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Lecturer/students objectives



Lecturer/students objectives

� Present a method of solution of statically indeterminate structures that
assumes as unknowns displacements or rotations.

� Understand the method. Apply the method to structures with one unknown
kinematic parameter.
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Introduction



Aim (1/2)

• Statically indeterminate structures are structures whose reactions cannot be
determined using only equations of equilibrium; analysis of such structures
requires, in addition to equilibrium, consideration of compatibility of
displacements, and therefore of the relative sti�ness of structural elements

• Such structures are also described as redundant, in that they contain
elements, or constraints, beyond what is required for equilibrium
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Displacement (or stiffness) mehod



Aim (2/2)

Procedure

• Certain displacements called kinematic parameters are chosen as unknown.
When these parameters are calculated, the solution in terms of internal
forces and deformation follows

• It is possible to find infinite compatible solutions but only one assuring the
equilibrium of the structure
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Nodes and kinematic unknowns

A number of nodes are to be chosen; their displacements are the unknowns of
the problem (kinematic unknowns)

Loadings on nodes
The nodes are loaded by external forces and couples and by forces and
couples from beams connected to the same nodes; their equilibrium allows to
obtain the unknown displacements
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Example – beam under axial loading (1/3)

The beam is statically indeterminate
with respect to axial forces; all
displacements will be parallel to the
longitudinal axis
The external force is applied at point C,
for this reason, such point is chosen as
node and its displacement as main
parameter

F
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A BC

wCd
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HCA=EAwC/d

HCB=EAwC/(L-d)

A
B
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C
C

Equilibrium
Is written with respect to the undeformed configuration; for small
displacements and deformation C is closed to C’
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Example – beam under axial loading (2/3)

Recalling the relationship between axial force and elongation (or shortening) for
a beam in tension (or in compression) applied to AC and CB:

wC,CA = εz,CA d =
HCA
EA

d =⇒ HCA =
EA
d
wC,CA

wC,CB = εz,CB (L− d) =
HCB
EA

(L− d) =⇒ HCB =
EA
L− d

wC,CB

where wC,CA = wC,CB = wC, the equilibrium for node C gives:

−HCA + F − HCB = 0. i.e. − EA
d
wC + F −

EA
L− d

wC = 0

that make possible to obtain wC:

wC =
F
EA
d(L− d)

L
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Example – beam under axial loading (3/3)

The normal force is given by:

NCA = HCA =
EA
d
wC =

ÅEA
d

ãÅ F
EA
d(L− d)

L

ã
= F

L− d
L

NCB = −HCB = −
EA
L− d

wC = −
Å EA
L− d

ãÅ F
EA
d(L− d)

L

ã
= −F

d
L

The AC portion is subjected to tension while BC to compression.
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Example – shear-type frame (1/5)

E1,I1

u
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Example – shear-type frame (2/5)

The horizontal beam is assumed to be undeformable (infinitely rigid EtIxt →∞
and EtAt →∞). The columns are considered infinitely rigid with respect to axial
deformation (EtAt →∞). The only kinematic parameter is the horizontal
displacement u (node of the structure).

The equilibrium for the horizontal beam is:

−
3∑
i=1

Ti + F = 0 =⇒ −K1u1 − K2u2 − K3u3 + F = 0

where K1, K2 and K3 represent the bending sti�nesses of three columns with
respect to the horizontal displacement (see tables at the end):

K1 = 12E1Ix1

h3
1
, K2 = 0, K3 = 3E3Ix3

h3
3
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Example – shear-type frame (3/5)

Observing that u = u1 = u2 = u3, it is obtained:

u =
F

K1 + K2 + K3

and:

T1 = K1u =
K1

K1 + K2 + K3
F

T2 = K2u =
K2

K1 + K2 + K3
F = 0

T3 = K3u =
K3

K1 + K2 + K3
F

It can be seen that F is distributed in proportion to the sti�nesses K1, K2 and K3
of the columns.
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Example – shear-type frame (4/5)

If follows that:

u =
F

12E1Ix1
h3

1
+ 3E3Ix3

h3
3

T1 = 12E1Ix1

h3
1
u =

12E1Ix1
h3

1

12E1Ix1
h3

1
+ 3E3Ix3

h3
3

F

T2 = 0

T3 = 3E3Ix3

h3
3
u =

3E3Ix3
h3

3

12E1Ix1
h3

1
+ 3E3Ix3

h3
3

F
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Example – fixed-ends frame (1/5)

L

B

2L

L

Lm

φ

A

C

D

E
mMBD

MBC

MBE
MBA

B1

2

3

4

13



Example – fixed-ends frame (2/5)

The beams are assumed to be undeformable, i.e., infinitely rigid with respect to
axial deformation (EtAt →∞). The axial deformation is thus neglected. The only
kinematic parameter is the rotation of node B: ϕ = ϕ

(BA)
B = ϕ

(BC)
B = ϕ

(BE)
B = ϕ

(BD)
B .

Moment equilibrium of the node gives:
4∑
i=1

Mi −m = 0 =⇒ K1ϕ + K2ϕ + K3ϕ + K4ϕ−m = 0

where K1, K2 and K3 are the bending sti�nesses of four beams with respect to the rotation of one 
end (see tables at the end):

K1 = 3EIx
L
, K2 = 3EIx

L
, K3 = 3EIx

L
, K4 = 4EIx

2L
= 2EIx

L
It can be obtained:

ϕ =
m

K1 + K2 + K3 + K4
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Example – fixed-ends frame (3/5)

and:

M1 = M(BA)
B = K1 ϕ =

K1
K1 + K2 + K3 + K4

m

M2 = M(BC)
B = K2 ϕ =

K2
K1 + K2 + K3 + K4

m

M3 = M(BD)
B = K3 ϕ =

K3
K1 + K2 + K3 + K4

m

M4 = M(BE)
B = K4 ϕ =

K4
K1 + K2 + K3 + K4

m

Couple m is distributed in proportion to the sti�nesses K1, K2, K3 and K4 of the
beams.
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Example – fixed-ends frame (4/5)

By substituting:

ϕ =
mL

11EIx

M1 = M(BA)
B =

3
11
m

M2 = M(BC)
B =

3
11
m

M3 = M(BD)
B =

3
11
m

M4 = M(BE)
B =

2
11
m
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Example – fixed-ends frame (5/5)
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Comparison between force and
displacement method



Force and displacement method (1/2)

Force (flexibility) method

• Choice of a statically
determinate structure by
elimination of redundant
reactions

• The statically determinate
structure is equilibrated but not
compatible with supports (the
displacements of supports are
generally equal to zero)

Displacement (sti�ness) method

• Choice of a geometrical determinate
structure adding constraints to obtain
displacements equla to zero for all
nodes

• The geometrical determinate structure
is compatible but not equilibrated; to
obtain nodes with zero displacements it
is necessary to apply forces and
couples di�erent from real ones
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Force and displacement method (2/2)

Force (flexibility)
method

• It is possible to obtain a compatible
system by applying forces and
couples Xi to the nodes

• Forces and couples Xi are obtained
by imposing that displacements
and rotations are compatible with
supports

Displacement (sti�ness) method

• The system can be equilibrated by
imposing displacements and
rotations Yi to the nodes

• Displacements and rotations Yi are
determined by imposing that forces
an couples are equilibrated
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Example – fixed-simply supported beam (1/5)

The beam represented below is examined.

q

L

A B

Force (flexibility)
method
The statically determinate system is
obtained by eliminating the support at
B.

Displacement (sti�ness) method
The system with displacements equal to
zero is obtained by replacing the roller
at B with fixed-end support.
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Example – fixed-simply supported beam (2/5)

Force (flexibility) method

q
A B

q
A B

X

Statically determined scheme

vB=0

Force VB is calculated so that displacement at B is the 
actual one (i.e., vB = 0):

vB = v(q)B + v(X)B = 0

Displacement (sti�ness) method

q
A B

q
A B

Fixed end scheme

MB=0
Y

moment

Rotation at B ϕB = Y is calculated so that the 
moment at B is the actual one (i.e., MB = 0):

MB = M(q)
B + M(Y)

B = 0
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Example – fixed-simply supported beam (3/5)

Force (flexibility) method
The displacements of the right-end of
the cantilever are well known (from
deflection curve). It is v(q)B = 1

8
qL4

EIx and
v(X)B = − 1

3
XL3

EIx so that:

vB = v(q)B + v(X)B =

1
8
qL4

EIx
−

1
3
XL3

EIx
= 0 =⇒

X = VB =
3
8
qL

Displacement (sti�ness) method
From the summary at the end it is
possible to find M(q)

B = −qL2

12 and
M(Y)
B = 4EIx

L Y so that:

MB = M(q)
B + M(Y)

B =

−
qL2

12
+

4EIx
L
Y = 0 =⇒

Y = ϕB =
1

48
qL3

EIx
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Example – fixed-simply supported beam (4/5)

The internal forces are obtained by superposition

Force (flexibility) method

VA = V(q)
A + V(X)

A = qL− X =

qL−
3
8
qL =

5
8
qL

VB = V(q)
B + V(X)

B = 0 + X =

0 +
3
8
qL =

3
8
qL

MA = M(q)
A + M(X)

A =
1
2
qL2 − XL =

1
2
qL2 −

3
8
qL2 =

1
8
qL2

. . .

Displacement (sti�ness) method

VA = V(q)
A + V(Y)

A =

1
2
qL+

Å
+

6EIx
L2

ãÅ 1
48
qL3

EIx

ã
=

5
8
qL

VB = V(q)
B + V(Y)

B =

1
2
qL+

Å
−

6EIx
L2

ãÅ 1
48
qL3

EIx

ã
=

3
8
qL

MA = M(q)
A + M(Y)

A =

1
12
qL2 +

Å
+

2EIx
L

ãÅ 1
48
qL3

EIx

ã
=

1
8
qL2

. . .
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Example – fixed-simply supported beam (5/5)

q

L

A B
φB

T+
-

M

5/8qL

3/8qL

1/8qL2

3/8L

9/128qL2
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