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Lecturer/students objectives



Lecturer/students objectives

� Present the mathematical instrument necessary to evaluate the influence of
the cross section on the stress and deformation of beams.

� Learn the procedures necessary to the calculation of the geometrical
properties of plane areas (centroid, first and second moments, principal
axes). Apply the procedure to plane areas composed by elementary figures.
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Introduction



Introduction

The geometry of plane areas is examined to derive some properties useful for
the calculation of deflection and stresses in beams

In the theory of beams. . .
. . . the sti�nesses E A (axial) and EI = E Ix (flexural) are required: the term A
represents the area of the cross-section and I = Ix the moment of inertia with
respect to a principal centroidal axis (named Iξ in the following)
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http://en.wikipedia.org/wiki/Moment_of_inertia


Centroid, first and second moments
of area



First moments of area and centroid G (1/2)

The first moments of area Sx and Sy are
calculated as:

A =

∫
A

dA

Sx =
∫
A
ydA

Sy =
∫
A
xdA

while the centroid G as:

xG =
Sy
A

=

∫
A xdA
A

yG =
Sx
A

=

∫
A ydA
A

A

y

xG

yG

G

xO
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First moments of the area and centroid G (2/2)

• The centroid is the point of an area to the respect of which both first moments of area are null.
• The first moments of the area are null for any pair of centroidal axes
• The first moments may be positive, negative or null; the area A is always positive
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http://en.wikipedia.org/wiki/Center_of_mass
http://en.wikipedia.org/wiki/First_moment_of_area
http://en.wikipedia.org/wiki/First_moment_of_area


Second moments of the area

The second moments of the
area or moments of inertia are

Ixx =
∫
A
y2dA

Iyy =
∫
A
x2dA

Ixy =
∫
A
xydA

• Ixx and Iyy are always greater than zero
• Ixy (mixed moment of inertia) can be positive, negative or null
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http://en.wikipedia.org/wiki/Moment_of_inertia


Parallel-axis theorems



Parallel-axis theorems

The moment of inertia of an area with
respect to a given axis is given by:

Ixx = IxGxG + A y0
2

Iyy = IyGyG + A x0
2

Ixy = IxGyG + A x0y0

(Formulae by Huygens) A

x

y

xG

yG

G

O

x0

y0

The moments of inertia IxGxG and IyGyG . . .
. . . are the smallest within all the possible pairs of axes parallels to the original
ones

7

http://en.wikipedia.org/wiki/Christiaan_Huygens


Principal axes



Principal axes (1/3)

It is possible to find a pair of axes into which Iξη = 0 (principal axes), that are rotated of about ϑ (positive if 
anti-clockwise) with respect to the centroidal axes

A

x

y

xG

yG

xG

yG

G

O

η

ξ

ϑ
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Principal axes (2/3)

• Orientation of the principal axes (ξ, η)

ϑ =
1
2
arctan

2 IxGyG
IyGyG − IxGxG

• Moments of inertia with respect to the principal axes (Iξ,Iη):

Iξ, Iη =
1
2
(IxGxG + IyGyG)±

1
2
»

(IyGyG − IxGxG)2 + 4 IxGyG2

choosing Iξ, Iη in such a way that:
• Iξ > Iη if IxGxG > IyGyG
• Iξ < Iη if IxGxG < IyGyG
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Principal axes (3/3)

• If IxGxG = IyGyG it is:

ϑ = +
π

4
and Iξ = IxGxG − IxGyG, Iη = IxGxG + IxGyG

Note

• In the principal axes Iξη = 0
• Iξ and Iη are always greater than zero
• Axes both centroidal and principal: central
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Simple sections



Rectangular cross-section (1/2)

A =

∫
A

dA =

∫ b

0

∫ h

0
dxdy = b h

Sx =
∫
A
y dA =

∫ b

0

∫ h

0
y dxdy = +

b h2

2

Sy =
∫
A
x dA =

∫ b

0

∫ h

0
x dxdy = +

h b2

2

xG =
Sy
A

=
+ h b2

2
b h

= +
b
2

yG =
Sx
A

=
+ b h2

2
b h

= +
h
2

xG=ξG

x

y

h

b

yG=η

yx
dA=dx dy
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Rectangular cross-section (2/2)

Ixx =
∫
A
y2dA =

∫ b

0

∫ h

0
y2dxdy =

b h3

3

Iyy =
∫
A
x2dA =

∫ b

0

∫ h

0
x2dxdy =

h b3

3

Ixy =
∫
A
xydA =

∫ b

0

∫ h

0
xydxdy = +

b2 h2

4

IxGxG = Ixx − A yG2 =
b h3

3
− (bh)

Å
+
h
2

ã2
=
b h3
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IyGyG = Iyy − A xG2 =
h b3

3
− (bh)

Å
+
b
2

ã2
=
h b3
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IxGyG = Ixy − A xGyG = +
b2 h2

4
− (bh)

Å
+
b
2

ãÅ
+
h
2

ã
= 0

The rectangular cross-section is doubly symmetrical

Hence, xG ≡ ξ, yG ≡ η, ϑ=0 and IxGyG ≡ 0! 12



Composite areas



Principal axes for composite areas (1/3)

x

y

xG

yG

G

O

1

i-th area

Gi

xGi

yGi

n

ξ
η

ϑ
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Principal axes for composite areas (2/3)

• Divide the area in n simple shapes (which geometrical properties are known,
from tables)

• Compute the total area (summing the n elementary areas)
• Compute the total first moments (summing the first moments of the n

elementary areas, keeping in mind the signs) with respect to an arbitrary set
of axes (x, y)

• Determine the position of the centroid
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Principal axes for composite areas (3/3)

• Compute the total moments of inertia (summing the moments of inertia of
the n elementary areas) remembering that:
• the parallel-axis theorem has to be used in order to refer all the moments of

inertia to the global centroidal axes (xG,yG); in tables the m.o.i. are related to
the local centroids of the elementary areas (xGi ,yGi )

• the mixed inertia moment of the i-th area depends on the direction of the
axes. It is thus necessary to control the directions of the local axes xGi ,yGi with
respect to the global ones xG,yG

• Compute the orientation of the principal axes (ϑ) and the moments of
inertia related to the principal axes (Iξ e Iη)
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Particular symmetries

G

xG

yG

G=C

Axial
symmetry

Polar
symmetry

yG=η

xG=ξ

• Axial symmetry: the centroid is on the symmetry axis and one of the
principal axes coincides with the symmetry axis. The other one is
perpendicular

• Polar symmetry: the centroid G coincides with the center of the area C
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Be careful. . .

Principal axes (qualitative)

G

G
G

G

ξ η

ξ ξ

η

η

η

ξ

• Some simple shapes may result misleading. . .
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Examples



Solved example (1/2)

a

1.5a

2a a

1

2

30.5a

x

y yG

xG

G

O

No. Ai xGi yGi Siy Six xG − xGi yG − yGi (xG−xGi)× IxGxG IyGyG IxGyG

(AixGi) (AiyGi) (yG − yGi) Local Transfer Local Transfer Local Transfer

1 6.000a2 1.500a 1.000a 9.000a3 6.000a3 +0.053a +0.239a 0.013a2 2.000a4 0.343a4 4.500a4 0.017a4 0.000a4 0.076a4

2 1.500a2 2.000a 2.333a 3.000a3 3.500a3 −0.447a −1.094a 0.489a2 0.083a4 1.795a4 0.750a4 0.300a4 +0.125a4 0.734a4

3 0.785a2 2.000a 1.500a 1.570a3 1.178a3 −0.447a −0.261a 0.117a2 0.049a4 0.053a4 0.049a4 0.157a4 0.000a4 0.092a4

Tot. 6.715a2 – – 10.430a3 8.323a3 – – – 2.034a4 2.085a4 5.201a4 0.160a4 0.125a4 0.718a4
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Solved example (2/2)

xG =
Sy
A

=

∑n
i=1 Siy∑n
i=1 Ai

=

∑n
i=1 Ai xGi∑n
i=1 Ai

=
10.430a3

6.715a2 = +1.553a

yG =
Sx
A

=

∑n
i=1 Six∑n
i=1 Ai

=

∑n
i=1 Ai yGi∑n
i=1 Ai

=
8.323a3

6.715a2 = +1, 239a

IxGxG = 2.034a4 + 2.085a4 = 4.119a4

IyGyG = 5.201a4 + 0.160a4 = 5.361a4

IxGyG = 0.125a4 + 0.718a4 = +0.843a4

ϑ =
1
2
arctan

2 IxGyG
IyGyG − IxGxG

=
1
2
arctan

2× (+0.843a4)

5.361a4 − 4.119a4 = +26.8° (counterclockwise)

Iξ, Iη =
1
2
(IxGxG + IyGyG )±

1
2
»

(IyGyG − IxGxG )2 + 4 IxGyG 2 = . . . = 4.740a4 ± 1.047a4

so that
®

Iξ = 3.693a4

Iη = 5.787a4
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Physical dimensions

Parameter Physical dimension SI unit

xG, yG L m
A L2 m2

Sx, Sy L3 m3

Ixx, Iyy, Ixy L4 m4

IxGxG , IyGyG , IxGyG , Iξ, Iη L4 m4
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