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Lecturer/students objectives



Lecturer/students objectives

� Present the behaviour of slender compressed structures.
� Understand the mathematical model. Apply the theory to calculate the

critical load for beams.
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Introduction



Stability of equilibrium – buckling (1/3)
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Stability of equilibrium – shell buckling (2/3)

Nice video of buckling of a can of Coke.
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https://www.youtube.com/watch?v=AXSG3q1Jqp0


Tension and compression

The behavior of slender elastic rods subjected to axial force depends on the sign
of N (tension or compression)

Tension: the rod remains straight up to rupture (left); compression: beyond a certain
value of N, it is possible to reach deflected configurations in equilibrium (right)
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Equilibrium: stable, unstable and indifferent

A configuration in equilibrium (C) is moved slightly away (C′):

• if the system returns to its original equilibrium position, it is said to be
stable

• if the system moves further away from that position, it is said to be unstable

Stable

Unstable
Unstable

Indifferent

Frictionless surface

Rigid body (ball) on a frictionless surface, gravitational field. The equilibrium is assured where the
tangent to the surface is horizontal, but the green ball only is in a stable equilibrium state
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Examples with concentrated
elasticity



A very simple structure (1/2)

Equilibrium refers to the deformed configuration!
The equilibrium conditions take into account displacements with respect to the
undeformed configuration

Rigid rod, elasticity concentrated in the torsional spring (M = kϕ)

Equilibrium equations:
H = 0
V = F
M = FL sinϕ

M is a function of ϕ, so that:

kϕ = FL sinϕ

φL

V
H

M k

F
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A very simple structure (2/2)
The latter equation can be rewritten as:

k
FL
ϕ = sinϕ

plotting f (ϕ) = k
FLϕ and g(ϕ) = sinϕ. The intersections lead to three solutions:
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Bifurcation of the equilibrium – critical load

Every point of the diagram of the non-dimensional force FL
k is in equilibrium. If

the load path starts from F = 0:

• if F < k/L the rod must be vertical
(ϕ = 0)

• if F > k/L the rod can be vertical or
move to the left or to the right
(±ϕ∗)

• the value Fcr = k/L where the load
can follows di�erent paths
(bifurcation) is the critical load

φ

FL/k

1

Path with initial
imperfection φ0

φ0

Blue: stable paths Red: unstable path
Green: stable path with initial imperfection ϕ0
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Another very simple structure

Rigid rod, elasticity concentrated in the
spring (Fs = kL sinϕ). Equilibrium about A
gives:

(kL sinϕ)︸ ︷︷ ︸
Force Fs

(L cosϕ)︸ ︷︷ ︸
Arm

−FL sinϕ = 0

so that F = kL cosϕ

It is again:
Blue: stable paths
Red: unstable path
Green: stable path with initial
imperfection ϕ0

φ

A

F

B'L L

F

L sinφ

 
L cosφ

φ

F/(kL)

1

Path with initial
imperfection φ0

φ0π/2 π/2
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Shallow arch – snap through

Elastic rods (elastic constant k); equilibrium
of node B’:

F − 2NAB sinϕ = 0 where:
NAB = k∆LAB = k(AB′ − AB) =

k
Å L

cosϕ
−

L
cosϕ0

ã
so that:

F
2kL

= sinϕ

Å 1
cosϕ

−
1

cosϕ0

ã
The path starts at ϕ0, reaches ϕC (at R) and
snaps through S.

φ0A

B'

L

F

B

C
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φ

φ

F/(kL)
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π/2

π/2

φ0

RS

T U

φc

φc

O

Fcr
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Distributed elasticity



Beam loaded in compression

A straight beam is subjected to axial compression. If the original configuration is
moved slightly away by an infinitesimal displacement ∆v, will the system return
to its original equilibrium position, or will it move further away from that
position?

L

F F

0

F
z

y

Δv
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Equilibrium in the deformed configuration (1/2)

A moment equal to M(z) = F v(z) is necessary for equilibrium:

F F

0

+ M

v(z)
z

Fv(z)

The moment inside a beam is given by the elastic curve equation:
d2v(z)

dz2 = −
M(z)
E Ix
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Equilibrium in the deformed configuration (2/2)

Summing up, the two moments are:

• Mstab = −E Ix v′′(z): stabilizing (or restoring) moment
• Mdest = F v(z): destabilizing moment

For equilibrium Mstab = Mdest:

−E Ix
d2v(z)

dz2 = F v(z)

or:

d2v(z)
dz2 +

F
E Ix

v(z) = 0
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Solution of the differential equation (1/3)

This equation is a linear, homogeneous di�erential equation of the second order
with constant coe�cients:

d2v(z)
dz2 +

F
E Ix

v(z) = 0

the general solution is:

v(z) = C1 sin

( 
F
E Ix

z
)

+ C2 cos

( 
F
E Ix

z
)

Recalling the boundary conditions that must be satisfied at both ends, it is
possible to find C1 and C2:

v(0) = 0
v(L) = 0
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Solution of the differential equation (2/3)

The first condition is:
v(0) = 0 =⇒ C2 = 0

hence

v(z) = C1 sin

( 
F
E Ix

z
)

v(L) = 0 =⇒ C1 sin

( 
F
E Ix

L
)

= 0 =⇒ C1 = 0

Recalling that C1 = C2 = 0, the solution is v(z) = 0. It means that the deformed
configuration overlap the undeformed configuration!

But. . .
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Solution of the differential equation (3/3)

It seems no other solutions di�erent from the trivial one are possible.
Reconsidering the equation obtained imposing the end condition for z = 0:

v(z) = C1 sin

( 
F
E Ix

z
)

it satisfies the end condition for z = L if the force F is such that sin
Ä»

F
E Ix L
ä

= 0,
e.g., for

»
F
E Ix L = π, or for F = π2E Ix

L2

0 L

v

F<π2EI/L2

F=π2EI/L2

F>π2EI/L2

z

17

http://en.wikipedia.org/wiki/Triviality_(mathematics)


There is no uniqueness!

• Constant C1 can assume any value
• There exist infinite values of F such that

sin
Ä»

F
E Ix L
ä

= 0, i.e.: 
F
E Ix

L = nπ, n = 1, 2, . . .

or

F1 = 1 π
2E Ix
L2 , F2 = 4 π

2E Ix
L2 , F3 = 9 π

2E Ix
L2 , · · ·

0 L

v

C1=1

C1=3/2

C1=−1/2

z

0 L

v

F=F2F=F3

z

F=F1
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Critical load (buckling load)

• Infinite solutions of the problem corresponding to sinusoidal curves with di�erent periods, are 
possible (it is not possible to find the magnitude of the deflection)

• The load F should belong to the set {F1, F2, F3 . . .}

• The load corresponding to n = 1 is the Euler buckling load

Fcr =
π2E Ix
L2

• The corresponding elastic curve is called critical deflection

0 L

v

z

F=Fcr
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http://en.wikipedia.org/wiki/Leonhard_Euler


Different end conditions

The deformation and the critical load can change with di�erent support
conditions
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Effective length

When the supports at the end are di�erent from the one examined before, the
critical load is similar:

Fcr =
π2E Ix
L2

0
where L0 is the e�ective length, i.e., the distance between two subsequent
points with zero curvature of the sinusoidal curve

0 L

v

z

L0
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Different end conditions

F F L0 = L Fcr =
π2E Ix
L2

F
F

L0 = L/2 Fcr = 4π
2E Ix
L2

F
F L0 ≈ 0.7L Fcr ≈ 2π

2E Ix
L2

F
F L0 = 2L Fcr =

π2E Ix
4L2

FF L0 = L Fcr =
π2E Ix
L2

FF L0 = 2L Fcr =
π2E Ix

4L2
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Example: shear-type frame

Horizontal displacements are prevented by diagonal members (bracing)

3Fa

L
L0

Fa Fa Fa

L0=L 3Fb

L L0

Fb Fb Fb

L0=L/2

Fa,cr =
π2E Ix
L2 Fb,cr = 4π

2E Ix
L2

Remember the out-of-plane buckling where the constraints can behave in a di�erent way!
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Deflection plane

The critical load is Fcr = π2E Ix
L2

0
, and depends on the deflection plane, defined by

the smaller from Ixx/L2
0,x and Iyy/L2

0,y

Undeformed configuration Deflection in the strong axis Deflection in the weak axis
(©Kirk Martini)
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http://urban.arch.virginia.edu/~km6e/arch324/content/lectures/lec-12/pres.html


Slenderness

Introducing the radius of gyration ρx =
»

Ix
A , and the non-dimensional

slenderness:
λ =

L0
ρx

the critical load Fcr = π2E Ix
L2

0
can be rewritten as:

Fcr =
π2E A
λ2

It can be seen that the critical load (that must be larger than the applied load for
safety reasons), depends on:
• A: cross section area
• E: modulus of elasticity of the beam
• λ: maximum slenderness (in the actual deflection plane, see slide 30)
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Failure transition

Transition from the buckling failure to compression failure:

• slender columns: elastic instability (buckling failure)
• stubby columns: compression failure

100 150 200 250 300

100

200

300

400
F/kN

λ

F=Afr(C)

F=π2EA/λ2

Steel rod (circular cross section,
25 mm diameter), E = 210 GPa,
fr(C) = 450 MPa
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Real world examples



Steel columns

Instability of steel columns (composite section) subjected to train loads (New
York City subway)

http://www.nycsubway.org
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http://www.nycsubway.org/wiki/Chapter_04._Design_of_Structure_and_Track


Various forms of buckling (1/2)

• lateral-torsional buckling of a steel truss frame

http://www.hsh.info
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http://www.hsh.info


Various forms of buckling (2/2)

• buckling of the web of a steel beam

Vellasco, P. C. G. da S., and Hobbs, R. E. (2001) 29

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862001000400003&lng=en&nrm=iso


Exercise



Example (1/2)

Column with a rectangular cross section: the upper support restraints displacements along x and y; the lower 
support restraints displacements along x and y and rotations about y and z. Find the critical load.

• (x, z) plane of buckling:
hinge–fixed-end, L0 ≈ 0.7L:

N(x,z)
cr ≈

π2 E Iyy
(0.7L)2 ≈ 2π

2 E Iyy
L2

• (y, z) plane of buckling: simple
support–hinge, L0 = L:

N(y,z)
cr =

π2 E Ixx
L2

Deflection
on (x,z) plane

Cross
section

L

z

y

x

P

Deflection
on (y,z) plane

y=η

x=ξ

b

h

P
z

x
y
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Example (2/2)

The critical load is the minimum between N(x,z)
cr and N(y,z)

cr :

Ncr = min(N(x,z)
cr , N(y,z)

cr ) = min

Å
2 π

2 E Iyy
L2 ,

π2 E Ixx
L2

ã
and depends on Ixx and Iyy.

If, for example, it is assumed h = 2b, it is Ixx = 4 Iyy:

N(x,z)
cr = 2

π2 E Ixx
4

L2 =
1
2
π2 E Ixx
L2 and N(y,z)

cr =
π2 E Ixx
L2

It means that the minimum critical load is equal to N(x,z)
cr :

Ncr = N(x,z)
cr =

1
2
π2 E Ixx
L2
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