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Lecturer/students objectives



Lecturer/students objectives

� Present the failure due to exceeding the strength limit in the cross sections
and the concept of equivalent stress.

� Understand the concept of equivalent stress in relation to di�erent
materials and apply it to beams.
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Introduction



Aims (1/2)

Normal and tangential stresses

• What is the worse condition for a point P?
• How can we take into account all stresses at P to evaluate their “total”

e�ect?

σz=3MPa

τzx=2MPa

τzy=1.5MPa
σz=2MPa

τzx=3MPa

τzy=2MPa

P PP
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Aims (2/2)

The material failure theory (or strength criteria) represents a way to predict the
conditions under which solid materials fail under the action of external loads
The aim is. . .
. . . to find a index of the stress of the material, or equivalent stress
σeq = σeq(σ1, σ2), to compare with the strength limit values measured in a
uniaxial laboratory test (fr(T) in tension and fr(C) in compression)

It is assumed that fr(C), fp(C) and σe(C) are positive values
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http://en.wikipedia.org/wiki/Material_failure_theory


Ductile and brittle materials

• Ductile materials: the strength in
tension fr(T) is usually equal to the
strength in compression fr(C)

• Brittle materials: the strength in
tension fr(T) is usually di�erent from
the strength in compression fr(C)
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Proportional limits

The elastic range is defined by fp(T) and fp(C)

To obtain a safety margin, fp(T) and fp(C) are
reduced by partial safety factors γM(T) and
γM(C)

σe(T) =
fp(T)
γM(T)

σe(C) =
fp(C)
γM(C)

to define the conventional elastic range
(−σe(C), σe(T))
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Brittle materials



Galileo-Rankine criterion

This criterion requires to restrict the three principal stresses inside the the
conventional elastic range (−σe(C), σe(T))

−σe(C) ≤ σ1 ≤ σe(T) − σe(C) ≤ σ2 ≤ σe(T) − σe(C) ≤ 0 ≤ σe(T)
It is represented by a square in the space described by the principal stresses
(σ1,σ2)
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http://en.wikipedia.org/wiki/Galileo_Galilei
http://en.wikipedia.org/wiki/William_John_Macquorn_Rankine


Ductile materials



Tresca yield criterion (1/2)

This criterion requires to limit the maximum
tangential stress τmax:

τmax ≤ τP =
1
2
σe(T)

where:

τmax =
1
2

max {|σ1 − σ2|; |σ1 − 0|; |σ2 − 0|}

It is obtained:

σeq = max {|σ1 − σ2|; |σ1 − 0|; |σ2 − 0|} ≤ σe(T)
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http://en.wikipedia.org/wiki/Henri_Tresca


Tresca yield criterion (2/2)

It is represented by an hexagon in the space described by the principal stresses
(σ1,σ2)
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http://en.wikipedia.org/wiki/Henri_Tresca


Huber-Hencky-von Mises criterion

It is represented by an ellipse in the space described by the principal stresses
(σ1,σ2)

σeq =
√
σ12 + σ22 − σ1σ2 ≤ σe(T)
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http://en.wikipedia.org/wiki/Tytus_Maksymilian_Huber
http://en.wikipedia.org/wiki/Richard_von_Mises


Experimental confirmation



Experiments (concrete, steel and aluminum)

H.B. Kupfer, K.H. Gerstle, Behavior of Concrete under Biaxial Stresses, 

Journal of the Engineering Mechanics Division, vol. 99, n. 4, 1973, pp. 

853-866

L. Corradi, Meccanica delle Strutture, vol. 1, McGraw Hill, 1992 

(acciaio: steel; alluminio: aluminum; HHM: Huber-Hencky-von Mises 

criterion)
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http://en.wikipedia.org/wiki/Tytus_Maksymilian_Huber
http://en.wikipedia.org/wiki/Richard_von_Mises


Verification conditions (ductile materials)

The principal stresses are given by (Mohr’s circle):

σ1, σ2 =
σz

2
±

1
2
√
σz2 + 4 τz2; σ3 = 0

the equivalent stress by:

σeq = max {|σ1 − σ2|; |σ1|; |σ2|} (Tresca criterion)
σeq =

√
σ12 + σ22 − σ1σ2 (von Mises criterion)

The verification condition is passed if:

σeq =
√
σz2 +D τz2 ≤

fp(T)
γM(T)

= σe(T)

where
®
D = 4 Tresca criterion
D = 3 von Mises criterion
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Beyond elasticity. . .

The study of structures under the elastic behavior can give unreliable results.

• The crack formations beyond the elastic phase does not means the loss of
functionality of the structure. Sometimes, the fracture can be considered as
an hinge, without loss of stability.

• Holes and other particular situations (notches, sharp angles) give stress
concentrations (and/or infinite stresses) that can be avoided using
elasto-plastic models (stress redistribution).
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