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Lecturer/students objectives

� Present the deformation of plane elastic beams in terms of longitudinal
displacements of the longitudinal axis.

� Understand the mathematical model for the elastic curve and the solution
method taking into account the proper boundary conditions. Apply the
theory to calculate displacements and rotations to beams under di�erent
loading and boundary conditions.
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Introduction



Longitudinal displacements (1/2)
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The axial (longitudinal) displacements (z direction) w(z) and transverse (y
direction) v(z) can be calculated form kinematics and constitutive equations
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Longitudinal displacements (2/2)

It is possible to obtain uncoupled equations:

• axial displacements w(z):
1. relationship between the first derivative of w(z) and N(z)

E A
2. relationship between the second derivative of w(z) and p(z)

E A

• transverse displacements v(z):
1. relationship between the second derivative of v(z) and M(z)

E Ix
2. relationship between the fourth derivative of v(z) and q(z)

E Ix

Here, the calculation of the axial displacements w(z) is examined; the calculation
of the transverse displacements v(z) is studied in the ‘Deflection” lecture.
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First order differential equation

The relationship between axial displacement w(z) and normal force N(z) is given
by:

ε0(z) =
dw(z)

dz
=
N(z)
KA,e

=
N(z)
E A

If the normal force N(z) and E e A are constant along z, it is easy to integrate the
previous equation to calculate the elongation w(z):

w(z) =
N
E A

z + C1

and to associate one boundary condition.
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Example 1: elongation of an element (1/2)
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The normal force is N(z) = +F; the boundary condition:

w(z = 0) = wA = 0 =⇒ C1 = 0
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Example 1: elongation of an element (2/2)

It is obtained:

w(z) =
F
E A

z

The displacement of point B is:

wB = w(z = L) = +
F L
E A

Axial sti�ness

Term Ka,rod = E A
L represents the sti�ness of the element of length L subjected

to an axial force (F = Ka,rod wB)
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Axial stiffness of rods

Rods with di�erent area and length
loaded in tension:
#1: K1 =

E A
L

#2: K2 = E A
L/2 = 2E AL

#3: K3 =
E (5A)
L = 5E AL

#4: K4 =
E (5A)
L/2 = 10E A

L

The sti�er element is #4
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Example 2: column subjected to self-weight (1/2)

The normal force due to self-weight
p(z) = −ρ g A = −p0 is N(z) = −p0 (L− z), so
that (where E and A constant along z):

dw(z)
dz

=
N(z)
E A

=
−p0 (L− z)

E A

ρ is the material density and g (9.81 m/s2) the
acceleration due to gravity. It is obtained:

w(z) = −
p0
E A

Å
Lz−

z2

2

ã
+ C1

L

z
wB

VA=p0L
N(z)

-

A

B

w(z)

p0

wB

-

B'
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Example 2: column subjected to self-weight (2/2)

The boundary condition is:

w(z = 0) = wA = 0 =⇒ C1 = 0

hence:

w(z) = −
p0
E A

Å
Lz−

z2

2

ã
The displacement of B, wB, is now:

wB = w(z = L) = −
p0 L2

2E A
= −

ρ g L2

2E
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