A SHORT MATH PRIMER

STRUCTURAL MECHANICS

The ERAMCA Project

Environmental Risk Assessment and Mitigation on Cultural Heritage assets in Central Asia

V2O22317

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Lecturer/students objectives

Introduction

Vectors

Differential equations

LECTURER/STUDENTS OBJECTIVES

🞓 Present some mathematical tools used in the course.

Convince the classroom to revise them as soon as possible!

INTRODUCTION

The objective of the lecture is to revise some topics useful for the course.

Sum/difference C = A ± B.
 Terms of C are given by:

$$c_{ij} = a_{ij} \pm b_{ij}$$

The sizes of **A** and **B** must be identical.

• Product C = AB.

Terms of **C** are given by:

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

It has a meaning only if the number of columns in **A** is equal to the number of rows in **B** (i.e., $C_{(q \times p)} = A_{(q \times m)(m \times p)}$). Multiplication of matrices is not commutative as in ordinary algebra (i.e., $AB \neq C$

(2/4)

• Transpose of **A**.

The transpose \mathbf{A}^T is obtained by changing rows and columns of \mathbf{A} . If $\mathbf{A} = \mathbf{A}^T$ square matrix \mathbf{A} is symmetrical. In case of a product, it is $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$.

• Determinant *a* = det**A** of **A** (square matrix only):

$$a = \det \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \sum_{ijk} \epsilon_{ijk} a_{1i} a_{2j} a_{3k}$$

where:

 $\epsilon_{ijk} = \begin{cases} +1 & \text{if } ijk \text{ appears in the sequence 12312} \\ -1 & \text{in the sequence 32132} \\ 0 & \text{if in any other sequence} \end{cases}$

If det $\mathbf{A} = \mathbf{0}$, matrix \mathbf{A} is singular.

Inverse A⁻¹ of A (square matrix only).
 Matrix A⁻¹ is such that:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

where *I* is an identity matrix having zero on all off-diagonal positions and unity on each of the diagonal positions.

It is useful for the solutions of linear systems of equations Ax = b where $x = A^{-1}b$.

If $\mathbf{A}^{-1} = \mathbf{A}^{T}$ matrix \mathbf{A} is called orthogonal.

The inversion procedure requires appropriate numerical procedures (for instance, the Cholesky method).

• Eigenvalues λ_i of a symmetric matrix of **A** ($n \times n$):

 $(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{\Phi}_i = \mathbf{O}$ where $\det |\mathbf{A} - \lambda_i \mathbf{I}| = \mathbf{O}$

 Φ_i represent the eigenvector related to eigenvalue λ_i . There are *n* such eigenvalues λ_i to each of which corresponds an eigenvector Φ_i . Such vectors can be shown to be orthonormal ($\Phi_i^T \Phi_i = \delta_{ij}$, where $\delta_{ij} = 1$ if i = j, 0 if $i \neq j$). The physical meaning is to find a vector $\mathbf{A}\Phi$ parallel to the vector Φ .

In Structural Mechanics...

... matrices are used to describe the state of strain and stress; the eigenvalues to find the principal stresses an deformations

VECTORS

A vector is a segment with an orientation, i.e., a segment with an arrow in one of its ends, described through:

- modulus: the length of the vector (representing, in a determined scale, the quantity)
- bearing: identified bundle of lines parallel to the one onto which the vector lies
- direction: identified by the arrow

A unit vector is a vector with modulus equal to 1.

Vectors are used to represent...

... positions of points, forces, velocity and the displacements in a three-dimensional space

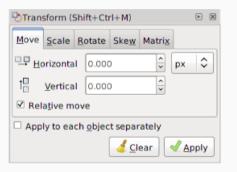
Three mutually orthogonal unit vectors (for example, *i*, *j* and *k*), applied in point O, i.e., the origin of the 3D space, represent a base.

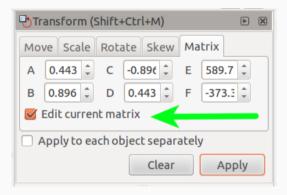
Any generic vector **u** can be expressed as $\mathbf{u} = u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k}$, where u_x , u_y , u_z are the components of the vector.

A vector applied in O, with the tip of the arrow in P...

... can have different mathematical representations:

$$\overrightarrow{OP} = (P - O) = \overrightarrow{u} = \{u\} = \underline{u} = \{u_x, u_y, u_z\} == \begin{cases} u_x \\ u_y \\ u_z \end{cases}$$





• Sum/difference $\mathbf{c} = \mathbf{a} \pm \mathbf{b}$.

$$\mathbf{c} = (a_x \pm b_x)\mathbf{i} + (a_y \pm b_y)\mathbf{j} + (a_z \pm b_z)\mathbf{k}$$

The sizes of **a** and **b** must be identical. The sum can be done geometrically (parallelogram law).

• Length (or modulus) of **u**.

$$u = ||\mathbf{u}|| = \sqrt{\sum_{i} u_{i}^{2}} = \sqrt{u_{x}^{2} + u_{y}^{2} + u_{z}^{2}}$$

OPERATION WITH VECTORS

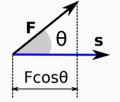
Dot product (symbol "·").
 Links two vectors, for example *F* and *s*, to a scalar quantity *a*:

 $a = \mathbf{F} \cdot \mathbf{s} = ||\mathbf{F}|| \, ||\mathbf{s}|| \, \cos \vartheta = F \, \mathbf{s} \, \cos \vartheta$

where F = ||F|| represents the modulus of F, s = ||s|| the modulus of s and ϑ the angle between F and s.

Dot product is used for calculating...

... the work done by a force



(2/5)

(3/5)

Cross product (symbol "∧").

Links two vectors u, v to a third vector $w = u \land v$, orthogonal to u and v (following right-hand side convention rule), of modulus:



Notice that...

 \dots $u \wedge v \neq v \wedge u$; it is $u \wedge v = -v \wedge u$

Cross product is used for calculating...

... the moment of a force with respect to pole O (*r* links O to P), which modulus is :

$$||\mathbf{M}|| = \mathbf{M} = ||\mathbf{r} \wedge \mathbf{F}|| = ||\mathbf{r}|| \, ||\mathbf{F}|| \sin \vartheta = r \, F \sin \vartheta = F \, b$$

where *b* is the lever arm, i.e., the distance orthogonal to **F** with respect to the pole O

The cross product can also be written as:

$$oldsymbol{w} = oldsymbol{u} \wedge oldsymbol{v} = \det egin{bmatrix} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ u_x & u_y & u_z \ v_x & v_y & v_z \end{bmatrix}$$

i.e.,

$$\boldsymbol{w} = \boldsymbol{u} \wedge \boldsymbol{v} = \boldsymbol{i}(u_y v_z - u_z v_y) - \boldsymbol{j}(u_x v_z - u_z v_x) + \boldsymbol{k}(u_x v_y - u_y v_x)$$

(1/2)

Find the moment of $\mathbf{F} = \{2, 3, 0\}$, applied in P(3,2,0), with respect to the origin (i.e., $\mathbf{r} = \{3, 2, 0\}$).

Solution.

$$\mathbf{M} = \mathbf{r} \wedge \mathbf{F} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & 0 \\ 2 & 3 & 0 \end{bmatrix}$$

so that

$$\textbf{M} = \textbf{i}(2 \times 0 - 0 \times 3) - \textbf{j}(3 \times 0 - 0 \times 2) + \textbf{k}(3 \times 3 - 2 \times 2) = 5\textbf{k}$$

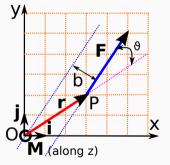
It means that the moment of **F** is a vector directed to **z** axis of modulus equal to 5.

The angle between **r** and **F** is:

$$\sin \vartheta = \frac{||\boldsymbol{M}||}{||\boldsymbol{r}|| \, ||\boldsymbol{F}||} = \frac{5}{\sqrt{13} \times \sqrt{13}} = \frac{5}{13} \quad \text{i.e.,} \quad \vartheta \approx 22.6^{\circ}$$

The arm of **F** with respect to the origin of axes is:

$$b = \sqrt{13} \sin 22.6^{\circ} = 1.39$$

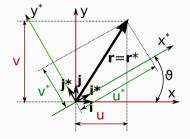


A rotation of the reference system turns the components $\{u, v\}$ of a vector denoted as **r** in the reference system (x, y) into $\{u^*, v^*\}$, i.e., the components of the same vector in the rotated reference system (x^*, y^*) (denoted as **r***):

$$\mathbf{r}^* = \begin{bmatrix} \mathbf{u}^* \\ \mathbf{v}^* \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

that is $\mathbf{r}^* = \mathbf{N}\mathbf{r}$, where \mathbf{N} is an orthogonal matrix ($\mathbf{N}^T = \mathbf{N}^{-1}$) that does not change the length of the vector:

$$||\mathbf{r}^*|| = \sqrt{(u^*)^2 + (v^*)^2} = ||\mathbf{r}|| = \sqrt{u^2 + v^2}$$



Find the components of vector $\mathbf{a} = \{3, -1\}$ in a new frame rotated of $\frac{\pi}{6}$ counterclockwise.

Solution. Matrix **N** is given by:

$$\mathbf{N} = \begin{bmatrix} \cos\frac{\pi}{6} & \sin\frac{\pi}{6} \\ -\sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

so that:

$$\boldsymbol{a}^{*} = \boldsymbol{N}\boldsymbol{a} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{3\sqrt{3}-1}{2} \\ -\frac{3+\sqrt{3}}{2} \end{bmatrix} \approx \begin{bmatrix} +2.1 \\ -2.4 \end{bmatrix}$$

DIFFERENTIAL EQUATIONS

A differential equation is a mathematical equation that relates some function with its derivatives.

As example, the vertical motion of an object falling (uniform gravitational field without air resistance) is examined:

$$a(t) = rac{\mathrm{d} v(t)}{\mathrm{d} t} = +g$$
 $\mathrm{d} v(t) = +g \, \mathrm{d} t$
 $\int \mathrm{d} v(t) = \int g \, \mathrm{d} t + C_1 = g \int \mathrm{d} t + C_1$
 $v(t) = g \, t + C_1$

It is also:

$$v(t) = \frac{dy(t)}{dt} = g t + C_1$$
$$dy(t) = (g t + C_1) dt$$
$$\int dy(t) = \int (g t + C_1) dt + C_2$$
$$y(t) = \frac{1}{2}g t^2 + C_1 t + C_2$$

where g is the acceleration due to gravity (9.81 m/s² near the surface of the earth.

DIFFERENTIAL EQUATIONS – A CLASSICAL EXAMPLE

(3/3)

The boundary conditions are v(0) = 0 and y(0) = 0 so that $C_1 = C_2 = 0$. Hence:

$$v(t) = g t$$
$$y(t) = \frac{1}{2}g t^{2}$$

The velocity of an object after a fall from a height h is:

$$v(h) = \sqrt{2gh}$$

while the time t_h to travel the distance h:

