
STRUCTURAL ANALYSIS – Matrix structural analysis
Advanced Structural Mechanics

The ERAMCA Project

Environmental Risk Assessment and Mitigation on Cultural Heritage assets in Central Asia

v2022317

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

https://www.eramca.com/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Table of Contents

Lecturer/students objectives

Introduction

Description of operations performed by software

1



Lecturer/students objectives



Lecturer/students objectives

� Present the fundamentals of solution of framed structures through the
calculator.

� Understand the procedure that make possible to translate a structural
problem into a procedure for digital computers.
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Introduction



Presentation

Setup of a procedure (set of instructions carried out by a digital computer) for
the solution of:

• 2D structures composed by beams and columns, with internal and external
constraints, made of beams with cross sections symmetrical respect to the
vertical plane, lying in the same plane

• loaded by:
• concentrated forces applied in the vertical plane, couples with moment axis

perpendicular to vertical plane, applied on nodes
• concentrated or distributed forces contained on vertical plane, applied along

the beams

• and made of linear elastic materials
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But first. . .
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Now that we are all calm. . .

. . . let’s add some details!

What is the user U requested to do?
What is the software S doing behind the scenes?

What data are needed for a successful run?

g¥ ú3 ú<
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Summary of the procedure (1/2)

1. Description of geometry (coordinates of nodes), by hands or importing a
model U

2. Application of the external and internal constraints U

3. For each beam e, definition of:

3.1 topology, i.e., node i and j (i.e., length L and angle θe), slide 24 S

3.2 geometry of the cross section (centroid G, area A and second order moments Ix
and Iy are usually calculated by the software) U

3.3 material properties E and G (or E and ν) U

3.4 sti�ness Ke, matrix Ne and Kx, slide 14 S

4. For each loaded node, definition of:
4.1 forces Fz, Fy and Mx (usually global frame) U

5. For each loaded beam, definition of:

5.1 distributed loads qz∗ and qy∗ (usually local frame) U
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Summary of the procedure (2/2)

6. Run the software (and cross the fingers!) U

7. Assembling procedure and determination of K and R S

8. Solution and determination of displacements δL and forces VV , slide 36 S

9. For each beam e, determination of (slide 36):
9.1 end forces Q∗i and Q∗j S

9.2 external reactions V S

9.3 normal force, moment and shear S

10. Look at the output for results (lists, diagrams of normal force, moment,
shear; deformed shape. . . ); to be critically checked U

See the checklist, slide 39!
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Description of operations
performed by software



Displacement (of stiffness) method
The displacements or every node k are assumed as kinematical parameters in
the local reference frame

δ∗i =

ϕivi
wi

 , δ∗j =

ϕjvj
wj


The reactions at the ends i e j of every beams (local reference frame) induce by
the applied displacements are evaluated:

Q∗i =

Mi
Ti
Ni

 , Q∗j =

Mj
Tj
Nj

 ,
Adding the forces applied in every nodes, it is possible to impose equilibrium
and to find the unknown displacements
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Sign conventions

Displacements and forces at both ends of a beam are positive if directed in the
same direction of the local reference frame. Rotations and couples are positive
if counterclockwise.

z*
y*

i
jNi Nj

Ti TjMi

Mj

z*
y*

i
j

wi wj

vi vjφi

φj
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Imposed rotations at the ends (1/3)

z*
y*

i j

6EIφi/L
2

6EIφi/L
2

2EIφi/L

L

4EIφi/L

φi

6EIφj/L
2

6EIφj/L
2

2EIφj/L

4EIφj/L

φj

0
0

0 0

The rotation of ϕ of one end is
applied and the corresponding
reactions are calculated (local
frame):
• rotation ϕi of node i
• rotation ϕj of node j

Mi =
4EIx
L
ϕi, Ti = −

6EIx
L2 ϕi,Ni = 0,Mj =

2EIx
L
ϕi, Tj =

6EIx
L2 ϕi,Nj = 0

Mi =
2EIx
L
ϕj, Ti = −

6EIx
L2 ϕj,Ni = 0,Mj =

4EIx
L
ϕj, Tj =

6EIx
L2 ϕj,Nj = 0
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Imposed displacements at the ends (2/3)

z*
y*

i j

12EIvi/L
3

vi
12EIvi/L

3

6EIvi/L
2

L

12EIvj/L
3

vj
12EIvj/L

3

6EIvj/L
2

6EIvi/L
2

6EIvj/L
2

0

0

0

0

The displacement v of one end
is applied and the
corresponding reactions are
calculated (local frame):
• displacement vi of node i
• displacement vj of node j

Mi =−
6EIx
L2 vi, Ti =

12EIx
L3 vi,Ni = 0,Mj =−

6EIx
L2 vi, Tj =−

12EIx
L3 vi,Nj = 0

Mi =
6EIx
L2 vj, Ti = −

12EIx
L3 vj,Ni = 0,Mj =

6EIx
L2 vj, Tj =

12EIx
L3 vj,Nj = 0
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Imposed displacements at the ends (3/3)

z*
y*

i j

0

0 0

L

0
EAwi/L

EAwi/L

0 0 00

EAwj/L
wj

EAwj/L

wi

The displacement w of one end
is applied and the
corresponding reactions are
calculated (local frame):
• displacement wi of node i
• displacement wj of node j

Mi = 0, Ti = 0,Ni =
EA
L
wi,Mj = 0, Tj = 0,Nj = −

EA
L
wi

Mi = 0, Ti = 0,Ni = −
EA
L
wj,Mj = 0, Tj = 0,Nj =

EA
L
wj
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Stiffness matrix for the beam (1/4)

Combining in one matrix the previous relationships, rotations ϕi and ϕj:

Mi

Ti

Ni

Mj

Tj

Nj



=



4EIx
L

0 0 2EIx
L

0 0

−
6EIx
L2 0 0 −

6EIx
L2 0 0

0 0 0 0 0 0

2EIx
L

0 0 4EIx
L

0 0

6EIx
L2 0 0 6EIx

L2 0 0

0 0 0 0 0 0





ϕi

vi

wi

ϕj

vj

wj


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Stiffness matrix for the beam (2/4)
The e�ects of displacements are superposed, displacements vi and vj:

Mi

Ti

Ni

Mj

Tj

Nj



=



4EIx
L

−
6EIx
L2 0 2EIx

L
6EIx
L2 0

−
6EIx
L2

12EIx
L3 0 −

6EIx
L2 −

12EIx
L3 0

0 0 0 0 0 0

2EIx
L

−
6EIx
L2 0 4EIx

L
6EIx
L2 0

6EIx
L2 −

12EIx
L3 0 6EIx

L2
12EIx
L3 0

0 0 0 0 0 0





ϕi

vi

wi

ϕj

vj

wj


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Stiffness matrix for the beam (3/4)
Displacements wi and wj:

Mi

Ti

Ni

Mj

Tj

Nj



=



4EIx
L

−
6EIx
L2 0 2EIx

L
6EIx
L2 0

−
6EIx
L2

12EIx
L3 0 −

6EIx
L2 −

12EIx
L3 0

0 0 EA
L

0 0 −
EA
L

2EIx
L

−
6EIx
L2 0 4EIx

L
6EIx
L2 0

6EIx
L2 −

12EIx
L3 0 6EIx

L2
12EIx
L3 0

0 0 −
EA
L

0 0 EA
L





ϕi

vi

wi

ϕj

vj

wj


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Stiffness matrix for the beam (4/4)

The matrix that links displacements and internal forces at the ends, is the sti�ness matrix (local 
reference frame):

Mi

Ti
Ni
Mj

Tj
Nj


=



4EIx
L −6EIx

L2 0 2EIx
L

6EIx
L2 0

−6EIx
L2

12EIx
L3 0 −6EIx

L2 − 12EIx
L3 0

0 0 EA
L 0 0 −EA

L
2EIx
L −6EIx

L2 0 4EIx
L

6EIx
L2 0

6EIx
L2 − 12EIx

L3 0 6EIx
L2

12EIx
L3 0

0 0 −EA
L 0 0 EA

L





ϕi

vi
wi
ϕj

vj
wj


it is symmetrical, terms on the diagonal are positive, and is singular (represents a beam free in space)
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Matrix form (1/2)

It is assumed:
δ∗i =

ϕivi
wi

 , δ∗j =
ϕjvj
wj

 , Q∗i =
Mi
Ti
Ni

 , Q∗j =
Mj
Tj
Nj



Kii =


4EIx
L −6EIx

L2 0

−6EIx
L2

12EIx
L3 0

0 0 EA
L

 , Kjj =


4EIx
L

6EIx
L2 0

6EIx
L2

12EIx
L3 0

0 0 EA
L



Kij = Kji =


2EIx
L

6EIx
L2 0

−6EIx
L2 − 12EIx

L3 0

0 0 −EA
L


18



Matrix form (2/2)
The relationship between displacements and reactions is:

Mi

Ti
Ni
Mj

Tj
Nj


=



4EIx
L −6EIx

L2 0 2EIx
L

6EIx
L2 0

−6EIx
L2

12EIx
L3 0 −6EIx

L2 − 12EIx
L3 0

0 0 EA
L 0 0 −EA

L
2EIx
L −6EIx

L2 0 4EIx
L

6EIx
L2 0

6EIx
L2 − 12EIx

L3 0 6EIx
L2

12EIx
L3 0

0 0 −EA
L 0 0 EA

L





ϕi

vi
wi
ϕj

vj
wj


or, in a more compact form: Q∗i

Q∗j

 =

Kii Kij
Kji Kjj

δ∗i
δ∗j


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Loads

If concentrated or distributed loads are acting on a beam, the equivalent forces on the nodes are to be 
considered (opposite to the reactions on fixed-end scheme):

z*
y*

i

j

qL2/12

L

z*
y*

i

j

qL2/12

qL/2qL/2
00

For instance, for an uniform load q:

M0
i = −

qL2

12
, T0

i = +
qL
2
,N0

i = 0,M0
j = +

qL2

12
, T0

j = +
qL
2
,N0

j = 0
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Equivalent nodal loadings

The relationship between displacements and reactions, accounting equivalent nodal loads is:

Mi
Ti
Ni
Mj
Tj
Nj


=



4EIx
L −6EIx

L2 0 2EIx
L

6EIx
L2 0

−6EIx
L2

12EIx
L3 0 −6EIx

L2 − 12EIx
L3 0

0 0 EA
L 0 0 −EA

L
2EIx
L −6EIx

L2 0 4EIx
L

6EIx
L2 0

6EIx
L2 − 12EIx

L3 0 6EIx
L2

12EIx
L3 0

0 0 −EA
L 0 0 EA

L





ϕi
vi
wi
ϕj
vj
wj


−



M0
i

T0
i
N0
i

M0
j

T0
j
N0
j


or:

Q∗i
Q∗j

 =

Kii Kij

Kji Kjj


δ∗i
δ∗j

−
F∗i
F∗j


where: F∗i = [M0

i T
0
i N

0
i ]
T, F∗j = [M0

j T
0
j N

0
j ]
T
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Beam equilibrium

For a single beam i− j in the local reference frame:ñ
Q∗i
Q∗j

ô
=

ñ
Kii Kij
Kji Kjj

ô ñ
δ∗i
δ∗j

ô
−
ñ
F∗i
F∗j

ô
In a compact fashion, where subscript e indicates the beam i− j, is:

Q∗e = Keδ∗e − F∗e

or:
Ke

(6×6)
δ∗e

(6×1)
= Q∗e

(6×1)
+ F∗e

(6×1)

where, under every matrix, the corresponding dimensions are shown (number of
rows × number of columns).

22



Reference frames

To add the components of forces transferred by beams to nodes, the angle
between the local and global reference frame has to be taken into account:

z
y

global ref.

θ2 θ

1

4

5

2

1

4

5

local ref. 1-2

2

1

4

5

z*
y*

θ22

1

4

5

z*
y*

z*
y
*

N

M

T

N M
T N

M

T
local ref. 2-4

local ref. 2-5
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From local to global reference frame (1/4)

The components of resultant Rj are Tj,Nj (local
reference) and Vj,Hj (global reference). Moment
Mj is the same in both systems. Similar
transformation for vj and wj (rotations do not
change)

z
y

global ref.

θ
j

Tj

local ref. i-j
z*y*

i

Nj

Hj

Vj Rj

To move from local to
global reference frame,
the rotation matrix Ne is
introduced:

Ne =



1 0 0 0 0 0
0 cos θe sin θe 0 0 0
0 − sin θe cos θe 0 0 0
0 0 0 1 0 0
0 0 0 0 cos θe sin θe

0 0 0 0 − sin θe cos θe


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From local to global reference frame (2/4)

It is possible to move from the local reference frame (superscript ∗) to the global
frame:

δ∗e = Neδe
Q∗e = NeQe
F∗e = NeFe

The equilibrium equation for the beam:

Keδ∗e = Q∗e + F∗e

is now:
KeNeδe = Ne (Qe + Fe)

25



From local to global reference frame (3/4)

By a left multiplication (multiplication of matrices is not commutative as in
ordinary algebra!) by NTe for both sides:

NTeKeNeδe = NTeNe (Qe + Fe)

Matrix Ne is such that NTeNe = I, where I is a matrix with zero excepts for the
diagonal, where the values are equal to one (unit matrix):Ä

NTeKeNe
ä
δe = I (Qe + Fe)

A matrix does not change if multiplied by I:Ä
NTeKeNe

ä
δe = Qe + Fe
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From local to global reference frame (4/4)

Now, the equilibrium equation of the beam (global reference frame) is:(
NTe

(6×6)
Ke

(6×6)
Ne

(6×6)

)
δe

(6×1)
= Qe

(6×1)
+ Fe

(6×1)

• NTeKeNe: sti�ness matrix for the beam
• δe: nodal displacement vector
• Qe: external reactions vector
• Fe: equivalent nodal force vector
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Assembling the global stiffness (1/5)

The sti�ness matrices and reaction vectors for each beam must be added, taking
into account the correspondence between the unknowns of the beam and the
global ones (assembling). The DOF are obtained numbering from 1 to n.

Beam Node i Node j

a 1 2
b 2 3
c 2 4

Node DOF

1 1, 2, 3
2 4, 5, 6
3 7, 8, 9
4 10, 11, 12

1 3

4

2

a
c

b

1,2,3 7,8,9

10,11,12

4,5,6

a
c

b
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Assembling the global stiffness (2/5)

Beam a: 1 2 3 4 5 6 7 8 9 10 11 12
1 • • • • • • 0 0 0 0 0 0
2 • • • • • • 0 0 0 0 0 0
3 • • • • • • 0 0 0 0 0 0
4 • • • • • • 0 0 0 0 0 0
5 • • • • • • 0 0 0 0 0 0
6 • • • • • • 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
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Assembling the global stiffness (3/5)

Beams a and b: 1 2 3 4 5 6 7 8 9 10 11 12
1 • • • • • • 0 0 0 0 0 0
2 • • • • • • 0 0 0 0 0 0
3 • • • • • • 0 0 0 0 0 0
4 • • • •• •• •• • • • 0 0 0
5 • • • •• •• •• • • • 0 0 0
6 • • • •• •• •• • • • 0 0 0
7 0 0 0 • • • • • • 0 0 0
8 0 0 0 • • • • • • 0 0 0
9 0 0 0 • • • • • • 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
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Assembling the global stiffness (4/5)

Beams a, b and c: 1 2 3 4 5 6 7 8 9 10 11 12
1 • • • • • • 0 0 0 0 0 0
2 • • • • • • 0 0 0 0 0 0
3 • • • • • • 0 0 0 0 0 0
4 • • • ••• ••• ••• • • • • • •
5 • • • ••• ••• ••• • • • • • •
6 • • • ••• ••• ••• • • • • • •
7 0 0 0 • • • • • • 0 0 0
8 0 0 0 • • • • • • 0 0 0
9 0 0 0 • • • • • • 0 0 0
10 0 0 0 • • • 0 0 0 • • •
11 0 0 0 • • • 0 0 0 • • •
12 0 0 0 • • • 0 0 0 • • •
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Assembling the global stiffness (5/5)

The assembling operation is an expansion of 6× 6 matrices or 6× 1 vectors to
the global dimensions, n× n and n× 1 and their sum. Superscript x indicates the
eXpanded contribution of beam e.

(∑
e

Kx
(n×n)

)
δ

(n×1)
=

∑
e

Qx
(n×1)

+
∑
e

Fx
(n×1)

Posing:

• K =
∑

e Kx: global sti�ness matrix of the structure
• F =

∑
e Fx: equivalent nodal force vector

it is obtained:
Kδ =

∑
e
Qx + F
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Equilibrium equations for nodes (1/2)

P represents the vector of forces
applied directly to the nodes and V the
vector of external reactions
(constrained nodes), so that equilibrium
gives:

−
∑
e
Qx + P + V = 0

or: ∑
e
Qx = P + V

−Qa −Qb

−Qc

P+V

z
y

33



Equilibrium equations for nodes (2/2)

For the whole structure, assuming R = P + V + F, is:

K δ = R

K is symmetrical, positive definite (i.e., x K xT > 0 for ∀ x) and terms on the
diagonal are positive

34



Calculation of displacements

Changing properly rows and columns, Kδ = R can be partitioned as:KLL KLV
KVL KVV

δL
δV

 =

RL
RV


to separate the L displacements of free nodes (unknowns) from V displacements
of constrained nodes (known, equal to zero or assigned).

From the first row, a linear equation system is obtained:

KLLδL = RL − KLVδV i.e. δL = K−1
LL (RL − KLVδV)

Its solution can be e�ectively carried out through numerical procedures, and
gives the unknown vector δL
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External reactions calculation

Using equation: KLL KLV
KVL KVV

δL
δV

 =

RL
RV


being known δL, from the second row it is possible to obtain RV :

RV = KVLδL + KVVδV

and, the external reactions:

VV = RV − PV − FV

where FV is the vector of the equivalent nodal forces (constrained nodes) and PV
the forces directly applied to the nodes.
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Three dimensional (space) frames (1/2)

The procedure presented above
can extended to three
dimensional frames
A space frame is a structure
system assembled of linear
elements so arranged that
forces are transferred in a
three-dimensional manner. In
some cases, the constituent
element may be
two-dimensional

37
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Three dimensional (space) frames (2/2)

Here the main di�erences:

• Each node i or j of a 3D beam possess 6 degree of freedom (3 displacements
and 3 rotations)

• Six forces (normal forces, two shear forces, two bending moments and one
torsional moment) are acting at each node

• The matrix Ke will be a 12× 12 matrix
• Qe and Fe will be vectors of dimension 12× 1

The dimensions of matrices and vectors are increased, but the automatic
procedure (to be carried out by a computer!) remains basically the same
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How to use a structural software and survive!

Some advice to catch errors:

• check for a correct geometry: for instance, the sti�ness matrix cannot be
created for a beam with zero length!

• check if all data needed by the software are given (geometry of the
structure, geometrical and material properties)

• pay attention to unstable structures (the global sti�ness matrix cannot be
managed)

• beams free in space are unstable, so that the global sti�ness matrix cannot
be obtained

• in a three-dimensional space, the degree of freedom of a beam are six!
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