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Lecturer/students objectives



Lecturer/students objectives

� Present the normal stress calculation for beams.
� Understand the hypotheses, distinguish the di�erent loading condition and

apply the proper solutions.
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Introduction



Warning

Throughout the slides. . .
. . . the principal centroidal axes,
labeled as (x, y) instead of (ξ, η), are
used!

G
x=ξ

y=η

x=ξ, y=η: principal
centroidal axes
(Sx=Sy=Ixy=0)
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Equivalence between stresses and internal forces

Nz = ∫A
σzdA

Tx = ∫A
τzxdA

Ty = ∫A
τzydA

Mx = ∫A
σzydA

My = −∫A
σzxdA

Mz = ∫A
(τzyx − τzxy)dA

Gz

σz τzx

τzy

x=ξ

y=η

dA
x

y
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Axial loading



Axial loading – compression

Agrigento temple
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https://en.wikipedia.org/wiki/Valle_dei_Templi


Axial loading – tension

Alamillo bridge
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https://en.wikipedia.org/wiki/Puente_del_Alamillo


Axial loading – model for stresses

dz

z
x=ξ

y=η

G

Cross
section

εzdz

NzNz

σz=Eεz

Transverse contraction is neglected
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Axial loading – stress calculation

Every cross section remains plane and undistorted: εz uniform Ô⇒ σz uniform
(σz = Eεz). It is:

εz = ε0 =
Nz
EA

so that:

σz = Eεz = E
Nz
EA
=
Nz
A

Axes are centroidal (Sx = Sy = 0) and principal (Ixy = 0):

Mx = ∫
A
σzydA = ∫

A

Nz
A ydA = NzA ∫A ydA = cSx = 0

−My = ∫
A
σzxdA = ∫

A

Nz
A xdA = NzA ∫A xdA = cSy = 0
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Bending



Bending and shear (1/3)

FIAT Tagliero, Asmara

9

https://en.wikipedia.org/wiki/Fiat_Tagliero_Building


Bending and shear (2/3)
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Bending and shear (3/3)

Rago bridge
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http://www.highestbridges.com/wiki/index.php?title=Rago_Viaduct


Symmetric bending – model for stresses (1/2)

dz

z G

Cross
section

εzdz

C

H K

J'I J

Mx

ymax
σz

maxy

Rx

dA

yminMx
Mx

x=ξ

y=η
σz=Eεz
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Symmetric bending – model for stresses (2/2)

Cross sections remain plane and not distorted (εz linear):
JJ′

JK
=
HK
CH

i.e. εz dz
y
=

dz
Rx

εz =
y
Rx
= χx y

The curvature is χx = 1
Rx =

Mx
EIx so that:

σz = Eεz = Eχx y = E
Mx
EIx

y = Mx
Ix
y (Navier’s formula)

In addition. . .

Nz = ∫
A
σzdA = ∫

A

Mx

Ix
y dA = Mx

Ix ∫A ydA = Mx

Ix
Sx = 0

−My = ∫
A
σzxdA = ∫

A

Mx

Ix
y xdA = Mx

Ix ∫A xydA = Mx

Ix
Ixy = 0
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http://en.wikipedia.org/wiki/Claude-Louis_Navier


Symmetric bending – neutral surface

The stress is σz = Mx
Ix y. The neutral surface is the surface where stress σz is zero:

Neutral surface: σz =
Mx
Ix
y = 0 Ô⇒ y = 0

The line y = 0 represents the neutral axis for symmetric bending.
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Symmetric bending – elastic section moduli

The maximum stress σmaxz occurs at the top and the bottom:

σmaxz =
Mx
Ix
ymax =

Mx
Wx

where Wx =
Ix
ymax represents the elastic section modulus with respect to x and

ymax the distance between the neutral surface and the point farthest from it. It is
a geometric property of the cross section, as area, centroid an moments of area.
For instance, for a rectangular cross section:

Wx = Ix
ymax

=
bh3

12
h
2
= bh

2

6 , Wy = Iy
xmax

=
hb3

12
b
2
= hb

2

6

while, for an I-shaped beam IPE 200 (depth hIPE=200 mm, flange bIPE=100 mm):

Wx = Ix
hIPE

2

= 1943.0 cm4

20.0 cm
2

= 194.3 cm3
, Wy = Iy

bIPE
2

= 142.0 cm4

10.0 cm
2

= 28.5 cm3
.
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Symmetric bending – example

A 6 m-long, simply supported IPE 200 steel beam (I-shaped cross section), is to
carry its own weight equal to q0 = 220 N/m. Determine the magnitude of the
maximum normal stress due to bending.

Answer The maximum bending moment, in the middle of the beam, is:

Mmax =
1
8q0 L2

=
1
8 × (0.22 N/mm) × (6000 mm)2 = 9.9 × 105 Nmm

the maximum normal stress in the middle of the beam:

σmaxz =
Mx
Ix
ymax =

Mx
Wx
=

9.9 × 105 Nmm
1.943 × 105 mm3 = 5.1 MPa

If the allowable stress is fyd = 220 MPa, the design is acceptable. The self-weight
gets about 2% of the allowable stress.
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Unsymmetric bending – model
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Unsymmetric bending – some more details

yx
y

Y

x

X

G

q=pY

MX

Mx

My

Y

X

q=pY

MX

Load plane (vertical)

Z

Load plane (vertical)

Z,z

q=pY

Mx=MX

Y and y both vertical

Load plane (vertical)

Y vertical but y not alignedY vertical

Z,z

G

Y

X

Rotated rectangular section; take care to the reference frame (see the L-shaped section)
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Unsymmetric bending – stress calculation (1/2)

Unsymmetric bending: the moment M is not aligned with one of the principal
centroidal axis. The stress σz is obtained by superposition, adding the stress due
to Mx and My (M = Mxi +Myj).

Gz

σz
(Mx)

x=ξ

y=η

dA
x

y

Mx

Gz

σz
(My)

x=ξ

y=η

dA
x

y

My
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Unsymmetric bending – stress calculation (2/2)

Superposition: σz = σ
(Mx)
z + σ

(My)
z

σ
(Mx)
z =

Mx
Ix
y, σ

(My)
z = −

My

Iy
x

The negative sign in the second equation. . .
. . . if due to the fact that My positive causes tension in the part of the cross
section where x is negative

σz =
Mx
Ix
y−
My

Iy
x (Mx = M cos δ, My = M sin δ)

Neutral axis (σz = 0) ∶ Mx
Ix
y −

My

Iy
x = 0
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Unsymmetric bending – stresses and neutral surface

• The neutral axis is represented by a line passing through the centroid G, the equation is MIx
x y 

− MIy
y x = 0

• The magnitude of stress is proportional to the distance from the neutral axis
• The most stressed points are those farthest from the neutral axis

σz,max

x=ξy=η M

Neutral
axis

Bending
plane

σz(G)=0

σz,min

+

-

π/2G

δ
Mx

My
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Unsymmetric bending – example (1/2)

An I-shaped beam IPE 200, whose flange forms an angle equal to 25° from the
horizontal, is subjected to a couple of 10 kNm acting in a vertical plane. Find the
stress inside the beam.

Answer The bending moments Mx and My are:

Mx = +M cos 25° = +(10 kNm)(cos 25°) = +9.06 kNm
My = −M sin 25° = −(10 kNm)(sin 25°) = −4.23 kNm

Stress σz is given by:

σz = +9.06 × 106 Nmm
1.943 × 107 mm4 y − −4.23 × 106 Nmm

1.420 × 106 mm4 x =

(0.466 N/mm3)y + (2.98 N/mm3)x

The neutral axis equation is:

(0.466 N/mm3)y + (2.98 N/mm3)x = 0

M

x=ξ

G

y=η

200
mm

100
mmϑ=25° A

B

ϑ

y=η

M
My

Mx
x=ξ

G

Neutral
axis

σz(A)
+

-
σz(B)
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Unsymmetric bending – example (2/2)

The stresses at points A and B (the farthest form neutral axis) are:

σ
(A)
z = (0.466 N/mm3)(+200 mm

2 ) + (2.98 N/mm3)(+100 mm
2 ) = +196 MPa

σ
(B)
z = (0.466 N/mm3)(−200 mm

2 ) + (2.98 N/mm3)(−100 mm
2 ) = −196 MPa

With an angle equal to 0° (symmetric bending):

σ
(A)
z = +10 × 106 Nmm

1.943 × 107 mm4 (+200 mm
2 ) = +52 MPa

σ
(B)
z = +10 × 106 Nmm

1.943 × 107 mm4 (−200 mm
2 ) = −52 MPa

a stress ≈ 1/4 with respect to the value for unsymmetric bending is found!
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Eccentric axial loading



Eccentric axial loading

Pisa tower
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https://en.wikipedia.org/wiki/Leaning_Tower_of_Pisa


Eccentric axial loading and shear
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Eccentric axial loading – stress calculation (1/3)

Gz

σz
(Mx)

x=ξ

y=η

dA
x

y

Mx

Gz

σz
(My)

x=ξ

y=η

dA
x

y

My

G
z

x=ξ

y=η
ex

ey
Gz

σz
(Nz)

x=ξ

y=η

dA
x

yNz

Nz
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Eccentric axial loading – stress calculation (2/3)

The eccentric axial loading Nz applied in a point of coordinates (ex, ey) is
equivalent to a system given by the eccentric axial loading applied in G and two
moments Mx = Nz ey, My = −Nz ex

Superposition: σz = σ
(Nz)
z + σ

(Mx)
z + σ

(My)
z

σ
(Nz)
z =

Nz
A
, σ

(Mx)
z =

Mx
Ix
y, σ

(My)
z = −

My

Iy
x

σz =
Nz
A
+
Mx
Ix
y −

My

Iy
x

The negative sign in the third equation. . .
. . . if due to the fact that My positive causes tension in the part of the cross
section where x is negative
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Eccentric axial loading – stress calculation (3/3)

By grouping Nz/A it is obtained:

σz =
Nz
A
(1 + Aey

Ix
y + Aex

Iy
x) = Nz

A
(1 + ey

%x2 y +
ex
%y2 x)

where %x and %y represent the radius of gyration:

%x
2
=
Ix
A
, %y

2
=
Iy
A

The neutral surface is obtained setting σz = 0:

1 + ey
%x2 y +

ex
%y2 x = 0

The neutral axis (equation of straight line) is independent of the magnitude of
Nz but it is dependent upon its position and upon the geometrical properties of
the cross section
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Eccentric axial loading – neutral surface

• The neutral axis is represented by a straight line that does not coincide with

the centroidal axis of the section; its equation is 1 + ey
%x2 y + ex

%y2 x = 0
• The magnitude of stress is proportional to the distance from the neutral axis, the value 

corresponding to the centroid equal to NAz
• The most stressed points are those farthest from the neutral axis

σz,max

x=ξ

y=η

neutral
axis

Bending
plane

σz(G)=Nz/A

σz,min

+

-

Loading point
of Nz (tensile)

π/2

exey

π/2 G
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Eccentric axial loading – example

A bar with circular cross section (radius R) is subjected to a compressive normal forces. Find the 
maximum and the minimum stress.

Answer The load produces Mx = Nz ey = (−P)(+R) = −PR and
My = −Nz ex = −(−P)(0) = 0 (P absolute value):

σz = NzA +
Mx

Ix
y − My

Iy
x = −P

πR2 +
−PR
πR4

4

y =

− P
πR2 (1 + 4

R y)

The neutral axis is y = − R4 while the stresses are:

σz(+R) = − P
πR2 [1 + 4

R (+R)] = −5 P
πR2 = −5PA

σz(−R) = − P
πR2 [1 + 4

R (−R)] = +3 P
πR2 = +3PA

P

d

G

y=η

x=ξ

R

-

+

R/4

5P/A

3P/A

P/A
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Sign conventions

• The normal force Nz is positive if tension; the moments Mj acting on a
positive face (positive “face” is perpendicular to the positive axis direction)
if along the corresponding axis (j means the axis x or y).

• The normal stress σz is positive if it produces tension.
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