BEAM THEORY – NOTES ON INTERNAL FORCES DIAGRAMS

STRUCTURAL MECHANICS

The ERAMCA Project

Environmental Risk Assessment and Mitigation on Cultural Heritage assets in Central Asia

V2O22317

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Lecturer/students objectives

Some rules

Simply supported beam

Cantilever

LECTURER/STUDENTS OBJECTIVES

- 🞓 Present diagram for simple beams.
- Understand the relations between internal forces, loads and boundary conditions to acquire a critical view.

SOME RULES

SIMPLE EXAMPLES

- Some simple schemes useful to understand how to plot diagrams of *N*, *T* and *M* are presented
- The following relationships hold:

$$\frac{\mathrm{d}N(z)}{\mathrm{d}z} = -p(z)$$
$$\frac{\mathrm{d}T(z)}{\mathrm{d}z} = -q(z)$$
$$\frac{\mathrm{d}M(z)}{\mathrm{d}z} = T(z)$$

Differentiating twice, it is obtained:

$$\frac{\mathrm{d}^{2}M(z)}{\mathrm{d}z^{2}} = \frac{\mathrm{d}T(z)}{\mathrm{d}z} = -q(z)$$
Environn

Some rules

- The diagrams must be compatible with external constraints (i.e., moment equal to zero in the hinges or at free ends, shear equal to zero at free ends...)
- If shear T(z) is zero, moment M(z) presents a maximum or a minimum
- If q(z) is zero, shear T(z) presents maximum or a minimum
- If p(z) is zero, axial force N(z) presents a maximum or a minimum
- The second derivative of M(z), i.e., the concavity, is -q(z)

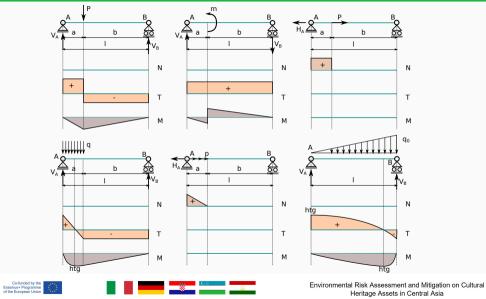
Some rules

- A concentrated force orthogonal to the beam longitudinal axis gives a discontinuity of T(z) and a cusp of M(z)
- A concentrated force parallel to the beam longitudinal axis gives a discontinuity of N(z)
- A couple gives a discontinuity of M(z)

Some rules

- If the load q(z) is equal to zero, shear T(z) is piecewise constant and moment M(z) linear (polynomial function of the first degree)
- If the load q(z) is constant, shear T(z) is piecewise linear and moment M(z) parabolic (polynomial function of the second degree)
- If the load q(z) is linear, shear T(z) is parabolic and moment M(z) a polynomial function of the third degree

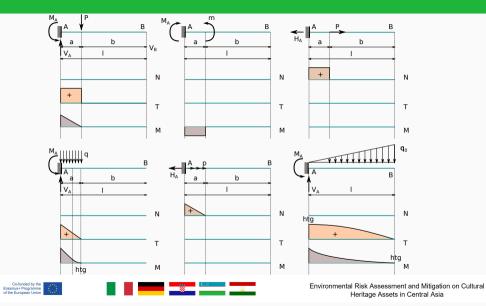
SIMPLY SUPPORTED BEAM



SIMPLY SUPPORTED BEAM

NINA

ERAMCA


7

CANTILEVER

CANTILEVER

8

SIGN CONVENTIONS

Signs

The sign conventions for axial force N(z), shear force T(z) and bending moment M(z) are:

- axial force positive if tensile
- shear positive if it causes a clockwise rotation of the beam element
- moment M(z) must be plotted on the tension side of the beam (if it is on the right side with respect to the positive direction of z, otherwise is negative)

Horizontal tangent

The points where the tangent to a diagram is horizontal are indicated by the label htg

