then numbered for reference with the
following conventions. All nodes at which the function values are expected to
differ are given unique reference numbers, normally sequentially numbered
from 1. However, should there be nodes at which symmetry, or other consid-
erations, require that the function take identical values at the stipulated nodes,
then these nodes are given the same reference number. In Fig. A.4, for
instance, the values of a function w (= f(x, y)) at the points on the first (top)
row of the net are being constrained to take the same values as the corre-
sponding points on the third row of the net. Similarly, should there be nodes at
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which anti-symmetry requires the function to possess equal and opposite
values, then equal and opposite reference numbers are used. Referring to Fig.
A.4 again:

(A.16)

Also, should there be nodes at which the function is required to be zero, then
this is indicated by a zero reference number. Thus, in Fig. A.4,

(A.17)

Once a suitable numbering scheme has been established, the next step is to
form the linear difference equations which approximate both the partial
differential equation and also the appropriate boundary conditions. This for-
mation process is most easily accomplished by the use of difference operators,
typical examples of which are shown in Figs A.5 and A.6. The numbers on the
operators in the figures refer to the coefficients by which the function values at
the respective nodes must be multiplied to produce the desired difference
approximation. It is to be understood that the approximations are being made
in respect of the central node of the operator in each case. The most reliable
technique for using the operators is to make tracings which are then superim-
posed on nets of the same scale, such as Fig. A.4. If, for example, it is required
to approximate the Laplace function at node 2 of Fig. A.4, then superimposing
the appropriate operator (Fig. A.5(a)) gives

Similarly, if the biharmonic equation is to be represented at node 1, then
superimposition of Fig. A.5(c) gives
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Appendix B. Finite element method

B.1 Introduction
The finite element method is outlined here as applied to the stress analysis of a
surface type of structural continuum. The presentation also assumes that the
method is being employed as a displacement (stiffness) type approach. For a
more general treatment of the finite element method the reader is referred to
other texts (Hinton and Owen, 1980; Reddy, 1985).

The finite element method seeks to replace a continuous type of structural
problem, which is alternatively represented by a set of partial differential
equations, by a set of discrete, simultaneous linear equations which may be
readily solved by computer. The discretization is achieved by sub-dividing the
surface to be considered into a number of regions and so creating a set of ele-
ments and nodes (Fig. B.1). It is important to realize that the sub-division
process is not a physical separation of the surface so that it becomes joined
only at the nodes. The intention is purely to create regions in which the defor-
mation will be assumed to be represented by a particular algebraic function of
position. The deformation within different regions (elements) will be repre-
sented by different functions, although these will all be of the same general

P

Fig. B.1 Finite element sub-division
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form and will normally be chosen such that displacement continuity is pre-
served along the element boundaries so that the possibility of element separa-
tion will not arise.

On the basis of the assumed displacement function, it is possible to derive
an element stiffness matrix linking element nodal ‘forces’ to element nodal
‘displacements’. The analysis then closely follows the normal stiffness
method as applied to skeletal structures, in that the element stiffness matrices
are used to assemble a set of structure (system, overall) stiffness equations
which represent, in terms of the nodal displacements, the conditions of equi-
librium of the total forces acting at the nodes with the applied nodal loads. The
solution of this set of linear equations yields the nodal displacements from
which the internal element forces may be determined.

B.2 Theory

For a typical element (Fig. B.2), an example displacement component, u, at a
general point P within the element is assumed to be represented by a polyno-
mial function of the position variables x and y. The function will include a
number of undetermined coefficients equal in number to the number of nodal
displacement components possessed by the element. Thus

(B.1)

where {cu} is the row vector of polynomial terms with unit coefficients, and
{α} is the column vector of undetermined coefficients.

If the remaining displacement components are also represented by polyno-
mial functions of position, which involve the same undetermined coefficients,
{α}, then the complete displacement vector at P will be given by

(B.2)

where {δ} is the column vector of displacement components at P, and [C] is
the matrix of polynomial terms with unit coefficients.
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Since P is a general point, it may be successively chosen to be each of the
element nodes in turn, and, by substituting the known nodal position coordi-
nates successively in [C], the element nodal displacement components may be
related to the undetermined coefficients by

(B.3)

where e indicates succesive evaluation at each node of an element.
Since the number of undetermined coefficients was (purposely) chosen to

be equal to the number of element nodal displacement components, matrix
[Ce] is square. Provided the matrix is also non-singular, it is therefore possible
to relate the undetermined coefficients to the element nodal displacement
components by

(B.4)

The stain at P will be related to the displacement at that point by known strain–
displacement relationships which may be applied to equation (B.2) to give

(B.5)

where {ε} is the column vector of strain components at P, and [Q] is the matrix
derived from [C], or, using equation (B.4),

(B.6)

where [B] = [Q][Ce]–1 is the strain matrix.
The stress–strain relationships of elasticity may also be invoked to relate

the stress and strain components at P by

(B.7)

where {σ} is the column vector of stress components at P, chosen such that
{ε}T{σ}dv represents a work scalar, and [D] is the elasticity matrix, and, using
equation (B.6),

(B.8)

where [H] = [D][B] is the stress matrix.
Equations (B.6) and (B.8) relate the strain and stress components at the

point, P, to the element nodal displacement components. An element stiffness
matrix relates element nodal forces to element nodal displacements. Such a
stiffness matrix may be derived by applying the principle of virtual displace-
ments to the complete element to establish the element nodal forces which are
statically equivalent to the stress field throughout the element. By use of equa-
tions (B.6) and (B.8), it is then possible to relate these element nodal forces to
the element nodal displacement components, as required for the construction
of an element stiffness matrix.

Thus, equating external and internal work by the principle of virtual
displacements,
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(B.9)

where {f e} is the column vector of statically equivalent nodal forces such that
{ } { }δ v

e T ef represents a work scalar, v is a virtual quantity, and Úvol is an integral
through the element volume.

From equations (B.6) and (B.8)

or

so that

and, since the virtual displacements are arbitrary,

(B.10)

Equation (B.10) is the required relationship between element nodal forces
and displacement components and may be written as

(B.11)

where

is the element stiffness matrix.
The stiffness matrices for all the elements may therefore be determined by

repeated application of equation (B.11) and these may be used to assemble
(see example 1.1 or Astley (1992)) the complete structure stiffness equations
which link total structure nodal forces to the complete set of structure nodal
displacement components. Thus

(B.12)

where {F} is the column vector of structure nodal forces, {Δ} is the column
vector of structure nodal displacements, and [K] is the structure stiffness
matrix.

Since the structure nodal forces must, for equilibrium, be equivalent to the
applied nodal forces

(B.13)

where {W} is the column vector of nodal applied loads.
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{ } [ ]{ }F K Δ=

{ } [ ]{ }W K Δ=

e e{ } [ ]{ }f k δ=

e T e e T T e
v v

vol

{ } { } { } [ ] [ ][ ]d { }f B D B vδ δ δ= Ú

e T e

vol

{ } [ ] [ ][ ]d { }f B D B v δ= Ú

e T e e T e
v v

vol

{ } { } {[ ]{ }} [ ][ ]{ }df B D B vδ δ δ= Ú

e T e e T T e
v v

vol

{ } { } { } [ ] [ ][ ]{ }df B D B vδ δ δ= Ú

e T e T
v v

vol

{ } { } { } { }df vδ ε σ= Ú
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Solving equations (B.13) for the unknown nodal displacements in terms of
the known applied loading and specified boundary conditions gives

(B.14)

To complete the solution, it is necessary to evaluate the stresses in each
element. Equation (B.8) gives the stresses at a general point within an element
in terms of the element nodal displacements. These element displacements
may be extracted from the complete set of structure displacements provided
by equation (B.14), and expressions for the stresses at a general point are
thereby generated. Often it is convenient to determine stresses at element
nodal positions, in which case equation (B.8) is used repeatedly, the coordi-
nates of the various nodes of the elements being successively substituted in
matrix [B]. If this procedure is followed for all the elements, it will result in
multiple values of nodal stresses being derived at any given node according to
the number of elements which the node interconnects. By the nature of the
finite element process, these nodal stresses will not agree exactly, and normal
practice is to average the values obtained.

References and further reading
Astley, R. J. (1992) Finite Elements in Solids and Structures. Chapman and

Hall, London. Chapter 4 covers displacement finite elements and, in partic-
ular, the assembly of stiffness matrices.

Hinton, E. and Owen, D. R. J. (1980) A Simple Introduction to Finite Ele-
ments. Pineridge Press, Swansea. The finite element method is explained
using variational and weighted residual methods, and the application of the
method is illustrated through heat flow examples.

Cook, R. D. (1995) Finite Element Modeling for Stress Analysis. Wiley,
Chichester. Concentrates on the use of finite element programs, emphasizing
topics such as modelling, mesh specification, element selection and assess-
ment of results.

Reddy, J. N. (1985) An Introduction to the Finite Element Method.
McGraw-Hill, New York. Thorough account of the finite element method on a
variational formulation basis.
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Solutions to problems

1.1

1.2 With reference to Fig. P.1:

1

2 3

1.5 0.5 1.0 0 0.5 0.5

0.5 1.5 1.0 2.0 0.5 1.0

1.0 1.0 2.0 0 1.0 1.01
[ ] kN/mm

0 2.0 0 4.0 0 2.040

0.5 0.5 1.0 0 1.5 0.5

0.5 1.0 1.0 2.0 0.5 1.5

1.5 0.5 0.5 0.5 1.0 0

0.5 1.5 0.5 0.5 1.0 2.0

0.1
[ ] [ ]

40

k

k k

- - -È ˘
Í ˙- - -Í ˙
Í ˙- - -

= Í ˙- -Í ˙
Í ˙- - -
Í ˙

- -Í ˙Î ˚
- - -

- -
-

= =
5 0.5 1.5 0.5 1.0 0

kN/mm
0.5 0.5 0.5 1.5 1.0 2.0

1.0 1.0 1.0 1.0 2.0 0

0 2.0 0 2.0 0 4.0

È ˘
Í ˙
Í ˙
Í ˙- -
Í ˙- - -Í ˙
Í ˙- - -
Í ˙

- -Í ˙Î ˚

m

i j
i

m j

i j i j

mm

q kN/m

1

3
1

3

2 4

2

6

1 m

4 5

1 m 1 m 1 m

Fig. P.1
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(a)

(b) Final four rows and columns of the stiffness matrix of (a) should be
deleted in view of the constraints at nodes 3, 4, 5 and 6.

1.3 The part stiffness matrix is

1.4

1.5

1.6 P = 1.21 kN; small tensile principal stress (0.21 N/mm2) produced in
element 7 by the action of pre-stress alone.

1.7
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1.5 0.5 0.5 0 0 0 1.0 0.5 0 0 0 0 0 0 0 0

1.5 0.5 1.0 0 0 0 0.5 0 0 0 0 0 0 0 0

3.0 0.5 0.5 0 0 0.5 2.0 0.5 0 0 0 0 0 0

3.0 0.5 1.0 0.5 0 0.5 1.0 0 0 0 0 0 0

1.5 0 0 0 0 0.5 1.0 0 0 0 0 0

sym. 1.5 0 0 0.5 0 0.5 0.5 0 0 0 0

3.0 0.5 1.0 0.5 0 0 1.0 0.5 0 0

3.0 0.5 2.0 0 0 0 0.
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-
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Ô Ô Ô Ô Ô Ô- - -Ó ˛ Ó ˛ Ó ˛

3 4 5 2
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3.73 1.45 0
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0 0

0

0 0
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0
sym.
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jj mm mm ji mi mj mi mj

ii ij

jj ii ii ij

jj ii ij
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k k k k k k

k k k k k k k k

k k
k

k k k k

k k k

k

È ˘+ +
Í ˙+ + + +Í ˙
Í ˙
Í ˙=
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Í ˙+Í ˙
Í ˙Î ˚
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1 1
0 0 0 0

1 1
0 0 0 0
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y y y y
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x x x x

B
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È ˘- + - -Í ˙
Í ˙
Í ˙= - + - -Í ˙
Í ˙
Í ˙- + - + - - - -Í ˙Î ˚
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1.8 The global constrained stiffness matrix is

2.1 With reference to Fig. P.2(b),

With reference to Fig. P.2(c),

2.2 With reference to Fig. P.3,
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T 2

4
max

{ } {0.0856, 0.0781, 0.0528, 0.130, 0.118, 0.144}

0.636 , 0.137p

a G

aG J a

φ θ

τ τ θ

= ¢

= = =¢

T 2

4
max

{ } { 0.0256, 0.0342, 0.0064}

0.654 , 0.135p

w a

aG J a

θ

τ τ θ

= - - - ¢

= = =¢

0 0 0 0 0

0 0 0

0 0 0 0

0 0

0

sym. 0

jj jm ji jl

mm jj jm mi ml ji jl

mm mi ml

ii jj il jm ji jl

ll ii mm jj il jm ml ji ml jl

ll mm mi ml

ii jj il jm

ll ii mm jj jm il

ll mm

k k k k

k k k k k k k

k k k

k k k k k k

k k k k k k k k k k

k k k k

k k k k

k k k k k k

k k

È ˘
Í ˙+ +Í ˙
Í ˙
Í ˙

+ +Í ˙
Í ˙+ + + + +Í ˙

+Í ˙
Í + +Í
Í + + + +
Í

+ÍÎ ˚

˙
˙
˙
˙
˙

(a)             (b)           (c)

a a/2

P 1 2

3

P

1 2 3

4 5

6

Fig. P.2

P

1

2

3

4a
4a

Fig. P.3
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By ‘combined rectangles’,

2.3 With reference to Fig. P.4,

2.4 With reference to Fig. P.5,

2.5 For open section: T = 0.86 kN m; θ = 21.1°.
For closed section: τmax = 2.99 N/mm2; θ = 0.18°.

2.6 For closed section: J = 0.0791 m4.
For open section: J = 0.00245 m4.
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T

4

{ } {0.0308, 0.0431, 0.0308}

0.0137

G

J m

φ θ= ¢

=

4
max 2.00 , 16.0p aG J aτ τ θ= = =¢

T 2

max

{ } {0.0267, 0.0214, 0.0080}

0.415p

w s

sG

θ

τ τ θ

= ¢

= = ¢

1

2

P

3

Fig. P.4

3 2 3

1

Fig. P.5

T 2

4
max

{ } {0.731, 0.923, 0.962}

1.85 , 11.1p

a G

aG J a

φ θ

τ τ θ

= ¢

= = =¢
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2.7 In order of increasing torsional stiffness, ranking is D, A, B, E, C.

2.8 Torsional rigidity = 1.27 kN m2/degree.

2.9 Torsional rigidity = 1.41 ¥ 105 kN m2/degree.

2.10 Shear flows in kilonewtons per metre are as shown in Fig. P.6.

3.1 With reference to Fig. P.7, {w} = {29.33, 15.28, 7.83, 13.58}T mm.
Bending moments along and in the direction of AA and BB (Fig. P.7)
are as shown in Fig. P.8.

3.2
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5 m 2.5 m

A
B

A
2 1

3 4

B

Fig. P.7

0
1.3

30.0

–29.0

–2.3

33.6

Mx (kN m/m) My (kN m/m)

Fig. P.8

80
53

107

140

107

53
80

80

113

80

sym.

Fig. P.6

2 2

1 2

1 1
and

162 108

PL PL
w w

D D
= - = -
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3.3 The difference equations are as shown below where the alternative
vectors are for cases (i) and (ii):

3.4

Bending moments along and in the direction of AA and BB are as shown
in Fig. P.9.
For a plate of infinite length

3.5 L/4 grid finite difference analysis results are given in Table P.1.

3.6 For the typical grid shown in Fig. P.10, sample member properties are
given in Table P.2 and sample joint loads, calculated on the basis set out
in Fig. 4.28 are given in Table P.3.
Restraints are: joints 10–16 are fully restrained; joints 1, 4 and 7 have θy

restrained (symmetry).

3.7 With reference to the sample element mesh shown in fig. P.11:
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0.074

0.086
0.097

0.115

BB

AA

My (xqL2)

Fig. P.9

Table P.1

Position w (¥ 10–5qL4/D) Mx (¥ 10–4qL2) My (¥ 10–4qL2)

Centre 88 118 116
Column 0 0 –21

4
T{ } {0.01232, 0.00881, 0.00729, 0.01018}

qL
w

D
=

( )4 2

20 8 1 8 2 1 1 0

8 21 8 3 8 0 1 0

2 16 18 0 2 0 1 01 16
{ } or

8 3 0 23 8 8 1 0/4
4 16 2 16 20 2 1 1

2 0 0 16 2 22 1 0

q P
w

D a Da

- - -È ˘ Ï ¸ Ï ¸
Í ˙ Ô Ô Ô Ô- - -Í ˙ Ô Ô Ô Ô
Í ˙ Ô Ô Ô Ô- Ô Ô Ô Ô=Í ˙ Ì ˝ Ì ˝- - -Í ˙ Ô Ô Ô Ô
Í ˙ Ô Ô Ô Ô- -
Í ˙ Ô Ô Ô Ô

-Í ˙ Ô Ô Ô ÔÎ ˚ Ó ˛ Ó ˛

2
2

1 0.125
8

qL
M qL= =
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All elements have thickness t = 125 mm, except elements 1, 2 and 3,
where the column head may be roughly modelled by t1 = t2 = 200 mm
and t3 = 162.5 mm.
Nodes 36, 42 and 43 (around the column) are fully restrained.
Along 1–48 and 37–42, θx = 0 (symmetry).
Along 1–37 and 43–48, θy = 0 (symmetry).
Typical nodal loads due to a uniform applied load q (kN/m2) are shown
in Table P.4.

3.9 With reference to Fig. P.7:

{w1, w2, w3, w4} = {22.42, 12.51, 6.62, 10.39} mm.

Averaged bending moments along and in the direction of AA and BB
(Fig. P.7) are as shown in Fig. P.12.
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Table P.3

Joint Load (kN)

1 9.81
2 13.08
4 27.59
5 36.79
7 18.39
8 24.53

Table P.2

Member I (¥ 10–3m4) J (¥ 10–3m4)

16–3 0.16 0.32
6–5 0.62 1.24
8–7 0.47 0.94
6–3 0.28 0.56
8–5 1.60 3.20

10–7 1.69 3.38

y

x

16 3 2 1

15 6 5 4

14 9 8 7
13 12 11 10

1.0 1.0 3.0

0.5

0.5 2.0

(dimensions in m)

Fig. P.10
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3.10 The reduced stiffness matrix is
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x

y

2 × 0.15 0.3 0.4 0.5 0.5

0.5

0.5

0.4

0.3

2 × 0.15

2.0

43 1

3

36

42

2

40

21

8

48

2.0

37

(dimensions in m)

1

Fig. P.11

162 144 66 18 24

72 306 12 144 66

33 12 48 0 12

18 288 0 648 0

12 66 12 0 96

- -È ˘
Í ˙- -Í ˙
Í ˙
Í ˙- -Í ˙
Í ˙Î ˚

Table P.4

Node Load (kN)

1 0.0625q
8 0.25q

21 0.1575q
40 0.02625q

0.7

–4.8

–31.4

–5.3

35.0
42.4

My (kN m/m)Mx (kN m/m)

Fig. P.12
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4.1

For the given values: σm = σt = –23.8 N/mm2.

4.5

4.7 The criterion is

4.8 The stiffness matrix is

4.9

Maximum direct stress = 10.2 N/mm2; maximum bending stress =
2.98 N/mm2.
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0.14 1.72 0.13 1.68

28.41 1.68 14.04

0.28 0 0.13 1.68

56.82 1.68 14.04

0.28 0 0.13 1.68

56.82 1.68 14.04

sym. 0.28 0 0.13 1.68

56.82 1.68 14.04

0.26 5.33 0.04 4.15

542.18 4.15 383.17

0.24 0

1027.54
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˙
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,

2 cos cos

L p q pLq
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p

α
α α

-= = -

t7 t8

m7 m8

t9
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153.4 N/mm 131.4 N/mm
,

111.8 N mm/mm 90.0 N mm/mm

110.3 N/mm
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N N

M M
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M
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Ï ¸ Ï ¸
=Ì ˝ Ì ˝-Ó ˛Ó ˛
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N N= = -

1

1

1

73.1

73.1 kN m/m

13.1
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M

M

M

Ï ¸ Ï ¸
Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô ÔÓ ˛Ó ˛
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4.10 (b)

(c) Nt = 3000 kN/m

5.1 Without additional mass, fundamental frequency = 1.59 Hz.
With extra mass on lower storey, fundamental frequency = 1.46 Hz.
With extra mass on upper storey, fundamental frequency = 1.22 Hz
(best).

5.2

5.3

5.4

5.5 For 10 000 tonne mass, fundamental circular frequency = 3.23 rad/s.
For 15 000 tonne mass, fundamental circular frequency = 2.70 rad/s, a
16.4% decrease.

5.6
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b 3

3EI

mL
ω =

T{ } {0.42, 1.35} /EI mω =

T{ } {1, 2, 2} /k mω =

1 1 0

[ ] 1 0.5 1

1 0.5 1

Φ
È ˘
Í ˙= -Í ˙
Í ˙- -Î ˚

1.00 1.00
[ ]

2.04 0.49
Φ

È ˘
= Í ˙-Î ˚

c 3

96

7

EI

mL
ω =

23.3
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49.6
ω

Ï ¸
= Ì ˝

Ó ˛

t1

m1

t13

m13

2998 kN/m

0.1 kN m/m

0 kN/m

27.2 kNm/m

N

M

N

M

Ï ¸ Ï ¸
Ô Ô Ô Ô-Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô
Ô Ô Ô ÔÓ ˛Ó ˛
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5.7 Maximum displacement when empty = 17.1 mm.
Maximum displacement when full = 11.7 mm.

5.8

5.9 Constrained stiffness matrix is

5.10

If a force is applied to the lower storey such that u1 = 1, then u2 = 1,
and
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2 2

3 2 2 2 2
1 2

0.719 0.863 sin t
q

mφ

Ω
ω Ω ω Ω

Ê ˆ
+= Á ˜- -Ë ¯

1 1 1
{ } , [ ]

2 2 1

k

m
ω Φ

Ï ¸ È ˘
= =Ì ˝ Í ˙-Î ˚Ó ˛

3 3 2

2

3 2 3

2

24 12 6
0

8 6 2
0

12 6 24
0

6 2 8
0

L L L

L LLEI

L L L

L LL

È ˘-Í ˙
Í ˙
Í ˙-Í ˙

= Í ˙
Í ˙- -Í ˙
Í ˙
Í ˙
Í ˙Î ˚

2

1 sin
{ }

2 5(1 2 )

t
x

Ω
Ω

Ï ¸
= Ì ˝- -Ó ˛

0.707
{ } rad/s

1.414
ω

Ï ¸
= Ì ˝

Ó ˛

1 1 2

2 1 2

4cos cos1
{ }

8cos cos9

u t t
x

u t t

ω ω
ω ω

-Ï ¸ Ï ¸
= =Ì ˝ Ì ˝+Ó ˛ Ó ˛

1 1 2

2 1 2

2cos cos1
{ }

4cos cos3

u t t
x

u t t

ω ω
ω ω

+Ï ¸ Ï ¸
= =Ì ˝ Ì ˝-Ó ˛ Ó ˛

18.74cos23.3 2.25sin23.3 3.74cos49.6 1.06sin49.6
{ } mm

8.56cos23.3 1.03sin23.3 5.43cos49.6 1.53sin49.6

t t t t
x

t t t t

+ - -Ï ¸
=Ì ˝+ + +Ó ˛

1.000 0.689
[ ]

0.457 1.000
Φ

-Ï ¸
= Ì ˝

Ó ˛
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The steady state response is

298

Advanced structural mechanics

2 2 2 2 2
1 21 0

2
2 2 2 2
1 2

2 1

{ } sin
4 1 3

u u
x t
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ω Ω ω Ω Ω
Ω
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Ó ˛ Ô Ô-

Ô Ô- -Ó ˛

312



Delivered by ICEVirtualLibrary.com to:

IP:  90.154.135.210

On: Sat, 31 Jul 2010 09:09:44

Index

adaptive meshing, 45
amplitude, 219
anti-clastic, 104
anti-symmetry, with finite

differences, 278
area projection rule, 174
axial mode, 220, 235, 240
axis, of axisymmetric shell, 169
axisymmetric shells, 166, 168–169,

204, 205
membrane analysis of, 169–185

axisymmetry, in shells, 171–172,
186, 188

backward differences, 275
basis element, 38–39
beam analogy, for plates, 102
beams, 9

by Rayleigh’s method, 248–249
harmonically forced vibration of,

262–263
interaction of with slabs, 126, 136,

151
lateral instability of, 60
natural frequencies of, 240–243

bending,
in shells, 167–169, 178–179, 185,

186–204
in shells, classical solutions for,

186
biharmonic equation, 112, 277, 279

body force, 12
boundary conditions, 15

for plates, 114–117, 118–119,
128–129, 145

for torsion, 68, 70–71, 73
modification of stiffness matrix

for, 29–32, 148–149, 201
box girders, 59, 94

under applied torque, 81–83
under general load, 87
under shear load, 84–87

central differences, 275
centre of rotation, 61
characteristic equation, 243
circular cylindrical shells, 166,186

finite element analysis of,
186–204, 211–215

circular natural frequency, 219
circular sections, torsion of, 62–63
circular tank

of non-uniform thickness,
199–204

of uniform thickness, 193–199
circumferential stress resultant, 172
closed cylindrical shells, 166
closed sections, 59, 77
closed-form solution, 15
co-factor method, 18, 50
coordinates, in dynamics, 218, 228,

231
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compatibility, 12
equation in plane stress, 13

complementary shear stress, 3
concrete core construction, 59
concrete cube analysis, 36, 45–47
concrete cylinder analysis, 43–45
conical shells, 208

under fluid pressure, 182–185
consistent loads, 151,200
consistent mass matrix, 250
contour, 78
coupling, 251

of damping matrix, 263–264
critical damping, 222
curvature

in axisymmetric shells, 170
in circular cylindrical shells, 189
in plates, 104–105, 109–110, 119,

133, 139, 152
in shells, 168, 170, 179

curved boundaries
in plane stress, 36
in plates, 126, 136

damping, 218, 221–223, 226–227,
264

coefficient of, 221, 264
critical coefficient of, 222
matrix, 263
ratio, 222

dashpot model, 221
deep beam, 9
degrees of freedom, 218, 220
design moments in slabs, 152–154
direct strain, 4
direct stress, 3

in shells, 167, 171–172, 188, 202
distributed mass model, 250
Duhamel integral, 257
dynamic loading, 218
dynamic matrix, 230

eigenvalue, 230
determination of, 230, 265

eigenvector, 230
elasticity, 2

theory, 2–7
elasticity matrix, 283

circular cylindrical shell, 190
plate bending, 141
square slab bending, 141
triangular plane stress, 19, 24

element numbering, 22
element stiffness matrix, 282, 284

beam, 240
circular cylindrical shell, 192
plane frame, 232
square slab bending, 143
sway column, 236
triangular plane stress, 21

element stress solution, 285
circular cylindrical shell,

198–199
square slab, 149–151
triangular plane stress, 33–36

error estimators, 45
excitation, 223

fatigue, 218
finite difference method

for plates and slabs, 118–126
for shells, 186, 205, 206
for torsion, 69–76
nets for, 275–276
theory, 273–280

finite element method
accuracy of, 45–48
for dynamic analysis, 228,

244–247, 250
for plane strain, 50
for plane stress, 16
for plate bending, 136, 152
for shells, 186, 204, 206
for torsion, 71, 95
theory, 281–285

finite elements, 281
circular cylindrical shell,

186–204, 205, 211–215
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eight-noded isoparametric plane
stress, 37–45

plane strain, 50
rectangular plane stress, 36, 56, 58
square slab, 136–151
triangular plane stress, 16–36
types of, 36–37

flexural mode, 220, 235, 240
flexural rigidity, 109
folded plates, 166, 167, 168
forced damped vibration, 223–228
forced undamped vibration, 255–265
forcing frequency, 226
forcing function, 223–227, 256, 259,

261
forward differences, 275
Fourier series analysis, 204, 225, 257
free damped vibration, 221–223, 224
free undamped vibration, 218–221,

250–255
frequency, 219

of damped vibration, 222
ratio, 226

frustum of shell, 173
fundamental frequency, 235, 248

Gaussian curvature, 168
Gaussian integration, 42–45
grid analogy,

for plates and slabs, 103–105
for slabs, 126–136, 152, 155

ground motion, 258–261

harmonic excitation, 224–225, 262
harmonic vibration, 219
harmonically forced undamped

vibration, 261–263
homogeneous material, 7
hoop stress resultant, 172
hyperboloid shell, under fluid

pressure, 209–211

impulse, dynamic response to,
256–258

Intze-type container, 210–211
isoparametric elements, 36–45, 151
isotropic material, 7

Jacobian matrix, 40–44

Kirchoff assumption, 87, 152

Laplace equation, 14, 66, 276, 279
line element, 1
line of curvature, 170
linear elastic behaviour, 2, 6–7
lines of distortion, 178–179
load representation

with finite differences, 118, 121
with finite elements, 147, 200
with grid analogy, 129, 131

lumped mass model, 228, 234

magnification factor, 226
mapping of co-ordinates, 36–37, 40
mass matrix, 229, 234, 265
mass moment of inertia, 234
membrane action, 167
membrane analogy for torsion,

91–93
membrane forces

in circular cylindrical shells, 188
in circular tank, 198–199, 202–204
in conical tank, 184–185
in paraboloid dome, 181–182
in shells, 171–172, 178–179
in spherical dome, 176–177

membrane shell theory, 169–185,
202–204

limitations of, 178–179
meridian, 169
meridional stress resultant, 171, 173

see also membrane forces
middle surface, 106
Mindlin plate theory, 151–152
modal damping, 264
modal damping coefficients, 264
modal forcing function, 259
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modal mass, 230
modal mass matrix, 251, 253
modal matrix, 251
modal stiffness matrix, 251, 253
mode, 219

shape, 220
mode superposition analysis

of forced undamped vibration,
255–261

of free undamped vibration,
251–255

of harmonically forced undamped
vibration, 261–263

reduced modes in, 255
modulus of elasticity, 6
modulus of rigidity, 7
moments

in circular cylindrical shells, 186,
188–189

in circular tank, 198–199, 202
in plates, 107–110, 120
in slabs, 121–122, 129–130,

132–135
multiply-closed sections, 59

torsion of, 81–86, 95

natural frequencies, 219, 220, 230
by Rayleigh’s method, 248–249
determination of, 228–247, 265
number of, 231, 235, 239, 246
repeated, 247

natural mode, 220
see also principal mode

Newton’s second law, in dynamics,
229, 263

non-uniform torsion, 94–95
normal mode, see principal mode
normal mode method, see mode

superposition analysis
normal stress, 3
normalization of modes, 230–231,

239
numeric integration, 72, 75–76, 186,

257, 264

open sections, 59, 77–78
torsion of, 87–90
under shear load, 84

orthogonality of modes, 247–248
orthotropic plates and slabs, 126,

136, 151, 155

packages, 20
paraboloid domes

under internal pressure, 180–182
under snow load, 208

parallel, 170
period, 219
periodic excitation, 224
phase angle, 219, 226
plane sections, assumption of, 1
plane strain, 48–50
plane stress, 9–10

elasticity theory, 10–14
plates, 101

beam analogy for, 102
bending theory, 105–117
classical solutions, 117, 155
grid analogy for, 103–105
see also slabs

Poisson equation, 68
Poisson’s ratio, 6

effect in plates, 104–105, 110
Prandtl membrane analogy, 91–93
principal axes, 84
principal coordinates, 250–252,

256, 259–261, 263
principal curvatures, 168
principal modes, 220

approximate, 248–249
determination of, 230, 265
inaccuracy in, 246, 250
see also orthogonality of modes

principal moments, 110
principal radii of curvature,

167–168, 170
of circular cylindrical shell, 203
of cone, 184–185
of paraboloid, 181
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of sphere, 176
principal stress, 10–11

plot, 34–35, 46–47

radii of curvature, see principal radii
of curvature

random excitation, 227, 265
Rayleigh quotient, 248–249
reactions

in plates and slabs, 114–117
in slabs, 123, 129, 133

rectangular sections, torsion of,
69–76

reduced stiffness matrix, 248
reduction of natural frequency

relationship, 241–243, 268
resonance, 225–228
ring beam, 178, 207

Saint–Venant
principle of, 9–10, 50, 94
torsion, 61, 65, 94

self-excitation, 264
semi-inverse method, 16
shallow shells, 179
shear centre, 61, 81, 87
shear flow, 79, 80–82

direction of, 86
shear forces

in plates, 111, 113
in shells, 172, 178, 188, 203, 204
in slabs, 120, 122–123, 129–130,

132–133
shear load, 84
shear modulus, 7
shear strain, 5
shear stress, 3–4

for circular section under torsion,
62

in closed sections under torsion,
88, 91, 93

in open sections under torsion, 88,
90–91, 92

in shells, 167, 172

in singly-closed sections under
torsion, 78–79, 93

in solid sections under torsion,
64–66, 71–72, 75

in thin-walled sections under
torsion, 78

sign convention, 3
trajectories in torsion, 72, 77–78

shear wall analysis, 58
shells, classification of, 165, 166
shells of rotation, 165
simple support

in plates, 103, 114
in shells, 178

Simpson’s rules for integration, 72,
75–76

singly-closed sections, 59
torsion of, 78–80

slabs, 102
design moments for, 152–154
finite difference analysis of,

118–126
finite element analysis of,

136–152
grid analogy for, 103–105,

126–136, 152, 155
natural frequencies of, 244–246
torsional stiffness of, 127–128
see also plates

small deflection theory, 2
soap-bubble analogy, 91
soil–structure interaction, in

dynamics, 264
solid sections, 61

torsion of, 62–76
torsional properties of, 76

spherical domes
under dead load, 176–177
under normal pressure, 206

spring, 223
steady-state, 225, 261

frequency, 225
strain matrix, 283

circular cylindrical shell, 190
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square slab bending, 140
triangular plane stress, 19

stress concentration, in torsion, 89
stresses

in plates, 107–110
in shells, 167, 202
see also direct stress, shear stress

stress function
for plane stress, 15–16
for torsion, 67–69, 91–93

stress matrix, 283
circular cylindrical shell, 191
square slab bending, 141–143

structure stiffness equations, 282
structure stiffness matrix, 284

construction of, 25–29, 146–147,
194–196, 284

general properties of, 27, 29
sub-matrix, form of structure

stiffness matrix, 26–29
support excitation, 227
surface element, 1
sway frames

by Rayleigh’s method, 249
forced undamped vibration of,

258–261
free undamped vibration of,

253–255
natural frequencies of, 231–239
simplified analysis of, 235–239
under ground motion excitation,

258–261
symmetry

in plane stress, 22, 29, 32
in plates and slabs, 103, 120, 121,

130, 133
of shear flows, 82, 86
of stress function in torsion, 74
warping along lines of, 62, 63, 70
with finite differences, 120, 277

system stiffness matrix, see structure
stiffness matrix

Tacoma Narrows bridge, 48

tangential stress resultant, 171–172,
174

see also membrane forces
tangential stress, 3
thick plate theory, 151–152
thin walled sections, 61

torsional properties of, 91
torsion of, 77–91

time-dependent loading, 223
torque, 61, 62
torsion, elasticity theory, 63–69
torsion constant, 62

for closed sections, 80, 91
for open sections, 89–91
for solid sections, 68–69, 72–73,

75–76
torsional mode, 220
transient excitation, 223

underdamping, 222
undetermined coefficients, 282
uniform torsion, 61
units, in dynamics, 219, 233
vertical load on shell, 174, 175

due to fluid pressure, 175–176,
183–184

due to normal pressure, 174–175,
181

virtual work
in plane stress, 14–15
principle of, 283–284

viscous damping, 221
von Mises failure criterion, 152

warping, 61
displacement distributions, 63,

66–67, 69–71, 77
of thin-walled sections, 78
restraint of, 93–94

Wood–Armer moments in slabs,
153

Young’s modulus, 6
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