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PREFACE

Since the first edition of this book was published in 1975, major advances have
been made in the subject "Dynamics Of Structures." While it would be impossible
to give a comprehensive treatment of all such changes in this second edition, those
considered to be of most practical significance are included.

The general organization of text material remains unchanged from the first
edition. It progresses logically from a treatment of single-degree-of-freedom systems
to multi-degree-of-freedom discrete-parameter systems and then on to infinite-degree-
of-freedom continuous systems. The concept of force equilibrium, which forms the
basis of static analysis of structures, is retained so that the experienced engineer can
easily make the transition to performing a dynamic analysis. It is essential therefore
that the student of structural dynamics have a solid background in the theories of
statics of structures, including matrix methods, and it is assumed that the readers of
this text have such preparation.

The theoretical treatment in Parts I, II, and III is deterministic in nature because
it makes use of dynamic loadings which are fully prescribed eventhough they may be
highly irregular and transient with respect to time. The treatment of random vibrations
in Part IV is however stochastic (random) in form since the loadings considered can be
characterized only in a statistical manner. An understanding of basic probability theory
is therefore an essential prerequisite to the study of this subject. Before proceeding
with this study, it is recommended that the student take a full course on probability
theory; however, if this has not been done, the brief treatment of probability concepts
given in Chapter 20 can serve as minimum preparation.

The solution of a typical structural dynamics problem is considerably more
complicated than its static counterpart due to the addition of inertia and damping to
the elastic resistance forces and due to the time dependency of all force quantities.
For most practical situations, the solution usually is possible only through the use of
a high-speed digital computer, which has become the standard tool of the structural
dynamicist. However, most of the problems in the text, which are intended to teach
the fundamentals of dynamics, are quite simple in form allowing their solutions to
be obtained using a hand calculator. Nevertheless, the student of dynamics of struc-
tures should have previously studied computer coding techniques and the associated
analytical procedures. Such background will permit an early transition from solv-
ing dynamics problems by hand calculator to solving them on a PC computer using
programs specially developed for this purpose. The program CAL-91, developed by
Professor E. L. Wilson of the University of California, Berkeley, is such a program
which has been used very effectively in teaching even the first course in Dynamics Of
Structures. Instructors using this book are encouraged to implement such PC computer
solutions into their courses so that more realistic problems can be considered.

xv



xvi PREFACE

A large number of example problems have been solved in the text to assist the
reader in understanding the subject material. To fully master the analytical techniques,
it is essential that the student solve many of the homework problems presented at the
ends of chapters. They should be assigned sparingly however because dynamic-
response analyses are notoriously time consuming. The authors have found that from
one to four problems may constitute an adequate weekly assignment, depending on
the subject matter and type of solution required. On this basis, the book includes
many more problems than can be assigned during a one-year sequence of courses on
structural dynamics.

The subject matter of this text can serve as the basis of a series of graduate-level
courses. The first course could cover the material in Part I and a portion of that in
Part II. The full extent of this coverage would depend, of course, upon whether the
course is of quarter or semester duration. If of quarter duration, the material coverage
in Parts I and II is sufficient to provide the basis of a sequence of two quarter courses
and some material from Part III also could be included in the second course.

It is now generally expected that nearly all Masters-Degree students in structural
engineering should have had at least the basic first-course in dynamics of structures
and it is recommended that the advanced (fourth-year level) undergraduate student be
provided on opportunity to take a similar course, eventhough its material coverage
may be somewhat reduced.

The material in Part IV can serve as the subject matter of a basic course on random
vibration which is needed in fully understanding practical applications of stochastic
methods in various fields such as earthquake engineering, wind engineering, and ocean
engineering. Many such applications are presented in Part V which treats the broad
subject of earthquake engineering. A separate course is needed however to fully cover
the material in Part V. Students taking either of these latter two courses should have
a good background in deterministic dynamic analysis of structures and a reasonable
maturity in mathematics.

This book has been written to serve not only as a textbook for college and
university students, but to serve as a reference book for practicing engineers as well.
The analytical formulations and techniques presented can serve effectively as the basis
for continued development of new computer programs to be used by the engineer in
designing and analyzing structures which function in dynamic environments.

In closing, the authors wish to express their sincere thanks and appreciation to
the many individuals (students, faculty members, and practicing engineers) who have
both directly and indirectly contributed to the content of this book. The number of
such contributors is much too large however to attempt listing them by name.

One person most deserving of special recognition is Ms. Huey-Shu Ni who typed
the entire text and, with assistance from her staff at Drawing and Editing Services, Ltd.
in Taipei, Taiwan, prepared all of the figures. Her patient and congenial manner, which
was always present over the many years of the book’s preparation, is to be admired.
The authors express to her their deep appreciation and thanks for a job superbly done.

Ray W. Clough
Joseph Penzien



LIST OF SYMBOLS

a distance
a0 Fourier coefficient, dimensionless frequency
an Fourier coefficients, constants
A area, constant

A1, A2 constants
b distance, integer

b0, bn Fourier coefficients constants
B constant
c damping coefficient
c∗ generalized damping coefficient
cc critical damping coefficient
cij damping influence coefficients
Cn normal mode generalized damping coefficients

CQC complete quadratic combination
D dynamics magnification factor
D dynamics matrix = k−1m

DFT discrete Fourier transform
DRV derived Ritz vector

e axial displacement
E Young’s modulus, energy release
E dynamic matrix = D−1

E[ ] expected value, ensemble average
ED damping energy loss/cycle
ED epicentral distance
EI flexural stiffness
f natural cyclic frequency

xvii



xviii LIST OF SYMBOLS

f̃ij flexibility influence coefficients
fI, fD, fS inertial, damping, and spring forces, respectively

FD focal depth
FFT fast Fourier transform

g acceleration of gravity
gi stress wave functions
G shear modulus, complex constant

G1, G2 constants
GI , GR real constants

G length of vector
G(ia0) boundary impedance function

GC geological condition
h height, plate thickness, time interval

hij(t), h(t) unit impulse response functions
Hij(iω), H(iω) complex frequency response functions

Hz Hertz (frequency in cycles/sec)
i integer
I impulse, cross-section moment of inertia
I identity matrix

Iij(iω) impedance function
IE isolation effectiveness
Im imaginary
j integer, mass moment of inertia

k, ki spring constants
k∗ generalized spring constant
k∗ combined generalized stiffness
k̂ complex stiffness

k̃c, k̃d effective stiffnesses
kij stiffness influence coefficients
kjj combined stiffness influence coefficients
kG geometric stiffness
k∗G generalized geometric stiffness
kGij

geometric stiffness influence coefficients
Kn generalized stiffness of nth normal mode
K̂n complex stiffness of nth normal mode
L length
L earthquake-excitation factor
m mass, integer



LIST OF SYMBOLS xix

mi mass
mij mass influence coefficients
m∗ generalized mass
m uniform mass/unit length
M Richter magnitude, integer
M mass matrix for normal modes
Mn generalized mass of nth normal mode

M(t), M(x, t) internal moment
MDOF multi-degree of freedom

MF magnification factor
MM modified Mercalli scale
n integer, constant
N number of time increments, number of degrees of freedom,

integer
N axial load

Ncr critical axial load
N(x) internal axial force (time invariant)

N(x, t) internal axial force (time varying)
p, p0 load

p uniform loading/unit length
peff effective loading
p(t) applied loading
P(t) load vector in time domain
p∗(t) generalized loading
p(x) probability density function

p(x, y) joint probability density function
p(x|y) conditional probability density function

p(x1, x2, . . . , xm) multivariate probability density function
P power

P(iω) load vector in frequency domain
P (x) probability distribution function

Pn complex amplitude coefficient
Pn(t) generalized loading of nth normal mode in time domain

Pn(iω) generalized loading of nth normal mode in frequency domain
PGA peak ground acceleration

Pr probability
P (X), P (X,Y ) probability density functions

qo, qi constants, generalized coordinates



xx LIST OF SYMBOLS

q(x, t) applied axial loading
Qi(t) ith generalized forcing function

r radius of gyration
Re real

R(t) response ratio
Rx(τ) autocorrelation function
Rxy(τ) cross-correlation function

s constant
Sa(ξ, ω) spectral absolute acceleration response
Sd(ξ, ω) spectral relative displacement response
Sii(iω) power-spectral density functions
Sij(iω) cross-spectral density functions

Spa(ξ, ω) pseudo-acceleration spectral response
Spv(ξ, ω) pseudo-velocity spectral response
Sv(ξ, ω) spectral relative velocity response

S1 first-mode sweeping matrix
SC soil conditions

SDOF single degree of freedom
SI(ξ) Housner’s spectrum intensity
SM source mechanism

SRSS square root of the sum of squares
t, ti time
t1 impulse duration
T period of vibration, kinetic energy
T matrix of orthonormal eigenvectors
Tn period of nth normal mode
Tp period of motion
TR transmissibility
u displacement in x-direction
U strain energy
v displacement in y-direction
v dynamic displacement
vt total displacement

v(t) displacement in time domain
vg , vg0 ground displacement
v̈g(t) ground acceleration in time domain

V̈g(iω) ground acceleration in frequency domain
vst static displacement



LIST OF SYMBOLS xxi

V potential energy
V(iω) displacement in frequency domain
V(x, t) internal shear force

Va apparent wave velocity
Vc, Vp, Vs wave velocities

Vff free-field wave velocity
Vn complex constant
w displacement in z-direction
W work, weight

Wnc work by nonconservative forces
WN work by axial load N
x space coordinate, random variable
x mean value of x
x2 mean square value of x

x(t) random process
X space coordinate, random variable
y space coordinate

y(t) random process
Y random variable, space coordinate

Yn(t) generalized displacement of nth normal mode in time domain
Yn(iω) generalized displacement of nth normal mode in frequency

domain
z space coordinate

z(t) generalized coordinate response in time domain
Z, Zn, Z0 generalized coordinates

Z(iω) generalized coordinate response in frequency domain
α constant, dimensionless time parameter
β frequency ratio
γ integer, mass/unit area, unit weight

γij(iω) coherency functions
δ log decrement, variation, residual

δe, δv, δZ virtual displacements
δWI internal virtual work
δWE external virtual work

∆ increment
4st static displacement
4p̃d effective loading increment
∆t time interval



xxii LIST OF SYMBOLS

∆ω frequency interval
ε normal strain
ζ time function, hysteretic damping coefficient
λ wave length

λG axial load factor
λi Lagrange multiplier
λn nth eigenvalue
θ phase angle, slope, rotation
µ ductility factor

µij covariances
ν Poisson’s ratio

ξ, ξn damping ratios
ρ vector amplitude, mass/unit volume

ρxy correlation coefficient
σ normal stress
σx standard deviation
σ2

x variance
τ time
φ phase angle

φij modal displacement
φφφn, φn(x) nth mode shape

φφφ mode shape matrix
ψ, ψn generalized displacement functions
ψψψn generalized displacement vector
ΨΨΨ matrix of assumed made shapes

ω, ωn undamped natural circular frequencies
ωD, ωDn damped natural circular frequencies

ω circular frequency of harmonic forcing function
χ(x) load distribution



CHAPTER

1
OVERVIEW

OF
STRUCTURAL

DYNAMICS

1-1 FUNDAMENTAL OBJECTIVE OF STRUCTURAL
DYNAMICS ANALYSIS

The primary purpose of this book is to present methods for analyzing the stresses
and deflections developed in any given type of structure when it is subjected to an
arbitrary dynamic loading. In one sense, this objective may be considered to be an
extension of standard methods of structural analysis, which generally are concerned
with static loading only, to permit consideration of dynamic loading as well. In this
context, the static-loading condition may be looked upon merely as a special form of
dynamic loading. However, in the analysis of a linear structure it is convenient to
distinguish between the static and the dynamic components of the applied loading, to
evaluate the response to each type of loading separately, and then to superpose the two
response components to obtain their total effect. When treated thusly, the static and
dynamic methods of analysis are fundamentally different in character.

For the purposes of this presentation, the term dynamic may be defined simply
as time-varying; thus a dynamic load is any load of which its magnitude, direction,
and/or position varies with time. Similarly, the structural response to a dynamic load,
i.e., the resulting stresses and deflections, is also time-varying, or dynamic.

1



2 DYNAMICS OF STRUCTURES

Two basically different approaches are available for evaluating structural re-
sponse to dynamic loads: deterministic and nondeterministic. The choice of method
to be used in any given case depends upon how the loading is defined. If the time
variation of loading is fully known, even though it may be highly oscillatory or ir-
regular in character, it will be referred to herein as a prescribed dynamic loading;
and the analysis of the response of any specified structural system to a prescribed
dynamic loading is defined as a deterministic analysis. On the other hand, if the time
variation is not completely known but can be defined in a statistical sense, the loading
is termed a random dynamic loading; and its corresponding analysis of response is
defined as a nondeterministic analysis. The principal emphasis in this text is placed
on development of methods of deterministic dynamic analysis; however, Part Four
is devoted to presenting an introduction to nondeterministic methods of analysis and
Part Five contains a chapter dealing with the application of nondeterministic methods
of analysis in the field of earthquake engineering.

In general, structural response to any dynamic loading is expressed basically in
terms of the displacements of the structure. Thus, a deterministic analysis leads directly
to displacement time-histories corresponding to the prescribed loading history; other
related response quantities, such as stresses, strains, internal forces, etc., are usually
obtained as a secondary phase of the analysis. On the other hand, a nondeterministic
analysis provides only statistical information about the displacements resulting from
the statistically defined loading; corresponding information on the related response
quantities are then generated using independent nondeterministic analysis procedures.

1-2 TYPES OF PRESCRIBED LOADINGS

Almost any type of structural system may be subjected to one form or another
of dynamic loading during its lifetime. From an analytical standpoint, it is convenient
to divide prescribed or deterministic loadings into two basic categories, periodic and
nonperiodic. Some typical forms of prescribed loadings and examples of situations in
which such loadings might be developed are shown in Fig. 1-1.

As indicated in this figure, a periodic loading exhibits the same time variation
successively for a large number of cycles. The simplest periodic loading has the
sinusoidal variation shown in Fig. 1-1a, which is termed simple harmonic; loadings
of this type are characteristic of unbalanced-mass effects in rotating machinery. Other
forms of periodic loading, e.g., those caused by hydrodynamic pressures generated
by a propeller at the stern of a ship or by inertial effects in reciprocating machinery,
frequently are more complex. However, by means of a Fourier analysis any periodic
loading can be represented as the sum of a series of simple harmonic components;
thus, in principle, the analysis of response to any periodic loading follows the same
general procedure.
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(a)

(b)

(c)

(d)

FIGURE 1-1
Characteristics and sources of typical dynamic loadings: (a) simple harmonic; (b) complex;
(c) impulsive; (d) long-duration.

Periodic

Nonperiodic

Unbalanced rotating 
machine in building

Rotating propeller at 
stern of ship

Bomb blast pressure on 
building

Earthquake on water 
tank

Loading histories Typical examples

Nonperiodic loadings may be either short-duration impulsive loadings or long-
duration general forms of loads. A blast or explosion is a typical source of impulsive
load; for such short-duration loads, special simplified forms of analysis may be em-
ployed. On the other hand, a general, long-duration loading such as might result from
an earthquake can be treated only by completely general dynamic-analysis procedures.

1-3 ESSENTIAL CHARACTERISTICS OF A DYNAMIC
PROBLEM

A structural-dynamic problem differs from its static-loading counterpart in two
important respects. The first difference to be noted, by definition, is the time-varying
nature of the dynamic problem. Because both loading and response vary with time, it
is evident that a dynamic problem does not have a single solution, as a static problem
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does; instead the analyst must establish a succession of solutions corresponding to
all times of interest in the response history. Thus a dynamic analysis is clearly more
complex and time-consuming than a static analysis.

The second and more fundamental distinction between static and dynamic prob-
lems is illustrated in Fig. 1-2. If a simple beam is subjected to a static load p, as shown
in Fig. 1-2a, its internal moments and shears and deflected shape depend only upon
this load and they can be computed by established principles of force equilibrium.
On the other hand, if the load p(t) is applied dynamically, as shown in Fig. 1-2b, the
resulting displacements of the beam depend not only upon this load but also upon
inertial forces which oppose the accelerations producing them. Thus the correspond-
ing internal moments and shears in the beam must equilibrate not only the externally
applied force p(t) but also the inertial forces resulting from the accelerations of the
beam.

Inertial forces which resist accelerations of the structure in this way are the most
important distinguishing characteristic of a structural-dynamics problem. In general,
if the inertial forces represent a significant portion of the total load equilibrated by the
internal elastic forces of the structure, then the dynamic character of the problem must
be accounted for in its solution. On the other hand, if the motions are so slow that the
inertial forces are negligibly small, the analysis of response for any desired instant of
time may be made by static structural-analysis procedures even though the load and
response may be time-varying.

1-4 METHODS OF DISCRETIZATION

Lumped-Mass Procedure

An analysis of the dynamic system in Fig. 1-2b is obviously made complicated
by the fact that the inertial forces result from structural time-varying displacements
which in turn are influenced by the magnitudes of inertial forces. This closed cycle
of cause and effect can be attacked directly only by formulating the problem in terms
of differential equations. Furthermore, because the mass of the beam is distributed

FIGURE 1-2
Basic difference between static and dynamic loads: (a) static loading; (b) dynamic loading.

p(t)p

Inertial forces
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continuously along its length, the displacements and accelerations must be defined for
each point along the axis if the inertial forces are to be completely defined. In this
case, the analysis must be formulated in terms of partial differential equations because
position along the span as well as time must be taken as independent variables.

However, if one assumes the mass of the beam to be concentrated at discrete
points as shown in Fig. 1-3, the analytical problem becomes greatly simplified because
inertial forces develop only at these mass points. In this case, it is necessary to define
the displacements and accelerations only at these discrete locations.

The number of displacement components which must be considered in order
to represent the effects of all significant inertial forces of a structure may be termed
the number of dynamic degrees of freedom of the structure. For example, if the
three masses in the system of Fig. 1-3 are fully concentrated and are constrained so
that the corresponding mass points translate only in a vertical direction, this would
be called a three-degree-of-freedom (3 DOF) system. On the other hand, if these
masses are not fully concentrated so that they possess finite rotational inertia, the
rotational displacements of the three points will also have to be considered, in which
case the system has 6 DOF. If axial distortions of the beam are significant, translation
displacements parallel with the beam axis will also result giving the system 9 DOF.
More generally, if the structure can deform in three-dimensional space, each mass
will have 6 DOF; then the system will have 18 DOF. However, if the masses are fully
concentrated so that no rotational inertia is present, the three-dimensional system will
then have 9 DOF. On the basis of these considerations, it is clear that a system with
continuously distributed mass, as in Fig. 1-2b, has an infinite number of degrees of
freedom.

Generalized Displacements

The lumped-mass idealization described above provides a simple means of
limiting the number of degrees of freedom that must be considered in conducting a
dynamic analysis of an arbitrary structural system. The lumping procedure is most
effective in treating systems in which a large proportion of the total mass actually is
concentrated at a few discrete points. Then the mass of the structure which supports
these concentrations can be included in the lumps, allowing the structure itself to be
considered weightless.

However, in cases where the mass of the system is quite uniformly distributed

p(t)

fI2
fI3

fI1

FIGURE 1-3
Lumped-mass idealization of a simple 
beam.

m 2 m 3m1
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throughout, an alternative approach to limiting the number of degrees of freedom may
be preferable. This procedure is based on the assumption that the deflected shape of
the structure can be expressed as the sum of a series of specified displacement patterns;
these patterns then become the displacement coordinates of the structure. A simple
example of this approach is the trigonometric-series representation of the deflection
of a simple beam. In this case, the deflection shape may be expressed as the sum of
independent sine-wave contributions, as shown in Fig. 1-4, or in mathematical form,

v(x) =
∞∑

n=1

bn sin
nπx

L
(1-1)

In general, any arbitrary shape compatible with the prescribed support conditions of
the simple beam can be represented by this infinite series of sine-wave components.
The amplitudes of the sine-wave shapes may be considered to be the displacement
coordinates of the system, and the infinite number of degrees of freedom of the
actual beam are represented by the infinite number of terms included in the series.
The advantage of this approach is that a good approximation to the actual beam
shape can be achieved by a truncated series of sine-wave components; thus a 3 DOF
approximation would contain only three terms in the series, etc.

L
x

FIGURE 1-4
Sine-series representation of simple beam deflection.

v(x)

b1 sin  π x
L

b2 sin  2 π x
L

b3 sin  3 π x
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This concept can be further generalized by recognizing that the sine-wave shapes
used as the assumed displacement patterns were an arbitrary choice in this example. In
general, any shapesψn(x) which are compatible with the prescribed geometric-support
conditions and which maintain the necessary continuity of internal displacements
may be assumed. Thus a generalized expression for the displacements of any one-
dimensional structure might be written

v(x) =
∑

n

Znψn(x) (1-2)

For any assumed set of displacement functions ψ(x), the resulting shape of
the structure depends upon the amplitude terms Zn, which will be referred to as
generalized coordinates. The number of assumed shape patterns represents the number
of degrees of freedom considered in this form of idealization. In general, better
accuracy can be achieved in a dynamic analysis for a given number of degrees of
freedom by using the shape-function method of idealization rather than the lumped-
mass approach. However, it also should be recognized that greater computational
effort is required for each degree of freedom when such generalized coordinates are
employed.

The Finite-Element Concept

A third method of expressing the displacements of any given structure in terms of
a finite number of discrete displacement coordinates, which combines certain features
of both the lumped-mass and the generalized-coordinate procedures, has now become
popular. This approach, which is the basis of the finite-element method of analysis of
structural continua, provides a convenient and reliable idealization of the system and
is particularly effective in digital-computer analyses.

The finite-element type of idealization is applicable to structures of all types:
framed structures, which comprise assemblages of one-dimensional members (beams,
columns, etc.); plane-stress, plate- and shell-type structures, which are made up of
two-dimensional components; and general three-dimensional solids. For simplicity,
only the one-dimensional type of structural components will be considered in the
present discussion, but the extension of the concept to two- and three-dimensional
structural elements is straightforward.

The first step in the finite-element idealization of any structure, e.g., the beam
shown in Fig. 1-5, involves dividing it into an appropriate number of segments, or
elements, as shown. Their sizes are arbitrary; i.e., they may be all of the same size or
all different. The ends of the segments, at which they are interconnected, are called
nodal points. The displacements of these nodal points then become the generalized
coordinates of the structure.
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FIGURE 1-5
Typical finite-element beam coordinates.
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The deflection shape of the complete structure can now be expressed in terms
of these generalized coordinates by means of an appropriate set of assumed dis-
placement functions using an expression similar to Eq. (1-2). In this case, however,
the displacement functions are called interpolation functions because they define the
shapes produced by specified nodal displacements. For example, Fig. 1-5 shows the
interpolation functions associated with two degrees of freedom of nodal point 3, which
produce transverse displacements in the plane of the figure. In principle, each interpo-
lation function could be any curve which is internally continuous and which satisfies
the geometric displacement condition imposed by the nodal displacement. For one-
dimensional elements it is convenient to use the shapes which would be produced by
these same nodal displacements in a uniform beam. It will be shown later in Chapter
10 that these interpolation functions are cubic hermitian polynomials.

Because the interpolation functions used in this procedure satisfy the require-
ments stated in the preceding section, it should be apparent that coordinates used
in the finite-element method are just special forms of generalized coordinates. The
advantages of this special procedure are as follows:

(1) The desired number of generalized coordinates can be introduced merely by
dividing the structure into an appropriate number of segments.

(2) Since the interpolation functions chosen for each segment may be identical,
computations are simplified.

(3) The equations which are developed by this approach are largely uncoupled
because each nodal displacement affects only the neighboring elements; thus
the solution process is greatly simplified.

In general, the finite-element approach provides the most efficient procedure for
expressing the displacements of arbitrary structural configurations by means of a
discrete set of coordinates.
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1-5 FORMULATION OF THE EQUATIONS OF MOTION

As mentioned earlier, the primary objective of a deterministic structural-dynamic
analysis is the evaluation of the displacement time-histories of a given structure sub-
jected to a given time-varying loading. In most cases, an approximate analysis in-
volving only a limited number of degrees of freedom will provide sufficient accuracy;
thus, the problem can be reduced to the determination of the time-histories of these se-
lected displacement components. The mathematical expressions defining the dynamic
displacements are called the equations of motion of the structure, and the solution of
these equations of motion provides the required displacement time-histories.

The formulation of the equations of motion of a dynamic system is possibly
the most important, and sometimes the most difficult, phase of the entire analysis
procedure. In this text, three different methods will be employed for the formulation
of these equations, each having advantages in the study of special classes of problems.
The fundamental concepts associated with each of these methods are described in the
following paragraphs.

Direct Equilibration Using d’Alembert’s Principle

The equations of motion of any dynamic system represent expressions of New-
ton’s second law of motion, which states that the rate of change of momentum of any
mass particle m is equal to the force acting on it. This relationship can be expressed
mathematically by the differential equation

p(t) =
d

dt

(
m
dv
dt

)
(1-3)

where p(t) is the applied force vector and v(t) is the position vector of particle mass
m. For most problems in structural dynamics it may be assumed that mass does not
vary with time, in which case Eq. (1-3) may be written

p(t) = m
d2v
dt2

≡ m v̈(t) (1-3a)

where the dots represent differentiation with respect to time. Equation (1-3a), indicat-
ing that force is equal to the product of mass and acceleration, may also be written in
the form

p(t) −m v̈(t) = 0 (1-3b)

in which case, the second term mv̈(t) is called the inertial force resisting the acceler-
ation of the mass.

The concept that a mass develops an inertial force proportional to its acceleration
and opposing it is known as d’Alembert’s principle. It is a very convenient device
in problems of structural dynamics because it permits the equations of motion to be



10 DYNAMICS OF STRUCTURES

expressed as equations of dynamic equilibrium. The force p(t) may be considered
to include many types of force acting on the mass: elastic constraints which oppose
displacements, viscous forces which resist velocities, and independently defined ex-
ternal loads. Thus if an inertial force which resists acceleration is introduced, the
equation of motion is merely an expression of equilibration of all forces acting on the
mass. In many simple problems, the most direct and convenient way of formulating
the equations of motion is by means of such direct equilibrations.

Principle of Virtual Displacements

However, if the structural system is reasonably complex involving a number
of interconnected mass points or bodies of finite size, the direct equilibration of
all the forces acting in the system may be difficult. Frequently, the various forces
involved may readily be expressed in terms of the displacement degrees of freedom,
but their equilibrium relationships may be obscure. In this case, the principle of virtual
displacements can be used to formulate the equations of motion as a substitute for the
direct equilibrium relationships.

The principle of virtual displacements may be expressed as follows. If a system
which is in equilibrium under the action of a set of externally applied forces is subjected
to a virtual displacement, i.e., a displacement pattern compatible with the system’s
constraints, the total work done by the set of forces will be zero. With this principle, it
is clear that the vanishing of the work done during a virtual displacement is equivalent
to a statement of equilibrium. Thus, the response equations of a dynamic system can
be established by first identifying all the forces acting on the masses of the system,
including inertial forces defined in accordance with d’Alembert’s principle. Then,
the equations of motion are obtained by separately introducing a virtual displacement
pattern corresponding to each degree of freedom and equating the work done to zero.
A major advantage of this approach is that the virtual-work contributions are scalar
quantities and can be added algebraically, whereas the forces acting on the structure
are vectorial and can only be superposed vectorially.

Variational Approach

Another means of avoiding the problems of establishing the vectorial equations
of equilibrium is to make use of scalar quantities in a variational form known as
Hamilton’s principle. Inertial and elastic forces are not explicitly involved in this
principle; instead, variations of kinetic and potential energy terms are utilized. This
formulation has the advantage of dealing only with purely scalar energy quantities,
whereas the forces and displacements used to represent corresponding effects in the
virtual-work procedure are all vectorial in character, even though the work terms
themselves are scalars.

It is of interest to note that Hamilton’s principle can also be applied to statics
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problems. In this case, it reduces to the well-known principle of minimum potential
energy so widely used in static analyses.

It has been shown that the equation of motion of a dynamic system can be
formulated by any one of three distinct procedures. The most straightforward approach
is to establish directly the dynamic equilibrium of all forces acting in the system, taking
account of inertial effects by means of d’Alembert’s principle. In more complex
systems, however, especially those involving mass and elasticity distributed over
finite regions, a direct vectorial equilibration may be difficult, and work or energy
formulations which involve only scalar quantities may be more convenient. The most
direct of these procedures is based on the principle of virtual displacements, in which
the forces acting on the system are evaluated explicitly but the equations of motion are
derived by consideration of the work done during appropriate virtual displacements.
On the other hand, the alternative energy formulation, which is based on Hamilton’s
principle, makes no direct use of the inertial or conservative forces acting in the
system; the effects of these forces are represented instead by variations of the kinetic
and potential energies of the system. It must be recognized that all three procedures
are completely equivalent and lead to identical equations of motion. The method to be
used in any given case is largely a matter of convenience and personal preference; the
choice generally will depend on the nature of the dynamic system under consideration.

1-6 ORGANIZATION OF THE TEXT

This book, “Dynamics of Structures,” has been written in five parts. Part
One presents an extensive treatment of the single-degree-of-freedom (SDOF) system
having only one independent displacement coordinate. This system is studied in great
detail for two reasons: (1) the dynamic behavior of many practical structures can be
expressed in terms of a single coordinate, so that this SDOF treatment applies directly
in those cases, and (2) the response of complex linear structures can be expressed as
the sum of the responses of a series of SDOF systems so that this same treatment
once again applies to each system in the series. Thus, the SDOF analysis techniques
provide the basis for treating the vast majority of structural-dynamic problems.

Part Two treats discrete-parameter multi-degree-of-freedom (MDOF) systems,
i.e., systems for which their dynamic responses can be expressed in terms of a limited
number of displacement coordinates. For the analysis of linearly elastic systems,
procedures are presented for evaluating their properties in a free-vibration state, i.e.,
for evaluating normal mode shapes and corresponding frequencies. Then, two general
methods for calculating the dynamic responses of these systems to arbitrarily specified
loadings are given: (1) making use of mode-superposition in which total response is
expressed as the sum of individual responses in the various normal modes of vibration,
each of which can be determined by analysis procedures of the SDOF system, and
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(2) solving directly the MDOF equations of motion in their original coupled form.
Finally, the variational formulation of the structural-dynamic problem is presented
and step-by-step numerical integration techniques are formulated for solving directly
both SDOF and MDOF equations of motion representing either linear or nonlinear
systems.

Dynamic linearly elastic systems having continuously distributed properties
are considered in Part Three. Such systems have an infinite number of degrees of
freedom requiring that their equations of motion be written in the form of partial
differential equations. However, it is shown that the mode-superposition procedure
is still applicable to these systems and that practical solutions can be obtained by
considering only a limited number of the lower modes of vibration.

Part Four covers the general topic of random vibrations of linear SDOF and
MDOF systems. Since the loadings under consideration can be characterized only in
a statistical sense, the corresponding responses are similarly characterized. To provide
a basis for treating these systems, introductions to probability theory and stochastic
processes are given.

Earthquake engineering, with special focus on structural response and perfor-
mance, is the subject of Part Five. A very brief seismological background on the
causes and characteristics of earthquakes is given, along with a discussion of the
ground motions they produce. Methods are then given for evaluating the response of
structures to these motions using both deterministic and nondeterministic procedures.
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2-1 COMPONENTS OF THE BASIC DYNAMIC SYSTEM

The essential physical properties of any linearly elastic structural or mechanical
system subjected to an external source of excitation or dynamic loading are its mass,
elastic properties (flexibility or stiffness), and energy-loss mechanism or damping.
In the simplest model of a SDOF system, each of these properties is assumed to be
concentrated in a single physical element. A sketch of such a system is shown in
Fig. 2-1a.

The entire mass m of this system is included in the rigid block which is con-
strained by rollers so that it can move only in simple translation; thus, the single
displacement coordinate v(t) completely defines its position. The elastic resistance to
displacement is provided by the weightless spring of stiffness k, while the energy-loss
mechanism is represented by the damper c. The external dynamic loading producing
the response of this system is the time-varying force p(t).

c

k

m

v(t) v(t)

p(t) p(t)

(a) (b)

FIGURE 2-1
Idealized SDOF system: (a) basic components; (b) forces in equilibrium.
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2-2 EQUATION OF MOTION OF THE BASIC DYNAMIC SYSTEM

The equation of motion for the simple system of Fig. 2-1a is most easily for-
mulated by directly expressing the equilibrium of all forces acting on the mass using
d’Alembert’s principle. As shown in Fig. 2-1b, the forces acting in the direction of
the displacement degree of freedom are the applied load p(t) and the three resisting
forces resulting from the motion, i.e., the inertial force fI(t), the damping force fD(t),
and the spring force fS(t). The equation of motion is merely an expression of the
equilibrium of these forces as given by

fI(t) + fD(t) + fS(t) = p(t) (2-1)

Each of the forces represented on the left hand side of this equation is a function of
the displacement v(t) or one of its time derivatives. The positive sense of these forces
has been deliberately chosen to correspond with the negative-displacement sense so
that they oppose a positive applied loading.

In accordance with d’Alembert’s principle, the inertial force is the product of
the mass and acceleration

fI(t) = m v̈(t) (2-2a)

Assuming a viscous damping mechanism, the damping force is the product of the
damping constant c and the velocity

fD(t) = c v̇(t) (2-2b)

Finally, the elastic force is the product of the spring stiffness and the displacement

fS(t) = k v(t) (2-2c)

When Eqs. (2-2) are introduced into Eq. (2-1), the equation of motion for this SDOF
system is found to be

m v̈(t) + c v̇(t) + k v(t) = p(t) (2-3)

To introduce an alternative formulation procedure, it is instructive to develop
this same equation of motion by a virtual-work approach. If the mass is given a virtual
displacement δv compatible with the system’s constraints, the total work done by the
equilibrium system of forces in Fig. 2-1b must equal zero as shown by

−fI(t) δv − fD(t) δv − fS(t) δv + p(t) δv = 0 (2-4)

in which the negative signs result from the fact that the associated forces act opposite
to the sense of the virtual displacement. Substituting Eqs. (2-2) into Eq. (2-4) and
factoring out δv leads to

[
−m v̈(t) − c v̇(t) − k v(t) + p(t)

]
δv = 0 (2-5)
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Since δv is nonzero, the bracket quantity in this equation must equal zero, thus giving
the same equation of motion as shown by Eq. (2-3). While a virtual-work formulation
has no advantage for this simple system, it will be found very useful for more general
types of SDOF systems treated subsequently.

2-3 INFLUENCE OF GRAVITATIONAL FORCES

Consider now the system shown in Fig. 2-2a, which is the system of Fig. 2-1a
rotated through 90◦ so that the force of gravity acts in the direction of the displacement.
In this case, the system of forces acting in the direction of the displacement degree
of freedom is that set shown in Fig. 2-2b. Using Eqs. (2-2), the equilibrium of these
forces is given by

m v̈(t) + c v̇(t) + k v(t) = p(t) +W (2-6)

where W is the weight of the rigid block.

However, if the total displacement v(t) is expressed as the sum of the static
displacement 4st caused by the weight W plus the additional dynamic displacement
v(t) as shown in Fig. 2-2c, i.e.,

v(t) = 4st + v(t) (2-7)

then the spring force is given by

fS(t) = k v(t) = k 4st + k v(t) (2-8)

Introducing Eq. (2-8) into (2-6) yields

m v̈(t) + c v̇(t) + k 4st + k v(t) = p(t) +W (2-9)

c

m
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v(t) v(t)
v(t)p(t) p(t)

p(t)
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displacement∆ st =

FIGURE 2-2
Influence of gravity on SDOF equilibrium.
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and noting that k 4st = W leads to

m v̈(t) + c v̇(t) + k v(t) = p(t) (2-10)

Now by differentiating Eq. (2-7) and noting that 4st does not vary with time, it is
evident that v̈(t) = v̈(t) and v̇(t) = v̇(t) so that Eq. (2-10) can be written

m v̈(t) + c v̇(t) + k v(t) = p(t) (2-11)

Comparison of Eqs. (2-11) and (2-3) demonstrates that the equation of motion ex-
pressed with reference to the static-equilibrium position of the dynamic system is
not affected by gravity forces. For this reason, displacements in all future discus-
sions will be referenced from the static-equilibrium position and will be denoted v(t)
(i.e., without the overbar); the displacements which are determined will represent
dynamic response. Therefore, total deflections, stresses, etc. are obtained by adding
the corresponding static quantities to the results of the dynamic analysis.

2-4 INFLUENCE OF SUPPORT EXCITATION

Dynamic stresses and deflections can be induced in a structure not only by a
time-varying applied load, as indicated in Figs. 2-1 and 2-2, but also by motions of its
support points. Important examples of such excitation are the motions of a building
foundation caused by an earthquake or motions of the base support of a piece of
equipment due to vibrations of the building in which it is housed. A simplified model
of the earthquake-excitation problem is shown in Fig. 2-3, in which the horizontal
ground motion caused by the earthquake is indicated by the displacement vg(t) of the
structure’s base relative to the fixed reference axis.

The horizontal girder in this frame is assumed to be rigid and to include all the
moving mass of the structure. The vertical columns are assumed to be weightless and
inextensible in the vertical (axial) direction, and the resistance to girder displacement
provided by each column is represented by its spring constant k/2. The mass thus has
a single degree of freedom, v(t), which is associated with column flexure; the damper
c provides a velocity-proportional resistance to the motion in this coordinate.

As shown in Fig. 2-3b, the equilibrium of forces for this system can be written
as

fI(t) + fD(t) + fS(t) = 0 (2-12)

in which the damping and elastic forces can be expressed as in Eqs. (2-2). However,
the inertial force in this case is given by

fI(t) = m v̈t(t) (2-13)
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FIGURE 2-3
Influence of support excitation on SDOF equilibrium: (a) motion of system; 
(b) equilibrium forces.
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where vt(t) represents the total displacement of the mass from the fixed reference
axis. Substituting for the inertial, damping, and elastic forces in Eq. (2-12) yields

m v̈t(t) + c v̇(t) + k v(t) = 0 (2-14)

Before this equation can be solved, all forces must be expressed in terms of a single
variable, which can be accomplished by noting that the total motion of the mass can
be expressed as the sum of the ground motion and that due to column distortion, i.e.,

vt(t) = v(t) + vg(t) (2-15)

Expressing the inertial force in terms of the two acceleration components obtained by
double differentiation of Eq. (2-15) and substituting the result into Eq. (2-14) yields

m v̈(t) +m v̈g(t) + c v̇(t) + k v(t) = 0 (2-16)

or, since the ground acceleration represents the specified dynamic input to the structure,
the same equation of motion can more conveniently be written

m v̈(t) + c v̇(t) + k v(t) = −m v̈g(t) ≡ peff(t) (2-17)

In this equation, peff(t) denotes the effective support excitation loading; in other words,
the structural deformations caused by ground acceleration v̈g(t) are exactly the same
as those which would be produced by an external load p(t) equal to −m v̈g(t). The
negative sign in this effective load definition indicates that the effective force opposes
the sense of the ground acceleration. In practice this has little significance inasmuch
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as the engineer is usually only interested in the maximum absolute value of v(t); in
this case, the minus sign can be removed from the effective loading term.

An alternative form of the equation of motion can be obtained by using Eq. (2-
15) and expressing Eq. (2-14) in terms of vt(t) and its derivatives, rather than in terms
of v(t) and its derivatives, giving

m v̈t(t) + c v̇t(t) + k vt(t) = c v̇g(t) + k vg(t) (2-18)

In this formulation, the effective loading shown on the right hand side of the equation
depends on the velocity and displacement of the earthquake motion, and the response
obtained by solving the equation is total displacement of the mass from a fixed
reference rather than displacement relative to the moving base. Solutions are seldom
obtained in this manner, however, because the earthquake motion generally is measured
in terms of accelerations and the seismic record would have to be integrated once
and twice to evaluate the effective loading contributions due to the velocity and
displacement of the ground.

2-5 ANALYSIS OF UNDAMPED FREE VIBRATIONS

It has been shown in the preceding sections that the equation of motion of a
simple spring-mass system with damping can be expressed as

m v̈(t) + c v̇(t) + k v(t) = p(t) (2-19)

in which v(t) represents the dynamic response (that is, the displacement from the
static-equilibrium position) and p(t) represents the effective load acting on the system,
either applied directly or resulting from support motions.

The solution of Eq. (2-19) will be obtained by considering first the homogeneous
form with the right side set equal to zero, i.e.,

m v̈(t) + c v̇(t) + k v(t) = 0 (2-20)

Motions taking place with no applied force are called free vibrations, and it is the
free-vibration response of the system which now will be examined.

The free-vibration response that is obtained as the solution of Eq. (2-20) may
be expressed in the following form:

v(t) = G exp(st) (2-21)

where G is an arbitrary complex constant and exp(st) ≡ est denotes the exponential
function. In subsequent discussions it often will be convenient to use complex numbers
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in expressing dynamic loadings and responses; therefore it is useful now to briefly
review the complex number concept.

Considering first the complex constant G, this may be represented as a vector
plotted in the complex plane as shown in Fig. 2-4. This sketch demonstrates that the
vector may be expressed in terms of its real and imaginary Cartesian components:

G = GR + i GI (2-22a)

or alternatively that it may be expressed in polar coordinates using its absolute value
G (the length of the vector) and its angle θ, measured counterclockwise from the real
axis:

G = G exp(i θ) (2-22b)

In addition, from the trigonometric relations shown in the sketch, it is clear that
Eq. (2-22a) also may be written

G = G cos θ + i G sin θ (2-22c)

Using this expression and noting that cos θ = sin
(
θ + π

2

)
and sin θ = − cos

(
θ +

π
2

)
it is easy to show that multiplying a vector by i has the effect of rotating it

counterclockwise in the complex plane through an angle of π
2 radians or 90 degrees.

Similarly it may be seen that multiplying by −i rotates the vector 90◦ clockwise.
Now equating Eq. (2-22c) to Eq. (2-22b), and also noting that a negative imaginary
component would be associated with a negative vector angle, leads to Euler’s pair of
equations that serve to transform from trigonometric to exponential functions:

exp(iθ) = cos θ + i sin θ

exp(−iθ) = cos θ − i sin θ

}
(2-23a)

Furthermore, Eqs. (2-23a) may be solved simultaneously to obtain the inverse form of
Euler’s equations:

cos θ = 1
2

[
exp(iθ) + exp(−iθ)

]

sin θ = − i
2

[
exp(iθ) − exp(−iθ)

]
}

(2-23b)
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G

θ

FIGURE 2-4
Complex constant representation in complex plane.
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To derive a free-vibration response expression, Eq. (2-21) is substituted into
Eq. (2-20), leading to

(m s2 + c s+ k) G exp(st) = 0

and after dividing by mG exp(st) and introducing the notation

ω2 ≡ k

m
(2-24)

this expression becomes
s2 +

c

m
s+ ω2 = 0 (2-25)

The two values of s that satisfy this quadratic expression depend on the value of c
relative to the values of k and m; thus the type of motion given by Eq. (2-21) depends
on the amount of damping in the system.

Considering now the undamped system for which c = 0, it is evident that the
two values of s given by solving Eq.(2-25) are

s1,2 = ± i ω (2-26)

Thus the total response includes two terms of the form of Eq. (2-21), as follows:

v(t) = G1 exp(iωt) +G2 exp(−iωt) (2-27)

in which the two exponential terms result from the two values of s, and the complex
constants G1 and G2 represent the (as yet) arbitrary amplitudes of the corresponding
vibration terms.

We now establish the relation between these constants by expressing each of
them in terms of its real and imaginary components:

G1 = G1R + i G1I ; G2 = G2R + i G2I

and by transforming the exponential terms to trigonometric form using Eqs. (2-23a),
so that Eq. (2-27) becomes

v(t) =
(
G1R + iG1I

) (
cosωt+ i sinωt

)
+
(
G2R + i G2I

) (
cosωt− i sinωt

)

or after simplifying

v(t) = (G1R +G2R) cosωt− (G1I −G2I) sinωt

+ i
[
(G1I +G2I) cosωt+ (G1R −G2R) sinωt

]
(2-28)
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However, this free-vibration response must be real, so the imaginary term (shown
in square brackets) must be zero for all values of t, and this condition requires that

G1I = −G2I ≡ GI G1R = G2R ≡ GR

From this it is seen that G1 and G2 are a complex conjugate pair:

G1 = GR + i GI G2 = GR − i GI

and with these Eq. (2-27) becomes finally

v(t) = (GR + iGI) exp(iωt) + (GR − iGI) exp(−iωt) (2-29)

The response given by the first term of Eq. (2-29) is depicted in Fig. 2-5 as a vector
representing the complex constant G1 rotating in the counterclockwise direction with
the angular velocity ω; also shown are its real and imaginary constants. It will be noted
that the resultant response vector (GR + iGI) exp(iωt) leads vector GR exp(iωt) by
the phase angle θ; moreover it is evident that the response also can be expressed in
terms of the absolute value, G, and the combined angle (ωt + θ). Examination of
the second term of Eq. (2-29) shows that the response associated with it is entirely
equivalent to that shown in Fig. 2-5 except that the resultant vectorG exp[−i(ωt+θ)] is
rotating in the clockwise direction and the phase angle by which it leads the component
GR exp(−iωt) also is in the clockwise direction.

The two counter-rotating vectors G exp[i(ωt+ θ)] and G exp[−i(ωt+ θ)] that
represent the total free-vibration response given by Eq. (2-29) are shown in Fig. 2-6;

Im

Re

θ

− θ

FIGURE 2-6
Total free-vibration response.

(GR + i GI ) exp (iω t )
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G exp[i (ω t + θ )]
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GR exp(− iω t)

2
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(ω t + θ)
− (ω t + θ)

Im
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θ =phase angle
FIGURE 2-5
Portrayal of first term of Eq. (2-29).
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it is evident here that the imaginary components of the two vectors cancel each other
leaving only the real vibratory motion

v(t) = 2 G cos(ωt+ θ) (2-30)

An alternative for this real motion expression may be derived by applying the
Euler transformation Eq. (2-23a) to Eq. (2-29), with the result

v(t) = A cosωt+B sinωt (2-31)

in which A = 2GR and B = −2GI . The values of these two constants may be
determined from the initial conditions, that is, the displacement v(0) and velocity
v̇(0) at time t = 0 when the free vibration was set in motion. Substituting these into
Eq. (2-31) and its first time derivative, respectively, it is easy to show that

v(0) = A = 2GR
v̇(0)

ω
= B = −2GI (2-32)

Thus Eq. (2-31) becomes

v(t) = v(0) cosωt+
v̇(0)

ω
sinωt (2-33)

This solution represents a simple harmonic motion (SHM) and is portrayed graphically
in Fig. 2-7. The quantityω, which we have identified previously as the angular velocity
(measured in radians per unit of time) of the vectors rotating in the complex plane,
also is known as the circular frequency. The cyclic frequency, usually referred to as
the frequency of motion, is given by

f =
ω

2π
(2-34)

Its reciprocal
1

f
=

2π

ω
= T (2-35)

t

FIGURE 2-7
Undamped free-vibration response.
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is the time required to complete one cycle and is called the period of the motion.
Usually for structural and mechanical systems the period T is measured in seconds
and the frequency is measured in cycles per second, commonly referred to as Hertz
(Hz).

The motion represented by Eq. (2-33) and depicted by Fig. 2-7 also may be
interpreted in terms of a pair of vectors, v(0) and v̇(0)

ω rotating counter-clockwise in
the complex plane with angular velocity ω, as shown in Fig. 2-8. Using previously
stated relations among the free-vibration constants and the initial conditions, it may
be seen that Fig. 2-8 is equivalent to Fig. 2-5, but with double amplitude and with a
negative phase angle to correspond with positive initial conditions. Accordingly, the
amplitude ρ = 2G, and as shown by Eq. (2-30) the free vibration may be expressed as

v(t) = ρ cos(ωt+ θ) (2-36)

in which the amplitude is given by

ρ =

√
[
v(0)

]2
+
[ v̇(0)
ω

]2
(2-37)

and the phase angle by

θ = tan−1

[−v̇(0)
ω v(0)

]
(2-38)

2-6 DAMPED FREE VIBRATIONS

If damping is present in the system, the solution of Eq. (2-25) which defines the
response is

s1,2 = − c

2m
±
√( c

2m

)2

− ω2 (2-39)

Three types of motion are represented by this expression, according to whether the
quantity under the square-root sign is positive, negative, or zero. It is convenient to
discuss first the case when the radical term vanishes, which is called the critically-
damped condition.
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ρ

Re

FIGURE 2-8
Rotating vector representation of undamped
free vibration.
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Critically-Damped Systems

If the radical term in Eq. (2-39) is set equal to zero, it is evident that c/2m = ω;
thus, the critical value of the damping coefficient, cc, is

cc = 2mω (2-40)

Then both values of s given by Eq. (2-39) are the same, i.e.,

s1 = s2 = − cc
2m

= −ω (2-41)

The solution of Eq. (2-20) in this special case must now be of the form

v(t) = (G1 +G2 t) exp(−ωt) (2-42)

in which the second term must contain t since the two roots of Eq. (2-25) are identical.
Because the exponential term exp(−ωt) is a real function, the constants G1 and G2

must also be real.

Using the initial conditions v(0) and v̇(0), these constants can be evaluated
leading to

v(t) =
[
v(0) (1 − ωt) + v̇(0) t

]
exp(−ωt) (2-43)

which is portrayed graphically in Fig. 2-9 for positive values of v(0) and v̇(0). Note that
this free response of a critically-damped system does not include oscillation about the
zero-deflection position; instead it simply returns to zero asymptotically in accordance
with the exponential term of Eq. (2-43). However, a single zero-displacement crossing
would occur if the signs of the initial velocity and displacement were different from
each other. A very useful definition of the critically-damped condition described
above is that it represents the smallest amount of damping for which no oscillation
occurs in the free-vibration response.

v(t)

t

FIGURE 2-9
Free-vibration response with critical damping.

v(0)

.
v(0)
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Undercritically-Damped Systems

If damping is less than critical, that is, if c < cc (i.e., c < 2mω), it is apparent
that the quantity under the radical sign in Eq. (2-39) is negative. To evaluate the
free-vibration response in this case, it is convenient to express damping in terms of a
damping ratio ξ which is the ratio of the given damping to the critical value;

ξ ≡ c

cc
=

c

2mω
(2-44)

Introducing Eq. (2-44) into Eq. (2-39) leads to

s1,2 = −ξω ± i ωD (2-45)

where

ωD ≡ ω
√

1 − ξ2 (2-46)

is the free-vibration frequency of the damped system. Making use of Eq. (2-21) and
the two values of s given by Eq. (2-45), the free-vibration response becomes

v(t) =
[
G1 exp(iωDt) +G2 exp(−iωDt)

]
exp(−ξωt) (2-47)

in which the constants G1 and G2 must be complex conjugate pairs for the response
v(t) to be real, i.e., G1 = GR + iGI and G2 = GR − iGI similar to the undamped
case shown by Eq. (2-27).

The response given by Eq. (2-47) can be represented by vectors in the complex
plane similar to those shown in Fig. 2-6 for the undamped case; the only difference is
that the damped circular frequency ωD must be substituted for the undamped circular
frequency ω and the magnitudes of the vectors must be forced to decay exponentially
with time in accordance with the term outside of the brackets, exp(−ξωt).

Following the same procedure used in arriving at Eq. (2-31), Eq. (2-47) also can
be expressed in the equivalent trigonometric form

v(t) =
[
A cosωDt+B sinωDt

]
exp(−ξωt) (2-48)

whereA = 2GR andB = −2GI . Using the initial conditions v(0) and v̇(0), constants
A and B can be evaluated leading to

v(t) =

[
v(0) cosωDt+

( v̇(0) + v(0)ξω

ωD

)
sinωDt

]
exp(−ξωt) (2-49)

Alternatively, this response can be written in the form

v(t) = ρ cos(ωDt+ θ) exp(−ξωt) (2-50)



28 DYNAMICS OF STRUCTURES

in which

ρ =

{
v(0)2 +

( v̇(0) + v(0)ξω

ωD

)2
}1/2

(2-51)

θ = − tan−1

(
v̇(0) + v(0)ξω

ωD v(0)

)
(2-52)

Note that for low damping values which are typical of most practical structures,
ξ < 20%, the frequency ratio ωD/ω as given by Eq. (2-46) is nearly equal to unity.
The relation between damping ratio and frequency ratio may be depicted graphically
as a circle of unit radius as shown in Fig. 2-10.

A plot of the response of an undercritically-damped system subjected to an
initial displacement v(0) but starting with zero velocity is shown in Fig. 2-11. It is of
interest to note that the underdamped system oscillates about the neutral position, with
a constant circular frequency ωD. The rotating-vector representation of Eq. (2-47) is
equivalent to Fig. 2-6 except that ω is replaced by ωD and the lengths of the vectors
diminish exponentially as the response damps out.

0

1

1

circle

FIGURE 2-10
Relationship between frequency ratio and damping ratio.

t

FIGURE 2-11
Free-vibration response of undercritically-damped system.
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The true damping characteristics of typical structural systems are very complex
and difficult to define. However, it is common practice to express the damping of
such real systems in terms of equivalent viscous-damping ratios ξ which show similar
decay rates under free-vibration conditions. Therefore, let us now relate more fully
the viscous-damping ratio ξ to the free-vibration response shown in Fig. 2-11.

Consider any two successive positive peaks such as vn and vn+1 which occur
at times n

(
2π
ωD

)
and (n+ 1) 2π

ωD
, respectively. Using Eq. (2-50), the ratio of these two

successive values is given by

vn/vn+1 = exp(2πξω/ωD) (2-53)

Taking the natural logarithm (ln) of both sides of this equation and substituting ωD =

ω
√

1 − ξ2, one obtains the so-called logarithmic decrement of damping, δ, defined
by

δ ≡ ln
vn

vn+1
=

2πξ√
1 − ξ2

(2-54)

For low values of damping, Eq. (2-54) can be approximated by

δ
.
= 2πξ (2-55)

where the symbol .= represents “approximately equal,” thus,

vn

vn+1
= exp(δ)

.
= exp(2πξ) = 1 + 2πξ +

(2πξ)2

2!
+ · · · (2-56)

Sufficient accuracy is obtained by retaining only the first two terms in the Taylor’s
series expansion on the right hand side, in which case

ξ
.
=
vn − vn+1

2π vn+1
(2-57)

To illustrate the accuracy of Eq. (2-57), the ratio of the exact value of ξ as given
by Eq. (2-54) to the approximate value as given by Eq. (2-57) is plotted against the
approximate value in Fig. 2-12. This graph permits one to correct the damping ratio
obtained by the approximate method.
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(approx.)

FIGURE 2-12
Damping-ratio correction factor to be applied to 
result obtained from Eq. (2-57).
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FIGURE 2-13
Damping ratio vs. number of cycles required to 
reduce peak amplitude by 50 percent.Damping ratio
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For lightly damped systems, greater accuracy in evaluating the damping ratio
can be obtained by considering response peaks which are several cycles apart, say m
cycles; then

ln
vn

vn+m
=

2mπξ√
1 − ξ2

(2-58)

which can be simplified for low damping to an approximate relation equivalent to
Eq. (2-57):

ξ
.
=
vn − vn+m

2mπ vn+m
(2-59)

When damped free vibrations are observed experimentally, a convenient method
for estimating the damping ratio is to count the number of cycles required to give a 50
percent reduction in amplitude. The relationship to be used in this case is presented
graphically in Fig. 2-13. As a quick rule of thumb, it is convenient to remember that for
percentages of critical damping equal to 10, 5, and 2.5, the corresponding amplitudes
are reduced by 50 percent in approximately one, two, and four cycles, respectively.

Example E2-1. A one-story building is idealized as a rigid girder sup-
ported by weightless columns, as shown in Fig. E2-1. In order to evaluate the
dynamic properties of this structure, a free-vibration test is made, in which the
roof system (rigid girder) is displaced laterally by a hydraulic jack and then
suddenly released. During the jacking operation, it is observed that a force of
20 kips [9, 072 kg] is required to displace the girder 0.20 in [0.508 cm]. After
the instantaneous release of this initial displacement, the maximum displace-
ment on the first return swing is only 0.16 in [0.406 cm] and the period of this
displacement cycle is T = 1.40 sec.

From these data, the following dynamic behavioral properties are deter-
mined:
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k
2


k
2

c

Weight W = mg v

p = jacking force

FIGURE E2-1
Vibration test of a simple building.

(1) Effective weight of the girder:

T =
2π

ω
= 2π

√
W

g k
= 1.40 sec

Hence

W =
(1.40

2π

)2

g k = 0.0496
20

0.2
386 = 1, 920 kips [870.9 × 103 kg]

where the acceleration of gravity is taken to be g = 386 in/sec2

(2) Undamped frequency of vibration:

f =
1

T
=

1

1.40
= 0.714 Hz

ω = 2πf = 4.48 rad/sec

(3) Damping properties:

Logarithmic decrement: δ = ln
0.20

0.16
= 0.223

Damping ratio: ξ
.
=

δ

2π
= 3.55%

Damping coefficient: c = ξ cc = ξ 2mω = 0.0355
2(1, 920)

386
4.48

= 1.584 kips · sec/in [282.9 kg · sec/cm]

Damped frequency: ωD= ω
√

1 − ξ2 = ω(0.999)1/2 .
= ω

(4) Amplitude after six cycles:

v6 =
(v1
v0

)6

v0 =
(4

5

)6

(0.20) = 0.0524 in [0.1331 cm]
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Overcritically-Damped Systems

Although it is very unusual under normal conditions to have overcritically-
damped structural systems, they do sometimes occur as mechanical systems; therefore,
it is useful to carry out the response analysis of an overcritically-damped system to
make this presentation complete. In this case having ξ ≡ c/cc > 1, it is convenient to
write Eq. (2-39) in the form

s1,2 = −ξω ± ω
√
ξ2 − 1 = −ξω ± ω̂ (2-60)

in which
ω̂ ≡ ω

√
ξ2 − 1 (2-61)

Substituting the two values of s given by Eq. (2-60) into Eq. (2-21) and simplifying
leads eventually to

v(t) = [A sinh ω̂t+B cosh ω̂t] exp(−ξωt) (2-62)

in which the real constants A and B can be evaluated using the initial conditions
v(0) and v̇(0). It is easily shown from the form of Eq. (2-62) that the response of an
overcritically-damped system is similar to the motion of a critically-damped system
as shown in Fig. 2-9; however, the asymptotic return to the zero-displacement position
is slower depending upon the amount of damping.

PROBLEMS

2-1. The weightW of the building of Fig. E2-1 is 200 kips and the building is set into
free vibration by releasing it (at time t = 0) from a displacement of 1.20 in. If
the maximum displacement on the return swing is 0.86 in at time t = 0.64 sec,
determine:

(a) the lateral spring stiffness k
(b) the damping ratio ξ
(c) the damping coefficient c

2-2. Assume that the mass and stiffness of the structure of Fig. 2-1a are as follows:
m = 2 kips · sec2/in, k = 40 kips/in. If the system is set into free vibration
with the initial conditions v(0) = 0.7 in and v̇(0) = 5.6 in/sec, determine the
displacement and velocity at t = 1.0 sec, assuming:

(a) c = 0 (undamped system)
(b) c = 2.8 kips · sec/in

2-3. Assume that the mass and stiffness of the system of Fig. 2-1a are m = 5 kips ·
sec2/in and k = 20 kips/in, and that it is undamped. If the initial displacement
is v(0) = 1.8 in, and the displacement at t = 1.2 sec is also 1.8 in, determine:

(a) the displacement at t = 2.4 sec

(b) the amplitude of free vibration ρ
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3
RESPONSE

TO HARMONIC
LOADING

3-1 UNDAMPED SYSTEM

Complementary Solution

Assume the system of Fig. 2-1 is subjected to a harmonically varying load p(t)
of sine-wave form having an amplitude p

o
and circular frequency ω as shown by the

equation of motion

m v̈(t) + c v̇(t) + k v(t) = p
o

sinωt (3-1)

Before considering this viscously damped case, it is instructive to examine the behavior
of an undamped system as controlled by

m v̈(t) + k v(t) = p
o

sinωt (3-2)

which has a complementary solution of the free-vibration form of Eq. (2-31)

vc(t) = A cosωt+B sinωt (3-3)

Particular Solution

The general solution must also include the particular solution which depends
upon the form of dynamic loading. In this case of harmonic loading, it is reasonable
to assume that the corresponding motion is harmonic and in phase with the loading;
thus, the particular solution is

vp(t) = C sinωt (3-4)

33
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in which the amplitude C is to be evaluated.

Substituting Eq. (3-4) into Eq. (3-2) gives

−mω2 C sinωt+ k C sinωt = p
o

sinωt (3-5)

Dividing through by sinωt (which is nonzero in general) and by k and noting that
k/m = ω2, one obtains after some rearrangement

C =
p
o

k

[ 1

1 − β2

]
(3-6)

in which β is defined as the ratio of the applied loading frequency to the natural
free-vibration frequency, i.e.,

β ≡ ω / ω (3-7)

General Solution

The general solution of Eq. (3-2) is now obtained by combining the comple-
mentary and particular solutions and making use of Eq. (3-6); thus, one obtains

v(t) = vc(t) + vp(t) = A cosωt+B sinωt+
p
o

k

[ 1

1 − β2

]
sinωt (3-8)

In this equation, the values of A and B depend on the conditions with which the
response was initiated. For the system starting from rest, i.e., v(0) = v̇(0) = 0, it is
easily shown that

A = 0 B = −
p
o
β

k

[ 1

1 − β2

]
(3-9)

in which case the response of Eq. (3-8) becomes

v(t) =
p
o

k

[ 1

1 − β2

]
(sinωt− β sinωt) (3-10)

where p
o
/ k = vst is the displacement which would be produced by the load p

o

applied statically and 1/(1 − β2) is the magnification factor (MF) representing the
amplification effect of the harmonically applied loading. In this equation, sinωt

represents the response component at the frequency of the applied loading; it is called
the steady-state response and is directly related to the loading. Also β sinωt is the
response component at the natural vibration frequency and is the free-vibration effect
controlled by the initial conditions. Since in a practical case, damping will cause the
last term to vanish eventually, it is termed the transient response. For this hypothetical
undamped system, however, this term will not damp out but will continue indefinitely.
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Response Ratio — A convenient measure of the influence of dynamic loading
is provided by the ratio of the dynamic displacement response to the displacement
produced by static application of load p

o
, i.e.,

R(t) ≡ v(t)

vst
=
v(t)

p
o
/k

(3-11)

From Eq. (3-10) it is evident that the response ratio resulting from the sine-wave
loading of an undamped system starting from rest is

R(t) =
[ 1

1 − β2

]
(sinωt− β sinωt) (3-12)

It is informative to examine this response behavior in more detail by reference to
Fig. 3-1. Figure 3-1a represents the steady-state component of response while Fig. 3-
1b represents the so-called transient response. In this example, it is assumed that
β = 2/3, that is, the applied loading frequency is two-thirds of the free-vibration
frequency. The total response R(t), i.e., the sum of both types of response, is shown
in Fig. 3-1c. Two points are of interest: (1) the tendency for the two components

+

=

FIGURE 3-1
Response ratio produced by sine wave excitation starting from at-rest initial conditions: 
(a) steady state; (b) transient; (c) total R(t).
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to get in phase and then out of phase again, causing a “beating” effect in the total
response; and (2) the zero slope of total response at time t = 0, showing that the initial
velocity of the transient response is just sufficient to cancel the initial velocity of the
steady-state response; thus, it satisfies the specified initial condition v̇(0) = 0.

3-2 SYSTEM WITH VISCOUS DAMPING

Returning to the equation of motion including viscous damping, Eq. (3-1),
dividing by m, and noting that c/m = 2 ξ ω leads to

v̈(t) + 2 ξ ω v̇(t) + ω2 v(t) =
p
o

m
sinωt (3-13)

The complementary solution of this equation is the damped free-vibration response
given by Eq. (2-48), i.e.,

vc(t) =
[
A cosωDt+B sinωDt

]
exp(−ξ ω t) (3-14)

The particular solution to Eq. (3-13) is of the form

vp(t) = G1 cosωt+G2 sinωt (3-15)

in which the cosine term is required as well as the sine term because, in general, the
response of a damped system is not in phase with the loading.

Substituting Eq. (3-15) into Eq. (3-13) and separating the multiples of cosωt

from the multiples of sinωt leads to
[
−G1 ω

2 +G2 ω (2ξω) +G1 ω
2
]

cosωt

+
[
−G2 ω

2 −G1 ω (2ξω) +G2 ω
2 −

p
o

m

]
sinωt = 0 (3-16)

In order to satisfy this equation for all values of t, it is necessary that each of the two
square bracket quantities equal zero; thus, one obtains

G1 (1 − β2) +G2 (2ξβ) = 0

G2 (1 − β2) −G1 (2ξβ) =
p
o

k

(3-17)

in which β is the frequency ratio given by Eq. (3-7). Solving these two equations
simultaneously yields

G1 =
p
o

k

[ −2ξβ

(1 − β2)2 + (2ξβ)2

]

G2 =
p
o

k

[
1 − β2

(1 − β2)2 + (2ξβ)2

] (3-18)
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Introducing these expressions into Eq. (3-15) and combining the result with the com-
plementary solution of Eq. (3-14), the total response is obtained in the form

v(t) =
[
A cosωDt+B sinωDt

]
exp(−ξωt)

+
p
o

k

[
1

(1 − β2)2 + (2ξβ)2

] [
(1 − β2) sinωt− 2ξβ cosωt

]
(3-19)

The first term on the right hand side of this equation represents the transient response,
which damps out in accordance with exp(−ξωt), while the second term represents
the steady-state harmonic response, which will continue indefinitely. The constants
A and B can be evaluated for any given initial conditions, v(0) and v̇(0). However,
since the transient response damps out quickly, it is usually of little interest; therefore,
the evaluation of constants A and B will not be pursued here.

Steady-State Harmonic Response — Of great interest, however, is the steady-
state harmonic response given by the second term of Eq. (3-19)

vp(t) =
p
o

k

[
1

(1 − β2)2 + (2ξβ)2

] [
(1 − β2) sinωt− 2ξβ cosωt

]
(3-20)

This steady-state displacement behavior can be interpreted easily by plotting two
corresponding rotating vectors in the complex plane as shown in Fig. 3-2, where their
components along the real axis are identical to the two terms in Eq. (3-20). The real
component of the resultant vector, −ρ i exp[i(ωt−θ)], gives the steady-state response
in the form

vp(t) = ρ sin(ωt− θ) (3-21)

having an amplitude

ρ =
p
o

k

[
(1 − β2)2 + (2ξβ)2

]−1/2

(3-22)

− ρ i exp [ i ( ω t − θ)]

ω t

ω t
θ

Im

Re

[ − exp (i ω t)]
+ 2ξβ


(1 − β 2)2 + (2ξβ )2


po

k [ − i exp (i ω t)]
(1 − β 2)


(1 − β 2)2 + (2ξβ )2


po

k

FIGURE 3-2
Steady-state displacement response.
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and a phase angle, θ, by which the response lags behind the applied loading

θ = tan−1

[
2ξβ

1 − β2

]
(3-23)

It should be understood that this phase angle is limited to the range 0 < θ < 180◦.

The ratio of the resultant harmonic response amplitude to the static displacement
which would be produced by the force p

o
will be called the dynamic magnification

factor D; thus
D ≡ ρ

p
o
/k

=
[
(1 − β2)2 + (2ξβ)2

]−1/2
(3-24)

It is seen that both the dynamic magnification factor D and the phase angle θ vary
with the frequency ratio β and the damping ratio ξ. Plots of D vs. β and θ vs. β are
shown in Figs. 3-3 and 3-4, respectively, for discrete values of damping ratio, ξ.

At this point it is instructive to solve for the steady-state harmonic response once
again using an exponential form of solution. Consider the general case of harmonic
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loading expressed in exponential form:

v̈(t) + 2 ξ ω v̇(t) + ω2 v(t) =
p
o

m
exp[i (ωt+ φ)] (3-25)

where φ is an arbitrary phase angle in the harmonic loading function. In dealing
with completely general harmonic loads, especially for the case of periodic loading
where the excitation is expressed as a series of harmonic terms, it is essential to
define the input phase angle for each harmonic; however, this usually is accomplished
most conveniently by expressing the input in complex number form rather than by
amplitude and phase angle. In this chapter only a single harmonic loading term will
be considered; therefore, its phase angle is arbitrarily taken to be zero for simplicity,
so it need not be included in the loading expression.

The particular solution of Eq. (3-25) and its first and second time derivatives are

vp(t) = G exp(iωt)

v̇p(t) = i ω G exp(iωt)

v̈p(t) = −ω2G exp(iωt)

(3-26)

where G is a complex constant. To evaluate G, substitute Eqs. (3-26) into Eq. (3-25),
cancel out the quantity exp(iωt) common to each term, substitute k/ω2 for m and β
for ω/ω, and solve for G yielding

G =
p
o

k

[
1

(1 − β2) + i (2ξβ)

]
=
p
o

k

[
(1 − β2) − i (2ξβ)

(1 − β2)2 + (2ξβ)2

]
(3-27)

Substituting this complex value of G into the first of Eqs. (3-26) and plotting the
resulting two vectors in the complex plane, one obtains the representation shown in
Fig. 3-5. Note that these two vectors and their resultant along with phase angle θ

Re

Im

θ

FIGURE 3-5
Steady-state response using viscous damping.
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are identical to the corresponding quantities in Fig. 3-2, except that now the set of
vectors has been rotated counterclockwise through 90 degrees. This difference in the
figures corresponds to the phase angle difference between the harmonic excitations
−i (p

o
/m) exp(iωt) and (p

o
/m) exp(iωt) producing the results of Figs. 3-2 and 3-5,

respectively. Note that (p
o
/m) sinωt is the real part of −i (p

o
/m) exp(iωt).

It is of interest to consider the balance of forces acting on the mass under
the above steady-state harmonic condition whereby the total response, as shown in
Fig. 3-5, is

vp(t) = ρ exp[i (ωt− θ)] (3-28)

having an amplitude ρ as given by Eq. (3-22). Force equilibrium requires that the sum
of the inertial, damping, and spring forces equal the applied loading

p(t) = p
o

exp(iωt) (3-29)

Using Eq. (3-28), these forces are

fIp
(t) = m v̈p(t) = −mω2 ρ exp[i (ωt− θ)]

fDp
(t) = c v̇p(t) = i c ω ρ exp[i (ωt− θ)]

fSp
(t) = k vp(t) = k ρ exp[i (ωt− θ)]

(3-30)

which along with the applied loading are shown as vectors in the complex plane of
Fig. 3-6. Also shown is the closed polygon of forces required for equilibrium in
accordance with Eq. (2-1). Note that although the inertial, damping, and spring forces
as given in Eqs. (3-30) are in phase with the acceleration, velocity, and displacement
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motions, respectively, they actually oppose their corresponding motions in accordance
with the sign convention given in Fig. 2-1b which was adopted in Eq. (2-1).

Example E3-1. A portable harmonic-loading machine provides an effec-
tive means for evaluating the dynamic properties of structures in the field. By
operating the machine at two different frequencies and measuring the resulting
structural-response amplitude and phase relationship in each case, it is possible
to determine the mass, damping, and stiffness of a SDOF structure. In a test of
this type on a single-story building, the shaking machine was operated at fre-
quencies of ω1 = 16 rad/sec and ω2 = 25 rad/sec, with a force amplitude of
500 lb [226.8 kg] in each case. The response amplitudes and phase relationships
measured in the two cases were

ρ
1

= 7.2 × 10−3 in [18.3 × 10−3 cm] cos θ1 = 0.966

θ1 = 15◦ sin θ1 = 0.259

ρ
2

= 14.5 × 10−3 in [36.8 × 10−3 cm] cos θ2 = 0.574

θ2 = 55◦ sin θ2 = 0.819

To evaluate the dynamic properties from these data, it is convenient to
rewrite Eq. (3-22) as

ρ =
p
o

k

1

1 − β2

{
1

1 + [2ξβ / (1 − β2)]2

}1/2

=
p
o

k

cos θ

1 − β2
(a)

where the trigonometric function has been derived from Eq. (3-23). With further
algebraic simplification this becomes

k(1 − β2) = k − ω2m =
p
o

cos θ

ρ

Then introducing the two sets of test data leads to the matrix equation
[

1 −162

1 −252

] [
k

m

]
= 500 lb

[ 0.966
7.2×10−3

0.574
14.5×10−3

]

which can be solved to give

k = 100 × 103 lb/in [17.8 × 103 kg/cm]

m = 128.5 lb · sec2/in [22.95 kg · sec2/cm]

Thus,
W = mg = 49.6 × 103 lb [22.5 × 103 kg]
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The natural frequency is given by

ω =

√
k

m
= 27.9 rad/sec

To determine the damping coefficient, two expressions for cos θ can be
derived from Eqs. (a) and (3-23). Equating these and solving for the damping
ratio leads to

ξ =
p
o

sin θ

2β k ρ
=
p
o

sin θ

cc ω ρ

Thus with the data of the first test

c = ξ cc =
500 (0.259)

16 (7.2 × 10−3)
= 1, 125 lb · sec/in [200.9 kg · sec/cm]

and the same result (within engineering accuracy) is given by the data of the
second test. The damping ratio therefore is

ξ =
c

2 k/ω
=

1, 125 (27.9)

200 × 103
= 15.7%

3-3 RESONANT RESPONSE

From Eq. (3-12), it is apparent that the steady-state response amplitude of an
undamped system tends toward infinity as the frequency ratio β approaches unity; this
tendency can be seen in Fig. 3-3 for the case of ξ = 0. For low values of damping, it
is seen in this same figure that the maximum steady-state response amplitude occurs
at a frequency ratio slightly less than unity. Even so, the condition resulting when the
frequency ratio equals unity, i.e., when the frequency of the applied loading equals the
undamped natural vibration frequency, is called resonance. From Eq. (3-24) it is seen
that the dynamic magnification factor under this condition (β = 1) is

Dβ=1 =
1

2 ξ
(3-31)

To find the maximum or peak value of dynamic magnification factor, one must differ-
entiate Eq. (3-24) with respect to β and solve the resulting expression for β obtaining

βpeak =
√

1 − 2 ξ2 (3-32)

(which yields positive real values for damping ratios ξ < 1/
√

2), and then substitute
this value of frequency ratio back into Eq. (3-24) giving

Dmax =
1

2 ξ
√

1 − ξ2
=

1

2 ξ

ω

ωD

(3-33)
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For typical values of structural damping, say ξ < 0.10, the difference between Eq. (3-
33) and the simpler Eq. (3-31) is small, the difference being one-half of 1 percent for
ξ = 0.10 and 2 percent for ξ = 0.20.

For a more complete understanding of the nature of the resonant response of a
structure to harmonic loading, it is necessary to consider the general response Eq. (3-
19), which includes the transient term as well as the steady-state term. At the resonant
exciting frequency (β = 1), this equation becomes

v(t) = (A cosωDt+B sinωDt) exp(−ξωt) −
p
o

k

cosωt

2 ξ
(3-34)

Assuming that the system starts from rest [v(0) = v̇(0) = 0], the constants are

A =
p
o

k

1

2 ξ
B =

p
o

k

ω

2ωD

=
p
o

k

1

2
√

1 − ξ2
(3-35)

Thus Eq. (3-34) becomes

v(t) =
1

2 ξ

p
o

k

[( ξ√
1 − ξ2

sinωDt+ cosωDt
)

exp(−ξωt) − cosωt

]
(3-36)

For the amounts of damping to be expected in structural systems, the term
√

1 − ξ2

is nearly equal to unity; in this case, this equation can be written in the approximate
form

R(t) =
v(t)

p
o
/k

.
=

1

2 ξ

{[
exp(−ξωt) − 1

]
cosωt+ ξ

[
exp(−ξωt)

]
sinωt

}
(3-37)

For zero damping, this approximate equation is indeterminate; but when L’Hospital’s
rule is applied, the response ratio for the undamped system is found to be

R(t)
.
=

1

2
(sinωt− ωt cosωt) (3-38)

Plots of these equations are shown in Fig. 3-7. Note that because the terms containing
sinωt contribute little to the response, the peak values in this figure build up linearly
for the undamped case, changing by an amount π in each cycle; however, they build up
in accordance with (1/2ξ)[exp(−ξωt)− 1] for the damped case. This latter envelope
function is plotted against frequency in Fig. 3-8 for discrete values of damping. It is
seen that the buildup rate toward the steady-state level 1/2ξ increases with damping
and that buildup to nearly steady-state level occurs in a relatively small number of
cycles for values of damping in the practical range of interest; e.g., 14 cycles brings
the response very close to the steady-state level for a case having 5 percent of critical
damping.
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FIGURE 3-7
Response to resonant loading β = 1 for at-rest initial conditions.
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3-4 ACCELEROMETERS AND DISPLACEMENT METERS

At this point it is convenient to discuss the fundamental principles on which
the operation of an important class of dynamic measurement devices is based. These
are seismic instruments, which consist essentially of a viscously damped oscillator as
shown in Fig. 3-9. The system is mounted in a housing which may be attached to the
surface where the motion is to be measured. The response is measured in terms of the
motion v(t) of the mass relative to the housing.

The equation of motion for this system already has been shown in Eq. (2-17) to
be

mv̈(t) + c v̇(t) + k v(t) = −mv̈g(t) ≡ peff(t)

where v̈g(t) is the vertical acceleration of the housing support. Considering a harmonic
support acceleration of the form v̈g(t) = v̈g0 sinωt, so that peff(t) = −mv̈g0 sinωt,
the dynamic steady-state response amplitude of motion v(t) is given by Eq. (3-22),
i.e.,

ρ =
mv̈g0

k
D (3-39)

in which D as given by Eq. (3-24) is presented graphically in Fig. 3-3. Examination
of this figure shows that for a damping ratio ξ = 0.7, the value of D is nearly
constant over the frequency range 0 < β < 0.6. Thus it is clear from Eq. (3-
39) that the response indicated by this instrument is almost directly proportional
to the support-acceleration amplitude for applied frequencies up to about six-tenths
the natural frequency of the instrument (ω = 2πf =

√
k/m). Hence, this type

of instrument when properly damped will serve effectively as an accelerometer for
relatively low frequencies; its range of applicability will be broadened by increasing
its natural frequency relative to the exciting frequency, i.e., by increasing the stiffness
of the spring and/or decreasing the mass. Calibration of an accelerometer is easily
carried out by first placing the instrument with its axis of sensitivity vertically and then

FIGURE 3-9
Schematic diagram of a typical seismometer.
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FIGURE 3-10
Response of seismometer to harmonic base displacement.
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turning the instrument upside-down and recording the resulting change of response
which corresponds to an acceleration twice that of gravity.

Consider now the response of the above described instrument subjected to a har-
monic support displacement vg(t) = vg0 sinωt. In this case, v̈g(t) = −ω2 vg0 sinωt

and the effective loading is peff = mω vg0 sinωt. In accordance with Eq. (3-22), the
relative-displacement response amplitude is

ρ =
mω2 vg0

k
D = vg0 β

2D (3-40)

A plot of the response function β2D is presented in Fig. 3-10. In this case, it
is evident that β2D is essentially constant at frequency ratios β > 1 for a damping
ratio ξ = 0.5. Thus, the response of a properly damped instrument is essentially
proportional to the base-displacement amplitude for high-frequency support motions;
i.e., it will serve as a displacement meter in measuring such motions. Its range of
applicability for this purpose will be broadened by reducing the natural frequency, i.e.,
by reducing the spring stiffness and/or increasing the mass.

3-5 VIBRATION ISOLATION

Although the subject of vibration isolation is too broad to be discussed thor-
oughly here, the basic principles involved will be presented as they relate to two
types of problems: (1) prevention of harmful vibrations in supporting structures due
to oscillatory forces produced by operating equipment and (2) prevention of harmful
vibrations in sensitive instruments due to vibrations of their supporting structures.
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FIGURE 3-11
SDOF vibration-isolation system (applied loading).

v(t)
m

c
k
2


k
2

p(t) = po sin ω t

f = fS + fD

The first situation is illustrated in Fig. 3-11 where a rotating machine produces
an oscillatory vertical force p

o
sinωt due to unbalance in its rotating parts. If the

machine is mounted on a SDOF spring-damper support system as shown, its steady-
state relative-displacement response is given by

vp(t) =
p
o

k
D sin(ωt− θ) (3-41)

where D is defined by Eq. (3-24). This result assumes, of course, that the support
motion induced by total reaction force f(t) is negligible in comparison with the system
motion relative to the support.

Using Eq. (3-41) and its first time derivative, the spring and damping reaction
forces become

fS(t) = k v(t) = p
o
D sin(ωt− θ)

fD(t) = c v̇(t) =
c p

o
Dω

k
cos(ωt− θ) = 2 ξ β p

o
D cos(ωt− θ)

(3-42)

Since these two forces are 90◦ out of phase with each other, it is evident that the
amplitude of the total base reaction force is given by

fmax(t) = [fS,max(t)
2 + fD,max(t)

2]1/2 = p
o
D
[
1 + (2ξβ)2

]1/2

(3-43)

Thus, the ratio of the maximum base force to the amplitude of the applied force, which
is known as the transmissibility (TR) of the support system, becomes

TR ≡ fmax(t)

p
o

= D
√

1 + (2ξβ)2 (3-44)

The second type of situation in which vibration isolation is important is illus-
trated in Fig. 3-12, where the harmonic support motion vg(t) forces a steady-state
relative-displacement response

vp(t) = vg0 β
2D sin(ωt− θ) (3-45)
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FIGURE 3-12
SDOF vibration-isolation system (support 
excitation).
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FIGURE 3-13
Vibration-transmissibility ratio (applied loading or support excitation).
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in accordance with Eqs. (3-21) and (3-40). Adding this motion vectorially to the
support motion vg(t) = vg0 sinωt, the total steady-state response of mass m is given
by

vt(t) = vg0

√
1 + (2ξβ)2 D sin(ωt− θ) (3-46)

in which the phase angle θ is of no particular interest in the present discussion.
Thus, if the transmissibility in this situation is defined as the ratio of the amplitude of
total motion of the mass to the corresponding base-motion amplitude, it is seen that
this expression for transmissibility is identical to that given by Eq. (3-44), i.e.,

TR ≡ vt
max
vg0

= D
√

1 + (2ξβ)2 (3-47)

Note that this transmissibility relation also applies to the acceleration ratio(
v̈t

max
/
v̈gmax

)
because v̈t

max = ω2 vt
max and v̈gmax = ω2 vg0.

Since the transmissibility relations given by Eqs. (3-44) and (3-47) are identical,
the common relation expresses the transmissibility of vibration-isolation systems for
both situations described above. This relation is plotted as a function of frequency ratio
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in Fig. 3-13 for discrete values of damping. Note that all curves pass through the same
point at a frequency ratio of β =

√
2. Clearly because of this feature, increasing the

damping when β <
√

2 increases the effectiveness of the vibration-isolation system,
while increasing the damping when β >

√
2 decreases the effectiveness. Since the

transmissibility values for β >
√

2 are generally much lower than those for β <
√

2,
one should take advantage of operating in the higher frequency ratio range when it is
practical to do so. This is not always possible, however, because in many cases the
system must operate below β =

√
2 for some intervals of time, and in some cases

even operate near the resonant condition β = 1. The following example illustrates
such a condition:

Example E3-2. Deflections sometimes develop in concrete bridge girders
due to creep, and if the bridge consists of a long series of identical spans, these
deformations will cause a harmonic excitation in a vehicle traveling over the
bridge at constant speed. Of course, the springs and shock absorbers of the car
are intended to provide a vibration-isolation system which will limit the vertical
motions transmitted from the road to the occupants.

Figure E3-1 shows a highly idealized model of this type of system, in
which the vehicle weight is 4, 000 lb [1, 814 kg] and its spring stiffness is
defined by a test which showed that adding 100 lb [45.36 kg] caused a deflection
of 0.08 in [0.203 cm]. The bridge profile is represented by a sine curve
having a wavelength (girder span) of 40 ft [12.2m] and a (single) amplitude of
1.2 in [3.05 cm]. From these data it is desired to predict the steady-state vertical
motions in the car when it is traveling at a speed of 45 mph [72.4 km/hr],
assuming that the damping is 40 percent of critical.

The transmissibility for this case is given by Eq. (3-47); hence the ampli-
tude of vertical motion is

vt
max = vg0

[
1 + (2ξβ)2

(1 − β2)2 + (2ξβ)2

]1/2

FIGURE E3-1
Idealized vehicle traveling over an uneven bridge deck.
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When the car is traveling at 45 mph = 66 ft/sec, the excitation period is

Tp =
40 ft

66 ft/sec
= 0.606 sec

while the natural period of the vehicle is

T =
2π

ω
= 2π

√
W

kg
= 0.572 sec

Hence β = T/Tp = 0.572/0.606 = 0.944, and with ξ = 0.4 the response amplitude
is

vt
max = 1.2 (1.642) = 1.97 in [5.00 cm]

It also is of interest to note that if there were no damping in the vehicle
(ξ = 0), the amplitude would be

vt
max = vg0

[
1

1 − β2

]
=

1.2

0.11
= 10.9 in [27.7 cm]

This is beyond the spring range, of course, and thus has little meaning, but
it does demonstrate the important function of shock absorbers in limiting the
motions resulting from waviness of the road surface.

When designing a vibration-isolation system which will operate at frequencies
above the critical value represented by β =

√
2, it is convenient to express the behavior

of the SDOF system in terms of isolation effectiveness (IE) rather than transmissibility.
This quantity is defined by

IE ≡ [1 − TR] (3-48)

in which IE = 1 represents complete isolation approachable only as β → ∞ and IE
= 0 represents no isolation which takes place at β =

√
2. For values of β below

this critical value, amplification of the motion of the mass takes place; thus, actual
vibration isolation can take place only when the system functions at values of β greater
than

√
2. In this case the isolation system should have as little damping as possible.

For small damping, the transmissibility given by Eq. (3-44) or Eq. (3-47), after
substitution of Eq. (3-24), can be expressed by the approximate relation

TR .
= 1
/
(β2 − 1) (3-49)

in which case the isolation effectiveness becomes

IE = (β2 − 2)
/

(β2 − 1) (3-50)
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Solving this relation for β2, one obtains its inverse form

β2 = (2 − IE)
/

(1 − IE) (3-51)

Noting that β2 = ω2/ω2 = ω2 (m/k) = ω2 (W/kg) = ω2 (4st/g), where g is the
acceleration of gravity and 4st is the static deflection produced by the dead weight
W on its spring mounting, Eq. (3-51) can be expressed in the form

f =
ω

2π
=

1

2π

√
g

4st

[2 − IE
1 − IE

]
0 < IE < 1 (3-52)

Frequency f measured in Hertz (cycles/sec), as derived from this expression, is
plotted against the static deflection 4st in Fig. 3-14 for discrete values of isolation
efficiency IE. Knowing the frequency of impressed excitation f , one can determine
directly from the curves in this figure the support-pad deflection 4st required to
achieve any desired level of vibration isolation efficiency (IE), assuming, of course,
that the isolation system has little damping. It is apparent that any isolation system
must be very flexible to be effective.

FIGURE 3-14
Vibration-isolation design chart.
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Example E3-3. A reciprocating machine weighing 20, 000 lb [9, 072 kg]

is known to develop a vertically oriented harmonic force of amplitude
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500 lb [226.8 kg] at its operating speed of 40 Hz. In order to limit the vi-
brations excited in the building in which this machine is to be installed, it is
to be supported by a spring at each corner of its rectangular base. The de-
signer wants to know what support stiffness will be required of each spring to
limit the total harmonic force transmitted from the machine to the building to
80 lb [36.3 kg].

The transmissibility in this case is TR = 80/500 = 0.16 which corre-
sponds to an isolation efficiency of IE = 1 − TR = 0.84. From Fig. 3-14 for
f = 40 Hz and IE = 0.84, one finds that 4st is about 0.045 in [0.114 cm];
thus, the required stiffness k of each spring is

k =
W

4 4st
=

20

(4) (0.045)
= 111 kips/in [19, 823 kg/cm]

3-6 EVALUATION OF VISCOUS-DAMPING RATIO

In the foregoing discussion of the dynamic response of SDOF systems, it has
been assumed that the physical properties consisting of mass, stiffness, and viscous
damping are known. While in most cases, the mass and stiffness can be evaluated rather
easily using simple physical considerations or generalized expressions as discussed in
Chapter 8, it is usually not feasible to determine the damping coefficient by similar
means because the basic energy-loss mechanisms in most practical systems are seldom
fully understood. In fact, it is probable that the actual energy-loss mechanisms are
much more complicated than the simple viscous (velocity proportional) damping
force that has been assumed in formulating the SDOF equation of motion. But it
generally is possible to determine an appropriate equivalent viscous-damping property
by experimental methods. A brief treatment of the methods commonly used for this
purpose is presented in the following sections:

Free-Vibration Decay Method

This is the simplest and most frequently used method of finding the viscous-
damping ratio ξ through experimental measurements. When the system has been set
into free vibration by any means, the damping ratio can be determined from the ratio
of two peak displacements measured overm consecutive cycles. As shown in Chapter
2, the damping ratio can be evaluated using

ξ =
δm

2πm (ω/ωD)

.
=

δm
2πm

(3-53)

where δm ≡ ln(vn/vn+m) represents the logarithmic decrement over m cycles and
ω and ωD are the undamped and damped circular frequencies, respectively. For low
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values of damping, the approximate relation in Eq. (3-53) can be used which is only
2 percent in error when ξ = 0.2. A major advantage of this free-vibration method
is that equipment and instrumentation requirements are minimal; the vibrations can
be initiated by any convenient method and only the relative-displacement amplitudes
need be measured. If the damping is truly of the linear viscous form as previously
assumed, any set of m consecutive cycles will yield the same damping ratio through
the use of Eq. (3-53). Unfortunately, however, the damping ratio so obtained often
is found to be amplitude dependent, i.e., m consecutive cycles in the earlier portion
of high-amplitude free-vibration response will yield a different damping ratio than m
consecutive cycles in a later stage of much lower response. Generally it is found in
such cases that the damping ratio decreases with decreasing amplitude of free-vibration
response. Caution must be exercised in the use of these amplitude-dependent damping
ratios for predicting dynamic response.

Resonant Amplification Method

This method of determining the viscous-damping ratio is based on measuring
the steady-state amplitudes of relative-displacement response produced by separate
harmonic loadings of amplitude p

o
at discrete values of excitation frequency ω over

a wide range including the natural frequency. Plotting these measured amplitudes
against frequency provides a frequency-response curve of the type shown in Fig. 3-15.
Since the peak of the frequency-response curve for a typical low damped structure is
quite narrow, it is usually necessary to shorten the intervals of the discrete frequencies

FIGURE 3-15
Frequency-response curve for moderately 
damped system.Frequency ratio, β
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in the neighborhood of the peak in order to get good resolution of its shape. As
shown by Eqs. (3-32) and (3-33), the actual maximum dynamic magnification factor
Dmax ≡ ρmax/ρ0 occurs at the excitation frequency ω = ω

√
1 − 2ξ2 and is given

by Dmax = 1/2ξ
√

1 − ξ2; however, for damping values in the practical range of
interest, one can use the approximate relation Dmax

.
= D (β = 1) = 1/2ξ. The

damping ratio can then be determined from the experimental data using

ξ
.
= ρ

0
/2 ρmax (3-54)

This method of determining the damping ratio requires only simple instrumentation
to measure the dynamic response amplitudes at discrete values of frequency and fairly
simple dynamic-loading equipment; however, obtaining the static displacement ρ

0

may present a problem because the typical harmonic loading system cannot produce
a loading at zero frequency. As pointed out above, the damping ratio for practical
systems is often amplitude dependent. In this case, the value of ξ obtained by Eq. (3-
54) depends on the amplitude p

o
of the applied harmonic loading. This dependency

should be taken into consideration when specifying an appropriate value of ξ for
dynamic analysis purposes.

Half-Power (Band-Width) Method

It is evident from Eq. (3-22), in which (p
o
/k) ≡ ρ

0
, that the frequency-response

curve ρ vs. β shown in Fig. 3-15 has a shape which is controlled by the amount of
damping in the system; therefore, it is possible to derive the damping ratio from many
different properties of the curve. One of the most convenient of these is the half-power
or band-width method whereby the damping ratio is determined from the frequencies
at which the response amplitude ρ is reduced to the level 1/

√
2 times its peak value

ρmax.

The controlling frequency relation is obtained by setting the response amplitude
in Eq. (3-22) equal to 1/

√
2 times its peak value given by Eq. (3-33), that is, by setting

[
(1 − β2)2 + (2ξβ)2

]−1/2
= (1/

√
2)
[
1
/
2ξ
√

1 − ξ2
]

(3-55)

Squaring both sides of this equation and solving the resulting quadratic equation for
β2 gives

β2
1,2 = 1 − 2 ξ2 ∓ 2 ξ

√
1 − ξ2 (3-56)

which, for small values of damping in the practical range of interest, yields the
frequency ratios

β1,2
.
= 1 − ξ2 ∓ ξ

√
1 − ξ2 (3-57)

Subtracting β1 from β2, one obtains

β2 − β1 = 2 ξ
√

1 − ξ2
.
= 2 ξ (3-58)
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while adding β1 and β2 gives

β2 + β1 = 2 (1 − ξ2)
.
= 2 (3-59)

Combining Eqs. (3-58) and (3-59) yields

ξ =
β2 − β1

β2 + β1
=
f2 − f1
f2 + f1

(3-60)

where f1 and f2 are the frequencies at which the amplitudes of response equal 1/
√

2

times the maximum amplitude. The use of either Eq. (3-58) or Eq. (3-60) in evaluating
the damping ratio is illustrated in Fig. 3-15 where a horizontal line has been drawn
across the curve at 1/

√
2 times its peak value. It is evident that this method of obtaining

the damping ratio avoids the need for obtaining the static displacement ρ
0
; however, it

does require that the frequency-response curve be obtained accurately at its peak and
at the level ρmax/

√
2.

To clarify why the above method is commonly referred to as the half-power
method, consider the time-average power input provided by the applied loading,
which must equal the corresponding average rate of energy dissipation caused by
the damping force FD(t) = c v̇(t). Under the steady-state harmonic condition at
frequency ω where the displacement response amplitude is ρ, the average rate of
energy dissipation is

Pavg =
c ω

2π

∫ 2π/ω

0

v̇(t)2 dt = c ω2

[
ω

2π

∫ 2π/ω

0

v(t)2 dt

]
= ξ mω ω2 ρ2 (3-61)

which shows that the corresponding average power input is proportional to β2ρ2; thus,
since ρ

1
= ρ

2
= ρpeak/

√
2, the average power inputs at frequency ratios β1 and β2 are

Pβ1
=
( β1

βpeak

)2 Ppeak
2

Pβ2
=
( β2

βpeak

)2 Ppeak
2

(3-62)

where βpeak is given by Eq. (3-32). While the average power input at β1 is somewhat
less than one-half the peak power input and the average power input at β2 is somewhat
greater, the mean value of these two averaged inputs is very close to one-half the peak
average power input.

Example E3-4. Data from a frequency-response test of a SDOF system
have been plotted in Fig. E3-2. The pertinent data for evaluating the damping
ratio are shown. The sequence of steps in the analysis after the curve was plotted
were as follows:

(1) Determine the peak response = 5.67 × 10−2 in [14.4 × 10−2 cm].
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FIGURE E3-2
Frequency-response experiment to determine damping ratio.
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(2) Construct a horizontal line at 1/
√

2 times the peak level.

(3) Determine the two frequencies at which this horizontal line cuts the re-
sponse curve; f1 = 19.55, f2 = 20.42 Hz.

(4) The damping ratio is given by

ξ =
f2 − f1
f2 + f1

= 0.022

showing 2.2 percent of critical damping in the system.

Resonance Energy Loss Per Cycle Method

If instrumentation is available to measure the phase relationship between the
input force and the resulting displacement response, the damping ratio can be evaluated
from a steady-state harmonic test conducted only at resonance: β = ω

ω = 1. This
procedure involves establishing resonance by adjusting the input frequency until the
displacement response is 90◦ out-of-phase with the applied loading. As shown in
Fig. 3-6 for θ = 90◦, the applied loading is exactly balancing the damping force so
that if the relationship between the applied loading and the resulting displacement is
plotted for one loading cycle as shown in Fig. 3-16, the result can be interpreted as the
damping force vs. displacement diagram. If the system truly possesses linear viscous
damping, this diagram will be an ellipse as shown by the dashed line in this figure. In
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poArea = D

FIGURE 3-16
Actual and equivalent damping 
energy per cycle.

v

fD ( = p at resonance)

Ellipse (viscous damping)
(Equivalent area = D)

vmax = 

this case, the damping ratio can be determined directly from the maximum damping
force and the maximum velocity using the relation

p
o

= fDmax = c v̇max = 2 ξ mω v̇max = 2 ξ mω2 ρ (3-63)

or
ξ = p

o

/
2mω2 ρ (3-64)

If damping is not of the linear viscous form previously assumed but is of a
nonlinear viscous form, the shape of the applied-force/displacement diagram obtained
by the above procedure will not be elliptical; rather, it will be of a different shape as
illustrated by the solid line in Fig. 3-16. In this case, the response v(t) will be a distorted
harmonic, even though the applied loading remains a pure harmonic. Nevertheless,
the energy input per cycle, which equals the damping energy loss per cycle ED, can be
obtained as the area under the applied-force/displacement diagram. This permits one
to evaluate an equivalent viscous-damping ratio for the corresponding displacement
amplitude, which when used in the linear viscous form will dissipate the same amount
of energy per cycle as in the real experimental case. This equivalent damping ratio
is associated with an elliptical applied-force/displacement diagram having the same
area ED as the measured nonelliptical diagram. Making use of Eq. (3-61), this energy
equivalence requires that

ED = (2π/ω) Pavg = (2π/ω) (ξeq mω3 ρ2) (3-65)

or
ξeq = ED/(2πmω2 ρ2) = ED/(2π k ρ

2) (3-66)

The latter form of Eq. (3-66) is more convenient here because the stiffness of the
structure can be measured by the same instrumentation used to obtain the energy loss
per cycle, merely by operating the system very slowly at essentially static conditions.
The static-force displacement diagram obtained in this way will be of the form shown
in Fig. 3-17, if the structure is linearly elastic. The stiffness is obtained as the slope
of the straight line curve.
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FIGURE 3-17
Elastic stiffness and strain energy.
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3-7 COMPLEX-STIFFNESS DAMPING

Damping of the linear viscous form discussed above is commonly used because
it leads to a convenient form of equation of motion. It has one serious deficiency,
however; as seen from Eq. (3-61), the energy loss per cycle

ED = (2π/ω) Pavg = 2π ξ mω ω ρ2 (3-67)

at a fixed amplitude ρ is dependent upon the excitation (or response) frequency ω. This
dependency is at variance with a great deal of test evidence which indicates that the
energy loss per cycle is essentially independent of frequency. It is desirable therefore
to model the damping force so as to remove this frequency dependence. This can be
accomplished by using the so-called “hysteretic” form of damping in place of viscous
damping. Hysteretic damping may be defined as a damping force proportional to the
displacement amplitude but in phase with the velocity, and for the case of harmonic
motion it may be expressed as

fD(t) = i ζ k v(t) (3-68)

where ζ is the hysteretic damping factor which defines the damping force as a function
of the elastic stiffness force, and the imaginary constant i puts the force in phase with
the velocity. It is convenient to combine the elastic and damping resistance into the
complex stiffness k̂ defined as

k̂ = k (1 + i ζ) (3-69)

leading to the following harmonic forced vibration equation of motion:

m v̈(t) + k̂ v(t) = p
o

exp(iωt) (3-70)

The particular (or steady-state) solution of Eq. (3-70) is

vp(t) = G exp(iωt) (3-71)
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in which G is a complex constant, and the corresponding acceleration is given by

v̈p(t) = −ω2 G exp(iωt) (3-72)

Substituting these expressions into Eq. (3-70) yields

[
−mω2 + k̂

]
G exp(iωt) = p

o
exp(iωt)

from which the value of G is found to be

G =
p
o

k

[
− m

k
ω2 + (1 + i ζ)

] =
p
o

k

1[
(1 − β2) + i ζ

]

or in a more convenient complex form

G =
p
o

k

[
(1 − β2) − i ζ

(1 − β2)2 + ζ2

]
(3-73)

Substituting this into Eq. (3-71) finally gives the following expression for the steady-
state response with hysteretic damping

vp(t) =
p
o

k

[
(1 − β2) − i ζ

(1 − β2)2 + ζ2

]
exp(iωt) (3-74)

This response is depicted graphically by its two orthogonal vectors plotted in
the complex plane of Fig. 3-18. The resultant of these two vectors gives the response
in terms of a single-amplitude vector, namely

vp(t) = ρ exp
[
iωt− θ

]
(3-75)
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FIGURE 3-18
Steady-state displacement response using 
complex stiffness damping.
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in which

ρ =
p
o

k

[
(1 − β2)2 + ζ2

]−1/2

(3-76)

and the response phase angle is

θ = tan−1

[
ζ

(1 − β2)

]
(3-77)

Comparing these three equations with Eqs. (3-28), (3-22), and (3-23), respectively, it
is evident that the steady-state response provided by hysteretic damping is identical to
that with viscous damping if the hysteretic damping factor has the value

ζ = 2 ξ β (3-78)

In this case, the energy loss per cycle at a fixed amplitude ρ is dependent upon the
excitation frequency ω exactly as in the case of viscous damping. As will be shown
subsequently, this frequency dependence can be removed by making the hysteretic
damping factor ζ frequency independent. In doing so, it is convenient to use Eq. (3-
78) and to adopt the factor given at resonance for which β = 1; thus the recommended
hysteretic damping factor is ζ = 2 ξ, and the complex stiffness coefficient given by
Eq. (3-69) becomes

k̂ = k [1 + i 2ξ] (3-79)

Then as shown by Eqs. (3-76) and (3-77), the response amplitude and phase angle,
respectively, are

ρ =
p0

k

[
(1 − β2)2 + (2 ξ)2

]−1/2
(3-80)

θ = tan−1

[
2 ξ

(1 − β2)

]
(3-81)

This response with hysteretic damping is identical to the viscous-damping response if
the system is excited at resonance (β = 1). However, when β 6= 1, the two amplitudes
differ in accordance with Eqs. (3-22) and (3-80) and the corresponding phase angles
differ in accordance with Eqs. (3-23) and (3-81).

When the complex stiffness is defined in accordance with Eq. (3-69) and when
ζ = 2ξ, the damping force component under steady-state harmonic excitation is given
by

fD(t) = 2 iξ k ρ
[
exp(iωt− θ)

]
(3-82)

and the damping energy loss per cycle, ED, can be obtained by integrating the instan-
taneous power loss

P(t) = fD(t) v̇p(t) = 2 ξ k ω ρ2
[
− exp(iωt− θ)

]2
(3-83)
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over one cycle, with the final result

ED = 2π ξ mω2 ρ2 (3-84)

It is evident that this energy loss per cycle at fixed amplitude ρ is independent of the
excitation frequency, ω, thus it is consistent with the desired frequency-independent
behavior; for this reason it is recommended that this form of hysteretic damping
(complex stiffness damping) be used in most cases for general harmonic response
analysis purposes.

PROBLEMS

3-1. Consider the basic structure of Fig. 2-1a with zero damping and subjected to
harmonic excitation at the frequency ratio β = 0.8. Including both steady-state
and transient effects, plot the response ratio R(t). Evaluate the response at
increments ω4t = 80◦ and continue the analysis for 10 increments.

3-2. Consider the basic system of Fig. 2-1a with the following properties: m =

2 kips · sec2/in and k = 20 kips/in. If this system is subjected to resonant
harmonic loading (ω = ω) starting from “at rest” conditions, determine the
value of the response ratio R(t) after four cycles (ωt = 8π), assuming:

(a) c = 0 [use Eq. (3-38)]

(b) c = 0.5 kips · sec/in [use Eq. (3-37)]

(c) c = 2.0 kips · sec/in [use Eq. (3-37)]

3-3. Consider the same vehicle and bridge structure of Example E3-2, except with
the girder spans reduced to L = 36 ft. Determine:

(a) the vehicle speed required to induce resonance in the vehicle spring system.

(b) the total amplitude of vertical motion vt
max at resonance.

(c) the total amplitude of vertical motion vt
max at the speed of 45 mph.

3-4. A control console containing delicate instrumentation is to be located on the
floor of a test laboratory where it has been determined that the floor slab is
vibrating vertically with an amplitude of 0.03 in at 20 Hz. If the weight of
the console is 800 lb, determine the stiffness of the vibration isolation system
required to reduce the vertical-motion amplitude of the console to 0.005 in.

3-5. A sieving machine weighs 6, 500 lb, and when operating at full capacity, it exerts
a harmonic force on its supports of 700 lb amplitude at 12 Hz. After mounting
the machine on spring-type vibration isolators, it was found that the harmonic
force exerted on the supports had been reduced to a 50 lb amplitude. Determine
the spring stiffness k of the isolation system.
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3-6. The structure of Fig. P3-1a can be idealized by the equivalent system of Fig. P3-
1b. In order to determine the values of c and k for this mathematical model, the
concrete column was subjected to a harmonic load test as shown in Fig. P3-1c.
When operating at a test frequency of ω = 10 rads/sec, the force-deflection
(hysteresis) curve of Fig. P3-1d was obtained. From this data:

(a) determine the stiffness k.

(b) assuming a viscous damping mechanism, determine the apparent viscous
damping ratio ξ and damping coefficient c.

(c) assuming a hysteretic damping mechanism, determine the apparent hys-

teretic damping factor ζ.

(a)

(c) (d)

(b)

c

k m

FIGURE P3-1

Strut
Concrete
column

Concrete
column

Rigid mass m

v(t)

p(t)

p(t) = p0 sin ω t

ED = 26 lb⋅in

ES = 29 lb⋅in

390 lb

v

ρ = 0.15 in

ρ = 0.15 in

3-7. Suppose that the test of Prob. 3-6 were repeated, using a test frequency ω =

20 rads/sec, and that the force-deflection curve (Fig. P3-1d) was found to be
unchanged. In this case:

(a) determine the apparent viscous damping values ξ and c.

(b) determine the apparent hysteretic damping factor ζ.

(c) Based on these two tests (ω = 10 and ω = 20 rads/sec), which type of
damping mechanism appears more reasonable — viscous or hysteretic?



RESPONSE TO HARMONIC LOADING 63

3-8. If the damping of the system of Prob. 3-6 actually were provided by a viscous
damper as indicated in Fig. P3-1b, what would be the value of ED obtained in a
test performed at ω = 20 rads/sec?





CHAPTER

4
RESPONSE

TO PERIODIC
LOADING

4-1 FOURIER SERIES EXPRESSIONS OF PERIODIC LOADING

Trigonometric Form

Because any periodic loading can be expressed as a series of harmonic loading
terms, the response analysis procedures presented in Chapter 3 have a wide range
of applicability. To treat the case of an arbitrary periodic loading of period Tp, as
indicated in Fig. 4-1, it is convenient to express it in a Fourier series form with harmonic
loading components at discrete values of frequency. The well-known trigonometric
form of the Fourier series is given by

p(t) = a0 +

∞∑

n=1

an cosωnt+

∞∑

n=1

bn sinωnt (4-1)

in which
ωn = n ω1 = n

2π

Tp
(4-2)

FIGURE 4-1
Arbitrary periodic loading.
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and the harmonic amplitude coefficients can be evaluated using the expressions

a0 =
1

Tp

∫ Tp

0

p(t) dt

an =
2

Tp

∫ Tp

0

p(t) cosωnt dt n = 1, 2, 3, · · ·

bn =
2

Tp

∫ Tp

0

p(t) sinωnt dt n = 1, 2, 3, · · ·

(4-3)

When p(t) is of arbitrary periodic form, the integrals in Eqs. (4-3) must be evaluated
numerically. This can be done by dividing the period Tp into N equal intervals 4t
(Tp = N 4t), evaluating the ordinates of the integrand in each integral at discrete
values of t = tm = m4t (m = 0, 1, 2, · · · , N ) denoted by q0, q1, q2, · · ·, qN , and
then applying the trapezoidal rule of integration in accordance with

∫ Tp

0

q(t) dt
.
= 4t

[q0
2

+
(N−1∑

m=1

qm

)
+
qN
2

]
(4-4)

In practical solutions, the beginning and end of the time period usually can be set so
that the ordinates q0 and qN are equal to zero, in which case, Eq. (4-4) simplifies to

∫ Tp

0

q(t) dt
.
= 4t

N−1∑

m=1

qm (4-5)

The harmonic amplitude coefficients of Eq. (4-3) then may be expressed as

a0

an

bn

}
=

24t
Tp

N−1∑

m=1

qm where qm =





1
2p(tm)

p(tm) cosωn(m4t)

p(tm) sinωn(m4t)





(4-6)

Exponential Form

The exponential form of the Fourier series equivalent to Eq. (4-1) is obtained by
substituting the inverse Euler relations, Eqs. (2-23b) (with ωnt replacing the angle θ):

cosωnt =
1

2

[
exp(iωnt) + exp(−iωnt)

]

sinωnt = − i

2

[
exp(iωnt) − exp(−iωnt)

] (4-7)

into Eqs. (4-1) and (4-3) leading to

p(t) =

∞∑

n=−∞
Pn exp(iωnt) (4-8)
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in which the complex amplitude coefficients are given by

Pn =
1

Tp

∫ Tp

0

p(t) exp(−iωnt) dt n = 0,±1,±2, · · · (4-9)

It should be noted that for each positive value of n in Eq. (4-8), say n = +m, there is
a corresponding n = −m. From the form of Eq. (4-9) it is seen that Pm and P−m are
complex conjugate pairs which is a necessary condition for the imaginary parts in the
corresponding terms of Eq. (4-8) to cancel each other.

Equation (4-8) may be evaluated numerically by the trapezoidal rule in a
manner equivalent to that described above, i.e., by defining the function q(t) ≡
p(t) exp(−iωnt) at discrete values of t = tm = m4t, making the substitutions
ωn = 2πn

/
Tp = 2πn

/
N4t and tm = m4t, and assuming that q0 = qN = 0,

leading finally to

Pn
.
=

1

N

N−1∑

m=1

p(tm) exp
(
− i

2π nm

N

)
n = 0, 1, 2, · · · , (N − 1) (4-10)

4-2 RESPONSE TO THE FOURIER SERIES LOADING

Having expressed the periodic loading as a series of harmonic terms, the response
of a linear system to this loading may be obtained by simply adding up the responses
to the individual harmonic loadings. In Chapter 3 [Eq. (3-10)], it was shown that the
steady-state response produced in an undamped SDOF system by the nth sine-wave
harmonic of Eq. (4-1) (after omitting the transient response term) is given by

vn(t) =
bn
k

[
1

1 − β2
n

]
sinωnt (4-11)

where
βn ≡ ωn

/
ω (4-12)

Similarly, the steady-state response produced by the nth cosine-wave harmonic in
Eq. (4-1) is

vn(t) =
an

k

[
1

1 − β2
n

]
cosωnt (4-13)

Finally, the steady-state response to the constant load a0 is the static deflection

v0 = a0

/
k (4-14)

The total periodic response of the undamped structure then can be expressed as the
sum of the individual responses to the loading terms in Eq. (4-1) as follows:

v(t) =
1

k

{
a0 +

∞∑

n=1

[
1

1 − β2
n

] (
an cosωnt+ bn sinωnt

)
}

(4-15)
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where the load-amplitude coefficients are given by Eqs. (4-3) or Eqs. (4-6).

To take account of viscous damping in evaluating the steady-state response of a
SDOF system to periodic loading, it is necessary to substitute the damped-harmonic-
response expressions of the form of Eq. (3-20) for the undamped expressions used
above. In this case the total steady-state response is given by

v(t) =
1

k

(
a0 +

∞∑

n=1

[
1

(1 − β2
n)2 + (2ξβn)2

]

×
{[

2 ξ an βn + bn (1 − βn)2
]

sinωnt

+
[
an (1 − βn)2 − 2 ξ bn βn

]
cosωnt

})
(4-16)

Example E4-1. As an example of the response analysis of a periodically
loaded structure, consider the system and loading shown in Fig. E4-1. The
loading in this case consists of the positive portion of a simple sine function.
The Fourier coefficients of Eq. (4-1) are found by using Eqs. (4-2) and (4-3) to
obtain

a0 =
1

Tp

∫ Tp/2

0

p
0

sin
2πt

Tp
dt =

p
0

π

an =
2

Tp

∫ Tp/2

0

p
0

sin
2πt

Tp
cos

2π n t

Tp
dt =

{
0 n odd
p
0
π

[
2

1−n2

]
n even

bn =
2

Tp

∫ Tp/2

0

p
0

sin
2πt

Tp
sin

2π n t

Tp
dt =

{ p
0
2 n = 1

0 n > 1

(a)

Substituting these coefficients into Eq. (4-15) leads to the following series ex-
pression for the periodic loading:

p(t) =
p
0

π

(
1+

π

2
sinω1t−

2

3
cos 2ω1t−

2

15
cos 4ω1t−

2

35
cos 6ω1t+ · · ·

)

(b)

c

m

k

FIGURE E4-1
Example analysis of response to periodic loading: (a) SDOF system; (b) periodic loading.
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in which ω1 = 2π
/
Tp.

If it is now assumed that the structure of Fig. E4-1 is undamped, and if,
for example, the period of loading is taken as four-thirds the period of vibration
of the structure, i.e.,

Tp

T
=

ω

ω1
=

4

3
βn =

nω1

ω
=

3

4
n (c)

the steady-state response given by Eq. (4-15) becomes

v(t) =
p
0

k π

(
1 +

8π

7
sinω1t+

8

15
cos 2ω1t+

1

60
cos 4ω1t+ · · ·

)
(d)

If the structure were damped, the analysis would proceed similarly, using Eq. (4-
16) instead of Eq. (4-15).

If the periodic loading is expressed in terms of individual harmonics of the
exponential form of Eq. (4-8), the nth harmonic steady-state response of the viscously
damped SDOF system will be

vn(t) = Hn Pn exp(iωnt) (4-17)

where the complex loading coefficient Pn is given by Eq. (4-9) [or Eq. (4-10)] and
where the complex frequency response coefficient Hn is given by Eq. (3-27) after
dividing by the harmonic load amplitude, i.e.,

Hn =
1

k

[
1

(1 − β2
n) + i (2ξβn)

]
=

1

k

[
(1 − β2

n) − i (2ξβn)

(1 − β2
n)2 + (2ξβn)2

]
(4-18)

Using the principle of superposition again, the total steady-state response of the SDOF
system to the periodic loading of Eq. (4-8) is

v(t) =

∞∑

n=−∞
Hn Pn exp(iωnt) (4-19)

Total response obtained by this equation will, of course, be the same as the total
response obtained through Eq. (4-16).

4-3 PREVIEW OF FREQUENCY-DOMAIN ANALYSIS

It is useful at this time to point out that the above-described response analysis
procedure for a SDOF system subjected to periodic loading contains all the essential
elements of the “frequency-domain” method of analysis. That method is discussed
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extensively in Chapter 6, but its general concepts are evident in the preceding descrip-
tion. The first stage of the process, in which the Fourier coefficients of the periodic
loading are evaluated, may be looked upon as the conversion of the applied loading
expression from the time-domain to the frequency-domain form. In other words,
the values pm = p(tm) which express the applied load at a sequence of times, tm,
are replaced by the complex values Pn = P(iωn) which express the harmonic load
amplitudes at a specified sequence of frequencies, ωn. These values constitute the
frequency-domain expression of the loading.

In the second stage of the analysis, the SDOF response for any given frequency
is characterized by the complex frequency response coefficient, Hn, which expresses
the harmonic response amplitude due to a unit harmonic loading at the frequency ωn.
When this response coefficient is multiplied by the complex Fourier series coefficient
Pn that expresses the harmonic input amplitude at that frequency, the result is the
complex response amplitude, Vn, for that frequency. Thus the complete set of values
Vn for all considered frequencies, ωn, constitute the frequency-domain expression of
system response.

In the final stage of the analysis, the frequency-domain response is converted
back to the time domain by superposing the response components determined for
all of the frequencies included in the Fourier series loading expression. In this
superposition operation, it is necessary to evaluate all of the response harmonics at the
same instants of time, tm, recognizing the relative phase relationships associated with
each frequency. When these response harmonics are added together, the final result is
the time-domain expression of the response history, vm = v(tm). As is explained in
Chapter 6, the analysis task is made computationally feasible by a special computer
technique known as the “Fast Fourier Transform” (FFT); but this brief description
gives the essence of the frequency-domain procedure.

Example E4-2. Consider the periodic loading shown in Fig. E4-2. The
corresponding Fourier coefficients Pn to be used in the SDOF response expres-
sion are

Pn =
p
0

Tp

∫ Tp/2

0

exp
(
−i 2πn

Tp
t
)
dt

Tp

2


Tp 2Tp

FIGURE E4-2
Rectangular-pulse-type periodic 
loading.
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or

Pn =
p
0

Tp

( Tp

i 2π n

) [
exp
(
−i 2πn

Tp
t
)]Tp/2

0

=





p
0
/2 n = 0

0 n odd
−p

0
i
/
π n n even

Making use of these coefficients and the values of Hn directly from Eq. (4-
18), the total response of Eq. (4-19) is obtained.

PROBLEMS

4-1. Express the periodic loading shown in Fig. P4-1 as a Fourier series. Thus,
determine the coefficients an and bn by means of Eqs. (4-3) for the periodic
loading given by

p(t) = p0 sin
3π

Tp
t (0 < t < 2π)

p(t) = 0 (2π < t < 3π)

Then write the loading in the series form of Eq. (4-1).

FIGURE P4-1
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4-2. Repeat Prob. 4-1 for the periodic loading shown in Fig. P4-2.
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4-3. Solve the problem of Example E4-1, assuming that the structure is 10 percent
critically damped.

4-4. Construct an Argand diagram similar to that of Fig. 3-6, showing to scale the
applied load vector and the steady-state inertia, damping, and elastic resisting-
force vectors. Assume the structure has 15 percent critical damping and is
subjected to the harmonic loading term p(t) = p0 exp[iωt], where ω = (6/5)ω

(i.e., β = 6/5). Construct the diagram for the time when ωt = π/4.

4-5. The periodic loading of Fig. P4-3 can be expressed by the sine series

p(t) =
∞∑

n=1

bn sinωnt

where

bn = −2p0

nπ
(−1)n

Plot the steady-state response of the structure of Fig. E4-1a to this loading for
one full period, considering only the first four terms of the series and evaluating
at time increments given by ω14t = 30◦.
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CHAPTER

5
RESPONSE

TO IMPULSIVE
LOADING

5-1 GENERAL NATURE OF IMPULSIVE LOADING

Another special class of dynamic loading of the SDOF system will now be
considered, the impulsive load. Such a load consists of a single principal impulse of
arbitrary form, as illustrated in Fig. 5-1, and generally is of relatively short duration.
Impulsive or shock loads frequently are of great importance in the design of certain
classes of structural systems, e.g., vehicles such as trucks or automobiles or traveling
cranes. Damping has much less importance in controlling the maximum response of a
structure to impulsive loads than for periodic or harmonic loads because the maximum
response to a particular impulsive load will be reached in a very short time, before the
damping forces can absorb much energy from the structure. For this reason only the
undamped response to impulsive loads will be considered in this chapter.

FIGURE 5-1
Arbitrary impulsive loading.
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p(t)

FIGURE 5-2
Half-sine-wave impulse.

t

Phase I Phase II

p0

t1
t = t − t1

5-2 SINE-WAVE IMPULSE

For impulsive loads which can be expressed by simple analytical functions,
closed form solutions of the equations of motion can be obtained. For example,
consider the single half-sine-wave impulse shown in Fig. 5-2. The response to such an
impulse will be divided into two phases as shown, the first corresponding to the forced-
vibration phase in the interval during which the load acts and the second corresponding
to the free-vibration phase which follows.

Phase I — During this phase, the structure is subjected to the single half-sine-
wave loading shown in Fig. 5-2. Assuming the system starts from rest, the undamped
response-ratio time-history R(t) ≡ v(t)

/
(p

0
/k), including the transient as well as

the steady-state term, is given by the simple harmonic load expression, Eq. (3-12).
Introducing the nondimensional time parameter α ≡ t/t1 so that ω t = π α and
ω t = π α

/
β, this equation can be written in the form

R(α) =

[
1

1 − β2

] [
sinπ α− β sin

π α

β

]
0 ≤ α ≤ 1 (5-1)

where β ≡ ω
/
ω = T

/
2t1. This equation is, of course, valid only in Phase I

corresponding to 0 ≤ α ≤ 1. Since it is indeterminate for β = 1, L’Hospital’s rule
must be applied to obtain a useable expression for this special case. Taking this action,
one obtains [by analogy with Eq. (3-38)]

R(α) =
1

2

[
sinπα− πα cosπα

]
β = 1 0 ≤ α ≤ 1 (5-2)

Phase II — The free-vibration motion which occurs during this phase, t ≥ t1,
depends on the displacement v(t1) and velocity v̇(t1) existing at the end of Phase I; in
other words, in terms of the response ratio, it depends on the values of R(1) and Ṙ(1)

given by Eq. (5-1) and its first time derivative expression, respectively. Thus, using
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Eq. (2-33) in its response-ratio form this free-vibration response is shown to be

R(α) =

[ −β
1 − β2

] {(
1+cos

π

β

)
sin

[
π

β
(α− 1)

]
+
(
sin

π

β

)
cos

[
π

β
(α− 1)

]}

α ≥ 1 (5-3)

in which
[

π
β (α− 1)

]
= ω (t− t1). This expression, like Eq. (5-1), is indeterminate

for β = 1, requiring once again the use of L’Hospital’s rule leading to

R(α) =
π

2
cos
[
π (α− 1)

]
β = 1 α ≥ 1 (5-4)

Using Eqs. (5-1) and (5-2) for Phase I and Eqs. (5-3) and (5-4) for Phase II,
response-ratio time-histories can be generated for discrete values of β as illustrated
by the solid lines in Fig. 5-3. The values of β selected for this figure are 1/4, 1/3,
1/2, 1, and 3/2 which correspond to values of t1

/
T equal to 2, 3/2, 1, 1/2, and

1/3, respectively. Also shown for comparison is the dashed line representing the
quasi-static response ratio [p(t)/k]

/
(p

0
/k) = p(t)

/
p
0

which has a peak value equal
to unity. Notice that for t1

/
T = 1/2 (β = 1), the maximum response at Point d

occurs exactly at the end of Phase I. For any value of t1
/
T less than 1/2 (β > 1),

the maximum response will occur in Phase II; while for any value of t1
/
T greater

than 1/2 (β < 1), it will occur in Phase I. Clearly, the maximum value of response
depends on the ratio of the load duration to the period of vibration of the structure,
i.e., on the ratio t1

/
T = 1/2 β.

While it is very important to understand the complete time-history behavior as
shown in Fig. 5-3, the engineer is usually only interested in the maximum value of

Phase I Phase II

t1

FIGURE 5-3
Response ratios due to half-sine pulse.
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response as represented by Points a, b, c, d, and e. If a maximum value occurs in Phase
I, the value of α at which it occurs can be determined by differentiating Eq. (5-1) with
respect to α and equating to zero, thus obtaining

d R(α)

dα
=

[
π

1 − β2

] [
cosπα− cos

πα

β

]
= 0 (5-5)

from which
cosπα = cos

πα

β
(5-6)

This equation is satisfied when

πα = ± πα

β
+ 2πn n = 0,± 1,± 2, · · · (5-7)

Solving for α gives

α =
2β n

(β ± 1)
n = 0,± 1,± 2, · · · (5-8)

which is valid, of course, only when the resulting values of α fall in Phase I, i.e., in the
range 0 ≤ α ≤ 1. As previously shown, this condition is met only when 0 ≤ β ≤ 1.
To satisfy both of these conditions, it is necessary that the positive and negative values
of n be used along with the plus and minus signs, respectively, in Eq. (5-8). Note that
the zero value of n can be dropped from consideration as it yields α = 0 which simply
confirms that the zero-velocity initial condition has been satisfied.

To develop an understanding of the use of Eq. (5-8), let us consider the cases
shown in Fig. 5-3. For the limit-value case β = 1, using the plus sign and n = +1,
one obtains α = 1 which when substituted into Eq. (5-2) yields R(1) = π/2. This
corresponds to Point d in Fig. 5-3. When β = 1/2, Eq. (5-8) has only one valid
solution, namely the solution using the plus sign and n = +1. The resulting α value
is 2/3 which when substituted into Eq. (5-1) gives R(2/3) = 1.73 as shown by Point
c. For β = 1/3, the plus-sign form of Eq. (5-9) gives α = 1/2 and 1 when n = +1

and +2, respectively; when substituted into Eq. (5-1) these yield R(1/2) = 3/2 and
R(1) = 0, as shown in Fig. 5-3 by Points b and f . Note that because Ṙ(1) is zero
in this case, there is no free vibration in Phase II. For the case β = 1/4, two maxima
(Points a and h) and one minimum (Point g) are clearly present in Phase I. Points
a and h correspond to using the plus sign along with n = +1 and +2, respectively,
giving α = 2/5 and 4/5, while Point g corresponds to using the minus sign along
with n = −1 giving α = 2/3. It is now clear that using the plus sign in Eq. (5-8)
along with positive values of n yields α-values for the maxima, while using the minus
sign along with the negative values of n yields α-values for the minima. Substituting
the above values of α into Eq. (5-1) gives R(2/5) = 1.268, R(4/5) = 0.784, and
R(2/3) = 0.693 corresponding to Points a, h, and g, respectively. If one examined
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additional cases by further reducing the value of β, the numbers of maxima and minima
will continue to increase in Phase I with the largest of the maxima changing from the
first (as in the case of β = 1/4) to the second, then to the third, etc. In the limit, as
β → 0, the response-ratio curve will approach the quasi-static response curve shown
by the dashed line in Fig. 5-3 and Rmax will approach unity.

Finally, consider the case β = 3/2 which has its maximum response in Phase II
as indicated by Point e. It is not necessary in this case of free vibration to determine the
value of α corresponding to maximum response because the desired maximum value
is obtained directly by simply taking the vector sum of the two orthogonal components
in Eq. (5-3) giving

Rmax =

[ −β
1 − β2

] [(
1 + cos

π

β

)2

+

(
sin

π

β

)2]1/2

=

[ −β
1 − β2

] [
2

(
1 + cos

π

β

)]1/2

Finally using the trigonometric identity
[
2
(
1 + cos π

β

)]1/2

≡ 2 cos π
2β this may be

written in the following simplified form:

Rmax =

[ −2β

1 − β2

]
cos

π

2β
(5-9)

For the above case of β = 3/2, this expression gives Rmax = 1.2.

5-3 RECTANGULAR IMPULSE

A second example of the analysis of the response to an impulse load will now
make use of the rectangular loading shown in Fig. 5-4. Again the response will be
divided into the loading phase and the subsequent free-vibration phase.

FIGURE 5-4
Rectangular impulse.
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Phase I — The suddenly applied load which remains constant during this phase
is called a step loading. The particular solution to the equation of motion for this case
is simply the static deflection

vp = p
0

/
k Rp = 1 (5-10)

Using this result, the general response-ratio solution, in which the complementary free-
vibration solution constants have been evaluated to satisfy the at-rest initial conditions,
is easily found to be

R(α) =
[
1 − cos 2π

( t1
T

)
α
]

0 ≤ α ≤ 1 (5-11)

where again α ≡ t
/
t1 so that ω t = 2π (t1

/
T )α. The first maximum of this

expression occurs when (t1
/
T )α = 1/2. If it is to occur exactly at the end of Phase

I, i.e., α = 1, then the ratio t1
/
T must equal 1/2; in this case, from Eq. (5-11),

R(1/2) = 2. As t1
/
T continues to increase above 1/2, additional maxima will appear

in Phase I each having the valueRmax = 2. As t1
/
T decreases from 1/2, no maximum

can occur in Phase I in accordance with Eq. (5-11); instead the maximum response
will occur in Phase II under the free-vibration condition.

Phase II — Using Eq. (2-33) in its response-ratio form and applying Eq. (5-11)
to find R(1) and Ṙ(1), the free vibration in this phase is given by

R(α) =
(
1 − cos 2π

t1
T

)
cos
[
2π

t1
T

(α− 1)
]

+
(
sin 2π

t1
T

)
sin
[
2π

t1
T

(α− 1)
]

α ≥ 1 (5-12)

in which
[
2π t1

T (α− 1)
]

= ω (t− t1). Taking the vector sum of the two orthogonal
components in this expression gives

Rmax =

[(
1 − cos 2π

t1
T

)2

+

(
sin 2π

t1
T

)2]1/2

=

[
2

(
1 − cos 2π

t1
T

)]1/2

= 2 sin π
t1
T

(5-13)

showing that the maximum response to the rectangular impulse varies as a sine function
for 0 ≤ t1

/
T ≤ 1/2.

5-4 TRIANGULAR IMPULSE

The last impulse loading to be analyzed in detail is the decreasing triangular
impulse shown in Fig. 5-5.
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FIGURE 5-5
Triangular impulse.

t

p(t)

Phase I Phase II

p0

t1
t = t − t1

Phase I — The loading during this phase is p
0

(
1 − t

t1

)
for which it is easily

demonstrated that the particular solution to the equation of motion, in its response-ratio
form, is

Rp(t) = (1 − α) 0 ≤ α ≤ 1 (5-14)

in which α = t
t1

. Combining this solution with the complementary free-vibration
solution and evaluating its constants to satisfy the zero initial conditions, one finds

R(α) =
( 1

2π t1
T

)
sin 2π

t1
T
α− cos 2π

t1
T
α− α+ 1 0 ≤ α ≤ 1 (5-15)

Taking the first time derivative of this expression and setting it to zero, one can show
that the first maximum will occur exactly at the end of Phase I (i.e., at α = 1), when
t1
/
T = 0.37101. Substituting this value into Eq. (5-15) gives R(0.37101) = 1.

For values of t1
/
T > 0.37101, the maximum response will be in Phase I and can

be obtained from Eq. (5-15) upon substitution of the proper α-value representing the
zero-velocity condition.

Phase II — When t1
/
T < 0.37101, the maximum response will be the free-

vibration amplitude in Phase II. It is found in the same manner as in the previous cases
by substituting R(1) and Ṙ(1) obtained from Eq. (5-15) and its first time derivative
expression, respectively, into the response-ratio form of the free-vibration response
given by Eq. (2-33). The maximum response is then the vector sum of the two
orthogonal components in the resulting free-vibration equation.

5-5 SHOCK OR RESPONSE SPECTRA

In the expressions derived above, the maximum response produced in an un-
damped SDOF structure by each type of impulsive loading depends only on the ratio
of the impulse duration to the natural period of the structure, i.e., on the ratio t1

/
T .

Thus, it is useful to plot the maximum value of response ratio Rmax as a function of
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FIGURE 5-6
Displacement-response spectra (shock spectra) for three types of impulse.
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t1
/
T for various forms of impulsive loading. Such plots, shown in Fig. 5-6 for the

three forms of loading treated above, are commonly known as displacement-response
spectra, or merely as response spectra. Generally plots like these can be used to
predict with adequate accuracy the maximum effect to be expected from a given type
of impulsive loading acting on a simple structure.

These response spectra also serve to indicate the response of the structure to
an acceleration pulse applied to its base. If the applied base acceleration is v̈g(t),
it produces an effective impulsive loading peff = −mv̈g(t) [see Eq. (2-17)]. If the
maximum base acceleration is denoted by v̈g0, the maximum effective impulsive load
is p

0,max = −mv̈g0. The maximum response ratio can now be expressed as

Rmax =

∣∣∣∣
vmax

mv̈g0

/
k

∣∣∣∣ (5-16)

in which only the absolute magnitude is generally of interest. Alternatively, this
maximum response ratio can be written in the form

Rmax =
∣∣∣ v̈t

max

/
v̈g0

∣∣∣ (5-17)

where v̈t
max is the maximum total acceleration of the mass. This follows from the fact

that in an undamped system, the product of the mass and the total acceleration must
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be equal in magnitude to the elastic spring force k vmax. Accordingly, it is evident
that the response spectrum plots of Fig. 5-6 can be used to predict the maximum
acceleration response of massm to an impulsive acceleration as well as the maximum
displacement response to impulsive loads. When used to predict response to base
acceleration, the plots are generally referred to as shock spectra.

Example E5-1. As an example of the use of the above described response
(or shock) spectra in evaluating the maximum response of a SDOF structure to
an impulsive load, consider the system shown in Fig. E5-1, which represents a
single-story building subjected to the triangular blast load. For the given weight
and column stiffness of this structure, the natural period of vibration is

T =
2π

ω
= 2π

√
W

kg
= 2π

√
600

10, 000 (386)
= 0.079 sec

The ratio of impulse duration to natural period becomes

t1
T

=
0.05

0.079
= 0.63

and from Fig. 5-6, the maximum response ratio is Rmax = 1.33. Thus, the
maximum displacement will be

vmax = Rmax
(p

0

k

)
= 1.33

( 1, 000

10, 000

)
= 0.133 in [0.338 cm]

and the maximum total elastic force developed is

fS,max = k vmax = 10, 000 (1.33) = 1, 330 kips [603, 300 kg]

t1 = 0.05 sec

FIGURE E5-1
SDOF building subjected to blast load.

Total weight = 600 kips

Elastic resistance
fS = kv

Total lateral
stiffness:

k = 10,000 kips ⁄ in 1,000 kips

t

p(t)
Blast load p(t)
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If the blast-pressure impulse had been only one-tenth as long (t1 =

0.005 sec), the maximum response ratio for this impulse duration
(
t1
/
T =

0.063
)

would be only Rmax = 0.20. Thus for an impulse of very short-
duration, a large part of the applied load is resisted by the inertia of the structure,
and the stresses produced are much smaller than those produced by loadings of
longer duration.

It should be kept in mind that although the response (or shock) spectra described
above have been developed for the undamped SDOF system, they can be used for
damped systems as well since damping in the practical range of interest has little
effect on the maximum response produced by short-duration impulsive loads.

5-6 APPROXIMATE ANALYSIS OF IMPULSIVE-LOAD
RESPONSE

From a study of the response spectra presented in Fig. 5-6 and similar spectra
for other forms of loadings, two general conclusions may be drawn concerning the
response of structures to impulsive loadings:

(1) For long-duration loadings, for example, t1
/
T > 1, the dynamic magnification

factor depends principally on the rate of increase of the load to its maximum
value. A step loading of sufficient duration produces a magnification factor of
2; a very gradual increase causes a magnification factor of 1.

(2) For short-duration loads, for example, t1
/
T < 1/4, the maximum displacement

amplitude vmax depends principally upon the magnitude of the applied impulse
I =

∫ t1
0
p(t) dt and is not strongly influenced by the form of the loading

impulse. The maximum response ratioRmax is, however, quite dependent upon
the form of loading because it is proportional to the ratio of impulse area to
peak-load amplitude, as may be noted by comparing the curves of Fig. 5-6 in
the short-period range. Thus vmax is the more significant measure of response.

A convenient approximate procedure for evaluating the maximum response to
a short-duration impulsive load, which represents a mathematical expression of this
second conclusion, may be derived as follows. The impulse-momentum relationship
for the mass m may be written

m 4v̇ =

∫ t1

0

[
p(t) − k v(t)

]
dt (5-18)

in which 4v̇ represents the change of velocity produced by the loading. In this
expression it may be observed that for small values of t1 the displacement developed
during the loading v(t1) is of the order of (t1)

2 while the velocity change 4v̇ is of
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the order of t1. Thus since the impulse is also of the order of t1, the elastic force term
k v(t) vanishes from the expression as t1 approaches zero and is negligibly small for
short-duration loadings.

On this basis, the approximate relationship may be used:

m 4v̇ .
=

∫ t1

0

p(t) dt (5-19)

or

4v̇ =
1

m

∫ t1

0

p(t) dt (5-20)

The response after termination of loading is the free vibration

v(t) =
v̇(t1)

ω
sinωt+ v(t1) cosωt

in which t = t− t1. But since the displacement term v(t1) is negligibly small and the
velocity v̇(t1) = 4v̇, the following approximate relationship may be used:

v(t)
.
=

1

mω

(∫ t1

0

p(t) dt

)
sinωt (5-21)

Example E5-2. As an example of the use of this approximate formula,
consider the response of the structure shown in Fig. E5-2 to the impulsive loading

indicated. In this case, ω =
√
kg
/
W = 3.14 rad/sec and

∫ t1
0
p(t) dt =

10 kip · sec. The response then is approximately

v(t) =
10 (386)

2, 000 (3.14)
sinωt

W =
2,000 kips

51.1 kips ⁄ in

v

p(t)

p(t)

p0 = 50 kips

t, sec
t1

0.1 0.1 0.1

FIGURE E5-2
Approximate impulse-response analysis.
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in which the acceleration of gravity is taken as g = 386 in/sec2

[980.7 cm/sec2]. The maximum response results when sinωt = 1, that is,

vmax
.
= 0.614 in [1.56 cm]

The maximum elastic force developed in the spring, which is of major concern
to the structural engineer, is

fS,max = k vmax = 51.1 (0.614) = 31.4 kips [14, 240 kg]

Since the period of vibration of this system is T = 2π/ω = 2 sec, the ratio
of load duration to period is t1

/
T = 0.15; thus, the approximate analysis in

this case is quite accurate. In fact, the exact maximum response determined by
direct integration of the equation of motion is 0.604 in [1.53 cm], and so the
error in the approximate result is less than 2 percent.

PROBLEMS

5-1. Consider the basic dynamic system of Fig. 2-1a with the following properties:
W = 600 lb (m = W/g) and k = 1, 000 lb/in. Assume that it is subjected
to a half sine-wave impulse (Fig. 5-2) of amplitude p0 = 500 lb and duration
t1 = 0.15 sec. Determine:

(a) The time at which the maximum response will occur.
(b) The maximum spring force produced by this loading; check this result

with that obtained by use of Fig. 5-6.

5-2. A triangular impulse that increases linearly from zero to the peak value is
expressed as p(t) = p0(t/t1) (0 < t < t1).

(a) Derive an expression for the response of a SDOF structure to this laoding,
starting from “at rest” conditions.

(b) Determine the maximum response ratio

Rmax =
vmax
p0/k

resulting from this loading if t1 = 3π/ω.

5-3. A quarter cosine-wave impulse is expressed as

p(t) = p0 cosωt 0 < t <
π

2ω

(a) Derive an expression for the response to this impuse, starting from rest.
(b) Determine the maximum response ratio

Rmax =
vmax
p0/k

if ω = ω
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5-4. The basic SDOF system of Fig. 2-1a, having the following properties, k =

20 kips/in and m = 4 kips · sec2/in, is subjected to a triangular impulse of
the form of Fig. 5-5 with p0 = 15 kips and t1 = 0.15 T .

(a) Using the shock spectra of Fig. 5-6, determine the maximum spring force
fSmax .

(b) Using Eq. (5-21), compute approximately the maximum displacement and
spring force; compare with the result of part a.

5-5. The water tank of Fig. P5-1a can be treated as a SDOF structure with the
following properties: m = 4 kips · sec2/in, k = 40 kips/in. As a result of an
explosion, the tank is subjected to the dynamic-load history shown in Fig. P5-
1b. Compute approximately the maximum overturning moment M0 at the base
of the tower using Eq. (5-21) and evaluating the impulse integral by means of
Simpson’s rule:

∫
p dt =

4t
3

(p0 + 4p1 + 2p2 + 4p3 + p4)

FIGURE P5-1
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CHAPTER

6
RESPONSE

TO GENERAL
DYNAMIC
LOADING:

SUPERPOSITION
METHODS

6-1 ANALYSIS THROUGH THE TIME DOMAIN

Formulation of Response Integral

Undamped System — The procedure described in Chapter 5 for approximating
the response of an undamped SDOF structure to short-duration impulsive loads can be
used as the basis for developing a formula for evaluating response to a general dynamic
loading. Consider an arbitrary general loading p(t) as illustrated in Fig. 6-1 and, for
the moment, concentrate on the intensity of loading p(τ) acting at time t = τ . This

FIGURE 6-1
Derivation of the Duhamel 
integral (undamped).

t

(t − τ ) ≥ 0

(t − τ )

τ

p(t)

p(τ)

dτ
dv(t)

Response dv(t)

87
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loading acting during the interval of time dτ represents a very short-duration impulse
p(τ) dτ on the structure, so that Eq. (5-21) can be used to evaluate the resulting
response. It should be noted carefully that although this equation is approximate for
impulses of finite duration, it becomes exact as the duration of loading approaches
zero. Thus, for the differential time interval dτ , the response produced by the impulse
p(τ) dτ is exactly equal to

dv(t) =
p(τ) dτ

mω
sinω (t− τ) t ≥ τ (6-1)

In this expression, the term dv(t) represents the time-history response to the differential
impulse over the entire time t ≥ τ ; it is not the change of v during a time interval d t.

The entire loading history can be considered to consist of a succession of such
short impulses, each producing its own differential response of the form of Eq. (6-1).
For this linearly elastic system, the total response can then be obtained by summing all
the differential responses developed during the loading history, that is, by integrating
Eq. (6-1) as follows:

v(t) =
1

m ω

∫ t

0

p(τ) sinω (t− τ) dτ t ≥ 0 (6-2)

This relation, generally known as the Duhamel integral equation, can be used to
evaluate the response of an undamped SDOF system to any form of dynamic loading
p(t); however, for arbitrary loadings the evaluation must be performed numerically
using procedures described subsequently.

Equation (6-2) can also be expressed in the general convolution integral form:

v(t) =

∫ t

0

p(τ) h(t− τ) dτ t ≥ 0 (6-3)

in which the function

h(t− τ) =
1

mω
sinω (t− τ) (6-4)

is known as the unit-impulse response function because it expresses the response of the
SDOF system to a pure impulse of unit magnitude applied at time t = τ . Generating
response using the Duhamel or convolution integral is one means of obtaining response
through the time domain. It is important to note that this approach may be applied
only to linear systems because the response is obtained by superposition of individual
impulse responses.

In Eqs. (6-1) and (6-2) it has been tacitly assumed that the loading was initiated
at time t = 0 and that the structure was at rest at that time. For any other specified
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initial conditions v(0) 6= 0 and v̇(0) 6= 0, the additional free-vibration response must
be added to this solution; thus, in general

v(t) =
v̇(0)

ω
sinωt+ v(0) cosωt+

1

mω

∫ t

0

p(τ) sinω (t− τ) dτ (6-5)

Should the nonzero initial conditions be produced by known loading p(t) for t < 0,
the total response given by this equation could also be found through Eq. (6-2) by
changing the lower limit of the integral from zero to minus infinity.

Under-Critically-Damped System — The derivation of the Duhamel integral
equation which expresses the response of a viscously damped system to a general
dynamic loading is entirely equivalent that for the undamped case, except that the
free-vibration response initiated by the differential load impulse p(τ) dτ experiences
exponential decay. By expressing Eq. (2-49) in terms of t − τ rather than t, and
substituting zero for v(0) and p(τ) dτ

/
m for v̇(0), one obtains the damped differential

response

dv(t) =

[
p(τ) dτ

mωD

sinωD (t− τ)

]
exp
[
−ξ ω (t− τ)

]
t ≥ τ (6-6)

showing that the exponential decay begins as soon as the load p(τ) is applied. Sum-
ming these differential response terms over the loading interval 0 < τ < t results
in

v(t) =
1

mωD

∫ t

0

p(τ) sinωD (t− τ) exp
[
−ξ ω (t− τ)

]
dτ t ≥ 0 (6-7)

which is the damped-response equivalent of Eq. (6-2).

When expressing Eq. (6-7) in terms of the convolution integral of Eq. (6-4), the
damped unit-impulse response function

h(t− τ) =
1

mωD

sinωD (t− τ) exp
[
−ξ ω (t− τ)

]
(6-8)

must be used. If the initial conditions v(0) and v̇(0) are not equal to zero, then the
corresponding free-vibration response given by Eq. (2-49) must be added to Eq. (6-7).

Numerical Evaluation of Response Integral

Undamped System — If the applied-loading function p(τ) is of simple analytic
form, then the integrals in Eqs. (6-2) and (6-7) can be evaluated directly. However,
this usually is not possible in most practical cases as the loading is known only
from experimental data. The response integrals must then be evaluated by numerical
procedures.
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To develop these procedures, use is made of the trigonometric identity

sin(ωt− ωτ) =
[
sinωt cosωτ − cosωt sinωτ

]
(6-9)

so that Eq. (6-2), which assumes zero initial conditions, can be written as

v(t) = sinωt

[
1

mω

∫ t

0

p(τ) cosωτ dτ

]
− cosωt

[
1

mω

∫ t

0

p(τ) sinωτ dτ

]

or

v(t) =
[
A(t) sinωt−B(t) cosωt

]
(6-10)

where

A(t) ≡ 1

mω

∫ t

0

p(τ) cosωτ dτ B(t) ≡ 1

mω

∫ t

0

p(τ) sinωτ dτ (6-11)

Numerical procedures, which can be used to evaluate A(t) and B(t), will now be
described.

Consider first the numerical integration of y(τ) ≡ p(τ) cosωτ as required to
find A(t). For convenience of numerical calculation, the function y(τ) is evaluated at
equal time increments 4τ as shown in Fig. 6-2, with the successive ordinates being
identified by appropriate subscripts. The integral AN ≡ A(t = N 4t) can now be
obtained approximately by summing these ordinates, after multiplying by weighting

τ

τ

τ
FIGURE 6-2
Formulation of numerical summation 
process for Duhamel integral.

p0 p1 p2
p3 p4

p5 p6

∆τ ∆τ ∆τ ∆τ ∆τ ∆τ

t0 t1 t2 t3 t4

t5 t6

p(τ)

cos ωτ

y(τ) = p(t) cos ωτ

y0 y1 y2

y3 y4

y5 y6
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factors that depend on the numerical integration scheme being used as follows:

Simple summation:

AN
.
= 4τ

m ω

[
y0 + y1 + y2 + · · · + yN−1

]
N = 1, 2, 3, · · · (6-12a)

Trapezoidal rule:

AN
.
= 4τ

2 m ω

[
y0 + 2 y1 + 2 y2 + · · · + 2 yN−1 + yN

]
N = 1, 2, 3, · · · (6-12b)

Simpson’s rule:

AN
.
= 4τ

3 m ω

[
y0 + 4 y1 + 2 y2 + · · · + 4 yN−1 + yN

]
N = 2, 4, 6, · · · (6-12c)

Using any one of these equations, AN can be obtained directly for any specific value
of N indicated. However, usually the entire time-history of response is required so
that one must evaluate AN for successive values of N until the desired time-history
of response is obtained. For this purpose, it is more efficient to use these equations in
their recursive forms:

Simple summation:

AN
.
= AN−1 + 4τ

m ω

[
yN−1

]
N = 1, 2, 3, · · · (6-13a)

Trapezoidal rule:

AN
.
= AN−1 + 4τ

2 m ω

[
yN−1 + yN

]
N = 1, 2, 3, · · · (6-13b)

Simpson’s rule:

AN
.
= AN−2 + 4τ

3 m ω

[
yN−2 + 4 yN−1 + yN

]
N = 2, 4, 6, · · · (6-13c)

such that A0 = 0.

Evaluation of B(t) in Eq. (6-10) can be carried out in the same manner, leading
to expressions for BN having exactly the same forms shown by Eqs. (6-13); however,
in doing so, the definition of y(τ) must be changed to y(τ) ≡ p(τ) sinωτ consistent
with the second of Eqs. (6-11). Having calculated the values of AN and BN for
successive values of N , the corresponding values of response vN ≡ v (t = N 4τ)
are obtained using

vN = AN sinωtN −BN cosωtN (6-14)

Example E6-1. The dynamic response of a water tower subjected to a
blast loading will now be presented to illustrate the above numerical procedure
for obtaining undamped response through the time domain in accordance with
Eq. (6-14). The idealizations of the structure and blast loading are shown in
Fig. E6-1. For this system, the vibration frequency and period are

ω =

√
kg

W
=

√
2, 700 (32.2)

96.6
= 30 rad/sec T =

2π

ω
= 0.209 sec
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FIGURE E6-1
Water tower subjected to blast load.

p(t)W = 96.6 kips

Loading history

t

96.6 kips

0.025 sec 0.025 sec

v(t)

p(t)

k = 2,700 kips ⁄ ft

fS

The time increment used in the numerical integration is 4τ = 0.005 sec, which
corresponds to an angular increment in free vibrations of ω4τ = 0.15 rad

(probably a somewhat longer increment would give equally satisfactory results).
In this analysis, Simpson’s-rule summation as given by Eq. (6-13c) is used.

An evaluation of response over the first 10 time steps is presented in a
convenient tabular format in Table E6-1. The operations performed in each
column are generally apparent from the labels at the top; however, a few brief
comments may be helpful as follows: (a) Columns (4) through (10) are used to
evaluate AN

/
F (where F ≡ 4t/3mω) in accordance with Eq. (6-13c) using

yN ≡ p
N

cosωtN . (b) Columns (11) through (17) are used to evaluate BN

/
F

in accordance with its equivalence of Eq. (6-13c). (c) Columns (18) through
(21) are used to evaluate vN in accordance with Eq. (6-14). (d) The last column
is used to evaluate the spring force fSN

= k vN . (e) The multiplication factor
M2 = 1 need not be shown in Table E6-1; however, it is entered for later
comparison with M2 6= 1 as required in the damped-response solution.

Since the blast loading terminates at the end of the first 10 time steps, the
values ofA andB remain constant after time t = 0.050. If these constant values
are designatedA

∗
andB

∗
, the free vibrations which follow the blast loading are

given by
v(t) = A

∗
sinωt−B

∗
cosωt

in accordance with Eq. (6-10). The amplitude of this motion is

vmax =
[
(A

∗
)2 + (B

∗
)2
]1/2

In the above example, A
∗

= 1026F = 0.0190 ft [0.579 cm] and B
∗

=

956F = 0.0177 ft [0.539 cm] [see Columns (10) and (17) for N = 10] so that
vmax = 0.0260 ft [0.792 cm] and fSmax = 70.2 kips [31, 840 kg].
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The above example solution could have been obtained by formal integration of
the Duhamel integral since the loading is of very simple form; however, in practice,
one would normally obtain the solution numerically as computer programs are readily
available for this purpose.

Under-Critically-Damped System — For numerical evaluation of the response
of a damped system, Eq. (6-7) can be written in a form similar to Eq. (6-10) as given
by

v(t) = A(t) sinωDt−B(t) cosωDt (6-15)

in which

A(t) ≡ 1

mωD

∫ t

0

p(τ)
exp(ξωτ)

exp(ξωt)
cosωDτ dτ

B(t) ≡ 1

mωD

∫ t

0

p(τ)
exp(ξωτ)

exp(ξωt)
sinωDτ dτ

(6-16)

These integral expressions can be evaluated by an incremental summation procedure
equivalent to that used previously for the undamped system, but one must now account
for the exponential decay behavior caused by damping. To illustrate, the first of
Eqs. (6-16) can be written in the approximate recursive forms

Simple summation:

AN
.
=AN−1 exp(−ξ ω4τ) + 4τ

m ωD
yN−1 exp(−ξ ω4τ)

N = 1, 2, 3, · · · (6-17a)

Trapezoidal rule:

AN
.
=AN−1 exp(−ξ ω4τ) + 4τ

2 m ωD

[
yN−1 exp(−ξ ω4τ) + yN

]

N = 1, 2, 3, · · · (6-17b)

Simpson’s rule:

AN
.
=AN−2 exp(−2 ξ ω4τ)

+ 4τ
3 m ωD

[
yN−2 exp(−2 ξ ω4τ) + 4 yN−1 exp(−ξ ω4τ) + yN

]

N = 2, 4, 5, · · · (6-17c)

which are equivalent to the undamped-response forms of Eqs. (6-13), but with the
exponential decay terms added to account for damping. It should be recognized that
in this damped case y1 ≡ p

1
cosωDt1, y2 ≡ p

2
cosωDt2, etc., differing from the

undamped case where they were defined as y1 ≡ p
1

cosωt, y2 ≡ p
2

cosωt, etc.
However, for small values of damping ω .

= ωD, so these latter terms generally can be
used for the damped case as well.
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The expressions for BN are identical in form to those given for AN in Eqs. (6-
17); however, one must use y1 ≡ p

1
sinωDt, y2 ≡ p

2
sinωDt, etc.

Having calculated the values of AN and BN for successive values of N , the
corresponding ordinates of response are obtained using

vN = AN sinωDtN −BN cosωDtN (6-18)

The accuracy to be expected from any of the above numerical procedures de-
pends, of course, on the duration of time interval 4τ . In general, this duration must
be selected short enough for both the load and the trigonometric functions used in the
analysis to be well defined, and further, to provide the normal engineering accuracy,
it should also satisfy the condition 4τ ≤ T/10. Clearly the accuracy and compu-
tational effort increase with the complexity of the numerical integration procedure.
Usually, the increased accuracy obtained using Simpson’s rule, rather than the simple
summation or trapezoidal rule, justifies its use, even though it is more complex.

Example E6-2. To demonstrate how damping can be included in the nu-
merical evaluation of the Duhamel integral, the response analysis of the system
of Fig. E6-1 has been repeated using a damping ratio of 5 percent (ξ = 0.05).
The integrals have been evaluated using the Simpson’s-rule integration proce-
dure given by Eq. (6-17c) and its counterpart expression forBN . For this lightly
damped system, the damped frequency has been assumed to be the same as the
undamped frequency.

An evaluation of response over the first 18 time steps is presented in Table
E6-2. The operations are quite apparent from the labels at the top; however,
comments similar to those made for the undamped case may be helpful as
follows: (a) Columns (4) through (10) are used to evaluateAN

/
F , in accordance

with Eq. (6-17c), using yN ≡ p
N

cosωtN . (b) Columns (11) through (17) are
used to evaluate BN

/
F in accordance with its equivalent form of Eq. (6-17c),

using yN ≡ p
N

sinωtN . (c) Columns (18) through (21) are used to evaluate
vN in accordance with Eq. (6-18). (d) The last column is used to evaluate the
spring force fSN

= k vN .

Notice that the numerical analysis procedure in Table E6-2 continues
into the damped free-vibration Phase II (tN ≥ 0.050 sec) stopping at tN =

0.090 sec. As shown in columns (21) and (22), the maximum response is
reached very near to tN = 0.080 sec with vmax

.
= 0.024 ft [0.732 cm] and

fSmax
.
= 64.8 kips [29, 390 kg].
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FIGURE E6-2
Response of water tower to blast load.
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Plots of the time-histories of spring-force response for the undamped and damped
cases treated in Examples E6-1 and E6-2, respectively, are shown in Fig. E6-2, along
with the time-history of the blast loading. Notice that the maximum response for
the damped case is only slightly less than that for the undamped case. This is clear
evidence that damping in the practical range of interest has only a small influence on the
maximum response produced by short-duration impulsive loads. One should realize,
however, that damping has a very large influence on maximum response produced by
arbitrary oscillatory loadings as will be shown later in Section 6-2. In such cases, it is
essential that damping effects be included in the numerical solution of response.

6-2 ANALYSIS THROUGH THE FREQUENCY DOMAIN

As shown in Section 6-1, the time-domain analysis procedure can be used to
determine the response of any linear SDOF system to any arbitrary loading, even if
highly oscillatory. It is sometimes more convenient, however, to perform the analysis
in the frequency domain as will be shown subsequently. Furthermore, when the
equation of motion contains parameters which might be frequency dependent, such
as stiffness k or damping c, the frequency-domain approach is much superior to the
time-domain approach. The purpose of this section is to develop continuous and
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discrete integral formulations of the frequency-domain approach and then to establish
numerical procedures for evaluating the response to arbitrary loadings.

Fourier Response Integral

The general frequency-domain approach is similar in concept to the periodic-
load-analysis procedure as was mentioned in Chapter 4. Both procedures involve
expressing the applied loading in terms of harmonic components, evaluating the
response of the structure to each component, and then superposing the harmonic
responses to obtain total structural response. However, to apply the periodic-loading
technique to arbitrary loadings, it obviously is necessary to extend the Fourier series
concept so that it will actually represent nonperiodic functions. In doing so, the Fourier
series representations in exponential form, Eqs. (4-8) and (4-9), will be used.

Consider, for example, the arbitrary nonperiodic loading shown by the solid line
in Fig. 6-3. If one attempted to represent this function by Eq. (4-8), after obtaining
coefficients Pn by integrating Eq. (4-9) over an arbitrary time interval 0 < t < Tp,
the resulting representation would be a periodic function as shown in the figure by
both the solid and dashed lines. It is apparent, however, that the spurious repetitive
dashed-line loadings can be eliminated by letting Tp → ∞. Toward this end, it is
convenient to express Eqs. (4-8) and (4-9) in slightly modified forms by introducing
the following:

1

Tp
=
ω1

2π
≡ 4ω

2π
nω1 = n4ω ≡ ωn Pn Tp ≡ P (iωn) (6-19)

Taking this action, the Fourier series expressions Eqs. (4-8) and (4-9) become

p(t) =
4ω
2π

∞∑

n=−∞
P(iωn) exp(iωnt) (6-20)

P(iωn) =

∫ Tp/2

−Tp/2

p(t) exp(−iωnt) dt (6-21)

p(t)

FIGURE 6-3
Arbitrary loading represented by Fourier series.
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after taking advantage of the fact that the limits of the integral in Eq. (4-9) are arbitrary
so long as they span exactly one loading period Tp.

If the loading period is extended to infinity (Tp → ∞), the frequency increment
becomes an infinitesimal (4ω → dω) and the discrete frequencies ωn become a
continuous function of ω. Thus, in the limit, the Fourier series expressions (6-20) and
(6-21) take the integral forms

p(t) =
1

2π

∫ ∞

−∞
P(iω) exp(iωt) dω (6-22)

P(iω) =

∫ ∞

−∞
p(t) exp(−iωt) dt (6-23)

which are known as the inverse and direct Fourier transforms, respectively. Using the
direct Fourier transform, the arbitrary loading p(t) can be expressed as an infinite sum
of harmonics having known complex amplitudes. The function P(iω)

/
2π represents

the complex amplitude intensity at frequency ω per unit of ω. A necessary condition
for the direct Fourier transform to exist is that the integral

∫∞
−∞ |p(t)| dt be finite.

Clearly, this is satisfied as long as the loading p(t) acts over a finite period of time.

By analogy with the Fourier series expression of Eq. (4-19), the total response
v(t) of the linearly viscously-damped SDOF system is

v(t) =
1

2π

∫ ∞

−∞
H(iω) P(iω) exp(iωt) dω (6-24)

The complex frequency response function H(iω) takes the equivalent form of Eq. (4-
18) as given by

H(iω) =
1

k

[
1

(1 − β2) + i (2ξβ)

]
=

1

k

[
(1 − β2) − i (2ξβ)

(1 − β2)2 + (2ξβ)2

]
(6-25)

where β ≡ ω
/
ω. Solution of Eq. (6-24) is known as obtaining response through the

frequency domain.

Example E6-3. As an example of obtaining response through the fre-
quency domain, consider the rectangular impulse loading of Fig. 5-4: p(t) = p

0

in the interval 0 < t < t1, with zero loading otherwise. The direct Fourier
transform [Eq. (6-23)] of this load function is

P(iω) =
p
0

−iω
[
exp(−iωt) − 1

]
(a)
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Substituting this load expression together with the complex-frequency-response
expression of Eq. (6-25) into Eq. (6-24) leads to response in the integral form

v(t) =
iωD

2πk

[∫ ∞

−∞

exp[−iωβ (t1 − t)]

β (β − γ1) (β − γ2)
dβ −

∫ ∞

−∞

exp[iωβt]

β (β − γ1) (β − γ2)
dβ

]

(b)

where
γ1 = ξ i+

√
1 − ξ2 γ2 = ξ i−

√
1 − ξ2 (c)

The two integrals of Eq. (b) can be evaluated by contour integration in the
complex β plane, giving for the case 0 < ξ < 1

v(t) = 0 t ≤ 0

v(t) =
p
0

k

[
1 − exp(−ξωt)

(
cosωDt+

ξ√
1 − ξ2

sinωDt
)]

0 ≤ t ≤ t1

v(t) =
p
0

k
exp[−ξω (t− t1)]

×
{[

exp(−ξωt1)
(
sinωDt1 −

ξ√
1 − ξ2

cosωDt1
)

+
ξ√

1 − ξ2

]

× sinωD (t− t1)

+
[
1 − exp(−ξωt1)

(
cosωDt1 +

ξ√
1 − ξ2

sinωDt1
)]

× cosωD (t− t1)

}
t ≥ t1 (d)

Formal application of the frequency-domain-analysis procedure, as illustrated in
the above example, is limited to cases for which the Fourier integral transforms of the
applied-loading functions are available, and even in these cases the evaluation of the
integrals can be a tedious process. Thus to make the procedure practical, it is necessary
to formulate it in terms of a numerical-analysis approach. This formulation requires
(1) expressing both the direct and inverse Fourier integral transforms in convenient
approximate forms and (2) developing effective and efficient numerical techniques for
evaluating these forms.

Discrete Fourier Transforms (DFT)

To be practical, the Fourier integral transforms of Eqs. (6-22) and (6-23) must be
expressed in their approximate Fourier series forms given by Eqs. (4-8) and (4-9) but,
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for effective evaluation, they should be converted to different, but equivalent, forms.
First, consider Eq. (4-9) in its form

Pn =
1

Tp

∫ Tp

0

p(t) exp(−iωnt) dt n = 0,± 1,± 2, · · · (6-26)

in which ωn = n4ω = n 2π
/
Tp. Dividing the period Tp into N equal intervals 4t

(Tp = N 4t), evaluating the ordinates of the function q(t) ≡ p(t) exp(−iωnt) at
discrete values of t = tm = m4t (m = 0, 1, 2, · · · , N ) denoted by q0, q1, q2, · · · , qN ,
and then applying the trapezoidal rule of integration as given in Eq. (6-12b), the above
expression for Pn can be written in the approximate form

Pn
.
=

1

N 4t

{
4t
[
q0
2

+
(N−1∑

m=1

qm

)
+
qN
2

]}
(6-27)

Considering times at the beginning and end of the loading period (t = 0 and t = Tp) so
that q0 = qN = 0 as shown in Fig. 6-3, and making the substitutionsωn = 2π n

/
Tp =

2π n
/
N 4t and tm = m4t, Eq. (6-27) becomes

Pn
.
=

1

N

N−1∑

m=1

p(tm) exp
(
−i2π nm

N

)
n = 0, 1, 2, · · · , (N − 1) (6-28)

Now consider Eq. (4-8) in its form

p(t) =

∞∑

n=−∞
Pn exp(iωnt) (6-29)

It is convenient and acceptable, as far as engineering accuracy is concerned, to limit
the discrete frequencies to a finite range −M 4ω ≤ ωn ≤ M 4ω corresponding to
−M ≤ n ≤ M . Introducing these finite limits into Eq. (6-29), making the same
substitutions mentioned above, and letting t = tm, one obtains

p(tm)
.
=

M∑

n=−M

Pn exp
(
i
2π nm

N

)
(6-30)

The summation in this equation can be separated into two parts; the first part summing
from −M to −1 and the second part summing from zero to M . The first part can be
modified as

−1∑

n=−M

Pn exp
(
i
2π nm

N

)
=

−1∑

n=−M

Pn+N exp
(
i
2π (n+N)m

N

)
(6-31)
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since each term is periodic over intervals n = N . Substituting Z ≡ n + N and
M ≡ (N − 1)

/
2 into the right hand side of this equation and combining the resulting

expression with the second part of Eq. (6-30) as defined above, the complete Eq. (6-30)
becomes

p(tm)
.
=

2M∑

Z=M+1

PZ exp
(
i
2π Z m

N

)
+

M∑

n=0

Pn exp(i
2π nm

N

)
(6-32)

or

p(tm)
.
=

2M∑

n=0

Pn exp
(
i
2π nm

N

)
(6-33)

Noting that 2M = N − 1, Eq. (6-33) can be expressed as

p(tm)
.
=

N−1∑

n=0

Pn exp
(
i
2π nm

N

)
m = 0, 1, 2, · · · , N − 1 (6-34)

Equations (6-28) and (6-34) are the discrete Fourier transform (DFT) equations which
are in convenient forms for solution by numerical procedures. It should be recognized
that both of these transforms are periodic; Eq. (6-28) has a period n = N and Eq. (6-
34) a periodm = N . Further, it should be recognized that the quantity p(tm) is simply
the ordinate to the function p(t) at time t = tm; while Pn is the complex amplitude of
the discrete harmonic at frequency ωn.

Fast Fourier Transforms (FFTs)

The Fast Fourier Transform, which allows very efficient and accurate evaluations
of the discrete Fourier transforms, is based on an algorithm developed by Cooley and
Tukey.1 Since the algorithm is used in exactly the same way in evaluating both the
direct and inverse FFTs, let us now consider only the direct FFT, namely

An ≡ Pn N =

N−1∑

m=0

p
m

exp

(
−i 2π nm

N

)
n = 1, 2, 3, · · · , (N − 1) (6-35)

in which p
m

denotes p(t = tm). A straightforward evaluation of this summation
for all values of n requires N 2 complex multiplications. This number would be
prohibitive for most practical solutions requiring large values of N , say N > 1, 000,
thus providing the incentive to develop the FFT algorithm.

1 J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Calculation of Complex Fourier Series,” Math.
Computation, Vol. 19, April 1965.
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The FFT algorithm is based on lettingN = 2γ where γ is an integer. In this case,
each value of n and m in their common range from zero to N − 1 can be expressed in
terms of binary coefficients as given by

n = 2γ−1 nγ−1 + 2γ−2 nγ−2 + · · · + n0

m = 2γ−1mγ−1 + 2γ−2mγ−2 + · · · +m0

(6-36)

in which each binary coefficient is either +1 or 0 depending upon the particular value
of n or m being represented. Using these relations and letting WN ≡ exp(−i2π

/
N),

Eq. (6-35) can be expressed as

A(nγ−1, nγ−2, · · · , n0) =
1∑

m0=0

1∑

m1=0

· · ·
1∑

mγ−1=0

p
0
(mγ−1,mγ−2, · · · ,m0) W

nm
N

(6-37)
Note that each coefficient An for n = 0, 1, 2, · · · , N − 1 is represented by
A(nγ1

, nγ−2, · · · , n0) and each load ordinate p
m

for m = 0, 1, 2, · · · , N − 1 is
represented by p

0
(mγ−1,mγ−2, · · · ,m0). The subscript zero has been added to p

only to indicate the multiplier of the W nm
N

term in the first summation. The reason
for introducing this addition to the notation will become apparent as the algorithm
develops.

Consider now the term W nm
N

of Eq. (6-37) in the form

Wnm
N

= W

(
2γ−1 nγ−1+2γ−2 nγ−2+···+n0

) (
2γ−1 mγ−1+2γ−2 mγ−2+···+m0

)
N (6-38)

Making use of W (a+b)
N = W a

N
W b

N
, this equation can be modified to

Wnm
N

= W

(
2γ−1 nγ−1+2γ−2 nγ−2+···+n0

)
(2γ−1 mγ−1

)
N

×W

(
2γ−1 nγ−1+2γ−2 nγ−2+···+n0

) (
2γ−2 mγ−2

)
N

× · · · ×W

(
2γ−1 nγ−1+2γ−2 nγ−2+···+n0

)
m0

N (6-39)

Let us now examine each individual WN term on the right hand side of this equation
separately. The first term can be written

W

(
2γ−1 nγ−1+2γ−2 nγ−2+···+n0

)
(2γ−1 mγ−1

)
N

= W
2γ
(
2γ−2 nγ−1 mγ−1

)
N ×W

2γ
(
2γ−3 nγ−2 mγ−1

)
N × · · ·

×W
2γ
(
2 n1 mγ−1

)
N ×W

2γ−1 (n0 mγ−1)
N

= W
2γ−1 (n0 mγ−1)
N (6-40)
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since each WN term of the form

W
2γ(integer)
N =

[
exp
(
−i 2π

N

)]N (integer)
= 1 (6-41)

Writing the second term similarly and making use of Eq. (6-41), one finds that

W

(
2γ−1 nγ−1+2γ−2 nγ−2+···+n0

)
(2γ−2 mγ−2

)
N = W

2γ−2 (2n1+n0) mγ−2

N (6-42)

This pattern continues up to the last term which has no cancellations due to Eq. (6-41);
therefore, it must remain in the same form shown in Eq. (6-39).

After substituting all WN terms, except the last, in their reduced forms, Eq. (6-
37) becomes

A
(
nγ−1, nγ−2, · · · , n0

)

=
1∑

m0=0

1∑

m1=0

· · ·
1∑

mγ−1=0

[
p
0

(
mγ−1,mγ−2, · · · ,m0

)
×W

2γ−1 (n0 mγ−1)
N

×W
2γ−2 (2n1+n0) mγ−2

N × · · · ×W
(2γ−1nγ−1+2γ−2nγ−2+···+n0) m0

N

]
(6-43)

Carrying out all summations in this equation in succession gives

1∑

mγ−1=0

p
0
(mγ−1,mγ−2, · · · ,m0) W

2γ−1 (n0mγ−1)
N ≡ p

1
(n0,mγ−2, · · · ,m0)

1∑

mγ−2=0

p
1
(n0,mγ−2, · · · ,m0) W

2γ−2 (2n1+n0)mγ−2

N ≡ p
2
(n0, n1,mγ−3, · · · ,m0)

...
1∑

m0=0

p
γ−1

(n0, n1, · · · , nγ−2,m0) W
(2γ−1 nγ−1+2γ−2 nγ−2+···+n0) m0

N

= A(nγ−1, nγ−2, · · · , n0) (6-44)

These recursive equations, leading to the desired result A(nγ−1, nγ−2, · · · , n0), rep-
resent the Cooley-Tukey algorithm used in modern FFT analysis. They are extremely
efficient due to the fact that each summation is used immediately in the next summa-
tion. The fact that the exponential has unit value in the first term of each summation
and that Wnm

N
= −Wnm+N/2

N adds to the efficiency. The reduction in computational
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effort which results from the use of Eqs. (6-44) is enormous when the time duration Tp

is divided into a large number of intervals. For example, when N = 1, 024 (γ = 10),
the computer time required by the FFT to obtain all N An-values is approximately
0.5 percent of the time required to obtain the same values by direct use of Eq. (6-35).
Not only is the FFT extremely efficient but it is very accurate as well, thus making
the frequency-domain approach to the dynamic-response analysis of structures very
attractive indeed.

Example E6-4. To illustrate the use of the recursive Eqs. (6-44), consider
the case γ = 2 which corresponds to N = 2γ = 4, n = 2n1 + n0, and
m = 2m1 +m0. The first equation is

p
1
(n0,m0) =

1∑

m1=0

p
0
(m1,m0) W

2 n0 m1

4 (a)

Since n0 and m0 can each take on values +1 or 0, this equation actually
represents four equations as follows:

p
1
(0, 0) = p

0
(0, 0) + p

0
(1, 0)

p
1
(0, 1) = p

0
(0, 1) + p

0
(1, 1)

p
1
(1, 0) = p

0
(0, 0) + p

0
(1, 0) W 2

4

p
1
(1, 1) = p

0
(0, 1) + p

0
(1, 1) W 2

4

(b)

Writing these equations in matrix form gives





p
1
(0, 0)

p
1
(0, 1)

p
1
(1, 0)

p
1
(1, 1)





=




1 0 1 0

0 1 0 1

1 0 W 2
4 0

0 1 0 W 2
4








p
0
(0, 0)

p
0
(0, 1)

p
0
(1, 0)

p
0
(1, 1)





(c)

The second of Eqs. (6-44), which is also the last for this simple case γ = 2, is

A(n1, n0) =

1∑

m0=0

p
1
(n0,m0) W

(2n1+n0) m0

4 (d)
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Substituting separately the four possible combinations of n1 and n0 into this
expression yields





A(0, 0)

A(0, 1)

A(1, 0)

A(1, 1)





=




1 1 0 0

0 0 1 W 1
4

1 W 2
4 0 0

0 0 1 W 3
4








p
1
(0, 0)

p
1
(0, 1)

p
1
(1, 0)

p
1
(1, 1)





=





A0

A1

A2

A3





(e)

Upon substitution of Eq. (c) into (e), the desired values of An (n = 0, 1, 2, 3)
are obtained.

While the γ-value used in Example E6-4 is much too small to demonstrate the
efficiency of the FFT algorithm (only about 50 percent reduction in computational
effort is realized over the direct approach), it is adequate to develop an understanding
of the application of Eqs. (6-44). As demonstrated, each of the FFT recursive equations
yields N separate equations when applied to a solution.

Evaluation of Dynamic Response

To evaluate the dynamic response of a linear SDOF system in the frequency
domain, the inverse Fourier transform expressing response, Eq. (6-24), should be used
in its discrete form

vm
.
=

N−1∑

n=0

Vn exp
(
i
2π nm

N

)
m = 0, 1, 2, · · · , N − 1 (6-45)

in which vm = v(t = tm) and Vn ≡ Hn Pn. Discrete harmonic amplitudes Pn for all
n-values are obtained by the FFT procedure described in the previous section while
Hn is the discrete form of the complex frequency response function H(iω). For the
linear viscously-damped system, it is of the form shown in Eq. (4-18) while for the
complex-stiffness form of damping as represented by Eqs. (3-69) and (3-79), it is

Hn =
1

k

[
1

(1 − β2
n) + i (2ξ)

]
=

1

k

[
(1 − β2

n) − i (2ξ)

(1 − β2
n)2 + (2ξ)2

]
(6-46)

Having the values of Pn and Hn for n = 0, 1, 2, · · · , N − 1, the FFT algorithm is
applied to Eq. (6-45) in exactly the same way it was applied to Eq. (6-35) giving the
time-history response v(t) in terms of its ordinates vm for m = 0, 1, 2, · · · , N − 1.
Note that both Hn and Pn are complex; this causes no difficulty, however, in the
evaluation process.
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To illustrate evaluating response by the above procedure, consider two SDOF
systems represented by the following equations of motion:

v̈(t) + 10π ξ v̇(t) + 25π2 v(t) = −v̈g(t) (6-47)

and
v̈(t) + 25π2 (1 + 2 i ξ) v(t) = −v̈g(t) (6-48)

These two systems are identical except for the type of damping used, the first having
viscous damping while the latter has complex-stiffness damping. The natural circular
frequency of each system is ω = 5π corresponding to T = 0.4 sec and f = 2.5Hz.

Assuming the input acceleration v̈g(t) to be oscillatory over 6 sec as shown in
Fig. 6-4a, one must select appropriate values for 4t and γ. Considering the frequency
content in this accelerogram, it is reasonable to select 4t = 0.01 sec. The value
of γ should be selected so that period Tp is considerably longer than the duration of
excitation; thus resulting in zero excitation ordinates over an interval of time following
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each 6 sec duration of excitation in the periodic FFT representation. This is a necessary
requirement so that the free-vibration response during the intervals of zero excitation
will damp out almost completely; otherwise, the assumed zero initial conditions at the
start of the excitation will not be sufficiently satisfied. Suppose γ is set equal to 10
givingN = 210 = 1, 024 which corresponds to Tp = 1, 0244t = 10.24 sec. Solving
the viscously damped system of Eq. (6-47) in the frequency domain by the above
described procedure for ξ = 0.01 and 0.05 gives the corresponding time-histories of
response shown in Figs. 6-4b and 6-4c. Noting the periodic behavior in each case, it
is clear that the response has sufficient time to damp out following the excitation for
the case of ξ = 0.05 but not for the case of ξ = 0.01. Therefore, while γ = 10 is
adequate for 5 percent critical damping, it is inadequate for 1 percent damping. In
the latter case, one should use γ = 11 corresponding to Tp = 211 4t = 20.48 sec.
It is very apparent that response is sensitive to the amount of damping present in the
system when the excitation is of the highly oscillatory type shown in Fig. 6-4a.

Solving the complex stiffness system defined by Eq. (6-48) in the frequency
domain for ξ = 0.05 gives the displacement time-history shown in Fig. 6-4d. This
periodic response is almost the same as that shown in Fig. 6-4c. This close comparison
can be expected for such a low-damped system experiencing primary response near
its natural frequency, since, as shown in Chapter 3, viscous and hysteretic damping
produce identical results at the resonant condition (β = 1). If the input acceleration
represented in Fig. 6-4a had been nearly void of frequency content in the neighborhood
of the natural frequency but had high-intensity content in quite a different frequency
range forcing the primary response to shift significantly away from the range near
β = 1, the corresponding responses as represented in Figs. 6-4c and 6-4d would
be quite different. If the damping energy loss per cycle ED at fixed amplitude of
response for the actual system being represented should be essentially independent of
the excitation frequency, the response obtained using hysteretic damping would, of
course, be much more realistic.

It should be noted that if parameters k and/or ξ in Eqs. (4-18) and Eq. (6-46) were
frequency dependent, i.e., k = k(βn) and ξ = ξ(βn), the dynamic-response evaluation
would proceed in exactly the same manner described above; however, in doing so,
the frequency dependence of these parameters would enter into the calculation of
the Hn-values. This compatibility of the frequency-domain analysis with frequency-
dependent parameters is a valuable asset to be noted as such cases are common in
engineering practice. One would have extreme difficulty in treating such cases by the
time-domain approach described in the first part of this chapter.

Regarding efficiency of the frequency-domain method of dynamic response
analysis, it is worthy of mention that the CPU time required to solve either Eq. (6-47)
or Eq. (6-48) for one value of damping and for the excitation shown in Fig. 6-4a is
about 1.2 sec on a Micro VAX-II computer.
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6-3 RELATIONSHIP BETWEEN THE TIME- AND
FREQUENCY-DOMAIN TRANSFER FUNCTIONS

As shown in the previous sections, response of the viscously-damped SDOF
system to an arbitrary loading p(t) can be obtained either through the time domain
using the convolution integral,

v(t) =

∫ t

−∞
p(τ) h(t− τ) dτ (6-49)

or through the frequency domain using the relation

v(t) =
1

2π

∫ ∞

−∞
H(iω) P(iω) exp(iωt) dω (6-50)

in which h(t) and H(iω) are the unit impulse and complex frequency response
functions, respectively, given by

h(t) =
1

mωD

sinωDt exp(−ξωt) 0 < ξ < 1 (6-51)

and

H(iω) =
1

k

[
1

(1 − β2) + i (2ξβ)

]
ξ ≥ 0 (6-52)

It is of interest to know at this point that these time- and frequency-domain transfer
functions are related through the Fourier transform pair

H(iω) =

∫ ∞

−∞
h(t) exp(−iωt) dt (6-53)

h(t) =
1

2π

∫ ∞

−∞
H(iω) exp(iωt) dω (6-54)

Proof of these relationships, along with an example solution, is presented in Chapter 12
(Section 12-7).

PROBLEMS

6-1. The undamped SDOF system of Fig. P6-1a is subjected to the half sine-wave
loading of Fig. P6-1b. Calculate the spring force history fs(t) for the time 0 <

t < 0.6 sec by numerical evaluation of the Duhamel integral with 4τ = 0.1 sec

using:
(a) Simple summation
(b) Trapezoidal rule
(c) Simpson’s rule
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Compare these results with those obtained with Eq. (5-1) evaluated at the same
0.1 sec time increments.

p(t)fs(t)

6 @ 0.1 = 0.6 sec

FIGURE P6-1
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6-2. Solve Example E6-1 using the trapezoidal rule.

6-3. Solve Example E6-2 using the trapezoidal rule.

6-4. The SDOF frame of Fig. P6-2a is subjected to the blast loading history shown
in Fig. P6-2b. Compute the displacement history for the time 0 < t < 0.72 sec

by numerical evaluation of the Duhamel integral using Simpson’s rule with
4τ = 0.12 sec.

m = 0.2 kips⋅sec2/in

c = 0.4 kips⋅sec /in

k = 8 kips/in (total)

FIGURE P6-2
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CHAPTER

7
RESPONSE

TO GENERAL
DYNAMIC
LOADING:

STEP-BY-STEP
METHODS

7-1 GENERAL CONCEPTS

It is important to note that the response analysis procedures described in Chap-
ter 6, whether formulated in the time domain or in the frequency domain, involve
evaluation of many independent response contributions that are combined to obtain
the total response. In the time-domain procedure (Duhamel integral), the loading p(t)
is considered to be a succession of short-duration impulses, and the free-vibration
response to each impulse becomes a separate contribution to the total response at any
subsequent time. In the frequency-domain method, it is assumed that the loading p(t)
is periodic and has been resolved into its discrete harmonic components Pn by Fourier
transformation. The corresponding harmonic response components of the structure
Vn are then obtained by multiplying these loading components by the frequency re-
sponse coefficient of the structure Hn, and finally the total response of the structure is
obtained by combining the harmonic response components (inverse Fourier transfor-
mation). Because superposition is applied to obtain the final result in both procedures,
neither of these methods is suited for use in analysis of nonlinear response; therefore
judgment must be used in applying them in earthquake engineering where it is ex-
pected that a severe earthquake will induce inelastic deformation in a code-designed
structure.

111
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The step-by-step procedure is a second general approach to dynamic response
analysis, and it is well suited to analysis of nonlinear response because it avoids any
use of superposition. There are many different step-by-step methods, but in all of
them the loading and the response history are divided into a sequence of time intervals
or “steps.” The response during each step then is calculated from the initial conditions
(displacement and velocity) existing at the beginning of the step and from the history
of loading during the step. Thus the response for each step is an independent analysis
problem, and there is no need to combine response contributions within the step.
Nonlinear behavior may be considered easily by this approach merely by assuming
that the structural properties remain constant during each step, and causing them to
change in accordance with any specified form of behavior from one step to the next;
hence the nonlinear analysis actually is a sequence of linear analyses of a changing
system. Any desired degree of refinement in the nonlinear behavior may be achieved
in this procedure by making the time steps short enough; also it can be applied to any
type of nonlinearity, including changes of mass and damping properties as well as the
more common nonlinearities due to changes of stiffness.

Step-by-step methods provide the only completely general approach to analysis
of nonlinear response; however, the methods are equally valuable in the analysis of
linear response because the same algorithms can be applied regardless of whether
the structure is behaving linearly or not. Moreover, the procedures used in solving
single-degree-of-freedom structures can easily be extended to deal with multidegree
systems merely by replacing scalar quantities by matrices. In fact, these methods
are so effective and convenient that time-domain analyses almost always are done by
some form of step-by-step analysis regardless of whether or not the response behavior
is linear; the Duhamel integral method seldom is used in practice.

7-2 PIECEWISE EXACT METHOD

The simplest step-by-step method for analysis of SDOF systems is the so-called
“piecewise exact” method, which is based on the exact solution of the equation of
motion for response of a linear structure to a loading that varies linearly during a
discrete time interval. In using this method, the loading history is divided into time
intervals, usually defined by significant changes of slope in the actual loading history;
between these points, it is assumed that the slope of the load curve remains constant.
Although the response expression derived for these linearly varying load steps is
exact, it must be recognized that the actual loading history is only approximated
by the constant slope steps. Thus the calculated response generally is not an exact
representation of the true response to the real loading; however, the error can be
reduced to any acceptable value merely by reducing the length of the time steps and
thus better approximating the loading. If desired, the length of the time steps can be
varied from one interval to the next in order to achieve the best possible fit of the
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Assumed

FIGURE 7-1
Notation for piecewise exact 
analysis.

(a) Loading history

(b) Response history

p(t)

p0 p1

t

t

t0 t1

t0 t1

h

Actual

= 
p0 − p1

h

p(t) = p0 +

= t − t0

= t − t0

v(t)

vi

.
vi +1

vi +1

.
vi

loading history by the sequence of straight line segments; however, for reasons of
computational efficiency it is customary to use a constant time step.

The notation used in formulating this method of analysis is defined for one step
of the loading history as shown in Fig. 7-1a; the duration of the step is denoted by h
and it spans from t0 to t1. The assumed linearly varying loading during the time step
is given by

p(τ) = p0 + α τ (7-1)

where α is the constant slope, τ is the time variable during the step, and p0 is the
initial loading. Introducing this load expression in the equation of motion for a SDOF
system with viscous damping leads to

m v̈ + c v̇ + k v = p0 + α τ (7-2)

The response v(τ) during any time step (shown in Fig. 7-1b) consists of a free-
vibration term vh(τ) plus the particular solution to the specified linear load variation
vp(τ), thus

v(τ) = vh(τ) + vp(τ) (7-3)
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where the damped free-vibration response, as shown by Eq. (2-48), is given by

vh(τ) = exp(−ξωτ) [A cosωDτ +B sinωDτ ]

and it is easy to verify that the linearly varying particular solution is

vp(τ) =
1

k
(p0 + α τ) − α c

k2
(7-4)

Combining these expressions and evaluating the constants A and B by consid-
eration of the initial conditions at time τ = 0 leads finally to the following expression
for the displacement during the time step:

v(τ) = A0 +A1 τ +A2 exp(−ξωτ) cosωDτ +A3 exp(−ξωτ) sinωDτ (7-5)

in which
A0 =

v0
ω2

− 2ξα

ω3

A1 =
α

ω2

A2 = v0 −A0

A3 =
1

ωD

[
v̇0 + ξω A2 −

α

ω2

]

Similarly, the velocity during the time step is found to be

v̇(τ) = A1 + (ωDA3 − ξωA2) exp(−ξωτ) cosωDτ

− (ωDA2 + ξωA3) exp(−ξωτ) sinωDτ (7-6)

Of course, the velocity and displacement at the end of this time step become the initial
conditions for the next time step, and then the equivalent equations can be used to step
forward to the end of that step, etc.

For situations where the applied loading may be approximated well by a series of
straight line segments, this piecewise exact method undoubtedly is the most efficient
means of calculating the response of a SDOF system. However, it must always be
remembered that the loading being considered is only an approximation of the true
loading history, which usually is a smoothly varying curve, and that the step lengths
must be chosen so as to achieve an acceptable approximation of the true response
history.

Example E7-1. To demonstrate the effect of approximating a smoothly
varying dynamic loading as a series of straight line segments, the response of
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a SDOF structure to various approximations of a single sine-wave loading has
been calculated by the piecewise exact method. The properties of the structure
are presented in Fig. E7-1a; three straight line approximations of the one and
one-half cycle loading as sketched in Fig. E7-1b are defined by discrete values
spaced at time intervals of (a) 0.0075, (b) 0.0225, and (c) 0.045 sec, respectively,
(1/12, 1/4, and 1/2 of the 0.09 sec half cycle period).

The piecewise exact calculated responses to these three loadings are plot-
ted in Fig. E7-2, together with the “static” ( p(t)

k ) response to loading (a); the
response was evaluated at 0.0075 sec intervals in all cases. It is evident from
these results that the applied loading is significantly diminished by the straight
line assumption for the coarsest (case c) approximation; the corresponding re-
duction of the input work also is apparent in the plotted loading history for case
c. However, the error is reduced greatly by taking twice as many straight line
segments as shown for case b, and it may be concluded that the results for case
a, using 0.0075 sec load segments, are quite close to the correct response for
the theoretical sine-wave loading; certainly this solution is adequate for most
engineering purposes.

(a) SDOF properties

FIGURE E7-1
Piecewise exact example − SDOF structure and loading.
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FIGURE E7-2
Piecewise exact calculated response.
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7-3 NUMERICAL APPROXIMATION PROCEDURES —
GENERAL COMMENTS

The other step-by-step methods employ numerical procedures to approximately
satisfy the equations of motion during each time step — using either numerical
differentiation or numerical integration. A vast body of literature has been written on
these subjects, dealing with a range of applications as broad as the field of applied
mechanics. However, only a very brief summary can be presented here, intended to
give a general idea of how these techniques may be applied in the solution of structural
dynamics problems, and to provide tools that will suffice for many practical uses. On
the other hand, if a large amount of analytical work must be done, it probably will
be worth while to study the literature and choose the solution procedure that is best
adapted to the job at hand.

Before the details of any of the procedures are described, it will be useful to
summarize a few basic facts about the numerical approximation step-by-step methods
in general, as follows:

(1) The methods may be classified as either explicit or implicit. An explicit (or
“open”) method is defined as one in which the new response values calculated
in each step depend only on quantities obtained in the preceding step, so that the
analysis proceeds directly from one step to the next. In an implicit method, on
the other hand, the expressions giving the new values for a given step include
one or more values pertaining to that same step, so that trial values of the
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necessary quantities must be assumed and then these are refined by successive
iterations. Unless the calculations required for each step are very simple, the cost
of iteration within a step may be prohibitive; thus it often is desirable to convert
an implicit method to an explicit form by a procedure such as that described in
Section 7-5.

(2) The primary factor to be considered in selecting a step-by-step method is effi-
ciency, which concerns the computational effort required to achieve the desired
level of accuracy over the range of time for which the response is needed. Ac-
curacy alone cannot be a criterion for method selection because, in general, any
desired degree of accuracy can be obtained by any method if the time step is
made short enough (but with obvious corresponding increases of costs). In any
case, the time steps must be made short enough to provide adequate definition
of the loading and the response history — a high-frequency input or response
cannot be described by long time steps.

(3) Factors that may contribute to errors in the results obtained from well-defined
loadings include:

(a) Roundoff — resulting from calculations being done using numbers ex-
pressed by too few digits,

(b) Instability — caused by amplification of the errors from one step during
the calculations in subsequent steps. Stability of any method is improved
by reducing the length of the time step.

(c) Truncation — using too few terms in series expressions of quantities.

(4) Errors resulting from any causes may be manifested by either or both of the
following effects:

(a) Phase shift or apparent change of frequency in cyclic results,

(b) Artificial damping, in which the numerical procedure removes or adds
energy to the dynamically responding system.

All of the above mentioned topics are worthy of further discussion, but in this
presentation it will be possible only to include a few additional remarks in the following
descriptions of selected numerical methods.

7-4 SECOND CENTRAL DIFFERENCE FORMULATION

The basic concept in most finite-difference formulations is to write the equation
of dynamic equilibrium for the beginning of the time step t = t0, thus

m v̈0 + c v̇0 + k v0 = p0
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and then to solve this for the initial acceleration

v̈0 =
1

m
[p0 − c v̇0 − k v0] (7-7)

However, to formulate the numerical step-by-step procedure, the initial velocity
and acceleration terms are approximated by finite-difference expressions. Thus, the
variations between the various finite-difference formulations are embodied in the level
of refinement adopted in writing these finite-difference expressions.

In this discussion, only one very simple method will be described — the second
central difference method; this name relates to the finite-difference approximation
used to express the acceleration at time t = t0. To express the acceleration, the
velocity is first approximated at the middle of the time steps before and after time t0

v̇−1/2
.
=
v0 − v−1

h
v̇1/2

.
=
v1 − v0
h

(7-8)

in which h denotes the duration of the time step, as shown in Fig. 7-2. Then the
acceleration midway between these times is given by the equivalent velocity expression

v̈0
.
=
v̇1/2 − v̇−1/2

h

.
=

1

h2
(v1 − v0) −

1

h2
(v0 − v−1)

from which
v̈0 =

1

h2
(v1 − 2 v0 + v−1) (7-9)

FIGURE 7-2
Second central difference 
notation.
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Substituting this expression into Eq. (7-7) then leads to

v1 − 2 v0 + v−1 =
h2

m
(p0 − c v̇0 − k v0)

and solving this for the displacement at the end of the time step results in

v1 =
h2

m
(p0 − c v̇0 − k v0) + 2 v0 − v−1 (7-10)

But the value of the displacement at time t−1 is needed to evaluate this expres-
sion, so the required quantity is derived from the following finite-difference velocity
expression

v̇0 =
v1 − v−1

2h

from which
v−1 = v1 − 2h v̇0

Introducing this into Eq. (7-10) and simplifying gives finally

v1 = v0 + h v̇0 +
h2

2m
(p0 − c v̇0 − k v0) (7-11)

The velocity also must be stepped forward to time t1 and for this purpose an
expression is derived by assuming that the average of the velocities at times t1 and t0
is equal to the finite-difference expression for velocity within the time step, thus

1

2
(v̇0 + v̇1) =

v1 − v0
h

from which

v̇1 =
2 (v1 − v0)

h
− v̇0 (7-12)

Thus, the second central difference method merely uses Eqs. (7-11) and (7-12)
to proceed from one step to the next throughout the time span of interest. It is a
very simple explicit step-by-step method; however, it is only conditionally stable and
will “blow up” if the time step is not made short enough. The specific condition for
stability is

h

T
≤ 1

π
= 0.318

however, this will not be a limiting requirement for SDOF systems. Clearly, the
analysis requires more than three time steps per vibration period of the structure if
the response is to be defined adequately, and in most earthquake response analyses a
considerably shorter time step also must be adopted to permit effective definition of
the earthquake input.
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7-5 INTEGRATION METHODS

The other general numerical approach to step-by-step dynamic response analysis
makes use of integration to step forward from the initial to the final conditions for
each time step. The essential concept is represented by the following equations:

v̇1 = v̇0 +

∫ h

0

v̈(τ) dτ (7-13a)

v1 = v0 +

∫ h

0

v̇(τ) dτ (7-13b)

which express the final velocity and displacement in terms of the initial values of
these quantities plus an integral expression. The change of velocity depends on
the integral of the acceleration history, and the change of displacement depends on
the corresponding velocity integral. In order to carry out this type of analysis, it
is necessary first to assume how the acceleration varies during the time step; this
acceleration assumption controls the variation of the velocity as well and thus makes
it possible to step forward to the next time step.

Euler-Gauss Procedure

The simplest integration method, known as the Euler-Gauss method, is based
on assuming that the acceleration has a fixed constant value during the time step.
The consequence of this assumption is that the velocity must vary linearly and the
displacement as a quadratic curve during the time step. Figure 7-3 illustrates this type
of behavior for a formulation where it is assumed that the constant acceleration is the
average of the initial and the final values attained during the step. Also shown on this
figure are expressions for acceleration, velocity, and displacement at any time τ during
the step obtained by successive integration, and for the final velocity and displacement
obtained by putting τ = h into these expressions.

To initiate this analysis for any step, it is necessary first to evaluate the initial
acceleration v̈0, and this may be obtained by solving the dynamic equilibrium expres-
sion at time t = t0, as shown by Eq. (7-7). In addition, the final acceleration v̈1 is
needed to apply this implicit formulation, and this value may be obtained by iteration.
Starting with an arbitrary assumption for v̈1, values of v̇1 and v1 are obtained from
Eqs. (a) and (b) listed in Fig. 7-3. Then an improved value of v̈1 is calculated from the
dynamic equilibrium condition at time t1 using an expression equivalent to Eq. (7-7),
and this leads to improved values of velocity v̇1 and displacement v1. Eventually, the
iteration converges to a fixed value of the final acceleration for this time step and the
procedure may be stepped forward to the next time step. A great advantage of this
constant average acceleration method is that it is unconditionally stable; that is, the
errors are not amplified from one step to the next no matter how long a time step is
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FIGURE 7-3
Motion based on constant average acceleration.
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chosen. Consequently, the time step may be selected considering only the need for
properly defining the dynamic excitation and the vibratory response characteristics of
the structure.

Newmark Beta Methods

A more general step-by-step formulation was proposed by Newmark, which
includes the preceding method as a special case, but also may be applied in several
other versions. In the Newmark formulation, the basic integration equations [Eqs. (7-
13)] for the final velocity and displacement are expressed as follows:

v̇1 = v̇0 + (1 − γ)h v̈0 + γ h v̈1 (7-14a)

v1 = v0 + h v̇0 + (
1

2
− β)h2 v̈0 + β h2 v̈1 (7-14b)

It is evident in Eq. (7-14a) that the factor γ provides a linearly varying weighting
between the influence of the initial and the final accelerations on the change of
velocity; the factor β similarly provides for weighting the contributions of these initial
and final accelerations to the change of displacement.

From study of the performance of this formulation, it was noted that the factor
γ controlled the amount of artificial damping induced by this step-by-step procedure;
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there is no artificial damping if γ = 1/2, so it is recommended that this value be
use for standard SDOF analyses. Adopting this factor γ = 1/2 and setting β = 1/4

in Eqs. (7-14a) and (7-14b), it may be seen that this Newmark formulation reduces
directly to the expressions shown for the final velocity and displacement in Fig. 7-3.
Thus, the Newmark β = 1/4 method may also be referred to as the constant average
acceleration method.

On the other hand, if β is taken to be 1/6 (with γ = 1/2), the expressions for
the final velocity and displacement become

v̇1 = v̇0 +
h

2
(v̈0 + v̈1) (7-15a)

v1 = v0 + v̇0 h+
h2

3
v̈0 +

h2

6
v̈1 (7-15b)

These results also may be derived by assuming that the acceleration varies linearly
during the time step between the initial and final values of v̈0 and v̈1, as shown in
Fig. 7-4; thus the Newmark β = 1/6 method is also known as the linear acceleration
method. Like the constant average acceleration procedure, this method is widely
used in practice, but in contrast to the β = 1/4 procedure, the linear acceleration
method is only conditionally stable; it will be unstable unless h/T ≤

√
3/π = 0.55.

However, as in the case of the second central difference method, this restriction has

FIGURE 7-4
Motion based on linearly varying acceleration.
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little significance in the analysis of SDOF systems because a shorter time step than
this must be used to obtain a satisfactory representation of the dynamic input and
response.

Conversion to Explicit Formulation

In general, the implicit formulations of the Beta methods are inconvenient to
use because iteration is required at each time step to determine the acceleration at
the end of the step. Accordingly, they are usually converted to an explicit form, and
the conversion procedure will be explained here for the constant average acceleration
(β = 1/4) method. The objective of the conversion is to express the final acceleration
in terms of the other response quantities; accordingly Eq. (b) of Fig. 7-3 is solved for
the final acceleration to obtain

v̈1 =
4

h2
(v1 − v0) −

4

h
v̇0 − v̈0 (7-16a)

and this then is substituted into Eq. (a) of Fig. 7-3 to obtain an expression for the final
velocity:

v̇1 =
2

h
(v1 − v0) − v̇0 (7-16b)

Writing the equations of dynamic equilibrium at time t1

m v̈1 + c v̇1 + k v1 = p1

and substituting Eqs. (7-16a) and (7-16b) leads to an expression in which the only
unknown is the displacement at the end of the time step, v1. With appropriate gathering
of terms this may be written

k̃c v1 = p̃1c (7-17)

which has the form of a static equilibrium equation involving the effective stiffness

k̃c = k +
2c

h
+

4m

h2
(7-17a)

and the effective loading

p̃1c = p1 + c
(2v0
h

+ v̇0

)
+m

(4v0
h2

+
4

h
v̇0 + v̈0

)
(7-17b)

In Eqs. (7-17) the subscript c is used to denote the constant average acceleration
method.

Using this explicit formulation, the displacement at the end of the time step, v1,
can be calculated directly by solving Eq. (7-17), using only data that was available at
the beginning of the time step. Then, the velocity at that time, v̇1, may be calculated



124 DYNAMICS OF STRUCTURES

from Eq. (7-16b). Finally, the acceleration at the end of the step, v̈1, is derived by
solving the dynamic equilibrium equation at that time

v̈1 =
1

m
(p1 − c v̇1 − k v1)

[rather than from Eq. (7-16a)] thus preserving the equilibrium condition.

It will be noted that the linear acceleration method can be converted to explicit
form similarly by using Eqs. (a) and (b) of Fig. 7-4 in exactly the same way. The
only differences in the formulations, then, are in the expressions for the effective
stiffness and effective loading and for the final velocity. Expressing the effective static
equilibrium equation for the linear acceleration analysis by

k̃d v1 = p̃1d (7-18)

(in which the subscript d denotes the linear acceleration method) the effective stiffness
and loading are given, respectively, by

k̃d = k +
3c

h
+

6m

h2
(7-18a)

p̃1d = p1 +m
(6v0
h2

+
6

h
v̇0 + 2 v̈0

)
+ c

(3v0
h

+ 2 v̇0 +
h

2
v̈0

)
(7-18b)

When the displacement v1 has been calculated from Eq. (7-18), the velocity at the
same time is given by the following expression [equivalent to Eq. (7-16b)]:

v̇1 =
3

h
(v1 − v0) − 2 v̇0 −

h

2
v̈0 (7-18c)

It is important to remember that the linear acceleration method is only condi-
tionally stable, but this factor is seldom important in analysis of SDOF systems as was
mentioned before. On the other hand, it is apparent that assuming a linear variation
of acceleration during each step will give a better approximation of the true behavior
than will a sequence of constant acceleration steps. In fact, numerical experiments
have demonstrated the superiority of the linear acceleration method results compared
with those obtained using constant acceleration steps, and for this reason the linear
acceleration (β = 1/6) method is recommended for analysis of SDOF systems.

7-6 INCREMENTAL FORMULATION FOR NONLINEAR
ANALYSIS

The step-by-step procedures described above are suitable for the analysis of
linear systems in which the resisting forces are expressed in terms of the entire values
of velocity and displacement that have been developed in the structure up to that time.
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However, for nonlinear analyses it is assumed that the physical properties remain
constant only for short increments of time or deformation; accordingly it is convenient
to reformulate the response in terms of the incremental equation of motion, as follows.

The structure to be considered in this discussion is the SDOF system shown in
Fig. 7-5a. The properties of the system, m, c, k, and p(t), may represent generalized
quantities, as described in Chapter 8, instead of the simple localized properties implied
in the sketch; thus the nonlinear step-by-step analysis discussed here is applicable to a
generalized system exactly as it is applied to the simple system of Fig. 7-5a. The forces
acting on the mass are indicated in Fig. 7-5b and the general nonlinear properties of
the damping and spring mechanisms are depicted in Figs. 7-5c and d, respectively.
The arbitrary external load history is shown in Fig. 7-5e.
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FIGURE 7-5
Definition of a nonlinear dynamic system: (a) basic SDOF structure; (b) force equilibrium; 
(c) nonlinear damping; (d) nonlinear stiffness; (e) applied load.
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The equilibrium of forces acting on the mass at the time t = t0 may be written

fI0

+ fD0

+ fS0

= p0 (7-19a)

and a short time h = t1 − t0 later the equilibrium requirement is

fI1

+ fD1

+ fS1

= p1 (7-19b)

Subtracting Eq. (7-19a) from Eq. (7-19b) then yields the incremental equation of
motion

4fI + 4fD + 4fS = 4p (7-20)

in which the incremental forces may be expressed as follows:

4fI = fI1

− fI0

= m 4v̈ (7-21a)

4fD = fD1

− fD0

= c(t) 4v̇ (7-21b)

4fS = fS1

− fS0

= k(t) 4v (7-21c)

4p = p1 − p0 (7-21d)

In Eqs. (7-21b) and (7-21c), the terms c(t) and k(t) represent average values of
damping and stiffness properties that may vary during the time increment, as indicated
by the average slopes in Figs. 7-5c and d, respectively. In practice, these average slopes
could be evaluated only by iteration because the calculated velocity and displacement
at the end of the time increment depend on these properties. To avoid this iteration, it
is common practice to use the initial tangent slopes instead:

c(t)
.
=

(
d fD
d v̇

)

0

≡ c0 k(t)
.
=

(
d fS
d v

)

0

≡ k0 (7-22)

even though this approximation is not as good, in principle. Substituting the force
expressions of Eqs. (7-21) into Eq. (7-20) leads to the final form of the incremental
equilibrium equation for time t:

m 4v̈ + c0 4v̇ + k0 4v = 4p (7-23)

The step-by-step integration procedures discussed previously now may be easily
modified into an incremental form. Considering, for example, the linear acceleration
assumption presented in Fig. 7-4, the corresponding incremental equations are shown
in Fig. 7-6. This implicit formulation may be transformed to explicit form by the same
procedure described previously by Eq. (7-18). The resulting incremental effective
static equilibrium equation may be stated as

k̃d 4v = 4p̃d (7-24)



RESPONSE TO GENERAL DYNAMIC LOADING: STEP-BY-STEP METHODS 127

FIGURE 7-6
Incremental motion based on linearly varying acceleration.
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in which the effective stiffness expression [equivalent to Eq. (7-18a)] is

k̃d = k0 +
3c0
h

+
6m

h2
(7-24a)

and the effective loading increment now becomes

4p̃d = 4p+m

(
6

h
v̇0 + 3 v̈0

)
+ c0

(
3 v̇0 +

h

2
v̈0

)
(7-24b)

When the incremental displacement has been evaluated from Eq. (7-24), the incre-
mental velocity may be calculated from the following expression [derived from Eq. (7-
18c)]:

4v̇ =
3

h
4v − 3v̇0 −

h

2
v̈0 (7-24c)

7-7 SUMMARY OF THE LINEAR ACCELERATION
PROCEDURE

For any given time increment, the above described explicit linear acceleration
analysis procedure consists of the following operations which must be carried out
consecutively in the order given:
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(1) Using the initial velocity and displacement values v̇0 and v0, which are known
either from the values at the end of the preceding time increment or as initial
conditions of the response at time t = 0, and the specified nonlinear properties
of the system as illustrated in Figs. 7-5c and d, establish the current values
of the damping and spring forces, fD0

and fS0

, and the damping and spring
coefficients, c0 and k0, to be used over the interval.

(2) Generate the initial acceleration for the interval using the equation of motion in
the form

v̈0 =
1

m

[
p0 − fD0

− fS0

]
(7-25)

(3) Compute the effective stiffness k̃d and effective load increment 4p̃d using
Eqs. (7-24a) and (7-24b), respectively.

(4) Determine the displacement and velocity increments using Eqs. (7-24) and (7-
24c), respectively.

(5) Finally, evaluate the velocity and displacement at the end of the time increment
using

v̇1 = v̇0 + 4v̇ (7-26a)

v1 = v0 + 4v (7-26b)

When Step 5 has been completed, the calculation for this time increment is finished
and the analysis may be stepped forward to the next time interval. Carrying out
Steps 1 through 5 in this manner for consecutive time increments starting at t = 0

and ending after any desired number of intervals, one can obtain the complete time-
history of response of any nonlinear SDOF system for which the varying stiffness and
damping properties, k0 and c0, can be defined, when it is subjected to any arbitrary
dynamic loading. Linear systems can also be treated by this same procedure, which
becomes simplified due to the physical properties remaining constant over their entire
time-histories of response.

As with any numerical-integration procedure the accuracy of this step-by-step
method will depend on the length of the time increment h. Three factors must be
considered in the selection of this interval: (1) the rate of variation of the applied
loading p(t), (2) the complexity of the nonlinear damping and stiffness properties,
and (3) the period T of vibration of the structure. The time increment must be short
enough to permit the reliable representation of all these factors, the last one being
associated with the free-vibration behavior of the system. In general, the material-
property variation is not a critical factor; however, if a significant sudden change takes
place, as in the yielding of an elastoplastic spring, a special subdivided time increment
may need to be introduced to treat this change accurately.
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If the load history is relatively simple, the choice of the time interval will depend
essentially on the period of vibration of the structure. While this linear acceleration
method will usually give a convergent solution if the time increment is less than about
one-half the vibration period, it must be considerably shorter than this to provide
reasonable accuracy and to insure that numerical instability will not occur. In general,
using an increment-period ratio h

/
T ≤ 1

/
10 will give reliable results. If there is any

doubt about the adequacy of a given solution, a second analysis can be made after
reducing the time increment by one-half; if the response is not changed appreciably
in the second analysis, it may be assumed that the errors introduced by the numerical
integration procedure are negligible.

Example E7-2. To demonstrate a hand-solution technique for applying the
linear acceleration step-by-step method described above, the response of the
elastoplastic SDOF frame shown in Fig. E7-3 to the loading history indicated
has been calculated. A time step of 0.1 sec has been used for this analysis,
which is longer than desirable for good accuracy but will be adequate for the
present purpose.

In this structure, the damping coefficient has been assumed to remain
constant; hence the only nonlinearity in the system results from the change of

v(t)

p(t)

FIGURE E7-3
Elastoplastic frame and dynamic loading.
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stiffness as yielding takes place. The effective stiffness thus may be expressed
[see Eq. (7-24a)] as

k̃d = k0 +
6

(0.1)2
m+

3

0.1
c = 66 + k0

where k0 is either 5 kips/in or zero depending upon whether the frame is elastic
or yielding. Also the effective incremental loading is given by [see Eq. (7-24b)]

4p̃d = 4p+
(6m

0.1
+ 3 c0

)
v̇ +

(
3m+

0.1

2
c0

)
v̈ = 4p(t) + 6.6 v̇ + 0.31 v̇

The velocity increment given by Eq. (7-24c) becomes

4v̇ = 304v − 3 v̇ − 0.05 v̈

A convenient tabular arrangement for the hand calculation of this response is
shown in Table E7-1.

For this elastoplastic system, the response behavior changes drastically as
the yielding starts and stops, and to obtain best accuracy it would be desirable to
divide each time increment involving such a change of phase into two subincre-
ments. The properties then would be constant during the sub-increments, and
the analysis would be quite precise; however, an iterative procedure would be
required to establish the lengths of the subincrements. In the present analysis,
this refinement has not been used; the initial stiffness has been assumed to act
during the entire increment, and thus significant errors may have arisen during
the phase transitions.

The dynamic elastoplastic response calculated in Table E7-1 is plotted
in Fig. E7-4, with the response during the yielding phase shown as a dashed
line. Also plotted for comparison is the linear elastic response obtained by
a similar step-by-step analysis but with k̃d = 71 and fS = 5 v throughout
the calculations. The effect of the plastic yielding shows up clearly in this
comparison; the permanent set (the position about which the subsequent free
vibrations of the nonlinear system occur) amounts to about 1.49 in. Also shown
to indicate the character of the loading is the static displacement p/k, that is, the
deflection which would have occurred in the elastic structure if there had been
no damping and inertia effects.
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Comparison of elastoplastic with elastic response (frame of Fig. E7-3).

FIGURE E7-4
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PROBLEMS

7-1. Solve the linear elastic response of Prob. 6-4 by step-by-step integration, using
the linear acceleration method.

7-2. Solve Prob. 7-1, assuming an elastoplastic force-displacement relation for
the columns and a yield force level of 8 kips, as shown in Fig. P7-1a.

FIGURE P7-1
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8 k 8 k

8 k 8 k

fs fs

v v
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fs = 12 [ 2
3

v − 1
3 ( 2v

3 )3 ]
(− 1.5 < v < 1.5)

7-3. Solve Prob. 7-1, assuming the nonlinear elastic force-displacement relation,
fS = 12[ 23v − 1

3 (2v/3)3], which is sketched in Fig. P7-1b (fS is in kips, v in
in).
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8
GENERALIZED

SINGLE-
DEGREE-

OF-FREEDOM
SYSTEMS

8-1 GENERAL COMMENTS ON SDOF SYSTEMS

In formulating the SDOF equations of motion and response analysis procedures
in the preceding chapters, it has been tacitly assumed that the structure under consid-
eration has a single lumped mass that is constrained so that it can move only in a single
fixed direction. In this case it is obvious that the system has only a single degree of
freedom and that the response may be expressed in terms of this single displacement
quantity.

However, the analysis of most real systems requires the use of more complicated
idealizations, even when they can be included in the generalized single-degree-of-
freedom category. In this chapter we will discuss these generalized SDOF systems,
and in formulating their equations of motion it is convenient to divide them into two
categories: (1) assemblages of rigid bodies in which elastic deformations are limited
to localized weightless spring elements and (2) systems having distributed flexibility
in which the deformations can be continuous throughout the structure, or within some
of its components. In both categories, the structure is forced to behave like a SDOF

133
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system by the fact that displacements of only a single form or shape are permitted,
and the assumed single degree of freedom expresses the amplitude of this permissible
displacement configuration.

For structures in the category of rigid-body assemblages, discussed in Section
8-2, the limitation to a single displacement shape is a consequence of the assemblage
configuration; i.e., the rigid bodies are constrained by supports and hinges arranged
so that only one form of displacement is possible. The essential step in the analysis
of such assemblages is the evaluation of the generalized elastic, damping, and inertial
forces in terms of this single form of motion.

In the case of structures having distributed elasticity, considered in Section 8-3,
the SDOF shape restriction is merely an assumption because the distributed elasticity
actually permits an infinite variety of displacement patterns to occur. However, when
the system motion is limited to a single form of deformation, it has only a single degree
of freedom in a mathematical sense. Therefore, when the generalized mass, damping,
and stiffness properties associated with this degree of freedom have been evaluated,
the structure may be analyzed in exactly the same way as a true SDOF system.

From these comments it should be evident that the material on analysis of SDOF
systems, presented in the preceding chapters, is equally applicable to generalized
SDOF systems even though it was presented with reference to simple systems having
only a single lumped mass.

8-2 GENERALIZED PROPERTIES: ASSEMBLAGES OF RIGID
BODIES

In formulating the equations of motion of a rigid-body assemblage, the elastic
forces developed during the SDOF displacements can be expressed easily in terms of
the displacement amplitude because each elastic element is a discrete spring subjected
to a specified deformation. Similarly the damping forces can be expressed in terms of
the specified velocities of the attachment points of the discrete dampers. On the other
hand, the mass of the rigid bodies need not be localized, and distributed inertial forces
generally will result from the assumed accelerations. However, for the purposes of
dynamic analysis, it usually is most effective to treat the rigid-body inertial forces as
though the mass and the mass moment of inertia were concentrated at the center of
mass. The inertial-force resultants which are obtained thereby are entirely equivalent
to the distributed inertial forces insofar as the assemblage behavior is concerned.
Similarly it is desirable to represent any distributed external loads acting on the rigid
bodies by their force resultants. The total mass m and the centroidal mass moment of
inertia j of a uniform rod and of uniform plates of various shapes are summarized in
Fig. 8-1 for convenient reference.
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FIGURE 8-1
Rigid-body mass and centroidal mass moment of inertia for uniform rod and uniform 
plates of unit thickness.
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Example E8-1. A representative example of a rigid-body assemblage,
shown in Fig. E8-1, consists of two rigid bars connected by a hinge at E and
supported by a pivot atA and a roller atH . Dynamic excitation is provided by a
transverse load p(x, t) varying linearly along the length of bar AB. In addition,
a constant axial force N acts through the system, and the motion is constrained
by discrete springs and dampers located as shown along the lengths of the bars.
The mass is distributed uniformly through bar AB, and the weightless bar BC
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FIGURE E8-1
Example of a rigid-body-assemblage SDOF system.
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supports a lumped mass m2 having a centroidal mass moment of inertia j2.

Because the two bars are assumed rigid, this system has only a single
degree of freedom, and its dynamic response can be expressed with a single
equation of motion. This equation could be formulated by direct equilibration
(the reader may find this a worthwhile exercise), but because of the complexity of
the system, it is more convenient to use a work or energy formulation. A virtual-
work analysis will be employed here; although using Hamilton’s principle, as
described in Chapter 16, would be equally effective.

For the form of displacement which may take place in this SDOF structure
(Fig. E8-2), the hinge motion Z(t) may be taken as the basic quantity and all
other displacements expressed in terms of it; for example, BB ′(t) = Z(t)/4,
DD′(t) = 3Z(t)/4, FF ′(t) = 2Z(t)/3, etc. The force components acting on
the system (exclusive of the axial applied force N, which will be discussed later)
are also shown in this figure. Each resisting force component can be expressed
in terms of Z(t) or its time derivatives, as follows:

fI1

(t) = m1
1

2
Z̈(t) = m L

1

2
Z̈(t) = 2 a m Z̈(t)

Mj1(t) = j1
1

4a
Z̈(t) =

mL

4a

L2

12
Z̈(t) =

4

3
a2 m Z̈(t)

fI2

(t) = m2
2

3
Z̈(t)

Mj2(t) = −j2
1

3a
Z̈(t)

fD1

(t) = c1

[ d
dt
DD′(t)

]
= c1

1

4
Ż(t)

fD2

(t) = c2 Ż(t)

fS1

(t) = k1

[
DD′(t)

]
= k1

3

4
Z(t)

fS2

(t) = k2

[
GG′(t)

]
= k2

1

3
Z(t)

The externally applied lateral load resultant is

p1(t) = 8 p a f(t)

In these expressions, m and p denote reference values of mass and force, re-
spectively, per unit length and f(t) is a dimensionless time-dependent function
which represents the dynamic load variation.
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FIGURE E8-2
SDOF displacements and resultant forces.
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The equation of motion of this system may be established by equating to
zero all work done by these force components during an arbitrary virtual dis-
placement δZ. The virtual displacements through which the force components
move are proportional to Z(t), as indicated in Fig. E8-2. Thus the total virtual
work may be written

δW (t) = −2am Z̈(t)
δZ

2
− 4

3
a2mZ̈(t)

δZ

4a
−m2

2Z̈(t)

3

2

3
δZ

−j2
Z̈(t)

3a
δZ − c1

Ż(t)

4

δZ

4
− c2 Ż(t) δZ − k1

3

4
Z(t)

3

4
δZ

− k2
Z(t)

3

δZ

3
+ 8p a f(t)

2

3
δZ = 0 (a)

which when simplified becomes
[(

am+
am

3
+

4

9
m2 +

j2
9a2

)
Z̈(t) +

(
c1
16

+ c2

)
Ż(t)

+

(
9

16
k1 +

k2

9

)
Z(t) − 16

3
p a f(t)

]
δZ = 0 (b)

Because the virtual displacement δZ is arbitrary, the term in square brackets
must vanish; thus the final equation of motion becomes

(
4

3
ma+

4

9
m2 +

j2
9a2

)
Z̈(t) +

(
c1
16

+ c2

)
Ż(t)

+

(
9

16
k1 +

k2

9

)
Z(t) =

16

3
p a f(t) (c)

This may be written in the simplified form

m∗ Z̈(t) + c∗ Ż(t) + k∗ Z(t) = p∗(t) (8-1)
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if the new symbols are defined as follows:

m∗ =
4

3
ma+

4

9
m2 +

j2
9a2

k∗ =
9

16
k1 +

1

9
k2

c∗ =
1

16
c1 + c2

p∗(t) =
16

3
p a f(t)

These quantities are termed, respectively, the generalized mass, generalized
damping, generalized stiffness, and generalized load for this system; they have
been evaluated with reference to the generalized coordinate Z(t), which has
been used here to define the displacements of the system.

Consider now the externally applied axial force N of Fig. E8-1. As may
be seen in Fig. E8-3, the virtual work done by this force during the virtual
displacement δZ is Nδe. The displacement δe is made up of two parts, δe1 and
δe2, associated with the rotations of the two bars. Considering the influence of
bar AE only, it is clear from similar triangles (assuming small deflections) that
δe1 = (Z(t)

/
4a) δZ. Similarly δe2 = (Z(t)

/
3a) δZ, thus the total displace-

ment is

δe = δe1 + δe2 =
7

12

Z(t)

a
δZ

and the virtual work done by the axial force N is

δWP =
7

12

NZ(t)

a
δZ (d)

Adding Eq. (d) and Eq. (a) and carrying out simplifying operations similar
to those which led to Eq. (c) shows that only one term in the equation of motion

FIGURE E8-3
Displacement components in the direction of axial force.
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is influenced by the axial force, the generalized stiffness. When the effect of the
axial force in this system is included, the combined generalized stiffness k∗ is

k∗ = k∗ − 7

12

P

a
=

9

16
k1 +

1

9
k2 −

7

12

N
a

(e)

With this modified generalized-stiffness term, the equation of motion of the
complete system of Fig. E8-1, including axial force, is given by an equation
similar to Eq. (8-1). The last term in Eq. (e), which is directly proportional to
the axial force N, often is given the name “geometric stiffness.”

It is of interest to note that the condition of zero generalized stiffness
represents a neutral stability or critical buckling condition in the system. The
value of axial force Ncr which would cause buckling of this structure can be
found by equating k∗ of Eq. (e) to zero:

0 =
9

16
k1 +

1

9
k2 −

7

12

Ncr
a

Thus
Ncr =

(27

28
k1 +

4

21
k2

)
a (f)

In general, compressive axial forces tend to reduce the stiffness of a structural
system, while tensile axial forces cause a corresponding increase of stiffness.
Such loads can have a significant effect on the response of the structure to
dynamic loads, and the resulting change of stiffness should always be evaluated
to determine its importance in the given problem. It should be noted that axial
force in this and in subsequent discussions refers to a force which acts parallel
to the initial undistorted axis of the member; such a force is assumed not to
change the direction of its line of action or its magnitude with the motion of the
structure.

Example E8-2. As a second example of the formulation of the equations
of motion for a rigid-body assemblage, the system shown in Fig. E8-4 will be
considered. The small-amplitude motion of this system can be characterized by

k

FIGURE E8-4
SDOF plate with dynamic forces.
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the downward displacement of the load point Z(t), and all the system forces
resisting this motion can be expressed in terms of it:

fS(t) = k
b

a
Z(t)

fI2

(t) = γ a b
b

2a
Z̈(t)

fI1

(t) = γ a b
1

2
Z̈(t)

MI(t) = γ a b
a2 + b2

12

1

a
Z̈(t)

The equation of motion for this simple system can be written directly by ex-
pressing the equilibrium of moments about the plate hinge:

fS(t) b+ fI1

(t)
a

2
+ fI2

(t)
b

2
+ MI(t) = p(t) a

Dividing by the length a and substituting the above expressions for the forces,
this equation becomes

γ a b

[
1

12

(
b2

a2
+ 1

)
+

1

4
+

b2

4a2

]
Z̈(t) + k

b2

a2
Z(t) = p(t)

Finally, it may be written

m∗ Z̈(t) + k∗ Z(t) = p∗(t)

in which

m∗ =
γ a b

3

(
1 +

b2

a2

)
k∗ = k

b2

a2
p∗(t) = p(t)

8-3 GENERALIZED PROPERTIES: DISTRIBUTED
FLEXIBILITY

The example of Fig. E8-1 is a true SDOF system in spite of the complex
interrelationships of its various components because the two rigid bars are supported
so that only one type of displacement pattern is possible. If the bars could deform in
flexure, the system would have an infinite number of degrees of freedom. A simple
SDOF analysis could still be made, however, if it were assumed that only a single
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flexural deflection pattern could be developed.

As an illustration of this method of approximating SDOF behavior in a flexure
system actually having infinite degrees of freedom, consider the formulation of an
equation of motion for the cantilever tower of Fig. 8-2a. The essential properties of
the tower (excluding damping) are its flexural stiffness EI(x) and its mass per unit of
length m(x). It is assumed to be subjected to horizontal earthquake ground-motion
excitation vg(t), and it supports a constant vertical load N applied at the top.

To approximate the motion of this system with a single degree of freedom, it is
necessary to assume that it will deform only in a single shape. The shape function
will be designated ψ(x), and the amplitude of the motion relative to the moving base
will be represented by the generalized coordinate Z(t); thus,

v(x, t) = ψ(x)Z(t) (8-2)

Typically the generalized coordinate is selected as the displacement of some convenient
reference point in the system, such as the tip displacement in this tower. Then the
shape function is the dimensionless ratio of the local displacement to this reference
displacement:

ψ(x) =
v(x, t)

Z(t)
(8-3)

The equation of motion of this generalized SDOF system can be formulated
conveniently only by work or energy principles, and the principle of virtual work will
be used in this case.

FIGURE 8-2
Flexure structure treated as a SDOF 
system.
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Since the structure in this example is flexible in flexure, internal virtual work δWI

is performed by the real internal moments M(x, t) acting through their corresponding
virtual changes in curvature δ

[∂2v(x)
∂x2

]
. The virtual-work principle requires that the

external virtual work, δWE(t), performed by the external loadings acting through their
corresponding virtual displacements be equated to the internal virtual work, i.e.,

δWE = δWI (8-4)

To develop the equation of motion in terms of relative displacement v(x, t), the
base of the structure can be treated as fixed while an effective loading peff(x, t) is
applied as shown in Fig. 8-2b. The inertial loading is then given by

fI(x, t) = m(x) v̈(x, t) (8-5)

Using the full set of external forces, the external virtual work is given by

δWE = −
∫ L

0

fI(x) δv(x) dx+

∫ L

0

peff(x, t) δv(x) dx+ N δe (8-6)

and consistent with the above statement regarding internal virtual work,

δWI(t) =

∫ L

0

M(x, t) δv′′(x) dx (8-7)

where v′′(x) = ∂2v(x)/∂x2.

If it is assumed that damping stresses are developed in proportion to the strain
velocity, a uniaxial stress-strain relation of the form

σ = E [ε+ a1 ε̇] (8-8)

may be adopted, whereE is Young’s modulus and a1 is a damping constant. Then the
Euler-Bernouli hypothesis that plane sections remain plane leads to the relation

M(x, t) = EI(x) [v′′(x, t) + a1 v̇
′′(x, t)] (8-9)

Using this equation, the basic relations may be expressed as follows:

v(x, t) = ψ(x) Z(t)

v′(x, t) = ψ′(x) Z(t)

v′′(x, t) = ψ′′(x) Z(t)

v̈(x, t) = ψ(x) Z̈(t)

v̇′′(x, t) = ψ′′(x) Ż(t)

δv(x, t) = ψ(x) δZ

δv′(x, t) = ψ′(x) δZ

δv′′(x, t) = ψ′′(x) δZ

(8-10)
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Also, by analogy with the development of Eq. (d) of Example E8-1, the expressions
for axial displacement take the form

e(t) =
1

2

∫ L

0

[v′(x, t)]2 dx δe =

∫ L

0

v′(x, t) δv′(x) dx (8-11)

Finally, expressions for the external and internal virtual work may be formulated by
using Eqs. (8-10) and (8-11):

δWE =
[
−Z̈(t)

∫ L

0

m(x)ψ(x)2 dx

− v̈g(t)

∫ L

0

m(x)ψ(x) dx+ NZ(t)

∫ L

0

ψ′(x)2 dx
]
δZ (8-12)

δWI =
[
Z(t)

∫ L

0

EI(x)ψ′′(x)2 dx+ a1 Ż(t)

∫ L

0

EI(x)ψ′′(x)2 dx
]
δZ

Equating Eqs. (8-12) in accordance with Eq. (8-4) yields the generalized equation of
motion

m∗ Z̈(t) + c∗ Ż(t) + k∗ Z(t) − k∗G Z(t) = p∗eff(t) (8-13)

where

m∗ =

∫ L

0

m(x) ψ(x)2 dx = generalized mass

c∗ = a1

∫ L

0

EI(x) ψ′′(x)2 dx = generalized damping

k∗ =

∫ L

0

EI(x) ψ′′(x)2 dx = generalized flexural stiffness

k∗G = N
∫ L

0

ψ′(x)2 dx = generalized geometric stiffness

p∗eff(t) = −v̈g(t)

∫ L

0

m(x) ψ(x) dx = generalized effective load

(8-14)

Combining the two stiffness terms, Eq. (8-13) can be written as

m∗ Z̈(t) + c∗ Ż(t) + k∗ Z(t) = p∗eff(t) (8-15)

in which
k∗ = k∗ − k∗G (8-16)

is the combined generalized stiffness.
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The critical buckling load can be calculated for this system by the same method
used in Example E8-1, i.e., by equating to zero the combined generalized stiffness and
solving for Ncr; thus, one obtains

Ncr =

∫ L

0
EI(x) ψ′′(x)2 dx
∫ L

0
ψ′(x)2 dx

(8-17)

This SDOF approximate analysis of the critical buckling load is called Rayleigh’s
method, which is discussed in the context of vibration analysis in Section 8-5. The
value determined for the critical load depends, of course, upon the assumed shape
function ψ(x), but a very good approximation will be given by any shape that is
consistent with the geometric boundary conditions.

Example E8-3. To provide a numerical example of the formulation of
the equation of motion for a SDOF system with distributed flexibility, it will
be assumed that the tower of Fig. 8-2 has constant flexural stiffness EI and
constant mass distribution m along its length and damping in accordance with
Eq. (8-8). Also, its deflected shape in free vibrations will be assumed as

ψ(x) = 1 − cos
πx

2L
(a)

which satisfies the geometric boundary conditions ψ(0) = ψ′(0) = 0. When
Eqs. (8-14) are applied, one obtains

m∗ = m

∫ L

0

(
1 − cos

πx

2L

)2

dx = 0.228 m L

c∗ = a1EI

∫ L

0

( π2

4L2
cos

πx

2L

)2

dx =
a1 π

4EI

32L3

k∗ = EI

∫ L

0

( π2

4L2
cos

πx

2L

)2

dx =
π4EI

32L3

k∗G = N
∫ L

0

( π
2L

sin
πx

2L

)2

dx =
Nπ2

8L

peff(t) = −m v̈g(t)

∫ L

0

(
1 − cos

πx

2L

)
dx = 0.364 m L v̈g(t)

(b)

which upon substitution into Eq. (8-13) gives the SDOF equation of motion:

(
0.228mL

)
Z̈(t) +

(a1 π
4EI

32L3

)
Ż(t) +

(π4EI

32L3
− Nπ2

8L

)
Z(t)

= −0.364 m L v̈g(t) (c)
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In addition, the buckling load for this column subjected to tip load will be
evaluated by setting the combined stiffness equal to zero and solving for Ncr,
with the following result:

Ncr =
π2

4

EI

L2
(d)

This is the true buckling load for an end-loaded uniform cantilever column
because the assumed shape function of Eq. (a) is the true buckled shape.

Of course, one could select a different shape function ψ(x) as long as it
satisfies the geometric boundary conditions ψ(0) = ψ′(0) = 0. For example, if
this function were assumed to be of the parabolic form

ψ(x) =
x2

L2
(e)

the equation of motion obtained by the above procedure would be
(
0.200mL

)
Z̈(t) +

(4 a1EI

L3

)
Ż(t) +

(4EI

L3
− 4N

3L

)
Z(t) = −mL

3
v̈g(t)

(f)
Setting the combined stiffness equal to zero, the critical load is given as

Ncr =
3EI

L2
(g)

which is about 22 percent higher than the true value given by Eq. (d).

When using the Rayleigh method of buckling analysis as given by Eq. (8-17), it
should be recognized that assuming any shape other than the true buckled shape will
require additional external constraints acting on the system to maintain its equilibrium.
These additional external constraints represent a stiffening influence on the system;
therefore the critical load computed by a Rayleigh analysis using any shape other than
the true one must always be greater than the true critical load. In the above example,
it is apparent that the parabolic shape is not a good assumption for this structure, even
though it satisfies the geometric boundary conditions, because the constant curvature
of this shape implies that the moment is constant along its length. It is obvious here
that the moment must vanish at the top of the column, and any assumed shape that
satisfies this force boundary condition (i.e., one having zero curvature at the top) will
give much better results.

8-4 EXPRESSIONS FOR GENERALIZED SYSTEM
PROPERTIES

As implied by the preceding examples, the equation of motion for any SDOF
system, no matter how complex, can always be reduced to the form

m∗ Z̈(t) + c∗ Ż(t) + k∗ Z(t) = p∗(t)
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in whichZ(t) is the single generalized coordinate expressing the motion of the system
and the symbols with asterisks represent generalized physical properties corresponding
to this coordinate. In general, the values of these properties can be determined
by application of either the principle of virtual work, as illustrated by the previous
examples, or Hamilton’s principle as illustrated in Chapter 16. However, standardized
forms of these expressions can be derived easily which are very useful in practice.

Consider an arbitrary one-dimensional system, as illustrated by the example in
Fig. 8-3, assumed to displace only in a single shapeψ(x) with displacements expressed

c(x) a1(x) c2 c3

m(x) m1, j1

FIGURE 8-3
Properties of generalized SDOF system: (a) assumed shape; (b) mass properties; (c) damping 
properties; (d ) elastic properties; (e) applied axial loading; ( f ) applied lateral loading.
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−v3 −v4
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in terms of the generalized coordinate Z(t) as given by

v(x, t) = ψ(x) Z(t)

Part of the total mass of the system is distributed in accordance with m(x) and the
remainder is lumped at discrete locations i (i = 1, 2, . . .) as denoted by mi. External
damping is provided by distributed dashpots varying in accordance with c(x) and by
discrete dashpots as denoted by the ci values, and internal damping is assumed to
be present in flexure as controlled by the uniaxial stress-strain relation of Eq. (8-8).
The elastic properties of the system result from distributed external springs varying
in accordance with k(x), from discrete springs as denoted by the ki values, and from
distributed flexural stiffness given by EI(x). External loadings are applied to the
system in both discrete and distributed forms as indicated by the time-independent
axial forces q(x) and N and the time-dependent lateral forces p(x, t) and pi(t). These
loadings produce internal axial force and moment distributions N(x) and M(x, t),
respectively.

Applying the procedure of virtual work to this general SDOF system in the same
manner as it was applied to the previous example solutions, one obtains the following
useful expressions for the contributions to the generalized properties:

m∗ =

∫ L

0

m(x) ψ(x)2 dx+
∑

mi ψ
2
i +

∑
ji ψ

′
i
2

c∗ =

∫ L

0

c(x) ψ(x)2 dx+ a1

∫ L

0

EI(x) ψ′′(x)
2
dx+

∑
ci ψ

2
i

k∗ =

∫ L

0

k(x) ψ(x)2 dx+

∫ L

0

EI(x) ψ′′(x)
2
dx+

∑
kiψ

2
i

−
∫ L

0

N(x) ψ′(x)
2
dx

p∗(t) =

∫ L

0

p(x, t) ψ(x) dx+
∑

pi(t) ψi(x)

(8-18)

The vectorial nature of the force and displacement quantities in the last of Eqs. (8-
18) must be carefully noted. Only components of the forces in the directions of
the corresponding assumed displacements can be included, and the positive sense of
each force component must be assigned in accordance with the positive sense of the
corresponding displacement.

The above generalized-coordinate concepts apply equally in the reduction of
two-dimensional systems to a single degree of freedom. Consider, for example, the
rectangular floor slab shown in Fig. 8-4 subjected to a distributed downward loading
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FIGURE 8-4
Simply supported two-dimensional slab treated as a SDOF system.

x

y

Z (t)
b

a

w (x,y,t)

p(x, y, t). If the deflections of this slab are assumed to have the shape ψ(x, y) shown,
and if the displacement amplitude at the middle is taken as the generalized coordinate,
the displacements may be expressed

w(x, y, t) = ψ(x, y) Z(t) (8-19)

For a uniform simply supported slab, the shape function might logically be of the form

ψ(x, y) = sin
πx

a
sin

πy

b
(8-20)

but any other reasonable shape consistent with the support conditions could be used.

The generalized properties of this system can be calculated by expressions
equivalent to those presented in Eqs. (8-18) for the one-dimensional case; however,
the integrations must be carried out here in both the x and y directions. For this
specific example, the generalized mass, stiffness, and loading would be given by

m∗ =

∫ a

0

∫ b

0

m(x, y) ψ(x, y)2 dx dy

k∗ = D

∫ a

0

∫ b

0

{[∂2ψ(x, y)

∂x2
+
∂2ψ(x, y)

∂y2

]2

− 2 (1 − ν)
[∂2ψ(x, y)

∂x2

∂2ψ(x, y)

∂y2
−
(∂2ψ(x, y)

∂x ∂y

)2]
}
dx dy

p∗(t) =

∫ a

0

∫ b

0

p(x, y) ψ(x, y) dx dy

where
D = Eh3

/
12 (1 − ν2) = flexural rigidity of the slab

ν = Poisson’s ratio

h = plate thickness
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It also should be evident that the same procedures can easily be extended to
three-dimensional systems by assuming an appropriate displacement function in three
dimensions. However, the difficulty of selecting a suitable shape increases rapidly
with the number of dimensions of the system, and the reliability of the results so
obtained is reduced accordingly.

8-5 VIBRATION ANALYSIS BY RAYLEIGH’S METHOD

It was pointed out in Section 8-2 that the critical buckling load for a flexural
member can be calculated approximately from its generalized elastic and geometric
stiffness properties, where these quantities are derived from an assumed buckling
shape, and it was also noted that such an assumed shape formulation is generally
called Rayleigh’s method. Now Rayleigh’s assumed shape concept will be extended
further to develop an approximate method of evaluating the vibration frequency of
the member. The essence of the concept is evident immediately from the fact that the
SDOF frequency of vibrations is defined as

ω =

√
k

m
(8-21)

where k and m are the system’s mass and stiffness, respectively. The Rayleigh’s
method value of the vibration frequency is given directly by this expression if k∗ and
m∗, representing the generalized stiffness and mass associated with a given assumed
shape, ψ(x), are substituted.

Although this generalized-coordinate concept may be used to determine ap-
proximately the vibration frequency of any structure, it is instructive to examine the
frequency analysis problem from another point of view, originated by Lord Rayleigh.
The basic concept in the Rayleigh method is the principle of conservation of energy;
the energy in a freely vibrating system must remain constant if no damping forces act
to absorb it. Consider the free-vibration motion of the undamped spring-mass system
shown in Fig. 8-5a. With an appropriate choice of time origin, the displacement can
be expressed (Fig. 8-5b) by

v = v0 sin ωt (8-22a)

and the velocity (Fig. 8-5c) by

v̇ = v0 ω cosωt (8-22b)

The potential energy of this system is represented entirely by the strain energy
of the spring:

V =
1

2
k v2 =

1

2
k v2

0 sin2 ωt (8-23a)



150 DYNAMICS OF STRUCTURES

k
m

v

FIGURE 8-5
Free vibration of undamped SDOF 
structure: (a) SDOF structure;
(b) displacement; (c) velocity.
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while the kinetic energy of the mass is

T =
1

2
mv̇2 =

1

2
mv2

0 ω
2 cos2 ωt (8-23b)

Now considering the time t = π/2ω, it is clear from Fig. 8-5 [or from Eqs.(8-23)]
that the kinetic energy is zero and that the potential energy has reached its maximum
value:

Vmax =
1

2
k v2

0 (8-24a)

Similarly, at the time t = π/ω, the potential energy vanishes and the kinetic energy is
maximum

Tmax =
1

2
mv2

0 ω
2 (8-24b)

Hence, if the total energy in the vibrating system remains constant (as it must in
undamped free vibration), it is apparent that the maximum kinetic energy must equal
the maximum potential energy, Vmax = Tmax; that is,

1

2
k v2

0 =
1

2
mv2

0 ω
2

from which
ω2 =

k

m
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This, of course, is the same frequency expression which was cited earlier; in this case
it has been derived by the Rayleigh concept of equating expressions for the maximum
strain energy and kinetic energy.

There is no advantage to be gained from the application of Rayleigh’s method
to vibration analysis of a spring-mass system as described above; its principal use is
for the approximate frequency analysis of a system having many degrees of freedom.
Consider, for example, the nonuniform simple beam shown in Fig. 8-6. This beam
actually has an infinite number of degrees of freedom; that is, it can displace in
an infinite variety of displacement patterns. To apply the Rayleigh procedure, it is
necessary to assume the shape which the beam will take in its fundamental mode of
vibration. As explained above, this assumption may be expressed by Eq. (8-2), or
noting the harmonic variation of the generalized coordinate in free vibrations

v(x, t) = ψ(x) Z0 sinωt (8-25)

in which ψ(x) is the shape function, which represents the ratio of the displacement at
any point x to the reference displacement or generalized coordinate Z(t). Equation
(8-25) expresses the assumption that the shape of the vibrating beam does not change
with time; only the amplitude of motion varies, and it varies harmonically in a free-
vibration condition.

The assumption of the shape function ψ(x) effectively reduces the beam to a
SDOF system. Thus the frequency of vibration can be found by equating the maximum
strain energy developed during the motion to the maximum kinetic energy. The strain
energy of this flexural system is given by

V =
1

2

∫ L

0

EI(x)

(
∂2v

∂x2

)2

dx (8-26)

Thus, substituting the assumed shape function of Eq. (8-25) and letting the displace-
ment amplitude take its maximum value leads to

Vmax =
1

2
Z2

0

∫ L

0

EI(x) [ψ′′(x)]2 dx (8-27)

The kinetic energy of the nonuniformly distributed mass is

T =
1

2

∫ L

0

m(x) (v̇)2 dx (8-28)

FIGURE 8-6
Vibration of a nonuniform beam.

v(x,t) = (x) Z(t)

EI(x)
m(x)x

L
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Thus, when Eq.(8-25) is differentiated with respect to time to obtain the velocity and
the amplitude is allowed to reach its maximum,

Tmax =
1

2
Z2

0 ω
2

∫ L

0

m(x) [ψ(x)]2 dx (8-29)

Finally, after equating the maximum potential energy to the maximum kinetic energy,
the squared frequency is found to be

ω2 =

∫ L

0
EI(x) [ψ′′(x)]2 dx

∫ L

0
m(x) [ψ(x)]2 dx

(8-30)

At this point, it may be noted that the numerator of Eq. (8-30) is merely the generalized
stiffness of the beam k∗ for this assumed displacement shape while the denominator
is its generalized mass m∗ [see Eqs. (8-18)]. Thus Rayleigh’s method leads directly
to the generalized form of Eq. (8-21), as is to be expected since it employs the same
generalized-coordinate concept to reduce the system to a single degree of freedom.

8-6 SELECTION OF THE RAYLEIGH VIBRATION SHAPE

The accuracy of the vibration frequency obtained by Rayleigh’s method depends
entirely on the shape function ψ(x) which is assumed to represent the vibration-
mode shape. In principle, any shape may be selected which satisfies the geometric
boundary conditions of the beam, that is, which is consistent with the specified support
conditions. However, any shape other than the true vibration shape would require the
action of additional external constraints to maintain equilibrium; these extra constraints
would stiffen the system, adding to its strain energy, and thus would cause an increase
in the computed frequency. Consequently, it may be recognized that the true vibration
shape will yield the lowest frequency obtainable by Rayleigh’s method, and in choosing
between approximate results given by this method, the lowest frequency is always the
best approximation.

Example E8-4. To illustrate this point, assume that the beam of Fig. 8-6
has uniform massm and stiffnessEI . As a first approximation for the frequency
analysis, assume that the vibration shape is parabolic: ψ(x) = (x/L) (x/L−1).
Then, ψ′′(x) = 2/L2, and

Vmax =
1

2
Z2

0 EI

∫ L

0

(
2

L2

)2

dx =
1

2
Z2

0

4EI

L3

while

Tmax =
1

2
Z2

0 ω
2m

∫ L

0

[
x

L

(
x

L
− 1

)]2

dx =
1

2
Z2

0 ω
2 mL

30
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from which
ω2 =

Vmax
(1/ω2)Tmax

=
120EI

mL4

If the shape were assumed to be a sine curve, ψ(x) = sin(πx/L), the
same type of analysis would lead to the result

ω2 =
EI π4/2L3

mL/2
= π4 EI

mL4

This second frequency is significantly less than the first (actually almost 20
percent less); thus it is a much better approximation. As a matter of fact, it is the
exact answer because the assumed sine-curve shape is the true vibration shape
of a uniform simple beam. The first assumption should not be expected to lead
to very good results; the assumed parabolic shape implies a uniform bending
moment along the span which does not correspond to the simple end-support
conditions. It is a valid shape, since it satisfies the geometric requirements of
zero end displacements, but is not a realistic assumption.

The question now arises of how a reasonable deflected shape can be selected in
order to ensure good results with Rayleigh’s method (or the equivalent generalized-
coordinate approach described earlier). The concept to be used in selecting the
vibration shape is that the displacements in free vibration result from the application
of inertial forces and that the inertial forces (which are the product of mass and accel-
eration) are proportional to the mass distribution and to the displacement amplitude.
Thus, the correct vibration shape ψc(x) is that deflected shape resulting from a load-
ing pc(x) proportional to m(x)ψc(x). Of course, it is not possible to guess the exact
shape ψc(x), but the deflection shape computed from the loading p(x) = m(x)ψ(x)

[as shown in Fig. 8-7, where ψ(x) is any reasonable approximation of the true shape]
will provide extremely good accuracy in the solution.

In general, the evaluation of the generalized coordinate shape on the basis of an
assumed shape in this fashion involves more computational effort than is necessary
in an approximate analysis. The Rayleigh procedure will give good accuracy with

FIGURE 8-7

Deflected shape resulting from

inertial load of assumed shape.Computer deflected shape ( ) ( )vd x x» y
¾

¾ ¾ ¾

p x m x x x( ) = ( ) ( ) [where ( ) is assumed shape]y y

Approximate inertial loading:
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a considerably less refined approach than this. One common assumption is that
the inertial loading p(x) (see Fig. 8-7) is merely the weight of the beam, that is,
p(x) = m(x) g, where m(x) is the mass distribution and g is the acceleration of
gravity. The frequency then is evaluated on the basis of the deflected shape vd(x)

resulting from this dead-weight load. The maximum strain energy can be found very
simply in this case from the fact that the stored energy must be equal to the work done
on the system by the applied loading:

Vmax =
1

2

∫ L

0

p(x) vd(x) dx =
1

2
g Z0

∫ L

0

m(x)ψ(x) dx (8-31)

The kinetic energy is given still by Eq. (8-29), in which ψ(x) = vd(x)/Z0 is the shape
function computed from the dead load. Thus the squared frequency found by equating
the strain and kinetic-energy expressions is

ω2 =
g

Z0

∫ L

0
m(x)ψ(x) dx

∫ L

0
m(x) [ψ(x)]2 dx

= g

∫ L

0
m(x) vd(x) dx∫ L

0
m(x) [vd(x)]2 dx

(8-32)

Equation (8-32) is commonly used for the approximate frequency analysis of any type
of system. It should be noted that the reference amplitude Z0 must be included in the
expression if the shape is defined by the dimensionless shape function ψ(x), but it is
not involved if the actual dead-load deflections are used.

The loading p(x) used to calculate the dead-weight deflection vd(x) in Eq. (8-32)
is actually a gravitational loading only in cases where the principal vibratory motion
is in the vertical direction. For a structure like the vertical cantilever of Fig. 8-8a,
in which the principal motion is horizontal, the loading must be applied laterally,
as shown in this figure; in effect it is assumed that gravity acts horizontally for this

FIGURE 8-8
Assumed shapes resulting from dead loads.

vd (x)
vd (x)

vd (x)

(a) (b)

(c)

p(x) = m(x)g

p(x) = m(x)g

p(x) = m(x)g

p(x) = m(x)g
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purpose. An appropriate deflected shape to approximate the symmetrical vibration
frequency of the frame of Fig. 8-8b could be obtained by applying a vertical gravity
load, as shown. However, the fundamental vibrations of this type of structure will
generally be in the horizontal direction; to obtain a shape ψ(x) for approximating the
lateral vibration frequency, the gravity forces should be applied laterally. Furthermore,
in the fundamental mode of vibration of the two-span beam shown in Fig. 8-8c, the two
spans will deflect in opposite directions. Thus, to obtain a deflected shape for this case,
the gravitational forces should be applied in opposite directions in the adjacent spans.
A considerably higher vibration frequency would be obtained from the deflected shape
resulting from downward loads acting in both spans.

The reader must be cautioned, however, against spending too much time in
computing deflected shapes which will yield extremely accurate results. The principal
value of the Rayleigh method is in providing a simple and reliable approximation
to the natural frequency. Almost any reasonable shape assumption will give useful
results.

Example E8-5. The use of the Rayleigh method to compute the vibration
frequency of a practical system will be illustrated by the analysis of the uniform
cantilever beam supporting a weight at midspan, shown in Fig. E8-5. For this
study, the vibration shape has been taken to be that produced by a load applied to
the end of the cantilever, as shown in the lower sketch. The resulting deflected
shape is

v(x) =
pL3

3EI

[
3x2L− x3

2L3

]
≡ Z0 ψ(x)

The maximum potential energy of the beam can be found in this case from

Vmax =
1

2
pZ0 =

1

2

3EI

L3
Z2

0

where Z0 is the deflection under the load and p has been expressed in terms of
this end deflection.

FIGURE E8-5
Rayleigh method analysis of 
beam vibration frequency.

Weight = W

Uniform beam
EI = stiffness

m = mass ⁄ length

Assumed shape

p

x

L
2

L
2

Z 0 = 
pL3

3EIv(x) = Z 0 3x2L − x3

2L3
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The maximum kinetic energy of the beam can be calculated in two parts,
considering separately the beam and the supported weight:

TB
max =

ω2

2

∫ L

0

mv2 dx =
m

2
ω2 Z2

0

∫ L

0

[ψ(x)]2 dxBeam:

=
33

140

mL

2
ω2 Z2

0

TW
max =

W

2g
ω2

[
v

(
x =

L

2

)]2

=
W

2g
ω2

(
5

16
Z0

)2

Weight:

=
25

256

W

2g
ω2 Z2

0

Hence the total kinetic energy is

Tmax =

(
33

140
+

25

256

W

mLg

)
mL

2
ω2 Z2

0

and equating the maximum kinetic- and potential-energy expressions leads to
the frequency equation

ω2 =
3[

33
140 + 25

256
W

mLg

] EI

mL4

8-7 IMPROVED RAYLEIGH METHOD

The idea of using a deflected shape resulting from an inertial loading in a
Rayleigh analysis, as described above, can be applied systematically to develop im-
proved versions of the procedure. The standard analysis involves the arbitrary selection
of a deflected shape which satisfies the geometric boundary conditions of the structure.
For the purposes of this discussion, this initially selected shape will be identified with
the superscript zero:

v(0)(x, t) = ψ(0)(x)Z
(0)
0 sinωt (8-33)

The maximum potential and kinetic energies associated with this shape are then given
by

Vmax =
1

2

∫ L

0

EI(x)

(
∂2v(0)

∂x2

)2

dx =
(Z

(0)
0 )2

2

∫ L

0

EI(x) (ψ′′(0))2 dx (8-34)

Tmax =
1

2

∫ L

0

m(x) (v̇(0))2 dx =
(Z

(0)
0 )2

2
ω2

∫ L

0

m(x) (ψ(0))2 dx (8-35)
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Method R00 — The standard Rayleigh frequency expression, designated as
method R00, is

ω2 =

∫ L

0
EI(x) (ψ′′(0))2 dx

∫ L

0
m(x) (ψ(0))2 dx

(8-36)

However, a better approximation of the frequency can be obtained by computing
the potential energy from the work done in deflecting the structure by the inertial force
associated with the assumed deflection. The distributed inertial force is (at the time
of maximum displacement)

p(0)(x) = ω2m(x) v(0) = Z
(0)
0 ω2m(x)ψ(0) (8-37)

The deflection produced by this loading may be written

v(1) = ω2 v
(1)

ω2
= ω2 ψ(1) Z

(1)
0

ω2
≡ ω2 ψ(1) Z

(1)

0 (8-38)

in which ω2 is the unknown squared frequency. It may be looked upon as a propor-
tionality factor in both Eqs. (8-37) and (8-38); it is not combined into the expression
because its value is not known. The potential energy of the strain produced by this
loading is given by

Vmax =
1

2

∫ L

0

p(0) v(1) dx =
Z

(0)
0 Z

(1)

0

2
ω4

∫ L

0

m(x)ψ(0) ψ(1) dx (8-39)

Method R01 — Equating this expression for the potential energy to the kinetic
energy given by the originally assumed shape [Eq. (8-35)] leads to the improved
Rayleigh frequency expression, here designated as method R01:

ω2 =
Z

(0)
0

Z
(1)

0

∫ L

0
m(x) (ψ(0))2 dx

∫ L

0
m(x)ψ(0) ψ(1) dx

(8-40)

This expression often is recommended in preference to Eq. (8-36) because it avoids
the differentiation operation required in the standard formula. In general, curvatures
ψ′′(x) associated with an assumed deflected shape will be much less accurate than
the shape function ψ(x), and thus Eq. (8-40), which involves no derivatives, will give
improved accuracy.

However, a still better approximation can be obtained with relatively little ad-
ditional effort by computing the kinetic energy from the calculated shape v(1) rather
than from the initial shape v(0). In this case the result is

Tmax =
1

2

∫ L

0

m(x) (v̇(1))2 dx =
1

2
ω6 (Z

(1)
)2
∫ L

0

m(x) (ψ(1))2 dx (8-41)
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Method R11 — Equating this to the strain energy of Eq. (8-39) leads to the
further improved result (here designated as method R11):

ω2 =
Z

(0)
0

Z
(1)

0

∫ L

0
m(x)ψ(0) ψ(1) dx

∫ L

0
m(x) (ψ(1))2 dx

(8-42)

Further improvement could be made by continuing the process another step, that is, by
using the inertial loading associated withψ(1) to calculate a new shapeψ(2). In fact, as
will be shown later, the process will eventually converge to the exact vibration shape
if it is carried through enough cycles and therefore will yield the exact frequency.
However, for practical use of the Rayleigh method there is no need to go beyond
the improved procedure represented by Eq. (8-42). Also, it should be noted that
the generalized-coordinate amplitudes Z(0)

0 and Z
(1)

0 in Eqs. (8-40) and (8-42) are
arbitrary and can be set to unity if the shape functions ψ(0) and ψ(1) are defined
appropriately. However, it is advisable to leave the generalized coordinates in the
equations to show that the relative amplitude of v(0) and v(1) is a factor in computing
the frequency.

Example E8-6. The two improved versions of the Rayleigh method will
be demonstrated and compared with the standard method in carrying out the
frequency analysis of the three-story frame shown in Fig. E8-6a. The mass of
this frame is lumped in the girders, with values as shown, and the columns are
assumed to be weightless. Also, the girders are assumed to be rigid, so that the
columns in each story act as simple lateral springs with stiffness coefficients as
indicated.

Method R00 — In order to demonstrate the effectiveness of the improve-
ment procedures, a poor choice will be deliberately assumed for the initial
vibration shape for the frame. This shape consists of equal displacements for
the three stories, as shown in Fig. E8-6b; thus

v
(0)
1 = v

(0)
2 = v

(0)
3 = 1.0 = Z

(0)
0 ψ

(0)
i where ψ

(0)
i = Z

(0)
0 = 1.0

From this shape, the maximum kinetic energy is given by

T
(0)
max =

1

2

∑
mi (v

(0)
i )2 =

1

2
ω2 (Z

(0)
0 )2

∑
mi (ψ

(0)
i )2 =

1

2
ω2(4.5)

The maximum potential energy depends on the relative story-to-story deforma-
tions 4vi and is given by

V
(0)
max =

1

2

∑
ki(4v(0)

i )2 =
1

2
(Z

(0)
0 )2

∑
ki(4ψ(0)

i )2 =
1

2
(1, 800)
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FIGURE E8-6
Frame for Rayleigh method frequency analysis: (a) mass and stiffness values; (b) initial assumed 
shape; (c) deflections resulting from initial inertial forces.

1

2

1,200

1,800

3

1.5

2.0

(a) (b)

(c)

Inertial loads = ω2mi vi
(0)

Computed deflections

m =1.0 kips⋅sec2 ⁄ in

k = 600 kips ⁄ in

v3
(0) = 1.0

v2
(0) = 1.0

v1
(0) = 1.0

1.0 ω2

1.5 ω2

2.0 ω2

(Shear force = 1.0 ω2)

(Shear = 2.5 ω2)

(Shear = 4.5 ω2) ∆vc =  4.5ω2

1,800

∆vb =  2.5ω2

1,200

∆va =  ω 2

600

v1
(1) =  22.5

3,600
ω 2 =


Z0

(1)(1.0)ω 2

v2
(1) =  16.5

3,600
ω 2 =


Z0

(1)(0.733)ω 2

v3
(1) =  9.0

3,600
ω 2 =


Z0

(1)(0.40)ω 2

Hence, when the potential and kinetic energies are equated, the squared fre-
quency is

ω2 =
1, 800

4.5
= 400 ω = 20 rad/sec

Method R01 — The assumption that the structure behaves as though the
columns were rigid above the first story clearly is not reasonable for this frame
and can be expected to give a gross overestimate of the frequency. Using the
inertial forces associated with these initial deflections to calculate an improved
shape, in accordance with the improved method R01, leads to much better
results.

The inertial loads of the initial shape and the deflections they produce
are shown in Fig. E8-6c. The deflections can easily be calculated because the
deformation 4vi in each story is given by the story shear divided by the story
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stiffness. The maximum potential energy of this new shape v(1)
i may be found

as follows:

V
(1)
max =

1

2

∑
p
(0)
i v

(1)
i =

ω4

2
Z

(1)

0

∑
mi ψ

(0)
i ψ

(1)
i =

ω4

2
Z

(1)

0 (2.90)

When this is equated to the kinetic energy found previously, the frequency is

ω2 =
1

Z
(1)

0

4.50

2.90
=

1

22.5/3, 600

4.5

2.9
= 248 ω = 15.73 rad/sec

It is apparent that this much smaller frequency represents a great improvement
over the result obtained by the standard method R00.

Method R11 — Still better results can be obtained by using the improved
shape ψ(1)

1 in calculating the kinetic as well as the potential energy. Thus the
maximum kinetic energy becomes

T
(1)
max =

ω2

2
(Z

(1)

0 )2
∑

mi (ψ
(1)
i )2 =

ω6

2

(
22.5

3, 600

)2

(2.124)

Hence, equating this to the improved potential-energy expression leads to the
squared frequency value

ω2 =
1

Z
(1)

0

2.90

2.124
=

3, 600

22.5

2.90

2.124
= 218 ω = 14.76 rad/sec

This is quite close to the exact first-mode frequency for this structure, ω1 =

14.5 rad/sec, as will be derived in Chapter 11.

It is interesting to note that methodR11 gives the same result here as would
be given by Eq. (8-32), where the deflections due to a lateral gravity acceleration
are the basis of the analysis. This is because the inertial forces associated with
equal story displacements are equivalent to the lateral gravity forces. However,
if a more reasonable estimate had been made of the initial shape (rather than
equal story deflections), the improved method R11 would have given a better
result than Eq. (8-32).

PROBLEMS
8-1. For the uniform cantilever tower of Example E8-3, the following expressions

for the generalized mass and stiffness were determined:

m∗ = 0.228 mL

k∗ =
π4

32

EI

L3
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Based on these expressions, compute the period of vibration for a concrete tower
200 ft high, with an outside diameter of 12 ft and wall thickness of 8 in, for
which the following properties may be assumed:

m = 110 lb · sec2/ft2

EI = 165 × 109 lb · ft2

8-2. Assuming that the tower of Prob. 8-1 supports an additional point weight of
400 kips at the top, determine the period of vibration (neglecting the geometric
stiffness effect).

8-3. For the system shown in Fig. P8-1, determine the generalized physical properties
m∗, c∗, k∗, and the generalized loading p∗(t), all defined with respect to the
displacement coordinate Z(t). Express the results in terms of the given physical
properties and dimensions.

8-4. Repeat Prob. 8-3 for the structure shown in Fig. P8-2.

p (t) load
length


L2L L

k

cRigid uniform bar
Total mass = m

Z(t)

Pulley:
Total mass = m
(uniform over area)

Inextensible
massless cable

FIGURE P8-2

{
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8-5. Repeat Prob. 8-3 for the structure shown in Fig. P8-3. (Hint: this system has
only one dynamic degree of freedom; this is associated with the rotational inertia
of the rigid bar of mass m.)

LL L
2

L
2

k k

c

Rigid massless bar

Rigid uniform bar
(Total mass = m)

FIGURE P8-3

p(t)

Z(t)

8-6. The column of Fig. P8-4 is to be treated as a SDOF system by defining its
displaced shape as

ψ(x) =
v(x, t)

Z(t)
=

(
x

L

)2(
3

2
− x

2L

)

Denoting the uniformly distributed mass per unit length by m, the uniform
stiffness by EI , and the uniformly distributed load per unit length by p(t),
evaluate the generalized physical properties m∗ and k∗ and the generalized
loading p∗(t).

FIGURE P8-4

x
Z (t)

L

v(x, t) = (x) Z(t)

Uniform column
m = mass

length


 p
= 

lo
ad

le
ng

th




EI = flexural rigidity

8-7. (a) If a downward load N is applied at the top of the column of Prob. 8-
6, evaluate its combined generalized stiffness k

∗
using the same shape

function ψ(x).
(b) Repeat part a assuming that the axial force in the column varies linearly

along its length as N(x) = N(1 − x/L).
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8-8. Assume that the uniform slab of Fig. 8-4 is square, with side length a, and is
simply supported on all four edges.

(a) If its mass per unit area is γ and its flexural rigidity is D, determine its
generalized properties m∗ and k∗ in terms of the central displacement
coordinate Z(t). Assume the displacement function is

ψ(x, y) = sin
πx

a
sin

πy

a

(b) The uniformly distributed external loading per unit of area is p(t). Deter-
mine the generalized loading p∗(t) based on the displacement function of
part a.

8-9. The outer diameters, height, and material properties of a conical concrete
smokestack are shown in Fig. P8-5. Assuming a uniform wall thickness of
8 in and that the deflected shape is given by

ψ(x) = 1 − cosπx

2L

compute the generalized mass m∗ and stiffness k∗ of the structure. Dividing
the height into two equal segments, use Simpson’s rule to evaluate the integrals,
including in the summations the integrand values for the bottom, middle, and
top sections. For example

m∗ .
=

4x
3

(y0 + 4y1 + y2)

where yi = miψ
2
i evaluated at level “i.”

8 ft
2

1

0

FIGURE P8-5

x

200 ft

ψ (x) = 1 − cos πx
2L


Concrete stack:
density = 150 lb/ft3

E = 3 × 106 lb/in2

wall thickness = 8 in

18 ft
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8-10. By Rayleigh’s method, compute the period of vibration of the uniform beam
supporting a central mass m1 shown in Fig. P8-6. For the assumed shape, use
the deflection produced by a central load p; i.e., v(x) = px(3L2 − 4x2)/48EI

for 0 ≤ x ≤ L/2, symmetric with respect to x = L/2. Consider the cases: (a)
m1 = 0, and (b) m1 = 3mL.

L
2

L
2

FIGURE P8-6

x
m1

m = mass
length

EI{
Assumed shape

v(x)

8-11. (a) Determine the period of vibration of the frame shown in Fig. P8-7, assum-
ing the girder to be rigid and the deflected shape of the columns to be that
due to a lateral load p acting on the girder v(x) = p (3L2x− x3)/12EI;

(b) What fraction of the total column weight assumed lumped with the girder
weight will give the same period of vibration as was found in part a?

8-12. The shear building of Fig. P8-8 has its entire mass lumped in the rigid girders.
For the given mass and stiffness properties, and assuming a linear initial shape
(as shown), evaluate the period of vibration by:

(a) Rayleigh method R00

(b) Rayleigh method R01

(c) Rayleigh method R11
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FIGURE P8-8

m1 = 2 kips⋅sec2/in

m2 = 2 kips⋅sec2/in

m3 = 2 kips⋅sec2/in

k1 = 400 kips/in

k2 = 800 kips/in

k3 = 1200 kips/in

v2
(0) = 2

3

v3
(0) = 1

3

v1
(0) = 1

8-13. Repeat Prob. 8-12 if the building properties are m1 = 1, m2 = 2, m3 =

3 kips · sec2/in and k1 = k2 = k3 = 800 kips/in.





PART

II
MULTI-

DEGREE-
OF-

FREEDOM
SYSTEMS





CHAPTER

9
FORMULATION

OF THE
MDOF

EQUATIONS
OF MOTION

9-1 SELECTION OF THE DEGREES OF FREEDOM

The discussion presented in Chapter 8 has demonstrated how a structure can be
represented as a SDOF system the dynamic response of which can be evaluated by the
solution of a single differential equation of motion. If the physical properties of the
system are such that its motion can be described by a single coordinate and no other
motion is possible, then it actually is a SDOF system and the solution of the equation
provides the exact dynamic response. On the other hand, if the structure actually has
more than one possible mode of displacement and it is reduced mathematically to a
SDOF approximation by assuming its deformed shape, the solution of the equation of
motion is only an approximation of the true dynamic behavior.

The quality of the result obtained with a SDOF approximation depends on many
factors, principally the spatial distribution and time variation of the loading and the
stiffness and mass properties of the structure. If the physical properties of the system
constrain it to move most easily with the assumed shape, and if the loading is such as
to excite a significant response in this shape, the SDOF solution will probably be a
good approximation; otherwise, the true behavior may bear little resemblance to the
computed response. One of the greatest disadvantages of the SDOF approximation is
that it is difficult to assess the reliability of the results obtained from it.
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In general, the dynamic response of a structure cannot be described adequately
by a SDOF model; usually the response includes time variations of the displacement
shape as well as its amplitude. Such behavior can be described only in terms of
more than one displacement coordinate; that is, the motion must be represented by
more than one degree of freedom. As noted in Chapter 1, the degrees of freedom in
a discrete-parameter system may be taken as the displacement amplitudes of certain
selected points in the structure, or they may be generalized coordinates representing
the amplitudes of a specified set of displacement patterns. In the present discussion, the
former approach will be adopted; this includes both the finite-element and the lumped-
mass type of idealization. The generalized-coordinate procedure will be discussed in
Chapter 16.

In this development of the equations of motion of a general MDOF system, it
will be convenient to refer to the general simple beam shown in Fig. 9-1 as a typical
example. The discussion applies equally to any type of structure, but the visualization
of the physical factors involved in evaluating all the forces acting is simplified for this
type of structure.

The motion of this structure will be assumed to be defined by the displacements
of a set of discrete points on the beam: v1(t), v2(t), . . ., vi(t), . . ., vN (t). In principle,
these points may be located arbitrarily on the structure; in practice, they should be
associated with specific features of the physical properties which may be significant
and should be distributed so as to provide a good definition of the deflected shape.
The number of degrees of freedom (displacement components) to be considered is
left to the discretion of the analyst; greater numbers provide better approximations of
the true dynamic behavior, but in many cases excellent results can be obtained with
only two or three degrees of freedom. In the beam of Fig. 9-1 only one displacement
component has been associated with each nodal point on the beam. It should be noted,
however, that several displacement components could be identified with each point;
e.g., the rotation ∂v/∂x and longitudinal motions might be used as additional degrees
of freedom at each point.

FIGURE 9-1
Discretization of a general 
beam-type structure.

m(x)
EI(x){

v1 (t) v2 (t) vi (t)
vN (t)

1 2 i N

p(x,t)
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9-2 DYNAMIC-EQUILIBRIUM CONDITION

The equation of motion of the system of Fig. 9-1 can be formulated by expressing
the equilibrium of the effective forces associated with each of its degrees of freedom.
In general four types of forces will be involved at any point i: the externally applied
load pi(t) and the forces resulting from the motion, that is, inertia fIi, damping fDi, and
elastic fSi. Thus for each of the several degrees of freedom the dynamic equilibrium
may be expressed as

fI1 + fD1 + fS1 = p1(t)

fI2 + fD2 + fS2 = p2(t)

fI3 + fD3 + fS3 = p3(t)

· · · · · · · · · · · · · · · · · · ·

(9-1)

or when the force vectors are represented in matrix form,

fI + fD + fS = p(t) (9-2)

which is the MDOF equivalent of the SDOF equation (2-1).

Each of the resisting forces is expressed most conveniently by means of an
appropriate set of influence coefficients. Consider, for example, the elastic-force
component developed at point 1; this depends in general upon the displacement
components developed at all points of the structure:

fS1 = k11v1 + k12v2 + k13v3 + · · · + k1NvN (9-3a)

Similarly, the elastic force corresponding to the degree of freedom v2 is

fS2 = k21v1 + k22v2 + k23v3 + · · · + k2NvN (9-3b)

and, in general,

fSi = ki1v1 + ki2v2 + ki3v3 + · · · + kiNvN (9-3c)

In these expressions it has been tacitly assumed that the structural behavior is linear,
so that the principle of superposition applies. The coefficients kij are called stiffness
influence coefficients, defined as follows:

kij = force corresponding to coordinate i due to
a unit displacement of coordinate j (9-4)

In matrix form, the complete set of elastic-force relationships may be written




fS1

fS2

·

fSi

·





=




k11 k12 k13 · · · k1i · · · k1N

k21 k22 k23 · · · k2i · · · k2N

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ki1 ki2 ki3 · · · kii · · · kiN

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·








v1

v2

·

vi

·





(9-5)
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or, symbolically,
fS = k v (9-6)

in which the matrix of stiffness coefficients k is called the stiffness matrix of the
structure (for the specified set of displacement coordinates) and v is the displacement
vector representing the displaced shape of the structure.

If it is assumed that the damping depends on the velocity, that is, the viscous
type, the damping forces corresponding to the selected degrees of freedom may be
expressed by means of damping influence coefficients in similar fashion. By analogy
with Eq. (9-5), the complete set of damping forces is given by





fD1

fD2

·

fDi

·





=




c11 c12 c13 · · · c1i · · · c1N

c21 c22 c23 · · · c2i · · · c2N

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ci1 ci2 ci3 · · · cii · · · ciN

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·








v̇1

v̇2

·

v̇i

·





(9-7)

in which v̇i represents the time rate of change (velocity) of the i displacement coordi-
nate and the coefficients cij are called damping influence coefficients. The definition
of these coefficients is exactly parallel to Eq. (9-4):

cij = force corresponding to coordinate i due to unit

velocity of coordinate j (9-8)

Symbolically, Eq. (9-7) may be written

fD = c v̇ (9-9)

in which the matrix of damping coefficients c is called the damping matrix of the
structure (for the specified degrees of freedom) and v̇ is the velocity vector.

The inertial forces may be expressed similarly by a set of influence coefficients
called the mass coefficients. These represent the relationship between the accelerations
of the degrees of freedom and the resulting inertial forces; by analogy with Eq. (9-5),
the inertial forces may be expressed as





fI1

fI2

·

fIi

·





=




m11 m12 m13 · · · m1i · · · m1N

m21 m22 m23 · · · m2i · · · m2N

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

mi1 mi2 mi3 · · · mii · · · miN

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·





=





v̈1

v̈2

·

v̈i

·





(9-10)
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where v̈i is the acceleration of the i displacement coordinate and the coefficients mij

are the mass influence coefficients, defined as follows:

mij = force corresponding to coordinate i due to

unit acceleration of coordinate j (9-11)

Symbolically, Eq. (9-10) may be written

fI = m v̈ (9-12)

in which the matrix of mass coefficients m is called the mass matrix of the structure
and v̈ is its acceleration vector, both defined for the specified set of displacement
coordinates.

Substituting Eqs. (9-6), (9-9), and (9-12) into Eq. (9-2) gives the complete
dynamic equilibrium of the structure, considering all degrees of freedom:

m v̈(t) + c v̇(t) + k v(t) = p(t) (9-13)

This equation is the MDOF equivalent of Eq. (2-3); each term of the SDOF equation
is represented by a matrix in Eq. (9-13), the order of the matrix corresponding to the
number of degrees of freedom used in describing the displacements of the structure.
Thus, Eq. (9-13) expresses the N equations of motion which serve to define the
response of the MDOF system.

9-3 AXIAL-FORCE EFFECTS

It was observed in the discussion of SDOF systems that axial forces or any load
which may tend to cause buckling of a structure may have a significant effect on the
stiffness of the structure. Similar effects may be observed in MDOF systems; the
force component acting parallel to the original axis of the members leads to additional
load components which act in the direction (and sense) of the nodal displacements and
which will be denoted by fG. When these forces are included, the dynamic-equilibrium
expression, Eq. (9-2), becomes

fI + fD + fS − fG = p(t) (9-14)

in which the negative sign results from the fact that the forces fG are assumed to
contribute to the deflection rather than oppose it.

These forces resulting from axial loads depend on the displacements of the
structure and may be expressed by influence coefficients, called the geometric-stiffness
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coefficients, as follows:




fG1

fG2

·

fGi

·





=




kG11
kG12

kG13
· · · kG1i

· · · kG1N

kG21
kG22

kG23
· · · kG2i

· · · kG2N

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

kGi1
kGi2

kGi3
· · · kGii

· · · kGiN

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·









v1

v2

·

vi

·





(9-15)

in which the geometric-stiffness influence coefficients kGij
have the following defini-

tion:

kGij
= force corresponding to coordinate i due to unit

displacement of coordinate j and resulting from

axial-force components in the structure (9-16)

Symbolically Eq. (9-15) may be written

fG = kG v (9-17)

where kG is called the geometric-stiffness matrix of the structure.

When this expression is introduced, the equation of dynamic equilibrium of the
structure [given by Eq. (9-13) without axial-force effects] becomes

m v̈(t) + c v̇(t) + k v(t) − kG v(t) = p(t) (9-18)

or when it is noted that both the elastic stiffness and the geometric stiffness are
multiplied by the displacement vector, the combined stiffness effect can be expressed
by a single symbol and Eq. (9-18) written

m v̈(t) + c v̇(t) + k v(t) = p(t) (9-19)

in which
k = k − kG (9-20)

is called the combined stiffness matrix, which includes both elastic and geometric
effects. The dynamic properties of the structure are expressed completely by the
four influence-coefficient matrices of Eq. (9-18), while the dynamic loading is fully
defined by the load vector. The evaluation of these physical-property matrices and
the evaluation of the load vector resulting from externally applied forces will be
discussed in detail in the following chapter. The effective-load vector resulting from
support excitation will be discussed in connection with earthquake-response analysis
in Chapter 26.



CHAPTER

10
EVALUATION

OF STRUCTURAL-
PROPERTY
MATRICES

10-1 ELASTIC PROPERTIES

Flexibility

Before discussing the elastic-stiffness matrix expressed in Eq. (9-5), it will be
useful to define the inverse flexibility relationship. The definition of a flexibility
influence coefficient f̃ij is

f̃ij = deflection of coordinate i due to unit load
applied to coordinate j (10-1)

For the simple beam shown in Fig. 10-1, the physical significance of some of the
flexibility influence coefficients associated with a set of vertical-displacement degrees
of freedom is illustrated. Horizontal or rotational degrees of freedom might also have

FIGURE 10-1
Definition of flexibility influence coefficients.

p1 = 1

~
f21

~
fi1

~
fN 1

v1 = 
~
f11

p2 = 1

~
f22

~
f12

~
fN 2

vi = 
~
fi 2
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been considered, in which case it would have been necessary to use the corresponding
horizontal or rotational unit loads in defining the complete set of influence coefficients;
however, it will be convenient to restrict the present discussion to the vertical motions.

The evaluation of the flexibility influence coefficients for any given system is
a standard problem of static structural analysis; any desired method of analysis may
be used to compute these deflections resulting from the applied unit loads. When the
complete set of influence coefficients has been determined, they are used to calculate
the displacement vector resulting from any combination of the applied loads. For
example, the deflection at point 1 due to any combination of loads may be expressed

v1 = f̃11 p1 + f̃12 p2 + f̃13 p3 + . . .+ f̃1N p
N

(10-2)

Since similar expressions can be written for each displacement component, the com-
plete set of displacements is expressed





v1

v2

·

vi

·





=




f̃11 f̃12 f̃13 · · · f̃1i · · · f̃1N

f̃21 f̃22 f̃23 · · · f̃2i · · · f̃2N

· · · · · · · · · · · · · · · · · · · · ·

f̃i1 f̃i2 f̃i3 · · · f̃ii · · · f̃iN

· · · · · · · · · · · · · · · · · · · · ·








p
1

p
2

·

p
i

·





(10-3)

or symbolically
v = f̃ p (10-4)

in which the matrix of flexibility influence coefficients f̃ is called the flexibility matrix
of the structure.

In Eq. (10-4) the deflections are expressed in terms of the vector of externally
applied loads p, which are considered positive when acting in the same sense as the
positive displacements. The deflection may also be expressed in terms of the elastic
forces fS which resist the deflections and which are considered positive when acting
opposite to the positive displacements. Obviously by statics fS = p, and Eq. (10-4)
may be revised to read

v = f̃ fS (10-5)

Stiffness

The physical meaning of the stiffness influence coefficients defined in Eq. (9-4)
is illustrated for a few degrees of freedom in Fig. 10-2; they represent the forces
developed in the structure when a unit displacement corresponding to one degree of
freedom is introduced and no other nodal displacements are permitted. It should be
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FIGURE 10-2
Definition of stiffness influence 
coefficients.

p1 = k11

p2 = k21 pi 1 = k i 1 pN 1 = kN 1

v1=1

p1 = k12

p2 = k22

pi = k i 2 pN = kN 2

v2=1

noted that the stiffness influence coefficients in Fig. 10-2 are numerically equal to the
applied forces required to maintain the specified displacement condition. They are
positive when the sense of the applied force corresponds to a positive displacement
and negative otherwise.

Basic Structural Concepts

Strain energy — The strain energy stored in any structure may be expressed
conveniently in terms of either the flexibility or the stiffness matrix. The strain energy
U is equal to the work done in distorting the system; thus

U =
1

2

N∑

i=1

p
i
vi =

1

2
pT v (10-6)

where the 1
2 factor results from the forces which increase linearly with the displace-

ments, and pT represents the transpose of p. By substituting Eq. (10-4) this becomes

U =
1

2
pT f̃ p (10-7)

Alternatively, transposing Eq. (10-6) and substituting Eq. (9-6) leads to the second
strain-energy expression (note that p = fS):

U =
1

2
vT k v (10-8)

Finally, when it is noted that the strain energy stored in a stable structure during any
distortion must always be positive, it is evident that

vT k v > 0 and pT f̃ p > 0 (10-9)
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Matrices which satisfy this condition, where v or p is any arbitrary nonzero vector, are
said to be positive definite; positive definite matrices (and consequently the flexibility
and stiffness matrices of a stable structure) are nonsingular and can be inverted.

Inverting the stiffness matrix and premultiplying both sides of Eq. (9-6) by the
inverse leads to

k−1 fS = v

which upon comparison with Eq. (10-5) demonstrates that the flexibility matrix is the
inverse of the stiffness matrix:

k−1 = f̃ (10-10)

In practice, the evaluation of stiffness coefficients by direct application of the definition,
as implied in Fig. 10-2, may be a tedious computational problem. In many cases, the
most convenient procedure for obtaining the stiffness matrix is direct evaluation of the
flexibility coefficients and inversion of the flexibility matrix.

Betti’s law — A property which is very important in structural-dynamics analy-
sis can be derived by applying two sets of loads to a structure in reverse sequence and
comparing expressions for the work done in the two cases. Consider, for example, the
two different load systems and their resulting displacements shown in Fig. 10-3. If
the loads a are applied first followed by loads b, the work done will be as follows:

Case 1:

Loads a: Waa = 1
2

∑
p
ia
via = 1

2 p
a
T va

Loads b: Wbb +Wab = 1
2 p

b
T vb + p

a
T vb

Total: W1 = Waa +Wbb +Wab = 1
2 p

a
T va + 1

2 p
b
T vb + p

a
T vb (10-11)

Note that the work done by loads a during the application of loads b is not multiplied
by 1

2 ; they act at their full value during the entire displacement vb. Now if the loads
are applied in reverse sequence, the work done is:

FIGURE 10-3
Two independent load systems and resulting deflections.

p1 a p1 b

v1 a v1 b

p2 a − p2 b

v2 a
−v2 b

p3 a − p3 b

v3 a

− v3 b

Load system a:

Deflections a:

Load system b:

Deflections b:
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Case 2:

Loads b: Wbb = 1
2 p

b
T vb

Loads a: Waa +Wba = 1
2 p

a
T va + p

b
T va

Total: W2 = Wbb +Waa +Wba = 1
2 p

b
T vb + 1

2 p
a
T va + p

b
T va (10-12)

The deformation of the structure is independent of the loading sequence, how-
ever; therefore the strain energy and hence also the work done by the loads is the
same in both these cases; that is, W1 = W2. From a comparison of Eqs. (10-11) and
(10-12) it may be concluded that Wab = Wba; thus

p
a
T vb = p

b
T va (10-13)

Equation (10-13) is an expression of Betti’s law; it states that the work done by one
set of loads on the deflections due to a second set of loads is equal to the work of the
second set of loads acting on the deflections due to the first.

If Eq. (10-4) is written for the two sets of forces and displacements and substi-
tuted into both sides of Eq. (10-13):

p
a
T f̃ p

b
= p

b
T f̃ p

a

it is evident that
f̃ = f̃

T
(10-14)

Thus the flexibility matrix must be symmetric; that is, f̃ij = f̃ji. This is an expression
of Maxwell’s law of reciprocal deflections. Substituting similarly with Eq. (9-6) (and
noting that p = fS) leads to

k = kT (10-15)

That is, the stiffness matrix also is symmetric.

Finite-Element Stiffness

In principle, the flexibility or stiffness coefficients associated with any prescribed
set of nodal displacements can be obtained by direct application of their definitions.
In practice, however, the finite-element concept, described in Chapter 1, frequently
provides the most convenient means for evaluating the elastic properties. By this
approach the structure is assumed to be divided into a system of discrete elements
which are interconnected only at a finite number of nodal points. The properties of the
complete structure are then found by evaluating the properties of the individual finite
elements and superposing them appropriately.

The problem of defining the stiffness properties of any structure is thus reduced
basically to the evaluation of the stiffness of a typical element. Consider, for example,
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a b

v(x) EI(x)

L
x

ψ1 (x)

ψ3(x)

FIGURE 10-4
Beam deflections due to unit nodal 
displacements at left end.

va ≡ v1 = 1

θa ≡ v3 = 1

the nonuniform straight-beam segment shown in Fig. 10-4. The two nodal points
by which this type of element can be assembled into a structure are located at its
ends, and if only transverse plane displacements are considered, it has two degrees
of freedom at each node, vertical translation and rotation. The deflected shapes
resulting from applying a unit displacement of each type at the left end of the element
while constraining the other three nodal displacements are shown in Fig. 10-4. These
displacement functions could be taken as any arbitrary shapes which satisfy nodal
and internal continuity requirements, but they generally are assumed to be the shapes
developed in a uniform beam subjected to these nodal displacements. These are cubic
hermitian polynomials which may be expressed as

ψ1(x) = 1 − 3

(
x

L

)2

+ 2

(
x

L

)3

(10-16a)

ψ3(x) = x

(
1 − x

L

)2

(10-16b)

The equivalent shape functions for displacements applied at the right end are

ψ2(x) = 3

(
x

L

)2

− 2

(
x

L

)3

(10-16c)

ψ4(x) =
x2

L

(
x

L
− 1

)
(10-16d)

With these four interpolation functions, the deflected shape of the element can now be
expressed in terms of its nodal displacements:

v(x) = ψ1(x) v1 + ψ2(x) v2 + ψ3(x) v3 + ψ4(x) v4 (10-17)
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where the numbered degrees of freedom are related to those shown in Fig. 10-4 as
follows: 




v1

v2

v3

v4





≡





va

vb

θa

θb





(10-17a)

It should be noted that both rotations and translations are represented as basic nodal
degrees of freedom vi.

By definition, the stiffness coefficients of the element represent the nodal
forces due to unit nodal displacements. The nodal forces associated with any nodal-
displacement component can be determined by the principle of virtual displacements,
as described in Section 1-5. Consider, for example, the stiffness coefficient k13 for
the beam element of Fig. 10-4, that is, the vertical force developed at end a due to a
unit rotation applied at that point.

This force component can be evaluated by introducing a virtual vertical displace-
ment of end a, as shown in Fig. 10-5, while the unit rotation is applied as shown, and
equating the work done by the external forces to the work done on the internal forces:
WE = WI . In this case, the external work is done only by the vertical-force com-
ponent at a because the virtual displacements of all other nodal components vanish;
thus

WE = δva pa = δv1 k13 (10-18)

The internal virtual work is done by the internal moments associated with θa = 1

acting on the virtual curvatures, which are ∂2/∂x2[δv(x)] = ψ′′
1 (x) δv1 (neglecting

the effects of shear distortion). However, the internal moments due to θa = 1 may be
expressed as

M(x) = EI(x) ψ′′
3 (x)

Thus the internal work is given by

WI = δv1

∫ L

0

EI(x)ψ′′
1 (x)ψ′′

3 (x) dx (10-19)

FIGURE 10-5
Beam subjected to real rotation 
and virtual translation of node.

δ va ≡ δ v1 ψ3 (x)

pa = k13

v3 ≡ θa = 1

δ v(x) = ψ1 (x)δ v1
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When the work expressions of Eqs. (10-18) and (10-19) are equated, the expression
for this stiffness coefficient is

k13 =

∫ L

0

EI(x)ψ′′
1 (x)ψ′′

3 (x) dx (10-20)

Any stiffness coefficient associated with beam flexure therefore may be written equiv-
alently as

kij =

∫ L

0

EI(x)ψ′′
i (x)ψ′′

j (x) dx (10-21)

From the form of this expression, the symmetry of the stiffness matrix is evident; that
is, kij = kji. Its equivalence to the corresponding term in the third of Eqs. (8-18) for
the case where i = j should be noted.

For the special case of a uniform beam segment, the stiffness matrix resulting
from Eq. (10-21) when the interpolation functions of Eqs. (10-16) are used may be
expressed by





fS1

fS2

fS3

fS4





=
2EI

L3




6 −6 3L 3L

−6 6 −3L −3L

3L −3L 2L2 L2

3L −3L L2 2L2








v1

v2

v3

v4





(10-22)

where the nodal displacements v are defined by Eq. (10-17a) and fS is the corre-
sponding vector of nodal forces. These stiffness coefficients are the exact values for
a uniform beam without shear distortion because the interpolation functions used in
Eq. (10-21) are the true shapes for this case. If the stiffness of the beam is not uniform,
applying these shape functions in Eq. (10-21) will provide only an approximation to
the true stiffness, but the final result for the complete beam will be very good if it is
divided into a sufficient number of finite elements.

As mentioned earlier, when the stiffness coefficients of all the finite elements in
a structure have been evaluated, the stiffness of the complete structure can be obtained
by merely adding the element stiffness coefficients appropriately; this is called the
direct stiffness method. In effect, any stiffness coefficient kij of the complete structure
can be obtained by adding together the corresponding stiffness coefficients of the
elements associated with those nodal points. Thus if elements m, n, and p were all
attached to nodal point i of the complete structure, the structure stiffness coefficient
for this point would be

ˆ̂
kii =

ˆ̂
kii

(m) +
ˆ̂
kii

(n) +
ˆ̂
kii

(p) (10-23)
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in which the superscripts identify the individual elements. Before the element stiff-
nesses can be superposed in this fashion, they must be expressed in a common global-
coordinate system which is applied to the entire structure. The double hats are placed
over each element stiffness symbol in Eq. (10-23) to indicate that they have been
transformed from their local-coordinate form [for example, Eq. (10-22)] to the global
coordinates.

Example E10-1. The evaluation of the structural stiffness matrix is a
basic operation of the matrix-displacement method of static structural analysis;
although a general discussion of this subject is beyond the scope of this structural-
dynamics text, it may be useful to apply the procedure to a simple frame structure
in order to demonstrate how the element stiffness coefficients of Eq. (10-22) may
be used.

Consider the structure of Fig. E10-1a. If it is assumed that the members do
not distort axially, this frame has the three joint degrees of freedom shown. The

v1 = 1

v2 = 1

L

2L

EI EI

4EI

v2 v3

v1

FIGURE E10-1
Analysis of frame stiffness coefficients: (a) frame properties and degrees of freedom; 
(b) forces due to displacement v1 = 1; (c) forces due to rotation v2 = 1.
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corresponding stiffness coefficients can be evaluated by successively applying
a unit displacement to each degree of freedom while constraining the other two
and determining the forces developed in each member by the coefficients of
Eq. (10-22).

When the sidesway displacement shown in Fig. E10-1b is applied, it is
clear that only the vertical members are deformed; their end forces are given by
elements 1, 3, and 4 in the first column of the stiffness matrix of Eq. (10-22). It
will be noted that the structure coefficient k11 receives a contribution from each
column.

Considering the joint rotation shown in Fig. E10-1c, both the girder and
the left vertical contribute to the structure coefficient k22, the contributions
being given by element 3 of column 3 in the stiffness matrix of Eq. (10-22)
(taking proper account of the girder properties, of course). Only the left vertical
contributes to k12 and only the girder to k32. The structure stiffness coefficients
due to the right-joint rotation are analogous to these.

The structure stiffness matrix finally obtained by assembling all these
coefficients is





fS1

fS2

fS3





=
2EI

L3




12 3L 3L

3L 6L2 2L2

3L 2L2 6L2








v1

v2

v3





10-2 MASS PROPERTIES

Lumped-Mass Matrix

The simplest procedure for defining the mass properties of any structure is to
assume that the entire mass is concentrated at the points at which the translational
displacements are defined. The usual procedure for defining the point mass to be
located at each node is to assume that the structure is divided into segments, the nodes
serving as connection points. Figure 10-6 illustrates the procedure for a beam-type
structure. The mass of each segment is assumed to be concentrated in point masses at
each of its nodes, the distribution of the segment mass to these points being determined
by statics. The total mass concentrated at any node of the complete structure then is
the sum of the nodal contributions from all the segments attached to that node. In
the beam system of Fig. 10-6 there are two segments contributing to each node; for
example, m1 = m1a +m1b.

For a system in which only translational degrees of freedom are defined, the
lumped-mass matrix has a diagonal form; for the system of Fig. 10-6 it would be
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FIGURE 10-6
Lumping of mass at beam nodes.

10 2 i N

m0 a m1 a

m1

m1 b m2 b

m2 c

m2

mi k

mi mN

mi l

written
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m1 0 0 · · · 0 · · · 0

0 m2 0 · · · 0 · · · 0

0 0 m3 · · · 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · mi · · · 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · 0 · · · mN




(10-24)

in which there are as many terms as there are degrees of freedom. The off-diagonal
terms mij of this matrix vanish because an acceleration of any mass point produces
an inertial force at that point only. The inertial force at i due to a unit acceleration
of point i is obviously equal to the mass concentrated at that point; thus the mass
influence coefficient mii = mi in a lumped-mass system.

If more than one translational degree of freedom is specified at any nodal point,
the same point mass will be associated with each degree of freedom. On the other
hand, the mass associated with any rotational degree of freedom will be zero because of
the assumption that the mass is lumped in points which have no rotational inertia. (Of
course, if a rigid mass having a finite rotational inertia is associated with a rotational
degree of freedom, the diagonal mass coefficient for that degree of freedom would be
the rotational inertia of the mass.) Thus the lumped-mass matrix is a diagonal matrix
which will include zero diagonal elements for the rotational degrees of freedom, in
general.

Consistent-Mass Matrix

Making use of the finite-element concept, it is possible to evaluate mass influence
coefficients for each element of a structure by a procedure similar to the analysis of
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δ v(x) = ψ1(x)δ v1

a

v(x)
m(x)

L

b

FIGURE 10-7
Node subjected to real angular acceleration and virtual translation.

Inertial force fI (x)
pa = m13

δ v1 ≡ δ va

v̈3 ≡ θ̈a = 1

element stiffness coefficients. Consider, for example, the nonuniform beam segment
shown in Fig. 10-7, which may be assumed to be the same as that of Fig. 10-4. The
degrees of freedom of the segment are the translation and rotation at each end, and
it will be assumed that the displacements within the span are defined by the same
interpolation functions ψi(x) used in deriving the element stiffness.

If the beam were subjected to a unit angular acceleration of the left end, v̈3 =

θ̈a = 1, accelerations would be developed along its length, as follows:

v̈(x) = ψ3(x) v̈3 (10-25)

which can be obtained by taking the second derivative of Eq. (10-17). By d’Alembert’s
principle, the inertial force resisting this acceleration is

fI(x) = m(x) v̈(x) = m(x)ψ3(x) v̈3 (10-26)

Now the mass influence coefficients associated with this acceleration are de-
fined as the nodal inertial forces which it produces; these can be evaluated from the
distributed inertial force of Eq. (10-26) by the principle of virtual displacements. For
example, the vertical force at the left end can be evaluated by introducing a vertical
virtual displacement and equating the work done by the external nodal force p

a
to the

work done on the distributed inertial forces fI(x). Thus

p
a
δva =

∫ L

0

fI(x) δv(x) dx

Expressing the vertical virtual displacement in terms of the interpolation function and
substituting Eq. (10-26) lead finally to

m13 =

∫ L

0

m(x)ψ1(x)ψ3(x) dx (10-27)
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It should be noted in Fig. 10-7 that the mass influence coefficient represents the inertial
force opposing the acceleration, but that it is numerically equal to the external force
producing the acceleration.

From Eq. (10-27) it is evident that any mass influence coefficient mij of an
arbitrary beam segment can be evaluated by the equivalent expression

mij =

∫ L

0

m(x)ψi(x)ψj(x) dx (10-28)

The symmetric form of this equation shows that the mass matrix (like the stiffness
matrix) is symmetric; that is, mij = mji; also it may be noted that this expression is
equivalent to the corresponding term in the first of Eqs. (8-18) in the case where i = j.
When the mass coefficients are computed in this way, using the same interpolation
functions which are used for calculating the stiffness coefficients, the result is called
the consistent-mass matrix. In general, the cubic hermitian polynomials of Eqs. (10-
16) are used for evaluating the mass coefficients of any straight beam segment. In the
special case of a beam with uniformly distributed mass the results are





fI1

fI2

fI3

fI4





=
mL

420




156 54 22L −13L

54 156 13L −22L

22L 13L 4L2 −3L2

−13L −22L −3L2 4L2








v̈1

v̈2

v̈3

v̈4





(10-29)

When the mass coefficients of the elements of a structure have been evaluated,
the mass matrix of the complete element assemblage can be developed by exactly the
same type of superposition procedure as that described for developing the stiffness
matrix from the element stiffness [Eq. (10-23)]. The resulting mass matrix in general
will have the same configuration, that is, arrangement of nonzero terms, as the stiffness
matrix.

The dynamic analysis of a consistent-mass system generally requires consid-
erably more computational effort than a lumped-mass system does, for two reasons:
(1) the lumped-mass matrix is diagonal, while the consistent-mass matrix has many
off-diagonal terms (leading to what is called mass coupling); (2) the rotational degrees
of freedom can be eliminated from a lumped-mass analysis (by static condensation,
explained later), whereas all rotational and translational degrees of freedom must be
included in a consistent-mass analysis.

Example E10-2. The structure of Example E10-1, shown again in
Fig. E10-2a, will be used to illustrate the evaluation of the structural mass



188 DYNAMICS OF STRUCTURES

v̈2 = 1
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v2 v3
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FIGURE E10-2
Analysis of lumped- and consistent-mass matrices: (a) uniform mass in members; (b) lumping of 
mass at member ends; (c) forces due to acceleration v̈1 = 1 (consistent); (d ) forces due to 
acceleration v̈2 = 1 (consistent).
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matrix. First the lumped-mass procedure is used: half the mass of each member
is lumped at the ends of the members, as shown in Fig. E10-2b. The sum of the
four contributions at the girder level then acts in the sidesway degree of freedom
m11; no mass coefficients are associated with the other degrees of freedom
because these point masses have no rotational inertia.

The consistent-mass matrix is obtained by applying unit accelerations
to each degree of freedom in succession while constraining the others and
determining the resulting inertial forces from the coefficients of Eq. (10-29).
Considering first the sidesway acceleration, as shown in Fig. E10-2c, it must be
noted that the coefficients of Eq. (10-29) account only for the transverse inertia
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of the columns. The inertia of the girder due to the acceleration parallel to its
axis must be added as a rigid-body mass (3mL), as shown.

The joint rotational acceleration induces only accelerations transverse to
the members, and the resulting girder and column contributions are given by
Eq. (10-29), as shown in Fig. E10-2d. The final mass matrices, from the lumped-
and consistent-mass formulations, are

m = mL
210




840 0 0

0 0 0

0 0 0




Lumped

m = mL
210




786 11L 11L

11L 26L2 −18L2

11L −18L2 26L2




Consistent

10-3 DAMPING PROPERTIES

If the various damping forces acting on a structure could be determined quan-
titatively, the finite-element concept could be used again to define the damping coef-
ficients of the system. For example, the coefficient for any element might be of the
form [compare with the corresponding term in the second of Eqs. (8-18) for the case
where i = j]

cij =

∫ L

0

c(x)ψi(x)ψj(x) dx (10-30)

in which c(x) represents a distributed viscous-damping property. After the element
damping influence coefficients were determined, the damping matrix of the complete
structure could be obtained by a superposition process equivalent to the direct stiffness
method. In practice, however, evaluation of the damping property c(x) (or any
other specific damping property) is impracticable. For this reason, the damping
is generally expressed in terms of damping ratios established from experiments on
similar structures rather than by means of an explicit damping matrix c. If an explicit
expression of the damping matrix is needed, it generally will be computed from the
specified damping ratios, as described in Chapter 12.

10-4 EXTERNAL LOADING

If the dynamic loading acting on a structure consists of concentrated forces
corresponding with the displacement coordinates, the load vector of Eq. (9-2) can be
written directly. In general, however, the load is applied at other points as well as the
nodes and may include distributed loadings. In this case, the load terms in Eq. (9-2)
are generalized forces associated with the corresponding displacement components.
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Two procedures which can be applied in the evaluation of these generalized forces are
described in the following paragraphs.

Static Resultants

The most direct means of determining the effective nodal forces generated by
loads distributed between the nodes is by application of the principles of simple statics;
in other words, the nodal forces are defined as a set of concentrated loads which are
statically equivalent to the distributed loading. In effect, the analysis is made as
though the actual loading were applied to the structure through a series of simple
beams supported at the nodal points. The reactive forces developed at the supports
then become the concentrated nodal forces acting on the structure. In this type of
analysis it is evident that generalized forces will be developed corresponding only to
the translational degrees of freedom; the rotational nodal forces will be zero unless
external moments are applied directly to the joints.

Consistent Nodal Loads

A second procedure which can be used to evaluate nodal forces corresponding
to all nodal degrees of freedom can be developed from the finite-element concept.
This procedure employs the principle of virtual displacements in the same way as
in evaluating the consistent-mass matrix, and the generalized nodal forces which are
derived are called the consistent nodal loads. Consider the same beam segment as in
the consistent-mass analysis but subjected to the externally applied dynamic loading
shown in Fig. 10-8. When a virtual displacement δv1 is applied, as shown in the sketch,
and external and internal work are equated, the generalized force corresponding to v1

is

p
1
(t) =

∫ L

0

p(x, t)ψ1(x) dx (10-31)

FIGURE 10-8
Virtual nodal translation of a laterally loaded beam.

p(x, t)

L
pa = p1

δ va ≡ δ v1 δ v(x) = ψ1(x)δ v1
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Thus, the element generalized loads can be expressed in general as

p
i
(t) =

∫ L

0

p(x, t)ψi(x) dx (10-32)

The generalized load p
3

corresponding to v3 = θa is an external moment applied
at point a. The positive sense of the generalized loads corresponds to the positive
coordinate axes. The equivalence of Eq. (10-32) to the corresponding term in the
fourth of Eqs. (8-18) should be noted.

For the loads to be properly called consistent, the interpolation functions ψi(x)

used in Eq. (10-32) must be the same as those used to define the element stiffness
coefficients. If linear interpolation functions

ψ1(x) = 1 − x

L
ψ2(x) =

x

L
(10-33)

were used instead, Eq. (10-32) would provide the static nodal resultants; in general
this is the easiest way to compute the statically equivalent loads.

In some cases, the applied loading may have the special form

p(x, t) = χ(x) f(t) (10-34)

that is, the form of load distributionχ(x) does not change with time; only its amplitude
changes. In this case the generalized force becomes

p
i
(t) = f(t)

∫ L

0

χ(x)ψi(x) dx (10-34a)

which shows that the generalized force has the same time variation as the applied
loading; the integral indicates the extent to which the load participates in developing
the generalized force.

When the generalized forces acting on each element have been evaluated by
Eq. (10-32), the total effective load acting at the nodes of the assembled structure can
be obtained by a superposition procedure equivalent to the direct stiffness process.

10-5 GEOMETRIC STIFFNESS

Linear Approximation

The geometric-stiffness property represents the tendency toward buckling in-
duced in a structure by axially directed load components; thus it depends not only on
the configuration of the structure but also on its condition of loading. In this discussion,
it is assumed that the forces tending to cause buckling are constant during the dynamic
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FIGURE 10-9
Idealization of axial-load 
mechanism in beam.
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loading; thus they are assumed to result from an independent static loading and are not
significantly affected by the dynamic response of the structure. (When these forces
do vary significantly with time, they result in a time-varying stiffness property, and
analysis procedures based on superposition are not valid for such a nonlinear system.)

In general, two different levels of approximation can be established for the
evaluation of geometric-stiffness properties, more or less in parallel with the pre-
ceding discussions for mass matrices and load vectors. The simplest approximation
is conveniently derived from the physical model illustrated in Fig. 10-9, in which
it is assumed that all axial forces are acting in an auxiliary structure consisting of
rigid bar segments connected by hinges. The hinges are located at points where the
transverse-displacement degrees of freedom of the actual beam are identified, and
they are attached to the main beam by links which transmit transverse forces but no
axial-force components.

When the actual beam is deflected by any form of loading, the auxiliary link
system is forced to deflect equally, as shown in the sketch. As a result of these
deflections and the axial forces in the auxiliary system, forces will be developed in the
links coupling it to the main beam. In other words, the resistance of the main beam
will be required to stabilize the auxiliary system.

The forces required for equilibrium in a typical segment i of the auxiliary system
are shown in Fig. 10-10. The transverse force components fGi and fGj depend on the
value of the axial-force component in the segment Ni and on the slope of the segment.
They are assumed to be positive when they act in the positive-displacement sense on
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FIGURE 10-10
Equilibrium forces due to axial load in auxiliary 
link.
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the main beam. In matrix form, these forces may be expressed

{
fGi

fGj

}
=

Ni

li

[
1 −1

−1 1

] {
vi

vj

}
(10-35)

By combining expressions of this type for all segments, the transverse forces
due to axial loads can be written for the beam structure of Fig. 10-9 as follows:
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0 0 0 · · · Ni−1

li−1

+ Ni

li
· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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(10-36)

in which it will be noted that magnitude of the axial force may change from segment
to segment; for the loading shown in Fig. 10-9 all axial forces would be the same, and
the term N could be factored from the matrix.

Symbolically, Eq. (10-36) may be expressed

fG = kG v (10-37)

where the square symmetric matrix kG is called the geometric-stiffness matrix of the
structure. For this linear approximation of a beam system, the matrix has a tridiagonal
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form, as may be seen in Eq. (10-36), with contributions from two adjacent elements
making up the diagonal terms and a single element providing each off-diagonal, or
coupling, term.

Consistent Geometric Stiffness

The finite-element concept can be used to obtain a higher-order approximation
of the geometric stiffness, as demonstrated for the other physical properties. Consider
the same beam element used previously but now subjected to distributed axial loads
which result in an arbitrary variation of axial force N(x), as shown in Fig. 10-11.
In the lower sketch, the beam is shown subjected to a unit rotation of the left end
v3 = 1. By definition, the nodal forces associated with this displacement component
are the corresponding geometric-stiffness influence coefficients; for example, kG13 is
the vertical force developed at the left end.

These coefficients may be evaluated by application of virtual displacements and
equating the internal and external work components. The virtual displacement δv1

required to determine kG13 is shown in the sketch. The external virtual work in this
case is

WE = fGa δva = kG13 δv1 (10-38)

in which it will be noted that the positive sense of the geometric-stiffness coefficient
corresponds with the positive displacements. To develop an expression for the internal
virtual work, it is necessary to consider a differential segment of length dx, taken from
the system of Fig. 10-11 and shown enlarged in Fig. 10-12. The work done in this
segment by the axial force N(x) during the virtual displacement is

dWI = N(x) d(δe) (10-39)

d y d( ) = ( )v vx x1 1

a b
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FIGURE 10-12
Differential segment of 
deformed beam of Fig. 10-11.dx

dv

N (x)

N(x)

d(δ e)

d(δ v)

where d(δe) represents the distance the forces acting on this differential segment move
toward each other. By similar triangles it may be seen in the sketch that

d(δe) =
dv

dx
d(δv)

Interchanging the differentiation and variation symbols on the right side gives

d(δe) =
dv

dx
δ

(
dv

dx
dx

)

and hence introducing this into Eq. (10-39) leads to

dWI = N(x)
dv

dx
δ

(
dv

dx

)
dx

Expressing the lateral displacements in terms of interpolation functions and integrating
finally gives

WI = δv1

∫ L

0

N(x)
dψ3(x)

dx

dψ1(x)

dx
dx (10-40)

Hence, by equating internal to external work, this geometric-stiffness coefficient is
found to be

kG13 =

∫ L

0

N(x)ψ′
3(x)ψ

′
1(x) dx (10-41)

or in general the element geometric-stiffness influence coefficients are

kGij =

∫ L

0

N(x)ψ′
i(x)ψ

′
j(x) dx (10-42)

The equivalence of this equation to the last term in the third of Eqs. (8-18) should be
noted; also its symmetry is apparent, that is, kGij = kGji.

If the hermitian interpolation functions [Eqs. (10-16)] are used in deriving the
geometric-stiffness coefficients, the result is called the consistent geometric-stiffness
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matrix. In the special case where the axial force is constant through the length of the
element, the consistent geometric-stiffness matrix is
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(10-43)

On the other hand, if linear-interpolation functions [Eq. (10-33)] are used in Eq. (10-
42), and if the axial force is constant through the element, its geometric stiffness will
be as derived earlier in Eq. (10-35).

The assembly of the element geometric-stiffness coefficients to obtain the struc-
ture geometric-stiffness matrix can be carried out exactly as for the elastic-stiffness
matrix, and the result will have a similar configuration (positions of the nonzero terms).
Thus the consistent geometric-stiffness matrix represents rotational as well as transla-
tional degrees of freedom, whereas the linear approximation [Eq. (10-35)] is concerned
only with the translational displacements. However, either type of relationship may
be represented symbolically by Eq. (10-37).

10-6 CHOICE OF PROPERTY FORMULATION

In the preceding discussion, two different levels of approximation have been
considered for the evaluation of the mass, elastic-stiffness, geometric-stiffness, and
external-load properties: (1) an elementary approach taking account only of the
translational degrees of freedom of the structure and (2) a “consistent” approach, which
accounts for the rotational as well as translational displacements. The elementary
approach is considerably easier to apply; not only are the element properties defined
more simply but the number of coordinates to be considered in the analysis is much
less for a given structural assemblage. In principle, the consistent approach should
lead to greater accuracy in the results, but in practice the improvement is often slight.
Apparently the rotational degrees of freedom are much less significant in the analysis
than the translational terms. The principal advantage of the consistent approach is that
all the energy contributions to the response of the structure are evaluated in a consistent
manner, which makes it possible to draw certain conclusions regarding bounds on the
vibration frequency; however, this advantage seldom outweighs the additional effort
required.

The elementary lumped-mass approach presents a special problem when the
elastic-stiffness matrix has been formulated by the finite-element approach or by any
other procedure which includes the rotational degrees of freedom in the matrix. If
the evaluation of all the other properties has excluded these degrees of freedom, it
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is necessary to exclude them also from the stiffness matrix before the equations of
motion can be written.

The process of eliminating these unwanted degrees of freedom from the stiffness
matrix is called static condensation. For the purpose of this discussion, assume that the
rotational and translational degrees of freedom have been segregated, so that Eq. (9-5)
can be written in partitioned form

[
ktt ktθ

kθt kθθ

] {
vt

vθ

}
=

{
fSt

fSθ

}
=

{
fSt

0

}
(10-44)

where vt represents the translations and vθ the rotations, with corresponding subscripts
to identify the submatrices of stiffness coefficients. Now, if none of the other force
vectors acting in the structure include any rotational components, it is evident that the
elastic rotational forces also must vanish, that is, fSθ = 0. When this static constraint
is introduced into Eq. (10-44), it is possible to express the rotational displacements in
terms of the translations by means of the second submatrix equation, with the result

vθ = −kθθ
−1 kθt vt (10-45)

Substituting this into the first of the submatrix equations of Eq. (10-44) leads to

(ktt − ktθ kθθ
−1 kθt) vt = fSt

or

kt vt = fSt (10-46)

where

kt = ktt − ktθ kθθ
−1 kθt (10-47)

is the translational elastic stiffness. This stiffness matrix is suitable for use with the
other elementary property expressions; in other words, it is the type of stiffness matrix
implied in Fig. 10-2.

Example E10-3. To demonstrate the use of the static-condensation proce-
dure, the two rotational degrees of freedom will be eliminated from the stiffness
matrix evaluated in Example E10-1. The resulting condensed stiffness matrix
will retain only the translational degree of freedom of the frame and thus will
be compatible with the lumped-mass matrix derived in Example E10-2.
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The stiffness submatrix associated with the rotational degrees of freedom
of Example E10-1 is

kθθ =
2EI

L3

[
6L2 2L2

2L2 6L2

]
=

4EI

L

[
3 1

1 3

]

and its inverse is

kθθ
−1 =

L

32EI

[
3 −1

−1 3

]

When this is used in Eq. (10-45), the rotational degrees of freedom can be
expressed in terms of the translation:

{
v2

v3

}
= − L

32EI

[
3 −1

−1 3

]
2EI

L3

{
3L

3L

}
v1 = − 3

8L

{
1

1

}
v1

The condensed stiffness given by Eq. (10-47) then is

kt =
2EI

L3

(
12− < 3L 3L >

{ 3
8L

3
8L

})
=

2EI

L3
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PROBLEMS

10-1. Using the hermitian polynomials, Eq. (10-16), as shape functionsψi(x), evaluate
by means of Eq. (10-21) the finite-element stiffness coefficient k23 for a beam
having the following variation of flexural rigidity: EI(x) = EI0(1 + x/L).

10-2. Making use of Eq. (10-28), compute the consistent mass coefficient m23 for a
beam with the following nonuniform mass distribution: m(x) = m(1 + x/L).
Assume the shape functions of Eq. (10-16) and evaluate the integral by Simpson’s
rule, dividing the beam into four segments of equal length.

10-3. The distributed load applied to a certain beam may be expressed as

p(x, t) = p
(
2 +

x

L

)
sinωt

Making use of Eq. (10-34a), write an expression for the time variation of the
consistent load component p2(t) based on the shape function of Eq. (10-16).

10-4. Using Eq. (10-42), evaluate the consistent geometric stiffness coefficient kG24

for a beam having the following distribution of axial force: N(x) = N0(2−x/L).
Make use of the shape functions of Eq. (10-16) and evaluate the integral by
Simpson’s rule using 4x = L/4.
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10-5. The plane frame of Fig. P10-1 is formed of uniform members, with the properties
of each as shown. Assemble the stiffness matrix defined for the three DOFs
indicated, evaluating the member stiffness coefficients by means of Eq. (10-22).

L
2

L
2

3L
2

FIGURE P10-1

m
EI

2 m
3EI 0.8 m

2
EI

p(x, t) = pζ(t)

p(x, t) = 3
2

pζ(t)

p(t) = pLζ(t) {

{ {

v3
v2

v1

10-6. Assemble the mass matrix for the structure of Prob. 10-5, evaluating the indi-
vidual member mass coefficients by means of Eq. (10-29).

10-7. Assemble the load vector for the structure of Prob. 10-5, evaluating the individual
member nodal loads by Eq. (10-32).

10-8. For a plane frame of the same general form as that of Prob. 10-5, but having
different member lengths and physical properties, the stiffness and lumped mass
matrices are as follows:

k =
EI

L3




20 −10L −5L
−10L 15L2 8L2

−5L 8L2 12L2


 m = mL




30 0 0
0 0 0
0 0 0




(a) Using static condensation, eliminate the two rotational degrees of freedom
from the stiffness matrix.

(b) Using the condensed stiffness matrix, write the SDOF equation of motion
for undamped free vibrations.





CHAPTER

11
UNDAMPED

FREE
VIBRATIONS

11-1 ANALYSIS OF VIBRATION FREQUENCIES

The equations of motion for a freely vibrating undamped system can be obtained
by omitting the damping matrix and applied-loads vector from Eq. (9-13):

m v̈ + k v = 0 (11-1)

in which 0 is a zero vector. The problem of vibration analysis consists of determining
the conditions under which the equilibrium condition expressed by Eq. (11-1) will be
satisfied. By analogy with the behavior of SDOF systems, it will be assumed that
the free-vibration motion is simple harmonic, which may be expressed for a MDOF
system as

v(t) = v̂ sin(ωt+ θ) (11-2)

In this expression v̂ represents the shape of the system (which does not change with
time; only the amplitude varies) and θ is a phase angle. When the second time
derivative of Eq. (11-2) is taken, the accelerations in free vibration are

v̈ = −ω2 v̂ sin(ωt+ θ) = −ω2 v (11-3)

Substituting Eqs. (11-2) and (11-3) into Eq. (11-1) gives

−ω2 m v̂ sin(ωt+ θ) + k v̂ sin(ωt+ θ) = 0

which (since the sine term is arbitrary and may be omitted) may be written

[k − ω2 m] v̂ = 0 (11-4)
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Equation (11-4) is one way of expressing what is called an eigenvalue or characteristic
value problem. The quantitiesω2 are the eigenvalues or characteristic values indicating
the square of the free-vibration frequencies, while the corresponding displacement
vectors v̂ express the corresponding shapes of the vibrating system — known as the
eigenvectors or mode shapes. Now it can be shown by Cramer’s rule that the solution
of this set of simultaneous equations is of the form

v̂ =
0

‖k − ω2 m‖ (11-5)

Hence a nontrivial solution is possible only when the denominator determinant van-
ishes. In other words, finite-amplitude free vibrations are possible only when

‖k − ω2 m‖ = 0 (11-6)

Equation (11-6) is called the frequency equation of the system. Expanding
the determinant will give an algebraic equation of the N th degree in the frequency
parameter ω2 for a system havingN degrees of freedom. TheN roots of this equation
(ω2

1 , ω
2
2 , ω

2
3 , . . . , ω

2
N ) represent the frequencies of theN modes of vibration which are

possible in the system. The mode having the lowest frequency is called the first mode,
the next higher frequency is the second mode, etc. The vector made up of the entire
set of modal frequencies, arranged in sequence, will be called the frequency vector ωωω:

ωωω =





ω1

ω2

ω3

...

ωN





(11-7)

It can be shown that for the real, symmetric, positive definite mass and stiffness
matrices which pertain to stable structural systems, all roots of the frequency equation
will be real and positive.

Example E11-1. The analysis of vibration frequencies by the solution
of the determinantal equation (11-6) will be demonstrated with reference to
the structure of Fig. E11-1, the same frame for which an approximation of
the fundamental frequency was obtained by the Rayleigh method in Example
E8-6. The stiffness matrix for this frame can be determined by applying a
unit displacement to each story in succession and evaluating the resulting story
forces, as shown in the figure. Because the girders are assumed to be rigid,
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k11 = 600 k12 = − 600 k13 = 0

k21 = − 600 k22 = 1,800 k23 = − 1,200

k31 = 0 k32 = − 1,200 k33 = 3,000

1

1

1

1.5

2.0

v1

v1 = 1 v2 = 1 v3 = 1

v2

v3

1,200

1,800

(a) (b)

FIGURE E11-1
Frame used in example of vibration analysis: (a) structural system; (b) stiffness influence 
coefficients.

1.0 kip⋅sec2 ⁄ in

600 kips ⁄ in

the story forces can easily be determined here by merely adding the sidesway
stiffnesses of the appropriate stories.

The mass and stiffness matrices for this frame thus are

m = (1 kip · sec2/in)




1.0 0 0

0 1.5 0

0 0 2.0




k = (600 kips/in)




1 −1 0

−1 3 −2

0 −2 5




from which

k − ω2m = (600 kips/in)




1 −B −1 0

−1 3 − 1.5B −2

0 −2 5 − 2B


 (a)

where

B ≡ ω2

600

The frequencies of the frame are given by the condition that 4 = 0, where
4 is the determinant of the square matrix in Eq. (a). Evaluating this determinant,
simplifying, and equating to zero leads to the cubic equation

B3 − 5.5B2 + 7.5B − 2 = 0
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The three roots of this equation may be solved directly or obtained by trial and
error; their values are B1 = 0.3515, B2 = 1.6066, B3 = 3.5420. Hence the
frequencies are





ω2
1

ω2
2

ω2
3





=





210.88

963.96

2, 125.20









ω1

ω2

ω3





=





14.522

31.048

46.100





rad/sec

11-2 ANALYSIS OF VIBRATION MODE SHAPES

When the frequencies of vibration have been determined from Eq. (11-6), the
equations of motion [Eq. (11-4)] may be expressed as

Ẽ
(n)

v̂n = 0 (11-8)

in which
Ẽ

(n)
= k − ω2

n m (11-9)

Thus Ẽ
(n)

represents the matrix obtained by subtracting ω2
n m from the stiffness

matrix; since it depends on the frequency, it is different for each mode. Equation (11-
8) is satisfied identically because the frequencies were evaluated from this condition;
therefore the amplitude of the vibrations is indeterminate. However, the shape of the
vibrating system can be determined by solving for all the displacements in terms of
any one coordinate.

For this purpose it will be assumed that the first element of the displacement
vector has a unit amplitude; that is,




v̂1n

v̂2n

v̂3n

...

v̂Nn





=





1

v̂2n

v̂3n

...

v̂Nn





(11-10)

In expanded form, Eq. (11-8) may then be written



e
(n)
11 | e

(n)
12 e

(n)
13 · · · e

(n)
1N

— — — — — — —

e
(n)
21 | e

(n)
22 e

(n)
23 · · · e

(n)
2N

e
(n)
31 | e

(n)
32 e

(n)
33 · · · e

(n)
3N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e
(n)
N1 | e

(n)
N2 e

(n)
N3 · · · e

(n)
NN








1

—

v̂2n

v̂3n

. . .

v̂Nn





=





0

—

0

0

. . .

0





(11-11)
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in which partitioning is indicated to correspond with the as yet unknown displacement
amplitudes. For convenience, Eq. (11-11) will be expressed symbolically as

[
e
(n)
11 Ẽ

(n)

10

Ẽ
(n)

01 Ẽ
(n)

00

] {
1

v̂0n

}
=

{
0

0

}
(11-11a)

from which
Ẽ

(n)

01 + Ẽ
(n)

00 v̂0n = 0 (11-12)

as well as
e
(n)
11 + Ẽ

(n)

10 v̂0n = 0 (11-13)

Equation (11-12) can be solved simultaneously for the displacement amplitudes

v̂0n = −(Ẽ
(n)

00 )−1 Ẽ
(n)

01 (11-14)

but Eq. (11-13) is redundant; the redundancy corresponds to the fact that Eq. (11-4)
is satisfied identically. The displacement vector obtained in Eq. (11-14) must satisfy
Eq. (11-13), however, and this condition provides a useful check on the accuracy of
the solution. It should be noted that it is not always wise to let the first element of the
displacement vector be unity; numerical accuracy will be improved if the unit element
is associated with one of the larger displacement amplitudes. The same solution
process can be employed in any case, however, by merely rearranging the order of the

rows and columns of Ẽ
(n)

appropriately.

The displacement amplitudes obtained from Eq. (11-14) together with the unit
amplitude of the first component constitute the displacement vector associated with
the nth mode of vibration. For convenience the vector is usually expressed in dimen-
sionless form by dividing all the components by one reference component (usually the
largest). The resulting vector is called the nth mode shape φφφn; thus

φφφn =





φ1n

φ2n

φ3n

...

φNn





≡ 1

v̂kn





1

v̂2n

v̂3n

...

v̂Nn





(11-15)

in which v̂kn is the reference component, taken as the first component here.

The shape of each of the N modes of vibration can be found by this same
process; the square matrix made up of the N mode shapes will be represented by ΦΦΦ;
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thus

ΦΦΦ = [φφφ1 φφφ2 φφφ3 · · · φφφN ] =




φ11 φ12 · · · φ1N

φ21 φ22 · · · φ2N

φ31 φ32 · · · φ3N

φ41 φ42 · · · φ4N

· · · · · · · · · · · · · · · · · · · · ·

φN1 φN2 · · · φNN




(11-16)

As was noted above, the vibration analysis of a structural system is a form
of characteristic-value, or eigenvalue, problem of matrix-algebra theory. A brief
discussion of the reduction of the equation of motion in free vibrations to standard
eigenproblem form is presented in Chapter 14.

Example E11-2. The analysis of vibration mode shapes by means of
Eq. (11-14) will be demonstrated by applying it to the structure of Fig. E11-1.
The vibration matrix for this structure was derived in Example E11-1, and when
the second and third rows of this matrix are used, Eq. (11-14) may be expressed
as

{
φ2n

φ3n

}
= −

[
3 − 1.5Bn −2

−2 5 − 2Bn

]−1 {−1

0

}

Thus the mode shapes can be found by introducing the values of Bn computed
in Example E11-1, inverting, and multiplying as indicated. The calculations for
the three mode shapes of this system follow.

Mode 1:

B1 = 0.35

Ẽ
(1)

00 =

[
2.4728 −2

−2 4.2971

]
(Ẽ

(1)

00 )−1 =
1

6.6259

[
4.2971 2

2 2.4728

]

{
φ21

φ31

}
=

1

6.6259

{
4.2971

2.000

}
=

{
0.64853

0.30185

}
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Mode 2:

B2 = 1.61

Ẽ
(2)

00 =

[
0.5901 −2

−2 1.7868

]
(Ẽ

(2)

00 )−1 = − 1

2.9456

[
1.7868 2

2 0.5901

]

{
φ22

φ32

}
= − 1

2.9456

{
1.7868

2.000

}
= −

{
0.6066

0.6790

}

Mode 3:

B3 = 3.54

Ẽ
(3)

00 =

[−2.3130 −2

−2 −2.0840

]
(Ẽ

(3)

00 )−1 =
1

0.8203

[−2.0840 2

2 −2.3130

]

{
φ23

φ33

}
=

1

0.8203

{−2.0840

2.00

}
=

{−2.5405

2.4382

}
or = −

{
2.5405

−2.4382

}

Of course, the displacement of mass a in each mode has been assumed to be
unity. The three mode shapes for this structure are sketched in Fig. E11-2.

FIGURE E11-2
Vibration properties for the frame of Fig. E12-1.

0.6486

− 0.6066

− 2.5405

1.000 1.000 1.00

0.3018

− 0.6790 2.4382

Mode 1
ω 1 = 14.522 rad /sec

Mode 2
ω 2 = 31.048

Mode 3
ω 3 = 46.100
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11-3 FLEXIBILITY FORMULATION OF VIBRATION
ANALYSIS

The preceding discussion of vibration analysis was based on a stiffness-matrix
formulation of the equations of motion. In many cases it may be more convenient to
express the elastic properties of the structure by means of the flexibility matrix rather
than the stiffness matrix. Equation (11-4) can be converted readily into the flexibility
form by multiplying by (1/ω2)̃f, where the flexibility matrix f̃ is the inverse of the
stiffness matrix k. The result is

[
1

ω2
I − f̃ m

]
v̂ = 0 (11-17)

in which I represents an identity matrix of orderN . As before, this set of homogeneous
equations can have a nonzero solution only if the determinant of the square matrix
vanishes; thus the frequency equation in this case is

∥∥∥∥
1

ω2
I − f̃ m

∥∥∥∥ = 0 (11-18)

Evaluation of the roots of this equation can be carried out as for Eq. (11-6); similarly
the mode shape corresponding to each frequency can be evaluated as before. The only
basic difference between the solutions is that the roots of Eq. (11-18) represent the
reciprocals of the frequency-squared values rather than the frequency squared.

It should be noted that the matrix product f̃m in Eq. (11-18) is not symmetrical,
in general, even though the mass and flexibility matrices are both symmetric. In
digital-computer analyses of the eigenvalue problem it may be desirable to retain the
symmetry of the matrix being solved; techniques for obtaining a symmetric form of
the flexibility eigenvalue equation are presented in Chapter 13 (Section 13-6).

11-4 INFLUENCE OF AXIAL FORCES

Free Vibrations

The vibration mode shapes and frequencies of a structure which is subjected to a
constant axial-force loading can be evaluated in exactly the same way as for a system
without axial-force effects. In this case the geometric stiffness must be included in
the equations of motion; thus Eq. (11-1) takes the form

m v̈ + k v − kG v = m v̈ + k̄ v = 0 (11-19)

and the frequency equation becomes

‖k̄ − ω2 m‖ = 0 (11-20)
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In the mode-shape and frequency analysis, it is necessary only to substitute the com-
bined stiffness k̄ for the elastic stiffness k; otherwise the analysis is as described
before. For any given condition of axial loading, the geometric-stiffness matrix (and
therefore the combined stiffness) can be evaluated numerically. The effect of a com-
pressive axial-force system is to reduce the effective stiffness of the structure, thus
the frequencies of vibration are reduced; in addition the mode shapes generally are
modified by the axial loads.

Buckling Load

If the frequency of vibration is zero, the inertial forces in Eq. (11-19) vanish and
the equations of equilibrium become

k v − kG v = 0 (11-21)

The conditions under which a nonzero displacement vector is possible in this case
constitute the static buckling condition; in other words, a useful definition of buckling
is the condition in which the vibration frequency becomes zero. In order to evaluate
the critical buckling loading of the structure, it is convenient to express the geometric
stiffness in terms of a reference loading multiplied by a load factor λG. Thus

kG = λG kG0 (11-22)

in which the element geometric-stiffness coefficients from which kG0 is formed are
given by

kGij
=

∫ L

0

N0(x)ψ
′
i(x)ψ

′
j(x) dx (11-23)

In this expression N0(x) is the reference axial loading in the element. The loading
of the structure therefore is proportional to the parameter λG; its relative distribution,
however, is constant. Substituting Eq. (11-22) into Eq. (11-21) leads to the eigenvalue
equation

[k − λG kG0] v̂ = 0 (11-24)

A nontrivial solution of this set of equations can be obtained only under the condition

‖k − λG kG0‖ = 0 (11-25)

which represents the buckling condition for the structure. The roots of this equation
represent the values of the axial-load factor λG at which buckling will occur. The
buckling mode shapes can be evaluated exactly like the vibration mode shapes. In
practice, only the first buckling load and mode shape have any real significance;
buckling in the higher modes generally is of little practical importance because the
system will have failed when the load exceeds the lowest critical load.
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Buckling with Harmonic Excitation

Although the concept has found little application in practice, it is at least of
academic interest to note that a range of different “buckling” loads can be defined
for a harmonically excited structure, just as a range of different vibration frequencies
exists in an axially loaded structure. Suppose the structure is subjected to a harmonic
excitation at the frequency ω; that is, assume that an applied-load vector of the
following form is acting:

p(t) = p0 sinωt (11-26)

where ω is the applied-load frequency. The undamped equation of equilibrium in this
case becomes [from Eq. (9-18)]

m v̈ + k v − kG v = p0 sinωt (11-27)

The steady-state response will then take place at the applied-load frequency,

v(t) = v̂ sinωt (11-28a)

and the accelerations become

v̈(t) = −ω2 v̂ sinωt (11-28b)

Introducing Eqs. (11-28) into Eq. (11-27) gives (after dividing by sinωt):

−ω2 m v̂ + k v̂ − kG v̂ = p0 (11-29)

The symbol k will be used to represent the dynamic stiffness of the system,
where k is defined as

k ≡ k − ω2 m (11-30a)

Substituting this into Eq. (11-29) and expressing the geometric stiffness in terms of
the load factor λG leads to

[k − λG kG0] v̂ = p0 (11-30b)

If the amplitude of the applied-load vector in this equation is allowed to approach zero,
it is apparent by comparison with Eq. (11-5) that a nonzero response is still possible
if the determinant of the square matrix is zero. Thus the condition

‖k − λG kG0‖ = 0 (11-31)

defines the buckling condition for the harmonically excited structure.

When the applied load is allowed to vanish, Eq. (11-30b) may be written

[k − ω2 m − λG kG0] v̂ = 0 (11-32)
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Now it is apparent that an infinite variety of combinations of buckling loads λG

and frequencies ω2 will satisfy this eigenvalue equation. For any given “buckling”
load specified by a prescribed λG, the corresponding frequency of vibration can be
found from Eq. (11-20). Similarly, for any given frequency of vibration ω2, the
corresponding buckling loading is defined by Eq. (11-31). It is interesting to note
that a zero-axial-load condition causes “buckling” at the unstressed natural-vibration
frequency according to this definition.

11-5 ORTHOGONALITY CONDITIONS

Basic Conditions

The free-vibration mode shapes φφφn have certain special properties which are
very useful in structural-dynamics analyses. These properties, which are called orthog-
onality relationships, can be demonstrated by application of Betti’s law. Consider,
for example, two different modes of vibration of a structural system, as shown in
Fig. 11-1. For convenience, the structure has been shown as a lumped-mass system,
but the following analysis applies equally well to a consistent-mass idealization.

The equations of motion for a system in free vibration, Eq. (11-4), may be
rewritten

k v̂n = ω2
n m v̂n (11-33)

in which the right-hand side represents the applied-inertia-load vector −fI and the
left-hand side is the elastic-resisting-force vector fS . Thus the free-vibration motion
may be considered to involve deflections produced by inertial forces acting as applied
loads, as shown in Fig. 11-1. On this basis, the two vibration modes shown in the
figure represent two different applied-load systems and their resulting displacements;
consequently Betti’s law may be applied as follows:

−f T
Im v̂n = −f T

In v̂m

FIGURE 11-1
Vibration mode shapes and resulting inertial forces.
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Introducing the inertial-force expression used in Eq. (11-33) gives

ω2
m v̂T

m m v̂n = ω2
n v̂T

n m v̂m (11-34)

where the rules of transposing matrix products have been observed, taking account
of the symmetry of m. When it is noted that the matrix products in Eq. (11-34) are
scalars and can be transposed arbitrarily, it is evident that the equation may be written

(ω2
m − ω2

n) v̂T
m m v̂n = 0 (11-35)

Subject to the condition that the two mode frequencies are not the same, this gives the
first orthogonality condition

v̂T
m m v̂n = 0 ωm 6= ωn (11-36)

A second orthogonality condition can be derived directly from this by premul-
tiplying Eq. (11-33) by v̂T

m; thus

v̂T
m k v̂n = ω2

n v̂T
m m vn

When Eq. (11-36) is applied to the right-hand side, it is clear that

v̂T
m k v̂n = 0 ωm 6= ωn (11-37)

which shows that the vibrating shapes are orthogonal with respect to the stiffness
matrix as well as with respect to the mass.

In general, it is convenient to express the orthogonality conditions in terms of
the dimensionless mode-shape vectors φφφn rather than for the arbitrary amplitudes
v̂n. Equations (11-36) and (11-37) are obviously equally valid when divided by any
reference displacement value; thus the orthogonality conditions become

φφφT
m mφφφn = 0 m 6= n (11-38a)

φφφT
m kφφφn = 0 m 6= n (11-38b)

For systems in which no two modes have the same frequency, the orthogonality
conditions apply to any two different modes, as indicated in Eqs. (11-38); they do not
apply to two modes having the same frequency.

Additional Relationships

A complete family of additional orthogonality relationships can be derived
directly from Eq. (11-33) by successive multiplications. In order to obtain the results
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in terms of mode-shape vectors, it is convenient to divide both sides of Eq. (11-33) by
a reference amplitude, which gives the equivalent expression

kφφφn = ω2
n mφφφn (11-39)

Premultiplying this by φφφT
m k m−1 leads to

φφφT
m k m−1 kφφφn = ω2

n φφφ
T
m kφφφn

from which [using Eq. (11-38b)]

φφφT
m k m−1 kφφφn = 0 (11-40)

Premultiplying Eq. (11-39) by φφφT
mkm−1km−1 leads to

φφφT
mkm−1km−1kφφφn = ω2

nφφφ
T
mkm−1kφφφn

from which [using Eq. (11-40)]

φφφT
mkm−1km−1kφφφn = 0 (11-41)

By proceeding similarly any number of orthogonality relationships of this type can be
developed.

The first of a second series of relationships can be derived by premultiplying
Eq. (11-39) by (1/ω2)φφφT

mmf̃, with the result

1

ω2
n

φφφT
m mφφφn = φφφT

m m f̃ mφφφn

from which [using Eq. (11-38a)]

φφφT
m m f̃ mφφφn = 0 (11-42)

Premultiplying Eq. (11-39) by (1/ω2
n)φφφT

mmf̃mf̃ then gives

1

ω2
n

φφφT
m m f̃ mφφφn = φφφT

m m f̃ m f̃ mφφφn = 0 (11-43)

Again the series can be extended indefinitely by similar operations.

Both complete families of orthogonality relationships, including the two basic
relationships, can be compactly expressed as

φφφT
m m [m−1 k]b φφφn = 0 −∞ < b <∞ (11-44)
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The two basic relationships, Eqs. (11-38a) and (11-38b), are given by exponents b = 0

and b = +1 in Eq. (11-44), respectively.

Normalizing

It was noted earlier that the vibration mode amplitudes obtained from the eigen-
problem solution are arbitrary; any amplitude will satisfy the basic frequency equation
(11-4), and only the resulting shapes are uniquely defined. In the analysis process
described above, the amplitude of one degree of freedom (the first, actually) has been
set to unity, and the other displacements have been determined relative to this refer-
ence value. This is called normalizing the mode shapes with respect to the specified
reference coordinate.

Other normalizing procedures also are frequently used; e.g., in many computer
programs the shapes are normalized relative to the maximum displacement value in
each mode rather than with respect to any particular coordinate. Thus, the maximum
value in each modal vector is unity, which provides convenient numbers for use in
subsequent calculations. The normalizing procedure most often used in computer
programs for structural-vibration analysis, however, involves adjusting each modal
amplitude to the amplitude φ̂φφn which satisfies the condition

φ̂φφT
n m φ̂φφn = 1 (11-45)

This can be accomplished by computing the scalar factor

v̂T
n m v̂n = M̂n (11-46)

where v̂n represents an arbitrarily determined modal amplitude, and then computing
the normalized mode shapes as follows:

φ̂φφn = v̂n M̂
−1/2
n (11-47)

By simple substitution it is easy to show that this gives the required result.

A consequence of this type of normalizing, together with the modal orthogonality
relationships relative to the mass matrix [Eq. (11-38a)], is that

Φ̂ΦΦ
T

mΦ̂ΦΦ = I (11-48)

where Φ̂ΦΦ is the complete set ofN normalized mode shapes and I is anN ×N identity
matrix. The mode shapes normalized in this fashion are said to be orthonormal
relative to the mass matrix. Although the use of the orthonormalized mode shapes is
convenient in the development of digital-computer programs for structural-dynamic
analyses, it has no particular merit when the calculations are to be done by hand. For



UNDAMPED FREE VIBRATIONS 215

that reason, no specific normalizing procedure is assumed in the discussions which
follow.

Example E11-3. The modal orthogonality properties and the orthonor-
malizing procedure will be demonstrated with the mode shapes calculated in
Example E11-2. The normalizing factors obtained by applying Eq. (11-46) to
these shapes are given in the lumped-mass case by

M̂n =

3∑

i=1

φ2
inmi

Their values are

M̂1 = 1.8131 M̂2 = 2.4740 M̂3 = 22.596

Dividing the respective mode shapes by the square root of these factors then
leads to the orthonormalized mode-shape matrix

Φ̂ΦΦ =




0.74265 0.63577 0.21037

0.48164 −0.38566 −0.53475

0.22417 −0.43168 0.51323




Finally, performing the multiplication of Eq. (11-48) gives the identity matrix,
which serves as a check on the calculations:

Φ̂ΦΦ
T

m Φ̂ΦΦ = I

PROBLEMS

11-1. The properties of a three-story shear building in which it is assumed that the
entire mass is lumped in the rigid girders are shown in Fig. P8-8.

(a) By solving the determinantal equation, evaluate the undamped vibration
frequencies of this structure.

(b) On the basis of the computed frequencies, evaluate the corresponding
vibration mode shapes, normalizing them to unity at the top story.

(c) Demonstrate numerically that the computed mode shapes satisfy the or-
thogonality conditions with respect to mass and stiffness.

11-2. Repeat Prob. 11-1 for the mass and stiffness properties given in Prob. 8-13.
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11-3. Two identical uniform beams are arranged, as shown in isometric view in
Fig. P11-1, to support a piece of equipment weighing 3 kips. The flexural
rigidity and weight per foot of the beams are shown. Assuming the distributed
mass of each beam to be lumped half at its center and 1/4 at each end, compute
the two frequencies and mode shapes in terms of the coordinates v1 and v2.
[Hint: Note that the central deflection of a uniform beam with central load
is PL3/48EI . Use the flexibility formulation of the determinantal solution
method, Eq. (11-18).]

FIGURE P11-1

10 ft

0

4

W = 3 k

1

2

3

10 ft

10 ft

10 ft

Hinge connection

v2

v1

EI = 6 × 104 k-ft2
For each beam:

mg = 0.3 k
ft

11-4. A rigid rectangular slab is supported by three columns rigidly attached to the
slab and at the base (as shown in Fig. P11-2).

L

LL

L

FIGURE P11-2

v1

v2

v3

Weightless
column

Flexural stiffness = EI
(any direction)

Rigid slab:
Total mass = m
(uniformly distributed)

(a) Evaluate the mass and stiffness matrices for this system (in terms of
m, EI , and L), considering the three displacement coordinates shown.
(Hint: Apply a unit displacement or acceleration corresponding to each
coordinate and evaluate the forces acting in each coordinate required for
equilibrium.)

(b) Compute the frequencies and mode shapes of this sytem, normalizing the
mode shapes so that either v2 or v3 is unity.
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11-5. Repeat Prob. 11-4 using the rotation and translation (parallel and perpendicular
to the symmetry axis) of the center of mass as the displacement coordinates.

11-6. A rigid bar is supported by a wieghtless column as shown in Fig. P11-3.

L

2L

FIGURE P11-3

v2

v1

Weightless column
(flexural rigidity = EI )

Rigid bar

( m = mass
length
 )

(a) Evaluate the mass and flexibility matrices of this system defined for the
two coordinates shown.

(b) Compute the two mode shapes and frequencies of the system. Normalize
the mode shapes so that the generalized mass for each mode is unity, i.e.,
so that M1 = M2 = 1.





CHAPTER

12
ANALYSIS

OF
DYNAMIC

RESPONSE —
USING

SUPERPOSITION

12-1 NORMAL COORDINATES

In the preceding discussion of an arbitrary N -DOF linear system, the displaced
position was defined by the N components in the vector v. However, for the purpose
of dynamic-response analysis, it is often advantageous to express this position in
terms of the free-vibration mode shapes. These shapes constitute N independent
displacement patterns, the amplitudes of which may serve as generalized coordinates
to express any set of displacements. The mode shapes thus serve the same purpose
as the trigonometric functions in a Fourier series, and they are used for the same
reasons; because: (1) they possess orthogonality properties and (2) they are efficient
in the sense that they usually can describe allN displacements with sufficient accuracy
employing only a few shapes.

219
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−v2 v21 −v22 −v23

v3 v31 −v32 v33

v1 v11 v12 v13

v = Y v1 = φ1 Y1 v2 = φ 2 Y2 v3 = φ 3 Y3

FIGURE 12-1
Representing deflections as sum of modal components.

= + + +  …

Consider, for example, the cantilever column shown in Fig. 12-1, for which the
deflected shape is expressed in terms of translational displacements at three levels.
Any displacement vector v (static or dynamic) for this structure can be developed
by superposing suitable amplitudes of the normal modes as shown. For any modal
component vn, the displacements are given by the product of the mode-shape vector
φφφn and the modal amplitude Yn; thus

vn = φφφn Yn (12-1)

The total displacement vector v is then obtained by summing the modal vectors as
expressed by

v = φφφ1 Y1 + φφφ2 Y2 + · · · + φφφN YN =

N∑

n=1

φφφn Yn (12-2)

or, in matrix notation,
v = ΦΦΦ Y (12-3)

In this equation, it is apparent that the N × N mode-shape matrix ΦΦΦ serves to
transform the generalized coordinate vector Y to the geometric coordinate vector v.
The generalized components in vector Y are called the normal coordinates of the
structure.

Because the mode-shape matrix consists of N independent modal vectors,
ΦΦΦ = [φφφ1 φφφ2 · · · φφφN ], it is nonsingular and can be inverted. Thus, it is always
possible to solve Eq. (12-3) directly for the normal-coordinate amplitudes in Y which
are associated with any given displacement vector v. In doing so, however, it is un-
necessary to solve a set of simultaneous equations, due to the orthogonality property
of the mode shapes. To evaluate any arbitrary normal coordinate, Yn for example,
premultiply Eq. (12-2) by φφφT

n m to obtain

φφφT
n m v = φφφT

n mφφφ1 Y1 + φφφT
n mφφφ2 Y2 + · · · + φφφT

n mφφφN YN (12-4)
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Because of the orthogonality property with respect to mass, i.e., φφφT
n mφφφm = 0 for

m 6= n, all terms on the right hand side of this equation vanish, except for the term
containing φφφT

n mφφφn, leaving

φφφT
n m v = φφφT

n mφφφn Yn (12-5)

from which

Yn =
φφφT

n m v
φφφT

n mφφφn
n = 1, 2, · · · , N (12-6)

If vector v is time dependent, the Yn coordinates will also be time dependent; in this
case, taking the time derivative of Eq. (12-6) yields

Ẏn(t) =
φφφT

n m v̇(t)

φφφT
n mφφφn

(12-7)

Note that the above procedure is equivalent to that used to evaluate the coefficients in
the Fourier series given by Eqs. (4-3).

12-2 UNCOUPLED EQUATIONS OF MOTION: UNDAMPED

The orthogonality properties of the normal modes will now be used to simplify
the equations of motion of the MDOF system. In general form these equations are
given by Eq. (9-13) [or its equivalent Eq. (9-19) if axial forces are present]; for the
undamped system they become

m v̈(t) + k v(t) = p(t) (12-8)

Introducing Eq. (12-3) and its second time derivative v̈ = ΦΦΦ Ÿ (noting that the mode
shapes do not change with time) leads to

m ΦΦΦ Ÿ(t) + k ΦΦΦ Y(t) = p(t) (12-9)

If Eq. (12-9) is premultiplied by the transpose of the nth mode-shape vector φφφT
n , it

becomes
φφφT

n m ΦΦΦ Ÿ(t) + φφφT
n k ΦΦΦ Y(t) = φφφT

n p(t) (12-10)

but if the two terms on the left hand side are expanded as shown in Eq. (12-4), all
terms except the nth will vanish because of the mode-shape orthogonality properties;
hence the result is

φφφT
n mφφφn Ÿn(t) + φφφT

n kφφφn Yn(t) = φφφT
n p(t) (12-11)

Now new symbols will be defined as follows:

Mn ≡ φφφT
n mφφφn (12-12a)

Kn ≡ φφφT
n kφφφn (12-12b)

Pn(t) ≡ φφφT
n p(t) (12-12c)
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which are called the normal-coordinate generalized mass, generalized stiffness, and
generalized load for mode n, respectively. With them Eq. (12-11) can be written

Mn Ÿn(t) + Kn Yn(t) = Pn(t) (12-13)

which is a SDOF equation of motion for mode n. If Eq. (11-39), kφφφn = ω2
nmφφφn, is

multiplied on both sides by φφφT
n , the generalized stiffness for mode n is related to the

generalized mass by the frequency of vibration

φφφT
n kφφφn = ω2

nφφφ
T
n mφφφn

or

Kn = ω2
nMn (12-12d)

(Capital letters are used to denote all normal-coordinate properties.)

The procedure described above can be used to obtain an independent SDOF
equation for each mode of vibration of the undamped structure. Thus the use of
the normal coordinates serves to transform the equations of motion from a set of N
simultaneous differential equations, which are coupled by the off-diagonal terms in the
mass and stiffness matrices, to a set of N independent normal-coordinate equations.
The dynamic response therefore can be obtained by solving separately for the response
of each normal (modal) coordinate and then superposing these by Eq. (12-3) to obtain
the response in the original geometric coordinates. This procedure is called the
mode-superposition method, or more precisely the mode displacement superposition
method.

12-3 UNCOUPLED EQUATIONS OF MOTION: VISCOUS
DAMPING

Now it is of interest to examine the conditions under which this normal-
coordinate transformation will also serve to uncouple the damped equations of motion.
These equations [Eq. (9-13)] are

m v̈(t) + c v̇(t) + k v(t) = p(t)

Introducing the normal-coordinate expression of Eq. (12-3) and its time derivatives
and premultiplying by the transpose of the nth mode-shape vector φφφT

n leads to

φφφT
n mΦΦΦŸ(t) + φφφT

n cΦΦΦẎ(t) + φφφT
n kΦΦΦY(t) = φφφT

n p(t) (12-14)

It was noted above that the orthogonality conditions

φφφT
m mφφφn = 0

φφφT
m kφφφn = 0

m 6= n
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cause all components except the nth-mode term in the mass and stiffness expressions
of Eq. (12-14) to vanish. A similar reduction will apply to the damping expression if
it is assumed that the corresponding orthogonality condition applies to the damping
matrix; that is, assume that

φφφT
m cφφφn = 0 m 6= n (12-15)

In this case Eq. (12-14) may be written

Mn Ÿn(t) + Cn Ẏn(t) + Kn Yn(t) = Pn(t) (12-14a)

where the definitions of modal coordinate mass, stiffness, and load have been intro-
duced from Eq. (12-12) and where the modal coordinate viscous damping coefficient
has been defined similarly

Cn = φφφT
n c φφφn (12-15a)

If Eq. (12-14a) is divided by the generalized mass, this modal equation of motion may
be expressed in alternative form:

Ÿn(t) + 2 ξn ωn Ẏn(t) + ω2
n Yn(t) =

Pn(t)

Mn
(12-14b)

where Eq. (12-12d) has been used to rewrite the stiffness term and where the second
term on the left hand side represents a definition of the modal viscous damping ratio

ξn =
Cn

2ωn Mn
(12-15b)

As was noted earlier, it generally is more convenient and physically reasonable to
define the damping of a MDOF system using the damping ratio for each mode in
this way rather than to evaluate the coefficients of the damping matrix c because the
modal damping ratios ξn can be determined experimentally or estimated with adequate
precision in many cases.

12-4 RESPONSE ANALYSIS BY MODE DISPLACEMENT
SUPERPOSITION

Viscous Damping

The normal coordinate transformation was used in Section 12-3 to convert the
N coupled linear damped equations of motion

m v̈(t) + c v̇(t) + k v(t) = p(t) (12-16)

to a set of N uncoupled equations given by

Ÿn(t) + 2 ξn ωn Ẏn(t) + ω2
n Yn(t) =

Pn(t)

Mn
n = 1, 2, · · · , N (12-17)
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in which
Mn = φφφT

n m φφφn Pn(t) = φφφT
n p(t) (12-18)

To proceed with the solution of these uncoupled equations of motion, one must first
solve the eigenvalue problem

[
k − ω2 m

]
v̂ = 0 (12-19)

to obtain the required mode shapes φφφn (n = 1, 2, · · ·) and corresponding frequencies
ωn. The modal damping ratios ξn are usually assumed based on experimental evidence.

The total response of the MDOF system now can be obtained by solving the N
uncoupled modal equations and superposing their effects, as indicated by Eq. (12-3).
Each of Eqs. (12-17) is a standard SDOF equation of motion and can be solved in either
the time domain or the frequency domain by the procedures described in Chapter 6.
The time-domain solution is expressed by the Duhamel integral [see Eq. (6-7)]

Yn(t) =
1

Mnωn

∫ t

0

Pn(τ) exp
[
− ξnωn (t− τ)

]
sinωDn(t− τ) dτ (12-20)

which also may be written in standard convolution integral form

Yn(t) =

∫ t

0

Pn(τ) hn(t− τ) dτ (12-21)

in which

hn(t− τ) =
1

MnωDn

sinωDn(t− τ) exp
[
− ξnωn (t− τ)

]
0 < ξn < 1 (12-22)

is the unit-impulse response function, similar to Eq. (6-8).

In the frequency domain, the response is obtained similarly to Eq. (6-24) from

Yn(t) =
1

2π

∫ ∞

−∞
Hn(iω) Pn(iω) exp iωt dω (12-23)

In this equation, the complex load function Pn(iω) is the Fourier transform of the
modal loading Pn(t), and similar to Eq. (6-23) it is given by

Pn(iω) =

∫ ∞

−∞
Pn(t) exp(−iωt) dt (12-24)

Also in Eq. (12-23), the complex frequency response function, Hn(iω), may be
expressed similarly to Eq. (6-25) as follows:

Hn(iω) =
1

ω2
nMn

[
1

(1 − β2
n) + i(2ξnβn)

]

=
1

ω2
nMn

[
(1 − β2

n) − i(2ξnβn)

(1 − β2
n)2 + (2ξnβn)2

]
ξn ≥ 0 (12-25)
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In these functions, βn ≡ ω/ωn and ωDn = ωn

√
1 − ξ2n. As indicated previously

by Eqs. (6-53) and (6-54), hn(t) and Hn(iω) are Fourier transform pairs. Solving
Eq. (12-20) or (12-23) for any general modal loading yields the modal response Yn(t)

for t ≥ 0, assuming zero initial conditions, i.e., Yn(0) = Ẏn(0) = 0. Should the
initial conditions not equal zero, the damped free-vibration response [Eq. (2-49)]

Yn(t) =

[
Yn(0) cosωDnt+

(
Ẏn(0) + Yn(0)ξnωn

ωDn

)
sinωDnt

]
exp(−ξnωnt)

(12-26)
must be added to the forced-vibration response given by Eqs. (12-20) or (12-23). The
initial conditions Yn(0) and Ẏn(0) in this equation are determined from v(0) and v̇(0)

using Eqs. (12-6) and (12-7) in the forms

Yn(0) =
φφφT

n m v(0)

φφφT
n m φφφn

(12-27)

Ẏn(0) =
φφφT

n m v̇(0)

φφφT
n m φφφn

(12-28)

Having generated the total response for each mode Yn(t) using either Eq. (12-
20) or Eq. (12-23) and Eq. (12-26), the displacements expressed in the geometric
coordinates can be obtained using Eq. (12-2), i.e.,

v(t) = φφφ1 Y1(t) + φφφ2 Y2(t) + · · · + φφφN YN (t) (12-29)

which superposes the separate modal displacement contributions; hence, the com-
monly referred to name mode superposition method. It should be noted that for most
types of loadings the displacement contributions generally are greatest for the lower
modes and tend to decrease for the higher modes. Consequently, it usually is not
necessary to include all the higher modes of vibration in the superposition process; the
series can be truncated when the response has been obtained to any desired degree of
accuracy. Moreover, it should be kept in mind that the mathematical idealization of any
complex structural system also tends to be less reliable in predicting the higher modes
of vibration; for this reason, too, it is well to limit the number of modes considered in
a dynamic-response analysis.

The displacement time-histories in vector v(t) may be considered to be the
basic measure of a structure’s overall response to dynamic loading. In general,
other response parameters such as stresses or forces developed in various structural
components can be evaluated directly from the displacements. For example, the elastic
forces fS which resist the deformation of the structure are given directly by

fS(t) = k v(t) = k ΦΦΦ Y(t) (12-30)
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An alternative expression for the elastic forces may be useful in cases where
the frequencies and mode shapes have been determined from the flexibility form of
the eigenvalue equation [Eq. (11-17)]. Writing Eq. (12-30) in terms of the modal
contributions

fS(t) = k φφφ1 Y1(t) + k φφφ2 Y2(t) + k φφφ3 Y3(t) + · · · (12-31)

and substituting Eq. (11-39) leads to

fS(t) = ω2
1 mφφφ1 Y1(t) + ω2

2 mφφφ2 Y2(t) + ω2
3 mφφφ3 Y3(t) + · · · (12-32)

Writing this series in matrix form gives

fS(t) = m ΦΦΦ
{
ω2

n Yn(t)
}

(12-33)

where
{
ω2

n Yn(t)
}

represents a vector of modal amplitudes each multiplied by the
square of its modal frequency.

In Eq. (12-33), the elastic force associated with each modal component has
been replaced by an equivalent modal inertial-force expression. The equivalence of
these expressions was demonstrated from the equations of free-vibration equilibrium
[Eq. (11-39)]; however, it should be noted that this substitution is valid at any time,
even for a static analysis.

Because each modal contribution is multiplied by the square of the modal
frequency in Eq. (12-33), it is evident that the higher modes are of greater significance
in defining the forces in the structure than they are in the displacements. Consequently,
it will be necessary to include more modal components to define the forces to any
desired degree of accuracy than to define the displacements.

Example E12-1. Various aspects of the mode-superposition procedure
will be illustrated by reference to the three-story frame structure of Example
E11-1 (Fig. E11-1). For convenience, the physical and vibration properties of
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the structure are summarized here:

m =




1.0 0 0

0 1.5 0

0 0 2.0


 kips · sec2/in

k = 600




1 −1 0

−1 3 −2

0 −2 5


 kips/in

ωωω =





14.522

31.048

46.100





rad/sec

ΦΦΦ =




1.0000 1.0000 1.0000

0.6486 −0.6066 −2.5405

0.3018 −0.6790 2.4382




(a)

Now the free vibrations which would result from the following arbitrary initial
conditions will be evaluated, assuming the structure is undamped:

v(t = 0) =





0.5

0.4

0.3





in v̇(t = 0) =





0

9

0





in/sec (b)

The modal coordinate amplitudes associated with the initial displacements
are given by equations of the form of Eq. (12-5); writing the complete set of
equations in matrix form leads to

Y(t = 0) = M−1 ΦΦΦT m v(t = 0) (c)

[which also could be derived by combining Eqs. (12-31) and (12-2)]. From the
mass and mode-shape data given above, the generalized-mass matrix is

M =




1.8131 0 0

0 2.4740 0

0 0 22.596


 (d)
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(where it will be noted that these terms are the same as the normalizing factors
computed in Example E11-3). Multiplying the reciprocals of these terms by the
mode-shape transpose and the mass matrix then gives

M−1 ΦΦΦT m =




0.5515 0.5365 0.3330

0.4042 −0.3678 −0.5489

0.0443 −0.1687 0.2159




Hence the initial modal coordinate amplitudes are given as the product of this
matrix and the specified initial displacements

Y(t = 0) = M−1 ΦΦΦT m





0.5

0.4

0.3





=





0.5903

−0.1097

0.0194





in (e)

and the modal coordinate velocities result from multiplying this by the given
initial velocities

Ẏ(t = 0) = M−1 ΦΦΦT m





0

9

0





=





4.829

−3.310

−1.519





in/sec (f)

The free-vibration response of each modal coordinate of this undamped
structure is of the form

Yn(t) =
Ẏn(t = 0)

ωn
sinωnt+ Yn(t = 0) cosωnt (g)

Hence using the modal-coordinate initial conditions computed above, together
with the modal frequencies, gives





Y1(t)

Y2(t)

Y3(t)





=





0.3325 sinω1t

−0.1066 sinω2t

−0.0329 sinω3t





+





0.5903 cosω1t

−0.1097 cosω2t

0.0194 cosω3t





(h)

From these modal results the free-vibration motion of each story could be
obtained finally from the superposition relationship v(t) = ΦΦΦY(t). It is evident
that the motion of each story includes contributions at each of the natural
frequencies of the structure.
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Example E12-2. As another demonstration of mode superposition, the
response of the structure of Fig. E11-1 to a sine-pulse blast-pressure load is
calculated. For this purpose, the load may be expressed as




p1(t)

p2(t)

p3(t)





=





1

2

2





(500 kips) cos
π

t1
t where

t1 = 0.02 sec

− t1
2
< t <

t1
2

With this short-duration loading, it may be assumed that the response in
each mode is a free vibration with its amplitude defined by the sine-pulse
displacement-response spectrum of Fig. 5-6. Thus during the early response
era, when the effect of damping may be neglected, the modal response may be
expressed as

Yn(t) = Dn
P0n

Kn
sinωnt (a)

in which

Kn = Mn ω
2
n P0n = φφφT

n





1

2

2





500 kips

Using the data summarized in Examples E11-1 and E11-3 gives




K1

K2

K3





=




1.8131ω2
1

2.4740ω2
2

22.596ω2
3


 =





382.36

2, 384.9

48, 019





kips/in (b)





P1

P2

P3





= ΦΦΦT





500

1, 000

1, 000





=





1, 450.40

−785.59

397.80





kips (c)

Also, the impulse length-period ratios for the modes of this structure are




t1
T1

t1
T2

t1
T3





=
0.02

2π





ω1

ω2

ω3





=





0.046

0.099

0.147





and from Fig. 5-6, these give the following modal dynamic magnification factors:




D1

D2

D3





=





0.1865

0.4114

0.6423





(d)
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Hence, using the results given in Eqs. (b) to (d) in Eq. (a) leads to





Y1(t)

Y2(t)

Y3(t)





=





0.7074 sinω1t

−0.1355 sinω2t

0.0053 sinω3t





in (e)

It will be noted that the motion of the top story is merely the sum of the
modal expressions of Eq. (e), because for each mode the modal shape has a
unit amplitude at the top. However, for story 2, for example, the relative modal
displacement at this level must be considered, that is, the mode-superposition
expression becomes

v2(t) =
∑

φ2nYn(t)

=(0.4588 in) sinω1t+ (0.0822 in) sinω2t

− (0.0135 in) sinω3t (f)

Similarly, the elastic forces developed in this structure by the blast loading are
given by Eq. (12-32), which for this lumped-mass system may be evaluated at
story 2 as follows:

fS2(t) =
∑

m2 ω
2
n Yn(t)φ2n

=(145.13 kips) sinω1t+ (118.87 kips) sinω2t

− (43.11 kips) sinω3t (g)

That the higher-mode contributions are more significant with respect to the
force response than for the displacements is quite evident from a comparison of
expressions (f) and (g).

Complex-Stiffness Damping

As pointed out in Section 3-7, damping of the linear viscous form represented
in Eqs. (12-17) has a serious deficiency because the energy loss per cycle at a fixed
displacement amplitude is dependent upon the response frequency; see Eq. (3-61).
Since this dependency is at variance with a great deal of test evidence which indicates
that the energy loss per cycle is essentially independent of the frequency, it would
be better to solve the uncoupled normal mode equations of motion in the frequency
domain using complex-stiffness damping rather than viscous damping; in that case
the energy loss per cycle would be independent of frequency; see Eq. (3-84).
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Making this change in type of damping by using a complex-generalized-stiffness
of the form given by Eq. (3-79), that is, using

K̂n = Kn [1 + i 2 ξn] (12-34)

in which
Kn = ω2

n Mn (12-35)

the response will be given by Eq. (12-23) using the complex-frequency-response
transfer function

Hn(iω) =
1

ω2
n Mn

[
1

(1 − β2
n) + i (2ξn)

]
=

1

ω2
n Mn

[
(1 − β2

n) − i (2ξn)

(1 − β2
n)2 + (2ξn)2

]

(12-36)
rather than the corresponding transfer function given by Eq. (12-25) for viscous
damping; see Eq. (6-46). All quantities in this transfer function are defined the same
as those in the transfer function of Eq. (12-25).

Having obtained the forced-vibration response Yn(t) for each normal mode of
interest (a limited number of the lower modes) using Eqs. (12-23), (12-24), and (12-36),
the free-vibration response of Eq. (12-26) can be added to it giving the total response.
One can then proceed to obtain the displacement vector v(t) by superposition using
Eq. (12-29) and the elastic force vector fS(t) using either Eq. (12-30) or Eq. (12-33).

Example E12-3. A mechanical exciter placed on the top mass of the
frame shown in Fig. E11-1 subjects the structure to a harmonic lateral loading
of amplitude p0 at frequency ω, i.e., it produces the force

p1(t) = p0 sin(ωt) (a)

Calculate the steady-state amplitudes of acceleration produced at levels 1, 2, and
3 and the amplitude of the total shear force in the lowest story when the exciter
is operating at p0 = 3 kips and ω = 4π rad/sec. Assume 5 percent of critical
damping in each of two separate forms: (1) viscous and (2) complex stiffness.

Making use of Eq. (a) and the second of Eqs. (2-23b) and recognizing that
components p2(t) and p3(t) in force vector p(t) equal zero, one can state

p(t) = −p0

2
i
[
exp(iωt) − exp(−iωt)

]
·





1
0
0



 (b)
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Substituting Eq. (b) and separately the three mode-shape vectors φφφn of Fig. E11-
2 into Eq. (12-12c) gives the same generalized load expression for each mode

Pn(t) = −po

2
i
[
exp(iωt) − exp(−iωt)

]
n = 1, 2, 3 (c)

Since each term on the right hand side of this equation represents a discrete
harmonic loading, the steady-state response of each normal mode coordinate
Yn(t) is obtained by multiplying each discrete harmonic by its corresponding
complex frequency response transfer function given by Eq. (12-25) for viscous
damping and by Eq. (12-36) for complex-stiffness damping. Completing this
step, one obtains

Yn(t) = − p0

2

i

Kn

{[
(1 − β2

n) − i(2ξnβn)

(1 − β2
n)2 + (2ξnβn)2

]
exp(iωt)

−
[

(1 − β2
n) + i(2ξnβn)

(1 − β2
n)2 + (2ξnβn)2

]
exp(−iωt)

}
n = 1, 2, 3 (d)

for the case of viscous damping and

Yn(t) = − p0

2

i

Kn

{[
(1 − β2

n) − i(2ξn)

(1 − β2
n)2 + (2ξn)2

]
exp(iωt)

−
[

(1 − β2
n) + i(2ξn)

(1 − β2
n)2 + (2ξn)2

]
exp(−iωt)

}
n = 1, 2, 3 (e)

for the case of complex-stiffness damping. Using p0 = 3 kips, ω = 4π, the
values of Kn given by Eq. (b) in Example E12-2, the relation βn = ω/ωn with
corresponding values of ωn as given in Eqs. (a) of Example E12-1, ξn = 0.05

for all values of n (n = 1, 2, 3), and changing exponential expressions to
trigonometric form using Eqs. (2-23a), Eqs. (d) and (e) above yield

Y1(t) =

{
[−9.879 cos 4πt+ 28.381 sin 4πt] 10−3 in (d)
[−11.005 cos 4πt+ 27.399 sin 4πt] 10−3 in (e)

Y2(t) =

{
[−0.073 cos 4πt+ 1.506 sin 4πt] 10−3 in (d)
[−0.178 cos 4πt+ 1.488 sin 4πt] 10−3 in (e)

Y3(t) =

{
[−0.002 cos 4πt+ 0.066 sin 4πt] 10−3 in (d)
[−0.007 cos 4πt+ 0.065 sin 4πt] 10−3 in (e)
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Substituting the above Eqs. (d) and Eqs. (e) separately into Eq. (12-29) for
N = 3 gives

v1(t) = [−9.954 cosωt+ 29.953 sinωt] 10−3 in

v2(t) = [−6.313 cosωt+ 17.203 sinωt] 10−3 in

v3(t) = [−2.920 cosωt+ 7.659 sinωt] 10−3 in

(f)

for the case of viscous damping and

v1(t) = [−11.190 cosωt+ 28.952 sinωt] 10−3 in

v2(t) = [−6.963 cosωt+ 16.584 sinωt] 10−3 in

v3(t) = [−3.199 cosωt+ 7.375 sinωt] 10−3 in

(g)

for the case of complex-stiffness damping. Taking the square root of the sum
of the squares of the two coefficients in each of Eqs. (f) and (g) gives the
displacement amplitude in each case which, when multiplied by 16π2 (ω2),
yields the desired acceleration amplitudes

v̈1 = 4.98 v̈2 = 2.89 v̈3 = 1.29 in/sec viscous damping

v̈1 = 4.90 v̈2 = 2.84 v̈3 = 1.27 in/sec2 complex-stiffness damping
(h)

The amplitude of the total shear forceV in the lowest story is the product of the
displacement amplitude v3 and the lowest story spring constant 1, 800 kips/in

(see Fig. E11-1); thus, one obtains

V = 14.75 kips viscous damping

V = 14.47 kips complex-stiffness damping (i)

In the above Example E12-3, the loading was of a simple harmonic form which
allowed an easy solution using the appropriate transfer functions in the frequency
domain. However, if each component in vector p(t) had been nonperiodic of ar-
bitrary form giving corresponding nonperiodic normal-coordinate generalized loads
Pn(t) (n = 1, 2, 3) in accordance with Eq. (12-12c), it would be necessary to Fourier
transform each of these generalized loads as indicated by Eq. (12-24) using the FFT
procedure described in Chapter 6, thus obtaining N − 1 discrete harmonics in ac-
cordance with N = 2γ where γ is an integer selected appropriately; see discussion
of solutions in Fig. 6-4. Assuming zero initial conditions on each normal coordinate
Yn(t) (n = 1, 2, 3), its time-history of response following t = 0 would be obtained
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upon multiplying each discrete harmonic in Pn(t) by the corresponding complex fre-
quency response transfer function as illustrated in Example E12-3. TheN−1 products
would then be summed giving Yn(t). Carrying out this procedure for all values of
n = 1, 2, 3, the time-histories of response v(t) would be obtained by superposition as
in Example E12-3.

12-5 CONSTRUCTION OF PROPORTIONAL VISCOUS
DAMPING MATRICES

Rayleigh Damping

As was stated above, generally there is no need to express the damping of a
typical viscously damped MDOF system by means of the damping matrix because
it is represented more conveniently in terms of the modal damping ratios ξn (n =

1, 2, · · · , N ). However, in at least two dynamic analysis situations the response is
not obtained by superposition of the uncoupled modal responses, so the damping
cannot be expressed by the damping ratios — instead an explicit damping matrix
is needed. These two situations are: (1) nonlinear responses, for which the mode
shapes are not fixed but are changing with changes of stiffness, and (2) analysis of
a linear system having nonproportional damping. In both of these circumstances,
the most effective way to determine the required damping matrix is to first evaluate
one or more proportional damping matrices. In performing a nonlinear analysis, it
is appropriate to define the proportional damping matrix for the initial elastic state
of the system (before nonlinear deformations have occurred) and to assume that this
damping property remains constant during the response even though the stiffness may
be changing and causing hysteretic energy losses in addition to the viscous damping
losses. In cases where the damping is considered to be nonproportional, an appropriate
damping matrix can be constructed by assembling a set of suitably derived proportional
damping matrices, as explained later in this section. Thus for these two situations, it
is necessary to be able to derive appropriate proportional damping matrices.

Clearly the simplest way to formulate a proportional damping matrix is to make
it proportional to either the mass or the stiffness matrix because the undamped mode
shapes are orthogonal with respect to each of these. Thus the damping matrix might
be given by

c = a0 m or c = a1 k (12-37a)

in which the proportionality constants a0 and a1 have units of sec−1 and sec, re-
spectively. These are called mass proportional and stiffness proportional damping,
and the damping behavior associated with them may be recognized by evaluating the
generalized modal damping value for each [see Eq. (12-15a)],

Cn = φφφT
n c φφφn = a0 φφφ

T
n mφφφn or a1 φφφ

T
n kφφφn (12-37b)



ANALYSIS OF DYNAMIC RESPONSE — USING SUPERPOSITION 235

or combining with Eq. (12-15b)

2ωn Mn ξn = a0 Mn or a1 Kn (where Kn = ω2
n Mn) (12-37c)

from which
ξn =

a0

2ωn
or ξn =

a1ωn

2
(12-37d)

These expressions show that for mass proportional damping, the damping ratio is
inversely proportional to the frequency while for stiffness proportional damping it is
directly in proportion with the frequency. In this regard it is important to note that
the dynamic response generally will include contributions from all N modes even
though only a limited number of modes are included in the uncoupled equations of
motion. Thus, neither of these types of damping matrix is suitable for use with an
MDOF system in which the frequencies of the significant modes span a wide range
because the relative amplitudes of the different modes will be seriously distorted by
inappropriate damping ratios.

An obvious improvement results if the damping is assumed to be proportional
to a combination of the mass and the stiffness matrices as given by the sum of the two
alternative expressions shown in Eq. (12-37a):

c = a0 m + a1 k (12-38a)

This is called Rayleigh damping, after Lord Rayleigh, who first suggested its use. By
analogy with the development in Eqs. (12-37b) to (12-37d), it is evident that Rayleigh
damping leads to the following relation between damping ratio and frequency

ξn =
a0

2ωn
+
a1ωn

2
(12-38b)

The relationships between damping ratio and frequency expressed by Eqs. (12-37d)
and (12-38b) are shown graphically in Fig. 12-2.

Now it is apparent that the two Rayleigh damping factors, a0 and a1, can be
evaluated by the solution of a pair of simultaneous equations if the damping ratios ξm

and ξn associated with two specific frequencies (modes) ωm, ωn are known. Writing
Eq. (12-38b) for each of these two cases and expressing the two equations in matrix

FIGURE 12-2
Relationship between damping 
ratio and frequency (for 
Rayleigh damping).

Combined

Stiffness proportional:

Mass proportional:

ξ

ω

ξn

ξm

ωm ωn

a1 = 0; ξ = a0

2ω

a0 = 0; ξ = a1

2
ω
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form leads to {
ξm

ξn

}
=

1

2

[
1/ωm ωm

1/ωn ωn

] {
a0

a1

}
(12-39)

and the factors resulting from the simultaneous solution are
{
a0

a1

}
= 2

ωmωn

ω2
n − ω2

m

[
ωn −ωm

−1/ωn 1/ωm

] {
ξm

ξn

}
(12-40)

When these factors have been evaluated, the proportional damping matrix that will
give the required values of damping ratio at the specified frequencies is given by the
Rayleigh damping expression, Eq. (12-38a), as shown by Fig. 12-2.

Because detailed information about the variation of damping ratio with fre-
quency seldom is available, it usually is assumed that the same damping ratio applies
to both control frequencies; i.e., ξm = ξn ≡ ξ. In this case, the proportionality factors
are given by a simplified version of Eq. (12-40):

{
a0

a1

}
=

2ξ

ωm + ωn

{
ωmωn

1

}
(12-41)

In applying this proportional damping matrix derivation procedure in practice, it is
recommended that ωm generally be taken as the fundamental frequency of the MDOF
system and that ωn be set among the higher frequencies of the modes that contribute
significantly to the dynamic response. The derivation ensures that the desired damping
ratio is obtained for these two modes (i.e., ξ1 = ξn = ξ); then as shown by Fig. 12-2,
modes with frequencies between these two specified frequencies will have somewhat
lower values of damping ratio, while all modes with frequencies greater than ωn will
have damping ratios that increases above ξn monotonically with frequency. The end
result of this situation is that the responses of very high frequency modes are effectively
eliminated by their high damping ratios.

Example E12-4. For the structure of Example E11-1, an explicit damping
matrix is to be defined such that the damping ratio in the first and third modes
will be 5 percent of critical. Assuming Rayleigh damping, the proportionality
factors a0 and a1 can be evaluated from Eq. (12-39), using the frequency data
listed in Example E12-1, as follows:

{
ξ1

ξ3

}
=

{
0.05

0.05

}
=

1

2

[ 1
14.522 14.522

1
46.100 46.100

] {
a0

a1

}

from which {
a0

a1

}
=

{
1.1042

0.00165

}
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Hence c = 1.1042 m+0.00165 k or, using the matrices listed in Example E12-1,

c =




2.094 −0.990 0

−0.990 4.626 −1.980

0 −1.980 7.157


 kip · sec/in

Now it is of interest to determine what damping ratio this matrix will yield
in the second mode. Introducing the second mode frequency in Eq. (12-38b)
and putting it in matrix form gives

ξ2 =
1

2

[ 1

31.048
31.048

] { a0

a1

}

Then, introducing the values of a0 and a1 found above leads to

ξ2 = 0.0434 = 4.34%

Hence, even though only the first and third damping ratios were specified, the
resulting damping ratio for the second mode is a reasonable value.

Extended Rayleigh Damping

The mass and stiffness matrices used to formulate Rayleigh damping are not
the only matrices to which the free-vibration mode-shape orthogonality conditions
apply; in fact, it was shown earlier in Eq. (11-44) that an infinite number of matrices
have this property. Therefore a proportional damping matrix can be made up of any
combination of these matrices, as follows:

c = m
∑

b

ab[m
−1 k]b ≡

∑

b

cb (12-42)

in which the coefficients ab are arbitrary. It is evident that Rayleigh damping is given
by Eq. (12-42) if only the terms b = 0 and b = 1 are retained in the series. By retaining
additional terms of the series a proportional damping matrix can be constructed that
gives any desired damping ratio ξn at a specified frequency ωn for as many frequencies
as there are terms in the series of Eq. (12-42).

To understand the procedure, consider the generalized damping value Cn for
any normal mode “n” [see Eqs. (12-37b) and (12-37c)]:

Cn = φφφT
n cφφφn = 2ξn ωn Mn (12-43)
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If c in this expression is given by Eq. (12-42), the contribution of term b to the
generalized damping value is

Cnb = φφφT
n cb φφφn = ab m [m−1 k]b φφφn (12-44a)

Now if Eq. (11-39) (k φφφn = ω2
nmφφφn) is premultiplied on both sides by φφφT

n k m−1,
the result is

φφφT
n k m−1 kφφφn = ω2

n φφφ
T
n kφφφn ≡ ω4

n Mn

By operations equivalent to this it can be shown that

φφφT
n m [m−1 k]b φφφn = ω2b

n Mn (12-45)

and consequently
Cnb = ab ω

2b
n Mn (12-44b)

On this basis, the generalized damping value associated with any mode n is

Cn =
∑

b

Cnb =
∑

b

ab ω
2b
n Mn = 2ξn ωn Mn

from which
ξn =

1

2ωn

∑

b

ab ω
2b
n (12-46)

Equation (12-46) provides the means for evaluating the constants ab to give the
desired damping ratios at any specified number of modal frequencies. As many terms
must be included in the series as there are specified modal damping ratios; then the
constants are given by the solution of the set of equations, one written for each damping
ratio. In principle, the values of b can lie anywhere in the range −∞ < b <∞, but in
practice it is desirable to select values of these exponents as close to zero as possible.
For example, to evaluate the coefficients that will provide specified damping ratios in
any four modes having the frequencies ωm, ωn, ωo, ωp, the equations resulting from
Eq. (12-46) using the terms for b = −1, 0,+1, and +2 are





ξm

ξn

ξo

ξp





=
1

2




1/ω2
m 1/ωm ωm ω3

m

1/ω2
n 1/ωn ωn ω3

n

1/ω2
o 1/ωo ωo ω3

o

1/ω2
p 1/ωp ωp ω3

p








a−1

a0

a1

a2





(12-47)

When the coefficients a−1, a0, a1, and a2 have been evaluated by the simultaneous
solution of Eq. (12-47), the viscous damping matrix that provides the four required
damping ratios at the four specified frequencies is obtained by superposing four
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FIGURE 12-3
Extended Rayleigh damping (damping ratio vs. frequency).

ω1 ω1ωn ωnωo ωoωp

ξn ξn

Frequency − ω

(a) Four term solution

Frequency − ω

(b) Three term solution

D
am

pi
ng

 r
at

io
 −

ξ

matrices (one for each value of b) in accordance with Eq. (12-42). Figure 12-3a
illustrates the relation between damping ratio and frequency that would result from
this matrix. To simplify the figure it has been assumed here that the same damping
ratio, ξx, was specified for all four frequencies; however, each of the damping ratios
could have been specified arbitrarily. Also, ωm has been taken as the fundamental
mode frequency, ω1, and ωp is intended to approximate the frequency of the highest
mode that contributes significantly to the response, while ωn and ω0 are spaced about
equally within the frequency range. It is evident in Fig. 12-3a that the damping ratio
remains close to the desired value ξx throughout the frequency range, being exact at the
four specified frequencies and ranging slightly above or below at other frequencies in
the range. It is important to note, however, that the damping increases monotonically
with frequency for frequencies increasing above ωp. This has the effect of excluding
any significant contribution from any modes with frequencies much greater than ωp,
thus such modes need not be included in the response superposition.

An even more important point to note is the consequence of including only
three terms in the derivation of the viscous damping matrix using Eq. (12-42). In
that case a set of three simultaneous equations equivalent to Eq. (12-47) would be
obtained and solved for the coefficients a−1, a0, a1, and if these were substituted
into Eq. (12-42), the resulting damping ratio-frequency relation would be as shown in
Fig. 12-3b. As required by the simultaneous equation solution, the desired damping
ratio is obtained exactly at the three specified frequencies, and is approximated well
at intermediate frequencies. However, the serious defect of this result is that the
damping decreases monotonically with frequencies increasing above ωo and negative
damping is indicated for all the highest modal frequencies. This is an unacceptable
result because the contribution of the negatively damped modes would tend to increase
without limit in the analysis but certainly would not do so in actuality.
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The general implication of this observation is that extended Rayleigh damping
may be used effectively only if an even number of terms is included in the series
expression, Eq. (12-42). In such cases, modes with frequencies greater than the range
considered in evaluating the coefficients will be effectively excluded from the mode
superposition response. However, if an odd number of terms (greater than one) were
included in Eq. (12-42), the modes with frequencies much greater than the controlled
range would be negatively damped and would invalidate the results of the analysis.

Alternative Formulation

A second method is available for evaluating the damping matrix associated with
any given set of modal damping ratios. In principle, the procedure can be explained by
considering the complete diagonal matrix of generalized damping coefficients, given
by pre- and postmultiplying the damping matrix by the mode-shape matrix:

C = ΦΦΦT c ΦΦΦ = 2




ξ1ω1M1 0 0 · · ·

0 ξ2ω2M2 0 · · ·

0 0 ξ3ω3M3

...
...

...
...

...




(12-48)

It is evident from this equation that the damping matrix can be obtained by pre- and
postmultiplying matrix C by the inverse of the transposed mode-shape matrix and the
inverse of the mode-shape matrix, respectively, yielding

[
ΦΦΦT
]−1 C ΦΦΦ−1 =

[
ΦΦΦT
]−1

ΦΦΦT c ΦΦΦ ΦΦΦ−1 = c (12-49)

Since for any specified set of modal damping ratios ξn, the generalized damping
coefficients in matrix C can be evaluated, as indicated in Eq. (12-43), the damping
matrix c can be evaluated using Eq. (12-49).

In practice, however, this is not a convenient procedure because inversion of
the mode-shape matrix requires a large computational effort. Instead, it is useful to
take advantage of the orthogonality properties of the mode shapes relative to the mass
matrix. The diagonal generalized-mass matrix of the system is obtained using the
relation

M = ΦΦΦT m ΦΦΦ (12-50)

Premultiplying this equation by the inverse of the generalized-mass matrix then gives

I = M−1 M =
[
M−1 ΦΦΦT m

]
ΦΦΦ = ΦΦΦ−1 ΦΦΦ (12-51)

from which it is evident that the mode-shape-matrix inverse is

ΦΦΦ−1 = M−1 ΦΦΦT m (12-52)
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Operating on this expression, one can obtain

[
ΦΦΦT
]−1

= m ΦΦΦ M−1 (12-53)

Substituting Eqs. (12-52) and (12-53) into Eq. (12-49) yields

c =
[
m ΦΦΦ M−1

]
C
[
M−1 ΦΦΦT m

]
(12-54)

Since matrix C is a diagonal matrix containing elements Cn = 2 ξn ωn Mn, the
elements of the diagonal matrix obtained as the product of the three central diagonal
matrices in this equation are

dn ≡ 2 ξn ωn

Mn
(12-55)

so that Eq. (12-54) may be written

c = m ΦΦΦ d ΦΦΦT m

where d is the diagonal matrix containing elements dn. In the analysis, however, it
is more convenient to note that each modal damping ratio provides an independent
contribution to the damping matrix, as follows:

cn = m φφφn dn φφφ
T
n m (12-56a)

Thus the total damping matrix is obtained as the sum of the modal contributions

c =

N∑

n=1

cn = m
[ N∑

n=1

φφφn dn φφφ
T
n

]
m (12-56b)

By substituting from Eq. (12-55), this equation may be written

c = m
[ N∑

n=1

2 ξnωn

Mn
φφφn φφφ

T
n

]
m (12-56c)

In this equation, the contribution to the damping matrix from each mode is proportional
to the modal damping ratio; thus any undamped mode will contribute nothing to
the damping matrix. In other words, only those modes specifically included in the
formation of the damping matrix will have any damping and all other modes will be
undamped.

In order to avoid undesirable amplification of undamped modal responses, damp-
ing of the type provided by Eq. (12-56c) should be used only as a supplement to a
stiffness proportional damping matrix, for which the damping ratio increases in propor-
tion with the modal frequencies as shown by the right hand expression of Eq. (12-37d);
i.e., ξ = a1ω

2 . The coefficient a1 of this stiffness proportional damping matrix should
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be calculated to provide the damping ratio ξc required at the frequency ωc of the
highest mode for which damping is specified; thus from Eq. (12-37d),

a1 =
2ξc
ωc

(12-57a)

The stiffness proportional damping ratios at other frequencies then are given by

ξ̂n =
a1ωn

2
= ξc

(ωn

ωc

)
(12-57b)

Hence if the total damping ratio desired in any mode n is ξn, it is evident that
the damping of the type of Eq. (12-56c), designated ξn, required to supplement the
stiffness proportional damping must be

ξn = ξn − ξc

(ωn

ωc

)
(12-57c)

The final result of this development is a proportional damping matrix c given by

c = a1 k + m
[ c−1∑

n=1

2ξnωn

Mn
φφφnφφφ

T
n

]
m (12-57d)

which provides the desired modal damping ratios for frequencies less than or equal to
ωc and which has linearly increasing damping for higher frequencies.

Construction of Nonproportional Damping Matrices

The proportional damping matrices described in the preceding paragraphs are
suitable for modeling the behavior of most structural systems, in which the damping
mechanism is distributed rather uniformly throughout the structure. However, for
structures made up of more than a single type of material, where the different materials
provide drastically differing energy-loss mechanisms in various parts of the structure,
the distribution of damping forces will not be similar to the distribution of the inertial
and elastic forces; in other words, the resulting damping will be nonproportional.

A nonproportional damping matrix that will represent this situation may be
constructed by applying procedures similar to those discussed above in developing
proportional damping matrices, with a proportional matrix being developed for each
distinct part of the structure and then the combined system matrix being formed
by direct assembly. The procedure is explained with reference to Fig. 12-4, which
portrays a five-story steel building frame erected on top of a five-story reinforced
concrete building frame. As shown, it is assumed that the modal damping of the steel
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frame alone would be 5 percent of critical while that of the concrete frame alone would
be 10 percent of critical.

The stiffness and mass matrices of the combined system are shown qualitatively
in Fig. 12-5, with the contributions from the steel frame located in the upper left
corner of the combined matrices and the concrete frame contributions in the lower
right corner. The contributions associated with the common degrees of freedom at the
interface between the two substructures (designated areas “X” in the figure) include
contributions from both the steel and the concrete frames. The damping matrix for
the combined frame may be developed by a similar assembly procedure as shown
in Fig. 12-5c after the damping submatrices for the steel and concrete substructures
have been derived. In principle these could be evaluated by any of the procedures
for developing proportional damping matrices described above, but for most cases
the recommended procedure is to assume Rayleigh damping. Thus the steel and the
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concrete submatrices will be given respectively by [see Eq. (12-38a)]

cs = a0s ms + a1s ks

cc = a0c mc + a1c kc

in which the constants for the steel frame are evaluated as shown by Eq. (12-41):
{
a0s

a1s

}
=

2ξs
ωm + ωn

{
ωmωn

1

}

and the corresponding values for the concrete frame, a0c and a1c, are twice as great
because ξc = 10% is twice as great as ξs = 5%.

These values depend on the frequencies ωm and ωn, and the frequencies to be
used must be determined by solving the eigenproblem of the combined system (i.e.,
using the combined stiffness and mass matrices k and m. As was mentioned above, it
is recommended that ωm be taken as the first mode frequency of the combined system,
while for this 10-story frame it would be appropriate to use the seventh or eighth mode
frequency as ωn. The nonproportional damping matrix for the combined system is
obtained finally by assembly as shown in Fig. 12-5c.

Using this damping matrix in the equations of motion [Eq. (9-13)] and trans-
forming to normal coordinates by pre- and postmultiplying by the mode-shape matrix
ΦΦΦ for the combined system leads to the modal coordinate equations of motion

M Ÿ + C Ẏ + K Y = P(t) (12-58)

where M and K are the diagonal modal coordinate mass and stiffness matrices and
P(t) is the standard modal coordinate load vector. However, the modal coordinate
damping matrix

C = ΦΦΦT c ΦΦΦ =




C11 C12 C13 · · ·

C21 C22 C23 · · ·

C31 C32 C33 · · ·
...

...
...

...




(12-59)

is not diagonal but includes modal coupling coefficients Cij (i 6= j) because the matrix
c is nonproportional.

An effective method of solving for the dynamic response using this coupled
modal equation set is to merely use direct step-by-step integration, as is explained by
means of an example in Chapter 15. An approximate solution may be obtained by
ignoring the off-diagonal coupling coefficients of the modal damping matrix and then
solving the resulting uncoupled equations as a typical mode superposition analysis.
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The errors resulting from this approximation are indicated in the example presented
in Chapter 15; however, it must be remembered that the errors resulting in other
cases from this assumed uncoupling may be larger or smaller than those found in this
example.

12-6 RESPONSE ANALYSIS USING COUPLED EQUATIONS
OF MOTION

Mode superposition is a very effective means of evaluating the dynamic re-
sponse of structures having many degrees of freedom because the response analysis is
performed only for a series of SDOF systems. However, the computational cost in this
type of calculation is transferred from the MDOF dynamic analysis to the solution of
the N degree of freedom undamped eigenproblem followed by the modal coordinate
transformation, which must be done before the individual modal responses can be
evaluated. Certainly the eigenproblem solution represents the major part of the cost of
a typical mode superposition analysis, but also it must be recalled that the equations of
motion will be uncoupled by the resulting undamped mode shapes only if the damping
is represented by a proportional damping matrix.

For these reasons it is useful to examine the possibility of avoiding the modal
coordinate transformation by carrying out the dynamic response analysis directly in
the original geometric coordinate equations of motion; these were stated previously
by Eq. (9-13) and are renumbered here for convenience:

m v̈(t) + c v̇(t) + k v(t) = p(t) (12-60)

One approach to the solution of this set of coupled equations that often may be worth
consideration is the step-by-step procedure, as is described in Chapter 15. However,
for linear systems to which superposition is applicable, a more convenient solution may
be obtained by Fourier transform (frequency-domain) procedures, as well as — at least
in principle — by applying convolution integral (time-domain) methods; these MDOF
procedures are analogous to the corresponding methods described previously for
SDOF systems. A brief conceptual description of these techniques follows; however,
the convolution integral approach is not generally suitable for practical use, and it is
not discussed further after this brief description.

Time Domain

First is considered the case where the MDOF structure is subjected to a unit-
impulse loading in the jth degree of freedom, while no other loads are applied. Thus
the force vector p(t) consists only of zero components except for the jth term, and
that term is expressed by pj(t) = δ(t), where δ(t) is the Dirac delta function defined
as

δ(t) =

{
0 t 6= 0

∞ t = 0

∫ ∞

−∞
δ(t) dt = 1 (12-61)
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Assuming now that Eq. (12-60) can be solved for the displacements caused by this
loading, the ith component in the resulting displacement vector r(t) will then be the
free-vibration response in that degree of freedom caused by a unit-impulse loading in
coordinate j; therefore by definition this i component motion is a unit-impulse transfer
function, which will be denoted herein by hij(t).

If the loading in coordinate j were a general time varying load pj(t) rather
than a unit-impulse loading, the dynamic response in coordinate i could be obtained
by superposing the effects of a succession of impulses in the manner of the Duhamel
integral, assuming zero initial conditions. The generalized expression for the response
in coordinate i to the load at j is the convolution integral, as follows:

vij(t) =

∫ t

0

pj(τ) hij(t− τ) dτ i = 1, 2, · · · , N (12-62)

and the total response in coordinate i produced by a general loading involving all
components of the load vector p(t) is obtained by summing the contributions from all
load components:

vi(t) =
N∑

j=1

[ ∫ t

0

pj(τ) hij(t− τ) dτ

]
i = 1, 2, · · · , N (12-63)

Frequency Domain

The frequency-domain analysis is similar to the time-domain procedure in that it
involves superposition of the effects in coordinate i of a unit load applied in coordinate
j; however, in this case both the load and the response are harmonic. Thus the loading
is an applied force vector p(t) having all zero components except for the jth term
which is a unit harmonic loading, pj(t) = 1 exp(iωt). Assuming now that the
steady-state solution of Eq. (12-60) to this loading can be obtained, the resulting
steady-state response in the ith component of the displacement vector v(t) will be
Hij(iω) exp(iωt) in which Hij(iω) is defined as the complex-frequency-response
transfer function.

If the loading in coordinate j were a general time-varying load pj(t) rather
than a unit-harmonic loading, the forced-vibration response in coordinate i could be
obtained by superposing the effects of all the harmonics contained in pj(t). For this
purpose the time-domain expression of the loading is Fourier transformed to obtain

Pj(iω) =

∫ ∞

−∞
pj(t) exp(−iωt) dt (12-64)

and then by inverse Fourier transformation the responses to all of these harmonics
are combined to obtain the total forced-vibration response in coordinate i as follows
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(assuming zero initial conditions):

vij(t) =
1

2π

∫ ∞

−∞
Hij(iω) Pj(iω) exp(iωt) dω (12-65)

Finally, the total response in coordinate i produced by a general loading involving all
components of the load vector p(t) could be obtained by superposing the contributions
from all the load components:

vi(t) =
1

2π

N∑

j=1

[ ∫ ∞

−∞
Hij(iω) Pj(iω) exp(iωt) dω

]
i = 1, 2, · · · , N (12-66)

Equations (12-63) and (12-66) consistute general solutions to the coupled equa-
tions of motion (12-60), assuming zero initial conditions. Their successful implemen-
tation depends on being able to generate the transfer functions hij(t) and Hij(iω)

efficiently, and it was suggested above that this is not practical for the time-domain
functions, in general. However, procedures for implementing the frequency-domain
formulation will be developed in this chapter after the following section.

12-7 RELATIONSHIP BETWEEN TIME- AND FREQUENCY-
DOMAIN TRANSFER FUNCTIONS

To develop the interrelationships between transfer functions hij(t) and Hij(iω),
it is necessary to define a complex function Vij(iω) as the Fourier transform of
function vij(t) given by Eq. (12-62); thus,

Vij(iω) ≡
∫ ∞

−∞

[ ∫ t

−∞
pj(τ) hij(t− τ) dτ

]
exp(−iωt) dt (12-67)

Note that because Eq. (12-62) assumes zero initial conditions, which is equivalent to
assuming pj(t) = 0 for t < 0, one can change the lower limit of the integral in that
equation from zero to −∞ as shown in Eq. (12-67) without affecting the results of
the integral. It will be assumed here that damping is present in the system so that the
integral

I1 ≡
∫ ∞

−∞

∣∣vij(t)
∣∣ dt

is finite. This is a necessary condition for the Fourier transform given by Eq. (12-67)
to exist.

Since the function hij(t−τ) equals zero for τ > t, the upper limit of the second
integral in Eq. (12-67) can be changed from t to ∞ without influencing the final result.
Therefore, Eq. (12-67) can be expressed in the equivalent form

Vij(iω) = lim
s→∞

∫ s

−s

∫ s

−s

pj(τ) hij(t− τ) exp(−iωt) dt dτ (12-68)



248 DYNAMICS OF STRUCTURES

When a new variable θ ≡ t− τ is introduced, this equation becomes

Vij(iω) = lim
s→∞

∫ s

−s

pj(τ) exp(−iωt) dτ
∫ s−τ

−s−τ

hij(θ) exp(−iωθ) dθ (12-69)

The expanding domain of integration given by this equation is shown in Fig. 12-6a.
Since the function Vij(iω) exists only when the integrals

I2 ≡
∫ ∞

−∞

∣∣pj(τ)
∣∣ dτ I3 ≡

∫ ∞

−∞

∣∣hij(θ)
∣∣ dθ

are finite, which is always the case in practice due to the loadings being of finite
duration and the unit-impulse-response function being a decayed function, it is valid
to drop τ from the limits of the second integral in Eq. (12-69), resulting in

Vij(iω) =

[
lim

s→∞

∫ s

−s

pj(τ) exp(−iωt) dτ
] [

lim
s→∞

∫ s

−s

hij(θ) exp(−iωθ) dθ
]

(12-70)
which changes the expanding domain of integration to that shown in Fig. 12-6b.
Variable θ can now be changed to t since it is serving only as a dummy time variable.
Equation (12-70) then becomes

Vij(iω) = Pj(iω)

∫ ∞

−∞
hij(t) exp(−iωt) dt (12-71)

When it is noted that Eq. (12-65) in its inverse form gives

Vij(iω) = Hij(iω) Pj(iω) (12-72)

a comparison of Eqs. (12-71) and (12-72) makes it apparent that

Hij(iω) =

∫ ∞

−∞
hij(t) exp(−iωt) dt

and (12-73)

hij(t) =
1

2π

∫ ∞

−∞
Hij(iω) exp(iωt) dω

t

s

s

t

FIGURE 12-6

Expanding domains of integration.
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This derivation shows that any unit-impulse-response transfer function hij(t)

and the corresponding complex-frequency-response transfer function Hij(iω) are
Fourier transform pairs, provided damping is present in the system. This is a re-
quirement for mathematical stability to exist.

Example E12-5. Show that the complex-frequency-response function
given by Eq. (6-52) and the unit-impulse-response function given by Eq. (6-
51) are Fourier transform pairs in accordance with Eqs. (6-53) and (6-54) which
correspond to Eqs. (12-73).

Substituting Eq. (6-52) into Eq. (6-54) gives

h(t) =
−1

2πmω

∫ ∞

−∞

exp(iωβt)

(β − r1) (β − r2)
dβ (a)

after introducing

β =
ω

ω
k = mω2 (b)

r1 = iξ +
√

1 − ξ2 r2 = iξ −
√

1 − ξ2 (c)

The integration of Eq. (a) is best carried out using the complex β plane and contour
integration as indicated in Fig. E12-1. The integrand in the integral is an analytic
function everywhere in the β plane except at β = r1 and β = r2. At these two points,
poles of order 1 exist, for damping in the ranges 0 < ξ < 1 and ξ > 1. Note that for
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ξ = 1, points β = r1 and β = r2 coincide at location (0, i), thus forming a single pole
of order 2 in this case. The arrows along the closed paths in Fig. E12-1 indicate the
directions of contour integration for the ranges of time shown. The poles mentioned
above have residues as follows:

Res(β = r1) =
exp[iω(iξ +

√
1 − ξ2) t]

2
√

1 − ξ2
0 < ξ < 1; ξ > 1

Res(β = r2) =
exp[iω(iξ −

√
1 − ξ2) t]

−2
√

2 − ξ2
0 < ξ < 1; ξ > 1

Res(β = r1 = r2) = iωt exp(−ωt) ξ = 1

(d)

According to Cauchy’s residue theorem, the integral in Eq. (a) equals −2πi
∑

Res
and +2πi

∑
Res when integration is clockwise and counterclockwise, respectively,

around a closed path and when the integral is analytic along the entire path, as in the
case treated here. Thus one obtains the results

h(t) =





−2πi

2πmω
×
{

exp[iω(iξ +
√

1 − ξ2)t]

2
√

1 − ξ2

+
exp[iω(iξ −

√
1 − ξ2)t

−2
√

1 − ξ2

}
t > 0

0 t < 0





0 < ξ < 1

−2πi

2πmω
×
(

exp{iω[i(ξ +
√
ξ2 − 1)]t}

2i
√
ξ2 − 1

+
exp{iω[i(ξ −

√
ξ2 − 1)]t}

−2i
√
ξ2 − 1

)
t > 0

0 t < 0





ξ > 1

−2πi

2πmω
[iωt exp(−ωt)] t > 0

0 t < 0



 ξ = 1

(e)
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It is easily shown that Eqs. (e) reduce to

h(t) =





1

ωDm
sinωDt exp(−ωξt) t > 0

0 t < 0



 0 ≤ ξ < 1

1

2ωm
√
ξ2 − 1

exp(−ωξt)

×[exp(ω
√
ξ2 − 1 t) − exp(−ω

√
ξ2 − 1 t)] t > 0

0 t < 0

}
ξ > 1

t

m
exp(−ωt) t > 0

0 t < 0



 ξ = 1

(f)
in which ωD = ω

√
1 − ξ2. Note that the first of Eqs. (f) does indeed agree with

Eq. (6-51), thus showing the validity of Eqs. (6-53) and (6-54) in this case. Note also
that the inverse Fourier transform of H(iω) yields the unit-impulse response functions
for all values of damping, i.e., for 0 ≤ ξ < 1, ξ > 1, and ξ = 1.

12-8 PRACTICAL PROCEDURE FOR SOLVING COUPLED
EQUATIONS OF MOTION

The solution of coupled sets of equations of motion is carried out most easily in
the frequency domain; therefore, this section will be devoted to developing procedures
for this approach only. In doing so, consideration will be given to three different sets
of equations as expressed in the frequency domain by

[
(k − ω2 m) + i k̂

]
V(iω) = P(iω) (12-74)

[
(k − ω2 m) + i (ω c)

]
V(iω) = P(iω) (12-75)

[
(K − ω2 M) + i (ω C)

]
Y(iω) = P(iω) (12-76)

in which the complex matrix in the bracket term on the left hand side of each equation
is the impedance (or dynamic stiffness) matrix for the complete structural system
being represented.

Equation (12-74) represents a complete N -DOF system using the complex-
stiffness form of damping equivalent to Eq. (3-79) for the SDOF system. Matrix k̂
in this equation is a stiffness matrix for the entire system obtained by assembling

individual finite-element stiffness matrices k̂
(m)

[superscript (m) denotes elementm]
of the form

k̂
(m)

= 2 ξ(m) k(m) (12-77)
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in which k(m) denotes the individual elastic stiffness matrix for finite element m as
used in the assembly process to obtain matrix k for the entire system; and ξ(m) is
a damping ratio selected to be appropriate for the material used in finite element m.
If the material is the same throughout the system so that the same damping ratio is
used for each element, i.e., ξ(1) = ξ(2) = · · · = ξ, then the overall system matrix k̂
would be proportional to k as given by k̂ = 2ξ k. Matrix k̂ would then possess the
same orthogonality property as k. However, when different materials are included in
the system, e.g., soil and steel, the finite elements consisting of these materials would
be assigned different values of ξ(m). In this case, the assembled matrix k̂ would not
satisfy the orthogonality condition, and modal coupling would be present. Vectors
V(iω) and P(iω) in Eq. (12-74) are the Fourier transforms of vectors v(t) and p(t),
respectively, and all other quantities are the same as previously defined.

Equation (12-75) is the Fourier transform of Eq. (12-60) which represents an
N -DOF system having the viscous form of damping. Using the solution procedure
developed subsequently in this section, it is not necessary for matrix c to satisfy the
orthogonality condition. Therefore, the case of modal coupling through damping can
be treated, whether it is of the viscous form or of the complex-stiffness form described
above.

Equation (12-76) gives the normal mode equations of motion [Eq. (12-58)] in the
frequency domain, in which P(iω) is the Fourier transform of the generalized (modal)
loading vector P(t) which contains components P1(t), P2(t), · · ·, Pn(t) as defined by
Eq. (12-12c), Y(iω) is the Fourier transform of the normal coordinate vector Y(t), K
and M are the diagonal normal mode stiffness and mass matrices containing elements
in accordance with Eqs. (12-12b) and (12-12a), respectively, and C is the normal
mode damping matrix having elements as given by Eq. (12-15a). As noted carlier,
if the damping matrix c possesses the orthogonality property, matrix C will be of
diagonal form; however, if matrix c does not possess the orthogonality property, the
modal damping matrix will be full. The analysis procedure developed subsequently
can treat this coupled form of matrix without difficulty, however. Note that Eqs. (12-
76) may contain all N normal mode equations or only a smaller specified number
representing the lower modes according to the degree of approximation considered
acceptable. Reducing the number of equations to be solved does not change the
analysis procedure but it does reduce the computational effort involved.

To develop the analysis procedure, let us consider only Eq. (12-74) since the
procedure is applied to the other cases [Eqs. (12-75) and (12-76)] in exactly the same
way. Equation (12-74) may be written in the abbreviated form:

I(iω) V(iω) = P(iω) (12-78)

in which the impedance matrix I(iω) is given by the entire bracket matrix on the left
hand side. Premultiplying both sides of this equation by the inverse of the impedance
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matrix, response vector V(iω) can be expressed in the form

V(iω) = I(iω)−1 P(iω) (12-79)

which implies that multiplying a complex matrix by its inverse results in the identity
matrix, similar to the case involving a real matrix. The inversion procedure is the
same as that involving a real matrix with the only difference being that the coefficients
involved are complex rather than real. Although computer programs are readily
available for carrying out this type of inversion solution, it is impractical for direct use
as it involves inverting the N ×N complex impedance matrix for each of the closely-
spaced discrete values of ω as required in performing the fast Fourier transform
(FFT) of loading vector p(t) to obtain the vector P(iω); this approach requires an
excessive amount of computer time. The required time can be reduced to a practical
level, however, by first solving for the complex-frequency-response transfer functions
Hij(iω) at a set of widely-spaced discrete values of ω, and then using an effective and
efficient interpolation procedure to obtain the transfer functions at the intermediate
closely-spaced discrete values of ω required by the FFT procedure.

The complex-frequency-response transfer functions Hij(iω) are obtained for
the widely spaced discrete values of ω using Eq. (12-79) consistent with the definition
of these functions given previously; that is, using

< H1j(iω) H2j(iω) · · · HNj(iω) >T = I(iω)−1 Ij j = 1, 2, · · · , N
(12-80)

in which Ij denotes an N -component vector containing all zeros except for the jth
component which equals unity. Because these transfer functions are smooth, as in-
dicated in Fig. 12-7, even though they peak at the natural frequencies of the system,
interpolation can be used effectively to obtained their complex values at the intermedi-
ate closely-spaced discrete values of ω. Note that natural frequencies can be obtained,
corresponding to the frequencies at the peaks in the transfer functions, without solving

FIGURE 12-7
Interpolation of transfer function.
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the eigenvalue problem. The effective interpolation procedure required to carry out
the analysis in this way will be developed in the following Section 12-9.

Having obtained all transfer functions Hij(iω) using Eq. (12-80) and the inter-
polation procedure of Section 12-9, the response vector V(iω) is easily obtained by
superposition using

V(iω) = H(iω) P(iω) (12-81)

in which H(iω) is the N ×N complex-frequency-response transfer matrix

H(iω) =




H11(iω) H12(iω) · · · H1N (iω)

H21(iω) H22(iω) · · · H2N (iω)
...

...
...

...

HN1(iω) HN2(iω) · · · HNN (iω)




(12-82)

obtained for each frequency required in the response analysis. Note that once this
transfer matrix has been obtained, the responses of the system to multiple sets of
loadings can be obtained very easily by simply Fourier transforming each set by
the FFT procedure and then multiplying the resulting vector set in each case by the
transfer matrix in accordance with Eq. (12-81). Having vector V(iω) for each set, it
can be inverse transformed by the FFT procedure to obtain the corresponding set of
displacements in vector v(t).

It is evident that by Fourier transforming each element Hij(iω) in Eq. (12-82),
one could easily obtain the corresponding unit-impulse-response function hij(t) as
shown by the second of Eqs. (12-73). This is of academic interest only, however,
as one would not use the convolution integral formulation given by Eq. (12-63) to
evaluate the response of a complicated structural system.

12-9 INTERPOLATION PROCEDURE FOR GENERATION
OF TRANSFER FUNCTIONS

Because both the real and imaginary parts of a complex-frequency-response
transfer function are smooth functions of ω, interpolation of their values at equal
intervals 4ω over relatively wide frequency bands can be done effectively using an
interpolation function corresponding to the forms of the complex-frequency-response
transfer functions for a 2-DOF system having the complex-stiffness uncoupled-type of
damping. The frequency-domain normal mode equations of motion for such a system
are

[
(K1 − ω2 M1) + i (2ξ K1)

]
Y1(iω) = φφφT

1 P(iω) (12-83)
[
(K2 − ω2 M2) + i (2ξ K2)

]
Y2(iω) = φφφT

2 P(iω) (12-84)
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in which vector P(iω) is the Fourier transform of loading vector p(t).

Let us now generate a single complex-frequency-response transfer function,
e.g., H11(iω), which is the transfer function between loading p1(t) and displacement
v1(t). In the frequency domain v1(t) is given in terms of the normal mode coordinates
by

V1(iω) = φ11 Y1(iω) + φ12Y2(iω) (12-85)

To generate H11, let P(iω) =< 1 0 >T giving

φφφT
1 P(iω) =< φ11 φ21 > < 1 0 >T = φ11

and
φφφT

2 P(iω) =< φ12 φ22 > < 1 0 >T = φ12

in which case, substituting the resulting values of Y1(iω) and Y2(iω) given by
Eqs. (12-83) and (12-84), respectively, into Eq. (12-85) gives V1(iω) = H11(iω).
Taking this action, one obtains

H11(iω) =
φ2

11[
(K1 − ω2 M1) + i (2ξ1 K1)

] +
φ2

12[
(K2 − ω2 M2) + i (2ξ2 K2)

] (12-86)

By operating on this equation, it can be put in the equivalent single-fraction form

H11(iω) =
A ω2 +B

ω4 + C ω2 +D
(12-87)

in which A is a real constant and B, C, and D are complex constants, all expressed
in terms of the known quantities in Eq. (12-86). The forms of these expressions are
of no interest, however, as only the functional form of H11(iω) with respect to ω
is needed. Repeating the above development, one finds that each of the other three
transfer functions H12(iω), H21(iω), and H22(iω) has the same form as that given by
Eq. (12-87).

To use Eq. (12-87) purely as an interpolation function for any transfer function
Hij(iω) of a complex N -DOF system, express it in the discrete form

Hij(iωm) =
Amn ω

2
m +Bmn

ω4
m + Cmn ω

2
m +Dmn

(
n− 3

2
q
)
< m <

(
n+

3

2
q
)

(12-88)

in which ωm = m 4ω, 4ω being the constant frequency interval of the narrowly
spaced discrete frequencies required by the FFT procedure in generating loading vec-
tor P(iω), and Amn, Bmn, Cmn, and Dmn are all treated as complex constants, even
though coefficient A in Eq. (12-87) for a 2-DOF system is real. These four constants
are evaluated by applying Eq. (12-88) separately to four consecutive widely-spaced
discrete values of ω, as given by m =

(
n − 3

2 q
)
, m =

(
n − 1

2 q
)
, m =

(
n + 1

2 q
)
,
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and m =
(
n + 3

2 q
)
, as shown in Fig. 12-7, in which q represents the number of

closely-spaced frequency intervals within one of the widely-spaced intervals. Know-
ing Hij(iω) for the above four values of m as obtained using Eq. (12-80), separate
applications of Eq. (12-88) to the corresponding four values of ωm yields four simulta-
neous complex algebraic equations involving unknowns Amn, Bmn, Cmn, and Dmn.
Solving for these constants and entering their numerical values back into Eq. (12-88),
this equation can be used to calculate the intermediate values of Hij(iωm) at the
closely-spaced discrete frequencies in the range

(
n − 3

2 q
)
< m <

(
n + 3

2 q
)
. This

same procedure is then repeated for n = 3
2 q, 9

2 q, 15
2 q, 21

2 q, · · · so as to cover the
entire range of frequencies of interest. Better accuracy can be obtained by this inter-
polation if it is applied over only the central frequency interval, i.e., over the range
(n− 1

2q) < m < (n+ 1
2q); this is a greater computational task, however, because the

set of constants in Eq. (12-88) then must be evaluated for n = 3
2q, 5

2q, 7
2q, · · ·.

To set the optimum value of q, considering computational effort and accuracy,
requires considerable experience with the procedure. While it is difficult to provide
guidelines for this purpose, one should at least be aware that the frequency interval of
3 q4ω should never include more than two natural frequencies because the form of
the interpolation function is that of a transfer function for a 2-DOF system, for which
only two peaks can be represented.

PROBLEMS

12-1. A cantilever beam supporting three equal lumped masses is shown in Fig. P12-1;
also listed there are its undamped mode shapes ΦΦΦ and frequencies of vibration
ωωω. Write an expression for the dynamic response of mass 3 of this system after
an 8-kips step function load is applied at mass 2 (i.e., 8 kips is suddenly applied
at time t = 0 and remains on the structure permanently), including all three
modes and neglecting damping. Plot the history of response v3(t) for the time
interval 0 < t < T1 where T1 = 2π/ω1 = 2π/3.61.

FIGURE P12-1

m = 0.4 kips⋅sec2 ⁄ ft

v2 v3v1

0.054     0.283     0.957
0.406     0.870   − 0.281
0.913   − 0.402     0.068

= ;

3.61
24.2
77.7

= rad ⁄ sec

L 2L 2L

321

p2(t) = 8 kips (step function)

12-2. Consider the beam of Prob. 12-1, but assume that a harmonic load is applied to
mass 2, p2(t) = 3 k sinωt, where ω = 3

4ω1.
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(a) Write an expression for the steady-state response of mass 1, assuming that
the structure is undamped.

(b) Evaluate the displacements of all masses at the time of maximum steady-
state response and plot the deflected shape at that time.

12-3. Repeat part (a) of Prob. 12-2, assuming that the structure has 10 percent critical
damping in each mode.

12-4. The mass and stiffness properties of a three-story shear building, together with
its undamped vibration mode shapes and frequencies, are shown in Fig. P12-
2. The structure is set into free vibration by displacing the floors as follows:
v1 = 0.3 in, v2 = −0.8 in, and v3 = 0.3 in, and then releasing them suddenly
at time t = 0. Determine the displaced shape at time t = 2π/ω1:

(a) Assuming no damping.
(b) Assuming ξ = 10% in each mode.

FIGURE P12-2

m1 = 2 kips⋅sec2 ⁄ in

m2 = 2

m3 = 2

k1 = 600 kips ⁄ in

k2 = 1,200

k3 = 2,400

v2

v3

v1

1.000     1.000     1.00
0.548   − 1.522   − 6.26
0.198   − 0.872    12.10

= ;

11.62
27.5
45.9

= rad ⁄ sec

12-5. The building of Prob. 12-4b is subjected to a harmonic loading applied at the
top floor: p1(t) = 5k sinωt, where ω = 1.1ω1. Evaluate the steady-state
amplitude of motion at the three floor levels and the phase angle θ between the
applied load vector and the displacement response vector at each floor.

12-6. Assuming that the building of Prob. 12-4 has Rayleigh damping, by using
Eqs. (12-40) and (12-38a) evaluate a damping matrix for the structure which
will provide 5 percent and 15 percent damping ratios in the first and third modes,
respectively. What damping ratio will this matrix give in the second mode?

12-7. For the building of Prob. 12-4, evaluate a viscous damping matrix that will
provide 8 percent, 10 percent, and 12 percent critical damping in the first,
second, and third modes, respectively. Use Eq. (12-57a) to obtain the coefficient
a1 that corresponds to the third mode frequency and the required third mode
damping. Then form the damping matrix by combining the resulting stiffness
proportional contribution (cs = a1k) with the contributions from the first two
modes given by Eq. (12-56c) using the required supplementary damping ratios
given by Eq. (12-57c).





CHAPTER

13
VIBRATION

ANALYSIS
BY MATRIX
ITERATION

13-1 PRELIMINARY COMMENTS

It is evident from the preceding discussion that the mode displacement super-
position method provides an efficient means of evaluating the dynamic response of
most structures — those for which the undamped mode shapes serve to uncouple
the equations of motion. The response analysis for the individual modal equations
requires very little computational effort, and in most cases only a relatively small
number of the lowest modes of vibration need be included in the superposition. In this
regard, it is important to realize that the physical properties of the structure and the
characteristics of the dynamic loading generally are known only approximately; hence
the structural idealization and the solution procedure should be formulated to provide
only a corresponding level of accuracy. Nevertheless, the mathematical models de-
veloped to solve practical problems in structural dynamics range from very simplified
systems having only a few degrees of freedom to highly sophisticated finite-element
models including hundreds or even thousands of degrees of freedom in which as many
as 50 to 100 modes may contribute significantly to the response. To deal effectively
with these practical problems, much more efficient means of vibration analysis are
needed than the determinantal solution procedure described earlier, and this chapter
describes the matrix iteration approach which is the basis of many of the vibration or
“eigenproblem” solution techniques that are used in practice.

259
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The basic concept is explained first with reference to the simplest application, the
evaluation of the fundamental (or first-) mode shape and frequency of anN -degree-of-
freedom system. This is followed by a proof of the fact that the iteration will converge
to the first-mode properties; the essential concept of the proof is then used as a means
for evaluating the higher modes of vibration, one mode at a time in sequence. Because
this procedure involves increasing computational costs as more modes are calculated,
an alternative method that employs “shifting” of the eigenvalues (frequencies) is
described. Also included is a brief discussion of elastic buckling, noting that both the
vibrations and buckling are represented by equivalent eigenproblem equations.

13-2 FUNDAMENTAL MODE ANALYSIS

The use of iteration to evaluate the fundamental vibration mode of a structure is
a very old concept that originally was called the Stodola method after its originator.
Now it is recognized to be part of a broad segment of structural mechanics in which
iteration procedures are used. The starting point of this formulation is the statement
of the undamped free-vibration equations of motion given by Eq. (11-33):

k v̂n = ω2
n m v̂n

This equation expresses the fact that in undamped free vibrations, the inertial forces
induced by the motion of the masses must be equilibrated by the elastic forces resulting
from the system deformations. This equilibrium will be satisfied only if the displace-
ments v̂n are in the shape of the nth mode of vibration and are varying harmonically
at the nth-mode frequency ωn. Expressing the inertial forces on the right hand side of
Eq. (11-33) as

fIn
= ω2

n m v̂n (13-1)

the displacements resulting from these forces may be calculated by solving the static
deflection problem

v̂n = k−1 fIn
(13-2)

or using Eq. (13-1),
v̂n = ω2

n k−1 m v̂n (13-3)

The matrix product in this expression summarizes the dynamic properties of the
structure. It is called the dynamic matrix, denoted as

D ≡ k−1 m (13-4)

and when this is introduced, Eq. (13-3) becomes

v̂n = ω2
n D v̂n (13-5)
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To initiate the iteration procedure for evaluating the first-mode shape, a trial
displacement vector v(0)

1 is assumed that is a reasonable estimate of this shape. The
zero superscript indicates that this is the initial shape used in the iteration sequence;
for convenience the vector is normalized so that a selected reference element is unity.
Introducing this on the right side of Eq. (13-1) gives an expression for the inertial
forces induced by the system masses moving harmonically in this shape at the as yet
unknown vibration frequency

f (0)
I1

= ω2
1 m v(0)

1 (13-6)

The displacement vector resulting from applying these forces in Eq. (13-2) is a better
approximation of the first-mode shape than was the initial vector, and it may be
expressed in a form equivalent to Eq. (13-5) as follows:

v(1)
1 = ω2

1 D v(0)
1 (13-5a)

where the “one” superscript indicates that this is the result of the first cycle of iteration.

It is evident that the amplitude of this vector depends on the unknown frequency,
but only the shape is needed in the iteration process so the frequency is dropped from
the expression and the resulting improved shape is denoted by a bar over the vector
symbol:

v(1)
1 ≡ D v(0)

1 (13-7)

Then the improved iteration vector is obtained finally by normalizing this shape,
dividing it by an arbitrary reference element of the vector, ref(v(1)

1 ); thus,

v(1)
1 =

v(1)
1

ref(v(1)
1 )

(13-8)

which has the effect of scaling the reference element of the vector to unity. In
principle any element of the improved shape vector v(1)

1 (except for zero elements)
could be used as the reference or normalizing factor in Eq. (13-8), but the best
results generally are obtained by normalizing with the largest element of the vector,
designated max(v(1)

1 ); thus max(v(1)
1 ) ≡ ref(v(1)

1 ) is used as the denominator in the
standard iteration procedure.

Now if it is assumed that the computed displacement vector is the same as the
initially assumed vector (as it would be if it were the true mode shape), Eq. (13-5a)
can be used to obtain an approximate value of the vibration frequency. Introducing
Eq. (13-7) on the right side of Eq. (13-5a) and then assuming the new vector is
approximately equal to the initial vector lead to

v(1)
1 = ω2

1 v(1)
1

.
= v(0)

1
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Considering any arbitrary degree of freedom, k, in the vector then provides an expres-
sion that may be solved to obtain an approximation of the frequency

ω2
1
.
=
v
(0)
k1

v
(1)
k1

(13-9)

If the assumed shape were a true mode shape, then the same frequency would
be obtained by taking the ratio expressed in Eq. (13-9) for any degree of freedom of
the structure. In general, however, the derived shape v(1)

1 will differ from v(0)
1 and a

different frequency will be obtained for each displacement coordinate. In this case, the
true first-mode frequency lies between the maximum and minimum values obtainable
from Eq. (13-9): (

v
(0)
k1

v
(1)
k1

)

min
< ω2

1 <

(
v
(0)
k1

v
(1)
k1

)

max
(13-10)

Because of this fact, it is evident that a better approximation of the frequency can be
obtained by an averaging process. Often the best averaging procedure involves in-
cluding the mass distribution as a weighting factor. Thus writing the vector equivalent
of Eq. (13-9) and premultiplying numerator and denominator by

(
v(1)
1

)T m give

ω2
1
.
=

(
v(1)
1 )T m v(0)

1

(v(1)
1 )T mv(1)

1

(13-11)

Equation (13-11) represents the best frequency approximation obtainable by a
single iteration step, in general, from any assumed shape v(0)

1 . [Its equivalence to the
improved Rayleigh expression of Eq. (8-42) should be noted]. However, the derived
shape v(1)

1 is a better approximation of the first-mode shape than was the original
assumption v(0)

1 . Thus if v(1)
1 and its derived shape v(2)

1 were used in Eq. (13-9) or
(13-11), the resulting frequency approximations would be better than those computed
from the initial assumption. By repeating the process sufficiently, the mode-shape
approximation can be improved to any desired level of accuracy. In other words, after
s cycles

v(s)
1 =

1

ω2
1

v(s−1)
1

.
=

1

ω2
1

φφφ1 (13-12)

in which the proportionality between v(s)
1 and v(s−1)

1 can be achieved to any specified
number of decimal places; the resulting shape is accepted as the first-mode shape.
When the desired degree of convergence has been achieved, the frequency may be
obtained by equating the displacements of any selected degree of freedom before and
after the improvement calculation. However, the most accurate results are obtained
by selecting the degree of freedom having the maximum displacement, and this also
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is a convenient choice because the normalizing procedure that has been adopted gives
this displacement a unit value. Thus the frequency is expressed by

ω2
1 =

max
(
v(s−1)
1

)

max
(
v(s)
1

) =
1

max
(
v(s)
1

) (13-13)

or in other words it is equal to the reciprocal of the normalizing factor used in the
final iteration cycle. When the iteration has converged completely, there is no need to
apply the averaging process of Eq. (13-11) to improve the result.

Example E13-1. The matrix iteration method will be demonstrated by
calculating the first-mode shape and frequency of the three-story building frame
of Fig. E11-1 (shown again in Fig. E13-1). Although the flexibility matrix of this
structure could be obtained easily by inversion of the stiffness matrix derived in
Example E11-1, it will be derived here for demonstration purposes by applying
a unit load to each degree of freedom successively. By definition, the deflections
resulting from these unit loads, shown in Fig. E13-1, represent the flexibility
influence coefficients.

Thus the flexibility matrix of this structure is

f̃ = k−1 =
1

3, 600




11 5 2
5 5 2
2 2 2


 in/kip

Multiplying this by the mass matrix gives the dynamic matrix

D = f̃m =
1

3, 600




11 7.5 4
5 7.5 4
2 3 4


 sec2

FIGURE E13-1
Frame used in example Stodola analysis: (a) structural system; (b) flexibility influence 
coefficients ( × 3,600).

1.5

2.0

(a) (b)

1,200

600 kips ⁄ in

1,800

~
f22 = 5

~
f12 = 5

~
f32 = 2

p2 = 1~
f21 = 5

~
f11 = 11

~
f31 = 2

p1 = 1

~
f23 = 2

~
f13 = 2

~
f33 = 2

p3 = 1

m1 = 1.0 kip⋅sec2 ⁄ in
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The iteration process indicated by Eq. (13-7) can conveniently be carried
out in the tabular form shown below. A relatively poor trial vector v(0)

1 has been
used in this example to demonstrate the good convergence of the procedure

1

3, 600




D

11 7.5 4

5 7.5 4

2 3 4








v(0)
1

1

1

1





=





v(1)
1

22.50

16.50

9.00





∣∣∣∣∣∣∣∣∣∣

v(1)
1 v(2)

1

1.000 18.10

0.733 12.10

0.400 5.80

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(2)
1 v(3)

1

1.000 17.296

0.669 11.296

0.320 5.287

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(3)
1 v(4)

1

1.000 17.121

0.653 11.121

0.306 5.182

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(4)
1 v(5)

1

1.000 17.082

0.650 11.082

0.303 5.159

∣∣∣∣∣∣∣∣∣∣

Final shape

Note that the factor 1/3,600 has not been considered in this phase of the analysis
because only the relative shape is important. The shapes have been normalized
by dividing by the largest displacement component [as suggested following
Eq. (13-8)]. After four cycles, the shape has converged to adequate accuracy
and agrees with that obtained by the determinantal approach (Example E11-2).

From Eq. (13-13) using the largest displacement component, the first-
mode frequency is found to be

ω2
1 =

v
(4)
11

v
(5)
11

=
1.000

(1/3, 600)(17.082)
= 210.77 ω1 = 14.52 rad/sec

in which it will be noted that the factor 1/3,600 has now been included with the
value of v(5)

11 .

It also is of interest to determine the range of frequencies obtained after
one cycle, as shown by Eq. (13-10):

(ω2
1)min =

v
(0)
21

v
(1)
21

=
3, 600

22.5
= 160 (ω2

1)max =
v
(0)
31

v
(1)
31

=
3, 600

9
= 400
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Hence the frequency is not well established in this case after one cycle (due to
the poor trial vector). However, a very good approximation can be achieved
after this first cycle by applying the averaging process of Eq. (13-11):

ω2
1 =

< 22.5 24.75 18.00 >





1
1
1



 (3, 600)

< 22.5 24.75 18.00 >





22.5
16.5
9.0





=
65.25(3, 600)

1, 077
= 218

This first-cycle approximation is identical to the improved Rayleigh method
(R11) demonstrated in Example E8-6.

13-3 PROOF OF CONVERGENCE

That the Stodola iteration process must converge to the first-mode shape, in
general, can be demonstrated by recognizing that it essentially involves computing the
inertial forces corresponding to any assumed shape, then computing the deflections
resulting from those forces, then computing the inertial forces due to the computed
deflections, etc. The concept is illustrated in Fig. 13-1 and explained mathematically
in the following paragraph.

FIGURE 13-1

Physical interpretation of Stodola iteration

sequence.

v11
(0)

v11
(1)

fI11
(0)

fI11
(1)

fI21
(0)

fI21
(1)

fI31
(0)

fI31
(1)

v21
(0)

v21
(1)

v31
(0)

v31
(1)

Assumed shape v1
(0)

Computed shape v1
(1)

Resulting inertial forces fI
(0)

Resulting inertial forces fI
(1)

Etc.

321
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The initially assumed shape is expressed in normal coordinates [see Eq. (12-2)]
as

v(0)
1 = ΦΦΦY (0) = φφφ1Y (0)

1 + φφφ2Y (0)
2 + φφφ3Y (0)

3 + · · · (13-14)

in which Y (0)
1 will be relatively large if a good guess has been made of the trial shape.

The inertial forces associated with this shape vibrating at the first-mode frequency
will be [see Eq. (11-33)]

fI(0) = ω2
1 m v(0)

1 = ω2
1 m ΦΦΦ Y (0) (13-15)

Expanding v(0)
1 as in Eq. (13-14) and writing ω2

1 = ω2
n(ω1/ωn)2 gives

fI(0) = m

[
φφφ1 ω

2
1 Y (0)

1 + φφφ2 ω
2
2 Y (0)

2

(
ω1

ω2

)2

+ φφφ3 ω
2
3 Y (0)

3

(
ω1

ω3

)2

+ · · ·
]

(13-16)

The deflections derived from these inertial forces are

v(1)
1 = k−1fI(0) = k−1m

[
φφφ1 ω

2
1 Y (0)

1 + φφφ2 ω
2
2 Y(0)

2

(
ω1

ω2

)2

+ · · ·
]

or

v(1)
1 =

N∑

n=1

D φφφn ω
2
n Y (0)

n

(ω1

ωn

)2

(13-17)

Now multiplying Eq. (11-39) by k−1 shows that

φφφn = ω2
n D φφφn (13-18)

and using this in Eq. (13-17) leads to

v(1)
1 =

N∑

n=1

φφφn Y (0)
n

(ω1

ωn

)2

(13-19)

The final improved first cycle shape v(1)
1 then is obtained by normalizing this vector,

dividing it by its largest element, max
(
v(1)
1

)
; thus

v(1)
1 =

v(1)
1

max(v(1)
1 )

=

∑N
n=1 φφφn Y(0)

n

(ω1

ωn

)2

max(v(1)
1 )

(13-20)

Following the same procedure for another cycle of iteration then leads to

v(2)
1 =

v(2)
1

max(v(2)
1 )

=

∑N
n=1 φφφn Y(0)

n

(ω1

ωn

)4

max(v(2)
1 )

(13-21)
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so continuing in this fashion for s cycles gives the result

v(s)
1 =

v(s)
1

max(v(s)
1 )

=
1

max(v(s)
1 )

[
φφφ1Y (0)

1 + φφφ2Y (0)
2

(
ω1

ω2

)2s

+ · · ·
]

(13-22)

and noting that

1 �
(
ω1

ω2

)2s

�
(
ω1

ω3

)2s

� · · · (13-23)

the result finally is seen to be

v(s)
1

.
=

φφφ1 Y (0)
1

max(φφφ1 Y (0)
1 )

≡ φφφ1 (13-24)

It is obvious from Eq. (13-23) that the contributions of the higher modes to the vector
v(s)
1 can be made as small as desired by iterating for a sufficient number of cycles;

thus the procedure converges to the first-mode shape φφφ1 in which the normalizing
procedure produces a maximum element of unity. This convergence is contingent on
having a nonzero first-mode contribution Y (0)

1 in the initially assumed shape v(0)
1 .

13-4 ANALYSIS OF HIGHER MODES

Second-Mode Analysis

The above proof of the convergence of the matrix iteration procedure to the first
mode of vibration also suggests the manner in which matrix iteration can be used to
evaluate higher modes as well. From Eq. (13-22) it is apparent that if the first-mode
contribution in the assumed shape is zero (Y(0)

1 = 0), then the dominant contribution
will be the second-mode shape; similarly, if both Y (0)

1 and Y(0)
2 are zero, the iteration

will converge to the third-mode shape, etc. Thus to calculate the second mode it is
necessary merely to assume a trial shape ṽ(0)

2 which contains no first-mode component.
The tilde over the symbol designates a shape which has been purified of any first-mode
contribution.

The means of eliminating the first-mode component from any assumed second-
mode shape is provided by the orthogonality condition. Consider any arbitrary as-
sumption of the second-mode shape, expressed in terms of its modal components, as
follows:

v(0)
2 = ΦΦΦ Y (0) (13-25)

Premultiplying both sides by φφφT
1 m leads to

φφφT
1 m v(0)

2 = φφφT
1 mφφφ1Y(0)

1 + φφφT
1 mφφφ2Y (0)

2 + · · · (13-26)
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in which the right hand side is reduced to a first-mode term only because of the modal
orthogonality properties. Hence, Eq. (13-26) can be solved for the amplitude of the
first-mode component in v(0)

2 :

Y (0)
1 =

φφφT
1 mv(0)

2

M1
(13-27)

Thus, if this component is removed from the assumed shape, the vector which remains
may be said to be purified:

ṽ(0)
2 = v(0)

2 − φφφ1 Y(0)
1 (13-28)

This purified trial vector will now converge toward the second-mode shape in the
iteration process. However, round-off errors are introduced in the numerical operations
which permit first-mode components to reappear in the trial vector; therefore it is
necessary to repeat this purification operation during each cycle of the iterative solution
to ensure its convergence to the second mode.

A convenient means of purifying the trial vector of the first-mode component is
provided by a sweeping matrix, which can be derived by substituting the value of Y (0)

1

from Eq. (13-27) into Eq. (13-28), that is,

ṽ(0)
2 = v(0)

2 − 1

M1
φφφ1φφφ

T
1 mv(0)

2 ≡ S1v(0)
2 (13-29)

where the first-mode sweeping matrix S1 is given by

S1 ≡ I − 1

M1
φφφ1φφφ

T
1 m (13-30)

As is shown by Eq. (13-29), this matrix has the property of removing the first-mode
component from any trial vector to which it is premultiplied, leaving only the purified
shape.

The matrix iteration procedure can now be formulated with this sweeping matrix
so that it converges toward the second mode of vibration. In this case, Eq. (13-7) can
be written

1

ω2
2

ṽ(1)
2 = D ṽ(0)

2 (13-31)

which states that a second-mode trial shape which contains no first-mode component
will converge toward the second mode. Substituting Eq. (13-29) into Eq. (13-31) gives

1

ω2
2

v(1)
2 = D S1v(0)

2 ≡ D2v(0)
2 (13-32)

where
D2 ≡ DS1 (13-33)
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is a new dynamic matrix which eliminates the first-mode component from any trial
shape v(0)

2 and thus automatically converges toward the second mode. When D2

is used, the second-mode analysis is entirely equivalent to the first-mode analysis
discussed above. Thus the frequency can be approximated by the equivalent of
Eq. (13-11):

ω2
2
.
=

(v(1)
2 )T m v(0)

2

v(1)
2 m v(1)

2

(13-34)

in which
v(1)
2 = D2v(0)

2

or the analysis may be carried to any desired level of convergence. It is obvious that
the first mode must be evaluated before the second mode can be determined by this
method. Also, the first-mode shape φφφ1 must be determined with considerable accuracy
in evaluating the sweeping matrix S1 if satisfactory results are to be obtained in the
second-mode analysis. In general, the second-mode-shape ordinates will have about
one less significant figure than the first-mode values.

Example E13-2. To demonstrate the matrix iteration analysis of a higher
vibration mode, the second mode of the building of Example E13-1 will be
calculated. The sweeping matrix to eliminate any first-mode displacement
contribution is given by Eq. (13-30), which is repeated here for convenience:

S1 =
[
I − 1

M1
φφφ1φφφ

T
1 m
]

Using the following data from Example E13-1,

φφφT
1 = [1.000 0.6485 0.3018] m =




1 0 0
0 1.5 0
0 0 2.0


 kips/in · sec2

and noting that the first-mode generalized mass is M1 = 1.8174 kips/in · sec2
the second term in the sweeping matrix is found to be

1

M1
φφφ1φφφ

T
1 m =




0.55157 0.53654 0.33293

0.35770 0.34795 0.21590

0.16646 0.16193 0.10048




Introducing this in Eq. (13-30), the sweeping matrix becomes

S1 =




0.44843 −0.53654 −0.33293

−0.35770 0.65205 −0.21590

−0.16646 −0.16193 0.89952
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and then using the dynamic matrix D from Example E13-1, the second-mode
dynamic matrix is found to be

D2 = D S1 =




0.44003E − 03 −0.46092E − 03 −0.46762E − 03

−0.30375E − 03 0.43332E − 03 0.87264E − 04

−0.23391E − 03 0.65376E − 04 0.63459E − 03




Using this dynamic matrix, the iteration solution for the second-mode
shape and frequency is carried out below following the same format used in
Example E13-1:

[
D2

]





v(0)
2

1.0000

0.0000

−1.0000





=





v(1)
2

0.90765E − 03

−0.39461E − 03

−0.86850E − 03





;

∣∣∣∣∣∣∣∣∣∣

v(1)
2 v(2)

2

1.0000 0.10879E − 02

−0.43476 −0.57924E − 03

−0.95687 −0.86955E − 03

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(2)
2 v(3)

2

1.0000 0.10592E − 02

−0.53245 −0.60782E − 03

−0.79932 −0.77596E − 03

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(3)
2 v(4)

2

1.0000 0.10472E − 02

−0.57383 −0.61993E − 03

−0.73258 −0.73631E − 03

∣∣∣∣∣∣∣∣∣∣

· · ·

The relatively slow rate of convergence of this second-mode iteration compared
with the first-mode solution in Example E13-1 is quite apparent. Continuing the
process for twelve cycles led to the the following estimate of the second-mode
shape:

φφφT
2 =

[
1.0000 − 0.6069 − 0.6793

]

which compares well with the results obtained by the determinantal analysis in
Example E11-2.

The frequency of the second-mode vibration derived from the top story
displacement after the first cycle of iteration is given by

[
ω

(1)
2

]2
=

1.0000

0.00090675
= 1, 102 ω

(1)
2 = 33.19 rad/sec

On the other hand, the Rayleigh quotient expression of Eq. (13-34) applied after
one cycle of iteration gives the frequency ω2 = 32.10. For comparison, after
four cycles, the frequency based on the top story displacement is given by

[
ω

(4)
2

]2
=

1.0000

0.0010471
= 955 ω

(4)
2 = 30.90 rad/sec
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while Eq. (13-34) gives ω2 = 31.06 which agrees well with the value given in
Example E11-1. This example demonstrates that many cycles of iteration are
required to obtain the second-mode shape with good accuracy whereas Eq. (13-
34) gives a good approximation of the frequency after only a few cycles. To
be specific in this example, the correct frequency (ω1 = 31.048) was given
to five-figure accuracy after only 6 cycles of iteration, whereas the top story
displacement was still changing in the fifth significant figure after 12 cycles of
iteration.

Analysis of Third and Higher Modes

It should now be evident that the same sweeping process can be extended to
purify a trial vector of both the first- and second-mode components, with the result that
the iteration procedure will converge toward the third mode. Expressing the purified
trial third-mode shape [by analogy with Eq. (13-28)] as

ṽ(0)
3 = v(0)

3 − φφφ1Y (0)
1 − φφφ2Y(0)

2 (13-35)

and applying the conditions that ṽ(0)
3 be orthogonal to both φφφ1 and φφφ2,

φφφT
1 mṽ(0)

3 = 0 = φφφT
1 mv(0)

3 − M1Y (0)
1

φφφT
2 mṽ(0)

3 = 0 = φφφT
2 mv(0)

3 − M2Y (0)
2

lead to expressions for the first- and second-mode amplitudes in the trial vector v(0)
3

Y (0)
1 =

1

M1
φφφT

1 mv(0)
3 (13-36a)

Y (0)
2 =

1

M2
φφφT

2 mv(0)
3 (13-36b)

which are equivalent to Eq. (13-27). Substituting these into Eq. (13-35) leads to

ṽ(0)
3 = v(0)

3 − 1

M1
φφφ1φφφ

T
1 m v(0)

3 − 1

M2
φφφ2φφφ

T
2 m v(0)

3

or

ṽ(0)
3 =

[
I − 1

M1
φφφ1φφφ

T
1 m − 1

M2
φφφ2φφφ

T
2 m
]

v(0)
3 (13-37)

Equation (13-37) shows that the sweeping matrix S2 which eliminates both first-
and second-mode components from v(0)

3 can be obtained by merely subtracting a
second-mode term from the first-mode sweeping matrix given by Eq. (13-30), that is,

S2 = S1 −
1

M2
φφφ2φφφ

T
2 m (13-38)
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where the sweeping-matrix operation is expressed by

ṽ(0)
3 = S2v(0)

3 (13-39)

The matrix iteration relationship for analysis of the third mode can now be
written by analogy with Eq. (13-32):

1

ω2
3

v(1)
3 = Dṽ(0)

3 = D S2v(0)
3 ≡ D3v(0)

3 (13-40)

Hence this modified dynamic matrix D3 performs the function of sweeping out first-
and second-mode components from the trial vector v(0)

3 and thus produces convergence
toward the third-mode shape.

This same process obviously can be extended successively to analysis of higher
and higher modes of the system. For example, to evaluate the fourth mode, the
sweeping matrix S3 would be calculated as follows:

S3 = S2 −
1

M3
φφφ3φφφ

T
3 m (13-41)

where it would perform the function

ṽ(0)
4 = S3v(0)

4 (13-42)

The corresponding dynamic matrix would be

D4 = D S3

The matrices suitable for calculating any mode can be obtained easily by analogy from
these; that is,

Sn = Sn−1 −
1

Mn
φφφnφφφ

T
n m Dn+1 = D Sn (13-43)

Clearly the most important limitation of this procedure is that all the lower-mode
shapes must be calculated before any given higher mode can be evaluated. Also, it
is essential to evaluate these lower modes with great precision if the sweeping matrix
for the higher modes is to perform effectively. Generally this process is used directly
for the calculation of no more than four or five modes.

Analysis of Highest Mode

It is of at least academic interest to note that the matrix iteration method can
also be applied for the analysis of the highest mode of vibration of any structure. If
Eq. (13-3) is premultiplied by m−1k, the result can be written

ω2
nv̂n = E v̂n (13-44)
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in which the dynamic properties of the system are now contained in the matrix

E ≡ m−1k ≡ D−1 (13-45)

If a trial shape for the highest (N th) mode of vibration is introduced, Eq. (13-44)
becomes

ω2
N v(1)

N = Ev(0)
N (13-46)

which is equivalent to Eq. (13-5a). By analogy with Eqs. (13-9) and (13-11), approx-
imations of the N th-mode frequency are given by

ω2
N
.
=
v
(1)
kN

v
(0)
kN

(13-47a)

or

ω2
N
.
=

(v(1)
N )T mv(1)

N

(v(1)
N )T m v(0)

N

(13-47b)

in which v(1)
N = E v(0)

N .

Moreover, the computed shape v(1)
N is a better approximation of the highest-

mode shape than the original assumption was; thus if it is used as a new trial shape
and the process repeated a sufficient number of times, the highest-mode shape can be
determined to any desired degree of approximation.

The proof of the convergence of this process to the highest mode can be carried
out exactly as for the lowest mode. The essential difference in the proof is that the
term ω2

N is in the numerator rather than in the denominator, with the result that the
equivalent of Eq. (13-23) takes the form

1 �
(
ωN−1

ωN

)2s

�
(
ωN−2

ωN

)2s

�
(
ωN−3

ωN

)2s

� · · · (13-48)

which emphasizes the highest rather than the lowest mode.

Analysis of the next highest mode can be accomplished by developing a highest-
mode-shape sweeping matrix from the orthogonality principle, and in principle, the
entire analysis could proceed from the top downward. However, since the convergence
of the iteration process is much less rapid when applied with Eq. (13-46) than for the
normal iteration analysis of the lower modes, this method is seldom used except to
obtain an estimate of the highest frequency of vibration which can be expected in the
structure.

Example E13-3. The analysis of the third vibration mode for the three-
story structure of Example E13-1 could be carried out by evaluating the second-
mode sweeping matrix and using that to obtain a dynamic matrix which would
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converge directly to the third mode. However, it generally is easier and more
accurate to evaluate the highest mode of a structure by iterating with the stiffness
form of the dynamic matrix; that approach is demonstrated here.

The stiffness matrix and the inverse of the mass matrix for the structure
of Fig. E13-1 are (see Example E11-1)

k = 600




1 −1 −0
−1 3 −2

0 −2 5


 kips/in m−1 =

1

6




6 0 0
0 4 0
0 0 3


 in/kip ·sec2

Hence the stiffness form of the dynamic matrix is

E = m−1k = 100




6 −6 0
−4 12 −8

0 −6 15


 sec−2

Using an initial shape which is a reasonable guess of the third mode, the iteration
is carried out below, following the format of Example E13-1.

100




E

6 −6 0

−4 12 −8

0 −6 15








v(0)
3

1

−1

1





=





v(1)
3

12

−24

21





∣∣∣∣∣∣∣∣∣∣

v(1)
3 v(2)

3

0.5714 10.286

−1.1429 −24.000

1.0000 21.857

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(2)
3 v(3)

3

0.4706 9.412

−1.0980 −23.059

1.0000 21.588

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(3)
3 v(4)

3

0.4360 9.024

−1.0681 −22.561

1.0000 21.409

∣∣∣∣∣∣∣∣∣∣

· · ·

∣∣∣∣∣∣∣∣∣∣

v(6)
3 v(7)

3

0.4123 8.740

−1.0444 −22.182

1.0000 21.266

∣∣∣∣∣∣∣∣∣∣

Final shape

It is evident that this iteration process converges toward the highest-mode shape
much more slowly than the convergence toward the lowest mode in Example
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E13-1; this is characteristic of matrix iteration in general. However, the final
shape agrees well with that obtained from the determinantal solution (Example
E11-2) showing it has essentially converged. The frequency obtained from the
last iteration cycle [see Eq. (13-47a)] is

ω2
3 =

v
(7)
33

v
(6)
33

=
21.266(100)

1
= 2, 127

which also agrees well with the value obtained in Example E11-1. The factor
of 100 in this expression is the multiplier which has been factored out of the
dynamic matrix E.

13-5 BUCKLING ANALYSIS BY MATRIX ITERATION

The matrix iteration procedure for evaluating eigenvalues and eigenvectors is
applicable also when axial forces act in the members of the structure, if the axial forces
do not vary with the vibratory motion of the structure. For any specified condition of
axial loading, an equation equivalent to Eq. (13-5a) may be written

v(1)
1 = ω2

1 D v(0)
1 (13-49a)

in which
D = k−1m (13-49b)

where k = k−kG0 is the combined stiffness matrix, taking account of the geometric-
stiffness effect [see Eq. (9-20)]. The vibration mode shapes and frequencies can be
determined from Eq. (13-49a) by iteration, just as they are without axial loads.

The effect of compressive axial forces is to reduce the stiffnesses of the members
of the structure, thus tending to reduce the frequencies of vibration. In the limiting
(buckling) case, the vibration frequency goes to zero, and the static eigenvalue equation
takes the form

(k − λGkG0) v̂ = 0 (11-24)

Premultiplying this equation by (1/λG) f̃ gives

1

λG
v̂ = G v̂ (13-50a)

in which
G = f̃ kG0 (13-50b)

Equation (13-50a) has the same form as the vibration eigenvalue equations and may
be solved by the same type of iterative procedure. The eigenvalues which permit
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nonzero values of v̂ to be developed are the buckling loads, which are represented by
the values of the load parameter λG. Thus, if a trial shape for the first buckling mode
is designated v(0)

1 , the iterative process is indicated by

1

λG1
v(1)
1 = G v(0)

1 (13-51)

When the iterative procedure is used to evaluate buckling modes in this way, it has
been called the Vianello method, after the man who first used it for this purpose.

The matrix iteration analysis of buckling is identical in principle and technique to
the iteration analysis of vibration and need not be discussed further except to mention
that the orthogonality condition used in evaluating the higher buckling modes is

φφφT
mkG0φφφn = 0 m 6= n (13-52)

However, generally only the lowest mode of buckling is of interest, and there is little
need to consider procedures for evaluating higher buckling modes.

Example E13-4. The matrix iteration analysis of buckling will be demon-
strated by the evaluation of the critical buckling load of a uniform cantilever
column loaded by its own weight (Fig. E13-2). The structure has been discretized
by dividing it into three equal segments and using the lateral displacement of
each node as the degrees of freedom. It is assumed that the uniformly distributed

L EI, w
(uniform)

FIGURE E13-2
Analysis of column buckling due to its own weight: (a) uniform column; 
(b) discretized model.

1

2

3

v1

v2

v3

(a) (b)

W =
wL
6

2W =
wL
3

2W =
wL
3

l3 = l =
L
3

l2 = l =
L
3

l1 = l =
L
3

N2 = 3W

N3 = 5W

N1 = W (axial force)
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weight of the column is lumped at the ends of the segments; hence one-sixth
of its total weight is concentrated at the top and one-third at each of the two
interior nodes. The axial forces in the three segments of the column due to these
concentrated weights are shown in the figure.

When the linear-displacement approximation [Eq. (10-36)] is used, the
geometric stiffness of this column is given by

kG =




N1

l1
−N1

l1
0

−N1

l1
N1

l1
+ N2

l2
−N2

l2

0 −N2

l2
N2

l2
+ N3

l3


 =

W

l




1 −1 0
−1 4 −3

0 −3 8




and this will be taken as the reference geometric stiffness kG0. By applying unit
loads successively at the three nodes and calculating the resulting deflections by
standard static-analysis procedures, the flexibility matrix of the column is found
to be

f̃ =
l3

6EI




54 28 8
28 16 5
8 5 2




Hence the stability matrix G is given by

G = f̃ kG0 =
Wl2

6EI




26 34 −20
12 21 −8
3 6 1




A parabola is taken as a reasonable guess for the first-mode buckled shape,
and the matrix iteration is carried out below, following the same format as the
vibration examples.

Wl2

6EI




G

26 34 −20

12 21 −8

3 6 1








v(0)
1

1.00

0.44

0.11





=





v(1)
1

38.76

20.36

5.75





∣∣∣∣∣∣∣∣∣∣

v(1)
1 v(2)

1

1.0000 40.89

0.5253 81.84

0.1484 6.30

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(2)
1 v(3)

1

1.0000 41.08

0.5342 21.99

0.1541 6.36

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

v(3)
1 v(4)

1

1.0000 41.10

0.5352 22.00

0.1548 6.37

∣∣∣∣∣∣∣∣∣∣

True shape
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This process converges as quickly as the first-mode iteration in vibration analysis.
The critical buckling-load factor obtained from the final iteration cycle is

λcr =
v
(3)
11

v
(4)
11

=
1.000

41.10(Wl2/6EI)
= 1.3139

EI

WL2

where the final result is expressed in terms of the total length L. From this, the
critical weight per unit length is found to be

wcr =
λcrW

L/6
= 1.3139(6)

EI

L3
= 7.883

EI

L3

Since this compares very well with the exact result of 7.83EI/L3, it is evi-
dent that the geometric stiffness derived from the simple linear-displacement
assumption is quite effective.

The influence of geometric stiffness on the vibration frequency of this
column can also be calculated by matrix iteration. Of course, if its unit weight
has the critical value calculated above, the vibration frequency will be zero.
However, for any smaller value of unit weight, a corresponding frequency can
be determined. Suppose, for example, that W = (27/26)(EI/L2), which is
(27/26)

/
1.3139 = 79 percent of the critical value. Then the geometric stiffness

is given by substituting this value into the expression for kG above.

The elastic stiffness of the column, obtained by inverting the flexibility
matrix, is

k =
6

26

EI

l3




7 −16 12
−16 44 −46

12 −46 80




Hence the combined stiffness matrix which takes account of the axial-force
effects is given by [Eq. (9-20)]

k = k − kG =
6

26

EI

l3




7 −16 12
−16 44 −46

12 −46 80


− 27

26

EI

9l3




1 −1 0
−1 4 −3

0 −3 8




=
3

26

EI

l3




13 −31 24
−31 84 −89

24 −89 152




Finally, the vibration analyses could be carried out by iterating with a
modified dynamic matrix D = k−1m, where k−1

is the inverse of the combined
stiffness matrix shown above. The completion of this example is left to the
reader.
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13-6 INVERSE ITERATION — THE PREFERRED PROCEDURE

In all the discussions of matrix iteration presented in the foregoing sections
of this chapter, the improvement in calculated shape achieved during each cycle of
iteration is obtained by simply multiplying the vector for the preceding cycle by the
dynamic matrix D ≡ k−1m; for this reason the procedure is called direct iteration. It
is apparent in these descriptions that the method is easy to apply; also, because it is
based on the flexibility version of the dynamic matrix, it converges toward the shape of
the lowest vibration mode, as is necessary for the procedure to be used as a general tool
for structural dynamics. The major disadvantage of this procedure is that the flexibility
matrix is fully populated, and this leads to computational inefficiency in comparison
with what can be achieved by operating with the narrowly-banded stiffness matrix.
Of course direct iteration with the stiffness-based dynamic matrix E = m−1k is not
appropriate because it would converge to the highest-mode shape, as was discussed
earlier. Also the dynamic matrix E is not narrowly banded even though both k and m
are, so an alternative technique is needed.

Inverse iteration is the preferred method for taking advantage of the narrow
banding of the stiffness matrix; because it is applied inversely, it converges toward the
lowest-mode shape. In order to retain the narrow banding of k, the dynamic matrix E
is never formed. Instead, the mass matrix is combined with the assumed displacement
vector to obtain an inertial load vector, and then the stiffness-based simultaneous
equations of equilibrium are solved to obtain the improved displacement vector.

As in the above-described direct iteration method, the initially assumed displace-
ment vector will be designated v(0)

1 ; then the inertial forces due to harmonic motions
with this shape are given by an expression similar to Eq. (13-6). However, noting that
the effect of the frequency will be removed subsequently by the normalization step,
in this formulation the frequency is assumed to be unity (ω2

1 = 1) and the resulting
inertial forces are denoted by

W(0)
1 ≡ mv(0)

1 (13-53)

Now the improved displacement vector v(1)
1 resulting from the action of these forces

is obtained by solving the equilibrium equations of the structure subjected to these
forces,

kv(1) = W(0)
1 (13-54)

Of course, one way to solve these equations would be to calculate the flexibility matrix
by inversion of the stiffness matrix (̃f = k−1) and to multiply the inertial forces by
that flexibility,

v(1) = f̃ W(0)
1
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This procedure actually would be entirely equivalent to the direct iteration analysis
described before and would be inefficient because of the need to invert and then
multiply by a fully populated flexibility matrix, as explained before.

In the inverse iteration procedure recommended here, the equilibrium equations,
Eq. (13-54), are solved after first using Gauss elimination to decompose the stiffness
matrix to the following form1

k = L d LT ≡ L U (13-55)

where L is called the lower triangular matrix, LT is its transpose and d is a diagonal
matrix defined such that

d LT ≡ U

is the upper triangular matrix. With the substitution of Eq. (13-55), Eq. (13-54)
becomes

L U v(1)
1 = W(0)

1 (13-54a)

and the simultaneous solution then is carried out in two steps:

(1) Define
y(1)
1 ≡ U v(1)

1 (13-56)

and solve for y(1)
1 from

L y(1)
1 = W(0)

1 (13-57)

(2) Solve for v(1)
1 from

U v(1)
1 = y(1)

1 (13-58)

As was described before, this derived vector then is normalized by dividing it by its
largest element to obtain the improved first-mode shape that is the final result of the
first iteration cycle:

v(1)
1 =

v(1)
1

max(v(1)
1 )

(13-59)

It is important to note that the narrow banded character of the stiffness matrix k is
retained in the triangular matrices L and U, consequently the efficiency of this inverse
displacement analysis is greatly enhanced relative to the flexibility matrix formulation
used with direct iteration.

Because the only difference between this inverse iteration procedure and the
previously described direct iteration lies in the more efficient Gauss decomposition

1 K-J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, Prentice-Hall, 1976, p. 248.
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technique used to calculate the derived displacement vector v(1)
1 , the entire earlier

description of direct matrix iteration is equally applicable to inverse iteration if Eq. (13-
7) that was used previously to calculate v(1)

1 is replaced by the simultaneous equation
solution described above. However, even though this difference may appear to be
minor, the tremendous computational advantage of inverse iteration based on Eqs. (13-
54a) to (13-58) must not be overlooked, especially when the system being analyzed
has a large number of degrees of freedom.

13-7 INVERSE ITERATION WITH SHIFTS

In principle, the inverse iteration procedure just described can be combined with
sweeping matrix concepts to obtain a more efficient method for calculating the second
and higher-modes of vibration. However, the calculation of the sweeping matrices
becomes increasingly expensive and the sweeping operation becomes less and less
effective as the mode number increases. For this reason, other methods have been
developed for calculating the higher mode vibration properties, and one of these that
has proven to be useful in practice is based on the concept of “shifting” the eigenvalues.
Although shifting can be employed with either direct or inverse iteration, it is most
effective with inverse iteration analyses, and it will be discussed here in that context.

For this explanation, it is convenient to express the eigenproblem equation as
the inverse of the flexibility form of Eq. (13-5):

E φφφn = φφφn λn (13-60)

in which λn ≡ ω2
n represents the eigenvalue or frequency, E = D−1 is the stiffness

form of the dynamic matrix, and φφφn is the eigenvector (mode shape). When rewritten
to express the full set of mode shapes and frequencies, Eq. (13-60) becomes

E ΦΦΦ = ΦΦΦ ΛΛΛ (13-61)

where ΦΦΦ is the array of all mode-shape vectors and ΛΛΛ is the diagonal array of all
frequencies, ω2

n.

The essential concept of shifting is the representation of each eigenvalue λn as
the sum of a shift µ plus a residual δn, thus

λn = δn + µ (13-62)

or considering the entire diagonal matrix of eigenvalues

ΛΛΛ = δ̂δδ + µ I (13-63)
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FIGURE 13-2
Demonstration of a shift on the eigenvalue axis.
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in which δ̂δδ is the diagonal matrix of residuals and µI expresses the shift applied to
each eigenvalue.

The shift can be visualized as a displacement of the origin in a plot of the
eigenvalues, as shown in Fig. 13-2. Its effect is to transform the eigenvalue problem
to the analysis of the residuals rather than the actual eigenvalues, as is evident if
Eq. (13-63) is substituted into Eq. (13-61):

E ΦΦΦ = ΦΦΦ [δ̂δδ + µ I]

which can be rewritten as
[E − µ I] ΦΦΦ = ΦΦΦδ̂δδ (13-64)

Here the term in brackets represents a modified dynamic matrix to which the residual
eigenvalues apply, and it will be denoted as Ê for convenience; thus

Ê ΦΦΦ = ΦΦΦ δ̂δδ (13-65)

It is apparent that Eq. (13-65) is entirely equivalent to Eq. (13-61) and that the shifted
matrix has the same eigenvectors as E.

The solution of this new eigenproblem may be carried out by inverse iteration
following a procedure analogous to that described above, and the result of the first
cycle of iteration can be expressed as follows [by analogy with Eqs. (13-7) and (13-8)]:

v(1)
k =

Ê
−1

v(0)
k

max(Ê
−1

v(0)
k )

where v(0)
k is an initial approximation of the kth-mode shape. After s cycles the result

becomes

v(s)
k =

Ê
−s

v(0)
k

max(Ê
−s

v(0)
k )

=

∑N
n=1 δ

−s
n φφφnY

(0)
n

max(Ê
−s

v(0)
k )
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or by comparison with Eq. (13-22), this may be expressed as

v(s)
k =

δ−s
k

max(Ê
−s

v(0)
k )

[
φφφkY

(0)
k +

k−1∑

n=1

( δk
δn

)s
φnY

(0)
n +

N∑

n=k+1

( δk
δn

)s
φnY

(0)
n

]

(13-66)
where δk represents the smallest residual eigenvalue, that is,

|δk| < δk+1 < δk+2 · · · and |δk| < −δk−1 < −δk−2 · · ·

Thus it is evident that the two summations in Eq. (13-66) will become negligibly small
after a sufficient number of iteration cycles, so the computed mode shape converges
to

v(s)
k =

δ−s
k φφφkY

(0)
k

max(δ−s
k φφφkY

(0)
k )

=
φφφk

max(φφφk)
≡ φφφk (13-67)

This analysis therefore shows that the process of inverse iteration with eigenvalue
shift converges to the mode shape for which the eigenvalue is closest to the shift
position; e.g., it would converge to the second mode for the case illustrated in Fig. 13-
2. By analogy with Eq. (13-13) it may be seen that the residual eigenvalue for this
mode is given by the maximum term in the derived eigenvector (before normalization):

δk =
1

max(v(s)
k )

Hence the actual eigenvalue is obtained by adding the shift to this residual value,

λk = µ+
1

max(v(s)
k )

(13-68)

By appropriate selection of the shift points, this inverse iteration analysis can be
caused to converge to any or all modes of the structural system. Moreover, because
the speed of convergence can be accelerated by shifting to a value very close to the
root that is sought, it is good practice to shift at intervals during iteration, as better
approximations of the root are obtained. A useful formula for approximating the shift
point can be derived from the averaging expression given by Eq. (13-11):

µk =
v(s)

k mv(s−1)
k

v(s)
k mv(s)

k

(13-69)

It is evident that the shifting procedure would be less effective using the stiffness
formulation with direct iteration because the convergence in that case is toward the
largest root, and only the first or last residuals (δ1 or δN ) can be made largest by
shifting.
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This description of the shifting concept has been presented in the context of
the dynamic matrix E = m−1k for convenience in the explanation. However, this
relatively inefficient displacement analysis based on inversion of the fully populated
dynamic matrix should be replaced by a procedure that takes advantage of the narrow
banding property of the stiffness matrix in the solution, as already has been noted.
The recommended inverse iteration analysis procedure using shifting is carried out in
much the same way that was described for the case without shifting in Section 13-6.
Starting with the eigenproblem in the form

k φφφn = m φφφn ω
2
n

and introducing the eigenvalue shift µ = ω2
n − δn lead to

k φφφn = m φφφn (µ+ δn)

which may be expressed alternatively as

[k − µm] φφφn = mφφφn δn (13-70)

The term in brackets in Eq. (13-70) is the shifted stiffness matrix of the structure; it
represents the effective stiffness when the system is moving harmonically at the shift
frequency, and it will be denoted here by

k̂ ≡ k − µm (13-71)

With this substituted into Eq. (13-70), the iterative solution for the displacements
is initiated by assuming a trial vector for mode k, v(0)

k , and multiplying it by the mass
matrix to obtain a trial inertial load vector, W(0)

k = m v(0)
k . The resulting iteration

form of Eq. (13-70) becomes
k̂v(1)

k = W(0)
k (13-72)

which is solved simultaneously to obtain the improved displacements v(1)
k .

In order to take advantage of the narrow banding of k̂ (which usually has the
same band width as k) in the simultaneous solution, it is reduced by Gauss elimination
to upper and lower triangular form,

k̂ = L̂ Û (13-73)

as was described earlier for k [see Eq. (13-55)]. Then the solution for the improved
displacements is carried out in two steps equivalent to those mentioned before with
Eqs. (13-56) to (13-58) and the final shape for the first iteration cycle, v(1)

k , is obtained
by normalization as shown by Eq. (13-59). As was discussed earlier, this iteration will
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converge after sufficient cycles to the mode shape having its frequency closest to the
shift frequency.

13-8 SPECIAL EIGENPROBLEM TOPICS

In the foregoing discussion it has become apparent that the eigenproblem equa-
tion used in the analysis of vibration mode shapes and frequencies may be stated in
various ways, and these expressions may be used either with or without shifting of
the eigenvalues. The undamped free-vibration equation that expresses the equilibrium
between the vibration inertial forces and the elastic resisting forces will be adopted
here as the basic eigenproblem and will be stated as follows for mode “n”:

k φφφn = m φφφn ω
2
n (13-74)

This is the form that was recommended above for analysis of structures having very
many degrees of freedom because the narrow banding of k can be used to reduce the
computational effort. The equivalent form given by Eq. (13-70) is recommended for
analyses in which the stiffness is modified by shifting.

However, other forms of the eigenproblem equation have been used in the
preceding sections of this chapter for convenience in the presentation. The first of
these may be obtained by multiplying Eq. (13-74) by the flexibility matrix, k−1,
leading to an expression equivalent to Eq. (13-3),

φn = k−1 m φn ω
2
n

which may be stated as
1

ω2
n

φφφn = D φφφn (13-75)

Because the dynamic matrix D contains both the flexibility and the mass properties
of the structure, each cycle of the iteration solution for the mode shapes involves
merely multiplication by D followed by normalizing (scaling) which is accomplished
by dividing the improved displacement vector by its largest element. This direct
iteration procedure converges toward the lowest-mode shape because the eigenvalue
is in the denominator of the eigenproblem equation, Eq. (13-75).

The other major alternative formulation of the eigenproblem is derived by mul-
tiplying Eq. (13-74) by the inverse of the mass matrix, leading to a result equivalent
to Eq. (13-60),

m−1 k φφφn = φφφn ω
2
n

but which will be expressed here as

φφφn ω
2
n = E φφφn (13-76)
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Direct iteration with this equation, performed by multiplying the displacement vector
by the dynamic matrix E followed by normalizing for each cycle would converge
toward the highest-mode shape because the eigenvalue is in the numerator; therefore
Eq. (13-76) is used with inverse iteration as has been described above.

The discussion of special eigenproblem topics that follows in this section is
presented with reference to the eigenproblem equation given in Eq. (13-76), as a
matter of convenience. However, it is emphasized here again that practical matrix
iteration solutions should be based on the form of the eigenproblem equation given by
Eq. (13-74).

Eigenproperty Expansion

An eigenproblem concept that is worth mentioning here is the expansion of a
matrix in terms of its eigenvalues and eigenvectors. This discussion is based on the
following form of the eigenproblem equation rewritten from Eq. (13-76):

E φφφn = φφφn λn (13-77)

where λn ≡ ω2
n. It is evident from study of the determinantal-equation approach

to evaluating eigenvalues that the eigenvalues of the transposed matrix are the same
as those of the original matrix. However, the eigenvectors of the transpose of an
unsymmetrical matrix like E are different from those of the original. Hence for the
transpose ET , the eigenproblem can be written

ET φφφLn = φφφLn λn

where φφφLn is the nth eigenvector of ET . Transposing this relationship gives

φφφT
Ln E = λn φφφ

T
Ln (13-78)

which shows why the eigenvectors φφφLn often are called the left hand eigenvectors of
E while φφφn are the right hand eigenvectors.

The orthogonality property of the left and right hand eigenvectors can be demon-
strated if Eq. (13-77) is premultiplied by the eigenvector φφφT

Lm,

φφφT
Lm E φφφn = φφφT

Lmφφφnλn (13-79)

while Eq. (13-78) is written for mode m and postmultiplied by φφφn,

φφφT
Lm E φφφn = λm φφφT

Lm φφφn (13-80)

Subtracting Eq. (13-80) from Eq. (13-79) then gives

0 = (λn − λm) φφφT
Lm φφφn
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which represents the orthogonality property

φφφT
Lm φφφn = 0 (λm 6= λn) (13-81)

If the eigenvectors are normalized to satisfy the condition φφφT
Lnφφφn = 1 (note that

this does not fix the amplitude of φφφLn or φφφn individually, only their product), and if
the square matrices of the sets of all right and left hand eigenvectors are designated ΦΦΦ

and ΦΦΦL, respectively, it is evident from the normalizing and orthogonality conditions
that

ΦΦΦT
L ΦΦΦ = I (13-82a)

Hence the transpose of the left hand eigenvectors is the inverse of the right-hand
eigenvectors:

ΦΦΦT
L = ΦΦΦ−1 (13-82b)

The expansion of E can now be demonstrated by writing the eigenproblem
expression of Eq. (13-77) for the full set of eigenvectors and eigenvalues:

EΦΦΦ = ΦΦΦΛΛΛ (13-83)

in which ΛΛΛ is the diagonal matrix of eigenvalues. Premultiplying Eq. (13-83) by ΦΦΦT
L

and invoking Eq. (13-82b) lead to an expression for the eigenvalues:

ΦΦΦT
L E ΦΦΦ = ΛΛΛ (13-84)

Alternatively, E can be expressed in terms of the eigenvalues and eigenvectors by
premultiplying Eq. (13-84) by ΦΦΦ, postmultiplying it by ΦΦΦT

L , and invoking Eq. (13-
82b) which leads to

E = ΦΦΦ ΛΛΛ ΦΦΦT
L (13-85)

This result also can be expressed as the sum of the modal contributions:

E =

N∑

n=1

λnφφφnφφφ
T
Ln (13-85a)

Furthermore, the square of matrix E is

E2 = ΦΦΦΛΛΛΦΦΦT
LΦΦΦΛΛΛΦΦΦT

L = ΦΦΦΛΛΛ2ΦΦΦT
L (13-86)

and by continued multiplication, the sth power of E is

Es = ΦΦΦΛΛΛsΦΦΦT
L (13-87)
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It must be remembered that the expansion of Eq. (13-87) is based on the type
of eigenvector normalizing which has been used (ΦΦΦT

LΦΦΦ = I). A specific expression
for the left hand eigenvectors can be obtained if an additional normalizing condition
is introduced. For example, if Eq. (13-83) is premultiplied by ΦΦΦT m (note that E =

m−1k), it becomes
ΦΦΦT kΦΦΦ = ΦΦΦT mΦΦΦΛΛΛ (13-88)

Now if the right hand eigenvectors are normalized so that

ΦΦΦT mΦΦΦ = I (13-89)

it is apparent from comparison of the transpose of Eq. (13-82a) with Eqs. (13-89) and
(13-88) that

ΦΦΦL = mΦΦΦ = kΦΦΦΛΛΛ−1 (13-90)

Symmetric Form of Dynamic Matrix

It was noted above that the eigenproblem equation could be expressed in terms
of the stiffness form of the dynamic matrix as follows [see Eq. (13-77)]:

Eφφφn = φφφnω
2
n

and a number of efficient techniques for solving this eigenproblem have been dis-
cussed. However, it should be noted that the matrix E = m−1k is unsymmetric, even
though both m and k are symmetric, and thus this problem cannot be solved by many
efficient standard solution procedures developed to take advantage of symmetry in the
eigenproblem, e.g., the Householder method. For this reason it is useful to be able to
transform the general vibration eigenproblem [Eq. (13-74)] to the standard symmetric
form

Byn = ynλn (13-91)

The transformation from general to standard form can be accomplished by
manipulation of the mass matrix, and the type of transformation required depends
on the form of the mass matrix. Two cases will be considered here: (1) a diagonal
mass matrix representing a lumped-mass system and (2) a general (nondiagonal) mass
matrix which might result from a consistent finite-element formulation. In both cases,
the transformation matrix which converts Eq. (13-74) into Eq. (13-91) is obtained by
decomposing the mass matrix into the product of a matrix and its transpose.

Diagonal Mass Matrix — In this case the transformation matrix is obtained very
simply as the square root of the mass matrix,

m = m1/2m1/2
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and the square-root matrix is obtained by merely taking the square root of the di-
agonal terms (of course the diagonal matrix is unchanged in transposition). The
transformation of Eq. (13-74) is performed by expressing its eigenvectors as

φφφn = m−1/2yn (13-92)

where the inverse is formed with the reciprocals of the diagonal terms in m1/2.
Substituting Eq. (13-92) into Eq. (13-74) and premultiplying by m−1/2 lead to

m−1/2 km−1/2yn = ynλn

which is of the form of Eq. (13-91) with B = m−1/2km−1/2. Solving this symmetric
eigenvalue problem leads directly to the frequencies of the original equation (13-74);
but the eigenvectors yn of this new eigenproblem must be transformed to obtain the
desired vibration mode shapes φφφn, using Eq. (13-92).

It is evident that this transformation procedure cannot be applied if any of the
diagonal mass elements is zero. Therefore, it is necessary to eliminate these degrees
of freedom from the analysis by the method of static condensation as described sub-
sequently in Chapter 14 before performing the transformation to standard symmetric
form.

Consistent Mass Matrix — Two methods are available for the transformation
when the mass matrix is banded, as it would be in a consistent mass formulation,
rather than diagonal. The more reliable of these is based on evaluating the eigenvalues
vn and eigenvectors tn of the mass matrix from the equation

mtn = tnvn

The eigenvectors of this symmetric matrix satisfy the orthogonality condition tT
mtn = 0

(if m 6= n); hence if they also are normalized, so that tTn tn = 1, the complete set of
eigenvectors T is orthonormal:

TT T = I TT = T−1

[This expression corresponds with Eq. (13-82a); note that the left hand and right hand
eigenvectors are the same for a symmetric matrix.] Finally, the mass matrix can be
expressed in terms of these eigenvectors and the set of eigenvalues v̂ as follows [by
analogy with Eq. (13-85)]:

m = Tv̂TT (13-93)

From Eq. (13-93) it is apparent that the transformation matrix is Tv̂1/2, and thus
the transformation of Eq. (13-74) is performed by expressing its eigenvectors as

φφφn = Tv̂−1/2yn (13-94)
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Substituting this into Eq. (13-74) and premultiplying by v̂−1/2TT then lead to

(v̂−1/2TT kTv̂−1/2) yn = ynλn (13-95)

where Eq. (13-93) has been used to simplify the right hand side. Equation (13-95)
is of the form of Eq. (13-91) with B = v̂−1/2TT kTv̂−1/2; hence the solution of
this symmetric eigenproblem gives the desired vibration frequencies directly, and the
vibration mode shapes are obtained from the eigenvectors yn by Eq. (13-94).

Inasmuch as this transformation requires the solution of a preliminary eigen-
problem of the order of the original eigenproblem, it is apparent that the use of a
vibration-analysis procedure based on the solution of the symmetric eigenproblem
Eq. (13-91) will be relatively expensive if the mass matrix is not diagonal. It is possi-
ble to obtain a simpler transformation by performing a Choleski decomposition of the
mass matrix, that is,

m = LLT

where L is the lower triangular component [equivalent to the decomposition of k in
Eq. (13-55)]. The transformation can then be performed as described above with
(LT )−1 taking the place of Tv̂−1/2 [in Eq. (13-94)] or of m−1/2 [in Eq. (13-92)].
However, it has been found in many practical cases that the eigenproblem resulting
from the Choleski transformation may be quite sensitive and difficult to solve accu-
rately. For this reason, the eigenvector decomposition of Eq. (13-93) is preferable for
general use, even though it is more expensive.

Analysis of Unconstrained Structures

Structures which are unconstrained or only partially constrained against rigid-
body displacements by their external support system present a special problem in
eigenproblem analysis because their stiffness matrices are singular and the vibration
frequencies corresponding to the rigid-body motions are zero. Although the determi-
nantal equation method (and some other formal mathematical procedures) can deal
directly with a dynamic system having a singular stiffness matrix, it is evident that
inverse iteration (or any other method making direct use of the stiffness inverse) cannot
be applied without modification. Two simple methods of avoiding difficulty with a
singular stiffness matrix are described here.

Spring Constraints — The most direct way to deal with an unconstrained struc-
ture is to modify it by adding small spring constraints to the unconstrained degrees
of freedom. First a minimum set of constraints sufficient to prevent any rigid-body
motions must be identified. Then if a spring is connected between the structure and
the ground in each of these degrees of freedom, the singularity of the stiffness matrix
will be removed. Analytically these springs are represented by adding terms to the
diagonal elements of the stiffness matrix for these degrees of freedom. If the added
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spring stiffnesses are very small relative to the original stiffness-matrix coefficients,
they will have negligible effect on the vibration mode shapes and frequencies asso-
ciated with deformations of the structure, but an additional set of rigid-body modes
will be defined having frequencies much smaller than the deformation modes. These
constraint springs can be introduced automatically by the computer program when the
eigenproblem is solved by inverse iteration. If the stiffness equations are solved by
Choleski or Gauss decomposition, any singularity leads to a zero in the diagonal posi-
tion and would prevent continuation of the decomposition. However, the program can
be written so that each diagonal zero is replaced by a small number which physically
represents the spring constraint; in this way the singularities are overcome and the
decomposition process can be carried to completion.

Eigenvalue Shift — A similar effect can be achieved mathematically by means
of an eigenvalue shift. From Eq. (13-70),

[k − µm] φφφn = δnmφφφn

it is evident that the shifted stiffness matrix k̂ = k−µm will be nonsingular in general
even if k is singular. If the mass matrix is diagonal, introducing a negative shift causes
a positive quantity to be added to the diagonal elements of the stiffness matrix; hence
this is equivalent to connecting a spring to each degree of freedom. The essential
difference between this procedure and the physical approach mentioned first is that a
“spring” is added corresponding to each mass coefficient, rather than just a minimum
set. The shift approach has the advantage that the mode shapes are not changed and
the frequency effect is accounted for exactly by the shift.

PROBLEMS

13-1. Evaluate the fundamental vibration-mode shape and frequency for the building of
Prob. 8-12 using the matrix iteration method. Note that the flexibility matrix may
be obtained from the given story shear stiffness either by inverting the stiffness
matrix or by applying a unit load successively at each story, and evaluating the
resulting displacements at each story.

13-2. Evaluate the highest mode shape and frequency for the building of Prob. 13-1
by matrix iteration, using the stiffness form of the dynamic matrix Eq. (13-45).

13-3. Repeat Prob. 13-1 for the building properties of Prob. 8-13.

13-4. Evaluate the second mode shape and frequency for the shear building of Prob. 12-
4 by matrix iteration. To form the first mode sweeping matrix S1, use the given
first mode shape φ1 and Eq. (13-30).

13-5. Repeat Prob. 13-4 using inverse iteration with shifts, as indicated by Eq. (13-65)
and the discussion that follows it. For this demonstration problem, use a shift
µ = 98%(ω2)

2, where ω2 is as given in Prob. 12-4.
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13-6. A beam with three lumped masses is shown in Fig. P13-1; also shown are
its flexibility and stiffness matrices. By matrix iteration, determine the axial
force Ncr that will cause this beam to buckle. In this analysis, use the linear
approximation, Eq. (10-36), to express the geometric stiffness of the beam.
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13-7. By matrix iteration, compute the frequency of vibration of the beam of Prob. 13-6
if the axial force has the value N = 2(EI/L2).



CHAPTER

14
SELECTION

OF DYNAMIC
DEGREES

OF FREEDOM

14-1 FINITE-ELEMENT DEGREES OF FREEDOM

Several procedures for calculating the linear response to arbitrary dynamic
loadings of a system with multiple degrees of freedom were described in Chapter
13; some of these are considered suitable only for systems with very few degrees of
freedom while others are well adapted to use with mathematical models having large
numbers of degrees of freedom. However, little was said about the selection of the
degrees of freedom to be used in analysis — that is, about the number that may be
needed to obtain satisfactory results — and it is the purpose of this chapter to discuss
many aspects of that question.

It was stated previously that the formulation of the mathematical model is the
most critical step in any dynamic analysis, because the validity of the calculated
results depends directly on how well the mathematical description can represent the
behavior of the real physical system, and a few comments will be made here on the
model definition. For the purpose of this discussion, it will be assumed that the
mathematical model is an assemblage of finite elements and that the displacements
of the interconnected nodes are the degrees of freedom of the model. Only framed
structures, i.e., assemblages of one-dimensional elements, are considered in detail
in this text. However, the same analysis procedures may be applied to the analysis
of any MDOF system regardless of the types of finite elements employed; for this

293
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reason some comments also will be made here about structures made up of two- or
three-dimensional elements.

One-Dimensional Elements

A finite-element model of a framed structure typically is formed by assembling
a set of one-dimensional elements which are in one-to-one correspondence with the
beams, struts, girders, etc., that make up the actual structure. The number of degrees
of freedom in the model, therefore, is fixed by the physical arrangement of the struc-
ture, and in general all of the degrees of freedom would be involved in the analysis
of stresses and displacements resulting from application of a general static load dis-
tribution. On the other hand, not all of the degrees of freedom need be considered
as independent variables in analysis of the response to an arbitrary dynamic loading.
Depending on both the time variation as well as the spatial distribution of the load, the
dynamic analysis often may be performed effectively with a much smaller number of
independent degrees of freedom using procedures to be explained later in this chapter.

Two- and Three-Dimensional Elements

Many structures can be treated as two- or three-dimensional continua or as com-
binations of such continuum components, and appropriate two- or three-dimensional
elements are most effective in modeling such structures. In formulating models of
this type, the number of degrees of freedom to be used is not dictated just by the con-
figuration of the structure; in addition the degree of mesh refinement that is required
to obtain a reasonable approximation of the actual strain distribution is an important
consideration. The basic factor that controls the stiffness properties of the individual
finite elements is the variation of displacements within the elements as expressed by
the assumed displacement interpolation functions. For the one-dimensional flexu-
ral elements described in Chapter 10, the variation of displacements with position
along the element’s length was assumed to be expressed by cubic Hermitian poly-
nomials. For two- and three-dimensional elements, the displacement variations must
be assumed similarly with respect to position axes in two or three directions. The
strain distributions that may be developed within the elements clearly depend directly
on the displacement functions that are assumed: constant strains result from linear
displacement variations, linear strains from quadratic displacements, etc.

Thus in order for any required strain variation to be developed by a finite-element
mesh, such as might be associated with stress concentrations in a plane stress system,
for example, it may be necessary to provide a very fine finite-element mesh with many
degrees of freedom to achieve the necessary variations of strain gradients. Fortunately,
however, the nodal displacements that control the inertial forces in a dynamic analysis
are not as sensitive to local strain variations as is the stress distribution. Consequently
fewer degrees of freedom are needed to perform an adequate analysis of the dynamic
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displacements, and the resulting stress distributions can then be determined from
these displacements by a static analysis using a more refined finite-element mesh as
necessary. Various techniques that may be used for reducing a mathematical model
from the number of degrees of freedom suitable for stress analysis to a less refined
system that is adequate and efficient for analysis of dynamic nodal displacements are
described in the following sections.

14-2 KINEMATIC CONSTRAINTS

Probably the simplest means of reducing the number of degrees of freedom
in a mathematical model is by assuming kinematic constraints which express the
displacements of many degrees of freedom in terms of a much smaller set of primary
displacement variables. In principle, the displacement interpolation concept that
was introduced in evaluating the stiffness properties of beam elements (Fig. 10-4)
exerts a form of kinematic constraint on the displacements within the span of the
element. However, in the present context, the constraints will be expressed in terms
of the displacements imposed on a group of degrees of freedom by the displacements
specified at one (or more) degrees of freedom.

One of the most widely used applications of this type of constraint is introduced
in the modeling of multistory building frames. For example, consider the 20-story
rectangular building frame shown in Fig. 14-1, which includes six frames parallel to
the Y -Z plane and four frames parallel to the X-Z plane. The Y -Z frames contain
a total of 20 × 6 × 3 = 360 girders while there are 20 × 4 × 5 = 400 girders in the
X-Z frames. The model also includes 20 × 4 × 6 = 480 column elements which
are common to both the Y -Z and the X-Z frames; thus there is a total of 1240 one-

FIGURE 14-1
Twenty-story building frame (2880 degrees of 
freedom).

X
Y

Z

Θ
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dimensional elements in the model. The number of joints interconnecting the elements
is the same as the number of column elements, 480, so considering 3 translation and
3 rotation displacements per joint, the building frame includes a total of 2880 degrees
of freedom.

If the constraining effect of the floor slabs is considered, however, this number
can be reduced almost by half. It usually is assumed that each floor diaphragm is
rigid in its own plane but is flexible in the vertical direction, which is a reasonable
representation of the true floor system behavior. Introducing this assumption reduces
the independent degrees of freedom of each joint from 6 to 3 (Z displacement plus
rotation about the X and Y axes). In addition the diaphragm at each floor level has 3
rigid-body degrees of freedom in its own plane: X andY translation plus rotation about
the Z axis, as indicated in the figure. Consequently, after introducing the diaphragm
constraint, the total number of degrees of freedom that would be considered in a static
analysis is 1440 + 60 = 1500.

A further reduction in the number of degrees of freedom that need be considered
in a dynamic analysis of the building frame may be made by the method of static
condensation. This concept was introduced previously in Section 10-6, and it will be
described more fully in Section 14-3 of this chapter. It is sufficient here to note that
static condensation can reduce the dynamic degrees of freedom of this frame to only
the three rigid-body motions of each floor slab in its own plane. Thus the final result
of this reduction is a total of 60 dynamic degrees of freedom, only about 2 percent of
the 2880 included in the original finite-element model.

Additional kinematic constraints sometimes have been assumed in both the static
and the dynamic analysis of building frames, such as that the columns are inextensible
and/or that the floor slabs are rigid-out-of-plane as well as in-plane. However, these
assumptions seldom are justified by the actual stiffness properties of the components
of which the building is assembled and they should not be employed except in special
circumstances. It is important to recognize that all members are free to distort in
flexure and that all columns have axial flexibility in the type of model described
above.

14-3 STATIC CONDENSATION

In contrast to the kinematic constraint idea described above, the concept of
static condensation is based on static equilibrium constraints — hence the name of
the procedure. To apply this principle, the degrees of freedom of the structural system
are divided into two categories: those in which no mass participates so that inertial
forces are not developed and those having mass that induces inertial forces. As the
procedure was described in Section 10-6, the degrees of freedom were classified as
either rotational or translational because it was assumed that the mass was concentrated
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in point lumps which had no inertial resistance to rotation. However, the fundamental
concept involves merely the recognition of those degrees of freedom that can develop
inertial forces as distinguished from those that cannot.

Consider, for example, the equations of motion in free vibration [Eq. (11-33)]
written in the form

k v̂ = ω2 m v̂ (14-1)

in which the vector v̂ represents the vibration displacements of all degrees of freedom.
If these displacements are partitioned into a subvector v̂0 for which no inertial forces are
developed and a subvector v̂t which is associated with the nonzero mass coefficients,
and if the mass and stiffness matrices are partitioned to correspond, Eq. (14-1) can be
written [

k00 k0t

kt0 ktt

] [
v̂0

v̂t

]
= ω2

[
0 0

0 mt

] [
v̂0

v̂t

]
(14-2)

in which it is assumed that the mass matrix is diagonal as would result from a lumped-
mass idealization.

The first of this pair of submatrix equations provides the static restraint relation
between the two types of degrees of freedom, i.e.,

k00 v̂0 + k0t v̂t = 0

from which
v̂0 = −k−1

00 k0t v̂t (14-3)

Using this expression to eliminate v̂0 from the second submatrix equation of Eq. (14-2)
then leads to the reduced free-vibration equation

kt v̂t = ω2 mt v̂t (14-4a)

in which kt is the reduced stiffness matrix expressed by

kt = ktt − kt0 k−1
00 k0t (14-4b)

This static condensation procedure can be used to effect a very considerable
reduction in the number of degrees of freedom to be used in a dynamic analysis, such
as the reduction from 1500 to only 60 in the building frame example discussed above;
however, the reduction in actual computational effort may be much less significant
than these data suggest. This is because the narrow banding of the stiffness matrix k
in Eq. (14-1) makes possible a very efficient solution procedure when the analysis is
performed in the original coordinates, whereas the analysis using Eq. (14-4a) is much
more expensive per degree of freedom because the reduced stiffness kt becomes fully
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populated as a result of the condensation procedure. For this reason, the advisability
of using static condensation should be evaluated carefully on a case-by-case basis.

It is of interest to note that equilibrium constraints such as are used in static
condensation often are utilized even when the structure has no massless degrees of
freedom. However, in such cases the constraints are used merely as a basis for defining
patterns of nodal displacements for use in a Rayleigh or Rayleigh-Ritz type of analysis
as is described in the following sections of this chapter.

14-4 RAYLEIGH METHOD IN DISCRETE COORDINATES

The Rayleigh method of vibration analysis described in Section 8-5 may be
recognized as a demonstration of the fact that a useful dynamic analysis often may be
performed using fewer degrees of freedom than are required for a static analysis. In the
example presented there, a continuum definition of a beam having an infinite number
of degrees of freedom was reduced to a system in which a single degree of freedom
served to express the amplitude of displacement. However, the Rayleigh concept
applies equally to systems for which the displacements are expressed in discrete
coordinates. To apply the method, it is necessary to express the displacement of the
structure in terms of an assumed shape and a generalized-coordinate amplitude. In
matrix notation, the assumed free-vibration displacements may be expressed [compare
with Eq. (8-25)]

v(t) = ψψψ Z(t) = ψψψ Z0 sinωt (14-5a)

in which ψψψ is the assumed shape vector and Z(t) is the generalized coordinate ex-
pressing its amplitude. The velocity vector in free vibrations then is

v̇(t) = ψψψ ω Z0 cosωt (14-5b)

In matrix form, the maximum kinetic energy of the structure is given by

Tmax =
1

2
v̇T

max m v̇max (14-6a)

and the maximum potential energy by

Vmax =
1

2
vT

max k vmax (14-6b)

When the maximum displacement and velocity, obtained from Eqs. (14-5), are substi-
tuted, these are written

Tmax =
1

2
Z2

0 ω
2 ψψψT mψψψ (14-7a)

Vmax =
1

2
Z2

0 ψψψ
T kψψψ (14-7b)
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Then the frequency can be obtained by equating the maximum potential- and kinetic-
energy expressions, according to the Rayleigh principle, so that

ω2 =
ψψψT kψψψ
ψψψT mψψψ

≡ k∗

m∗ (14-8)

in which the asterisks denote generalized-coordinate properties. It should be noted
that Eq. (14-8) is merely the matrix equivalent of Eq. (8-30).

The improved Rayleigh method of Eqs. (8-40) or (8-42) can also be developed
in matrix form. If the initial displacement assumption is designated

v(0) = ψψψ Z (14-9)

then the inertial forces developed in free vibrations will be [from Eq. (11-33)]

fI = ω2 m v(0) = ω2 mψψψ Z (14-10)

and the deflections produced by these inertial forces are

v(1) = f̃fI = ω2 f̃ mψψψ Z (14-11)

which is a better approximation of the first-mode shape, as noted in the discussion
of the matrix iteration method. Thus if this derived shape is used in the Rayleigh
method, it will produce a better result than the initial assumption would. The result of
introducing Eq. (14-11) into Eqs. (14-6) and equating them is

ω2 =
ψψψT mf̃mψψψ
ψψψT mf̃mf̃mψψψ

(14-12)

which is the improved Rayleigh method expression (method R11). By comparing
Eq. (14-12) with Eq. (13-11) it can be seen that the frequency obtained from the
improved Rayleigh procedure is identical to that given by a single-step matrix iteration
analysis using the mass as a weighting factor in the averaging process.

14-5 RAYLEIGH-RITZ METHOD

Although the Rayleigh method can provide a satisfactory approximation of the
first mode of vibration in many structures, it frequently is necessary to include more
than one mode in a dynamic analysis to give adequate accuracy in the results. The
Ritz extension of the Rayleigh method is one of the most convenient procedures for
evaluating the first several modes of vibration. The basic assumption of the Ritz
method is that the displacement vector can be expressed in terms of a set of assumed
shapes ΨΨΨ of amplitude Z as follows:

v = ψψψ1Z1 + ψψψ2Z2 + ψψψ3Z3 + · · ·
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or
v = ΨΨΨ Z (14-13)

in which the generalized-coordinate amplitudes Z are as yet unknown. To obtain
the best results from the least possible number of coordinates, each of the vectors
ψψψn should be taken as an approximation of the corresponding true vibration mode
shape φφφn, although many other schemes have been proposed for selecting the trial
vectors. For example, the static-condensation process can be looked upon as a means
for defining a set of Ritz shapes as was mentioned above. The fact that a specified set
of elastic forces is to be set to zero constitutes a constraint which makes it possible
to express the corresponding set of displacements in terms of all the others. This
type of relationship is given by Eq. (10-45) or by Eq. (14-3) in the notation used
here. Hence, the complete displacement vector can also be expressed in terms of
the non-zero-force degrees of freedom merely by incorporating an identity matrix of
appropriate dimensions into the transformation:

v̂ =

[
v̂0

v̂t

]
=

[
−k−1

00 k0t

I

]
v̂t (14-14)

Here the second matrix in square brackets clearly is equivalent to the assumed
shapes ΨΨΨ of Eq. (14-13), and the vector v̂t represents the generalized coordinates Z.
As many trial vectors as desired may be used in the Ritz analysis. In general, it may be
advisable to use as many as s assumed shapes ΨΨΨ if it is desired to obtain s/2 vibration
mode shapes and frequencies with good accuracy.

Expressions for the maximum kinetic and potential energy in the system can be
obtained by introducing Eq. (14-13) into Eqs. (14-6), giving

Tmax =
1

2
ω2ZT ΨΨΨT mΨΨΨZ (14-15a)

Vmax =
1

2
ZT ΨΨΨT kΨΨΨZ (14-15b)

Equating these then leads to the frequency expression

ω2 =
ZT ΨΨΨT kΨΨΨZ
ZT ΨΨΨT mΨΨΨZ

≡ k̃(Z)

m̃(Z)
(14-16)

Equation (14-16) is not an explicit expression for the frequency of vibration,
of course; both the numerator and denominator are functions of the generalized-
coordinate amplitudes Z, which are not yet known. To evaluate these, the fact that the
Rayleigh analysis provides an upper bound to the vibration frequency will be utilized;
in other words, any assumed shape leads to a calculated frequency which is higher
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than the true frequency, and so the best approximation of the shape, that is, the best
choice of Z, will minimize the frequency.

Thus differentiating the frequency expression with respect to any one of the
generalized coordinates Zn and equating to zero gives

∂ω2

∂Zn
=

m̃ (∂k̃/∂Zn) − k̃(∂m̃/∂Zn)

m̃2 = 0 (14-17)

But from Eq. (14-16), k̃ = ω2m̃; thus Eq. (14-17) leads to

∂k̃
∂Zn

− ω2 ∂m̃
∂Zn

= 0 (14-18)

Now from the definitions given in Eq. (14-16)

∂k̃
∂Zn

= 2ZTψψψT kψψψ
∂

∂Zn
(Z) = 2ZT ΨΨΨT kψψψn (14-19a)

and similarly
∂m̃
∂Zn

= 2ZT ΨΨΨT mψψψn (14-19b)

Substituting Eqs. (14-19) into Eq. (14-18) and transposing gives

ψψψT
n kΨΨΨZ − ω2ψψψT

n mΨΨΨZ = 0 (14-20)

Minimizing the frequency successively with respect to each of the generalized coor-
dinates leads to an equation like Eq. (14-20) for each of the shape vectors ψψψn; thus
the entire set of equations may be expressed as

ΨΨΨT kΨΨΨZ − ω2ΨΨΨT mΨΨΨZ = 0

With the notation

k∗ = ΨΨΨT kΨΨΨ (14-21a)

m∗ = ΨΨΨT mΨΨΨ (14-21b)

this becomes
(k∗ − ω2m∗) Ẑ = 0 (14-22)

where Ẑ represents each of the eigenvectors (relative values of Z) which satisfies this
eigenvalue equation.

Comparing Eq. (14-22) with Eq.(11-4) shows that the Rayleigh-Ritz analysis
has the effect of reducing the system from N degrees of freedom, as represented
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by the geometric coordinates v, to s degrees of freedom representing the number of
generalized coordinates Z and the corresponding assumed shapes. Equation (14-13) is
the coordinate transformation, and Eqs. (14-21) are the generalized-mass and stiffness
matrices (of dimensions s× s). Each element of these matrices is a generalized-mass
or stiffness term; thus

k∗mn = ψψψT
mkψψψn (14-23a)

m∗
mn = ψψψT

mmψψψn (14-23b)

In general, the assumed shapes ψψψn do not have the orthogonality properties of the true
mode shapes, thus the off-diagonal terms do not vanish from these generalized-mass
and stiffness matrices; however, a good choice of assumed shapes will tend to make
the off-diagonal terms relatively small. In any case, it is much easier to obtain the
dynamic response for the reduced number of coordinates s than for the original N
equations.

Equation (14-22) can be solved by any standard eigenvalue-equation solution
procedure, including the determinantal equation approach discussed earlier for systems
having only a few generalized coordinates Z. The frequency vector ωωω so obtained
represents approximations to the true frequencies of the lower modes of vibration,
the accuracy generally being excellent for the lowest modes (1 < n < s/2) and
relatively poor in the highest modes. When the mode-shape vectors Zn are normalized
by dividing by some reference coordinate, they will be designated φφφZn, where the
subscript Z indicates that they represent the mode shapes expressed in generalized
coordinates. The complete set of generalized-coordinate mode shapes can then be
denoted ΦΦΦZ, representing a square s× s matrix.

The generalized coordinates Z expressed in terms of the modal amplitudes [by
analogy with Eq. (12-3)] are

Z = ΦΦΦZ Y (14-24)

It is of interest that these mode shapes are orthogonal with respect to the generalized-
mass and stiffness matrices:

φφφZmm∗φφφZn = 0

φφφZmk∗φφφZn = 0
m 6= n (14-25)

By introducing Eq. (14-24) into Eq. (14-13) the geometric coordinates can be expressed
in terms of the normal modal coordinates

v = ΨΦΦΦZY (14-26)

Thus it is seen that the approximate mode shapes in geometric coordinates are given
by the product of the assumed shapes and the generalized-coordinate mode shapes

ΦΦΦ = ΨΦΦΦZ (14-27)
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which is of dimensions N × s. Substituting Eqs. (14-21) into Eqs. (14-25) and
applying Eqs. (14-26) demonstrates that these approximate geometric mode shapes are
orthogonal with respect to the mass and stiffness expressed in geometric coordinates.
They can therefore be used in the standard mode-superposition dynamic-analysis
procedure.

It is important to note that the same type of improvement described above for
the Rayleigh method is applicable to the Rayleigh-Ritz procedure. Thus, by analogy
with Eq. (14-21), the improved generalized-coordinate stiffness and mass matrices are
given by

k∗ = ΨΨΨT mf̃mΨΨΨ (14-28a)

m∗ = ΨΨΨT mf̃mf̃mΨΨΨ (14-28b)

in place of Eqs. (14-21). The principal advantage of these equations is that the inertial-
force deflections on which they are based provide reasonable assumed shapes from
very crude initial assumptions. In large, complex structures it is very difficult to make
detailed estimates of the shapes, and it is possible with this improved procedure merely
to indicate the general character of each shape. Another major advantage in many
analyses is that it avoids use of the stiffness matrix. In fact, if the initial assumed
shapes are designated ΨΨΨ(0) and the deflections resulting from inertial forces associated
with those shapes are called ΨΨΨ(1), that is,

Ψ(1) = f̃mΨ(0) (14-29)

then Eqs. (14-28) may be written

k∗ = (ΨΨΨ(1))T mΨΨΨ(0) (14-30a)

m∗ = (Ψ(1))T mΨ(1) (14-30b)

Consequently it is not necessary to have an explicit expression for the flexibility either;
it is necessary only to be able to compute the deflections resulting from a given loading
(which in this case is mΨΨΨ(0)).

This improvement process in the Rayleigh-Ritz method may be looked upon
as the first cycle of an iterative solution, just as the improved Rayleigh method is
equivalent to a single cycle of the basic matrix iteration method. However, that type of
analysis results in only a single mode shape and frequency, whereas the continuation of
the Ritz improvement process evaluates simultaneously the entire reduced set of mode
shapes and frequencies. This method, called simultaneous or subspace iteration, is
described in the following section.
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14-6 SUBSPACE ITERATION

Because subspace iteration is essentially a continuation of the Rayleigh-Ritz
improvement procedure in which the improvement is continued iteratively, it is con-
venient to use the Ritz analysis notation in this presentation. In order to obtain a set
of p mode shapes and frequencies that are established with adequate accuracy, it is
desirable to start with a somewhat larger number q of trial vectors. Denoting these
trial vectors by the superscript (0), the displacements of the structure can be expressed
as combinations of these shapes [see Eq. (14-13)] as follows:

v(0) = ΨΨΨ(0)Z(0) = ΨΨΨ(0) (14-31)

in which the initial generalized-coordinate matrix Z(0) is merely an identity matrix
(indicating that the trial vectors are the assumed Ritz shapes ΨΨΨ(0)).

For the large systems to which this method is usually applied, it is important
to take advantage of the banding properties of the mass and stiffness matrices; hence
the free-vibration equation [Eq. (14-1)] is written for the set of p eigenvalues and
eigenvectors as

kΦΦΦ = mΦΦΦΛΛΛ (14-32)

in which Λ is the diagonal matrix of the eigenvalues. Introducing the q trial vectors
on the right side of this equation leads to

kΨΨΨ(1) = mΨΨΨ(0) ≡ w(0) (14-33)

which is equivalent to Eq. (13-72) written for multiple vectors and with no shift. The
unscaled improved shapes are obtained by solving Eq. (14-33); thus

ΨΨΨ(1) = k−1w(0) (14-34)

and, as explained above, it will be more efficient to use the Choleski decomposition
of k [Eq. (13-72)] rather than its inverse in obtaining the solution.

Before the improved shapes of Eq. (14-34) can be used in a new iteration cycle,
they must be modified in two ways: normalized to maintain reasonable number sizes
in the calculations and orthogonalized so that each vector will converge toward a
different mode (rather than all toward the lowest mode). These operations can be
performed in many different ways, but it is convenient to accomplish both at once by
carrying out a Ritz eigenproblem analysis. Thus the first-cycle generalized-coordinate
stiffness and mass matrices are computed [see Eqs. (14-21)] as follows:

k∗
1 = ΨΨΨ(1)T kΨΨΨ(1) ≡ ΨΨΨ(1)T mΨΨΨ(0)

m∗
1 = ΨΨΨ(1)T mΨΨΨ(1)

(14-35)



SELECTION OF DYNAMIC DEGREES OF FREEDOM 305

in which the subscripts identify the first-cycle values, and then the corresponding
eigenproblem

k∗
1Ẑ

(1)
= m∗

1Ẑ
(1)

Ω2
1 (14-36)

is solved for the first-cycle generalized-coordinate mode shapes Ẑ
(1)

and frequencies
ΩΩΩ2

1. Any suitable eigenproblem-analysis procedure may be used in the solution
of Eq. (14-36), but since it is a much smaller equation system than the original
eigenproblem, that is, q � N , it can often be done by a standard computer-center
library program. Usually it is convenient to normalize the generalized-coordinate
modal vector so that the generalized masses have unit values:

Ẑ
(1)T

m∗
1Ẑ

(1)
= I

When the normalized generalized-coordinate vectors are used, the improved trial
vectors are given by

v(1) = ΨΨΨ(1) = ΨΨΨ(1)Ẑ
(1)

(14-37)

The entire process can now be repeated iteratively, solving for the unscaled
improved shapes ΨΨΨ

(2)
, as indicated by Eq. (14-34), and then solving the corresponding

Ritz eigenproblem [Eq. (14-36)] to provide for scaling and orthogonalization:

ΨΨΨ(2) = ΨΨΨ(2)Ẑ
(2)

and so on. Eventually the process will converge to the true mode shapes and frequen-
cies, that is,

ΨΨΨ(s) → ΦΦΦ

Ω2
s → Λ

as s→ ∞ (14-38)

In general, the lower modes converge most quickly, and the process is continued only
until the desired p modes are obtained with the necessary accuracy. The additional
q − p trial vectors are included because they accelerate the convergence process,
but obviously they require additional computational effort in each cycle, so that a
reasonable balance must be maintained between the number of vectors used and the
number of cycles required for convergence. By experience it has been found that a
suitable choice is given by the smaller of q = 2p and q = p+ 8.

This subspace, or simultaneous-iteration, procedure has proved to be one of
the most efficient methods for solving large-scale structural-vibration problems where
probably no more than 40 modes are required for the dynamic analysis of systems
having many hundreds to a few thousand degrees of freedom. Although this may be
considered as a Rayleigh-Ritz coordinate-reduction scheme, it has the great advantage
that the resulting modal coordinates can be obtained to any desired degree of precision.
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Other coordinate-reduction procedures involve approximations which make the accu-
racy of the final results uncertain; hence subspace iteration is strongly recommended
for practical applications.

14-7 REDUCTION OF MODAL TRUNCATION ERRORS

General Comments on Coordinate Reduction

Based on the preceding discussions, it is evident that the Rayleigh-Ritz method is
an excellent procedure for reducing a model of a structural system from the set of finite-
element degrees of freedom chosen to define the static stress distribution to the smaller
number of coordinates needed to evaluate the system vibration properties, and also
that subspace iteration is an efficient method for solving the vibration eigenproblem.
Furthermore, it is apparent that the calculated mode shapes are extremely efficient in
depicting the dynamic response of the system, so a severely truncated set of modal
coordinates can produce results with satisfactory precision.

Two final questions remain to be answered in establishing a recommended
dynamic analysis method:

(1) How should the trial vectors ΨΨΨ
(0)

be selected for use in the subspace iteration
analysis?

(2) How many modal coordinates are needed to avoid significant modal truncation
errors?

For convenience, the modal truncation error is considered first in this section of the
chapter; then the selection of the Ritz displacement patterns used in the vibration
eigenproblem is discussed in the following Section 14-8.

In beginning this examination of the modal truncation error, it must be recalled
that the entire dynamic analysis procedure involves a succession of approximations.
First is the selection of a finite-element mesh that approximates the true strain distribu-
tion only in a virtual work sense, and next is the transformation to Ritz coordinates that
only approximate the displacements of the larger number of finite-element coordinates.

A final transformation then is made expressing the Ritz coordinates in terms of
the undamped vibration mode shapes. If the full set of modal coordinates is used,
this transformation involves no approximation; in other words, a mode-superposition
analysis will give exactly the same results as a step-by-step solution of the coupled
Ritz coordinate equations if all modes are included in the superposition. However,
in view of the approximations accepted in the other coordinate transformations, there
is no need to try to obtain an exact mode-superposition analysis by including all
of the modal coordinates. Undoubtedly significant discrepancies exist between the
individual modal coordinate responses and the corresponding modal contributions to
the response of the real structure, especially in the higher modes; for this reason the
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additional error that may result from truncation of some higher modes need not be a
major concern.

Modal Contributions

In order to evaluate the errors that may result from modal truncation, it is
necessary to consider the independent dynamic response contributions associated with
the individual modes. For any arbitrary mode n, Eq. (12-17) expresses the equation
of motion:

Ÿn(t) + 2ξnωnẎn(t) + ω2
nYn(t) =

Pn(t)

Mn

in which the modal mass and modal load, respectively, are given by Eqs. (12-18):

Mn = φφφT
n mφφφn Pn = φφφT

n p(t)

The load vector p(t) in Eq. (12-18) may be caused by any external loading mechanism,
and in general it may vary with time both in amplitude and in spatial distribution.
However, for the purpose of the present discussion it is assumed that the distribution
does not vary with time so that only the amplitude is time-varying. Thus the load
vector may be expressed as the product of a load distribution vector R and an amplitude
function f(t):

p(t) = R f(t) (14-39)

This type of external loading expression applies to many practical situations,
including earthquake excitation. The effective earthquake loading vector generally is
most conveniently expressed as

peff(t) = m r v̈g(t) (14-40a)

in which m is the structure mass matrix, v̈g(t) is the earthquake acceleration history
applied at the structure’s supports, and r is a displacement transformation vector
that expresses the displacement of each structure degree of freedom due to static
application of a unit support displacement. Equation (14-40a) may be put in the form
of Eq. (14-39) if the seismic input is expressed as a fraction of the acceleration of
gravity, g,

f(t) =
1

g
v̈g(t) (14-40b)

Then the corresponding load distribution vector is given by

R = m r g (14-40c)

Introducing Eq. (14-39), the equation of motion [Eq. (12-17)] becomes for this special
class of loading:

Ÿn(t) + 2ξnωnẎn(t) + ω2
nYn(t) =

φφφT
n R

φφφT
n mφφφn

f(t) (14-41a)
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and for the particular case of earthquake loading, using Eqs. (14-40) it becomes

Ÿn(t) + 2ξnωnYn(t) + ω2
nYn(t) =

φφφT
n mr

φφφT
n mφφφn

v̈g(t) (14-41b)

The dynamic response given by this equation of motion may be calculated in
either the time domain or in the frequency domain, as explained in Section 12-4, using
either form of Eq. (14-41). For a frequency-domain analysis, the damping might be
expressed in complex stiffness form rather than by the modal viscous damping ratio
indicated here, but that distinction is not pertinent to the present discussion. However,
it is important to note that two factors control the relative importance of any mode
in the total dynamic response obtained by use of these equations: (1) the modal
participation factor (MPF) which depends on the interaction of the mode shape with
the spatial distribution of the external load and (2) the dynamic magnification factor
that depends on the ratios of the applied loading harmonic frequencies to the modal
frequency. These two factors are discussed in the following paragraphs.

Modal Participation Factor — The ratios shown on the right side of Eqs. (14-41)
define the modal participation factor as follows:

MPFn =
φφφT

n R
φφφT

n mφφφn
or

φφφT
n mr

φφφT
n mφφφn

(14-42)

where the second expression applies to the case of earthquake loading. The denomina-
tor in these expressions is the modal mass, a constant that depends on the mode shape
and the mass distribution. As was mentioned previously, the mode shape often is
normalized to produce a unit value for this quantity; however, the complete expression
is retained here for generality.

It is apparent from Eq. (14-42) that the amplitude of the response due to any
given mode depends on how the applied load distribution interacts with the mode
shape. For a typical multistory building, subjected to horizontal ground motion, the
earthquake motion transformation vector r is a unit column, so a lumped-mass model
load distribution vector is merely the story mass vector ms. Considering the mass
distribution of a typical building as sketched in Fig. 14-2a, as well as the mode shapes
depicted in Fig. 14-2c, it is evident that the vector product φφφT

n ms will be relatively
large for the first mode because the first-mode shape is all positive. However, for the
second and third modes the product will be much smaller because these mode shapes
include both positive and negative zones. It is for this reason that an earthquake tends
to excite response of a structure mainly in its first mode.

On the other hand, an arbitrary external load distribution that might be applied
to a building could be of any shape, in principle, and thus it might accentuate response
in any of the modes. For example, the first-mode response would be excited only
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FIGURE 14-2
Mass and load distribution and vibration mode shapes for typical building.

φ 3φ 1 φ 2Rms

(a) Story mass vector (b) Load distribution vector (c) Mode shapes

slightly by the load distribution vector R shown in Fig. 14-2b, because it has positive
and negative portions acting on parts of the mode-shape pattern having rather similar
displacements. In contrast, this loading would be very effective in exciting the second-
mode response because the reversal in direction of the loading tends to match the
direction reversal of the mode shape. Considering instead the concentrated load also
shown in Fig. 14-2b, it is evident that this would tend to excite response in the first
and second modes (as well as in most of the other modes that are not shown here);
however it would not excite any third-mode response because this load is applied at a
node in the third-mode shape.

Dynamic Magnification Factor — Because the individual modes respond to
the applied loading independently in a mode superposition analysis, the dynamic
magnification effects of the applied loading can be evaluated for each mode in the
same way as for any single-degree-of-freedom system; thus the modal amplification
may be represented by frequency response curves such as those shown in Fig. 3-3.
To simplify this discussion, only the undamped case is considered here as shown by
the solid line in Fig. 14-3; this depicts the response in terms of the ratio of the modal
elastic resistance Fsn

to the harmonic modal applied force Pn. The abscissa of this
plot is the frequency ratio, βn, that is, the ratio of the excitation frequency ω to the
modal frequency ωn. For values of βn less than one, this curve is identical to the
undamped response curve of Fig. 3-3; for values greater than one the plot shows the
negative of the curve in Fig. 3-3 — the reversal of sign showing that the response
is 180◦ out of phase with the applied load for these larger frequency ratios. For the
static load case (β = 0), the response ratio is unity, indicating that the applied load is
balanced directly by the elastic resistance (Fsn

≡ Pn).
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FIGURE 14-3
Resistance ratio response curves.
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The dashed curve in Fig. 14-3 shows the ratio of the modal inertial resistance
FIn

to the harmonic modal load Pn. This resistance decreases from zero for the static
case to negative infinity at resonance (βn = 1), the negative sign merely indicating that
the inertial resistance acts in the direction opposing the elastic resistance. For input
frequencies greater than the resonance condition, the inertial resistance undergoes a
phase reversal equivalent to that shown for the elastic resistance, and as the excita-
tion frequencies continue to increase, the inertial resistance ratio approaches unity
asymptotically. Study of this response graph reveals that the inertial force ratio and
the elastic force ratio always are of opposite sign, and that they change together with
frequency in such a way that their combined effect is equal to unity for all frequency
ratios thus

Fsn
(β)

Pn
+
FIn

(β)

Pn
= 1 (14-43)

For applied frequencies exceeding the reasonance condition, the signs of both contri-
butions are reversed but they still combine so as to equilibrate the applied load.

For a given harmonic of the input excitation, ω, it is apparent that the frequency
ratio βn tends toward zero as higher modal frequencies, ωn, are considered. Thus, as
shown by Fig. 14-3, for the higher modes of the system the resistance tends toward
purely static behavior and inertial effects are negligible. On the other hand, for the
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lower modes of the system the frequency ratio βn is greater and in the limit the elastic
resistance is negligible; that is, at these higher excitation frequencies the resistance
becomes entirely inertial.

Static Correction Procedure 1

In order to take advantage of the fact that the response of the higher frequency
modes can be calculated by static analysis because their inertial effects are negligible,
the standard mode displacement superposition equation given by Eq. (12-2):

r(t) =

N∑

n=1

φφφn Yn(t)

is divided into two terms, the first being the sum of the lower mode contributions and the
other being the sum of the remaining higher modes for which dynamic amplification
effects may be neglected. Thus Eq. (12-2) becomes

v(t) = vd(t) + vs(t) =

d∑

n=1

φφφnYn(t) +

N∑

n=d+1

φφφnYn(t) (14-44)

in which the subscript “d” identifies the response from those modes that are subject
to dynamic amplification effects while the subscript “s” denotes the response that can
be approximated by static analysis.

The response Yn(t) given by each of the first “d” modes may be calculated
by any standard SDOF dynamic analysis procedure such as the Duhamel integral,
step-by-step integration, or in the case of a simple form of dynamic loading by direct
solution of the differential equation. For each of the remaining N − d modes, the
response Ysn(t) at any time “t” may be obtained by ordinary static analysis, dividing
the modal load Pn(t) by the modal stiffness, thus

Ysn(t) =
Pn(t)

Kn
=
φφφT

n p(t)

φφφT
n kφφφn

(14-45)

Hence the “static” contribution to the displacement due to that mode is given by

vsn(t) = φφφn Ysn(t) =
φφφnφφφ

T
n

Kn
p(t)

and for convenience this is written as

vsn(t) = Fn p(t) (14-46)

1 O. E. Hansteen and K. Bell “On the Accuracy of Mode Superposition Analysis in Structural Dynamics,”
Earthquake Engineering and Structural Dynamics, Vol. 7, No. 5, 1979.
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in which

Fn ≡ φφφnφφφ
T
n

Kn
(14-47)

is the modal flexibility matrix that gives the nth-mode static deflection resulting from
the applied load vector p(t).

Using such a modal flexibility matrix for each of the “static” response modes
and incorporating the load distribution vector from Eq. (14-39) the total static response
could be expressed as

vs(t) =

N∑

n=d+1

Fn R f(t) (14-48)

and the combined “static” plus dynamic response then would be

v(t) =
d∑

n=1

φφφnYn(t) +
N∑

n=d+1

Fn R f(t) (14-49)

In this formulation, although only the first “d” modes are solved dynamically,
it still is necessary to solve for all “N” mode shapes so that the static contribution
from each of the higher modes may be calculated. However, the evaluation of the
higher mode shapes may be avoided by calculating the total static response given by
all modes and then subtracting the static response developed in the first “d” modes.
Therefore, this more convenient form of the static response analysis can be expressed
as

vs(t) = k−1R f(t) −
d∑

n=1

Fn R f(t) (14-50)

in which the first term on the right side constitutes a standard static displacement
analysis (expressed here with the flexibility matrix k−1) and the summation includes
the static response of the first “d” modes calculated with the modal flexibility matrices.

The total response equation including this static correction now is obtained by
substituting Eq. (14-50) in Eq. (14-44) with the following final result:

v(t) =
d∑

n=1

φφφnYn(t) +
[
k−1 −

d∑

n=1

Fn

]
R f(t) (14-51)

in which the first term represents a mode displacement superposition analysis using
“d” modes and the other term is the corresponding static correction for the higher
(N − d) modes. A computer solution using this formulation requires only adding
the correction term, which is given as the product of a constant matrix and the load
amplitude factor f(t), to the standard mode displacement solution for “d” modes.
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From the rationale behind its development, this static correction method may
be expected to be effective in analyses where many higher modes must be included to
account for the spatial distribution of the applied load, but where the time variation
function subjects only a few of the lower-mode responses to significant amplification.
In these circumstances, the dynamic superposition of a few modes together with the
static correction will give results comparable to a standard mode superposition analysis
using many more modes.

Mode Acceleration Method

Although the static correction method was a modern development in structural
dynamics, another method intended to serve the purpose of avoiding certain higher
mode errors had been formulated several decades earlier following a different line of
reasoning.2 This procedure, usually known as the Mode Acceleration Method, may
be derived by making minor changes in the modal coordinate equation of motion,
Eq. (12-14a):

MnŸn(t) + CnẎn(t) + KnYn(t) = Pn(t)

Dividing this by Kn and rearranging gives the following expression for the modal
response:

Yn(t) =
Pn(t)

Kn
− 1

ω2
n

Ÿn(t) − 2ξn
ωn

Ẏn(t) (14-52)

Therefore the total response may be obtained in the usual way by superposition
of these modal responses:

v(t) =

N∑

n=1

φφφnYn(t) =

N∑

n=1

φφφn
Pn(t)

Kn
−

N∑

n=1

φφφn

[
1

ω2
n

Ÿn(t) +
2ξn
ωn

Ẏn(t)

]
(14-53)

However, the first summation on the right hand side of Eq. (14-53) may be written as

N∑

n=1

φφφn
φφφT

n p(t)

Kn
=

N∑

n=1

Fn p(t) ≡ k−1R f(t) (14-54)

where it is apparent that the sum of all the modal flexibilities must be the total
flexibility of the structure k−1. On the other hand, the second summation in Eq. (14-
53) represents the dynamic amplification effects of the applied loading, which have
negligible influence in the response of the higher modes, hence the upper limit of

2 R. E. Cornwell, R. R. Craig, and C. P. Johnston “On the Application of the Mode Acceleration Method
to Structural Dynamics Problems,” Earthquake Engineering and Structural Dynamics, Vol. 11, No. 6,
1983, pp. 679–688.
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this summation may be changed to “d.” On this basis, the final form of the Mode
Acceleration response equation is

v(t) = k−1R f(t) −
d∑

n=1

φφφn

[
1

ω2
n

Ÿn(t) +
2ξn
ωn

Ẏn(t)

]
(14-55)

Now for comparison purposes, the static correction method Eq. (14-51) will be
rewritten as

v(t) = k−1R f(t) +
d∑

n=1

[
φφφnYn(t) − φφφn

φφφT
n

Kn
R f(t)

]

= k−1R f(t) +

d∑

n=1

φφφn

[
Yn(t) − Pn(t)

Kn

]
(14-56)

But Eq. (14-52) shows that the term in brackets can be expressed in terms of the modal
acceleration and modal velocity, with the results

v(t) = k−1R f(t) −
d∑

n=1

φφφn

[
1

ω2
n

Ÿn(t) +
2ξn
ωn

Ẏn(t)

]

which is identical to Eq. (14-55), the Mode Acceleration Method equation. Thus it
makes no difference which of these two procedures is used, but the static correction
method has an advantage in that it provides a more direct indication of the reason for
its superiority over standard mode displacement superposition.

14-8 DERIVED RITZ VECTORS

Preliminary Comments

The introduction of Rayleigh-Ritz coordinates in the dynamic analysis of a
structural system may be viewed as the second stage of a three-stage discretization
procedure in which the finite-element idealization constitutes the first stage and the
transformation to uncoupled modal coordinates is the third stage. The discussion in
Section 14-5 shows that the Ritz coordinates provide a very effective means of reducing
the number of degrees of freedom that must be considered in the analysis of the system
vibration properties. A truncated set of the resulting eigenvectors (undamped mode
shapes) may then be used to obtain the uncoupled set of equations of motion which is
solved in the mode superposition analysis.

The critical step in this analysis sequence is the choice of the Ritz coordinates,
which must be efficient in the sense that a relatively small number of assumed shapes
will yield vibration properties accurate enough for reliable analysis of the dynamic
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response. A very effective set of Ritz vectors, often called Lanczos coordinates,3 may
be derived in a routine way by a procedure that is similar in many respects to the
matrix iteration analysis of the fundamental vibration mode. The basic difference in
the derivation of the Lanczos coordinates is that each step of the iteration sequence
yields one Lanczos shape, whereas the standard matrix iteration procedure gives only
the fundamental mode shape and the iteration serves only to improve the approximation
to the true vibration shape.

The significant advantage that the Ritz vectors derived by the procedure de-
scribed here have over the Lanczos coordinates as originally proposed is that the
initial vector of this coordinate sequence is the deflected shape resulting from static
application of the dynamic load distribution. For this reason, the first vector serves as
a static correction and the subsequent vectors need only account for inertial effects on
the dynamic response.

In this discussion these special Lanczos coordinates will be called derived Ritz
vectors (DRV). The essential operations in the derivation of each vector are: (1)
solution of a set of simultaneous equilibrium equations to determine the deflected
shape resulting from the inertial load associated with the preceding derived vector, (2)
application of the Gram-Schmidt procedure to make this new shape “mass orthogonal”
to the DRV derived in preceding steps, and (3) normalization to give the new vector a
unit generalized mass. (It is apparent that the orthogonalization step is not applicable
to the derivation of the first vector.) Furthermore, it has been shown that the properties
of these shapes are such that when a vector is made orthogonal to the two preceding
shapes it automatically is orthogonal to all preceding shapes to within the accuracy
allowed by roundoff errors. However, in order to avoid accumulation of roundoff
errors, it is necessary to reestablish Gram-Schmidt orthogonality with all preceding
DRV at intervals in the derivation sequence after several new vectors have been made
orthogonal to only the two preceding vectors.

The operations followed in deriving the first and subsequent DRV are detailed
in the following section. It is assumed that the external loading causing the dynamic
response is of the form given by Eq. (14-39), i.e., p(t) = R f(t), where the external
load distribution, R, may have any form and be due to any cause. The preliminary
deflected shape calculated as the first step in the derivation of each vector is denoted
by the symbol qi where the subscript is the number of the derived vector; after
“purification” (i.e., orthogonalizing with respect to the preceding vectors) the vector is
distinguished by a tilde over the symbol; and after normalization the final form of the
derived vector is designated by the standard Ritz vector symbol ψψψi [see Eq. (14-5a)].

3 B. Nour-Omid and R. W. Clough, “Dynamics Analysis of Structures Using Lanczos Coordinates,”
Earthquake Engineering and Structural Dynamics, Vol. 12, 1984, pp. 565–577.
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Derivation Details

First Vector — As was noted above, the first step in the derivation is the solution
of the static equilibrium equations

k q1 = R

to obtain the deflected shape q1 due to application of the applied load distribution R.
In this solution, advantage should be taken of the banded form of the stiffness matrix
k, as discussed in Section 13-6. The normalizing factor β1 is then calculated from the
relationship

β2
1 = qT

1 m q1 (14-57)

which scales the first DRV, given by

ψψψ1 =
1

β1
q1 (14-58)

so that it provides a unit generalized mass; that is,

ψψψT
1 m ψψψ1 = 1

Second Vector — The equivalent calculation for the second vector starts with
solution of the equilibrium equations

k q2 = mψψψ1 (14-59)

to obtain the deflected shape q2 resulting from the inertial load mψψψ1 induced when
the system is vibrating in the first vector shape ψψψ1. Then this shape is purified by the
Gram-Schmidt procedure, making it mass orthogonal to the first vector as follows:

q̃2 = q2 − α1 ψψψ1 (14-60)

where the factor α1 is given by

α1 = ψψψT
1 m q2 (14-61)

Finally this shape is normalized to obtain the second DRV,

ψψψ2 =
1

β2
q̃2

where the normalizing factor, β2, given by

β2 =

√
q̃T

2 m q̃2 (14-62)
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scales the shape so it has the desired unit generalized mass:

ψψψT
2 mψψψ2 = 1

Third Vector — Derivation of the third DRV proceeds in essentially the same
way, starting with calculation of the preliminary shape q3 by solution of the static
equilibrium equations formulated with the inertial load associated with the second
DRV:

k q3 = mψψψ2

In this case, however, the preliminary shape has to be purified by elimination of the
displacement components associated with each of the two preceding vectors, i.e.,

q̃3 = q3 − α2ψψψ2 − β2ψψψ1 (14-63)

in which by analogy with the preceding operations

α2 = ψψψT
2 m q3 (14-64)

β2 = ψψψT
1 m q3 (14-65)

It may be shown by simple algebra that this value of β2 is identical to the normalizing
factor given by Eq. (14-62). Furthermore, by analogy with Eq. (14-62), the normalizing
factor β3 for the third DRV is given by

β3 =

√
q̃T

3 m q̃3 (14-66)

When scaled by this factor, the third DRV

ψψψ3 =
1

β3
q̃3 (14-67)

has the desired unit generalized mass.

Fourth Vector — Continuing similarly, the fourth preliminary shape is made or-
thogonal to the preceding derived vectors by eliminating components of those vectors,
as follows:

q̃4 = q4 − α3 ψψψ3 − β3 ψψψ2 − γ3 ψψψ1 (14-68)

where
q4 = k−1 mψψψ3

α3 = ψψψT
3 m q4

β3 = ψψψT
2 m q4

γ3 = ψψψT
1 m q4
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However, as shown in the previously mentioned reference, the factor γ3 that is obtained
by this procedure is identically equal to zero, so it is necessary only to make the new
vector orthogonal to the two preceding vectors. In addition, by analogy with the
discussion concerning Eq. (14-63) it may be shown that the above defined factor β3 is
identical to the normalizing factor for the third vector, given by Eq. (14-67). Thus it
is now necessary only to evaluate the fourth mode normalizing factor

β4 =

√
q̃T

4 m q̃4

from which the fourth DRV is obtained.

General Vector — The foregoing discussion makes it apparent that any DRV
ψψψi+1 can be evaluated when the two preceding vectors are known, by applying the
following algorithm:

(1) Solve k qi+1 = mψψψi to obtain qi+1.

(2) Orthogonalize with respect to the two preceding vectors:

q̃i+1 = qi+1 − αi ψψψi − βi ψψψi−1 (14-68a)

where

αi =ψψψT
i m qi+1

βi =ψψψT
i−1 m qi+1

=

√
q̃T

i m q̃i (preceding normalizing factor)

(3) Normalize

ψψψi+1 =
1

βi+1
q̃i+1

where
βi+1 =

√
q̃T

i+1 m q̃i+1

in order to obtain the desired unit generalized mass:

ψψψT
i+1 mψψψi+1 = 1

This procedure may be followed to obtain any desired number of DRV, except that
at intervals in the sequence it will be necessary to force orthogonality with respect
to all preceding vectors when the loss of orthogonality due to roundoff is found to
be excessive. A convenient test for the loss of orthogonality is described later in this
section.
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Tridiagonal Equations of Motion

Orthogonality Condition — When the desired number of DRV has been obtained
using the algorithm stated above, they could be used to perform a dynamic analysis in
the same way as any other set of Ritz vectors, as described in Section 14-5. However,
the unique orthogonality properties of these Lanczos vectors make it possible to
organize the equations of motion in a special tridiagonal form that facilitates the
dynamic analysis.

To formulate these special equations, the mass orthogonality conditions for the
DRV are arranged in tridiagonal form after first writing the Gram-Schmidt equation
for each Ritz vector as follows:

q̃1 ≡ β1 ψψψ1 = k−1 R

q̃2 ≡ β2 ψψψ2 = k−1 mψψψ1 − ψψψ1 α1

q̃3 ≡ β3 ψψψ3 = k−1 mψψψ2 − ψψψ2 α2 − ψψψ1 β2

q̃4 ≡ β4 ψψψ4 = k−1 mψψψ3 − ψψψ3 α3 − ψψψ2 β3

q̃5 ≡ β5 ψψψ5 = k−1 mψψψ4 − ψψψ4 α4 − ψψψ3 β4

etc.

(14-69)

where it will be noted again that only the two preceding vector components need be
eliminated in the purification process for any given vector. Omitting the first equation,
the remaining set of equations is rearranged to the following form:

k−1 mψψψ1 − ψψψ1 α1 − ψψψ2 β2 = 0

k−1 mψψψ2 − ψψψ1 β2 − ψψψ2 α2 − ψψψ3 β3 = 0

k−1 mψψψ3 − ψψψ2 β3 − ψψψ3 α3 − ψψψ4 β4 = 0

k−1 mψψψ4 − ψψψ3 β4 − ψψψ4 α4 − ψψψ5 β5 = 0

etc.
which may be expressed in matrix form as

k−1m
[
ψψψ1 ψψψ2 · · · ψψψi−1 ψψψi

]

−
[
ψψψ1 ψψψ2 · · · ψψψi+1 ψψψi

]




α1 β2 0 · · · 0 0

β2 α2 β3 · · · 0 0

0 β3 α3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · αi−1 βi

0 0 0 · · · βi αi




= 0



320 DYNAMICS OF STRUCTURES

Now this equation set is abbreviated as follows:

k−1 m ΨΨΨi = ΨΨΨi Ti (14-70)

in which the set of all “i” DRV is denoted by

ΨΨΨi ≡
[
ψψψ1 ψψψ2 · · · ψψψi−1 ψψψi

]

and the corresponding tridiagonal set of coefficients is designated

Ti =




α1 β2 0 · · · 0 0

β2 α2 β3 · · · 0 0

0 β3 α3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · αi−1 βi

0 0 0 · · · βi αi




(14-71)

Finally multiplying Eq. (14-70) by ΨT
i m to invoke the mass orthogonality condition,

a simple expression is derived for Ti as follows:

ΨΨΨT
i m k−1 m ΨΨΨi = ΨΨΨT

i m ΨΨΨi Ti = I Ti

in which the orthonormal property of the DRV has been noted, which leads to the
following formulation:

Ti = ΨΨΨT
i m k−1 m ΨΨΨi (14-72)

Transformed Equations of Motion — Now in order to take advantage of the
tridiagonal form of the coefficient matrix Ti, the standard finite-element equations of
motion,

m v̈(t) + c v̇(t) + k v(t) = p(t) = R f(t)

are transformed to the DRV coordinates using the transformation

v(t) = ΨΨΨi Zi(t)

which leads to

m ΨΨΨi Z̈i(t) + c ΨΨΨi Żi(t) + k ΨΨΨi Zi(t) = R f(t)

But assuming the damping is of the Rayleigh form, c = a0 m + a1 k, and premulti-
plying by ΨΨΨT

i mk−1, the equation becomes

ΨΨΨT
i mk−1mΨΨΨiZ̈i(t) + a0ΨΨΨ

T
i mk−1mΨΨΨiŻi(t)

+ a1ΨΨΨ
T
i mΨΨΨiŻi(t) + ΨΨΨT

i mΨΨΨiZi(t) = ΨΨΨT
i mk−1R f(t)
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Now using the definition of Ti given by Eq. (14-72) and noting again that ΨΨΨT
i mΨΨΨi = I,

this is reduced to the following simple form:

TiZ̈i(t) +
[
a0Ti + a1I

]
Żi(t) + Zi(t) =





β1

0
0
...





f(t) (14-73)

It is interesting to observe here that only the first Ritz coordinate equation is subjected
directly to the excitation; the orthogonality conditions eliminate any direct excitation
effects in the other coordinates so they are put into motion only by their tridiagonal
coupling to the adjacent Ritz vectors.

Solution of the Transformed Equations — Throughout this discussion of the
DRV it is assumed that the ultimate objective of the formulation is to perform a
dynamic response analysis of a structural system having many degrees of freedom
— several dozens to several hundreds in number. Mode superposition, including
appropriate correction for static effects if necessary, usually provides the most efficient
linear response analyses for such systems; a possible exception to this conclusion may
occur if the structure is subjected only to a very short duration impulsive load as will
be explained later. For the mode superposition analysis, an important question is the
amount of computational effort required to evaluate the modal coordinates used in
the analysis. In the past, the mode shapes typically have been evaluated by subspace
iteration of the eigenproblem associated with the original finite-element coordinates,
but it is evident here that the tridiagonal eigenproblem

Ti Z̈i(t) + Zi(t) = 0 (14-74)

offers a much more efficient solution.

The great advantage given by the DRV coordinates in dynamic response analysis
has been demonstrated by many research studies; in one of these4 it was shown that
subspace iteration analysis of a specified number of mode shapes required about nine
times the computational effort expended in solution of the DRV eigenproblem, Eq. (14-
74). Moreover, it must be recalled that the “mode shapes” obtained from Eq. (14-74)
include a static correction effect as mentioned earlier, so significantly fewer of these
coordinates may be required to express the dynamic response with a given degree of
precision than if the true vibration mode shapes obtained by subspace iteration were
used.

Another potential advantage of the DRV formulation is that the tridiagonal equa-
tions of motion, Eq. (14-73), can be solved directly by step-by-step procedures using

4 P. Leger, “Numerical Techniques for the Dynamic Analysis of Large Structural Systems,” Ph.D. Disser-
tation, University of California, Berkeley, March 1986.
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only about 40 percent more computational effort per time step compared with solution
of the uncoupled SDOF equations. Thus the cost of the tridiagonal eigenproblem
solution [Eq. (14-74)] will not be justified if the response is to be determined for only
a very short duration impulsive load. On the other hand, the time savings resulting
from a mode superposition analysis of the uncoupled equations for a system subjected
to a long duration load such as an earthquake will easily compensate for the cost of
the eigenproblem solution. In this regard it should be noted that the mode shapes and
frequencies obtained by solving the DRV eigenproblem are only approximations of
the true values if they are obtained from a truncated set of Ritz vectors. However,
these shapes are sufficiently accurate to aid in understanding the dynamic response
behavior of the structure and they are significantly more efficient in calculating the
dynamic response, as was mentioned before.

Loss of Orthogonality

The fact that roundoff errors gradually will lead to loss of orthogonality if each
new DRV is made orthogonal to only the two preceding vectors (as in the above-
described algorithm) has been stated previously. To guard against this eventuality, an
orthogonality test vector denoted as

Wi =
[
W1 W2 W3 · · · Wi−1 Wi

]

should be calculated as soon as DRV ψψψi+1 is derived. This test vector may be
expressed by

Wi = ψψψi+1 m ΨΨΨi (14-75)

where ΨΨΨi was defined earlier as the set of DRV including ψψψi. However, the test vector
is evaluated most conveniently in a step-by-step sequence as follows:

Wi =
1

βi

[
Wi−1 − αi−1 Wi−2 − βi−1 Wi−2

]
(14-76)

in which the initiating scalars required to calculate W2 areW0 = 0 andW1 = ψψψT
2 mψψψ1;

the coefficients αi−1, βi−1, etc., are the same as those included in Eq. (14-71).

From Eq. (14-75) it is apparent that the elements of Wi are coefficients that
express the mass coupling between the new DRV ψψψi+1 and each preceding derived
vector. Of course, the values of Wi and Wi−1 are forced to be zero by the Gram-
Schmidt procedure used in the DRV algorithm, but the values of Wi−2, Wi−3, etc.,
demonstrate the extent to which the new vector fails to achieve orthogonality with
the preceding vectors. When any element of Wi is found to be excessive, the Gram-
Schmidt procedure should be applied to makeψψψi+1 orthogonal to all preceding vectors.
Then the simple algorithm involving only two-term orthogonality can be continued
until a new test vector Wi again indicates the need for full orthogonalization. In a test
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case involving 100 degrees of freedom, it was found that full orthogonalization was
required for about every fifth derived vector.

Required Number of Vectors

Because the first DRV is the static displacement shape caused by the applied
load distribution R, the function of the subsequent DRV used in the response analysis
is to represent the dynamic effect of this loading. The contribution to R associated
with vector “i” is indicated by the Ritz participation factor, RPFi; this is entirely
analogous to the modal participation factor given by Eq. (14-42) which represents the
load contribution of mode “n” when the response is expressed in modal coordinates.
Thus by analogy with Eq. (14-42), the Ritz participation factor for vector ψψψi is given
by

RPFi =
ψψψT

i R
ψψψT

i mψψψi
= ψψψT

i R (14-77)

where advantage is taken of the fact that the DRV algorithm has normalized the
generalized mass in the denominator to unity.

From Eq. (14-75) it is evident that a vector listing all participation factors up to
and including that associated with DRV ψψψi could be obtained by forming the matrix
productψψψT

i R; then these sucessive values could be judged as a basis for termination of
the DRV algorithm. However, rather than using this matrix multiplication to calculate
the participation factors, it is preferable to calculate each factor successively as the
final step of the derivation algorithm. A convenient formula to serve this purpose may
be derived by multiplying Eq. (14-68a) by RT , leading to

RT q̃i+1 = RT qi+1 − αi RT ψψψi − βi RT ψψψi−1

Then noting that qi+1 = k−1mψψψi, that RT k−1 = ψψψT
1 β1, and that RT Ψi+1 = RPFi+1,

etc., this may be reduced to

RPFi+1 = −
[
αi RPFi + βi RPFi−1

βi+1

]
(14-78)

Adding this simple scalar calculation at the end of the DRV algorithm provides a basis
for termination of the derivation when RPFi+1 drops below a specified value.

PROBLEMS

14-1. The four-story shear frame of Fig. P14-1 has the same mass m lumped in
each rigid girder and the same story-to-story stiffness k in the columns of each
story. Using the indicated linear and quadratic shape functions; ψ1 and ψ2, as
generalized coordinates, obtain the approximate shapes and the frequencies of
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the first two modes of vibration by the Rayleigh-Ritz method, Eqs. (14-21) and
(14-22).

FIGURE P14-1
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14-2. Repeat Prob. 14-1 usign the “improved” expressions of Eq. (14-28) to define the
generalized coordinate mass and stiffness properties.
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15
ANALYSIS
OF MDOF

DYNAMIC
RESPONSE:

STEP-BY-STEP
METHODS

15-1 Preliminary Comments

In the presentation of SDOF dynamic analysis procedures in Part I of this text,
two classes of approach were considered: those making use of superposition which
consequently are limited to the analysis of linear system and step-by-step methods
which may be applied to either linear or nonlinear systems. In the treatment of MDOF
dynamic analysis given in Chapter 12, the principle of superposition was employed
so all of that discussion concerns only linear systems, but two different categories
of superposition were utilized in those analyses. One involves superposition with
regard to time, employing either convolution or Fourier integrals as was explained
in the SDOF discussion. The other category is spatial superposition, in which the
MDOF response is represented as the combination of a set of independent SDOF
modal coordinate responses. The great advantage of this spatial or modal coordinate
superposition, as was explained in Chapter 12, is that an adequate approximation of
the dynamic response often can be obtained from only a few modes of vibration or
derived Ritz vectors even when the system may have dozens or even hundreds of
degrees of freedom.

Both of these types of superposition require that the system remain linear during
the response; any nonlinearity indicated by a change in the coefficients of the structure
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property matrices would invalidate the analytical results. However, in many practical
situations the coefficients cannot be assumed to remain constant; for example, the
stiffness influence coefficients may be altered by yielding of the structural materials
— a very likely situation during response to a severe earthquake. Other possibilities
are that changes in the member axial forces may cause appreciable changes in their
geometric stiffness and that the mass or damping coefficients will undergo changes
during the dynamic response; each of those mechanisms may have an important
effect on the uncoupling of the modal coordinate equations of motion. In addition it
must be recalled that although linearity is a necessary condition for modal coordinate
uncoupling, this result will be achieved only if the system is proportionally damped;
for any other type of damping the modal coordinate equations of motion will be
coupled by modal damping coefficients.

The only generally applicable procedure for analysis of an arbitrary set of
nonlinear response equations, and also an effective means of dealing with coupled
linear modal equations, is by numerical step-by-step integration. The analysis can be
carried out as the exact MDOF equivalent of the SDOF step-by-step analyses described
in Chapter 7. The response history is divided into a sequence of short, equal time
steps, and during each step the response is calculated for a linear system having the
physical properties existing at the beginning of the interval. At the end of the interval,
the properties are modified to conform to the state of deformation and stress at that
time for use during the subsequent time step. Thus the nonlinear MDOF analysis
is approximated as a sequence of MDOF analyses of successively changing linear
systems.

When step-by-step integration is applied to linear structures, the computation
is greatly simplified because the structural properties need not be modified at each
step. In some cases it may be advantageous to use direct integration rather than
mode superposition in order to avoid the great computational effort required for the
eigenproblem solution of a system with very many degrees of freedom. This possibility
was discussed briefly in Chapter 14 with regard to the tridiagonal equations of motion
obtained from the derived Ritz vector transformation.

One potential difficulty in the step-by-step response integration of MDOF sys-
tems is that the damping matrix c must be defined explicitly rather than in terms of
modal damping ratios. It is very difficult to estimate the magnitudes of the damping
influence coefficients of a complete damping matrix. In general, the most effective
means for deriving a suitable damping matrix is to assume appropriate values of modal
damping ratios for all the modes which are considered to be important and then to
compute an orthogonal damping matrix which has those properties, as described in
Chapter 12.

On the other hand, the fact that the damping matrix is defined explicitly rather
than by modal damping ratios may be advantageous in that it increases the generality of
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the step-by-step method over mode superposition. There is no need for uncoupling the
modal response; therefore the damping matrix need not be selected to satisfy modal
orthogonality conditions. Any desired set of damping-matrix coefficients can be
employed in the analysis, and they may represent entirely different levels of damping
in different parts of the structure, as explained in Chapter 12. The modal coordinate
transformation still may be used to reduce the number of coordinates used in the
analysis, followed by step-by-step solution of the resulting coupled modal equations.

Finally, it is worth noting that the transformation to normal coordinates may
be useful even in the analysis of nonlinear systems. Of course, the undamped free-
vibration mode shapes will serve to uncouple the equations of motion only so long as
the stiffness matrix remains unchanged from the state for which the vibration analysis
was made. As soon as the stiffness changes, due to yielding or other damage, the
normal-coordinate transformation will introduce off-diagonal terms in the generalized
stiffness matrix which cause coupling of the modal response equations. However, if
the nonlinear deformation mechanisms in the structure do not cause major changes
in its deflection patterns, the dynamic response still may be expressed efficiently in
terms of the original undamped mode shapes. Thus it often will be worthwhile to
evaluate the response of a complex structure by direct step-by-step integration of a
limited set of normal-coordinate equations of motion, even though the equations will
become coupled as soon as any significant nonlinearity develops in the response. This
treatment of a system with stiffness coupling of the normal-coordinate equations is
equivalent to the approach suggested above for the analysis of systems in which the
damping matrix is such as to introduce normal-coordinate coupling.

15-2 Incremental Equations of Motion

In the step-by-step analysis of MDOF systems it is convenient to use an in-
cremental formulation equivalent to that described for SDOF systems in Section 7-6
because the procedure then is equally applicable to either linear or nonlinear analyses.
Thus taking the difference between vector equilibrium relationships defined for times
t0 and t1 = t0 + h gives the incremental equilibrium equation

4fI + 4fD + 4fS = 4p (15-1)

The force vector increments in this equation, by analogy with the SDOF expressions
[Eqs. (7-20) and (7-21)], can be written as follows:

4fI = fI1
− fI0

= m 4v̈

4fD = fD1
− fD0

= c0 4v̇

4fS = fS1
− fS0

= k0 4v

4p = p1 − p0

(15-2)
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where it has been assumed that the mass does not change with time.

The elements of the incremental damping and stiffness matrices c0 and k0 are
influence coefficients cij0 and kij0 defined for the time increment; typical representa-
tions of these coefficients are shown in Fig. 15-1. As was explained with regard to the
SDOF coefficients, it is convenient to use the initial tangent rather than the average
slope as a measure of the damping or stiffness property in order to avoid the need for
iteration at each step of the solution. Hence the influence coefficients are given by

cij0 =

(
d fDi

d v̇j

)

0

kij0 =

(
d fSi

d vj

)

0

(15-3)

for the time increment h starting at time t0. When Eqs. (15-2) are substituted into
Eq. (15-2), the incremental equation of motion becomes

m 4v̈ + c0 4v̇ + k0 4v = 4p (15-4)

The incremental force expressions on the left side of Eq. (15-4) are only approxima-
tions because of the use of initial tangent values for c0 and k0. However, accumulation
of errors due to this factor will be avoided if the acceleration at the beginning of each
time step is calculated from the total equilibrium of forces at that time, as was men-
tioned in discussing the SDOF case.

15-3 Step-by-Step Integration: Constant Average Acceleration
Method

The step-by-step solution of the incremental equations of motion [Eq. (15-4)]
is formulated by specifying a simple relationship among the displacement, velocity,
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and acceleration which is assumed to be valid for the short time step h. On this basis,
the incremental changes of velocity and displacement can be expressed in terms of
the changes in acceleration, or the changes in velocity and acceleration, alternatively,
can be expressed in terms of the incremental displacements. In either case, only one
unknown vector remains in the incremental equilibrium equations [Eq. (15-4)], and
this may be evaluated by any standard procedure for solving simultaneous equations.

As described in Chapter 7, the relationship among displacement, velocity, and
acceleration can be established conveniently by assuming the manner of variation of
the acceleration vector with time. For the analysis of general MDOF systems, the
constant average acceleration assumption has the very important advantage that it
provides an unconditionally stable integration procedure. Any method that is only
conditionally stable may require use of extremely short time steps to avoid instability
in the higher mode responses, and such instability will cause the analysis to “blow
up” even if the unstable modes make no significant contribution to the actual dynamic
response behavior.

The constant average acceleration assumption leads to a linear variation of the
velocity vector and a quadratic variation of the displacement vector, as was described
for the SDOF case, and the explicit MDOF incremental analysis procedure may be
derived by complete analogy to the SDOF formulation presented in Chapter 7. The
final results of the derivation are analgous to the expressions given by Eq. (7-24) for the
linear acceleration assumption. In this case the incremental pseudostatic equilibrium
equation will be stated as

k̃c 4v = 4p̃c (15-5)

where the subscript c denotes the constant average acceleration assumption. The
effective stiffness matrix in this case is given by

k̃c = k0 +
2

h
c0 +

4

h2
m (15-6a)

while the incremental effective load vector is as follows:

4p̃c = 4p + 2 c0 v̇0 + m
[ 4

h
v̇0 + 2 v̈0

]
(15-6b)

The step-by-step analysis is carried out using Eq. (15-5) by first evaluating k̃c

from the mass, damping, and stiffness properties determined from the conditions at the
beginning of the time step and also evaluating 4p̃c from the damping property as well
as the velocity and acceleration vectors at the beginning of the time step combined with
the load increment specified for the step. Then the simultaneous equations [Eq. (15 -
5)] are solved for the displacement increment 4v, usually using Gauss or Choleski
decomposition; it should be noted that the changing values of k0 and c0 in a nonlinear
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analysis require that the decomposition be performed for each time step, and this is a
major computational effort for a system with very many degrees of freedom.

When the displacement increment has been calculated, the velocity increment
is given by the following expression, which is analogous to Eq. (7-24c) but is based
on the constant average acceleration assumption

4v̇ =
2

h
4v − 2 v̇0 (15-7)

Thus using the incremental Eqs. (15-5), (15-6), and (15-7) the analysis may be carried
out for any MDOF system for which the varying properties k0 and c0 can be defined
for each step. The response vectors calculated for time t1 = t0 + h at the end of one
step serve as the initial vectors for the next step. However, to avoid accumulation of
errors, as noted before, the initial acceleration vector is calculated directly from the
condition of equilibrium at the beginning of the step; thus,

v̈0 = m−1
[
p0 − fD0

− fS0

]
(15-8)

where fD0
and fS0

depend on the velocity and displacement vectors at the beginning
of the step. Because the inverse of the mass matrix, m−1, is used at each step of the
analysis, it should be calculated at the beginning and stored by the computer program.

15-4 Step-by-Step Integration: Linear Acceleration Method

The constant average acceleration method described in the preceding section
is a convenient and relatively efficient procedure for nonlinear structural analysis;
however, as was mentioned in Part I, comparative numerical tests have demonstrated
that the linear acceleration method gives better results using any specified step length
that does not approach the integration stability limit. In certain types of structures,
notably multistory buildings that are modelled with one degree of freedom per story
for planar response or with three degrees of freedom for general three-dimensional
response, there is little difficulty in adopting a time step that ensures stability in the
response of even the highest modes. In such situations, the linear acceleration version
of the above-described procedure is recommended, replacing Eqs. (15-5), (15-6a, b),
and (15-7) by their linear acceleration equivalents as follows:

k̃d 4v = 4p̃d (15-9)

k̃d = k0 +
3

h
c0 +

6

h2
m (15-10a)

4p̃d = 4p + c0

[
3v̇0 +

h

2
v̈0

]
+ m

[ 6

h
v̇0 + 3v̈0

]
(15-10b)

4v̇ =
3

h
4v − 3v̇0 −

h

2
v̈0 (15-11)
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In order to avoid instability in the response calculated by these equations the length of
the time step must be limited by the condition

h ≤ 1

1.8
TN (15-12)

where TN is the vibration period of the highest mode (i.e., the shortest period) asso-
ciated with the system eigenproblem.

For a more general type of structure that is modelled by finite elements, the
period of the highest mode is related to the properties of the individual elements,
with the result that Eq. (15-12) may require the use of an extremely short time
step in the response analyses. In such cases the analysis of response to an actual
earthquake loading or even a relatively short duration impulsive load may involve
a prohibitive computational effort, making it necessary to adopt an unconditionally
stable integration procedure instead of the linear acceleration algorithm. Of course
the constant acceleration method could be used, but a preferable alternative may be
an unconditionally stable modification of the linear acceleration method called the
Wilson θ-method.1

This modification is based on the assumption that the acceleration varies linearly
over an extended computation interval τ = θ h. The parameters associated with this
assumption are depicted in Fig. 15-2. The acceleration increment 4̂v̈ is calculated by
the standard linear acceleration procedure applied to the extended time step τ ; from
this the increment 4v̈ for the normal time step h is obtained by interpolation. For a
value of θ = 1, the procedure reverts to the standard linear acceleration method, but
for θ > 1.37 it becomes unconditionally stable.

The analysis procedure can be derived merely by rewriting the basic relationships
of the linear acceleration method for the extended time step τ . Thus, by analogy with

1 E. L. Wilson at the University of California, Berkeley.
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Eqs. (a) and (b) of Fig. 7-6b

4̂v̇ = v̈0 τ + 4̂v̈
τ

2
(15-13a)

4̂v = v̇0 τ + v̈0
τ2

2
+ 4̂v̈

τ2

6
(15-13b)

in which the “ˆ” symbol denotes an increment associated with the extended time step.
Solving these to express 4̂v̈ and 4̂v̇ in terms of 4̂v and substituting into the equation
of motion lead to expressions equivalent to Eqs. (15-9) and (15-10) but written for the
extended time step:

k̂ 4̂v = 4̂p (15-14)

where

k̂ = k0 +
3

τ
c0 +

6

τ2
m (15-15a)

4̂p = 4p + c0

[
3v̇0 +

τ

2
v̈0

]
+ m

[6

τ
v̇0 + 3v̈0

]
(15-15b)

Finally the pseudostatic relationship Eq. (15-14) can be solved for 4̂v and substituted
into the following equation [obtained by solving Eq. (15-13b)]:

4̂v̈ = 4̂v
6

τ2
− v̇0

6

τ
− 3 v̈0 (15-16)

to obtain the increment of acceleration during the extended time step. From this, the
acceleration increment for the normal time step h is obtained by linear interpolation:

4v̈ =
1

Θ
4̂v̈ (15-17)

and then the corresponding incremental velocity and displacement vectors are obtained
from expressions like Eqs. (15-13) but written for the normal time step h. Using these
results, the time stepping analysis proceeds exactly as was described above for the
constant average acceleration method.

15-5 Strategies for Analysis of Coupled MDOF Systems

Localized Nonlinearity2

The major advantage of the step-by-step methods, that they permit direct analysis
of the coupled equations of motion resulting from the finite-element idealization, was

2 R. W. Clough and E. L. Wilson “Dynamic Analysis of Large Structural Systems with Localized Nonlinear-
ities,” Computer Methods in Applied Mechanics and Engineering, North Holland Publ. Co., Vol. 17/18,
1979, pp. 107–129.
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pointed out in the preceding sections of this chapter. With such direct analysis there
is no need to reduce the system to a set of SDOF equations before calculating the
dynamic response, even if the equations are linear so that the eigenproblem analysis
is applicable. However, although the direct solution avoids the potentially very large
cost of the modal coordinate evaluation, the step-by-step analysis that is used as
an alternative often requires even greater computational effort; consequently this
approach should be adopted only after the number of degrees of freedom treated in
the analysis has been reduced to a minimum.

Coordinate reduction procedures can be especially effective if the structural
forces for most of the system degrees of freedom are linearly related to the displace-
ments, and the nonlinear response is associated with relatively few degrees of freedom.
Many examples of systems having such localized nonlinearity may be recognized in
practice, including elastic structures mounted on yielding supports, as well as bridge
piers or tall liquid storage tanks that are not anchored to their foundations and thus
may be expected to tip or uplift during strong earthquake excitation. An important
feature of such systems is that the locations where nonlinear displacements may occur
are known in advance. This situation makes it convenient to eliminate the purely linear
response degrees of freedom by static condensation before performing the dynamic
analysis; to implement this reduction scheme, the structure usually is idealized as an
assemblage of substructures. For the simple case described here it will be assumed
that there are only two substructures: a nonlinear zone which includes all parts of the
structure that may exhibit any nonlinear behavior and a second zone which accounts
for the remainder of the system and is completely linear in its dynamic response.

Such a two-component idealization of a structural system is depicted concep-
tually in Fig. 15-3. The degrees of freedom associated with the linear substructure,
denoted v0, include only nodes within the linear elastic region and exclude any nodes
at the substructure boundary. The nonlinear substructure degrees of freedom, desig-
nated vi, include all degrees of freedom that serve to interconnect the boundaries of

FIGURE 15-3
Definition of degrees of freedom for localized nonlinearity.

Linear substructure: v0

(No interconnection degrees of freedom)

Nonlinear substructure: vi

(Including all interconnection
degrees of freedom)
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the two substructures, as well as all degrees of freedom in the interior of the nonlinear
substructure. The coordinate reduction performed for this idealization eliminates the
internal elastic degrees of freedom; clearly the reduction is most effective if the num-
ber of linear degrees of freedom, v0, greatly exceeds the number of retained degrees
of freedom, vi.

The coordinate reduction procedure applied here is derived from the equations
of motion expressed as the incremental pseudostatic equilibrium relationship, either
Eq. (15-5) or (15-9) depending on the type of integration to be employed. For present
purposes, either equation will be expressed as

k̃ 4v = 4p̃ (15-18)

in which the effective stiffness and incremental load matrices are given by either
Eq. (15-6) or (15-10). To formulate the static condensation expressions, the incremen-
tal displacements are partitioned into linear and nonlinear sets, 4v0 and 4vi, and the
pseudostatic equilibrium relation [Eq. (15-18)] is partitioned correspondingly thus

[
k̃00 k̃0i

k̃i0 k̃ii

] [
4v0
4vi

]
=

[
4̃p0

4̃pi

]
(15-19)

The static constraint relation then is obtained by solving the first of these submatrix
equations for 4v0, that is,

4v0 = k̃
−1

00

[
4̃p0 − k̃0i 4vi

]
(15-20a)

Introducing this in the second submatrix equation leads to

k̃i0 k̃
−1

00

[
4̃p0 − k̃0i 4vi

]
+ k̃ii 4vi = 4̃pi (15-20b)

which may be simplified to provide the reduced pseudostatic equation of equilibrium

˜̃ki 4vi = 4˜̃pi (15-21)

in which the reduced pseudostatic stiffness is

˜̃ki = k̃ii − k̃i0k̃
−1

00 k̃0i (15-21a)

and the reduced pseudo load increment is

4˜̃pi = 4p̃i − k̃i0k̃
−1

00 4p̃0 (15-21b)

It is worth noting here that full advantage may be taken of the fact that the nonlinearity
is localized when calculating the changing stiffness properties during the incremental
analysis; specifically, the stiffness coefficients of the linear substructure are constants.
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This static condensation reduction of coordinates may be looked upon as a
specialized Rayleigh-Ritz coordinate transformation as was explained in Chapter 14
(Section 14-5). Thus by analogy with Eq. (14-14) the reduction transformation may
be written

4v =

[4v0
4vi

]
= Ts 4vi (15-22a)

where

Ts ≡
[
−k−1

00 k0i

I

]
(15-22b)

and it is easily demonstrated that the reduced pseudostatic stiffness and reduced
incremental pseudo load expressions shown above in Eq. (15-21) may be obtained by
applying the standard coordinate transformation to Eq. (15-18) leading to

˜̃ki = TT
s k̃ Ts (15-23a)

4˜̃pi = TT
s 4̃p (15-23b)

However, it must be realized that the assumed Ritz shapes given by the static con-
densation procedure [matrix Ts] are not very effective in structural dynamics analysis
because they do not account for any inertial effects in the dynamic response. Better
results will be obtained if the coordinate transformation matrix Ts is supplemented
by some shapes which represent such inertial forces, and a convenient approach is
to express the internal displacements by a few derived Ritz vectors. These may be
calculated by the procedure of Section 14-8 for the linear substructure with all of its
boundary degrees of freedom restrained. Expressing the displacements given by a
chosen number “n” of these vectors as

4v0 = ΨΨΨn 4Zn (15-24a)

the expanded coordinate transformation may be written

4v =

[
4v0
4vi

]
= TSZ 4viZ (15-24b)

where

TSZ ≡
[

ΨΨΨn [−k̃
−1

00 k̃0i]

0 I

]
(15-24c)

and

4viZ ≡
[
4Zn

4vi

]
(15-24d)

It is evident here that the inclusion of the derived Ritz vector coordinates in-
creases the number of degrees of freedom to be considered in the dynamic response
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analysis. However, the pseudostatic equilibrium equation derived with this transfor-
mation

˜̃kiZ viZ = 4˜̃piZ (15-25)

in which
˜̃kiZ ≡ TT

SZ k̃ TSZ (15-25a)

and
˜̃piZ ≡ TT

SZ 4p̃ (15-25b)

generally provides a great improvement in the step-by-step analysis results compared
with those obtained from Eqs. (15-21), even if no more than two or three derived Ritz
vectors are included in the supplemental degrees of freedom expressed by Eq. (15-24a).

Coupled Effects Treated as Pseudo-Forces

A different strategy for dealing with coupling of the modal response coordinates
may be applied in cases where the coupling terms do not dominate the dynamic
behavior. In this approach, the property coefficients that contribute to the coordinate
coupling are transferred to the right hand side of the equation of motion, and they
then serve to define a system of pseudo-forces acting on the structure. The objective
in transforming these coefficients is to leave on the left side of the equation a set
of property matrices that may be used in a standard mode superposition analysis,
thus making it possible to exploit the modal uncoupling and coordinate truncation
advantages of that approach.

Thus the eigenproblem associated with the mass and stiffness matrices remaining
on the left side is solved, and the resulting mode shapes are used to transform the
equations of motion resulting from the coefficient transfer into a set of uncoupled
modal equations. Of course this imposes the condition that only a damping matrix
of proportional form and constant stiffness and mass matrices may be retained on the
left side. Consequently any nonproportional part of the damping matrix as well as
any stiffness or mass changes associated with nonlinear behavior must be transferred
to the right hand side. The principal disadvantage of this procedure for eliminating
modal coordinate coupling is that the pseudo-force terms which have been transferred
to the right side are functions of the response quantities thus the response solution may
be obtained only by iteration. However, if the pseudo-force terms are relatively small,
they will have only a secondary effect on the response, and a satisfactory equilibrium
state generally can be achieved with only a few iterations.

It is convenient here to describe this pseudo-force procedure separately for cases
where the modal coordinate coupling results from changes of stiffness (nonlinearity)
and nonproportional damping; other situations might be handled similarly but will
not be included in this discussion. In these analyses that involve “right-hand-siding,”
it is desirable to perform the dynamic response analysis by the piece-wise exact
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method, to avoid introducing errors except in the iterative solution; then the errors
may be controlled by adopting an appropriate tolerance limit in the iteration cycles.
Accordingly, the time step used in the analysis is selected to provide a reasonable
approximation of the applied load history by a sequence of linearly varying load
segments. The analysis for each step involves a standard linear evaluation of the
displacements in each mode resulting from the linearly varying applied loads and
pseudo-forces, followed by iteration until the modal forces on the left and right sides
of the equations are balanced to within the specified tolerance.

Changes of Stiffness — The analysis of a system with nonlinear structural re-
sistance may be formulated by expressing the changes of stiffness as deviations from
the original linear elastic stiffness, i.e., from the stiffness matrix that was used in the
eigenproblem solution for the mode shapes. These shapes do not change, so the anal-
ysis accounts for all of the nonlinearity effects in terms of pseudo-forces. The concept
is depicted in a qualitative sense in Fig. 15-4 which shows the force-displacement
relation for a single degree of freedom. Similar relationships might be assumed for
each of the structure’s stiffness coefficients; however, subscripts that might identify the
force and displacement components (as shown in Fig. 15-1, for example) are omitted
here to avoid confusion with the subscripts that identify various constituents of the
response, such as “o” and “n” for linear and nonlinear, respectively.

In Fig. 15-4, the linear elastic stiffness is represented by the initial tangent slope,
k0, while the nonlinear stiffness associated with the displacement v is indicated by
the average slope, kn. Using this notation, the nonlinear structural resistance in this
degree of freedom may be expressed as

fsn(t) = kn v(t) (15-26)

However, to use the pseudo-force procedure, it is necessary to express this force in
terms of the change from the linear elastic force, thus it is given as

fsn = fse − fsd

FIGURE 15-4
Definitions of stiffnesses and 
structural forces.

fs

k0

kn

kd

v

v

fs n = kn v

fs d = kd v

fs e = k0 v
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where fse and fsd are derived from the linear elastic stiffness and the change from that
stiffness, respectively (i.e., fse = k0 v and fsd = kd v), so that the nonlinear structural
resistance is given by

fsn(t) = (k0 − kd) v(t) (15-27)

in preference to the expression of Eq. (15-26).

Extending this concept to a system with multiple degrees of freedom, the non-
linear structural resistance vector is given by the equivalent matrix expression

fsn(t) =
[
k0 − kd

]
v(t) (15-28)

and using this expression the nonlinear equations of motion may be stated as

m v̈(t) + c v̇(t) +
[
k0 − kd

]
v(t) = p(t)

However if the nonlinear change of resistance is transferred to the right hand side, the
equation of motion becomes

m v̈(t) + c v̇(t) + k0 v(t) = p(t) + kd v(t) (15-29)

where the left hand side is the standard linear response expression and the nonlinear
change of resistance acts as a pseudo-force on the right side. The change of stiffness
matrix kd typically is a function of the displacements v. In practice it usually is
evaluated from the stress-strain relationships specified for the materials incorporated
in the structure, making use of the strain-displacement transformations developed in
the formulation of the finite-element model.

It would be possible to use Eq. (15-29) in a direct nonlinear step-by-step analysis
of the response; however, it is more efficient to transform the equations first to a
truncated set of modal coordinates in order to reduce the number of quantities that must
be evaluated by iteration. Thus, using the standard modal coordinate transformation,
v(t) = ΦY(t), Eq. (15-29), becomes a set of modal equations:

M Ÿ(t) + C Ẏ(t) + K Y(t) = P(t) + Fsd(t) (15-30)

These equations are uncoupled on the left hand side if the system is proportionally
damped. Furthermore, if the modal coordinates are normalized in the usual way, M
becomes an identity matrix, C is a diagonal array of terms 2ξnωn, and K is a diagonal
array of the squared modal frequencies. The force vectors on the right hand side of
Eq. (15-30) include the usual modal forces, Pn(t) = φφφT

n p(t), and the corresponding
modal pseudo-forces:

Fsdn
(t) = φφφT

n kd φφφY(t) (15-31)

The mode shapes Φ contained in this expression were derived using the original elastic
stiffness matrix, k0, so they are not orthogonal with respect to the change of stiffness
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matrix, kd. Consequently, the modal change of stiffness matrix, Kd = ΦT kd Φ,
contains modal coupling coefficients Kdnp

= φφφT
n kd φφφp, and the modal pseudo-forces

therefore may be functions of all the modal displacements; thus

Fsdn(t) =

m∑

p=1

Kdnp
Yp(t) (15-32)

Introducing all of the above-named quantities in Eq. (15-30) the equation of
motion for each mode finally takes the form

Ÿn(t) + 2ξnωnẎn(t) + ω2
nYn(t) = φφφT

n p(t) +

m∑

p=1

Kdnp
Yp(t) (15-33)

in which iteration must be used to obtain balance between the two sides of the equation.
The equilibrium expression for any time step for any mode “n” during the “k” cycle
of iteration may be stated as

Ÿ (k)
n + 2ξnωnẎ

(k)
n + ω2

nY
(k)
n = φφφT

n p +

m∑

p=1

Kdnp
Y (k−1)

p (15-34)

in which the functional relationship to time has not been shown to avoid confusion
with the iteration cycle indicator “k.”

During each iteration cycle, the equation is integrated by the piecewise exact
method to determine the modal displacement and velocity at the end of the time step.
For this purpose, it is necessary that the modal applied loading, Pn(t), as well as the
modal pseudo-force Fsdn

(t) be expressed as a linear variation during the time step, as
described in Section 7-2; of course, this implies that the modal displacements Yn(t)

are assumed to vary linearly during the time step. The iteration for each time step
is terminated when the force balance indicated by Eq. (15-33) has converged to the
desired tolerance level.

Nonproportional Damping3 — The pseudo-force concept can be applied in a
very similar way to account for modal coupling effects in the analysis of systems with
nonproportional damping. In this case, the essential step is to separate the damping
matrix into a proportional component that is uncoupled by the modal coordinate
transformation, plus a nonproportional component that is transferred to the right hand
side of the equations of motion where its effects are represented as pseudo-forces.

3 A. Ibrahimbegovic and E. L. Wilson, “Simple Numerical Algorithm for the Mode Superposition Analysis
of Linear Structural Systems with Nonproportional Damping,” Computers and Structures, Vol. 33, 1989,
pp. 523–533.
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For the purpose of this discussion, it will be assumed that an appropriate non-
proportional viscous damping matrix C has been constructed to represent the system’s
actual damping mechanism, by the method described in Section 12-5 or otherwise.
Applying the modal coordinate transformation to this damping matrix then leads to a
modal damping matrix, C = ΦT cΦ, in which the diagonal elements

Cnn ≡ φφφT
n cφφφn ≡ 2ξnωn

represent the proportional damping contribution, while the off-diagonal elements

Cnp ≡ φφφT
n cφφφp (= 0, n = p)

represent the nonproportional damping effects. These off-diagonal coefficients express
the damping coupling between the modes and are treated as pseudo-forces applied on
the right side of the equation of motion. It must be noted that the diagonal modal
damping coefficients, Cnn, make no contribution to these pseudo-forces.

By analogy with the development of Eq. (15-33), it is evident that the modal
equation of motion for the case of nonproportional damping may be expressed as
follows:

Ÿn(t) + 2ξnωnẎn(t) + ω2
nYn(t) = φφφT

n p(t) +

m∑

p=1

CnpẎp(t) (15-35)

in which it is noted that Cnn = 0. Following the procedure described above for the
analysis of nonlinear response, this equation must be solved mode by mode, iterating
to achieve force balance for each time step. To use the piecewise exact analysis, the
modal damping pseudo-force, Fdn(t) =

∑m
p=1 CnpẎn(t), must be assumed to vary

linearly during the time step together with the applied modal loads, Pn(t); this implies
that the modal velocities, Ẏn(t), are assumed to vary linearly.



CHAPTER

16
VARIATIONAL

FORMULATION
OF THE

EQUATIONS
OF MOTION

16-1 GENERALIZED COORDINATES

The significant advantages of describing the response of dynamic systems by
means of generalized coordinates, rather than by merely expressing the displacements
of discrete points on the structure, have been emphasized many times in this text,
and various types of generalized coordinates have been considered for this purpose.
It has also been pointed out that different approaches may be used to advantage
in establishing the equations of motion for a structure, depending on its geometric
form and complexity as well as the type of coordinates used. Up to this point, only
the direct equilibration and the virtual-work approaches have been employed. The
purpose of this chapter is to describe and demonstrate by examples the formulation of
the equations of motion for MDOF systems by the variational approach.

In formulating the variational MDOF technique, extensive use will be made of
generalized coordinates, and in this development a precise definition of the concept is
needed rather than the somewhat loose terminology that has sufficed until now. Thus,
generalized coordinates for a system with N degrees of freedom are defined here as
any set of N independent quantities which completely specify the position of every
point within the system. Being completely independent, generalized coordinates must
not be related in any way through geometric constraints imposed on the system.

341
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FIGURE 16-1
Double pendulum with hinge support.
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In the classical double pendulum shown in Fig. 16-1, the position of the two
masses m1 and m2 could be specified using the coordinates x1, y1, x2, y2; however,
two geometric constraint conditions must be imposed on these coordinates, namely,

x2
1 + y2

1 − L2
1 = 0

(x2 − x1)
2 + (y2 − y1)

2 − L2
2 = 0

(16-1)

Because of these constraint relations, x1, y1, x2, and y2 are not independent and
therefore cannot be considered as generalized coordinates.

Suppose, on the other hand, the angles θ1 and θ2 were specified as the coordinates
to be used in defining the positions of masses m1 and m2. Clearly either of these
coordinates can be changed while holding the other constant; thus, they are seen to be
completely independent and therefore a suitable set of generalized coordinates.

16-2 HAMILTON’S PRINCIPLE

To establish a variational statement of dynamics, consider mass particlem shown
in Fig. 16-2 which moves in response to the applied force vector F(t) along the real
path indicated, leaving point 1 at time t1 and arriving at point 2 at time t2. It should be
noted that this force includes the combined effects of the externally applied load p(t),
the structural resistance fS(t), and the damping resistance fD(t); by d’Alembert’s
principle, it is equilibrated by the inertial resistance fI(t). If, at time t, the mass
particle is subjected to the resultant virtual displacement δr(t), the virtual work of all
forces, including the inertial force, must equal zero as expressed by

[
Fx(t) −mẍ(t)

]
δx(t) +

[
Fy(t) −mÿ(t)

]
δy(t)

+
[
Fz(t) −mz̈(t)

]
δz(t) = 0 (16-2)
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FIGURE 16-2
Real and varied motions of mass 
particle m.
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F(t) = Fx (t)i + Fy (t) j + Fz (t) k
r(t) = xi + yj + zk
δ r(t) = δ xi + δ yj + δ zk

i, j, k Unit vectors

Rearranging terms and integrating this equation from time t1 to time t2 give
∫ t2

t1

−m
[
ẍ(t) δx(t) + ÿ(t) δy(t) + z̈(t) δz(t)

]
dt

+

∫ t2

t1

[
Fx(t) δx(t) + Fy(t) δy(t) + Fz(t) δz(t)

]
dt = 0 (16-3)

Integrating the first integral (I1) by parts and recognizing that the virtual displacement
must vanish at the beginning and the end of this varied path, i.e., that δr(t1) and δr(t2)
equal zero, one obtains

I1 =

∫ t2

t1

m
[
ẋ(t) δẋ(t) + ẏ(t) δẏ(t) + ż(t) δż(t)

]
dt

=

∫ t2

t1

δT (t) dt = δ

∫ t2

t1

T (t) dt (16-4)

in which T (t) is the kinetic energy of the particle given by

T (t) =
1

2
m
[
ẋ(t)2 + ẏ(t)2 + ż(t)2

]
(16-5)

In this discussion, it is helpful to separate the force vector F(t) into its conser-
vative and nonconservative components as represented by

F(t) = Fc(t) + Fnc(t) (16-6)

A potential energy function, V (x, y, z, t), is then defined such that the conservative
force vector Fc(t), by definition, must satisfy the component relations

∂V (x, y, z, t)

∂x
= −Fx,c(t)

∂V (x, y, z, t)

∂y
= −Fy,c(t)

∂V (x, y, z, t)

∂z
= −Fz,c(t)

(16-7)
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Making use of Eqs. (16-6) and (16-7), the second integral (I2) in Eq. (16-3) becomes

I2 =

∫ t2

t1

−δV (x, y, z, t) dt+

∫ t2

t1

δWnc(t) dt (16-8)

in which Wnc(t) equals the virtual work done by the nonconservative forces in vector
Fnc(t). Making use of Eqs. (16-4) and (16-8), Eq. (16-3) can be expressed in the form

∫ t2

t1

δ[T (t) − V (t)] dt+

∫ t2

t1

δWnc(t) dt = 0 (16-9)

Upon considering a summation of equations of this type for all mass particles, it
becomes apparent that Eq. (16-9) is also valid for any complicated system, linear or
nonlinear, provided quantities T (t), V (t), and Wnc(t) represent the summation of
such quantities for the entire system.

Equation (16-9), which is generally known as Hamilton’s variational statement
of dynamics, shows that the sum of the time-variations of the difference in kinetic
and potential energies and the work done by the nonconservative forces over any time
interval t1 to t2 equals zero. The application of this principle leads directly to the
equations of motion for any given system.

The above variational procedure differs from the virtual-work procedure used
previously in that the external load as well as the inertial and elastic forces are
not explicitly involved; the variations of the kinetic- and potential-energy terms,
respectively, are utilized instead. It therefore has the advantage of dealing only with
purely scalar energy quantities, whereas the forces and displacements used to represent
corresponding effects in the virtual-work procedure are all vectorial in character even
though the work terms themselves are scalar.

It is of interest to note that Hamilton’s equation can also be applied to statics
problems. In this case, the kinetic-energy term T vanishes, and the remaining terms
in the integrands of Eq. (16-8) are invariant with time; thus, the equation reduces to

δ(V −Wnc) = 0 (16-10)

which is the well-known principle of minimum potential energy, so widely used in
static analyses.

16-3 LAGRANGE’S EQUATIONS OF MOTION

The equations of motion for an N -DOF system can be derived directly from
Hamilton’s equation [Eq. (16-9)] by simply expressing the total kinetic energy T , the
total potential energy V , and the total virtual work δWnc in terms of a set of generalized
coordinates, q1, q2, · · ·, qN .
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For most mechanical or structural systems, the kinetic energy can be expressed
in terms of the generalized coordinates and their first time derivatives, and the potential
energy can be expressed in terms of the generalized coordinates alone. In addition,
the virtual work which is performed by the nonconservative forces as they act through
the virtual displacements caused by an arbitrary set of variations in the generalized
coordinates can be expressed as a linear function of those variations. In mathematical
terms the above three statements are expressed in the form

T = T (q1, q2, · · · , qN , q̇1, q̇2, · · · , q̇N ) (16-11a)

V = V (q1, q2, · · · , qN ) (16-11b)

δWnc = Q1 δq1 +Q2 δq2 + · · · +QN δqN (16-11c)

where the coefficients Q1, Q2, · · ·, QN are the generalized forcing functions corre-
sponding to the coordinates q1, q2, · · ·, qN , respectively.

Introducing Eqs. (16-11) into Eq. (16-9) and completing the variation of the first
term give
∫ t2

t2

(
∂T

∂q1
δq1 +

∂T

∂q2
δq2 + · · · + ∂T

∂qN
δqN +

∂T

∂q̇1
δq̇1 +

∂T

∂q̇2
δq̇2 + · · · + ∂T

∂q̇N
δq̇N

− ∂V

∂q1
δq1 −

∂V

∂q2
δq2 · · · −

∂V

∂qN
δqN +Q1 δq1 +Q2 δq2 + · · · +QN δqN

)
dt = 0

(16-12)
Integrating the velocity-dependent terms in Eq. (16-12) by parts leads to

∫ t2

t1

∂T

∂q̇i
δq̇i dt =

[
∂T

∂q̇i
δqi

]t2

t1

−
∫ t2

t1

d

dt

(
∂T

∂q̇i

)
δqi dt (16-13)

The first term on the right hand side of Eq. (16-13) is equal to zero for each coordinate
since δqi(t1) = δqi(t2) = 0 is the basic condition imposed upon the variations.
Substituting Eq. (16-13) into Eq. (16-12) gives, after rearranging terms,

∫ t2

t1

{
N∑

i=1

[
− d

dt

(
∂T

∂q̇i

)
+
∂T

∂qi
− ∂V

∂qi
+Qi

]
δqi

}
dt = 0 (16-14)

Since all variations δqi (i = 1, 2, · · · , N ) are arbitrary, Eq. (16-14) can be satisfied in
general only when the term in brackets vanishes, i.e.,

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= Qi (16-15)

Equations (16-15) are the well-known Lagrange’s equations of motion, which have
found widespread application in various fields of science and engineering.
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The beginning student of structural dynamics should take special note of the
fact that Lagrange’s equations are a direct result of applying Hamilton’s variational
principle, under the specific condition that the energy and work terms can be expressed
in terms of the generalized coordinates, and of their time derivatives and variations,
as indicated in Eqs. (16-11). Thus Lagrange’s equations are applicable to all sys-
tems which satisfy these restrictions, and they may be nonlinear as well as linear.
The following examples should clarify the application of Lagrange’s equations in
structural-dynamics analysis.

Example E16-1. Consider the double pendulum shown in Fig. 16-1 under
free-vibration conditions. Thex- and y-coordinate positions along with their first
time derivatives can be expressed in terms of the set of generalized coordinates
q1 ≡ θ1 and q2 ≡ θ2 as follows:

x1 = L1 sin q1 ẋ1 = L1q̇1 cos q1

y1 = L1 cos q1 ẏ1 = −L1q̇1 sin q1

x2 = L1 sin q1 + L2 sin q2 ẋ2 = L1q̇1 cos q1 + L2q̇2 cos q2

y2 = L1 cos q1 + L2 sin q2 ẏ2 = −L1q̇1 sin q1 − L2q̇2 sin q2 (a)

Substituting the above velocity expressions into the basic expression for kinetic
energy, namely,

T =
1

2
m1 (ẋ2

1 + ẏ2
1) +

1

2
m2 (ẋ2

2 + ẏ2
2) (b)

gives

T =
1

2
m1 L

2
1 q̇

2
1 +

1

2
m2

[
L2

1 q̇
2
1 + L2

2 q̇
2
2 + 2L1 L2 q̇1 q̇2 cos(q2 − q1)

]
(c)

The only potential energy present in the double pendulum of Fig. 16-1 is that
due to gravity. If zero potential energy is assumed when q1 = q2 = 0, the
potential-energy relation is

V = (m1 +m2) g L1 (1 − cos q1) +m2 g L2 (1 − cos q2) (d)

where g is the acceleration of gravity. There are, of course, no nonconservative
forces acting on this system; therefore, the generalized forcing functionsQ1 and
Q2 are both equal to zero.
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Substituting Eqs. (c) and (d) into Lagrange’s Eqs. (16-15) for i = 1 and
i = 2 separately gives the two equations of motion

(m1 +m2)L
2
1 q̈1 +m2 L1 L2 q̈2 cos (q2 − q1)

−m2 L1 L2 q̇
2
2 sin (q2 − q1) + (m1 +m2) g L1 sin q1 = 0

m2 L
2
2 q̈2 +m2 L1 L2 q̈1 cos (q2 − q1) (e)

+m2 L1 L2 q̇
2
1 sin (q2 − q1) +m2 g L2 sin q2 = 0

These equations are highly nonlinear for large-amplitude oscillation; however,
for small-amplitude oscillation Eqs. (e) can be reduced to their linear forms

(m1 +m2)L
2
1 q̈1 +m2 L1 L2 q̈2 + (m1 +m2) g L1 q1 = 0

m2 L1 L2 q̈1 +m2 L
2
2 q̈2 +m2 g L2 q2 = 0

(f)

The small-amplitude mode shapes and frequencies can easily be obtained from
the linearized equations of motion by any of the standard eigenproblem analysis
methods, e.g., the determinantal-solution procedure.

Example E16-2. Assume a uniform rigid bar of length L and total mass
m to be supported by an elastic, massless flexure spring and subjected to a
uniformly distributed time-varying external loading as shown in Fig. E16-1. If
the downward vertical deflections of points 1 and 2 from their static-equilibrium
positions are selected as the generalized coordinates q1 and q2, respectively, the
governing equations of motion for small-displacement theory can be obtained
from Lagrange’s equations as follows.

The total kinetic energy of the rigid bar is the sum of its translational and
rotational kinetic energies, that is,

T =
1

2
m

(
q̇1 + q̇2

2

)2

+
1

2

mL2

12

(
q̇1 − q̇2
L

)2

(a)

or
T =

m

6
(q̇21 + q̇1 q̇2 + q̇22)

Since q1 and q2 are displacements from the static-equilibrium position, gravity
forces can be ignored provided that the potential energy of the system is evaluated
as only the strain energy stored in the flexure spring. Where this strain energy is
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FIGURE E16-1
Rigid bar on massless flexure spring.

L L

True dyn. positionVaried dyn. position

p f (t)

p

m0 1 2

Rigid bar

Static equil.
position

Flexure spring

Generalized coordinates

Stiffness coefficients

q1(t)

q2(t)
q1(t)

q2(t)

1

1

k11

k12 = k21

k21

k22

expressed in terms of the stiffness influence coefficients (defined in Fig. E16-1)
the potential-energy term becomes

V =
1

2
(k11 q

2
1 + 2 k12 q1 q2 + k22 q

2
2) (b)

The virtual work performed by the nonconservative loading p f(t) as it
acts through the virtual displacements produced by the arbitrary variations δq1(t)
and δq2(t) is given by

δWnc =
pL f(t)

2
(δq1 + δq2) (c)

From a comparison of Eq. (c) with Eq. (16-11c) it is clear that

Q1(t) = Q2(t) =
pL

2
f(t) (d)

Substituting Eqs. (a), (b), and (d) into Lagrange’s Eqs. (16-15) gives the linear
equations of motion for this structure:

m

6
(2 q̈1 + q̈2) + k11 q1 + k12 q2 =

pL

2
f(t)

m

6
(q̈1 + 2 q̈2) + k12 q1 + k22 q2 =

pL

2
f(t)

(e)
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Example E16-3. Three uniform rigid bars of length L and mass m are
hinged together at points 1 and 2, as shown in Fig. E16-2, and are supported
by a roller at point 3 and a hinge at point 0. Concentrated moment-resisting
elastic springs and viscous rotational dashpots are attached to adjoining bars at
points 1 and 2, having property constants k1, c1, k2, and c2, respectively. A
constant axial load N acts at point 3. If this system is excited by the applied
lateral loading p1(t) and by a small vertical support motion v0(t) at end 0, the
governing equations of motion based on small-deflection theory can be derived
directly from Lagrange’s equations as follows.

The kinetic energy of the three bars is

T =
m

6
(3 v̇2

0 + 2 q̇21 + 2 q̇22 + 4 v̇0 q̇1 + 2 v̇0 q̇2 + q̇1 q̇2) (a)

The movement toward the left of end 3 due to the vertical joint displacement is

d =
1

L

(
v2
0

6
+ q21 + q22 − q1 q2

)
(b)

The relative rotations of the bars at joints 1 and 2 and their variations are given
by

θ1 =
1

L
(2 q1 − q2) δθ1 =

1

L
(2 δq1 − δq2) (c)

θ2 =
1

L
(2 q2 − q1) δθ2 =

1

L
(2 δq2 − δq1) (d)

Hence the potential energy of the springs and of the axial force N is

V =

[
1

2L2
(4 k1 + k2) −

N
L

]
q21 +

[
1

2L2
(k1 + 4 k2) −

N
L

]
q22

+

[
1

2L2
(−4 k1 − 4 k2) +

N
L

]
q1 q2 −

N v2
0

6L
(e)

Static equil. position

v0(t)

v0

FIGURE E16-2
A 2-DOF rigid-bar assemblage with rotational springs and dashpots.

LL L

L
2

L
2

c1 c2

k1 k2

10 2 3
m mm

q1

q2

δ q1

δ q2

Varied dyn. position True dyn. position

2
3

v0


v0
3

p1(t)
N (const.)

θ 2

θ1

d(t)δ d
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The virtual work done by the nonconservative forces is

δWnc =
1

2
p1(t) (δq1 + δq2) − c1 θ̇1 δθ1 − c2 θ̇2 δθ2

or

δWnc =

[
p1

2
− 2 c1

L2
(2 q̇1 − q̇2) +

c2
L2

(2 q̇2 − q̇1)

]
δq1

+

[
p1

2
+
c1
L2

(2 q̇1 − q̇2) −
2 c2
L2

(2 q̇2 − q̇1)

]
δq2 (f)

from which the generalized forces are seen to be

Q1 =
p1

2
− 2 c1

L2
(2 q̇1 − q̇2) +

c2
L2

(2 q̇2 − q̇1)

Q2 =
p1

2
− c1
L2

(2 q̇1 − q̇2) −
2 c2
L2

(2 q̇2 − q̇1)

(g)

Substituting Eqs. (a), (e), and (g) into Eqs. (16-15) gives the following two
equations of motion, from which the dynamic response can be computed:

2

3
mq̈1 +

m

6
q̈2 +

(
4c1
L2

+
c2
L2

)
q̇1 +

(
− 2c1
L2

− 2c2
L2

)
q̇2

+

[
1

L2
(4k1 + k2)−

2N
L

]
q1 +

[
1

2L2
(−4k1 − 4k2)+

N
L

]
q2 =

p1

2
− m

3
v̈0 (h)

m

6
q̈1 +

2m

3
q̈2 +

(
− 2c1
L2

− 2c2
L2

)
q̇1 +

(
c1
L2

+
4c2
L2

)
q̇2

+

[
1

2L2
(−4k1 − 4k2) +

N
L

]
q1 +

[
1

L2
(k1 + 4k2)−

2N
L

]
q2 =

p1

2
− m

3
v̈0 (i)

By setting the accelerations and velocities to zero and removing the sources
of excitation p1(t) and v0(t) from the system, Eqs. (h) and (i) reduce to the
static-equilibrium conditions

[
1

L2
(4k1 + k2) −

2N
L

]
q1 +

[
1

2L2
(−4k1 − 4k2) +

N
L

]
q2 = 0

[
1

2L2
(−4k1 − 4k2) +

N
L

]
q1 +

[
1

L2
(k1 + 4k2) −

2N
L

]
q2 = 0

(j)

Now a nontrivial solution of Eqs. (j) is possible only when the structure buckles
under the acting of the axial forceN , and this is indicated when the determinant
of the coefficient matrix equals zero, that is, when

∥∥∥∥∥

1

L2
(4k1 + k2) −

2N
L

1

2L2
(−4k1 − 4k2) +

N
L

1

2L2
(−4k1 − 4k2) +

N
L

1

L2
(k1 + 4k2) −

2N
L

∥∥∥∥∥ = 0 (k)
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Expanding the determinant given by Eq. (k) and solving for N gives

Ncr = − 3

2L
(k1 − k2) ±

√
1

12L2
(13k2

1 − 118k1k2 + 13k2
2) (l)

Equation (l) gives two values for Ncr corresponding to the first and second
buckling modes. The two mode shapes are found by substituting these two
critical loads separately into Eq. (k) and solving for one of the generalized
coordinates in terms of the other.

16-4 DERIVATION OF THE GENERAL EQUATIONS OF
MOTION FOR LINEAR SYSTEMS

As is evident in the above three examples, the kinetic and potential energies of
linear engineering systems subjected to small-amplitude oscillations can be expressed
in the quadratic forms

T =
1

2

N∑

j=1

N∑

i=1

mij q̇i q̇j =
1

2
q̇T m q̇ (16-16)

V =
1

2

N∑

j=1

N∑

i=1

kij qi qj =
1

2
qT k q (16-17)

where N is the number of degrees of freedom in the system. For such systems, the
second term of Eqs. (16-15), namely, ∂T

/
∂qi (i = 1, 2, · · · , N ), equals zero, which

reduces Lagrange’s equations to the form

∂

∂t

(
∂T

∂q̇i

)
+
∂V

∂qi
= Qi i = 1, 2, · · · , N (16-18)

When Eqs. (16-16) and (16-17) are substituted into Eqs. (16-18), Lagrange’s equations
of motion, when placed in matrix form, become

m q̈ + k q = Q (16-19)

which are similar to the discrete-coordinate equations formulated earlier by virtual
work. It must be remembered, however, that all nonconservative forces, including
damping forces, are contained here in the generalized forcing functions Q1, Q2, · · ·,
QN .

Now the discretization problem will be considered, i.e., approximating infinite-
DOF systems by a finite number of coordinates. For example, the lateral deflections
v(x, t) of a flexural member can be approximated by the relation

v(x, t)
.
= q1(t)ψ1(x) + q2(t)ψ2(x) + · · · + qN (t)ψN (x) (16-20)
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where qi (i = 1, 2, · · · , N ) are generalized coordinates and ψi (i = 1, 2, · · · , N )
are assumed dimensionless shape functions which satisfy the prescribed geometric
boundary conditions for the member.

Ifm(x) is the mass per unit length for the member, the kinetic energy (neglecting
rotational inertial effects) can be expressed

T =
1

2

∫
m(x) v̇(x, t)2 dx (16-21)

Substituting Eq. (16-20) into Eq. (16-21) gives Eq. (16-16):

T =
1

2

N∑

j=1

N∑

i=1

mij q̇i q̇j

in which
mij =

∫
m(x)ψi(x)ψj(x) dx (16-22)

The flexural strain energy is given by

V =
1

2

∫
EI(x) [v′′(x, t)]2 dx (16-23)

Substituting Eq. (16-20) into Eq. (16-23) gives

V =
1

2

N∑

j=1

N∑

i=1

kij qi qj (16-17)

in which
kij =

∫
EI(x)ψ′′

i (x)ψ′′
j (x) dx (16-24)

To obtain the generalized forcing functions Q1, Q2, · · ·, QN , the virtual work
δWnc must be evaluated. This is the work performed by all nonconservative forces
acting on or within the flexural member while an arbitrary set of virtual displacements
δq1, δq2, · · ·, δqN is applied to the system. To illustrate the principles involved in
this evaluation, it will be assumed that the material of the flexure member obeys the
uniaxial stress-strain relation

σ(t) = E
[
ε(t) + a1 ε̇(t)

]
(16-25)

Using Eq. (16-25) and the Bernoulli-Euler hypothesis that the normal strains vary
linearly over the member cross section leads to the moment-displacement relation

M(x, t) = EI(x)
[
v′′(x, t) + a1 v̇

′′(x, t)
]

(16-26)
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The first term on the right hand side of Eq. (16-26) results from the internal conservative
forces, which have already been accounted for in the potential-energy term V , while
the second term results from the internal nonconservative forces. The virtual work
performed by these nonconservative forces per unit length along the member equals
the negative of the product of the nonconservative moment a1EI(x) v̇

′′(x, t) times
the variation in the curvature δv′′(x, t). Therefore, the total virtual work performed
by these internal nonconservative forces is

δWnc,int = −a1

∫
EI(x) v̇′′(x, t) δv′′(x, t) dx (16-27)

If the externally applied nonconservative forces are assumed in this case to be
limited to a distributed transverse loading p(x, t), the virtual work performed by these
forces equals

δWnc,ext =

∫
p(x, t) δv(x, t) dx (16-28)

Substituting Eq. (16-20) into Eqs. (16-27) and (16-28) and adding gives

δWnc,total =

N∑

i=1

(
pi −

N∑

j=1

cij q̇j

)
δqi (16-29)

where

pi =

∫
p(x, t)ψi(x) dx (16-30)

cij = a1

∫
EI(x)ψ′′

i (x)ψ′′
j (x) dx (16-31)

When Eq. (16-29) is compared with Eq. (16-11c), it is evident that

Qi = pi −
N∑

j=1

cij q̇j (16-32)

Finally, substituting Eqs. (16-16), (16-17), and (16-32) into Lagrange’s equations
(16-15) gives the governing equations of motion in matrix form:

m q̈ + c q̇ + k q = p (16-33)

Note from the definitions of mij , cij , and kij as given by Eqs. (16-22), (16-31), and
(16-24), respectively, that

mij = mji cij = cji kij = kji (16-34)
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Therefore, the mass, damping, and stiffness coefficient matrices of Eq. (16-33) are
symmetric in form.

Example E16-4. The formulation of the equations of motion by the gen-
eral Lagrange’s equation procedure described above will be illustrated for the
rigid-bar assemblage shown in Fig. E16-3. The bars are interconnected by
hinges, and their relative rotations are resisted by rotational springs and dash-
pots located at each hinge with values as indicated. The generalized coordinates
of this system are taken to be the rotation angles qi of the rigid bars, as shown
in the sketch; it will be assumed that the displacements are small so that the
small-deflection theory is valid.

With the kinetic energy of the rigid bars due to rotation about their indi-
vidual centroids and due to translation of the centroids considered separately,
the total kinetic energy is

T =
1

2

WL2

12g
(q̇21 + q̇22 + q̇23)

+
1

2

W

g

[( q̇1L
2

)2

+
(
q̇1L+

q̇2L

2

)2

+
(
q̇1L+ q̇2L+

q̇3L

2

)2
]

=
WL2

6g
(2q̇21 + 4q̇22 + q̇23 + 9q̇1q̇2 + 3q̇2q̇3 + 3q̇1q̇3) (a)

FIGURE E16-3
A 3-DOF rigid-body assemblage (including geometric-stiffness effect due to 
dead weight).

c1
= 3c

c2
= 2c

c3
= c

k1 = 3k

k2 = 2k

k3 = k

q1

q2

q3

W

W

W

L

L

L

q1

2
L

2
+ 

q2
2
L

2
+ 

q3
2
L

4
q1 L + q2 L + 

q3 L
2

q1 L + 
q2 L

2


q1 L

2 
q1

2
L

2


q1

2
L

2
+ 

q2
2
L

4


q1

2
L

4


q1

2
L

2
+ 

q2
2
L

2

L
2

L
2

L
2

L
2

L
2

L
2
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Also with the potential energy associated with deformation of the rotational
springs and due to the raising of the bars above their vertical base position
considered separately (the amounts of the vertical displacements of the centers
of gravity are indicated on the sketch), the total potential energy of the system
is given by

V =W

[
q21L

4
+
(q22L

2
+
q22L

4

)
+
(q21L

2
+
q22L

2
+
q23L

4

)]

+
1

2
[k1q

2
1 + k2(q2 − q1)

2 + k3(q3 − q2)
2]

=
1

4

[
(5WL+ 10k)q21 + (3WL+ 6k)q22 + (WL+ 4k)q23

]

− 2q1q2 − q2q3

(b)

Finally, the virtual work done by the rotational dashpots during the virtual
displacements of the structure is given by

δWnc = −c1q̇1 δq1 − c2(q̇2 − q̇1) (δq2 − δq1) − c3(q̇3 − q̇2) (δq3 − δq2)

= c
[
(−5q̇1 + 2q̇2)δq1 + (2q̇1 − 3q̇2 + q̇3) δq2 + (q̇2 − q̇3) δq3

]
(c)

from which the nonconservative forces, which are due only to damping, become

Q1 = c (−5q̇1 + 2q̇2)

Q2 = c (2q̇1 − 3q̇2 + q̇3) (d)

Q3 = c (q̇2 − q̇3)

Substituting Eqs. (a) to (c) into

d

dt

(
∂T

∂q̇i

)
+
∂v

∂qi
= Qi i = 1, 2, 3 (e)

gives the three equations of motion of the system, which, arranged in matrix
form, are

WL2

6g




14 9 3

9 8 3

3 3 2







q̈1

q̈2

q̈3


+ c




5 −2 0

−2 3 −1

0 −1 1







q̇1

q̇2

q̇3




+
1

2




5WL+ 10k −4k 0

−4k 3WL+ 6k −2k

0 −2k WL+ 4k







q1

q2

q3


 =




0

0

0


 (f)
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16-5 CONSTRAINTS AND LAGRANGE MULTIPLIERS

Usually when determining the dynamic response of an N -DOF system, the
equations of motion are written in terms of a set of generalized coordinates q1, q2, · · ·,
qN ; however, there are cases where in order to maintain symmetry in the equations of
motion, it is preferable to select a set of coordinates q1, q2, · · ·, qc, where c > N . These
coordinates cannot be generalized coordinates since their number exceeds the number
of degrees of freedom in the system. Therefore, one must impose m (m = c − N )
equations of constraint on the system. For example, returning to the double pendulum
shown in Fig. 16-1, it was pointed out earlier that the equations of motion could
be expressed in terms of generalized coordinates θ1 and θ2 (N = 2) or in terms of
coordinates x1, y1, x2, y2 (c = 4). If the latter coordinates are used, two equations of
constraint, namely Eqs. (16-1), must be satisfied.

Suppose the m equations of constraint for a general case are expressed in the
form

f1(g1, g2, · · · , gc) = 0

f2(g1, g2, · · · , gc) = 0

· · · · · · · · · · · ·

fm(g1, g2, · · · , gc) = 0

(16-35)

Taking the variations of Eqs. (16-35) results in

δf1 =
∂f1
∂g1

δg1 +
∂f1
∂g2

δg2 + · · · + ∂f1
∂gc

δgc = 0

δf2 =
∂f2
∂g1

δg1 +
∂f2
∂g2

δg2 + · · · + ∂f2
∂gc

δgc = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

δfm =
∂fm

∂g1
δg1 +

∂fm

∂g2
δg2 + · · · + ∂fm

∂gc
δgc = 0

(16-36)

Now if each δfi (i = 1, 2, · · · ,m) is multiplied by an unknown time function
λi(t) and the product is integrated over the time interval t1 to t2 [assuming Eqs. (16-
11) to apply, when expressed in terms of coordinates q1, q2, · · ·, qc], then if each of the
above integrals is added to Hamilton’s variational equation [Eq. (16-9)], the following
equation is obtained after completing the variation:

∫ t2

t1

{
c∑

i=1

[
− d

dt

( ∂T
∂ġi

)
+
∂T

∂gi
− ∂V

∂gi
+Qi

+ λ1
∂f1
∂gi

+ λ2
∂f2
∂gi

+ · · · + λm
∂fm

gi

]
δgi

}
dt = 0 (16-37)
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Since the variations δgi (i = 1, 2, · · · , c) are all arbitrary, it is necessary that each
square-bracket term in Eq. (16-37) equal zero, i.e.,

d

dt

( ∂T
∂ġi

)
− ∂T

∂gi
+
∂V

∂gi
= Qi + λ1

∂f1
∂gi

+ λ2
∂f2
∂gi

+ · · · + λm
∂fm

∂gi

= 0 i = 1, 2, · · · , c (16-38)

Equation (16-38) is a modified form of Lagrange’s equations which will permit the
use of coordinates g1, g2, · · ·, gc. This procedure of developing Eqs. (16-38) may
seem trivial at first because a number of integrals equating to zero have been added to
Hamilton’s equation; however, it should be noted that while each δfi (i = 1, 2, · · · ,m)
equals zero, the individual terms given on the right hand side of Eqs. (16-36) are not
equal to zero. The time-dependent functions λi (i = 1, 2, · · · ,m) are known as
Lagrange multipliers.

When a reduced potential-energy term V is defined as

V = V (g1, g2, · · · , gc) − (λ1f1 + λ2f2 + · · · + λmfm) (16-39)

Eqs. (16-38) can be written

d

dt

( ∂T
∂ġi

)
− ∂T

∂gi
+
∂V

∂gi
= Qi i = 1, 2, · · · , c (16-40)

which contain the unknown time functions g1, g2, · · ·, gc, λ1, λ2, · · ·, λm. Since there
are c + m unknown time functions, c + m equations are required for their solution.
These equations include the c modified Lagrange’s equations [Eqs. (16-40)] and the
m constraint equations [Eqs. (16-35)].

Example E16-5. The use of Lagrange multipliers in satisfying specified
constraint conditions will be illustrated with reference to the end-supported
cantilever beam of Fig. E16-4. This beam is subjected to a time-varying loading,
p f(t), uniformly distributed along its length, as well as to a constant axial force
N , as shown in the sketch; its stiffness is uniform along the length, and there

FIGURE E16-4
Uniform beam used to demonstrate 
Lagrange multipliers.

L

v(x, t)
p (x, t) = p f (t)

1
2m, EI

p

x

N
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is no damping. To obtain an approximate solution which is reasonably valid
if the frequency components in the loading function are low enough, it will be
assumed that the beam deflections can be expressed as

v(x, t) = g1(t) sin
πx

L
+ g2(t) sin

2πx

L
(a)

Expressing the kinetic and potential energies and the virtual work performed by
the external loading in terms of the coordinates g1 and g2 leads to

T =
1

2

∫ L

0

m
(
ġ2
1 sin2 πx

L
+ 2ġ1ġ2 sin

πx

L
sin

2πx

L
+ ġ2

2 sin2 2πx

L

)
dx (b)

V =
1

2

∫ L

0

EI
(
g2
1

π4

L4
sin2 πx

L
+

8π4

L4
g1g2 sin

πx

L
sin

2πx

L

+ g2
2

16π4

L4
sin2 2πx

L

)
dx

− N
2

∫ L

0

(π2

L2
g2
1 cos2

πx

L
+

4π2

L2
g1g2 cos

πx

L
cos

2πx

L

+
4π2

L2
g2
2 cos2

2πx

L

)
dx (c)

δWnc = δg1

∫ L

0

p(x, t) sin
πx

L
dx+ δg2

∫ L

0

p(x, t) sin
2πx

L
dx (d)

Completing the integrals of Eqs. (b) to (d) gives

T =
mL

4
(ġ2

1 + ġ2
2) (e)

V =
π4EI

4L3
(g2

1 + 16g2
2) − Nπ2

4L
(g2

1 + 4g2
2) (f)

δWnc =
2L

π
p f(t) δg1 (g)

and comparing Eq. (g) with Eq. (16-11c) gives the external loads

Q1 =
2Lp f(t)

π
Q2 = 0 (h)

When the fixed-support condition at the left end of the beam is considered,
it is evident that the solution must satisfy the constraint condition

f1(g1, g2) = g1 + 2g2 = 0 (i)
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Substituting Eqs. (f) and (i) into Eqs. (16-39) thus leads to the reduced potential

V =
π4EI

4L3
(g2

1 + 16g2
2) − Nπ2

4L
(g2

1 + 4g2
2) − λ1(g1 + 2g2) (j)

Substituting Eqs. (e), (h), and (j) into the Lagrange reduced equations of motion
[Eqs. (16-40)] finally gives

mL

2
g̈1 +

(π4EI

2L3
− π2N

2L

)
g1 − λ1 =

2Lp f(t)

π

mL

2
g̈2 +

(8π4EI

L3
− 2π2N

L

)
g2 − 2λ1 = 0

(k)

From this point the complete solution of the problem can be obtained by solving
Eq. (i) and Eqs. (k) for g1(t), g2(t), and λ1(t). The resulting solution shows that
λ1(t) is proportional to the fixed-end moment at x = 0. This moment performs
zero virtual work on the member because the constraint at that location does not
permit a virtual rotation of the member cross section.

PROBLEMS

16-1. Applying Lagrange’s equations, Eqs. (16-15), and permitting large displace-
ments, determine the equation of motion for the system shown in Fig. E8-4.
What is the linearized equation of motion for small amplitude oscillation?

16-2. Applying Lagrange’s equations and permitting large displacements, determine
the equations of motion for the system shown in Fig. P16-1. What are the
linearized equations of motion for small-amplitude oscillations?

FIGURE P16-1

p(t)

m1

m2

k2

k1

q1

q3

(a +
q

2 )

16-3. Repeat Prob. 16-1 for the system shown in Prob. 8-4.

16-4. Repeat Prob. 16-1 for the system shown in Prob. 8-5.
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16-5. Obtain the equations of motion for the uniform cantilever beam shown in
Fig. P16-2 when the deflected shape can be approximated by the relation

v(x, t)
.
= q1(t)

( x
L

)2

+ q2(t)
( x
L

)3

+ q3(t)
( x
L

)4

Assume small deflection theory.

FIGURE P16-2

x
EI , m

p(t)

N (constant)

L

16-6. A ball of radius R1 and mass m1 is placed at rest on top of a fixed cylindrical
surface of radiusR2. Assume a very slight disturbance that starts the ball rolling
to the left, as shown in Fig. P16-3, under the influence of gravity. If the ball rolls
without slippage and angles θ1 and θ2 are taken as displacement coordinates:

(a) Determine the equation of constraint between θ1 and θ2.
(b) Write the equation of motion in terms of one displacement coordinate by

eliminating the other through the constraint equation.
(c) Write the equation of motion using both displacement coordinates and

in addition using a Lagrange multiplier λ1. (What does λ1 represent
physically in this case?)

(d) Determine the value of θ2 when the ball leaves the surface of the cylinder.

FIGURE P16-3

1

2

R1

R2

Ball (m1)

Cylinder

16-7. A uniform rigid bar of total mass m1 and length L swings as a pendulum under
the influence of gravity. A concertrated mass m2 is constrained to slide along
the axis of the bar and is attached to a massless spring, as shown in Fig. P16-4.
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Assuming a frictionless system and large amplitude displacements, determine
the equations of motion in terms of generalized coordinates q1 and q2.

FIGURE P16-4

L
q2

m2

k2

q1

Total mass, m1

16-8. Determine the linearized equations of motion for small-amplitude oscillations
of the system defined in Prob. 16-7.
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17-1 INTRODUCTION

The discrete-coordinate systems described in Part Two provide a convenient and
practical approach to the dynamic-response analysis of arbitrary structures. However,
the solutions obtained can only approximate their actual dynamic behavior because
the motions are represented by a limited number of displacement coordinates. The
precision of the results can be made as refined as desired by increasing the number
of degrees of freedom considered in the analyses. In principle, however, an infinite
number of coordinates would be required to converge to the exact results for any
real structure having distributed properties; hence this approach to obtaining an exact
solution is manifestly impossible.

The formal mathematical procedure for considering the behavior of an infinite
number of connected points is by means of differential equations in which the po-
sition coordinates are taken as independent variables. Inasmuch as time is also an
independent variable in a dynamic-response problem, the formulation of the equa-
tions of motion in this way leads to partial differential equations. Different classes of

365
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continuous systems can be identified in accordance with the number of independent
variables required to describe the distribution of their physical properties. For exam-
ple, the wave-propagation formulas used in seismology and geophysics are derived
from the equations of motion expressed for general three-dimensional solids. Simi-
larly, in studying the dynamic behavior of thin-plate or thin-shell structures, special
equations of motion must be derived for these two-dimensional systems. In the present
discussion, however, attention will be limited to one-dimensional structures, that is,
beam- and rod-type systems which may have variable mass, damping, and stiffness
properties along their elastic axes. The partial differential equations of these systems
involve only two independent variables: time and distance along the elastic axis of
each component member.

It is possible to derive the equations of motion for rather complex one-
dimensional structures, including assemblages of many members in three-dimensional
space. Moreover, the axes of the individual members might be arbitrarily curved in
three-dimensional space, and the physical properties might vary as a complicated
function of position along the axis. However, the solutions of the equations of motion
for such complex systems generally can be obtained only by numerical means, and in
most cases a discrete-coordinate formulation is preferable to a continuous-coordinate
formulation. For this reason, the present treatment will be limited to simple systems
involving members having straight elastic axes and assemblages of such members.
In formulating the equations of motion, general variations of the physical properties
along each axis will be permitted, although in subsequent solutions of these equations,
the properties of each member will be assumed to be constant. Because of these severe
limitations of the cases which may be considered, this presentation is intended mainly
to demonstrate the general concepts of the partial-differential-equation formulation
rather than to provide a tool for significant practical application to complex systems.
Closed form solutions through this formulation can, however, be very useful when
treating simple uniform systems.

17-2 BEAM FLEXURE: ELEMENTARY CASE

The first case to be considered in the formulation of partial differential equations
of motion is the straight, nonuniform beam shown in Fig. 17-1a. The significant
physical properties of this beam are assumed to be the flexural stiffnessEI(x) and the
mass per unit length m(x), both of which may vary arbitrarily with position x along
the span L. The transverse loading p(x, t) is assumed to vary arbitrarily with position
and time, and the transverse-displacement response v(x, t) also is a function of these
variables. The end-support conditions for the beam are arbitrary, although they are
pictured as simple supports for illustrative purposes.

The equation of motion of this simple system can readily be derived by consid-
ering the equilibrium of forces acting on the differential segment of beam shown in
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L

p x t( , )

p x t dx( , )

f x t dxI ( , )

FIGURE 17-1

Basic beam subjected to dynamic loading: ( ) beam properties and

coordinates; ( ) resultant forces acting on differential element.
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Fig. 17-1b, in much the same way that the equations were developed for a discrete-
parameter system. Summing all forces acting vertically leads to the first dynamic-
equilibrium relationship

V (x, t) + p(x, t) dx−
[

V (x, t) +
∂V (x, t)

∂x
dx
]
− fI(x, t) dx = 0 (17-1)

in which V (x, t) is the vertical force acting on the cut section and fI(x, t) dx is the
resultant transverse inertial force equal to the mass of the element multiplied by its
transverse acceleration, i.e.,

fI(x, t) dx = m(x) dx
∂2v(x, t)

∂t2
(17-2)

Substituting Eq. (17-2) into Eq. (17-1) and dividing the resulting equation by dx yield

∂V (x, t)

∂x
= p(x, t) −m(x)

∂2v(x, t)

∂t2
(17-3)

This equation is similar to the standard static relationship between shear force and
transverse loading but with the loading now being the resultant of the applied and
inertial-force loadings.
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The second equilibrium relationship is obtained by summing moments about
point A on the elastic axis. After dropping the two second-order moment terms
involving the inertia and applied loadings, one gets

M (x, t) + V (x, t) dx−
[

M (x, t) +
∂M (x, t)

∂x
dx
]

= 0 (17-4)

Because rotational inertia is neglected, this equation simplifies directly to the standard
static relationship between shear and moment

∂M (x, t)

∂x
= V (x, t) (17-5)

Differentiating this equation with respect to x and substituting the result into Eq. (17-3)
give

∂2M (x, t)

∂x2
+m(x)

∂2v(x, t)

∂t2
= p(x, t) (17-6)

which, upon introducing the basic moment-curvature relationship M = EI ∂2v
∂x2 , be-

comes
∂2

∂x2

[
EI(x)

∂2v(x, t)

∂x2

]
+m(x)

∂2v(x, t)

∂t2
= p(x, t) (17-7)

This is the partial differential equation of motion for the elementary case of beam
flexure. The solution of this equation must, of course, satisfy the prescribed boundary
conditions at x = 0 and x = L.

17-3 BEAM FLEXURE: INCLUDING AXIAL-FORCE EFFECTS

If the beam considered in the above case is subjected to a time-invariant axial
loading in the horizontal direction as shown in Fig. 17-2a in addition to the lateral
loading shown in Fig. 17-1, the local equilibrium of forces is altered because the inter-
nal axial force N (x) interacts with the lateral displacements to produce an additional
term in the moment-equilibrium expression. It is apparent in Fig. 17-2b that transverse
equilibrium is not affected by the axial force because its direction does not change
with the beam deflection; hence Eq. (17-3) is still valid. However, the line of action
of the axial force changes with the beam deflection so that the moment-equilibrium
equation now becomes

M (x, t) + V (x, t) dx+ N (x)
∂v(x, t)

∂x
dx−

[
M (x, t) +

∂M (x, t)

∂x
dx

]
= 0 (17-8)

from which the vertical section force V (x, t) is found to be

V (x, t) = −N (x)
∂v(x, t)

∂x
+
∂M (x, t)

∂x
(17-9)
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FIGURE 17-2

Beam with static axial loading and dynamic lateral loading: ( ) beam

deflected due to loadings; ( ) resultant forces acting on differential element.
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Introducing this modified expression for V (x, t) into Eq. (17-3) and proceeding
as before, one obtains the following partial differential equation of motion, including
axial-force effects:

∂2

∂x2

[
EI(x)

∂2v(x, t)

∂x2

]
− ∂

∂x

[
N (x)

∂v(x, t)

∂x

]
+m(x)

∂2v(x, t)

∂t2
= p(x, t)

(17-10)
Comparing Eqs. (17-10) and (17-7), it is evident that the longitudinal loading pro-
ducing the internal axial-force distribution N (x) gives rise to an additional effective
transverse loading acting on the beam. Note that the vertical section force V (x, t) is
not the section shear force in the usual sense because it is not acting normal to the
elastic axis.

17-4 BEAM FLEXURE: INCLUDING VISCOUS DAMPING

In the preceding formulations of the partial differential equations of motion for
beam-type members, no damping was included. Now distributed viscous damping
of two types will be included: (1) an external damping force per unit length as
represented by c(x) in Fig. 8-3 and (2) internal resistance opposing the strain velocity
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as represented by the second parts of Eqs. (8-8) and (8-9). The first of these requires
that a transverse force opposing velocity

fD(x, t) dx = c(x)
∂v(x, t)

∂t
dx (17-11)

be added to the element free body in Fig. 17-1b, the second requires that the section
moment expression in Eq. (17-7) be changed to the form of Eq. (8-9), i.e.,

M (x, t) = EI(x)

[
∂2v(x, t)

∂x2
+ a1

∂3v(x, t)

∂x2 ∂t

]
(17-12)

in which a1 is the stiffness proportionality factor defined previously for Rayleigh
damping. Making these changes, the derivation procedure applied in Section 17-2
leads finally to

∂2

∂x2

[
EI(x)

(
∂2v(x, t)

∂x2
+ a1

∂3v(x, t)

∂x2 ∂t

)]
+m(x)

∂2v(x, t)

∂t2

+ c(x)
∂v(x, t)

∂t
= p(x, t) (17-13)

If in addition to the above two forms of viscous damping, one included at the
same time axial-force effects, the left hand side of this equation would also contain
the term ∂

∂x

[
N (x) ∂v(x,t)

∂x

]
shown in Eq. (17-10).

17-5 BEAM FLEXURE: GENERALIZED SUPPORT
EXCITATIONS

As discussed previously in Part One, SDOF Systems, and Part Two, MDOF
Systems, structural and mechanical systems are often excited dynamically through
support motions rather than by applied external loadings, e.g., piping systems in a
nuclear power plant subjected to support motions at their connections to containment
buildings and heavy equipment, which in turn are responding to earthquake ground
motion inputs at their supports. While the practical analysis of such complex systems,
as discussed in Chapter 26, must be carried out using discrete-parameter modeling, it
is instructive here to formulate the partial differential equation governing the response
of a distributed-parameter beam as shown in Fig. 17-1 when dynamically excited by
support excitations.

Assume first that this beam is subjected to specified support motions (translations
and rotations) at the two ends

vt(0, t) = δ1(t)

[
∂vt(x, t)

∂x

]

x=0

= δ3(t)

vt(L, t) = δ2(t)

[
∂vt(x, t)

∂x

]

x=L

= δ4(t)

(17-14)
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L

FIGURE 17-3
Basic beam subject to dynamic support displacements.

x

m(x), EI(x)

δ1 (t)

δ3 (t)

δ4 (t)
δ 2 (t)

vt(x, t)

as shown in Fig. 17-3. The superscript “t” has been added to v(x, t) in these equations
to indicate total displacement of the beam’s elastic axis from its original position.
The governing partial differential equation for the viscously-damped case is given by
Eq. (17-13) after removing the term p(x, t) and substituting vt(x, t) for v(x, t). This
modified equation of motion must be solved so as to satisfy the specified geometric
boundary conditions given by Eqs. (17-14). In doing so, it is convenient to express
the beam’s total displacement vt(x, t) as the sum of the displacement which would
be induced by static application of the support motions δ1(t), δ2(t), δ3(t), and δ4(t),
i.e., the so-called quasi-static displacement vs(x, t), plus the additional displacement
v(x, t) due to dynamic inertial and viscous force effects; thus

vt(x, t) = vs(x, t) + v(x, t) (17-15)

Substituting this equation into the modified form of Eq. (17-13) and transferring all
terms associated with the quasi-static displacement vs(x, t) and its derivatives to the
right hand side lead to

∂2

∂x2

[
EI(x)

(
∂2v(x, t)

∂x2
+ a1

∂3v(x, t)

∂x2 ∂t

)]
+m(x)

∂2v(x, t)

∂t2

+ c(x)
∂v(x, t)

∂t
= peff(x, t) (17-16)

in which

peff(x, t) ≡− ∂2

∂x2

[
EI(x)

(
∂2vs(x, t)

∂x2
+ a1

∂3vs(x, t)

∂x2 ∂t

)]

−m(x)
∂2vs(x, t)

∂t2
− c(x)

∂vs(x, t)

∂t
(17-17)
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represents the effective distributed dynamic loading caused by the prescribed support
excitations. Note that because vs(x, t) is produced by static support displacements
only, the first term on the right hand side of Eq. (17-17) equals zero; therefore, the
effective loading can be simplified to the form

peff(x, t) = − ∂2

∂x2

[
a1 EI(x)

∂3vs(x, t)

∂x2 ∂t

]
−m(x)

∂2vs(x, t)

∂t2

− c(x)
∂vs(x, t)

∂t
(17-18)

The quantity vs(x, t), which is the source of the effective loading, was previously
defined as the quasi-static displacement produced by the four specified support dis-
placements δ1(t), δ2(t), δ3(t), and δ4(t); therefore, it can be expressed in the form

vs(x, t) =

4∑

i=1

ψψψi(x) δi(t) (17-19)

where each static influence function ψψψi(x) (i = 1, 2, 3, 4) is the beam’s deflection
caused by a unit static displacement in the corresponding coordinate δi. If the beam
is uniform, i.e., EI(x) = constant, these influence functions are the cubic Hermitian
polynomials given by Eqs. (10-16a) to (10-16d). Substituting Eq. (17-19) into Eq. (17-
18) gives

peff(x, t) = −
4∑

i=1

{
m(x) ψψψi(x) δ̈i(t) + c(x) ψψψi(x) δ̇i(t)

+
∂2

∂x2

[
a1 EI(x) δ̇i(t)

∂2ψψψi(x)

∂x2

]}
(17-20)

In most practical cases, the damping contributions to the effective loading are small
compared with the inertial contribution; thus, the last two terms in Eq. (17-20) are
usually omitted. This allows the effective loading to be expressed in its approximate
form

peff(x, t)
.
= −

4∑

i=1

m(x) ψψψi(x) δ̈i(t) (17-21)

Substituting this equation into Eq. (17-16), one can solve for v(x, t) which when added
to vs(x, t) given by Eq. (17-19) yields the total displacement vt(x, t). Noting that
vs(x, t) by itself satisfies the specified geometric boundary conditions of Eqs. (17-14),
the end conditions v(0, t), v(L, t),

[
∂v(x, t)

/
∂x
]
x=0

, and
[
∂v(x, t)

/
∂x
]
x=L

must
all be set equal to zero when solving Eq. (17-16).
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Next consider the beam in Fig. 17-1 when subjected to only two specified end
motions as given by

vt(0, t) = δ1(t)
[
∂vt(x, t)

/
∂x
]
x=0

= δ3(t) (17-22)

Assuming its end at x = L to be totally free, the quasi-static displacement of the
resulting cantilever beam is

vs(x, t) = 1 δ1(t) + x δ3(t) (17-23)

which yields the approximate effective loading

peff(x, t)
.
= −m(x)

[
1 δ̈1(t) + x δ̈3(t)

]
(17-24)

Since vs(x, t) as given by Eq. (17-23) totally satisfies both geometric boundary condi-
tions at x = 0 as specified in Eqs. (17-22), one must impose the conditions v(0, t) = 0

and
[
∂v(x, t)

/
∂x
]
x=0

= 0 when solving Eq. (17-16) for v(x, t). In addition, one
must satisfy the zero moment and shear boundary conditions at the free end, i.e., the
conditions

[
∂2v(x, t)

/
∂x2

]
x=L

= 0
[
∂3v(x, t)

/
∂x3

]
x=L

= 0 (17-25)

Since no flexural deformations are imposed in this cantilever beam due to the pseudo-
static displacements of Eq. (17-23), stresses are produced only by the dynamic response
v(x, t).

Finally, consider the above cantilever beam subjected to only one specified
support motion vt(0, t) = δ1(t). In this simple case, vs(x, t) = δ1(t), peff(x, t)

.
=

−m(x) δ̈1(t), and the boundary conditions which must be imposed on the solution of
Eq. (17-16) are v(0, t) = 0,

[
∂v(x, t)

/
∂x
]
x=0

= 0,
[
∂2v(x, t)

/
∂x2

]
x=L

= 0, and[
∂3v(x, t)

/
∂x3

]
x=L

= 0.

17-6 AXIAL DEFORMATIONS: UNDAMPED

The preceding discussions in Sections 17-2 through 17-5 have been concerned
with beam flexure, in which case the dynamic displacements are in the direction
transverse to the elastic axis. While this bending mechanism is the most common type
of behavior encountered in the dynamic analysis of one-dimensional members, some
important cases involve only axial displacements, e.g., a pile subjected to hammer
blows during the driving process. The equations of motion governing such behavior
can be derived by a procedure similar to that used in developing the equations of
motion for flexure. However, derivation is simpler for the axial-deformation case,
since equilibrium need be considered only in one direction rather than two. In this
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FIGURE 17-4

Bar subjected to dynamic axial deformations: ( ) bar properties

and coordinates; ( ) forces acting on differential element.
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formulation, damping is neglected because it usually has little effect on the behavior
in axial deformation.

Consider a straight bar for which the axial stiffness EA and mass per unit
length m vary along its length as indicated in Fig. 17-4a. If it is subjected to an
arbitrary external distributed axial loading q(x, t), an internal time-varying axial-
force distribution N (x, t) will be produced as indicated on the differential element of
the beam in Fig. 17-4b. Note that the underlined N (x, t) is used in this formulation
to distinguish the time-varying axial force from the time-invariant axial force N (x)

(without underline) used previously in Section 17-3. Summing the forces on this
element in the x-direction, one obtains

N (x, t) + fI(x, t) dx−
[

N (x, t) +
∂N (x, t)

∂x
dx

]
− q(x, t) dx = 0 (17-26)

in which fI(x, t) is the inertial force per unit length given by

fI(x, t) = m(x)
∂2u(x, t)

∂t2
(17-27)

where u(x, t) is the displacement in the axial direction.

Substituting Eq. (17-27) and the axial force-deformation relationship

N (x, t) = σ(x, t) A(x) = ε(x, t) EA(x) =
∂u(x, t)

∂x
EA(x) (17-28)
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into Eq. (17-26), one obtains the partial differential equation of axial motion

m(x)
∂2u(x, t)

∂t2
− ∂

∂x

[
EA(x)

∂u(x, t)

∂x

]
= q(x, t) (17-29)

Usually, the external axial loading consists only of end loads, in which case the right
hand side of this equation would be zero. However, when solving Eq. (17-29) the
boundary conditions imposed at x = 0 and x = L must be satisfied.

PROBLEMS

17-1. Using Hamilton’s principle, Eq. (16-9), determine the differential equation of
motion and boundary conditions of the uniform cantilever beam loaded as shown
in Fig. P17-1. Assume small deflection theory and neglect shear and rotary
inertia effects.

FIGURE P17-1

x EI , m

p(x, t)

N (constant)

L

A
B

MB(t)

17-2. Using Hamilton’s principle, determine the differential equation of motion and
boundary conditions of the simply supported uniform pipe (shown in Fig. P17-2)
through which fluid of density ρ and zero viscosity flows with constant velocity
vf relative to the pipe. Flexible moment connections are provided at each end of
the pipe. Does the presence of the flowing fluid provide damping in the system?
If the same pipe is supported as a cantilever member discharging the fluid at its
free end, can fluid damping of the system be present (neglect material damping
in the pipe)? Let A equal the inside cross-sectional area of the pipe. Assume
small deflection theory and neglect shear and rotary effects.

17-3. As shown in Fig. P17-3, a concertrated lumped mass m1 traveling to the right
with constant velocity v crosses a simply supported uniform beam during the
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time interval 0 < t < L/v. Determine the governing equations of motion for
this system using Lagrange’s equation of motion, Eqs. (16-15), and state the
required boundary and initial conditions that must be imposed to obtain the
vertical forced-vibration response of the simple beam. Assume small deflection
theory and neglect shear and rotary effects.



CHAPTER

18
ANALYSIS

OF
UNDAMPED

FREE
VIBRATION

18-1 BEAM FLEXURE: ELEMENTARY CASE

Following the same general approach employed with discrete-parameter sys-
tems, the first step in the dynamic-response analysis of a distributed-parameter system
is to evaluate its undamped mode shapes and frequencies. Because of the mathematical
complications of treating systems having variable properties, the following discussion
will be limited to beams having uniform properties along their lengths and to frames
assembled from such members. This is not a serious limitation, however, because
it is more efficient to treat any variable-property systems using discrete-parameter
modeling.

First, let us consider the elementary case presented in Section 17-2 with EI(x)
and m(x) set equal to constants EI and m, respectively. As shown by Eq. (17-7), the
free-vibration equation of motion for this system is

EI
∂4 v(x, t)

∂x4
+m

∂2 v(x, t)

∂t2
= 0 (18-1)

377
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After dividing by EI and adopting the prime and dot notations to indicate partial
derivatives with respect to x and t, respectively, this equation becomes

viv(x, t) +
m

EI
v̈(x, t) = 0 (18-2)

Sincem/EI is a constant, one form of solution of this equation can be obtained easily
by separation of variables using

v(x, t) = φ(x)Y (t) (18-3)

which indicates that the free-vibration motion is of a specific shape φ(x) having a
time-dependent amplitude Y (t). Substituting this equation into Eq. (18-2) gives

φiv(x)Y (t) +
m

EI
φ(x) Ÿ (t) = 0 (18-4)

Dividing by φ(x)Y (t), the variables can be separated as follows:

φiv(x)

φ(x)
+

m

EI

Ÿ (t)

Y (t)
= 0 (18-5)

Because the first term in this equation is a function of x only and the second term is
a function of t only, the entire equation can be satisfied for arbitrary values of x and t
only if each term is a constant in accordance with

φiv(x)

φ(x)
= − m

EI

Ÿ (t)

Y (t)
= a4 (18-6)

where the single constant involved is designated in the form a4 for later mathematical
convenience. This equation yields two ordinary differential equations

Ÿ (t) + ω2 Y (t) = 0 (18-7a)

φiv(x) − a4 φ(x) = 0 (18-7b)

in which

ω2 ≡ a4EI

m

(
i.e., a4 =

ω2m

EI

)
(18-8)

The first of these [Eq. (18-7a)] is the familiar free-vibration expression for an undamped
SDOF system having the solution [see Eq. (2-31)]

Y (t) = A cosωt+B sinωt (18-9)

in which constants A and B depend upon the initial displacement and velocity condi-
tions, i.e.,

Y (t) = Y (0) cosωt+
Ẏ (0)

ω
sinωt (18-10)
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The second equation can be solved in the usual way by introducing a solution of the
form

φ(x) = G exp(sx) (18-11)

leading to
(s4 − a4) G exp(sx) = 0 (18-12)

from which
s1,2 = ± ia s3,4 = ± a (18-13)

Incorporating each of these roots into Eq. (18-11) separately and adding the resulting
four terms, one obtains the complete solution

φ(x) = G1 exp(iax) +G2 exp(−iax) +G3 exp(ax) +G4 exp(−ax) (18-14)

in which G1, G2, G3, and G4 must be treated as complex constants. Expressing the
exponential functions in terms of their trigonometric and hyperbolic equivalents and
setting the entire imaginary part of the right hand side of this equation to zero lead to

φ(x) = A1 cos ax+A2 sin ax+A3 cosh ax+A4 sinh ax (18-15)

where A1, A2, A3, and A4 are real constants which can be expressed in terms of the
components of G1, G2, G3, and G4. These real constants must be evaluated so as
to satisfy the known boundary conditions (displacement, slope, moment, or shear)
at the ends of the beam. Taking this action, any three of the four constants can be
expressed in terms of the fourth and an expression (called the frequency equation) can
be obtained from which the frequency parameter a is determined. The fourth constant
cannot be evaluated directly in a free-vibration analysis because it represents an
arbitrary amplitude of the shape function φ(x). However, having given it a numerical
value, say unity, the values of Y (0) and Ẏ (0) in Eq. (18-10) must be set consistent
with it so that the initial conditions on v(x, t) given by Eq. (18-3) are satisfied, i.e.,
Y (0) = v(x, 0)/φ(x) and Ẏ (0) = v̇(x, 0)/φ(x).

The above described free-vibration analysis procedure will now be illustrated
through a series of examples as follows:

Example E18-1. Simple Beam Considering the uniform simple beam
shown in Fig. E18-1a, its four known boundary conditions are

φ(0) = 0 M (0) = EI φ′′(0) = 0 (a)

φ(L) = 0 M (L) = EI φ′′(L) = 0 (b)
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Making use of Eq. (18-15) and its second partial derivative with respect to x,
Eqs. (a) can be written as

φ(0) = A1 cos 0 +A2 sin 0 +A3 cosh 0 +A4 sinh 0 = 0

φ′′(0) = a2 (−A1 cos 0 −A2 sin 0 +A3 cosh 0 +A4 sinh 0) = 0
(c)

from which one obtains (A1 + A3) = 0 and (−A1 + A3) = 0; hence, A1 =

A3 = 0. Similarly, Eqs. (b) can be written in the form

φ(L) = A2 sin aL+A4 sinh aL = 0

φ′′(L) = a2 (−A2 sin aL+A4 sinh aL) = 0
(d)

after setting A1 and A3 equal to zero. Adding these two equations, after
cancelling out a2, gives

2A4 sinh aL = 0 (e)

thus A4 = 0 since sinh aL 6= 0. Only A2 remains as a nonzero constant,
therefore

φ(x) = A2 sin ax (f)
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Excluding the trivial solution A2 = 0, boundary condition φ(L) = 0 can be
satisfied only when

sin aL = 0 (g)

which is the system frequency equation; it requires that

a = nπ/L n = 0, 1, 2, · · · (h)

Substituting this expression into Eq. (18-8) and taking the square root of both
sides yield the frequency expression

ωn = n2 π2

√
EI

mL4
(i)

The corresponding vibration mode shapes are now given by Eq. (f) upon substi-
tution of Eq. (h) for the frequency parameter a in the sine term; thus, ignoring
the trivial case n = 0, one obtains

φn(x) = A2 sin
nπ

L
x n = 1, 2, · · · (j)

The first three of these mode shapes are shown in Fig. E18-1b along with their
circular frequencies.

Example E18-2. Cantilever Beam The free-vibration analysis of the
simple beam in the previous example was not difficult because its mode shapes
were defined by only one term in the shape-function expression of Eq. (18-15).
To provide a more representative example of the analysis procedure requiring
all four terms, consider the cantilever beam shown in Fig. E18-2a. Its four
boundary conditions to be satisfied are

φ(0) = 0 φ′(0) = 0 (a)

M (L) = EI φ′′(L) = 0 V (L) = EI φ′′′(L) = 0 (b)

Substituting Eq. (18-15) and its derivative expressions into these equations gives

φ(0) = (A1 cos 0 +A2 sin 0 +A3 cosh 0 +A4 sinh 0) = 0

φ′(0) = a (−A1 sin 0 +A2 cos 0 +A3 sinh 0 +A4 cosh 0) = 0

φ′′(L) = a2 (−A1 cos aL−A2 sin aL+A3 cosh aL+A4 sinh aL) = 0

φ′′′(L) = a3 (A1 sin aL−A2 cos aL+A3 sinh aL+A4 cosh aL) = 0
(c)
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Making use of cos 0 = cosh 0 = 1 and sin 0 = sinh 0 = 0, the first two of these
equations yield A3 = −A1 and A4 = −A2. Substituting these equalities into
the last two equations, changing all signs, and placing the resulting expressions
in matrix form, one obtains

[
(cos aL+ cosh aL) (sin aL+ sinh aL)

(sinh aL− sin aL) (cos aL+ cosh aL)

]{
A1

A2

}
=

{
0

0

}
(d)

For coefficients A1 and A2 to be nonzero, the determinant of the square matrix
in this equation must equal zero, thus giving the frequency equation

sinh2 aL− sin2 aL− cos2 aL− 2 cosh aL cos aL− cosh2 aL = 0 (e)
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which reduces to the form

cos aL = −(1/ cosh aL) (f)

The solution of this transcendental equation provides the values of aL
which represent the frequencies of vibration of the cantilever beam. Figure E18-
2c shows a plot of functions cos aL and−(1/ cosh aL); their crossing points give
the values of aL which satisfy Eq. (f). Note that as the function −(1/ cosh aL)

approaches the axis asymptotically, the crossing points approach the values of
aL given by cos aL = 0; therefore, the roots of Eq. (f) higher than the third can
be obtained within at least four-place accuracy using the approximate relation

(aL)n
.
=
π

2
(2n− 1) n = 4, 5, 6, · · · (g)

Introducing the values of aL given by Eqs. (f) and (g) into Eq. (18-8) the
corresponding circular frequencies can be obtained as shown by

ωn = (aL)2n

√
EI

mL4
n = 1, 2, 3, · · · (h)

Either of Eqs. (d) can now be employed to express coefficient A2 in terms
of A1; the first gives

A2 = − (cos aL+ cosh aL)

(sin aL+ sinh aL)
A1 (i)

This result along with the previously obtained conditions that A3 = −A1 and
A4 = −A2 allows the mode-shape expression of Eq. (18-15) to be written in
the form

φ(x) = A1

[
cos ax− cosh ax− (cos aL+ cosh aL)

(sin aL+ sinh aL)
(sin ax− sinh ax)

]
(j)

Substituting separately the frequency-equation roots for aL into this expression,
one obtains the corresponding mode-shape functions. Plots of these functions
for the first three modes are shown in Fig. E18-2b along with their corresponding
circular frequencies.

Example E18-3. Cantilever Beam with Rigid Mass at Free End In
this example the same uniform cantilever beam of Example E18-2 is used but
a rigid lumped mass m1 having a rotary mass moment of inertia j1 is attached
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by fixed connection to its free end as shown in Fig. E18-3a. The boundary
conditions at the beam’s fixed end are the same as before; however, the moment
and shear are no longer equal to zero at its other end due to the presence of
the lumped mass. These internal force components are shown on the free-
body diagram in Fig. E18-3b along with the translational and rotary inertial
force components m1 v̈(L, t) and j1 v̈′(L, t), respectively. Noting that under
free-vibration conditions, as given by Eqs. (18-3) and (18-9),

v̈(L, t) = φ(L) Ÿ (t) = −ω2 φ(L)Y (t)

v̈′(L, t) = φ′(L) Ÿ (t) = −ω2 φ′(L)Y (t)
(a)

force and moment equilibrium of the rigid mass requires that boundary condi-
tions

EI φ′′′(L) = −ω2 φ(L)m1

EI φ′′(L) = −ω2 φ′(L) j1
(b)

be satisfied. Using these relations instead of the previous conditions φ′′(L) =

φ′′′(L) = 0, the free-vibration analysis leading to mode shapes and frequencies
can proceed exactly as outlined in Example E18-2.

Example E18-4. Two-Member Frame To illustrate the free-vibration
analysis procedure for multimember systems, consider the two-member frame
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shown in Fig. E18-4a. Each member has uniform properties as indicated;
however, they may differ from one member to the other. Because of its fixed
base, the vertical column must satisfy the two conditions: φ1(0) = φ′1(0) = 0.
Neglecting axial distortions, the following three beam-support conditions must
be satisfied for the upper horizontal member:

φ2(0) = 0 φ2(L2) = 0 φ′′2(L2) =
M (L2)

EI2
= 0 (a)

Continuity of slope and moment equilibrium at the joint between the two mem-
bers provides two additional conditions

φ′1(L1) = φ′2(0) EI1 φ
′′
1(L1) = EI2 φ

′′
2(0) (b)

Finally, equilibrium of the shear force at the top of the column with the inertial
force developed in the upper member by sidesway motion Fig. E18-4b provides
the eighth condition

EI1 φ
′′′
1 (L1) +m2 L2 ω

2 φ1(L1) = 0 (c)

in which m2 represents the mass per unit length of the horizontal beam.

Expressing each of φ1(x1) and φ2(x2) in the form of Eq. (18-15), taking
their partial derivatives as needed, and substituting the results into Eqs. (a),
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(b), and (c), one obtains eight equations containing the eight unknown mode-
shape coefficients (four for each beam segment). Writing these equations in
matrix form and setting the determinant of the resulting 8 × 8 square matrix
to zero, one obtains the frequency equation of the system containing the single
parameter a of Eq. (18-6). Finding the roots of this equation and substituting
each one separately back into the matrix equation, any seven of the eight mode-
shape coefficients for the corresponding mode can be evaluated in terms of
the eighth. This final coefficient remains as an arbitrary measure of the mode
amplitude. Finally, each root of the frequency equation is substituted separately
into Eq. (18-8) to find the corresponding circular frequency.

The above example shows that a free-vibration analysis by the distributed-
parameter procedure can lead to a sizable computational problem even for a simple
two-member frame. While in the past it has been found useful to use such solutions for
appropriate systems, discrete-parameter forms of solutions are now more convenient
and more commonly used.

18-2 BEAM FLEXURE: INCLUDING AXIAL-FORCE EFFECTS

As was discussed previously in Chapter 8, axial forces acting in a flexural
element may have a very significant influence on the vibration behavior of the member,
resulting generally in modifications of both frequencies and mode shapes. When
considering free vibrations of a prismatic member having uniform physical properties,
the equation of motion, including the effect of a time-invariant uniform axial force
throughout its length, is [from Eq. (17-10)]

EI
∂4 v(x, t)

∂x4
+ N

∂2 v(x, t)

∂x2
+m

∂2 v(x, t)

∂t2
= 0 (18-16)

Separating variables as before using the solution of Eq. (18-3) leads to

φiv(x)

φ(x)
+

N
EI

φ′′(x)

φ(x)
= − m

EI

Ÿ (t)

Y (t)
= a4 (18-17)

from which two independent equations are obtained as given by

Ÿ (t) + ω2 Y (t) = 0 (18-18a)

φiv(x) + g2 φ′′(x) − a4 φ(x) = 0 (18-18b)

in which ω2 is again defined by Eq. (18-8) and g2 is given by

g2 ≡ N
EI

(18-19)
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Equation (18-18a) is the same time-dependent equation obtained before [Eq. (18-
7a)], showing that a uniformly distributed axial force does not affect the simple-
harmonic character of the free vibrations; however, it does affect the mode shapes and
frequencies due to the presence of the term g2 φ′′(x) in Eq. (18-18b). This equation
can be solved by the introduction of Eq. (18-11) giving

(s4 + g2 s2 − a4)G exp(sx) = 0 (18-20)

Cancelling the termG exp(sx) and solving the remaining equation for s yield the four
roots

s1,2 = ± iδ s3,4 = ± ε (18-21)

where

δ ≡
√(

a4 +
g4

4

)1/2

+
g2

2
ε ≡

√(
a4 +

g4

4

)1/2

− g2

2
(18-22)

Introducing separately each of the four roots given in Eq. (18-21) into Eq. (18-11),
adding the resulting four terms to get the complete solution for φ(x) in exponential
form, converting the exponential functions in terms of their trigonometric and hy-
perbolic equivalents, and setting the entire imaginary part of φ(x) equal to zero lead
to

φ(x) = D1 cos δx+D2 sin δx+D3 cosh εx+D4 sinh εx (18-23)

This equation defines the shape of the vibrating beam segment for any value of axial
force which might be specified. The coefficientsD1,D2,D3, andD4 can be evaluated
by exactly the same procedure presented in Section 18-1 for the system without axial
force. In fact, it is evident that when the axial force P equals zero, so that g = 0, then
δ = ε = a in which case Eq. (18-23) is identical to Eq. (18-15).

Retaining the constant axial force N, Eq. (18-23) can be used to find the static
buckling loads and corresponding shapes. For this nonvibrating case where ω = 0

so that a = 0, δ = g, and ε = 0, the four roots of Eq. (18-21) are s1,2 = ± ig and
s3,4 = 0 which lead to the complete solution

φ(x) = D1 cos gx+D2 sin gx+D3 x+D4 (18-24)

in which the last two terms correspond to the zero values of s3 and s4. Following
the same procedure as for finding the frequency equation in the vibratory case, one
obtains an equation containing the single unknown parameter g. The roots of this
equation give the critical values of N, i.e., Ncr. In a static buckling-load analysis only
the first buckling mode is important. The shape of this mode is obtained using the
lowest critical value of N in exactly the same way the lowest value of the frequency
parameter a was used in finding the first vibratory mode shape.
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18-3 BEAM FLEXURE: WITH DISTRIBUTED ELASTIC SUPPORT

Consider the same uniform beam segment treated in Section 18-1, but in addition
to having prescribed support conditions at its ends assume it to be supported trans-
versely by distributed elastic springs of the type shown in Fig. 8-3d where k(x) = k.
The free-vibration equation of motion for this system is given by Eq. (18-1) with
one term added to take care of the transverse force provided by the distributed elastic
support, i.e., by

EI
∂4 v(x, t)

∂x4
+m

∂2 v(x, t)

∂t2
+ k v(x, t) = 0 (18-25)

Separating variables as before using the solution of Eq. (18-3) leads to

φiv(x)

φ(x)
+

k

EI
= − m

EI

Ÿ (t)

Y (t)
= a4 (18-26)

giving two independent equations

Ÿ (t) + ω2 Y (t) = 0 (18-27a)

φiv(x) − b4 φ(x) = 0 (18-27b)

where

ω2 ≡ a4EI

m
b4 ≡ a4 − k

EI
(18-28)

Since Eq. (18-27b) is in the identical form of Eq. (18-7b), it has the same type of
solution, namely

φ(x) = B1 cos bx+B2 sin bx+B3 cosh bx+B4 sinh bx (18-29)

Following the procedure of Section 18-1, the same frequency equation would be
obtained for a prescribed set of boundary conditions, but it would now contain the
frequency parameter b, as defined by the second of Eqs. (18-28), rather than the
parameter a. Therefore, the numerical values of b would be exactly the same as those
obtained previously for parameter a. For example, considering the uniform cantilever
beam of Fig. E18-3 having a uniform distributed elastic support over its entire length of
spring constant k per unit length, its frequency equation would yield (bL)1 = 1.875,
(bL)2 = 4.694, and (bL)3 = 7.855 which are identical to the correponding values of
aL in Example E18-2. The frequencies are now higher, however, in accordance with
Eqs. (18-28), i.e.,

ωn =

[
(bL)4n

EI

mL4
+

k

m

]1/2

(18-30)

Also, since Eqs. (18-15) and (18-29) are of identical form, the corresponding mode
shapes are exactly the same.
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18-4 BEAM FLEXURE: ORTHOGONALITY OF
VIBRATION MODE SHAPES

The vibration mode shapes derived for beams with distributed properties have
orthogonality relationships equivalent to those defined previously for the discrete-
parameter systems, which can be demonstrated in essentially the same way — by
application of Betti’s law. Consider the beam shown in Fig. 18-1. For this discussion,
the beam may have arbitrarily varying stiffness and mass along its length, and it could
have arbitrary support conditions, although only simple supports are shown. Two
different vibration modes, m and n, are shown for the beam. In each mode, the
displaced shape and the inertial forces producing the displacements are indicated.

Betti’s law applied to these two deflection patterns means that the work done by
the inertial forces of mode n acting on the deflection of mode m is equal to the work
of the forces of mode m acting on the displacement of mode n; that is,

∫ L

0

vm(x) fIn
(x) dx =

∫ L

0

vn(x) fIm
(x) dx (18-31)

Expressing these in terms of the modal shape functions shown in Fig. 18-1 gives

Ym(t)Yn(t)ω2
n

∫ L

0

φm(x)m(x)φn(x) dx

= Ym(t)Yn(t)ω2
m

∫ L

0

φn(x)m(x)φm(x) dx (18-32)

which may be rewritten

(ω2
n − ω2

m)

∫ L

0

φm(x)φn(x)m(x) dx = 0 (18-33)

Since the frequencies of these two modes are different, their mode shapes must satisfy

FIGURE 18-1

Two modes of vibration for the same beam.
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the orthogonality condition

∫ L

0

φm(x)φn(x)m(x) dx = 0 ωm 6= ωn (18-34)

which is clearly the distributed-parameter equivalent of the discrete-parameter orthog-
onality condition of Eq. (11-38a). If the two modes have the same frequency, the
orthogonality condition does not apply, but this condition does not occur often in
ordinary structural problems.

A second orthogonality condition, involving the stiffness property rather than the
mass as a weighting parameter, can be derived for the distributed-parameter systems
as it was earlier for the discrete-parameter case. For a nonuniform beam, the equation
of motion in free vibrations [see Eq. (17-7)] is

∂2

∂x2

[
EI(x)

∂2 v(x, t)

∂x2

]
+m(x)

∂2 v(x, t)

∂t2
= 0 (18-35)

In accordance with Eqs. (18-3) and (18-9), the harmonic motion in the nth mode can
be written

vn(x, t) = φn(x) ρn sin(ωn t+ φn) (18-36)

where ρn = (A2
n +B2

n)1/2 and φn is its phase angle. Substituting this expression into
Eq. (18-35) and cancelling the common factor ρn sin(ωn t+ φn), one obtains

ω2
nm(x)φn(x) =

d2

dx2

[
EI(x)

d2 φn(x)

dx2

]
(18-37)

Substituting this relation into both sides of Eq. (18-32) and cancelling the common
term Ym(t)Yn(t) give

(ω2
n − ω2

m)

∫ L

0

φm(x)
d2

dx2

[
EI(x)

d2 φn(x)

dx2

]
dx = 0 (18-38)

Since the frequencies are different, modes m and n must satisfy the orthogonality
condition ∫ L

0

φm(x)
d2

dx2

[
EI(x)

d2 φn(x)

dx2

]
dx = 0 (18-39)

A more convenient symmetric form of this orthogonality relationship can be obtained
by integrating twice by parts resulting in

φm(x) Vn(x)

∣∣∣∣
L

0

− φ′m(x) Mn(x)

∣∣∣∣
L

0

+

∫ L

0

φ′′m(x)φ′′n(x)EI(x) dx = 0

ωm 6= ωn (18-40)
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The first two terms in this equation represent the work done by the boundary vertical
section forces of moden acting on the end displacements of modem and the work done
by the end moments of mode n on the corresponding rotations of mode m. For the
standard clamped-, hinged-, or free-end conditions, these terms will vanish. However,
they contribute to the orthogonality relationship if the beam has elastic supports or if
it has a lumped mass at its end; therefore they must be retained in the expression when
considering such cases.

18-5 FREE VIBRATIONS IN AXIAL DEFORMATION

The analysis of free vibrations associated with axial motions of a one-
dimensional member can be carried out in a manner similar to the case of flexu-
ral vibrations. Considering a prismatic member having uniform properties along its
length, the free-vibration equation of motion is [see Eq. (17-29)]

EA
∂2 u(x, t)

∂x2
−m

∂2 u(x, t)

∂t2
= 0 (18-41)

Using the solution
u(x, t) = φ(x)Y (t) (18-42)

and separating the variables, Eq. (18-41) can be written in the form

φ
′′
(x)

φ (x)
=

m

EA

Ÿ (t)

Y (t)
= −c2 (18-43)

yielding two separate differential equations

Ÿ (t) + ω2 Y (t) = 0 (18-44a)

φ
′′
(x) + c2 φ(x) = 0 (18-44b)

where
ω2 ≡ c2

EA

m
(18-45)

Equation (18-44a) is the same as Eq. (18-7a) and has the harmonic free-vibration
solution shown by Eq. (18-9). Equation (18-44b) is of identically the same form as
Eq. (18-44a) but with the independent variable being x rather than t. It therefore has
the same type of solution as given by

φ(x) = C1 cos cx+ C2 sin cx (18-46)

in which the coefficients C1 and C2 determine the vibration mode shape. Considering
the two known boundary conditions, one of these can be expressed in terms of the
other and a frequency equation involving parameter c can be obtained.
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Example E18-5. Cantilever Bar Consider the bar of Fig. E18-5a sub-
jected to axial deformations under free-vibration conditions. The two boundary
conditions to be satisfied are

φ(0) = 0 N (L) = EA φ
′
(L) = 0 (a)

Substituting Eq. (18-46) into the first of these equation yields

C1 cos 0 + C2 sin 0 = 0 (b)

showing that C1 = 0. Taking the first derivative of Eq. (18-46) and substituting
the result into the second of Eqs. (a) give

EAC2 c cos cL = 0 (c)

Excluding the trivial solution C2 = 0, the frequency equation is seen to be

cos cL = 0 (d)

from which
cn L =

π

2
(2n− 1) (e)
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The vibrating mode shapes of the rod are thus given by

φn = C2 sin
[π
2

(2n− 1)
π

L

]
n = 1, 2, 3, · · · (f)

where C2 is the arbitrary amplitude. Substituting Eq. (e) into Eq. (18-45), the
corresponding circular frequencies are

ωn = cn

√
EA

m
=
π

2
(2n− 1)

√
EA

mL2
n = 1, 2, 3, · · · (g)

The first three mode shapes and corresponding frequencies are shown in
Fig. E18-5b.

18-6 ORTHOGONALITY OF AXIAL VIBRATION MODES

The axial vibration mode shapes have orthogonality properties which are entirely
equivalent to those demonstrated earlier for the flexural vibration modes. In fact, the
orthogonality of the axial mode shapes with respect to the mass distribution can be
derived using Betti’s law in the same way as for the flexural modes with the equivalent
result: ∫ L

0

φm(x)φn(x)m(x) dx = 0 (18-47)

The orthogonality relationship with respect to the axial stiffness property can be
derived from the homogeneous form of the equation of motion [Eq. (17-29)] in which
the harmonic time variation of free vibrations has been substituted. In other words,
when the nth-mode displacements are expressed as

un(x, t) = φn(x) ρn sin(ωnt+ φn) (18-48)

and this displacement expression is substituted into the homegeneous form of Eq. (17-
29), one obtains

ω2
nm(x)φn(x) = − d

dx

[
EA(x)

dφn

dx

]
(18-49)

Thus the inertial-force term in the orthogonality relationship of Eq. (18-47) can be
replaced by the equivalent axial elastic-force term, with the result

∫ L

0

φm(x)
d

dx

[
EA(x)

dφn(x)

dx

]
dx = 0 (18-50)

Integrating by parts then leads to the more convenient symmetric form

φm(x) Nn(x)

∣∣∣∣
L

0

−
∫ L

0

φ
′
m(x)φ

′
n(x)EA(x) dx = 0 ωm 6= ωn (18-51)
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The first term in this equation represents the work done by the boundary axial forces
of mode n acting on the end displacements of mode m; this term will vanish if the
bar has the standard free- or fixed-end conditions but may have to be included in more
complex situations.

PROBLEMS

18-1. Evaluate the fundamental frequency for the cantilever beam with a mass at the
end shown in Fig. E18-3, if the end lumped mass m1 = 2mL and if its mass
moment of inertia j1 = 0. Plot the shape of this mode, evaluating at increments
L/5 along the span.

18-2. Evaluate the fundamental frequency for the frame of Fig. E18-4 if the two
members are identical, with properties L, EI , m. Plot the shape of this mode,
evaluating at increments L/4 along each span.

18-3. Evaluate the fundamental flexural frequency of the beam of Fig. P18-1 and plot
its mode shape, evaluated at increments L/5 along its length. Note that the
lowest frequency of this unstable structure is zero; the frequency of interest is
the lowest nonzero value.

FIGURE P18-1L

m , EI = uniform

18-4. The uniform beam of Fig. P18-2 is continuous over two spans as shown. Evaluate
the fundamental flexural frequency of this structure and plot its mode shape at
increments L/2 along the two spans.

FIGURE P18-2L 2L

m , EI = uniform

18-5. A reinforced concrete beam having a cross section 8 in wide by 18 in deep
is simply supported with a span of 28 ft. Assuming that the modulus of the
material is 3 × 106 lb/in2 and that its unit weight is 150 lb/ft3, evaluate the
frequencies of its first five vibration modes neglecting shear distortion and rotary
inertia.

18-6. Evaluate the fundamental frequency of axial vibration of the structure of
Fig. E18-3 if the end lumped mass is m1 = 2mL and if the cross-sectional
area of the beam isA. Plot the shape of this mode, evaluating at increments L/5
along the span.
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18-7. A column is assembled with two uniform bars, of the same length but having
different properties, as shown in Fig. P18-3. For this structure:

(a) List the four boundary conditions required to evaluate the constants in
deriving the axial vibration frequency equation.

(b) Write the transcendental axial frequency equation, and evaluate the first
mode frequency and mode shape. Plot the mode shape evaluated at
intervals L/3 along its length, normalized to unit amplitude at the free
end.

L

L

FIGURE P18-3

2m

2AE

m

AE





CHAPTER

19
ANALYSIS

OF DYNAMIC
RESPONSE

19-1 NORMAL COORDINATES

The mode-superposition analysis of a distributed-parameter system is entirely
equivalent to that of a discrete-coordinate system once the mode shapes and fre-
quencies have been determined, because in both cases the amplitudes of the modal-
response components are used as generalized coordinates in defining the response of
the structure. In principle an infinite number of these coordinates are available for a
distributed-parameter system since it has an infinite number of modes of vibration, but
in practice only those modal components need be considered which provide significant
contributions to the response. Thus the problem is actually converted into a discrete-
parameter form in which only a limited number of modal (normal) coordinates is used
to describe the response.

The essential operation of the mode-superposition analysis is the transforma-
tion from the geometric displacement coordinates to the modal-amplitude or normal
coordinates. For a one-dimensional system, this transformation is expressed as

v(x, t) =

∞∑

i=1

φi(x) Yi(t) (19-1)

which is simply a statement that any physically permissible displacement pattern can
be made up by superposing appropriate amplitudes of the vibration mode shapes for

397
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v(x, t)

FIGURE 19-1
Arbitrary beam displacements represented by 
normal coordinates.

φ1(x)Y1(t)

φ 2(x)Y2 (t)

φ 3(x)Y3(t)

=

+

+

+

etc.

the structure. This principle is illustrated in Fig. 19-1, which shows an arbitrary
displacement of a beam with an overhanging end developed as the sum of a set of
modal components.

The modal components contained in any given shape, such as the top curve
of Fig. 19-1, can be evaluated by applying the orthogonality conditions; usually it
is most convenient to make use of the form involving the mass weighting parameter
[Eq. (18-34)]. To evaluate the contribution of mode n in any arbitrary shape v(x, t),
Eq. (19-1) is multiplied by φn(x) m(x) on both sides and integrated, with the result

∫ L

0

φn(x) m(x) v(x, t) dx =

∞∑

i=1

Yi(t)

∫ L

0

φi(x) m(x) φn(x) dx

= Yn(t)

∫ L

0

φn(x)2 m(x) dx (19-2)

where only one term remains of the infinite series on the far right hand side by virtue
of the orthogonality condition. Hence the expression can be solved directly for the
one remaining amplitude term

Yn(t) =

∫ L

0
φn(x) m(x) v(x, t) dx
∫ L

0
φn(x)2 m(x) dx

(19-3)

which is entirely equivalent to the discrete-parameter expression, Eq. (12-6). Given
the initial beam displacement v(x, 0) and velocity v̇(x, 0), the corresponding modal
amplitude Yn(0) and its velocity Ẏn(0) can be obtained directly from this equation
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and its velocity equivalent, so that the free-vibration response for each mode can be
expressed by Eq. (18-10).

Example E19-1. The uniform bar of length L shown in Fig. E19-1 is
lifted from its right hand support as indicated and then dropped producing a
rotation about its left hand pinned support. Assuming it rotates as a rigid body,
the velocity distribution upon initial impact is

v̇(x, 0) =
x

L
v̇t (a)

where v̇t represents the tip velocity. The displacement at the same time is
v(x, 0) = 0, corresponding to the rigid-body rotation concept.

The nth vibration mode shape for this simple beam is given by

φn(x) = sin
nπ x

L
(b)

Hence the denominator integral of Eq. (19-3) that defines the modal amplitude
is ∫ L

0

φn(x)2 m(x) dx = m

∫ L

0

sin2

(
nπ x

L

)
dx =

mL

2
(c)

The numerator integral of Eq. (19-3) defining the modal amplitude at t = 0

obviously is zero because v(x, 0) is zero, hence Yn(0) = 0 for all modes.
However, taking the first time derivative of the equation, the numerator integral
for the modal velocity is

∫ L

0

φn(x) m(x) v̇(x, 0) dx = m v̇t

∫ L

0

x

L
sin

nπ x

L
dx

= ± mL

nπ
v̇t

{
+ n = odd no.
− n = even no.

(d)

Combining the numerator and denominator integrals, one obtains the initial
normal-coordinate velocity

Ẏn(0) = ± 2 v̇t

nπ
(e)

L

EI, m = constants

Dropping motion

Tip velocity at
impact =

.
vt

FIGURE E19-1
Example of free-vibration 
amplitude analysis.
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Making use of Eq. (18-10), the modal vibration is given by

Yn(t) = ± 2 v̇t

nπ ωn
sinωnt (f)

which when introduced into Eq. (19-1) yields

v(x, t) =

∞∑

n=1

φn(x)

(
± 2 v̇t

nπ ωn
sinωnt

)

=
2 v̇t

π

(
1

ω1
sin

π x

L
sinω1t−

1

2ω2
sin

2π x

L
sinω2t+ · · ·

)
(g)

Note that this analysis assumes that the right hand end of the beam is held in
contact with the support so that v(L, t) = 0 at all times after the impact.

19-2 UNCOUPLED FLEXURAL EQUATIONS OF MOTION:
UNDAMPED CASE

The two orthogonality conditions [Eqs. (18-34) and (18-39) or (18-40)] provide
the means for decoupling the equations of motion for the distributed-parameter system
in the same way that decoupling was accomplished for the discrete-parameter system.
Introducing Eq. (19-1) into the equation of motion [Eq. (17-7)]

∂2

∂x2

[
EI(x)

∂2v(x, t)

∂x2

]
+m(x)

∂2v(x, t)

∂t2
= p(x, t) (19-4)

this normal-coordinate expression leads to
∞∑

i=1

m(x) φi(x) Ÿi(t) +
∞∑

i=1

d2

dx2

[
EI(x)

d2φi(x)

dx2

]
Yi(t) = p(x, t) (19-5)

Multiplying each term by φn(x) and integrating gives

∞∑

i=1

Ÿi(t)

∫ L

0

m(x)φi(x)φn(x) dx+

∞∑

i=1

Yi(t)

∫ L

0

φn(x)
d2

dx2

[
EI(x)

d2φi(x)

dx2

]
dx

=

∫ L

0

φn(x) p(x, t) dx (19-6)

When the two orthogonality relationships are applied to the first two terms, it is evident
that all terms in the series expansions, except the nth, vanish; thus,

Ÿn(t)

∫ L

0

m(x) φn(x)2 dx+ Yn(t)

∫ L

0

φn(x)
d2

dx2

[
EI(x)

d2φn(x)

dx2

]
dx

=

∫ L

0

φn(x) p(x, t) dx (19-7)
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Multiplying Eq. (18-37) by φn(x) and integrating yields
∫ L

0

φn(x)
d2

dx2

[
EI(x)

d2φn(x)

dx2

]
dx = ω2

n

∫ L

0

φn(x)2 m(x) dx (19-8)

Recognizing that the integral on the right hand side of this equation is the generalized
mass of the nth mode [Eqs. (8-14)]

Mn =

∫ L

0

φn(x)2 m(x) dx (19-9)

Eq. (19-8) shows that the second term of Eq. (19-7) is ω2
n MnYn(t); therefore, the

latter equation can be written in the form

Mn Ÿn(t) + ω2
n Mn Yn(t) = Pn(t) (19-10)

where

Pn(t) =

∫ L

0

φn(x) p(x, t) dx (19-11)

is the generalized loading associated with mode shape φn(x).

An equation of the type of Eq. (19-10) can be established for each vibration
mode of the structure, using Eqs. (19-9) and (19-11) to evaluate its generalized mass
and loading, respectively. It should be noted that these expressions are the distributed-
parameter equivalents of the matrix expressions previously derived for the discrete-
parameter systems. Also, it should be noted that they are applicable to beams having
nonuniform properties, if their mode shapes can be defined.

Example E19-2. To illustrate the above mode-superposition analysis pro-
cedure, the dynamic response of a uniform simple beam subjected to a central
step-function loading as shown in Fig. E19-2 will be evaluated.

Determine Mode Shapes and Frequencies: This vibration analysis is
accomplished by substituting into the controlling set of boundary-condition
equations the modal-shape expression [Eq. (18-15)]. For this simple beam, the

L
2

L
2

EI, m = constants

p(t)

p(t)

t

(a)

(b)

P0
FIGURE E19-2
Example of dynamic-response analysis: 
(a) arrangement of beam and load;
(b) applied step-function loading.
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results were found in Example E18-1 to be

φn(x) = sin
nπ x

L
n = 1, 2, · · · (a)

ωn = n2 π2

√
EI

mL4
n = 1, 2, · · · (b)

Compute Generalized Mass and Loading: From Eqs. (19-9) and (19-11),
these quantities are found to be

Mn =

∫ L

0

φn(x)2 m(x) dx = m

∫ L

0

sin2

(
nπ x

L

)
dx =

mL

2
(c)

Pn(t) =

∫ L

0

φn(x) p(x, t) dx = P0 φn

(L
2

)
= αn P0 (d)

where

αn =





1 n = 1, 5, 9, · · ·
−1 n = 3, 7, 11, · · ·

0 n = even no.

Solve the Normal-Coordinate Response Equation: This is exactly the
same equation considered for the discrete-parameter case, i.e.,

Mn Ÿn(t) + ω2
n Mn Yn(t) = Pn(t) (e)

The Duhamel solution of this equation is

Yn(t) =
1

Mn ωn

∫ t

0

Pn(τ) sinωn (t− τ) dτ

=
2αn P0

mLωn

∫ t

0

sinωn (t− τ) dτ =
2αn P0

mLω2
n

(1 − cosωnt) (f)

Evaluate Displacement, Moment and Shear Response: Substituting
Eq. (f) into the normal-coordinate expression, Eq. (19-1), and letting ω2

n =

n4 π4EI
/
mL4, one obtains

v(x, t) =

∞∑

n=1

φn(x) Yn(t) =
2 P0 L

3

π4EI

∞∑

n=1

αn

n4
(1 − cosωnt) sin

nπ x

L
(g)

which can be introduced into

M (x, t) = EI
∂2v(x, t)

∂x2
V (x, t) = EI

∂3v(x, t)

∂x2
(h)
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giving

M (x, t) = −2 P0 L

π2

∞∑

n=1

αn

n2
(1 − cosωnt) sin

nπ x

L
(i)

V (x, t) = −2 P0

π

∞∑

n=1

αn

n
(1 − cosωnt) cos

nπ x

L
(j)

Note that the higher modes contribute an insignificant amount to displacement
due to the position of n4 in Eq. (g); however, their contributions become more
significant for the moment response and even more significant for shear. In other
words, the series in Eq. (j) converges much more slowly with mode number n
than does the series in Eq. (i), which in turn converges much more slowly than
the series in Eq. (g). Therefore, one should be careful when limiting the number
of lower modes in estimating response because proper selection of that number
depends upon the response quantity being evaluated.

When the dynamic response of a one-dimensional distributed-parameter system
is caused by support motions, the effective loading on the structure is given by Eq. (17-
21). The corresponding normal-coordinate load term resulting from each support
acceleration δ̈i(t) is therefore

Pni(t) =

∫ L

0

φn(x) peff,i(x, t) dx = −δ̈i(t)
∫ L

0

m(x) φn(x) ψψψi(x) dx (19-12)

and the total loading is the sum of the contributions from all support accelerations.

19-3 UNCOUPLED FLEXURAL EQUATIONS OF MOTION:
DAMPED CASE

To determine the effect of the normal-coordinate transformation [Eq. (19-1)] on
the damped equation of motion, substitute Eq. (19-1) into Eq. (17-13) to get
∞∑

i=1

m(x) φi(x) Ÿi(t) +
∞∑

i=1

c(x) φi(x) Ẏi(t) +
∞∑

i=1

d2

dx2

[
a1 EI(x)

d2φi(x)

dx2

]
Ẏi(t)

+
∞∑

i=1

d2

dx2

[
EI(x)

d2φi(x)

dx2

]
Yi(t) = p(x, t) (19-13)

Multiplying by φn(x), integrating, and applying the two orthogonality relationships
together with the definitions of generalized mass and generalized loading leads to

Mn Ÿn(t) +

∞∑

i=1

Ẏi(t)

∫ L

0

φn(x)

{
c(x) φi(x) +

d2

dx2

[
a1 EI(x)

d2φi(x)

dx2

]}
dx

+ ω2
n Mn Yn(t) = Pn(t) (19-14)
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Because of the stiffness orthogonality condition [Eq. (18-39)], all terms in the series
involving constant a1 [having dimension of time as defined through Eq. (8-8)] will
be zero, except for the term i = n. With only this term remaining, the modes
are obviously uncoupled as far as the stiffness-proportional damping is concerned.
Coupling will be present, however, due to c(x), unless it takes on a form allowing
only the term i = n to remain in the first series of Eq. (19-14). This is indeed the case
for mass-proportional damping; that is, if one lets

c(x) = a0 m(x) (19-15)

in which the proportionality constant a0 has the dimension time−1 and is the same
factor defined in Eq. (12-37a). Substituting this relation into Eq. (19-14) and making
use of of the mass and stiffness orthogonality conditions [Eqs. (18-34) and (18-39)],
one obtains the uncoupled modal equation

Mn Ÿn(t) +
(
a0 Mn + a1 ω

2
n Mn

)
Ẏn(t) + ω2

n Mn Yn(t) = Pn(t) (19-16)

Finally, introducing the damping ratio for the nth mode [see Eq. (12-38b)]

ξn =
Cn

2 Mn ωn
=

a0

2ωn
+
a1 ωn

2
(19-17)

and dividing through by the generalized mass, Eq. (19-16) becomes the standard
SDOF equation

Ÿn(t) + 2 ξn ωn Ẏn(t) + ω2
n Yn(t) =

Pn(t)

Mn
n = 1, 2, · · · (19-18)

Thus, it is clear that when the viscous damping is of the Rayleigh mass- and stiffness-
proportional type, the distributed-parameter equations of motion can be uncoupled
in the same way as for the discrete-parameter systems. From Eq. (19-17), it is seen
that for mass-proportional damping, the damping ratio is inversely proportional to the
frequency; while for stiffness-proportional damping, it is directly proportional. This
is the same result presented earlier in Eq. (12-38b) for discrete-parameter systems.

Note that, similar to the discrete-parameter case, one can evaluate coefficients
a0 and a1 by assigning appropriate numerical values for ξn for two values of n, say
n = 1 and n = m, using the corresponding known values of ωn, and then solving the
resulting two simultaneous equations given by Eq. (19-17). While this procedure leads
to values of a0 and a1 which give the required damping in the two selected modes,
it provides different damping in the other modes in accordance with Eq. (19-17) and
as shown by Fig. 12-2. While this observation is of instructional value, it is not
too significant in a practical sense as Eqs. (19-18) are usually solved after assigning
numerical values to all damping ratios consistent with experimental information and
judgment.
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Example E19-3. To further illustrate the mode-superposition analysis
procedure, consider the simple beam shown in Fig. E19-2 when excited by
a harmonic vertical displacement of its right hand support as given by

δ2 = δ2 sinωt (a)

where δ2 is the single amplitude of the support motion. The total displacement
of the beam from its original position can be expressed in the form

vt(x, t) = v(x, t) +
x

L
δ2(t) (b)

in which v(x, t) is given by Eq. (19-1). The mode shapes, frequencies,
and generalized masses to be used in this formulation are identical to those
found previously for the simple beam, i.e., φn(x) = sin(nπx

/
L), ωn =

n2 π2
√
EI
/
mL4, and Mn = mL

/
2.

The viscously-damped normal-coordinate equations of motion are

Ÿn(t) + 2 ξn ωn Ẏn(t) + ω2
n Yn(t) =

Pn(t)

Mn
n = 1, 2, · · · (c)

where Pn(t) is obtained from Eq. (19-12) upon substitution of ψψψ2(x) = x
L , thus

giving

Pn(t) = −δ̈2(t)
∫ L

0

m(x) φn(x) ψψψ2(x) dx

= −ω2 δ2 sinωt

∫ L

0

mx

L
sin

nπ x

L
dx (d)

or

Pn(t) = ± mLω2 δ2
nπ

sinωt

{
+ n = odd
− n = even

(e)

The steady-state solution of Eq. (c) takes the form of Eq. (3-20) which, upon
substitution of

P0n

Kn
=

P0n

ω2
n Mn

= ±
(
mLω2 δ2

nπ

) (
mL4

n4 π4EI

) (
2

mL

)
= ± 2mL4 ω2 δ2

n5 π5EI
(f)

for p
0

/
k, βn ≡ ω

/
ωn for β, and ξn for ξ, becomes

Yn(t) = ± 2mL4 ω2 δ2
n5 π5EI

×
[

1

(1 − β2
n)2 + (2 ξn βn)2

]

×
[
(1 − β2

n) sinωt− 2 ξn βn cosωt
]

(g)
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Making use of Eq. (19-1), the displacement v(x, t) becomes

v(x, t) =
2mL4 ω2 δ2

π5EI

×
∞∑

n=1

± 1

n5

[
1

(1 − β2
n)2 + (2 ξn βn)2

]

×
[
(1 − β2

n) sinωt− 2ξnβn cosωt
]
sin

nπx

L
{

+ n = odd
− n = even

(h)

Finally the internal moment and shear distribution expressions can be obtained
therefrom using

M (x, t) = EI
∂2v(x, t)

∂x2
V (x, t) = EI

∂3v(x, t)

∂x3
(i)

After assigning numerical values to the damping ratios of a limited number of
the lower modes, the distributed response quantity of interest can be evaluated.
One must be careful in selecting the number of modes required for engineering
accuracy in the solution as it depends upon the response quantity of interest. As
in Example E19-2, the series in the expression for v(x, t) converges much faster
than does the series in M (x, t), which in turn converges much faster than the
series in V (x, t).

The solutions of Eqs. (19-18) for the case of general excitation, either direct
loading or support motion, can be obtained either through the time domain or the
frequency domain by the procedures given in Chapter 6. Since the linear viscous
damping used in these equations results in the energy absorption per cycle (at fixed
response amplitude) being dependent upon the response frequency ω as discussed in
Section 3-7, one may find it more appropriate to use the complex-stiffness form of
hysteretic damping; in this case, the uncoupled normal mode equations of motion in
the frequency domain are

[
(ω2

n − ω2) + 2i ξn ω
2
n

]
Yn(iω) =

Pn(iω)

Mn
n = 1, 2, · · · (19-19)

After assigning numerical values to the damping ratios, these equations can be solved
in the frequency domain using the FFT analysis procedure. The energy absorption per
cycle at fixed amplitude is now independent of the response frequency ω.
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19-4 UNCOUPLED AXIAL EQUATIONS OF MOTION:
UNDAMPED CASE

The mode-shape (normal) coordinate transformation serves to uncouple the
equations of motion of any dynamic system and therefore is applicable to the axial as
well as the flexural equations of motion of a one-dimensional member. Introducing
Eq. (19-1) into the equation of axial motion, Eq. (17-29), leads to

∞∑

i=1

m(x) φ(x) Ÿi(t) −
∞∑

i=1

d

dx

[
EA(x)

dφi(x)

dx

]
Yi(t) = q(x, t) (19-20)

Multiplying each term byφn(x) and applying the orthogonality relationships [Eqs. (18-
47) and (18-50)] leads to

Ÿn(t)

∫ L

0

m(x) φn(x)2 dx− Yn(t)

∫ L

0

φn(x)
d

dx

[
EA(x)

dφn(x)

dx

]
dx

=

∫ L

0

φn(x) q(x, t) dx (19-21)

Substituting the inertial force for the elastic-force term [from Eq. (18-49)] and intro-
ducing the standard expressions for generalized mass and load

Mn =

∫ L

0

m(x) φ
2

n(x) dx (19-22)

Pn =

∫ L

0

φn(x) q(x, t) dx (19-23)

results in the final uncoupled axial equation of motion

Mn Ÿn(t) + ω2
n Mn Yn(t) = Pn(t) (19-24)

which is exactly the same as the uncoupled equation for flexural motion [Eq. (19-10)].
From this discussion it is apparent that after the vibration mode shapes have been
determined, the reduction to the normal-coordinate form involves exactly the same
type of operations for all structures.

Example E19-4. Because the dynamic response of a prismatic bar to axial
loading has special characteristics which will be the subject of later discussion,
it will be instructive to perform an example analysis of this type. Consider a pile
fixed rigidly at its base and subjected to a step-function compression loading P0

at the upper end, as shown in Fig. E19-3. The mode-superposition analysis of
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L
AE, m = constants

x, u

P(L,t)

P(L,t)

t

(a)

(b)

− P0

FIGURE E19-3
Pile subjected to end loading:
(a) geometric configuration;
(b) step-function loading.

this system can be carried out by the same sequence of steps employed in the
beam-response example of Fig. E19-2.

Determine Mode Shapes and Frequencies (see Example E18-5):

φn(x) = sin

[
(2n− 1)

π x

2L

]
n = 1, 2, · · · (a)

ωn = (2n− 1)
π

2

√
EA

mL2
n = 1, 2, · · · (b)

Compute Generalized Mass and Loading:

Mn =

∫ L

0

m(x) φn(x)2 dx = m

∫ L

0

sin2

[
(2n− 1)

π x

2L

]
dx =

mL

2
(c)

Pn =

∫ L

0

q(x, t) φn(x) dx = −P0 φn(L) = ± P0

{
+ n = even no.
− n = odd no.

(d)

Solve the Generalized-Coordinate Response (see Example E19-2):

Yn(t) = ± 2 P0

mLω2
n

(1 − cosωnt) (e)

Evaluate Displacement and Axial-Force Response:

u(x, t) =

∞∑

n=1

φn(x) Yn(t)

=
2P0

mLω2
1

[
−
(

1 − cosω1t

1

)
sin

πx

2L
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+

(
1 − cosω2t

9

)
sin

3πx

2L
−
(

1 − cosω3t

25

)
sin

5πx

2L
+ · · ·

]

=
8 P0

π2

L

EA

∞∑

n=1

{
±
(

1 − cosωnt

(2n− 1)2

)
sin

[
(2n− 1)

2

πx

L

]}
(f)

N (x, t) = EA
∂u(x, t)

∂x

=
8 P0 L

π2

∞∑

n=1

{
±
(

1 − cosωnt

(2n− 1)2

)[
(2n− 1)

2

π

L

]
cos

[
(2n− 1)

2

πx

L

]}

=
4 P0

π

∞∑

n=1

{
±
(

1 − cosωnt

2n− 1

)
cos

[
(2n− 1)

2

πx

L

]}
(g)

The response at any time t can be obtained by summing terms in the series
expressions (f) and (g) representing the displacement and force distributions.
For this purpose, it is convenient to express the time-variation parameter ωnt in
the form

ωnt =

(
2n− 1

2
π

)
c t

L

where c =
√
EA
/
m has the dimensions of velocity. Thus the product c t

becomes a distance, and the time parameter may be considered as the ratio of
this distance to the length of the pile. The displacement and force distribution
in the pile at four different values of this time parameter have been obtained
by evaluating the series expressions; the results obtained by summing the series
are plotted in Fig. E19-4. The simple form of the response produced by the
step-function loading is evident in these sketches. For any time t1 < L/c, the
pile has no load ahead of the distance c t1 but is subject to the constant force
P0 behind this distance. Thus the response may be interpreted as a force wave
of amplitude P0 propagating ahead with the velocity c. The displacement is
consistent with this load distribution, of course, showing a linear variation in
the section of the pile in which there is constant load and no displacement in
the zone ahead of the force wave. In the time interval L/c < t2 < 2L/c the
force wave is doubled in the zone from the rigid support to a point c t2 − L

from this support. This response behavior may be interpreted as a reflection of
the force wave, resulting in a double amplitude as it propagates back along the
pile. In the time interval 2L/c < t3 < 3L/c the response may be interpreted
as a negative reflection from the free end of the pile, causing a reduction of the
force amplitude which propagates with the velocity c. During the fourth phase,
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ct3 − 2L

ct3 − 2L

ct4 − 3L

ct4 − 3L

ct1

ct1

FIGURE E19-4
Response of pile to step-function loading.

ct2 − L

ct2 − L

Phase 1
(0 < ct1 < L)

Phase 2
(L < ct2 < 2L)

Phase 3
(2L < ct3 < 3L)

Phase 4
(3L < ct4 < 4L)

P0

P0

P0

P0

P0 P0

Displacement

Axial force

3L/c < t4 < 4L/c, the negative wave of phase 3 is reflected from the rigid
base and causes a reduction of the axial force to zero value. At the end of the
fourth phase, at time t = 4L/c, the pile is completely unstressed, as it was at
time t = 0; a negative reflection of the negative wave then initiates a positive
wave propagating down the pile in a form exactly equivalent to phase 1.

From the preceding discussion it is apparent that the free vibrations of the
pile subjected to the step-function loading can be interpreted as an axial-force
wave propagating along the pile and being subjected to positive and negative
reflections at the fixed and free ends. This wave oscillation will continue
indefinitely in the absence of damping or of any change in the loading. It
is important to note that this response was evaluated in this example by the
superposition of the axial vibration modes of the pile, each of which involves
the entire extent of the pile. For example, in phase 1 the unstressed zone in
the pile ahead of the advancing wave was obtained by the superposition of an
infinite number of modes, each of which included stresses ahead of the wave-
front. It is evident that the mode-superposition method is a rather cumbersome
way to represent the very simple wave-propagation concept, and a more direct
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analysis is presented in the next section of this chapter. The fact that the mode-
superposition process does account for the wave-propagation mechanism is most
significant, however; this type of analysis provides the complete solution for any
structure subjected to any type of dynamic loading.

19-5 WAVE-PROPAGATION ANALYSIS

Basic Axial-Wave-Propagation Equation

It was pointed out in the preceding section that the dynamic response of a uniform
bar to a suddenly applied axial load can be interpreted as the propagation of a stress
wave (and its associated deformation wave) along its length. This wave-propagation
result has many practical applications in areas as diverse as earthquake engineering
(as described in Chapters 25 and 26) and pile driving, as described later in this section.
The analytical result may be obtained directly by using a different form of solution of
the equation of axial motion—one not based on separation of variables as was used in
the mode-superposition analysis presented before.

For this derivation, the equation of motion [Eq. (18-41)] is written

ü(x, t) = V 2
p u′′(x, t) = 0 (19-25)

in which

Vp =

√
EA

m
=

√
E

ρ
(19-26)

has the dimensions of velocity and where ρ is the mass density. It can be shown by
simple substitution that

u(x, t) = f1(x− Vpt) + f2(x+ Vpt) (19-27)

is a solution of Eq. (19-25), f1 and f2 being arbitrary functional relationships of the
parameters x − Vpt and x + Vpt, respectively. This expression represents a pair of
displacement waves propagating in the positive and negative directions, along the axis
of the bar, as shown in Fig. 19-2. The instant of time represented in this figure has been

FIGURE 19-2
Axial displacement waves propagating along bar.

u

x

f1(x) f2 (x)

Vp Vp

At time: t = 0
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taken arbitrarily to be t = 0, so that the two waves are shown as specified functions
of position only. The specific waveshapes f1 and f2 shown might be the result of
specified displacement or force conditions applied earlier at the two ends of the bar.

The nature of the wave-propagation mechanism can easily be understood by
considering the forward-propagating wave at two instants of time, t = 0 and t = 4t,
as shown in Fig. 19-3. If a new position variable x′ = x − Vp 4t is considered,
then f1(x− Vp 4t) ≡ f1(x

′) and the shape of the wave relative to the variable x′ in
Fig. 19-3b is the same as the shape relative to x in Fig. 19-3a. Thus the wave has
merely advanced a distance Vp 4t during the time 4t, with no change of shape; the
velocity of this wave propagation is Vp. By similar reasoning, it can be shown that
the second term in Eq. (19-27) represents a waveform f2 moving in the negative x
direction.

The dynamic behavior of the bar can also be expressed in terms of its stress
distribution rather than its displacements. With σ = Eε and ε = ∂u/∂x, the stress
wave is given by

σ(x, t) = E
∂u

∂x
= E

∂f1
∂x

(x− Vpt) + E
∂f2
∂x

(x+ Vpt) (19-28)

When the stress wave functions E ∂f1/∂x and E ∂f2/∂x are designated by g1 and
g2, this may be written

σ(x, t) = g1(x− Vpt) + g2(x+ Vpt) (19-29)

The relation between an arbitrary displacement waveform and the corresponding stress

L

L1

L1
FIGURE 19-3
Propagating of wave during 
time interval ∆ t .

u

u

x

x

x ′

f1(x)
Vp

Vp

Time: t = 0

Time: t = ∆ t

(a)

(b)

c∆ t
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FIGURE 19-4
Relationship between 
displacement and stress waves.

u

σ

x

x

u = f1(x − ct)

σ = E 
∂f1(x − ct)

∂x
≡ g1(x − ct)

wave is illustrated in Fig. 19-4; obviously the stress wave also propagates with the
velocity Vp and with unchanging shape.

Example E19-5. The general nature of the axial-wave-propagation mech-
anism will be demonstrated by studying the stress wave generated by the impact
of a pile-driving hammer at the top of a pile, as shown in Fig. E19-5. For
the purpose of this example, it will be assumed that the hammer generates a
force pulse P (t) = (600 kips) sin(πt/0.005) and the stress distribution will
be evaluated at the end of the pulse (t1 = 0.005 sec) in both the steel and the
concrete piles whose properties are shown in Fig. E19-5a.

To consider the steel pile first, the velocity of wave propagation given by
Eq. (19-26) is

Vps =

√
E

ρ
=

√
(30 × 106)(1, 728)(386)

490

= 202, 000 in/sec = 16, 800 ft/sec

The stress at the origin generated by the hammer blow is

σ0(t) = −P (t)

A
= −(20 kips/in2) sin

πt

0.005

but from Eq. (19-29) evaluated at the origin and considering only the forward-
propagating wave,

σ0(t) = g1(−Vpst)
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t

Assumed sine pulse

t1 = 0.005 sec

L = 100 ft

FIGURE E19-5
Propagation of applied stress wave: (a) properties of pile and loading; (b) stress in 
steel pile at t = 0.005 sec; (c) stress in concrete pile at t = 0.005 sec.

P(t)

P(t)
x

600 kips

Steel pile: E = 30 × 10 6 psi
A = 30 in2

γ = 490 pcf

Concrete pile: E = 3 × 10 6 psi
A = 4000 in2

γ = 150 pcf

(a)

(b) (c)

− 20 ksi − 1.5 ksi

84 ft

48 ft

Hence g1 can be evaluated by equating these expressions, giving

σ0(t) = (−20 kips/in2) sin
(
− π

84

)
Vpst

Thus the general expression for the forward-propagating wave is

σ(x, t) = (−20 kips/in2) sin
π

84
(Vpst− x)

Evaluating this at t1 = 0.005 sec leads to

σ(x, 0.005) = (−20 kips/in2) sinπ
(
1 − x

84

)
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which is plotted in Fig. E19-5b.

Following the same procedure for the concrete pile gives

Vpc =

√
(3 × 106)(1, 728)(386)

150
= 115, 000 in/sec = 9, 600 ft/sec

σ(x, t) = (−1.5 kips/in2) sin
π

48
(Vpct− x)

σ(x, 0.005) = (−1.5 kips/in2) sinπ
(
1 − x

48

)

and this last result is plotted in Fig. E19-5c.

Consideration of Boundary Conditions

The function defining the shape of any wave propagating through a uniform bar
is controlled by the conditions imposed at the ends of the bar; that is, the waveform
within the bar is generated by the requirements of equilibrium and compatibility at the
boundaries. For example, the displacement waveform shown in Fig. 19-3a could have
been initiated by introducing the displacement history at x = 0 : u(0, t) = f1(−Vpt),
as shown in Fig. 19-5.

If the right end (x = L) of the bar is free, as indicated in Fig. 19-3, the
condition of zero stress must be maintained at all times at that end. This condition
may be satisfied by a second stress wave propagating toward the left, which, when
superposed on the incident wave, cancels the end-section stresses. Expressing this
concept mathematically by means of Eq. (19-28) leads to

σx=L = 0 = E
∂f1
∂x

(L− Vpt) + E
∂f2
∂x

(L+ Vpt)

from which
∂f1
∂x

(L− Vpt) = −∂f2
∂x

(L+ Vpt) (19-30)

Hence it is evident that the slope ∂u/∂x of the left-propagating wave must be the
negative of the slope of the forward-propagating wave as each part of the waves passes

u(x = 0)

FIGURE 19-5
Displacement imposed at end (x = 0) 
of bar of Fig. 19-3.

t

f1(− ct)

t1 =
L1
c
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x

f1(x − ct)

g1(x − ct)

f2(x + ct)

g2(x + ct)

(a) Displacement

(b) Stress
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FIGURE 19-6
Reflection of displacement and stress waves at free end.

x

the end of the rod. The displacement waves shown in Fig. 19-6a demonstrate this
condition, and the corresponding stress waves in Fig. 19-6b show clearly how the
stresses at the tip are cancelled.

Although the concept of a left-moving wave coming from beyond the end of the
bar makes it easier to visualize the mechanism by which the boundary condition is
satisfied, it should be understood that this wave actually is created at the end of the bar
as the forward-propagating wave reaches that point. In other words, the incident wave
is reflected at the free end; the reflected wave has the same deflections as the incident
wave, but the stresses are reversed because the direction of travel is reversed. It will
be noted that the total deflection at the free end is doubled by the superposition of the
incident and reflected waves, while the two stress components cancel each other.

To consider now the case where the right end of the bar is fixed rather than free,
it is evident that the boundary condition imposed on the two propagating waves is

ux=L = 0 = f1(L− Vpt) + f2(L+ Vpt)

from which the reflected wave may be expressed in terms of the incident wave as

f2(L+ Vpt) = −f1(L− Vpt) (19-31)

Thus the displacement waves in this case are seen to have opposite signs, and by
analogy with the preceding discussion it can be inferred that the incident and reflected
stress waves have the same sign, as shown in Fig. 19-7. Hence, in satisfying the
required zero-displacement condition, the reflected wave produces a doubling of stress
at the fixed end of the bar.
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x

f1(x − ct)

g1(x − ct)

f2 (x + ct)

g2(x + ct)

(a) Displacement

(b) Stress
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FIGURE 19-7
Reflection of displacement and stress waves at fixed end.

x

Example E19-6. To demonstrate these boundary-reflection phenomena,
the stress wave produced by the driving hammer on the concrete pile in Example
E19-5 will be considered further. The stress wave shown in Fig. E19-5c is
traveling with a velocity of 9, 600 ft/sec, and so the forward end of this wave
reaches the tip of the pile at a time

t2 =
100

9, 600
= 0.0104 sec

The subsequent behavior then depends on the nature of the tip support condition.

Assuming first that the pile rests on a rigid support, so that no displacement
can take place at this point, the reflected stress wave must be compression, the
same as the incident wave. The total stress at subsequent times is then given by
the sum of the incident and reflected components. As a specific example, the
distribution of stress at the time when the stress wave has traveled 128 ft,

t3 =
128

9, 600
= 0.0133 sec

is shown in Fig. E19-6a.

The other limiting case occurs if the end of the pile is resting on very
soft mud, so that there is essentially no resistance to its displacement and the
tip stress is required to be zero. In this case, the reflected stress wave must be
tensile, and the total stress in the pile is given by the difference between the
tensile and compressive components. Taking again the time t3, when the stress
wave has traveled 128 ft, the distribution of stress is as shown in Fig. E19-6b. It
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FIGURE E19-6

Stress distribution at = 0.0133 (concrete pile of Fig. E19-5): ( ) fixed end at = ;

( ) free end at = .

t sec a x L

b x L
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8 ¢

20 ¢
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Reflected wave

Reflected wave

Incident wave

Net
compressive
stress

Net
tensile
stress

Incident wave

is significant that the net stress is tensile over the lower 28 ft of the pile and that
the greatest tensile stress occurs 20 ft from the tip. This illustrates how tensile
stresses will be developed in a pile during the driving process if the material
through which it is driven offers little resistance, and that fracture due to these
tensile stresses might occur at a significant distance from the tip. Of course, the
behavior in any specific case will depend on the tensile strength of the concrete
and on the duration of the hammer-force impulse.

Discontinuity in Bar Properties

The wave reflections which take place at the fixed or free end of a uniform bar
may be considered as special cases of the general reflection and refraction phenomena
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FIGURE 19-8
Wave reflection and refraction 
at discontinuity.

Bar 1
Bar 2m1 = ρ1 A1

E1 A1

x1 = L1 x2 = 0

m2 = ρ2 A2
E2 A2

c1 = E1 A1
m1

c2 = E2 A2
m2

x

Incident wave = ua Refracted wave = ucReflected wave = ub

occurring at any discontinuity in the bar properties. The conditions of equilibrium and
compatibility which must be satisfied at all points along the bar require that additional
reflected and refracted waves be generated at the juncture between bars of different
properties in response to the action of any given incident wave.

Consider, for example, the juncture between bars 1 and 2 shown in Fig. 19-8.
The properties of the bars on each side of the juncture are characterized by their mass
per unit lengthm and axial stiffnessEA. Also the wave-propagation velocity on each
side is given by Vp =

√
AE/m =

√
E/ρ. The forward-propagating wave ua which

arrives at the juncture in bar 1 generates a reflection ub which travels in the negative
direction in bar 1 and at the same time creates a refracted wave uc which propagates
forward in bar 2.

Two continuity conditions are imposed at the juncture:
Displacement: u1 = u2 or ua + ub = uc (19-32a)

Force: N 1 = N 2 or N a + N b = N c (19-32b)

where the fact that both incident and reflected waves act in bar 1 has been indicated.
Because these continuity conditions must be satisfied at all times, the time derivative
of the displacement condition also must be satisfied, that is,

∂ua

∂t
+
∂ub

∂t
=
∂uc

∂t
(19-33)

But the incident wave can be expressed in the form

ua = fa(x− Vpt) ≡ fa(ζ)

where the variable ζ has been introduced for convenience. Now the derivatives of ua

can be expressed as

∂ua

∂x
=
∂fa

∂ζ

∂ζ

∂x
=
∂fa

∂ζ

∂ua

∂t
=
∂fa

∂ζ

∂ζ

∂t
= −Vp1

∂fa

∂ζ

from which it is evident that the time and position derivatives are related by the velocity
of wave propagation

∂ua

∂t
= −Vp1

∂ua

∂x
(19-34a)
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Similar analyses for the reflected and refracted waves result in

∂ub

∂t
= +Vp1

∂ub

∂x
(19-34b)

∂uc

∂t
= −Vp2

∂uc

∂x
(19-34c)

where the positive sign in Eq. (19-34b) is due to the negative direction of the reflected-
wave propagation.

Substituting Eqs. (19-34) into (19-33) yields

−Vp1
∂ua

∂x
+ Vp1

∂ub

∂x
= −Vp2

∂uc

∂x
(19-35)

but the strains, ∂ua/∂x = εa, etc., can be expressed in terms of the forces acting in the
bars: εa = σa/E = N a/A1E1, etc; hence, the compatibility condition of Eq. (19-35)
can be expressed in terms of the force waves

− Vp1

A1E1
N a +

Vp1

A1E1
N b = − Vp2

A2E2
N c

or more simply
N c = α (N a − N b) (19-36)

where

α =
Vp1

Vp2

A2E2

A1E1
=

√
m2E2A2

m1E1A1
(19-37)

Finally, this compatibility condition [Eq. (19-36)] can be introduced into the force-
equilibrium condition [Eq. (19-32b)] to express the refracted and reflected waves in
terms of the incident wave

N a + N b = α (N a − N b)

from which
N b = N a

α− 1

α+ 1
(19-38)

and from Eq. (19-36)

N c = N a
2α

α+ 1
(19-39)

Equations (19-38) and (19-39) express the relationships between the incident,
reflected, and refracted force waves at the bar discontinuity. Corresponding relation-
ships can be obtained for the displacement waves by noting that

N = AE
∂u

∂x
= ± AE

Vp

∂u

∂t
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Substituting this into Eq. (19-38) and integrating lead to

A1E1

Vp1
ub = −A1E1

Vp1
ua

α− 1

α+ 1

from which

ub = −ua
α− 1

α+ 1
(19-40)

Similarly, substituting into Eq. (19-39) and integrating give

−A2E2

Vp2
uc = −A1E1

Vp1
ua

2α

α+ 1

from which

uc = ua
2

α+ 1
(19-41)

It is evident that the factor α defines the character of the discontinuity at the
juncture between two bars and controls the relative amplitudes of the reflected and
refracted waves. Where the properties of two adjoining bars are identical or related
in any manner such that the value of α given by Eq. (19-37) is unity, there is no
discontinuity and no reflected wave. For increasing stiffness in bar 2, the value of
α increases and the reflected force wave is of the same sign as the incident wave;
for decreasing stiffness in bar 2, the value of α becomes less than unity, and the
reflected force wave is of opposite sign to the incident wave. In this context, the
fixed- and free-end conditions discussed above can be considered as limiting cases
of bar discontinuity and are defined by infinite and zero values of α, respectively.
The relationships between incident, reflected, and refracted waves for various cases
of discontinuity are listed in Table 19-1.
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TABLE 19-1

Wave relationships for various discontinuities
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Another relationship of considerable interest becomes immediately apparent
from Eq. (19-34a) if the particle velocity on the left side is denoted by ∂ua/∂t = u̇a

and the strain on the right side by ∂ua/∂x = εa = σa/E1. Making these substitutions,
the relation becomes

u̇a = −Vp1

E1
σa (19-42)

Expressing this in words, the positive particle velocity in propagation of normal stress
waves is directly related to the wave compressive stress by the proportionality factor
for the material, Vp/E, where Vp is the wave-propagation velocity.

Example E19-7. To illustrate the effects caused by discontinuities on the
propagation of force waves through a multiple-segment bar, the stepped bar
shown in Fig. E19-7a will be considered. Since the material is the same in each
section, the discontinuities are due only to the changes of area. At each step

P

t

FIGURE E19-7
Force reflection and refraction at bar discontinuities: (a) definition of bar 
and load; (b) force distribution at various times.

10 ′ 10 ′ 10 ′

Stepped bar of uniform material

Step function load

A = 4 in2 A = 2 in2 A = 1 in2
P = 3,600 lb

3,600

3,600

3,600

3,600

3,600

3,600
2,400

2,400

2,133

2,400

2,400

2,133

1,600

1,600

1,600

1,600

3,600

3,600 3,200

3,600 lb

(a)

(b)

t = 25′
c

t = 35′
c

t = 15′
c

t = 5′
c
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A2/A1 = 1/2, and so m2/m1 = 1/2; thus α = 1/2. This corresponds to the
last case in Table 19-1 and, as indicated there, at each step

N b

N a
= −1

3

N c

N a
=

2

3

If the left end of the bar is subjected to a constant force of 3, 600 lb,
the force distributions at the times required for the stress wave to propagate 5,
15, 25, and 35 ft will be as shown in Fig. E19-7b. Stress distributions can be
derived from these sketches by dividing by the appropriate area of each segment.
Because the one-dimensional wave equation has been used in this analysis, it
must be assumed that the segments are interconnected by rigid disks which
maintain the uniaxial stress state through the discontinuities.

PROBLEMS

19-1. Assume that the undamped uniform beam of Fig. E19-2 is subjected to a static
central load p0 and then set into free vibration by suddenly releasing the load at
time t = 0. The initial deflected shape is given by

v(x) =
p0x

48EI
(3L2 − 4x2) 0 < x <

L

2

(a) From this information, evaluate the amplitude of the midspan free-
vibration displacement in each of the first three modes of vibration, ex-
pressing results as fractions of the static midspan displacement.

(b) Evaluate the amplitude of the midspan free-vibration moment in each of
the first three modes of vibration, expressing the results as fractions of the
static midspan moment.

19-2. Assuming that the step-function load of Fig. E19-2 is applied at the quarter span
point (x = L/4), rather than at midspan, write expressions for the undamped
displacement response and bending moment response at the load point. Plot
this moment history, considering the first three modes, over the time interval
0 < t < T1.

19-3. Assume that the beam of Fig. E19-2 is subjected to a harmonic load applied at
the quarter span point: p(t) = p0 sinωt where ω = 5

4ω1. Considering the first
three modes of vibration, plot the steady-state displacement response amplitude
of the beam, evaluating it at increments L/4 along the span:

(a) Neglecting damping.
(b) Assuming the damping in each mode is 10 precent of critical.

19-4. A uniform simple beam having flexural rigidityEI = 78×108 lb · in2 supports
a total weight of 1, 000 lb/ft. When immersed in a viscous fluid and set into
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first-mode vibration with an amplitude of 1 in, it is observed that the motion is
reduced to 0.1 in amplitude in 3 cycles.

(a) Assuming that the damping resistance per unit velocity, c(x), is uniform
along the span, determine its numerical value.

(b) Assuming that the same beam is set into second-mode vibration with a
1 in amplitude, determine how many cycles will be required to reduce
this motion to 0.1 in.

19-5. Repeat Prob. 19-3 for the uniform rod shown in Fig. P19-1. Note that the
harmonic load p(t) = p0 sinωt is applied in the axial direction at midlength,
and that the axial displacement response is to be plotted by both neglecting and
including the influence of modal damping.

L
2

L
2

FIGURE P19-1

x

p(t) = p0 sin ω t

AE , m = uniform

19-6. The uniform simple beam shown in Fig. P19-2 is subjected to a lateral loading
p(x, t) = δ(x− a)δ(t), where δ(x− a) and δ(t) are Dirac delta functions. (See
Section 20-1 for a definition of the Dirac delta function.) Using elementray beam
theory and the mode superposition method, determine the series expressions for
lateral deflection v(x, t), internal moment M (x, t), and internal shear V (x, t)

caused by the loading p(x, t) defined above. Discuss the relative rates of
convergence of these three series expressions.
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20
PROBABILITY

THEORY

20-1 SINGLE RANDOM VARIABLE

It is assumed that the reader has had some experience with various games of
chance and has an intuitive grasp of simple probability theory even though he or she
may never have studied this subject formally. Let us begin by formalizing the basic
probability concepts for a simple experiment.

Consider the familiar rotating disk shown in Fig. 20-1a, which has 10 equally
spaced pegs driven into its side with the intervals between pegs representing numbers
1 through 10 as shown. When the disk is spun, it will eventually come to rest with

4
5

FIGURE 20-1
Single-random-variable experiment: (a) discrete variable N; (b) continuous 
variable θ.

(b)(a)
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FIGURE 20-2
Probability density functions for single random variables N and θ : (a) discrete variable; 
(b) continuous variable.
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360p(θ ) =
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0
0 < θ < 360˚
θ < 0; θ > 360˚{

one of these numbers at the indicator. Assuming an unbiased disk, each number has a
1/10 probability of occurrence; that is, after sampling n times, each number will have
been sampled n/10 times in the limit as n approaches infinity. If N represents the
value of the number sampled and p(N) its probability of occurrence, the probability
relationship for this experiment will be the bar diagram shown in Fig. 20-2a. N is
said to be a discrete random variable in this case since only discrete values can be
sampled.

Consider now an unbiased rotating disk as shown in Fig. 20-1b which has no
pegs but is marked off in degrees similar to a full 360◦ compass. In this experiment,
if the disk is spun and the angle θ to which the indicator points when it comes to
rest is noted, values can be sampled throughout the range 0 ≤ θ ≤ 360◦ with equal
chance of occurrence; that is, its probability relation will be continuous and uniform,
as shown in Fig. 20-2b. Both probability relations in Fig. 20-2 are called probability
density functions.

To clarify further the definition of probability density, consider a general exper-
iment involving a single random variable x which has the probability density function
shown in Fig. 20-3a. This function is defined so that p(x1) dx equals the chances that
a sampled value of x will be in the range x1 < x < x1 + dx. When unity represents
a certainty of occurrence, the above definition requires that the probability density
function be normalized so that the area between the x axis and the function itself, that
is,
∫∞
−∞ p(x) dx, equals unity.

From the above definition, it should be noted that a zero probability exists that a
sampled value of x will be exactly equal to some preselected value in the continuous
case. In other words, a finite probability can be associated only with x falling in
a certain finite range. To illustrate this point, consider again the simple experiment
shown in Fig. 20-1b, where a zero probability exists that the indicator will point exactly
to, say, 256◦; however, the probability that a sampled value of θ will be in the range
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FIGURE 20-3
Probability density function for
random variable x : (a) general 
probability density function;
(b) normal, or gaussian, probability 
density function.
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x

x
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256◦ < θ < 257◦ is 1/360.

Further, it should be noted that to satisfy the above definition of probability
density in the discrete case like that shown in Fig. 20-2a, the probability density
function must consist of a number of Dirac delta functions. The Dirac delta function
δ (x− a) is simply any function which satisfies the conditions

δ (x− a) =

{
0 x 6= a

∞ x = a
∫ ∞

−∞
δ (x− a) dx = 1

(20-1)

Example E20-1. Show by proper selection of the constant C in the func-
tion f (x − a), defined below, that this function satisfies the conditions for a
Dirac delta function given by Eqs. (20-1):

f (x− a) = C lim
ε→0

1

ε
exp

[
− (x− a)2

2 ε2

]
(a)

For x 6= a, it is quite apparent that the function equals zero since in the limit the
exponential term approaches zero much more rapidly than ε itself. When x = a,
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the exponential term equals unity; therefore, the entire function approaches
infinity in the limit at this point. Now, consider the integral

I ≡
∫ ∞

−∞

C

ε
exp

[
− (x− a)2

2 ε2

]
dx =

C

ε

∫ ∞

−∞
exp

[
− (x− a)2

2 ε2

]
dx (b)

Substituting the change of variable

u =
x− a√

2 ε
du =

1√
2 ε
dx (c)

gives

I =
√

2C

∫ ∞

−∞
exp[−u2] du =

√
2π C (d)

Note that the value of this integral is independent of ε; therefore

I =

∫ ∞

−∞
f (x− a) dx =

√
2π C = 1 (e)

giving

C =
1√
2π

(f)

The most commonly used probability density function of a single random vari-
able is the so-called normal, or gaussian, distribution shown in Fig. 20-3b, which is
defined by the symmetric relation

p(x) =
1√
2π a

exp[−(x−m)2/2a2] (20-2)

where a and m are constants. A plot of this relation shows that a is a measure of
the spread of the function in the neighborhood of x = m. From the above example
solution, it is seen that the integral of Eq. (20-2) between the limits x = −∞ and
x = +∞ equals unity, as it should, regardless of the numerical values of a and m.

If a random variable x is transformed into a second random variable r, which is
a known single-valued function of x as defined in general form by the relation

r ≡ r (x) (20-3)

the probability density function for r is easily obtained from the relation

p(r) = p(x)
∣∣∣dx
dr

∣∣∣ (20-4)
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provided the inverse relation x = x(r) is also a single-valued function. The validity of
Eq. (20-4) is obvious since (as shown in Fig. 20-4) all sampled values of xwhich fall in
the range x1 < x < x1 + dx correspond to values of r in the range r1 < r < r1 + dr.
The absolute value of dx/dr is necessary since for some functions r(x) a positive dx
corresponds to a negative dr or vice versa.

Another probability function which is useful when treating single random vari-
ables is the probability distribution function defined by

P (x) ≡
∫ x

−∞
p(u) du (20-5)

In accordance with this definition, the function P (x) either becomes or approaches
zero and unity with increasing negative and positive values of x, respectively, as shown
in Fig. 20-5. Equation (20-5) in its differential form

p(x) =
dP (x)

dx
(20-6)

is also very useful.

r(x)

x
FIGURE 20-4
Relation between random variable x and random 
variable r.

r1 + dr
r1

x1 + dxx1

P(x)P(x)

xx

FIGURE 20-5
Probability distribution function for random variable x : (a) discrete variable; 
(b) continuous variable.

00

11

(b)(a)
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Example E20-2. A random variable has the probability density function

p(x) =

{
1/2 −1 < x < +1

0 x < 1 ; x > 1
(a)

If random variable r is related to x through the relation

r(x) = x |x| (b)

find the probability density function p(r) and show that it satisfies the condition
∫ ∞

−∞
p(r) dr = 1 (c)

Fist, taking the derivative of Eq. (b) gives dr/dx = 2|x|. Then using
Eq. (20-4) gives

p(r) =





1

4|x| −1 < x < +1

0 x < 1 ; x > 1

(d)

or

p(r) =





1

4
√

|r|
−1 < r < +1

0 r < 1 ; r > 1

(e)

Substituting Eq. (e) into Eq. (c) leads to

I ≡
∫ ∞

−∞
p(r) dr =

1

4

∫ 1

−1

dr√
|r|

= 1 (f)

thus showing that Eq. (c) is satisfied.

20-2 IMPORTANT AVERAGES OF A SINGLE RANDOM
VARIABLE

If a certain random variable x is sampled n times and is each time used to
evaluate a second random variable r defined by a single-valued function r(x), the
average of this second variable as n approaches infinity, that is,

r ≡ lim
n→∞

1

n

n∑

i=1

r(xi) (20-7)

where xi is the ith sampled value of x, can be determined using the relation

r =

∫ ∞

−∞
r(x) p(x) dx (20-8)
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A bar placed above any random variable is used to indicate average value.

Averages most commonly used in nondeterministic analyses are (1) mean value
of x, (2) mean square value of x, (3) variance of x, and (4) standard deviation of x,
defined as follows:

Mean value

x =

∫ ∞

−∞
x p(x) dx (20-9)

Mean square value

x2 =

∫ ∞

−∞
x2 p(x) dx (20-10)

Variance

σ2
x = (x− x)2 =

∫ ∞

−∞
(x− x)2 p(x) dx = x2 − x2 (20-11)

Standard deviation
σx =

√
variance (20-12)

Example E20-3. Find the mean, mean square value, and variance of a
random variable x having the normal probability distribution given by Eq. (20-
2).

From Eq. (20-9), the mean value can be written in the form

x =
1√
2π a

∫ ∞

−∞
x exp[−(x−m)2/2 a2] dx (a)

Substituting the change of variable

u ≡ x−m√
2 a

du =
1√
2 a

dx (b)

gives

x =

√
2 a√
π

∫ ∞

−∞
u exp(−u2) du+

m√
π

∫ ∞

−∞
exp(−u2) du (c)

The first integral in Eq. (c) equals zero while the second equals
√
π, thus showing

that
x = m (d)

The mean square value of x as given by Eq. (20-10) becomes

x2 =
1√
2π a

∫ ∞

−∞
x2 exp[−(x−m)2/2 a2] dx (e)
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Using the same change of variable indicated above gives

x2 =
2 a2

√
π

∫ ∞

−∞
u2 exp(−u2) du

+
2
√

2 am√
π

∫ ∞

−∞
u exp(−u2) du+

m2

√
π

∫ ∞

−∞
exp(−u2) du (f)

Upon integrating by parts, the first integral is shown equal to
√
π/2, the second

integral equals zero, and the third equals
√
π, thus yielding

x2 = a2 +m2 (g)

Substituting Eqs. (d) and (g) into Eq. (20-11) gives

σ2
x = a2 (h)

20-3 ONE-DIMENSIONAL RANDOM WALK

Assume in this experiment that n individuals are walking along a straight line
without interference. If all individuals start walking from the same point (x = 0) and
each separate step length L is controlled by the probability density function

p (L) =
1

4
δ(L+ 4L) +

3

4
δ(L−4L) (20-13)

that is, there exists a 1/4 probability of taking a backward step of length 4L and a 3/4
probability of taking a forward step of the same length, the probability density function
p(xi) for distance xi as defined by xi ≡

∑i
j=1 Lj will be as given in Fig. 20-6 for

i = 0, 1, 2, 3, and 4. (Vertical heavy arrows will be used herein to indicate Dirac delta
functions.) Since all n individuals performing this experiment are at the origin before
taking their first step, the probability density function p(x0) is a single Dirac delta
function of unit intensity located at the origin. If n is considered to approach infinity,
it follows directly from Eq. (20-13) that 3n/4 individuals will be located at x1 = 4L
after taking their first step and n/4 individuals will be located at x1 = −4L. Upon
taking their second step three-fourths of those individuals located at x1 = 4L, that is,
9n/16, will move to x2 = 24L and the remaining one-fourth will step backward to
the origin. Similarly, upon taking their second step, three-fourths of those individuals
located at x1 = −4L, that is, 3n/16, will step forward to the origin while the
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− 4∆L 4∆L− 2∆L 2∆L0

FIGURE 20-6
Example of one-dimensional random walk.
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remaining one-fourth will step backward to x2 = −24L. Such reasoning can be
continued to establish each successive probability density function in the same way.

If the probability density function for length of step is given by the somewhat
more general form

p (L) = g δ(L+ 4L) + h δ(L−4L) (20-14)

where g + h = 1, and if the numerical values of g and h are known, it is possible to
find the probability density functions p(xi) (i = 1, 2, · · ·) by the same procedure used
above for g = 1/4 and h = 3/4. While it will not be proved here, it can be easily
shown that the probability density function p(xi) is given by the well-known binomial
relation

p(xi) =

i∑

k=−i,−i+2,···

i! δ(xi − k 4L)

[(i+ k)/2]! [(i− k)/2]!
h(i+k)/2 (1 − h)(i−k)/2

i = 0, 1, 2, · · · (20-15)

and that the mean value and variance of xi as defined by Eqs. (20-9) and (20-11) are,
respectively,

xi = iL = i(h− g)4L (20-16)

σ2
xi

= iσ2
L = i[1 − (h− g)2]4L2 (20-17)
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p(L)
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FIGURE 20-7
Arbitrary probability density 
function for length of step.

The reader can easily check Eqs. (20-15) through (20-17) with the results previously
obtained by straightforward means as given in Fig. 20-6.

Consider the one-dimensional random walk in its most general form, that is,
one with an arbitrarily prescribed probability density function for length of step L, as
shown in Fig. 20-7a. This function can be approximated by the discrete distribution
shown in Fig. 20-7bb obtained by simply concentrating the area 4L p(L = q4L)

in the form of a Dirac delta function. Of course, in the limit as 4L approaches
zero, this discrete representation becomes exact. Likewise, the continuous probability
density functions for distance from the origin xi ≡

∑i
j=1 Lj (Fig. 20-8a) can be

approximated by a discrete distribution as shown in Fig. 20-8b. With 4x chosen
equal to 4L, it is possible to determine the probability density function p(xi+1) in
exactly the same way as for the simpler case shown in Fig. 20-6; that is, the contribution
by the Dirac delta function of intensity 4x p(xi = r 4x) to the Dirac delta function
of intensity 4x p(xi+1 = s4x) is the product 4x p(xi = r4x)4L p(L = q4L)

where q ≡ s − r. Therefore, the contribution of all delta functions in Fig. 20-8b to
the intensity p(xi+1 = s4x) can be obtained by superposition, thus giving

p(xi+1 = s4x) =
∞∑

r=−∞
p(xi = r4x) p(L = q4L) 4L (20-18)

It will become apparent later in this development that it is advantageous to
express the probability density function of Fig. 20-8b and c in terms of distances
Xi and Xi+1 measured from points xi = iA and xi+1 = (i + 1)A, respectively,
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p(xi )

p(xi) iA
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p(xi = r∆x)

∆x p(xi = r∆x) = ∆x p(Xi = r∆x − iA)

∆x p(xi + 1 = s∆x) = ∆x p[Xi + 1 = s∆x − (i + 1)A]
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(a)

(b)

(c)

(d)

FIGURE 20-8
Probability density functions for the general one-dimensional random walk.

xi

xi , Xi

L

p(xi + 1)

X i + 1 = 0x i + 1 = 0 x i + 1 = s∆x
Xi + 1 = s∆x − ( i + 1)A

x i + 1 , X i + 1

L = q∆L

where A is some integer number of 4x. With this type of coordinate transformation,
Eq. (20-18) becomes.

p[Xi+1 = s4x−(i+1)A] =

∞∑

r=−∞
p(Xi = r4x−iA) p(L = q4L)4L (20-19)
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If in the above random walk, each individual is located at the origin x = 0 at time
t = 0, and if each individual takes his ith step at the instant ti = i4t, Eq. (20-19) can
be written

p(X; ti + 4t) =

∞∑

q=−∞
p(X − q4x+A; ti) p(L = q4L)4L (20-20)

where

Xi+1 ≡ X (20-21)

Xi = X − q4x+A (20-22)

When a limiting process is now used by letting 4x = 4L→ 0 in such a manner that
the quantityX remains finite, Eq. (20-20) converts to its continuous form with respect
to distance, that is,

p(X; ti + 4t) =

∫ ∞

−∞
p(X − L+A; ti) p(L) dL (20-23)

When the function p(X − L + A; ti) is expanded in a Taylor’s series about point
X = 0 and the integral is completed, Eq. (20-23) becomes

p(X; ti + 4t) = p(X; ti) + (A− L) p′(X; ti)

+
A2 − 2AL+ L2

2
p′′(X; ti) + · · · (20-24)

It now becomes apparent why (as previously noted) it is helpful to express the proba-
bility density functions in terms of X rather than x, since the second term on the right
hand side of Eq. (20-24) can be eliminated by letting

A = L (20-25)

Substituting Eq. (20-25) into Eq. (20-24) and dividing both sides of this equation by
4t and making use of Eq. (20-11) gives

p(X; ti + 4t) − p(X; ti)

4t =
σ2

L

24t p
′′(X; ti) + · · · (20-26)

If during the limiting process mentioned above, the variance of the function p(L),
that is, σ2

L, also approaches zero but in such a way that the ratio σ2
L/4t equals a

constant C, the terms on the right hand side of Eq. (20-26) beyond the first term
will be of higher order and can be dropped. Also in the limit as 4t → 0, the left



PROBABILITY THEORY 439

hand side of Eq. (20-26) equals ṗ(X, t); thus, Eq. (20-26) becomes the well-known
one-dimensional diffusion equation

∂p(X, t)

∂t
=
C

2

∂2p(X, t)

∂X2
(20-27)

From the known initial condition

p(X, 0) = δ(X) (20-28)

and the boundary conditions

lim
Q→∞

[
∂p(X, t)

∂X

∣∣∣
X=Q

]
= lim

Q→∞

[
∂p(X, t)

∂X

∣∣∣
X=−Q

]
= 0 (20-29)

the solution of Eq. (20-27) is

p(X, t) =
1√

2πCt
exp

[
− X2

2Ct

]
(20-30)

The probability density function for random variable Xi, after i steps, is given by
Eq. (20-30) after substitutuing C = σ2

L/4t and i = t/4t, thus giving

p(Xi) =
1√

2πiσ2
L

exp
[
− X2

i

2 iσ2
L

]
(20-31)

In this case, use of Eqs. (20-9) through (20-11) and (20-31) shows that

Xi = 0 σ2
Xi

= iσ2
L (20-32)

From Eqs. (20-25) and (20-31) and the information provided in Fig. 20-8, the relation

p(xi) =
1√

2πσxi

exp
[
− (xi − xi)

2

2σ2
xi

]
(20-33)

is obtained, where
xi = iL σ2

xi = iσ2
L (20-34)

This treatment of the general one-dimensional random walk, which follows the
method used originally by Lord Rayleigh, has far-reaching significance since it shows
that the probability density functions p(xi) for the algebraic sum of i random variables,
namely,

xi ≡
i∑

j=1

Lj (20-35)
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where Lj(j = 12, · · · , i) are selected in accordance with an arbitrary probability
density function p(L) like that shown in Fig. 20-7, approach a gaussian distribution in
the limit as i→ ∞. This fact is contained in the so-called central-limit theorem, which
is found in most textbooks on probability theory. Fortunately, the probability density
function p(xi) approaches a gaussian distribution rapidly as i increases (except for
large values of x); therefore, the often assumed gaussian distribution in engineering
applications of Eq. (20-35) is usually justified.

Example E20-4. Consider the one-dimensional random walk as defined
by Eq. (20-35), where the probability density function for a single step length is
given in the discrete form

p(L) = 0.05 δ(L+ 24x) + 0.15 δ(L+ 4x) + 0.30 δ(L)

+0.40 δ(L−4x) + 0.10 δ(L− 24x) (a)

This function is also the probability density function for random variable x1.
By successively distributing the Dirac delta function intensities, as done for the
simpler case in Fig. 20-6, probability density functions p(x2), p(x3), etc., can
be obtained, as shown in Fig. E20-1. To ensure a complete understanding of
this method, it is suggested that the student check the numerical values given in
the figure for distributions p(x2) and p(x3). For comparison continuous normal
distributions are plotted in Fig. E20-1 by dashed lines. These distributions have
the same mean values and variances as the corresponding discrete distributions.
Note the very rapid rate at which the discrete distributions are approaching the
normal distributions with increasing values of i.

Obviously for large values of i, the above distribution technique for ob-
taining p(xi) is extremely tedious and time-consuming. However, a good ap-
proximation of this function can be obtained by assuming a normal distribution
having a mean value and variance as given by Eqs. (20-34). Thus for the case
represented by Eq. (a), the continuous distribution is

p(xi)
.
=

1√
2π σxi

exp
[
− (xi − xi)

2

2σ2
xi

]
(b)

where
xi = 0.35 i4x σ2

xi
= 1.0275 i4x2 (c)

For large values of i, this distribution when discretized will give a very good
approximation of the true distribution. Significant differences will appear only
in the extreme “tail regions” of the distributions.
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FIGURE E20-1
One-dimensional random walk; xi = Σ Lj .
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Let us now consider a random variable yi defined as the product of i random
variables, rather than the sum as given by Eq. (20-35), i.e., the variable defined by

yi = L1 L2 · · ·Lj · · ·Li−1 Li (20-36)

with the values of Lj (j = 1, 2, · · · , i) selected in accordance with an arbitrary proba-
bility density function p(L) as represented in Fig. 20-7a. Taking the natural logarithm
of this equation gives

zi ≡ ln yi =
i∑

j=1

ln Lj (20-37)

Based on the previous discussion regarding the probability density function for xi,
Eq. (20-35), it is clear that as i increases, the probability density function for zi must
approach the normal distribution

p(zi) =
1√

2π σzi

exp
[−(zi − zi)

2

2σ2
zi

]
−∞ < z <∞ (20-38)
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Using the relation

p(yi) = p(zi)
∣∣∣dzi

dyi

∣∣∣ (20-39)

corresponding to Eq. (20-4), one obtains

p(yi) =
1√

2π σln yi
yi

exp
[
− (ln yi − ln yi)

2

2σ2
ln yi

]
0 ≤ yi <∞ (20-40)

which is called the lognormal distribution. It can be shown 1 that the mean and
variance of ln yi are given by

ln yi = ln ym σ2
ln yi

= ln
(
1 +

σ2
yi

yi
2

)
(20-41)

respectively, in which ym refers to the median (50 percentile) value of yi, σ2
yi

is the
variance of yi, and yi is the mean value of yi; for small values of the ratio σyi

/yi, say
less than 0.3, σln yi

.
= σyi

/yi. The relationship between the median and mean values
of yi is

ym =
yi√

1 + (σyi
/yi)

2
(20-42)

20-4 TWO RANDOM VARIABLES

This section is concerned with experiments involving two random variables.
Suppose, for example, a discrete random variable N is obtained by spinning the disk
shown in Fig. 20-1a while a second variable M is obtained by spinning a second disk
of identical design. Obtaining n (n → ∞) pairs of numbers N and M in such a
manner would in the limit give a discrete distribution of number pairs, as shown in
Fig. 20-9. This distribution p(N,M), which consists of 100 two-dimensional Dirac
delta functions of intensity 1/100, is called the joint probability density function for
random variables N and M . If instead of two disks of the type shown in Fig. 20-1a,
two disks of the type shown in Fig. 20-1b are used to sample random variables θ
and φ, sampling n (n → ∞) pairs would give the uniform distribution shown in
Fig. 20-10. Note that the volume between the plane of the two random-variable axes
and the surface of the joint probability function is normalized to unity in each case.

The joint probability density function p(x, y) for a general experiment involving
random variables x and y is shown in Fig. 20-11. This function is defined so that
the element volume p(x1, y1) dx dy as shown represents the probability that a pair of
sampled values will be within the region x1 < x < x1 + dx and y1 < y < y1 + dy.

1 Alfredo H-S. Ang and Wilson H. Tang, Probability Concepts in Engineering Planning and Design,
Volume I, Basic Principles, John Wiley & Sons, 1975.
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FIGURE 20-11
General joint probability density function for random variables x and y.
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FIGURE 20-10
Joint probability density function for continuous random variables θ and φ .
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This definition requires that the total volume between the xy plane and the p(x, y)
surface equal unity, that is,

∫∞
−∞

∫∞
−∞ p(x, y) dx dy = 1.

The most common joint probability density function (later used extensively) is
the normal, or gaussian, distribution given by

p(x, y) =
1

2πab
√

1 − c2

× exp

{
− 1

2(1 − c2)

[
(x− d)2

a2
− 2c(x− d)(y − e)

ab
+

(y − e)2

b2

]}
(20-43)

where a, b, c, d,and e are constants.

Suppose the joint probability density function for a new set of random variables
r and s as defined by the relations

r = r(x, y) s = s(x, y) (20-44)

is desired, where Eqs. (20-44) and their inverse relations

x = x(r, s) y = y(r, s) (20-45)

are single-valued functions. Because, as shown in Fig. 20-12, a square infinitesimal
area dr ds in the rs plane will map as a parallelogram of area

∣∣∣∣
∂x

∂r

∂y

∂s
− ∂x

∂s

∂y

∂r

∣∣∣∣ dr ds (20-46)

in the xy plane, it is necessary that

p(r, s) =

∣∣∣∣
∂x

∂r

∂y

∂s
− ∂x

∂s

∂y

∂r

∣∣∣∣ p(x, y) (20-47)

since sampled values of x and y which fall within the parallelogram correspond
to values of r and s within the square. The absolute value has been indicated in

s y

ds

dr

r x

s1 y1

r1 x1

FIGURE 20-12
Jacobian transformation of two random variables.

∂y
∂s

ds

∂x
∂s

ds

∂y
∂r

dr
∂x
∂r

dr
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Eq. (20-47), as the area of the parallelogram must always be a positive quantity. The
transformation indicated by this equation is known as the jacobian transformation.

Next certain probability functions closely associated with the joint probability
density function p(x, y) are defined.

Marginal probability density function p(x) is defined such that p(x1) dx equals
the chances that a sampled value of xwill be in the range x1 < x < x1+dx regardless
of the value of y sampled. Likewise, marginal probability density function p(y) is
defined so that p(y1) dy equals the chances that a sampled value of y will be in the
range y1 < y < y1 + dy regardless of the value of x sampled. In accordance with the
above definitions,

p(x1) dx =

∫ ∞

−∞

∫ x1+dx

x1

p(x, y) dx dy = dx

∫ ∞

−∞
p(x1, y) dy (20-48)

Therefore, the marginal probability density functions in unrestricted form are given
by the relations

p(x) =

∫ ∞

−∞
p(x, y) dy p(y) =

∫ ∞

−∞
p(x, y) dx (20-49)

Probability distribution functionP (X,Y ) is defined such thatP (X1, Y1) equals
the chances that sampled values of x and y will be within the ranges −∞ < x < X1

and −∞ < y < Y1, respectively; thus

P (X,Y ) =

∫ Y

−∞

∫ X

−∞
p(x, y) dx dy (20-50)

In differential form this becomes

p(X,Y ) =
∂2P (X,Y )

∂X ∂Y
(20-51)

Conditional probability density function p(x|y) is defined such that
p(x1|y1)dx equals the chances that xwill be in the range x1 < x < x1+dxwhen con-
sidering only those sampled values of x and y which are in the ranges −∞ < x <∞
and y1 < y < y1 + dy, respectively; that is, p(x1|y1) = p(x1, y1)/p(y1) or, in its
unrestricted form,

p(x|y) =
p(x, y)

p(y)
(20-52)

Likewise

p(y|x) =
p(x, y)

p(x)
(20-53)
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It should be noted that the conditional probability density functions are ratios of
marginal and joint probability density functions.

The conditional probability density functions p(x|y) and p(y|x) are often func-
tions of x and y, respectively. In such cases, Eqs. (20-52) and (20-53) require that

p(x|y) = p(x) and p(y|x) = p(y) (20-54)

and that
p(x, y) = p(x) p(y) (20-55)

Random variables which satisfy Eqs. (20-54) and (20-55) are said to be statistically
independent. Physically this means that when values of x and y are sampled, the
sampled values of x are not influenced by corresponding sampled values of y and
vice versa. The random variables represented in Figs. 20-9 and 20-10 are examples of
statistically independent variables.

Suppose someone involved with statistically independent random variables x
and y wishes to obtain the probability density function for a random variable r defined
as the sum of random variables x and y. This probability density function can easily be
obtained by using the Jacobian transformation Eq. (20-46) and Eq. (20-47) as follows.
Define a new set of random variables r and s in the form

r ≡ x+ y s ≡ y (20-56)

which, in inverse form, are
x = r − s y = s (20-57)

Equations (20-47), (20-55), and (20-57) give

p(r, s) = p(x, y) = px(x) py(y) = px(r − s) py(s) (20-58)

Subscripts have been added here to identify the random variables involved. The
marginal probability density function p(r) now becomes

p(r) =

∫ ∞

−∞
px(r − s) py(s) ds (20-59)

Example E20-5. Consider the one-dimensional random walk defined by
Eq. (20-35), where the probability density function for a single step length is
given in the continuous form

p(L) =





1

∆x
0 < L < ∆x

0 L < 0 ; L > ∆x

(a)
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This function is also the probability density function for random variable x1. To
obtain the probability density function for x2 = x1 +L2, apply the convolution
integral given by Eq. (20-59), writing

p(x2) =

∫ ∞

−∞
pL(x2 − s) px1

(s) ds (b)

where

px1
(s) =





1

4x 0 < s < 4x

0 s < 0 ; s > 4x
(c)

pL(x2 − s) =





1

4x x2 −4x < s < x2

0 s < x2 −4x ; s > x2

(d)

Substituting Eqs. (c) and (d) into Eq. (b) gives

p(x2) =





1

(4x)2
∫ x2

0

ds =
1

(4x)2x2 0 ≤ x2 ≤ 4x

1

(4x)2
∫ 4x

x2−4x

ds =
1

(4x)2 (24x− x2) 4x ≤ x2 ≤ 24x

0 x2 ≤ 0;x2 ≥ 24x
(e)

When the probability density function for x2 is known, the same convolution
integral can be used once again to find the probability density function for
random variable x3 = x2 + L3, giving

p(x3) =

∫ ∞

−∞
pL(x3 − s) px2

(s) ds (f)

With Eqs. (a) and (e), the integrand terms of this integral can be written

px2
(s) =





1

(4x)2 s 0 < s < 4x

1

(4x)2 (24x− s) 4x < s < 24x

0 s < 0; s > 24x

(g)

pL(x3 − s) =





1

4x x3 −4x < s < x3

0 s < x3 −4x; s > x3

(h)
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Substituting Eqs. (g) and (h) into Eq. (f) gives

p(x3) =





1

(4x)3
∫ x3

0

s ds =
x2

3

2(4x)3 0 ≤ x3 ≤ 4x

1

(4x)3
[ ∫ 4x

x3−4x

s ds+

∫ x3

4x

(24x− s)ds
]

=
1

(4x)3 (−x2
3 + 34xx3 −

3

2
4x2) 4x ≤ x3 ≤ 24x

1

(4x)3
∫ 24x

x3−4x

(24x− s)ds

=
1

(4x)3
(x2

3

2
− 34xx3 −

9

2
4x2

)
24x ≤ x3 ≤ 34x

0 x3 ≤ 0 ; x3 ≥ 34x
(i)

Probability density functions p(x1), p(x2), and p(x3) as given by Eqs. (a), (e),
and (i), respectively, are plotted in Fig. E20-2.

For comparison, normal distributions are plotted in this figure by dashed
lines. These distributions have the same mean values and variances as the
corresponding exact distributions shown by the solid lines. Note the very
rapid manner in which p(xi) approaches the normal distribution with increasing
values of i. Although p(x4), p(x5), etc., could be obtained by repeated use of the
convolution integral as above, this procedure would be very time-consuming.
Therefore, as with the discrete case of Example E20-4, convergence toward the
normal distribution as noted above allows one to assume a normal distribution
having a mean value and variance given by Eq. (20-34). Thus for large values
of i, one can use the normal form

p(xi)
.
=

1√
2π σxi

exp
[
− (xi − xi)

2

2σ2
xi

]
(j)

where

xi =
i4x
2

σ2
xi

=
i4x2

12
(k)

Example E20-6. Given the joint probability density function

p(x, y) = C exp
[
− 2

3

(x2

4
− xy

6
+
y2

9

)]
(a)
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FIGURE E20-2
One-dimensional random walk; xi ≡ Σ L j .

i

j = 1

x3 = 3∆x
2

5∆ x2

2

x3

2 =

find (1) the numerical value of C so that the function is normalized properly, (2)
the marginal probability density functions p(x) and p(y), and (3) the conditional
probability density functions p(x|y) and p(y|x). Show that the random variables
x and y are statistically dependent.

The function p(x, y) is properly normalized when its double integral over
the infinite x and y domains equals unity, that is, when

C

∞∫

−∞

∞∫

−∞

exp
[
− 2

3

(x2

4
− xy

6
+
y2

9

)]
dx dy = 1 (b)

Equation (b) can be separated and put into the equivalent form

C

∫ ∞

−∞
exp

(
− y2

18

){∫ ∞

−∞
exp

[
− 2

3

(x
2
− y

6

)2]
dx

}
dy = 1 (c)
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By substituting the change of variable

u =

√
2

3

(x
2
− y

6

)
dx =

√
6 du (d)

Equation (c) becomes

√
6 C

∫ ∞

−∞
exp

(
− y2

18

)[ ∫ ∞

−∞
exp(−u2) du

]
dy = 1 (e)

With another change of variable v = y/3
√

2 and the fact that the second integral
in Eq. (e) equals

√
π the result is

6
√

3π C

∫ ∞

−∞
exp(−v2) dv = 1 (f)

or
C =

1

6
√

3π
(g)

With the first of Eqs. (20-49), the marginal probability density function p(x)
can be written

p(x) =
1

6
√

3π

∫ ∞

−∞
exp

[
− 2

3

(x2

4
− xy

6
+
y2

9

)]
dy (h)

or

p(x) =
1

6
√

3π
exp

(
− x2

8

)∫ ∞

−∞
exp

[
− 2

3

(y
3
− x

4

)2]
dy (i)

With the change of variable

u =

√
2

3

(y
3
− x

4

)
dy = 3

√
3

2
du (j)

Equation (i) becomes

p(x) =
1

2
√

2π
exp

(
− x2

8

)∫ ∞

−∞
exp(−u2) du (k)

or

p(x) =
1

2
√

2π
exp

(
− x2

8

)
(l)

Similarly the second of Eqs. (20-49) gives

p(y) =
1

3
√

2π
exp

(
− y2

18

)
(m)
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Substituting Eqs. (a) and (m) into Eq. (20-52) and dividing as required gives

p(x|y) =
1√
6π

exp
[
− 2

3

(x2

4
− xy

6
+
y2

36

)]
(n)

Likewise, substituting Eqs. (a) and (l) into Eq. (20-53) gives

p(y|x) =

√
2

3
√

3π
exp

[
− 2

3

(x2

16
− xy

6
+
y2

9

)]
(o)

Since the above marginal and conditional probability density functions do not
satisfy Eqs. (20-54), random variables x and y are statistically dependent.

20-5 IMPORTANT AVERAGES OF TWO RANDOM VARIABLES

In an experiment involving random variables x and y, sampling in pairs is done
n times, and each time a third random variable r is evaluated as defined by a single-
valued function r(x, y). The average of this third random variable as n → ∞, that
is,

r = lim
n→∞

1

n

n∑

i=1

r(xi, yi) (20-60)

where xi and yi are the ith sampled values of x and y, respectively, can be determined
using the relation

r =

∞∫

−∞

∞∫

−∞

r(x, y) p(x, y) dx dy (20-61)

The validity of Eq. (20-61) can easily be rationalized since p(x, y) dx dy represents
the fractional number of samples falling in the infinitesimal area dx dy located at point
(x, y).

Averages most commonly used when treating two random variables are the
following: Mean values:

x =

∞∫

−∞

∞∫

−∞

x p(x, y) dx dy =

∫ ∞

−∞
x p(x) dx

y =

∞∫

−∞

∞∫

−∞

y p(x, y) dx dy =

∫ ∞

−∞
y p(y) dy

(20-62)
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Mean square values:

x2 =

∞∫

−∞

∞∫

−∞

x2 p(x, y) dx dy =

∫ ∞

−∞
x2 p(x) dx

y2 =

∞∫

−∞

∞∫

−∞

y2 p(x, y) dx dy =

∫ ∞

−∞
y2 p(y) dy

(20-63)

Variances:

σ2
x = (x− x)2 =

∞∫

−∞

∞∫

−∞

(x− x)2 p(x, y) dx dy = x2 − x2

σ2
y = (y − y)2 =

∞∫

−∞

∞∫

−∞

(y − y)2 p(x, y) dx dy = y2 − y2

(20-64)

Standard deviations:
σx, σy (20-65)

Covariance:

µxy = (x− x)(y − y) =

∞∫

−∞

∞∫

−∞

(x− x) (y − y) p(x, y) dx dy = xy− x y (20-66)

Correlation coefficient:
ρxy ≡ µxy

σx σy
(20-67)

Note that when x and y are statistically independent,

xy =

∞∫

−∞

∞∫

−∞

xy p(x) p(y) dx dy = x y (20-68)

in which case both the covariance µxy and the correlation coefficient ρxy equal zero.

Substituting the normal, or gaussian, distribution as expressed by Eq. (20-43)
into the above relations gives

x = d y = e σx = a σy = b ρxy = c (20-69)

Therefore, the normal distribution can be, and usually is, expressed in the form

p(x, y) =
1

2πσx σy

√
1 − ρ2

xy

× exp

{
− 1

2
(
1 − ρ2

xy

) ×
[
(x− x)2

σ2
x

− 2ρxy(x− x)(y − y)

σx σy
+

(y − y)2

σ2
y

]}
(20-70)
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Example E20-7. Random variables x1 and x2 are statistically indepen-
dent and are both uniformly distributed over the range 0 to 1. Two new random
variables r1 and r2 are defined by

r1 = (−2 ln x1)
1/2 cos 2πx2 r2 = (−2 ln x1)

1/2 sin 2πx2 (a)

Find (1) the joint probability density function p(r1, r2), (2) the marginal prob-
ability density functions p(r1) and p(r2), (3) the mean values of r1 and r2, (4)
the variances of r1 and r2, and (5) the covariance of r1 and r2.

Inverting Eqs. (a) gives

x1 = exp
[
− 1

2
(r21 + r22)

]

x2 =
1

2π
cos−1 r1√

r21 + r22
=

1

2π
sin−1 r2√

r21 + r22
(b)

Thus,
∂x1

∂r1
= −r1 exp

[
− 1

2
(r21 + r22)

]

∂x1

∂r2
= −r2 exp

[
− 1

2
(r21 + r22)

]

∂x2

∂r1
= − 1

2π

r2
r21 + r22

∂x2

∂r2
= +

1

2π

r1
r21 + r22

(c)

With the jacobian transformation, Eq. (20-47), the joint probability density
function p(r1, r2) can be expressed as

p(r1, r2) =

∣∣∣∣
∂x1

∂r1

∂x2

∂r2
− ∂x1

∂r2

∂x2

∂r1

∣∣∣∣ p(x1, x2) (d)

where

p(x1, x2) = p(x1)p(x2) =





1
{

0 < x1 < 1
0 < x2 < 1

0

{
x1 < 0 ; x1 > 1
x2 < 0 ; x2 > 1

(e)

Substituting Eqs. (c) and (e) into Eq. (d) gives the normal distribution

p(r1, r2) =
1

2π
exp

[
− 1

2
(r21 + r22)

]
(f)



454 DYNAMICS OF STRUCTURES

Making use of Eqs. (20-49) results in the relations

p(r1) =
1

2π
exp

(
− r21

2

)∫ ∞

−∞
exp

(
− r22

2

)
dr2 =

1√
2π

exp
(
− r21

2

)

p(r2) =
1

2π
exp

(
− r22

2

)∫ ∞

−∞
exp

(
− r21

2

)
dr1 =

1√
2π

exp
(
− r22

2

) (g)

Integrating in accordance with Eqs. (20-62) and (20-63) gives

r1 =
1√
2π

∫ ∞

−∞
r1 exp

(
− r21

2

)
dr1 = 0

r2 =
1√
2π

∫ ∞

−∞
r2 exp

(
− r22

2

)
dr2 = 0

r21 =
1√
2π

∫ ∞

−∞
r21 exp

(
− r21

2

)
dr1 = 1

r22 =
1√
2π

∫ ∞

−∞
r22 exp

(
− r22

2

)
dr2 = 1

(h)

Thus,
σ2

r1
= r21 − r21 = 1 σ2

r2
= r22 − r22 = 1 (i)

Since r1 and r2 appear in an uncoupled form in Eq. (f), they are shown to
be statistically independent. The mean value of r1 r2 is of the form given by
Eq. (20-68), that is,

r1 r2 = r1 r2 (j)

Therefore the covariance becomes

µr1 r2
= r1 r2 − r1 r2 = 0 (k)

Example E20-8. Given the joint probability density function used in Ex-
ample E20-6, namely,

p(x, y) =
1

6
√

3π
exp

[
− 2

3

(x2

4
− xy

6
+
y2

9

)]
(a)

find (1) the mean values, (2) the mean square values, (3) the variances, and (4)
the covariance of random variables x and y.

These quantities could be obtained from the general relations given by
Eqs. (20-62) to (20-64) and (20-66). However, comparison of this equation
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with the general form of the normal distribution given by Eq. (20-70) shows
that it is obviously of similar form. Therefore these quantities can be obtained
directly by setting the coefficients of terms in Eq. (a) equal to their corresponding
coefficients in Eq. (20-70), giving

1

6
=

1

2σ2
x(1 − ρ2

xy)

1

9
=

ρxy

σxσy(1 − ρ2
xy)

2

27
=

1

2σ2
y(1 − ρ2

xy)
(b)

Solving Eqs. (b) for the three unknowns gives

σx = 2 σy = 3 ρxy = 1/2 (c)

The mean values x and y are obviously zero from the form of the equation;
therefore,

x2 = 4 y2 = 9 (d)

The covariance is easily obtained since

µxy = σxσy ρxy = 3 (e)

20-6 SCATTER DIAGRAM AND CORRELATION OF
TWO RANDOM VARIABLES

The so-called scatter diagram can be helpful to the beginner in understanding
the basic concepts and definitions of probability related to two random variables x
and y. This diagram is obtained by sampling pairs of random variables and each time
plotting them as a point on the xy plane, as shown in Fig. 20-13. Suppose n pairs
are sampled and that (x1, y1), (x2, y2), · · ·, (xn, yn) represent their coordinates on
the scatter diagram. If n1, n2, and n3 represent the numbers of sampled pairs falling
in regions X < x < X + 4x and Y < y < Y + 4y, X < x < X + 4x and
−∞ < y < +∞, and −∞ < x < ∞ and Y < y < Y + 4y, respectively, the joint,

y

y

x + ∆x

(x1 , y1)

(xn , yn)

y + ∆y

(xi , yi)

(x2 , y2)

x

x

FIGURE 20-13
Scatter diagram for random 
variables x and y.
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marginal, and conditional probability density functions as previously defined will be
given by

p(x, y) = lim
4x→0
4y→0
n→∞

n1

n4x4y (20-71)

p(x) = lim
4x→0
n→∞

n2

n4x p(y) = lim
4y→0
n→∞

n3

n4y (20-72)

p(x|y) = lim
4x→0
4y→0
n→∞

n1

n3 4x
p(y|x) = lim

4x→0
4y→0
n→∞

n1

n2 4y
(20-73)

Further, it is quite apparent that

x = lim
n→∞

1

n

n∑

i=1

xi y = lim
n→∞

1

n

n∑

i=1

yi (20-74)

x2 = lim
n→∞

1

n

n∑

i=1

x2
i y2 = lim

n→∞
1

n

n∑

i=1

y2
i (20-75)

σ2
x = lim

n→∞
1

n

n∑

i=1

(xi − x)2 σ2
y = lim

n→∞
1

n

n∑

i=1

(yi − y)2 (20-76)

µxy = lim
n→∞

1

n

n∑

i=1

(xi − x)(yi − y) (20-77)

Let us examine certain features of the correlation coefficient ρxy as defined by
Eq. (20-67). First, to establish the range of possible numerical values which it may
possess, consider two new random variables r and s as defined by the relations

r ≡ x− x

σx
s ≡ y − y

σy
(20-78)

This transformation represents a translation of the coordinate axes and a scale-factor
change along each axis, so that

r = s = 0 r2 = σ2
r = s2 = σ2

s = 1 rs = ρrs = ρxy (20-79)

Consider now the mean square value of r ± s. Use of Eqs. (20-79) leads to

(r ± s)2 = 2 (1 ± ρrs) (20-80)
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Since the mean square values given above must always be positive, the correlation
coefficient must always be in the range

−1 < ρrs < +1 (20-81)

From the normal distribution as given by Eq. (20-70), the joint probability density
function for variables r and s as defined by Eq. (20-78) is easily obtained by using the
Jacobian transformation, Eq. (20-47), thus yielding the relation

p(r, s) =
1

2π
√

1 − ρ2
rs

exp

[
− 1

2(1 − ρ2
rs)

(r2 − 2ρrs rs+ s2)

]
(20-82)

Contour lines representing equal values of p(r, s) are shown in Fig. 20-14 for one
particular positive value of ρrs. To obtain the analytical expression for such contour
lines, the natural logarithm of both sides of Eq. (20-82) is taken, giving

r2 − 2ρrs rs+ s2 = C2 (20-83)

where C2 is a constant which can be varied to correspond to a particular value of
p(r, s). When the correlation coefficient is positive, that is, in the range 0 < ρrs < 1,
Eq. (20-83) is the equation of an ellipse with its major and minor axes oriented as
shown in Fig. 20-14. On the other hand, when the correlation coefficient is in the
range −1 < ρrs < 0, this same equation represents an ellipse but with the directions
of its major and minor principal axes reversed from those shown in Fig. 20-14. As
the correlation coefficient approaches +1, profiles of p(r, s) normal to the major
principal axis at +45◦ approach Dirac delta functions centered on this axis. Likewise,
as the correlation coefficient approaches −1, profiles of p(r, s) normal to the major
principal axis at −45◦ approach Dirac delta functions centered on this axis. When the
correlation coefficient equals zero, Eq. (20-83) is the equation of a circle.

s

r

FIGURE 20-14
Contour lines of equal p(r, s) .

+ 45˚

Major principal axis of ellipses

Minor axis of ellipses

Elliptical lines
of equal
p(r, s)

ρx y = ρr s

0 < ρr s < +1
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FIGURE 20-15
Contour lines of equal probability p(r, s) with limited number of scatter points (ρr s = ρx y ) .

−1 < ρrs < 0 0 < ρrs < +1ρrs = − 1 ρrs = + 1ρrs = 0

− 45˚

+ 45˚

s ss s s

r rr r r

(a) (b) (c) (d) (e)

Contour lines of equal probability p(r, s) as given by Eq. (20-82) along with a
limited number of scatter points are shown in Fig. 20-15 for each of the above five
cases. It is clear from the diagrams of this figure that random variables r and s (or
x and y) are completely dependent upon each other when the correlation coefficient
is either +1 or −1. In other words, only one random variable really exists in these
cases, as one of the random variables can be determined directly from the other.
However, when the correlation coefficient equals zero, as in Fig. 20-15c, the random
variables are completely independent of each other. The cases in Fig. 20-15b and d
are intermediate examples, representing partial statistical dependence of one random
variable upon the other.

20-7 PRINCIPAL AXES OF JOINT PROBABILITY DENSITY
FUNCTION

Consider random variables x and y having an arbitrary distribution as indicated
in Fig. 20-16 which leads to nonzero mean values, variances, and covariance. It is
often desirable to transform these random variables to a new set u and v having zero
mean values and covariance, i.e., having nonzero variances only.

This conversion is easily accomplished in two steps using the coordinate trans-
formations indicated in Fig. 20-17. First, transforming to random variablesX ≡ x−x
and Y ≡ y− y, which corresponds to a translation of the coordinate axes so that their
new origin is at the centroid of the distribution, the mean values X and Y are clearly
equal to zero. Next, transforming to random variables

u ≡ X cos θ + Y sin θ

v ≡ −X sin θ + Y cos θ
(20-84)

which corresponds to a counter-clockwise rotation of the axes about the new origin,
the covariance of u and v can also be brought to zero by properly specifying the
rotation angle θ. Note that u = v = 0.
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FIGURE 20-16
Arbitrary joint probability density function for random variables x and y.

y

x

P(x, y)

Yv

u

y

X

x

θ

θ

y

x
FIGURE 20-17
Coordinate transformations.

Expressing Eqs. (20-63), (20-64), and (20-66) in terms of u and v, rather than x
and y, one finds upon substitution of Eqs. (20-84) that

σ2
u = σ2

X cos2 θ + 2µXY cos θ sin θ + σ2
Y sin2 θ

σ2
v = σ2

X sin2 θ − 2µXY cos θ sin θ + σ2
Y sin2 θ

µuv = µXY (cos2 θ − sin2 θ) − (σ2
X − σ2

Y ) cos θ sin θ

(20-85)

These equations are identical in form to those obtained in the transformation of two-
dimensional plane stress as seen by substituting normal stresses for corresponding
variances and shear stress for the covariance. Therefore, the transformation of random
variables X and Y to the new set u and v follows the same procedure used in the
transformation of plane stress.
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FIGURE 20-18
Mohr’s circle for locating principal axes of joint probability.

σu
2

σx
2

σv
2

θθ 2θ

vCovariance u

Variance

µ x y

(                   )
σx

2+ σy
2

2
(                   )

σx
2− σy

2

2

Setting covariance µuv equal to zero in the third of Eqs. (20-85) and solving for
θ gives the desired rotation angle

θ =
1

2
tan−1

( 2µXY

σ2
X − σ2

Y

)
(20-86)

which upon substitution into the first and second of Eqs. (20-85) yields

σ2
u,v =

(σ2
X + σ2

Y

2

)
±
√(σ2

X − σ2
Y

2

)2

+ µ2
XY (20-87)

The corresponding Mohr’s circle for locating the principal axes u and v is shown in
Fig. 20-18.

Subsequently in Section 20-10, it is shown that a linear transformation of nor-
mally distributed random variables yields a new set of random variables which are
also normally distributed; therefore, the above transformation applied to the normal
distribution on x and y as represented by Eq. (20-70) yields

p(u, v) =
1

2π σu σv
exp

[
− 1

2

(u2

σ2
u

+
v2

σ2
v

)]
(20-88)

in which σu and σv are given by Eqs. (20-87) through substitution of σ2
X = σ2

x,
σ2

Y = σ2
y , and µXY = µxy .

Example E20-9. Consider the random variables x and y defined in Ex-
ample E20-8 having the joint probability density function

p(x, y) =
1

6
√

3π
exp

[
− 2

3

(x2

4
− xy

6
+
y2

9

)]
(a)
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FIGURE E20-3
Mohr’s circle for joint probability.

σu
2 = 10.40

σx
2 = 4

σv
2 = 2.60

θ = 64˚

v

Covariance uy

Variance

µ x y = 3

x

3.90

2θ = 129˚

=  13
2(                   )

σx
2+ σy

2

2

54
48

Defining new random variables u and v through the transformations

u = x cos θ + y sin θ

v = −x sin θ + y cos θ
(b)

find the angle θ which will uncouple u and v statistically and for this particular
angle find the variances of u and v.

As shown in Example E20-8 the variances of x and y are 4 and 9, re-
spectively, and their covariance is 3. These numerical values can be used to
construct Mohr’s circle for locating the principal axes of joint probability as
shown in Fig. E20-3. From this circle it is readily seen that

θ =
1

2
tan−1

( 2µxy

σ2
x + σ2

y

)
= 64◦ 54′ (c)

and that
σ2

v = 2.60 σ2
u = 10.40 (d)

20-8 RAYLEIGH PROBABILITY DENSITY FUNCTION

Consider random variables u and v as represented by the normal joint probability
density function of Eq. (20-88) for the special case σu = σv = σ; thus

p(u, v) =
1

2π σ2
exp

[
− 1

2σ2
(u2 + v2)

]
(20-89)
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FIGURE 20-20
Rayleigh probability density 
function, Eq. (20-92).

σ r
2 = (2 − π


2

)σ 2

r = π

2

σ 
r 2 = 2 σ 2

p(r)

Pr (r > 3σ ) = 0.0111

r
0 1σ 2σ 3σ

FIGURE 20-19
Equal probability contours as defined by 
Eq. (20-89).

v

v
u

u

r

dr

The contours of equal joint probability for this distribution are circles as shown in
Fig. 20-19. If one is interested only in the absolute value of the vector sum of u and
v, i.e.,

r ≡ (u2 + v2)1/2 (20-90)

its probability density function p(r) can be obtained easily since

p(r) dr = 2πr p(u, v) dr (20-91)

Upon substitution of Eqs. (20-89) and (20-90), this relation gives

p(r) =
r

σ2
exp

(
− r2

2σ2

)
r ≥ 0 (20-92)

which is known as the Rayleigh distribution. This equation is plotted in Fig. 20-20.

Example E20-10. Consider random variable r having the Rayleigh dis-
tribution of Eq. (20-92). Find its most probable value, mean value, mean square
value, variance, and probability distribution function. What is the probability
that r will exceed 1σ, 3σ, and 5σ?
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The most probable value of r is that value which maximizes Eq. (20-92);
thus, differentiating with respect to r, setting the resulting equation to zero, and
solving for r give r = σ. The mean value is found using Eq. (20-9); thus

r =

∫ ∞

0

r2

σ2
exp

(
− r2

2σ2

)
dr =

√
π

2
σ (a)

In accordance with Eq. (20-10), the mean square value is given by

r2 =

∫ ∞

0

r3

σ2
exp

(
− r2

2σ2

)
dr = 2σ2 (b)

The variance is found using

σ2
r = r2 − r2 =

(
2 − π

2

)
σ2 = 0.4292 σ2 (c)

From Eq. (20-5), the probability distribution function is found to be

P (r) = 1 − exp
(
− r2

2σ2

)
(d)

giving the corresponding probability of exceedance function

Q(r) ≡ 1 − P (r) = exp
(
− r2

2σ2

)
(e)

from which Q(1σ) = 0.6065, Q(3σ) = 0.0111, and Q(5σ) = 0.0000037.

20-9 m RANDOM VARIABLES

Assume a single set of random variables x1, x2, · · ·, xm is obtained by spinning
separately m disks of the type shown in either Fig. 20-1a or 20-1b. After obtain-
ing n such sets in the limit as n → ∞, a multivariate probability density function
p(x1, x2, · · · , xm) can be obtained as defined by

p(X1, X2, · · · , Xm) dx1 dx2 · · · dxm

≡Pr(X1 < x1 < X1 + dx1, X2 < x2 < X2 + dx2,

· · · , Xm < xm < Xm + dxm) (20-93)

This probability density function will be of discrete form with disks of the type shown
in Fig. 20-1a and of continuous form with disks of the type shown in Fig. 20-1b.
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For a general experiment involving m random variables, the probability density
function defined by Eq. (20-93) may be discrete, continuous, or a combination of these
forms. However, because of the central-limit theorem referred to in Section 20-3, the
normal distribution given by

p(x1, x2, · · · , xm) =
1

(2π)m/2 |µµµ|1/2
exp

{
− 1

2

[
x − x

]T
µµµ−1

[
x − x

]}
(20-94)

will often give reasonably good results in engineering applications. In this expression
x and x denote vectors

x ≡





x1

x2
...
xm





x ≡





x1

x2
...
xm





(20-95)

and µµµ is the m×m matrix

µµµ ≡




µ11 µ12 · · · µ1m

µ21 µ22 · · · µ2m

. . . . . . . . . . . . . . . . . . . . .

µm1 µm2 · · · µmm


 (20-96)

containing individual coefficients defined by

µij ≡ (xi − xi)(xj − xj) i, j = 1, 2, · · · ,m (20-97)

These coefficients are covariances for i 6= j and variances for i = j. Usually, however,
µµµ is simply referred to as the covariance matrix. The correlation coefficients are given
by

ρij ≡ µij√
µii µjj

=
µij

σii σjj
(20-98)

The reader can easily verify that Eq. (20-94) reduces to the form of Eq. (20-70) when
m = 2. If the random variables are statistically independent, the above covariance
matrix will be a diagonal matrix and all m variables will appear in an uncoupled form
in Eq. (20-94).

The multivariate probability density function for a new set of random variables
y1, y2, · · ·, ym as defined by

y1 = y1(x1, x2, · · · , xm)

y2 = y2(x1, x2, · · · , xm)

· · · · · · · · · · · · · · · · · · · · ·

ym = ym(x1, x2, · · · , xm)

(20-99)
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can be obtained using the Jacobian transformation

p(y1, y2, · · · , ym) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x2

∂y1
· · · ∂xm

∂y1

∂x1

∂y2

∂x2

∂y2
· · · ∂xm

∂y2
. . . . . . . . . . . . . . . . . . . . . . .

∂x1

∂ym

∂x2

∂ym
· · · ∂xm

∂ym

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p(x1, x2, · · · , xm) (20-100)

provided that Eqs. (20-99) and their inverse relations

x1 = x1(y1, y2, · · · , ym)

x2 = x2(y1, y2, · · · , ym)

· · · · · · · · · · · · · · · · · · · · ·

xm = xm(y1, y2, · · · , ym)

(20-101)

are all single-valued functions. This procedure is a straightforward extension of the
two-dimensional case treated earlier.

The statistical average of random variable r = r(x1, x2, · · · , xm) can be ob-
tained using the relation

r =

∞∫

−∞

∞∫

−∞

· · ·
∞∫

−∞

r(x1, x2, · · · , xm) p(x1, x2, · · · , xm) dx1 dx2 · · · dxm

(20-102)
which is a generalization of the simpler two-dimensional form given by Eq. (20-61).

20-10 LINEAR TRANSFORMATIONS OF NORMALLY
DISTRIBUTED RANDOM VARIABLES

If Eqs. (20-99) are of the linear form

y1 ≡ a11 x1 + a12 x2 + · · · + a1m xm

y2 ≡ a21 x1 + a22 x2 + · · · + a2m xm

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ym ≡ am1 x1 + am2 x2 + · · · + amm xm

(20-103)

variables y1, y2, · · ·, ym will always have a gaussian distribution when variables x1,
x2, · · ·, xm are normally distributed. To prove this important characteristic of linear
transformations, substitute the matrix form of Eqs. (20-103), namely

y = a x (20-104)
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into the right hand side of Eq. (20-94) and apply the Jacobian transformation given by
Eq. (20-100) to obtain

p(y1, y2, · · · , ym) =
|a−1|

(2π)m/2 |µµµ|1/2
exp

{
− 1

2
[y − y]T [aT ]−1 µµµ−1 a−1 [y − y]

}

(20-105)
or

p(y1, y2, · · · , ym) =
1

(2π)m/2 |aµµµ aT |1/2
exp

{
− 1

2
[y − y]T [a µµµ aT ]−1 [y − y]

}

(20-106)
Evaluating the individual covariance terms

νij ≡ (yi − yi) (yj − yj) i, j = 1, 2, · · · ,m (20-107)

directly from Eqs. (20-103) shows the covariance matrix for random variables y1, y2,
· · ·, ym to be

ννν = a µµµ aT (20-108)

When Eq. (20-108) is substituted into Eq. (20-106), the desired probability density
function becomes

p(y1, y2, · · · , ym) =
1

(2π)m/2 |ννν|1/2
exp

{
− 1

2
[y − y]T ννν−1 [y − y]

}
(20-109)

which is obviously gaussian when compared with Eq. (20-94).

PROBLEMS

20-1. A random variable x has the probability density function

p(x) =

{
1 − |x| 0 ≤ |x| ≤ 1
0 |x| ≥ 1

If a new random variable y is defined by the relation y = ax2, find and plot the
probability density function p(y).

20-2. The probability density function for random variable x has the exponential form

p(x) = a exp(−b|x|)

where a and b are constants. Determine the required relation between constants
a and b and, for a = 1, find the probability distribution function P (X).

20-3. Consider the one-dimensional random walk when the probability density func-
tion for a single step length is

p(L) = 0.6δ (L−4L) + 0.4δ (L+ 4L)
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Find the probability density function for random variable x4 as defined by

x4 =
4∑

j=1

Lj

which represents distance from the origin after four steps.

20-4. Consider the one-dimensional random walk when the probability density func-
tion for a single step length is

p(L) = 0.1δ(L+ 4L) + 0.3δ(L) + 0.5δ(L−4L) + 0.1δ(L− 24L)

Approximately what is the probability of being a tlocation 64L after 10 steps?

20-5. Let x and y represent two statistically independent random variables and define
a third random variable z as the product of x and y; that is, z = xy. Derive an
expression for the probability density function p(z) in terms of the probability
density functions p(x) and p(y).

20-6. Two statistically independent random variablesx and y have identical probability
density functions:

p(x) =





1

2
−1 < x < 1

0 x < −1; x > 1

p(y) =





1

2
−1 < y < 1

0 y < −1; y > 1

What is the probability density function for random variable z in the range
0 < z < 1 when z is defined by the relation z = yx−2?

20-7. The joint probability density function for two random variables x and y is

p(x, y) =





y

π
√

1 − x2
exp

(
− y2

2

)
y ≥ 0; |x| < 1

0 otherwise

What are the expressions for the marginal probability density function p(y) and
the conditional probability density function p(x | y), and what is the mean value
of x? Are random variables x and y statistically independent?

20-8. Prove the validity of Eqs. (20-69).

20-9. The probability density function for the random variables x and y is

p(x, y) =

{
a exp(−x− y) x > 0; y > 0

0 x < 0; y < 0

Find the numerical value of a so that this function is properly normalized. What
is the probability that xwill be in the range 0 < x < 1 when y = 1? Are random
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variables x and y statistically indenpendent? What is the probability that x and
y will fall outside the square OABC of unit area as shown in Fig. P20-1? Find
the probability distribution function P (X,Y ).

y

A B

C
x

1

10 FIGURE P20-1
Region OABC in the xy plane of Prob. 20-9.

20-10. Random variables x and y are statistically independent and can be sampled in
accordance with the marginal probability density functions

p(x) =

{
2(1 − x) 0 < x < 1

0 x < 0; x > 1
p(y) =

{
2(1 − y) 0 < y < 1

0 y < 0; y > 1

Sketch the joint probability density function p(x, y) and find mean values x and
y, mean square values x2 and y2, covariance µxy , and the mean value x+ y.

20-11. The joint probability density function for two random variables x and y equals
a constant C over the region shown in Fig. P20-2 and equals zero outside that
region.

(a) Find the numerical value of C so that p(x, y) is properly normalized.
(b) Plot the marginal probability density functions p(x) and p(y).
(c) Plot the conditional probability density functions p(x | y = 0.5) and

p(y |x = 1.5).
(d) Are random variables x and y statistically independent?
(e) Find mean values x and y, variances σ2

x and σ2
y , and the covariance µxy .

(f ) Consider sampling values of x and y, say x1, x2, x3, · · · and y1, y2, y3,
· · ·, respectively. If two new random variables r and s are defined as

rn = x1 + x2 + x3 + · · · + xn

sn = y1 + y2 + y3 + · · · + yn

find an appropriate expression for the joint probability density function
p(rn, sn) when n = 20.
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y

1

1 2 3

FIGURE P20-2
Region of nonzero joint probability in the x y
plane of Prob. 20-11.

x

(1, 1) (3, 1)

20-12. Consider again random variables x and y as defined in Prob. 20-11. Defining
two new random variables u and v through the transformation

u = (y −A) sin θ + (x−B) cos θ

v = (y −A) cos θ − (x−B) sin θ

find the values of A and B which will give zero-mean values for u and v and
find the angle θ which will uncouple u and v statistically. For this particular
angle find the variances of u and v.





CHAPTER

21
RANDOM

PROCESSES

21-1 DEFINITION

A random process is a family, or ensemble, of n random variables related to a
similar phenomenon which may be functions of one or more independent variables.
For example, suppose n accelerometers are mounted on the frames of n automobiles
for the purpose of measuring vertical accelerations as these automobiles travel over
a rough country road. The recorded accelerometer signals xi(t) (i = 1, 2, · · · , n),
which are functions of one independent variable, namely, time t, might look something
like the waveforms shown in Fig. 21-1. Each waveform in such a process differs from
all other waveforms; that is, xr(t) 6= xs(t) for r 6= s. To characterize this process
x(t) in a probabilistic sense, it is necessary to establish the multivariate probability
density function p(x1, x2, · · · , xm) as defined by the relation

p(X1, X2, · · · , Xm)dx1 dx2 · · · dxm

≡ Pr(X1 < x1 < X1 + dx1, X2 < x2 < X2 + dx2, · · · , Xm < xm < Xm + dxm)

(21-1)

for m = 1, 2,· · ·, where xi is the random variable consisting of sample values xi1,
xi2,· · ·, xim across the ensemble at time ti. Usually in engineering fields, it is sufficient
to establish only the first two of these functions, that is, p(x1) and p(x1, x2) but with
t1 and t2 treated as variables.

471
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t2t1 tm + s
2

− s
2



FIGURE 21-1
Random process (one independent variable).
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The number of members n in the ensemble required to characterize a random
process depends upon the type of process and the accuracy desired. Should it be
necessary to establish the probability density functions statistically by sampling values
of the random variables across the ensemble, exact results are obtained only in the limit
as n approaches infinity. In practice, however, sufficient accuracy can be obtained
using a finite number of members.

For some random processes, the desired probability density functions can be
determined from an analysis of a single member of each process, in which case their
exact characterizations are obtained only in the limit as the duration s approaches
infinity. In practice these processes are always limited in duration; therefore, the
characterizations obtained can only be approximate; however, engineering accuracy
can usually be obtained with relatively short-duration sample waveforms.

In the above example, time t happens to be the independent variable, but it
should be recognized that in general the independent variable can be any quantity.

As a second example of a random process, consider the wind drag force per
unit height p(x, t) acting on a tall industrial smokestack during a strong windstorm.
This forcing function will contain a large steady-state or static component but will in
addition contain a significant random component due to air turbulence. Clearly such
turbulence produces drag forces which are not only random with respect to time t
but are random with respect to the vertical space coordinate x as well. This process
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θ n
ω 0

2π
ω 0

FIGURE 21-2
Random process of harmonic waveform.
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therefore involves two independent variables.

The pressure fluctuations over the surface of an aircraft during flight are an
example of a random process involving three independent variables, namely, time and
two surface coordinates.

Obviously, the larger the number of independent variables involved in a random
process, the more difficult it is to characterize the process.

21-2 STATIONARY AND ERGODIC PROCESSES

A specific random process will now be described in detail to help the reader de-
velop a better understanding of random processes involving one independent variable.
Consider the random process x(t) shown in Fig. 21-2, which is defined by the relation

xr(t) = A sin(ω0 t+ θr) r = 1, 2, · · · ,∞ (21-2)

where xr(t) = rth member of the ensemble
A = fixed amplitude for each harmonic waveform
ω0 = fixed circular frequency
θr = rth sampled value of a random phase angle θ having a

uniform probability density function in the range 0 < θ < 2π

of intensity 1/2π

This process shows that waveforms need not be irregular, that is, contain many fre-
quency components, to be classified as random. Harmonic, periodic, or aperiodic
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waveforms may or may not be random, depending upon whether they are fully pre-
scribed or not. If known in a probabilistic sense only, they are defined as random.
From this definition it is clear that once a random signal has been sampled, that par-
ticular waveform immediately becomes fully known and can no longer by itself be
considered random; however, it still is considered part of the random process from
which it was sampled. By statistically studying a sufficient number of sampled wave-
forms, the probability density functions for the process can be estimated, in which
case any unsampled waveform becomes known in a probabilistic sense.

To establish the probability density function for random variable x1 ≡ x(t1), a
transformation relation similar to that given by Eq. (20-4) is used, namely,

p(x1) = 2p(θ)
∣∣∣ dθ
dx1

∣∣∣ (21-3)

This equation differs slightly from Eq. (20-4) since the latter is valid only when x1 =

x1(θ) and θ = θ(x1), its inverse relation, are single-valued functions. In this example,
however, as random variable θ is allowed to change over its full range 0 < θ < 2π,
random variable x1 changes not once but twice over the range −A < x1 < +A, which
explains why the factor of 2 appears in Eq. (21-3). When Eq. (21-2) is substituted into
Eq. (21-3) and the known information

p(θ) =





1

2π
0 < θ < 2π

0 θ < 0 ; 0 > 2π

(21-4)

is used, the probability density function p(x1) becomes

p(x1) =





1

π
√
A2 − x2

1

−A < x1 < A

0 x1 < −A ; x1 > A

(21-5)

Equations (21-4) and (21-5) are plotted in Fig. 21-3.

0 0− A A2π

1
2π 1

π Α
Area = 1

p(θ ) p(x1)

θ x1

Eq. (21-4) Eq. (21-5)

Area = 1

(a) (b)

FIGURE 21-3
Probability density functions for θ and x1 , where x1 = A sin ( ω 0 t 1 + θ ).
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The joint probability density function p(x1, x2), where x1 ≡ x(t1) and x2 ≡
x(t2), can be obtained for the above process in the following manner. First, by using
the appropriate trigonometric identity, x2 can be expressed in the form

x2 ≡ x(t2) = x1 cosω0τ ±
√
A2 − x2

1 sinω0τ −A ≤ x1 ≤ A (21-6)

Clearly this relation shows that for any sampled value of x1, random variable x2

has only two possible values with equal chances of occurring. In other words, for a
given time interval τ = t2 − t1, the conditional probability density function p(x2|x1)

consists of two Dirac delta functions, namely,

p(x2|x1) =
1

2

[
δ (x2 − x1 cosω0τ +

√
A2 − x2

1 sinω0τ)

+ δ (x2 − x1 cosω0τ −
√
A2 − x2

1 sinω0τ)
]

(21-7)

Substituting Eqs. (21-5) and (21-7) into the following form of Eq. (20-53)

p(x1, x2) = p(x1) p(x2|x1) (21-8)

leads to

p(x1, x2) =
1

2π
√
A2 − x2

1

×
[
δ(x2 − x1 cosω0τ +

√
A2 − x2

1 sinω0τ)

+ δ(x2 − x1 cosω0τ −
√
A2 − x2

1 sinω0τ)
]

(21-9)

which is valid in the range −A < x2 < +A and −A < x1 < +A. Outside this range
p(x1, x2) equals zero.

Example E21-1. Consider the single harmonic random process defined
by Eq. (21-2), namely,

xr(t) = A sin(ω0t+ θr) r = 1, 2, · · · ,∞ (a)

where A is a fixed amplitude, ω0 is a fixed circular frequency, and θr is the rth
sampled value of a random phase angle θ having a uniform probability density
function over the range 0 < θ < 2π. Defining the random variables x1 and x2

as
x1 ≡ x(t) x2 ≡ x(t+ τ) (b)
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characterize the form of the scatter diagram for variables x1 and x2 and plot the
diagram for ω0τ = 0, π/4, π/2, 3π/4, and π.

The form of the scatter diagram can easily be obtained from Eq. (21-9)
by noting that sample pairs of random variables x1 and x2 must satisfy the
condition

x2 − x1 cosω0τ = ±
√
A2 − x2

1 sinω0τ (c)

Squaring both sides of Eq. (c) gives

x2
2 − 2 cosω0τ x1 x2 + x2

1 = A2 sin2 ω0τ (d)

This equation represents an ellipse with its major and minor axes at 45◦ from the
x1 and x2 axes. To determine the dimensions of the ellipse along the major and
minor axes, transform Eq. (d) to a new set of orthogonal axes u and v located
on the principal axes of the ellipse; that is, use the linear transformation

u =
1√
2
(x1 + x2) v =

1√
2
(x2 − x1) (e)

to obtain
u2

a2
+
v2

b2
= 1 (f)

where

a2 =
sin2 ω0τ

1 − cosω0τ
A2 b2 =

sin2 ω0τ

1 + cosω0τ
A2 (g)

Thus it is shown that the scatter diagram is in the form of an ellipse with its
principal axes at 45◦ from the x1 and x2 axes and with the ellipse dimensions
along its principal axes being

2a =
2 sinω0τ√
1 − cosω0τ

A 2b =
2 sinω0τ√
1 + cosω0τ

A (h)

as shown in Fig. E21-1. Substituting the values 0, π/4, π/2, 3π/4, and π,
separately, into Eqs. (h) for ω0τ gives the corresponding values

√
2A, 1.31A,

1.00A, 0.54A, and 0 for a and 0, 0.54A, 1.00A, 1.31A, and
√

2A for b. Plots
of the scatter diagrams for each of these five cases are shown in Fig. E21-2.
Note from the figure that the ellipse degenerates into a straight line for ω0τ = 0

and π. From the above it is clear that a straight line with positive slope of 1
will occur for ω0τ = 0, 2π, 4π, 6π, · · ·, a straight line with negative slope of 1
will occur for ω0τ = π, 3π, 5π, · · ·, a circle will occur for ω0τ = π/2, 3π/2,
5π/2, · · ·, and an ellipse will occur for all other values of ω0τ .

Usually of main interest are the mean values, mean square values, variances,
the covariance, and the correlation coefficient for random variables x1 and x2. Using
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FIGURE E21-1
Scatter diagram for random variables x1 and x2 derived from single 
harmonic process, Eq. (21-2).
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FIGURE E21-2
Scatter diagrams for five cases of the more general diagram in Fig. E21-1.
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Eqs. (20-62) to (20-68) and (21-9) gives the following ensemble averages for the
process:

Mean values: E(x1) = E(x2) = 0

Mean square values: E(x2
1) = E(x2

2) =
A2

2

Variances: σ2
x1

= σ2
x2

=
A2

2

Covariance: µx1x2
=
A2

2
cosω0τ

Correlation coefficient: ρx1x2
= cosω0τ (21-10)
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The letterE has been introduced as a substitute for the bar previously placed above the
random variable. It indicates that the variable has been averaged across the ensemble.

It is significant to note that all ensemble averages for this example process are
independent of time t. Processes having this characteristic are defined as stationary
processes.

It is also significant that for this process, any average obtained with respect to
time t along any member r of the ensemble is exactly equal to the corresponding
average across the ensemble at an arbitrary time t. Mathematically, this statement can
be expressed in the form

〈f(xr)〉
r=1,2,···

≡ lim
s→∞

1

s

∫ s/2

−s/2

f(xr) dt = E [f(xi)]
i=1,2,···

(21-11)

where f(xr) is any function of the variable xr(t), xi = x(ti), and where the angle
brackets indicate time average. Processes having this characteristic are defined as
ergodic processes.

It is suggested that the reader check the results given by Eq. (21-10) using
Eq. (21-11) to show that the example process being considered, Eq. (21-2), is indeed
ergodic; that is, show

〈xr〉 = lim
s→∞

1

s

∫ s/2

−s/2

xr(t) dt = 0

〈x2
r〉 = lim

s→∞
1

s

∫ s/2

−s/2

xr(t)
2 dt =

A2

2

σ2
xr

=
A2

2
r = 1, 2, · · · (21-12)

µ(τ) =
A2

2
cosω0τ

ρ(τ) = cosω0τ

According to the above definitions, an ergodic process must always be stationary;
however, a stationary process may or may not be ergodic.

21-3 AUTOCORRELATION FUNCTION FOR STATIONARY
PROCESSES

Consider again the general random process x(t) shown in Fig. 21-1, which
involves one independent variable. Assume for this discussion that this process is
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stationary (but not necessarily ergodic) and that it has a zero ensemble mean value,
that is, E(x) = 0.

The covariance functionE[x(t)x(t+τ)] in this case, like all ensemble averages,
will be independent of time t and therefore will be a function of τ only. This function
of τ will be referred to subsequently as the autocorrelation function and will be
expressed in the form

Rx(τ) = E[x(t)x(t+ τ)] (21-13)

Certain important properties of the autocorrelation function should be noted,
namely,

Rx(0) = σ2
x Rx(τ) = Rx(−τ) |Rx(τ)| ≤ Rx(0) (21-14)

The first of Eqs. (21-14) is obvious since Rx(0) = E[x(t)x(t)] is the variance when
E[x] = 0. The second equation is a direct result of the assumed stationarity of the
process, and the third equation can readily be proved using the fact that the following
mean square average must always be greater than or equal to zero:

E{[x(t) ± x(t+ τ)]2} = Rx(0) ± 2Rx(τ) +Rx(0) ≥ 0 (21-15)

or
|Rx(τ)| ≤ Rx(0) (21-16)

For most stationary processes, the autocorrelation function decays rapidly with
increasing values of τ , thus showing a similar rapid loss of correlation of the two
random variables as they are separated with respect to time. One notable exception,
however, is the random process consisting of discrete harmonic waveforms, as shown
in Fig. 21-2. This process has the autocorrelation function

Rx(τ) = E(x1 x2) =
A2

2
cosω0τ (21-17)

Clearly, regardless of the process, the two random variables x(t) and x(t + τ)

approach each other numerically as the time separation τ approaches zero. There-
fore, these variables correlate completely in the limit as reflected by the correlation
coefficient

ρx(0) =
Rx(0)

σ2
x

= 1 (21-18)

It is very significant to note that if the general process x(t) being considered
is stationary, has a zero mean value E[x(t)] = 0, and has the gaussian distribution
given by Eq. (20-94), the autocorrelation function Rx(τ) completely characterizes
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the process. This fact is evident since all variance and covariance functions given by
Eq. (20-97) are directly related to the autocorrelation function as follows:

µik =

{
Rx(0) i = k

Rx(τ) i 6= k
τ = tk − ti (21-19)

For an ergodic process, the ensemble average given by Eq. (21-13) can be
obtained by averaging along any single member (xr) of the ensemble, in which case
the autocorrelation function is more easily obtained using the relation

Rx(τ) = lim
s→∞

1

s

∫ s/2

−s/2

xr(t)xr(t+ τ) dt r = 1, 2, · · · (21-20)

It should now be obvious to the reader why a gaussian ergodic process is so easily
characterized in a probabilistic sense.

Example E21-2. A sample function xr(t) of random process x(t) is es-
tablished by assigning statistically independent sampled values of a random vari-
able x to successive ordinates spaced at equal intervals along the time abscissa
and by assuming a linear variation of the ordinates over each interval as shown
in Fig. E21-3. A complete ensemble of such sample functions (r = 1, 2, · · ·)
can be obtained in a similar manner.

If the probability density function for x is prescribed arbitrarily, except
that its mean value x is held equal to zero, and if the ordinate x1r occurs at
time t = αr, where αr is a sampled value of a random variable α uniformly
distributed over the range 0 < α < 4ε, determine the mean value, mean square
value, and variance of x(t) and the covariance of x(t) and x(t+ τ). What kind
of random process is x(t)?

xr(t)

αr

x1r
x4 r

− x2r
− x3r

x0 r

∆ε

t

FIGURE E21-3
Sample function xr(t) from random process x(t).
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First, consider the above process but with all values of αr(r = 1, 2, · · ·)
set equal to zero, thus forcing all ordinates xir(i, r = 1, 2, · · ·) to occur at time
t = (i− 1)4ε. The linear variation of ordinates shown in Fig. E21-3 leads to

xr(t) =
(
1 − t

4ε
)
x1r +

t

4εx2r 0 < t < 4ε

xr(t+ τ) =





(
1 − t+ τ + 4ε

4ε
)
x0r +

t+ τ + 4ε
4ε x1r −4ε < t+ τ < 0

(
1 − t+ τ

4ε
)
x1r +

t+ τ

4ε x2r 0 < t+ τ < 4ε
(
1 − t+ τ −4ε

4ε
)
x2r +

t+ τ −4ε
4ε x3r 4ε < t+ τ < 24ε

(a)

Taking the ensemble average of the first of Eqs. (a) gives

E[x(t)] =
(
1 − t

4ε
)
E(x1) +

t

4εE(x2)

However, when it is noted that

E(xi) = x =

∫ ∞

−∞
x p(x) dx i = 1, 2, · · · (b)

the result is
E[x(t)] = x = 0 (c)

Squaring the first of Eqs. (a) and taking the ensemble average gives

E[x(t)2] =
(
1 − t

4ε
)2

E(x2
1) + 2

(
1 − t

4ε
) t

4εE(x1x2) +
( t

4ε
)2

E(x2
2)

Making use of the relations

E[x2
i ] = x2 =

∫ ∞

−∞
x2 p(x) dx i, j = 1, 2, · · ·

(d)

E[xixj ] = 0 i 6= j

results in

E[x(t)2] = x2
(
1 − 2t

4ε +
2t2

4ε2
)

(e)

Therefore,

σ2
x(t) = x2

(
1 − 2t

4ε +
2t2

4ε2
)

(f)
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From Eqs. (a) and (d)

E[x(t)x(t+ τ)] =





[(
− 1

4ε2
)
t2 +

(
− τ

4ε2
)
t+

( τ

4ε + 1
)]
x2

0 ≤ t ≤ 4ε −4ε ≤ t+ τ ≤ 0
[ 2

4ε2 t
2 +

( 2τ

4ε2 − 2

4ε
)
t+

(
1 − τ

4ε
)]
x2

0 ≤ t ≤ 4ε 0 ≤ t+ τ ≤ 4ε
[(

− 1

4ε2
)
t2 +

( 2

4ε − τ

4ε2
)
t
]
x2

0 ≤ t ≤ 4ε 4ε ≤ t+ τ ≤ 24ε

(g)

Note that the covariance of x(t) and x(t + τ) as given by Eq. (g) is time de-
pendent; therefore, the random process treated above is nonstationary. Further,
note that this covariance equals zero for values of τ outside the ranges indicated
for Eqs. (g). The ranges indicated for the first, second, and third of Eqs. (g)
are shown by the shaded regions 1, 2, and 3, respectively, in Fig. E21-4. If the
origin of time t = 0 had been selected coincident with xir(r = 1, 2, · · ·) rather
than x1r, as above, Eqs. (a) would obviously be of exactly the same form except
that x0r, x1r, x2r, and x3r would be replaced by xi−1,r, xir, xi+1,r, and xi+2,r,
respectively. Thus, the covariance function E[x(t)x(t+ τ)] must be periodic in
time with period 4ε. This periodic behavior is also indicated in Fig. E21-4 by
a repetition of the shaded regions in each interval along the time t axis.

If the probability density function p(x) used in sampling values of x were
gaussian in form, then the entire process x(t) would be gaussian, in which case

−2∆ε 2∆ε

2∆ε

∆ε

−∆ε ∆ε0

τ

t = −
τ − ∆ε

t = −
τ

t = −
τ + ∆ε

t = −
τ + 2∆

ε

t

FIGURE E21-4
Regions of nonzero covariance for random variables x(t) and x(t + τ ).
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Eqs. (a) would completely characterize the process in a probabilistic sense even
though it is nonstationary.

The restriction placed on αr(r = 1, 2, · · ·) above is now removed, and it
is sampled from a uniform distribution over the range 0 < α < 4ε as originally
stated. Since any arbitrary time twill now occur uniformly over the intervals4ε
looking across the ensemble, the process must be stationary and the covariance
function E[x(t)x(t+ τ)] is obtained by simply averaging that function as given
by Eqs. (g) over time. Since the resulting function is independent of time and
depends only upon the time difference τ , it becomes the autocorrelation function
Rx(τ) for the process. Carrying out this averaging procedure gives

Rx(τ) =





x2

4ε

∫ 4ε

−τ−4ε

[(
− 1

4ε2
)
t2 +

(
− τ

4ε2
)
t+

( τ

4ε + 1
)]
dt

−24ε < τ < −4ε
x2

4ε
{∫ −τ

0

[(
− 1

4ε2
)
t2 +

(
− τ

4ε2
)
t+

( τ

4ε + 1
)]
dt

+

∫ 4ε

−τ

[ 2

4ε2 t
2 +

( 2τ

4ε2 − 2

4ε
)
t+

(
1 − τ

4ε
)]
dt
}

−4ε < τ < 0

x2

4ε
{∫ −τ+4ε

0

[ 2

4ε2 t
2 +

( 2τ

4ε2 − 2

4ε
)
t+

(
1 − τ

4ε
)]
dt

+

∫ 4ε

−τ+4ε

[(
− 1

4ε2
)
t2 +

( 2

4ε − τ

4ε2
)
t
]
dt
}

0 < τ < 4ε
x2

4ε

∫ −τ+24ε

0

[(
− 1

4ε2
)
t2 +

( 2

4ε − τ

4ε2
)
t
]
dt

4ε < τ < 24ε
(h)

When the above integrals are completed and terms are collected, the result is

Rx(τ) =





(4

3
+

2τ

4ε +
τ2

4ε2 +
τ3

64ε3
)
x2 −24ε ≤ τ ≤ −4ε

(2

3
− τ2

4ε2 − τ3

24ε3
)
x2 −4ε ≤ τ ≤ 0

(2

3
− τ2

4ε2 +
τ3

24ε3
)
x2 0 ≤ τ ≤ 4ε

(4

3
− 2τ

4ε +
τ2

4ε2 − τ3

64ε3
)
x2 4ε ≤ τ ≤ 24ε

(i)
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Because of the second of Eqs. (d), Rx(τ) = 0 for τ ≤ −24ε and τ ≥ 24ε.
If the random variable x has a normal distribution, the entire process is

gaussian, in which case it is completely characterized by Eqs. (i).

21-4 POWER SPECTRAL DENSITY FUNCTION FOR
STATIONARY PROCESSES

As demonstrated in Chapter 4, any sample waveform xr(t) taken from a real
stationary random process having a zero mean value, that is, E[x(t)] = 0, can be
separated into its frequency components using a standard Fourier analysis. If this
waveform is represented only over the finite interval −s/2 < t < +s/2, the Fourier
series representation can be used, namely,

xr(t) =
∞∑

n=−∞
Cnr exp(in ω0t) (21-21)

where

Cnr =
1

s

∫ s/2

−s/2

xr(t) exp(−in ω0t)dt

and where ω0 ≡ 2π/s. If xr(t) is periodic, Eqs. (21-21) give an exact representation
of the entire waveform provided the integration interval s is taken as one full period.
Such periodic waveforms consist of discrete harmonics having circular frequencies
ω0, 2ω0, 3ω0, · · ·, with corresponding finite amplitudes A1r = 2|C1r|, A2r = 2|C2r|,
A3r = 2|C3r|, · · ·, provided, of course, corresponding negative and positive frequency
components are combined.

Usually the quantity of most interest when analyzing stationary random pro-
cesses is the mean square value of xr(t) over the interval −s/2 < t < +s/2, which
can be obtained by substituting the first of Eqs. (21-21) into the relation

〈xr(t)
2〉 =

1

s

∫ s/2

−s/2

xr(t)
2 dt (21-22)

to obtain

〈xr(t)
2〉 =

∞∑

n=−∞
|Cnr|2 =

∞∑

n=1

A2
nr

2
(21-23)

When 4ω represents the frequency spacing of the discrete harmonics, that is,

4ω = ω0 =
2π

s
(21-24)

and the second of Eqs. (21-21) is used, Eq. (21-23) becomes

〈xr(t)
2〉 =

∞∑

n=−∞

∣∣∣
∫ s/2

−s/2
xr(t) exp(−in ω0t)dt

∣∣∣
2

2πs
4ω (21-25)
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If s is now allowed to approach infinity, 4ω → dω, nω0 → ω, and the summation
becomes an integral; thus, Eq. (21-25) is converted into the form

〈xr(t)
2〉 =

∫ ∞

−∞
Sxr

(ω) dω (21-26)

where the function

Sxr
(ω) ≡ lim

s→∞

∣∣∣
∫ s/2

−s/2
xr(t) exp(−iωt)dt

∣∣∣
2

2πs
(21-27)

is defined as the power spectral density function for waveform xr(t) provided a limit
actually exists. According to this definition, the power spectral density function is
an even function when xr(t) is a real function, is positive and finite for all values of
ω, and yields the mean square value of xr(t) when integrated over the entire range
−∞ < ω < +∞.

The power spectral density function for the entire stationary process x(t) is
obtained by simply averaging the power spectral density functions for individual
members across the ensemble as follows:

Sx(ω) = lim
n→∞

1

n

n∑

r=1

Sxr
(ω) (21-28)

The ensemble average of the mean square value of x(t) can now be obtained by
integrating Sx(ω) over the entire range −∞ < ω < +∞.

If the random process is ergodic, each member of the ensemble will yield the
same power spectral density function, in which case it is unnecessary to average
across the ensemble. It is sufficient simply to generate the power spectral density
function using one member. For most ergodic processes encountered in engineering,
the power spectral density function given by Eq. (21-27) approaches its limit rapidly
with increasing values of s, so that sufficient accuracy can usually be obtained with a
relatively short sample of the waveform.

21-5 RELATIONSHIP BETWEEN POWER SPECTRAL
DENSITY AND AUTOCORRELATION FUNCTIONS

Let a function Fxr
(ω) be defined as the Fourier transform of the time average

〈xr(t)xr(t+ τ)〉; that is, let

Fxr
(ω) ≡

∫ ∞

−∞

[
lim

s→∞
1

s

∫ s/2

−s/2

xr(t)xr(t+ τ)dt
]
exp(−iωτ)dτ (21-29)
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Assuming that the function Fxr
(ω) does indeed exist, Fourier transform theory requires

that the quantity in square brackets in Eq. (21-29), which is a function of τ only, decay
with increasing values of |τ | so that the integral

I ≡
∫ ∞

−∞

∣∣∣ lim
s→∞

1

s

∫ s/2

−s/2

xr(t)xr(t+ τ)dt
∣∣∣ dτ (21-30)

exists. When Eq. (21-29) is expressed in its equivalent form

1

2π
Fxr

(ω) = lim
s→∞

1

2πs

s/2∫

−s/2

s/2∫

−s/2

xr(t)xr(t+ τ) exp(−iωτ) dτ dt (21-31)

and a change of variable as defined by

θ ≡ t+ τ (21-32)

is substituted, Eq. (21-31) becomes

1

2π
Fxr

(ω) = lim
s→∞

1

2πs

∫ s/2

−s/2

xr(t) exp(iωt)dt

∫ t+s/2

t−s/2

xr(θ) exp(−iωθ)dθ
(21-33)

The expanding domain of integration given by Eq. (21-33) is shown in Fig. 21-4a.
Since the function Fxr

(ω) can exist only when the total integrand of this equation
decays rapidly with increasing values of |τ |, it is valid to change the limits of the
second integral as shown by the relation

1

2π
Fxr

(ω) = lim
s→∞

1

2πs

∫ s/2

−s/2

xr(t) exp(iωt)dt

∫ s/2

−s/2

xr(θ) exp(−iωθ)dθ (21-34)

which simply changes the expanding domain of integration to that shown in Fig. 21-4b.
At this point θ can be changed to t since it is serving only as a dummy time variable.

s → ∞
s → ∞

τ τ

t t

θ = t + 
s
2

θ = t − 
s
2

θ = 
s
2

θ = − 
s
2

t = − 
s
2

t = + 
s
2

t = − 
s
2

t = 
s
2

s
2 

s
2


s
2 

s
2


s
2


s
2


s
2


s
2


s
2 

s
2

Eq. (21-33) Eq. (21-34)

(a) (b)

FIGURE 21-4
Expanding domains of integration.
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Equation (21-34) then can be expressed in the form

1

2π
Fxr

(ω) = lim
s→∞

∣∣∣
∫ s/2

−s/2
xr(t) exp(−iωt)dt

∣∣∣
2

2πs
(21-35)

When Eq. (21-35) is compared with Eq. (21-27), it is clear that

1

2π
Fxr

(ω) = Sxr
(ω) (21-36)

If the stationary process being considered is ergodic, Fxr
(ω) is simply the Fourier

transform of the autocorrelation functionRx(τ), and Sxr
(ω) equals the power spectral

density for the process Sx(ω). Thus, it has been shown that for an ergodic process,
the autocorrelation and power spectral density functions for the process are related
through the Fourier integrals given by

Sx(ω) =
1

2π

∫ ∞

−∞
Rx(τ) exp(−iωτ) dτ

Rx(τ) =

∫ ∞

−∞
Sx(ω) exp(iωτ) dω

(21-37)

If the stationary process being considered is nonergodic, an additional step must
be taken by averaging Eq. (21-36) across the ensemble as expressed by the relation

1

2π
lim

n→∞
1

n

n∑

r=1

Fxr
(ω) = lim

n→∞
1

n

n∑

r=1

Sxr
(ω) (21-38)

When Eq. (21-31) is used, it is observed that the left hand side of Eq. (21-38) is equal to
1/2π times the Fourier transform of Rx(τ). Since the right side of this same equation
is Sx(ω), Eqs. (21-37) must also be valid for a nonergodic stationary process.

It was previously demonstrated that if a stationary process having a zero mean
value is gaussian, it is completely characterized by the autocorrelation function. Now
that it has been shown that the power spectral density function can be obtained
by a Fourier transformation of the autocorrelation function, that function must also
completely characterize such a process.

Example E21-3. Derive the power spectral density function for random
process x(t) as given in stationary form by Example E21-2.

Substituting Eqs. (i) of Example E21-2 into the first of Eqs. (21-37),
namely,

Sx(ω) =
1

2π

∫ ∞

−∞
Rx(τ) exp(−iωτ)dτ (a)
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gives

Sx(ω) =
x2

2π

[ ∫ −4ε

−24ε

(4

3
+

2τ

4ε +
τ2

4ε2 +
τ2

64ε3
)

exp(−iωτ)dτ

+

∫ 0

−4ε

(2

3
− τ2

4ε2 − τ3

24ε3
)

exp(−iωτ)dτ

+

∫ 4ε

0

(2

3
− τ2

4ε2 +
τ3

24ε3
)

exp(−iωτ)dτ

+

∫ 24ε

4ε

(4

3
− 2τ

4ε +
τ2

4ε2 − τ3

64ε3
)

exp(−iωτ)dτ
]

(b)

After integrating and collecting all terms, the result is

Sx(ω) =
x2

2π

{ 1

ω4 4ε3 [6 − 4 exp(−iωτ) − 4 exp(iωτ)

+ exp(−2iωτ) + exp(2iωτ)]
}

(c)

which can be converted to the trigonometric form

Sx(ω) =
x2

2π

[6 − 8 cosω4ε+ 2 cos 2ω4ε
ω44ε3

]
−∞ < ω <∞ (d)

21-6 POWER SPECTRAL DENSITY AND AUTOCORRELATION
FUNCTIONS FOR DERIVATIVES OF PROCESSES

When the power spectral density and autocorrelation functions for the random
variable x(t) are known, these same functions can easily be obtained for time deriva-
tives of this variable such as ẋ(t) and ẍ(t). To illustrate the method, consider the
autocorrelation function for x(t) in its most basic form, that is,

Rx(τ) ≡ E[x(t)x(t+ τ)] (21-39)

Differentiating with respect to τ gives

R′
x(τ) =

dRx(τ)

dτ
= E[x(t) ẋ(t+ τ)] (21-40)

Since the process x(t) is stationary, Eq. (21-40) can also be expressed in the form

R′
x(τ) = E[x(t− τ) ẋ(t)] (21-41)
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Differentiating once more with respect to τ gives

R′′
x(τ) = −E[ẋ(t− τ) ẋ(t)] = −E[ẋ(t) ẋ(t+ τ)] (21-42)

Since the ensemble average in Eq. (21-42) is by definition the autocorrelation function
for ẋ(t), it becomes apparent that

Rẋ(τ) = −R′′
x(τ) (21-43)

Differentiating in the same manner two more times shows that

Rẍ(τ) = −R′′
ẋ(τ) = Riv

x (τ) (21-44)

The above autocorrelation functions can be expressed in the form of the second
of Eqs. (21-37), namely

Rx(τ) =

∫ ∞

−∞
Sx(ω) exp(iωτ) dω

Rẋ(τ) =

∫ ∞

−∞
Sẋ(ω) exp(iωτ) dω (21-45)

Rẍ(τ) =

∫ ∞

−∞
Sẍ(ω) exp(iωτ) dω

Substituting the first of Eq. (21-45) into Eqs. (21-43) and (21-44) gives

Rẋ(τ) =

∫ ∞

−∞
ω2Sx(ω) exp(iωτ) dω

Rẍ(τ) =

∫ ∞

−∞
ω4Sx(ω) exp(iωτ) dω

(21-46)

Comparing Eqs. (21-46) with the second and third of Eqs. (21-45) shows that

Sẋ(ω) = ω2Sx(ω) Sẍ(ω) = ω4Sx(ω) (21-47)

Example E21-4. If random process x(t) has the autocorrelation function

Rx(τ) = (1 − τ2) e−τ2

(a)

find the corresponding autocorrelation functions for random processes ẋ(t) and
ẍ(t).
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Taking derivatives of Eq. (a) gives

R′
x(τ) = (2τ3 − 4τ) e−τ2

R′′
x(τ) = (−4τ4 + 14τ2 − 4) e−τ2

R′′′
x (τ) = (8τ5 − 44τ3 + 36τ) e−τ2

Riv
x (τ) = (−16τ6 + 128τ4 − 204τ2 + 36) e−τ2

(b)

Thus from Eqs. (21-43) and (21-44)

Rẋ(τ) = (4τ4 − 14τ2 + 4) e−τ2

(c)

Rẍ(τ) = (−16τ6 + 128τ4 − 204τ2 + 36) e−τ2

(d)

21-7 SUPERPOSITION OF STATIONARY PROCESSES

Consider a stationary process q(t) which is defined as the sum of three separate
stationary processes x(t), y(t), and z(t) all of which have zero mean values. To find
the autocorrelation function for this process, namely,

Rq(τ) ≡ E[q(t) q(t+ τ)] (21-48)

substitute the relation
q(t) = x(t) + y(t) + z(t) (21-49)

into Eq. (21-48) to obtain

Rq(τ) =E[x(t)x(t+ τ)] + E[y(t)y(t+ τ)] + E[z(t)z(t+ τ)]

+ E[x(t)y(t+ τ)] + E[y(t)z(t+ τ)] + E[x(t)z(t+ τ)]

+ E[y(t)x(t+ τ)] + E[z(t)y(t+ τ)] + E[z(t)x(t+ τ)] (21-50)

The first three ensemble averages on the right hand side of this equation are the
autocorrelation functions for processes x(t), y(t), and z(t), respectively, and the last
six ensemble averages are cross-correlation functions (or covariance functions), which
will be designated as

Rxy(τ) = E[x(t)y(t+ τ)] Ryx(τ) = E[y(t)x(t+ τ)]

Ryz(τ) = E[y(t)z(t+ τ)] Rzy(τ) = E[z(t)y(t+ τ)] (21-51)

Rxz(τ) = E[x(t)z(t+ τ)] Rzx(τ) = E[z(t)x(t+ τ)]
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Thus, the autocorrelation function for process q(t) can be expressed in terms of the
autocorrelation and cross-correlation functions for x(t), y(t), and z(t) as follows:

Rq(τ) =Rx(τ) +Ry(τ) +Rz(τ) +Rxy(τ) +Ryz(τ)

+Rxz(τ) +Ryx(τ) +Rzy(τ) +Rzx(τ) (21-52)

If random processes x(t), y(t), and z(t) are uncorrelated with each other, their cross-
correlation functions will equal zero, in which case

Rq(τ) = Rx(τ) +Ry(τ) +Rz(τ) (21-53)

It should be noted that for real stationary processes

Rxy(τ) = Ryx(−τ) Ryz(τ) = Rzy(−τ) Rxz(τ) = Rzx(−τ) (21-54)

The power spectral density function for process q(t) is obtained using the first
of Eqs. (21-37), that is,

Sq(ω) =
1

2π

∫ ∞

−∞
Rq(τ) exp(−iωτ)dτ (21-55)

Substituting Eq. (21-52) into Eq. (21-55) gives

Sq(ω) =Sx(ω) + Sy(ω) + Sz(ω) + Sxy(ω) + Syz(ω)

+ Sxz(ω) + Syx(ω) + Szy(ω) + Szx(ω) (21-56)

where Sxy(ω), Syz(ω), · · · are cross-spectral density functions which are related to
their respective cross-correlation functions through the Fourier transform relation

Sxy(ω) =
1

2π

∫ ∞

−∞
Rxy(τ) exp(−iωτ) dτ (21-57)

Note that Syx(ω) is the complex conjugate of Sxy(ω). The inverse of Eq. (21-57) is,
of course,

Rxy(τ) =

∫ ∞

−∞
Sxy(ω) exp(iωτ) dω (21-58)

When the procedure of Section 21-4 is followed, the time average of the product
xr(t)yr(t) becomes

〈xr(t)yr(t)〉 =

∫ ∞

−∞
Sxryr

(ω) dω (21-59)

where

Sxryr
(ω) ≡ lim

s→∞

[ ∫ s/2

−s/2
xr(t) exp(−iωt)dt

] [ ∫ s/2

−s/2
yr(t) exp(+iωt)dt

]

2πs
(21-60)
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Note that Sxryr
(−ω) is the complex conjugate of Sxryr

(ω). Therefore, only the real
part of Sxryr

(ω) contributes to the integral in Eq. (21-59). If processes x(t) and y(t)
are ergodic, Sxryr

(ω) as given by Eq. (21-60) represents the cross-spectral density
for these processes. However, if processes x(t) and y(t) are nonergodic, the cross-
spectral density function for these processes must be obtained by averaging across the
ensemble, that is,

Sxy(ω) = lim
n→∞

1

n

n∑

r=1

Sxryr
(ω) (21-61)

21-8 STATIONARY GAUSSIAN PROCESSES: ONE
INDEPENDENT VARIABLE

In engineering it is common practice to assume a gaussian, or normal, distribu-
tion for random processes. To help in establishing a rational basis for this assumption,
consider a real stationary zero-mean random process x(t) of the form

xjr(t) =

j∑

n=−j

Cnr exp(in ω0t) r = 1, 2, · · · (21-62)

where xjr(t) is the rth member of the ensemble which contains j discrete harmonics
having frequencies ω0, 2ω0, · · ·, jω0, and where Cnr represents random complex
constants. For the process to have a zero-mean value, it is necessary, of course, that
coefficients C0r equal zero; and since it is assumed that the process contains real
functions only, it is necessary that complex coefficients Cnr and Cmr be conjugate
pairs when n = −m.

To define the randomness of coefficients Cnr, assume first that |Cnr| = C

(a constant) for all permissible values of n and r but that their corresponding phase
angles αnr are sampled values of a random variable αwhich has a uniform probability
density function of intensity 1/2π in the range 0 < α < 2π. Under these conditions
Eq. (21-62) can be written in the form

xjr(t) =

j∑

n=−j

∣∣Cnr

∣∣ exp
[
i(nω0t+ αnr)

]
(21-63)

or

xjr = 2C

j∑

n=1

sin(nω0t+ θnr) r = 1, 2, · · · (21-64)

where θnr = +(π/2) + αnr. Since this process contains discrete harmonics at
frequency intervals of ω0, each ensemble member will be periodic with a period
s = 2π/ω0. When a new random variable L(t) is defined so that

Lnr(t) = 2C sin(nω0t+ θnr) (21-65)



RANDOM PROCESSES 493

Eq. (21-64) can be written in the form of the one-dimensional random walk:

xjr(t) =

j∑

n=1

Lnr(t) (21-66)

From Eqs. (21-5) and (21-10), it is clear that

p[L(t)] =





1

π
√

4C2 − L2
−2C < L < 2C

0 L < −2C ; L > 2C

(21-67)

and that
L(t) = 0 σ2

L(t) = 2C2 (21-68)

When the one-dimensional random-walk relations given by Eq. (20-34) are used, it
follows that

xj(t) = 0 σ2
x(t) = 2jC2 (21-69)

At this point, apply the same limiting procedure previously used in the one-dimensional
random-walk development, that is, let ω0 → 0, j → ∞, and C2 → 0, but in such a
manner that

nω0 → ω (a variable) j ω0 → ω1 (a constant) C2/ω0 → S0 (a constant)
(21-70)

Since ω0 = 2π/s, period s→ ∞ by this limiting procedure.

When the above relations and the second of Eqs. (21-21) are used, one finds that

|Cnr| = C =
1

s

∣∣∣
∫ s/2

−s/2

xjr(t) exp(−in ω0t)dt
∣∣∣ (21-71)

It is now evident that in the limit

S0 = lim
s→∞

∣∣ ∫ s/2

−s/2
xr(t) exp(−iωt)dt

∣∣2

2πs
r = 1, 2, · · · (21-72)

where
xr(t) = lim

j→∞
ω0→0

xjr(t) (21-73)

A comparison of Eq. (21-72) with Eq. (21-27) and recognition of the limiting condi-
tions given by the first and second of Eqs. (21-70) lead to the conclusion that ensemble
member xr(t) has a uniform power spectral density function Sxr

(ω) of intensity S0

over the frequency range −ω1 < ω < ω1 and of intensity zero outside this range
and that since this power spectral density function is invariant with r, the process is
ergodic; thus, the power spectral density for the entire process x(t) is that function
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FIGURE 21-5
Power spectral density and autocorrelation functions for random process x(t) .

shown in Fig. 21-5a. Further, the earlier one-dimensional random-walk development
leads to the conclusion that this random process is gaussian and that its variance [see
the second of Eqs. (21-69)] is given by

σ2
x(t) = 2ω1 S0 (21-74)

Substituting the power spectral density function shown in Fig. 21-5a into the second
of Eqs. (21-37), the autocorrelation function for random process x(t) is found to be

Rx(τ) =
2S0

τ
sinω1τ −∞ < τ <∞ (21-75)

This relation is plotted in Fig. 21-5b.

Note that when the power spectral density function for this process becomes
uniform over the entire frequency range, that is, when ω1 → ∞, the variance σ2

x → ∞
and the autocorrelation function Rx(τ) → 2πS0 δ(τ), where δ(τ) is a Dirac delta
function located at the origin. This process, which is commonly referred to as a
white process or simply white noise, can be considered as totally random since x(t) is
completely independent of x(t+ τ) for all values of τ 6= 0.

Consider again random process xr(t) but this time assume that coefficients
|Cnr| equal zero for all values of n in the range −k < n < +k, where k < j, and
that they equal a constant C for all values of n in the ranges −j ≤ n ≤ −k and
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+k ≤ n ≤ +j. The same procedures as before are followed, but this time ω0 → 0,
k → ∞, j → ∞, and C2 → 0 in such a manner that nω0 → ω, kω0 → ω1,
jω0 → ω2, and C2/ω0 → S0; again the process becomes gaussian in the limit and its
power spectral density and autocorrelation functions are of the form

Sx(ω) =

{
S0 −ω2 < ω < −ω1 ; ω1 < ω < ω2

0 ω < −ω2 ; −ω1 < ω < ω1 ; ω > ω2

Rx(τ) =
2S0

τ
(sinω2τ − sinω1τ) −∞ < τ <∞

(21-76)

To generalize one step further, consider a random process z(t) defined as the
sum of the statistically independent gaussian ergodic processes x(t) and y(t), both of
which are developed separately from Eq. (21-62) using the same limiting procedure as
before. From the proof given in Section 21-9, process z(t) will also have a gaussian
distribution.

Finally, once more use the process given by Eq. (21-63) as expressed in the
equivalent form

xjr(t) =

j∑

n=1

2|Cnr| sin(nω0t+ θnr) r = 1, 2, · · · (21-77)

For this process assume that phase angles θnr are sampled values of random variable
θ which has the uniform probability density function shown in Fig. 21-6a and that
coefficients |Cnr| are sampled values of a second random variable C which has an
arbitrary, but prescribed, probability density as shown in Fig. 21-6b. When Lnr(t) is
defined by the relation

Lnr(t) ≡ 2|Cnr| sin(nω0 t+ θnr) (21-78)

xr(t) can again be expressed in the form

xjr(t) ≡
j∑

n=1

Lnr(t) (21-79)

When the forms of probability density functions p(θ) and p(C) are known, the proba-
bility density function forL(t), as defined by Eq. (21-78), can be established if desired.

0 0 C1

C
2p

p( )q p C( )

q

( )a ( )b

FIGURE 21-6

Probability density functions for random variables and .q C

¾

1

2p
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For this process, however, this step is unnecessary since the mean value L(t) and the
variance σ2

L(t) are the only quantities required in the random-walk development and
they can be obtained without establishing the function p[L(t)]. From the form of
Eq. (21-78), it can be reasoned that

L(t) = 0 σ2
L(t) = 2C2 = 2

∫ ∞

−∞
C2p(C)dC (21-80)

This process is stationary since the variance for L(t) is independent of time t.

When the one-dimensional random-walk relations given by Eq. (20-34) are used
again, it follows that

xj(t) = 0 σ2
xj(t)

= 2jC2 (21-81)

When Eq. (21-81) is compared with Eq. (21-69), it is clear that the same limiting
procedures used previously can once again be used provided C2 is replaced by C2. In
this case

S0 ≡ C2

ω0
= lim

n→∞
1

n

n∑

r=1

Sxr
(ω) (21-82)

where

Sxr
(ω) = lim

s→∞

∣∣ ∫ s/2

−s/2
xr(t) exp(−iωt)dt

∣∣2

2πs
(21-83)

Although coefficients |Cnr| for this process are random in accordance with Fig. 21-bb,
the power spetral density function as defined by Eq. (21-83) will be independent of
r when the limiting procedure is applied, i.e., when j → ∞ and ω0 → 0. If S0 as
given by Eq. (21-82) is to be finite, it is necessary that C1 in Fig. 21-6b approach
zero in such a way that C2

/
ω0 = S0 is finite. If the process given by Eq. (21-77) is

to have a nonuniform power spectral density function over the frequency range j ω0,
the coefficients |Cnr| would have to be dependent upon n; and, if the process is to be
nonergodic, they would have to be dependent upon r.

The earlier development which restricted the nonzero-frequency components
to the range ω1 < ω < ω2 and the development which presented the principle of
superposition obviously both apply equally well to the present process involving two
random variables. Therefore, it may be concluded that any stationary process x(t)
(whether ergodic or not) will be gaussian when its power spectral density function
Sx(ω) truly exists and when all the phase angles between frequency components which
are randomly distributed in a uniform manner over 360◦ are statistically independent
of each other.

When the phase angles between frequency components are not uniformly dis-
tributed over the full 360◦, gaussian processes will still result in the limit; however,
stationarity will no longer be maintained. For example, if the random phase angle
θ for the process defined by Eq. (21-2) has a uniform probability density function
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of intensity 1/θ1 over the range 0 < θ < θ1, where θ1 < 2π, the ensemble mean
square value E[x(t)2] (or variance in this case) will be time dependent. To prove this
statement, substitute Eqs. (21-2) and (20-4) into Eq. (20-10) to obtain

E[x(t)2] =

∫ A sin(ω0t+θ1)

A sin ω0t

x2

θ1
√
A2 − x2

dx (21-84)

After the integration is completed, this equation becomes

E[x(t)2] =
A2

2

{
1 − 1

2θ1
[sin 2θ1 cos 2ω0t− (1 − cos 2θ1) sin 2ω0t]

}
(21-85)

which clearly shows the time dependency. Note that as θ1 → 2π, the time dependency
is gradually removed; that is, E[x(t)2] → A2/2, and as θ1 → 0, the random character
of the process is gradually lost, so that E[x(t)2] → A2 sin2 ω0t.

It is important to recognize that gaussian processes result only when the random
variables involved are statistically independent.

Example E21-5. Assume random variables r1 and r2 as defined in Exam-
ple E20-7 are used as successive discrete ordinates for all members of random
process x(t) given in Example E21-2. What is the joint probability density
function for random variables x(t) and x(t+ τ)?

First it should be recognized that random variables x(t) and x(t+ τ) are
linearly related to random variables r1 and r2 in accordance with the first and
second of Eqs. (a) in Example E21-2. Since random variables r1 and r2 have
the normal distribution given by Eq. (f) of Example E20-7, random variables
x(t) and x(t + τ) must also have a normal distribution in accordance with the
principle of linear transformation treated in Section 20-10. Thus the probability
density functions must be of the form

p(x1) =
1√

2π σx1

exp
[
− (x1 − x1)

2

2σ2
x1

]

p(x1, x2) =
1

2πσx1
σx2

√
1 − ρ2

x1 x2

× exp
{
− 1

2(1 − ρ2
x1 x2

)

×
[ (x1 − x1)

2

σ2
x1

− 2ρx1 x2
(x1 − x1)(x2 − x2)

σx1
σx2

+
(x2 − x2)

2

σ2
x2

]}

(a)
where x1 ≡ x(t) and x2 ≡ x(t + τ). With the results in Examples E20-7
and E21-2, it is shown that

x1 = x2 = 0
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σ2
x1

= σ2
x2

= Rx(0) =
2

3
x2

2 =
2

3
(b)

ρx1 x2
(τ) =

Rx(τ)

Rx(0)

=





1 − 3τ2

24ε2 +
3|τ |3
44ε3 −4ε ≤ τ ≤ 4ε

2 − 3|τ |
4ε +

3τ2

24ε2 − |τ |3
44ε3 −24ε ≤ τ ≤ −4ε

4ε ≤ τ ≤ 24ε
0 τ ≤ −24ε ; τ ≥ 24ε

(c)

Substituting Eqs. (b) into Eqs. (a) gives the desired probability density function.

21-9 STATIONARY WHITE NOISE

In the previous discussion on stationary gaussian processes, white noise was
defined as a process having a uniform power spectral density function of intensity
S0 over the entire frequency range −∞ < ω < ∞, which corresponds to a Dirac
delta function of intensity 2πS0 at the origin for the autocorrelation function. By
this definition it is clear that such processes contain frequency components of equal
intensity (based on squared amplitude as a measure of intensity) over the entire
frequency range thus the random variables at time t and t+ τ are uncorrelated for all
τ 6= 0.

In subsequent developments, it will be found desirable to express white-noise
processes in an equivalent but quite different manner. To develop this new type of
representation, consider the random process

xr(t) = lim
N→∞

N−1∑

k=−N

akrη(t− k4t− εr) r = 1, 2, · · · (21-86)

where coefficients akr are statistically independent random variables having a zero
mean value and sampled in accordance with the arbitrary but prescribed probability
density function p(a) shown in Fig. 21-7a, 4t is a constant time interval, variables εr

are statistically independent random phase parameters having the uniform probability
density function shown in Fig. 21-7b, and η(t) is the function defined in Fig. 21-7c.
The rth member of this ensemble is shown in Fig. 21-7d. The uniformly random phase
shift ε over a full interval 4t is a necessary condition for the process to be stationary.

The power spectral density function for member xr(t) can be derived by using
Eq. (21-27) in its equivalent form

Sxr
(ω) = lim

N→∞

|Qxr
(iω)|2

4πN 4t (21-87)
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FIGURE 21-7
White-noise process, Eq. (21-86).

a = 0

t = N∆t + εrt = − N∆t + εr

2N∆t

t

εr ∆t

where

Qxr
(iω) =

∫ N 4t+εr

−N 4t+εr

[ N−1∑

k=−N

akrη(t− k 4t− εr)
]
exp(−iωt)dt (21-88)

When the change of variable θ ≡ t − k4t − εr is substituted into this equation and
the order of summation and integration is changed, it becomes

Qxr
(iω) =

N−1∑

k=−N

akr exp[−iω(k4t+ εr)]

∫ (N−k)4t

−(N+k)4t

η(θ) exp(−iωθ)dθ

(21-89)

or

Qxr
(iω) =

i

ω
[exp(−iω4t) − 1]

N−1∑

k=−N

akr exp[−iω(k4t+ εr)] (21-90)

Substituting this equation into Eq. (21-87) gives

Sxr
(ω) = lim

N→∞

1

4πN 4t ω2 [exp(−iω4t) − 1][exp(iω4t) − 1]

×
N−1∑

k=−N

N−1∑

j=−N

akr ajr exp[−iω(k − j)4t] (21-91)

Since the process as defined is stationary but nonergodic, the power spectral den-
sity function for the process must be obtained by averaging Eq. (21-91) across the
ensemble.
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Since random variables akr and ajr (r = 1, 2, · · · ,∞) are statistically indepen-
dent, their covariances, that is, E(akr ajr) for j 6= k, must all equal zero. Therefore,
the double summation in Eq. (21-91) reduces to a single summation, which obviously
equals 2Nσ2

a when averaged with respect to r across the ensemble. Thus, the power
spectral density function for the process becomes

Sx(ω) =
σ2

a

2π4t ω2 [exp(−iω4t) − 1][exp(iω4t) − 1] (21-92)

or

Sx(ω) =
σ2

a 4t
2π

sin2[(ω4t)/2]
[(ω4t)/2]2 (21-93)

When σ2
a → ∞ and 4t→ 0 in such a way that σ2

a 4t = C (a constant), this equation
becomes

Sx(ω) =
C

2π
= S0 (21-94)

showing that the process becomes white noise in the limit.

As a special case of the above process, let the probability density function p(a)
consist of two Dirac delta functions of intensity 1/2 located at a = ±A. This process
becomes white noise having a uniform power spectral density function of intensity
S0 = C/2π when A2 → ∞, 4t→ 0, and A2 4t→ C.

Example E21-6. For the stationary random process defined in Exam-
ple E20-5, (1) show that this process approaches white noise in the limit as
4ε→ 0 and (2) find the normalization factorC which would force this limiting
process to have a constant power spectral density equal to S0.

From the form of the autocorrelation function given in Example E21-2

lim
4ε→0

Rx(τ)

{
= 0 τ 6= 0

6= 0 τ = 0
(a)

which suggests the form of a Dirac delta function. Integrating Rx(τ) over the
infinite τ domain gives

∫ ∞

−∞
Rx(τ)dτ = 2x2

{∫ 4ε

0

(2

3
− τ2

4ε2 +
τ3

24ε3
)
dτ

+

∫ 24ε

4ε

(4

3
− 2τ

4ε +
τ2

4ε2 − τ3

64ε3
)
dτ

}

or
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∫ ∞

−∞
Rx(τ)dτ = x2 4ε = 4ε (b)

Multiplying all discrete ordinates of process x(t) by the constant (2πS0/4ε)1/2

giving a new process a(t), following the above procedures, would demonstrate
that

lim
4ε→0

Ra(τ)

{
= 0 τ 6= 0

6= 0 τ = 0

(c)∫ ∞

−∞
Ra(τ)dτ = 2πS0

thus showing that
Ra(τ) → 2πS0 δ(τ) (d)

which means that process a(t) approaches white noise of intensity S0. Therefore
the normalization factor C is given by

C =
(2πS0

4ε
)1/2

(e)

The solution to this example can be obtained more easily by noting that
the power spectral density function for the process x(t), as given by Eq. (b) in
Example E21-3, becomes in the limit

lim
4ε→0

Sx(ω) =
x2 4ε

2π
=

4ε
2π

(f)

Likewise the limiting power spectral density function for process a(t) would be

lim
4ε→0

Sa(ω) = S0 (g)

again showing that the normalization factor is given by Eq. (e).

21-10 PROBABILITY DISTRIBUTION FOR MAXIMA1

Consider a zero-mean stationary gaussian processx(t) having an arbitrary power
spectral density function Sx(p). A sample function taken from this process (Fig. 21-8)

1 D. E. Cartwright and M. S. Longuet-Higgins, “The Statistical Distributions of the Maxima of a Random
Function,” Proc. R. Soc., Ser. A, Vol. 237, pp. 212-232, 1956; A. G. Davenport, “Note on the
Distribution of the Largest Value of a Random Function with Application to Gust Loading,” Proc. Inst.
Civ. Eng., Vol. 28, pp. 187-196, 1964.
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Sample function of process ( ).x t

shows positive and negative maxima and positive and negative minima. From Fig. 21-
9, it is clear that for a maximum (+ or −) to occur in the time interval (t, t+ dt), it is
necessary that ẋr(t) be positive and ẍr(t) be negative and that

0 < ẋr(t) < |ẍr(t)| dt (21-95)

With the definition of three new random variables ζ1 ≡ x(t), ζ2 ≡ ẋ(t), and
ζ3 ≡ ẍ(t), the probability density function p(ζ1, ζ2, ζ3) can be written in its normal
form

p(ζ1, ζ2, ζ3) =
1

(2π)3/2 |µµµ|1/2
exp

{
− 1

2

[
ζζζ − ζζζ

]T
µµµ−1

[
ζζζ − ζζζ

]}
(21-96)

where ζζζ is the vector [ζ1, ζ2, ζ3]
T , ζζζ is the vector [ζ1, ζ2, ζ3]

T = 0, and µµµ is the
covariance matrix

µµµ =



µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33


 (21-97)

where
µik = E(ζi ζk) (21-98)
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When

mn =

∫ ∞

−∞
ωn Sx(ω) dω (21-99)

it is easily shown, using the techniques of derivation in Section 21-6, that

µµµ =



m0 0 −m2

0 m2 0
−m2 0 m4


 (21-100)

Thus, Eq. (21-96) becomes

p(ζ1, ζ2, ζ3) =
1

(2π)3/2 (m2 4)1/2

× exp
[
− 1/2

( ζ2
2

m2
+
m4 ζ

2
1 + 2m2 ζ1 ζ3 +m0 ζ

2
3

4
)]

(21-101)

where
4 ≡ m0m4 −m2

2 (21-102)

From Fig. 21-10 it becomes apparent that the probability of a maximum (+ or −)
occurring in the range (ζ1, ζ1 + dζ1) during the time interval (t, t + dt) is expressed
by the relation

F (ζ1)dζ1 dt =
[ ∫ 0

−∞
p(ζ1, 0, ζ3)

∣∣ζ3
∣∣ dζ3

]
dζ1 dt (21-103)

Thus, it follows that the mean frequency of occurrence of maxima (+ or −) over the
complete range −∞ < ζ1 <∞ is given by

N1 ≡
∫ ∞

−∞

[ ∫ 0

−∞
p(ζ1, 0, ζ3)

∣∣ζ3
∣∣ dζ3

]
dζ1 (21-104)

FIGURE 21-10
Shaded region satisfies the conditions 
for a maximum (+ or −) occurring in the 
range (ζ1, ζ1 + dζ1) and in the time 
interval (t, t + d t).

(ζ 1, 0, ζ 3)

ζ 3 dt

dt

ζ 1 + dζ 1ζ 1
ζ 1

ζ 3

ζ 2

dζ 1
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Substituting Eq. (21-101) for ζ2 = 0 into this relation and carrying out the double
integration leads to Rice’s equation

N1 =
1

2π

(m4

m2

)1/2

(21-105)

Since the probability density function for maxima is by definition the ratio
F (ζ1)/N1, it can be obtained using Eqs. (21-103) and (21-105). In doing so, it is
convenient to express maxima in the nondimensional form

η ≡ ζ1

m
1/2
0

(21-106)

allowing its probability density function to be expressed in the form

p(η) =
1

(2π)1/2

[
εe−η2/2ε2

+ (1 − ε2)1/2 ηe−η2/2

∫ [η(1−ε2)1/2]/ε

−∞
e−x2/2dx

]

(21-107)
where

ε2 ≡ m0m4 −m2
2

m0m4
=

4
m0m4

(21-108)

From Eq. (21-99) it can easily be shown that 4 is always positive; therefore, ε, as
defined by Eq. (21-108), must always be in the range

0 < ε < 1 (21-109)

Equation (21-107) is plotted in Fig. 21-11 for different values of ε throughout this
range. Note that for a narrow-band process approaching the single harmonic process
given by Eq. (21-2), ε → 0, in which case Eq. (21-107) reduces to the form of a
Rayleigh distribution, Eq. (20-92). When the process is white noise or band-limited
white noise, as given by Eq. (21-75), ε = 2/3. The limiting case ε = 1 can be
approached by superposition of a single harmonic process y(t) at frequency ω2 and a
band-limited process z(t) within the frequency range −ω1 < ω < ω1, provided that
ω2/ω1 → ∞ and σ2

y/σ
2
z → 0. This is equivalent to placing a very high-frequency,

low-amplitude “dither” signal on top of a low-frequency band-limited signal. The
resulting distribution of maxima as given by Eq. (21-107) approaches the form of a
gaussian distribution.

If the value of ε is to be estimated using a single sample waveform from process
x(t), this can easily be accomplished by first counting the total number of maxima (+
and −) N and the number of negative maxima N− occurring in a sample function of
reasonable duration. Dividing N− by N gives the proportion r of negative maxima
present in the total, which must be equal to the area under the probability density
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FIGURE 21-11
Probability density function for maxima for different values of ε.
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function p(η) to the left of the origin in Fig. 21-11. It can be shown that ε is
approximately related to this area by

ε2 = 4r(1 − r) (21-110)

Thus after r = N−/N has been determined, ε can immediately be estimated by this
relation.

Example E21-7. Compute the numerical value of ε for stationary process
x(t) which has a uniform power spectral density function of intensity S0 over
the ranges −ω2 < ω < −ω1 and ω1 < ω < ω2 as given by Eqs. (21-76).

Substituting the first of Eqs. (21-76) into Eq. (21-99) and completing the
integral for n = 0, 2, and 4 gives, respectively,

m0 = 2S0(ω2 − ω1)

m2 =
2S0

3
(ω3

2 − ω3
1) (a)

m4 =
2S0

5
(ω5

2 − ω5
1)

Substituting these relations into Eq. (21-108) yields

ε2 = 1 − 5

9

(1 − γ3)2

(1 − γ)(1 − γ5)
(b)
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FIGURE E21-5
Parameter ε versus frequency 
ratio ω 1 ⁄ ω 2
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where γ is the dimensionless frequency parameter

γ =
ω1

ω2
(c)

Equation (b) is plotted in Fig. E21-5, showing that ε varies in an approximately
linear fashion from a value of 2/3 at γ = 0 to a value of zero at γ = 1, thus
(from Fig. 21-11) showing how the probability density function for maxima
approaches the Rayleigh distribution as the frequency bandwidth narrows.

21-11 PROBABILITY DISTRIBUTION FOR
EXTREME VALUES2

Consider N independently observed maxima having the probability density
function p(η) given by Eq. (21-107). The probability (Pr) that all N maxima will be
less than η is given by

Pr (all N maxima < η) = P (η)N (21-111)

where P (η) is the probability distribution function for maxima as defined by

P (η) ≡
∫ η

−∞
p(η) dη (21-112)

Obviously, the probability distribution function for the largest maximum (extreme
value) must also be given by Eq. (21-111), that is,

Pe(η) = P (η)N (21-113)

2 D. E. Cartwright and M. S. Longuet-Higgins, ‘The Statistical Distribution of the Maxima of a Random
Function,” loc. cit.; A. G. Davenport, “Note on the Distribution of the Largest Value of a Random
Function with Application to Gust Loading,” loc. cit.
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Taking the derivative of Eq. (21-113) gives the probability density function for the
extreme value in the form

Pe(η) = N P (η)N−1p(η) (21-114)

For large values of N , it is quite apparent that relatively large values of ηe (extreme
value) are of interest; therefore the accuracy with which the extreme-value distribution
Pe(η) can be defined depends very much on the accuracy of the function P (η) as it
approaches unity asymptotically with increasing values of η.

Using Eqs. (21-107), (21-112), and (21-113), Davenport has shown, relying in
part on earlier work by Cartwright and Lonquet-Higgins, that the probability distribu-
tion function for extreme values ηe is

P (ηe) = exp
[
− ν T exp

(
− η2

e

2

)]
(21-115)

in which ν, the mean frequency of occurrence of zero crossings with positive slope, is
given by

ν ≡ 1

2π

(m2

m0

)1/2

(21-116)

The corresponding probability density function p(ηe) can easily be obtained by dif-
ferentiating Eq. (21-115) with respect to ηe.

Using the extreme-value probability distribution function given by Eq. (21-
115), it has been shown by Davenport that the mean extreme value is given by the
approximate relation

ηe
.
= (2 ln ν T )1/2 +

γ

(2 ln ν T )1/2
(21-117)

in which γ is Euler’s constant, equal to 0.5772, and that the standard deviation of the
extreme values is given by

σηe
=

π√
6

1

(2 ln ν T )1/2
(21-118)

Figure 21-12 shows a plot of the probability density function for process x(t), a plot of
the probability density function for maxima η(ε = 2/3), and plots of the extreme-value
probability density function for four different values of ν T (102, 103, 104, 105). It
should be noted that the probability density functions for extreme values are sharply
peaked and that the degree of peaking increases with increasing values of ν T . Because
of this characteristic, engineering designs can often be based on the mean extreme
value ηe as expressed by Eq. (21-117), which is plotted in Fig. 21-13. It is clear from
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FIGURE 21-13
Normalized mean extreme-value vs. ν T.

this figure that arbitrarily assuming ηe equal to 3, as is often done in practice, can be
considerably on the unconservative side for large values of ν T .

Since the general form of the probability distribution function for largest maxima
Pe(η) closely depends on the accuracy of the probability distribution function for
maxima P (η) as it nears unity with increasing values of η, other forms of Pe(η) have
been derived by making various assumptions regarding the manner in which P (η)

approaches unity. One such assumption is that P (η) approaches unity in the manner

P (η) = 1 − e−η (21-119)

With this asymptotic form, the extreme-value distribution (Gumbel Type I)3 can be

3 E. J. Gumbel and P. G. Carlson, “Extreme Values in Aeronautics,” Jour. of Aero. Sci., pp. 389-398, June,
1954; E. J. Gumbel, “Probability Tables for the Analysis of Extreme-Value Data,” Natl. Bur. Stds.
Appl. Math. Ser. 22, July, 1953.
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expressed as
P (ηe) = exp{− exp[−α(ηe − u)]} (21-120)

where α and u are constants. Since the second derivative of Eq. (21-120) vanishes
for ηe = u, constant u must equal the most probable value of ηe. Equation (21-120)
gives the mean and standard deviation for the extreme values in the forms

ηe = u+
γ

α
(21-121)

σηe
=

π√
6α

(21-122)

where γ is Euler’s constant (0.5772). From Eq. (21-122) it is clear that constant α is
a measure of the dispersion of the extreme values.

If a very large number of experimental extreme values are known, the mean
and standard deviation can be calculated fairly accurately, whereupon Eqs. (21-121)
and (21-122) can be used to solve for α and u. However, if the number of extreme
values is relatively small, a correction should be made using the procedure reported
by Gumbel.

The lognormal probability density function given previously by Eq. (20-40) is
often used as the probability density function for extreme values. Its use requires
finding not only the mean and standard deviation of the extreme values but their
median value (50 percentile) as well.

Example E21-8. The extreme values of 50 sample members of random
process x(t) have been measured giving the following numerical values, the
absolute values of which have been arranged in order of rank:

0.82 1.14 -1.54 1.97 2.67
-0.90 1.16 1.60 1.99 -2.74
0.98 -1.20 -1.64 -2.02 -2.98

-1.03 1.29 -1.67 -2.09 3.33
-1.06 -1.39 1.70 2.11 3.50
1.08 -1.44 1.75 2.13 -3.63
1.10 1.46 -1.77 -2.23 3.85

-1.11 1.48 1.84 2.37 -4.07
-1.12 -1.50 -1.90 -2.51 -4.18
-1.13 1.51 -1.93 2.60 4.33

Assuming the positive and negative extreme values have the same Gumbel Type
I probability distribution, generate its proper relation in the form of Eq. (21-120).
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An approximation of the distribution function can be obtained using
Eqs. (21-121) and (21-122). When the signs of the measured extreme values
are ignored, the result is

xe =
1

50

50∑

i=1

xei
= 1.97 σ2

xe
=

1

50

50∑

i=1

(xei
− xe)

2 = 0.839 (a)

Using Eqs. (21-121) and (21-122) gives

α =
π√

6σxe

= 1.40 u = xe −
0.577

α
= 1.56 (b)

Substituting Eqs. (b) into Eq. (21-120) results in

P (xe)
.
= exp

{
− exp

[
− 1.40(xe − 1.56)

]}
(c)

Using the correction as given by Gumbel for the case of 50 sample values gives
the more accurate expression

P (xe) = exp
{
− exp

[
− 1.27(xe − 1.54)

]}
(d)

21-12 NONSTATIONARY GAUSSIAN PROCESSES

A stationary process has previously been defined as one for which all ensem-
ble averages are independent of time; therefore, a nonstationary process is one for
which these same ensemble averages are time dependent. Thus the ensemble average
E[x(t)x(t + τ)], which completely characterizes a nonstationary gaussian process
x(t), will be dependent upon time t as well as the time interval τ .

In engineering, a nonstationary process x(t) can often be represented fairly well
using the quasi-stationary form

x(t) = ζ(t) z(t) (21-123)

where ζ(t) is a fully prescribed function of time and z(t) is a stationary process. If
z(t) is a gaussian process, x(t) will also be gaussian, in which case the covariance
function

E[x(t)x(t+ τ)] = ζ(t) ζ(t+ τ) Rz(τ) (21-124)

completely characterizes the process.

The above characterization of nonstationary gaussian processes involving one
independent variable can be extended directly to processes involving more than one
independent variable.
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21-13 STATIONARY GAUSSIAN PROCESS: TWO OR MORE
INDEPENDENT VARIABLES

All the stationary gaussian processes characterized previously involved one
independent variable which was considered to be time t. The basic concepts developed
for these processes will now be extended to stationary gaussian processes involving
two or more independent variables. To illustrate this extension, suppose the variable
of interest is random not only with respect to time but with respect to certain space
coordinates as well. For example, consider the wind drag force per unit height acting
on a tall industrial smokestack during a strong windstorm, as described in Section 21-1.
This loading involves two independent variables, x and t.

To characterize the random component of drag p(x, t) in a probabilistic sense,
it is necessary to establish probability density functions involving random variables
p(x, t) and p(α, t + τ), where α and τ are dummy space and time variables, re-
spectively. If the process is gaussian, these probability density functions will be
completely known provided the covariance function as given by the ensemble average
E[p(x, t)p(α, t+τ)] can be defined. If the process is stationary, this ensemble average
will be independent of time but will depend upon the time difference τ , in which case
the covariance function defined by the relation

Rp(x, α, τ) ≡ E[p(x, t)p(α, t+ τ)] (21-125)

completely characterizes the process.

Assuming the above process is ergodic, that is, the mean wind velocity remains
constant for all members of the ensemble, the cross-spectral density function for the
rth member, that is,

Spr
(x, α, ω) ≡ lim

s→∞

[ ∫ s/2

−s/2
pr(x, t) exp(−iωt)dt

][ ∫ s/2

−s/2
pr(α, t) exp(+iωt)dt

]

2πs
(21-126)

will also characterize the process. This cross-spectral density function is related to
the covariance function through the Fourier transform relations

Sp(x, α, ω) =
1

2π

∫ ∞

−∞
Rp(x, α, τ) exp(−iωτ) dτ

Rp(x, α, τ) =

∫ ∞

−∞
Sp(x, α, ω) exp(iωτ) dω

(21-127)

Extending the above characterizations to stationary gaussian processes involving
more than two independent variables is straightforward. For example, to characterize
a field potential Φ(x, y, z, t) which is random with respect to time and each space
coordinate, one must establish either the covariance function

RΦ(x, y, z, α, β, γ, τ) ≡ E[Φ(x, y, z, t)Φ(α, β, γ, t+ τ)] (21-128)



512 DYNAMICS OF STRUCTURES

or the corresponding cross-spectral density function SΦ(x, y, z, α, β, γ, ω). Terms
α, β, and γ are dummy variables for x, y, and z, respectively.

If the field potential Φ(x, y, z, t) is homogeneous, the covariance and cross-
spectral density functions depend only on the differences in coordinates, that is, on

X ≡ x− α Y ≡ y − β Z ≡ z − γ (21-129)

The process is then characterized either by the function RΦ(X,Y, Z, τ) or by the
function SΦ(X,Y, Z, ω).

If the potential function Φ(x, y, z, t) happens to be isotropic as well as homoge-
neous, the covariance and cross-spectral density functions will depend only upon the
distance between points, that is, the distance

ρ ≡ [(x− α)2 + (y − β)2 + (z − γ)2]1/2 (21-130)

in which case the process will be characterized by either RΦ(ρ, τ) or SΦ(ρ, ω).

PROBLEMS

21-1. Show that the Fourier transform of an even function and of an odd function are
real and imaginary, respectively.

21-2. Find the Fourier transform of each function x(t) shown in Fig. P21-1.

FIGURE P21-1
Functions x(t) referred to in Prob. 21-2.

x(t)

x(t) x(t)

x(t)

t

t t

t
0 0− T

2
TT

2

A

A
Ae−a t Aδ (x − a)

A

(a)

(c) (d)

(b)

a

21-3. Consider the function x(t) = A cos at in the range −T/2 < t < T/2 and
x(t) = 0 outside this range. Find and sketch the Fourier transformX(ω) when
(a) T = π/a, (b) T = 3π/a, (c) T = 5π/a, and (d) T → ∞.



RANDOM PROCESSES 513

21-4. Evaluate the integral

I =

∫ ∞

1

[ ∫ ∞

1

x2 − y2

(x2 + y2)2
dy

]
dx

by integrating first with respect to y and then with respect to x. Then reverse
the order of integration and reevaluate the integral. Finally evaluate the limit
L of integral I by integrating over the finite domain and then taking the limit
as follows:

L = lim
T→∞

{∫ T

1

[ ∫ T

1

x2 − y2

(x2 + y2)2
dy

]
dx

}

Noting that the integrand in integral I is antisymmetric about the line x = y,
which form of integration would you recommend for engineering applications?

21-5. Evaluate the integral

I =

∫ ∞

−∞

sin2 x

x2
dx

21-6. Consider the stationary random process x(t) defined by

xr(t) =
10∑

n=1

Anr cos(nω0t+ θnr) r = 1, 2, · · ·

where xr(t) = rth member of ensemble
Anr = sample values of random variable A
ω0 = fixed circular frequency
θnr = sample values of random phase angle θ having a uniform

probability density function in range 0 < θ < 2π of
intensity 1/2π

If random variable A is gaussian having a known mean value A and a known
variance σ2

A, find the ensemble mean value of x(t) and the ensemble variance
of x(t). Is process x(t) a gaussian process?

21-7. Derive the autocorrelation function for the stationary random process x(t)
defined in Prob. 21-6.

21-8. Derive the power spectral density function for the stationary random process
x(t) defined in Prob. 21-6, assuming that Dirac delta functions are permitted
in the answer.

21-9. A stationary random process x(t) has the autocorrelation function

Rx(τ) = A exp(−a|τ |)

where A and a are real constants. Find the power spectral density function for
this process.
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21-10. Consider a random process x(t) which takes the value +A or −A, with equal
probability, throughout each interval n4ε < t < (n+ 1)4ε of each member
of the process, where n is an integer running frm −∞ to +∞. Find and plot
the ensemble covariance function E[x(t)x(t + τ)]. Is this process stationary
or nonstationary?

21-11. If the origin of time, that is, t = 0, for each member of process x(t) defined in
Prob. 21-10 is selected randomly over an interval 4ε with uniform probability
of occurrence, what is the covariance functionE[x(t)x(t+τ)]? Is this process
stationary or nonstationary?

21-12. Assuming that you find the process in Prob. 21-11 stationary, what are the
autocorrelation and power spectral density functions for this process? Use
Eqs. (21-35) and (21-38) in finding the power spectral density function.

21-13. Show that the autocorrelation and power spectral density functions obtained
in Prob. 21-12 are Fourier transform pairs in accordance with Eqs. (21-37).

21-14. Each member of a stationary random process x(t) consists of a periodic infinite
train of triangular pulses, as shown in Fig. P21-2. All members of the process
are identical except for phase, which is a random variable uniformly distributed
over the interval (0, T ). Assuming that the period T is not less than 2a, where
a is the duration of a single pulse, find the autocorrelation function for this
process.

FIGURE P21-2
One sample member of process x(t) referred to in Prob. 21-14.

a

A

T

t

21-15. Each member of a random process x(t) consists of the superposition of rectan-
gular pulses of duration 4ε and of constant intensity A which are located in a
random fashion with respect to time as shown in Fig. P21-3a. Each value of εn

is independently sampled in accordance with the uniform probability density
function p(ε) given in Fig. P21-3b. What is the ensemble value x(t) for this
process? Is this process stationary or nonstationary?
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21-16. Assume the autocorrelation and power spectral density functions Rxx(τ) and
Sxx(ω) for a stationary random process x(t) are known. Derive the expres-
sions for Sxẋ(ω), Sẋx(ω), Sxẍ(ω), Sẍx(ω), Sẋẍ(ω), Sẍẋ(ω) and Rxẋ(τ),
Rẋx(τ), Rxẍ(τ), Rẍx(τ), Rẋẍ(τ), Rẍẋ(τ) in terms of Sxx(ω) and Rxx(τ),
respectively.

21-17. Considering two stationary random processes x(t) and y(t), show that Syx(ω)

is the complex conjugate of Sxy(ω).

21-18. Two stationary random processes x(t) and y(t) have the joint probability
density function

p[x(t)y(t+ τ)] =
1

2abπ
√

1 − c2
exp

[
− 1

2(1 − c2)

(
x2

a2
− 2cxy

ab
+
y2

b2

)]

Define a, b and c in terms of the appropriate autocorrelation and/or cross-
correlation functions for processes x(t) and y(t). What is the corresponding
joint probability density function p[ẋ(t)ẏ(t+τ)]? Define the coefficients in this
function in terms of the appropriate autocorrelation and/or cross-correlation
functions for processes x(t) and y(t).





CHAPTER

22
STOCHASTIC

RESPONSE
OF LINEAR

SDOF
SYSTEMS

22-1 TRANSFER FUNCTIONS

This chapter develops the appropriate input-output relationships for stable linear
SDOF systems having constant coefficients and characterizes the stationary output
processes of such systems in terms of their corresponding stationary input processes
and their transfer functions.

Suppose that a stationary gaussian process p(t) is the input to a linear SDOF
system and that v(t) is the desired output process, as shown in Fig. 22-1, where TF1,
TF2, · · ·, TFn represent the transfer functions of systems 1, 2,· · ·, n, respectively.
Since uncontrollable random variables are always present during construction of real
systems (even though of identical design), these transfer functions will also have
random characteristics. Usually, however, in vibration analysis, the randomness of
these characteristics is small in comparison with the randomness of the input p(t)
and therefore can be neglected, in which case TF1 = TF2 = · · · = TFn = TF .
Thus, in the subsequent treatment of linear systems, the coefficients appearing in all
mathematical representations will be considered as fixed constants; that is, the transfer
function (or functions) TFr will in each case be treated as independent of r. When
the transfer function TF and either the autocorrelation function Rp(τ) or the power

517



518 DYNAMICS OF STRUCTURES

FIGURE 22-1
Input and output processes of a stable linear SDOF system.
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spectral density function Sp(ω) are known, the output process v(t) can be completely
characterized. The transfer functions used here will be the unit-impulse response
function h(t) and the complex frequency response function H(i ω).

22-2 RELATIONSHIP BETWEEN INPUT AND OUTPUT
AUTOCORRELATION FUNCTIONS

The output or response function vr(t) shown in Fig. 22-1 is related to its corre-
sponding input function pr(t) through the convolution integral relation

vr(t) =

∫ t

−∞
pr(τ)h(t− τ) dτ r = 1, 2, · · · ,∞ (22-1)

If the input process is assumed to have a zero mean value, that is,

E[p(t)] = 0 (22-2)

the mean value for the output process can be obtained by averaging Eq. (22-1) across
the ensemble, which gives

E[v(t)] = E

[ ∫ t

−∞
p(τ)h(t− τ) dτ

]
=

∫ t

−∞
E[p(τ)]h(t− τ) dτ = 0 (22-3)
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Thus it is shown that if the input ensemble has a zero mean value, the output ensemble
will also have a zero mean value.

Consider now the ensemble average E[v(t) v(t + τ)], which can be evaluated
by using Eq. (22-1) as shown in the relation

E[v(t) v(t+ τ)]

= E

[ ∫ t

−∞
p(θ1)h(t− θ1) dθ1

∫ t+τ

−∞
p(θ2)h(t+ τ − θ2) dθ2

]
(22-4)

where θ1 and θ2 are dummy time variables. When a change of variables is introduced
in accordance with the definitions

u1 ≡ t− θ1 θ1 = t− u1

u2 ≡ t+ τ − θ2 θ2 = t+ τ − u2

(22-5)

Eq. (22-4) becomes

E[v(t) v(t+ τ)]

= E

[ ∫ 0

t+∞
p(t− u1)h(u1) du1

∫ 0

t+τ+∞
p(t+ τ − u2)h(u2) du2

]
(22-6)

When the limits of both integrals are inverted and use is made of the fact that h(u1)

and h(u2) damp out for stable systems, Eq. (22-6) can be written in the form

E[v(t) v(t+ τ)] = E

[ ∞∫

0

∞∫

0

p(t− u1) p(t+ τ − u2)h(u1)h(u2) du1 du2

]
(22-7)

Since only the functions p(t − u1) and p(t + τ − u2) change across the ensemble,
Eq. (22-7) becomes

E[v(t) v(t+τ)] =

∫ ∞

0

∫ ∞

0

E[p(t−u1) p(t+τ−u2)] h(u1)h(u2) du1 du2 (22-8)

The ensemble average on the right hand side of Eq. (22-8) is the autocorrelation
function for stationary process p(t) and is independent of time; therefore, the ensemble
average on the left hand side must also be independent of time. This shows that the
output process is stationary and that its autocorrelation function is given by the relation

Rv(τ) =

∞∫

0

∞∫

0

Rp(τ − u2 + u1)h(u1)h(u2) du1 du2 (22-9)
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If the input process p(t) is gaussian, the output process v(t) for a linear stable system
will also be gaussian; therefore, in such cases the autocorrelation function given
by Eq. (22-9) completely characterizes the process. To prove the first part of this
statement, consider Eq. (22-1) in the limiting form

vr(t) = lim
4τ→0

t/4τ∑

i=−∞
pr(τi)h(t− τi) 4τ r = 1, 2, · · · ,∞ (22-10)

Since all terms h(t − τi) are known constants for fixed values of t, Eqs. (22-10) are
identical in form with the linear transformations given by Eqs. (20-103), which have
already been shown to retain the gaussian distribution.

To illustrate the application of Eq. (22-9), assume that the excitation p(t) of
a viscously damped SDOF system is white noise; that is, its power spectral density
function equals a constant S0 which corresponds to the autocorrelation function

Rp(τ) = 2π S0 δ(τ) (22-11)

Further, assume that the system is undercritically damped, in which case the unit-
impulse function h(t) is given by Eq. (6-51). Substituting this relation along with
Eq. (22-11) into Eq. (22-9) gives

Rv(τ) =
2π S0

ω2
D m

2

∞∫

0

∞∫

0

δ(τ − u2 + u1)

× exp
[
− ω ξ(u1 + u2)

]
sin ωD u1 sin ωD u2 du1 du2 (22-12)

Completing the double integration and introducing the relation k = mω2 lead to

Rv(τ) =
πωS0

2k2 ξ

(
cos ωD |τ | + ξ√

1 − ξ2
sin ωD |τ |

)
exp(−ω ξ |τ |)

−∞ < τ <∞ (22-13)

If the system is overcritically damped, the unit-impulse function h(t) is given by the
second of Eqs. (f) in Example E12-5 and the above integration procedure leads to the
relation

Rv(τ) =
πωS0

2k2 ξ

[
φ exp(ω

√
ξ2 − 1 |τ |)−θ exp(−ω

√
ξ2 − 1 |τ |)

]
exp(−ω ξ|τ |)

−∞ < τ <∞ (22-14)

where

φ ≡ 1

2
[
ξ
√
ξ2 − 1 − (ξ2 − 1)

] θ ≡ 1

2
[
ξ
√
ξ2 − 1 + (ξ2 − 1)

] (22-15)
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If the white-noise input is gaussian, the output response v(t) will also be gaussian, in
which case the autocorrelation functions given by Eqs. (22-13) and (22-14) completely
characterize the processes they represent. Plots of these functions are shown in Fig. 22 -
2 .

FIGURE 22-2

Output relations for SDOF system subjected to white-noise excitation.

¾w

¾w

¾w

S ( )p
¾w

S ( )
v

¾w

S ( )
v

¾w

R rp ( )

R
v
( )t

R
v
( )t

0

0

0

0

0

0

w- w

S 0

2 S ( )p d0 r

r

t

t

¾

S 0

2k

¾

S 0

2k

Input process ( ),

white noise

p t

Output process ( ),

< 1

v t

x

Output process ( ),

> 1

v t

x

Eq. (22-21)

< 1x

Eq. (22-21)

> 1x

Eq. (22-14)

> 1x

Eq. (22-13)

< 1x e- w x r

2p
wD
¾

( )a

( )b

( )c

( )d

( )e

( )f

Area =
S

2

pw

x

0
2

k
¾¾

Area =
S

2

pw

x

0
2

k
¾¾

R
k

v
(0) =

S

2

pw

x

0
2¾¾

R
k

v
(0) =

S

2

pw

x

0
2¾¾

S

4

0
2

x k
¾¾



522 DYNAMICS OF STRUCTURES

Example E22-1. Consider the SDOF system

mv̈ + cv̇ + kv = p(t) (a)

excited by a zero mean ergodic random process p(t) having constant power
spectral density equal to S0 over the range −∞ < ω < ∞. Determine the
average rate of energy dissipation in the system with time.

Since the damping force cv̇ is the only nonconservative force in the system,
the instantaneous rate of energy dissipation is given by cv̇2. Therefore, the
average rate of energy dissipation Pavg can be expressed as

Pavg = c〈v̇2〉 = c Rv̇(0) (b)

Using Eq. (21-43) gives
Rv̇(τ) = −R′′

v (τ) (c)

Substituting Eq. (22-13) into Eq. (c) gives

Rv̇(τ) = −R′′
v (τ) =

πωS0

2k2 ξ

(
ω2 cos ωD |τ | − ω2 ξ√

1 − ξ2
sin ωD |τ |

)

× exp(−ω ξ |τ |) (d)

from which

Rv̇(0) = −R′′
v (0) =

πω3 S0

2k2 ξ
(e)

Substituting Eq. (e) into Eq. (b) and making use of the relations k2 = m2 ω4

and c = 2mωξ lead to

Pavg =
πS0

m
(f)

Note that the average rate of energy dissipation is independent of the damping
ratio ξ.

22-3 RELATIONSHIP BETWEEN INPUT AND OUTPUT
POWER SPECTRAL DENSITY FUNCTIONS

The power spectral density function for the output process v(t) is related to its
autocorrelation function through the Fourier transform relation

Sv(ω) =
1

2π

∫ ∞

−∞
Rv(τ) exp(−i ωτ) dτ (22-16)
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Substituting Eq. (22-9) into Eq. (22-16) gives

Sv(ω) =
1

2π

∫ ∞

−∞

[ ∞∫

0

∞∫

0

Rp(τ − u2 + u1)h(u1)h(u2) du1 du2

]
exp(−i ωτ) dτ

(22-17)
Interchanging the order of integration and introducing expanding limits of integration
lead to

Sv(ω) =
1

2π
lim

s→∞

[ ∫ s

0

h(u1) du1

∫ s

0

h(u2) du2

∫ s

−s

Rp(τ − u2 + u1)

× exp(−i ωτ) dτ
]

(22-18)

When a change of variable θ ≡ τ − u2 + u1 is substituted, Eq. (22-18) changes to the
form

Sv(ω) =
1

2π
lim

s→∞

[ ∫ s

0

h(u1) exp(i ω u1) du1

∫ s

0

h(u2) exp(−i ω u2) du2

×
∫ s+u1−u2

−s+u1−u2

Rp(θ) exp(−i ωθ) dθ
]

(22-19)

Since the unit-impulse-response functions h(u1) and h(u2) equal zero for u1 < 0 and
u2 < 0, respectively, the lower limits of the first two integrals can be changed from
zero to −s. Also since these functions must damp out with increasing values of u1

and u2 for the system to be stable, these terms can be dropped from the limits of the
third integral. When use is made of the first of Eqs. (21-37) and (6-53), Eq. (22-19)
reduces to the form

Sv(ω) = H(−i ω) H(i ω) Sp(ω) = |H(iω)|2 Sp(ω) (22-20)

in which H(i ω) is the frequency-domain transfer function between loading and re-
sponse.

When the viscously-damped SDOF system is subjected to a zero-mean white-
noise excitation p(t), that is, Sp(ω) = S0, substitution of Eq. (6-52) into (22-20)
gives

Sv(ω) =
S0

k2[1 + (4ξ2 − 2)(ω/ω)2 + (ω/ω)4]
(22-21)

Power spectral density functions for both the under- and overcritically damped cases
are shown in Figs. 22-2c and e, respectively.
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Example E22-2. Derive Eq. (22-13) directly from Eq. (22-21) making
use of the Fourier transform relation

Rv(τ) =

∫ ∞

−∞
Sv(ω) exp(i ωτ) dω (a)

Substituting Eq. (22-21) into Eq. (a) gives

Rv(τ) =
ωS0

k2

∫ ∞

−∞

exp(iωβτ)

(β − r1)(β − r2)(β + r1)(β + r2)
dβ (b)

after introducing

β =
ω

ω
r1 = iξ +

√
1 − ξ2 r2 = iξ −

√
1 − ξ2 (c)

The integrand in Eq. (b) is an analytic function everywhere in the complex
β plane except at points β = r1, β = r2, β = −r1, and β = −r2, where poles
of order 1 exist. Points β = r1 and β = r2 are in the upper half plane, while
points β = −r1 and β = −r2 are in the lower half plane. For positive values of
τ , contour integration is carried out in the upper half plane; for negative values
of τ , integration is carried out in the lower half plane. When Cauchy’s residue
theorem is used, the integral in Eq. (b) is easily carried out by procedures similar
to those in Example E6-3, resulting in the relation

Rv(τ) =





πωS0

2k2 ξ

(
cos ωDτ +

ξ√
1 − ξ2

sin ωDτ
)

exp(−ωξτ) τ > 0

πωS0

2k2 ξ

(
cos ωDτ −

ξ√
1 − ξ2

sin ωDτ
)

exp(ωξτ) τ < 0

(d)
Thus the validity of Eq. (22-13) is verified.

22-4 RESPONSE CHARACTERISTICS FOR NARROWBAND SYSTEMS

Most structural systems have reasonably low damping (ξ < 0.1) and therefore
are classified as narrowband systems. This classification results because the area under
the response power spectral density function is highly concentrated near the natural
frequency of the system, as shown in Fig. 22-2c. Such a concentration indicates that
the predominant frequency components in a sample response function vr(t) will be
contained in a relatively narrow band centered on the undamped natural frequency ω.
Because of the beat phenomenon associated with two harmonics whose frequencies
are close together, the response envelope for a narrowband system can be expected to
show similar characteristics; however, since the predominant frequencies are spread
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Envelope ∧vr (t)

vr (t), ∧vr (t)

Response vr (t)

FIGURE 22-3
r th sample function of a narrowband 
process v(t).

over a narrow band, the beat behavior will be random in character, as shown in Fig. 22-
3. Thus, it is correctly reasoned that the response will locally appear as a slightly
distorted sine function with a frequency near the natural frequency of the system and
with amplitudes that vary slowly in a random fashion. This same type of response
can also be predicted from the autocorrelation function, Eq. (22-13), as plotted in
Fig. 22-2d, since this function approaches the autocorrelation function for the single
harmonic process presented in Fig. 21-2 as damping approaches zero.

When it is noted that the sharply peaked output power spectral density function
Sv(ω) shown in Fig. 22-2c is obtained by multiplying the similarly peaked transfer
function |H(i ω)|2 by the constant power spectral density function S0 of the white-
noise input, it becomes clear that the response v(t) is caused primarily by those
frequency components in the input process p(t) which are near the natural frequency
of the system. Therefore in those cases when the input power spectral density function
Sp(ω) is not a constant but is a slowly varying function of ω in the vicinity of the
natural frequency ω, a white-noise input process can be assumed with little loss in
predicting response provided the constant power spectral density S0 is set equal to
the intensity of Sp(ω) at ω = ω; that is, let Sp(ω) = Sp(ω); thus, the output power
spectral density function can be approximated by the relation

Sv(ω) =
Sp(ω)

k2[1 + (4ξ2 − 2)(ω/ω)2 + (ω/ω)4]
ξ � 1 (22-22)

Note that as the damping ratio ξ approaches zero, the area under this function becomes
more and more concentrated at the natural frequency ω and approaches infinity in the
limit. This means that the stationary mean square response of an undamped SDOF
system is infinite when subjected to white-noise excitation of finite intensity. Such
systems are classified as unstable systems.

To clarify further the response characteristics of narrowband linear systems
subjected to a stationary gaussian excitation having zero mean values, consider the
response conditional probability density function

p(v2|v1) =
p(v1, v2)

p(v1)
(22-23)
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where v2 ≡ v(t+ τ) and v1 ≡ v(t). When use is made of the standard relations

p(v1, v2) =
1

2πσ2
v

√
1 − ρ2

v

× exp
[
− 1

2σ2
v(1 − ρ2

v)
(v2

1 − 2ρv v1 v2 + v2
2)
]

(22-24)

p(v1)
1√

2π σv

exp
(
− v2

1

2σ2
v

)
(22-25)

where

σv = Rv(0)
1/2 ρv(τ) =

Rv(τ)

Rv(0)
(22-26)

Eq. (22-23) becomes

p[v2|v1] =
1√

2π σv

√
1 − ρ2

v

exp
[
− (v2 − ρv v1)

2

2(1 − ρ2
v)σ2

v

]
(22-27)

This equation shows that when v(t) is fixed, the expected value of v(t+τ) is ρv(τ) v(t)

and its variance is [1 − ρv(τ)2] σ2
v , thus lending support to the previously described

response characteristics of narrowband systems.

Finally consider the joint probability density function

p[v(t) , v̇(t)] =
1

2πσv σv̇
exp

[
− 1

2

( v2

σ2
v

+
v̇2

σ2
v̇

)]
(22-28)

in which
σv̇ = Rv̇(0)1/2 = −R′′

v (0)1/2 (22-29)

Since R′
v(0) = 0, the covariance of random variables v and v̇ will also equal zero,

which explains the uncoupled form of Eq. (22-28). This equation can now be used to
find the probability that response v(t) will cross a fixed level v̂ with positive velocity
within the time limits t and t+ dt. To satisfy this condition, v(t) must conform to the
relation

Pr
[
v(t) < v̂ < v(t+ dt)

]
= Pr

[
0 < [v̂ − v(t)] < v̇(t) dt

]
(22-30)

as illustrated graphically in Fig. 22-4a for one member of the ensemble. From the
v v̇ plane shown in Fig. 22-4b, it is clear that those ensemble members which are
favorable to this condition must have values of v(t) and v̇(t) which fall within the
shaded region. Therefore, if Q(v̂) dt represents the probability condition given by
Eq. (22-30), this term can be evaluated by simply integrating the joint probability
density function given by Eq. (22-28) over the shaded region, that is,

Q(v̂) dt =

∫ ∞

0

∫ v̂

v̂−v̇ dt

1

2πσv σv̇
exp

[
− 1

2

( v2

σ2
v

+
v̇2

σ2
v̇

)]
dv̇ dv (22-31)
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FIGURE 22-4
Velocity-displacement relations for positive slope crossings at level ∧v within time limits t and t + dt.
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Substituting dv = v̇ dt into this equation, completing the integration, and dividing the
result by dt give Rice’s relation1

Q(v̂) =
1

2π

σv̇

σv
exp

(
− 1

2

v̂2

σ2
v

)
(22-32)

which is the number of crossings of response v(t) at level v̂ with positive velocity per
unit of time. Setting v̂ equal to zero, the number of zero crossings with positive slope
per unit time becomes

Q(0) =
1

2π

σv̇

σv
=

1

2π

√
−R

′′
v (0)

Rv(0)
=

1

2π

√
m2

m0
(22-33)

in which m2 and m0 are defined by Eq. (21-99); this same relation was previously
given, without derivation, by Eq. (21-116). Making use of Eqs. (22-13) and (22-33)
one obtains the desired result

Q(0) =
ω

2π
(22-34)

thus indicating that low-damped SDOF systems have the same average number of zero
crossings when excited by white noise as when vibrating in a free undamped state.
This result is further evidence of the type of response which characterizes narrowband
systems.

To approximate the probability density function for the distribution of maxima
in the response function v(t) for narrowband systems, assume that on the average
one maximum exists for each zero crossing, that is, one for each time interval T =

1 S. O. Rice, “Mathematical Analysis of Random Noise,” in N. Wax (ed.), Selected Papers on Noise and
Stochastic Processes, Dover, New York, 1954.
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2π/ω = 2π (σv/σv̇). The possibility of having negative maxima exists, of course,
but it is highly improbable for this class of SDOF systems. As a direct result of this
assumption, the probability density function for the single maximum occurring in each
member of the response ensemble v(t) during a specified time period 2π/ω can be
approximated by the differential relation

p(v̂) = −dQ(v̂)

dv̂

(
2π

σv

σv̇

)
(22-35)

Substituting Eq. (22-32) into this equation gives the Rayleigh distribution

p(v̂) =
v̂

σ2
v

exp
(
− 1

2

v̂2

σ2
v

)
(22-36)

which can be considered the approximate probability density function for the upper
response envelope shown in Fig. 22-3. This distribution is a special case of that given
previously by Eq. (21-107) for ε = 0; see Fig. 21-11.

22-5 NONSTATIONARY MEAN SQUARE RESPONSE
RESULTING FROM ZERO INITIAL CONDITIONS

The response characteristics previously defined for output processes are based
on steady-state conditions, that is, those conditions which result when input processes
are assumed to start at time t = −∞. In actual practice, however, input processes
must be assumed to start at time t = 0. While such input processes may be assumed
as stationary for t > 0, the resulting output processes will be nonstationary due to
the usual zero initial conditions which are present at t = 0. To illustrate the type
of nonstationarity which results, consider the input process p(t) to the viscously-
damped SDOF system as stationary white noise of intensity S0 starting at t = 0. This
input process, as previously demonstrated, can be represented [see Eq. (21-86) and
Fig. 21-7] by the relation

pr(t) = lim
N→∞

N−1∑

k=0

akr η(t− k4t− εr) r = 1, 2, · · · (22-37)

which is plotted in Fig. 22-5 for one value of r, provided A2 → ∞ and 4t → 0

in such a way that A2 4t → C (a constant). As shown in Eq. (21-94), constant C
equals 2π S0. Assuming an undercritically damped system (ξ < 1), response can be
obtained by superposition through the time domain to give

vr(j4t) = lim
4t→0

j∑

k=0

akr 4t
ωD m

exp
[
− ωξ(j − k)4t

]
sin ωD(j − k)4t (22-38)
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FIGURE 22-5
Stationary white-noise input process p(t) for t > 0, Eq. (22-37).

εr

N∆t + εr

t

∆t

1
2

δ (a + A) 1
2

δ (a − A)

N → ∞ A → ∞
∆t → 0 A2∆t → 2π S0

and

vr(j4t)2 = lim
4t→0

j∑

k=0

j∑

g=0

akr agr 4t2
ω2

D m
2

exp[−ωξ(2j − k − g)4t]

× sin ωD(j − k)4t sin ωD(j − g)4t (22-39)

The ensemble average of the double summation term in the equation can be reduced
immediately to the ensemble average of a single summation term since all covariances
of random variables ak and ag (k 6= g) equal zero; therefore, the ensemble average is

E[v(j4t)2] =

[
lim

4t→0

4t2
ω2

D m
2

j∑

k=0

exp[−2ωξ(j − k) 4t]

× sin2 ωD(j − k)4t
] [

lim
n→∞

1

n

n∑

r=1

a2
kr

]
(22-40)

However, since the second square-bracket term in this equation equalsA2 for all values
of k, one obtains in the limit as j 4t→ t and k 4t→ τ the relation

E[v(t)2] =
A2 4t
ω2

D m
2

exp(−2ωξτ)

∫ t

0

exp(2ωξτ) sin2 ωD(t− τ) dτ (22-41)

After substituting 2π S0 for A24t and k2 for ω4m2 and completing the integration,
this equation yields

E[v(t)2] =
πωS0

2ξk2

{
1−exp(−2ξωt)

ω2
D

[
ω2

D+
(2ξω)2

2
sin2 2ωD t+ξωωD sin 2ωD t

]}

ξ < 1 (22-42)
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which is plotted in Fig. 22-6 for various values of damping ratio ξ. Note the manner
and relatively rapid rate at which the ensemble mean square valueE[v(t)2] or variance
σv(t)

2 approaches its steady-state value

Rv(0) =
πS0 ω

2ξk2
(22-43)

If the power spectral density function for the stationary input process starting at
time t = 0 is nonuniform but varies reasonably slowly in the vicinity of the undamped
frequency ω, the variance of the output process for low-damped systems (ξ < 0.1)

can be approximated reasonably well using Eq. (22-42) provided the power spectral
density intensity at ω = ω is substituted for S0, that is,

E[v(t)2]
.
=
πωSp(ω)

2ξk2

{
1 − exp(−2ωξt)

ω2
D

[
ω2

D +
(2ωξ)2

2
sin2 2ωD t+ ξω ωD sin 2ωD t

]}
ξ < 1 (22-44)

The harmonic terms in this equation are relatively small and can be dropped with little
loss of accuracy giving the approximate relation

E[v(t)2]
.
=
πωSp(ω)

2ξk2
[1 − exp(−2ωξt)] ξ < 1 (22-45)

FIGURE 22-6
Nonstationary mean square response resulting from zero initial conditions, Eq. (22-42).
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As the damping ratio approaches zero, this equation becomes in the limit

E[v(t)2]
.
=
πω2 Sp(ω)

k2
t ξ = 0 (22-46)

Assuming that the stationary input process is gaussian, the nonstationary output pro-
cess will also be gaussian, in which case the probability density function p[v(t)] will
be given by

p[v(t)] =
1√

2πE[v(t)2]
exp

{
− v(t)2

2E[v(t)2]

}
(22-47)

Example E22-3. Consider the SDOF system

mv̈ + cv̇ + kv = p(t) (a)

excited by a zero-mean ergodic random process p(t) having constant power
spectral density equal to S0 over the range −∞ < ω < ∞ and assume zero
initial conditions are imposed on the system; that is, vr(0) = v̇r(0) = 0 (r = 1,
2, · · ·). Calculate the ratio of the variance of v(t) to the steady-state variance
for t/T = tω/2π = 2, 5, 10, and 15 and ξ = 0.02 and 0.05.

Using Eq. (22-45) gives

σ2
v(t)

σ2
v(∞)

= 1 − exp(−2ωξt) = 1 − exp
(
− 4πξ

t

T

)
(b)

Substituting the above numerical values into this equation gives the results
shown in Table 22-1 which indicate the very rapid rate at which the response
process v(t) approaches its steady-state condition.

Table 22-1 Ratio σσσ2
v(t)

/
σσσ2

(∞)

t/T

ξ 2 5 10 15

0.02 0.395 0.714 0.919 0.987
0.05 0.715 0.957 0.998 0.99995
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22-6 FATIGUE PREDICTIONS FOR NARROWBAND SYSTEMS

The fatigue life of a narrowband SDOF system can easily be determined provided
the material follows a prescribed S/N relationship (S = harmonic stress amplitude,N
= number of cycles to failure) and provided that Miner’s linear-accumulative-damage
criterion applies.2

Proceeding on this basis, assume that the S/N relationship has a known form

N = N(S) (22-48)

The accumulative damage (AD) can then be expressed in the discrete form

AD =
n1

N(S1)
+

n2

N(S2)
+

n3

N(S3)
+ · · · (22-49)

where n1, n2, n3, · · · are the numbers of harmonic stress cycles applied to the material
at amplitudes S1, S2, S3, · · ·, respectively. Failure occurs when the accumulative
damage reaches unity, that is, AD = 1.

If the system is responding as a narrowband system, the accumulative damage
can be expressed in the continuous form

AD =

∫ ∞

0

n(S)

N(S)
dS (22-50)

where n(S) dS represents the number of harmonic stress cycles with amplitudes
between S and S+ dS. If a stationary response process of duration T is assumed, the
total number of stress cycles will be equal to ωT/2π, in which case

n(S) dS =
ωT

2π
p(S) dS (22-51)

where p(S) is the probability density function for stress amplitude S. Substituting
Eq. (22-51) into Eq. (22-50) gives the accumulative damage in the form

AD =
ωT

2π

∫ ∞

0

p(S)

N(S)
dS (22-52)

If p(S) is of the Rayleigh form as represented by a narrowband process, that is,

p(S) =
S

σ2
s

exp
(
− S2

2σ2
s

)
(22-53)

2 M. A. Miner, “Cumulative Damage in Fatigue,” J. Appl. Mech., Ser. A, Vol. 12, No. 1, pp. 159-164,
1945.
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where σ2
s is the variance of the critical stress s(t), and if N(S) takes on the familiar

form
N(S) =

(S1

S

)b

N1 (22-54)

whereS1 andN1 represent a convenient point on theS/N curve and b is an even integer
(usually b > 10), Eq. (22-52) becomes, after substituting Eqs. (22-53) and (22-54),

AD =
ωT

2πN1

(σs

S1

)b

2b/2
( b

2

)
! (22-55)

Setting the accumulative damage equal to unity and solving for T gives the expected
time to failure

Tfailure =
2πN1

ω

(S1

σs

)b 2−b/2

(b/2) !
(22-56)

For a linear system, the critical stress is related to displacement v(t) by the relation

s(t) = C v(t) (22-57)

where C is a known constant. It follows therefore that

σ2
s = C2 σ2

v (22-58)

Thus, if p(t) is a white-noise process of intensity S0, as shown in Fig. 22-2a,

σ2
s =

πωC2 S0

2k2 ξ
(22-59)

If the above SDOF system is excited by a nonstationary zero mean process p(t)
for which the ensemble average E[p(t) p(t + τ)] is varying slowly with time, the
response process v(t) will be essentially a quasi-stationary process. In this case, one
must treat σs as time dependent. In engineering applications, this time dependency
is usually random; therefore, one must establish the probability distribution function
P [σs(t)] from a statistical analysis of available data controlling the excitation over
a long period of time assuming process σs(t) to be ergodic. Having established
P [σs(t)], the accumulative damage is then given by

(AD)L =
ωTL

2πN1

( 1

S1

)b

2b/2
( b

2

)
!

∫ ∞

0

σb
s

dP [σs]

dσs
dσs (22-60)

in which (AD)L denotes accumulative damage over the life of the structure TL.

Example E22-4. As represented by Eq. (2-17), a viscously-damped
SDOF system excited by random support excitation v̈g(t) results in the equation
of motion

mv̈ + cv̇ + kv = −mv̈g(t) = pe(t) (a)
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Stationary random process v̈g(t) has a uniform spectral density equal to
2 ft2/sec3 over the frequency range 2 < ω < 100 and −100 < ω < −2.
The system has a natural frequency of 10 Hz and damping equal to 2 percent
of critical, and the critical stress from a fatigue standpoint is given by

s(t) = 2 × 105 v(t) (b)

where units are pounds and inches. If the material at the critical location satisfies
the fatigue relation

N(S) =
(60, 000

s

)12

× 105 (c)

find the expected time to failure caused by excitation v̈g(t).

From Eq. (22-13) it is seen that the variance of v(t) is

σ2
v(t) = Rv(0) =

πωS0

2k2 ξ
(d)

where S0 is the power spectral density for a white-noise excitation pe(t). Since
the natural frequency of the system ω falls within the bandwidth of support
excitation, white-noise excitation can be assumed here of intensity

Spe
(ω) = S0 = m2 Sv̈g(t) (ω) (e)

Substituting Eq. (e) into Eq. (d) and making use of the notation k2 = ω4m2

give

σ2
v(t) =

πSv̈g(t)(ω)

2ω3 ξ
(f)

Making use of Eq. (22-58) gives

σ2
s(t) =

πC2 Sv̈g(t)(ω)

2ω3 ξ
(g)

whereC = 2×105 lb/in3, Sv̈(t)(t) = 0.2 ft2/sec3, ξ = 0.02, and ω = 2πf =

62.8 rad/sec. Thus one obtains σs(t) = 1.91× 104 psi. When it is noted from
Eq. (c) that b = 12, N1 = 105, and S1 = 60, 000 psi, Eq. (22-56) yields the
expected time to failure

Tfailure = 1.99 × 105 sec = 55.5 hr (h)
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PROBLEMS

22-1. Consider the SDOF system represented by

m v̈ + c v̇ + k v = p(t)

when excited by a gaussian zero-mean stationary process p(t) having a constant
power spectral density S0 = 2 × 104 lb2 · sec over two wide-frequency bands
centered on ±ω, where ω is the natural circular frequency

√
k/m. The system

is characterized by a mass m equal to 100 lb · sec2/ft, a natural frequency ω
equal to 62.8 rad/sec, and a damping ratio ξ equal to 2 percent of critical.

(a) Find the numerical value for the mean square displacement E[v(t)2].
(b) Find the numerical value for the mean square velocity E[v̇(t)2].
(c) What is the joint probability density function for v(t) and v̇(t)? Find the

numerical values for all constants in this function.
(d) What is the probability density function for the maxima of response pro-

cess v(t)? Find the numerical values for all constants in this function.
(Assume a Rayleigh distribution in this case since the parameter ε appear-
ing in Fig. 21-11 is nearly equal to zero.)

(e) What is the numerical value of the mean extreme value of the process v(t)
as given by Eq. (21-117) when the duration T of the process is 30 sec?
[For this low-damped system, ν as given by Eq. (21-116) is approximately
equal to ω/2π.]

(f ) What is the numerical value of the standard deviation of the extreme values
for process v(t)?

22-2. Approximately how much will the numerical values found in Prob. 22-1 change
if the power spectral density function for the process p(t) is changed from
Sp(ω) = S0 to

Sp(ω) = S0 exp(−0.0111 |ω|) −∞ < ω <∞

22-3. The one-mass system shown in Fig. P22-1 is excited by support displacement
x(t). The spring and viscous dashpot are linear, having constant k and c,
respectively. Let ω2 = k/m and ξ = c/2mω.

(a) Obtain the unit-impulse-response function h(t) for spring force fS(t) =

k[y(t) − x(t)] when x(t) = δ(t).
(b) Obtain the complex-frequency-response function H(iω) for force fS(t)

which is the ratio of the complex amplitude of fS(t) to the complex
amplitude of x(t) when the system is performing simple harmonic motion
at frequency ω.
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(c) Verify that h(t) and H(iω) are Fourier transform pairs in accordance with
Eqs. (12-73).

x(t) y(t)

k
m

c

FIGURE P22-1
One-mass system of Prob. 22-3.

22-4. If the input x(t) to the system defined in Prob. 22-3 is a stationary random
process having a constant power spectral density S0 over the entire frequency
range −∞ < ω < ∞, derive the power spectral density and autocorrelation
functions for response process fs(t) using Eqs. (22-20) and (22-9), respectively.

22-5. Show that the power spectral density and autocorrelation functions obtained in
Prob. 22-4 are indeed Fourier transform pairs in accordance with Eqs. (21-37).

22-6. If x(t) is the stationary random input to a linear system and y(t) is the cor-
responding stationary random output, express the cross-correlation function
Rxy(τ) in terms of Rx(τ) and h(t).

22-7. If the input x(t) to a linear system and the corresponding output y(t) are given
by

x(t) =

{
e−t t > 0

0 t < 0
y(t) =

{ 1

a− b

[
e−(b/a)t − e−t

]
t ≥ 0

0 t ≤ 0

what is the complex-frequency-response function H(iω) for the system?
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22-8. If a rectangular input x(t) to a linear system produces a single sine-wave output
y(t), as shown in Fig. P22-3,

x(t) =

{
1 0 < t < T

0 t < 0; t > T
y(t) =

{
sin

2πt

T
0 < t < T

0 t < 0; t > T

what would be the power spectral density function for the output process when
the input is a stationary white-noise process of intensity S0?

T
¾
2

x t( ) y t( )

1

0

1

0
t t

T

x t( ) =
1     0

0 0;

< < T

< >

t

t t T

sin 2p t

T
¾

0;t t T< >

y t( ) =

0

0 t    T

FIGURE P22-3

Input and output functions of Prob. 22-8.

22-9. Consider two stationary processes x(t) and y(t) related through the differential
equation

ẍr(t) +A ẋr(t) +B yr(t) + C ẏr(t) = 0 r = 1, 2, · · ·

Express the power spectral density function for random process x(t) in terms
of the power spectral density function for process y(t) and real constants A, B,
and C.





CHAPTER

23
STOCHASTIC

RESPONSE
OF LINEAR

MDOF
SYSTEMS

23-1 TIME-DOMAIN RESPONSE FOR LINEAR SYSTEMS
USING NORMAL MODES

As shown in Chapter 12, the dynamic response of linear viscously-damped
MDOF systems (discrete or continuous) can be determined by solving the normal
equations of motion

Ÿn(t) + 2ωnξnẎn(t) + ω2
nYn(t) =

Pn(t)

Mn
n = 1, 2, · · · (23-1)

where n is the mode number. Any response quantity z(t) linearly related to the normal
coordinates can be found using the relation

z(t) =
∑

n

Bn Yn(t) (23-2)

where coefficients Bn (r = 1, 2, · · ·) are obtained by standard methods of analysis.
Usually, the rapid convergence rate of the series means that only a limited number of
lower modes need be considered.

539



540 DYNAMICS OF STRUCTURES

If random excitations on the system are assumed, each generalized forcing
function Pn(t) should be considered as a separate stochastic process. If the excitations
are stationary, the response processes will also be stationary, in which case one’s
interest is in obtaining the autocorrelation function for response z(t), that is,

Rz(τ) = E[z(t) z(t+ τ)] (23-3)

Substituting Eq. (23-2) into Eq. (23-3) gives

Rz(τ) = E
[∑

m

∑

n

BmBn Ym(t) Yn(t+ τ)
]

(23-4)

Solving for response through the time domain, one obtains

Yn(t) =

∫ t

−∞
Pn(τ)hn(t− τ) dτ (23-5)

in which, for undercritically damped systems,

hn(t) =
1

ωDn
Mn

exp(−ξnωnt) sinωDn
t ωDn

= ωn(1 − ξ2n)1/2 (23-6)

Substituting Eq. (23-5) into (23-4) gives

Rz(τ) = E

[∑

m

∑

n

∫ t

−∞

∫ t+τ

−∞
BmBn Pm(θ1) Pn(θ1)

× hm(t− θ1)hn(t+ τ − θ2) dθ1 dθ2

]
(23-7)

where θ1, θ2, and τ are dummy time variables. With the change of variables

u1 ≡ t− θ1 u2 ≡ t+ τ − θ2

du1 = −dθ1 du2 = −dθ2 (23-8)

and recognition that hn(t) damps out for stable systems, Eq. (23-7) can be written in
the form

Rz(τ) =
∑

m

∑

n

Rzmzn
(τ) (23-9)

where

Rzmzn
(τ) =

∫ ∞

0

∫ ∞

0

BmBnRPmPn
(τ − u2 + u1)hm(u1)hn(u2) du1 du2

(23-10)
RPmPn

(τ) is the covariance function for random variables Pm(t) and Pn(t + τ),
and Rzmzn

(τ) is the covariance function for modal responses zm(t) and zn(t + τ).
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From this derivation it is clear that if the covariance function RPmPn
(τ) is known for

all combinations of m and n, the integrations in Eq. (23-10) and the summations in
Eq. (23-9) can be completed to obtain the desired autocorrelation function for response
z(t).

For systems that are lightly damped and have well-separated modal frequencies,
as is usually the case in structural engineering, response process zm(t) produced by
modem is almost statistically independent of response zn(t) produced by moden; that
is, the cross-terms in Eq. (23-9) are nearly equal to zero. Therefore, the autocorrelation
function for total response can usually be approximated by the relation

Rz(τ)
.
=
∑

m

Rzmzm
(τ) (23-11)

where Rzmzm
(τ) is the autocorrelation function for process zm(t). When τ is made

equal to zero, Eq. (23-11) can be written in terms of standard deviations, that is,

σz = (σ2
z1 + σ2

z2 + σ2
z3 + · · ·)1/2 (23-12)

Since the mean extreme values of response for processes z(t) and zm(t) (m = 1, 2, · · ·)
are proportional to their respective standard deviations σz and σzm

, Eq. (23-12)
lends support to the common square-root-of-the-sum-of-squares (SRSS) method of
weighting the maximum normal mode responses when estimating maximum total
response.

When the system has very closely spaced pairs of frequencies, the corresponding
cross-terms in Eq. 23-9 must be retained. Doing so leads to the complete-quadratic-
combination (CQC) method1 of weighting the maximum normal mode contributions
to response; see Eq. (26-116).

23-2 FREQUENCY-DOMAIN RESPONSE FOR LINEAR
SYSTEMS USING NORMAL MODES

The power-spectral-density function for response z(t) is obtained by taking the
Fourier transform of the autocorrelation function, that is,

Sz(ω) =
1

2π

∫ ∞

−∞
Rz(τ) exp(−iωτ) dτ (23-13)

Substituting Eq. (23-10) into Eq. (23-9) and then Eq. (23-9) into Eq. (23-13) gives

Sz(ω) =
1

2π

∫ ∞

−∞

{∑

m

∑

n

∫ ∞

0

∫ ∞

0

BmBnRPmPn
(τ − u2 + u1)

× hm(u1)hn(u2) du1 du2

}
exp(−iωτ) dτ (23-14)

1 A. Der Kiureghian, “Structural Response to Stationary Excitation,” Jour. of Engineering Mechanics
Division, ASCE, December 1980.
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or

Sz(ω) =
1

2π

∑

m

∑

n

BmBn

×
[

lim
T→∞

∫ T

0

hm(u1) du1

∫ T

0

hn(u2) du2

×
∫ T

−T

RPmPn
(τ − u2 + u1) exp(−iωτ) dτ

]
(23-15)

Since h(u1) and h(u2) equal zero for u1 and u2 less than zero, the lower limits of the
first two integrals in Eq. (23-15) can be changed from zero to −T . After substituting
the change of variable

γ ≡ τ − u2 + u1 (23-16)

Equation (23-15) becomes

Sz(ω) =
1

2π

∑

m

∑

n

BmBn

×
[

lim
T→∞

∫ T

−T

hm(u1) exp(iωu1) du1

×
∫ T

−T

hn(u2) exp(−iωu2) du2 ×
∫ T−u2+u1

−T−u2+u1

RPmPn
(γ) exp(−iωγ) dγ

]

(23-17)

SinceRPmPn
(τ) damps out with increasing values of |τ |, the limits of the last integral

in Eq. (23-17) can be changed to
∫ T

−T
. With use of Eq. (6-53) and the first of

Eqs. (21-37), Eq. (23-17) becomes

Sz(ω) =
∑

m

∑

n

Szmzn
(ω) (23-18)

in which
Szmzn

(ω) ≡ BmBn Hm(−iω) Hn(iω) SPmPn
(ω) (23-19)

is the cross-spectral density function for modal responses zm(t) and zn(t), SPmPn
(ω)

is the cross-spectral density function for processes Pm(t) and Pn(t), and

Hm(−iω) =
1

Km [1 − 2iξm(ω/ωm) − (ω/ωm)2]

Hn(iω) =
1

Kn [1 + 2iξn(ω/ωn) − (ω/ωn)2]

(23-20)
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For lightly damped systems with well-separated modal frequencies, the cross-terms
in Eq. (23-18) contribute very little to the mean-square response,

∫∞
−∞ Sz(ω) dω, in

which case Sz(ω) can be simplified to the approximate form

Sz(ω)
.
=
∑

m

Szmzm
(ω) (23-21)

where
Szmzm

(ω) = B2
m |Hm(iω)|2 SPmPm

(ω) (23-22)

|Hm(iω)|2 =
1

K2
m [1 + (4ξ2m − 2)(ω/ωm)2 + (ω/ωm)4]

(23-23)

and SPmPm
(ω) is the power spectral density function for process Pm(t). As previously

pointed out, when two important normal modes have nearly the same frequencies, the
corresponding cross-term in Eq. (23-9) must be retained. Likewise the corresponding
cross-term in Eq. (23-18) must be retained.

If all input processes are gaussian, response z(t) will also be gaussian, in which
case Sz(ω) completely characterizes the process.

23-3 NORMAL MODE FORCING FUNCTION DUE
TO DISCRETE LOADINGS

It was shown in Chapter 12 that if a linear structure is subjected to discrete
applied loadings pi(t) (i = 1, 2, · · ·), the generalized forcing function for the nth
mode becomes

Pn(t) =
∑

i

φinpi(t) = φφφT
n p(t) (23-24)

where constants φin are the components of nth-modal displacements at points i
in the directions of corresponding forces pi(t). If each discrete force pi(t) is a
stationary gaussian process as defined by Spi

(ω) or Rpi
(τ), the cross-spectral density

and covariance functions for Pm(t) and Pn(t) become

SPmPn
(ω) =

∑

i

∑

k

φim φkn Spipk
(ω) = φφφT

m Sp φφφn (23-25)

RPmPn
(τ) =

∑

i

∑

k

φim φknRpipk
(τ) = φφφT

m Rp φφφn (23-26)

The power spectral density and autocorrelation functions for response z(t) are now
obtained by substituting Eqs. (23-25) and (23-26) into Eqs. (23-19) and (23-10),
respectively.

Example E23-1. A uniform inverted L-shaped member of mass m per
unit length and flexural stiffness EI in its plane is discretized as shown in



544 DYNAMICS OF STRUCTURES

FIGURE E23-1
Discrete model of uniform 
inverted L-shaped member.

v2

v3

v1

M (t)

y

EI, L

EI, L

EI, L

mL

mL


mL
2

x

ay (t)

ax (t)

Sax ax
( ω ) = S 0 ; Say ay

( ω ) = 1
2

S 0

Sax ay
( ω ) = Say ax

( ω ) = C S 0

m = 
mL
2

1

0

0

0

3

0

0

0

2

14

12

3

12

16

5

3

5

2

f = L
3

6EI

Fig. E23-1. This model is subjected to simultaneous stationary random base
accelerations ax(t) and ay(t) having power spectral and cross-spectral densities
given by

Saxax
(ω) = S0 Sayay

(ω) =
1

2
S0 Saxay

(ω) = Sayax
(ω) = C S0 (a)

where C is a real constant. Assuming modal damping of the uncoupled form,
where the damping ratio in each normal mode equals ξ, determine the variance
of base moment M (t) expressed in terms of m, L, EI , ξ, S0, and C. What is
the range of possible numerical values for C?

Using the flexibility and mass matrices shown in Fig. E23-1 gives the
following mode shapes and frequencies:

φφφT
1 = [−0.807 1.000 0.307] ω2

1 = 0.197
EI

mL4

φφφT
2 = [−1.000 − 0.213 − 0.280] ω2

2 = 2.566
EI

mL4

φφφT
3 = [−0.309 − 0.304 1.000] ω2

3 = 21.858
EI

mL4

(b)

From Eq. (12-12a), the normal-coordinate generalized masses are

M1 = 3.84
mL

2
M2 = 1.29

mL

2
M3 = 2.41

mL

2
(c)
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and from Eq. (12-12c), the corresponding generalized forces are

Pn(t) = φφφT
n peff(t) = −φφφT

n m




ay

ax

ax



 n = 1, 2, 3

From this equation it follows that

Pm(t) Pn(t) = φφφT
m m




ay

ax

ax



 〈ay ax ax〉 m φφφn

from which the power and cross-spectral density functions become

SPmPn
(ω) = φφφT

m m




Sayay
(ω) Sayax

(ω) Sayax
(ω)

Saxay
(ω) Saxax

(ω) Saxax
(ω)

Saxay
(ω) Saxax

(ω) Saxax
(ω)


mφφφn

or

SPmPn
(ω) = φφφT

mm




1
2S0 CS0 CS0

CS0 S0 S0

CS0 S0 S0


mφφφn

m,n = 1, 2, 3 (d)

To find the moment Mn(t) contributed by the nth normal mode, apply the force
vector 




f1n

f2n

f3n





= ω2
nmφφφnYn(t)

L

L

2L

f2n

f3n

f1n

M (t)

FIGURE E23-2
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to the member as shown in Fig. E23-2. Summing the moments about the base
gives

Mn(t) = ω2
n 〈−L 2L L〉 mφφφn Yn(t) n = 1, 2, 3

Thus for this case, Eq. (23-2) becomes

M (t) =

3∑

n=1

Bn Yn(t) (e)

where
Bn = ω2

n 〈−L 2L L〉 m φφφn n = 1, 2, 3 (f)

When Eqs. (23-18) and (23-19) are used, the spectral density for base moment
becomes

SM(ω) =
3∑

m=1

3∑

n=1

BmBnHm(−iω) Hn(iω) SPmPn
(ω) (g)

where Hm(−iω) and Hn(iω) are given by Eqs. (23-20). Integrating this ex-
pression with respect to ω from −∞ to +∞ gives the variance for base moment
as

σ2
M(t) =

3∑

m=1

3∑

n=1

[
BmBn SPmPn

∫ ∞

−∞
Hm(−iω) Hn(iω) dω

]
(h)

where SPmPn
has the frequency-invariant form given by Eq. (d). By using

Eqs. (23-20), the integral in Eq. (h) can be completed to give

σ2
M(t) =

3∑

m=1

3∑

n=1

4πξ BmBn SPmPn

Mn Mm(ωn + ωm) [(ωn − ωm)2 + 4ξ2ωnωm]
(i)

Assuming a low-damped system, that is, ξ < 0.1, the cross-terms in this equation
will be relatively small and can be neglected, which leads to the approximate
expression

σ2
M(t)

.
=

π

2ξ

3∑

n=1

B2
n SPnPn

M2
nω

3
n

(j)

Upon substitution from Eqs. (b) to (d) and (f), Eq. (j) becomes

σ2
M(t)

.
=
m2L2

ξ

√
EI

m
(9.3 + 3.2C) S0 (k)

If excitations ax(t) and ay(t) are statistically independent, Saxay
= CS0 =

0. Therefore, C = 0 in this case. However, if ax(t) and ay(t) are fully
correlated statistically, then ay(t) = αax(t), where α is a real constant. From
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the definitions of power and cross-spectral densities given by Eqs. (21-27) and
(21-60), respectively, it follows that

Sayay
= α2 Saxax

Saxay
= α Saxax

From these relations and Eqs. (a), C = α = ± 1/
√

2. Thus the range of
possible numerical values for C is

− 1√
2
≤ C ≤ +

1√
2

(l)

Substituting the maximum and minimum values of C into Eq. (k) gives

σ2
M(t) =





7.0
m2L2

ξ

√
EI

m
S0 C = − 1√

2

11.6
m2L2

ξ

√
EI

m
S0 C = +

1√
2

(m)

23-4 NORMAL MODE FORCING FUNCTION DUE TO
DISTRIBUTED LOADINGS

If the distributed loading p(x, t) applied on a linear structure is random with
respect to both x and t, the generalized forcing function for the nth mode is of the
form

Pn(t) =

∫ ∞

−∞
φn(x) p(x, t) dx (23-27)

where φn(x) is simply the continuous form of φin defined in Section 23-3. If p(x, t) is
a stationary gaussian process defined by Sp(x, α, ω) orRp(x, α, τ), the cross-spectral
density and covariance functions for Pm(t) and Pn(t) become

SPmPn
(ω) =

∫ ∞

−∞

∫ ∞

−∞
φm(x)φn(α) Sp(x, α, ω) dx dα (23-28)

RPmPn
(ω) =

∫ ∞

−∞

∫ ∞

−∞
φm(x)φn(α)Rp(x, α, ω) dx dα (23-29)

where α is a dummy space variable. The power spectral density and autocorrelation
functions for response z(t) are now obtained by substituting Eqs. (23-28) and (23-29)
into Eqs. (23-19) and (23-10), respectively.

It should now be quite apparent to the reader how one determines the stochastic
response of linear structures subjected to stationary gaussian excitations which are
random with respect to all three space coordinates as well as time.
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23-5 FREQUENCY-DOMAIN RESPONSE FOR LINEAR
SYSTEMS HAVING FREQUENCY-DEPENDENT
PARAMETERS AND/OR COUPLED NORMAL MODES

In many engineering applications, the governing linear discrete parameter equa-
tions of motion of the form

m v̈(t) + c v̇(t) + k v(t) = p(t) (23-30)

cannot be solved by the normal mode procedures described above because the normal
modes are coupled due to the nonorthogonal nature of the damping matrix c. In
other applications, the damping and stiffness matrices have frequency-dependent co-
efficients, thus preventing standard time-domain solutions. For either of these cases,
an alternate frequency-domain solution can be used which solves Eq. (23-30) directly
without the use of normal modes. To formulate this approach, consider Eq. (23-30) in
its frequency-domain form as given by

[
(k − ω2 m) + i(ωc)

]
V(iω) = P(iω) (23-31)

where V(iω) and P(iω) are the Fourier transforms of vectors v(t) and p(t), respec-
tively. For the moment, assume vectors v(t) and p(t) are of finite durations so that
their Fourier transforms do indeed exist.

Assuming an NDOF system, solve for the system’s N ×N complex frequency
response matrix containing complex frequency response functions Hjk(iω) (j, k =

1, 2, · · · , N ) where each function is the complex response in displacement coordinate
j due to a unit harmonic loading in coordinate k. This step is accomplished by solving
for response vectors using Eqs. (23-31), i.e., using

Hk(iω) ≡ 〈H1k(iω) H2k(iω) · · · HNk(iω)〉T = I(iω)−1〈0 0 · · · 0 1 0 · · · 0〉T
(23-32)

where matrix I(iω) is the system’s known impedance matrix given by the square-
bracket quantity on the left hand side of Eq. (23-31) and where the kth component
in the load vector on the right hand side of this same equation equals unity with all
other components set equal to zero. Vectors Hk(iω) (k = 1, 2, · · · , N ) make up the
columns in the desired N ×N complex frequency response matrix H(iω).

This matrix is generated for widely spaced discrete values ofω using Eq. (23-32)
and then fifth-order interpolation, as described in Section 12-9, is used to generate
it for the other closely-spaced discrete values of frequency used in the fast Fourier
transforms of the components in vector p(t). Having the complete transfer matrix
H(iω) for closely-spaced discrete values of ω, response vector V(iω) is obtained by
superposition using

V(iω) = H(iω) P(iω) (23-33)



STOCHASTIC RESPONSE OF LINEAR MDOF SYSTEMS 549

Assume now the vector p(t) represents a stationary random process character-
ized by its spectral density matrix

Sp(iω) =




Sp1p1
(ω) Sp1p2

(iω) · · · Sp1pN
(iω)

Sp2p1
(iω) Sp2p2

(ω) · · · Sp2pN
(iω)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SpN p1
(iω) SpN p2

(iω) · · · SpN pN
(ω)




(23-34)

where

Spjpk
(iω) ≡ lim

s→∞

[ ∫ s/2

−s/2
pj(t) exp(−iωt) dt

] [ ∫ s/2

−s/2
pk(t) exp(iωt) dt

]

2π s
(23-35)

Consistent with this stationary condition, (1) postmultiply each side of Eq. (23-33)
by the transpose of its own complex conjugate, (2) divide both sides of the resulting
equation by 2π s where s represents duration of the process, and (3) take the limit as
s→ ∞; thus, one obtains

lim
s→∞

V(iω) VT (−iω)

2π s
= lim

s→∞
H(iω) P(iω) P(−iω)T H(−iω)T

2π s
(23-36)

Using the definition of cross-spectral density given by Eq. (23-35), Equation (23-36)
becomes

Sv(iω) = H(iω) Sp(iω) H(−iω)T (23-37)

where Sv(iω) is the spectral density matrix for response given by

Sv(iω) =




Sv1v1
(ω) Sv1v2

(iω) · · · Sv1vN
(iω)

Sv2v1
(iω) Sv2v2

(ω) · · · Sv2vN
(iω)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SvN v1
(iω) SvN v2

(iω) · · · SvN vN
(ω)




(23-38)

If one is interested in an r-component response vector z(t) as given in the time
and frequency domains, respectively, by

z(t) = A v(t) Z(iω) = A V(iω) (23-39)

where A is a known r × N coefficient matrix, the r × r spectral density matrix for
vector z(t) is then given by

Sz(iω) = A H(iω) Sp(iω) H(−iω)T AT (23-40)
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This matrix fully characterizes random vector z(t) if the input process p(t) is gaussian.

PROBLEMS

23-1. Consider the linear system with two degrees of freedom shown in Fig. P23-1,
where p1(t) and p2(t) are two different zero-mean stationary random processes.
The system has discrete masses and springs as indicated and may be assumed to
be undercritically damped, with linear viscous damping of the uncoupled form
yielding modal damping ratios ξ1 = ξ2 = ξ. If the power and cross-spectral
density functions for processes p1(t) and p2(t) are

Sp1p1
(ω) = S0 Sp2p2

(ω) = AS0 Sp1p2
(ω) = (B + iC) S0

over the entire frequency range −∞ < ω < ∞, where A, B, and C are real
constants (Amust be positive, butB andC may be positive or negative), express
the power spectral density function for spring force fs(t) in terms of constants
k, m, ξ, S0, A, B, and C. Write an expression, involving constants A, B, and
C, which gives the ranges of possible values for constants B and C. Note: The
range of possible values for B cannot be expressed independently of the range
of possible values for A.

v2(t) v1(t)

FIGURE P23-1
Two-mass system of Prob. 23-1.

m1 = m m2 = m

p1(t) p2(t)fs(t)
k1 = 1.5 k k2 = k

23-2. A uniform simple beam of length L, stiffness EI , and massm per unit length is
subjected to zero-mean stationary random vertical-support motions at each end.
Let v(x, t) represent the total vertical displacement of the member; the vertical
displacements are given by v(0, t) and v(L, t). Assume viscous damping of
the uncoupled form with all normal modes having the same damping ratio
ξ(0 < ξ < 1). If the power and cross-sepctral density functions for vertical-
support accelerations are given by

Sa1a1
(ω) = S0 Sa2a2

(ω) = 0.5 S0 Sa1a2
(ω) = (0.4 + 0.2i) S0

over the entire frequency range −∞ < ω < ∞, where subscripts a1 and a2

are used to represent v̈(0, t) and v̈(L, t), respectively, find the power spectral
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density functions for (a) displacement v(x, t), (b) moment M (x, t), and (c) shear
V (x, t). Give your answers in series form expressed in terms of L, EI , m, ξ,
S0, and ω. Discuss the relative rates of convergence of these series.

23-3. The tapered vertical cantilever member shown in Fig. P23-2 is subjected to a
distributed zero-mean gaussian stationary random loading p(x, t) having the
power spectral density function

Sp(x, α, ω) = S(ω) exp
[
− (A/L)|x− α|

]

where S(ω) is a known function of ω with units of lb2 ·sec/ft2 andA is a known
positive real constant. The functions m(x) and EI(x) are known, and viscous
damping can be assumed of the uncoupled form yielding the same damping
ratio ξ in each normal mode. Outline how you would make an analysis of the
stochastic response of this structure. Explain in sufficient detail to show that
you could actually obtain correct numerical results if requested to do so.

FIGURE P23-2
Cantilever member of Prob. 23-3.

L

EI(x)
m(x)

x, α
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BACKGROUND

24-1 INTRODUCTORY NOTE

As was mentioned in Chapter 1, the dynamic loadings that act on structural
systems may result from a wide range of input mechanisms. One important class
of loading involves vehicular systems such as ships, airplanes, automobiles, etc., for
which the dynamic loading is a result of the motion of the vehicle. The other basic
class concerns fixed civil engineering structures such as bridges, buildings, dams, etc.,
to which the dynamic loading is applied externally. Of the many sources of external
load that must be considered in the design of fixed structures, the most important by
far in terms of its potential for disastrous consequences is the earthquake.

The degree of importance of earthquake loading in any given region is related,
of course, to its probable intensity and likelihood of occurrence — that is, to the
seismicity of the region. However, the importance of the earthquake problem, in
general, was amplified greatly some years ago by the advent of the nuclear power
industry because stringent seismic criteria were adopted that had to be considered in
the design of nuclear power stations to be built in any part of the United States, and
similar criteria also are applicable in most well-developed areas of the world. For
this reason alone it would be desirable to use the field of earthquake engineering as
the framework on which to demonstrate the application of the theories and techniques
presented in Parts One through Four of this text.

555
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In addition, however, it is evident that the design of economic and attractive
structures which can successfully withstand the forces induced by a severe ground
motion is a challenge demanding the best in structural engineering, art, and sci-
ence. Furthermore, to paraphrase the comment made by Newmark and Rosenblueth:1

“Earthquakes systematically bring out the mistakes made in design and construction
— even the most minute mistakes; it is this aspect of earthquake engineering that
makes it challenging and fascinating, and gives it an educational value far beyond its
immediate objectives.”

The essential background for study or practice in the field of earthquake en-
gineering is, of course, knowledge about the earthquake itself. The detailed study
of earthquakes and earthquake mechanisms lies in the province of seismology, but
in his or her studies the earthquake engineer must take a different point of view
than the seismologist. Seismologists have focused their attention primarily on the
global or long-range effects of earthquakes and therefore are concerned with very
small-amplitude ground motions which induce no significant structural responses.
Engineers, on the other hand, are concerned mainly with the local effects of large
earthquakes, where the ground motions are intense enough to cause structural dam-
age. These so-called strong-motion earthquakes are too violent to be recorded by
the very sensitive seismographs typically used by seismologists and have necessitated
the development of special types of strong-motion seismographs. Nevertheless, even
though the objectives of an earthquake engineer differ from those of a seismologist,
there are many topics in seismology which are of immediate engineering interest. A
brief summary of the more important topics is presented in this chapter.

24-2 SEISMICITY

The seismicity of a region determines the extent to which earthquake loadings
may control the design of any structure planned for that location, and the princi-
pal indicator of the degree of seismicity is the historical record of earthquakes that
have occurred in the region. Because major earthquakes often have had disastrous
consequences, they have been noted in chronicles dating back to the beginnings of
civilization. In China, records have been kept that are thought to include every major
destructive seismic event for a time span of nearly 3000 years; thus it is evident that
considerable knowledge about the seismicity of China is available. Also there are
reports of major earthquake damages that occurred in the Middle East as much as two
thousand years ago, though the record for that region is not as complete as it is in
China.

In general, however, information about global seismicity is much less extensive

1 N. M. Newmark and E. Rosenblueth, Fundamentals of Earthquake Engineering, Prentice-Hall Inc.,
Englewood Cliffs, N. J., 1971.
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than might be inferred from these examples because long historic records have not
been maintained in most regions of the earth. Even though data about earthquake
occurrences increased rapidly with the spread of civilization, the record remained
very incomplete and inconsistent until the 1960’s when a Worldwide Standardized
Network of seismological stations was installed by the United States. This network
consisted of about 120 stations equipped with standard seismograph units and was
distributed among 60 countries. Therefore, when this new earthquake recording
capability was added to the existing networks installed by many other countries, it
became possible to study seismicity on a truly global scale.

Earthquake occurrence information compiled from these seismograph networks
typically is presented in maps such as that shown in Fig. 24-1, which indicates the
location and magnitude of all earthquakes recorded during 1977 through 1986. The
most obvious conclusion to be drawn from this map is that earthquake occurrences
are not distributed uniformly over the surface of the earth; instead they tend to be
concentrated along well-defined lines which are known to be associated with the
boundaries of segments or “plates” of the earth’s crust. The mechanism of earthquake
generation along plate boundaries is discussed in Section 24-5 under the heading of
“plate tectonics,” following brief descriptions of earthquake faults and waves, and
of the structure of the earth, that are presented below in Sections 24-3 and 24-4,
respectively.
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24-3 EARTHQUAKE FAULTS AND WAVES

From the study of geology, it has become apparent that the rock near the surface
of the earth is not as rigid and motionless as it appears to be. There is ample evidence
in many geological formations that the rock was subjected to extensive deformations
at a time when it was buried at some depth. Apparently, when it is subjected to
great pressure from the overburden, the rock can be bent like elasto-plastic metals or
squeezed into new shapes like soft clay. In addition, the geological structures show
that numerous ruptures have occurred within the rock masses, presumably when they
were strained beyond the deformational capacity of the type of material involved.
When such ruptures occurred, relative sliding motions were developed between the
opposite sides of the rupture surface creating what is called a geological fault. The
orientation of the fault surface is characterized by its “strike,” the orientation from
north of its line of intersection with the horizontal ground surface, and by its “dip,”
the angle from horizontal of a line drawn on the fault surface perpendicular to this
intersection line.

The type of displacement that occurs on a fault depends on the state of stress in
the rock that led to the rupture. Horizontal shear stress leads to lateral motion in the
direction of the fault strike, thus this is called a “strike-slip” or lateral fault; it may be
classified as either left-lateral or right-lateral according to whether the rock mass on
the side of the fault opposite the observer moved toward the left or right relative to the
rock on the near side. The relative sliding motion also may be in the direction of the
fault dip, in which case it is called a “dip-slip” fault. This is designated as a “normal”
fault if the rock mass on the upper side of the fault has a relative downward movement,
and it is a “reverse” fault if the upper rock mass moves in the upward direction relative
to the lower side. In general, normal faults are associated with a state of tensile stress
in the surficial rock layer, while a reverse fault may be induced by compressive stress
in the surface rock layer if the dip is small; in this case the result is called a thrust
fault. All of this fault terminology is depicted in Fig. 24-2.

The important fact about any fault rupture is that the fracture occurs when the
deformations and stresses in the rock reach the breaking strength of the material.
Accordingly it is associated with a sudden release of strain energy which then is
transmitted through the earth in the form of vibratory elastic waves radiating outward
in all directions from the rupture point. These displacement waves passing any
specified location on the earth constitute what is called an earthquake. The point on
the fault surface where the rupture first began is called the earthquake focus, and the
point on the ground surface directly above the focus is called the epicenter.

Two types of waves may be identified in the earthquake motions that are propa-
gated deep within the earth: “P” waves, in which the material particles move along the
path of the wave propagation inducing an alternation between tension and compres-
sion deformations, and “S” waves, in which the material particles move in a direction
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FIGURE 24-2
Definition of fault orientation, and of the basic types of fault displacement.
[Adapted from Earthquake by Bruce A. Bolt, W. H. Freeman and Company 1988.]
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perpendicular to the wave propagation path, thus inducing shear deformations. The
“P” or Primary wave designation refers to the fact that these normal stress waves travel
most rapidly through the rock and therefore are the first to arrive at any given point.
The “S” or Secondary wave designation refers correspondingly to the fact that these
shear stress waves travel more slowly and therefore arrive after the “P” waves.

When the vibratory wave energy is propagating near the surface of the earth
rather than deep in the interior, two other types of waves known as Rayleigh and
Love waves can be identified. The Rayleigh surface waves are tension-compression
waves similar to the “P” waves except that their amplitude diminishes with distance
below the surface of the ground. Similarly the Love waves are the counterpart of the
“S” body waves; they are shear waves that diminish rapidly with distance below the
surface. Figure 24-3 illustrates the nature of these four types of elastic earthquake
waves.

24-4 STRUCTURE OF THE EARTH

Much of present knowledge about the structure of the earth has been deduced
from information about the relative length of time required for an earthquake wave to
propagate from the point of rupture (the focus) to observation points (seismographs)
which may be located at many points on the earth’s surface. The relative arrival times
of the P and S waves can be interpreted in terms of the distance of the observatory from
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FIGURE 24-3
Diagram illustrating the forms of ground motion near the ground surface in 
four types of earthquake waves. [From Bruce A. Bolt, Nuclear Explosions
and Earthquakes: The Parted Veil (San Francisco: W. H. Freeman and
Company. Copyright © 1976).]
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the focus if the properties of the materials through which the waves travel are known;
also this relative delay time provides evidence regarding reflection and refraction of
the earthquake waves from the boundaries between concentric layers of rock having
different moduli of elasticity and densities. The paths of some P-type earthquake
waves are shown schematically in Fig. 24-4. Based on this kind of information, it has
been deduced that the earth consists of several discrete concentric layers as illustrated
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FIGURE 24-4
Paths of some P-type earthquake waves 
from the focus.
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FIGURE 24-5
Zonation of the earth’s interior. The crust, which includes continents at the surface 
of the earth, rests on the mantle. The mantle, in turn, rests on the core. The outer 
core is liquid, but the inner core is solid. [After W. J. Kauffman, Planets and Moons,
W. H. Freeman and Company, New York, 1979.]
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in Fig. 24-5 and described in the following paragraphs.

The central sphere (called the inner core) is a very dense solid thought to consist
mainly of iron; surrounding that is a layer of similar density, but thought to be a liquid
because shear waves are not transmitted through it. Next is a solid thick envelope of
lesser density around the core that is called the mantle, and finally is the rather thin
layer at the earth’s surface called the crust. Seismic waves propagating from the mantle



562 DYNAMICS OF STRUCTURES

into the crust exhibit a very abrupt decrease of velocity known as the Mohorovicic
discontinuity (or Moho) which identifies the base of the crust at that location. From
such seismic information, it has been noted that the crust is relatively thin under
the oceans but that it is correspondingly thick beneath high mountain ranges. This
relationship is believed to be a demonstration of the principle of isostasy indicating
that the crust is floating on the mantle. In this circumstance, a deeper layer of crust
is needed to provide buoyancy for a high mountain range as compared with regions
where the topography reaches only to sea level or below.

Based on this concept, the mantle is considered to consist of two distinct layers.
The upper mantle together with the crust form a rigid layer called the lithosphere.
Below that, a zone with low velocity has been identified; this layer, called the astheno-
sphere, is thought to be partially molten rock consisting of solid particles incorporated
within a liquid component. Although the asthenosphere represents only a small frac-
tion of the total thickness of the mantle, it is because of its highly plastic character
that the lithosphere can act as if it is floating on a liquid and thus can be subjected to
large crustal deformations. The lithosphere does not move as a single unit, however;
instead it is divided into a pattern of plates of various sizes, and it is the relative move-
ments along the plate boundaries that cause the earthquake occurrence patterns seen
in Fig. 24-1. A simplified map of the Earth’s crustal plates is shown in Fig. 24-6. The
detailed description of the motions of these plates is a subject called plate tectonics;
development of understanding of this subject is one of the great advances of geology
and seismology during the present century as described briefly in Section 24-5, below.

FIGURE 24-6
Simplified map of the Earth’s crustal plates.
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24-5 PLATE TECTONICS

The basic concept embodied in plate tectonics was recognized several centuries
ago by persons working with world maps who noted that the outline of the west
coast of Africa is a good match for the east coast of South America and suggested
that the two continents might at one time have been joined together. Although this
fact was a matter of great curiosity, it was not until much later that a Frenchman,
Antonio Snider-Pellegrini made the first attempt to develop the concept of substantial
continental movement; in a book published in 1858 he hypothesized that the Atlantic
Ocean had been formed by the tearing apart and separation of the two continents.
The author supported this postulation of “continental drift” (as it came to be known)
by presenting extensive evidence that the geological structure on the South American
coast was very similar to that on the African coast and also by identifying similarities
between the ancient plant and animal life in the two regions as indicated by their fossil
specimens.

Most geologists completely rejected the continental drift idea at that time, but it
was proposed again in 1908 by an American geologist, F. B. Taylor, who included in his
argument the idea that the Mid-Atlantic Ridge (which had been identified and mapped
in the 1870’s) is the line along which the single supercontinent ruptured to form the
present two continents. A much more comprehensive argument for the concept of
continental drift was made in 1915 by a German meteorologist, Alfred Wegener, in his
book On the Origin of Continents and Oceans, in which he claimed that essentially all
the world’s large land masses at one time had been joined in a single supercontinent.
He identified the sequence in which these great land areas had split apart and moved
to their present locations, and following the lead of Snider-Pellegrini he also based
his argument for the previous interconnection of the system on the similarities of the
geological structure and of the fossil flora and fauna of the related components. In
the following years numerous other scientists began to accept the idea of continental
drift, but most geophysicists rejected it because they could not imagine how major
continental units could be driven through the oceanic crust for any significant distance.

Evidence for continental drift continued to be compiled in the decades following
publication of Wegener’s work, but no satisfactory explanation of the mechanism that
caused it was proposed until the publication in 1962 of the paper “History of Ocean
Basins” by the American geologist H. H. Hess. This paper, which opened the door
to our present understanding of plate tectonics, was based on extensive studies of the
sea floor including investigations made by Hess during World War II while he was
serving as captain of a U. S. Navy vessel. In the course of his normal duties he was
able to survey the bottom topography using the ship’s depth sounding equipment and
this led to his discovery of flat topped features called seamounts that rose from the
sea floor. From their size and shape he concluded that these at one time had been
islands, and that their flat tops had been caused by wave erosion near sea level. The
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basic question over which he puzzled was how they had subsided to their present
great depths, and he eventually formed the hypothesis that this was the result of
extensive lateral motion having a downward component rather than simple vertical
motion. Combining this concept with knowledge of the position of the mid-ocean
ridges and also with the idea of convective circulation of the earth’s mantle that had
been proposed by others previously, Hess conceived a general hypothesis for motions
of the earth’s crust. This continual movement is thought to be driven by heating of
the mantle due to radioactivity, which causes molten rock to well upwards along the
ocean ridges. As this material reaches the surface and cools, it forms the crust at the
surface of the lithosphere; the entire lithosphere floating on the plastic asthenosphere is
caused to spread outwards in both directions by the continued upwelling of additional
molten rock. This new crust then sinks beneath the surface of the sea as it cools and
spreads outward, and the motion continues until eventually the lithosphere reaches a
deep sea trench where it plunges downward into the asthenosphere in a process called
subduction.

This concept of sea floor spreading is supported by many types of physical
evidence, including the presence of seamounts at great depths as was mentioned
earlier, but the most striking proof of the theory is given by patterns of magnetic
orientation as shown by the zebra stripe patterns that have been observed in maps
of sea floor magnetism, as shown in Fig. 24-7. As the crust is first formed, it is
magnetized in accordance with the polarity of the earth’s magnetic field at that time,
and it maintains that polarity as it spreads outward from the ridge. However, when

FIGURE 24-7
Magnetic-anomaly pattern of the North Atlantic sea floor. Symmetrical striping is revealed 
by measurement of the strength of the magnetic field at many locations from a ship.
The position of the area represented in the lower diagram is shown in the map above.
[From A. Cox et al., "Reversals of the Earth’s Magnetic Field." Copyright © 1967 by
Scientific American, Inc. All rights reserved.]
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the earth’s field changes polarity, as has happened at intervals of one-half to one
million years during the present Cenozoic era (65 million years), the crust that has just
developed on both sides of the ridge shows the newly reversed polarity in maps such
as Fig. 24-7. Using such data, the rate of sea floor spreading may be evaluated by
relating the spacing of these polarity stripes to the chronology of the polarity changes.

Other convincing evidence of the movement of the earth’s crust is provided by the
alignment of volcanic island groups such as the Hawaiian Islands in the Pacific Ocean.
These islands were produced by plumes of molten rock welling up from the base of
the mantle at the times when each island location was positioned in sequence over an
isolated point of volcanic activity in the mantle base, known as a “hot spot.” These
hot spots are relatively stationary in the earth’s sphere, so when the lithosphere moves
in accordance with its convective circulation, the plumes rise into it at successively
differing locations. In the area of the Hawaiian Island chain, the crust is moving in
a northwesterly direction, so the island which was formed first (Kawai) is located at
the northwest end of the chain. The other islands are positioned according to their
relative ages, with the youngest (Hawaii) located in its chronological sequence at the
southeast end of the chain.

From this description, it is evident that the Hess concept of sea floor spreading
provides answers for the principal questions which originally had led to rejection of
the idea of continental drift. Because the continents are embedded in the lithosphere
and are transported with it like on a conveyor belt, they do not have to be driven
through the crust as they move. However, it is apparent from the seismicity map
of Fig. 24-1 that the continental motions are associated with a variety of different
circulation patterns; hence relative motions are induced at the plate boundaries and it
is these relative motions that are the cause of most earthquakes that have occurred. For
example, the interaction between the Pacific Plate and the continental plates all around
its periphery has produced the great majority of the earthquakes indicated in Fig. 24-1.
The well-known San Andreas fault is the juncture between the Pacific Plate and the
North American Plate. This fault and the subsidiary faults branching from it, shown
in Fig. 24-8, has been the source of most major California earthquakes during historic
times, including the great San Francisco earthquake of 1906. It is one of the most
active as well as the most studied fault systems in the world; its location is apparent in
topographic features (Fig. 24-9) over nearly its entire extent in California. Research
on this fault zone and the earthquakes associated with it has contributed greatly to
present knowledge of earthquake mechanisms and earthquake-motion characteristics.
An interesting fact is that relative movements along this fault, corresponding with the
counterclockwise rotation of the Pacific basin mentioned above, have been observed
both in fault breaks occurring during earthquakes and in continual creep deformations
measured by geodetic surveys. These measurements show the geological structure
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west of the fault in California to be moving northward relative to the east side at a rate
of several centimeters per year.

24-6 ELASTIC-REBOUND THEORY OF EARTHQUAKES

It was from study of the rupture which occurred along the San Andreas fault
during the San Francisco earthquake of 1906 that H. F. Reid first put into clear focus
the elastic-rebound theory of earthquake generation. Many seismologists had already
surmised that earthquakes result somehow from fractures, or faulting, of the earth’s
crust. However, Reid’s investigation of the large-amplitude shearing displacements
which resulted from this earthquake for dozens of miles along the fault (a typical
displacement is shown in Fig. 24-10) led him to conclude that the specific source of
the earthquake vibration energy is the release of accumulated strain in the earth’s crust,
the release itself resulting from the sudden shear-type rupture.

The essential concept of this elastic-rebound mechanism, which still provides the
most satisfactory explanation for the types of earthquakes causing intense, potentially
damaging surface motions, is portrayed in Fig. 24-11. The active fault zone is shown
in the center of the sketches, and, as with the San Andreas system, the geological
structure to the left is assumed to be moving northward at a constant rate. If a series
of fences were built perpendicularly across the fault (Fig. 24-11a), this continual
northward drift would gradually distort the fence lines as shown in Fig. 24-11b. Also
shown in the sketch is a road which is assumed to have been built after the fence-
line deformations developed. Eventually, the continuing deformation of the crustal
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FIGURE 24-11
Elastic-rebound theory of earthquake generation: (a) before straining; (b) strained (before 
earthquake); (c) after earthquake.

Fault line

Directions
of motion

(a) (b) (c)

Road Road

structure will lead to stresses and strains which exceed the material strength. A rupture
will then initiate at some critical point in the fault zone and will propagate rapidly
throughout the length of the highly stressed material. The resulting release of strain
and the corresponding displacements lead to the conditions depicted in Fig. 24-11c,
with large offsets visible across the fault on both the road and the fence lines. With
the release of strain, the fence lines would become straight, but the road (which was
built over strained basement rock) would be locally curved.

Fault displacements such as those pictured in Figs. 24-9 and 24-10 are local
manifestations of a major earthquake. Displacements like these undoubtedly will
cause significant damage to any structure that happens to be founded directly over
the fault break. However, the strong ground shaking initiated by the rupture and
radiating outward in all directions from the focus is the more hazardous aspect of the
earthquake because of its great area of influence. In contrast to the motions recorded
at great distances which are too small even to be felt, the ground motions resulting at
close range from an important earthquake are so strong that they cannot be recorded
on a teleseismic instrument, as was mentioned earlier, and special “strong-motion”
seismographs have been developed to obtain detailed information about such intense
local shaking. Within this potentially damaging range the wave generation mechanism
may be described conveniently by reference to a penny-shaped crack located on the
fault surface, as shown in Fig. 24-12, following a general line of reasoning due to
G. W. Housner. Suppose that the state of stress in the area of this crack zone has
reached the rupture point. When the rupture occurs, the release of strain adjacent to
the crack surface will be accompanied by a sudden relative displacement of the two
sides. This displacement initiates a displacement wave which propagates radially from
the source; a record of this simple displacement pulse as it passes a recording station
located at a moderate distance from the focus would be like that shown in Fig. 24-13.
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The velocity and acceleration records corresponding to this displacement pulse are
also shown. Comparison of these idealized ground-motion records with the actual
seismograph acceleration record obtained from the Port Hueneme earthquake of 1957
(shown in Fig. 24-14, together with the velocity and displacement diagrams obtained

FIGURE 24-13
Idealized ground motion from point source.
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FIGURE 24-12
Idealized point-source earthquake rupture (after 
G. W. Housner): (a) plan; (b) section along 
fault line; (c) penny-shaped crack at focus.
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FIGURE 24-14
Accelerogram from Port Hueneme earthquake, 
March 18, 1957 (NS component).
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by integration of the accelerogram) demonstrates that the Port Hueneme earthquake
was essentially a single-displacement pulse; thus it may be inferred that the mechanism
which generated this earthquake was similar to the rupture of the simple penny-shaped
crack.

Records of typical earthquakes, such as the El Centro earthquake of 1940 (one
component of which is shown in Fig. 24-15), are much more complicated than the Port
Hueneme record, and it is probable that the generating mechanism is correspondingly
more complex. A hypothesis which provides a satisfactory explanation of the typical
record is that the earthquake involves a sequence of ruptures along the fault surface.
Each successive rupture is the source of a simple earthquake wave of the Port Hueneme
type, but because they occur at different locations and times, the motions observed at
a nearby station will be a random combination of simple records which could look
much like Fig. 24-15.
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FIGURE 24-15
Accelerogram from El Centro earthquake, May 18, 1940 (NS component).
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In this context, it is important to recall that the focus of the earthquake is the
point within the earth at which the first rupture of the fault surface takes place and
the epicenter is the point at the surface directly above the focus. If the earthquake
results from a sequence of ruptures along the fault line, it is evident that the focus may
not coincide with the center of energy release. In a major earthquake, which may be
associated with a fault break hundreds of miles in length, the distance of a building
from the epicenter may be of little importance; the significant factor is the distance to
the nearest point along the rupture surface.

24-7 MEASURES OF EARTHQUAKE SIZE

To an earthquake engineer, the most important aspect of an earthquake’s ground
motions is the effect they will have on structures, that is, the stresses and deformations
or the amount of damage they would produce. This damage potential is, of course,
at least partly dependent on the “size” of the earthquake, and a number of measures
of size are used for different purposes. The most important measure of size from a
seismological point of view is the amount of strain energy released at the source, and
this is indicated quantitatively as the magnitude. By definition, Richter magnitude is
the (base 10) logarithm of the maximum amplitude, measured in micrometers (10−6m)
of the earthquake record obtained by a Wood-Anderson seismograph, corrected to a
distance of 100 km. This magnitude rating has been related empirically to the amount
of earthquake energy released E by the formula

logE = 11.8 + 1.5 M (24-1)
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in which M is the magnitude. By this formula, the energy increases by a factor of
32 for each unit increase of magnitude. More important to engineers, however, is the
empirical observation that earthquakes of magnitude less than 5 are not expected to
cause structural damage, whereas for magnitudes greater than 5, potentially damaging
ground motions will be produced.

The magnitude of an earthquake by itself is not sufficient to indicate whether
structural damage can be expected. This is a measure of the size of the earthquake at
its source, but the distance of the structure from the source has an equally important
effect on the amplitude of its response. The severity of the ground motions observed at
any point is called the earthquake intensity; it diminishes generally with distance from
the source, although anomalies due to local geological conditions are not uncommon.
The oldest measures of intensity are based on observations of the effects of the ground
motions on natural and man-made objects. In the United States, the standard measure
of intensity for many years has been the Modified Mercalli (MM) scale. This is a
12-point scale ranging from I (not felt by anyone) to XII (total destruction). Results
of earthquake-intensity observations are typically compiled in the form of isoseismal
maps like that shown in Fig. 24-16. Although such subjective intensity ratings are very
valuable in the absence of any instrumented records of an earthquake, their deficiencies
in providing criteria for the design of earthquake-resistant structures are obvious.

Basic information on the characteristics of earthquake motions which could
be used for earthquake engineering purposes did not become available until the first
strong-motion-recording accelerographs were developed and a network of such instru-
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ments was installed by the United States Coast and Geodetic Survey. The accelerogram
of Fig. 24-15 (together with the perpendicular horizontal component and the vertical
component) was recorded by one of these early instruments. The rate at which such
instrumental information was gathered was very slow for many years because the
number and distribution of the instruments were very limited. Gradually more exten-
sive networks have been installed in Japan, Mexico, the most active seismic regions of
the United States, and various other parts of the world, and much new and significant
information is now being obtained. Unfortunately, however, the distribution of in-
struments is still quite limited, and destructive earthquakes in most parts of the world
provide no strong-motion records. Consequently, basic data concerning the influence
of such factors as magnitude, distance, and local soil conditions on the characteristics
of earthquake motions are still very scarce.

The three components of ground motion recorded by a strong-motion accelero-
graph provide a complete description of the earthquake which would act upon any
structure at that site. However, the most important features of the record obtained in
each component (such as Fig. 24-15), from the standpoint of its effectiveness in pro-
ducing structural response, are the amplitude, the frequency content, and the duration.
The amplitude generally is characterized by the peak value of acceleration or some-
times by the number of acceleration peaks exceeding a specified level. (It is worth
noting that the ground velocity may be a more significant measure of intensity than
the acceleration, but it generally is not available without supplementary calculations.)
The frequency content can be represented roughly by the number of zero crossings
per second in the accelerogram and the duration by the length of time between the first
and the last peaks exceeding a given threshold level. It is evident, however, that all
these quantitative measures taken together provide only a very limited description of
the ground motion and certainly do not quantify its damage-producing potential ade-
quately. The quantitative description of earthquake motions is the subject of Chapter
25.





CHAPTER

25
FREE-FIELD

SURFACE
GROUND

MOTIONS

25-1 FOURIER AND RESPONSE SPECTRA

In designing structures to perform satisfactorily under earthquake conditions,
the engineer needs a much more precise characterization of ground shaking than is
provided by the Modified Mercalli intensity. For this purpose, the response of a
simple oscillator, such as the SDOF frame shown in Fig. 25-1, has proved to be
invaluable. The relative displacement response of this frame to a specified single
component of ground acceleration v̈g(t) may be expressed in the time domain by
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FIGURE 25-1
Basic SDOF dynamic system.
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means of the Duhamel integral, Eq. (6-7), if it is noted that the effective loading is
given by Eq. (2-17), i.e., peff(t) = −mv̈g(t); thus,

v(t) =
1

mωD

∫ t

0

−mv̈g(τ) sinωD(t− τ) exp[−ξω(t− τ)] dτ (25-1)

When the difference between the damped and the undamped frequency is neglected,
as is permissible for small damping ratios usually representative of real structures (say
ξ < 0.10), and when it is noted that the negative sign has no real significance with
regard to earthquake excitation, this equation can be reduced to

v(t) =
1

ω

∫ t

0

v̈g(τ) sinω(t− τ) exp[−ξ ω(t− τ)] dτ (25-2)

Taking the first time derivative of Eq. (25-2), one obtains the corresponding
relative velocity time-history

v̇(t) =

∫ t

0

v̈g(τ) cosω(t− τ) exp[−ξω(t− τ)] dτ

− ξ

∫ t

0

v̈g(τ) sinω(t− τ) exp[−ξω(t− τ)] dτ (25-3)

Further, substituting Eqs. (25-2) and (25-3) into the forced-vibration equation of
motion, written in the form

v̈t(t) = −2ω ξ v̇(t) − ω2 v(t) (25-4)

one obtains the total acceleration relation

v̈t(t) = ω (2 ξ2 − 1)

∫ t

0

v̈g(τ) sinω(t− τ) exp[−ξω(t− τ)] dτ

− 2ω ξ

∫ t

0

v̈g(τ) cosω(t− τ) exp[−ξω(t− τ)] dτ (25-5)

The absolute maximum values of the response given by Eqs. (25-2), (25-3), and
(25-5) are called the spectral relative displacement, spectral relative velocity, and
spectral absolute acceleration, respectively; these will be denoted herein as Sd(ξ, ω),
Sv(ξ, ω), and Sa(ξ, ω), respectively.

As will be shown subsequently, it is usually necessary to calculate only the
so-called pseudo-velocity spectral response Spv(ξ, ω) defined by

Spv(ξ, ω) ≡
[∫ t

0

v̈g(τ) sinω(t− τ) exp
[
−ξω(t− τ)

]
dτ
]

max
(25-6)
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where the subscript max refers to the maximum absolute value of response over the
entire time-history. Now from Eq. (25-2), it is seen that

Sd(ξ, ω) =
1

ω
Spv(ξ, ω) (25-7)

and from Eqs. (25-3) and (25-6) that (for ξ = 0)

Sv(0, ω) =
[∫ t

0

v̈g(τ) cosω(t− τ) dτ
]
max (25-8)

Spv(0, ω) =
[∫ t

0

v̈g(τ) sinω(t− τ) dτ
]
max (25-9)

which are identical except for the trigonometric terms. It has been demonstrated by
Hudson1,2 that Sv(0, ω) and Spv(0, ω) differ very little numerically, except in the case
of very long period oscillators, i.e., very small values of ω. For damped systems, the
difference between Sv and Spv is considerably larger and can differ by as much as 20
percent for ξ = 0.20. Note also from Eq. (25-5) for ξ = 0 that

Sa(0, ω) =
[
ω

∫ t

0

v̈g(t) sinω(t− τ) dτ
]
max (25-10)

thus, from Eq. (25-6),
Sa(0, ω) = ω Spv(0, ω) (25-11)

It can be shown that Eq. (25-11) is very nearly satisfied for damping values over
the range 0 < ξ < 0.20; therefore, we are able to use the approximate relation

Sa(ξ, ω)
.
= ω Spv(ξ, ω) (25-12)

with little error being introduced. The entire quantity on the right hand side of
Eq. (25-12) is called the pseudo-acceleration spectral response and is denoted herein
as Spa(ξ, ω). This quantity is particularly significant since it is a measure of the
maximum spring force developed in the oscillator, i.e.,

fs,max = k Sd(ξ, ω) = ω2m Sd(ξ, ω) = m Spa(ξ, ω) (25-13)

1 D. E. Hudson, “Response Spectrum Techniques in Engineering Seismology,” Proc. 1st World Conference
on Earthquake Engineering, Earthquake Engineering Research Institute, Berkeley, CA, 1956.

2 D. E. Hudson, “Some Problems in the Application of Spectrum Techniques to Strong Motion Earthquake
Analysis,” Bull. Seismological Society of America, Vol. 52, No. 2, April, 1962.
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Clearly, from the above treatment, only the pseudo-velocity response spectrum as
defined by Eq.(25-6) need be generated for any prescribed single component of earth-
quake ground motion. The other desired response spectra can be easily obtained
therefrom using the relations

Sd(ξ, ω) =
1

ω
Spv(ξ, ω) (25-14)

Spa(ξ, ω) = ω Spv(ξ, ω) (25-15)

As indicated above these response quantities depend not only on the ground motion
time-history but also on the natural frequency and damping ratio of the oscillator.
Thus for any given earthquake accelerogram, by assuming discrete values of damping
ratio and natural frequency, it is possible to calculate the corresponding discrete values
of Spv(ξ, ω) using Eq. (25-6) and to calculate corresponding values of Sd(ξ, ω) and
Spa(ξ, ω) using Eqs. (25-14) and (25-15), respectively.

Graphs of the values for Spv(ξ, ω), Sd(ξ, ω), and Spa(ξ, ω) plotted as functions
of frequency (or functions of period T = 2 π

ω ) for discrete values of damping ratio are
called pseudo-velocity response spectra, displacement response spectra, and pseudo-
acceleration response spectra, respectively. If plotted in linear form, each type of
spectra must be plotted separately similar to the set of Spv(ξ, T ) shown in Fig. 25-2
for the El Centro, California, earthquake of May 18, 1940 (NS component). However,
due to the simple relationships existing among the three types of spectra as given by
Eqs. (25-14) and (25-15), it is possible to present them all in a single plot. This may
be accomplished by taking the log (base 10) of Eqs. (25-14) and (25-15) to obtain

log Sd(ξ, ω) = log Spv(ξ, ω) − logω (25-16)
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Pseudo-velocity response spectra, El Centro, California earthquake, May 18, 1940 
(NS component).
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log Spa(ξ, ω) = log Spv(ξ, ω) + logω (25-17)

From these relations, it is seen that when a plot is made with log Spv(ξ, ω) as the
ordinate and logω as the abscissa, Eq. (25-16) is a straight line with slope of +45◦ for
a constant value of log Sd(ξ, ω) and Eq. (25-17) is a straight line with slope of −45◦

for a constant value of log Spa(ξ, ω). Thus, a four-way log plot as shown in Fig. 25-3
allows all three types of spectra to be illustrated on a single graph. When interpreting
such plots, it is important to note the following limiting values:

lim
ω→0

Sd(ξ, ω) =
[
vg(t)

]
max (25-18)

lim
ω→∞

Spa(ξ, ω) =
[
v̈g(t)

]
max (25-19)

These limiting conditions mean that all response spectrum curves on the four-way
log plot, as illustrated in Fig. 25-3, approach asymptotically the maximum ground
displacement with increasing values of oscillator period (or decreasing values of
frequency) and the maximum ground acceleration with decreasing values of oscillator
period (or increasing values of frequency) for typical values of damping ratio, say
ξ < 0.20.

It is evident that the above response spectra provide a much more meaningful
characterization of earthquake ground motion, as related to structural response, than

FIGURE 25-3
Pseudo-velocity response spectra for El Centro, California earthquake, May 18, 1940 
(NS component).
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does any single quantity such as Modified Mercalli intensity or peak ground accel-
eration (PGA). In fact, these response spectra show directly the extent to which real
SDOF structures (with specific values of damping ratio and natural period) respond to
the input ground motion. The only limitation in their application is that the response
must be linear elastic because linear response is inherent in the Duhamel integral of
Eq. (25-6). Therefore, such response spectra cannot accurately represent the extent
of damage to be expected from a given earthquake excitation, inasmuch as damage
involves inelastic (nonlinear) deformations. Nevertheless, the maximum amount of
elastic deformation produced by an earthquake is a very meaningful indication of
ground motion intensity. Moreover, such response spectra indicate the maximum
deformations for all structures having periods within the range for which they were
evaluated; hence, the integral of a single response spectrum over an appropriate period
range can be used as an effective measure of ground motion intensity. Housner3

originally introduced such a measure of ground motion intensity when he suggested
defining the integral of the pseudo-velocity response spectrum over the period range
0.1 < T < 2.5 sec as the spectrum intensity:

SI(ξ) ≡
∫ 2.5

0.1

Spv(ξ, T ) dT (25-20)

As indicated, this integral can be evaluated for any desired damping ratio; however,
Housner recommended using ξ = 0.20.

Structural engineers normally use the previously defined response spectra to
characterize earthquake ground motion in terms of its maximum influence on simple
oscillators; however, often it is helpful in understanding the characteristic features of
such response to generate the Fourier spectrum for the ground motion as given by

V̈g(iω) ≡
∫ ∞

−∞
v̈g(t) exp[−iωt] dt (25-21)

This allows one to express the ground acceleration through the superposition of a full
spectrum of harmonics as indicated by the inverse relation

v̈g(t) =
1

2π

∫ ∞

−∞
V̈g(iω) exp[iωt] dω (25-22)

Assuming that the ground motion is nonzero only in the range 0 < t < t1, Eq. (25-21)
can be separated into its real and imaginary parts as follows:

V̈g(iω) =

∫ t1

0

v̈g(t) cosωt dt− i

∫ t1

0

v̈g(t) sinωt dt (25-23)

3 G. W. Housner, “Spectrum Intensities of Strong Motion Earthquakes,” Proc. of the Symposium on
Earthquake and Blast Effects on Structures, Earthquake Engineering Research Institute, Los Angeles,
1952.
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Usually, one is primarily interested in the Fourier amplitude spectrum |V̈g(iω)| defined
by

|V̈g(iω)| ≡
[
C(ω)2 + S(ω)2

]1/2
(25-24)

where C(ω) and S(ω) are the cosine and sine transforms of v̈g(t) defined by the first
and second integrals, respectively, on the right hand side of Eq. (25-23). The quantity
|V̈g(iω)| in Eq. (25-24), when divided by 2π, is the ground acceleration amplitude
intensity at frequency ω per unit of ω. Of lesser importance than the Fourier amplitude
spectrum, but sometimes of interest, is the Fourier phase spectrum defined by

θ(ω) ≡ − tan−1
[S(ω)

C(ω)

]
(25-25)

Note that the Fourier amplitude spectrum [Eq. (25-24)] alone does not uniquely
define a ground motion time-history since the phase angles between pairs of harmon-
ics have been lost through its definition. However, the complex Fourier spectrum,
Eq. (25-21), does uniquely define the ground motion time-history as indicated by
Eq. (25-22). Seismologists often find both the Fourier amplitude and phase spectra to
be useful in interpreting the various phenomena associated with the transmission of
energy from the earthquake source to distant locations.

25-2 FACTORS INFLUENCING RESPONSE SPECTRA

If one generates sets of response spectrum curves, as illustrated in Fig. 25-3,
for ground motions recorded at different locations during past earthquakes, large
variations will be observed in both the response spectral values and the shapes of the
spectrum curves from one set to another. These variations depend upon many factors,
such as energy release mechanism in the vicinity of the focus or “hypocenter” and
along fault interfaces, epicentral distance and focal depth, geology and variations in
geology along energy transmission paths, Richter magnitude, and local soil conditions
at the recording station.4,5,6,7 Thus, the response spectral values S (Spv , Spa, and Sd)
for earthquake ground motions should be thought of in the form

S = S(SM, ED, FD, GC, M, SC, ξ, T ) (25-26)

4 H. B. Seed and I. M. Idriss, “Ground Motions and Soil Liquefaction During Earthquakes,” Monograph
published by the Earthquake Engineering Research Institute, 1982.

5 N. M. Newmark and W. J. Hall, “Earthquake Spectra and Design,” Monograph published by the Earth-
quake Engineering Research Institute 1982.

6 G. W. Housner, “Design Spectrum,” Earthquake Engineering, Chapter 5, Ed. R. L. Wiegel, Prentice-Hall,
Englewood Cliffs, N. J., 1970.

7 G. W. Housner, “Properties of Strong Ground Motion Earthquakes,” Bull. Seismological Society of
America, Vol. 45, No. 3, July, 1955.
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where the independent variables denote source mechanism, epicentral distance, focal
depth, geological conditions, Richter magnitude, soil conditions, damping ratio, and
period, respectively. The effects of SM andGC on both spectral values and shapes of
the response spectrum curves are not well understood; therefore, such effects cannot
be quantified when defining response spectra for design purposes. The effects ofED,
FD, and M are usually taken into consideration when specifying the intensity levels
of the design response spectra; however, they are often ignored when specifying the
shapes of these spectra because of lack of knowledge as to their influences. On the
other hand, the effects of SC on both the intensities and shapes of response spectra are
now being considered widely when defining design response spectra. Because of the
above considerations, modern design response spectrum curves, when normalized to a
fixed intensity level, are usually specified in terms of only two parameters as indicated
by

S = S(SC, ξ) (25-27)

Therefore, the subsequent discussion in this section will concentrate on the influence
of local soil conditions on the shapes of response spectrum curves.

For many years, the shear beam model shown in Fig. 25-4 has been used to
deterministically study the influence of local soil conditions on the characteristics of
horizontal free-field surface ground motions. This is the shear deformation equivalent
of the normal stress wave propagation model described in Section 19-5; it assumes
that strain energy is transmitted in the form of pure shear waves propagating in the
vertical direction. In the earlier years, it was common practice to assume a fixed
lower boundary condition for this model; however, in recent years the more realistic
viscous or impedance boundary condition has been introduced, as is discussed later in
Chapter 27.

FIGURE 25-4
The shear beam model used for soil response analyses.
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Referring to Fig. 25-4, if the soil layer is of reasonably uniform thickness
extending over a large horizontal distance and if the bedrock motion is horizontal
with no significant variations over a distance bc, where bc � h, then the shear beam
assumption described above is quite valid. However, when there are significant phase
differences in the bedrock motions from point b to point c and when distance bc is of the
same order of magnitude as h, or when Rayleigh waves and horizontally propagating
shear waves, for example, dominate the free-field surface ground motions, then the
shear beam model is not realistic. Because of these and other complicating factors, one
cannot rigorously justify, in general, the shear beam model for studying the influence
of local soil conditions on the characteristics of free-field surface motions.

An alternative approach to characterizing the influence of local soil conditions on
free-field surface motions is the direct statistical approach whereby the characteristics
of numerous recorded motions are correlated with soil conditions at the recording
stations. To carry out such studies effectively, one would like to have many recorded
accelerograms for each soil type (hard to soft) with all other influencing factors, such as
source mechanism, magnitude, epicentral distance, etc., held constant. Unfortunately,
sufficient strong motion records are not available to meet this requirement; therefore,
rigor must be relaxed in order to obtain usable results.

A very valuable study was carried out by H. B. Seed et al. using the above
mentioned statistical approach,8 and some of their most revealing findings are shown
in Figs. 25-5 and 25-6. As indicated in these figures, Seed and his colleagues analyzed
104 strong motion accelerograms, 15 recorded on soft to medium clay and sand,
30 recorded on deep cohesionless soils, 31 recorded on stiff soil conditions, and
28 recorded on rock. Figure 25-5 shows the average pseudo-acceleration response
spectra for each of the four soil conditions, normalized with respect to peak ground
acceleration. Figure 25-6 shows the corresponding 84 percentile (median plus one
standard deviation) spectra. All spectra in these two figures are for 5 percent critical
damping, i.e., ξ = 0.05.

While the above described spectrum curves definitely show a correlation of
spectral values with type of soil condition, one should be careful in judging this
correlation. First, even if one ignores the variations caused by such influencing factors
as fault mechanism, epicentral distance, and magnitude on spectral shapes, which are
indeed present in the results of Figs. 25-5 and 25-6, the statistical correlations between
spectral shapes and soil types show large dispersions of the spectral values.9 To

8 H. B. Seed, C. Ugas, and J. Lysmer, “Site-Dependent Spectra for Earthquake Resistant Design,” Bull. of
the Seismological Society of America, Vol. 66, No. 1, February, 1976.

9 J. Penzien, “Statistical Nature of Earthquake Ground Motions and Structural Response,” Proc. U.S.-
Southeast Asia Symposium on Engineering for Natural Hazards Protection, Manila, Philippines, Septem-
ber, 1977.
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Total number of records analysed: 104 Spectra for 5% damping

FIGURE 25-5
Average pseudo-acceleration spectra for different site conditions (by Seed et al.).
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FIGURE 25-6
84 percentile pseudo-acceleration spectra for different site conditions (by Seed et al.).
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FIGURE 25-7
Gumbel Type I probability 
distribution functions for 
response ratio R for two soil 
types.
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elaborate on this point, let us examine the probability distribution function (cumulative
probability) for the acceleration spectral value in two particular cases: (1) the case
for T = 1.0 sec, ξ = 0.05, and a deep cohesionless soil type and (2) the case for
T = 1.0 sec, ξ = 0.05, and rock as the soil type. Fig. 25-7 shows the Gumbel
Type I extreme-value distribution P (R) for both cases where R is the normalized
pseudo-acceleration spectral value. (Note the factor of 2 difference in scale for R
between the two plots.) It is significant to recognize the large overlapping dispersions
of the spectral values for these two cases. The second reason for being cautious when
interpreting the results of Figs. 25-5 and 25-6 is that the effects of other factors, such as
magnitude and epicentral distance, have been averaged out. Housner10 has pointed out
that both magnitude and epicentral distance can significantly influence the shapes of
the response spectrum curves. Source mechanism differences can also influence these
shapes. For example, the response spectrum shapes for earthquake ground motions
recorded in California are significantly different from the response spectrum shapes
for earthquake ground motions recorded in the SMART-1 strong motion array located
in Lotung, Taiwan.11 Undoubtedly, this difference is, at least in part, caused by the
differences in source mechanisms. The shallow lateral fault slippage along the San
Andreas fault is obviously quite different from the slippage caused by deep thrusting
of the Philippine crustal plate under Taiwan.

10 G. W. Housner, “Design Spectrum,” Earthquake Engineering, Chapter 5, Ed. R. L. Weigel, Prentice-Hall,
Englewood Cliffs, N. J., 1970.

11 C. H. Loh, J. Penzien, and Y. B. Tsai, “Engineering Analysis of SMART-1 Array Accelerograms,” Jour.
of Earthquake Engineering and Structural Dynamics, Vol. 10, 1982.
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Clearly, there is need for additional strong ground motion data and for additional
studies to further clarify the effects of the various factors mentioned above on the
intensity and shapes of response spectrum curves. In developing response spectra for
design application, one should place emphasis on strong ground motions recorded in
the region of the site where the spectra are to be applied. If such data are lacking, they
must be supplemented by data collected for near-similar conditions in other regions.

25-3 DESIGN RESPONSE SPECTRA

Dual Strategy of Seismic Design

The design of structures to perform satisfactorily under expected seismic con-
ditions requires that realistic earthquake loadings be specified and that the structural
components be proportioned to resist these and other combined loadings within the
limits of certain design requirements. In regions of high seismicity, earthquake loading
is often critical among the types of loading that must be considered because a great
earthquake will usually cause greater stresses and deformations in the various critical
components of a structure than will all other loadings combined; yet, the probability
of such an earthquake occurring within the life of the structure is very low. In order
to deal effectively with this combination of extreme loading and low probability of
occurrence, a strategy based on the following dual criteria has usually been adopted:

(1) A moderate earthquake which reasonably may be expected to occur once at the
site of a structure during its lifetime is taken as the basis of design. The structure
should be proportioned to resist the intensity of ground motion produced by this
earthquake without significant damage to the basic system.

(2) The most severe earthquake which could possibly ever be expected to occur at
the site is applied as a test of structural safety. Because this earthquake is very
unlikely to occur within the life of the structure, the designer is economically
justified in permitting it to cause significant structural damage; however, collapse
and serious personal injury or loss of life must be avoided.

Currently, the trend is to strengthen the second of these criteria for critical and expen-
sive structures by calling for limited repairable damage, thus, focusing not only on
life safety but on protection of financial investment as well.

In order to establish the characteristics of the design earthquake and the maxi-
mum probable earthquake for any given site, it is necessary to first study all seismo-
logical and geophysical data (instrumental and historical) available for the region of
the site. From these data, supplemented by similar data for other regions as needed,
earthquake loadings for both the design earthquake and the maximum probable earth-
quake can be developed. These loadings are usually specified in the form of prescribed
response spectra as defined in Section 25-1. Such spectra will be referred to herein as
design response spectra.
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Usually, it is assumed that the shapes of the design spectra are the same for
both the design and maximum probable earthquakes but that they differ in intensity
as measured by peak ground acceleration. Thus, it has been common practice to first
normalize the intensity of these design spectra to the 1 g peak acceleration level so
that Eq. (25-19) becomes

lim
ω→∞

Spa(ξ, ω) = 1 g (25-28)

and then later to scale them down to the appropriate peak acceleration levels repre-
senting the design and maximum probable earthquakes. Once the shapes of these
common normalized spectra have been developed, taking into consideration local soil
conditions, appropriate scaling factors are applied representing the intensity levels of
the peak free-field surface ground accelerations (PGA) produced by the design and
maximum probable earthquakes.

Peak Ground Accelerations

For a site located in a region of moderate to high seismicity, the following
deterministic procedure has often been used to establish the peak free-field surface
ground acceleration (PGA) values for the maximum probable and design earthquakes:

(1) The locations of known active faults in the near region of the site are established.
In some cases, extensive investigations are required to assess whether or not a
known fault is indeed active or capable.

(2) All instrumental and historical seismicity data available for past earthquakes
occurring on these active faults are carefully studied, along with the associated
geological and geophysical conditions, to establish the maximum Richter mag-
nitude possible for future earthquakes occurring along each fault. If the past
history of observation of earthquakes covers a very long period of time, say many
hundreds of years, the maximum magnitude possible for a given fault will most
likely not greatly exceed the magnitude of the strongest earthquake experienced
over the same period of time. Usually, however, the subjective judgments of
specialists must be relied upon in setting the maximum probable magnitude for
each fault. This is especially the case when a very long period is specified for
the mean return period as in the case of a nuclear power plant where the mean
return period for the maximum probable earthquake is commonly specified in
the range 103 to 104 years.

(3) Empirical attenuation relations, expressing the median (50 percentile) or mean
PGA as functions of source-to-site distance R and local Richter magnitude M ,
are established for the region of the site. Since the true attenuation relation is
unknown, several possible forms of attenuation judged appropriate to the local
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region are selected. For example, the Campbell relation of the form12

a = b1
[
R+ b4 exp(b5M)

]−b3exp(b2M) (25-29)

may be selected along with other forms. The constants appearing in such rela-
tions are determined through nonlinear regression analyses using, to the extent
possible, strong motion data recorded in the local region of the site. If such data
are lacking, supplementary data for other similar regions must be used. Having
established a possible set of attenuation relations, the subjective judgments of
specialists are then used in assigning relative weights to the individual forms
selected.

(4) Using the shortest distance from the site to each active fault as source-to-site
distanceR, the corresponding maximum possible magnitude established in Step
2 above asM , and the attenuation relations with their respective relative weights
as selected in Step 3, a single numerical value is obtained for the median or mean
PGA expected at the site. Using the largest of such values obtained for all active
faults under consideration, the design PGA is established for the maximum
possible earthquake. This PGA is then used to scale down the normalized (1 g)
response spectra to the appropriate level representing the maximum probable
earthquake.

(5) For each active fault, the Richter magnitude is estimated corresponding to the
mean frequency of occurrence of earthquakes having magnitudes greater thanM
being equal to one event per life span of the structure. Using this magnitude for
each active fault, instead of the corresponding maximum probable magnitude,
Step 4 above is repeated to obtain the PGA to be used as the scale factor for the
design earthquake in applying the normalized (1 g) response spectra.

While the predominantly deterministic approach described above for setting
the PGA values for the maximum probable and design earthquakes has often been
used in the past, the recent emergence into engineering practice of Probability Risk
Assessment (PRA) methodologies makes it possible to use a consistent probabilistic
approach. The final result of this approach is a seismic hazard curve which is simply a
plot expressing annual mean frequency of exceedance as a function of PGA for the site
under consideration. The analytical procedure used to generate this function consists
of the following steps:13,14

12 K. W. Campbell, “Near-Source Attenuation of Peak Horizontal Acceleration,” Bull. Seismological
Society of America, Vol. 76, No. 6, December, 1981.

13 C. A. Cornell, “Engineering Seismic Risk Analysis,” Bull. of the Seismological Society of America,
Vol. 58, No. 5, October, 1968.

14 A. Der Kiureghian and A. H-S. Ang, “A Fault-Rupture Model for Seismic Risk Analysis,” Bull. of the
Seismological Society of America, Vol. 67, No. 4, August, 1977.
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(1) The near-region around the site is divided into surface seismotectonic zones,
each having similar tectonic characteristics over its area. Volume zoning below
the surface may also be required to properly represent zones of high seismic
activity, e.g., subduction zones. Uniform seismicity is usually assumed over each
zone and geologically appropriate source (point and/or fault-rupture) models are
specified. Nonuniform seismicity can however be assigned in the volume zones
if sufficiently supported by field evidence. Several possible zoning schemes are
normally considered.

(2) A magnitude recurrence relation of the Gutenberg-Richter type logN = a−bM
is established for each zone. Constant b in this relation is obtained by a least-
square fitting of an appropriate seismicity data subset obtained instrumentally,
which is judged to be complete; constant a is then obtained, using both historical
and instrumental data over a long period of time, by specifying a relatively large
value of M for which the corresponding value of N is believed to be known
accurately.

(3) An upper bound magnitude is established for each zone based primarily on avail-
able recorded and historical seismicity data but supplemented by the subjective
judgments of specialists.

(4) Attenuation relations are selected for the region of the site by the procedure
previously described and lognormal distributions of PGA are assumed. A
rupture-length/magnitude relation is sometimes established, using all pertinent
data available for the near-region of the site, representing mean and upper and
lower bound values. This relation should always be compared with similar
relations based on world-wide data so as to judge its appropriateness.15

(5) An upper bound acceleration, which represents some reasonable physical upper
bound value for the site, should be specified using the subjective judgments of
experts. This acceleration is used to truncate the seismic hazard curves.

(6) Then a set of seismic hazard curves is generated by a consistent probabilistic
approach using the different zoning schemes and corresponding distributions
of events, the rupture-length/magnitude relation, the frequency of occurrence
and attenuation relations, and the upper-bound values set for magnitudes and
acceleration. After giving relative weights to the resulting seismic hazard curves
following the subjective judgments of specialists, a final single seismic hazard
curve is established along with its 10 and 90 percent uncertainty bounds.

(7) Once the mean annual frequencies of exceedance have been specified for the
PGA values of the design and maximum probable earthquakes, their values

15 M. G. Bonilla, “A Review of Recently Active Faults in Taiwan,” U.S. Department of the Interior,
Geological Survey, Open-File Report 75-41, 1975.
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can be taken directly from the final seismic hazard curve for use in scaling
the normalized (1 g) response spectrum curves. When normalized response
spectra are used for nuclear power plant design, they are scaled down to the
appropriate design and maximum probable intensity levels (PGA) known as
the OBE (Operating Basis Earthquake) and SSE (Safe Shutdown Earthquake)
g-levels, respectively. In the past, it has been common practice to establish
the design SSE g-level and then reduce it by one-half to set the corresponding
OBE g-level. Recent trends, however, indicate that the OBE g-level may be
reduced somewhat below this level in the future so that the SSE, rather than the
OBE, governs the design of piping and equipment. When using the consistent
probabilistic approach, both the SSE and OBE g-levels can be taken directly from
the seismic hazard curve after specifying their annual frequencies of exceedance.
A value in the range 10−3 to 10−4 is generally considered acceptable for the
SSE while a value of 10−2 is reasonable for the OBE. It has also been common
practice in the past to set the vertical design OBE and SSE g-levels at 2/3

their corresponding values for horizontal motions. However, in some cases,
they have been set at equal levels consistent with available ground motion data
representative of the site. Thrust faulting very near the site is usually the reason
for increasing the relative vertical component acceleration in this way.

Response Spectrum Shapes

To establish the shapes of the normalized (PGA=1 g) response spectrum curves,
the Newmark-Hall approach (or some variation thereof) has often been used.16 Com-
paring the solid response spectrum curves in Fig. 25-3 with the dashed curve showing
maximum values of ground displacement, velocity, and acceleration, it appears that
the smoothed response spectrum curves are essentially scalar amplifications of the
maximum values of ground displacement, velocity, and acceleration in their respec-
tive frequency (or period) ranges as indicated. This observation led Newmark and Hall
to suggest using piecewise linear plots for each response spectrum curve as shown in
Fig. 25-8 where the three linear portions of the curve below f = f2 are simply ampli-
fications of the maximum values of ground displacement, velocity, and acceleration
in their respective frequency ranges. Following this suggestion, site-dependent design
response spectrum curves can be established using the following steps:

(1) Establish the expected PGA values for the design and maximum probable earth-
quakes following one of the two procedures previously outlined.

(2) Calculate the corresponding expected peak values of ground velocity and dis-

16 N. M. Newmark and W. J. Hall, “Earthquake Spectra and Design,” loc. cit.
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FIGURE 25-8
Design response spectrum.
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where a, v, and d represent the expected maximum values of ground acceleration
(PGA), velocity, and displacement, respectively; g is the acceleration of gravity;
and constants c1 and c2 are selected appropriately for the known site conditions
based on the results of statistical analyses of numerous strong ground motion
accelerograms, giving preference to those accelerograms recorded in the local
region of the site. In his 1982 paper, Hall suggested using for horizontal ground
motions c1 = 48 in/sec and 36 in/sec for competent soil and rock sites,
respectively. Further, he suggested using c2 = 6 for both soil conditions in this
case. Mohraz in 1976 reported mean, 50 percentile, and 84.1 percentile values
for c1 and c2 (assuming lognormal distributions) for different site conditions
based primarily on California earthquake data.

(3) Having established numerical values for a, v, and d, multiply them by their
corresponding amplification factors αa, αv , and αd, respectively. Then plot the
results on four-way log plots as indicated in Fig. 25-8. Since the amplification
factors for both horizontal and vertical motions are random quantities, they must
be obtained through statistical analyses of strong ground motion data represen-
tative of the local site conditions. Mohraz has published numerous results of
this type, generated under the assumption of a lognormal distribution. It has

17 W. J. Hall, “Observations on Some Current Issues Pertaining to Nuclear Power Plant Seismic Design,”
Nuclear Engineering and Design, North-Holland Publishing Co., Vol. 69, 1982.

18 B. Mohraz, “A Study of Earthquake Response Spectra for Different Geological Conditions,” Bull. of the
Seismological Society of America, Vol. 66, No. 3, June, 1976.



592 DYNAMICS OF STRUCTURES

FIGURE 25-9
ATC-3 normalized response spectra recommended for use in building code.
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been common practice to use amplification factors at the 84.1 percentile level in
combination with mean or 50 percentile (median) values of maximum ground ac-
celeration, velocity, and displacement. Assuming a lognormal distribution, the
84.1 percentile level represents the median-plus-one-standard-deviation level.

(4) Knowing that any response spectrum curve must approach asymptotically the
peak ground acceleration as the SDOF system frequency f = ω/2π increases
toward large values, as previously indicated by Eq. (25-19), the design response
spectrum curve as shown in Fig. 25-8 is forced to approach the maximum ground
acceleration in a linear fashion when going from frequency f2 to f3. Statistical
analyses show that these frequencies are often reasonably well predicted using
the approximate relations

f2
.
= 4 f1 f3

.
= 10 f1 (25-31)

where f1 is that frequency on the response spectrum curve corresponding to
the intersection point of the amplified ground acceleration and amplified ground
velocity.

This general approach has been used to establish normalized design response spectra
for building codes, including those recommended by ATC-3 as shown in Fig. 25-9.19

19 Applied Technology Council (ATC), “Tentative Provisions for the Development of Seismic Regulations
for Buildings,” ATC Publication ATC3-06, NBS Special Publication 510, and NSF Publication 78-8,
1978.
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It should be emphasized that when developing such spectra, every effort should be
made to use values of a, c1, c2, αa, αv , and αd established from strong ground motion
data representative of the region they represent. Often to finalize these numerical
values, subjective judgments must be made based on rational assessments of all factors
involved.

When setting design response spectra for regions having very deep soft soil
conditions, such as those present in the Mexico City and Taipei, Taiwan, basins, the
very narrow-band type of ground motions which occur should be included in the
data under consideration. An example demonstrating the influence of such narrow-
band motion on the shapes of response spectra is shown in Fig. 25-10. This figure
shows the normalized response spectrum curves for 5 percent damping using eight
accelerograms recorded in Taipei during the earthquake of November 14, 1986. The
recorded accelerograms had predominate frequency contents centered around the
period T = 1.65 sec which is reflected in the unique peaking of the spectra in the
near neighborhood of this period. Using these eight spectrum curves to set a smooth
design spectrum, a curve similar to that shown in Fig. 25-11 would result. Note that
the segment of the spectrum usually controlled by velocity has disappeared.

In the above discussion, the general focus has been on procedures for setting the
shapes of the response spectra for horizontal free-field surface motions representing
the design and maximum probable earthquake events. These same procedures can, of
course, be used for the vertical free-field surface motions if sufficient vertical strong
motion data are available. In doing so, it should be recognized that the shapes of
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the design spectra for vertical motions differ from those for horizontal motions. For
example, note the shape differences between the two sets of normalized (PGA=1 g)
USNRC (United States Nuclear Regulatory Commission) design spectra shown in
Fig. 25-12 which have been used extensively in the USA and many other countries
of the world in designing nuclear power plants.20,21 Both sets of curves in this figure
represent a variation on the above described Newmark-Hall procedure for developing
design spectra in that the straight lines in the velocity controlled region of frequencies
are not horizontal. Negative slopes have been assigned to these lines in this case
to provide a better fit to the family of normalized real spectra used in the statistical
analysis. The shapes of all curves in Fig. 25-12 represent spectral values at the
mean-plus-one-standard-deviation levels.

When using piecewise linear design spectra, as represented on 4-way log plots,
one should avoid taking spectral values directly from such plots as the nonlinear
interpolation required along the log scales cannot be done visually with acceptable
accuracy. It is recommended therefore that the desired spectral values for specified
periods be calculated directly from the equations representing the straight line seg-
ments. For each straight line segment having one of the three spectra as a constant,

20 N. M. Newmark, J. A. Blume, and K. K. Kapur, “Seismic Design Spectra for Nuclear Power Plants,”
Jour. Power Division, ASCE, Vol. 99, No. PO2, November, 1973.

21 U. S. Atomic Energy Commission, Regulatory Guide 1.60, “Design Response Spectra for Seismic Design
of Nuclear Power Plants,” Revision 1, December, 1973.
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its conversions to representations of the other two spectra are easily carried out using
Eqs. (25-14) and (25-15).

Uniform-Hazard Site-Specific Response Spectra

It should be recognized that response spectra of the type shown in Fig. 25-12
have two significant deficiencies: (1) they are independent of local site conditions and
(2) they do not represent the same probability of exceedance over the full frequency
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range of interest. Because of these deficiencies, every effort should be made to estab-
lish site-specific spectra which do represent a uniform probability of exceedance over
the entire frequency range. To establish these spectra, a statistical analysis is required
using sets of response spectra generated for a family of accelerograms characterizing
the expected ground motions at the site. Since the number of available accelerograms
recorded in the near-region of the site is usually quite limited, the family should be
supplemented using recorded accelerograms obtained in other regions having similar
geological, seismological, and geophysical (GSG) conditions. All recorded accelero-
grams selected should be scaled individually in an appropriate manner so that they
are representative of the single magnitude and single source-to-site distance of the
earthquake under consideration and the specific site being represented.22,23,24,25 To
adjust for magnitude and site condition differences, the scaling is accomplished by
Fourier transforming each accelerogram and then multiplying the real and imaginary
parts of each transformed result by the appropriate frequency dependent scaling fac-
tors. At this point, a similar multiplication by a third scaling factor, which is frequency
independent, is made to adjust for differences in the source-to-site distance. This scal-
ing factor follows the attenuation relation expressing the mean (or median) PGA as
a function of magnitude and source-to-site distance. Having applied all three scaling
factors, the results are inverse Fourier transformed back to the time domain giving
the adjusted accelerograms. If the number of recorded accelerograms in the family
are insufficient for statistical analysis purposes, synthetic accelerograms generated
from a stochastic model can be used provided the model is carefully selected to rep-
resent the design earthquake and local site conditions. Having the final full set of
accelerograms representing the expected motions at the specific site, response spectra
for each accelerogram are generated. Statistical analyses are then carried out on all
sets of spectra to obtain the probability distributions on PGA and on spectral values at
discrete frequencies over the frequency range of interest. Spectra selected at a spec-
ified percentile level from these results represent uniform probability of exceedance
over the entire frequency range. The development of site-specific design spectra, by
the above procedure, should be carried out separately for the vertical and horizontal
ground motions.

22 H. B. Seed, C. Ugas, and J. Lysmer, “Site-Dependent Spectra for Earthquake Resistant Design,” loc. cit.

23 R. K. McGuire, “A Simple Model for Estimating Fourier Amplitude Spectra of Horizontal Ground
Acceleration,” Bull. of the Seismological Society of America, Vol. 68, No. 3, June, 1978.

24 M. D. Trifunac, “Preliminary Empirical Model for Scaling Fourier Amplitude Spectra of Strong Ground
Acceleration in Terms of Earthquake Magnitude, Source-to-Site Distance, and Recording Site Condi-
tions,” Bull. of the Seismological Society of America, Vol. 66, No. 4, August, 1976.

25 D. M. Boore, “Stochastic Simulation of High-Frequency Ground Motions Based on Seismological Models
of the Radiated Spectra,” Bull. of the Seismological Society of America, Vol. 73, No. 6, December, 1983.
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An alternative approach to generating site-specific response spectra representing
a uniform probability of exceedance over the entire frequency range is similar to that
described above with one exception. Instead of using the attenuation relation to
adjust for differences in the source-to-site distances, all accelerograms obtained after
adjustments for magnitude and site condition differences are normalized to the 1 g PGA
level. Sets of response spectra are then generated for these normalized accelerograms
and statistical analyses are carried out on all sets to obtain probability distributions on
the spectral values at discrete frequencies, or simply to obtain mean and 84 percentile
levels. However, because the commonly used 84 percentile curves converge to the
peak ground acceleration in the high-frequency range, such curves do not represent
uniform probabilities of exceedance over the entire frequency range when scaled down
using the mean (or median) PGA for the design or maximum probable earthquake.
For this reason, it is more rational to use the mean normalized (PGA = 1 g) response
spectra and then scale them down using the 84 percentile PGA. This latter approach
leads to reasonably uniform probabilities of exceedance over the entire frequency
range.

Recently the trend is to establish uniform-hazard site-specific response spectra
by first establishing sets of seismic hazard curves, each of which expresses annual
mean frequency of exceedance as a function of response spectral value for a specified
discrete value of frequency (or period) and a specified discrete value of damping. The
procedure for doing this is the same as that described previously for generating seismic
hazard curves for PGA; however, the computational effort is much greater due to the
large number of discrete values of frequency and damping involved. Having the sets
of hazard curves, response spectra for a specified probability of exceedance over the
entire frequency range are easily established.

Two Horizontal Components of Motion

If a structure is to be designed using two simultaneous orthogonal components
of horizontal free-field ground acceleration, the normalized design spectra previously
described for single component horizontal motion can be used for both components;
however, consistent with strong ground motion data, the design and maximum probable
intensity levels of one component should be reduced about 15 percent below the
corresponding intensity levels of the other component. The component of larger
intensity should be directed along the critical axis of the structure.

25-4 DESIGN ACCELEROGRAMS

As explained in the previous section, the design and maximum probable earth-
quake ground motions are usually specified in terms of design response spectra.
Assuming linear structural systems, these spectra can be used to obtain corresponding
maximum response levels through standard modal analyses which are discussed in
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Chapters 26 and 27. In many cases, however, time-history dynamic analyses must be
carried out in predicting maximum response levels. Various reasons exist for having
to do this. For example, under maximum probable earthquake conditions, most struc-
tures will experience damage which means that such structures respond in a nonlinear
manner. Thus, the linear modal analysis approach does not apply, and time-history
nonlinear analyses may be required. In other cases, where linear response analyses
are acceptable, the complexity and/or nature of structural modeling may be such as
to require time-history dynamic analyses. Extreme complexities in structural geome-
tries, causing difficulty in combining modal contributions to response, is one such
case. Modeling, which contains critical frequency dependent parameters, is another.
Regardless of the reason for requiring any particular time-history dynamic analysis,
the earthquake inputs must be specified in terms of free-field ground motion accelero-
grams. Since the design and maximum probable earthquake free-field ground motions
are usually specified in terms of smooth design response spectra, accelerograms used
for time-history dynamic analyses should be compatible with these spectra.

Response Spectrum Compatible Accelerograms

To generate a synthetic ground motion accelerogram compatible with a response
spectrum, the following steps can be used:

(1) By computer, generate a set of random numbers, denoted by x1, x2, x3, · · ·,
xn, consistent with a uniform probability density function of intensity 1 over
the range zero to +1. Computer programs are readily available for carrying out
this step.

(2) Convert consecutive pairs of these random numbers to corresponding consecu-
tive pairs of new random numbers using the relations

yi = (−2 lnxi)
1/2 cos 2π xi+1

yi+1 = (−2 lnxi)
1/2 sin 2π xi+1

(25-32)

As shown in Example E20-7, numbers y1, y2, y3, · · ·, yn so obtained have a
gaussian distribution with zero mean value and a variance of unity.

(3) A sample time function y(t) can now be established by assigning the discrete
values y1, y2, y3, · · ·, yn, obtained in Step 2 to n successive ordinates spaced at
equal time intervals 4t along a time abscissa and by assuming a linear variation
of ordinates over each interval. The initial ordinate y0 at t = 0 is set equal to
zero.

As shown in Example E21-2, the autocorrelation function for waveform y(t),
as defined by

Ry(τ) ≡ lim
n→∞

1

n4t

∫ n4t

0

y(t) y(t+ τ) dt (25-33)
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FIGURE 25-13
Intensity function f (t) for nonstationary 
process a(t).
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(25-34)

and the corresponding power spectral density function, as defined by

Sy(ω) ≡ lim
n→∞

|
∫ n4t

0
y(t) exp(−iωt) dt|2

2π n4t (25-35)

is given by

Sy(ω) =
4t
π

[6 − 8 cosω4t+ 2 cos 2ω4t
(ω4t)4

]
ω ≥ 0 (25-36)

As reported by Ruiz and Penzien,26 this latter function is flat to within 5 percent
error for ω4t < 0.57 and to within 10 percent error for ω4t < 0.76. It
drops to 50 percent of its initial value at ω4t = 2. For generating synthetic
earthquake accelerograms, it is usually sufficient to let 4t = 0.01 sec.

(4) Multiply the stationary-type waveform y(t) obtained in Step 3 by a suitable
deterministic time function f(t) to convert it to a nonstationary form z(t) ap-
propriate to the magnitude and source-to-site distance of the design or maximum
probable earthquake being considered. One function commonly used for this
purpose is shown in Fig. 25-13.27 Constants t1, t2, and c in this figure should
be assigned numerical values only after considering such factors as earthquake
magnitude and epicentral distance.28 Another form which has been used for
this purpose is

f(t) = a1 t exp(−a2 t) (25-37)

26 P. Ruiz and J. Penzien, “Probabilistic Study of Behavior of Structures during Earthquakes,” University
of California, Berkeley, Earthquake Engineering Research Center, Rept. 69-3, 1969.

27 P. C. Jennings, G. W. Housner, and N. C. Tsai, “Simulated Earthquake Motions,” Rept., Earthquake
Engineering Research Laboratory, California Institute of Technology, April, 1968.

28 G. W. Housner, “Design Spectrum,” loc. cit.
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where again the constants involved are assigned values after considering such
factors as earthquake magnitude and epicentral distance.29 For the general class
of accelerograms recorded during the San Fernando, California, earthquake,
statistical studies show that constants a1 and a2 can be assigned the values 0.45
and 1/6, respectively, giving f(0) = 0, f(6) = 1, f(12) = 0.74, f(20) = 0.32.
Other forms which have been used for f(t) can be found in the literature.30

(5) Fast Fourier Transform (FFT) the wave form z(t) obtained in Step 4 to get Z(iω)

which should then be multiplied by filter functions H1(iω) and H2(iω) to get

B(iω) ≡ Z(iω) H1(iω) H2(iω) (25-38)

where

H1(iω) =

[
1 + 2 i ξ1

(
ω
ω1

)]

[(
1 − ω2

ω2

1

)
+ 2 i ξ1

(
ω
ω1

)]

and (25-39)

H2(iω) =

(
ω
ω2

)2
[(

1 − ω2

ω2

2

)
+ 2 i ξ2

(
ω
ω2

)]

The first of Eqs. (25-39) is the well-known Kanai/Tajimi filter function which
amplifies the frequency content in Z(iω) in the neighborhood of ω = ω1 and
increasingly attenuates the frequency content above ω = ω1 as ω → ∞.31 The
second of Eqs. (25-39) greatly attenuates the very low frequencies in Z(iω)

which is necessary to correct possible drifting in time of the first and second
integral functions of z(t). Parameters ω1 and ξ1 appearing in H1(iω) may be
thought of as some characteristic ground frequency and characteristic damping
ratio, respectively. Kanai has suggested 15.6 r/sec forω1 and 0.6 for ξ1 as being
representative of firm soil conditions. As the soil conditions become softer, ω1

and ξ1 should both be adjusted appropriately to reflect changes in the frequency

29 J. L. Bogdanoff, J. E. Goldberg, and M. C. Bernard, “Response of a Simple Structure to a Random
Earthquake-Type Disturbance,” Bull. of the Seismological Society of America, Vol. 51, No. 2, April,
1961.

30 T. Kubo and J. Penzien, “Time and Frequency Domain Analyses of Three-Dimensional Ground Motions,
San Fernando Earthquake,” University of California, Berkeley, Earthquake Engineering Research Center,
Report No. 76-6, March, 1976.

31 K. Kanai, “Semi-empirical Formula for the Seismic Characteristics of the Ground,” University of Tokyo,
Bull., Earthquake Research Institute, Vol. 35, pp. 309-325, 1957; H. Tajimi, “A Statistical Method of
Determining the Maximum Response of a Building Structure during an Earthquake,” Proc. 2nd World
Conference on Earthquake Engineering, Tokyo and Kyoto, Vol. II, pp. 781-798, July, 1960.
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H( i ω ) ≡ H1( i ω ) H2 ( i ω ) 

FIGURE 25-14
Absolute value of combined filter function.ω 2 ω 1

ω

content of the ground motions. Parameters ω2 and ξ2 appearing in H2(iω) must
be set appropriately to produce the desired filtering of the very low frequencies.
The absolute value of the product of H1(iω) and H2(iω) will have the general
appearance shown in Fig. 25-14.

(6) Inverse FFT the complex function B(iω) obtained in Step 5 to get the corre-
sponding waveform b(t) which should then be normalized by a scale factor
α so that its PGA equals 1 g. Let this normalized waveform represent an
accelerogram a(t).

(7) Generate the pseudo-velocity response spectrum for the normalized accelero-
gram a(t) obtained in Step 6 using a damping ratio ξ consistent with the rep-
resentative structural damping ratio, say a damping ratio ξs. Let us denote
this spectrum as Sa

pv(ξs, T ). The superscript a is used here to indicate that the
generated spectrum is for the normalized accelerogram a(t).

(8) Compare Sa
pv(ξs, T ) with the specified design response spectrum Spv(ξs, T )

which has been normalized to the 1 g peak acceleration level. Since these two
spectra will not match, except at very low periods approaching zero, an adjust-
ment must be made to accelerogram a(t) to make it spectrum compatible. After
dividing the entire frequency range of interest into narrow frequency bands,
each containing a number of frequency intervals as used in the FFT of a(t),
this adjustment is easily made by multiplying the discrete values of the real and
imaginary parts of A(iω) over each frequency band by the corresponding aver-
age of the ratios of design spectral value, Spv(ξs, T ), to response spectral value
of a(t), Sa

pv(ξs, T ). Now inverse FFT the resulting adjusted complex function,
to get the corresponding adjusted accelerogram. The response spectrum of this
adjusted accelerogram will more closely match the specified design spectrum.
An even better fitting can be achieved, if desired, by repeating this step using
the response spectrum for the adjusted accelerogram instead of Sa

pv(ξs, T ) as
indicated above. Note that the maximum or peak value of the adjusted accelero-
gram will not equal 1 g. Nevertheless, this adjusted accelerogram should not be
normalized to that level as it already has been modified to better represent the
entire smooth design spectrum.

One’s success in using the above procedure is very much dependent upon the number of
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FIGURE 25-15
Synthetic accelerogram adjusted to be compatible with smooth design spectrum.
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FFT frequency intervals specified for the narrow frequency band in Step 8. Even with
an optimum choice of this number, full convergence to spectrum compatibility is not
achievable; however, the degree of spectrum compatibility is usually satisfactory. To
illustrate, consider the spectrum compatible accelerogram generated by this procedure
as shown in Fig. 25-15. Its actual response spectrum is shown in Fig. 25-16 where it
can be compared with the specified smooth design spectrum. The degree of spectrum
compatibility achieved in this case is quite good; however, should one desire even
better spectrum compatibility, an improved procedure allowing greater convergence
is required.32

Accelerograms generated by the above procedure are compatible with the de-
sign response spectrum for one value of damping only. Should one wish to have
each accelerogram compatible with the response spectra for two values of damping,
say ξ = 0.02 and 0.05, a more complex system of adjustments must be made to
each accelerogram. Procedures and associated computer programs for making these
adjustments have been developed.32,33

Spectrum compatible accelerograms can also be obtained by modifying real
accelerograms. This is easily done by Fourier transforming each real accelerogram,

32 K. Lilhanand and W. S. Tseng, “Development and Application of Realistic Earthquake Time Histories
Compatible with Multiple-Damping Design Spectra,” Proceedings of the Ninth World Conference on
Earthquake Engineering, Tokyo/Kyoto Japan (Vol. II), August 29, 1988.

33 M. Watabe, “Characteristics and Synthetic Generation of Earthquake Ground Motions,” Proc., Canadian
Earthquake Engineering Conference, July, 1987.



FREE-FIELD SURFACE GROUND MOTIONS 603

V
el

oc
ity

,  
in

⁄s
ec

FIGURE 25-16
Smooth design response spectrum and response spectrum for adjusted synthetic 
accelerogram; ξ = 0.05.
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using the FFT method, to obtain a complex function B(iω). Using this complex
function, carry out Steps 6, 7, and 8 exactly as indicated above to obtain the desired
spectrum compatible accelerogram. Figure 25-17 shows a normalized accelerogram
representing the recorded N21◦E component of motion recorded during the Taft,
California, earthquake of 1952. Its response spectrum is shown in Fig. 25-19. Af-
ter adjusting this accelerogram by the above procedure, the accelerogram shown in
Fig. 25-18 is obtained. Its response spectrum is shown in Fig. 25-19 where it can
be compared with the specified design spectrum. Very close agreement has been
achieved.

Principal Axes of Motion

Let us now consider the generation of multiple components of spectrum compat-
ible accelerograms representing motion at a fixed location. It is important that these
components be realistically correlated with each other. To illustrate this requirement,
let us consider three orthogonal components of ground acceleration ax(t), ay(t), and
az(t). A 3 × 3 covariance matrix µµµ can be generated for these components using the
relation

µij ≡ 1

td

∫ td

0

ai(t) aj(t) dt i, j = x, y, z (25-40)
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FIGURE 25-17
Normalized accelerogram − Taft California N21 E̊, 1952.

1.5

1.0

0.5

− 0.5

− 1.0

− 1.5
0 6 12 18 24 30

0

Time,  sec

A
cc

el
er

at
io

n,
  g

1g peak acceleration

FIGURE 25-18
Taft accelerogram adjusted to be compatible with smooth design spectrum.
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where td is a specified duration of motion which may be selected to represent any
portion or all of the total duration of motion. The diagonal terms of this matrix
represent the mean square intensities of motion and the off-diagonal terms represent
cross correlations of the various components. Components ax(t), ay(t), and az(t)

can easily be transformed to a new orthogonal set of axes x′, y′, z′ giving components
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FIGURE 25-19
Smooth design response spectrum and response spectra for normalized Taft 
accelerogram and adjusted Taft accelerogram; ξ = 0.05.
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of motion ax′(t), ay′(t), and az′(t) for which a covariance matrix µµµ′ can be generated
using the corresponding relation to Eq. (25-40). It is easily shown that covariance
matrices µµµ and µµµ′ are related through the orthogonal transformation given by34

µµµ′ = AT µµµ A (25-41)

which is identical to the transformation of the three-dimensional stress matrix from
axes x, y, z to axes x′, y′, z′; thus by analogy this demonstrates the existence of
principal axes for which the covariance matrix is diagonal in form. The procedure
for finding the principal axes of motion is identical to the procedure for finding the
principal axes of stress, i.e., both cases require a solution to the same eigenproblem.

It has been found that the directions of the major and minor principal axes of
recorded earthquake ground motions correlate to limited degrees with the direction
to the epicenter and the vertical direction, respectively.33 Figure 25-20 shows the

34 J. Penzien and M. Watabe, “Simulation of 3-Dimensional Earthquake Ground Motions,” Bull. of the
International Institute of Seismology and Earthquake Engineering, Vol. (1974), and J. of Earthquake
Engineering and Structural Dynamics, Vol. 3, No. 4, April-June, 1975.
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FIGURE 25-20
Directions of major principal axis of ground 
motion − Tokachi-Oki, Japan, earthquake 
(Hachinoe Station) May 16, 1968.
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directions of the major principal axis for different time intervals t1 < t < t2 during
the May 16, 1968, Tokachi-Oki, Japan, earthquake. The lengths of the solid arrows
in this figure represent mean square intensities of the major principal motions over
the corresponding time intervals. In this case, correlation of the major principal
direction with the epicenter direction (dashed line) is quite good. While a correlation
of this type usually exists for most recorded earthquake motions, it is often quite
weak. Nevertheless, the above transformation and resulting correlation, even though
often weak, suggest that components of ground motion generated from a stochastic
model should be uncorrelated with each other, with the major axis directed towards
the expected epicenter and the minor axis directed vertically.

To generate multiple components of synthetic uncorrelated acceleration repre-
senting motion at a fixed location by the previously described procedure outlined in
eight steps, it is necessary that the corresponding sets of random numbers x1, x2,
x3, · · ·, xn as defined in Step 1 be statistically independent. Since this requirement
is easily satisfied, no difficulty arises in generating uncorrelated components of ac-
celeration. For engineering purposes, one may wish to transform the uncorrelated
components to a new set of directions, e.g., directions corresponding to principal axes
of a structure, using the orthogonal coordinate transformation. The new set of mo-
tions obtained will possess nonzero cross correlations, if the mean square intensities
of motion along the principal axes are assigned different values. However, the numer-
ical values of these cross correlations will always be quite small compared with the
mean square intensities, regardless of the changes introduced in coordinate directions,
because the mean square intensities of the horizontal components of motion do not
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differ greatly. Consider, for example, two horizontal principal components of motion
ax′(t) and ay′(t) where the mean square intensity of ax′(t) has been normalized to
unity and the corresponding mean square intensity of ay′(t) is 0.72. This roughly
corresponds to the intensity of ay′(t) being 85 percent of the intensity of ax′(t),
i.e., 0.72 = (0.85) (0.85), as previously suggested for use in generating synthetic
accelerograms. Transforming motions ax′(t) and ay′(t) to ax(t) and ay(t), where
the x, y axes are at 45◦ to the x′, y′ axes, one obtains the maximum possible cross
correlation between ax(t) and ay(t). Assuming mean square intensities of ax′(t) and
ay′(t) to be 1.00 and 0.72, respectively, the corresponding maximum possible cross
correlation of ax(t) and ay(t) is (1.00 − 0.72) / 2 = 0.14. It is clear therefore that
one should never use highly correlated components to represent earthquake ground
motion at a particular point, as such components are not realistic.

Spatially Correlated Motions

If one wishes to generate multiple components of earthquake motion to represent
free-field surface motions at a number of points, as might be desired when performing
a time-history dynamic analysis of a very large structure such as a long multiple-span
bridge, spatial variations of the ground motions should be taken into consideration. In
such a case, the same set of smooth design spectra may apply to all points; however, in
generating synthetic components of motion, pairs of components in the same direction
representing the motions at two different points must be properly cross correlated.
If the two points under consideration are very far apart, then this pair of motions
will be almost totally uncorrelated in which case they can be generated statistically
independent of each other by the method previously described. On the other hand, as
the distance between the two points decreases, the cross correlation will increase. In
the limit as the distance approaches zero, the cross correlation will approach the mean
square intensity of motion in the direction under consideration. Cross correlations
of pairs of components in orthogonal directions representing motions at two different
points will always be very low in comparison with the corresponding mean square
intensities. As indicated above, this cross correlation is always relatively low even
when the distance between the two points tends to zero.

Because of the recent installation of dense strong motion arrays in various coun-
tries of the world, much data are being collected which are now allowing researchers
to characterize the spatial variations of ground motions. Most of the instruments in
these arrays, e.g., the SMART-1 array in Lotung, Taiwan, and the El Centro differ-
ential array in California, are located on the ground surface; thus, the progress made
in characterizing spatial variations is restricted primarily to the free-field surface mo-
tions. Since these variations in surface motions are important to the seismic analysis of
extended structures, spatially correlated accelerograms may be required. To develop
such accelerograms, assume the free-field motions at different locations on the ground
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surface to be random in nature as represented by the previously described stochastic
model

v̈g(t) = f(t) a(t) (25-42)

where v̈g(t) is an n-component vector containing nonstationary free-field ground
accelerations, f(t) is an appropriate deterministic time intensity function, and a(t) is
an n-component vector containing stationary random accelerations. These stationary
random time-histories can be characterized by their n × n spectral density matrix
given by

Sa(iω) =




S11(ω) S12(iω) . . . S1n(iω)

S21(iω) S22(ω) . . . S2n(iω)
...

...
. . .

...

Sn1(iω) Sn2(iω) . . . Snn(ω)




(25-43)

If the random process is ergodic, as normally assumed, each function in this matrix is
given by

Sij(iω) ≡ lim
s→∞

∫ s/2

−s/2
ar

i (t) exp[−iωt] dt
∫ s/2

−s/2
ar

j(t) exp[iωt] dt

2 π s
(25-44)

i, j = 1, 2, · · · , n r = 1, 2, · · ·

where superscript r denotes the rth member of the random process. Since this process
is ergodic, Sij(iω) is independent of r; thus, the superscript r will be dropped in the
subsequent development.

It has been shown in Chapter 21 that

< ai(t) aj(t) >=

∫ ∞

−∞
Sij(iω) dω

Sij(iω) = S∗
ij(−iω)

Sij(iω) = S∗
ji(iω)

(25-45)

where 〈 – 〉 denotes time average and superscript * denotes complex conjugate. The
spectral density matrix of Eq. (25-43) can be reasonably well represented in the form

Sa(iω) =




1 γ12(iω) γ13(iω) . . . γ1n(iω)

γ21(iω) 1 γ23(iω) . . . γ2n(iω)
...

...
...

. . .
...

γn1(iω) γn2(iω) γn3(iω) . . . 1




S0(ω) (25-46)
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where

S0(ω) =

[
1 + 4 ξ21(ω/ω1)

2
]
(ω/ω2)

4

{[
1 − (ω/ω1)2

]2
+ 4 ξ21(ω/ω1)2

}{[
1 − (ω /ω2)2

]2
+ 4ξ22(ω/ω2)2

}

(25-47)
is a frequency dependent power-spectral density function expressed in terms of a
constant power spectral density function S0, representing white noise, multiplied
by the transfer function H1(iω), H1(−iω), H2(iω), H2(−iω) in which H1(iω) and
H2(iω) are given by Eqs. (25-39). As previously explained, parameters ξ1 andω1 must
be chosen appropriately to represent the local site condition and parameters ω2 and ξ2
must be set appropriately to produce the desired filtering of the very low frequencies.
Further, the dimensionless coherency γ-functions must be defined consistent with the
degree of correlation between acceleration time-histories ai(t) and aj(t) for i 6= j. If
ai(t) and aj(t) represent components of acceleration in the same direction at stations
i and j, the simplest coherency function one could hypothesize would be

γ(iω) = exp
[
−i ω dij

Va

]
(25-48)

which corresponds to ground motions produced by a single wave train moving with
apparent wave velocity Va without attenuation. The quantity dij in this relation is the
projected distance along the direction of wave propagation between stations i and j.
Such motions are fully correlated with the introduction of a time lag τij = dij / Va.

The coherency function of Eq. (25-48) is unrealistic, however, because the free-
field ground motions are produced by multiple waves having numerous reflections
and refractions along their paths of propagation. Wave scattering and other unknown
effects are also experienced; thus, an improved coherency relation would be

γij(iω) = exp
[
−α |dij |

]
exp
[
−i ω dij

Va(ω)

]
(25-49)

where the first exponential term on the right hand side represents loss of correlation
with distance |dij | due to unknown random effects; α is a parameter reflecting the rate
of loss of correlation; and Va(ω) is the apparent wave velocity which is frequency
dependent. Numerous coherency functions, which are superior to that given by
Eq. (25-49), have been developed recently using the SMART-1 array data,35,36,37,38

35 C. H. Loh and J. Penzien, “Identification of Wave-Types, Directions, and Velocities Using SMART-1
Strong Motion Array Data,” Proc., 8th World Conference on Earthquake Engineering, San Francisco,
Ca., July 21-28, 1984.

36 T. Harada, “Probabilistic Modeling of Spatial Variation of Strong Earthquake Ground Displacements,”
Proc., 8th World Conference on Earthquake Engineering, San Francisco, Ca., July 21-28, 1984.

37 N. A. Abrahamson and B. A. Bolt, “The Spatial Variation of the Phasing of Seismic Strong Ground
Motion,” Bull. of the Seismological Society of America, Vol. 75, No. 5, October, 1985.

38 R. S. Harichandran and E. H. Vanmarke, “Stochastic Variation of Earthquake Ground Motion in Space
and Time,” ASCE, J. of Engineering Mechanics, February, 1986.
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e.g., the relation39

γij(d
L
ij , d

T
ij , ω) = exp

[
−β1 d

L
ij − β2 d

T
ij

]
×

exp
[
−
(
α1 d

L
ij

1/2 + α2 d
T
ij

1/2
)
ω2
]
× exp

[
i 2π ω

dL
ij

Va

]
(25-50)

where ω is circular frequency; β1 and β2 are constant parameters; α1 and α2 are
frequency dependent parameters; and dL

ij and dT
ij are projected distances between sta-

tions i and j in the dominant direction of wave propagation (towards the epicenter) and
transverse to it, respectively. Coherency models, such as Eq. (25-50), are site-specific
in their rigorous applicability, i.e., they cannot reliably be considered applicable to
all sites. Nevertheless, they are very useful in estimating the spatial variations in
free-field surface motions.

Should one wish to have available free-field surface acceleration time-histories
a1(t), a2(t), · · ·, an(t) representing motions in the same direction at discrete points
over an extended distance, then their loss of coherency with distance between discrete
points should be considered. If an appropriate coherency model for the site, such
as given by Eq. (25-50), is established, then accelerograms which are coherency
compatible can be generated using the time-domain relation 40

ai(t) =
i∑

j=1

N∑

k=1

Aij(ωk) cos
[
ωkt+ βij(ωk) + φjk(ωk)

]
i = 1, 2, · · · , n

(25-51)
for values of i and j representing components of acceleration in the same direction.
In this relation

φjk(ωk) =

{
0 for j 6= i

uniformly random for j = i
(25-52)

and
βij(ωk) = 0 for j = i

For each discrete harmonic in Eq. (25-51) at frequency ωk, i.e., for harmonic

aik(t) =

i∑

j=1

Aij(ωk) cos
[
ωk t+ βij(ωk) + φjk(ωk)

]
i = 1, 2, · · · (25-53)

39 H. Hao, C. S. Oliveira, and J. Penzien, “Multiple-Station Ground Motion Processing and Simulation
Based on SMART-1 Array Data,” Nuclear Engineering and Design 111, North-Holland, Amsterdam,
1989.

40 E. Samaras, M. Shinozuka, and A. Tsurui, “Time Series Generation Using the Auto-Regressive Moving-
Average Model,” Technical Report, Department of Civil Engineering, Columbia University, New York,
May, 1983.
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one must solve for the 2i unknowns Ai1, Ai2, · · ·, Aii and βi1, βi2, · · ·, βii for each
value of i using the specified coherency function γij(iω) and the complex relations

S0(ωk)
[
γij(iωk) + γij(−iωk)

]
4ω = 〈aik(t) ajk(t)〉

i, j = 1, 2, · · · , n j ≤ i (25-54)

where 4ω is the constant frequency interval between the discrete harmonics in ai(t).
The complete solution is achieved by successively solving these relations in the se-
quential order of i starting with station 1 (i = 1) and proceeding to the last station
n (i = n). By expressing Eqs. (25-54) in a matrix equation form, one can easily
see that the right side of the resulting equation represents a lower-triangular matrix
containing the Aij and βij coefficients and the solution procedure described above is
equivalent to performing a Choleski factorization of the complex coefficient matrix
γij , i, j = 1, · · · , n, which is a hermitian matrix, i.e., the conjugate and transpose
of the matrix equals the matrix itself. Having obtained a1(t), a2(t), · · · in that se-
quential order by the above procedure, each stationary acceleration time-history ai(t)

(i = 1, 2, · · ·) is made nonstationary using Eq. (25-42), and finally, each nonstationary
component so obtained is made response spectrum compatible by the method de-
scribed above whereby the amplitudes of the harmonics in the motions are iteratively
adjusted while the phase angles, which totally control their coherencies, are held to
their original fixed values. By this procedure, one can obtain the time-histories of free-
field surface accelerations in vector v̈g(t) which are both properly correlated spatially
with each other and are response spectrum compatible.
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26-1 TYPES OF EARTHQUAKE EXCITATION

A special feature of earthquake excitation of structures, compared with most
other forms of dynamic excitation, is that it is applied in the form of support motions
rather than by external loads; thus, the effective seismic loadings must be established in
terms of these motions. Defining the support motions is the most difficult and uncertain
phase of the problem of predicting structural response to earthquakes. When these
input motions have been established, however, the calculation of the corresponding
stresses and deflections in any given structure is a standard problem of structural
dynamics which can be carried out by the techniques described earlier in Parts One
through Four. This chapter will discuss deterministic methods of earthquake response
analysis, which provide valuable insights into the seismic behavior. In some cases,
however, it may be desirable to carry out a stochastic seismic analysis which describes
response in probabilistic terms. The methodologies used in conducting that type of
analysis are described in Chapter 28.
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As discussed in Chapter 25, the earthquake excitation considered to act on a
structure is the free-field ground motion at support points, expressed in terms of three
components of translational acceleration and usually characterized through design
response spectra and corresponding spectrum compatible accelerograms. It should
be recognized, however, that rotational components are also present. Unfortunately,
little is known regarding the magnitude and character of these rotational components;
consequently, their effects are usually not taken into account when carrying out seis-
mic analyses. This neglect is not serious, however, as, in most cases, response to
the translational components greatly exceeds response to the rotational components.
Nevertheless, in the interest of completeness, dynamic response to support rotational
input also will be treated herein.

The response of any linear system to multiple components of input can be
computed by superposing the responses calculated separately for each component;
thus, the analytical problem can be reduced to separate evaluations of structural
response to each single component of input. For instructional purposes, it is desirable
to proceed in this way as it gives better understanding of the overall problem; however,
in engineering practice, it may well be desirable to carry out a single solution using
all components of input simultaneously when it is more efficient computationally to
do so.

Inherent in the usual treatment of earthquake excitations is the assumption that
the same free-field ground motion acts simultaneously at all support points of the
structure with its foundation. If rotational motions are neglected, this assumption
is equivalent to considering the foundation soil or rock to be rigid. This hypothesis
clearly is not consistent with the concept of earthquake waves propagating through
the earth’s crust from the source of energy release; however, if the base dimensions
of the structure are small relative to the predominant wavelengths in the basement
rock motions, the assumption is acceptable. For example, if the apparent velocity
of wave propagation is 6, 000 ft/sec, a wave of 3 Hz frequency will have a length
of 2, 000 ft; thus, a building with a maximum base dimension of 100 ft would be
subjected to essentially the same motions over its entire length. On the other hand,
a suspension bridge or a dam having a length of, say, 1, 500 ft would obviously be
subjected to drastically differing motions along its length. Since such differences
contribute significantly to the dynamic response mechanism, it is important to develop
analysis procedures capable of dealing with multiple support excitations, i.e., different
displacement histories at the different points of support.

When specifying input motions at the base of a structure, it should be recognized
that the actual structure base motions during an earthquake may be significantly
different from the corresponding free-field motions that would have occurred without
the structure being present. This “soil-structure interaction” effect will be of slight
importance if the foundation is relatively stiff and the structure is relatively flexible;
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in this case, the structure transmits little energy into the foundation and the free-field
motions are adequate measures of the actual foundation displacements. On the other
hand, if a heavy stiff structure (such as a nuclear power plant containment building) is
supported on a deep, relatively soft layer of soil, considerable energy will be transferred
from the structure to the soil and the base motions will differ drastically from those
experienced by the soil under free-field conditions. This soil-structure interaction
mechanism is independent of, and in addition to, the effect of local soil conditions
on the free-field motions as discussed in Chapter 25. In general, both effects can be
important and should be accounted for in conducting earthquake-response analyses.

It is the purpose of this chapter to discuss the methodologies of deterministic
response analysis of various types of structural systems to earthquake excitations,
considering cases in which the soil is assumed to be rigid so it does not interact with
the dynamic response of the structure. Chapter 27 which follows is concerned with
excitation through a flexible soil medium, i.e., it deals with soil-structure interaction
effects.

26-2 RESPONSE TO RIGID-SOIL EXCITATIONS

Lumped SDOF Elastic Systems, Translational Excitation

The simplest form of earthquake response problem involves a SDOF lumped-
mass system subjected to identical single-component translations of all support points.
An example of such a system is shown in Fig. 26-1 which is identical to the system
used in Chapter 25 to define earthquake response spectra. It also is identical to the
structure shown in Chapter 2 (Fig. 2-3), where it was used in the formulation of the
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FIGURE 26-1
Lumped SDOF system subjected to rigid-base translation.
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equation of motion for a system subjected to base translation, Eq. (2-14), which is
repeated here for convenience:

m v̈t(t) + c v̇(t) + k v(t) = 0 (26-1)

The superscript t in the first term of this equation denotes total displacement, and as
explained in Chapter 2, it is this term that makes possible expressing the equation of
motion in terms of an effective loading as follows [see Eq. (2-17)]:

m v̈(t) + c v̇(t) + k v(t) = peff(t) (26-2)

where
peff(t) = −m v̈g(t) (26-3)

As was noted in Chapter 2, in this expression v̈g(t) represents the free-field input
acceleration applied at the base of the structure; the negative sign has little significance
in earthquake response analysis and generally is ignored.

As was explained before, it also is possible to express the effective earthquake
force in terms of the free-field velocity and displacement, v̇g(t) and vg(t), if the
equation of motion is formulated in terms of total rather than relative motion [see
Eq. (2-18)]. However, this form of the equation of motion seldom is used because it
is so much simpler to evaluate the base acceleration expression for effective loading,
Eq. (26-3).

For purposes of this discussion, it is convenient to express the earthquake dis-
placement response given by the solution of Eq. (26-2) in terms of the Duhamel
integral expression for low damped systems, as follows:

v(t) =
1

ω

∫ t

0

v̈g(t) exp[−ξω(t− τ)] sinω(t− τ) dτ ≡ 1

ω
V (t) (26-4)

as given previously by Eq. (25-2); however, it should be noted that the response
could equally well be calculated by step-by-step integration or by a frequency-domain
analysis rather than by the Duhamel integral. As was defined in Chapter 25, the
maximum absolute value over the entire earthquake history of the earthquake response
integral V (t) in Eq. (26-4) is the pseudo-velocity spectral response Spv(ξ, ω). The
related displacement and pseudo-acceleration spectral responses, as previously given
by Eqs. (25-14) and (25-15), are

Sd(ξ, ω) =
1

ω
Spv(ξ, ω) (26-5)

Spa(ξ, ω) = ω Spv(ξ, ω) (26-6)

Since all aspects of these spectral response expressions for the lumped SDOF system
were discussed in Chapter 25, it will suffice here to simply give an example of their
use.
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Example E26-1. Assuming that the structure of Fig. 26-1 has the follow-
ing properties:

m = 2 kips · sec2/in k = 60 kips/in c = 1.10 kips · sec/in

compute the maximum relative displacement and maximum base shear produced
in this structure by an earthquake of 0.3 g peak acceleration having the acceler-
ation response spectrum shown in Fig. 25-9 for hard soil conditions (Type S1).
The first step in this analysis is to determine the vibration period and damping
ratio of the structure:

ω =
√
k
/
m =

√
60
/

2 = 5.48 rad/sec

T = 2π
/
ω = 2π

/
5.48 = 1.147 sec

ξ = c
/

2mω = 1.10
/

(2) (2) (5.48) = 0.05

(a)

From Fig. 25-9, the spectral acceleration for this period and damping ratio is
Spa = (0.3) (32.2) (0.92) = 8.89 ft/sec2. Hence the maximum relative
displacement produced by this earthquake is

vmax = Spa

/
ω2 = ± 8.89

/
(5.48)2 = ± 0.296 ft (b)

The maximum base shear force may be computed in either of two ways:

Vmax = k vmax = (60) (0.296) (12) = 213 kips

Vmax = m Spa = (2) (12) (8.89) = 213 kips
(c)

This base shear corresponds to 27.5 percent of the weight represented by mass
m.

Generalized-Coordinate SDOF Elastic Systems,
Translational Excitation

Any structure of arbitrary form can be treated as a SDOF system if it is assumed
that its displacements are restricted to a single shape, as explained in Chapter 8. This
generalized-coordinate approach can be used effectively in earthquake engineering; the
only special problem to be considered in this case is the evaluation of the generalized
effective force resulting from the support excitation.

The formulation of the generalized-coordinate equation of motion will be ex-
plained with reference to the tower structure of Fig. 26-2. The equilibrium of this
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FIGURE 26-2
Generalized SDOF system with rigid-base translation.
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system involves inertial, damping, and elastic forces, which are distributed along the
axis and may be expressed as

fI(x, t) + fD(x, t) + fS(x, t) = 0 (26-7)

The basic assumption of the SDOF approximation is that the displacements are given
by the product of a single shape function ψ(x) and a generalized-coordinate amplitude
Z(t), that is,

v(x, t) = ψ(x) Z(t) (26-8)

When a virtual displacement of the form δv = ψ(x) δZ is applied, the principle of
virtual work leads to the SDOF equilibrium relationship

fI
∗ δZ + fD

∗ δZ + fS
∗ δZ = 0 (26-9)

in which

fI
∗ =

∫ L

0

fI(x, t) ψ(x) dx

fD
∗ =

∫ L

0

fD(x, t) ψ(x) dx (26-10)

fS
∗ =

∫ L

0

fS(x, t) ψ(x) dx

Because the distributed damping and elastic forces are assumed to depend only
on the relative motions, the corresponding generalized forces here are the same as for
the situation discussed in Chapter 8, where the dynamic load was applied externally,
that is,

fD
∗ = c∗ Ż fS = k∗ Z
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where c∗ and k∗ are given by expressions of the type shown in Eqs. (8-14). However,
the local inertial forces depend on the total acceleration, that is,

fI(x, t) = m(x) v̈t(x, t)

Thus since
vt(x, t) = v(x, t) + vg(t) = ψ(x) Z(t) + vg(t)

the generalized inertial force is found to be

fI
∗ = Z̈(t)

∫ L

0

m(x)
[
ψ(x)

]2
dx+ v̈g

∫ L

0

m(x) ψ(x) dx

Substituting all these generalized-force expressions into Eq. (26-9) then leads to the
final equation of motion

m∗ Z̈(t) + c∗ Ż(t) + k∗ Z(t) = −L v̈g(t) (26-11)

in which

m∗ =

∫ L

0

m(x)
[
ψ(x)

]2
dx (26-12)

L =

∫ L

0

m(x) ψ(x) dx (26-13)

Equation (26-12) is the same generalized-mass expression shown in Eqs. (8-14), while
the quantity L given by Eq. (26-13) is the earthquake-excitation factor representing
the extent to which the earthquake motion tends to excite response in the assumed
shape ψ(x).

Ignoring the sign of the effective earthquake force in Eq. (26-11) and dividing
by the generalized mass leads to

Z̈(t) + 2 ξ ω Ż(t) + ω2 Z(t) =
L
m∗ v̈g(t) (26-14)

By analogy with the foregoing analysis of the lumped SDOF system, the solution of
Eq. (26-14) may now be written

Z(t) =
L

m∗ ω
V (t) (26-15)

and hence the local displacements [from Eq. (26-8)] are

v(x, t) =
ψ(x) L
m∗ ω

V (t) (26-16)

It will be noted by comparison of Eqs. (26-4) and (26-15) that the factor L
/
m∗

characterizes the difference between the lumped and the generalized SDOF response;
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this factor depends on the mass distribution of the structure as well as its assumed
shape function and generally is significantly different from unity.

In principle, the elastic forces produced by the earthquake motions can be evalu-
ated from the structural displacements of Eq. (26-16) acting on the structural stiffness
properties. However, when expressed in this way, the forces in this generalized-
coordinate analysis depend on derivatives of the displacements or, in other words, on
derivatives of the assumed shape functions ψ(x). Thus the local forces obtained from
such an analysis usually are less accurate than the displacements because the deriva-
tives of the assumed shapes are poorer approximations than the shapes themselves. A
more dependable formulation of the elastic forces can be obtained by expressing them
in terms of the inertial forces of free vibration, following the general approach de-
scribed previously for the lumped-mass case. The equilibrium condition in undamped
free vibration is obtained by omitting the damping term from Eq. (26-7); thus since
the inertial force in free harmonic motion is

fI(x, t) = m(x) v̈(x, t) = −ω2 m(x) v(x, t)

the resulting equation may be written

−ω2 m(x) v(x, t) + fS(x, t) = 0 (26-17)

Now if the displacements are assumed to be of the form given by Eq. (26-8), the force
balance implied by Eq. (26-17) will not be satisfied at all points along the span, in
general; that is, the assumed shape will not satisfy equilibrium locally. However, if a
virtual displacement of this form is introduced, the virtual-work principle can be used
to obtain an approximate global-equilibrium relationship

δZ

∫ L

0

[
−ω2 m(x) v(x, t) + fS(x, t)

]
ψ(x) dx = 0

Thus, even though it is valid only in an integrated or weighted-average sense,
Eq. (26-17) provides the best available estimate of the elastic forces developed during
the earthquake response, that is,

fS(x, t) = ω2 m(x) v(x, t) = m(x) ψ(x)
L
m∗ ω V (t) (26-18)

From these distributed elastic forces, which are depicted in Fig. 26-3, any desired
force resultant can be obtained by standard methods of statics. For example, the base
shear V0 is given by

V0(t) =

∫ L

0

fS(x, t) dx =
L
m∗ ω V (t)

∫ L

0

m(x) ψ(x) dx
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(a)

(b)

FIGURE 26-3
Elastic-force response of generalized SDOF system: (a) base forces; (b) section forces.
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fS (x) = ω 2m(x) v(x)

fS (x)

that is,

V0(t) =
L2

m∗ ω V (t) (26-19)

Similarly the base moment is given by M0(t) =
∫ L

0
fS(x, t) x dx, that is,

M0(t) =
L
m∗ ω V (t)

∫ L

0

m(x) ψ(x) x dx (26-20)

Expressions for moment and shear at any arbitrary section h can be written similarly:

Vh(t) =
L
m∗ ω V (t)

∫ L

h

m(x) ψ(x) dx

Mh(t) =
L
m∗ ω V (t)

∫ L

h

m(x) ψ(x) (x− h) dx

(26-21)

Of course, the evaluation of time-varying response expressions such as
Eqs. (26-16) and (26-18) requires the numerical integration of the earthquake re-
sponse integral V (t) as defined by Eq. (26-4). However, maximum response values
can be determined readily from the corresponding earthquake response spectra, as
explained in the discussion of the lumped SDOF systems, by merely selecting spectral
values appropriate to the period of vibration and damping of the structure. For exam-
ple, the maximum local displacements and local elastic forces are given, respectively,
by

vmax(x) = ψ(x)
L
m∗ Sd(ξ, T )

fS,max(x) = m(x) ψ(x)
L
m∗ Spa(ξ, T )

(26-22)



622 DYNAMICS OF STRUCTURES

Since the signs in these relations have no significance, they can always be taken as
positive.

Example E26-2. The earthquake response analysis of a generalized
SDOF structure having 5 percent of critical damping will be demonstrated
by subjecting the uniform cantilever column of Fig. E26-1 to a base motion
vg(t) corresponding to an earthquake of 0.3 g peak acceleration having the ac-
celeration response spectrum shown in Fig. 25-9 for a hard soil condition (Type
S1). It will be assumed that the displaced shape of the column is given by
ψ(x) = 1 − cos(π x

/
2L); hence the generalized properties of this structure

are as given in Example E8-3. For the numerical values shown in Fig. E26-1,
these properties are

m∗ = 0.228 mL = 0.456 kips · sec2/ft

k∗ =
π4

32

EI

L3
= 4.26 kips/ft

L = 0.364 mL = 0.728 kips · sec2/ft

(a)

From these values, the circular frequency of the column is

ω =

√
k∗

m∗ = 3.056 rad/sec (b)

Hence the period is

T =
2π

ω
= 2.056 sec (c)

Assumed shape:

L = 100 ft

vg (t)

v(x, t) = (1 − cos π x
2L

) Z (t)

m = 0.02 kips⋅sec2 / ft2

EI = 14 × 10 5 kips⋅ft2

FIGURE E26-1
SDOF idealization of uniform 
cantilever column.

Z (t)

ξ = 5%
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With this period and a damping ratio ξ = 5 percent, the spectral acceleration
shown by Fig. 25-9 is Spa = (0.47) (32.2) (0.30) = 4.54 ft/sec2. Hence the
maximum generalized-coordinate displacement [by analogy with Eq. (26-15)]
is

Zmax =
L

m∗ ω2
Spa = 0.776 ft (d)

and so the maximum displacements of the column are

vmax = 0.776

(
1 − cos

πx

2 L

)
ft (e)

Similarly the maximum base shear [by analogy with Eq. (26-19)] is

V0,max =
L2

m∗ Spa = 5.27 kips (f)

which is approximately 8.2 percent of the column’s total weight. The maximum
distributed earthquake forces acting on the column are given by

fS,max =
m ψ(x)

L V0,max = 0.145

(
1 − cos

π x

2L

)
kips/ft (g)

Lumped MDOF Elastic Systems, Translational Excitation

The formulation of the earthquake response analysis of a lumped MDOF system
can be carried out in matrix notation in a manner entirely analogous to the foregoing
development of the lumped SDOF equations. Thus the equations of motion of the
multistory shear building shown in Fig. 26-4 can be written by analogy with Eq. (26-1)
as

m v̈t(t) + c v̇(t) + k v(t) = 0 (26-23)

vi

t

v1
t

vg( )t

vi

m1

m 2

m 3

m i

m N

R
e
fe

re
n

c
e

a
x

is

FIGURE 26-4

Discretized MDOF system with rigid-base translation.
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and again the effective earthquake force can be derived by expressing the total dis-
placements as the sum of the relative motions plus the displacements resulting directly
from the support motions. For the system of Fig. 26-4 this relationship may be written

vt(t) = v(t) + {1} vg(t) (26-24)

in which {1} represents a column of ones. This vector expresses the fact that a unit
static translation of the base of this structure produces directly a unit displacement
of all degrees of freedom. Of course, this simple relationship is a consequence of
the type of support displacement which has been applied as well as of the structural
configuration; for other forms of structures or support motions this static-displacement
vector would be different. Thus, the structure shown in Fig. 26-4 should be considered
as a special case, even though a large number of practical analyses are assumed to be
of this type.

Substituting Eq. (26-24) into (26-23) leads to the relative-response equations of
motion

m v̈(t) + c v̇(t) + k v(t) = peff(t) (26-25)

in which
peff(t) = −m {1} v̈g(t) (26-26)

Equations (26-25) could be solved directly through the frequency domain or by numer-
ical integration of the coupled equations in the time domain; however, in analyzing
the earthquake response of linear structures, it generally is much more efficient to
transform to a system of normal (modal) coordinates because the support motions
tend to excite strongly only the lowest modes of vibration. Thus good approximations
of the earthquake response of systems having dozens or even hundreds of degrees
of freedom can often be obtained by carrying out the analysis for only a few normal
coordinates.

The transformation to normal coordinates has been described in adequate detail
in Chapter 12. If it is assumed that the damping matrix is of a form which satisfies the
same orthogonality conditions as the mass and stiffness matrices, the result is a set of
N uncoupled modal equations of the form

Mn Ÿn + Cn Ẏn +Kn Yn = Pn(t) (26-27)

in which Mn, Cn, and Kn are the generalized properties associated with mode n
[see Eqs. (12-12) and (12-15a)], Yn is the amplitude of this modal response, and the
generalized force resulting from the earthquake excitation [neglecting the negative
sign in Eq. (26-26)] is given by

Pn(t) = φφφT
n peff(t) = Ln v̈g(t) (26-28)
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in which, for the structure of Fig. 26-4, the modal earthquake-excitation factor is given
by

Ln ≡ φφφT
n m{1} (26-29)

It will be recognized that this is the matrix equivalent of Eq. (26-13), which was
derived for the generalized SDOF system; of course the modal excitation factor is
different for each mode because it contains the mode shape φφφn.

By analogy with the derivation of the generalized SDOF response, it may be
seen that the response of each mode of the MDOF system is given by

Yn(t) =
Ln

Mn ωn
Vn(t) (26-30)

where the modal earthquake response integral is of the form defined by Eq. (26-4) and
is dependent on the damping ratio ξn and frequency ωn of the nth mode of vibration.
The relative-displacement vector produced in this mode then is given by

vn(t) = φφφn
Ln

Mn ωn
Vn(t) (26-31)

Finally, the relative-displacement vector due to all modal responses is obtained by
superposition, that is,

v(t) = Φ Y(t) = ΦΦΦ
{ Ln

Mn ωn
Vn(t)

}
(26-32)

in which Φ is made up of all mode shapes for which the modal response is excited
significantly by the earthquake, and the term in braces represents a vector of response
terms defined for each mode considered in the analysis.

The elastic forces associated with the relative displacements can be obtained
directly by premultiplying v(t) by the stiffness matrix k as given by

fS(t) = k v(t) = k ΦΦΦ Y(t) (26-33)

However, as mentioned in the discussion of the SDOF systems, it frequently is more
effective to express these forces in terms of the equivalent inertial forces developed
in undamped free vibrations. The equivalence of the elastic and inertial forces is
expressed by the eigenproblem relationship, which may be written

k ΦΦΦ = m ΦΦΦ ΩΩΩ2 (26-34)

in which ΩΩΩ2 is a diagonal matrix of the squared modal frequencies ω2
n. Substituting

Eq. (26-34) into Eq. (26-33) results in the alternate expression for the elastic forces

fS(t) = m ΦΦΦ ΩΩΩ2 Y(t) = m ΦΦΦ
{ Ln

Mn
ωn Vn(t)

}
(26-35)
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It will be noted that the elastic-force vector associated with each mode in this equation,
that is,

fSn(t) = m φφφn
Ln

Mn
ωn Vn(t) (26-36)

is given by the matrix equivalent of the generalized SDOF expression of Eq. (26-18).
It must be emphasized that Eq. (26-35) is a completely general expression for the
elastic forces developed in a damped structure subjected to arbitrarily varying ground
motions; the fact that it was derived from an expression for undamped free vibrations
does not limit its applicability.

When the distribution of these effective elastic forces at any time t during the
earthquake has been determined, as illustrated, for example, in Fig. 26-5, the value
of any desired force resultant at that same time can be computed by standard statics
procedures. For example, the base shear force V0(t) of the system in Fig. 26-5 is given
by the sum of all the story forces, that is,

V0(t) =

N∑

i=1

fSi(t) = 〈1〉 fS(t)

where 〈1〉 represents a row vector of ones. Substituting Eq. (26-35) into this expression
leads to

V0(t) =

N∑

n=1

L2
n

Mn
ωn Vn(t) (26-37)

in which it can be noted from Eq. (26-29) that

〈1〉m ΦΦΦ = 〈L1 L2 · · · LN 〉

v0

m 1

M0

m 2

m 3

m i

m N fS N

fS 1

fS 2

fS 3

fS i

FIGURE 26-5
Elastic forces in lumped MDOF system.
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Similarly, the resultant overturning moment at the base of the building is

M0(t) =

N∑

i=1

xi fSi(t) = 〈x〉 fS(t)

in which xi is the height of mass i above the base and 〈x〉 is a row vector of these
heights. Substituting Eq. (26-35) into this yields the expression for the base moment

M0(t) = 〈x〉 m ΦΦΦ ΩΩΩ2 Y(t) = 〈x〉 m ΦΦΦ
{ Ln

Mn
ωn Vn(t)

}
(26-38)

The quantity L2
/
Mn in Eq. (26-37) has the dimensions of mass and is some-

times called the effective modal mass of the structure because it can be interpreted as
the part of the total mass responding to the earthquake in each mode. This interpre-
tation of the expression is valid only for structures of the type shown in Fig. 26-4,
having masses lumped along a vertical axis; for such structures, the total mass MT is
given by

MT = 〈1〉 m {1} (26-39)

Now it can be proved that the sum of all effective modal masses is equal to the total
mass by expressing the vector of ones {1} in modal coordinates as

{1} = ΦΦΦ Y

where each modal amplitude Yn can be evaluated by multiplying both sides by φφφT
n m

and applying the mass orthogonality relationship, that is,

φφφT
n m {1} = φφφT

n m ΦΦΦ Y = Mn Yn

Since the left hand triple matrix product is Ln, each modal amplitude can be expressed
as Yn = Ln

/
Mn and the ones vector is given by

{1} = ΦΦΦ
{ Ln

Mn

}
(26-40)

Substituting this into Eq. (26-39) gives

MT = 〈1〉 m ΦΦΦ
{ Ln

Mn

}

= 〈L1 L2 · · · LN 〉
{ Ln

Mn

}
=

N∑

i=1

L2
n

Mn
Q.E.D. (26-41)

Hence each modal contribution V0n(t) to the base shear of Eq. (26-37) may be looked
upon as the reaction of the effective modal mass to the effective modal acceleration of
the ground ωn Vn(t).
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Example E26-3. To demonstrate the earthquake response analysis of a
MDOF structure, the three-story building shown in Fig. E26-2 will be con-
sidered. This is the structure of Example E12-1 with its stiffness reduced by
a factor of 10 to provide frequencies typical of a taller building in which the
higher modes would contribute more to the response. The vibration properties,
generalized masses, and modal excitation factors are also shown in the figure;
in addition it is assumed that the damping is 5 percent critical in each mode.

From the given frequency and damping values, the first-mode response
integral V1(t) was calculated for the entire history of a certain earthquake motion
vg(t); the maximum value of this integral occurred at t1 = 3.08 sec. Then the
second- and third-mode response integrals were evaluated at the same time; the
values of the three modal response integrals at this time were

V(t1) = −




1.74

1.22

0.77


 ft/sec (a)

When these values and the other modal properties are introduced into Eq. (26-
30), the normal coordinates at this time are

Y(t1) =

{ Ln

Mn ωn
Vn(t1)

}
=




0.541

0.0635

0.00475


 ft (b)

FIGURE E26-2
Building frame and its vibration properties.

1.0 kip⋅sec2/in

1.5 kips⋅sec2/in

2.0 kips⋅sec2/in

kips⋅sec2/in

kips⋅sec2/in ;

60 kips /in

120 kips /in

180 kips /in

1.000     1.000     1.00
0.644   − 0.601   − 2.57
0.300   − 0.676     2.47

= ;

21.0         0          0
0        96.6        0
0           0       212.4

2 = sec−2

sec−1;
4.58
9.83

14.57
ωn =

2.566
− 1.254

2.08
n =

sec ;
1.37

0.639
0.431

Tn =
1.801
2.455
23.10

Mn =

ξn = 0.05
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and the resulting displacements are

v(t1) = ΦΦΦY(t1) =




0.541 + 0.064 + 0.005

0.348 − 0.038 − 0.012

0.162 − 0.043 + 0.012


 {1} =




0.610

0.298

0.131


 ft (c)

where the individual modal displacements have been shown as a matter of
interest. Similarly, the elastic-force vector at this time is

fS(t1) = m ΦΦΦ

{ Ln

Mn
ωn Vn(t1)

}

=




11.35 + 6.13 + 1.01

10.95 − 5.53 − 3.90

6.80 − 8.29 + 5.00


 {1} =




18.49

1.52

3.51


 kips

(d)

and the base shear force is given by the sum of the story forces:

V0(t1) = 23.52 kips (e)

To evaluate the earthquake response of a lumped MDOF system at any time t
using Eq. (26-32) or (26-35) involves the evaluation of the earthquake response integral
at that time for each significant response mode. Hence, the evaluation of the maximum
response requires that each modal response be computed in this way for each time
during the earthquake history, in order that the maximum value can be identified. This
obviously constitutes a major computational task and makes an approximate analysis
based on the ground motion response spectra an attractive alternative.

For each individual mode of the structure, the maximum response can be ob-
tained directly from the response spectrum as described for the SDOF systems. For
example, from Eq. (26-31) the maximum displacement vector in mode n is given by

vn,max = φφφn
Ln

Mn
Sd(ξn, Tn) (26-42)

where Sd(ξn, Tn) is the spectral displacement corresponding to the damping and period
of the nth mode of vibration. Similarly, from Eq. (26-36) the maximum elastic-force
vector in mode n is given by

fSn,max = m φφφn
Ln

Mn
Spa(ξn, Tn) (26-43)
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where Spa(ξn, Tn) is the spectral acceleration for the nth mode.

Maximum total response cannot be obtained, in general, by merely adding the
modal maxima because these maxima usually do not occur at the same time. In most
cases, when one mode achieves its maximum response, the other modal responses are
less than their individual maxima. Therefore, although the superposition of the modal
spectral values obviously provides an upper limit to the total response, it generally
over estimates this maximum by a significant amount. A number of different formulas
have been proposed to obtain a more reasonable estimate of the maximum response
from the spectral values. The simplest and most popular of these is the square root
of the sum of the squares (SRSS) of the maximum modal responses. Thus if the
maximum modal displacements are given by Eq. (26-42), the SRSS approximation of
the maximum total displacements is given by

vmax
.
=
√

(v1)2max + (v2)2max + · · · (26-44)

where the terms under the radical sign represent vectors of the maximum modal
displacements squared. Similarly the maximum story forces could be approximated
from the modal maxima of Eq. (26-43) as follows:

fS,max
.
=
√

(fS1)
2
max + (fS2)

2
max + · · · (26-45)

Theoretical justification of using the SRSS method is presented in the following
Section 26-3, where it is shown that this method is fundamentally sound when the
modal frequencies are well separated. However, when the frequencies of major
contributing modes are very close together, the SRSS method can give poor results, in
which case the more general complete quadratic combination (CQC) method should
be used. This method also is developed in Section 26-3.

Example E26-4. The response spectrum analysis of a 5 percent critically
damped MDOF structure will be illustrated by evaluating the response of the
building of Example E26-3 to an earthquake of 0.3 g peak acceleration having the
acceleration response spectrum shown in Fig. 25-9 for the hard soil condition
(Type S1). When the periods given in Example E26-3 are used, the modal
spectral accelerations are

Spa = (0.3) (32.2)





0.77

1.62

2.35





=





7.40

15.6

22.7





ft/sec2 =





88.8

187.2

272.4





in/sec2

(a)
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Hence the modal maximum displacements, given by

vn,max = φφφn
Ln

Mn

Spa,n

ω2
n

(b)

are

v1,max =




0.503

0.324

0.151


 ft v2,max =




0.083

−0.050

−0.056


 ft v3,max =




0.010

−0.025

0.024


 ft

(c)
Superposing the modal maxima by the SRSS procedure gives the approximate
total maximum displacements

vmax
.
=




0.510

0.329

0.163


 ft (d)

Similarly, the modal maximum forces given by

fSn,max = m φφφn
Ln

Mn
Spa,n (e)

are

fS1,max =




127

122

76


 kips fS2,max =




96

−86

−129


 kips fS3,max =




25

−94

121


 kips

(f)
which, when summed cumulatively from top to bottom, give the modal maxi-
mum story shears

V1,m =




127

249

325


 kips V2,m =




96

10

−119


 kips V3,m =




25

−69

52


 kips (g)

Superposing these forces and story shears by the SRSS method gives

fS,max =




161

176

192


 kips Vmax =




161

258

350


 kips (h)
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This example demonstrates clearly that the maximum story shears cannot be
obtained by simply summing the maximum story forces; also it is evident that
taking the SRSS must always be the last step in evaluating the maximum value
of any response quantity.

It is interesting to note in this example that the effective modal masses for
this structure are

{ L2
n

Mn

}
=




3.66

0.64

0.18


 (i)

and their sum is 4.48 which except for a slight error due to round-offs is the same
as the sum of the story masses which is equal to 4.50. This equality applies to
all building-type structures, as was noted earlier.

In both Eqs. (26-44) and (26-45) only the significant modal contributions need be
included, and because each term is squared, the lesser terms have little effect so that
very few modes need be considered in most cases. Again let it be emphasized that this
approximate superposition procedure must be applied directly to the response quantity
in question. As was shown in Example E26-4, to estimate the maximum story shears,
it was necessary to compute the modal story shears and superpose them using

Vmax
.
=
√

(V1)2max + (V2)2max + · · · (26-46)

The base shear could not be found by summing the maximum forces fS,max over the
height of the building because the signs of the local force quantities were lost in the
squaring process.

It was pointed out at the beginning of this discussion of lumped MDOF systems
that the type of system shown in Fig. 26-4, having a vertical axis and subjected to
horizontal excitation, represents a special class of earthquake problem for which the
relationship between the total and relative motions takes the simple form of Eq. (26-
24). In a more general case, where the relative displacements are not all measured
parallel to the ground motion, an example of which is shown in Fig. 26-6, the total
displacement may be expressed as the sum of the relative displacement and the quasi-
static displacements vs that would result from a static-support displacement, that
is,

vt(t) = v(t) + vs(t) (26-47)

The quasi-static displacements can be expressed conveniently by an influence co-
efficient vector r which represents the displacements resulting from a unit support
displacement; thus vs = r vg and

vt(t) = v(t) + r vg(t) (26-48)
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FIGURE 26-6
General lumped MDOF system with rigid-base 
translation.

From comparison of Eqs. (26-24) and (26-48) it is evident that r is a vector of ones
for the structure of Fig. 26-4; however, for the system of Fig. 26-6 it would be given
by rT = 〈1 1 0 0〉.

This generalization affects only the effective-force vector generated by the earth-
quake motion; that is, in place of Eq. (26-26), which was derived for the special
static-displacement influence vector, the general expression is

peff(t) = −m r v̈g(t) (26-49)

Similarly, the general form of the modal earthquake-excitation factor, replacing
Eq. (26-29), would be

Ln = φφφT
n m r (26-50)

With this general definition of Ln, the response equations [Eqs. (26-30) to (26-36)] are
now fully applicable to general forms of lumped-mass structures. Of course it must be
noted that the elastic forces act in the directions of the corresponding displacements v;
hence new expressions for the force resultants (such as base shear or moment) would
have to be derived, appropriate to the given structural configuration.

Example E26-5. The earthquake response of a structure for which a unit
static support movement does not cause a unit displacement of each degree of
freedom will be demonstrated by analysis of the structure shown in Fig. E26-3.
The mass and stiffness matrices defined for the two specified degrees of freedom
are shown, as are the eigenvectors and eigenvalues describing its free vibration.

From these data, the modal earthquake response parameters are
[
M1

M2

]
=

[
2.557

3.834

]
m

[L1

L2

]
=

[
1.293

3.000

]
m

[
ω1

ω2

]
=

[
5.49

16.86

]
rad/sec

[
T1

T2

]
=

[
1.144

0.373

]
sec (a)



634 DYNAMICS OF STRUCTURES

L

L

vg (t)

2mm
v1

v2

FIGURE E26-3
Two-DOF frame and its vibration properties.

m = 0.01 kips⋅sec2/ft

EI

L3
= 1 kip/ft 0.431      1.000

1.000    − 0.646
=

× 10 −2 kips⋅sec2/ft
3     0
0     2

m =EI

EI

ξ = 0.05

0.302      0
0        2.84

2 = × 102sec− 2

kips/ft
8    − 3

− 3       2
k = 6

7


m =

[
3 0

0 2

]
× 10−2 kips · sec2/ft k = 6

7

[
8 −3

−3 2

]
kips/ft

ΦΦΦ =

[
0.431 1.000

1.000 −0.646

]
ΩΩΩ2 =

[
0.302 0

0 2.84

]
× 102 sec−2

(b)

When it is assumed that this structure is subjected to an earthquake motion
corresponding to the hard site (Type S1) spectrum of Fig. 25-9 having a peak
acceleration of 0.3 g (note the 5 percent critical modal damping ratios), the
following modal spectral accelerations are obtained:

[
Spa,1

Spa,2

]
=

[
8.89

24.15

]
ft/sec2 (c)

Accordingly, from Eq. (26-43) the maximum modal response forces are

fS1,max = {m φφφ1}
L1

M1
Spa,1

=

[
1.293

2.000

]
1.293

2.557
(8.89) × 10−2 =

[
5.81

8.89

]
× 10−2 kips (d)

fS2,max =

[
3.000

−1.292

]
3.000

3.834
(24.15) × 10−2 =

[
56.69

−24.39

]
× 10−2 kips

Applying the SRSS method to these modal results gives the approximate maxi-
mum response forces

fS,max =

[
57.0

26.0

]
× 10−2 kips (e)
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x

y

v1v3

v2

FIGURE 26-7
Rigid slab subjected to base translation.

Direction of
ground motion

Similar comments apply to the system of Fig. 26-7, which consists of a rigid
rectangular slab supported by identical columns at three corners. When the degrees
of freedom of this system are defined as the x and y translations of the center of mass,
together with the rotation about that center, that is vT = 〈v1 v2 v3〉, and when it is
assumed that the earthquake motions act in the direction of the x axis, the influence
vector for this case is given by rT = 〈1 0 0〉. The modal earthquake-excitation
factors for this structure are then obtained by substituting this vector into Eq. (26-50),
and the response is given finally by Eqs. (26-30) to (26-36).

Example E26-6. Because the earthquake response analysis of a rigid slab
structure of this type involves several features of special interest, the example
structure of Fig. E26-4 will be discussed in some detail. It is assumed that the
three columns supporting the slab are rigidly attached to the foundation and to
the slab, so that the resistance at the top of each column to lateral displacement
in any direction is 12EI

/
L3 = 5 kips/ft. The torsional stiffness of each

individual column is negligible. Damping is assumed to be 5 percent of critical
in all modes.

(each column)

L

v3

v1

v2

FIGURE E26-4
Slab supported by three 
columns.

Eart
hquake

excit
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L
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= 5
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BA

kips/ft
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For the purpose of this example, the three degrees of freedom of the slab are
represented by the displacement components of the corners as shown. The total
mass of the slab is m = 0.5 kip · sec2/ft and is distributed uniformly over the
area. The structure is subjected to a 0.3 g peak acceleration earthquake having
the hard site response spectrum of Fig. 25-9 and acting in the direction parallel
with coordinate v3. It is desired to determine the maximum displacements of
the slab due to this earthquake.

The mass and stiffness matrices of this system can be evaluated by direct
application of the definitions of the influence coefficients. Considering first
the stiffness matrix, a unit displacement v1 = 1 is applied while the other
coordinates are constrained, as shown in Fig. E26-5a. The forces exerted
by the columns in resisting this displacement are shown in this sketch, and
the equilibrating forces corresponding to the degrees of freedom are shown
in Fig. E26-5b. By applying separately unit displacements of the other two
coordinates, the remaining stiffness coefficients can be determined similarly.

The mass matrix is evaluated by applying a unit acceleration separately
to each degree of freedom and determining the resulting inertial forces in the
slab. For example, Fig. E26-6a shows the unit acceleration v̈2 = 1 and the
slab inertial forces resisting this acceleration, while Fig. E26-6b shows the mass
influence coefficients which equilibrate these inertial forces. The other mass
coefficients can be found by applying separately unit accelerations of the other
two coordinates. The complete stiffness and mass matrices for the system are

k =
12EI

L3




4 −2 2

−2 4 −2

2 −2 3


 m =

m

6




4 −1 3

−1 4 −3

3 −3 6


 (a)

When the eigenproblem [k − ω2m]v = 0 is solved, the mode shapes and
frequencies of the system are found to be

ΦΦΦ =




0.366 1.000 −1.366

1.000 1.000 1.000

1.000 −1.000 1.000


 ωωω2 =




25.36

30.00

94.64


 (rad/sec)2 (b)

Study of these mode shapes reveals that the first and third represent rota-
tions about points on the symmetry diagonal while the second is simple trans-
lation along this diagonal. Obviously these motions could have been identified
more easily by a more appropriate coordinate system; translation of the center
of mass in the direction of the two diagonals plus rotation about the center of
mass would have been a better choice.



DETERMINISTIC EARTHQUAKE RESPONSE: SYSTEMS ON RIGID FOUNDATIONS 637

(a) (b)

FIGURE E26-5
Evaluation of stiffness coefficients for v1 = 1: (a) displacement v1 = 1 and resisting 
column forces; (b) column forces and equilibrating stiffness coefficients.
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FIGURE E26-6

Evaluation of mass coefficients for = 1. ( ) Acceleration = 1 and resisting

inertial forces; ( ) slab inertial forces and equilibrating mass coefficients.
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The frequencies, periods of vibration, and spectral accelerations given by
Fig. 25-9 (assuming 5 percent damping) for the three modes of this structure are

ωωω =




5.036

5.477

9.464


 rad/sec T =




1.25

1.15

0.65


 sec Spa =




8.5

8.9

15.6


 ft/sec

2 (c)

Also the generalized masses Mn and modal earthquake-excitation factors
Ln = φφφT

n m r where rT = 〈0 0 1〉 are

M =




0.5

1.0

0.5


 kips · sec2/ft LLL =




0.3415

−0.5000

−0.0915


 kips · sec2/ft (d)



638 DYNAMICS OF STRUCTURES

Hence the maximum modal displacements are found from

vn,max = φφφn
Ln

Mn

Spa

ω2
n

(e)

to be

v1,max =




0.084

0.229

0.229


 ft v2,max =




0.148

0.148

−0.148


 ft v3,max =




−0.044

0.032

0.032


 ft

(f)
An approximation of the maximum displacement in each coordinate could be
determined from these results by the SRSS method.

The reader is reminded that although the response spectral values, as used in
the above examples, are always positive by definition, the actual maximum responses
they represent may be either positive or negative.

Comparison with ATC-3 Recommended Code Provisions

It is of interest to compare the foregoing formulation of expressions for
seismically-induced forces in a multistory building, such as in Fig. 26-4 with the
seismic design forces specified in a typical building code. For example, the ATC-3
recommended provisions define the effective intensity of the design earthquake in
terms of the maximum shear force it produces at the base of the building as given by1

V0 =
1.2Av S

RT 2/3
W (26-51)

in which Av g is the velocity-related peak ground acceleration having an annual
probability of exceedance equal to 0.002 (usually taken the same as the effective
peak ground acceleration Aa g), S is a site characteristic coefficient, R is a response
modification factor depending upon the type of structural framing used, T is the
fundamental period of the building, and W is its total weight. The site characteristic
coefficient S is assigned a value of 1.0, 1.2, or 1.5 depending on whether the site
condition is hard, medium, or soft, respectively, while the response modification
factor R is assigned a value in the range 2 < R < 8 depending upon the inelastic
energy-absorption capacity of the framing system.

1 Applied Technology Council (ATC), “Tentative Provisions for the Development of Seismic Regulations
for Buildings,” loc. cit.
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The ATC-3 provisions specify that the equivalent static seismic loadings pro-
ducing the above base shear be calculated in accordance with

fSi =
wi x

k
i∑

wi xk
i

V0 (26-52)

in which fSi is the lateral force at level i, wi is the weight at level i, xk
i is the height

of level i above the building base with exponent k being related to the building’s
fundamental period (T ) in accordance with k = 1 for T ≤ 0.5 sec and k = 2 for
T ≥ 2.5 sec. For buildings having a period between 0.5 and 2.5 sec, k may be taken
as 2 or may be determined by linear interpolation between 1 and 2.

A corresponding analytical expression can be obtained for the first-mode dy-
namic solution by substituting the first-mode form of Eq. (26-37) into Eq. (26-36),
making use of Eq. (26-29), and selecting only the ith component in the resulting
vector. Taking this action, one obtains

fSi(t) =
mi φi1∑
mi φi1

V01(t) (26-53)

Comparison of Eqs. (26-52) and (26-53) shows that the code expression represents
a loading distribution equivalent in shape to the dynamic loading of a lumped-mass
system which is constrained to deflect with the shape φi1 = xk

i

/
L. This shape

has been incorporated into the code because observations of the vibrations of a large
number of tall buildings demonstrate that the first-mode shape generally is quite close
to a straight line (k = 1) when the fundamental period is 0.5 sec or less; and is quite
close to a parabola (k = 2) when the fundamental period is 2.5 sec or more. An
intermediate shape usually exists for a period in the range 0.5 < T < 2.5 sec.

Let us now make a comparison between the design seismic forces obtained
through Eqs. (26-51) and (26-52) above and the corresponding maximum dynamic
forces obtained through Eqs. (26-43) and (26-45) using a response spectrum for a
specified design earthquake. This comparison can best be accomplished through an
example solution as follows:

Example E26-7. Assume the three-story building of Fig. E26-2, having
a ductile moment resisting steel frame (R = 8), is subjected to the same hori-
zontal rigid-base motion specified in Example E26-4. In that example, it was
determined that the maximum dynamic story shears are given by

V (dynamic) =




161

258

350


 kips (a)
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Using Eq. (26-51) for the case where Av = Aa = 0.3, S = S1 = 1.0, R = 8,
W = 1737 kips (M = 4.5 kips · sec2/in), and T = T1 = 1.37 sec, the
design base shear for this structure is 63.4 kips. Distributing this base shear
in accordance with Eq. (26-52) using k = 0.75 + 0.5T = 1.43 and summing
cumulatively from top to bottom gives the design story shears

V (design) =




28.1

51.7

63.4


 kips (b)

Following standard design procedures and code requirements, full interstory
yielding will take place when the interstory shear forces reach values about
twice their design values, i.e., at the levels

V (yield) =




56.2

103.4

126.8


 kips (c)

Since the predicted elastic dynamic shears in the first, second, and third stories
exceed their respective yield levels by factors of about 2.8, 2.5, and 2.7, re-
spectively, it is clear that such a structure would deform inelastically under the
specified earthquake loading and that the large predicted elastic dynamic shears
could not actually develop.

Based on the results of Example E26-7, it is evident that buildings designed
in accordance with any modern building code will experience rather large inelastic
deformations under maximum probable earthquake conditions. Every effort should
be made, however, to insure that these deformations do not exceed dangerous levels
because collapse of a building is unacceptable within the standard design strategy.
It is therefore important to develop a basic understanding of the inelastic response
of such systems to earthquake excitations, and for this reason a brief discussion of
the calculated behavior of an elastic-plastic MDOF system is presented in the last
subsection of this Section 26-2.

Distributed-Parameter Elastic Systems, Translational Excitation

The formulation of the earthquake response equations for systems having con-
tinuously distributed properties can be carried out by procedures which are completely



DETERMINISTIC EARTHQUAKE RESPONSE: SYSTEMS ON RIGID FOUNDATIONS 641

analogous to those described previously. The decoupled normal-coordinate equations
of motion take the same form as for the lumped-mass system and may be expressed as

Ÿn(t) + 2 ξn ωn Ẏn(t) + ω2
n Yn(t) =

Pn(t)

Mn
=

Ln

Mn
v̈g(t) (26-54)

However, the generalized mass associated with the distributed mass m(x) is given by

Mn =

∫ L

0

φ2
n(x) m(x) dx (26-55)

and the modal earthquake-excitation factor takes the integral form equivalent to the
previous triple matrix product

Ln =

∫ L

0

φn(x) m(x) r(x) dx (26-56)

In this equation, r(x) is the static-displacement influence function representing the
displacements resulting from a unit displacement of the ground vg = 1; thus

vs(x) = r(x) vg (26-57)

By using these expressions for Mn and Ln in Eq. (26-30) the amplitude of
each modal response can be evaluated. Then the total displacement response can be
obtained by superposition, using the continuous equivalent of Eq. (26-32) as follows:

v(x, t) =
M∑

n=1

φn(x) Yn(t) =
M∑

n=1

φn(x)
Ln

Mn ωn
Vn(t) (26-58)

In practice only the significant modal responses (up to mode M ) are included in the
superposition even though in principle an infinite number of modes might be consid-
ered. The elastic-force distribution is given similarly by an expression analogous to
Eq. (26-35):

fS(x, t) =

M∑

n=1

m(x) φn(x) ω2
n Yn(t) =

M∑

n=1

m(x) φn(x)
Ln

Mn
ωn Vn(t) (26-59)

Equations (26-58) and (26-59) express the time-history of earthquake response for
arbitrary distributed-parameter systems. The procedure for approximating the maxi-
mum earthquake response of this type of structure by response-spectrum superposition
is entirely equivalent to that described earlier for the lumped-mass systems and need
not be discussed further.

Although the analysis procedure for structures with distributed properties out-
lined above is completely general in principle, its use in practice is limited by the fact
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that the vibration mode shapes and frequencies can be obtained only for very simple
systems. For this reason, the more complicated distributed-parameter systems usually
are discretized by the finite-element method so that their analysis can be carried out in
matrix form. The matrix equations for the earthquake response analysis of structures
that have been idealized as finite-element systems are identical in form to the lumped-
mass equations described above, except that where the consistent-mass formulation
is used, mass coupling exists between the degrees of freedom so the mass matrix no
longer is diagonal. If the column of coefficients in the mass matrix which introduces
coupling between the response degrees of freedom and the support displacement is
denoted as vector mg , the equations of motion become

m v̈t(t) + mg v̈g(t) + c v̇(t) + k v(t) = 0 (26-60)

With the total acceleration expressed in terms of the relative and the quasi-static
components by Eq. (26-48), this equation can be written in the form of Eq. (26-25)
but with the effective force now given by

peff(t) = −(m r + mg) v̈g(t) (26-61)

The corresponding modal earthquake-excitation factor then becomes

Ln = φφφT
n m r + φφφT

n mg (26-62)

Once this factor has been evaluated, the rest of the analysis is carried out exactly as for a
lumped-mass system. In most cases there are few nonzero terms in the mass-coupling
vector mg , and when present they generally are relatively small, hence the second term
in Eq. (26-62) usually contributes little to the earthquake-excitation factor; however,
it should be included in the formulation for completeness.

Lumped MDOF Elastic Systems, Rotational Excitation

In the preceding discussions and example solutions of this Section 26-2, the
earthquake excitation has consisted of a single translational component of rigid-soil
motion. Now will be considered lumped MDOF systems subjected to a simple compo-
nent of rotation applied by the rigid-soil support. In this case, the total displacements
are expressed as the sum of the relative displacements and the quasi-static displace-
ments that would result from a static support rotation, i.e.,

vt(t) = v(t) + r θg(t) (26-63)

where θg is the applied base rotation and r is a vector containing the displacements
resulting from a unit base rotation. Obviously this equation is equivalent to Eq. (26-48)
for the case of base translation.
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The governing equation for this system can now be written in the standard form

m v̈(t) + c v̇(t) + k v(t) = −m r θ̈g(t) (26-64)

and solved in the usual way. The development of the vector r is illustrated with
reference to the lumped MDOF system shown in Fig. 26-6, which is shown again in
Fig. 26-8, subjected to a unit static base rotation. The displacements denoted by v1,
v2, v3, and v4 are the components in the vector r, given by

r = 〈h1 h2 x3 x4〉T (26-65)

When this vector is used in expressing the effective earthquake forces,

peff(t) = −m r θ̈g(t) (26-66)

and in the modal earthquake-excitation factor given by Eq. (26-50), the response
resulting from the base rotational acceleration θ̈g(t) is calculated in exactly the same
way as described previously for systems subjected to rigid-soil translations. It must be
noted in this structure that the mass corresponding to displacement v2 ism2+m3+m4

because the girders interconnecting these mass lumps are assumed to be inextensible.

In the above illustration it was assumed that the masses were point masses
having no rotational inertia. If, however, they have significant rotational inertia, then
effective earthquake moments are induced in proportion to the rotational inertias of the
masses, which act simultaneously with the effective translational forces resulting from
translational inertia. For example, if it is assumed that the tower shown in Fig. 26-9
has rotational inertias J1 and J2 in addition to the translational inertias m1 and m2,
then the rotational degrees of freedom (designated here as v3 and v4) must be included
in the quasi-static influence coefficient vector representing the motions resulting from
rigid-soil rotation as follows: r = 〈h1 h2 1 1〉.

m 1

h1

h2

m 2

m 4m 3

x3

x4

v2

v4
v3

v1

FIGURE 26-8
Lumped MDOF system with rigid-base rotation.

θ =1

Reference axis
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FIGURE 26-9
Tower with lumped masses having rotational inertias subjected to 
rigid-base rotation.θg
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Lumped MDOF Elastic Systems, Multiple Excitation

In the case when a linear elastic structure is supported at more than one point and
is subjected to different — possibly even multicomponent — input components the
formulation of the response to each input component is somewhat different from that
described above for a system having only one point of support. The difference is that
when the multiple supports move independently of each other, they induce quasi-static
stresses that must be considered in addition to the dynamic response effects resulting
from inertial forces.

To formulate the equations of motion for this general case of earthquake ex-
citation, the multistory frame shown in Fig. 26-10 is considered. This represents a
completely general finite-element model for which all the superstructure nodal re-
sponse components are listed in the vector vt, where the superscript t denotes that
these are total nodal displacements. Similarly all components of support displacement
are listed in the vector vg; these independent input components express the seismic
excitation to which the structure is subjected. For this rigid-base input, these are the
total displacements of the support points, and no superscript is needed to indicate this
fact.

The equilibrium equation expressing the motion of the response degrees of
freedom now is written in partitioned matrix form as follows:

[
m mg

]{ v̈t(t)

v̈g(t)

}
+
[
c cg

]{ v̇t(t)

v̇g(t)

}
+
[
k kg

]{ vt(t)

vg(t)

}
= 0 (26-67)

in which the motion vectors have been partitioned to separate the response quantitities
from the input, and the property matrices have been partitioned to correspond. The
coupling matrices that express forces in the response degrees of freedom due to motions
of the supports are denoted here with the subscript g. It will be noted that Eq. (26-67)



DETERMINISTIC EARTHQUAKE RESPONSE: SYSTEMS ON RIGID FOUNDATIONS 645

FIGURE 26-10
General finite element earthquake 
response model.

Nodal response
degrees of freedom

v t

Support input
degrees of freedom

vg

expresses the equilibrium of forces in the response degrees of freedom only and that
there are no external loads corresponding to these displacements.

Now an expression for the effective seismic loading is obtained by separating
the support motion effects from the response quantities and transferring these input
terms to the right hand side; thus

m v̈t(t) + c v̇t(t) + k vt(t)

= −mg v̈g(t) − cg v̇g(t) − kg vg(t) = peff(t) (26-68)

However, the solution for the response to this input can be simplified if the
total response motions are expressed as the combination of a quasi-static displacement
vector vs(t) plus a dynamic response vector v(t) as has been described for the previous
earthquake response formulations; thus

vt(t) = vs(t) + v(t) (26-69)

To evaluate the quasi-static displacements, the static equivalent of Eq. (26-60) is
obtained by setting all time-derivative terms to zero and noting that the total displace-
ments then are merely the quasi-static motions (i.e., vt ≡ vs for this static case). The
result of this process is k vs(t) = −kg vg(t) which may be solved for the quasi-static
displacements as follows:

vs(t) = −k−1 kg vg(t) ≡ r vg(t) (26-70)

Here it is evident that the influence coefficient matrix r which expresses that response
in all degrees of freedom due to unit support motions is given by

r = −k−1 kg (26-71)
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Finally, introducing Eq. (26-70) into Eq. (26-69), substituting the result into Eq. (26-
68), and transferring all terms associated with the input support motions to the right
side leads to

m v̈(t) + c v̇(t) + k v(t) = −
[
mr + mg

]
v̈g(t) −

[
cr + cg] v̇g(t) (26-72)

It will be noted that there is no stiffness term in the effective forces on the right
side; it drops out because of the definition of the quasi-static displacement matrix
given by Eq. (26-71). Also, it may be recognized that this relationship will eliminate
any effective input associated with a stiffness-proportional component of the viscous
damping. In fact, it can be demonstrated by numerical experiment that the entire
velocity-dependent part of this effective input is negligible in comparison to the
contribution due to inertia if the viscous damping ratio has any reasonable value.
Consequently, Eq. (26-72) may be written in the following approximate form:

m v̈(t) + c v̇(t) + k vt(t) = −
[
mr + mg

]
v̈g(t) (26-73)

Comparing this with Eq. (26-61), it is apparent that the effective force vector derived
previously for rigid-base translation input is merely a special case of the general
effective force expression shown in the right side of Eq. (26-73).

Since this effective force vector is fully known, the dynamic earthquake response
can be found by mode superposition in the usual way, first solving the undamped free-
vibration equations of motion

m v̈(t) + k v(t) = 0 (26-74)

for the normal mode shapes and frequencies, and then using the orthogonality prop-
erties of these coordinates to obtain uncoupled modal coordinate equations of motion
of the form

Ÿn(t) + 2ξnωnẎn(t) + ω2
n Yn(t) =

Pn(t)

Mn
≡ Ln

Mn
v̈g(t) (26-75)

in which
Ln = φφφT

n

[
m r + mg

]

Mn = φφφT
n m φφφn

(26-76)

Solution of these modal equations of motion may be obtained either through the time
domain or the frequency domain. The dynamic response then is given by standard
mode superposition

v(t) =

M∑

n=1

φφφn Yn(t) = K φφφ Y(t) (26-77)
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where only as many modes as are required for engineering accuracy are included in
the mode shape matrix φφφ and the modal response vector Y(t).

As was discussed previously, the elastic forces in the superstructure degrees of
freedom may be obtained from these dynamic displacements either by premultiplying
them by the stiffness matrix k [as in Eq. (26-33)] or from the equivalent mass matrix
formulation, Eq. (26-36). In the stiffness matrix formulation, it is important to note that
the support displacements have no effect on the structure nodal forces even though
it appears from Eq. (26-67) that the coupling stiffness matrix, kg , would have this
effect. This may be demonstrated by considering the general elastic force expression
in Eq. (26-67)

fs(t) = k vt(t) + kg vg(t) (26-78)

and using Eqs. (26-69) and (26-70) to express the total response motions, vt(t); thus

fs(t) = k v(t) + k vs(t) + kg vg(t)

= k v(t) +
[
kg − k k−1 kg

]
vg(t) = k v(t) (26-79)

The bracketed term in Eq. (26-79) vanishes because it was set to zero in solving for
the quasi-static displacments. On the other hand, elastic forces are developed at the
supports by coupling with displacements of the superstructure nodes as well as by the
support motions. A general expression for the elastic support forces may be written
as follows:

fg(t) = kT
g v(t) + kgg vg(t) (26-80)

in which kT
g expresses the support forces due to superstructure displacements and kgg

represents the support forces due to support motions.

When all of the system elastic nodal forces have been evaluated using Eq. (26-
79) [or its mass equivalent Eq. (26-36)] and Eq. (26-80), internal forces of interest
may be evaluated by standard methods of statics. However, in typical finite-element
programs, the internal element stresses are evaluated directly from the element nodal
displacements, and the elastic nodal forces generally are not employed in the analysis.

Lumped SDOF Elastic-Plastic Systems, Translational Excitation

To develop an insight into the seismic behavior of nonlinear yielding systems,
consider again the lumped SDOF system of Fig. 26-1 subjected to rigid-base earth-
quake excitation; however, in this case, let us assume that the columns respond in
an elastic-plastic manner such that their base shear forces combine to follow the
force-displacement relation shown in Fig. 26-11.

The governing nonlinear equation of motion for this system is

v̈ + 2 ω ξ v̇ +
fs(v)

m
= −v̈g(t) (26-81)
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FIGURE 26-11
Elastic-plastic force-displacement 
relation.

1
k

vy

− fs y

fs y

fs(v)

v

where ω =
√
k
/
m and ξ = c

/
2mω are its natural frequency and damping ratio,

respectively, in the elastic range. This equation can be solved for any prescribed set
of parameters and earthquake excitation using the step-by-step integration procedures
described earlier in Chapter 7. Let the maximum value of relative displacement so
obtained be expressed in terms of a displacement ductility factor µ defined by

µ ≡
∣∣v(t)

∣∣
max

vy
(26-82)

where vy is the displacement at which yielding is initiated, as shown in Fig. 26-11.
Clearly, by this definition, the entire time-history of response is elastic if µ ≤ 1, in
which case Eq. (26-81) is identical to Eq. (26-2); however, if µ > 1, the system will
have responded into the inelastic range within certain intervals during the time-history.
In this latter case, the maximum force developed in the system will equal the yield
force fsy , consistent with the relation shown in Fig. 26-11.

Although a step-by-step analysis may be performed easily for a SDOF elastic-
plastic system such as this, it requires much more computational effort than is needed
for a response spectrum analysis of a linear system. Consequently, it is of practi-
cal interest to have comparisons of the maximum values of response

∣∣v(t)
∣∣
max and∣∣fs(t)

∣∣
max (or

∣∣v̈t(t)
∣∣
max =

∣∣fs(t)
∣∣
max

/
m) obtained for an elastic system and for an

elastic-plastic system having the same values of parameters ω, ξ, and k and subjected
to the same earthquake excitation v̈g(t). The objective of the comparisons is to obtain
an approximation of the response of the nonlinear system by appropriate interpretation
of the response of the linear system. For this purpose, let us denote these maximum
values by vel, fs,el, velpl, and fs,elpl where subscripts “el” and “elpl” refer to the
elastic and elastic-plastic values, respectively. The elastic values are obtained through
Eq. (26-2) while the elastic-plastic values are obtained by a step-by-step analysis
through Eq. (26-81). As reported in the literature, these comparisons are best made in
terms of the above defined ductility factor µ.2

2 N. M. Newmark and W. J. Hall, “Earthquake Spectra and Design,” loc. cit.
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Consider first flexible systems having very low values of natural frequency
f = ω

/
2π. Certainly as f → 0, both vel and velpl will approach the maximum

ground displacement
∣∣vg(t)

∣∣
max because the structural resistance vanishes. In the

approximate frequency range 0 < f < 0.3 Hz, this condition is nearly true; thus, as
seen in Fig. 26-12a,

vel
.
= velpl

.
=
∣∣vg(t)

∣∣
max

fs,y
.
= fs,el

/
µ
.
= k

∣∣vg(t)
∣∣
max

/
µ

}
0 < f < 0.3 Hz (26-83)

In the approximate frequency range 0.3 < f < 2Hz, vel and velpl will no longer equal∣∣vg

∣∣
max, but solutions to Eqs. (26-2) and (26-81) for numerous earthquake excitations

show that the relative displacement is fairly well preserved, i.e.,

vel
.
= velpl

fs,y
.
= fs,el

/
µ

}
0.3 < f < 2 Hz (26-84)

as indicated in Fig. 26-12b. In the approximate frequency range 2 < f < 8, the
results of many solutions indicate that the deformation energy is fairly well preserved,
i.e., the areas under the elastic and the elastic-plastic curves in Fig. 26-12c are nearly
equal. Expressing these two areas first in terms of fs,y , fs,el, k, and µ and second in
terms of velpl, vel, k and µ and then equating the areas in each case, one obtains

velpl =
µ√

2µ− 1
vel

fs,y =
1√

2µ− 1
fs,el

}
2 < f < 8 Hz (26-85)

As f → ∞ (k → ∞), finite yielding of the rigid system will occur with the
slightest reduction of fs,y from fs,el. Since vy → 0 in this case, finite yielding
corresponds to µ = ∞; thus, for finite values of µ, the force must be preserved.
Results have shown that this is nearly true for frequencies f > 33 Hz; thus

fs,y
.
= fs,el

.
= m

∣∣v̈g(t)
∣∣
max f > 33 Hz (26-86)

FIGURE 26-12
Elastic and elastic-plastic force-displacement relations.
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Substituting k vy = k velpl
/
µ for fs,y and k vel for fs,el, Eq. (26-86) gives

velpl
.
= µ vel f > 33 Hz (26-87)

In the approximate frequency range 8 < f < 33, the response is transitional between
the state represented by Eqs. (26-85) and that represented by Eqs. (26-86) and (26-
87) in which case some form of interpolation between the two cases is required.
Fortunately, the fundamental frequencies of most structures, which one might wish to
model in the simple elastic-plastic form, are below 8 Hz; thus, Eqs. (26-83) through
(26-85) will suffice in estimating maximum force (or total acceleration) and relative
displacement responses of most SDOF yielding systems subjected to strong earthquake
excitations.

26-3 COMBINING MAXIMUM MODAL RESPONSES

As stated in Section 26-2, the square root of the sum of squares (SRSS) method
of combining maximum modal responses is fundamentally sound when the modal
frequencies are well separated; however, when the frequencies of major contributing
modes are very close together, this method will give poor results. Examples of when
this situation arises are (1) a tall building with its fundamental lateral vibration mode
being very close to its fundamental torsional mode and (2) a complex 3-D nuclear
power plant piping system which can have many very closely spaced normal mode
frequencies. In cases such as these, the more general Complete Quadratic Combination
(CQC) method should be used. Derivations of these combination rules as well as the
so-called 30 percent rule for combining the responses to two components of excitation
are presented in this section.

Mean Square Response of a Single Mode

The response of a MDOF system in its nth normal mode to a single component
of earthquake input v̈g(t) is represented by

Ÿn + 2 ωn ξn Ẏn + ω2
n Yn = − Ln

Mn
v̈g(t) (26-88)

which is the same as Eq. (26-54) except that the sign of the earthquake acceleration
has been retained. Taking the direct Fourier transform of Eq. (26-88) gives

Yn(iω) = −Ln

Kn
Hn(iω) V̈g(iω) (26-89)

where
Hn(iω) ≡ 1[(

1 − ω2

ω2
n

)
+ 2iξn

(
ω
ωn

)] (26-90)
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The inverse Fourier transform of Eq. (26-89) is

Yn(t) = − Ln

2πKn

∫ ∞

−∞
Hn(iω) V̈g(iω) exp(iωt) dω (26-91)

Let us now calculate the mean square intensity of Yn(t), over the effective duration of
the earthquake td, as defined by

〈Yn(t)2〉 ≡ 1

td

∫ td

0

Yn(t)2 dt (26-92)

Using Eq. (26-91) in its discrete form, consistent with the FFT of v̈g(t), Eq. (26-92)
becomes

〈Yn(t)2〉 =
1

td

∫ td

0

[L2
n4ω2

4π2K2
n

∞∑

j=−∞

∞∑

k=−∞
Hn(iωj) Hn(iωk)

V̈g(iωj) V̈g(iωk) exp(iωjt) exp(iωkt)

]
dt (26-93)

where 4ω = 2π
/
Td with Td being the total duration used in the FFT. Note that

Td normally includes a period of time when v̈g(t) = 0; therefore, Td > td. Since
td �

(
2π
/
ωn

)
for the usual structural frequencies of interest, the time integrals in

Eq. (26-93) will be given with sufficient accuracy by the approximate expression

1

td

∫ td

0

exp(iωjt) exp(iωkt) dt
.
=

{
0 |j| 6= k; k = j

1 k = −j
j, k = 1, 2, 3, · · · (26-94)

thus, Eq. (26-93) becomes, after converting back to the continuous form,

〈Yn(t)2〉 =
1

td

L2
n

4π2K2
n

∫ ∞

−∞

∣∣Hn(iω)
∣∣2 ∣∣V̈g(iω)

∣∣2 dω (26-95)

Note that for low damped systems, say ξ < 0.10, the term
∣∣Hn(iω)

∣∣2 is very highly
peaked in the close neighborhood of ω = ωn while the term

∣∣V̈g(iω)
∣∣2 is not highly

peaked; therefore, Eq. (26-95) can be expressed approximately as

〈Yn(t)2〉 .= CnnL2
n

K2
n

∫ ∞

−∞

∣∣Hn(iω)
∣∣2 dω (26-96)

where

Cnn ≡
∣∣V̈g(iωn)

∣∣2

4π2td
(26-97)
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Making use of Eq. (26-90), it can be shown using contour integration that the integral
in Eq. (26-96), denoted as Inn(ξn, ωn), is given by

Inn(ξn, ωn) =
πωn

2ξn
(26-98)

thus, the desired mean square response becomes

〈Yn(t)2〉 =
πωnCnnL2

n

2ξnK2
n

(26-99)

Covariance of Response Produced by Two Modes

Letting the covariance of response produced by modes m and n be defined by
the time average

〈Yn(t) Ym(t)〉 ≡ 1

td

∫ td

0

Yn(t) Ym(t) dt (26-100)

upon substitution of Eq. (26-91) and following the same steps described above, the
corresponding relation to Eq. (26-95) is found to be

〈Yn(t) Ym(t)〉 =
1

td

LnLm

4π2KnKm

∫ ∞

−∞
Hn(iω) Hm(−iω)

∣∣V̈g(iω)
∣∣2 dω (26-101)

Note that for low damped systems, say ξn and ξm < 0.10, the terms
∣∣Hn(iω)

∣∣ and∣∣Hm(iω)
∣∣ are very highly peaked in the close neighborhoods of ω = ωn and ω = ωm,

respectively. When frequencies ωn and ωm are well separated, the narrow peaks of∣∣Hn(iω)
∣∣ and

∣∣Hm(iω)
∣∣ do not overlap. In this case, the numerical value of the integral

in Eq. (26-101) is relatively small; thus, the covariance given by this equation is very
small compared to the mean square intensities of Yn(t) and Ym(t). However, when
the frequencies ωn and ωm are very close together, the narrow peaks of

∣∣Hn(iω)
∣∣ and∣∣Hm(iω)

∣∣ overlap sufficiently so that the covariance given by Eq. (26-101) becomes
of similar order of magnitude to the mean square intensities. Since the frequencies ωn

andωm must become very close to each other for this to happen, the value of
∣∣V̈g(iω)

∣∣2

will not vary greatly in the neighborhood of these closely spaced frequencies. Thus,
Eq. (26-101) can be written in the approximate form

〈Yn(t) Ym(t)〉 .= CnmLnLm

KnKm

∫ ∞

−∞
Hn(iω) Hm(−iω) dω (26-102)

where

Cnm ≡ Re
[Vg(iωn) Vg(−iωm)]

4π2td
(26-103)
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Making use of Eq. (26-90), it can be shown using contour integration that the integral
in Eq. (26-102), denoted as Inm(ξn, ξm, ωn, ωm), is3

Inm(ξn, ξm, ωn, ωm)

=
π

2

√
ωnωm

ξnξm

[
8
√
ξnξm (ξn + rξm) r3/2

(1 − r2)2 + 4 ξn ξm r(1 + r2) + 4 (ξ2n + ξ2m) r2

]
(26-104)

where
r ≡ ωn

/
ωm ωm > ωn

Thus, the covariance given by Eq. (26-102) becomes

〈Yn(t) Ym(t)〉 .
=
πCnmLnLm

2KnKm

√
ωnωm

ξnξm
ρ
nm

(26-105)

where

ρ
nm

≡ 8
√
ξnξm (ξn + rξm) r3/2

(1 − r2)2 + 4 ξn ξm r (1 + r2) + 4 (ξ2n + ξ2m) r2
(26-106)

When ξn = ξm = ξ, Eq. (26-106) simplifies to the form

ρ
nm

= ρ
mn

=
8 ξ2 (1 + r) r3/2

(1 − r2)2 + 4 ξ2 r(1 + r)2
(26-107)

Note that
0 ≤ ρ

nm
≤ 1 (26-108)

and
ρ
nn

= ρ
mm

= 1 (26-109)

SRSS and CQC Combination of Modal Responses

Consider a response z(t) which has contributions from all N normal modes as
indicated by

z(t) =
N∑

n=1

An Yn(t) (26-110)

where coefficients An are known for the structural system under consideration. The
corresponding mean square response is then given by

σ2
z ≡ 〈z(t)2〉 =

N∑

n=1

N∑

m=1

AnAm 〈Yn(t) Ym(t)〉 (26-111)

3 A. Der Kiureghian, “Structural Response to Stationary Excitation,” loc. cit.
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Making use of Eqs. (26-99) and (26-105) and recognizing that all quantities in these
equations are positive, except for Ln and Lm which may be either positive or negative
in accordance with Eq. (26-29), Eq. (26-111) can be written in the form

σ2
z =

N∑

n=1

N∑

m=1

AnAm
Cnm√
CnnCmm

LnLm∣∣Ln

∣∣ ∣∣Lm

∣∣ ρnm
〈Y 2

n (t)〉1
/

2 〈Y 2
m(t)〉1/2

(26-112)
Since ρ

nn
= ρ

mm
= 1 and ρ

nm
= ρ

mn
� 1 when frequencies ωn and ωm are well

separated, only those cross terms in Eq. (26-112) with ωn and ωm close together
contribute significantly to σ2

z . The corresponding values of Cnm

/√
CnnCmm for

these terms are nearly equal to unity, and since the values of Cnn

/√
CnnCnn are

identically equal to unity, Eq. (26-112) can be written in the form

σ2
z =

N∑

n=1

N∑

m=1

αnm An Am ρ
nm

〈Y 2
n (t)〉1/2 〈Y 2

m(t)〉1/2 (26-113)

where
αnm ≡ LnLm∣∣Ln

∣∣ ∣∣Lm

∣∣ (26-114)

Note that αnm is either +1 or −1 form 6= n depending upon the signs of Ln and Lm.
It is, of course, always +1 for m = n.

It has been shown in Chapter 21 that the maximum values of modal response
over duration td are proportional to their respective root mean square values, i.e.,

∣∣Yn(t)
∣∣
max = Bn〈Y 2

n (t)〉1/2
∣∣Ym(t)

∣∣
max = Bm〈Y 2

m(t)〉1/2 (26-115)

The numerical values ofBn andBm depend upon the ratios tdωn

/
2π and tdωm

/
2π,

respectively, as shown in Fig. 21-13; however, they do not differ greatly in magnitude
unless the ratios just mentioned differ greatly, i.e., by an order of magnitude or more.
Often in engineering practice, coefficients Bn and Bm are assigned the numerical
value 3.

If it is assumed that all separate maximum contributions of modal response,
and even the maximum of their combined responses, can be obtained from their
corresponding root mean square values using the same proportionality factor B, then
it follows from Eq. (26-113) that

∣∣z(t)
∣∣
max =

[ N∑

n=1

N∑

m=1

αnm An Am ρ
nm

∣∣Yn(t)
∣∣
max

∣∣Ym(t)
∣∣
max

]1/2

(26-116)

This method of evaluating maximum total response from the individual maxima of
modal responses is known as the complete quadratic combination (CQC) method.4

4 A. Der Kiureghian, “Structural Response to Stationary Excitation,” loc. cit.
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When major contributing modes have frequencies close together, the corresponding
cross terms in Eq. (26-116), which may be plus or minus, can be very significant;
thus, they should be retained. If, however, the frequencies of the contributing modes
are well separated, the cross terms in Eq. (26-116) are negligible, in which case this
equation reduces to

∣∣z(t)
∣∣
max =

[ N∑

n=1

A2
n

∣∣Yn(t)
∣∣2
max

]1/2

(26-117)

which is the SRSS method given previously by Eqs.(26-44) and (26-45) and used in
example solutions E26-4 and E26-5.

Expressing maximum values of modal response through their corresponding
response spectral values for the specified earthquake motion, Eqs. (26-116) and (26-
117) become

∣∣z(t)
∣∣
max =

[ N∑

n=1

N∑

m=1

An Am
LnLm

MnMm
ρ
nm

Sd(ξn, ωn) Sd(ξm, ωm)
]1/2

(26-118)
and

∣∣z(t)
∣∣
max =

[ n∑

n=1

A2
n

L2
n

M2
n

Sd(ξn, ωn)2
]1/2

(26-119)

respectively.

Example E26-8. The three-dimensional structure shown in Fig. E26-7 is
subjected to a single component of base excitation in the x-direction which
corresponds to a 0.3 g peak acceleration earthquake having the acceleration
response spectrum shown in Fig. 25-9 for the hard-soil condition (Type S1).
Damping is assumed to be 5 percent of critical in each normal mode.

FIGURE E26-7

3-DOF system subjected to rigid-base translation.
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Assume all mass is lumped at the single point indicated and that the
flexibility of the system consists of flexure and torsion only. If each of the three
segments of length L has a solid circular cross section, the torsional stiffness
JG will equal 2/3 of the flexural stiffness EI assuming G = E/3. Under these
conditions, the mass and stiffness matrices for the coordinates shown will be
as indicated in the figure. The corresponding eigenvectors and frequencies for
the system are also indicated. Note the closeness of the first and second mode
frequencies.

Using the hard site response spectrum in Fig. 25-9 and periods correspond-
ing to the natural frequencies given in Fig. E26-7, the acceleration spectral values
are found to be

Spa =




7.44

8.04

22.9


 ft/sec2 (a)

and the modal parameters Mn and Ln are found to be

M =




1.588

1.075

1.678


 m LLL =




0.731

0.271

1.000


 m (b)

From these results, the maximum modal displacements are given by

v1,max =




0.119

−0.038

0.162


 ft v2,max =




0.039

0.143

0.005


 ft v3,max =




0.064

−0.016

−0.055


 ft

(c)
Combining the modal maxima by the SRSS procedure, i.e., using Eq. (26-44),
one obtains

vmax =




0.140

0.149

0.171


 ft SRSS (d)

However, if one combines the modal maxima using the CQC method, the
equivalent to Eq. (26-44) is, in this case [see Eq. (26-116)],

vmax
.
=

√[
(v1)2max + 2ρ12(v1)max(v2)max + (v2)2max

+2ρ23(v2)max(v3)max + (v3)2max + 2ρ13(v1)max(v3)max
]

(e)
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assuming all damping ratios are the same so that Eq. (26-107) can be used to
find the cross-correlation coefficients for all modes. In this case, one finds that
ρ12 = ρ21 = 0.792, ρ23 = ρ32 = 0.006, ρ13 = ρ31 = 0.006; thus, using the
above equation, one obtains

vmax =




0.165

0.117

0.175


 CQC (f)

Comparing Eqs. (d) and (f), it is seen that the SRSS method under-estimates the
first term while it overestimates the second term; the third term remains nearly
the same. It must be remembered that the cross-terms in the CQC method carry
a sign, i.e., individual terms are either plus or minus.

In concluding this section on combining modal responses, the reader is reminded
that when using Eqs. (26-118) and (26-119), the response quantity of interest must be
expressed in the form of Eq. (26-110). While this is the obvious form to be used when
z(t) represents an internal force component or deformation, it may not be obvious
for all response quantities of interest. For example, suppose z(t) represents the total
absolute acceleration of mass mi in a lumped-mass system as represented by Eq. (26-
24), i.e., z(t) ≡ v̈t

i(t). As seen by this equation, this response has a contribution not
only from the relative motion v̈i(t) but from the ground acceleration v̈g(t) as well.
Nevertheless, it can be expressed in the form of Eq. (26-110) since

v̈t
i(t) = − [fSi

(t) + fDi
(t)]

mi
(26-120)

At the instant v̈t
i(t) reaches its maximum absolute value, the damping force FDi

(t)

will be very small compared with the spring force FSi
(t); thus, Eq. (26-120) can be

expressed in the approximate form

v̈t
i(t)

.
= −fSi

(t)

mi
=

N∑

n=1

ω2
nφinYn(t) (26-121)

This equation expresses the response quantity of interest in the form of Eq. (26-110)
with An = ω2

nφin.

Combining Two-Component-Excitation Responses

In the previous section, the SRSS and CQC methods have been developed for
combining maximum modal responses produced by a single component of horizontal
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earthquake excitation. Let us now develop procedures for combining the two maxi-
mum responses produced by two horizontal components of excitation. If z(t) is the
response quantity of interest, it will have two contributions as given by

z(t) = zx(t) + zy(t) (26-122)

where zx(t) and zy(t) are the contributions produced by horizontal earthquake exci-
tations in the x- and y-directions, respectively. Usually, the x and y axes are taken
along principal axes of the structure. Since, as described in Chapter 25, the input
earthquake excitations in the x- and y-directions will have very low cross-correlation,
the cross-correlation of zx(t) and zy(t) will likewise be very low so that it can be
neglected. Thus, it is statistically sound to use the SRSS method for weighting the
maximum values of zx(t) and zy(t), i.e.,

∣∣z(t)
∣∣
max =

[∣∣zx(t)
∣∣2
max +

∣∣zy(t)
∣∣2
max

]1/2
(26-123)

Suppose
∣∣zx(t)

∣∣
max and

∣∣zy(t)
∣∣
max are obtained using the same design response

spectrum and using either Eq. (26-118) or (26-119), as judged appropriate, giving
responses that are proportional to each other as expressed by

∣∣zy(t)
∣∣
max = B

∣∣zx(t)
∣∣
max (26-124)

If the directions of the x and y axes are chosen so that

∣∣zx(t)
∣∣
max ≥

∣∣zy(t)
∣∣
max (26-125)

then constantB will have a value somewhere in the range 0 ≤ B ≤ 1 depending upon
the transfer functions between the x and y components of excitation and the particular
response z(t) under consideration. Since, however, the design response spectrum
represents the stronger component of horizontal excitation and since, as discussed in
Chapter 25, the intensity of the weaker component can be taken as 85 percent of the
intensity of the stronger component, it is more realistic to use

∣∣zy(t)
∣∣
max = 0.85 B

∣∣zx(t)
∣∣
max (26-126)

Substituting Eq. (26-126) into Eq. (26-123) gives

∣∣z(t)
∣∣
max = (1 + 0.723 B2)1/2

∣∣zx(t)
∣∣
max (26-127)

Let us now compare this statistically rational equation with the “30 percent rule”
commonly used in building design as given by

∣∣z(t)
∣∣
max =

∣∣zx(t)
∣∣
max + 0.3

∣∣zy(t)
∣∣
max (26-128)
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in which
∣∣zx(t)

∣∣
max and

∣∣zy(t)
∣∣
max are evaluated through either Eq. (26-118) or

Eq. (26-119), as judged appropriate, using the same response spectrum without re-
duction in the direction of weaker intensity, i.e., using Eq. (26-124); in this case,
Eq. (26-128) becomes

∣∣z(t)
∣∣
max = (1 + 0.3 B)

∣∣zx(t)
∣∣
max (26-129)

Plots of the ratio
∣∣z(t)

∣∣
max

/ ∣∣zx(t)
∣∣
max, as given by Eqs. (26-127) and (26-129), as

functions of B are shown in Fig. 26-13. Comparing the two curves in this figure, it is
seen that the 30 percent rule, Eq. (26-129), gives identical results for B = 0, almost
identical results for B = 1, and somewhat higher values for 0 < B < 1; the largest
difference is approximately 5 percent.

In the above development z(t) as expressed in Eq. (26-122) represents a specific
response quantity, e.g., stress at a particular critical point in a structure or a partic-
ular force component in an individual member. Usually, estimating separately the
maximum values of specific responses by one of the above procedures is sufficient;
however, in some cases this procedure is deficient due to the multiplicity of possible
critical responses. One such case is the response of a vertical cantilever structure, such
as a smoke stack, or an intake tower having a circular cross section.

Suppose a structure of this type is subjected to earthquake excitations in the x-
and y-directions at its base as described above. In attempting to use either of the above
procedures, one might possibly select one of the two outer-fiber locations on the x-axis
of the base cross section as representing the most critical-stress location. Letting z(t)
be the bending stress at this location, one finds that |z(t)|max given by either Eq. (26-
127) or Eq. (26-129) equals |zx(t)|max since B = 0. This suggests that the circular
cantilever can be designed on the basis of a single earthquake input representing the
major principal component of ground motion. It needs to be recognized, however,
that at the critical time tc when the bending moment about the y-axis produces
|zx(t)|max = |zx(tc)|, the resultant bending moment on the cross section

M (tc) =
√

Mx(tc)2 + My(tc)2 (26-130)

FIGURE 26-13
Statistical approach versus 30% rule 
in combining two components of 
horizontal response.
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will be greater than |My(tc)| thus producing a bending stress greater than |zx(t)|max.
Further, it should be recognized that the maximum value of the resultant moment
M (t) occurs at a time different from tc and that its absolute value is greater than
M (tc); thus, the absolute value of maximum stress on the cross section is even greater
than the maximum stress produced by M (tc). Therefore, rather than focusing on
stress at a fixed point, one should focus on the maximum stress due to M (t) even
though its location is changing with time. Since the maximum stress is proportional
to the resultant moment, the subsequent analytical treatment will be concerned with
predicting the maximum absolute value of the resultant moment M (t) which can then
be compared with the maximum absolute value of moment My(t).

Let x ≡ Mx(t) and y ≡ My(t) represent bending moments produced by input
ground motions in the y- and x-directions, respectively. The resultant moment r ≡
M (t) is given by r = (x2 + y2)1/2. Making the usual assumptions that the ground
motions in the x- and y-directions are uncorrelated and have normal distributions, the
marginal and joint probability density functions are given by

p(x) =
1√

2πσx

exp

[
− 1

2

x2

σ2
x

]

p(y) =
1√

2πσy

exp

[
− 1

2

y2

σ2
y

]

p(x, y) =
1

2πσxσy
exp

[
− 1

2

(x2

σ2
x

+
y2

σ2
y

)]

(26-131)

Letting θ be the angle between the resultant moment vector r and the x-axis, random
variables x and y can be transformed to random variables r and θ using

x = r cos θ

y = r sin θ
(26-132)

Using the jacobian transformation given by Eq. (20-47), one obtains

p(r, θ) =
r

2πσxσy
exp

[
− r2

2

(cos2 θ

σ2
x

+
sin2 θ

σ2
y

)]
r ≥ 0 0 ≤ θ ≤ 2π

(26-133)
From this joint probability density function, the probability that r will exceed some
prescribed value s is given by

Pr[r > s] = 1 −
∫ s

r=0

∫ 2π

θ=0

p(r, θ) dθ dr (26-134)

Substituting p(r, θ) from Eq. (26-133) into this equation and carrying out the double
integration gives the desired result Pr[r > s].



DETERMINISTIC EARTHQUAKE RESPONSE: SYSTEMS ON RIGID FOUNDATIONS 661

Consider first the case for which σx = σy = σ. The joint probability density
function p(r, θ) given by Eq. (26-133) reduces to a form independent of θ as given by

p(r, θ) =
r

2πσ2
exp

[
− r2

2σ2

]
r ≥ 0 0 ≤ θ ≤ 2π (26-135)

and the probability exceedance function given by Eq. (26-134) becomes

Pr[r > s] = exp
[
− s2

2σ2

]
(26-136)

Letting s = 3σ, as is often done in estimating the mean extreme value of response, one
finds from Eq. (26-136) that Pr[r > 3σ] = 0.01111. Using the normal distribution
given by the second of Eqs. (26-131) with σ substituted for σy , one finds that Pr[|y| >
2.535σ] = 0.0111. This shows that the resultant moment M (t) at the 3σ level has the
same probability of exceedance as does |My(t)| at the 2.535σ level. Therefore, when
the intensities of the ground motions in the x- and y-directions are the same, i.e., when
σx = σy , the expected maximum stress on the cross section due to both components of
input acting simultaneously will be approximately 18 percent higher than the expected
maximum stress on the same cross section due to only one component of input.

As pointed out earlier, the intensity of motion in the y-direction is usually about
85 percent of the intensity of the motion in thex-direction, in which caseσx = 0.85σy .
Substituting this relation into Eq. (26-133) and evaluating Eq. (26-134) for r = 3σy ,
one obtains Pr[r > 3σy] = 0.00734. Using the normal distribution given by the
second of Eqs. (26-131), one finds that Pr[|y| > 2.685σy] = 0.00734. This shows that
the resultant moment M (t) at the 3σy level has the same probability of exceedance as
does |My(t)| at the 2.685σy level. Therefore, when the intensity of ground motion in
the y-direction is 85 percent of the intensity in the x-direction, i.e., σx = 0.85σy , the
expected maximum stress on the cross section due to both components of input acting
simultaneously will be approximately 12 percent higher than the expected maximum
stress on the same cross section due to the stronger x-component of ground motion
acting alone.

Since the above case with σx = 0.85σy is more realistic than the previous case
with σx = σy = σ, the design maximum stress level for two simultaneous components
of input can be estimated by multiplying the expected maximum stress level for one
component of input by the factor 1.12.
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PROBLEMS

26-1. Assume that the structure of Fig. 26-1 has the following properties:

m = 3.2 kips · sec2/in k = 48 kips/in ξ = 0.05

Determine the maximum displacement and base shear force caused by an
earthquake of 0.3 g peak acceleration having the type S2 response spectrum
of Fig. 25-9.

26-2. Repeat Prob. 26-1 assuming that the stiffness of the structure is increased to
k = 300 kips/in. Comment on the effectiveness of increasing stiffness as a
means of increasing earthquake resistance.

26-3. Assume that the uniform cantilever column of Fig. E26-2 has the properties
m = 0.016 kips · sec2 /ft2 and EI = 106 kips · ft2, and that its deflected
shape is ψ(x) = 1− cos(πx/2L). If this structure is subjected to the ground
motion of 0.3 g peak acceleration having the type S1 response spectrum of
Fig. 25-9.

(a) Determine the maximum tip displacement, base moment, and base
shear.

(b) Determine the maximum displacement, moment, and shear at mid-
height.

26-4. Repeat Prob. 26-3 assuming the same response spectrum shape but consid-
ering the following nonuniform mass and stiffness properties:

m(x) = 0.01 (2 − x/L) kips · sec2/ft2

EI(x) = 5 × 105 (1 − x/L)2 kips · ft2

Use Simpson’s rule with 4x = L/2 to evaluate the generalized property
integrals.

26-5. A building similar to that shown in Fig. E26-3 has the following mass matrix
and vibration properties:

m = 2




1 0 0
0 1 0
0 0 1


 kips · sec2/ft ΦΦΦ =




1.000 1.000 1.00

0.548 −1.522 −6.26

0.198 −0.872 12.10




ωωω =





3.88

9.15

15.31





rad/sec
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Determine the displacement and overturning moment at each floor level and
the shear force within each story at a time t1 during an earthquake when the
response integrals for the three modes are

V(t1) =





1.38

−0.50

0.75





ft/sec

The height of each story is 12 ft.

26-6. For the structure and earthquake of Prob. 26-5, the acceleration response
spectrum values for the three modes are

Sa =





9.66

5.15

12.88





ft/sec2

(a) For each mode of vibration, calculate the maximum values of dis-
placement and overturning moment at each floor level and the max-
imum shear force within each story.

(b) By the SRSS method, determine approximate total maximums for
each of the response quantities of part a.

26-7. For preliminary design purposes, the tall building in Fig. P26-1 will be
assumed to behave as a uniform shear beam, the vibration properties of which
are completely analogous to those of the uniform bar in axial deformation
discussed in Section 18-5. To express this correspondence, it may be noted
that the axial rigidity EA and mass per unit length m of Section 18-5 are

FIGURE P26-1
Uniform shear building.

L = 480 ft

Story mass:
mi = 24 kips⋅sec2 ⁄ ft

Total column stiffness:
Σ EI = 4 × 106 kips⋅ft2

Story height:
h = 12 ft
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replaced respectively by (12
∑
EI)

/
h2 and mj

/
h to represent the shear

building (where
∑
EI denotes the sum of the flexural rigidities of all columns

within one story). Thus the building mode shapes and frequencies are given
by

φn(x) = sin
2n− 1

2

(πx
L

)

ωn =
2n− 1

2
π
(12

∑
EI

mihL2

)1/2

where the values of the properties are shown in the figure above.
(a) Determine the effective modal mass L2

n/Mn for each of the first
five modes. What fraction of the total mass is associated with each
mode?

(b) Compute the approximate maximum top displacement, base shear,
and base overturning moment by the root-sum-square method, as-
suming that the velocity response spectrum value for each mode is
1.6 ft/sec.

26-8. A structure is idealized as the two-degree-of-freedom system shown in
Fig. P26-2; also shown are its vibration mode shapes and frequencies. As-
suming ξ = 5 percent in each mode and using the response spectrum of type
S2 in Fig. 25-9, compute the approximate (SRSS) maximum moment at the
column base assuming the direction of the earthquake motions is

(a) Horizontal.
(b) Vertical.
(c) Along the inclined axis ZZ.

Assume the ground motions are caused by an earthquake of 0.3 g peak
acceleration.

2L

L

vb

va

m
EI

EI

z

m

z

EI

mL3
=

0.377

1.25
w =

1.00      1.00

0.85 2.35-
F

EI

mL3
= /sec100   1 2

FIGURE P26-2

2-DOF plane frame.

26-9. A 6-in concrete slab is supported by fourW8×40 columns which are located
and oriented as shown in Fig. P26-3. Also shown are the structure’s mass
matrix and vibration properties, based on the assumption that the slab is rigid,
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that the columns are weightless, and that the clear height of the columns is
12 ft. The mass matrix and mode shapes are expressed in terms of the slab
centroid coordinates that are shown.
Assuming that an earthquake of 0.3 g peak acceleration, having the type
S2 response spectrum of Fig. 25-9, acts in the direction of coordinate v1,
determine the maximum dynamic displacement at the top of each column in
the first mode of vibration.

26-10. A uniform bridge deck is simply supported with an 80-ft span, as shown
below. Also shown are the mass and stiffness properties as well as an
idealized earthquake-velocity-response spectrum. Assuming that this same
earthquake acts simultaneously on both end supports in the vertical direction,

(a) Compute the maximum moment at midspan for each of the first
three modes of vibration.

(b) Compute the approximate (SRSS) maximum midspan moment due
to these three modes.
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26-11. Repeat Prob. 26-10, assuming that only the right hand support is subjected
to this vertical motion. Note that r(x) = x/L in this case.

26-12. The service platform for a space rocket is idealized as a lumped mass tower,
as shown below. Also shown are the shapes and frequencies of its first two
modes of vibration. Determine the maximum moment developed at the base
of this tower due to a harmonic horizontal ground acceleration v̈g = A sinωt

where A = 5 ft/sec2 and ω = 8 rad/sec. Consider only the steady-state
response of the first two modes, and neglect damping. The weights lumped
at the top, central, and lowest levels are 15, 35, and 65 kips, respectively.

26-13. Repeat Prob. 26-12 assuming that the harmonic ground motion applied at
the base is a rotation θg rather than horizontal translation. In this case
θ̈g = B sinωt where B = 0.06 rad/sec2 and ω = 8 rad/sec.

26-14. A rigid bar of length L and total uniformly distributed mass m has an ad-
ditional lumped mass m/2 at each end. This bar is rigidly attached to the
top of a weightless column of length L and has a lateral spring support at
midheight, as shown in Fig. P26-6. The mass matrix for the rigid bar and
the stiffness matrix for the entire system including the support degrees of
freedom are shown in the figure, together with the vibration properties.
This system is subjected to a ground motion for which the spectral velocity
at the first mode period is 2.7 ft/sec. Determine the first mode maximum
response of coordinate v2 if the earthquake motion is applied:

(a) At both support points simultaneously.
(b) Only at the column base (coordinate vgb), while the spring support

(vga) is fixed against motion.
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CHAPTER

27
DETERMINISTIC

EARTHQUAKE
RESPONSE:

INCLUDING
SOIL-STRUCTURE

INTERACTION

27-1 SOIL-STRUCTURE INTERACTION BY
DIRECT ANALYSIS

In the preceding discussions of structural response to earthquakes, it has been
assumed that the foundation medium is very stiff and that the seismic motions applied
at the structure support points are the same as the free-field earthquake motions at
those locations; in other words, the effects of soil-structure interaction (SSI) have
been neglected. In actuality, however, the structure always interacts with the soil to
some extent during earthquakes, imposing soil deformations that cause the motions of
the structure-soil interface to differ from those that would have been observed in the
free field.

The nature and amount of this interaction depends not only on the soil stiffness,
but also on the stiffness and mass properties of the structure. The interaction effect
associated with the stiffness of the structure is termed kinematic interaction and the
corresponding mass-related effect is called inertial interaction. In this presentation it
will be possible to give only a brief explanation of the concepts of SSI, starting with

669
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FIGURE 27-1
Rigid rectangular basemat of a large structure.

D

L

x

y

a derivation of the kinematic interaction effect for a rigid, massless foundation slab
— the so-called “Tau effect.” This is followed by a brief description of the direct
analysis concept for a combined soil-structure system in which the soil underlying the
structure is represented as a “bounded” finite-element model. Finally, the substructure
approach to SSI analysis is described, in which the structure to be analyzed (and
possibly a portion of the adjacent soil) is considered as one substructure while the
second substructure is a differential equation representation of the remaining soil
domain. For a more comprehensive treatment of this important subject, the reader is
referred to the excellent books by Dr. John P. Wolf.1

Kinematic Interaction for Translational Excitation; the Tau Effect

Kinematic interaction due to translational excitation is discussed here with ref-
erence to the rigid, rectangular basemat shown in Fig. 27-1. When the free-field
earthquake motions vary significantly within the area where this mat is located, it
is apparent that they will be constrained to some extent by the rigid mat. If the di-
mensions D and L of the mat are small compared with the apparent wave lengths in
the free-field motions over the frequency range of interest, the slab will exert little
constraint on the soil and the slab motions will be essentially the same as the free-field
motions at that location. But if the mat dimensions are of the same order as the wave
lengths, then the resulting slab motions will be only some average of the free-field
motions in that area.

Suppose, for example, that these free-field motions act in the x-direction only
and are independent of x, as denoted by the ground acceleration function v̈gx(y, t).
If these motions are caused by a single wave train moving in the y-direction with

1 Dynamic Soil-Structure Interaction (1985) and Soil-Structure Interaction Analysis in the Time Domain
(1988), both published by Prentice-Hall, Inc., Englewood Cliffs, N. J.
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apparent velocity Va, they can be expanded into an orthogonal series

v̈gx(y, t) =
∑

i

aix(t) γi(y) (27-1)

where the wave shape functions γi(y) satisfy the orthogonality condition

∫ D

0

γi(y) γk(y) dy = 0 (i 6= k) (27-2)

A reasonable set of assumed dimensionless displacement functions γi (i = 1, 2, · · ·)
is

γ1(y) = 1

γ2(y) = 1 − 2y

D
γ3(y) = · · ·





0 < y < D (27-3)

which express the vibration mode shapes of a uniform free-free beam. The first two
functions represent the rigid-body modes while the others correspond to the flexural
modes. The acceleration coefficients aix may be evaluated by multiplying both sides
of Eq. (27-1) by γk(y), integrating with respect to y from zero to D, and using the
orthogonality relation Eq. (27-2). The first two coefficients obtained in this way are

a1x(t) =
1

D

∫ D

0

v̈gx(y, t) dy

a2x(t) =
3

D

∫ D

0

(
1 − 2y

D

)
v̈gx(y, t) dy

(27-4)

The first term in Eq. (27-1) represents uniform rigid-body translation in the x-direction
over the entire base area, the second term represents rigid-body rotation about the
vertical z-axis, and the remaining terms represent motions which would be filtered out
by a rigid foundation. Since only the first term is effective as a translational input to
the structure, the resulting acceleration of the rigid base can be taken as

ax(t) =
1

D

∫ D

0

v̈gx(y, t) dy (27-5)

Now if the free-field ground acceleration at a selected value of y, as produced
by the wave train, say at y = 0, is designated as v̈gx(t), it can be expressed as the
combination of a sequence of harmonic terms, i.e., by the Fourier integral

v̈gx(t) =
1

2π

∫ ∞

−∞
A(iω) exp(iωt) dω (27-6)
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where

A(iω) =

∫ ∞

−∞
v̈gx(t) exp(−iωt) dt (27-7)

The motions at any other value of y, v̈gx(y, t), can then be expressed as

v̈gx(y, t) =
1

2π

∫ ∞

−∞
A(iω) exp

[
iω(t− y

Va
)
]
dω (27-8)

Substituting Eq. (27-8) into Eq. (27-5) and integrating over y give

ax(t) =
1

2π

∫ ∞

−∞
A(iω)

[
exp
(
−iωD

Va

)
− 1

(
−iω D

Va

)
]

exp(iωt) dω (27-9)

This equation shows that the modified rigid-base translational input acceleration ax(t)

is obtained by Fourier transforming the specified single-point acceleration v̈gx(t),
Eq. (27-7), multiplying the resulting function A(iω) by the complex square bracket
term in Eq. (27-9), and then inverse Fourier transforming in accordance with the same
equation.

If a τ -factor is now defined as the ratio of amplitudes of the harmonics in the
rigid-base translational motion, Eq. (27-9), to the corresponding free-field amplitudes
in Eq. (27-6), one obtains

τ =
1

α

√
2 (1 − cosα) (27-10)

where
α ≡ ω D

Va
=

2π D

λ(ω)
(27-11)

and the wave lengths, denoted by λ(ω), equal 2π Va

/
ω. A plot of this τ -factor over

the range 0 < α < 5π
/
2 is shown in Fig. 27-2. Note that it diminishes from unity for

an infinite wave length (λ = ∞) at α = 0, to zero at α = 2π, where the wave length
is equal to the base dimension (λ = D).

FIGURE 27-2
τ − factor as a function of frequency and apparent wave velocity.
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Consider, for example, an offshore gravity tower having a base dimension
D = 400 ft resting on relatively soft soil conditions having a shear wave velocity
equal to 1, 000 ft/sec. For a wave train moving horizontally withVa = 1, 000 ft/sec,
the τ -factor for a frequency of 1 Hz would be equal to 0.757 showing a considerable
reduction in the excitation at 1Hz. Since a tower such as this may have a fundamental
frequency similar to this value, the τ -factor could significantly lower the excitation at
its fundamental frequency, thus reducing response accordingly.

Direct Inclusion of a Bounded Soil Layer

It is evident from the foregoing description that the “Tau Effect” accounts for
only a very limited aspect of soil-structure interaction: just the kinematic effect of
earthquake motions that vary within the contact zone of the structure. To deal fully
with the SSI mechanism, the soil must be represented explicitly in the analytical
model, and in principle it appears that this could be done by merely combining a layer
of soil with the model of the structure; in fact, some of the earliest attempts to deal
with SSI treated the problem in this way.

Unfortunately, this direct approach has the major deficiency that the bounded
soil model does not allow vibration energy in the structure and soil to propagate away,
and thus it ignores an effective damping mechanism. For this reason a bounded soil
layer model should be used only in cases where the soil supporting the structure is
underlain by a very stiff rock layer as depicted by Fig. 27-3. If the soil is modelled as a
finite-element assemblage, as suggested there, a direct analysis may be performed for

FIGURE 27-3
Finite-element model of combined structure and supporting soil.

Structure and soil response
degrees of freedom

v(t)

Rigid base, input
degrees of freedom

v̈g (t)

Interface

Structure

Foundation medium Free soil boundary
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the combined soil-structure system by means of Eq. (26-67), if the nodal displacements
of both soil and structure are considered as response displacements and the input is
represented by prescribed motions of any selected number of nodes at the rock base.

One deficiency of this formulation is that the earthquake excitation is applied
at the base of the soil layer, whereas the seismic input usually is expressed in terms
of accelerograms recorded at the free-field soil surface. Consequently it is useful to
reformulate the response equation so that the effective input is expressed in terms of
the free-field motions of the soil layer. Such a reformulation is described in the first
edition of this text2 and need not be restated here. It must be recognized, however,
that the free-field input considered in that formulation is associated with a bounded
soil layer; therefore the analysis procedure developed there should be used only if the
soil is resting on rigid-base rock.

27-2 SUBSTRUCTURE ANALYSIS OF SSI RESPONSE

As was explained above, in a substructure analysis of SSI the foundation mech-
anism and the structure are represented as two independent mathematical models —
or substructures. The connection between them is provided by interaction forces
of equal amplitude but acting in opposite directions on the two substructures. The
total motions developed at the interface are the sum of the free-field motions at the
interface of the soil without the added structure plus the additional motions resulting
from the interaction. The dynamic equilibrium relationships for the interface degrees
of freedom are written in terms of these motions and then are solved to determine
the resulting displacements. Because the stiffness and damping properties of the soil
substructure are frequency dependent, it is most convenient to carry out the earthquake
response analysis in the frequency domain and then to obtain the response history by
transforming back to the time domain. In this presentation, this method of analysis is
first described in detail for the very simple case of a SDOF structure supported by a
rigid foundation slab resting on an elastic half-space. The concepts are then extended
to the analysis of a MDOF structure resting on a flexible base system. In this case, the
excitation may include any number of prescribed independent free-field components
of motion.

Lumped SDOF System on Rigid Mat Foundation

Consider now the lumped SDOF elastic system shown in Fig. 27-4a which is
supported on a rigid basemat of mass m0 and mass moment of inertia J0 (about the
x-axis) which is, in turn, supported on an elastic half-space. For this case, assume
the horizontal dimensions of the basemat are sufficiently small so that the τ -effect
described in Section 27-1 is negligible. The uniform free-field ground acceleration

2 Dynamics of Structures, McGraw-Hill Book Company, New York (1975), pp. 584–588.
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FIGURE 27-4
Lumped SDOF elastic system on rigid mat foundation.
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v̈g(t) in the y-direction at the half-space surface will then cause foundation forces to
develop at the interface between the basemat and the half-space, forcing the basemat
to translate and rotate as indicated in Fig. 27-4b. Since substructuring, with the total
structure as Substructure No. 1 and the soil foundation as Substructure No. 2, will be
used in this formulation, a rigid massless plate is assumed to be present on the surface
of the half-space to insure its displacement compatibility with the lower surface of the
rigid basemat. Note that the total base displacement vt

g(t) shown in Fig. 27-4b equals
the ground free-field surface displacement vg(t) plus the added displacement vI

g(t)

caused by soil-structure interaction, i.e.,

vt
g(t) = vg(t) + vI

g(t) (27-12)

The basemat rotation θI(t) is, of course, totally caused by soil-structure interaction
since no free-field ground rotation is being considered in this case.

The substructure method will now be used to develop the governing equilibrium
equations of motion expressed in terms of the parameters of the overall system and the
three unknown displacements v(t), vI

g(t), and θI(t) where v(t) is the motion of mass
m relative to the base, as shown in the figure. Because of soil-structure interaction
which allows displacements vI

g(t) and θI(t) to take place, the overall system has
3DOF; otherwise it would be a SDOF system as treated previously.

To obtain the equations of motion for Substructure No. 1, first the mass m is
isolated to get its horizontal force equilibrium equation:

m v̈ + 2mω ξ v̇ + k v +mh θ̈I +m üI
g +m v̈g = 0 (27-13)
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where
ξ = c

/
2mω ω =

√
k
/
m (27-13a)

Next, the entire structure (Substructure No. 1) is isolated from the elastic half-space
(Substructure No. 2) to get the substructure horizontal force equilibrium equation, as
follows:

m v̈ +mh θ̈I + (m+m0) v̈
I
g + (m+m0) v̈g = V0(t) (27-14)

where V0(t) denotes the base interaction shear force. Finally, moments about the
centroidal x-axis of the basemat are summed for Substructure No. 1 to obtain

mh v̈ + (mh2 + J + J0) θ̈
I +mh v̈I

g +mh v̈g = M0(t) (27-15)

in which M0(t) is the base interaction moment. Fourier transforming Eqs.(27-13),
(27-14), and (27-15) gives the corresponding equations of motion for Substructure
No. 1 in the frequency domain as

(−ω2m+ 2iωωξm+ k) V(iω) − ω2mh ΘI(iω)

− ω2m VI
g(iω) +m V̈g(iω) = 0

−ω2m V(iω) − ω2mh ΘI(iω) − ω2(m+m0) VI
g(iω)

+ (m+m0) V̈g(iω) = V0(iω) (27-16)

−ω2mh V(iω) − ω2(mh2 + J + J0) ΘI(iω)

− ω2mh VI
g(iω) +mh V̈g(iω) = M0(iω)

The equations of motion for Substructure No. 2 involve only the two soil-
structure interaction DOF, vI

g(t) and θI(t). These equations for a circular rigid basemat
are given by the solutions of Veletsos and Wei3 and/or Luco and Westman4 which
provide the complex frequency dependent compliance functions (dynamic flexibility
functions) for a rigid massless circular plate resting on the surface of an isotropic
homogeneous elastic half-space. By subjecting the rigid plate separately to each of
the four unit amplitude harmonic forces shown in Fig. 27-5, and treating the half-space
as a continuum, these authors solved the governing 3-D equations of motion to obtain
the corresponding compliance functions which are coupled only in the translational
and rocking modes. Inverting this set of compliance functions gives the corresponding

3 A. S. Veletsos and Y. T. Wei, “Lateral and Rocking Vibrations of Footings,” Jour. of the Soil Mechanism
and Foundations Division, ASCE, Vol. 97, 1971.

4 J. E. Luco and R. A. Westman, “Dynamic Response of Circular Footings,” Jour. of the Engineering
Mechanism Division, ASCE, Vol. 97, (EM5), 1971.
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FIGURE 27-5
Rigid massless circular plate on half-space.

Half-space
p, G, v

− v(t) = exp (i ω t)
− M(t) = exp (i ω t)

− T(t) = exp (i ω t)

− p(t) = exp (i ω t)

2R

complex frequency dependent impedance functions (dynamic stiffness functions) in
the form

G(ia0) = GR(a0) + i GI(a0) (27-17)

where superscripts R and I refer to the real and imaginary parts, respectively, and a0

is a dimensionless frequency defined by

a0 ≡ Rω
/
Vs (27-18)

in which Vs is the shear wave velocity for the material of the uniform half-space and
R is the radius of the circular plate. Plots of GR(a0) and GI(a0) in nondimensional
form are shown subsequently in Fig. 27-6 for each excitation case, namely (a) vertical
translation, (b) torsion, (c) lateral translation, (d) rocking, and (e) coupled lateral
translation and rocking. Each nondimensional graph of GR(a0) and GI(a0) in this
figure is expressed in terms of plate radius R, and the shear modulus and Poisson’s
ratio of the half-space material are denoted by G and ν, respectively.

Using these impedance functions, the interaction forces acting on Substructure
No. 2 in Fig. 27-4b are given in the frequency domain by

{ −V0(iω)

−M0(iω)

}
=

[
GvI

gvI
g
(iω) GvI

gθI (iω)

GθIvI
g
(iω) GθIθI (iω)

] {
VI

g(iω)

ΘI(iω)

}
(27-18)

where impedances GvI
gvI

g
(iω), GθIθI (iω), and GvI

gθI (iω) = GθIvI
g
(iω) are given by

the dimensionless plots shown in Figs. 27-6c, d, and e, respectively.

After writing Eqs. (27-16) in matrix form and substituting Eq. (27-19) for the
interaction forces, one obtains




G11 G12 G13

G21 G22 G23

G31 G32 G33








V(iω)

VI
g(iω)

ΘI(iω)





=





−m

−(m+m0)

−mh





V̈g(iω) (27-20)
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Rigid massless circular plate impedances.
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where
G11 = −ω2m+ 2 i ω ω ξ m+ k

G12 = G21 = −ω2m

G13 = G31 = −ω2mh

G22 = −ω2 (m+m0) +GvI
gvI

g
(iω)

G23 = G32 = −ω2mh+GvI
gθI (iω)

G33 = −ω2 (mh2 + J + J0) +GθIθI (iω)

(27-21)

Having the prescribed free-field ground acceleration v̈g(t), it can be Fourier trans-
formed to give V̈g(iω); then Eqs. (27-20) can be solved for discrete values of ω giving
responses V(iω), VI

g(iω), and ΘI(iω) in the frequency domain. Inverse Fourier
transforming these responses gives v(t), vI

g(t), and θ(t).

Direct use of the impedances in Fig. 27-6 implies that the basemat for the above
system is rigid and circular. If it is indeed rigid but square of dimension 2b rather than
circular of diameter 2R, these circular plate impedances still can be used to get an
approximate solution by simply substituting a circular basemat of radius R = 1.13b

which has the same area. When the basemat is rigid and rectangular of area 2b1×2b2,
this equivalent area approach is not valid if the two dimensions b1 and b2 differ
significantly. Regardless of the shape of the basemat, the above approach cannot be
used when the basemat is flexible rather than rigid. The engineer should check to be
sure it is sufficiently rigid to justify the above type of solution.

General MDOF System with Multiple Support Excitation

The substructure method previously applied to the system shown in Fig. 27-4
will now be used to formulate the governing equations for a general system subjected
to multiple earthquake excitations. As examples, suppose one wishes to consider the
structures shown in Fig. 27-7, namely a tall smoke stack, an earth dam, and a nuclear
power plant containment building with associated heavy equipment. Application of

FIGURE 27-7
Example structures for soil-structure interaction analysis.



680 DYNAMICS OF STRUCTURES

this method requires that the two substructures be defined specifically. Substructure
No. 1 will consist of the structure itself and it may or may not include a portion of the
foundation soil near its base. This substructure will be modelled appropriately using
the lumped-parameter or finite-element method. It will be subjected to the forces
which develop at its interface with Substructure No. 2, which in turn is subjected
to these same forces acting in the opposite directions. Because this substructure is
modeled as a continuum, the interaction forces are defined in terms of a matrix of
impedance functions. While this general case is more complex in its formulation than
the simple case of Fig. 27-4, the basic principles involved are the same.

Suppose the substructuring of the systems of Fig. 27-7 is adopted as shown in
Fig. 27-8. Since the smoke stack is essentially surface supported, the stack itself could
be taken as Substructure No. 1 and the half-space of soil below as Substructure No. 2.
In this case, a 3-D analysis could be carried out using the impedance functions for
a rigid massless circular plate resting on an elastic half-space. For the embankment
dam, one would most likely choose to carry out a 2-D analysis using a dam cross
section of unit thickness as Substructure No. 1 and the corresponding 2-D half-space
below as Substructure No. 2. Depending upon possible variations in soil conditions
below the dam, one may decide to also include a portion of the foundation soil
as part of Substructure No. 1 as shown in Fig. 27-8c. Finite-element modeling
would undoubtedly be used for Substructure No. 1 and the impedances representing
Substructure No. 2 would probably be of a rather simple form as described later. In
the case of the nuclear power plant containment building shown in Fig. 27-8d, a 3-D
analysis can be carried out using the building, its associated heavy equipment, and a
portion of soil within a hemispherical boundary as Substructure No. 1, while a half-
space with a hemispherical cavity is used for Substructure No. 2. The containment

FIGURE 27-8
Substructures Nos. 1 and 2 for the systems shown in Fig. 26-7.

(a) (b)

(c)

(d)



DETERMINISTIC EARTHQUAKE RESPONSE: INCLUDING SOIL-STRUCTURE INTERACTION 681

structure and soil in the near field could be modelled using axisymmetric finite elements
while the heavy equipment would be modelled appropriately using lumped-parameter
systems. The far field, Substructure No. 2, would be modelled through a set of
impedance functions yet to be defined, which would be compatible with the generalized
DOF chosen for the near-field nodal rings at the hemispherical boundary.

To formulate the governing equations for the general soil-structure system, let
nb represent the number of DOF at the soil-structure interface, nd the number of DOF
at the interface of Substructure Nos. 1 and 2, na the number of DOF in the structure
(including heavy equipment, if present) but excluding the nb DOF, and nc the number
of DOF in the soil region but excluding the nb and nd DOF. The dynamic equilibrium
equations of motion for Substructue No. 1 can be written in the form



maa mab 0
... 0

mba mbb mbc

... 0

0 mcb mcc

... mcd

. . . . . . . . . . . . . . .

0 0 mdc

... mdd








v̈t
a

v̈t
b

v̈t
c

. . .

v̈t
d





+




caa cab 0
... 0

cba cbb cbc

... 0

0 ccb ccc

... ccd

. . . . . . . . . . . . . . .

0 0 cdc

... cdd








v̇t
a

v̇t
b

v̇t
c

. . .

v̇t
d





+




kaa kab 0
... 0

kba kbb kbc

... 0

0 kcb kcc

... kcd

. . . . . . . . . . . . . . .

0 0 kdc

... kdd








vt
a

vt
b

vt
c

. . .

vt
d





=





0

0

0

. . .

pt
d





(27-22)

where the displacement vector represents total displacements from a fixed reference
and where pt

d represents total nodal forces developed between Substructure Nos. 1
and 2. Partitioning this equation as indicated, it can be written in the simplified form
[

m mg

mT
g mdd

]{
v̈t

v̈t
d

}
+

[
c cg

cT
g cdd

]{
v̇t

v̇t
d

}
+

[
k kg

kT
g kdd

]{
vt

vt
d

}
=

{
0

pt
d

}

(27-23)

To assist in the solution of this equation, the total displacement vector is separated
into two quasi-static vectors and a dynamic vector as follows:

{
vt

vt
d

}
=

{
ṽs

ṽs
d

}
+

{
v̂s

v̂s
d

}
+

{
vd

vd
d

}
(27-24)

The first of these components 〈ṽsT ṽs
d

T 〉T , which can be written out as

〈ṽs
a

T ṽs
b

T
ṽs

c

T ṽs
d

T 〉T , is defined such that the vectors ṽs
b , ṽs

c, and ṽs
d have the
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values of the seismic free-field ground displacements vbg
, vcg

, and vdg
, respectively.

Vector ṽs
a is the quasi-static displacements that result from imposing the free-field

ground motions at the interface of the added structure while its other nodes are al-
lowed to move freely, i.e., letting p̃s

a = 0. These displacements may be calculated
from the first of Eqs. (27-22) after excluding dynamic effects by setting the velocity
and acceleration terms to zero, with the result

ṽs
a = −k−1

aa kab ṽs
b ≡ −k−1

aa kb vbg
(27-25)

However, restraint forces p̃s
b must be applied to the added structure to maintain

its required interface displacements vbg
while these quasi-static motions are developed.

The values of these restraints may be determined from the static version of the second
of Eqs. (27-22); thus considering only the stiffness coefficients of the added structure

kba ṽs
a + k(2)

bb ṽs
b = p̃s

b (27-26)

where the superscript (2) indicates that only those quantities contributed by the struc-
ture are included. Substituting the displacement expression of Eq. (27-25), this may
be written

p̃s
b =

[
k(2)

bb − kbak−1
aa kab

]
vbg (27-27)

Since these quasi-static forces do not actually exist, they are removed from
the analysis by applying to the complete Substructure No. 1 a corresponding vector
acting in the reverse direction. The results of this action are determined in a separate
quasi-static analysis for which the governing equation may be written

[
k kg

kT
g kdd

]{
v̂s

v̂s
d

}
=

{−p̃s

p̂s
d

}
(27-28)

The interaction forces p̂s
d shown in this equation act both on this substructure as well

as in the opposite direction on Substructure No. 2. The values of these (negative)
forces acting on this continuum substructure depend on the frequency of excitation
and are expressed most conveniently in the frequency domain as follows:

−P̂
s

d(iω) = Gdd(iω) V̂
s

d(iω) (27-29)

in which the impedance matrix Gdd(iω) expresses the dynamic resistance of Sub-
structure No. 2 and V̂

s

d(iω) is the Fourier transform of the displacements v̂s
d.

The total forces associated with these interface displacements are obtained by
combining the contribution of Substructure No. 2 [Eq. (27-29)] with that from the
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first substructure given by the Fourier transformed version of Eq. (27-28) using the
concept of direct stiffness assembly, with the following result:

[
k kg

kT
g [kdd +Gdd(iω)]

]{
V̂

s
(iω)

V̂
s

d(iω)

}
=

{−P̃s(iω)

0

}
(27-30)

in which it will be noted that the interface forces have cancelled each other. In this
equation, P̃

s
(iω) =< 0 P̃s

b

T
(iω) 0 >T in which P̃

s

b(iω) may be obtained from the
Fourier transformed version of Eq. (27-27):

P̃
s

b(iω) = − 1

ω2

[
k(2)

bb − kbak−1
aa kab

]
V̈bg

(iω) (27-31)

Substituting this into the solution of Eq. (27-30), given by
{

V̂
s
(iω)

V̂
s

d(iω)

}
=

[
k kg

kT
g [kdd +Gdd(iω)]

]−1{−P̃s(iω)

0

}
(27-32)

leads finally to a frequency-domain expression for this quasi-static displacement vector
stated in terms of the free-field accelerations at the interface degrees of freedom.

Now to obtain an expression for the dynamic response to the seismic input, vd,
Eq. (27-24) is substituted into the equation of dynamic equilibrium, Eq. (27-23), and
the effective load terms resulting from the quasi-static motions are transferred to the
right hand side, with the following result:
[

m mg

mT
g mdd

]{
v̈d

v̈d
d

}
+

[
c cg

cT
g cdd

]{
v̇d

v̇d
d

}
+

[
k kg

kT
g kdd

]{
vd

vd
d

}

= −
[

m mg

mT
g mdd

]{ ¨̃v
s
+ ¨̂v

s

¨̃v
s

d + ¨̂v
s

d

}
−
[

c cg

cT
g cdd

]{ ˙̃v
s
+ ˙̂v

s

˙̃v
s

d + ˙̂v
s

d

}

−
[

k kg

kT
g kdd

]{
ṽs

+ v̂s

ṽs
d + v̂s

d

}
+

{
0

pt
d

}
(27-33)

This equation may be simplified by incorporating into it the governing equation
for free-field response of the soil and also the two equations for the quasi-static
response motions. The governing equation for the free-field soil response is obtained
by removing the structure’s contribution to the system property matrices in Eq. (27-23)
(noting that ṽs represents motions of the soil only) and denoting the interface forces
for this soil model by pdg , with the following result:
[

m(1) mg

mT
g mdd

]{ ¨̃v
s

v̈dg

}
+

[
c(1) cg

cT
g cdd

]{ ˙̃v
s

v̇dg

}
+

[
k(1) kg

kT
g kdd

]{
ṽs

vdg

}
=

{
0

pdg

}

(27-34)
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in which the superscript (1) indicates that the matrix contains only those coefficients
contributed by the soil. The static force-displacement relationship for the added
structure subjected to the free-field ground motions that was used previously in deriving
Eqs. (27-26) and (27-27) may be written here as

[
k(2) 0

0 0

]{
ṽs

vdg

}
=

{
p̃s

0

}
(27-35)

where the superscript (2) indicates that the matrix only contains coefficients from
the structure. The corresponding relationships for the combined system subjected to
these same restraint forces but acting in the opposite direction was given previously
by Eq. (27-28).

If the force vector at the right side of each of Eqs. (27-34), (27-35), and (27-28)
is transferred to the left side, the result in each case is a zero vector which can be
added to the right side of Eq. (27-33) without affecting the equilibrium. Taking this
step, it is found that Eq. (27-33) may be simplified to the following form:

[
m mg

mT
g mdd

]{
v̈d

v̈d
d

}
+

[
c cg

cT
g cdd

]{
v̇d

v̇d
d

}
+

[
k kg

kT
g kdd

]{
vd

vd
d

}

= −
[

m(2) 0

0 0

]{ ¨̃v
s

¨̃v
s

d

}
−
[

m mg

mT
g mdd

]{ ¨̂v
s

¨̂v
s

d

}
−
[

c(2) 0

0 0

]{ ˙̃v
s

˙̃v
s

d

}

−
[

c cg

cT
g cdd

]{ ˙̂v
s

˙̂v
s

d

}
+

{
0

pt
d − pdg − p̂s

d

}
(27-36)

The damping terms on the right hand side of this equation make little contribution to
the effective load of a relatively low damped system, say ξ < 0.1, and can be neglected.
Thus defining the combined interface force terms in the equation as follows:

pd
d = pt

d − pdg − p̂s
d (27-37)

the Fourier transformed version of Eq. (27-35) becomes

[
−ω2

[
m mg

mT
g mdd

]
+ iω

[
c cg

cT
g cdd

]
+

[
k kg

kT
g kdd

]]{
Vd(iω)

Vd
d(iω)

}

= ω2

[
m(2) 0

0 0

]{
Ṽ

s
(iω)

Ṽ s
d (iω)

}
+ ω2

[
m mg

mT
g mdd

]{
V̂

s
(iω)

V̂
s

d(iω)

}
+

{
0

Pd
d(iω)

}

(27-38)
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Before Eq. (27-38) can be used in practical dynamic response analysis, it is
necessary to simplify the effective load expression on the right hand side. First the
vector Pd

d(iω) in the third term is expressed using the impedance matrix of Substructure
No. 2, similar to Eq. (27-29) for the quasi-static motions; thus

−Pd
d(iω) = Gdd(iω) Vd

d(iω) (27-39)

and this expression is combined with the stiffness matrix terms on the left side of
Eq. (27-38). Next, it is apparent that displacements Ṽ

s
(iω) and Ṽ

s

d(iω) contribute
nothing to the first term of the effective loading because of the zero submatrices in m(2).
In addition, because Ṽ

s

a(iω) can be expressed in terms of Vbg(iω) by Eq. (27-25),
only the free-field motions in the nb DOF remain to contribute to this term. Likewise,
Eqs. (27-31) and (27-32) show that only these same free-field motions contribute to
the second term. Making use of all these relationships, Eq. (27-38) can be put in the
following form:

[
−ω2

[
m mg

mT
g mdd

]
+ iω

[
c cg

cT
g cdd

]
+

[
k kg

kT
g

[
kdd + Gdd(iω)

]

]]{
Vd(iω)

Vd
d(iω)

}

= k(iω) V̈bg(iω) (27-40)

where k(iω) is an nb × nb matrix given by

k(iω) =

[
m(2) 0

0 0

]{
φ̃φφ

s

0

}
+

[
m mg

mT
g mdd

][
k kg

kT
g

[
kdd + Gdd(iω)

]

]−1{
φ̂φφ

s

0

}

(27-41)
in which

φ̃φφ
s ≡





−r

−I

0





φ̂φφ
s ≡





0
[
k(2)

bb + kT
abr
]

0





(27-42)

Matrix r = −k−1
aa kab contains the static displacement influence coefficients previ-

ously defined by Eq. (26-71) and matrix I is an nb×nb identity matrix. Matrix k(iω) is
complex and frequency dependent because it involves the impedance matrix Gdd(iω).

If the free-field soil accelerations at the location of the soil-structure interface
are known, then Eq. (27-40) can be solved for discrete values of ω by the standard
procedures of frequency-domain analysis giving the dynamic displacement vectors
Vd(iω) and Vd

d(iω). Combining these vectors with vectors Ṽ
s
(iω), Ṽ

s

d(iω), V̂
s
(iω),

and V̂
s

d(iω), consistent with Eq. (27-24), one obtains the total displacement vectors
Vt(iω) and Vt

d(iω) which can be inverse Fourier transformed to give the corresponding
time-domain vectors vt(t) and vt

d(t). The internal stresses and deformations in the
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complete near-field soil-structure system (Substructure No. 1) can then be obtained
by standard procedures of static analysis.

At this point, it should be emphasized that the complete solution as described
above requires that the free-field ground motions V̈bg(iω), V̈cg(iω), and V̈dg(iω)

be known. For a structure having embedment, such as the nuclear power plant
containment building shown in Fig. 27-8d, these motions include wave scattering
effects due to the presence of the surface cavity left upon removal of the structure.

To account for such wave scattering effects, as is necessary to obtain a rigorous
solution, the full foundation half-space is substructured as shown in Fig. 27-9; in this
case, the soil in the cavity region is used as a substitute for the structure in the previous
formulation. Using standard finite-element modeling for the soil in this region results
in nA +nb DOF where the nb DOF should be identical to those previously defined for
the soil-structure system. The nA DOF within the soil region shown in Fig. 27-9 are,
of course, different from the na DOF previously defined for the structure. All of the
equations previously developed for the soil-structure system, Eqs. (27-22) through (27-
42), can be used in exactly the same forms to represent the full half-space soil system
by simply changing all subscripts “a” appearing in these equations to “A” to adjust
for substituting the soil in the cavity region for the structure. In this case, the second
and third vectors on the right hand side of the modified Eq. (27-24), as expressed in
the frequency domain, and the modified vector Ṽ

s

A(iω) in this same equation can be
expressed in terms of vector V̈bg(iω) = −ω2 Vbg(iω) using the modified Eqs. (27-32),
(27-33), (27-34), (27-40), (27-41), and (27-42). The vector on the left hand side of the
modified Eq. (27-24) represents total free-field displacements in the full foundation
half-space with no cavity or structure present. By hypothesizing the types of waves
traveling in the foundation half-space, this vector can be stated a priori. Then using
the modified Eq. (27-24) in its frequency-domain form, the desired vectors Vbg(iω),
Vcg(iω), and Vdg(iω) can be determined. These vectors are identical to the free-field

Half-space with
surface cavity

Far field

Near field

FIGURE 27-9
Modeling of foundation full 
half-space.

nb

nc

nd

nd

nA

Soil
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motions previously expressed for the soil-structure system because they include the
wave scattering effects due to presence of the surface cavity; therefore, they can be
used in carrying out the previously described complete solution for the soil-structure
system.

If the structure under consideration has relatively small dimensions at its inter-
face with the soil region so that the wave lengths of the free-field seismic motions in
the critical frequency range of interest are much larger in comparison, wave scattering
effects will be quite small, allowing them to be neglected, and the spatial variations
of motions within these small distances in the full half-space foundation will also be
small. In this case, one can assume the components of free-field acceleration in vector
v̈bg(t) to be reasonably similar; thus, the approximate relation

v̈bg(t)
.
= rbg v̈g(t) (27-43)

can be used where rbg is an nb×3 rigid-body static displacement influence coefficient
matrix and v̈g(t) is a three-component vector containing the average over the cavity
surface of the free-field accelerations v̈gx(t), v̈gy(t), and v̈gz(t) in the x-, y-, and z-
directions, respectively. Using the corresponding frequency-domain expression,

V̈bg(iω) = rbg V̈g(iω) (27-44)

the previously described solution for the soil-structure system is greatly simplified
because vectors Ṽa(iω) and Ṽb(iω) correspond to rigid-body-type displacements of
the structure that cause no deformations and vectors V̂

s
(iω) and V̂

s

d(iω) become zero
vectors. Therefore, we are only interested in the dynamic solution given by Eq. (27-40)
which now has a simplified form on its right hand side, i.e.,

k(iω) V̈bg(iω) = k V̈g(iω) (27-45)

where k is an n× 3 matrix given by

k =

[
m(2) 0

0 0

]{
φ̃φφ

s

0

}
(27-46)

in which

φ̃φφ
s ≡





−rag

−rbg

0





(27-47)

and where rag and rbg are na × 3 and nb × 3 matrices, respectively, containing the
rigid-body displacement influence coefficients corresponding to unit displacements in
coordinates vgx, vgy, and vgz . Note that k in this case is frequency independent. Upon
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substitution of Eq. (27-45), Eq. (27-40) can be solved by the standard procedure of
frequency-domain analysis, and the stresses and deformations in the entire near-field
soil-structure system due to vd(t) can be determined using basic finite-element meth-
ods of static analysis. It should be noted, however, that these stresses and deformations
are only those produced by soil-structure interaction. To obtain total stresses and de-
formations, these results must be superimposed on the free-field stresses produced
by the traveling seismic waves. Also it should be noted that all accelerations in the
structure given by v̈d(t) represent only accelerations relative to the input accelerations
in v̈g(t); thus, the rigid-body accelerations produced by v̈g(t) must be added to those
produced by v̈d(t) to obtain absolute values.

In all of the above linear formulations of this section, material damping of the
viscous form has been used for Substructure No. 1. However, since the frequency-
domain form of solution is being used, it is more efficient and effective to use material
damping of the hysteretic form, that is, to use the complex stiffness matrix of the form

kc = k + i c (27-48)

where

c = 2 ξ k (27-49)

in place of the corresponding real stiffness matrix k, with the damping ratio ξ selected
appropriately for the material of each finite element of the system. Using this for-
mulation, all previously indicated viscous damping terms can be removed from the
equations.

Even though all of the foregoing formulations for treating soil-structure interac-
tion are linear, they can still be used when nonlinear soil behavior is experienced close
to the base of the structure by using the equivalent linearization procedure commonly
implemented into soil-structure interaction computer programs.5,6,7,8

5 H. B. Seed, R. T. Wong, I. M. Idriss, and K. Tokimatsu, “Moduli and Damping Factors for Dynamic
Analysis for Cohesionless Soils,” University of California, Berkeley, Earthquake Engineering Research
Center, Report No. EERC 84-14, 1984.

6 B. O. Hardin and V. P. Drnevich, “Shear Modulus and Damping in Soils: Design Equations and Curves,”
Jour. of the Soil Mechanics and Foundation Division, ASCE, Vol. 98, No. SM7, July, 1972.

7 J. Lysmer, T. Udaka, C. F. Tsai, and H. B. Seed, “Flush — A Computer Program for Approximate
3-D Analysis of Soil-Structure Interaction Problem,” University of California, Berkeley, Earthquake
Engineering Research Center, Report No. EERC 75–30, 1975.

8 I. Katayama, C. H. Chen, and J. Penzien, “Near-Field Soil-Structure Interaction Analysis Using Nonlinear
Hybrid Modeling,” Proc. SMIRT Conference, Anaheim, Ca., 1989.
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Generation of Boundary Impedances

In the preceding treatment of the seismic response of soil-structure systems by
the substructure method of analysis, an impedance matrix relating the boundary forces
of Substructure No. 2 to its corresponding boundary displacements has been used, e.g.,
matrix Gdd(iω) in Eq. (27-29). In the past, analysts have often implicitly assumed
the impedances in this matrix to have infinite numerical values, i.e., rigid boundary
conditions have been assumed. In these cases, the interface between Substructures
1 and 2 is usually chosen to be some distance away from the base of the structure
itself, as described above with reference to the direct SSI analysis of a system with a
bounded soil layer. However, this rigid-boundary assumption may lead to erroneous
results, and in most cases an appropriate impedance matrix that represents the actual
foundation conditions is preferable to a bounded soil layer model. In the following,
some commonly used procedures for generating the impedance matrix are described.

One-Dimensional Plane Waves — In many cases, the interaction between Sub-
structures 1 and 2 produce traveling waves in the far field which can be modelled
reasonably well using one-dimensional plane waves. For example, consider the 2-D
model of an earth dam shown in Fig. 27-8b. If the foundation below the dam is
reasonably uniform in the horizontal directions, the dam-foundation interaction forces
produced by horizontal earthquake ground motions will be primarily shear forces
causing shear waves propagating downward into the half-space and the interaction
forces caused by vertical ground motions will be primarily normal forces producing
downward-propagating compression waves. It is reasonable, in this case, to generate
the boundary impedance matrix assuming such waves to be one-dimensional in form.

To illustrate the type of motion induced by horizontal earthquake excitations,
let us first consider a semi-infinite shear-beam column of unit cross-sectional area
located in a uniform foundation half-space as indicated in Fig. 27-10a. The equation
of horizontal motion for this uniform column is equivalent to that discussed in Chapter

FIGURE 27-10
Substructure No. 2 as a uniform half-space having viscous boundary elements as its equivalent.
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19 [Eq. (19-25)], but here the motions are denoted v(z, t) so the equation becomes

v̈(z, t) − V 2
s v′′(z, t) = 0 (27-50)

in which

Vs =

√
G

ρ
(27-51)

is the shear wave propagation velocity and whereG is the shear modulus. The general
solution of this equation is equivalent to Eq. (19-27), and thus it may be written as the
sum of two traveling waves.

The dynamic behavior of the shear-beam column depicted in Fig. 27-10a can
also be expressed in terms of its shear stress distribution since

τ(z, t) = G γ(z, t) = G
∂v(z, t)

∂z
(27-52)

Thus by analogy with Eq. (19-29), when the stress wave functions G ∂f1

/
∂z and

G ∂f2
/
∂z are designated as g1 and g2, this equation may be written as

τ(z, t) = g1 (z − Vst) + g2 (z + Vst) (27-53)

showing both a forward- and a backward-propagating wave.

To establish the forms of the displacement functions f1, f2 and their correspond-
ing stress functions g1, g2, one must make use of prescribed boundary conditions. For
example, suppose the top of the shear-beam column is subjected to a harmonic dis-
placement

v(0, t) = v exp(iωt) (27-54)

Then, the steady-state v(z, t) takes the similar traveling waveform

v(z, t) = v exp
[
iω (t− z

Vs
)
]

= v exp(iωt) exp
(
−iω z

Vs

)
(27-55)

in order to satisfy this top boundary condition. The corresponding downward-traveling
shear wave is given by

τ(z, t) = G
∂v(z, t)

∂z
=
(−Giω

Vs

)
v exp(iωt) exp

(
−iω z

Vs

)
(27-56)

which shows that
τ(0, t) =

(−Giω
Vs

)
v exp(iωt) (27-57)

Since the upper-boundary impedance function for horizontal motion has been defined
through the relation

τ(0, t) = −Gy(iω) v(0, t) (27-58)
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it is seen by substitution of Eqs. (27-54) and (27-57) that

Gy(iω) = iGω
/
Vs (27-59)

Also, because the boundary shear stress of Eq. (27-57) is 90 degrees out-of-phase
with the corresponding boundary displacement of Eq. (27-54), the same boundary
impedance would be provided by the dash pot equivalent shown in Fig. 27-10b pro-
vided its coefficient is given by cs = G

/
Vs =

√
Gρ.

Using the above plane shear wave model for Substructure No. 2, the impedance
matrixGdd(iω) representing the horizontal boundary DOF would be diagonal in form
with each coefficient simply being the product of iGω

/
Vs and the tributary area

associated with the corresponding boundary node.

Let us now consider the case of Substructure No. 2 being a uniform layer of
depth H1 resting on a uniform half-space as shown in Fig. 27-11. In certain cases,
one can again generate an uncoupled boundary impedance matrix based on vertically
propagating plane waves traveling through both the layer and the half-space in this
case. Suppose the top of a shear-beam column of unit cross-sectional area as shown
in Fig. 27-11 is subjected to the horizontal harmonic displacement

v1(0, t) = v exp(iωt) (27-60)

Under steady-state conditions, the horizontal displacements in the layer will be given
by

v1(z1, t) =
[
A1 exp

(
−iω z1

Vs1

)
+B1 exp

(
iω

z1
Vs1

)]
exp(iωt) (27-61)

which represents both an upward-traveling wave and a downward-traveling wave.
Both types of waves must be present in order to satisfy the boundary conditions at

kp
ks

FIGURE 27-11
Substructure No. 2 as a uniform layer on a uniform half-space having viscous and spring boundary 
elements as its equivalent.
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both top and bottom of the layer. The shear stress distribution in the layer is given by
the corresponding relation

τ1(z1, t) = G1
iω

Vs1

[
−A1 exp

(
−iω z1

Vs1

)
+B1 exp

(
iω

z1
Vs1

)]
exp(iωt) (27-62)

The steady-state displacements in the half-space below will be given by

v2(z2, t) =
[
A2 exp

(
−iω z2

Vs2

)]
exp(iωt) (27-63)

which represents a downward-traveling wave only, and the corresponding shear stress
distribution is given by

τ2(z2, t) = G2
iω

Vs2

[
−A2 exp

(
−iω z2

Vs2

)]
exp(iωt) (27-64)

Making use of Eqs. (27-61) and (27-62) for x1 = 0 to satisfy the upper boundary
conditions of the layer, i.e., the displacement condition given by Eq. (27-60) and the
corresponding stress condition given by Eq. (27-58), one obtains

A1 =
1

2

[
1 +

Vs1Gy(iω)

G1 i ω

]
v (27-65)

and

B1 =
1

2

[
1 − Vs1Gy(iω)

G1 i ω

]
v (27-66)

Using Eqs. (27-61) and (27-63) for z1 = H1 and z2 = 0, respectively, to satisfy the
displacement compatibility condition at the layer/half-space interface, one obtains

A2 =
[
A1 exp

(
−iω H1

Vs1

)
+B1 exp

(
iω

H1

Vs1

)]
v (27-67)

Finally, using Eqs. (27-62) and (27-64) for z1 = H1 and z2 = 0, respectively, to
satisfy the stress compatibility condition at the layer/half-space interface and using
Eqs. (27-65), (27-66), and (27-67), the relation

Gy(iω) =
iG1 ω

Vs1

[
(1 + αs) exp(iβs) + (1 − αs) exp(−iβs)

(1 + αs) exp(iβs) − (1 − αs) exp(−iβs)

]
(27-68)

is obtained, where

αs ≡
√
G1 ρ1

G2 ρ2
βs =

ωH1

Vs1
(27-69)



DETERMINISTIC EARTHQUAKE RESPONSE: INCLUDING SOIL-STRUCTURE INTERACTION 693

Introducing the Euler equations to convert Eq. (27-68) from exponential form to
trigonometric form leads finally to

Gy(iω) =
iG1 ω

Vs1

[
αs + i [α2

s − 1] cosβs sinβs

α2
s cos2 βs + sin2 βs

]
(27-70)

Note that when αs = 1, i.e., when the layer and the half-space have the same
properties, Eq. (27-70) reduces to the imaginary form of Eq. (27-59) as it should. Also,
when αs = 0, representing a flexible layer resting on a rigid half-space, Eq. (27-70)
reduces to the real form

Gy(iω) =
G1 ω

Vs1
cotβs = Gy(ω) (27-71)

indicating that no energy can be transmitted downward through the lower boundary
of the layer into the rigid half-space. This impedance has zero values when the
nondimensional parameter βs equals π

/
2, 3π

/
2, 5π

/
2, etc., and infinite values when

it equals π, 2π, 3π, etc. Such values of impedance at these frequencies are caused
by matching of input frequencies ω with normal shear mode frequencies in the layer,
causing pure resonance to develop. The upper and lower boundary conditions of the
layer which produce these normal modes are free and fixed, respectively, for those
cases yielding zero impedances and fixed and fixed, respectively, for those cases
yielding infinite impedances.

Whenαs = ∞, representing a flexible layer resting on an inviscid fluid, Eq. (27-
70) reduces to the real form

Gy(iω) =
G1 ω

Vs1
tanβs = Gy(ω) (27-72)

again indicating that no energy can be transmitted downward through the lower bound-
ary of the layer into the half-space. This impedance has zero values when parameter
βs equals π, 2π, 3π, etc., and infinite values when it equals π

/
2, 3π

/
2, 5π

/
2, etc.

Again such values are caused by matching of input frequencies ω with normal shear
mode frequencies in the layer causing pure resonance to develop. The upper and lower
boundary conditions on the layer which produce these normal modes are free and free,
respectively, for those cases yielding zero impedances and fixed and free, respectively,
for those cases yielding infinite impedances.

It is interesting to note that Gy(iω) has a real part only when αs = 0 and ∞,
an imaginary part only when αs = 1, and is complex having both real and imaginary
parts when αs takes on other values in the range 0 < αs <∞.

Making use of Eqs. (27-54) and (27-58) when Gy(iω) as given by Eq. (27-70)
has both real and imaginary parts, i.e., Gy(iω) = GR

y (ω)+ iGI
y(ω), it is easily shown
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that the horizontal boundary impedance spring/dashpot equivalent of Fig. 27-11a is
the system shown in Fig. 27-11b having frequency dependent parameters

cs = GI
y(ω)

/
ω

ks = GR
y (ω)

(27-73)

The imaginary part of the boundary impedance represents partial radiation of energy
downward into the half-space while the real part represents partial reflection of energy
back into the layer.

Let us now consider the case of vertically propagating compression waves in
the columns of Figs. 27-10a and 27-11a produced by vertical seismic motions. The
compression wave equation equivalent to Eq. (27-50) is

ẅ(z, t) − V 2
p w′′(z, t) = 0 (27-74)

in which Vp represents the vertical compression wave velocity given by

Vp =
√
D
/
ρ (27-75)

The compression modulus D for the plane strain condition assumed here (i.e., where
no strain is permitted in the x- and y-directions) is given by

D = E
[ 1 − ν

(1 + ν)(1 − 2ν)

]
(27-76)

in whichE and ν denote Young’s modulus and Poisson’s ratio, respectively. For values
of ν typical of foundation media, this compression modulus is considerably increased
over the modulusE used in Chapter 19 for analysis of plane stress compression waves
in rods.

Following the same procedure used in deriving Eq. (27-70), one finds the vertical
boundary impedance Gz(iω) for Substructure No. 2 to be of the equivalent form

Gz(iω) =
iD1ω

Vp1

[
αp + i [α2

p − 1] cosβp sinβp

α2
p cos2 βp + sin2 βp

]
(27-77)

where

αp ≡
√
D1 ρ1

D2 ρ2
βp =

ωH1

Vp1
(27-78)

The corresponding spring/dashpot system shown in Fig. 27-11b has the frequency
dependent parameters

cp = GI
z(ω)

/
ω

kp = GR
z (ω)

(27-79)
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which are equivalent to the parameters shown in Eqs. (27-73) for horizontal motion.
The unit impedances given by Eq. (27-77) must be multiplied by tributary areas to
obtain the corresponding uncoupled impedances in matrix Gdd(iω).

Assuming one-dimensional vertically propagating plane waves as in the single
layer case of Fig. 27-11a, the uniform surface impedances Gy(iω) and Gz(iω) can
easily be generated for a multiple horizontally layered system as well using the
same harmonic travelling wave solutions for each layer and for the half-space and
satisfying the same surface boundary conditions and the same compatibility conditions
at each interface. Having these uniform surface impedances per unit area, they can be
discretized as before by multiplying by nodal tributary areas to obtain the uncoupled
impedances in matrix Gdd(iω).

Example E27-1. A long uniform point bearing pile is being driven by
dropping a rigid hammer on its head through a massless SDOF cushion as
shown in Fig. E27-1. Using the substructure method of analysis, determine the
downward-travelling wave produced in the pile by a single hammer impact at
initial velocity Vh.

Using the displacements and system properties defined in Fig. E27-1a and
the pile impedance function of Eq. (27-77) for αp = 1 with the plane stress
compression modulus D = E, the complete system can be modelled as shown
in Fig. E27-1b. The axial force acting on the top of the pile, which equals the
combined dashpot and spring forces in Fig. E27-1b, can be expressed using the
three conditions

N (0, t) = −AE
Vp

ẇ(0, t) (a)

FIGURE E27-1
Hammer-cushion-pile system.
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N (0, t) = k
[
w(0, t) − wm(t)

]
(b)

N (0, t) = m ẅm(t) −mg (c)

Substituting (a) into (b) and differentiating twice give

−AE
Vp

...
w(0, t) = k

[
ẅ(0, t) − ẅm(t)

]
(d)

Substituting (a) into (c), solving for ẅm(t), and in turn substituting this accel-
eration into (d) give

V̈0(t) +
k Vp

AE
V̇0(t) +

k

m
V0(t) =

k g Vp

AE
(e)

where
V0(t) ≡ ẇ(0, t) (f)

The term on the right hand side of (e) results from the weight mg in (c); that
is, it represents that part of the contact force N (0, t) contributed by the hammer
weight which is normally a small fraction of the inertial-force contribution and
therefore may be neglected.

The initial conditions on wm(t) are

wm(t) = 0 ẇm(0) = Vh (g)

where Vh is the hammer velocity at the instant of initial contact with the cushion.
Since w(0, 0) equals zero, combining (a) and (b) and using the first of (g) give

V0(0) = ẇ(0, 0) = 0 (h)

Substituting (a) into (b), differentiating the resulting equation once and setting
t = 0, and then making use of the second of (g) together with (h) give

V̇0(0) = ẅ(0, 0) =
k Vp Vh

AE
(i)

Using the initial conditions as given by (h) and (i), the solution to the homoge-
neous form of (e) is

V0(t) =
2 ξ ω Vh

ωD

exp(−ξωt) · sinωDt (j)

where

ω =
√
k
/
m ωD = ω

√
1 − ξ2 ξ =

k Vp

2ωAE
(k)
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Using (a) and (f), the axial force in the pile at its top end is

N (0, t) = −k Vh

ωD

exp(−ξωt) · sinωDt (l)

To satisfy this top-end condition, the downward axial-force traveling wave in
the pile is

N (z, t) = −k Vh

ωD

exp
[
−ξω

(
t− z

Vp

)]
· sinωD

(
t− z

Vp

)
(m)

Upon rebound from its first impact with the pile head, separation occurs between
the hammer and the cushion; thus, the above impact force and corresponding
traveling wave expressions are valid only in the range

0 < ωD

(
t− z

Vp

)
< π (n)

when describing the single hammer impact.

Example E27-2. To provide a numerical demonstration of the analysis
of the axial force developed by a pile-driving hammer, a concrete pile having a
Young’s modulus E = 3 × 106 psi, an area A = 400 in2, and a unit weight
γ = 150 pcf is considered. The velocity of wave propagation in the pile is
given by

Vp =
√
E
/
ρ =

√
Eg
/
γ = (1.15) (105) in/sec

Assuming the hammer weight W = 2, 000 lb, the cushion spring constant
k = (2, 054) (103) lb/in, and the hammer velocity upon initial impact Vh =

184 in/sec, one finds

ω =

√
k g

W
= 628 r/sec ξ =

Vp k

2ωAE
= 0.156

ωD = ω
√

1 − ξ2 = 620 r/sec
k Vh

ωD

= (606) (103) lb

Eq. (m) then becomes

P (z, t) = − (606) (103)

× exp
[
−97.97

(
t− z

13.8 × 105

)]
· sin 620

(
t− z

13.8 × 105

)
lb

where t is measured in seconds and z is measured in feet. A plot of this axial
force against coordinate z is shown in Fig. E27-2 for t = π

/
620 = 0.00507 sec,
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FIGURE E27-2
Axial-force distribution in concrete pile 
0.00507 sec after initial hammer impact 
with cushion.
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which corresponds to the instant of hammer separation from the cushion. At
this time, the traveling wave has advanced a distance of Vpt = 48.6 ft down
the pile.

Two-Dimensional Waves — Soil-structure interaction effects of long narrow
structures subjected to transverse seismic excitation often can be modelled in two-
dimensional form. If they are surface supported on rigid continuous footings, one
may find it appropriate to generate the impedances for Substructure No. 2 by simply
using the inverted compliances shown in Fig. 27-12 for the massless infinitely-long
rigid strip resting on the surface of an elastic half-space.9

If the long narrow structure under consideration has embedment, one can select
a half-cylindrical interface between Substructures 1 and 2 and then use 2-D radial and
tangential far-field impedances per unit area over the surface of the half-cylindrical
cavity as indicated in Fig. 27-13. If this cavity is contained within a layer of depth H
having a shear wave velocity Vs1 which, in turn, is resting on an elastic homogeneous
isotropic half-space having a shear wave velocity Vs2, it has been shown10 that the

9 T. J. Tzong, S. Gupta, and J. Penzien, “Two-Dimensional Hybrid Modeling of Soil-Structure Interac-
tion,” Report No. UC-EERC 81/11, Earthquake Engineering Research Center, University of California,
Berkeley, August, 1981.

10 T. J. Tzong and J. Penzien, “Hybrid-Modeling of a Single Layer Half-Space System in Soil-Structure
Interaction,” Earthquake Engineering and Structural Dynamics, Vol. 14, 1986.



DETERMINISTIC EARTHQUAKE RESPONSE: INCLUDING SOIL-STRUCTURE INTERACTION 699

0

0

0

0

0

0

0

0

0.25

0.5

0.25

0.10

0.50

1.0

0.50

0.30

0.20

0.75

1.5

0.75

0.40

0.50

1.00

2.0

1.00

1.00

1.0

1.00

1.00

2.00

2.0

2.00

2.00

3.00

3.0

3.00

3.00

It

Il

In

Ir

Rt

Rl

Rn

Rr

a

a

a

a

a

a

a

a

∞

∞

∞

∞

1 exp (i ω t)

1 exp (i ω t)

1 exp (i ω t)

1 exp (i ω t)

ut = (Ct t ⁄ G)exp(i ω t)

ull = (Cll ⁄ G)exp(i ω t)

un = (Cn n ⁄ G)exp(i ω t)

u rr = (Cr r ⁄ a2G)exp(i ω t)

C
tt

=
 R

t
−

iI
t

C
ll

=
 R

l
−

iI
l

C
n

n
=

 R
n

−
iI

n
C

rr
=

 R
r

−
iI

r

a0 ≡
ω a
Vs



a0 ≡
ω a
Vs

 a0 ≡
ω a
Vs



a0 ≡
ω a
Vs



FIGURE 27-12
Compliances of infinite rigid massless strip of width 2a; G = shear modulus, Vs = shear-wave velocity.
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FIGURE 27-13
Continuous far-field impedance 
functions Sp and SR along half-
cylindrical cavity surface.
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FIGURE 27-14
Parameters defining impedance SR along half-cylindrical cavity surface.
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radial and tangential impedances, per unit area, can be expressed in the approximate
forms

SR
.
= η

R0

+ i ζ
R0

+ (η
R1

+ i ζ
R1

) cosφ

Sφ
.
= η

φ0

+ i ζ
φ0

+ (η
φ1

+ i ζ
φ1

) cosφ
(27-80)

where parameters η
R0

, ζ
R0

, η
R1

, and ζ
R1

have numerical values as indicated in Fig. 27-
14 and parameters η

φ0

, ζ
φ0

, η
φ1

, and ζ
φ1

have numerical values as indicated in Fig. 27-
15. Note that all parameters in these figures are plotted in their nondimensional forms
as functions of the nondimensional frequency b0 ≡ ωR

/
Vs1. The first plots in

Figs. 27-14 and 27-15 are for three different numerical values of the ratio V 2
s1

/
V 2

s2,
namely 1.0, 3.0, and 10.0; while the second plots in these figures are for only two
different numerical values, namely 3.0 and 10.0. The numerical values for all four
coefficients in the trigonometric terms of Eqs. (27-80) equal zero for V 2

s1

/
V 2

s2 = 1.0

because they are not needed for the nonlayered system. In all plots of Figs. 27-14 and
27-15, the results have been generated using Poisson ratio values ν1 = ν2 = 1/3 and
H
/
R = 4/3.

The continuous impedances, per unit area, as given by Eqs. (27-80) can now
be discretized using standard procedures to obtain the half-cylindrical boundary
impedances for Substructure No. 2 consistent with the DOF chosen for the near-
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FIGURE 27-15
Parameters defining impedance Sφ along half-cylindrical cavity surface.
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field/far-field interface; thus, the desired impedance matrix Gdd(iω) to be used in the
substructure method of analysis is obtained.

Three-Dimensional Waves — Soil-structure interaction effects of structure sur-
faces supported on circular or square rigid mats or footings can often be modelled
in three-dimensional form using the known impedances for a rigid massless circular
plate resting on the surface of an isotropic homogeneous elastic half-space as indicated
earlier in treating the system shown in Fig. 27-4; see Fig. 27-5, and Eqs. (27-17) and
(27-18). These impedances are shown in their nondimensional forms in Figs. 27-6a
through 27-6e.11,12,13

As pointed out earlier, one should be careful in using the impedances shown in
these figures for mat foundations of large dimensions as the rigid-plate assumption
may not be valid leading to erroneous solutions. One should also be careful in using

11 A. S. Veletsos and Y. T. Wei, “Lateral and Rocking Vibrations of Footings,” loc. cit.

12 J. E. Luco and R. A. Westman, “Dynamic Response of Circular Footings,” loc. cit.

13 A. S. Veletsos and V. V. D. Nair, “Torsional Vibration of Foundations,” Structural Research at Rice,
Report No. 19, Department of Civil Engineering, Rice University, June, 1973.
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φ′1
φ′2

θ′2

FIGURE 27-16
Far-field impedances over the hemispherical 
cavity surface in spherical co-ordinates.

Sφ

Sθ

SR

Mode i

Tributary area ∆i

these impedances when the foundation is layered as they are strictly valid only for a
uniform half-space. A limited number of similar impedances have been generated for
a layered half-space which can be used when found applicable.14,15

If the structure under consideration has a flexible mat foundation, or it has em-
bedment as shown for the nuclear power plant containment building in Fig. 27-8d,
one can obtain an appropriate three-dimensional model by introducing a hemispher-
ical interface between Substructures 1 and 2 and then using the continuous radial,
tangential, and circumferential far-field impedances per unit area over the surface of
the hemispherical cavity as indicated in Fig. 27-16. It has been shown that these
impedances can be approximated reasonably well for engineering purposes using the
simple relations

SR
.
= η

R
+ i ζ

R

Sφ
.
= η

φ
+ i ζ

φ

Sθ
.
= η

θ
+ i ζ

θ

(27-81)

which are complex and frequency dependent but are constant over the hemispherical
surface of radius R. The three η and three ζ parameters in these equations have been
generated for a uniform half-space of shear modulus G and Poisson’s ratio ν = 1/3,
with results as shown in Fig. 27-14.16 In each case, the parameter is nondimensional-
ized using the ratioR

/
G and it is plotted as a function of the dimensionless frequency

b0 ≡ ωR
/
Vs. If Substructure No. 2 is layered horizontally even within the depth R,

the impedances of Fig. 27-17 can still be used but the impedances at any level corre-

14 E. Kausel, “Forced Vibrations of Circular Footings on Layered Media,” MIT Research Report R74-11,
Mass. Inst. of Tech., Cambridge, Mass., 1974.

15 J. E. Luco, “Impedance Functions for a Rigid Foundation on a Layered Medium,” Nuclear Engineering
and Design, Vol. 31, No. 2, 1979.

16 S. Gupta, T. W. Lin, J. Penzien, and C. S. Yeh, “Three-Dimensional Hybrid Modeling of Soil-Structure
Interaction,” Int. Jour. of Earthquake Eng. and Struct. Dyn., Vol. 10, No. 1, Jan. – Feb., 1982.
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FIGURE 27-17
Far-field impedance functions over the hemispherical cavity surface.
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sponding to R cosφ must be consistent with the shear wave velocity representative of
the material at that depth.

These continuous impedances, per unit area, can now be discretized using
standard tributary area procedures to obtain the hemispherical boundary impedances
for Substructure No. 2 consistent with the DOF chosen for the near-field/far-field
interface, thus yielding the desired impedance matrix Gdd(iω) to be used in the
substructure method of analysis.
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27-3 RESPONSE OF UNDERGROUND STRUCTURES

The earthquake response of above ground structures, including those having
embedment, is produced primarily by effective seismic forces which are independent
of the response they produce; therefore, such structures are basically under force
control. However, the response of underground structures, such as subway stations,
tunnels, and pipelines, is produced primarily by the ground deformations under free-
field conditions; and consequently, such structures are basically under deformation
control. The soil-structure interaction of an underground structure can be treated
in a quasi-static fashion since the mass of the soil displaced by the presence of the
structure is very large compared with the mass of the structure itself. Only when heavy
equipment items are present do significant inertial forces develop.

Free-Field Ground Motions Due To Propagating Plane Waves

As was mentioned above, it is common practice to calculate free-field ground
motions assuming they are produced by vertically propagating plane waves, i.e., with
shear waves producing the horizontal components and compression waves producing
the vertical component. Considering a linear horizontally-layered soil system resting
on a uniform elastic half-space, the same form of harmonic traveling wave solutions
used previously in generating boundary impedances for the one-dimensional plane
wave case, i.e., equations of the form of Eqs. (27-61) through (27-64), can be used
to describe the free-field ground motions produced by vertically propagating plane
waves.

Assuming upward-traveling incident waves in the uniform half-space, which can
be expressed in terms of a series of harmonics, one can calculate the corresponding
upward- and downward-traveling harmonics in each layer, and the corresponding
downward-traveling harmonics in the half-space resulting from its interaction with the
layered system. Decomposing the specified components of free-field control motion
(usually acceleration) into their harmonics by the FFT procedure, satisfying the surface
zero stress condition and all interface stress and displacement compatibility conditions,
one can calculate the amplitude and phase angle of each upward- and each downward-
traveling harmonic in each layer and in the half-space; thus time-histories of ground
motion (acceleration, velocity, and displacement) are obtained at all levels which
are compatible with the soil properties and the specified free-field control motions.
Usually these control motions are specified at the surface; however, the analytical
procedure allows them to be specified at any level. The soil properties (shear-modulus
and damping-ratio values) should be adjusted iteratively so that they are compatible
with the resulting shear strain levels reached under free-field conditions. Soil material
damping can easily be included in the basic analytical formulations [Eqs. (27-61)
through (27-64)] by simply substituting the complex shear modulusGc = G (1+2iξ)

for the real modulus G.



DETERMINISTIC EARTHQUAKE RESPONSE: INCLUDING SOIL-STRUCTURE INTERACTION 705

Free-field ground motions produced by other than vertically propagating plane
waves also can be formulated for use in seismic analyses of underground structures,
e.g., motions produced by Rayleigh waves or nonvertically propagating shear waves.

Racking Deformations of Cross Sections

As a result of vertically propagating plane waves, the cross sections of under-
ground structures are subjected to racking (shear-type) deformations. To illustrate,
suppose the cross section of tunnel lining shown in Fig. 27-18 is subjected to a free-field
soil environment produced by vertically propagating shear waves producing horizontal
displacements w(y, t). The instant at which the cross section experiences maximum
racking deformations can be taken as that time when the difference in the free-field
soil displacements at depths corresponding to the top and bottom elevations of the
tunnel cross section reaches a maximum, i.e., when

∣∣w(yt, t) − w(yb, t)
∣∣ becomes a

maximum. To find this maximum difference, it is necessary to calculate the entire
time-history of the difference through the free-field site analysis and then observe its
maximum (or critical) value.

The racking analysis of the cross section can then be carried out in two steps by
a procedure that is entirely equivalent to the analysis of quasi-static motions in the SSI
analysis of a MDOF structure with multiple support excitation. First, a vector set of
forces F applied in all degrees of freedom of the outer-boundary cross-sectional nodes
is calculated which will deform the outer boundary so as to be totally compatible with
the critical free-field soil-displacement and stress patterns as indicated in Fig. 27-18a.
This set of forces is composed of a vector F1 required to deform the cross section (when
removed from the soil) into a shape compatible with the free-field soil displacements
and a vector F2 representing, in discrete form, the free-field shear stress distribution
acting on the outside boundary of the rectangular soil element to be displaced by the
cross section; thus, F = F1−F2. Since the applied forces in vector F do not exist, they
must be removed by applying them in opposite directions to the soil-structure system
shown in Fig. 27-18b. The complete solution is then obtained by superposition of the

FIGURE 27-18
Modeling for cross-section racking analyses.

4

3
21

F −F

(a) Free-field deformations (b) SSI deformations
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two solutions, the first solution representing the compatible free-field deformations
only, Fig. 27-18a, and the second solution representing the quasi-static soil-structure
interaction deformations. The second solution requires plane-strain finite-element
modeling of the soil within prescribed boundaries as indicated in Fig. 27-18b. The
side and lower boundaries of this region should be sufficiently far away from the
cross section so that the soil stresses due to pure racking soil-structure interaction
(i.e., due to the pure racking components of F which are in self-equilibrium) have
decayed sufficiently. Note that F1 contains only pure racking forces which are in
self-equilibrium but F2 contains both pure racking and other forces which are not in
self-equilibrium.

Results of racking analyses of rectangular cross sections using the above pro-
cedure have been reported in the literature.17 They clearly show the importance of
including soil-structure interaction effects.

Overall Axial and Flexural Deformations

Consider a pure harmonic shear wave moving under free-field conditions at
velocity Vff in the X-direction as shown in Fig. 27-19. The lateral displacement
produced by this wave in the transverse Y -direction can be expressed in the form

Vn(X, t) = −a(iωn)

ω2
n

exp

[
iωn

(
t− X

Vff

)]

which corresponds to the following velocity and acceleration expressions

V̇n(X, t) = − i a(iωn)

ωn
exp

[
iωn

(
t− X

Vff

)]

V̈n(X, t) = a(iωn) exp

[
iωn

(
t− X

Vff

)] (27-82)

In addition, the displacement components in the x- and y-directions may be written as

un(x, t) =
a(iωn)

ω2
n

sin θ exp

[
iωn

(
t− x cos θ

Vff

)]

vn(x, t) = −a(iωn)

ω2
n

cos θ exp

[
iωn

(
t− x cos θ

Vff

)] (27-83)

17 J. Penzien, C. H. Chen, W. Y. Jean, and Y. J. Lee, “Seismic Analysis of Rectangular Tunnels in Soft
Ground,” Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, July,
1992.
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FIGURE 27-19
Shear wave moving in the X− direction at velocity Vf f .

u(x, t) = −V(X, t) sinθ

v(x, t) = V(X, t) cosθ

x

Treating the soil-structure interaction of the tunnel elastic axis in a quasi-static fashion,
the governing equations for axial and bending deformations are given by

∂2utn(x, t)

∂x2
− kx

AE
utn(x, t) = − kx

AE
un(x, t)

∂4vtn(x, t)

∂x4
+
ky

EI
vtn(x, t) = +

ky

EI
vn(x, t)

(27-84)

where utn and vtn represent total structural displacements, kx and ky are subgrade
moduli in the x- and y-directions, andAE andEI are the axial and flexural stiffnesses
of the tunnel. It can easily be shown that the flexural deformations are small relative
to the axial deformations when the wave acts in the critical direction in each case, i.e.,
θcr = 0◦ for flexure and θcr = 45◦ for axial deformation.18

Therefore, only the axial deformation caused by θ = θcr = 45◦ will be consid-
ered here, and in this case, the solution of the first of Eqs. (27-84) upon substitution
of the first of Eqs. (27-83) is

utn(x, t) =
a(iωn)√

2ω2
n (1 + Θun)

exp

[
iωn

(
t− x√

2Vff

)]
(27-85)

where

Θun =
AE ω2

n

2 kx V 2
ff

(27-86)

The tunnel axial strain is given by

εa(x, t) =
∂utn(x, t)

∂x
=

−i a(iωn)

2ωn Vff (1 + Θun)
exp

[
iωn

(
t− x√

2Vff

)]
(27-87)

18 S. Gupta, T. W. Lin, J. Penzien, and C. S. Yeh, “Three-Dimensional Hybrid Modeling of Soil-Structure
Interaction,” loc. cit.
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The axial strain produced by all discrete harmonics in V̈ (X, t) is then given by
superposition, yielding

εa(x, t) =
∑

n

−i a(iωn)

2ωn Vff (1 + Θun)
exp

[
iωn

(
t− x√

2Vff

)]
(27-88)

in which a(iωn) are the Fourier coefficients of the prescribed accelerogram V̈ (t)

obtained by the FFT procedure, Vff is the free-field shear wave velocity, and Θun is
given by Eq. (27-86).

For numerical analysis purposes, it is convenient to introduce the constant

φ ≡
2 kx V

2
ff

AE
sec−2 (27-89)

into Eq. (27-88) and solve the equation for Vff εa(x, t) giving

Vff εa(x, t) =
∑

n

−i a(iωn)

2ωn (1 + ω2
n

/
φ)

exp

[
iωn

(
t− x√

2Vff

)]
(27-90)

This relation gives directly the corresponding functions

Vff εa(x, 0) =
∑

n

−i a(iωn)

2ωn (1 + ω2
n

/
φ)

exp

[
− iωn x√

2Vff

]

Vff εa(0, t) =
∑

n

−i a(iωn)

2ωn (1 + ω2
n

/
φ)

exp
[
iωn t

] (27-91)

for any prescribed accelerogram V̈ (t) from which the coefficients a(iωn) can be
obtained. The functions shown in Eqs. (27-91) are identical, except that the corre-
sponding independent variables are x√

2Vff
and t; thus, they can be represented on

the same plot. The maximum absolute value of either function gives the quantity of
primary interest.

The subgrade modulus kx appearing in Eq. (27-89) cannot be evaluated rigor-
ously for a given soil/cross section system; however, for practical solutions it can be
approximated using kx

.
= 3G = 3ρV 2

ssi in which G is the effective shear modulus in
the dominant region controlling soil-structure interaction and Vssi is the correspond-
ing shear wave velocity. Note that this velocity may be considerably less than the
velocity Vff controlling the train of traveling free field waves approaching the tunnel
alignment. Obviously, considerable judgement must be used in assigning the numer-
ical values of both Vff and Vssi, after taking into consideration known factors such
as geometry of soil layers relative to the tunnel alignment, results of soil tests, and
levels of soil shear strain produced by the free-field motions and by the soil-structure
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interaction. In considering the latter factor, one should note that the shear strains
produced by the free-field ground motions and by the axial soil-structure interaction,
at the outer-boundary location of the cross section are given, respectively, by the
approximate relations

γff (x, t)
.
=

i

Vff

∑

n

a(iωn)

ωn
exp

[
iωn

(
t− x√

2Vff

)]

γssi(x, t)
.
=

−AE
2
√

2 pρ V 2
ssi V

2
ff

∑

n

a(iωn)

(1 + Θun)
exp

[
iωn

(
t− x√

2Vff

)] (27-92)

in which p is the outside perimeter dimension of the cross section.

The above procedure for evaluating strains in a tunnel is extremely conservative
due to the two assumptions made regarding the free-field soil motions: (1) the ground
motion is produced by a single shear wave train moving at velocity Vff and (2) the
wave train impinges upon the tunnel at the most critical angle θwhich is approximately
45◦. Therefore, judgement should be used in reducing these strains accordingly.

Influence of Transverse Joints on Axial Deformations

The above evaluation of axial strains in the cross section assumes no transverse
joints are present. Placement of open joints in the cross section will, however, reduce
these strains to zero at the joint locations and will also reduce them at intermediate
locations, with the smallest reductions occurring at locations midway between adjacent
pairs of joints. Using the first of Eqs. (27-84), it can be shown that the ratio of the
axial strain at this midway point, εmp, to the maximum axial strain (without joints),∣∣εa
∣∣
max, is given by

(
εmp

/∣∣εa
∣∣
max

)
= 1 − 2

exp(βL
2 ) + exp(−βL

2 )
(27-93)

where L is the distance between two adjacent joints and

β ≡
√
kx

/
AE (27-94)

in which kx is the associated subgrade modulus.

While the placement of multiple joints will reduce axial strains, they also allow
joint separations to occur. Using the first of Eqs. (27-84), and assuming the maximum
strain

∣∣εa
∣∣
max to be reasonably uniform over the distance Lwhen no joints are present

as indicated in Fig. 27-20, it can be shown that the joint separation 4j is given by

4j =
2

β

[
exp(βL

2 ) − exp(−βL
2 )

exp(βL
2 ) + exp(−βL

2 )

] ∣∣εa
∣∣
max (27-95)

Joint separation estimates should be made to insure that the joint details can accom-
modate the gap displacements during an earthquake without producing undesirable
effects, e.g., leakage of water-tight seals.
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CHAPTER

28
STOCHASTIC

STRUCTURAL
RESPONSE

28-1 MODELING OF STRONG GROUND MOTIONS

Since seismic waves are initiated by irregular slippage along faults followed
by numerous random reflections, refractions, and attenuations within the complex
ground formations through which they pass, stochastic modeling of strong ground
motions seems appropriate. The generation of synthetic accelerograms to reflect
such stochastic behavior has already been discussed in Section 25-4. The procedure
presented there consists of generating stationary waveforms having nearly constant
power spectral density functions over the frequency range of interest, converting them
to nonstationary waveforms by multiplying each by an appropriate deterministic time
intensity function, and then filtering the resulting waveforms appropriately in the
frequency domain; see Eqs. (25-32) through (25-39). It is the purpose of this chapter
to discuss the stochastic response of structural systems to these excitations.

28-2 STOCHASTIC RESPONSE OF LINEAR SYSTEMS

SDOF Systems

If a stationary white-noise process of intensity S0 is assumed for ground accel-
eration v̈g(t), the response of a linear SDOF system to this support acceleration is
governed by the equation

v̈ + 2 ξ ω v̇ + ω2 v = −v̈g(t) (28-1)

where v is the displacement of the mass relative to the moving support. The principles

711
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set forth in Chapter 22 give for an undercritically damped system

Rv(τ) =
π S0

2ω3 ξ

(
cosωD|τ | +

ξ√
1 − ξ2

sinωD|τ |
)

exp(−ω ξ |τ |) (28-2)

Rv̇(τ) =
πS0

2ω ξ

(
cosωD|τ | −

ξ√
1 − ξ2

sinωD|τ |
)

exp(−ω ξ |τ |) (28-3)

Sv(ω) =
S0 ω

−4

[1 − (ω/ω)2]2 + 4 ξ2 (ω/ω)2
(28-4)

Sv̇(ω) =
S0 (ω/ω)2 ω−2

[1 − (ω/ω)2]2 + 4 ξ2 (ω/ω)2
(28-5)

σ2
v =

π S0

2ω3 ξ
(28-6)

σ2
v̇ =

π S0

2ω ξ
(28-7)

If a stationary filtered process having power spectral density Sv̈g
(ω) is assumed for

ground acceleration v̈g(t), Eqs. (28-4) and (28-5) are still valid provided Sv̈g
(ω) is

substituted for S0. Means and standard deviations of extreme values can be estimated
using the procedures given in Section 21-11.

MDOF Systems

The linear response of discrete MDOF systems subjected to the same stationary
acceleration v̈g(t) at all support points can be determined using normal-mode super-
position as described in Chapter 23. The generalized forcing function Pn(t) shown in
Eq. (23-1) and defined by Eq. (23-24) becomes

Pn(t) = −v̈g(t)
∑

i

mi φin = φφφT
n m {1} v̈g(t) n = 1, 2, · · · (28-8)

and Eqs. (23-25) and (23-26) can be expressed in the forms

SPmPn
(ω) = Sv̈g

(ω)
∑

i

∑

k

mi mk φim φkn = Sv̈g
(ω) φφφT

m m {1} {1}T m φφφn

(28-9)
RPmPn

(τ) = Rv̈g
(τ)

∑

i

∑

k

mi mk φim φkn = Rv̈g
(τ) φφφT

m m {1} {1}T m φφφn

(28-10)
For a distributed-mass system with m = m(x), Eqs. (28-8) through (28-10) become

Pn(t) = −v̈g(t)

∫
m(x) φn(x) dx (28-11)

SPmPn
(ω) = Sv̈g

(ω)

∫ ∫
m(x) m(α) φm(x) φn(α) dx dα (28-12)

RPmPn
(τ) = Rv̈g

(τ)

∫ ∫
m(x) m(α) φm(x) φn(α) dx dα (28-13)
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where α is a dummy space coordinate. The power spectral density and autocorrelation
functions for response z(t) defined by Eq. (23-2) are now obtained by substituting
Eqs. (28-9) and (28-10) or (28-12) and (28-13) into Eqs. (23-19) and (23-10), respec-
tively.

28-3 EXTREME-VALUE RESPONSE OF NONLINEAR SYSTEMS

The stochastic response of nonlinear SDOF or MDOF systems cannot be ob-
tained by the methods previously presented, which employ the principle of superposi-
tion. For these complex systems, which are often history dependent due to hysteresis
effects, one is usually forced to generate an ensemble of ground motion accelerograms
by the techniques of Section 25-4 to determine deterministically the time-history re-
sponse of the nonlinear system to each input accelerogram and then to examine the
output response process using Monte Carlo methods. Usually, one is interested pri-
marily in the mean and standard deviation values of extreme response.

This general method of stochastic analysis can also be used for linear systems;
however, in this case, the direct method previously described is usually preferable.

SDOF Systems

Linear Models — Consider the SDOF linear system represented by Eq. (28-1) sub-
jected to earthquake ground motion v̈g(t). Figure 28-1 shows Housner’s pseudo-
velocity design-spectrum curves for this system for different damping ratios, that is,
ξ = 0, 0.02, 0.05, 0.10.1 Since these curves were obtained by normalizing eight
components of recorded ground accelerations (two components each of El Centro
1940, El Centro 1934, Olympia 1949, and Taft 1952) to a common intensity level and
by averaging the eight pseudo-velocity response spectra derived therefrom, one can
consider the ordinates in Fig. 28-1 as representing mean extreme values of relative
pseudo-velocity. The multiplication factors given in this figure increase the ordinates
to intensity levels corresponding to the earthquakes indicated.

Using an analog computer, Bycroft studied the possibility of using a white-noise
process to represent earthquake ground motions at a given intensity level.2 In these
studies, he noted the extreme values of response for a SDOF system using 20 separate
bursts of stationary white-noise input of 25 sec duration each. It was necessary in these
studies to limit the input bandwidth having constant power spectral density to the range
0 to 35 Hz. To compare his mean extreme values with Housner’s earlier published

1 G. W. Housner, “Behavior of Structures During Earthquakes,” Proc. ASCE, Vol. 85, No. EM-4, October,
1959.

2 G. N. Bycroft, “White Noise Representation of Earthquakes,” Proc. Paper 2434, J. Eng. Mech. Div.,
ASCE, Vol. 86, EM2, April, 1960.
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FIGURE 28-1
Mean extreme values of pseudo-relative velocity for linear SDOF systems 
(stationary white-noise excitation).

velocity spectra, Bycroft normalized his results to that power spectral density of input
S0 which would give full agreement with Housner’s results for Tn = 3 sec and
ξ = 0.20. This normalization criterion resulted in a value of S0 equal to 0.75 ft2/Hz

over the frequency range 0 < f < ∞. A further normalization of these same results
so that they can be compared with Housner’s design velocity spectra requires that
S0 = 0.0063 ft2/rad · sec3 over the entire frequency range. Bycroft’s mean extreme
values normalized to this intensity level are shown in Fig. 28-1. These results would
appear to indicate that even white noise is a reasonable representation of earthquake
ground accelerations.

Elastic-Plastic and Bilinear Stiffness-Degrading Models — Many investigators have
used stationary filtered white noise to simulate earthquake ground accelerations. In
one of these investigations, Liu and Penzien3 used a single filter having the transfer
function given by the first of Eqs. (25-39) with ωg = 15.6 rad/sec and ξg = 0.6. Fifty
sample functions of band-limited white noise were generated by the digital-computer
methods of Section 25-4 with S0 = 0.00614 ft2/sec3 and 4t = 0.025 sec. These
sample functions, each having 30 sec duration, were then filtered by digital-computer
techniques to provide an ensemble of 50 artificial accelerograms.

Complete time-histories of response for the linear SDOF system when subjected
separately to each of the 50 input accelerations were established by deterministic
methods. The extreme values of relative displacement were noted in each case and

3 J. Penzien and S. C. Liu, “Nondeterministic Analysis of Nonlinear Structures Subjected to Earthquake
Excitations,” Proc. 4th World Conf. Earthquake Eng., Santiago, Chile, Vol. I, Sec. A-1, January, 1969.
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FIGURE 28-2
Mean extreme values of pseudo-relative velocity for linear SDOF systems (filtered stationary 
white-noise excitation).

(b)

G. Housner’s design spectra

Average of 50 artificial earthquakes
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were averaged to obtain mean values. These mean values of displacement were then
converted to mean extreme values of pseudo-velocity by multiplying by ω. These
values are plotted in Fig. 28-2a, where they may be compared with Housner’s design-
spectrum curves in Fig. 28-2b. The close agreement of these two sets of curves lends
support to using filtered stationary white noise in the simulation of strong-earthquake
ground motions.

Using numerical integration procedures, complete time-histories of relative-
displacement response v(t) were established also for SDOF elastic-plastic and
stiffness-degrading models having the static-force-deflection relations shown in
Figs. 28-3b and c, respectively. Each model was separately subjected to sup-
port accelerations v̈g(t) corresponding to the filtered process described above but
after normalizing by a factor of (2.90)2 so that the process intensity S0 would
represent the intensity of the NS component of the 1940 El Centro earthquake
[S0 = (2.90)2 (0.00614) = 0.0516 ft2/sec3].

The basic parameters of these nonlinear models, which are comparable to those
used for the linear models, are shown in Fig. 28-3. In all cases T and ξ represent
the period of vibration and viscous-damping ratio, respectively, in the initial elastic
range. The strength ratio B and ductility demand µd are defined for these models in
accordance with the relations B ≡ Vy/W and µd ≡ |v(t)|max/vy . It is significant
that in addition to loss of stiffness following any yielding, the stiffness-degrading
model permits hysteresis loops to be formed even at very low amplitudes of oscillation.
Therefore, this model dissipates more energy in the lower-amplitude ranges of response
than does the equivalent elastic-plastic model.

The response of the elastic-plastic and stiffness-degrading models are considered
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Nonlinear SDOF models.
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Structural
type *

TABLE 28-1

* E − Elastic EP − Elastic-plastic SD − Stiffness degrading

for two different periods, T = 0.3 and 2.7 sec, and for two different damping ratios,
ξ = 0.02 and 0.10; thus, the response of eight different nonlinear models as presented
in Table 28-1 are discussed. Strength ratios B are based on the assumption that
the yield resistance Vy equals twice the design load as specified in the 1973 edition
of the Uniform Building Code for moment-resisting frames, that is, B = 2KC =

(2 × 0.667) (0.05)T−1/3.

Probability distribution functions P (|v|max) based on the 50 extreme values
for each of the eight nonlinear models are shown in Fig. 28-4. For comparison,
probability distribution functions are also presented for the four corresponding linear
elastic models, that is, models having the same corresponding initial stiffnesses and
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FIGURE 28-4
Probability distributions for extreme values of relative displacement.
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viscous-damping ratios. These twelve models, as identified by the arabic numerals 1
through 12 in Fig. 28-4, have the properties listed in Table 28-1.

Two probability distribution functions are shown in Fig. 28-4 for each of the
12 structural models, namely, a wavy-line function, which is a plot of the actual
extreme-value distribution as determined numerically for process v(t), and a straight-
line function, which is the theoretical Gumbel Type I distribution corresponding to
Eq. (21-120), namely

P (|v|max) = exp
[
− exp(−v̂)

]
(28-14)

in which v̂ is the reduced extreme value defined by

v̂ ≡ α (|v|max − u) (28-15)

The numerical values of α and u for each of the twelve cases were determined by the
“more accurate” procedure mentioned at the end of Example E21-8.4

The probability distribution scale on Gumbel extreme-value charts as shown in
Fig. 28-4 varies in such a manner that Eq. (28-14) plots as a straight line with its
ordinate at the origin (v̂ = 0) representing the most probable extreme value and with
its slope being proportional to the standard deviation of the extreme values. Note that
the extreme values in this figure for the nonlinear models can be measured also in
terms of the ductility demand µd and that the probability distribution can be measured
in terms of the return period, that is, the expected number of earthquakes required to
produce a single extreme value having the magnitude shown by the ordinate scale.

The significant features to be noted in Fig. 28-4 are the following:

(1) The most probable extreme values of response for short-period structures as
represented in Fig. 28-4a are much greater for the elastic-plastic and stiffness-
degrading models than for their corresponding linear models, are appreciably
greater for the elastic-plastic models than for their corresponding stiffness-
degrading models, and are considerably greater for those models having 2 per-
cent of critical damping than for their corresponding models having 10 percent
of critical damping.

(2) The most probable extreme values of response for long-period structures as
represented at v̂ = 0 in Fig. 28-4b are considerably greater for those models
having 2 percent of critical damping than for their corresponding models having
10 percent of critical damping; however, these values differ very little from one
model to another.

(3) The standard deviations of extreme-value response for the short-period structures
are considerably larger for the elastic-plastic and stiffness-degrading models

4 E. J. Gumbel and P. G. Carlson, Extreme-Values in Aeronautics, op. cit.; E. J. Gumbel, Probability Tables
for the Analysis of Extreme-Value Data, op. cit.
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than for their corresponding linear models and are appreciably larger for the
elastic-plastic models than for their corresponding stiffness-degrading models.

(4) The standard deviations of extreme-value response for long-period structures
correlate in a manner quite similar to short-period structures except that the
differences are not so great.

(5) Increasing the viscous-damping ratio decreases the standard deviations of
extreme-value response for each model type.

(6) The theoretical extreme-value functions as represented by Eq. (28-14) and plot-
ted as straight lines in Fig. 28-4 show very good correlations with the actual
distributions.

The probability distribution functions for extreme values shown in Fig. 28-4
result from an input process v̈g(t) having a duration of 30 sec. The corresponding
extreme values will, of course, be less for processes of shorter duration. To illustrate
this time-duration effect, a ratio of the ensemble average of extreme values for an
input process of duration T0 to the ensemble average of extreme values for an input
process of 30 sec is plotted in Fig. 28-5 as a function of the duration ratio T0/30.

It is quite evident, from curve No. 2 in Fig. 28-5a, that the mean peak response of
a typically damped, linear short-period structure (T = 0.3 sec) increases very slowly
with duration beyond approximately 6 sec. A long-period structure is, of course,
more sensitive to duration, as shown by curve No. 2 in Fig. 28-5b. This latter curve
indicates that the magnitude of mean peak response for a 15 sec duration process is
approximately 95 percent of the magnitude observed for a 30 sec duration process.
As shown in Figs. 28-5a and b, elastic-plastic and stiffness-degrading structures are
much more sensitive to duration than elastic structures are; thus, it is apparent that

(b)(a)

FIGURE 28-5
Duration effect of stationary process on mean peak response of linear and nonlinear structures.
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realistic durations should be used for stationary inputs when investigating the response
of nonlinear structures.

As demonstrated above, stationary processes of relatively short duration can be
used quite effectively to establish the probabilistic peak response of both linear and
nonlinear systems to strong-motion earthquakes of a given intensity level. However,
as the true dynamic characteristics of real structures become better known, damage
will likely be measured using various accumulative-damage criteria, in which case, it
becomes desirable to use appropriate nonstationary processes for the excitation.

Trilinear Stiffness-Degrading Models — To further illustrate the variability of struc-
tural response to be expected from strong ground motion excitation, let us now examine
some selected results reported by Murakami and Penzien5 for an improved stiffness-
degrading single-degree-of-freedom model6 representing reinforced concrete struc-
tures where the nonlinear deformations and failure characteristics are controlled pri-
marily by flexure. The force-displacement hysteretic relation for this model is shown
in Fig. 28-6.

The nonstationary stochastic model used in this investigation for the single
component of ground acceleration input was of the form

v̈g(t) = f(t) a(t) (28-16)

where f(t) is a deterministic time intensity function and a(t) is a stationary filtered
process. In generating the filtered process, both the high- and low-frequency filters
of Eq. (25-39) were used. In the high-frequency filter ω1 and ξ1 were assigned
the numerical values 15.6 rad/sec and 0.6, respectively; while at the same time,
parameters ω2 and ξ2 in the low-frequency filter were assigned the numerical values
0.897 rad/sec and 1/

√
2, respectively. The intensity of the stationary process S0

was assigned a fixed value in generating the sample ground motions; however, a
normalization was carried out so that the final response results were independent of
this value. The time intensity function used was of the form

f(t) =




t2/16 0 ≤ t ≤ 4 sec
1 4 ≤ t ≤ 35 sec
exp[−0.0357(t− 35)] t ≥ 35 sec

(28-17)

5 M. Murakami and J. Penzien, “Nonlinear Response Spectra for Probabilistic Seismic Design and Damage
Assessment of Reinforced Concrete Structures,” Univ. of Calif., Berkeley, Earthquake Engineering
Research Center, Report No. 75–38, 1975.

6 H. Umemura et. al., Earthquake Resistant Design of Reinforced Concrete Buildings Accounting for the
Dynamic Effects of Earthquakes, Giko-do, Tokyo, Japan, 1973 (in Japanese).
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FIGURE 28-6
Trilinear stiffness-degrading hysteretic 
model.
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which represents roughly the upper bound motions to be expected in the vicinity of
the causative fault of an earthquake having a Richter magnitude 8 or greater.7

The hysteretic form of the force-displacement relation is characterized by pBc,
pBy , vBc, and vBy which represent the load at which the concrete cracks due to
flexure, the load at which the main reinforcing steel starts to yield due to flexure,
the relative displacement produced by pBc, and the relative displacement produced
by pBy , respectively. Linear elastic behavior (without hysteretic loops) always takes
place for oscillatory displacements where the corresponding loads are in the range
−pBc < p < pBc; however, hysteretic behavior occurs with each cycle of deformation
which has a load level above pBc or below−pBc. During the period of time between the
initiation of loading and that instant at which the relative displacement first increases
above vBy or decreases below −vBy, the trilinear model behaves exactly like the
standard bilinear hysteretic model having stiffnesses k1 and k2 (QPOAB; Fig. 28-
6). However, as soon as the relative displacement increases above vBy or decreases
below −vBy, a new bilinear hysteretic relation controls the response. For example,
suppose the relative displacement for the first time increases above vBy to level vmax

7 P. C. Jennings, G. W. Housner, and N. C. Tsai, “Simulated Earthquake Motions,” loc. cit.
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as represented by C in Fig. 28-6a. Upon decreasing the displacement from this level,
the corresponding load decreases along path CD which has a slope equal to αk1,
where

α ≡ 2 vBy

vmax + vBy
(28-18)

As soon as the load drops by the amount 2pBc reaching point D, any further drop in
load will follow the continuing path shown having a slope αk2. It should be noted
that point D is located at load level pBc in Fig. 28-6a but only because the particular
trilinear model represented in that figure is for pBy/pBc = 3.0. If this ratio had been
assigned a different numerical value, the load level at pointD would be different from
pBc.

The new bilinear hysteretic model controlling the continuing motion is shown in
Fig. 28-6b. Note that the origin of the skeleton curve is shifted from pointO, the origin
of the original bilinear hysteretic model, to point O′. This point is the intersection
point of line QC and the abscissa axis in Fig. 28-6a; therefore OO′ is equal toBC/2.
The stiffnesses of the new bilinear model are αk1, and αk2.

If during the period of response controlled by the second bilinear model of
Fig. 28-6b, the relative displacement should increase beyond vmax (vmax = vBy′) as
represented by point B′ to a new level as represented by C ′, the continuing response
would be controlled by a third bilinear hysteretic model whose characteristics could
be obtained in exactly the same manner as the characteristics of the second model.
Also if yielding of the trilinear model had taken place at load level −pBy rather than
load level pBy , the new bilinear model controlling the continuing motion would be
obtained by a similar procedure.

The trilinear stiffness-degrading model is completely characterized by any four
of the seven parameters k1, k2, ky , pBc, pBy , vBc, and vBy shown in Fig. 28-
6. It is convenient to use k1, ky , pBc, and pBy for this purpose but substituting
period parameters T1 and T2, defined by T1 ≡ 2π

√
m/k1 and T2 ≡ 2π

√
m/ky , for

parameters k1 and ky , respectively. For reinforced concrete members, k1 and pBy

usually fall in the ranges 2ky < k1 < 4ky and 2pBc < pBy < 3pBc, respectively;
therefore, for a given design, one can specify the numerical values for ratios k1/ky

and pBy/pBc, which reduces the number of independent parameters to two. For
the example case presented herein, k1/ky = 2 and pBy/pBc = 2 in which case
T2 =

√
2T1. Period T1 and strength pBy can now be used as the two independent

model parameters. It is convenient to normalize strength parameter pBy by dividing
by the force mv̈g0 where v̈g0 is the mean peak acceleration of the ground motion
excitation; thus the final results are independent of the numerical value of S0.

Viscous damping in the structural model is controlled by prescribing the nu-
merical value of the damping ratio ξ1 defined by ξ1 ≡ c/2

√
mk1. A value of 2% of

critical, i.e., ξ1 = 0.02, has been selected for the example presented herein.
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To illustrate the probabilistic nature of maximum structural response to a class
of seismic excitations of fixed intensity, consider the trilinear stiffness-degrading
model defined above subjected to a family of ground motion excitations defined by
Eq. (28-16). Subjecting this model to 20 separate ground motions for each set of
fixed parameters T1 and pBy , the mean and coefficient of variation (ratio of standard
deviation to mean value) of the corresponding 20 maximum values of response are
obtained. Measuring maximum response in terms of ductility demand (µd) defined by

µd ≡ v(t)max
/
vBy (28-19)

the mean value of µd (µd) and its coefficient of variation (standard deviation/mean
value) have distributions as shown in Fig. 28-7. For simplicity, the subscript “B” has
been dropped from the terms pBc, pBy, vBc, and vBy in this figure.

As shown in Fig. 28-7, the mean ductility demands generally increase with
decreasing period (T1) and the spread of ductility demands over the full-strength
range 0.50 < (py/mv̈g0) < 1.75 increases with decreasing period. Also note that
the ductility demands for a fixed period increase with decreasing structural strength.
The trends of the coefficients of variation with period are similar to the trends for
mean ductility demand, particularly regarding strength level and strength variation. It
is most significant to note that the coefficients of variation are low when the response
is essentially elastic (µd < 1) but they become very large with increasing inelastic
deformations.

When using the results in Fig. 28-7, one can calculate mean values of maximum
response using the relation

v(t)max = T 2
2 βf µ

[ g

4π2

] [ v̈g0

g

]
(28-20)

where
βf ≡ py

/
mv̈g0 (28-21)

MDOF Systems

Using a nonstationary process to represent strong ground motions, Ruiz8 stud-
ied the probabilistic response of multistory shear buildings. Selected results of his
investigation are presented here to provide an example of the stochastic response of
MDOF systems.

Ruiz generated a ground-acceleration process v̈g(t) to simulate the expected
ground motions on firm soil at a distance of about 45 mi from the epicenter of

8 P. Ruiz and J. Penzien, “Probabilistic Study of Behavior of Structures during Earthquakes,” University
of California, Berkeley, Earthquake Engineering Research Center, Rept. 69-3, 1969.
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FIGURE 28-7
Mean ductility demands and corresponding coefficients of variation versus period T1 for 
the trilinear stiffness degrading model having different strength levels py .

a magnitude 8.3 earthquake. Twenty sample functions of band-limited stationary
white noise were generated by digital-computer methods. These sample functions
were then multiplied by the deterministic intensity function f(t) shown in Fig. 25-13
with t1 = 0, t2 = 11.5 sec, and c = 0.155 sec−1. The resulting nonstationary
waveforms were then filtered using the first of Eqs. (25-39) as the filter function with
ωg = 15.7 rad/sec and ξg = 0.6. The process was normalized to an intensity level
corresponding to an expected peak acceleration of 0.3 g.

The complete time-history of the elastic-plastic response of an eight-story shear
building was calculated deterministically for each of the 20 input ground accelerations.
The eight lumped masses of this building were of equal magnitude and equally spaced,
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and the relative story elastic spring constants were adjusted so that the fundamental
mode shape of the building was linear. The lateral drift of each story was related
to its shear force through a bilinear hysteretic-force-deflection relation independent
of axial forces acting in the columns. Yielding in all stories was assumed to start
simultaneously as the static lateral loading, distributed in accordance with the 1973
Uniform Building Code, increased monotonically to a level twice as great as the design
loading. The yielding stiffness in each story was set at 10 percent of its initial elastic
stiffness. Viscous damping was introduced into the coupled nonlinear equations of
motion to provide specified damping in the elastic range of response.

Probability distribution functions based on the 20 extreme values of ductility
demand in each of the eight stories are presented in the form of Gumbel plots (Type I) in
Fig. 28-8 for two different shear-type buildings having fundamental periods of 0.5 and
2.0 sec; thus, they represent a stiff building and a flexible building. Both buildings
are assigned damping ratios of 5 percent in all elastic modes. These probability
distribution functions are similar to those shown in Fig. 28-4 for the SDOF systems
described in Section 28-4; therefore, no additional description of the meaning of these
plots is necessary.

From the results of Fig. 28-8a, the following observations are made with regard
to stiff shear buildings:

(1) The most probable ductility demands given at 0.368 on the abscissa scale de-
crease toward the top of the structure.

FIGURE 28-8
Probability distributions for story ductility demands.
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(2) The standard deviations of the ductility demands are almost the same for all
stories except the top story, where a large reduction is observed.

(3) The estimated probability distribution functions show very good agreement with
the corresponding theoretical distributions represented by straight lines.

Likewise from the results in Fig. 28-8b, the following observations are made
with regard to flexible shear buildings:

(1) The most probable ductility demands P (0.368) decrease toward the middle
stories and then increase toward the top story.

(2) The standard deviations of the ductility demands decrease toward the upper
stories but with a slight increase in the top story.

(3) The agreement between the estimated probability distributions and the corre-
sponding theoretical straight-line distributions is only fair in this case.

Comparing the results of Figs. 28-8a and b, it is clear that the most probable ductility
demands and their standard deviations are significantly higher for the stiffer building.

28-4 DESIGN CONSIDERATIONS

The generally accepted philosophy of seismic design has been that only minor
damage is acceptable under moderate earthquake conditions and that total damage or
complete failure should be avoided under maximum probable earthquake conditions. It
is implied in this statement that economical considerations permit a certain level of risk
with regard to damage of structures in high seismic regions. To minimize total costs
(initial costs, repair costs after earthquakes, etc.), damage is often permitted to limited
degrees under moderate to severe earthquake conditions. It should be understood
that permitting some damage to occur in a well-designed structure has the beneficial
effect of limiting damage to that same structure. This is due to the fact that the
energy absorption associated with damage is effective in limiting the maximum levels
of oscillatory motion in the structure. Therefore, a good seismic resistant structure
should be designed to possess high-energy absorption capacity so that it will experience
controlled damage under moderate to severe earthquake conditions. In terms of the
hysteretic structural models presented previously, this concept means that the ductility
demands should be limited to certain values, well below their corresponding ductility
capacities, consistent with the basic design philosophy.

Assume for the moment that one prescribes two numerical values of ductility
demand for a given structural model, the smaller value chosen to be consistent with
light damage under moderate earthquake conditions and the larger value chosen to
be consistent with much greater damage (but not complete failure) under the most
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severe condition which could occur. Two questions come to mind (1) “What is the
probability of these ductility demands being exceeded during a single earthquake?”
and (2) “What ductility demands should be specified, consistent with the design
philosophy?” To fully answer these questions, one needs the appropriate probability
density or distribution functions.

In the previous section, it was shown that the probability distribution function for
maximum (or extreme) response for a single earthquake follows closely the Gumbel
Type I distribution. Using here the trilinear SDOF model and measuring the extreme
values of response in terms of ductility demand (µd), the probability distribution
function for 20 sample values can be expressed in the Gumbel Type I form

P (q) = exp
{
− exp

[
−1.063

c
(q − 1 + 0.493 c)

]}
(28-22)

in which q is the ductility demand normalized by its mean value, i.e.,

q ≡ µd

µd

(28-23)

and c is the coefficient of variation of µd, i.e.,

c ≡ σµd

µd

(28-24)

This probability distribution function is plotted in Fig. 28-9 over a range of discrete
values of c, 0 < c < 1.5. Since the probability distribution function is defined such
that

P (x) ≡ Probability [q < x] (28-25)

the probability exceedance function is given by

Q(x) ≡ Probability [q > x] = 1 − P (x) (28-26)

The first question raised, namely, “What is the probability of these ductility factors
being exceeded during a single earthquake?” can be easily answered using Eq. (28-
26), Fig. 28-9, and data of the type presented in Fig. 28-7. The second question raised,
i.e., “What ductility factors are required consistent with the design philosophy?”
is more difficult to answer. Before attempting to answer this question, one must
realize that the basic design criteria cannot be met in absolute terms, i.e., with 100%
confidence. This complication is due to the scatter of extreme values of response for
each family of earthquake excitations. The best one can do is to reduce the probability
of exceedance associated with each of the two ductility factors to an acceptable level.
Deciding on an acceptable level is, of course, complex as it involves economic, social,
and political considerations; however, suppose for example, it was decided that a 15
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percent probability of exceedance was acceptable, i.e., Q(q) = 0.15 corresponding to
P (q) = 0.85. Using Fig. 28-9 and data similar to that shown in Fig. 28-7, one can
easily establish that ductility factor µ85

d associated with P (q) = 0.85. Figure 28-10
presents the results for the trilinear case previously described, i.e., the case represented
in Fig. 28-7.

To establish the required strength level of a structural system, one must first
prescribe basic criteria consistent with the basic design philosophy. For example,
consider the case where the design and maximum probable PGA levels have been set
at 0.30 g and 0.45 g, respectively, and the two ductility demands, consistent with light
and heavy (but controlled) damage for the trilinear stiffness-degrading model, have
been set at 2 and 4, respectively. Having set these criteria, one can use the established
data on acceptable probability of exceedance, for example µ85

d = µ85
d (T1, py, etc.)

as shown in Fig. 28-10, to obtain the corresponding required strength ratios µ85
d

(β ≡ py/mv̈g0) for any discrete value of T1 under consideration. Considerable
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information of this type has been generated and reported in the literature.9,10,11

In this discussion on design considerations, probabilistic concepts have been
presented for assessing inelastic structural performance under seismic conditions.
While the numerical results given apply to the trilinear SDOF model only, they do
provide considerable insight into the inelastic performance of MDOF structures as
well. A thorough treatment of the probabilistic response of such systems is beyond
the scope of this book.

28-5 ALLOWABLE DUCTILITY DEMAND VERSUS
DUCTILITY CAPACITY

When setting the allowable ductility demand of the maximum credible earth-
quake for a particular SDOF or MDOF structure, its overall ductility capacity should
be taken into consideration. Ductility capacity is defined in general terms as the max-
imum ductility ratio (vmax

/
vy) the structure can withstand under a specified number

of complete cycles of deformation to that level without experiencing significant loss
of structural integrity (strength and stiffness). This specified number should corre-
spond to one’s estimate of the number of complete cycles of inelastic deformation
the structure will undergo during a single maximum credible earthquake event. To

9 M. Murakami and J. Penzien, loc. cit.

10 J. Penzien, “Predicting the Performance of Structures on Regions of High Seismicity,” Proc. 2nd Canadian
Conf. on Earthquake Engineering, McMasters Univ., Hamilton, Untario, Canada, June, 1975.

11 H. A. Sawyer, “Comprehensive Design of Reinforced Concrete Frames by Plasticity Factors,” 9th Plenary
Session of the Comite European du Beton Symposium “Hyperstatique,” Ankara, Turkey, September,
1964.
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provide for a proper margin of safety of performance, ductility capacity should exceed
the allowable ductility demand by an appropriate factor. A factor of 2 is commonly
used for this purpose.
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