BEAM THEORY – STRUCTURAL SUPPORTS

STRUCTURAL MECHANICS

The ERAMCA Project

Environmental Risk Assessment and Mitigation on Cultural Heritage assets in Central Asia

V2O22317

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Lecturer/students objectives

Introduction

Supports

Classification

Equilibrium

LECTURER/STUDENTS OBJECTIVES

- Present the most common supports in terms of displacements and forces.
- Understand how to calculate internal and external reactions using different supports and recognize (simple) unstable structures.

INTRODUCTION

The first step in the solution of any problem concerning the equilibrium of a rigid body is to construct an appropriate free-body diagram.

Free-body diagrams

It is necessary to show on the diagram the reactions through which the ground and other bodies oppose a possible motion of the body.

The idealized structural scheme of a real structure is kept fixed and in equilibrium by different structural supports.

IDEALIZED STRUCTURE

Main aspects to model a structure:

- geometry
- materials
- supports
- loads
- ...

SUPPORTS

REAL WORLD SUPPORTS

SOME SCHEMATIC – CONCRETE

SOME SCHEMATIC – CONCRETE

(b)

9

SOME SCHEMATIC – STEEL

SOME SCHEMATIC – STEEL

CLASSIFICATION

DEGREES OF FREEDOM

Degrees of freedom (DOF): number of independent parameters that define the configuration of a system

The position and orientation of a rigid body...

- ...in a plane is defined by two component of translation and one of rotation (i.e., three DOF, g = 3)
- ... in space is defined by three components of translation and three components of rotation (i.e., six DOF, g = 6)

SUPPORTS – CLASSIFICATION

- Type of supports:
 - external supports
 - internal links
- Type of effect:
 - reactions (internal or external)
 - displacements (free or constrained)
- Degree of freedom:
 - number v of DOF constrained
- Reactions:
 - number and type of reactions provided

In the following...

 \ldots planar supports only are discussed (3 DOF for each rigid body)

EXTERNAL SUPPORTS

 Roller: one reaction, translation and rotation allowed (v = 1)

 Hinge (or pin): two reactions, rotation allowed (v = 2)

EXTERNAL SUPPORTS

 Slider (or guide): two reactions, translation allowed (v = 2)

• Double slider: one reaction, translations allowed (v = 1)

CONNECTIONS BETWEEN ELEMENTS

- Link: one pair of internal reactions, relative translation and rotation allowed (v = 1)

• Internal hinge: two pairs of reactions, relative rotation allowed (v = 2)

(1/2)

CONNECTIONS BETWEEN ELEMENTS

- Internal slider: two pairs of reactions, relative translation allowed (v = 2)
- Internal double slider: a pair of reactions, relative translations allowed (y = 1)

OTHER REPRESENTATIONS

Туре	Sketch	Symbol	Movements Allowed or Prevented	Reaction Forces	Unknowns Created			
(a) Pin	OR MERCI	OR CREWERS	Prevensed: horizontal translation, vertical translation Allowed: rotation	A single linear force of unknown direction or equivalently A horizontal force which are the components of the single force of unknown direction	рания <i>R</i> <i>R</i> <i>R</i> <i>R</i>			
(b) Hinge	Rotation Contraction		Prevented: relative displacement of member ends Allowed: both rotation and horizontal and vertical displacement	Equal and oppositely directed horizontal and vertical forces	$ \begin{array}{c} $			
(c) Roller	<u>1902</u>	<u>terre</u>	Prevented: vertical translation Allowed: horizontal translation, rotation	A single linear force (either upward or downward*)				
(d) Rocker	0	OR ·						
(e) Elastomeric pad								

OTHER REPRESENTATIONS

(f) Fixed end		 	Prevented: horizontal translation, vertical translation, rotation Allowed: none	Horizontal and vertical components of a linear resultant; moment	
(g) Link	K	L	Prevented: translation in the direction of link Allowed: translation perpendicular to link, rotation	A single linear force in the direction of the link	R d
(k) Guide			Prevented: vertical translation, rotation Allowed: horizontal translation	A single vertical linear force; moment	

OTHER 2D SUPPORTS (BEER ET AL.)

THREE DIMENSIONAL SUPPORTS (BEER ET AL.)

• A structure is unstable if the total number of unknown reactive forces and moment components $r = \sum_{i} v_i$ is smaller than three times the number *n* of parts of structure members:

r < 3n

• A structure is stable if the total number of unknown reactive forces and moment components $r = \sum_{i} v_{i}$ is at least three times the number *n* of parts of structure members:

$r \ge 3n$

provided that member reactions are not concurrent or parallel or some of the components form a collapsible mechanism

(1/2)

(2/2)

Unstable structures with r = 3n (center C_1 for beam 1, C_2 for beam 2 and relative center C_{12} are aligned)

Unstable structures

Check carefully structures to find mechanism: unstable structures cannot, in general, withstand loads!

 A structure is statically determinate if the total number of unknown reactive forces and moment components *r* is equal to three times the number *n* of parts of structure members, i.e., *r* = 3*n*

$$3n = 3 \times 2 = 6$$
; $r = \sum_i v_i = 2 + 1 + 2 + 1 = 6$

Equilibrium is enough

The equilibrium equations are enough to solve the structure

• A structure is statically

indeterminate if the total number of unknown reactive forces and moment components r is larger than three times the number n of parts of structure members, i.e., r > 3n

$$3n = 3 \times 1 = 3$$
; $r = \sum_i v_i = 2 + 1 + 2 = 5$

Equilibrium is not enough

The equilibrium equations are not enough to solve the structure; compatibility conditions should be added

EQUILIBRIUM

Equilibrium

A structure is considered to be in equilibrium if, initially at rest, remains at rest when subjected to a system of forces and couples

Whole structure and its parts

If a structure is in equilibrium, all its members and parts are also in equilibrium

(1/2)

For a planar structure subjected to a coplanar system of N_F forces and N_M couples, the necessary and sufficient conditions for equilibrium are:

$$R_{X} = \sum_{j=1}^{N_{F}} F_{j,x} = F_{1,x} + F_{2,x} + \dots = 0$$

$$R_{y} = \sum_{j=1}^{N_{F}} F_{j,y} = F_{1,y} + F_{2,y} + \dots = 0$$

$$M_{z} = \sum_{k=1}^{N_{F}+N_{M}} M_{k,z} = \sum_{j=1}^{N_{F}} F_{j}b_{j} + \sum_{j=1}^{N_{M}} M_{j,z} =$$

$$= F_{1}b_{1} + F_{2}b_{2} + \dots + M_{1} + M_{2} + \dots = 0$$

Co-funded by

The meaning is that...

...the sum of all forces along x and y directions must be equal to zero and that the sum of all the moments (forces and couples) with respect to a certain point, must be zero too

It is worth noting that:

- a moment is a force causing rotation without translation, defined as force F times lever arm b, i.e., M = F × b
- a couple are two equal and opposite forces, *F*, separated by a moment arm, *d* (that is, two such forces that are not collinear), and therefore causing a moment, i.e., $M = F \times d$
- the arm: distance measured perpendicularly from each force to the chosen point

EXAMPLE – REACTIONS

The objective is the calculation of the support reactions for the structure:

The components of the inclined force are:

- $F_X = 265 \text{ kN} \times \cos 60^\circ = 132.5 \text{ kN}$
- $F_y = 265 \,\text{kN} \times \sin 60^\circ = 229.5 \,\text{kN}$

(1/2)

Considering the free body diagram (on the right):

• Equilibrium along horizontal direction:

 $H_A - F_x = 0$, i.e., $H_A = F_x = 132.5$ kN,

• Equilibrium along vertical direction:

 $V_A + V_C - F_y = 0$, i.e., $V_A = F_y - V_C = 229.5 \text{ kN} - V_C$

• Equilibrium about point A: $V_A \times 0 + H_A \times 0 + V_C \times 4 \text{ m} - F_x \times 0 - F_y \times 3 \text{ m} - 70 \text{ kNm} = 0$, i.e., $V_C = 189.6 \text{ kN}$

From the second equation (equilibrium along vertical direction), it is found $V_A = 229.5 \text{ kN} - 189.6 \text{ kN} = 39.9 \text{ kN}$

