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Lecturer/students objectives



Lecturer/students objectives

� Present the deformation of plane elastic beams in terms of displacements
of the longitudinal axis.

� Understand the mathematical model for the deflection and the solution
method taking into account the proper boundary conditions. Apply the
theory to calculate displacements and rotations to beams under di�erent
loading and boundary conditions.
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Introduction



Aims

In engineering work, it is frequently necessary to estimate the displacements on
a structure subjected to loads:

• at the design stage, in order to assess if the displacements under ordinary
loads are acceptable or not

• during the final static testing, in order to assess if the structure, under
design loads, behaves as expected without exiting elastic bounds

Bridge on Lorgana Canal on

Bologna-Portomaggiore

railway. Bridge testing. 3



Goals

To develop a theory (i.e., a mathematical model) that allows to compute the
displacements v, perpendicular to the beam axis, as a function of:

• beam length
• shape and size of beam cross section
• material properties
• position and magnitude of the loads
• supports

To find a mathematical expression that assigns to z, i.e., the abscissa along the
beam axis, a value of the displacement function v(z). This expression is called
deflection
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Hypothesis (1/2)

In order to treat the problem in a simple way, let us suppose that:

• the longitudinal axis of the beam, z, is straight
• the distributed load is a continuous function and acts perpendicular to

beam axis, i.e., vertically
• the lateral displacements v(z) are small with respect to the size of the cross

section and the rotations ϕ(z) of the axis are omitted
• shear strain, γ, is neglected

q

BA v(z)
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Hypothesis (2/2)

In addition, let us suppose that:
• the cross section is constant along the length of the beam and symmetric

with respect to the vertical plane
• the maximum force does not exceed elastic limits
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Grade and curvature

For any curve in the plane, it is possible to define:
• the grade, i.e., the angle ϕ that the tangent line forms with z axis, positive if anti-clockwise (as 

in the sketch)
• the curvature χ, which modulus is equal to the inverse of the radius R of the osculating circle 

(χ = 1/R) and the sign is positive if the concavity of the curve looks towards the negative part 

of y-axis (as in the sketch)
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Geometrical approximations

If the mathematical expression of the curve is v = v(z), with the sign
conventions previously denoted, the curvature in any point is

χ(z) = −
v′′(z)»(

1 + v′(z)2)3

If the rotation of ϕ is small (negligible with respect to the unity), the following
approximations are valid

ϕ(z) = −v′(z) = −
dv(z)

dz

χ(z) = −v′′(z) = −
d2v(z)

dz2
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Second-order differential equation



Second-order differential equation (1/2)

The relationship between bending moment and curvature in a given point Q, at
an abscissa z, is:

χ(z) =
M(z)
KB,e

=
M(z)
E Ix

where the product E Ix is the flexural sti�ness of the beam

The approximation for small rotations leads to the

2nd-order di�erential equation for the elastic curve

d2v(z)
dz2 = −

M(z)
E Ix
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Second-order differential equation (2/2)

Second order di�erential equation:

d2v(z)
dz2 = −

M(z)
E Ix

• determine the deflection v(z) when the bending moment M(z) is known
(M(z) has to be determined in a previous step)

• need a double integration
• needs 2 boundary conditions (one for each end or both on a single end)
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Boundary conditions

If P is one of the two ends, A or B, of the beam:
Kinematic boundary conditions: on displacements or rotations (two)

• if the displacements is prevented, v|P = 0
• if the rotation is prevented, v′|P = 0 (since ϕ = −v′)

In general, the known quantities (v|P, ϕ|P can be di�erent from zero
(settlements); the external reactions and bending moment M(z) are determined
previously.

11



Example



Example (1/4)

Problem: Determine the expression of the displacement function for a simply
supported beam, of length L and flexural sti�ness E Ix, under a uniform
distributed load q0; compute the deflection in the middle point vC, and the
rotations at the ends ϕA, ϕB

q0
BA vC

L/2

C

L/2
φA φB
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Example 1 (2/4)

Elaboration: the moment for this beam is M(z) = qLz/2− qz2/2. The sti�ness E Ix,
which is constant, exits the integration. The integration constants C1 and C2
enter in the final expression:

E Ix v′′(z) = −M(z) =
qz2

2
−
qLz
2

(1)

E Ix v′(z) = E Ix (−ϕ(z)) =
qz3

6
−
qLz2

4
+ C1 (2)

E Ix v(z) =
qz4

24
−
qLz3

12
+ C1z + C2 (3)

At the ends A and B, the vertical displacements (both null) are the known
quantities.
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Example (3/4)

For getting the values of the integration constants, the boundary conditions are
imposed on the displacements

• at A (z = 0) it is v|A = v(0) = 0
• at B (z = L) it is v|B = v(L) = 0

that is:

v(0) = 0 =⇒ 0 = C2

v(L) = 0 =⇒ 0 =
qL4

24
−
qL4

12
+ C1L, C1 = +

qL3

24
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Example (4/4)

Substituting in Eq. 3, the displacement function v(z) is obtained:

v(z) =
1
E Ix

Åqz4

24
−
qLz3

12
+
qL3

24
z
ã

The deflection at midspan is:

C = v(L/2) = +
5

384
q0L4

E Ix
(positive, i.e., same as y)

The rotations ϕA = −ϕB are computed from the first derivative:

ϕA = −v′(0) = − 1
24
q0L3

E Ix
(negative, i.e., clockwise)
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