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Lecturer/students objectives



Lecturer/students objectives

� Link static and kinematic behavior of beams.
� Understand the relationships between the internal forces and deformations.
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Introduction



Aim of the lesson

The aim of the lecture is to provide the information necessary to understand:

• relations between internal forces and deformations, i.e., global constitutive
equations
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Constitutive equations for beams



Experiments (normal force, tension) – Steel (1/3)
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Necking (2/3)
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Experiments (normal force, tension) – Steel (3/3)
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Experiments (normal force, compression) – Concrete (1/2)
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Experiments (normal force, compression) – Concrete (2/2)
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Experiments (bending) – Reinforced concrete (1/2)

http://www.dtu.dk/subsites/Wind%20Engineering/Education/Beam_Testing_Concrete.aspx

9

http://www.dtu.dk/subsites/Wind%20Engineering/Education/Beam_Testing_Concrete.aspx


Experiments (bending) – Reinforced concrete (2/2)

M. Limongelli – Politecnico di Milano
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http://www.stru.polimi.it/home/limongelli/bacheca/


Linear elastic behavior – the spring (1/4)

• The linear elastic relationship is such that:
1. the force is an unique function of deformation
2. if the force is removed, the original (usually

undeformed) state is obtained without residual
or permanent deformations. It is a reversible
behavior.

• The linear elastic behavior is a particular elastic
relationship expressed by a linear law (Hooke’s
law)
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Linear elastic constitutive equations (2/4)

Given an internal force S(z), the corresponding
deformation d(z) can be given as d(z) =

S(z)
K

Internal Deformation Sti�ness
force S d K = ∆S

∆d

N ε0 KA,e = E A
T γ KS,e = GAT
M χ KB,e = E Ix

For an elementary beam (length dz):

• KA,e = E A: axial sti�ness

• KS,e = GAT : shear sti�ness

• KB,e = E Ix: bending sti�ness
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Linear elastic constitutive equations (3/4)

Internal forces and deformations
Proportion between internal forces (N, M, T) and deformations (ε0, χ, γ)
through the sti�ness

The sti�ness (slope of S− d diagram) depends on material (E,G) and on the
cross section shape
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Linear elastic constitutive equations (4/4)

Geometrical properties of the cross section

• A: area
• t > 1: shear factor

Ä
AT = A

t

ä
• Ix: second moment of area (or moment of inertia)

The lecture about the geometrical properties of areas deepens this topic.

Material properties

• E: modulus of elasticity (Young’s modulus)
• G: shear modulus

The lecture about the material properties deepens this topic.
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Stiffness: influence of material and section

Di�erent material, same cross section
(with respect to the same vertical
loading direction)

P

P

Rubber

Steel

Top: E = Es = 210 GPa, bottom: E = Er ≈ 0.1 GPa

Same material, di�erent cross section
(di�erent inertia with respect to the
same vertical loading direction)

Left: Ix = b h3

12 , right: Ix = h b3

12 (where x is the
horizontal axis, orthogonal to the direction of gravity)
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Physical dimensions

Quantity Physical dimension SI unit

E, G FL−2 Pa
A L2 m2

Ix L4 m4

t – –
KA,e, KS,e F N
KB,e FL2 Nm2
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