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Introduction

Students undertaking a mechanics of materials class often find them-
selves facing a common dilemma: In their basic statics and dynamics 

classes, they focused on dealing exclusively with a key set of assumptions — 
namely, that objects subjected to load don’t deform — but mechanics of 
materials throws many of those assumptions out the window.

Mechanics of materials is often your first foray into the real world from the 
land of theory in mechanics and physics. This class is where you start to take 
your basic understanding of the world around you and shape your surround-
ings to perform specific tasks; that is, you design stuff. This point is where I 
tell students that with a bit of knowledge, you can become quite dangerous.

Mechanics of materials at its core is still a very theoretical class, but it 
quickly takes these basic theories and applies them in new and unfamiliar 
ways. That’s why I’ve written Mechanics of Materials For Dummies: to help 
make your transition from theoretical to practical as smooth and simple as 
possible. My goal in this text is to illustrate the basic theory while showing 
you how to actually apply these theories to real-world applications.

About This Book
No mechanics of materials book can possibly show you how to analyze every 
type of problem you may come across. Most mechanics of materials textbooks 
focus on complex derivations and variables that result in several relatively 
simple formulas without providing a whole lot of explanation along the way.

Mechanics of Materials For Dummies gives you the basic rundown of the theory 
but focuses more on why you need to know the formulas and how to apply 
them rather than where exactly they came from. I intend this book to serve 
more as an application-oriented text that utilizes the basic theories. What 
exactly is a stress, and how do you relate it to the load-carrying capability of a 
material? How do you determine the capacity of a long, slender column? How 
do you compute the angle of twist of a shaft under torsion loads? All these 
topics (and many, many more) are common application problems in engineer-
ing, and they provide a basis for the core of discussion covered in this text.

Tip: For even more background on the topics in this book, check out my 
Statics For Dummies (Wiley); it can help you refresh the statics vital to 
mechanics of materials.

03_9780470942734-intro.indd   103_9780470942734-intro.indd   1 6/1/11   6:26 PM6/1/11   6:26 PM



2 Mechanics of Materials For Dummies 

I’ve broken each chapter into several sections, and each section deals with a 
specific concept relevant to the major chapter topic, such as

 ✓ How is normal stress different from shear stress?

 ✓ How do you determine cross-sectional dimensions for a beam subjected 
to flexural loads?

 ✓ What techniques can you use to solve statically indeterminate problems?

Because methodical analysis is key in mechanics of materials, I present analy-
sis and design techniques in a step-by-step format whenever possible.

As with any For Dummies book, you can control where you want to start. For 
example, if all you need is information on analyzing stress, turn to Part II. If 
you already have a firm grasp of stress and strain, but need help applying 
these topics, turn to Part IV.

Conventions Used in This Book
I use the following conventions throughout the text to make things consistent 
and easy to understand:

 ✓ I format new terms in italics and follow them closely with an easy-to-
understand definition.

 ✓ I also use italics to denote a variable (and its magnitude value) in text.

 ✓ Bold highlights the action parts of numbered steps, as well as the key-
words in bulleted lists.

I also utilize other, mechanics-specific conventions that I may not explain 
every time they appear:

 ✓ Origin: The origin used in mechanics of materials calculations is a refer-
ence point that is typically located at a special location known as the 
centroid of an area or region. In this book, unless I state otherwise, this 
is the location I also use.

 ✓ Significant digits: I usually try to carry at least three significant digits in 
all my calculations to help ensure enough precision to demonstrate the 
fundamental principles.

 ✓ Internal force variables: Because the calculation of stress is entirely 
dependent on the internal forces, being consistent with notation can alle-
viate a lot of potential headaches. For internal forces in this text, I use N 
to denote an axial (or normal) force, V to indicate a shear force, and M to 

03_9780470942734-intro.indd   203_9780470942734-intro.indd   2 6/1/11   6:26 PM6/1/11   6:26 PM



3 Introduction

represent a moment. If any of these internal forces acts in a specific direc-
tion or about a specific axis, I include subscripts related to the Cartesian 
axes or specific locations on a member to help distinguish them.

 ✓ Plus signs (+) with magnitude values: Although it’s optional, I use the 
plus symbol before positive numbers in some calculations to remind 
myself (and you) that I’ve considered the sense (direction) of the vector 
on the Cartesian plane.

What You’re Not to Read
I readily admit that you can skip over a few items in this text if you’re short 
on time or just after the most important and practical stuff:

 ✓ Text in sidebars: Sidebars are the shaded boxes that provide extra 
information that goes into more detail about the topic at hand than is 
necessary.

 ✓ Anything with a Technical Stuff icon: The in-depth info associated 
with this icon is useful but may not be necessary for solving everyday 
problems.

 ✓ The stuff on the copyright page: The copyright page provides some of 
the best information in the book. Too bad none of it applies to mechan-
ics of materials!

Foolish Assumptions
As I wrote this book, I made a few assumptions about you, the reader.

 ✓ You’re a college student taking an engineering mechanics of materials 
(or strength of materials) class who has successfully completed a basic 
engineering statics class. Or if you’re not a student currently, you’re at 
least familiar with basic statics and computation of internal forces. Just 
in case though, I provide a bit of a review in Chapter 3.

 ✓ You remember some basic math skills, including basic algebra and trigo-
nometry, as well as some basic calculus topics (such as differentiation, 
simple integration, and how to find maximum and minimum values of 
functions).

 ✓ You’re proficient in geometry and trigonometry. Being familiar with the 
Cartesian coordinate system and its terminology as well as knowing the 
basic rules governing sines, cosines, and tangents of angles (both in 
degrees and radians) is invaluable as you work mechanics of materials 
problems.
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4 Mechanics of Materials For Dummies 

How This Book Is Organized
This book is organized into parts and chapters, starting with a basic review 
of math and static equilibrium concepts and going through section property 
calculations, analysis of stress and strain, and practical mechanics of materi-
als applications.

Part I: Setting the Stage for 
Mechanics of Materials
In Part I, you get a brief rundown of basic information you need in mechan-
ics of materials, such as a quick refresher on math and units, a brief review 
of essential statics topics, and fundamentals for computing basic section 
properties. Chapter 1 introduces the basic concept of mechanics of materi-
als; explains the basic differences among statics, dynamics, and mechanics 
of materials; and touches on basic terminology that you need. Chapter 2 pro-
vides you with a brief refresher about a wide range of mathematics topics, 
including basic trigonometric relationships and calculus computations such 
as differentiation and integration. It also reviews systems of units and the 
base units you need in mechanics of materials.

Chapter 3 highlights essential statics skills you need, including equilibrium 
calculations and internal force diagrams. Chapter 4 gives a quick description 
of cross-sectional properties (including area calculations) and shows how to 
locate the centroid of a region. Chapter 5 introduces the first moment of area, 
different variations of the second moment of area (also known as the area 
moments of inertia), and the radius of gyration — some of the more complex 
section properties that you need.

Part II: Analyzing Stress
Part II introduces you to the concept of intensity of load, also known as 
stress. Chapter 6 leads off by explaining the basic types of stress and high-
lighting the difference between average stress and stress at a point. In 
Chapter 7, I show you how to determine the maximum and minimum (or prin-
cipal) values and their orientation angles by using transformation equations 
and the graphical technique known as Mohr’s circle for stress.

Next, I delve into the different types of stress that can be developed from 
various loading situations that you may encounter. In Chapter 8, I explain 
the different types of axial stress calculations, such as bearing stress, pres-
sure vessels, and maximum stresses concentrations. Chapter 9 focuses on 
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5 Introduction

flexural bending effects; I show you how to determine the normal stress at 
a point within the cross section due to applied bending moment. In Chapter 
10, I discuss different types of shear stresses, including direct shear of bolts 
and shafts as well as shear stresses that arise from flexural effects. Finally, 
Chapter 11 demonstrates how to compute shear stresses that result when 
you twist an object.

Part III: Investigating Strain
In Part III, I explore how objects deform in response to applied load, known 
as strain. Chapter 12 covers the different types of strain, including normal 
and shear strains, and shows how thermal strains can result in deformation 
without applied physical forces. In Chapter 13, I demonstrate how to com-
pute maximum and minimum strain values (known as principal strains) and 
how to determine their orientation within an object. I explain strain transfor-
mation by using both equations and another form of Mohr’s circle for strain. 
Chapter 14 discusses several important material properties, such as Young’s 
modulus of elasticity and the Poisson ratio, and shows how you can use 
these properties to correlate stresses to strains in a material through the fun-
damental relationship, Hooke’s law.

Part IV: Applying Stress and Strain
Part IV shows you how to take the principles from Parts I, II, and III and apply 
them to a wide array of important engineering applications. In Chapter 15, I 
show you how to combine different types of stresses into a single net effect. 
Chapter 16 turns your attention to computing deformations, deflections, and 
angles of twist for different objects. In Chapter 17, you discover how you can 
use mechanics of materials to solve indeterminate statics problems. Chapter 
18 covers columns and compression members; in this chapter, I discuss how 
compression members can fail at loads less than the failure stress of the 
material from which they’re made. Chapter 19 provides examples illustrat-
ing how you can use mechanics of materials to design members to support 
known loads. Finally, in Chapter 20, you find out how you can apply the phys-
ics concept of energy to analyze the effects of load on an object.

Part V: The Part of Tens
Part V includes a couple of top-ten lists on interesting mechanics of materi-
als topics. Chapter 21 shows you ten things to remember when working with 
mechanics of materials. Chapter 22 gives you ten tips for solving a mechanics 
of materials problem.
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6 Mechanics of Materials For Dummies 

Icons Used in This Book
To make this book easier to read and simpler to use, I include some icons 
that can help you quickly find and identify key ideas and information.

 I use this icon to highlight an idea that contains a shortcut procedure or a 
method for remembering an idea or equation.

 The information with this icon draws your attention to facts and ideas that are 
important for the proper application of the topic at hand.

 This icon flags information that you need to be careful about. I use this icon to 
highlight common missteps that I’ve seen (or taken myself) in applying the 
theory or equations of mechanics of materials.

 This icon gives additional information that, although handy and interesting, 
may not be totally necessary for your everyday survival in mechanics of mate-
rials. But you may be able to use this information to impress your friends or 
professor!

Where to Go from Here
You can use Mechanics of Materials For Dummies to supplement a course 
you’re currently taking or on its own as a text for understanding the basic 
principles of mechanics of materials. I wrote this book to allow you to move 
freely among chapters, with each chapter being a self-contained topic; unlike 
a classical mechanics textbook, you don’t necessarily need to move through 
the book in order.

However, if you’re new to the subject of mechanics of materials, I strongly 
suggest you start at the beginning with Chapter 1 and proceed through the 
chapters in order. Topics later in the text use principles that are developed 
early on (although I do provide cross references to those discussions so you 
don’t feel like you’re out of luck if you’ve been skipping around). On the other 
hand, if you’re simply brushing up on your skills; feel free to use the table of 
contents or index to jump to the material you need.
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Part I

Setting the Stage for 
Mechanics of Materials
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In this part . . .

This part introduces you to the basic concepts of 
mechanics of materials and its relationship to and 

differences from basic statics and dynamics (known 
simply as mechanics). You get a short refresher in several 
mathematics areas, including geometry, trigonometry, 
and basic calculus, that you may need along the way, and 
I discuss the basic unit systems while showing you the 
base units mechanics of materials uses from each system.

But that’s not all! I also provide a short review of basic 
statics skills and of computing internal forces of structural 
members, which are critical to your continued analysis of 
mechanics of materials. I round out the part with chapters 
on computing section properties such as the cross-sectional 
area, centroid location, and the first and second moments 
of area, all of which are integral to mechanics of materials.
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Chapter 1

Predicting Behavior with 
Mechanics of Materials

In This Chapter
▶ Defining mechanics of materials

▶ Introducing stresses and strains

▶ Using mechanics of materials to aid in design

Mechanics of materials is one of the first application-based engineering 
classes you face in your educational career. It’s part of the branch of 

physics known as mechanics, which includes other fields of study such as 
rigid body statics and dynamics. Mechanics is an area of physics that allows 
you to study the behavior and motion of objects in the world around you.

Mechanics of materials uses basic statics and dynamics principles but allows 
you to look even more closely at an object to see how it deforms under load. 
It’s the area of mechanics and physics that can help you decide whether 
you really should reconsider knocking that wall down between your kitchen 
and living room as you remodel your house (unless, of course, you like your 
upstairs bedroom on the first floor in the kitchen).

Although statics can tell you about the loads and forces that exist when an 
object is loaded, it doesn’t tell you how the object behaves in response to 
those loads. That’s where mechanics of materials comes in.

05_9780470942734-ch01.indd   905_9780470942734-ch01.indd   9 6/1/11   6:26 PM6/1/11   6:26 PM



10 Part I: Setting the Stage for Mechanics of Materials 

Tying Statics and Mechanics Together
Since the early days, humans have looked to improve their surroundings by 
using tools or shaping the materials around them. At first, these improve-
ments were based on an empirical set of needs and developed mostly 
through a trial-and-error process. Structures such as the Great Pyramids in 
Egypt or the Great Wall of China were constructed without the help of fancy 
materials or formulas. Not until many centuries later were mathematicians 
such as Sir Isaac Newton able to formulate these ideas into actual numeric 
equations (and in many cases, to remedy misconceptions) that helped usher 
in the area of physics known as mechanics.

Mechanics, and more specifically the core areas of statics and dynamics, are 
based on the studies and foundations established by Newton and his laws 
of motion. Both statics and dynamics establish simple concepts that prove 
to be quite powerful in the world of analysis. You can use statics to study 
the behavior of objects at rest (known as equilibrium), such as the weight 
of snow on your deck or the behavior of this book as it lies on your desk. 
Dynamics, on the other hand, explains the behavior of objects in motion, 
from the velocity of a downhill skier to the trajectory of a basketball heading 
for a winning shot.

What statics and dynamics both have in common is that at their fundamental 
level, they focus on the behavior of rigid bodies (or objects that don’t deform 
under load). In reality, all objects deform to some degree (hence why they’re 
called deformable bodies), but the degree to which they deform depends 
entirely on the mechanics of the materials themselves. Mechanics of materi-
als (which is sometimes referred to as strength of materials or mechanics of 
deformable bodies) is another branch of mechanics that attempts to explain 
the effect of loads on objects.

The development of mechanics of materials over the centuries has been 
based on a combination of experiment and observation in conjunction with 
the development of equation-based theory. Famous individuals such as 
Leonardo da Vinci (1452–1519) and Galileo Galilei (1564–1642) conducted 
experiments on the behavior of a wide array of structural objects (such as 
beams and bars) under load. And mathematicians and scientists such as 
Leonhard Euler (1707–1783) developed the equations used to provide the 
basics for column theory.

Mechanics of materials is often the follow-up course to statics and dynam-
ics in the engineering curriculum because it builds directly on the tools and 
concepts you learn in a statics and dynamics course, and it opens the door to 
engineering design. And that’s where things get interesting.
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11 Chapter 1: Predicting Behavior with Mechanics of Materials

Defining Behavior in Mechanics 
of Materials

The fact that all objects deform under load is a given. Mechanics of materi-
als helps you determine how much the object actually deforms. Like statics, 
mechanics of materials can be very methodical, allowing you to establish 
a few simple, guiding steps to define the behavior of objects in the world 
around you. You can initially divide your analysis of the behavior of objects 
under load into the study and application of two basic interactions: stress 
and strain.

With the basic concepts of stress and strain, you have two mechanisms for 
determining the maximum values of stress and strain, which allow you to 
investigate whether a material (and the object it creates) is sufficiently strong 
while also considering how much it deforms. You can then turn your attention 
to specific sources of stress, which I introduce a little later in this chapter.

Stress
Stress is the measure of the intensity of an internal load acting on a cross sec-
tion of an object. Although you know a bigger object is capable of support-
ing a bigger load, stress is what actually tells you whether that object is big 
enough. This intensity calculation allows you to compare the intensity of the 
applied loads to the actual strength (or capacity) of the material itself. I intro-
duce the basic concept of stress in Chapter 6, where I explain the difference 
between the two types of stress, normal stresses and shear stresses.

With this basic understanding of stress and how these normal and shear 
stresses can exist simultaneously within an object, you can use stress transfor-
mation calculations (see Chapter 7) to determine maximum stresses (known 
as principal stresses) and their orientations within the object.

Strain
Strain is a measure of the deformation of an object with respect to its ini-
tial length, or a measure of the intensity of change in the shape of a body. 
Although stress is a function of the load acting inside an object, strain can 
occur even without load. Influences such as thermal effects can cause an 
object to elongate or contract due to changes in temperature even without 
a physical load being applied. For more on strain, turn to Chapter 12.
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12 Part I: Setting the Stage for Mechanics of Materials 

As with stresses, strains have maximum and minimum values (known as 
 principal strains), and they occur at a unique orientation within an object. 
I show you how to perform these strain transformations in Chapter 13.

Using Stresses to Study Behavior
Stresses are what relate loads to the objects they act on and can come from 
a wide range of internal forces. The following list previews several of the 
different categories of stress that you encounter as an engineer:

 ✓ Axial: Axial stresses arise from internal axial loads (or loads that act 
along the longitudinal axis of a member). Some examples of axial 
stresses include tension in a rope or compression in a short column. 
For more on axial stress examples, turn to Chapter 8.

 ✓ Bending: Bending stresses develop in an object when internal bending 
moments are present. Examples of members subject to bending are the 
beams of your favorite highway overpass or the joists in the roof of your 
house. I explain more about bending stresses in Chapter 9.

 ✓ Shear: Shear stresses are actually a bit more complex because they can 
have several different sources. Direct shear is what appears when you 
try to cut a piece of paper with a pair of scissors by applying two forces 
in opposite direction across the cut line. Flexural shear is the result of 
bending moments. I discuss both of these shear types in Chapter 10. 
Torsion (or torque) is another type of loading that creates shear stresses 
on objects through twisting and occurs in rotating machinery and 
shafts. For all things torsion, flip to Chapter 11.

Studying Behavior through Strains
You can actually use strains to help with your analysis in a couple 
of circumstances:

 ✓ Experimental analysis: Strains become very important in experiments 
because, unlike stresses, they’re quantities that you can physically mea-
sure with instruments such as electromechanical strain gauges. You can 
then correlate these strains to the actual stresses in a material using the 
material’s properties.

 ✓ Deformation without load: Strain concepts can also help you analyze 
situations in which objects deform without being subjected to a load 
such as a force or a moment. For example, some objects experience 
changes in shape due to temperature changes. To measure the effects 
of temperature change, you must use the concepts of strain.
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13 Chapter 1: Predicting Behavior with Mechanics of Materials

Incorporating the “Material” 
into Mechanics of Materials

After you understand the calculations behind stress and strains, you’re 
ready to turn your attention to exploring the actual behavior of materials. 
All materials have a unique relationship between load (or stress) and 
deformation (or strain), and these unique material properties are critical 
in performing design.

One of the most vital considerations for the stress-strain relationship is 
Hooke’s law (see Chapter 14). In fact, it’s probably the single most important 
concept in mechanics of materials because it’s the rule that actually relates 
stresses directly to strain, which is the first step in developing the theory 
that can tell you how much that tree limb deflects when you’re sitting on 
it. This relationship also serves as the basis for design and the some of the 
advanced calculations that I show you in Part IV.

Putting Mechanics to Work
When you have the tools to analyze objects in the world around them, you 
can put them to work for you in specific applications. Here are some common 
mechanics of materials applications:

 ✓ Combined stresses: In some cases, you want to combine all those single 
and simple stress effects from Part II into one net action. You can ana-
lyze complex systems such as objects that bend in multiple directions 
simultaneously (known as biaxial bending) and bars with combined 
shear and torsion effects. Flip to Chapter 15 for more.

 ✓ Displacements and deformations: Deformations are a measure of the 
response of a structure under stress. You can use basic principles based 
on Hooke’s law to calculate deflections and rotations for a wide array of 
scenarios. (See Chapter 16.)

 ✓ Indeterminate structures: For simple structures, the basic equilibrium 
equations you learn in statics can give you all the information you need 
for your analysis. However, the vast majority of objects are much more 
complex. When the equilibrium equations from statics become insuf-
ficient to analyze an object, the object is said to be statically indetermi-
nate. In Chapter 17, I show you how to handle different types of these 
indeterminate systems by using mechanics of materials principles.
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14 Part I: Setting the Stage for Mechanics of Materials 

 ✓ Columns: Unlike most objects that fail when applied stresses reach the 
limiting strength of the material, columns can experience a geometric 
instability known as buckling, where a column begins to bow or flex under 
compression loads. Chapter 18 gives you the lowdown on columns.

 ✓ Design: Design is the ability to determine the minimum member size that 
can safely support the stresses or deflection criteria. This step requires 
you to account for factors of safety to provide a safe and functional 
design against the real world. Head to Chapter 19 for more.

 ✓ Energy methods: Energy methods are another area of study that relates 
the principles of energy that you learned in physics to concepts involv-
ing stresses and strain. In Chapter 20, I introduce you to energy method 
concepts such as strain energy and impact.
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Chapter 2

Reviewing Mathematics and Units 
Used in Mechanics of Materials

In This Chapter
▶ Refreshing basic trigonometry and geometry

▶ Applying some basic calculus

▶ Dealing with SI and U.S. customary units

As with other areas of engineering and the sciences, mathematics plays a 
significant role in mechanics of materials. The math is what takes advan-

tage of all those awesome statics equations you created and gives mechanics 
of materials its basic punch in design and analysis of stress and strain.

In the beginning, basic mathematics skills such as algebra, geometry, and trigo-
nometry can carry you a long way in your mechanics of materials endeavors. 
Later, the calculus — particularly integration and differentiation — helps you 
estimate such things as deflections in beams and relationships between 
internal forces.

In this chapter, I provide a refresher on some important math foundations for 
mechanics of materials. I also address this field’s unique units as well as its 
systems of units.

Grasping Important Geometry Concepts
You encounter several geometric principles in mechanics of materials, 
including angle units and the famous Pythagorean theorem. The following 
sections fill you in on how those issues play into your mechanics work.
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16 Part I: Setting the Stage for Mechanics of Materials 

One of the most common geometric relationships involves the relationship 
between the sides of a right triangle (or a triangle with exactly one angle of 
90 degrees). This relationship is known as the Pythagorean theorem, and it’s 
a crucial piece of the transformation calculations in Chapters 7 and 13. The 
triangle in Figure 2-1 illustrates this theorem.

 

Figure 2-1: 
Trigono-

metric 
functions 

and the 
Pythagorean 

theorem.

 

Right angle = 90°
O = Opposite

A = Adjacent

H = Hypotenuse

θ

The basic equation for the Pythagorean theorem can be given by the 
following relationship:

where H is the hypotenuse (or the side opposite of the right angle), O is the 
side opposite of the reference angle θ, and A is the side adjacent to the angle θ.

 Some textbooks write the Pythagorean theorem as . This formula 
simply substitutes C for H and B for O (A stays the same).

Tackling Simultaneous 
Algebraic Equations

An aspect of algebra that appears repeatedly in mechanics of materials is the 
solution of simultaneous algebraic equations — those pesky equations with 
several different variables. These equations appear frequently in mechanics of 
materials when you work with strain rosettes (which I discuss in Chapter 13) 
or solve indeterminate mechanics problems (see Chapter 17).
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17 Chapter 2: Reviewing Mathematics and Units Used in Mechanics of Materials

To tackle these equations, you employ a bit of basic algebra. Consider a 
linear system of two equations with two different variables, x and y, such that

Because you have two different equations with the same two unknown vari-
ables, you can solve these equations simultaneously to find the values of the 
variables using a few simple steps:

 1. Solve one of the equations for one of the unknown variables.

  For example, you can solve for x in the first equation by using basic algebra.

 

 2. Substitute the expression for the variable of Step 1 into the 
remaining equations and solve for the other unknown variable.

 

 3. Substitute the result from Step 2 into the equation of Step 1.

 

 4. Check your answers with one of the original equations.

 

 You can use these same principles to solve multiple simultaneous equations as 
well; you just need to repeat Steps 1 and 2 additional times, solving for the dif-
ferent unknown variables. Just remember that the number of variables you are 
solving for must be the same as the number of different equations you have.
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Taking On Basic Trig Identities
Trigonometry (or trig) is the branch of mathematics that deals with triangles. 
Three of the most important functions in all of engineering arise from the 
sine, cosine, and tangent functions that define the relationships among the 
sides of a right triangle. Referring to Figure 2-1, you can express the relation-
ships among the sides as follows:

 In these relationships, I’ve boxed a couple of the letters to illustrate a simple 
anagram — SOHCAHTOA — that can help you remember the relationships 
between the sides. SOH refers to the sine (S) relationship and is expressed 
as the opposite (O) over the hypotenuse (H). Similarly, the CAH relates the 
cosine (C) function to the adjacent (A) over the hypotenuse (H), and TOA 
relates the tangent (T) function to the opposite (O) over the adjacent (A). 
Just remember, it’s spelled S-O-H-C-A-H-T-O-A.

 Where you assign the opposite and adjacent sides is completely dependent 
on which angle you choose as your reference angle (θ). So be cautious!

Covering Basic Calculus
As you work with mechanics and materials concepts, you quickly discover that 
you can express many of the expressions you use as polynomials. Therefore, 
you can use the tools of calculus (such as differentiation and integration) to 
find the locations and magnitudes of the minimum and maximum values. I 
cover these topics in the following sections.

Integration and differentiation 
of polynomials
In a basic mechanics of materials class, certain fundamental calculus skills 
become very handy, including simple integration and differentiation of poly-
nomial functions — functions where you can apply the power rule. Of course, 
these basic skills entail significantly more (read: tons) than what I cover here. 
However, for the purposes of this book, understanding how to apply the power 
rule is usually sufficient for the type of functions you end up creating.
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19 Chapter 2: Reviewing Mathematics and Units Used in Mechanics of Materials

Basic differentiation and tangents to functions
The derivative of a function represents the slope of the tangent line to the 
function at a particular location (x). For a simple function f(x), you denote 

the derivative as either .

The power rule states that for a smooth and continuous polynomial (meaning 
no gaps or kinks in the function) of order n, you can express the derivative of 
a function f(x) as

For example, for the function f(x) = 3x6 + 7x3 – 9, you can compute the deriva-
tive of the function f(x) as

The terms inside the parentheses indicate the powers of the original term 
being differentiated. Because the derivative of a constant is always zero, 
the –9 in the original function has disappeared.

This particular example demonstrates how to calculate a simple first deriva-
tive. But you can actually have higher-order derivatives as well. If you want to 
calculate a second derivative, you differentiate the function f(x) and then dif-
ferentiate that differentiation. The higher the order of derivative you want to 
compute, the more derivatives you have to take. In mechanics of materials, a 
third- or fourth-order derivative usually does the job.

Basic integration
If you evaluate an integral between an upper limit b and a lower limit a, 
you’re actually computing a special type of integral known as a definite inte-
gral. A definite integral for the function f(x) can be evaluated as follows:

When you perform an integration, you’re actually calculating the area under the 
curve (or function) between the limits of a and b. This area can be quite helpful 
when you calculate centroids and section properties (flip to Chapters 4 and 5). 
The definite integral for a smooth and continuous polynomial of order n such 
that  becomes
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20 Part I: Setting the Stage for Mechanics of Materials 

If you perform the reverse process of the power rule (see the preceding sec-
tion), you’re actually performing a basic integration known as an indefinite 
integral, which is crucial to the deflection calculations in Chapter 16. When 
you calculate an indefinite integral, a constant C

i
 shows up each time you 

integrate. To integrate a smooth and continuous polynomial of order n such 
that , the integral becomes

Integrating the function  twice produces the 
following expressions:

where C
1
 and C

2
 are numerical constants of integration that are determined 

by boundary conditions (known specific values of the function). I explain more 
about boundary conditions in Chapter 16.

Defining maximum and minimum 
values with calculus
Many of the equations you produce in mechanics of materials are smooth and 
continuous polynomials. Fortunately, the power rule I discuss in “Basic differ-
entiation and tangents to functions” works especially well on polynomials.

Remember that when you differentiate a function, you’re actually computing 
the slope of the function. If the derivative is set equal to zero, you’re looking 
at a point where the slope of the function is actually a horizontal line:

If the tangent line (the slope) is zero at a specific point, you’ve actually uncov-
ered a maximum or minimum. These points are especially useful when you’re 
dealing with generalized equations (such as the ones I demonstrate in Chapter 3) 
because they can predict the peak internal loads, which you need when you 
start using mechanics of materials in the design process (see Chapter 19).

In order to find the location of a maximum or minimum value, all you need is the 
first derivative of the original function, the ability to set that first derivative equal 
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21 Chapter 2: Reviewing Mathematics and Units Used in Mechanics of Materials

to zero, and the ability to find the value(s) of the independent variable x that sat-
isfy that equation. After you determine the locations, simply plug those x values 
back into the original function f(x) and compute the value of that function.

Working with Units in 
Mechanics of Materials

A major challenge for someone just becoming familiar with mechanics of 
materials involves the two competing systems of measurement used in dif-
ferent locations around the world: the SI system and U.S. customary units. 
I cover them both in the following sections.

SI units
The International System of Units (SI) is a system of standardized units that 
uses measurements exclusively from the metric system. The SI abbrevia-
tion is short for the French system Système International d’Unités and is used 
extensively in many parts of the world.

The SI system uses base units for all areas of measurement (mass, force, dis-
tance, and so on). Table 2-1 presents some common base units and abbrevia-
tions you may come across in the SI unit system.

Table 2-1 SI Base Units and Abbreviations

Measurement SI Units SI Abbreviations

Length Meter m

Force Newton N

Time Second s

Mass Gram g

When working with SI units, you have to be able to convert between base units 
with different prefixes. After choosing a proper base unit from Table 2-1, you 
attach a series of prefix values to that base unit to create a scaled unit (a larger 
or smaller unit than the base SI unit). In Table 2-2, you can see some common 
SI prefixes, including some for getting larger (mega- and kilo-) and some for get-
ting smaller (milli- and micro-), that you encounter in mechanics of materials.
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Table 2-2 SI Conversions

Prefix Symbol Multiplier Exponential Conversion

Getting Bigger

mega- M- 1,000,000 106

kilo- k- 1,000 103

Getting Smaller

milli- m- 0.001 10–3

micro- μ- 0.000001 10–6

Within the SI system, you always need to be familiar with a subset of conver-
sions. To increase from a smaller prefix to a larger prefix, you must multiply 
by the exponential conversion shown in Table 2-2. The first term in the con-
version is always the starting unit. The second term is always the conversion 
to go from the starting units back to the base units. Here’s the formula:

(starting units) · (conversion to base unit) · (conversion to final unit) = 
final units

U.S. customary units
The U.S. customary system, often referred to as English units, is the unit 
system widely used in the United States. Like the SI system, the U.S. custom-
ary system also has common base units, which you can see in Table 2-3.

Table 2-3 U.S. Customary Base Units and Abbreviations

Measurement U.S. Customary Units U.S. Abbreviation

Length Foot ft

Force Pound lb (or #)

Time Second s

Mass Slug (1 lb s2/ft) Slug

Micro and kip: Noting two exceptions
Not all units fall cleanly into the SI or U.S. customary categories. For exam-
ple, the kip is a hybrid unit for expressing very large forces. It’s actually an 
abbreviation for the kilo-pound, a combination of the SI prefix kilo- and the 
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U.S. customary force unit pounds. Kilo means 1,000, so 1 kip equals 1,000 
pounds. Most engineering books also abbreviate the kip with the unit k, so 
don’t get it confused with the abbreviation for the SI prefix kilo-, which is also 
k. Just remember that the k for kip always comes after a numeric answer and 
doesn’t appear with any other units, whereas the kilo- prefix always comes 
before a base unit.

Another exception is the micro. Although the micro is actually one of the SI 
prefixes in Table 2-2, it can also be a sort of unit for strain in its own right 
(represented by the Greek letter mu, μ), typically when calculations are deal-
ing with very small values. Technically, strains actually have no reported 
units because they’re measured as either m/m or in/in. Because these units 
are the same in the numerator and denominator, they cancel each other. The 
“unit” micro is just a signal to multiply the strain value by 10–6, which is con-
veniently the conversion factor for the SI prefix micro-. So don’t be alarmed 
when you see a unit represented as 200μ. In this case, you’re actually saying 
that the strain is 200 × 10–6 (which is a very small number indeed).

All the derived mechanics 
units you’ll ever need
Several common statics units are based on calculations involving the base 
units listed in Table 2-1. For example, the Newton is actually a derived unit 
created from a combination of other units and expressed as

As you may notice, this expression uses the mass unit of kilograms even 
though the SI base unit for mass is actually grams. The second term is a 
unit for acceleration. When you compute a force in Newton units, you must 
express the mass in kilograms.

A few more commonly used derived units are as follows:

 ✓ Moments: A moment is an action that causes rotation. In SI units, the 
standard base unit for a moment is the Newton-meter (N-m), and in the 
U.S. customary system, the base unit is the foot-pound (ft-lb or lb-ft — 
the order doesn’t matter).

 ✓ Distributed force effects: You express these units as a force per linear 
distance. Their SI unit is Newton per meter (N/m), and their U.S. custom-
ary unit is pounds per foot (lbs/ft). Another common representation for 
lbs/ft is plf, which is an abbreviation for pounds per linear foot. Similarly, 
in the event of larger forces, you may also encounter a unit of klf, or kip 
per linear foot.
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24 Part I: Setting the Stage for Mechanics of Materials 

 ✓ Pressure effects: A pressure effect is expressed as a force per area. The 
SI unit for pressure effects (including stress, which is a measure of the 
intensity of a force acting over an area) is Newton per square meter 
(N/m2). This unit is also known as the pascal and may be abbreviated 
as Pa. The U.S. customary representation is usually either pounds per 
square foot (lb/ft2 or psf) or pounds per square inch (lb/in2 or psi).

 ✓ Volumetric effects: A volumetric effect is expressed as a force per 
volume and includes quantities such as the density or specific weight 
of materials. The SI unit is Newton per cubic meter (N/m3), and the 
U.S. customary unit is usually pounds per cubic foot (lb/ft3 or pcf).

Converting angular units from degrees 
to radians (and back again)
A common pitfall for the mechanics and materials student is the distinction 
between different angular units. Units for angles can be expressed in either 
degrees or radians. Both of these units are actually related to each other, but 
if employed incorrectly at the wrong times, they can destroy your calculation 
results. A radian is the measure of the internal angle at the center of one-half of 
a circle. This same internal angle corresponds to a measurement of 180 degrees 
(because a whole circle contains 360 total internal degrees or 2π radians). Thus

 Most calculators are capable of performing calculations in both degrees and 
radians, and in some models, switching between the two is as easy as push-
ing a single button — which often happens accidentally and when you least 
expect it. So before you get wild with those trigonometric functions in this 
chapter, take a moment to verify your calculator setting. (You may need to 
consult your calculator’s instruction manual.)
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Chapter 3

Brushing Up on Statics Basics
In This Chapter
▶ Drawing free-body diagrams

▶ Using equilibrium to solve for reactions and internal forces

▶ Finding internal loads by using generalized equations and area calculations.

Simply put, without statics, you have no mechanics of materials. To 
perform even the most basic analysis with mechanics of materials, you 

must have a firm understanding of free-body diagrams, equilibrium, and inter-
nal forces. Although I have to assume that you already had a grasp of statics 
prior to reading this book, I use this chapter to help you dust the cobwebs off 
a few of the more-important skills you need to use on a regular basis.

In this chapter, I provide a basic review of statics fundamentals involving equi-
librium while refreshing your memory on how to calculate support reactions 
and internal forces of objects. I then show you how to create generalized equa-
tions, which you use to work several types of mechanics problems, including 
deflections of beams in Chapter 16. I conclude the chapter with a quick method 
for determining internal force diagrams for simple statics problems.

Sketching the World around You 
with Free-Body Diagrams

Before you can begin applying the principles of mechanics of materials, you 
have to complete some sort of static analysis. The first steps of any static 
analysis are always to construct a free-body diagram (F.B.D.) and then solve 
for as many of the support reactions as you can.

As you’re constructing any F.B.D., remember that you should include four 
categories of forces in addition to dimensions and angular information. 
Those forces include external loads, internal loads, support reactions, 
and self weight, and I cover them in the following sections.
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External loads
External loads are applied loads that act directly on an object. The force of 
one beam pushing on another and the torsion applied to the end of a power-
transmission shaft are both examples of external loads. You can classify 
external loads into two basic categories:

 ✓ Applied forces: An applied force is a behavior that wants to move an 
object in the direction of the force. A concentrated force is a force that acts 
at a single point (or on a very, very small area), and you always represent 
it as a single arrow acting on your free-body diagram (see Figure 3-1). 
Concentrated forces resulting from one object pushing on another are 
known as contact forces.

  A distributed force is a force that acts over a length as shown in Figure 3-1. 
Distributed forces can come in a wide variety of shapes, with the uniform 
distribution (or constant intensity) being the most common. The linear dis-
tribution is a distribution that varies linearly from a maximum at one end 
of the distribution to a minimum value at the other. Applied forces can 
also be spread over areas (known as pressure effects), and in some cases, 
such as self weight, they can act over a volume (known as volumetric 
effects). 

  The total magnitude (known as the resultant) of a distributed force or 
moment is equal to the area of the load under its loading diagram. This 
resultant magnitude is then located at the centroid (see Chapter 4) of 
the distribution. The magnitude of the distributed load is called the 
intensity and is measured as a force per length or moment per length.

 ✓ Applied moments: An applied moment is a behavior that causes an 
object to curve (a bending moment) or to twist about a longitudinal 
axis (a torsional moment or torque). (Flip to Chapters 9 and 11 for more 
on bending moments and torsion, respectively.) Like forces, moments 
may be either concentrated or distributed. On a free-body diagram, you 
depict a concentrated moment as a circular arrow applied at a single point. 

  You can use a similar method to represent a concentrated torsional 
moment as you do for bending moments, but they can be difficult to rep-
resent in two dimensions. As a result, using a double-headed arrow nota-
tion with straight arrows parallel to the longitudinal axis as I show in the 
torsion example of Figure 3-2 becomes more convenient.

  To help you determine the signs of the moments, you can employ a trick 
known as the right-hand rule for moments. Set up your right hand as you 
do for the similar right-hand rule in Chapter 5 (for establishing Cartesian 
coordinates). Then curl your fingers in the direction of the moment (your 
fingers point in the same direction as the arrow head on the circular 
moment arrow) around the axis of rotation about which your moment 

07_9780470942734-ch03.indd   2607_9780470942734-ch03.indd   26 6/1/11   6:26 PM6/1/11   6:26 PM
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is acting. If the thumb on your right hand is pointing toward the positive 
end of one of the Cartesian axes, it’s a positive moment about that axis.  If 
the thumb points toward the negative end, you’re dealing with a negative 
moment. Figure 3-3 illustrates the right-hand rule for moments.
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Internal loads on two-dimensional objects
One of the most important statics skills you need to work within the realm 
of mechanics of materials is the ability to determine and calculate internal 
loads. For a complete system such as the one in Figure 3-4a, internal forces 
are balanced and never visible. However, if you cut an object, internal forces 
appear to help maintain equilibrium.

You can separate the internal forces that develop into three categories: axial 
forces, shear forces, and internal moments:
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 ✓ Axial forces: An axial force is an internal force that acts parallel to the 
longitudinal axis of the member and tends to make the object either 
increase or decrease in length. An object subjected to a positive axial 
force causing elongation is said to be in tension. Conversely, an object 
subjected to a negative axial force that causes shortening is said to be 
in compression. Figure 3-4b shows the axial force N

X
 that develops in 

response to a support reaction (A
x
 in this case). I show you more about 

working with axial forces in Chapter 8.

 ✓ Shear forces: A shear force is an internal force that acts parallel to the 
exposed surface of the cross-sectional area at the cut location. As you 
can see in Figure 3-4c, the shear force V

X
 is necessary to keep the object 

balanced in equilibrium in the vertical (or a second) direction. In a 
two-dimensional problem, you have only one shear force, while three-
dimensional problems can have two shear forces on a cut plane. Check 
out Chapter 10 for more about working with shear forces.

 ✓ Moments: As I note in the preceding section, a moment is a behavior 
that causes a member twist or flex. The internal moment on the exposed 
face (shown in Figure 3-4d) is in response to the eccentric vertical 
support reaction and the couple it creates with the internal shear 
force V

X
 and other external loads. In a three-dimensional member, two 

moments can cause bending, and a third moment (a torsional moment) 
can cause twisting. I explain more about how to work with internal 
bending moments Chapter 9 and with twisting moments in Chapter 11.
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Support reactions
A support reaction (also known as a support condition) is a force or moment 
that develops at a location in an attempt to restrain a body from moving or 
rotating when a load or moment is applied to it. In two dimensions, support 
reactions usually come in three flavors:

 ✓ Roller support: A roller support is free to translate in one direction while 
being restrained in another. The support is also free to rotate. A roller 
support has one unknown support reaction that acts perpendicular to 
the support surface, as shown in Figure 3-5a. Examples of roller supports 
are the wheels on your car or your favorite pair of inline skates.

 ✓ Pinned support: The external pinned support (sometimes referred to as a 
simple support) is a support reaction that restrains translation in two dif-
ferent directions while being free to rotate, such as the movement of the 
hinges on your door. An external pin support has two support reactions 
as shown in Figure 3-5b. The internal pinned support (or internal hinge) 
is a type of connection made between two or more members. Like the 
external pinned support, the internal hinge restrains translation while 
allowing rotation.

 ✓ Fixed support: The fixed support (or cantilever support) can’t rotate and 
is restrained in two directions from translation. The fixed support has 
two nonparallel support reactions and a resisting moment, as shown in 
Figure 3-5c.

Note that the diagrams in Figure 3-5 indicate only the forces and moments 
associated with each support reaction. When you start to draw your free-body 
diagrams, you definitely need to make sure to include all internal forces as 
well.

You can always identify other support types by their resistance to motion. 
If a specific direction is restrained (or partially restrained) from translation, 
a resisting force must be present. If a direction is restrained from rotation, a 
resisting moment must exist.

Self weight
Self weight is a force that the effects of gravity cause on the mass of an object. 
Depending on your static analysis, you may treat self weight either as a single 
concentrated force located at the center of mass of the object or as a distrib-
uted force along the entire length.
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Reviewing Equilibrium for Statics
After you have the free-body diagram drawn, the next step is usually to 
compute the values of the support reactions. (Check out the earlier section 
“Support reactions” for more on these conditions.) To calculate support reac-
tions, you use Newton’s laws of motion, particularly his second law, which 
says that force is directly related to acceleration (which in statics is equal 
to zero) and mass. This law is the basis for defining a state of balance for an 
object, known as equilibrium.

In statics, equilibrium means that an object or system experiences no net motion 
or acceleration. You can classify motion in statics into two major categories:

 ✓ Translation: Translation is a linear or straight-line movement of an 
object. Translational motion is a response to unbalanced forces acting 
on a system. So, to define translational equilibrium, you simply need 
to have a system that has balanced forces. More specifically, in a two-
dimensional application, you need to ensure that translational equilib-
rium is maintained in at least two nonparallel directions; an object that 
is balanced in only one direction may not necessarily be balanced in a 
different direction. The most convenient directions are often parallel to 
the Cartesian axes of your assigned coordinate system (usually as x and 
y for two dimensions and x, y, and z for three dimensions).

  To ensure translational equilibrium, you use the classic statics 
force equations:

 

  For two-dimensional applications, you need to sum forces in the two 
directions in the plane of the problem (usually x and y) only. For three 
dimensions, you need all three.
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 ✓ Rotation: Rotation is a spinning or turning movement about a reference 
point or axis. To provide equilibrium in rotation, the net rotational 
effects (or moments) must also be balanced, a state you can verify 
with the moment equilibrium equations:

 

  For two dimensions, you need to sum moments about the axis perpen-
dicular to the plane of the problem (usually z) only. For three dimen-
sions, you also need to use all three moment summation equations.

 For an object to be in a state of equilibrium, it must meet both of the require-
ments for translational equilibrium while simultaneously satisfying rotational 
equilibrium. If your object isn’t in equilibrium in all three equations, the object 
isn’t actually balanced.

For the beam of Figure 3-4 earlier in the chapter, you can determine the sup-
port reactions by writing each of these three equilibrium equations for the 
free-body diagram. For the moment equation, you can choose any point you 
want, but I like to choose the pinned support at Point A because it eliminates 
both A

x
 and A

y
 from the moment equation (the moment of each of these 

forces about Point A is zero). Here are the calculations:

With these equations, you’re ready to begin to solve for unknown support 
reactions on an object. If you have more equations of equilibrium than you 
have support reactions, the object is said to be statically determinate. If you 
have more unknown reactions than available equations, the structure is 
statically indeterminate, and you can’t solve it completely without applying 
the basic principles of mechanics of materials that I outline in Chapter 17.

Locating Internal Forces at a Point
After you have the support reactions computed for the beam in Figure 3-4, 
you’re ready to determine the internal forces at any desired location. As I note 
earlier in the chapter, internal forces appear whenever you cut the object. You 
then apply the equations of equilibrium on this new, cut member in a similar 
fashion to how you determine the support reactions (see the preceding section).
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32 Part I: Setting the Stage for Mechanics of Materials 

For example, to determine the internal forces at Point D in Figure 3-4, you cut 
the beam at that location and add the internal effects: an axial force (N

D
), a 

shear force (V
D
), and an internal moment (M

D
)

 
to your free-body diagram 

(as I show in Figure 3-6).

 

Figure 3-6: 
Exposing 

internal 
forces.
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After you have this free-body diagram, you simply rewrite your equilibrium 
equations for the cut member AD. For example, if you wanted to calculate the 
internal moment M

D
 at Point D,

 Remember that positive signs in your answers indicate that the direction you 
assumed on the free-body diagram is correct. If you get a negative sign, you 
assumed the direction backward.

You can then write the translation equilibrium equations to determine the 
internal shear and axial forces at this location in a similar fashion.

Finding Internal Loads 
at Multiple Locations

The method for finding internal forces as I describe in the preceding section 
does have one serious limitation for design. When you start the design 
process, you want to make sure that you’re designing for the most severe 
internal loads. Unfortunately, you often don’t immediately know where this 
location is within an object. Rather than cutting the object at a thousand (or 
more) locations in the hope of accidentally selecting the correct spot, finding 
a more consistent and predictable methodology is useful. The following sec-
tions show you how to create equations that allow you to calculate internal 
forces at any location within a member.
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Writing generalized equations
In this section, I show you how to generate equations (known as general-
ized equations) for internal forces. You can write a generalized equation for 
areas where the free-body diagram looks similar, except for the length of 
the member, which you replace with a variable dimension x. I usually define 
this variable with respect to one of the supports; for beams, I often use the 
leftmost support on the beam. The first challenge is knowing which and how 
many places you need to cut a section.

You can define these regions for the generalized equations by locating critical 
points, which are locations where the internal loads change. The following 
are all considered critical points:

 ✓ Ends of the structural object (usually the leftmost and the rightmost 
points for a horizontal beam)

 ✓ All support reactions and internal hinge locations

 ✓ All concentrated forces and moments

 ✓ Start and end points for distributed loads

 ✓ Changes in cross section geometry

 ✓ Changes in material properties

 ✓ All locations where internal shear force is equal to zero.

For the beam of Figure 3-4 earlier in the chapter, you can determine the gen-
eralized equation by cutting the beam and drawing a generalized free-body 
diagram for each of the regions. Figure 3-4 has two regions defined between 
critical points, as I show in Figure 3-7.

After you have the generalized F.B.D., you simply apply the equations of 
equilibrium again and solve for the internal forces at the general cut location 
at Point X (which is the general location at a position x from your reference 
location) on the member. When you apply the equilibrium equations, the 
variable distance x appears that represents the internal forces within the 
beam as a function of its position.

 You must measure the distance x to the same reference point for each region. 
I like to use the leftmost support as my reference when working with beams.

The following equation is the generalized moment equation for Point X in 
Figure 3-7. You can then repeat the process and construct a generalized 
moment equation for each of the other regions as well.
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Note that the subscripts in this equation refer to the internal forces at Point 
X and do not necessarily imply the Cartesian x-direction (although N

X
 does 

act in that direction).

 In fact, the generalized moment equation is actually a necessary part of deter-
mining the deflection of members subjected to bending, which I discuss in 
Chapter 16.

 You can also calculate generalized shear force equations, generalized axial 
force equations, or even generalized torsion equations in a similar fashion by 
writing the translational or rotational equilibrium equations for each gener-
alized region. After you have all the generalized equations created for each 
region along the entire length of the object, you can then create a plot of these 
equations with respect to length or apply the principles of calculus to find the 
equations’ maximum or minimum values.
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35 Chapter 3: Brushing Up on Statics Basics

Drawing simple shear and moment 
diagrams by using area calculations
One of the most repeated steps in the design of beams and other flexural mem-
bers is constructing shear force and bending moment diagrams. For beams that 
have a very simple loading — such as point loads and uniform or linearly distrib-
uted loads, you can actually determine the shear and moment diagrams without 
ever writing the generalized equations that I discuss in the preceding section.

When you’re working with area calculations, keep in mind the following:

 ✓ Arrange the diagrams vertically with the load diagram on top, the 
shear force diagram in the middle, and the bending moment diagram 
on the bottom.

 ✓ Locate the critical points on each of the three diagrams.

 ✓ Concentrated loads cause a jump in shear force diagrams in the direction 
of the point load for an amount equal to the magnitude of the point load.

 ✓ Finish the shear force diagram first.

 ✓ Start from the left and work to the right.

 ✓ The shear force and bending moment diagrams you draw and the calcu-
lations you perform must compute to zero at the right end (or last point) 
of the diagram.

You can determine internal load values at every location within an object 
by using a few simple geometric area calculations in conjunction with a bit 
of statics and following a few simple steps that I outline in the following 
sections. The beam in Figure 3-8 illustrates this procedure.

Constructing a simple shear force diagram
The first diagram that you must construct is the shear force diagram, which 
you establish from the loading diagram directly above it. To construct the 
shear force diagram for the beam of Figure 3-8, you follow these basic steps:

 1. Starting at Point 1, place a point at V
1
 = 0 and then examine the first 

critical region (between Point A and Point C).

  A concentrated point (the vertical support reaction Ay) load occurs at 
Point A, so the value in the shear force diagram experiences an instanta-
neous jump at this location in the amount of +19 kip.
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Figure 3-8: 
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 2. At Point 2 place a point at a shear force value of V
2
 = 0 + 19 kip = +19 

kip; draw a line to connect Points 1 and 2.

  At Point A, a reaction of 19 kip acts upward on the beam. This reaction is 
the same as a concentrated load and causes the value in the shear force 
diagram to jump instantly upward.

  Beginning at Point 2, which has a value of V2 = +19 kip, you can see that 
the region between Point A and Point C is subjected to a uniformly dis-
tributed load. The area under this load (or the resultant) is equal to the 
change in shear force value and helps you calculate the shear at Point 3. 
For this example, the resultant of the distributed load on this region is 
(–2 kip/ft)(7 ft) = –14 kip. Because this uniform load is acting downward, 
the resultant must also be acting downward. This fact means that the 
total change from Point 2 to Point 3 must be –14 kip. The value of shear 
at Point 3 is then V3 = (+19 kip – 14 kip) = +5 kip.
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37 Chapter 3: Brushing Up on Statics Basics

  The shape of the shear force diagram between Points 2 and 3 depends 
on the shape of the load between those points. The order of the shear 
function is always one order higher than the load function for the same 
interval. Thus, a uniform distributed load (with an order of zero) results 
in a linear (or first-order) shear function. So a straight line connecting 
Point 2 and Point 3 is correct.

 3. At Point 3 (located at Point C), place a point at V
3
 = +5 kip.

  At this point, the 30-kip concentrated load is acting downward, so the 
shear force diagram must instantly jump downward an amount of –30 kip.

 4. At Point 4, place a point at a shear force value of 
V

4
 = +5 kip –30 kip = –25 kip.

  Beginning at Point 4, which has a value of V4 = –25 kip, the load in this 
critical region is uniformly distributed as well. Just as with Step 2, you can 
calculate the total change in shear as the area of the load between Point C 
and Point B. The area under this load is (–2 kip/ft)(3 ft) = –6 kip. Thus the 
change in shear between Point 4 and 5 is equal to –6 kip.

 5. At Point 5, place a point at a shear of V
5
 = –25 kip – 6 kip = –31 kip.

  At this point (Point B), you’re at the end of the beam at Point 5, which 
has a value of –31 kip. Even though you’ve reached the end of the beam, 
remember that a vertical reaction By = +31 kip is also acting upward. So, 
the value of Point 6 is equal to the value of Point 5 plus the effect of the 
concentrated point load due to the reaction. Thus, the shear at Point 6 
is V6 = –31 kip + 31 kip = 0, which means the shear force diagram ends 
on a zero value.

 6. Denote any areas of positive shear with a plus sign (+) inside the 
region and areas of negative shear with a negative sign (–).

  This notation helps with the moment calculations I discuss in the next 
section. I also like to shade the areas to make them a bit more visible.

 7. Look for a secondary critical point that occurs at locations of zero shear.

  At any locations where the shear force diagram has a value of zero, you 
may need to add a new critical point if one isn’t there already. In this dia-
gram, Point 1, Point 6, and the line between Points 3 and 4 are already crit-
ical points. However in some shear and moment diagrams, you may have 
a zero shear force value occur at noncritical points. The critical points at 
shear forces equal to zero are actually locations of minimum or maximum 
moment on the moment diagram, which I cover in the following section.
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Creating a simple moment diagram
After you have the shear force diagram (see the preceding section), you 
can create the moment diagram from that shear force diagram. You base the 
moment diagram directly off the shear force diagram above it, and all your 
calculations come from the shear force diagram. However, if your loading 
diagram has any concentrated or distributed moments, you still need to 
look back up to the original loading diagram for those values as well.

 Concentrated moments cause an instantaneous jump on the moment diagram 
because they act the same way that concentrated loads behave on the shear 
force diagram. (This behavior is why you draw the critical points across all 
three diagrams: to help remind you of critical locations on your diagrams.)

Follow these steps to create a moment diagram from the shear force diagram 
in the preceding section:

 1. Starting at Point 7 (the left end of the moment diagram), place a point 
at M

7
 = 0 and then examine the first critical region (between Point A 

and Point C).

  By looking at the area under the shear force diagram within the critical 
region between Point A and Point C, you can see that the shear force 
is positive. That positive designation means that the change in area 
between Point 7 and the next point at Point 8 must be positive, which 
means Point 8 must be more positive in value than Point 7.

  The change in moment is equal to the area under the shear force 
diagram or

 ΔM = (0.5)(19 kip + 5 kip)(7 ft) = +84 kip-ft.

 2. At Point 8, place a point at a moment of M
8
 = 0 + 84 kip-ft = +84 kip-ft.

  At this point, you need to do a bit of detective work to find the shape 
of the moment diagram. The first clue is in the shape of the shear force 
diagram. Remember that moment diagrams are always one order higher 
than the shear force diagram in the same region, so if the shear force 
diagram is linear (first-order), as in this case, the moment diagram must 
be parabolic (second-order).

  To deduce which second-order curve actually fits, you need to look 
at the slope of the moment diagram at each point. The slope of the 
moment diagram is equal to the value of the shear force at that point. 
Thus, the slope of the moment diagram at Point 7 is +19 and the slope at 
Point 8 is +5; therefore, the slope at Point 7 is more steeply positive than 
at Point 8, which creates an inverted parabola as shown on the moment 
diagram in Figure 3-8. It has the highest positive slope on the left end of 
the region, where the shear force was the highest positive value.
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39 Chapter 3: Brushing Up on Statics Basics

  Be careful, though — this second-order curve doesn’t necessarily work 
for every linear shear force function. You have to look at the slopes to 
make the decision!

 3. Starting at a moment value (M
8
 = +84 kip-ft), compute the change in 

moment from Point 8 to Point 9 as the area under the shear force 
diagram in this region (between Point C and Point B).

  Because the area under the shear force curve is negative, you can 
expect the change in moment to also be negative:

 ΔM = (0.5)(–25kip – 31 kip)(3 ft) = –84 kip-ft.

 4. At Point 9, place a point at a moment of M
9
 = +84 kip-ft – 84 kip-ft = 0 kip-ft.

  Hence, the moment diagram ends at a value of zero. You can deduce the 
shape of the second-order curve in the same manner as in the preced-
ing step. The final value of zero indicates that the work you did is most 
likely correct. Be sure to label and shade your positive and negative 
moment regions as a useful reminder when you’re done.

By looking at the shear force diagram, you can see that the maximum positive 
shear force VMAX+ is +19 kip at Point A (or Point 2), and the maximum negative 
shear force VMAX– equals –31 kip at Point B (or Point 5). Similarly, the maximum 
positive moment MMAX+ is +84 kip-ft at Point C (or Point 8), and the maximum 
negative moment MMAX– is 0 kip-ft at Point A and Point B (or Point 7 and Point 9). 

With these values determined, you’re ready to begin applying the principles of 
mechanics of materials to this beam.
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Chapter 4

Calculating Properties 
of Geometric Areas

In This Chapter
▶ Establishing a Cartesian coordinate system

▶ Determining cross sections with cutting planes

▶ Computing the cross-sectional areas of discrete and continuous regions

In mechanics of deformable bodies, you’re always interested in how an 
object is behaving on the inside, so you need to become very adept at 

determining specific cross sections and computing specific cross section 
properties such as the cross-sectional area.

In this chapter and the next, I show you the methods and techniques for 
calculating the section properties that many mechanics of materials formulas 
use; I discuss their actual use on a case-by-case basis in later chapters. 

Determining Cross-Sectional Area
Imagine you’re in the kitchen preparing a snack and decide you’re craving 
sliced carrots. The question now is, do you prefer circular disks or long strips? 
Simply cutting across the carrot produces a circular shape or cross section 
(assuming your carrot isn’t one of those funky, crooked ones), while slicing 
down the length produces a generally more rectangular cut surface. 

The actual shape of your sliced carrot is determined by the orientation of geo-
metric planes. A geometric plane is a two-dimensional flat surface that extends 
endlessly in each direction (both positively and negatively). A plane can have 
any orientation in space, but mechanics uses several planes, known as Cartesian 

08_9780470942734-ch04.indd   4108_9780470942734-ch04.indd   41 6/1/11   6:29 PM6/1/11   6:29 PM



42 Part I: Setting the Stage for Mechanics of Materials 

planes, more commonly than others. In the Cartesian coordinate system, the XY 
Cartesian plane is a geometric plane that is parallel to the plane containing both 
the x-axis and y-axis. Similarly, the YZ Cartesian plane is parallel to the plane 
containing the y-axis and the z-axis, and the XZ Cartesian plane is parallel to a 
plane containing (you guessed it) the x-axis and the z-axis.

One especially useful geometric plane is one that I refer to as a cutting plane. 
A cutting plane is any plane used to cut an object into separate pieces (which 
proves very handy when you are trying to expose internal forces). Another use 
of this cutting plane is to develop a region known as the cross section, which is 
created when a solid three-dimensional object intersects this cutting plane. The 
computed area of this region is known as the cross-sectional area. Being able to 
recognize and compute different cross-sectional areas is an instrumental part of 
solving mechanics of materials problems, as the following sections explain.

Depending on which cutting plane you use, you can create distinctly different 
cross sections. In Figure 4-1, I show you the different cross sections that 
can be created when you can cut a rectangular object with dimensions 
of b (width) x h (height) x L (length) with different cutting planes.

 

Figure 4-1: 
Using 
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sections.
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Classifying cross-sectional areas
The cross-sectional area is perhaps the most commonly computed geometric 
property in all of mechanics of materials. Most cross-sectional areas can 
be classified into one of two categories: discrete and continuous. Figure 4-2 
shows examples of discrete and continuous regions (or cross sections).
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 ✓ Continuous regions: A continuous cross section (also known as a general 
cross section) is any cross section that you can’t completely divide into 
simple geometric subregions such as rectangles, circles, and triangles 
(shapes with easily computed areas and centroids). You must express 
the boundaries of these regions as mathematical functions. To compute 
the area (A

TOT
) of a continuous region requires integration:

 ✓ Discrete regions: A discrete region or discrete cross section (which is 
sometimes referred to as a composite or compound area) is a cross 
section that you can break down into multiple simple-shaped subregions 
(called primitives) such as rectangles, circles, or triangles while still 
accounting for all the original combined area. Discrete regions can also 
include holes or openings as long as these subtracted subregions are 
also discrete. To compute the area of a discrete section, you simply add 
up the areas of the subregions by using the following formula:

  where n is the total number of subregions in the discrete cross section.

 

Figure 4-2: 
Discrete 

and 
continuous 

regions.
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Computing cross-sectional areas
Computing cross-sectional areas is fairly straightforward when the cutting 
planes are aligned perpendicular (or normal) to a longitudinal axis of a member. 
However, sometimes you also need to be able to calculate cross-sectional areas 
at oblique (or non-perpendicular) orientations. Oblique cross sections prove 
useful in the development of transformation equations for stress, which I 
discuss in Chapter 7.
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After you establish the cross section with a cutting plane, as done in 
Figure 4-1, you can then compute the cross-sectional area.

Figure 4-3 shows how you can cut a rectangular object with dimensions of b 
(width) x h (height) x L (length) in multiple directions, creating distinctively 
different cross sections.

 ✓ Figure 4-3a shows a block cut by a cutting plane in the Cartesian YZ plane, 
resulting in a cross-sectional area of A = (b)(h).

 ✓ If the same object is cut by a cutting plane in the Cartesian XY plane 
(as shown in Figure 4-3b), the cross-sectional area is A = (L)(h).

 ✓ If the same block is cut by a Cartesian XZ plane as in Figure 4-3c, the 
cross-sectional area is A = (L)(b).

 

Figure 4-3: 
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Many objects in engineering can have drastically different cross sections 
when sliced by cutting planes that are parallel to each other. Consider the 
hollow tube of Figure 4-4a, which has a length of L, an outer radius of r

o
, and 

a wall thickness of t.

 ✓ When you cut the tube with any Cartesian YZ plane, the same cross 
section (shown in Figure 4-4b) is revealed at every location along the 
longitudinal axis.

 ✓ However, if you cut through the center of the tube with XZ Plane 1 as 
shown in Figure 4-4c, the cross-sectional area is A = 2(L)(t).

 ✓ Cutting with XZ Plane 2 as shown in Figure 4-4d, you reveal that the 
cross-sectional area is A = 2(L)(t

1
) where t

1
 > t.

Although the two formulas for the hollow tubes cut by Planes 1 and 2 may 
look similar, the difference is in the t

1
 and t terms. Remember that for tubes 

and pipes, you measure the wall thickness along the diameter of the circle. 
For Plane 1, the cutting plane is along the diameter. For Plane 2, the cutting 
plane isn’t along the diameter, so the cut thickness t

1
 becomes bigger than 

the wall thickness t.
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Considering prismatic members
Many of the formulas I discuss throughout this book are derived from statics 
and are based on the assumption that the members are prismatic. A prismatic 
member (or prismatic section) is a member that has the same geometric cross 
section along at least one axis, and the axis(es) can be oriented in any direction 
in space.

 In the case of the members of Chapter 9, the axis along the member’s length 
(or longest dimension) is known as a longitudinal axis, and the beam must be 
prismatic along this axis.
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Defining symmetry of cross sections
A geometric region is said to have symmetry (or be symmetrical) when an 
imaginary line, sometimes referred to as the axis of symmetry, can divide that 
region into two identical mirror images, or reflections. An object can have 
multiple axes of symmetry that can be oriented in any number of directions.

Common structural shapes such as a T-section or an L-section with equal legs 
have one axis of symmetry. Other structural shapes such as I-shaped sections 
may have two axes of symmetry. Some cross sections can actually have many 
different axes of symmetry (see Figure 4-5).
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Finding the Centroid of an Area
After you determine the cross-sectional area (see “Determining Cross-
Sectional Area” earlier in the chapter), the next step is to find the centroid 
(or center of area), which is the geometric center of a region. You express 
it as a Cartesian coordinate. You start the majority of your section property 
calculations (which I discuss later in this chapter as well as in Chapter 5) 
by first finding the centroid of a cross-sectional area.

 In fact, many of the formulas for stress in strain that I discuss in Parts II and III 
of this book are in their simplest form when you place the origin of your 
reference Cartesian coordinate system at the centroid of the cross section. 
So that’s what I do in this book.

Making discrete region calculations
The simplest type of region you encounter is the discrete regions that I 
describe in “Classifying cross-sectional areas” earlier in the chapter. You can 
divide discrete regions into smaller subregions consisting of simple shapes 
such as the ones in Figure 4-6. This figure also includes information about the 
subregions’ cross-sectional areas, as well as the x- and y-coordinates for their 
centroids as measured from their indicated origins in the figure.

 You want to be very careful when using tables of geometric areas that you find 
in textbooks. Be sure to make special note of where the author of a specific 
figure has established the origin for the basic shapes in the table. The formulas 
a table gives are derived exclusively for the indicated Cartesian coordinate 
system (and especially the location of the origin). If the reference origin location 
changes, you must recompute the formulas in the tables because they change 
as well. With the exception of the circular region, I take the origin as the lower-
left corner of the object as my reference point. For circles, I use the center point 
of the circle because that location is usually referenced on a drawing.

To actually compute the centroid of a discrete, two-dimensional region, you 
utilize the following basic formulas:

where x
i
 and y

i
 are the centroidal distances of the subregion and A

i
 is the 

area of a particular subregion. Each of these summations must include all 
of the subregions of the discrete cross section.
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Figure 4-6: 
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49 Chapter 4: Calculating Properties of Geometric Areas

Consider the discrete region shown in Figure 4-7a that consists of a circular 
quadrant and trapezoidal area and contains a hole.

To simplify the centroidal calculation process for discrete regions, I recommend 
that you establish a basic coordinate table such as the one shown in Table 4-1.

After you select an origin for the discrete region (you can use any point you 
want), you can complete the basic table by following several simple steps:

 1. Divide the combined region into discrete subregions and add one line 
to the table for each subregion, making sure to include any holes or 
open regions in your calculations.

  Select a reference coordinate system and divide the composite region 
into a subregion with simple shapes. You can represent a hole or open 
region as a region with a negative area on top of any region with a 
positive area. Make sure you account for the total area of the composite 
region. Figure 4-6 earlier in the chapter can give you an idea of what 
subregion shapes to look for.

 2. In the second column, record measurements of the x-distance from 
your established origin to the centroid of each subregion.

  For Region 1 of Figure 4-7b, you can use the information in Figure 4-6 to 
determine the centroid of the circular quadrant of radius r = 40 millimeters 
as follows:

  which is measured from the vertical edge of the quadrant.

  At this point, you must be very cautious. In Figure 4-7b, the orientation 
of the circular quadrant isn’t the same as the circular quadrant of 
Figure 4-6. In this example, the straight edge is on the right side, so you 
actually measure the distance of 16.99 millimeters from the right-side 
edge of the circular quadrant, while the origin is actually on the lower-
left corner. For this reason, you must perform an additional calculation 
to determine the correct centroid distance from your established origin 
by subtracting the x

i
 value of your previous calculation from the radius 

of the circle:

x
1
 = distance between origins – x

i
 = 40.00 mm – 16.99 mm = 23.01 mm

  which is measured from the origin. This value is shown in the centroid 
table in the second column.

  The distance to the centroid of a subregion can actually be a negative 
value. This situation happens when the centroid of the subregion lies 
to the left or below the origin.
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Figure 4-7: 
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Table 4-1 Centroid Coordinate Table

Region x
i 
(mm) A

i 
(mm2) x

i
A

i
 (mm3)

1 (circle quadrant) 23.01 1,256.00 28,900.56

2 (rectangle) 70.00 1,200.00 84,000.00

3 (circular hole) 20.00 –78.54 –1,570.80

4 (triangle overestimate) 93.33 –200.00 –18,666.00

TOTAL ------------------- ΣAi =2,177.46 ΣxiAi = 92,633.76
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51 Chapter 4: Calculating Properties of Geometric Areas

 3. Compute the area for each subregion and place this value in the 
third column.

  For Region 1, the area of the circular quadrant is

  For areas that are computed for holes or other subtracted regions 
(such as the overestimated triangle of Region 4), you input the values 
as negative values. In Table 4-1, notice that both Region 3 and Region 4 
are negative values.

 4. Multiply the values of the second and third columns (as computed in 
Step 2 and Step 3) and record this value in the fourth column.

 5. Sum the values of the third column for each subregion and record this 
value as the TOTAL for that column.

 6. Repeat Step 5 for the values of the fourth column.

 7. Compute the location of the centroid (or the  coordinate) to determine 
the centroid distance from the established origin by dividing the 
TOTAL from column 4 (computed in Step 6) by the TOTAL from 
column 3 (calculated in Step 5).

From the result of Step 7, you now know that the x-coordinate of the 
centroid of the discrete region is located a distance of 42.54 millimeters from 
the origin. To find the y-coordinate of the centroid, you must create another 
table, similar to Table 4-1, with the corresponding y data.

 

The fact that this value is a positive dimension indicates that the horizontal 
centroid is located to the right of the origin for this problem. This conclusion 
should make sense because I established the origin at the lower-leftmost 
point on the object. If you had calculated a negative value, that result would 
indicate that the centroid is located to the left of the origin.

Working with continuous (general) regions
When you can’t divide an object’s cross section into the simple regions 
described in Figure 4-6 earlier in the chapter, calculating the centroid can 
become a bit more mathematically complex. To define a continuous region, 
you need to express the boundaries of the object as mathematical functions. 
To compute the centroid, you then need to make use of the integral forms of 
the centroidal calculations:
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These equations actually appear very similar to the summation equations of 
the discrete centroid calculations (see the preceding sections) because you 
still need an area, expressed by the dA in the equation, and a distance to the 
center of that area from the origin of your established Cartesian coordinate 
system — x for the x-centroidal coordinate and y for the y-centroidal coordinate.

Consider the object indicated by the shaded region in Figure 4-8a, which 
is bounded by the curves f

1
(x) = x(mm) on the lower bound edge and by 

f
2
(x) = x2+2 (mm) on the upper bound edge.
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The biggest challenge in working with continuous regions is developing the 
expressions for the incremental area dA, indicated by the shaded rectangular 
region in Figures 4-8b and 4-8c. You can compute the incremental area as the 
rectangular area from

The distance x in this equation is the horizontal distance from the origin to 
the centroid of the rectangular incremental area dA.

With this equation developed, you’ve now successfully transformed the area 
integral (using dA) into an integration with a single variable, x. As a result, 
you now need to change the limits of integration. For this example, the upper 
limit of the linear integration is 2.0 and the lower limit is 0. You’re now ready 
to compute the x-direction centroidal coordinate of Figure 4-8b:
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53 Chapter 4: Calculating Properties of Geometric Areas

To determine the y-direction centroidal coordinate of Figure 4-8c, you 
basically follow the same procedure. However, this time you need to 
incorporate the y-distance for the incremental area in the equation:

Because the centroid distance y isn’t a constant value but rather a function 
of the variable x, you need to make an additional transformation by using 
the following expression:

Substituting into the centroid integral equation

 In most cases, the math required for the solution of these integral equations 
remains fairly simple. However, if the math seems like it’s getting ugly in terms 
of the algebra and polynomials you’re working with (such as in the earlier 
y-centroidal integral calculation), you may find that slicing the area in another 
direction makes your work a bit easier. Remember from calculus that you 
aren’t necessarily required to use a vertical slice for the estimate of dA. In fact, 
in some situations, it may be more mathematically convenient to slice the area 
horizontally. This setup changes your equations for dA a bit, and you need to 
modify your expressions for x and y for the center of the incremental area 
accordingly. You must adjust your limits of integration as well.

 Regardless of which slice you use to compute dA, your final computation 
should yield the same numerical answer.
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Using symmetry to avoid 
centroid calculations

 If you’re able to identify that an object has an axis of symmetry (flip to the 
earlier section “Defining symmetry of cross sections”), you can assume that 
the centroid location in the perpendicular direction must be located somewhere 
on that axis of symmetry.

This assumption proves to be very handy for common structural shapes such 
as T-sections and I-sections because an axis of symmetry for these shapes is 
often right down the middle. So if you know that the object is 10 inches wide 
and is symmetric about a vertical axis down the middle (or 5 inches from 
either edge), you automatically know that the horizontal centroidal coordinate 
occurs at 5 inches from either side.

 In the event that your object has two or more axes of symmetry (as is the case 
with tubes, pipes, and certain hollow sections), you know that the centroid 
occurs where these axes intersect.
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Chapter 5

Computing Moments of Area 
and Other Inertia Calculations

In This Chapter
▶ Relating the centroidal axis to inertia calculations

▶ Handling moment of inertia equations

▶ Working with different types of inertia calculations

▶ Explaining the radius of gyration

One of the difficulties that most students have when first starting out 
in mechanics of materials is in the computation of section properties. 

That’s why I devote two whole chapters to getting you up to speed on this 
important topic.

You can actually physically see and even measure certain geometric prop-
erties, such as the cross-sectional area that I describe in Chapter 4. (If you 
haven’t already read Chapter 4, I recommend you do so before proceeding; 
it can help provide a foundation for the topics in this chapter.) The cross-
sectional properties covered in this chapter aren’t as easily measured, but 
they are equally important in helping you predict the effects of a variety of 
different loading situations.

 When you’re working with mechanics of materials equations, you must make 
sure you use the correct cross-sectional property for the calculation you’re per-
forming. For example, you need the first moment of area for studying flexural 
shear (which I cover in Chapter 10), while you use the second moment of area 
to compute stresses caused by moments. If you accidentally use the wrong sec-
tion property in your calculations — an easy mistake to make — you may end 
up computing completely wrong values in your analysis. In Parts II and III of 
this book, I show you how to determine which property you actually need 
for a given loading.

 Dog-ear this chapter. As you read through the book, I point out exactly where 
a specific property is required so that you can refer to this chapter to allow 
you to see more clearly how you actually compute it.
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Referencing with the Centroidal Axis
In addition to the cross-sectional area property that I discuss in Chapter 4, 
you repeatedly use three additional section properties in mechanics of mate-
rials calculations: first moment of area, second moment of area, and radius of 
gyration. (I describe each of these cross-sectional properties in more detail 
later in this chapter.) Although you may calculate each of these section prop-
erties differently, each calculation is dependent on the location of the centroi-
dal axes (the axes that pass through the centroid, or geometric center of the 
cross section) introduced in Chapter 4.

 The cross-sectional area always contains at least two of the centroidal axes. 
So a cross section contained in a Cartesian XZ plane contains centroidal axes 
that are measured parallel to the Cartesian x-axis and the Cartesian z-axis. A 
third centroidal axis relates one cross section in a plane to another cross sec-
tion in the same plane at a different position along the member. For this exam-
ple, the y-axis (which is perpendicular to the XZ plane) is sometimes referred 
to as the longitudinal axis of the member.

A cross section can be oriented in any plane, and the longitudinal axis must 
be oriented perpendicularly to this cross section. You can use the plane of the 
cross section to help you determine the direction of the longitudinal axis.

Figure 5-1 shows a basic rectangular bar (or prism) with a cross-sectional 
area contained in the XY plane. For the cross section in this figure, the x- and 
y-centroidal axes are the important centroidal axes for your section property 
calculations in this chapter; they’re the ones contained in the cross-sectional 
area. For this figure, the z-centroidal axis is the longitudinal axis.

 The centroidal axes are the axes of a Cartesian coordinate system with its 
origin placed at the centroid of the cross section. Two of the axes are placed 
in the plane of the cross section, and the third establishes the longitudinal axis 
for the cross section. By establishing these axes in a particular orientation 
(which I explain later in Parts II and III), the equations I introduce are in 
their simplest form.

 To help you establish the orientation of these axes, which are usually aligned 
with respect to an x-, y-, and z-Cartesian direction, you must make sure that you 
choose them in the proper orientation to each other. To help remember the 
proper orientation, I like to use a relationship known as the right-hand rule. This 
analogy basically says that if you take your right hand and form an L-shape with 
your thumb and forefinger, you can assign the positive x-direction to the tip 
of your thumb and the positive y-direction to the tip of your forefinger. Then, 
if you bend your middle finger so that it’s perpendicular to your hand, the tip of 
your middle finger points in a positive z-direction. As long as you maintain this 
relationship between your fingers, your axes will always be properly aligned 
with respect to each other.
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57 Chapter 5: Computing Moments of Area and Other Inertia Calculations

 For the calculations in this chapter, I’ve gone ahead and oriented the Cartesian 
axes such that the cross section I’m working with is always contained in the XY 
plane, and the longitudinal axis is along the Cartesian z-axis is the longitudinal 
axis of the member. However, computer programs and other textbooks may 
use a completely different orientation. If a resource doesn’t establish Cartesian 
axes for you, you’re free to use any orientation you please. Just realize that the 
subscripts I establish in this chapter are for a cross-section following the 
conventions listed here.

 

Figure 5-1: 
Centroidal 
axes on a 

rectangular 
bar.
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Computing Q, the First Moment of Area
The first moment of area (or static moment of area) is a property that mea-
sures the moment of an area with respect to a reference axis of a cross sec-
tion. You use it in the computation of centroids (or centers of area) as well as 
for determining the internal effects of shear forces on flexural members (see 
Chapter 10). Most classic textbooks (as well as this text) assign the variable 
Q to the first moment of area.

You can perform multiple Q calculations for a given cross section. The most 
common of these Q values are usually calculated with respect to the cen-
troidal axes (depending on the direction of the applied internal shear force) 
within the plane of the cross section. For example, you use the x-centroidal 
axis or the y-centroidal axis for a cross section contained in the XY plane.

The units associated with the first moment of area are typically in in3 for U.S. 
customary units and in m3 for SI units, although in many engineering objects, 
you may also come across Q expressed as mm3 as well.
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Establishing the equations for Q
The basic formula for the first moment of area for a region in the XY plane 
about a reference x-axis is given by

where dA is a differential area within the cross section and y is the perpendicular 
distance from the centroid of the area dA to the reference x-centroidal axis. For 
discrete (or composite) regions, you can modify the formula and actually replace 
integration with simple summation for the n subregions of the cross section:

where A
i
 is the area of each of the subregions and y

i
 is again the perpendicular 

distance from the centroid of the subregion i to the x-centroidal axis of the 
cross section. (Flip to Chapter 4 for more on continuous and discrete regions.)

You can also calculate an additional first moment of area about a y-reference 
axis in a similar fashion. For continuous (or general) regions

where you plug in x (the perpendicular distance from the centroid of the area 
dA to the reference y-axis). Similarly, for discrete (or composite) areas

Revisiting centroid calculations 
with first moment of area
You may actually recognize the basic equations for computing the first 
moment of area that I describe in the preceding section from Chapter 4. 
And for good reason: The centroidal calculations actually use the first 
moment of area.
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 In the centroidal calculations of Chapter 4, you calculate the first moment 
of area with respect to an arbitrary reference axis (such as the bottom of 
the cross section or the left edge, depending on which centroid coordinate 
you’re computing) because at the time of those calculations you usually 
don’t know the centroid’s location yet. After all, that’s why you’re doing 
those calculations, right? Conversely, the Q that you compute in this chapter 
is always computed with respect to a centroidal axis, which requires that 
you first know the centroid’s location.

Determining Q within a cross section
To calculate the value of Q for a discrete subregion with respect to a specific 
centroidal axis, you must first establish a reference axis at the location of inter-
est (such as a specific point within a cross section) and align that reference 
axis so that it’s parallel to the centroidal axis of the cross section that you’re 
interested in. This reference axis divides the cross section into two distinct sub-
regions, one on either side of the reference axis. To compute the value of Q, you 
compute the area A

i
 of either of these two subregions (which one you choose 

doesn’t matter) and determine the perpendicular distance from the centroid of 
your selected subregion to the centroidal axis of the entire cross section.

 After I locate the centroid of the cross section (using the principles in Chapter 4), 
I often find that relocating the Cartesian reference axes to the centroid of the 
cross section is convenient. This move allows me to measure all my x and y dis-
tances directly to the centroid. However, you can always leave the reference at 
the same location; you just need to adjust the coordinates accordingly.

Consider the hollow cross section contained in the XY plane as shown in 
Figure 5-2. For this example, you first establish the Cartesian axes with the 
origin at the lower-left corner of the cross section and then compute the 
centroid of this cross-sectional area to be at Point C, which has coordinates 
of (+40,+40) with respect to the lower-left corner.

To determine Q
xx

 (or the first moment of area about the x-centroidal axis) 
for a subregion established by a reference axis through Point A in the cross 
section, just follow these steps:

 1. Locate a new Cartesian coordinate system at the centroid of the 
cross section.

 2. Establish a reference axis through the desired location and parallel 
to the centroidal axis you want to use.

  In this case, because you want the first moment of area with respect to the 
x-centroidal axis, your reference axis should be parallel to the x-centroidal 
axis (or horizontal for this example) and acting through Point A.

09_9780470942734-ch05.indd   5909_9780470942734-ch05.indd   59 6/1/11   6:29 PM6/1/11   6:29 PM



60 Part I: Setting the Stage for Mechanics of Materials 

 

Figure 5-2: 
Computing 
Qxx,A within 

a cross 
section.

 

y y

x

(c) Finding Q
xx

 from Below

AArea Below  

x-centroidal
axis

O

Area  2

C
2

A

C

C

y 
= 

40
 m

m
 

25
 m

m
 

y

x

(a) Composite Region

C

A

B

10 mm

x-centriodal axis

20 mm

20 mm 40 mm 20 mm

20 mm

y2 =
15 mm

40 mm
80 mm

80 mm

O

10 mm

x

(b) Finding Q
xx 

from Above

A

10 mm

10 mm

x-centroidal
axis

80 mm

20 mm

y1 = 30 mm

Area
1

O

A

70
 m

m
 

y 
= 

40
 m

m
 

Area Above  

C
1

 3. Compute the area and locate the centroid of one of the subregions on 
either side of the reference axis from Step 2.

  You can choose whichever subregion you want; the calculation works for 
either. Just make sure you divide the cross section at the proper location 
and with a reference axis in the correct direction (parallel to the desired 
centroidal axis). The math involved produces the same result.

  For this example, I choose the area above Point A because I’m interested 
in calculating the first moment of area about the x-axis and because (as 
shown in Figure 5-2b) it appears to be the simplest of the two areas to 
work with (it has fewer subregions, and I can easily determine the 
centroid of the shaded area).
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61 Chapter 5: Computing Moments of Area and Other Inertia Calculations

  If I had chosen the area below (shown in Figure 5-2c), my centroid calcu-
lations for the subregion would be more involved because I’d have to 
deal with multiple subregions.

 4. Compute the perpendicular distance y
i
 from the centroid of the area 

of Step 3 to the centroidal axis that you’re working with.

  In this example, you’re working with the x-centroidal axis, so you need 
to compute the y

1
 distance:

 

  which indicates that the centroid area above Point A is located +30mm 
above the x-centroidal axis of the cross section.

 5. Compute the area A
i
.

  For this example, the area A
i
 is the area A

1
 of the shaded region, which 

has an area of

 

 6. Repeat Steps 4 and 5 for any additional subregions that make up the 
shaded area for the selected subregion from Step 3.

 7. Compute the first moment of area by multiplying the results of Steps 4 
and 5 for each subregion and summing the total.

  For this example

 

Creating a table for calculating 
Q about a centroidal axis
As with the centroidal calculations of Chapter 4, establishing a table can be 
especially useful when you’re calculating the first moment of area about a 
centroidal axis.

For example, consider the section in Figure 5-2 in the preceding section. 
Suppose you’re interested in calculating the first moment of area of a sub-
region created by a vertical reference axis through Point B with respect to 
the vertical centroidal axis of the cross section (or a y-centroidal axis in this 
case). In this example, Point B is located a distance of 30 millimeters to the 
right of the left edge of the cross section. You start by choosing one of the 
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two subregions created by the reference axis — that is, either to the left or 
to the right of the point of interest (Point B). For this example, I arbitrarily 
choose the subregion to the left (as shown in Figure 5-3).

 

Figure 5-3: 
Figure for 
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Qyy,B.
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Table 5-1 looks very similar to the table for centroid calculations that I intro-
duce in Chapter 4.

Table 5-1 Table for Computing Q
yy,B

 about Centroidal Axis

Subregion x
i
 (mm) A

i
 (mm2) x

i
A

i
 (mm3)

1 30 (80)(20) = 1,600 48,000

2 15 (20)(10) =    200 3,000

3 15 (20)(10) =    200 3,000

TOTAL ---------------- ------------------- Σ = 54,000 mm3

The second column is the perpendicular distance from the centroid of each 
subregion created by the vertical reference axis to the y-centroidal axis in 
this example. If you want to calculate the first moment of area about the 
y-centroidal axis, Q

yy
, you need to use a horizontal distance (or x-distance).

 If you relocate the origin of your Cartesian coordinate system to the centroid 
of the cross section, you can use the absolute value of the x-coordinate of the 
subregion’s centroid for the values in the second column. The third column 
contains the area calculations for each subregion. The fourth column is the 
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product of the second and third columns. The final numerical value for the 
first moment of area of either of the subregions created by a vertical reference 
axis located at Point B is given by the sum total of the fourth column. (Head to 
Chapter 4 for more details on creating this kind of table.) For this example, the 
computed first moment of area at Point B about the y-centroidal axis is

 When calculating the value of the first moment of area, remember that if your 
point of interest within the cross section lies at an extreme edge of the cross 
section, the value of the first moment of area of a subregion created by a ref-
erence axis at that point, which is parallel to that edge, is always zero. This 
situation occurs because at an extreme edge, the area of one of the subregions 
created by the reference axis is equal to zero, and the perpendicular distance 
from the centroid of the other subregion to the corresponding centroidal axis is 
equal to zero, which makes Q equal zero for both cases. Just make sure you’re 
using a centroidal axis that is parallel to the edge that you’re working with.

Encore! Encore! I, a Second 
Moment of Area

One of the most important cross-sectional properties in all of engineering 
is the second moment of area (or the area moment of inertia) with respect 
to the centroidal axis of a cross section. The second moment of area is a 
calculation that you use frequently for computing deflections (displacements 
from the original positions) caused by bending moments (see Chapter 16) 
and for determining the internal effects of bending moments (see Chapter 9) 
on flexural members. It also happens to be one of the more complex section 
property calculations you can make. If you combine that with the fact that 
mechanics frequently uses several different types of area moments of iner-
tia, including basic moments of inertia, product moments of inertia, polar 
moments of inertia, and even the radius of gyration, understanding why 
so many students are frustrated by inertia calculations is easy.

You may remember from your physics class that inertia is a measure of an 
object’s resistance to change. In this book, as with most textbooks, I assign 
the variable I to the moment of inertia.

 Many areas of physics and engineering make use of the terms inertia and 
moments of inertia, so you need to be very aware of which particular iner-
tia calculation you need for a given application. In mechanics of materials, 
you’re more interested in the area moment of inertia, which is a measure of an 
object’s resistance to bending and deflection and utilizes the basic geometric 
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dimensions of a cross section as well as the location of the centroid. In dynam-
ics, moments of inertia refer to the mass moment of inertia, which relates 
rotational characteristics, mass, and an axis of rotation to the resistance of 
an object. See the nearby sidebar “Separating from Euler’s mass moment of 
inertia” for more on this difference. In this book, if you see the words moment 
of inertia, I’m actually referring to the second moment of area.

Conceptualizing on area moments of inertia
The area moment of inertia is a geometrical measure of an object’s resistance 
to bending and deflection. An object may behave differently when subjected 
to bending in one direction than it does when subjected to bending in another, 
simply due to the fact that the relevant area moments of inertia of the cross 
section may be drastically different.

 In special cases, you may be calculating the area moment of inertia about 
one reference axis, such as at the base of a cross section, before ultimately 
modifying the calculation so that the moment of inertia is referenced about 
the object’s centroidal axis. You do this modification on only the very special 
occasion that I discuss in the following section.

The beams of Figure 5-4 illustrate a simple explanation of the moment of iner-
tia’s effect on an object. Each of the beams has the same support reactions (a 
pinned support at one end and a roller support at the other) and span and is 
loaded identically at midspan. The cross section of each beam has the same 
dimensions of b x h. For one of the beams, b is the width and h is the height. 
For the other, b is the height and h is the width. The only physical difference 
between these beams is in the orientation of each beam’s cross section. In 
Figure 5-4a, the beam is oriented such that h is vertical, while in Figure 5-4b, 
the beam is oriented such that the h dimension is now horizontal.

 

Figure 5-4: 
Effect of 
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on moment 

of inertia.
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Under the shown load, when the height h is greater than the width b as 
shown in Figure 5-4a, the deflections are smaller than the same beam in 
Figure 5-4b simply because the beam of Figure 5-4a has a larger moment of 
inertia value. I show you how to actually calculate these values in the later 
section “Calculating Basic Area Moments of Inertia.” The difference in these 
deflections is a result of the effect of the area moment of inertia. Beams with 
larger moments of inertia deflect less than beams with smaller moments 
of inertia, assuming that all other parameters remain the same, of course. 
I explain more about how to actually calculate the deflections of beams in 
Chapter 16.

Categorizing area moments of inertia
Depending on the type of application you’re studying, using the proper 
moment of inertia is of crucial importance. In mechanics, you encounter sev-
eral types of area moments of inertia that I explain throughout this book:

 ✓ Basic moment of inertia: The basic moment of inertia (which is often 
simply referred to as the moment of inertia) involves calculating the 
second moment of area about a centroidal axis. If a cross section lies 
in the XY plane, the resulting basic moments of inertia are usually 
about an x- and y-centroidal axes.

Separating from Euler’s mass moment of inertia
Swiss mathematician and physicist Leonhard 
Euler first proposed the moment of inertia in his 
1730 book Theoria Motus Corporum Solidorum 
Seu Rigidorum (or Theory of the Motion of 
Solid or Rigid Bodies). He introduced the mass 
moment of inertia, which related the rotational 
acceleration characteristics of an object to its 
mass. The basic form of his equation is

  I = m · k · r2

where m represents the mass of the object, r 
is the distance between the axis and the rota-
tional mass, and k is a numeric constant that 
defines the shape that is being rotated.

In engineering mechanics, the moment of iner-
tia has a slightly different meaning (although 
the variable I is still widely used for both — 
including in this text — and many engineers 
reference this calculation as a moment of 
inertia). The difference is that in most struc-
tural objects, the mass density of the object 
is usually assumed to be constant throughout 
the member, and the geometric dimensions of 
the cross section are what affect the changes 
in this section property. The equation for the 
area moment of inertia that I discuss nearby 
actually arises because of the involvement of 
these dimensions in the derivation of the Euler-
Bernoulli beam theory.
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 ✓ Product moment of inertia: The product moment of inertia (along 
with the basic moments of inertia) helps determine the maximum and 
minimum values of second moments of area (known as the principal 
moments of inertia) for a given shape. The product moment of inertia 
becomes especially important in the study of nonsymmetric bending 
(or asymmetric bending).

 ✓ Polar moment of inertia: The polar moment of inertia is used in determin-
ing the resistance of an object to twisting moments (or torsion, the rota-
tions about a member’s longitudinal axis), which I discuss in Chapter 11.

In the remainder of this chapter, I show you how to mathematically calculate 
the different moments of areas, including tips and techniques for simplify-
ing the process. After you know how to actually compute them, I show you 
how to put them to work in specific applications starting in Part II.

Calculating Basic Area 
Moments of Inertia

In the U.S. customary units of measure, the units for the second moment of 
area are in4; in the SI system, the units are usually taken as m4. Just as with 
the first moment of area (covered earlier in the chapter), you may encounter 
cross-sectional dimensions measured in millimeters, so the appropriate units 
for the moment of inertia in this case become mm4.

Keeping inertia simple with basic 
shapes and centroidal axes
You calculate the second moments of area for a cross section with respect to 
the centroidal axes. For this section’s calculations and corresponding figures, 
I assume that the cross section lies in the Cartesian XY plane. The subscripts 
assigned to the variable I refer to the axis about which the calculation is 
being performed (as shown in Figure 5-5).

The basic equation defining the moments of inertia with respect to their 
x- and y-centroidal axes are given by the following:
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Figure 5-5: 
General 
diagram 

for second 
moment 
of area 

formulation.
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where y is the perpendicular distance from the centroid of the differential 
element dA to the x-centroidal axis of the cross-section. Similarly, x is the 
perpendicular distance from the centroid of the differential element dA to 
the y-centroidal axis of the cross section.

 I like to use a double subscript to indicate the centroidal axis about which I’m 
performing the calculation. In some textbooks and resources, you may see this 
value represented as an I

x
 with a single subscript, but I find this setup can be 

confusing because on some occasions, you may actually need to compute the 
moment of inertia about some other x-axis (such as the base of a rectangular 
cross section) that is different from the x-centroidal axis. This double subscript 
also helps distinguish these calculations from the product moment calculations 
(which have a subscript of “xy” for a cross section in the XY plane) but involves 
perpendicular distances in both the x and y directions from the centroid — 
hence the double letters. Realistically, how you label your values doesn’t 
matter as long as you compute and apply the values correctly.

 In all cases, these second moment of area calculations about their x- and 
y- reference axes always produce a positive value. However, the product 
moment I

xy 
(which I discuss later) may sometimes be negative.

Although the integral form always works, it can be a bit mathematically 
intimidating at times. For several simple shapes, you can find these evaluated 
integrals in Figure 5-6 with respect to the centroidal axes at Point C. If you 
need help locating this point, flip to Chapter 4.

 Figure 5-6 also shows the results of the product moment of inertia I
xy

, which I 
discuss in more detail in the later section “Having It Both Ways with Product 
Moments of Area.”
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Figure 5-6: 
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For simple shapes, the calculation of the second moment of area about a 
centroidal axis is actually as simple as plugging in the necessary dimen-
sions into the basic formula. Just be sure that the orientation of your region 
matches the orientation of the region in the table.

One particular set of axes that are especially important when it comes to cal-
culating second moments of area are the centroidal axes. At these locations, 
the smallest values for the second moment of area occur.

If you have multiple shapes that share a common centroidal axis, you can 
compute the moment of inertia with respect to that centroidal axis by simply 
adding the inertia values of each of the regions together. When you encoun-
ter a shape that has a hole or opening that shares the centroid of the solid 
object (such as in Figure 5-7), you subtract the inertia value of the hole from 
the region around it.

 For cases where a hole or opening does not share the same centroidal axes, 
such as the subregion that contains the hole or opening, you need to perform 
an additional calculation as I show in “Transferring reference locations with 
the parallel axis theorem” later in this chapter.

 

Figure 5-7: 
Computing 

moment 
of inertia 

values for 
composite 

regions.
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Figure 5-7 shows a composite region consisting of a rectangle with a centroid 
located at Point C1 and a hole with radius r with a centroid located at Point C2. 
The composite centroid is located at Point C (which is different from the 
centroids of the subregions). Although the x-centroidal axis for the each of 
the regions is different, they all share a common y-centroidal axis (which 
passes through Point C, Point C1, and Point C2). Thus, you can compute the 
moment of inertia about the y-centroidal axis (I

yy
) by simply summing the 

individual moments of inertia with respect to the y-centroidal axis as follows:
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 For the moment of inertia about the y-axis, you can simply add the two regions 
because they share the same centroidal y-axis. In this equation, the moment of 
inertia of the hole counts as a negative value because it’s being subtracted 
from the solid region.

 However, for the moment of inertia I
xx

 about the x-axis (for the composite 
region), you can’t do this addition because the x

1
-centroidal axis and the x

2
-

centroidal axis aren’t the same as the centroidal x-axis for the combined region.

 You can only add or subtract inertia calculations about a specific centroidal 
axis if they both share that same centroidal axis. If the centroidal axis is differ-
ent for the shapes, you have to transfer the reference locations as I describe in 
the following section.

Transferring reference locations 
with the parallel axis theorem
The basic computations of simple shapes such as rectangles, circles, and tri-
angles are fairly easy to calculate with respect to the shapes’ own centroidal 
axes. Simply look up the value in a table (or perform the basic integration), and 
you’re all set.

But what happens when one of these simple shapes is part of a bigger dis-
crete (or composite) shape that has a different centroidal axis than the basic 
element? In this situation, you can use a basic transfer formula known as the 
parallel axis theorem (or Steiner’s rule).

The parallel axis theorem takes the area moment of inertia about an object’s 
own centroidal axis and allows you to determine the equivalent area moment 
of inertia about another axis (such as a centroidal axis of a combined region). 
The basic equation for moment of area from the parallel axis theorem is 
given as follows:

where I
O
 is the area moment of inertia of a region about its own centroidal axis; 

A is the area of the region for which I
O
 was computed; and d is the perpendicu-

lar distance from the centroidal axis of A to the new parallel axis location.

Suppose you want to find the area moment of inertia about the x-centroidal 
axis I

xx
 for the cross section of Figure 5-8. 
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Figure 5-8: 
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I have also divided the region into three subregions, Area 1, Area 2, and 
Area 3 as shown in Figure 5-9.

As with centroid calculations (see Chapter 4) and first moment of area cal-
culations (which I discuss earlier in this chapter), you can greatly simplify 
your work when you perform calculations with the parallel axis theorem by 
making a table such as the one in Table 5-2 and following a few simple steps.

 

Figure 5-9: 
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Table 5-2 Table for computing I
xx

 about Centroidal Axis

Region I
O,xx

 (in4) A
i
 (in2) d

y,i
 (in) I

O,xx
+A

i
 (d

y,i
)2 (in4)

1 (upper 
rectangle)

6.00 +5.50 0.50 + 6.00(5.50)2 = 
182.00

2 (middle 
rectangle)

10.00 0 83.33 + 10.00(0)2= 
83.33

3 (bottom 
rectangle)

6.00 –5.50 0.50 + 6.00(–5.50)2 = 
182.00

TOTAL ------ ----- ------ Σ = 447.33

 1. Locate a new Cartesian coordinate system at the centroid (Point C) of 
the cross section.

 2. For each subregion, determine the area moment of inertia I
O,xx

 about 
its own x-centroidal axis and record this value in the second column.

  For Region 1, the area moment of inertia I
O1

 as shown in Figure 5-9 for a 
rectangular region about its own x-centroidal axis is given as

 

  Even though all the subregions of this example are discrete regions that 
are shown in Figure 5-6, you can just as easily include a more 
general region as one of the subregions in this table.

 3. Compute the area A
i
 for each subregion and record this value in the 

third column of the table.

  For Region 1, the area of the region is given as

 A
1
 = (6 in)(1 in) = 6.00 in2

 4. Determine the perpendicular distance d
i
 from the centroid of the area 

to the x-centroidal axis of the composite cross section and record this 
value in the fourth column.

  Because you’re working with the x-centroidal axis in this example, you 
must use the y-distance in your calculation.

 d
y,1

 = +5.50 in

  Note that for Region 2, this distance is actually 0.0 because the centroid 
of Region 2 is the same as the centroid of the combined region.
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 5. Complete the calculation by using the parallel axis theorem and 
record this value in the fifth column.

  For Region 1, you can compute the moment of inertia with respect to the 
centroid of the combined cross-section I

xx,1
 as follows:

 I
xx,1

 = I
O,xx,1

 + A
1
(d

y,1
)2 = (0.50 in4) + (6.00 in2)(5.50 in) 2 = 182.00 in4

 6. Repeat Steps 2 through 5 for each subregion.

 7. Sum the total of all values in the fifth column to compute the total 
area moment of inertia I

xx
 for the composite cross section with respect 

to its own centroidal axis.

 

 As the subtotals in the fifth column of Table 5-2 indicate, despite the fact that 
Region A

2
 had the largest area, it didn’t contribute as much to the total inertia 

of the cross section as the other two subregions did because this region’s cen-
troid location was the same as the centroid of the combined cross section 
(making the d

y,2
 = 0). This result actually illustrates why many common struc-

ture shapes utilize flanged members. By putting the same area at a larger dis-
tance from the centroid, you can get a significant increase in the moment of 
inertia, even for a very small area.

 You can add as many subregions to your table as you need. In fact, you can also 
add additional general subregions for each of the discrete regions included in 
the same parallel-axis table. Just remember that for every subregion, you need 
three important pieces of information: the subregion’s area, the subregion’s 
area moment of inertia about its own centroidal axis, and the perpendicular 
distance to the desired centroidal axis of the composite section.

Having It Both Ways with 
Product Moments of Area

The product moment of inertia (sometimes referred to as the mixed second moment 
of area) is another area moment of inertia calculation that is necessary for calculat-
ing the internal effects of bending moments for nonsymmetrical sections and is 
also used to compute the maximum or minimum moments of inertia as well.

The product moment of inertia has the same units as the basic area moment 
of inertia calculations (see “Calculating Basic Area Moments of Inertia” earlier 
in the chapter): in4 for U.S. customary units and m4 or mm4 for SI units.
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The sign convention for calculating the product moment is fairly normal as well. 
In this text, I assume positive x is to the right and positive y is upward. Where 
this section property differs from the others is that the product moment of 
inertia can actually have a negative value; the other area moments of inertia 
are always positive.

Including x- and y-axes for product 
moment calculations
The basic formula for the product moment appears very similar to the area 
moment of inertia calculations as shown in the following equation:

where dA is a differential area within a region, x is the perpendicular distance from 
the centroid of dA to the y-centroidal axis, and y is the perpendicular distance 
from the centroid of dA to the x-centroidal axis. Figure 5-6 earlier in this chapter 
shows the results of evaluating this integral for several simple cross sections.

 The basic computations for most area moments of inertia utilize either 
an x-centroid distance or a y-centroid dimension but not both at the same 
time. The product moment of inertia, on the other hand, does deal with 
both simultaneously.

As with the basic moment of area computations, product moments of inertia 
can also be calculated with a parallel axis theorem:

where I
O,xy

 is the product moment of the subregion about its own centroidal 
axis; A is the area of the region; d

x
 is the x-distance from the centroid of the 

subregion to the centroid of the composite region; and d
y
 is the y-distance 

from the centroid of the subregion to the centroid of the composite region.

 This calculation is almost identical to the parallel axis theorem for the basic 
moment of inertia I discuss earlier in this chapter. However, you must be care-
ful about the signs associated with d

x
 and d

y
 in this formula because I

xy
 can 

actually be a negative value.

Computing the product moment of area
For general regions, the integrals can become rather complex because of the 
presence of both centroid variables (x and y). As with many calculations, creating 
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a simple table makes the computations much easier. Table 5-3 helps you figure 
the product moment of inertia for Figure 5-8 earlier in the chapter by using the 
parallel axis theorem for product moments.

Table 5-3 Table for Computing I
xy

 about Centroid

Region I
O,xy

 (in4) A
i
 (in2) d

x,i
 (in) d

y,i
 (in) I

O,xy
+A

i
(d

x,i
)(d

y,i
) (in4)

1 (upper 
rectangle)

0 6.00 –2.50 +5.50 0 + (6)( –2.50)(+5.50) = 
–82.50

2 (middle 
rectangle)

0 10.00 0 0 0 + (10)(0)(0) = 0.00

3 (bottom 
rectangle)

0 6.00 +2.50 –5.50 0 + (6)(+2.50)( –5.50) = 
–82.50

TOTAL ------ ----- ------ Σ = –165.00

The following steps help you do the math:

 1. Locate a new Cartesian coordinate system at the centroid of the 
cross section.

 2. For each subregion, determine the product moment of inertia, I
O,xy

 
about its own centroid and record this value in the second column.

  For the three subregions of this example, all three shapes are symmetrical, 
which means that the product moment of inertia with respect to their 
individual centroids is automatically zero for all three shapes. If the subre-
gions weren’t symmetrical, you’d need to include the appropriate calcula-
tion based on the formulas from Figure 5-6 earlier in the chapter.

 3. For each subregion, compute the area A
i
 and record this value in the 

third column.

 4. In the fourth column, record the x-distance, d
x,i

 from the centroid of 
each subregion to the centroid of the composite shape.

  If the centroid of the region is to the left of the centroid of the composite 
shape, this distance is negative. Conversely, if the centroid of the region is 
to the right of the centroid of the composite shape, this distance is positive.

For Region 1, 

  Be very careful that you get the sign of the x-distance correct because 
it has a big influence on your final computation value of the product 
moment of area.

 5. In the fifth column, record the y-distance d
y,i

 from the centroid of each 
subregion to the centroid of the composite shape.
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  If the centroid of the region is above the centroid of the composite 
shape, this distance is positive. But if the centroid of the region is below 
the centroid of the composite shape, the distance is negative. For Region 1, 

. Like in Step 4, make sure you use the correct sign.

 6. Compute the product moment of the subregion about the centroid of 
the composite region by using the parallel-axis theorem for product 
moments and record this in the sixth column.

  For Region 1,

 I
xy,1 = I

O,xy,1 + A
1
(d

x,1)(dy,1) = 0 + (6.00 in2)(–2.50 in)(+5.50 in) = –82.50 in4

 7. Compute the total product moment by summing the values of the 
sixth column.

  The final computed value gives you the product moment of area for the 
combined cross section.

 

Putting a Twist on Polar 
Moments of Inertia

The polar moment of inertia is another of the second moments of area that 
you use in mechanics of materials. The polar moment of inertia is a measure 
of an object’s resistance to twisting phenomenon and is important in calcula-
tions involving torsional moments (moments acting about a longitudinal axis; 
see Chapter 11 for more).

 For most structural shapes, you typically compute the polar moment of inertia 
about a specific (and easily defined) longitudinal axis. That is, for a cross sec-
tion in the XY plane, the polar moment is acting about the longitudinal or z-axis. 
In these cases, I refer to the polar moment as a second moment of area with the 
subscripts describing the axis about which I’ve calculated it — in this case, I

zz
.

The basic formula for the polar moment about a longitudinal z-axis is given 
by the following equations:

where dA is the incremental area and r2 = x2 + y2 as shown in Figure 5-10.
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Figure 5-10: 
The polar 

moment of 
inertia.

 

y

xC

General
region

Differential
area
dA

yr

x

As with all other second moment of area section properties, the units for the 
polar moment are in4 for U.S. customary units and m4 or mm4 for SI units.

For a solid circular region having a radius c, you can compute the polar 
moment of inertia as follows:

And for a concentrically hollow circular shape (such as a pipe) with outer 
radius c

OUT
 and an inner radius c

IN
, you can compute the polar moment of 

inertia by computing the moment of inertia of a solid shaft with radius c
OUT

 
and subtracting the polar moment of inertia of the hollow portion having a 
radius c

OUT
:

 Many textbooks express the polar moment of inertia with the variable J, 
which can be confused with another section property known as the torsion 
constant. In circular cross sections, J = I

POLAR
 = I

zz
. However, J is not the same 

as the polar moment of inertia for non-circular cross sections; in fact, that 
property can be vastly different, so be mindful of this common, albeit trou-
blesome, substitution that you may come across. I explain more about the 
torsion constant in Chapter 11.

 You can add and subtract regions as long as the polar axis (which is in the 
z-direction for this example) is the same for all regions.

Fortunately, computing the polar moment of inertia for more-complex shapes 
is fairly simple because of a simplification known as the perpendicular axis 
theorem. For a region contained in the Cartesian XY plane, you can rewrite 
the polar moment of inertia about the z-axis as
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I
POLAR

 = I
zz

 = I
xx

 + I
yy

where I
xx

 is the second moment of area with respect to the x-centroidal axis and 
I
yy

 is the second moment of area with respect to the y-centroidal axis. With this 
simplification, the polar moment is now a function of two other second moment 
of area calculations that are often either already known or easily computed.

Just as with the basic moment of inertia (which I cover earlier in the chap-
ter), you can subtract polar moments of negative subregions and holes if 
they share a common axis, which for polar moments must be the longitudi-
nal axis. As with other area moment of inertia calculations, you can transfer 
reference locations of polar moments of inertia with a modified form of the 
parallel axis theorem:

I
POLAR

 = I
zz

 = I
zz,O

 + Ar2

where I
zz,O

 is the polar moment of inertia of the region about its own centroi-
dal axis A; is the area of the region; and r is the linear distance (not neces-
sarily parallel to the x- or y-axes) between the centroid of the region and the 
centroid of the composite section.

 You may notice that this expression looks very familiar to the parallel axis the-
orem in its basic form (see “Transferring reference locations with the parallel 
axis theorem” earlier in the chapter). You start with a moment of area about a 
centroid of a subregion, and you can transfer its location by incorporating the 
area of the subregion and its distance from the new location. It’s just a matter 
now of figuring out which distances you need for your calculations.

Computing Principal Moments of Inertia
For unsymmetrical shapes, another tremendously important moment of area 
exists. In your mechanics calculations, you need to be able to determine the 
maximum and minimum values (known as the principal moments of inertia) 
and the orientation angle (known as the principal angles) at which they occur 
within the cross section. You compute these principal moments of inertia 
from both the basic moment of inertia and the product moment of inertia for 
a cross section. You use the principal moments of area to study the effects 
of a cross section under combined bending.

For a symmetrical cross section, the principal moments of inertia about 
the centroidal axes are often the same as the basic moments of inertia that 
I show you how to compute earlier in the chapter. They also occur at the 
same orientation. However, for unsymmetrical cross sections, the principal 
moments don’t occur at the same orientation.
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Calculating principal moments of inertia
To calculate the principal moments of inertia, I

p1
 and I

p2
, you use the 

following equation:

One of these values is the maximum principal moment of inertia, and the 
other is the minimum principal moment of inertia. The larger value of I

p1
 and 

I
p2

 determines an orientation known as the strong axis, which indicates that 
an object is more resistant to loads in one direction than another. Likewise, 
the smaller of I

p1
 and I

p2
 refers to an orientation known as the weak axis. The 

weak and strong axes are always orthogonal (or perpendicular). I explain how 
you determine which is which in the following section.

Consider the example shape shown in Figure 5-8 earlier in the chapter. Earlier 
sections show you how to determine two of the necessary values that you 
need to compute the principal values: I

xx
 = 447.33 in4 and I

xy
 = –165.00 in4. 

(Tables 5-2 and 5-3 show you these values, respectively.) You can calculate 
the second moment of area about the y-centroidal axis similarly, but for now, 
I can tell you that I

yy
 = 111.83 in4.

Plug those numbers into the corresponding parts of the principal moments 
equation to get the following:

Thus, to determine the principal moments of area,

Finding the principal orientation angles
The final step is to determine the principal angles associated with these 
principal values. You can calculate one of the principal angles, θ

p
, from the 

following relationship:
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To compute the principal orientation angles for Figure 5-8 earlier in the 
chapter, you use the following math:

Note that within the range of 0 < 2θ
p
 < 360°, two values of 2θ

p
 actually satisfy 

the requirement of tan–1(0.984). The first value (the one that I calculate in the 
preceding equation) is 44.54°. The second value occurs exactly 180° from that 
value or at 2θ

p
 = 224.54°.

 Remember that the two expressions are based on 2θ
p
, so you must divide your 

angles from these formulas by 2!

 You typically don’t report the angle as a number larger than 360°. When this 
situation happens, recognize that 360° occurs at the same orientation as 0°, so 
you can start recounting after you pass 360° when the numbers get too large.

Determining moments of area at 
specific orientation angles
After you find the angles of orientation (see the preceding section), you 
need to know which angle goes with which principal moment of inertia. To 
determine which angle goes with which principal value, you use the following 
transformation equation:

where I
xx

, I
yy

, and I
xy

 are the moments of area of the objects based on their 
centroidal Cartesian axes (in the x- and y-directions). The angle θ is the ori-
entation of a new Cartesian axis (labeled as the x1 axis) with respect to the 
original x-Cartesian axes. A new y1 axis is oriented 90° from the new x1 axis, 
or the same angle θ from the original y-axis.
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For the previous example, you simply plug in your known values of I
xx

, I
yy

, and 
I
xy

. Finally, choose one of the two principal angles (it doesn’t matter which), 
and compute the corresponding moment of area at that orientation.

This result indicates that I
p1

 at an angle of 22.27° from the original orientation 
corresponds to the maximum principal value (or the strong axis value). You 
can also verify that at an angle of 112.27° is where the minimum principal 
moment value I

p2
 = 44.28 in4 (or the weak axis) occurs.

Figure 5-11 shows the orientation of the strong and weak axes with respect to 
their original x- and y- axes based on these principal angle calculations.

 

Figure 5-11: 
Strong and 
weak axes 

orientation.

 

y

xC

y1 (weak axis)

x1 (strong axis)

22.27˚

22.27˚

You can also compute the product moment at any given axis orientation I
x1y1

 
with its own transformation equation.

 You can make an interesting observation if you plug a principal angle into the 
previous transformed product moment equation:

As you can see, the corresponding product moment at a principal angle is 
exactly zero. That is, if you’re working with principal moments of inertia, the 
corresponding product moment is always zero. This tidbit proves especially 
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useful when you recognize that the moments of inertia that you calculate about 
a centroidal axis of symmetry are automatically principal moments of inertia.

Rounding Up the Radius of Gyration
The radius of gyration (sometimes called the gyradius) is a derived section 
property based on the second moment of area (or area moment of inertia) 
and the cross-sectional area. The radius of gyration is a section property that 
describes the distribution of a cross-sectional area about its own centroidal 
axis. You use it frequently in the analysis of columns (or members subjected 
to compression), which I describe in Chapter 18. Its units are units of length: 
inches for U.S. customary units and meters for SI units. As with other SI units 
in this chapter, you may encounter the radius of gyration in millimeters.

You can compute r
x
, the radius of gyration with respect to the x-centroidal 

axis and r
y
, the radius of gyration with respect to the y-centroidal axis, from 

the following relationships:

where I
xx

 is the second moment of area about the x-centroidal axis; I
yy

 is 
the second moment of area about the y-centroidal axis; and A is the cross-
sectional area. Because this chapter and Chapter 4 already show you how to 
determine I and A, I haven’t included the math here. A smaller area located 
at a large distance can have the same I

yy value as a larger area located at a 
small distance. Despite having the same moment of inertia, these two regions 
behave extremely differently under certain load conditions such as compres-
sion and buckling in columns (which I discuss in Chapter 18). The radius of 
gyration is a section property that takes this consideration into effect.

 The base units of I
xx

 and I
yy

 must match the units associated with the cross-
sectional area A. For SI units, if the area is expressed in mm2, you must make 
sure that you express the second moment of area in mm4 in order for the units 
to cancel out. This fact is especially important with U.S. customary units when 
one value may be expressed in feet and others are expressed in inches.
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Analyzing Stress

10_9780470942734-pp02.indd   8310_9780470942734-pp02.indd   83 6/1/11   6:29 PM6/1/11   6:29 PM



In this part . . .

Stresses are one of the fundamentals of mechanics of 
materials because they relate internal forces to 

specific section properties. I start this section by describing 
the basic categories of stress and then show you how to 
determine the maximum and minimum values (known as 
principal stresses) and their orientation angles through 
several basic transformation techniques. I conclude the 
part by demonstrating how to calculate stresses for 
different load types, including axial forces, bending 
moments, shear forces, and torsional moments.
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Chapter 6

Remain Calm, It’s Only Stress!
In This Chapter
▶ Defining the basics of stress

▶ Computing average stresses

▶ Grasping stress’s units

▶ Working with stresses at a point

▶ Understanding assumptions about plane stress problems

In the “old days,” engineers used a trial-and-error approach or relied on 
previous experience. But you don’t really want to build a bridge and load 

it until it fails just to find out how much it could carry before you broke it. 
That proposition sounds expensive (not to mention potentially dangerous)! 
So how do you actually determine whether a particular object made from a 
particular material can carry a particular load? A more scientific approach 
involves calculating the actual intensity of the force (known as stress) on an 
object and then comparing this stress to the intensity of a force that a mate-
rial is capable of withstanding before it fails. With that information, you can 
begin predicting the most-critically stressed location in a particular object, 
which is a fundamental design skill for engineers.

In this chapter, I introduce the basic concept of stress because the intensity 
of a force affects different types of objects in different ways. I start the expla-
nation with the simplest of stress calculations: average stresses. You can 
then use these average stresses to develop a general relationship about the 
state of stress at a particular point. Finally, I introduce the concept of plane 
stress, which is a significant assumption in the formulation of many of the 
equations and design relationships in Part III.

Dealing with a Stressful Relationship
In psychological terms, stress is defined as a mental response to external 
stimuli. To most people, stress is what they feel when they get stuck in traf-
fic or their bosses start piling on the work. But to engineers, stress has a 
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significantly different meaning. In mechanics of deformable bodies, stress is a 
measure of the effect of loads on an object; more specifically, it’s a measure 
of the intensity of an internal force or moment.

Unfortunately you can’t actually see a stress, and experimentally measuring it 
is no real picnic either — in fact, doing so is downright impossible. However, 
you can see the resulting effect of stress. When an object becomes stressed, 
it may change shape or break, depending on the magnitude of stress on the 
object and the material the object is made from. Most commonly, deformable 
objects experience deformation (which is why they’re called deformable). 
Fortunately, these deformations are often measureable, and you can use 
them to compute corresponding stresses (as I show in Chapter 14).

Calculating stress
Simply put, the basic relationship for stress can be expressed as

To calculate a stress, you need two pieces of information: internal loads and 
section properties.

 ✓ Internal loads: As you learned in statics (and I discuss in Chapter 3), inter-
nal loads come in the form of axial forces, shear forces, and moments, and 
they are created in response to the external applied loads on an object. 
Internal loads can vary in type, magnitude, and direction within an object, 
and they can cause two different types of stress, both of which I define in 
the following section.

  The kind of internal load you need in order to compute this calcula-
tion actually depends on the type of stress you want to calculate (as I 
explain later in this chapter). You also encounter many situations where 
more than one of these internal loads can occur at the same time. (Don’t 
sweat it here; I show you how to handle these combined problems in 
Chapter 15). Just remember that in order to calculate the magnitude of 
a stress in an object, you must first determine these internal loads.

 ✓ Section properties: As with the internal loads, the section property (such 
as the area, first moment of area, or moment of inertia) that you need 
to use depends entirely on which type of stress you’re working with. 
For example, an average normal stress (which I discuss in “Remaining 
Steady with Average Stress” later in the chapter) requires the cross-
sectional area, while bending and torsion require one of the moments 
of inertia as well as the position within a given cross-section. Flip to 
Chapters 4 and 5 for more on calculating these section properties. Some 
other stresses require additional section properties from those already 
listed here, which I explain on a case-by-case basis as they appear.
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The major issue you encounter when performing stress calculations, how-
ever, is “Which internal load do I need? And which section property do I 
use?” If you can answer these two basic questions, you’re well on your way 
to dealing with stresses.

 When calculating stresses, you must make sure that you use the appropriate 
internal load with the correct section property. If you accidentally use the 
wrong internal load or section property, your calculations are doomed!

Defining the types of stress
In mechanics, stresses can be classified into one of two major types: normal 
stress and shear stress. The simplest of these stresses are the average 
normal stress and the average shear stress, which represent a constant 
and uniform (or average) stress intensity over a given region.

Average normal stress
An average normal stress is an average stress that results from a force com-
ponent F

INT
, which is acting normal (or perpendicular) to a cross section 

as shown in Figure 6-1. The force must be a component force (or a part of a 
bigger force that acts in a particular direction) that is measured parallel to 
a longitudinal axis. In most texts, the lowercase Greek symbol sigma, or σ, 
indicates the normal stress. Normal stresses can be either tensile (causing 
elongation) or compressive (causing shortening).

 Although bending moments can also cause normal stresses, normal stresses 
from bending are never constant and uniform along a cross section and thus 
aren’t average normal stresses. Average normal stresses are the result of axial 
load effects, which I discuss in Chapter 8.

 

Figure 6-1: 
Normal 

stress 
defined.

 Applied Axial Force Average Normal Stress

Internal
axial force,
FINT

External
applied force,
FEXT

Average normal stress, σAVG

Plane of cross section

FEXT

Average shear stress
An average shear stress is an average stress that results from a force compo-
nent V that’s acting parallel to (or shearing) a cross section. The force must 
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be a component force lying in the plane of the cross-sectional area. In most 
texts, the lowercase Greek symbol tau, or τ, indicates the shear stress. 
(Refer to Figure 6-2.)

 Torsional moments and flexural loads can also cause shear stresses, but shear 
stresses from these sources are never constant and uniform along a cross sec-
tion. For that reason, they aren’t considered average shear stresses. Average 
shear stresses result from direct shear load effects (flip to Chapter 10).

 

Figure 6-2: 
Shear stress 

defined.
 Applied Shear Force Average Shear Stress

Internal
shear
force,
VINT

External
applied
shear
force,
VEXT

Plane of cross section

Average
shear
stress,
τAVG

VEXT

Understanding the units of stress
As with any calculation, you always need to be mindful of what units you’re 
working with when you’re dealing with stress. The units of stress are force 
per area measurements. In U.S. customary units, the units of stress are 
pounds per square inch (lbs/in2), which is often abbreviated psi. You also 
commonly see stress expressed as ksi, which is short for kip per square 
inch. You may recall that 1 kip equals 1,000 pounds, so 1 kip per square inch 
equals 1,000 pounds per square inch. You can use either ksi or psi as long 
as you’re consistent with your units. In SI units, stress is often measured in 
meganewton (or 1.0 x 106 Newton) per square meter (MN/m2), which is actu-
ally a megapascal (or MPa for short).

 SI units can sometimes actually present a bit of a dilemma. In engineering, 
most objects that you encounter aren’t measured on cross sections that are 
accurately measured in square meters. In fact, most practical engineering 
examples that use SI units are usually measured in centimeters or millimeters, 
so you often have to make a few unit conversions along the way when you’re 
working with SI units.

Remaining Steady with Average Stress
The first type of stress that you encounter in the world of mechanics of mate-
rials is the average stress. As I note earlier in the chapter, the average stress 
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takes the entire force on a cross section and distributes it evenly across the 
entire cross-sectional area. Basically, you’re taking an average value of the 
force over the entire cross section. Average stresses are pretty straightfor-
ward to calculate. The only real trick is determining the cross-sectional area 
and choosing the appropriate internal force to use in the equation. The fol-
lowing sections dive into the details of working with average stress.

Computing average normal 
stress for axial loads
The average normal stress is most commonly computed for members sub-
jected to axial tension or compression (both of which are axial forces). The 
average normal stress for a bar subjected to simple axial tension or axial 
compression (such as the one shown in Figure 6-1) is computed as

where F
INT

 is the magnitude of the internal force acting normal to the cross-
sectional area as determined from statics, and A is the calculated cross-
sectional area on which the internal force F

INT
 is acting. In these calculations, 

a tensile force is a positive F
INT

, and a compressive force is a negative F
INT

.

 This calculation results in an even (or uniform) distribution of stress over the 
entire region. However, this equation works only as long as the internal force 
is both acting at the centroid of the cross section and oriented in a direction 
that’s normal to the cross-sectional area.

Consider a round bar with a diameter of 100 millimeters and subjected to an 
axial tension of 30 kilo-Newton as shown in Figure 6-3a.

 

Figure 6-3: 
Average 

normal 
stress 

example.
 (a) Real System 1(b) F.B.D. at Location

30 kN30 kN

Diameter
100 mm

30 kNFINT

1Location

 1. Determine the internal axial force F
INT

 acting on the cross section 
of interest. 

  You find F
INT

 by slicing the bar at the cross section of interest and apply-
ing the equations of equilibrium as I show in Chapter 3. From statics, 
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you can find that the internal axial force on the bar of this example is 
30 kilo-Newton acting on the shaded cross section.

 2. Compute the cross-sectional area on which the force F
INT

 is acting. 

  The cross-sectional area for this example is the shaded region shown in 
Figure 6-3b. You compute the area of the round bar as follows:

 

 3. Compute the average normal stress on the cross section. 

  To calculate the average stress, you simply use the basic formula earlier 
in this section. Remember that the cross-sectional area that you com-
puted in the previous step was measured in millimeters, so you need to 
convert those units to meters:

 

Determining average shear stress
The average shear stress, τ

AVG
, is another stress you encounter regularly, 

usually when a shear force is acting on a relatively small cross-sectional 
area, such as a bolt, pin, or other thin object. You compute the average shear 
stress acting on cross-sectional area A due to an internal shear force V

INT
 as

Just as with the average normal stress calculations earlier in the chapter, 
you compute the cross-sectional area at the location of interest and deter-
mine the internal shear force V

INT
 acting on that cross section. Beyond that, 

the average shear stress calculations should look very familiar to the average 
normal stress calculations. The only real difference is that for average shear 
stress, the internal force is now a force acting within the plane of the cross 
section instead of perpendicularly.

Consider the 20-millimeter (or 0.02 meter) diameter shaft subjected to the 
200-Newton applied external loads shown in Figure 6-4a. Because these two 
applied loads are acting in opposite directions, they create a shear effect 
across the shaft (such as at Location 4).
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Figure 6-4: 
Average 

shear stress 
example.

 

Longitudinal
axis

Cross-sectional
area, A

VINT = 200 N

Diameter
20 mm

4(a) Shaft Subjected 
to Single Shear

(b) F.B.D. at Location

200  N 200 N

200 N

Location 4

Don’t (normal) stress bending stress calculations
Unlike the average normal stresses at all 
points on the cross section produced by axial 
load, the normal stresses caused by a bending 
moment (see Chapter 9) vary from one posi-
tion in the cross section to another in a direc-
tion that is normal (or perpendicular) to the 
cross section.That’s why they’re classified as 

normal stresses. However, normal stresses 
due to bending often actually change signs as 
well, meaning that at one edge of the member 
(such as the top edge in this figure), the normal 
stresses can be compressive (or negative) and 
at the opposite edge (the figure’s bottom), they 
can be tensile (or positive).

Applied Bending Moment Normal Stress

Internal
moment

Applied
moment

Plane of cross section

MINT MEXT
MEXT

σTOP

σBOT
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Follow these steps to calculate average shear stress:

 1. Determine the magnitude of the internal shear force V
INT

 acting in the 
plane of the cross section.

  By slicing the shaft at Location 4 (see Figure 6-4b) and examining the 
free-body diagram, you can compute the internal shear force from 
equilibrium as

 

 2. Calculate the gross cross-sectional area on which the internal shear 
force is acting.

  Cylindrical shafts have a circular cross section when a plane is oriented 
perpendicularly to the longitudinal axis (as in this example). Use the 
following formula to calculate that cross section:

 

 3. Compute the average shear stress at the point of interest.

  In this case, you want the average shear stress across the shaft at 
Location 4. Here’s the calculation:

 

Developing Stress at a Point
Although using the average stress is acceptable in certain applications 
(such as the ones I describe earlier in this chapter), many times you must 
be able to determine stresses acting on a single point. The following 
sections show you how.

Deriving stresses at a single point 
by using force components
To determine the internal forces acting at a single point (such as Point 1 in 
Figure 6-5), you need to cut the object with the three Cartesian cutting planes 
(XY, YZ, and XZ) to identify all the force components acting in that direction. 
For the x-direction, simply slice the three-dimensional object with a 
YZ cutting plane.
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Figure 6-5: 
Force 

components 
at a point.

 

XY Cutting
plane

(d) Acting on z-Plane

dFzy

dFzx

dFzz

1

(a) General Object

y

x

z

1

P3

P2

P1

dFxx

dFxz

XZ Cutting
plane

Area, dA

dFxy

(b) Acting on x-Plane

1

(c) Acting on y-Plane

dFyy

YZ Cutting
plane

1

dFyx

dFyz

P2

P1

P1

P3

y

x

z

y

x

z

y

x

z

Next, you can determine the internal forces acting in each of the Cartesian x-, 
y-, and z-directions from the equilibrium equations of statics (turn to 
Chapter 3 if you need a quick reminder).

Labeling force components and stresses at single points
 Try this simple sign convention to help you keep the labeling straight during 

your derivation. For an arbitrary incremental force dF, I like to add a set of 
subscripts to help remind me of the directions and planes that I’m dealing 
with: dF

ij
, where i represents the orientation of the cutting plane that the inter-

nal force component is acting upon (such as the x-, y-, and z-cutting plane), 
and j represents the direction of the internal force component (in the x-, y-, 
and z-directions).

Exposing force components and stresses with Cartesian planes
For the x-cutting plane, you express the incremental forces acting on a dif-
ferential area dA

x
 at Point 1 as dF

xx
, which is acting in the +x-direction. Notice 

that the force dF
xx

 is acting perpendicular to the differential area, so this 
force component creates a normal stress. Conversely, dF

xy
, which is acting in 

the +y-direction, and dF
xz

, which is acting in the +z-direction, are acting in the 
x-plane of the differential area, which means that these two forces create an 
average shear stress on this area.
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94 Part II: Analyzing Stress 

Rearranging the basic formula for average normal and shear stress, you can 
now compute the state of stress acting on the incremental area dA

x
 for the 

x-cutting plane (shown in Figure 6-5b):

dF
xx

 = σ
xx

 · dA
x
 dF

xy
 = τ 

xy
 · dA

x
 dF

xz
 = τ 

xz
 · dA

x

Repeating this process for a y-cutting plane (which is the XZ plane) on the 
same object as shown in Figure 6-5c, you can determine the stress compo-
nents that are acting on that plane as well:

dF
yx

 = τ
yx

 · dA
y
 dF

yy
 = σ

yy
 · dA

y
 dF

yz
 = τ

yz
 · dA

y

And finally, for a z-cutting plane (which is the XY plane) as shown in Figure 6-5d, 
you can relate the incremental forces to the average stresses as

dF
zx

 = τ
zx

 · dA
z
 dF

zy
 = τ

zy
 · dA

z
 dF

zz
 = σ

zz
 · dA

z

From this derivation, you can see that to fully define the state of stress at 
a single point in three dimensions, you must define a total of nine different 
stress components, which I show in Figure 6-6. You need information about 
three normal stresses and six shear stresses.

 Figure 6-6 shows only the stresses acting on the faces in the positive edges 
of the element. However, for this element to be in equilibrium, another set 
of stresses is actually acting on the negative face of the element. These addi-
tional stresses have the same magnitude but opposite sense and direction in 
order to balance the stresses of the positive face shown.

With a few basic assumptions and equilibrium requirements from statics, you 
can simplify this process even further, as I show in the following section.

 

Figure 6-6: 
General 
state of 

stress at 
a point.
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95 Chapter 6: Remain Calm, It’s Only Stress!

Looking at useful shear stress 
identities for stress at a point
To help simplify your gathering of the nine pieces of info you need to define 
stresses at a single point (see the preceding section), consider a small cube 
element within the object, having dimensions of Δx, Δy, and Δz as shown in 
Figure 6-7. For the stress element, I define the positive faces as follows:

 ✓ XY plane in the front face of the cube

 ✓ XZ plane on the top face of the cube

 ✓ YZ plane on the right side of the cube

I’ve indicated these faces on the cube of Figure 6-7a with the + sign.

If you look at just the XY plane (or the front face of the element) and superim-
pose the stresses of Figure 6-6, you notice that the element is actually unbal-
anced as shown in Figure 6-7b. (Note: I’ve neglected the z-direction stresses 
because they’re out of the plane of the element.)

To balance this element (shown in Figure 6-7c), you actually need to include 
additional forces on the left and bottom edges. If you pull the element on the 
right edge with a force component of F

xx
 = σ

xx
A

x
, you need an equivalent force 

component pulling on the left edge to balance the element. If the area A
x
 has 

the same dimensions, the stress σ
xx

 must be the same magnitude on the left 
side. Repeating this process for τ

xy
 acting upward on the right edge, you soon 

see that you need a second τ
xy

 acting on the left edge to balance the transla-
tional equilibrium component. Similarly, you need a σ

yy
 on the bottom (acting 

downward) to balance the σ
yy

 on the top and a τ
yx

 on the bottom acting to the 
left to balance the τ

yx
 on the top edge.

 

Figure 6-7: 
Proving 

shear stress 
relationships.
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96 Part II: Analyzing Stress 

 You can extend this logic to three dimensions to include all those stresses 
with a z in the subscript, but for the sake of this discussion, I am dealing with 
only two dimensions — the x- and y-directions.

You’ve established all these normal stresses based on providing translational 
equilibrium of the force components. But that’s only one part of the battle — 
you also need to satisfy rotational equilibrium.

 Equilibrium equations only work with forces, so you need to convert those 
stresses to forces by multiplying them by the areas they’re acting on.

The normal stresses are all concentric (meaning they pass through the same point) 
through the middle of the element (Point A). However, the shear stresses are 
acting eccentrically at a given distance, which means they cause a rotational effect 
around that point. Writing the equation for rotational equilibrium at Point A,

This equation means that the force component from the vertical shear stress 
on the right edge is balanced by the force component from the horizontal 
shear stress on the top edge. Because you’ve assumed that the faces of the 
element all have the same area, these stresses must have the same magni-
tude. These shear stresses are also known as complementary shear stresses 
because they have equal values but act in different directions. The force 
components from these complementary shear stresses are what provide 
rotational equilibrium for the stress element.

 This calculation also indicates a very important principle: Loads that cause 
shear stresses in one direction also create shear stresses in perpendicular 
directions at the same time.

If you repeat this process for the other shear stresses by using two-
dimensional elements in the XZ plane and the YZ plane to establish 
your rotational equilibrium equations, you can also show that

τ
xz

 = τ
zx

 τ
yz

 = τ
zy

 This setup actually means that for a three-dimensional state of stress at a 
point, you only have to compute a total of six stresses, three of which are 
the normal stresses (σ

xx
, σ

yy
, and σ

zz
), and the other three are the shear 

stresses (τ
xy

, τ
yz

, and τ
xz

).
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97 Chapter 6: Remain Calm, It’s Only Stress!

Containing Plane Stress
The concept of plane stress is a very basic idea, but it provides the foundation 
for many of the equations and basic ideas of early mechanics and materials. 
Plane stress is a state of stress at a point in which the normal stress and shear 
stresses in one particular direction are assumed to be zero. By eliminating the 
stresses in one direction, the remaining stresses are all contained in a common 
plane. Figure 6-8 shows a plane stress condition for the XY plane.

 You can have a plane stress situation on any Cartesian plane of the general 
stress diagram shown in Figure 6-8. In that figure, I show an example for the 
XY plane only. However, the YZ and the XZ planes can also be in a state of 
plane stress, depending on how the object is loaded.

In effect, you can use the concept of plane stress to recognize that a three-
dimensional stress problem can be treated as a two-dimensional stress prob-
lem under the right circumstances. For example, if you’re dealing with a plane 
stress problem with an incremental area contained in the XY plane, any stress 
term in the equations in this section that contains a z in either subscript is 
automatically equal to zero.

 

Figure 6-8: 
Plane stress 

diagrams.
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98 Part II: Analyzing Stress 

You often assume a plane stress condition when you’re dealing with prob-
lems involving thin or flat objects. Following are a couple of problem types 
where plane stress assumptions may be applicable:

 ✓ Thin-walled pressure vessels: Thin-walled pressure vessels are hollow 
containers or shell structures designed to hold fluids or gases, typically 
under pressure. An example of a pressure vessel is a propane gas tank 
or a scuba diver’s oxygen tank. The wall thickness of a pressure vessel 
is typically significantly smaller than the other dimensions. By having 
a thin wall, shear stresses across the thickness are often neglected 
(assumed to be zero), which results in a state of plane stress being 
established in the wall of the vessel. I talk more about thin-walled 
pressure vessels in Chapter 8.

 ✓ Beam problems: Often, many problems involving the analysis of stress 
in beams can be simplified by using plane stress assumptions. I explain 
these problems in more detail in Chapter 9.

11_9780470942734-ch06.indd   9811_9780470942734-ch06.indd   98 6/1/11   6:29 PM6/1/11   6:29 PM



Chapter 7

More than Meets the Eye: 
Transforming Stresses

In This Chapter
▶ Understanding stress elements and sign conventions

▶ Transforming stresses

▶ Depicting transformed stresses graphically

▶ Dealing with principal stresses

▶ Using Mohr’s circle for plane stress analysis in two and three dimensions

After you determine the stresses that loads cause on an object, you’re 
one step closer to being able to perform engineering design. One of the 

main concerns in any design is that a member you select be able to support 
the desired loads while performing as it’s intended. To verify this condition, 
you need to know the maximum stress the loads cause and to ensure that 
these maximum values are less than what the material of the object is able 
to support. In practice, the direct stresses from loads aren’t necessarily the 
maximum stresses that an object feels.

In this chapter, I show you how to transform a set of stresses to determine these 
maximum stresses (as well as their orientations) by using stress transformation 
equations. You also discover how to use a graphical representation known as 
Mohr’s circle for stress, which is one of the most fundamental (and most widely 
used) methods for performing basic stress transformations. Finally, I show how 
you can efficiently report the stresses’ values through basic sketches.

Preparing to Work with Stresses
Before you can start to transform stresses, you need to understand a bit of 
common terminology and have a grasp of a basic sign convention for normal 
and shear stresses. In this section, I give you the rundown of these basics.
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100 Part II: Analyzing Stress 

Building a stress block diagram
Statics analysis uses basic sketches called free-body diagrams (F.B.D.s) to 
help illustrate the forces (and their locations) that act on an object. With a 
properly constructed F.B.D., you can then apply the equations of equilibrium 
from Chapter 3 to determine the internal loads that act on the object.

Although you do work with free-body diagrams in mechanics of materials to 
determine internal loads, you’re actually more interested at this point in the 
stresses in the object that result from those loads. That’s where a stress block 
diagram (or stress element) comes in. The stress block diagram is a free-body 
diagram of sorts, except instead of showing forces as you do in a statics F.B.D., 
you actually indicate the magnitude and direction of normal and shear stresses 
on the Cartesian x-, y-, and z-planes (see Chapter 6 for more info on these basic 
types of stress). This diagram depicts all the stresses acting at a single point.

To draw a stress block diagram, you first sketch the basic element shape, 
which is a usually a cube with a width of dx, a height of dy, and a depth of dz.

 For plane stress situations (where all stresses with respect to one of the 
Cartesian directions must be zero), you may find drawing a stress element as 
a simple square shape more convenient. This element is still actually a three-
dimensional cube, but for in-plane stress problems, you’re only looking at one 
of the cube’s faces.

Identifying basic states of stress
Another term that you encounter quite regularly in mechanics of materials 
is state of stress. This term refers to the combination of normal and shear 
stresses that define all the stresses that act at a point within the object. 
You need to define three normal stresses and three shear stresses to fully 
describe the state of stress at a point. Figure 7-1 shows several common 
states of stress.

 

Figure 7-1: 
Stress block 

diagrams 
with normal 

stresses 
shown.
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101 Chapter 7: More than Meets the Eye: Transforming Stresses

Before you can begin to work with stresses (see Chapter 6), you need to be 
able to identify the state of stress situation that you have on your hands. 
Determining the state of stress puts you one step closer to being able to choose 
the proper analysis equations and begin your work with mechanics of materials.

An infinite number of stress states are possible on a stress element. However, 
three states of stress appear frequently in mechanics of materials:

 ✓ Uniaxial: A uniaxial state of stress (see Figure 7-1a) illustrates an object 
that is subjected to a stress in a single direction. You can encounter 
uniaxial stress conditions in objects such as ropes or simple columns.

 ✓ Plane stress: A plane stress state (see Figure 7-1b) is a stress element that 
is subjected to stresses on no more than two Cartesian planes of the 
stress element. For an element of a plane stress state, you have at most 
two normal stresses and one shear stress (remember that horizontal and 
vertical shear stresses on an element must be the same magnitude).

  For a plane stress element (such as the one shown in Figure 7-1b) you 
indicate the stresses by referring to the horizontal surfaces (at the top 
and bottom of the element) and the vertical surfaces (on the left and right 
edge of the element). On each of these surfaces you can have a normal 
stress (denoted by the σ) and a shear stress (denoted by the τ).

 ✓ Triaxial: In a triaxial state of stress (see Figure 7-1c), the stress element is 
subjected to three normal stresses — one acting on each of the faces of 
a stress element — and at the same time has no shear stress. The triax-
ial state of stress is very important in the formulation of failure theories 
in advanced mechanics of materials.

Establishing a sign convention for stresses
Perhaps one of the most confusing aspects of mechanics of materials, particu-
larly when you’re working with stresses, is dealing with the signs of the stresses 
you’re working with. Developing a basic, consistent sign convention can help.

Decoding sign conventions can be complicated because many reference books 
use custom conventions that are inconsistent. One book may consider a stress 
in tension to be positive, while other books base the signs on the direction of 
the normal stresses on a particular face (for example, upward on top of the 
element is positive). And shear stress conventions are a completely different 
matter altogether.

For plane stress elements in this book, I use the sign conventions for normal 
and shear stresses shown in Figure 7-2. The following sections delve further 
into the sign conventions for normal and shear stresses.
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Figure 7-2: 
Sign 

convention 
for stresses.
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(b) Positive Shear

Stress
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τ

Normal stresses
Normal stresses are considered positive if their equivalent force (or the 
stress multiplied by the area on which they’re acting) results in a pulling 
action (or tension) on its respective face of the element. Normal stresses 
always act perpendicular to the face of an element.

 Regardless of which face the normal stress is acting on, I consider a normal 
stress positive if its arrow acts perpendicular to a face (or edge) in a direction 
that is away (or outward) from the face of the element as shown in Figure 7-2a.

Shear stresses
Shear stresses are a little unusual and often cause students trouble, because 
on any given plane stress element, the shear stresses on opposite edges 
of a stress element are acting in opposite directions simultaneously. Shear 
stresses always act within the plane of the face of a stress element.

 For a typical three-dimensional stress element, two shear stresses act in each 
face and in different Cartesian directions. For example, for a face in the XY 
plane (or the z-face), the first shear stress τ

zx
 is oriented in the x-direction, and 

the second shear stress τ
zy

 is oriented in the y-direction. These stress values 
may be either positive or negative depending on the sign convention you 
choose to work with.

For a stress element in the XY plane, I show a positive convention in Figure 7-2b. 
The second shear stress on each face is zero.

Because of the confusion of the signs that surround shear stresses, I use a logical 
and easy-to-remember method for determining the signs of the shear stresses 
acting on a plane stress element. To explain this sign convention for positive 
shear stresses, consider the stress element shown in Figure 7-2b. This simple ele-
ment has shear stresses acting in all directions (one per side, of course). To help 
me remember which way should be considered positive, I break the shear stress 
diagram into two smaller diagrams, as shown in Figure 7-3.
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Figure 7-3: 
Positive 

shear stress 
sign 

convention.
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The first diagram shows the shear stresses acting on the x-faces of an element 
that is situated in the XY plane. In this example, the x-faces are the vertical 
edges on the left and right side of the element. Notice that the right side is 
acting in an upward direction and the left side is acting in a downward direc-
tion. If you convert these stresses to forces, together they create a couple (or 
moment) that causes the element to rotate in a counterclockwise direction. 
This setup represents a positive shear stress orientation.

When the faces of an element are oriented horizontally and vertically, this 
procedure works very well because the positive x-face is easy to find (it’s the 
one on the right side of the element). The vertical face that you should use as 
a reference is the face of the element that intersects the x-axis and is located 
toward the most-positive end of the axis.

However, for elements that are rotated at some other orientation, the posi-
tive x-face isn’t quite so obvious. If you draw the reference x-axis and rotate it 
about its origin by the same amount and in the same direction as the angle you 
are rotating the object, the “vertical” face becomes the face that intersects the 
rotated x-axis and is located toward the most-positive end of the rotated axis. 
The faces that don’t intersect the rotated x-axis become the “horizontal” faces.

 As Chapter 6 indicates, to balance the shear stresses on vertical faces — and 
more specifically, their tendency to rotate the element in a counterclockwise 
direction — the shear stresses on horizontal faces must act together to rotate 
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the element in the opposite (or clockwise) direction. For this example, the shear 
stress on the positive y-face (or the top horizontal face) of the element is acting 
to the right, and the corresponding shear stress on the bottom horizontal face 
is acting to the left. Together, the forces from these horizontal stresses create a 
couple that balances the forces from the stresses on the vertical faces.

 The reason I consider the “vertical” faces to help establish the positive sign 
convention for shear stresses is because the couple they create wants to 
produce a counterclockwise rotation. If you remember the right-hand rule for 
rotation that I describe in Chapter 3, a rotation about the z-axis is positive if 
it acts counterclockwise when you’re looking toward the origin from the end 
of the positive z-axis. In this example, the z-axis is perpendicular to the figure 
(or out of the page).

Stress Transformation: Finding Stresses 
at a Specified Angle for One Dimension

Manufacturers often craft objects such that multiple pieces of material are 
spliced together with glue or weld material. Materials such as wood have fibers 
oriented in specific directions depending on how the pieces are fabricated or 
cut, and these materials often behave very differently under a tension load as 
opposed to a compression load with respect to that orientation.

In design, you often need to determine the state of stress at a point and ori-
entation angle other than what may be shown on your basic stress elements. 
The state of stress on an inclined plane is dependent on only two variables: 
the normal stress of the original orientation and the orientation angle. Finding 
these stresses at unique orientations is known as stress transformation.

A common type of connection is called the scarf splice, in which the end of a 
material is coped (or cut at an angle) and connected to a matching piece with 
an adhesive such as glue. To design this connection, you need to be able to 
determine the state of stress along the inclined plane of the splice.

The simplest stress transformation you work with is for a uniaxially loaded 
member with an applied force P such as the one shown in Figure 7-4a. In this 
figure, if a tension member is sliced at an angle θ as shown, two internal forces 
must develop along the inclined surface to keep the object in equilibrium. The 
first is a normal force N that acts perpendicular to the cut plane (assumed as a 
tension force in this example), and the second is a shear force V that acts paral-
lel to the cut plane (which is assumed up the shear plane for this example).
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 Remember, you can only write an equilibrium equation for a free-body dia-
gram that contains forces. If you’re working with the stresses on a stress 
element, you must first convert those stresses to forces before you can use 
static equilibrium equations.

 

Figure 7-4: 
Stress 

transforma-
tion for a 
uniaxial 

stress state.
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To calculate a transformed stress, you just need to know a couple of factors:

 ✓ Orientation angle: The orientation angle (θ) defines the orientation of 
the inclined or sloped surface and is measured as positive in a counter-
clockwise direction from the vertical y-axis. This angle is also the same 
angle from a horizontal reference (such as an x-axis) to an axis that is 
perpendicular to the inclined plane.

 ✓ Cross-sectional area: The cross-sectional area (A) is the area of the 
member that is oriented perpendicular to the longitudinal axis of 
the member. It’s not the same as the area of the inclined plane.

However, the area of the sloped surface A
o
 is necessary in order to compute 

the average stresses and can be related to the cross-sectional area A of the 
member by the relationship

 The orientation angle θ is measured with respect to the vertical y-axis (or 
more specifically, the plane of the cross-sectional area A and not the slope 
of the inclined plane).

With this area now determined, you can then use the following formula to 
compute the corresponding transformed normal stress (σ

x1
) — or the average 

normal stress acting on that inclined plane:
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The x1-axis is the axis that acts perpendicular to the slope of the interface, or 
the inclined cross-sectional area A

o
. From geometry, you can then show that 

this x1-axis is also oriented an angle θ from the original x-axis. Likewise, the 
y1-axis is oriented parallel to the slope of the inclined plane, so it also creates 
an angle θ from the vertical y-axis.

The average shear stress on the inclined surface is given by

These equations illustrate my assertion earlier in the section that the two 
variables impacting the state of stress on an inclined plane are the normal 
stress of the original orientation (σ

xx
) and the orientation angle (θ ) of the 

inclined surface. I show both of these stresses in Figure 7-4b.

For example, if you know that the average normal stress for a bar is 10 ksi (C) — 
remember that the (C) means it’s a compressive stress and therefore a negative 
value — and the orientation angle of a splice is 50 degrees counterclockwise 
from the cross-sectional area, you can compute the state of stress along that 
splice fairly simply:

σ
x1

 = (–10 ksi) · (cos 50°) = –4.13 ksi = 4.13 ksi (C)

τ
x1y1

 = (–10 ksi) · (cos 50°)(sin 50°) = –4.92 ksi

Extending Stress Transformations 
to Plane Stress Conditions

Most objects and load scenarios that you cover are much more complex than 
the uniaxial loads in the preceding section, so you need to have a handy way 
to deal with stresses occurring in more than one direction, a 
situation known as a plane stress state.

Figure 7-5a shows a generic plane stress element subjected to two positive 
normal stresses σ

xx
 and σ

yy
 and a positive shear stress τ

xy
. If you slice across 

this element at an angle θ from the vertical reference, you can see that the 
horizontal normal stress σ

xx
 contributes to the stresses on the inclined plane 

the same as the uniaxial case shown in Figure 7-4b in the preceding section. In 
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addition, σ
yy

 becomes a second uniaxial condition that can add its effects to the 
stresses on the inclined plane. The difference is that the angle for the uniaxial 
state including σ

yy
 isn’t the same angle (θ); instead, it’s actually (90° – θ ).

 

Figure 7-5: 
Plane-stress 

trans-
formations.
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If A
o
 is the area of the exposed inclined plane, you can apply the rules of equi-

librium much like you do for uniaxial load cases. Using the free-body diagram 
shown in Figure 7-5b, you can then sum forces along the x1- and y1-axes.

 Just as with uniaxial cases, the transformed stresses on an inclined plane for 
plane stress problems become only a function of the original state of stress 
(σ

xx
, σ

yy
, and τ

xy
) as well as the orientation angle (θ) of the inclined plane. Once 

again, the transformed stresses become completely independent of the cross-
sectional area of the inclined plane A

o
.
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108 Part II: Analyzing Stress 

Most classic textbooks then apply a couple of algebraic substitutions and 
trigonometric identities to simplify the equations a bit further to look 
something like the following:

 

 Regardless of which formula form you use, you can now quickly and easily trans-
form the state of stresses from one orientation to another by simply plugging in 
the current state of stress and the orientation angle of the new inclined plane.

To determine the transformed normal stress that is oriented perpendicu-
lar to the x1-axis (which happens to be along the y1-axis) you can compute 
the normal stress by substituting (θ + 90°) for θ in the σ

x1
 equation — after 

all, the y1-axis is 90 degrees more in a counterclockwise direction than the 
rotated x1-axis. If you make this substitution, you can compute the normal 
stress along the y1-axis from the following:

Consider the element shown in Figure 7-6, which is subjected to a stress in 
the x-direction of 10 ksi (C), a stress in the y-direction of 12 ksi (T), and a 
shear stress of –7 ksi. Suppose you want to determine the state of stress on 
a plane that is oriented 40° counterclockwise from the current orientation.

 

Figure 7-6: 
Trans-

forming 
plane 

stresses 
example.

 

σyy = 12 ksi (T)

σxx = 10 ksi (C)

τxy = −7 ksi

y

x

For this example, the current state of stresses and the orientation angle for 
the transformed plane are σ

xx
 = –10 ksi, σ

yy
 = +12 ksi, τ

xy
 = –7 ksi, and θ = +40°.
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109 Chapter 7: More than Meets the Eye: Transforming Stresses

You can then calculate the transformed stresses on the new x1- and y1-axes 
as follows:

These three stresses together define the transformed state of stress for an 
orientation of 40° counterclockwise from the original position.

Displaying the Effects of 
Transformed Stresses

Engineers and scientists are typically very visually oriented people and 
therefore like to see pictures of results (such as graphs, free-body diagrams, 
and other techy diagrams). To help illustrate your results, you can use two 
common types of diagrams to express the effects of transformed stresses: 
the stress wedge and the rotated stress element.

Wedging in on the action with stress wedges
The first method you can use to represent transformed stresses is with stress 
wedges. The stress wedge is useful for displaying the current state of stress 
while also displaying the normal and shear stress on the rotated plane. This 
basic technique is the method I use to derive the basic transformation stress 
equations earlier in the chapter.

 I find stress wedges very useful when checking connection strengths on glue 
seams and welds on metal because you can easily align the inclined plane of the 
stress wedge to match the inclination angle of the connection or fiber plane.
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110 Part II: Analyzing Stress 

Figure 7-7 shows the upper and lower stress wedge diagrams for Figure 7-6 in 
the preceding section.

To quickly sketch a lower stress wedge diagram, follow a few simple steps:

 1. Draw the original Cartesian reference axis with respect to the 
inclined plane.

  In Figure 7-7a, the x-axis is oriented to the right, and the y-axis is oriented 
upward. (This setup follows the right-hand rule for Cartesian axes from 
Chapter 5.)

 2. Sketch the original x-direction normal stress σ
xx

 and the shear stress 
τ

xy
 on the vertical face of the stress wedge.

  To sketch the lower stress wedge diagram for this example, I draw the 
original x-direction normal stresses on the left face. For a compressive 
stress in the x-direction, the arrow for the normal stress points into the 
block. The shear stress (which is a negative value) is applied upward on 
the left face per the sign convention that I lay out in “Establishing a sign 
convention for stresses” earlier in this chapter. This application causes 
the wedge element to want to rotate clockwise.

 3. Sketch the original y-direction normal stress σ
yy

 and the shear stress 
τ

xy
 on the horizontal face of the stress wedge.

  The normal stress is a tension stress in this example, so the arrow for 
this stress pulls on the bottom horizontal face of the element. The shear 
stress on this element is negative, so it acts as a positive value on this 
face, which means that it acts horizontally to the right in order to rotate 
the wedge element counterclockwise.

 

Figure 7-7: 
Displaying 

transformed 
stresses 

on a stress 
wedge.

 (a) Lower Stress Wedge Diagram (b) Upper Stress Wedge Diagram

σx1 =
7.80 ksi (C)

τx1y1 
= −12.08 ksi

τxy = –7.00 ksi

τxy = −7.00 ksi

σyy = 12.00 ksi (T)

σxx = 10.00 ksi
(C)

+40° (CCW)

+40° (CCW)

y1

x1

x

y

σx1 = 7.80 ksi (C)

τx1y1 
= −12.08 ksi

τxy = −7.00 ksi

σyy = 12.00 ksi (T)

σxx = 10.00 ksi
(C)

+40°
(CCW)

+40° (CCW)

y1

x1

x

y

O

O
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111 Chapter 7: More than Meets the Eye: Transforming Stresses

 4. Draw the rotated x1-axis for the specified orientation angle θ outward 
and perpendicular (or normal) to the inclined plane.

  In this example, the desired orientation angle is 40 degrees measured 
counterclockwise. Rotate the original x-axis by an angle of 40 degrees 
counterclockwise to locate the x1-axis, which is normal (or perpendicu-
lar) to the inclined plane. Likewise, rotate the original y-axis by an angle 
of 40 degrees counterclockwise to locate the y1-axis.

 5. Sketch the transformed normal stress σ
x1

 with respect to the x1-face 
and the transformed shear stress τ

x1y1
 with respect to the y1-axis.

  You draw the transformed normal stress σ
x1

 parallel to the new x1-axis 
that you drew in Step 4. Because this stress was calculated to be a 
negative (or compressive) stress, the arrow along this line is pointing 
into the element. To sketch the transformed shear stress, choose an 
arbitrary point (such as the corner at Point O) and recall the basic sign 
convention for shear stresses (which I discuss in the earlier section 
“Establishing a sign convention for stresses”). Because the transformed 
shear stress is negative, it tends to rotate around Point O in a clockwise 
direction when it’s applied to the inclined plane. For this reason, you 
sketch it on the inclined plane from upper left to lower right.

You can use a similar procedure to construct the upper stress wedge element 
shown in Figure 7-7b. The only difference is that your reference Cartesian 
axes are oriented in the opposite direction from the axes of the lower stress 
wedge element.

 The stress wedge does a very good job of displaying information that acts parallel 
and normal to the inclined plane. However, notice that the σ

y1
 stress isn’t shown 

on this element. The stress wedge only shows one transformed normal stress 
and one transformed shear stress at a time. The benefit of the stress wedge, 
however, is that it also displays the original state of stress prior to being trans-
formed to the new orientation.

Rotating the basic stress element
The rotated stress element is another useful method for displaying transformed 
stresses and actually has a couple of additional benefits over the stress wedge I 
describe in the preceding section. Rotated stress elements simultaneously show 
the states of stress on two mutually perpendicular planes, which is very useful 
when you start calculating principal stress values. (I explain that topic more in 
the following section.) Figure 7-8 shows a rotated stress element for the same 
state of stress shown in Figure 7-7.
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Figure 7-8: 
Displaying 

transformed 
stresses on 

a rotated 
stress 

element.
 

y

x

y1
x1

σx1 = 7.80 ksi (C)

σy1 = 9.80 ksi (T)

τx1y1 = –12.08 ksi

+40° (CCW)

Positive
x1-face

Positive
y1-face

+40° (CCW)

O

The biggest advantage of the rotated stress element is that you can display 
multiple stresses at the same time on an element. Unfortunately, though, you 
lose the original state of stress information from the figure. Constructing a 
rotated stress element is very similar to creating a stress wedge.

 1. Draw the original Cartesian axis with respect to the middle of 
an element.

 2. Draw the rotated x1-axis for the specified orientation angle θ outward 
and normal to the exposed plane.

 3. Draw the rotated y1-axis at an angle of θ from the original y-axis.

  You can also locate this axis by rotating an angle θ + 90° from the origi-
nal x-axis as well. Getting used to the x-axis version may help you when 
you deal with maximum and minimum stresses (see Chapter 8).

 4. Draw the rotated element such that the x1-face is perpendicular to 
the x1-axis and the y1-face is perpendicular to the y1-axis; complete 
the basic square shape of the plane stress element at this new 
rotated orientation.

 5. Sketch the transformed normal stress σ
x1

 with respect to the x1-face 
and the transformed shear stress τ

x1y1
 perpendicular to the y1-axis.

  You draw the transformed normal stress σ
x1

 parallel to the new x1-axis 
that you drew in Step 2. The stress of this example is a negative (or com-
pressive) stress, so the arrow along this line must point into the element 
(acting normal to the x1-face).
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113 Chapter 7: More than Meets the Eye: Transforming Stresses

  To sketch the transformed shear stress acting on the x1-face, choose an 
arbitrary point (such as the center at Point O) and utilize the basic sign 
convention for shear stresses from earlier in this chapter. Because the 
transformed shear stress is negative, it should tend to rotate around 
Point O in a clockwise direction when it’s applied to the inclined plane. 
For this reason, you sketch it on the inclined plane from upper left to 
lower right.

 6. Sketch the transformed normal stress σ
y1

 with respect to the y1-axis 
and the transformed shear stress –τ

x1y1
 perpendicular to the y1-axis.

  You add the transformed normal stress σ
y1

 parallel to the new y1-axis 
that you drew in Step 3. This stress is a positive (or tensile) stress, which 
means the arrow along this line is pointing away from the y1-face. To 
sketch the transformed shear stress (acting on the y1-face), draw in 
the stress from the upper right to the lower left.

 7. Balance the remaining sides to ensure equilibrium.

  After you draw the stresses on the positive x1- and y1-faces, you balance 
the opposite sides as I describe in Chapter 6.

When Transformed Stresses Aren’t 
Big Enough: Principal Stresses

When engineers design a structural member to support a load, they must be 
sure to design for the worst case, which is typically for the maximum stress 
in an object. Even though this maximum stress may not be oriented at the 
same angle as the original stress element that you draw, you still must 
calculate these important values, known as the principal stresses.

 

Using maximum principal normal stresses as a failure criteria is only valid for 
certain materials such as ceramics. For other materials, such as metals, other 
established criteria may be more accurate. In fact, failure may not even be the 
result of peak (or maximum stresses) but rather the interaction between all 
stresses on the element. You can find more specifics about failure theories in 
most advanced mechanics of materials textbooks.

Regardless of the type of material you are working with, your ability to calcu-
late the principal stresses and their angles is a fundamental skill in any basic 
mechanics of materials class.
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Defining the principal normal stresses
The principal stresses represent the maximum and minimum states of stress 
for a given stress element. When calculating the principal stresses, you use 
the following formula:

 When you evaluate this expression, you actually get two different values 
because of the ± in front of the second term. This operation is what 
determines the maximum and minimum value.

Consider an example where σ
xx

 = –10 ksi, σ
yy

 = +12 ksi, and τ
xy

 = –7 ksi. 
(If these figures look similar to the ones in examples I use earlier in the 
chapter, that’s because they’re the same example.)

You can calculate the principal normal stresses as

So for this example, the maximum principal stress is the larger of the two 
values — 14.04 ksi (T) — and the minimum principal stress is the smaller 
of the two values: 12.04 ksi (C).

Orienting the angles for 
principal normal stresses
Finding the orientation angles of principal stresses is important to designers as 
well. For example, if you’re working with a brittle material such as concrete or 
glass, you can get a cracking or crushing type of failure if the maximum principal 
stress exceeds the limits of the material. However, if you know the orientation 
of the maximum principal stress, you can actually design the structural object 
to better resist the applied stresses. In concrete members, this step may mean 
including reinforcing steel at the locations and orientations of high stresses.
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115 Chapter 7: More than Meets the Eye: Transforming Stresses

To determine the principal angles, you use a simple relationship that relates 
the shear stress to the normal stresses of the original element:

So for the example I lay out in the preceding section,

which indicates that one of the principal stresses occurs at an orientation 
angle of 16.23 degrees positive (or counterclockwise) from the original x-axis. 
The only problem now is whether that’s the angle of the maximum or mini-
mum principal stress.

 With an angle of orientation, you can compute the normal stress at the new 
orientation by using the basic transformation equation earlier in the chapter. 
If you substitute the known current states of stress and this principal angle, 
your transformation equation automatically tells you which principal stress 
occurs at that orientation. For example,

Thus, you know now that at the angle of 16.23 degrees counterclockwise from 
the x-axis is the minimum principal stress of 12.04 ksi (C).

The maximum principal stress and the minimum principal stress occur at 
angles that are oriented 90 degrees apart. So if you can locate one of the prin-
cipal orientation angles, you automatically know the second angle by using 
the following simple equation:

θ
P2

 = 16.23° + 90° = 106.23°

The maximum principal stress of 14.04 ksi (T) lies on the y1-axis at an orien-
tation of 106.23 degrees.
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Next, you compute the corresponding shear stress that occurs at the princi-
pal orientation by using the basic transformation equations for shear stress 
as follows:

This result shows that no shear stress is present at the principal orientation 
for normal stresses.

 If you know the principal normal stresses and their orientations, you can 
assume that the corresponding shear stress at that principal orientation 
is always zero.

You can then draw the final rotated stress element for the principal normal 
stresses by using the guidelines I describe in “Rotating the basic stress ele-
ment” earlier in the chapter, resulting in the element shown in Figure 7-9.

 As you can see from Figure 7-9, the stress element for this principal orientation 
consists of only normal stresses; no shear stresses exist at this orientation. But 
a shear stress is only zero at this orientation. At all other orientations, the shear 
stress has a different value — either positive or negative. And at one special 
orientation, the shear stress has a maximum value, which I show you how to 
determine in the following section.

 

Figure 7-9: 
Principal 

normal 
stress 

element.
 

y

x

y1

x1

θP1 = 16.23° (CCW)

σP2 = 12.04 ksi (C)

σP1 = 14.04 ksi (T)

16.23°
(CCW)

O
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117 Chapter 7: More than Meets the Eye: Transforming Stresses

Calculating principal shear stresses
Principal shear stresses are the maximum and minimum values of shear stress 
that can occur in a given plane. These stresses can become especially impor-
tant in objects subjected to torsion and in the areas such as the webs (a part 
of an object that connects two stronger elements of a cross section) of many 
bending members.

However, you also have orientations for which the transformed shear stress 
is a nonzero value. Earlier in this chapter, I show an example of how to cal-
culate the shear stress at an orientation of 40 degrees counterclockwise. For 
that example, the shear stress was –12.08 ksi, which proves that the shear 
stress can be a maximum value at some orientation.

To find the principal shear stress, you use the following formula, which is 
very similar to the second term in the principal normal stress equations 
(see the earlier section “Defining the principal normal stresses”):

For the example I lay out in that same section, you can compute the principal 
shear stresses:

Thus, the maximum shear stress is +13.04 ksi, and the minimum shear stress 
is –13.04 ksi.

Defining a normal stress invariant rule
A special relationship known as a stress invari-
ant exists within the transformation equations. 
A stress invariant relates normal stresses (σxx 
and σyy) on one set of mutually perpendicular 
planes to the normal stresses (σx1 and σy1) on 
another set of mutually perpendicular planes:

  σxx + σyy = σx1 + σy1

Consider the example I often use in this chapter 
where σxx = –10 ksi, σyy = +12 ksi, and τxy = –7 ksi. 

In this example, the transformed stresses 
σx1 = –12.04 ksi and σy1

 = +14.04 ksi. When you 
plug those numbers into the stress invariant, you 
get the following:

  σxx + σyy = –10 ksi + 12 ksi = +2 ksi

  σx1 + σy1 = –12.04 ksi + 14.04 ksi = +2 ksi

The values are the same!
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Finding the principal shear 
stress orientation angle
After you know the principal shear stresses (covered in the preceding sec-
tion), you need to determine the corresponding orientation angle. The basic 
equation for the principal shear stress angle is

For the example in “Defining the principal normal stresses” earlier in the 
chapter, you can compute the maximum shear stress angle as follows:

To determine whether this orientation angle contains the maximum (or posi-
tive) value or the minimum (or negative) value for principal shear stress, you 
plug this angle into the transformations equations along with the original 
state of stress for the element:

From this test you can conclude that the minimum (or negative) value for the 
principal shear stress of –13.04 ksi appears on the face that is oriented at an 
angle of –28.76 degrees. The maximum (or positive) shear stress occurs at an ori-
entation angle of 90 degrees from the minimum shear stress angle, or

θ
S2

 = –28.76° + 90.00° = +61.24°

At an angle of +61.24 degrees, the maximum shear stress of +13.04 ksi appears.

 You may notice that the minimum shear stress and the maximum shear stress 
have the same magnitude but opposite signs and that they occur 90 degrees 
apart from each other. For a plane stress element, these observations mean 
that both of the shear stresses occur on the same principal shear stress ele-
ment; the maximum occurs on one face and the minimum occurs on the other. 
The negative sign simply means that the minimum shear stress components 
are acting in a clockwise rotation to help resist the counterclockwise rotation 
of the maximum principal stress components.

However, unlike the principal normal stresses, which have no corresponding 
shear stress, both the maximum and minimum shear stresses almost always 
have a corresponding normal stress to go with them. In fact, the corresponding 
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119 Chapter 7: More than Meets the Eye: Transforming Stresses

normal stress is the same for both the maximum and minimum principal shear 
stresses. You can compute this value by substituting the original state of stress 
and the principal shear angle into the basic transformation equations:

At the orientation of the principal shear stress, the corresponding normal 
stresses along the x1- and y1-axes have the same value. In fact, with a few 
mathematical tricks, you can show that

where σ
AVG

 corresponds to both of the normal stresses along the transformed 
x1- and y1-axes. In this example,

Finally, you can draw the principal shear stress element as shown in Figure 7-10. 
For more on drawing this rotated stress element, refer to the section “Rotating 
the basic stress element” earlier in this chapter.

 

Figure 7-10: 
Principal 

shear stress 
element.

 

y

x

x1

y1

σy1 = 1 ksi (T)

σx1 = 1 ksi (T)

θS2 = 61.24° (CCW)

τx1y1 = −13.04 ksi

θS1 = −28.76° (CW)

O
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 The principal shear stresses always occur at an angle of ±45 degrees from 
the orientation of the principal normal stresses. For this reason, if you can 
find the principal normal stresses and their orientations, you’re well on 
your way to finding several of the most important stresses values (and 
orientations) need for design.

Distinguishing between in-plane and 
out-of-plane maximum shear stresses
For a plane stress element, the maximum shear stress τ

MAX
 can be either in or 

out of the plane of the element. You can determine this position by examining 
the principal normal stress values σ

P1
 and σ

P2
:

 ✓ Case 1: σ
P1

 and σ
P2

 have opposite signs.

  The maximum shear stress in this case occurs within the plane of the 
element and is equal to the same value as the maximum shear stress in 
that plane (or the in-plane principal shear stress), τ

P
:

 ✓ Case 2: σ
P1

 and σ
P2

 have the same signs (either both positive or 
both negative).

  The maximum shear stress in this case occurs perpendicular to the 
plane of the element and has a value that is the larger of the two values:

 

Utilizing Mohr’s Circle for Plane Stress
Perhaps one of the most useful features of the rotated stress element is that 
it allows you to use a technique known as Mohr’s circle for plane stress. 
(Flip to “Rotating the basic stress element” earlier in the chapter for more 
on rotated stress elements.)

Mohr’s circle is a graphical technique for quickly computing the stress at any 
orientation, given that you know the state of stress (both normal and shear 
stresses) on any two perpendicular planes. Mohr’s circle also tells you the 
orientation of the principal stresses without having to test the angle by plug-
ging it into the transformation equations.

In this section, I explain the basic procedure for constructing a Mohr’s circle 
for plane stress analysis and how to use the circle to find specific stress values.
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121 Chapter 7: More than Meets the Eye: Transforming Stresses

Establishing basic assumptions and 
requirements for Mohr’s circle
Analyzing Mohr’s circle involves plotting values based on the current state of 
stress onto a set of Cartesian-type axes based on the state of stress. Keep the 
following points in mind when working with the Mohr’s circle:

 ✓ Normal stress plots on the horizontal axis. Tension is measured to the 
right, and compression is measured to the left. Your stress elements 
may contain positive, negative, and even zero values!

 ✓ Shear stress plots on the y-axis. However, unlike most graphs from your 
algebra class, the positive shear stress (or a counterclockwise shear 
stress on the vertical faces) plots on the lower half of the graph.

 ✓ All angles measured from Mohr’s circle are twice their real value. If 
you want to find the state of stress for an element rotated +30 degrees, 
the angle that you measure on Mohr’s circle is 2(+30) = +60 degrees. The 
double angles are necessary to make the circle produce the same results 
as the transformation equations I mention earlier in this chapter.

Before you can apply Mohr’s circle, you need a properly defined plane stress ele-
ment with known normal stresses ( both σ

xx
 and σ

yy
) and shear stress (τ

xy
). After 

you have the basic element established, you’re ready to construct the circle.

Constructing the Mohr’s circle
To illustrate the construction method, consider the state of stress for a 
member that is given as

σ
xx

 = –10 ksi σ
yy

 = +12 ksi τ
xy

 = –7 ksi

If you recognize these values, they’re the same as the example I use earlier in 
the chapter to demonstrate the transformation equations (see Figure 7-6).

 1. Establish the Cartesian axes.

  On the horizontal axis, you plot the normal stress with positive normal 
stresses (or tension) at the right end of the axis and negative normal 
stresses (or compression) at the left end. The vertical axis is reserved 
for the shear stress, and it crosses at a normal stress value of zero. The 
upper end of the vertical axis is reserved for shear stress pairs that cause 
a clockwise rotation (or negative shear stress), and the lower end of the 
vertical axis is for shear stress pairs that cause a counterclockwise rota-
tion (or positive shear stress). See the “Establishing a sign convention for 
stresses” section earlier in this chapter for more on the sign convention 
for shear stresses.
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 2. Determine the stress coordinates for the positive x-and y-axes of the 
current stress element.

  The first point you plot is the state of stress on either of the vertical 
faces. I typically choose the axis on the positive side of the element 
(which is the vertical face on the right side of the base element in this 
example). I label this coordinate as Point V; it has stress coordinates 
V(–10, –7) ksi. The normal stress on the vertical face in the x-direction is 
a compressive stress, so its normal stress coordinate is a negative value; 
the shear stress on this face results in a clockwise rotation, so the shear 
stress coordinate is a negative value.

  The coordinates for the horizontal face (which I label as Point H) are 
given as H(+12, +7) ksi. The normal stress on the horizontal face in the 
y-direction is a tensile stress, so its normal stress coordinate is a posi-
tive value; the shear stress on this face results in a counterclockwise 
rotation, so the shear stress of the coordinate is also positive value.

 3. Draw a line connecting the two points of Step 2.

  This line is a diameter of the Mohr’s circle and represents the current 
position, or the current state of stress for your plane-stress element.

Computing coordinates and other 
important values on Mohr’s circle
After you get the basic circle down (see the preceding section), you’re ready 
to do a bit of geometry by using the properties of the circle and the points 
you plotted in the previous section. In this section, I show you how to find the 
center point of Mohr’s circle and how you can compute the radius of the circle.

 1. Determine the coordinates of the center of the circle (located at Point C).

  The normal stress coordinate of the centers σ
CENTER

 is actually located at 
the average value of σ

xx
 and σ

yy
:

 

  You also need to include the y-coordinate for the center point as well, 
but because this point is located on the horizontal axis, the shear stress 
(which is the y-direction) is zero (τ

CENTER
 = 0 ksi).

  Therefore, the center of the circle (Point C) has coordinates (+1.00, 0.00) ksi.

 2. Draw a circle with the center located in Step 1 and through Points V 
and H of Step 2 in the preceding section.

  Figure 7-11 shows the completed circle’s construction.
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Figure 7-11: 
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 3. Compute the radius R of the Mohr’s circle.

  Now that you have located the center of the circle, the next piece of 
information that you need to compute is the radius of the circle shown 
in Figure 7-11. To help you compute the radius, you can pull out the tri-
angle shown in Figure 7-12.

  The triangle you examine is the triangle between the center of the circle 
(Point C), the coordinate of the vertical face stresses (Point V), and 
the horizontal axis of the circle. The radius R is the line that connects 
Point C with Point V. You can compute the vertical side of the triangle 
as 7 – 0 = 7 ksi, which is the difference in the shear stress values of the 
coordinates. You calculate the horizontal side of the triangle between 
the center point (Point C) and the point on the x-axis directly below the 
normal stress on the vertical face: 1 – (–10) = 11 ksi.

  After you have the sides of the triangle, you can use the Pythagorean 
theorem to compute the hypotenuse of this triangle (which coinciden-
tally happens to be the radius R of the Mohr’s circle).
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Figure 7-12: 
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from Mohr’s 

circle.
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Determining principal normal 
stresses and angles

 Before you can do any further analysis, you must determine the relationship 
of the current state of stress with regards to the principal stresses. The prin-
cipal stresses serve as a reference for all states of stress on the Mohr’s circle. 
Just follow these steps:

 1. Compute the maximum and minimum normal stresses by adding the 
value of the radius R to the x-coordinate of the center point.

  To get the maximum principal stress, you add the value of the radius to 
the x-coordinate of the center point (Point C).

 σ
P,MAX

 = σ
CENTER

 + R = +1 ksi + 13.04 ksi = +14.04 ksi = 14.04 ksi (T)

  To determine the minimum principal stress, you subtract the radius 
from the x-coordinate of the center point (Point C).

 σ
P,MIN

 = σ
CENTER

 – R = +1 ksi – 13.04 ksi = –12.04 ksi = 12.04 ksi (C)

 2. Compute the principal angle of the nearest principal stress.

  Using the vertical face coordinate point (Point V), you can utilize the trian-
gle of Figure 7-12 to compute one of the principal angles. You assign a posi-
tive or negative sign to this value depending on the direction that you must 
move from Point V to reach a particular principal stress. In this example, 
if you stand at Point V on the circle, you need to move counterclockwise 
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around the circle to reach σ
P,MIN

, so this direction results in a positive value 
for the angle θ

P,MIN
. From the triangle of Figure 7-12, you can show

 

  On the Mohr’s circle, and the triangle of Figure 7-12, you actually calcu-
late a value for 2θ

P,MIN
. To report this angle or include it on a rotated ele-

ment sketch, you must divide the angle of your calculations by two.

 3. Compute the principal angle to the other principal stress.

  Because σ
P,MIN 

is oriented 180 degrees away from σ
xx

, you need to rotate 
Point V a distance of 212.46 degrees (180° + 32.46°) in a clockwise direc-
tion in order to land on σ

P,MAX
. Remember to divide the angle in half to 

account for the double angle:

 

  or 106.23 degrees counterclockwise.

  Notice that these calculations from Mohr’s circle match the calculations 
you perform with the basic transformation equations earlier in this chapter.

  You can also measure this principal angle by using a clockwise rotation 
around Mohr’s circle, in which case you need to rotate the x-face an 
angle of –73.77 degrees clockwise. Regardless of the direction you rotate 
(clockwise or counterclockwise), your stress element looks the same. At 
this point, you have the Mohr’s circle fully established and can start to 
use it to find other transformed states of stress.

Calculating other items with Mohr’s circle
If you’re interested in using Mohr’s circle to compute the principal shear 
stresses, you simply need to rotate Point V such that it lines up with the top 
or bottom of the circle (see Figure 7-11). If you want to find the maximum shear 
stress on a plane stress element, you rotate the line you draw for the diam-
eter such that Point V is at the bottommost point on the circle, which makes the 
transformed Point V have stress coordinates that include the maximum shear 
stress. Likewise, if you want the minimum shear stress, the transformed Point V 
needs to be on the top of the circle. 
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 For stresses on the face of the element that includes principal shear stress 
coordinates, you must remember to also include the corresponding normal 
stress coordinate as well. This normal stress is the same normal stress, 
σ

CENTER
 for the coordinates at Point C (or the center of the Mohr’s circle).

As with the principal angles (see the preceding section), the direction you 
rotate from the original location of Point V determines the direction that you 
need to rotate the transformed stress element to achieve a particular shear 
stress on the x1-face.

For example, to get the shear stress on the x1-face to be the minimum (or 
negative) principal shear stress, you rotate the element 90 degrees clockwise 
along Mohr’s circle from the minimum principal normal stress, σ

P,MIN
 (which is 

located on the left edge of Mohr’s circle). For the Mohr’s circle in Figure 7-11, 
Point V is 32.46 degrees clockwise from the minimum principal normal stress, 
so you need to rotate the element first to the minimum principal stress (coun-
terclockwise), and then back (clockwise) to the top of the circle. On Mohr’s 
circle, you measure this angle as 2θ

S,MIN
 = 32.46° – 90.00° = –57.54°.

 The minimum principal shear angle θ
S
 is one half the value on the Mohr’s circle, 

or –28.77° (28.77 degrees clockwise). The stress coordinates at this location are 
then (+1 ksi, –7 ksi). The +1 ksi value is actually the normal stress coordinate 
(or the first term) of the coordinates of Point C — the center of the circle.

To get to the maximum value, you add 90 degrees counterclockwise from the min-
imum principal normal stress to get to the bottom of the circle. The state of stress 
on the vertical face of the transformed element then has stress coordinates of 
(+1 ksi, +7 ksi) at an angle of one half of (90.00° + 32.46°) = 122.46°, or 61.23°.

 As with the principal angles for normal stresses, the principal shear angles on 
Mohr’s circle are also recorded as 2θ

S
 on Mohr’s circle, and occur at 90 degrees 

from each other on the rotated stress element. If you forget to divide by 2, your 
maximum and minimum stress values wind up being on opposite faces of the 
element and your element won’t be balanced properly.

Finding stress coordinates at arbitrary 
angles on Mohr’s circle
After you have the principal stresses and the principal angles defined, you can 
easily find the state of stress at any orientation. Suppose you want to find the 
state of stress at an angle of 40 degrees counterclockwise for an element where 
σ

xx
 = –10 ksi, σ

yy
 = +12 ksi, and τ

xy
 = –7 ksi. That means you need to rotate from 

Point V by an angle of 80 degrees on Mohr’s circle in a counterclockwise direc-
tion. This new transformed Point V then forms a triangle with the horizontal 
axis and the center point on the circle (as shown in Figure 7-13a) such that

2ϕ = 2(40°) – 2θ
P
 = 80.00° – 32.46° = 47.54°
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Figure 7-13: 
Finding 

coordinates 
at arbitrary 

angles.

 
(a) Mohr’s Circle (b) Extracted Stress

Triangle

X

47.54°

Y
C

V

Mohr’s circle

R = 13.04 ksi

R = 13.04 ksi

2θP = 32.46°

σP,MIN

2φ = 47.54°2θ = 2 (40°) = 80°

x

x1

V(–10, –7) ksi

(+1,0) ksi

After you have this angle measured relative to one of the principal normal 
stresses, you can use basic trigonometry and the triangle shown in Figure 7-13b 
to solve for X and Y and then calculate the transformed stresses:

Because the new coordinate lies to the left of the center point (Point C), you 
calculate the normal stress coordinate from

The shear stress coordinate is then equal to the value of the Y dimension of 
the triangle. Because the new stress coordinate is located below the horizon-
tal axis, the shear is a positive value on the new vertical face.

You now know the state of stress on the transformed x-face and can sketch a 
final rotated element.
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 You still need to compute the coordinates for the Point H, which lies on the 
opposite end of a diameter from the new Point V location. The procedure I 
outline here works just as well for that opposite point. Just remember that 
you need to add an additional 180 degrees (or subtract it) to get the new 
angle on Mohr’s circle to that point.

Adding a third dimension to Mohr’s circle
Drawing Mohr’s circle for a three-dimensional state of stress (see “Identifying 
basic states of stress” earlier in the chapter) isn’t possible, with one exception. 
If the state of stress is a principal state (or a triaxial state) in which no shear 
stress exists on any faces of the three-dimensional element, you can draw a 
special version of Mohr’s circle by examining the normal stresses on any given 
plane of the element. That is, you can draw a circle for the XY plane, another 
circle for the YZ plane, and a third for the XZ plane. You simply plot the princi-
pal stresses σ

P1
, σ

P2
, and σ

P3
. Assuming that σ

P1
 is the largest of the three values 

and σ
P3

 is the smallest of the three values, you can generate a figure of three 
circles such as Figure 7-14.

For Figure 7-14, you have one circle that connects σ
P1

 and σ
P2

, another that 
connects σ

P2
 and σ

P3
 and a third that connects σ

P1
 and σ

P3.
 Beyond this, you 

can’t do any transformation calculations on this version of the Mohr’s circle.

 

Figure 7-14: 
Mohr’s 

circle for 
three-

dimensional 
stresses.
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129 Chapter 7: More than Meets the Eye: Transforming Stresses

However, you can identify the maximum shear stresses. You determine the 
maximum shear stresses for a triaxial element in a similar fashion to the 
plane-stress elements that I describe in the earlier section “Distinguishing 
between in-plane and out-of-plane maximum shear stresses.”

You can compute the radius of each circle by finding the difference between 
the principal stresses of each circle; this difference is the diameter. As I note 
earlier in the chapter, the radius of a Mohr’s circle is actually at the same 
value as the principal shear stress for a particular circle.

The maximum shear stress for a given triaxial stress element is the larger of 
the three principal shear stress values. In equation form, this fact means that

Additionally, the maximum shear stress for the element is the largest of those 
three values:

 For a plane stress problem in three dimensions, one of the principal stresses 
must be equal to zero. When this situation happens, the maximum shear 
stress may not be equal to the in-plane principal shear stress. In reality, even 
if you’re working with a plane stress problem, the third, out-of-plane stress is a 
zero value.

If the zero-value principal stress is the middle point on the figure (that is, 
σ

P2
 = 0 ksi), the maximum shear stress is equal to the in-plane principal shear 

stress of the two dimensional problem. If the zero-value stress is either the 
maximum or minimum value, either

For this case, you choose the larger of the two values from these equations.

 The maximum shear stress for the three-dimensional problem may not neces-
sarily lie in the plane of the plane stress element. Instead, it may lie in one of 
the remaining orthogonal (or perpendicular) planes of the element. Thus, an 
in-plane principal shear stress may not necessarily be the maximum shear 
stress for a given problem.
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Chapter 8

Lining Up Stress Along Axial Axes
In This Chapter
▶ Identifying axial stresses

▶ Working with bearing stresses

▶ Exploring pressure vessels

▶ Dealing with maximum stresses in geometry

In most mechanics of materials classes, often the simplest (and earliest 
introduced) stresses to compute are the normal stresses that act perpen-

dicular to a member’s cross section. Normal stresses result from different 
types of loads, such as through tension in a cable, compression of a very 
short column, or by the bending (or flexure) of a beam. Axial stresses are the 
most basic of the normal stresses, and they usually provide the jumping-off 
point into stress analysis.

In this chapter, I explain how to calculate several different types of axial 
stresses beginning with a basic bearing situation and then moving to multi-
directional axial stresses caused by pressure vessels. Finally, I explain how 
sudden changes in geometry can greatly increase stresses in a member, and 
how you can account for those changes in your analysis.

Defining Axial Stress
An axial stress is a type of normal stress that acts parallel to an axis, such as 
the longitudinal axis (or an axis that runs down the length of a member), and 
acts perpendicularly (toward or away from) a cross section. Axial stresses 
can be a significant portion of the total stress that members such as columns 
and ropes or cables may experience.

An axial stress can occur in one of two orientations: tension or compression.
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 ✓ Tension: A tension stress is a stress that pulls on a member, causing 
the member to experience an elongation (or increase in length). For 
the equations of this book, I treat a normal stress causing tension as 
a positive value.

 ✓ Compression: A compression stress is a stress that pushes on a member, 
causing the member to experience a shortening (or decrease in length). 
In this book’s equations, a normal stress causing compression is a 
negative value.

 Many textbooks use the term axial stress interchangeably with the term 
normal stress. However, this setup isn’t strictly accurate. Although axial 
stresses are always normal stresses, not all normal stresses are axial stresses. 
I explain more about this discrepancy in Chapter 9 when I discuss stresses 
from bending, which are also normal stresses.

 The units of an axial stress are measured in a force-per-area form such as psi 
or ksi in U.S. customary units and the Pascal in SI units. I discuss the basic 
units of stress in Chapter 6.

The basic equation for computing the axial stress in a tension member is

where P
INT

 is the internal axial force in the member, and A is the cross 
sectional area. For example, an axial tension rod that carries P

INT
 = 100 kip 

and has a cross-sectional area of A = 2 in2 has an axial stress of 
σ

AXIAL
 = (100 kip)÷ (2 in2) = 50.0 ksi.

Figure 8-1 shows typical stress elements in pure tension or pure compression — 
where stresses are applied either all in tension or all in compression. Figure 8-1a 
shows a uniaxial stress state (or a stress in only one direction), and Figure 8-1b 
shows a plane stress element where normal stresses (σ

xx
 and σ

yy
) are acting 

in two directions simultaneously. In each of these figures, all arrows act 
either away from the object (tension) or toward the object (compression). 
In these figures, the only stresses acting on the element are normal stresses; 
you don’t see any shear stress (or stresses that act parallel to the face on 
which they are acting) on the basic element.

In reality, you can also have a combination of the tension and compression 
cases, where axial stresses acting on the vertical faces are applying tension 
along one axis of the element and axial stresses on the horizontal faces are 
applying compression along the other axis of the element. You can also have 
shear stresses acting at the same time (which I discuss more in Chapter 10), 
but then that wouldn’t be an axially loaded stress element, now would it?
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 If the only stresses on an element are in axial tension or axial compression, the 
corresponding element that you draw is automatically a principal stress element, 
which never has any in-plane shear stresses acting on it at the orientation, only 
normal stresses. For more on principal stresses and stress transformation, turn 
to Chapter 7.

As with all stress calculations, the biggest challenge you face for axial stresses 
is determining the appropriate internal loads (see Chapter 3) and the appropri-
ate section property on which those loads are acting (see Chapters 4 and 5). 
After you have those items figured out, you’re well on your way to completing 
your stress analysis.

Getting Your Bearings 
about Bearing Stresses

Bearing stresses, or the simple stresses that result from one object pushing 
onto another, are one of the most common types of axial stresses you work 
with in structures. Examples of bearing stress (sometimes referred to as 
contact stress) include the stress that develops from this book resting on the 
desk below or from the foundation of your house sitting on the ground.

 If your house is sitting on loosely compacted sand, the settlement (sinking) 
you have on your hands (well, below your feet) is a direct result of bearing-
type stresses — and more specifically, bearing stress failures.
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 Because a bearing stress is a type of normal stress, the symbol I use for bear-
ing stresses in this text is σ with a subscript (such as xx, yy, zz, or other label) 
to indicate its direction of orientation. However, in examples in the coming 
sections, I simply refer to them as σ

BEARING
 because I’m not actually concerned 

with the direction at this time.

Exploring bearing stresses on flat surfaces
For objects with flat contact surfaces, the resulting bearing stress is equal to 
the internal contact force between them (P

INT
) and the common area at the 

contact location (A
CONTACT

).

The dimensions of the contact area A
CONTACT

 usually come from the dimen-
sions of the smaller object.

 This basic calculation actually only gives an approximation to bearing stresses 
between two objects. In reality, the true bearing stress of deformable objects 
is a highly complex phenomenon governed by Hertz contact theory, which says 
that the contact stress between two objects becomes a function of the defor-
mation of the two objects and the materials they’re made of. However, for the 
purposes of a basic mechanics of materials discussion, such as this text, this 
theory is often neglected.

Consider the two unequal blocks shown in Figure 8-2, which illustrates how 
you analyze a problem for bearing stress.

Figure 8-2a shows a scenario where a smaller block is pushing against a larger 
block. Using statics, you can compute the internal contact force (or the force 
that the small block exerts on the large block, and vice versa) and show that 
P

INT
 = P

APPLIED
. The contact area (shown in Figure 8-2b) is computed from the 

dimensions of the smaller object in contact with the larger, or A
CONTACT

 = (hL) 
for this example. The average bearing stress is shown in Figure 8-2c; you can 
compute it as σ

BEARING
 = (P

INT
) ÷ (hL) for this example.

 Bearing stress is the primary reason tools such as machine punches for 
making holes or indentations have as small of an area at the tip of the tool 
as possible. If the tip area is very small, the bearing stress increases as a 
result. If this stress exceeds the strength of the material being punched, the 
punch may create a dent, an impression, or even an actual hole in the object. 
To help the punch resist these high stresses, punches are often made from 
much stronger materials such as carbide alloys or coated in a stronger 
material such as diamond.
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Figure 8-2: 
Bearing 

stress from 
direct 

contact 
on flat 

surfaces.
 

(a) Bearing on

       Flat Surface

PAPPLIED

L
hAPPLIED

hL L

(b) Contact

 Area

Contact Area = (hL)

(c) Bearing

   Stress

σBEARING

Perusing bearing stresses 
on projected planes
Some bearing situations aren’t as simple as one flat object pushing on another 
(see the preceding section), so determining the actual area needed for calculat-
ing these bearing stresses is a bit more difficult. You encounter this situation a 
lot when you deal with bolts and shafts. A force applied to a bolt within a con-
nection such as the one in Figure 8-3a is a common example.

In this example, the transmission of these forces (P
CONTACT

) from the first 
plate to the bolt to the second plate occurs through bearing stresses between 
the plate (more specifically, the edge of the hole) and the area on the bolt’s 
shaft that contacts the hole. For these situations, you don’t actually calculate 
the area in direct contact because that’s only one half of the circumference. 
Instead, you calculate the area that’s perpendicular to the force being applied 
to the bolt, which is actually a projected area.
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You can compute the bearing stress on the projected area between the plate 
and bolt as shown in Figure 8-3b by using the following equation:

where d
BOLT

 is the diameter of the bolt or shaft and t
PLATE

 is the thickness of 
the connecting plate. If the projected area is small for the same load, the 
bearing stress increases. This characteristic is one of the reasons why you 
can slice through a block of cheese with a small wire cutter much more easily 
than you can with a thick (or wide) butter knife.

 The bearing stresses of bolts on the edges of holes are a very important con-
cern in designing structural connections. If the design exceeds the bearing 
stresses, designers often either use larger diameter bolts (which increases 
d

BOLT
) or increase the number of bolts in the connection (which decreases 

P
CONTACT

 per bolt). Both of these methods result in a decrease in the bearing 
stress of the bolts in the connection.

Containing Pressure with Pressure Vessels
Pressure vessels are unique structures that typically have an internal pressure 
acting within a basic shell structure that differs from the exterior pressure 
(known as the ambient pressure). Examples of pressure vessels include storage 
tanks, basketballs, and even the pressurized cabin of an airplane.

 The first pressure vessels were developed during the Industrial Revolution to 
serve as boilers or tanks to hold steam that powered steam engines. Design 
codes and certification procedures now stringently control the design of pres-
sure vessels because of their propensity to suddenly explode upon failure.
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Differentiating between thin- and 
thick-walled pressure vessels
Pressure vessels typically fall into two major categories that affect the 
equations you use for analysis:

 ✓ Thin-walled pressure vessels: Thin-walled pressure vessels are the most 
common type of pressure vessel you encounter in a basic mechanics 
class. A pressure vessel is typically considered to be thin-walled by 
design codes if it meets the criteria

 

  where r is the inner radius of the pressure vessel and t is the wall thick-
ness of the vessel. The pressure vessels I discuss in this chapter are all 
thin-walled pressure vessels.

 ✓ Thick-walled pressure vessels: Thick-walled pressure vessels are those 
vessels that have significant thicknesses with respect to their radii. Thick-
walled pressure vessels are significantly more complex to analyze and are 
often beyond the scope of a basic mechanics of materials course. Check 
out the “When pressure vessels become thick-walled” sidebar if you’re 
interested in more information on thick-walled pressure vessels.

When pressure vessels become thick-walled
Thick-walled pressure vessels become much more complex and require you to solve a differential 
equation in order to establish the basic equations for stress. The stresses for the radial direction r, 
the tangential direction θ, and the axial direction z have the basic form as shown:

  

where E and v are material properties and u is a 
function that expresses the radial displacement 
of the wall and has a general form of

  

C1 and C2 are constants of integration based on 
the boundary conditions for the specific prob-
lem. When working with thin-walled pressure 

vessels, you typically neglect the radial 
stresses that act perpendicular to the thick-
ness of the vessel, which are assumed to be 
very small in comparison to the other stresses 
present in a pressure vessel. However, to ana-
lyze a thick-walled pressure vessel, you must 
include the effects of those radial stresses 
making these vessels significantly more com-
plex to analyze because they’re no longer just 
plane stress problems.
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Taking a closer look at thin-walled 
pressure vessels
When you’re working with a thin-walled pressure vessel, you need to develop 
the basic equations for axial stress in pressure vessels. The following sections 
present some factors to consider and show you how to work with spherical 
and cylindrical pressure vessels.

Setting parameters
All thin-walled pressure vessel stress analysis centers on the same three 
parameters: internal pressure, inner radius, and wall thickness.

 ✓ Internal pressure: The internal pressure is the pressure inside the vessel, 
measured relative to the ambient exterior pressure. The pressure con-
tained within the vessel is typical expressed in psi for U.S. customary 
units and N/m2 (or Pa) for SI units.

 ✓ Inner radius: The inner radius is the distance measured from the central 
longitudinal axis radially outward to the inner edge of the outer wall of the 
pressure vessel. Its units are inches (U.S. customary) and meters (SI).

 ✓ Wall thickness: The wall thickness of the pressure vessel is the 
difference between the inner and outer radius of the pressure vessel 
and is usually measured in inches and meters.

You compute the actual normal stresses in thin-walled pressure vessels by 
calculating their magnitudes in two perpendicular directions, which I show in 
Figure 8-4. How you actually calculate these stresses depends entirely on the 
type of pressure vessel you’re dealing with. I discuss more about the differ-
ent types of pressure vessels in the later section, “Calculating spherical and 
cylindrical pressure vessels.”

 

Figure 8-4: 
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139 Chapter 8: Lining Up Stress Along Axial Axes

Calculating spherical and cylindrical pressure vessels
In mechanics of materials, thin-walled pressure vessels are divided into two 
basic categories, spherical and cylindrical. Although the procedure for analy-
sis is fairly similar for both, you do need to consider a couple of simple differ-
ences in their respective stress equations.

A spherical pressure vessel is a pressure vessel that has a uniform radius r in 
all directions and a wall thickness t (refer to Figure 8-5). Examples of spheri-
cal pressure vessels include soccer balls and compressed air tanks.

 

Figure 8-5: 
Spherical 
pressure 
vessels.
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For a spherical pressure vessel, the stresses in each direction on the stress 
element are the same value and can be computed from the following:

where p is the internal pressure measured relative to the exterior ambient 
pressure. For a spherical pressure vessel having a radius of 20 millimeters 
and a wall thickness of 1 millimeter, subjected to an internal pressure of 
40 kPa, you can compute the stresses as shown here:

A cylindrical pressure vessel is a pressure vessel that has a circular cross sec-
tion with radius r and wall thickness t. However, the vessel has a length L in 
the longitudinal direction (see Figure 8-6). Examples of cylindrical pressure 
vessels include cans of soda, pressurized air tanks, and airplane fuselages.
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Figure 8-6: 
Cylindrical 

pressure 
vessels.
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Unlike spherical pressure vessels, cylindrical pressure vessels have two dis-
tinctly different normal stresses acting in perpendicular directions. The first 
of these stresses is the axial stress, which acts parallel to the longitudinal 
axis of the vessel. In the calculations of this section, I refer to this stress as 
σ

AXIAL
. The hoop stress (also known as the circumferential stress) acts tangen-

tially to the radius of the cross section and is denoted as σ
HOOP

.

 Pay special attention to the direction of the longitudinal axis of the cylindrical 
pressure vessel. This direction is always the direction of the axial stress. For 
a cross section in the Cartesian YZ plane, the longitudinal axis (and thus the 
axial stress) is oriented in the Cartesian x-direction.

You can compute the axial and hoop stresses for a cylindrical pressure 
vessel by using the following equations:

where p is the internal pressure measured relative to the exterior ambient 
pressure. For the same cross section dimensions and internal pressure as 
the spherical pressure vessel example, you can find the stresses on a compa-
rable cylindrical pressure vessel by using the following equations:

 The axial stress acts down the length of the member (down the longitudinal 
axis), and the hoop stress acts tangentially around the circumference of the 
cross section. These two stresses always act simultaneously and in their 
different directions.
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141 Chapter 8: Lining Up Stress Along Axial Axes

 The hoop stress is always double the stress of the axial stress for a cylindri-
cal pressure vessel. That’s why when you see a cylindrical tank rupture, the 
direction of the rupture is always parallel to the longitudinal axis of the tank. 
This parallel rupture happens because the hoop stress is the stress that acts 
in this direction, and it always has a larger magnitude than the corresponding 
axial stress.

 If your pressure vessels are subjected to an internal vacuum, you need to 
include the effects of compression and special local stability issues that are 
beyond the scope of this text. The formulas in this section are for tension in 
pressure vessels due to an internal outward pressure.

After you have the basic stress element created, you can then begin your 
stress analysis by transforming the stresses, or determining their principal 
values, as I show in Chapter 7.

When Average Stresses Reach a 
Peak: Finding Maximum Stress

The calculation of an average normal stress (as I discuss in Chapter 6) 
requires that the resultant axial force be located at the centroid (see Chapter 4) 
of the cross section and that the member itself stay prismatic — or have 
a uniform cross section along the length — in order for the stress to remain 
uniform across a cross section. However, changes to geometry such as the 
presence of holes or notches cause that stress magnitude to vary from one 
point to another within the same cross section.

In this section, I show you how to compute the net area for average stresses 
and then how to determine the maximum stresses that can occur near holes 
or notches in a tension member.

Explaining gross versus net areas for 
average normal stress calculations
A consideration that you need to keep in mind is that the magnitude of a stress 
is directly related to the area on which the internal forces are acting. For the 
same internal load, the stress increases as the area decreases. Engineers fre-
quently drill holes in members so that they can use bolts or pins to connect 
members. These holes reduce an area, which in turn can increase the stress. A 
cross section that isn’t reduced because of holes is sometimes referred to as a 
gross cross section, whereas a cross section that contains holes or opening may 
be referred to as a net cross section.
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Consider the bar example in Figure 8-7a. It’s 6 inches tall x 1⁄4 inch thick, with 
a 2-inch-diameter hole located in the midregion of the bar. As a designer, 
you may be interested in determining average normal stresses for an applied 
external axial tension of F = +2,000 lbs applied at the ends. As part of the 
design process, you’d calculate internal stresses at multiple locations in the 
bar, such as Location 1, Location 2, and Location 3 in this example. Locations 
1 and 3 go through a gross cross section on either side of the hole, and 
Location 2 is on a net cross section passing through the center of the hole.

To calculate the average stress at Location 1, you must first slice the bar to 
expose the internal force acting on the cross section. From static equilibrium, 
you can find the internal axial force F

INT
 from the following:

 

Next, you must compute the appropriate section property for calculating the 
stress at Location 1. Because you want to compute an average normal stress 
for an axially loaded bar, you calculate the area as depicted by the shaded 
region in Figure 8-7b. Because the cross section at Locations 1 and 3 contain 
the entire cross section (it has no holes or openings), you may see this shaded 
area referred to as a gross cross section.

 

Figure 8-7: 
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143 Chapter 8: Lining Up Stress Along Axial Axes

As I show in Chapter 6, the gross cross-sectional area A
GROSS

 = (6 in)
(0.25 in) = 1.5 in2, and the average stress at these locations is 
σ

AVG 
= (+2,000 lbs) ÷ (1.5 in2) = 1,333 psi.

If you’re working with a very long, straight, uniform bar subjected to an axial 
tension force, the stress computed in the average stress equation is fairly 
accurate and consistent all along the length as long as the bar has no holes.

But wait, this example has a hole at Location 2! This hole actually removes 
material from the cross section, as shown by the shaded regions of Figure 8-7c, 
so this cross section is actually a net cross section.

 For objects with holes or grooves, you can still compute an average stress as 
an approximation. However, you must reduce the total area at that cross sec-
tion in order to calculate the average stress. You can calculate this reduced 
or area of the net cross section with the equation

where A
GROSS

 is the total area of the cross section not including holes, and A
H
 

accounts for the area you’re removing to account for the presence of holes or 
notches along the cross section.

 When calculating net cross-sectional areas for stress computations, the area 
you’re calculating is the area of solid material on which the force is physically 
acting. You must remember to subtract the holes.

To calculate the net area at Location 2, you can approach the problem in 
several ways.

 ✓ Compute the area of the shaded region above the hole and simply 
add it to the shaded region below the hole. This total summed area is 
the net area. The following equation shows you how to do this for the 
example in Figure 6-3:

  

 ✓ Find the gross cross-sectional area and subtract the area of the hole 
contained on the cross section. Use the following equation:

 

  where d is the diameter of the hole and t is the thickness of the bar (or the 
depth of the hole). This equation produces the same net area calculation.
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  For any given cross section containing multiple holes or cutouts, you 
often find that using the gross area and subtracting the holes is a much 
simpler calculation.

You can then calculate the average stress at Location 2 by using the 
following formula:

 

Notice that at Locations 1 and 3 on either side of the hole (where the gross 
cross-sectional area is used), the average normal stress is +1,333.3 psi, while 
at Location 2 (where the presence of the hole requires you to calculate a net 
cross-sectional area A

NET
), the average normal stress is significantly higher at 

+2,000 psi. This discrepancy occurs because the load is spread evenly across 
the entire gross cross section at the ends of the bar. But at Location 2, the 
same load is carried by a smaller area.

To reduce the average normal stress for a given axial load, you simply need 
to increase the cross-sectional area. An easy way to accomplish this task is 
to make the bar thicker at the hole locations. Doing so increases the cross-
sectional area without affecting the width of the bar. Designers use this 
simple trick frequently in their work with bolted mechanical assemblies.

 I should point out that the average stress condition is actually a very poor 
assumption near holes and openings because these reductions in cross-sectional 
area can actually cause a significant localized stress increase adjacent to the 
hole and openings. That is, the stresses along the cross section are no longer 
constant, which is a requirement in the definition of an average stress.

Using the force lines to 
locate maximum stress
Consider the object in Figure 8-8a in the preceding section, which shows an 
axially loaded member. The axial load is transmitted from one end of the 
object to the other by the force flow lines, which display the flow of forces 
through a member.

 You can picture the approximate force flow lines as a series of strings 
stretched tightly and equally spaced, representing the flow of force from 
one end of the axial member to the other. If you place an object in the middle 
of these strings, displacing the strings around the hole or notch, you get an 
approximation of the flow of forces (or force flow lines) from one side of the 
opening to the other.
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145 Chapter 8: Lining Up Stress Along Axial Axes

For the member shown in Figure 8-8a, the force lines remain constant (or 
evenly spaced) at a large distance away from the hole (such as Location 1). 
However, near the hole or opening (such as at Location 2), you see that the 
force flow lines tend to compress (or become closer together) as they travel 
past a hole or notch, which results in larger localized internal forces. As 
these forces increase, the corresponding stresses at these point locations 
must also increase.

To illustrate the effect of these compressed forces on a plate with a single hole, 
the corresponding normal stresses at Location 2 vary as shown in Figure 8-8b.

 

Figure 8-8: 
Stress 

variations at 
the edges of 

a hole.
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As the figure shows, the stress at Location 2 is no longer uniformly distrib-
uted but rather increases to maximum values at the edge of the hole and 
gradually reduces as you move away from the edge of the hole.

Concentrating on normal 
stress concentrations
Accurately calculating the maximum stress near a hole or notch becomes a 
complex issue. In fact, stresses in members with holes or notches become 
directly related to the ratio of the dimensions of the hole or notch to the 
width of the bar. By contrast, the average normal stress σ

AVG
 is almost always 

fairly straightforward to calculate, as I show in the preceding section.

To simplify the calculation of the maximum stress, engineers and scientists 
use stress concentration factors to relate the maximum normal stress σ

MAX
 to 

the average normal stress σ
AVG

 by the following relationship:
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In most classic texts, the stress concentration factor is represented by a con-
stant K and is typically available in tables or figures. Figure 8-9 contains an 
example of one of these curves for a hole in the middle of a flat bar.

 Originally, these concentration factors were determined based on experimen-
tal analysis results from physical testing, but now they can be determined 
numerically with computer models.

 Fortunately for engineers, many design handbooks and textbooks contain 
stress concentration factor diagrams for a wide variety of geometric varia-
tions. Just remember, you must pay special attention to the input parameters 
(the geometric ratios) for each diagram because these ratios are defined dif-
ferently from book to book and diagram to diagram.

Consider the 6-inch-wide bar with the 2-inch-diameter hole in Figure 8-7a 
earlier in the chapter. From Figure 8-9, you can compute the input ratio of 
d ÷ w = 2 in ÷ 6 in = 0.333. Finding this value on the figure’s horizontal axis 
(or the ratio) and reading up to the displayed curve, you can see that this 
point on the curve corresponds to a stress concentration factor K of approxi-
mately 2.30. This number indicates that the maximum normal stress at the 
edge of the hole is 2.30 times larger than the average normal stress on the 
same cross section.

 

Figure 8-9: 
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That means that for the bar with the hole, the maximum normal stress σ
MAX

 
(which is located at the edge of the hole) is actually

σ
MAX

 = K · σ
AVG

 = (2.30) · (2,000 psi) = 4,600 psi

Now here’s where the situation gets a little scary. Suppose your bar is only 
capable of sustaining a normal stress of 2,000 psi (sometimes called the 
capacity). The bar only had an average stress of 1,333 psi in the full cross 
section and an average stress of 2,000 psi at the cross section containing the 
hole. However, because the hole is associated with a stress concentration, 
the maximum stress spikes up to 4,600 psi at a point immediately adjacent to 
the edge of the hole, a stress that exceeds the capacity of the material at that 
location. This can lead to serious problems, including failure of the member 
at the hole location.

 Fortunately, design codes and other safety factors are included to help 
ensure that your tension member never reaches those stresses. Design codes 
and safety factors often require a member to be designed for limiting these 
stresses; that is, you may have to use a bar with a larger cross-sectional area, 
which reduces the stresses in the bar.

 Design deals with a lot more than the considerations I mention here, and in 
reality, the fact that the maximum stress at a single point exceeds the capacity 
of the material doesn’t necessarily mean that your bar will break from being 
overstressed. In fact, surprisingly, design engineers may not always design for 
the maximum stress but rather use an average stress because many materials 
simply deform and redistribute load from one force line to another.

For example, consider the case of a plate that is infinitely wide with the same 
2-inch hole in the middle. That same ratio calculation for this scenario is now 
computed as

which results in a corresponding stress concentration factor K that reaches 
its maximum value of 3.0 as indicated on the left side of the chart. For the 
example of a simple bar with a single hole, the stress concentration factor 
is never higher than 3.0.
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Chapter 9

Bending Stress Is Only Normal: 
Analyzing Bending Members

In This Chapter
▶ Identifying bending assumptions

▶ Working with pure bending of symmetrical sections

▶ Calculating stresses for non-prismatic cases

Like axial stresses (see Chapter 8), bending stresses are a subset of 
normal stresses. Bending is the phenomenon that occurs when an object 

is loaded perpendicular to a longitudinal axis. You can describe bending as 
a result of an applied load or moment that causes an object to curve from 
its original shape; think of a fishing pole that has just caught a large fish. If 
you’re fishing for a 200-pound sailfish to mount on your wall, you don’t take a 
thin pole made to catch river trout; you need something more substantial to 
withstand the large bending stresses that creature can apply to your fishing 
pole. There are actually a lot of parameters that should guide your selection 
of fishing poles (most related to length, cross section dimensions, and mate-
rial properties, though cost is probably a factor as well). That’s where the 
concepts of this chapter come in very handy.

In this chapter, I show you how to actually compute normal stresses from 
bending, and I discuss several different types of bending that you encounter in 
mechanics of materials. Although you won’t become a professional angler on 
the pro fishing circuit by reading this chapter (though you can take this book 
along to read when the fish aren’t biting), you should be able to calculate the 
normal stresses within your fishing pole when you finally hook a big one.

Explaining Bending Stress
A bending stress is a normal stress that acts on a cross-sectional area as the 
result of an internal bending moment about an axis in the plane of the cross 
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section. For example, if a member is oriented such that its cross section 
lies in the XZ plane and its length (defined by the longitudinal axis) is in the 
y-direction, the bending moments are about either the x-axis or the z-axis (or, 
in some cases, both). (A moment acting about this example’s longitudinal 
y-axis isn’t actually a bending moment; it’s a torsional moment, which I cover 
in Chapter 11). The units for bending stress are the same as the basic force-
per-area units of stress that I discuss in Chapter 6.

Members subjected to bending moments can also be referred to as flexural 
members because these objects tend to flex or curve instead of becoming 
longer or shorter in length when they deform. Bending moments (and there-
fore the bending stresses they cause) can be caused by an eccentric axial 
load (a load that doesn’t act at the centroid of a cross section), distributed 
loads, concentrated moments, or transverse forces (forces acting perpendicu-
lar to a longitudinal axis).

 Although all stresses from bending are normal stresses, all normal stresses 
aren’t necessarily caused by bending moments. I explain more about other 
types of normal stresses in Chapter 8.

Handling Stresses in Bending
Bending moments actually cause both a tensile normal stress and a compres-
sive normal stress. The maximum tension stress occurs at one end of the 
cross section, and the maximum compression ends at the other. Figure 9-1 
shows a comparison of normal stresses caused by axial loading and bending 
for the same cross section.

Under an axial load, as shown in Figure 9-1a, the axial load causes a uniform 
stress across the entire cross section; that is, the normal stresses at Points A, 
B, and C all have the same numeric values because the internal axial load is 
concentric (or passing through the centroid of the section).

However, for the same member subjected to a positive bending moment (as 
shown in Figure 9-1b), the stresses at Points A, B, and C all have different values. 
At the top of the cross section (Point A), the bending stresses are a maximum 
negative compressive normal stress, and at the bottom (Point C), the stresses 
are a maximum positive tensile stress. At Point B (at the centroid of the cross 
section), the normal stresses from bending are actually zero.

 For most bending members that are straight and prismatic, you can con-
nect the stresses at these three points by a straight line. So if you know 
two of the stresses, you can always find the third. However, you can’t do 
this if the member is made from multiple materials or if it’s not straight 
or prismatic.
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Depending on the direction of the applied moment, the maximum tensile and com-
pressive stress can occur in either edge of the cross section with respect to the 
bending axis. So be very mindful of the signs of the internal moment. However, 
in all cases, you have a maximum stress value at one edge of the cross section, 
and a minimum at the other. In between these points, the stress varies linearly.

At one point along the cross section, the signs of the stresses actually switch 
from being positive to negative (or vice versa). The point at which this occurs — 
where σ

zz,B
 = 0 — is called the neutral axis of the cross section. For symmetric 

cross sections of straight beams, the neutral axis occurs at the geometric cen-
troid (for more on centroids and symmetry, turn to Chapter 4). The neutral axis 
represents the location of a neutral surface of a beam (where no deformation of 
the beam occurs; I talk more about deformation beginning in Chapter 12).

You also can display the state of stress at Points A, B, and C individually on 
stress elements. Figure 9-2a shows the state of stress at these points for the 
axial load example of Figure 9-1a. Figure 9-2b shows the state of stress at 
these points for the bending moment example of Figure 9-1b.

 Along the length of a beam, stresses at the same position within a cross 
section may vary dramatically.
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In the coming sections, I present you with the equations for normal stresses 
from bending and define some key assumptions to keep in mind when you 
actually start calculating bending stresses.

Solving Pure Bending Cases
Pure bending is a special condition in which a structural member is subjected 
to an internal moment without the presence of axial or shear forces or tor-
sional moments. Pure bending can occur when a beam is subjected to the 
same uniform moment at each cross-sectional location as a result of either 
a concentrated effect or due to eccentric axial loads.

Establishing basic assumptions
Several basic assumptions affect the calculation of normal stresses from 
pure bending:

 ✓ Prismatic members: A prismatic member is a member that has the same 
perpendicular cross section along the length of the longitudinal axis. 
This characteristic means that for a given beam element, the cross sec-
tion has the same area and moment of inertia at all locations along the 
longitudinal axis.

 ✓ Isotropic and homogenous material properties: Homogeneous materi-
als are materials that have the same material properties throughout. 
Isotropic materials are materials that have the same material properties 
in a given direction, but may vary from one direction to another. In basic 
mechanics of materials, you typically assume that a material is both 
isotropic and homogeneous.
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  Although isotropic and homogeneous may seem to be saying the same 
thing, they’re actually different. For example, a material like steel is con-
sidered to be both isotropic and homogeneous because the atoms that 
make it up are generally considered to be fairly uniformly distributed 
and to have the same general properties in all directions and throughout 
the member. Even a material such as concrete is often assumed to obey 
these properties despite being made from particles of distinctly different 
sizes (sand, aggregate, and cement). The assumption here is that the 
materials that make up a concrete mix are generally much smaller than 
the geometric dimensions of the member itself.

 ✓ Plane-sections-remain plane: This concept is part of Euler Bernoulli bend-
ing theory, which requires that all points within a given cross section 
remain in the same cross section when a beam is loaded and undergoes 
deformation. When displacements become large or certain loads are 
applied to certain geometric shapes, warping (out-of-plane deformations) 
can also occur, which results in additional stresses developing. In addi-
tion, transverse deformations are also affected by the presence of shear; 
for this text, I neglect these shear deformations unless otherwise noted.

 ✓ Small displacements theory: The object experiences small-enough 
displacements such that deformations don’t induce additional stresses 
due to the eccentricity of internal loads. When deformations of beams 
remain very small, the analysis can (and often does) neglect axial 
effects. Small displacement theory affects the expressions for deforma-
tion by allowing trigonometric identities to be simplified, which influ-
ences internal force component calculations from statics.

 ✓ Elastic behavior: Elastic behavior means that even though a beam or 
member deforms when you subject it to a load, the deformation disap-
pears and the object returns to its original position when you remove 
the load. If any portion of the deformation of an object remains after the 
load has been removed, the behavior is referred to as a plastic behavior. 
Plastic behavior is a complicated issue that is covered in many advanced 
mechanics classes. In this text, all behavior is considered elastic.

Computing stresses in 
pure-bending applications
The normal stress due to bending can be computed from the following 
basic relationship:

In this relationship, the bending axis is the centroidal axis about which the 
internal moment is acting. Although components of the moment can actually 
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act about any three of the Cartesian axes, the bending axes are always con-
tained within the cross section of the member. The third axis (which is normal 
to the cross section) is a longitudinal axis. Moments about this third axis are 
known as torsional moments and cause twisting (not bending), which I discuss 
in more detail in Chapter 11.

This relationship shows that the stresses for linear, elastic objects at a given 
location within a cross section are directly proportional to the distance of that 
cross section from the neutral axis. Normal stresses from bending can be the 
result of bending about either of the centroidal axes, or a combination of both.

 In calculating bending stresses, which moment of inertia you use is especially 
important because you can actually have multiple moments acting simultane-
ously about different bending axes. This phenomenon is known as biaxial bend-
ing, and I discuss it in more detail in Chapter 15. You must use the moment of 
inertia with respect to the same axis as the internal moment.

 Use the subscripts to help you determine which moment goes with which 
moment of inertia; they’re always the same. If a bending moment is about the 
x-axis, the moment of inertia you need to use also needs to be about the x-axis. 
You also know that the perpendicular distance in the equation is always per-
pendicular to this same axis and must be measured within the plane of the 
cross section, so you’d measure this distance in the y-direction.

Consider a flexural member with a cross section contained in the XY plane. To 
calculate the normal stress σ

zz
 (which is a normal stress in the z-direction) due 

to bending about the centroidal x-axis, the basic relationship for symmetric 
bending is given by the following flexure formula:

where M
x
 is the internal moment that you compute from statics at the cross 

section of interest about the bending axis (or the axis about which the internal 
moment is acting). In this example, the bending axis is about the centroidal 
x-axis. I

xx
 is the moment of inertia (which I discuss in Chapter 5) about the 

axis of bending, and y is the perpendicular distance from the neutral axis to 
the location of interest within the cross section. Positive values of y are on the 
compression side (above the neutral axis for positive moments about a hori-
zontal axis) and negative on the tension side for the same case.

You can also have a second normal stress in the same direction due to 
bending about the centroidal y-axis:
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where M
y
 is the internal moment about a bending axis in the y-direction; I

yy
 is 

the moment of inertia about the bending axis in the y-direction; and x is the 
perpendicular distance from the neutral axis (which is parallel to the bending 
axis) to the location of interest within the cross section.

 If the moment varies along the length of the beam, you need to compute the 
stresses independently at every cross section, or use generalized moment 
equations (see Chapter 3) to express the stress as both a function of location 
within a cross section and position along the length of the beam.

Looking at pure bending of 
symmetrical cross sections
Consider the symmetrical T-shaped cross section located in the XY plane 
as shown in Figure 9-3a. This section is subjected to an internal bending 
moment M

x
 of +60 kip-ft about the x-centroidal axis.

 For a positive bending moment M
x
, the region of the cross section below the 

neutral axis is always in tension. Similarly, the region above the neutral axis is 
always in compression.

Time traveling to basic flexural theory’s origins
Though some academics debate about who was 
first, the general consensus is that Galileo Galilei 
(1564–1642) and Leonardo da Vinci (1452–1519) 
were the first to formulate a general flexure 
theory for beams. da Vinci was more qualita-
tive in his approach, focusing mainly on con-
struction applications, while Galileo attempted 
to relate applied loads to stresses. Despite a 
fundamental error in his assumptions, Galileo’s 
principles stood well into the 19th century.

In 1668, Robert Hooke (1635–1703) developed a 
relationship between forces and deformation 
that is perhaps the most widely known relation-
ship: Hooke’s law, which engineers still use 
today in mechanics of materials. In 1687, Sir 

Isaac Newton (1642–1727) applied his basic laws 
of motion to define equilibrium and deformation 
to flexural members. Edme Mariotte (1620–1684) 
and Parent (1666–1716) corrected Galileo’s error, 
completing the basis for flexural calculations.

Later, mathematicians and scientists expanded 
basic flexural theory into many different areas, 
such as Euler (1707–1783) and the buckling of 
columns, Coulomb (1736–1806) and his final 
flexural formulation, and Navier (1785–1836) 
and his basic theory of elasticity. In the 
20th century, Timoshenko (1878–1972) incorpo-
rated shear deformations into basic flexural cal-
culations (among countless other mechanics 
contributions).
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The cross section has the dimensions and neutral axis location shown. You 
calculate the moment of inertia about the horizontal neutral axis I

xx
 to be 

164.6 in4. For guidance on computing the moment of inertia, flip to Chapter 5.

To compute the normal stress at Point A (at the bottom edge of the cross 
section), or σ

zz,A
, the perpendicular distance to this location (sometimes 

referred to as the fiber) is taken as y = –4.18 in. This distance is negative 
because it occurs below the horizontal neutral axis:

Similarly, you determine the normal stress at Point B at the top of the cross 
section, or σ

zz,B
, at a distance of y = +2.82 in as follows:

Together, these two stress values can help you fully describe the normal 
stress distribution due to bending, which you can see in Figure 9-3b.

 

Figure 9-3: 
Calculating 
stresses for 
a symmetric 

T-beam 
section.

 (b) Bending Stress Distribution(a) Cross Section
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 You must be careful about the units of the internal moment. In many cases, 
(especially in larger structures), you compute the moment with units of kip-ft 
when using U.S. customary units. Although the kip isn’t an issue, you definitely 
must convert the feet to inches in order for your units to cancel out and leave 
you with the proper ksi units.

Employing similar triangles and a linear stress 
distribution to find unknown stresses
Because the normal stress distribution due to bending is always linear, if 
you compute one stress value, you can use the known stress at the neutral 
axis (which is 0 ksi by definition, as I explain in the earlier section “Handling 
Stresses in Bending”) as your second point. After you find one of the stresses 
in the cross section, you can use its distance and proportions to determine 
the values elsewhere.

Suppose you want to calculate the stress at Point D, which is located at a 
distance of 2 inches below the neutral axis for the cross section shown in 
Figure 9-3a. The stress at Point B is σ

zz,B
 = –16.30 ksi (C) (see the preceding 

section for that calculation). Using proportions, you can create the follow-
ing relationship between this stress (without its sign) and its distance from 
the neutral axis:

The final step is to determine the sign associated with the stress. Because the 
location of Point D is on the opposite side from the known stress σ

zz,B
, it must 

also be opposite in sense (have an opposite sign). The stress at Point B is 
compressive, so the stress at Point D must be in tension, or σ

zz,D
 = +11.56 ksi (T) 

which is also shown in Figure 9-3b.

Using an elastic section modulus to figure normal stresses from bending
Another method for quickly determining maximum normal stresses due to 
bending is to compute a hybrid section property known as the elastic section 
modulus, which helps to quickly identify the maximum and minimum stresses 
in a cross section. Coincidentally, these stresses appear at the extreme fibers 
of the cross section (the minimum is at one edge, and the maximum is at the 
other). For a cross section in the XY plane where the bending axis is the x-
centroidal axis (or the horizontal neutral axis), you can compute S

x 
as follows:

where S
x,TOP

 is the elastic section modulus for the top of the cross section 
and S

x,BOT
 is the elastic section modulus for the bottom of the cross section. 

In this expression, c
TOP

 is the perpendicular distance from the neutral axis to 
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the topmost fiber in the cross section, and c
BOT

 is the distance from the neu-
tral axis to the bottommost fiber.

 The units of the elastic section modulus S are expressed as a volumetric unit, 
meaning it can be in3 in U.S. customary and m3 in SI units. You may see differ-
ent units used here, depending on the dimensions of the cross section. After 
you have the elastic section modulus for a given cross section, you can directly 
relate the internal moment about the horizontal neutral axis M

x
 to the magnitude 

of the stress |σ
zz| at the top and bottom by the relationships

 For rectangular cross sections, the elastic section modulus for opposite edges 
of the cross section have the same value; that is, S

x,TOP
 = S

x,BOT
.

The elastic section modulus can only give you the stress at the extreme 
fibers of the cross section. You can’t use this relationship to find normal 
stresses due to bending at any other location. However, you can use it to 
determine a stress at an extreme fiber and then use the proportional triangle 
method I explain in the preceding section to find stresses at other locations 
in the cross section.

 You can also have an elastic section modulus about the vertical neutral axis. 
You just replace I

xx
 with I

yy
 and c

TOP
 and c

BOT
 with respective distances to the 

left and right edges. This section modulus is usually labeled as S
y
.

 Although this substitution may seem trivial, it’s very handy in design, which 
I discuss in Chapter 19. If you know the limiting stress of a material and the 
applied internal moment from statics, you can quickly compute the required 
elastic section modulus that you need to support this load. Many design 
references even have tables of common shapes that contain section modulus 
values already tabulated for you.

Bending of Non-Prismatic Beams
Non-prismatic beams require you to perform the same basic calculation as in 
the preceding section, but you need to work with generalized equations for 
moment and the section modulus because you must account for variations 
in dimensions of the cross section based on position along the length of the 
beam (or the z variable in this case). In fact, in tapered beams, the maximum 
stress no longer necessarily occurs at the location of maximum moment. 
Consider the example of Figure 9-4a, which shows a non-prismatic tapered 
beam with a constant width of 1 inch lying in the XY plane. The beam is sub-
jected to a concentrated load of 100 pounds and a concentrated moment of 
200 lb-ft acting in the directions shown.
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Figure 9-4: 
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beam 
example.
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 The formulas for bending that I present in the previous section are based on 
the assumption that a beam is prismatic and has the same uniform cross sec-
tion along the longitudinal axis of the member. For a tapered beam (having a 
gradually changing cross section along the length) or a stepped beam (having 
multiple prismatic sections along the longitudinal axis), those basic formulas 
can still work, but you must break the beam into finite segments that are all 
prismatic. The accuracy of your solution becomes dependent on the number 
of segments that you use.

To solve this problem, you cut a general section at a distance z from the 
left end. To determine the internal moment M

x
 at this location, you simply 

apply basic statics (as I show in Chapter 3) to the free-body diagram (F.B.D.) 
shown in Figure 9-4b. The internal moment M

x
 at a position z is found to be 

M
x
 = 100z + 200 (lb-ft).

Likewise, the basic section modulus for the rectangular cross section at a 
location z from the left end is

You can find the normal stress at any arbitrary location x by substituting into 
the basic stress equation I show in the preceding section:
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Finally, all you need to do is plug in the desired value for z at your location of 
interest and then quickly compute the maximum stresses in a specific cross 
section at any location along the length of the beam.

At the location z = 0, you find that|σ
zz| = 4,800 psi; at z = L = 60 in (at the sup-

port at Point B), you discover that|σ
zz| = 4,116 psi. Notice that the maximum 

stress now occurs at a point different from the location of maximum moment.

For a beam with a rectangular cross section, the magnitude of the compres-
sive stress at one edge of the cross section is equal to the tensile stress at 
the other end. In the Figure 9-4 example, the equation for the moment M

x
 

at location z is clockwise on the right end of the F.B.D., which is negative, 
indicating the top of the beam is in tension and the bottom of the beam is 
in compression.

 At this point, you currently have a function in terms of the position z that fully 
defines the stress, σ

zz
 at all locations along the length of the beam. You can now 

use basic calculus to take the derivative of this function and set it equal to zero:

 If you solve this function for z, you’ve then found the location of either a maxi-
mum or minimum value. After you have this location determined, you can sub-
stitute it back into the function to actually determine the maximum stress.
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Chapter 10

Shear Madness: Surveying 
Shear Stress

In This Chapter
▶ Understanding shear stresses

▶ Performing calculations with different types of shear stresses

▶ Using shear flow diagrams to determine horizontal shear stresses

Imagine you’re sitting at your desk and you reach for a piece of paper to 
jot down a quick note before you forget that brief moment of insight you 

gained while studying mechanics of materials. Out of habit, you quickly bend 
the piece of paper over the edge of the desk and rip it in half. You have just 
sheared this piece of paper.

In this chapter, I explore shear in more detail by building on the concept of 
average shear stress that I discuss in Chapter 6 and applying it to several 
basic applications. I then illustrate how flexural loads (from transverse loads 
and even concentrated moments) on beams can induce internal shear forces 
and how you can compute shear stresses once you know these shear forces. 
Finally, I show you how you can use shear flow to find shear forces at various 
locations within a cross section.

So, time to get ripping . . . err, shearing.

It’s Not Sheer Folly: Examining 
Shear Stress

A shear behavior (or internal shear force) occurs when an object is loaded 
such that it results in a motion where one part of the object tries to move 
parallel past another. If you’ve ever heard clippers or scissors referred to as 
shears, that’s because those tools’ basic purpose is to shear objects. Scissors 
and hedge shears are devices intended to load an object in shear, and they 
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162 Part II: Analyzing Stress 

cause shear stresses at localized points in order to exceed the material’s 
capacity and ultimately cause separation (or cut).

As I first discuss in Chapter 6, a shear stress is a type of stress that acts on a 
cross-sectional area as the result of an internal shear load applied parallel 
to that cross section. Figure 10-1a shows an example of a basic shearing 
condition where a shear force V on one side of the vertical cut line is balanced 
by a matching force in the opposite direction on the other side. The shear 
stress element for this example is aligned such that one of the vertical edges 
is aligned with the cut line of the section.

The shear stress on the element (shown in Figure 10-1b) at the cut line (on 
the right side of this element) is developed in response to the applied shear 
loads acting parallel to the cross section. This shear stress is then balanced 
by the vertical shear stress on the left side of the element and the two horizontal 
shear stresses (one on the top and one on the bottom) in order to ensure 
that the element maintains equilibrium.

 

Figure 10-1: 
Shear 

deformation 
and shear 

stress 
element.

 

Shear
element

(a) (b) τ
Cut
line

Cut
lineV

V

 Stresses become especially important in glue seams and nails between objects 
in members that are built up from multiple smaller objects. Causes of shear 
stresses include direct shear loads on an object and flexural loads in bending 
members. Pure shear can also be caused by torsional moments, or moments 
around a longitudinal axis. I discuss these moments and their effects more in 
Chapter 11.

You measure shearing stress as you do all stresses: in force per area. These 
units are the same as the basic units of stress I cover in Chapter 6. The 
symbol for shear stresses in most classic textbooks (and this text as well) 
is the Greek symbol tau (τ) with some sort of subscript to denote a direction 
or plane on which the stress is acting.

Working with Average Shear Stresses
Unlike internal bending moments, which can cause normal stresses in mul-
tiple directions on a cross section, average shear stresses are more like axial 
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stresses in that they generally are assumed to act in the same direction as 
the internal loads that create them.

 Average stresses are very useful in determining shear stresses across the 
thickness of a plate or the diameter of a bolt because you calculate them 
under the assumption that the shear stresses are uniform (or constant) 
along the entire cross section. However, in some cases, this assumption isn’t 
completely accurate, so I show you how to handle those cases in “Exploring 
Shear Stresses from Flexural Loads” later in the chapter.

Shear on glue or contact surfaces
Gluing two pieces of paper together is a simple example of an average shear 
stress situation. For example, consider the single glue seam connecting two 
plates as shown in Figure 10-2a. To compute the average shear stress, all you 
need to know is V

INT
, the internal load acting on the contact surface, and A

GLUE
, 

the area of the adhesive between the two plates. By drawing a free-body diagram 
of either plate (I show the lower plate in Figure 10-2b) and applying equilibrium 
equations, you can determine the internal shear on the glue seam, V

INT
 = 10 lbs.

The dimensions needed to compute the area of the glue seam A
GLUE

 are 
revealed on the same free-body diagram — in this case, the area of the seam 
is 6 inches x 3 inches. Even though the plates being connected are larger, you 
can count only the dimensions of the actual adhesive seam.

With these values determined, you can now compute the average shear 
stress of this glue example: τ

AVG
 = (10 lbs) ÷ (6 in × 3 in) = 0.56 psi.

 

Figure 10-2: 
Average 

shear 
stresses on 

a glue seam.
 (a) Glued Assembly (b) F.B.D. of Bottom Plate

Top plate

P = 10 lbs

3 in

P = 10 lbs

Bottom plate

6 in

P = 10 lbs

3 in

Glue area

VINT = 10 lbs
6 in

Shear for bolts and shafts
Designers often use bolts and shafts in connections in order to transfer 
forces from one member to another.

15_9780470942734-ch10.indd   16315_9780470942734-ch10.indd   163 6/1/11   6:33 PM6/1/11   6:33 PM



164 Part II: Analyzing Stress 

 When analyzing a connection to determine the internal forces applied, you 
must imagine what the connection looks like when it’s separated and then 
picture the fracture path that would be required to separate the two parts 
in the connection.

Two common fracture paths are the single and double shear planes across 
shafts or bolts. For two plates bolted together, the fracture path is a single 
shear plane — it runs across a bolt at a single location. If you have three 
plates bolted together by a common bolt, the fracture path needs to cross the 
bolt at two locations (a double shear plane) in order to separate the plates. 
You can actually have many, many shear planes if you use the same bolt to 
connect all those plates. In the coming sections, I show you how to calculate 
the average shear stresses for single and double shear.

Single shear situations
The simplest connection, such as the one shown in Figure 10-3, is created 
when you connect two plates with a bolt, shaft, or rivet. If you look at the 
free-body diagram in Figure 10-3b, you can conclude that in order to separate 
the two connections, you need to slice across the bolt. If this cross section 
(known as a shear plane) fails and is unable to support the load, the connection 
can be separated. A connection where only one shear plane is stressed is 
known as a single shear connection.

For example, consider the connection shown in Figure 10-3a that shows a 
tension connection consisting of two plates subjected to 500 Newton of tension 
and connected by a 25-millimeter-diameter round bolt.

 

Figure 10-3: 
Shear 

analysis of a 
single shear 
connection.

  (a) Single Shear Connection (c) Bolt Shear Diagram(b) Rear Plate F.B.D.

P = 500 N

P = 500 N

Rear plate

Bolt diameter
25 mm

P = 500 NVP = 500 N
V

If you want to determine the stress in the bolt due to this load, you first need to 
calculate the internal force. To find this force, you separate the connection into 
its two parts. By examining one of the plates, such as the rear plate, you can 
create a free-body diagram as shown in Figure 10-3b. To keep the rear plate in 
equilibrium, the force V across the bolt can be computed from statics as
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where the plus sign indicates that the assumed direction of the force V on 
the free-body diagram was correct. (For more on static equilibrium, turn to 
Chapter 3.) This fact means that the force that must be transmitted through 
the bolt is 500 Newton.

Next, you need to find the shear plane on which the shear force is acting — in 
this case, the shaded area of Figure 10-3b and Figure 10-3c, which shows the 
cross section of the bolt. Use the following formula:

You can then compute the average stress felt by the bolt:

Double shear situations
A double shear connection has two stressed planes. You can find such 
connections in a clevis assembly, which is a common design for connections 
in building structures. In order to separate this connection, you have to cut 
the bolt in two places (along two different shear planes).

 A clevis assembly is a connection consisting of a U-shaped member with a hole 
across each leg (or prong) that connects to another member with a hole by a 
single pin or bolt passing through each object.

The example in Figure 10-4a shows much the same connection as Figure 10-3 
in the preceding section. Here, you have a single plate that is sandwiched 
between two other plates, connected with the same 25-millimeter-diameter 
bolt that is loaded by the same 500-Newton force.

 

Figure 10-4: 
Shear 

analysis of 
a double 

shear 
connection.

  (a) Double Shear Connection (c) Bolt Shear Diagram(b) Rear Plate F.B.D.

P = 500 N

Bolt diameter
25 mm

V (on back
face of plate)

P = 500 N
V

P = 500 N

V

V

Just as in the preceding section, you must use equilibrium to determine the 
internal shear force acting on each plane. In this example, if you apply 
equilibrium to the free-body diagram of Figure 10-4b, you see that P = 2V, 
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which means that V = 250 Newton on each of the failure shear planes (the 
shaded regions shown on both ends of the bolt in Figure 10-4c). You can then 
determine the shear stress on each plane with the following equation:

 Changing from a single shear connection to a double shear connection for the 
same load reduces the shear stress in the bolt or shaft by half. That means 
you can actually use a smaller bolt to hold the same load.

 One way to increase the amount of shear load a bolt can carry is to increase 
the number of shear planes required to fully separate the shear connection. 
Generally speaking for a given load, the more shear planes a connection has, 
the lower the average shear stress is.

The general relationship for multiple shear planes on bolts and shafts is 
given by

where P is the applied load, A
BOLT

 is the cross-section area of one shear plane 
(not all of them), and n is the number of shear planes required to separate 
the connection.

Punching shear
Take the end of a paper clip in one hand and start pushing it against a sheet 
of paper in your other hand. Under small loads, the force may not be strong 
enough to cause the end to poke through the paper, but under larger loads, it 
may well break through. This type of loading is known as punching shear, and 
it’s an average shear stress situation that occurs when one object is pushed 
through another (often bigger) object.

In some cases, such as in fabrication or tooling, this result may be an intentional 
consequence of the process. But in other situations, such as when a concrete 
slab is supported by a concrete column, if the loads are too big, or the physi-
cal dimensions of the slab or column are too small, punching shear may be 
the unfortunate result.

Consider the application of a round mechanical punch to a thin plate 
as shown in Figure 10-5a. The 1⁄8-inch-diameter punch exerts a force of 
5,000 pounds on a 1⁄16-inch-thick plate.
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Figure 10-5: 
Punching 

shear on a 
plate.
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(a) Punching Shear (b) Punched Piece Diagram (c) Free-Body Diagram
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To determine the area on which the internal shear forces are acting, consider 
the piece that must be removed in order to allow the punch to push through 
the plate (such as the one shown in Figure 10-5b). In this case, this removed 
piece is a disc (or a circular prism) that has the same diameter as the punch 
and the same thickness as the plate.

After you have this punched piece determined, you can then draw a free-body 
diagram showing the punching force P acting on the disc and the resulting 
internal shear forces dV that must act around the perimeter of the shape 
(or the shaded region of the disc in Figure 10-5c). Assuming that the force is 
shared equally around the entire shaded region, you then know that the total 
internal shear force V = ΣdV and must be the same as the applied punch force 
P = V = 500 lbs. You can then compute the shaded area on which this shear 
force is acting as

A
PUNCH

 = perimeter of punch · thickness of punched object

In this example, you calculate the perimeter as πd and the thickness of the 
plate as t. So the area of this punch is A

PUNCH
 = πdt = (3.14)(0.125 in)(0.0625 in) = 

0.0245 in2. Now that you know both the shear force and the shear area on 
which this force is acting, you can compute the average punching shear stress:
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Exploring Shear Stresses 
from Flexural Loads

The average shear stress formulas I show in “Working with Average Shear 
Stresses” earlier in the chapter are highly inaccurate for flexural members. 
To calculate shear stress from flexure, you must use a different calculation. 
The fact is, shear stress in flexural members varies depending on the location 
of the point of interest within a given cross section. The basic relationship for 
flexural shear stress calculations is given by the following:

where V is the internal shear force on the cross-section at the location of 
interest, I is the moment of inertia (see Chapter 5), t is the width of the cross 
section at the position of interest, and Q is the first moment of area (see 
Chapter 5) of the position in the cross section about the neutral axis.

To change the shear stress distribution in a symmetric section, you must 
establish the shear stresses at various points within the cross section.

These points typically include the following:

 ✓ Topmost point in a cross section.

 ✓ Neutral axis: The neutral axis that you choose must be the neutral axis 
that’s perpendicular to the applied shear load.

 ✓ Bottommost point in a cross section.

 ✓ Locations where width changes values: This location is particularly 
important in cross sections for I-sections, T-sections, channels, and 
angles because the changes in width actually cause shear stresses to 
change in magnitude.

Determining the shear stress distribution 
in uniform cross sections
To illustrate how you compute the shear stresses at specific points within a 
rectangular cross section, consider the cantilever beam of Figure 10-6a.

In Figure 10-6a, a cantilever beam supports a load of P = 10,000 lbs and has a 
rectangular cross section of dimensions 3 inches (width) x 12 inches (height) 
as shown in Figure 10-6b. Based on these dimensions, you can compute the 
moment of inertia as I

xx
 = 432 in4. (For more on computing moments of iner-

tia, turn to Chapter 5.)
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Figure 10-6: 
Determining 
shear stress 
distribution 

for a 
uniform 

cross 
section.
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As I note in Chapter 5, the first moment of area Q of a point at the extreme 
top and bottom of a cross section must be equal to zero. That means that the 
corresponding shear stress for a vertical applied load at these locations is 
also zero. Thus, for this example, τ

TOP
 = τ

BOT
 = 0 psi.

The maximum shear stress actually occurs at the neutral axis (or Point C) 
because at this value, Q

NA
 is a maximum value. You compute the first moment 

of area about the x-neutral axis as Q
NA

 = (6in)(3in)(3in) = 54 in3.

You can now plug these figures into the flexural shear stress calculation 
as follows:

Similarly, you can find the stress at another point such as Point A, which is 
located 3 inches from the top of the cross-section (see the shaded region of 
Figure 10-6b). All you need to do is compute the first moment of area about 
the x-neutral axis:

Q
A
 = (3in)(3in)(4.5in) = 40.5 in3

and then incorporate the appropriate width at this location.
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Repeating this process at several more points, you can find the stresses at 
different locations and plot the shear stress for this example as shown in 
Figure 10-7.

As you can see from this stress distribution, the shear stress reaches its 
maximum value at the neutral axis and is zero at both the top and bottom. 
Between these points, the shear stress distribution is a second order curve 
(or a parabolic shape).

 

Figure 10-7: 
Drawing 

shear stress 
distribution.
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Handling shear stresses in 
nonuniform cross sections
Determining the stress distribution in a nonuniform cross section (a cross 
section that has varying widths) is much like the procedure for rectangular 
cross sections (see the preceding section). However, you need to make one 
additional modification to the basic formulas for shapes where the cross 
section has a sudden change in thickness.

Consider the T-section I show in Figure 10-8 with a cross section that changes 
width at Point A.

The width above Point A in the cross section is greater than the width 
immediately below Point A. Q

A
 remains unchanged because you haven’t 

changed position within the cross section. However, immediately above 
Point A, the shear stress is significantly less (because the width is greater) 
than immediately below Point A where the width is smaller. The shear stress 
experiences an instantaneous increase from one side of Point A to the other.
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Figure 10-8: 
Determining 
shear stress 
distributions 

for a 
nonuniform 

cross 
section.
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Calculating Shear Stresses 
by Using Shear Flow

As the earlier “Exploring Shear Stresses from Flexural Loads” section illustrates, 
sometimes working with shear stress diagrams can be a bit awkward when the 
stress jumps in magnitude, particularly if your cross section has sudden changes 
in thickness (such as with flanged cross sections like in I-sections or channels).

To eliminate this problem, you can modify the basic shear stress formula 
such that the thickness is initially eliminated from your calculations. In doing 
so, you can then determine shear effects in horizontal directions more 
conveniently, even when the applied shear force is acting vertically. 

Going with the shear flow
The basic shear stress calculation I describe earlier in the chapter 
(where τ = VQ/It) works best for determining shear stress in cross sections 
without openings or at connection locations where contact is continuous 
over an entire surface, such as a glue interface. For connections such as nails 
and screws where fastening ability is concentrated at a single location, the 
shear stress formula doesn’t work as well as you may like.

Instead, you need to calculate the shear flow in a section along the shear 
plane of the fastener. Shear flow (usually depicted as a variable q) tells you 
how a shear stress accumulates as you move through the cross section of a 
member or along a cross section and is always located at the center line of 
the thickness of the member at a specific location.
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 Shear flow is zero at the ends of the cross section, while the maximum shear 
flow value occurs at the neutral axis.

 Be careful that the units on your shear flow calculations are in force per length 
(N/m for SI units and lb/in in U.S. customary). Most shear calculations work with 
shear force or shear stress, which both have different units than shear flow.

Sketching shear flow diagrams
To illustrate how to create a shear flow diagram, consider the wide-flange 
(or I-section) shown in Figure 10-9a subjected to a shear force V acting 
downward across the cross section.

 

Figure 10-9: 
Sketching a 

shear flow 
diagram for 

an I-section.
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(b) Pipe Flow Analogy

 You can think of this cross section as being a system of pipes as shown in 
Figure 10-9b. When you pour the shear in from the top (assuming it’s acting 
downward), it enters at the free ends of the cross section and flows into the 
middle area and then out the free ends at the bottom. The farther the shear 
flow travels from the free end at the entrance, the more it increases, finally 
reaching a maximum value when it crosses the neutral axis. After crossing the 
neutral axis, it then begins to decrease as it moves toward the exit. In general, 
the direction of the shear flow follows the direction of the implied internal force.

When you start to create a shear flow diagram, you need to keep a couple of 
things in mind as you move through the process:

15_9780470942734-ch10.indd   17215_9780470942734-ch10.indd   172 6/1/11   6:33 PM6/1/11   6:33 PM



173 Chapter 10: Shear Madness: Surveying Shear Stress

 ✓ Determine the direction of flow based on the direction of internal 
shear along the web of the beam. The web of a cross section is the 
portion in the middle of the cross section that passes across the neutral 
axis and connects the topmost portion of a cross section with the 
bottommost portion.

 ✓ Shear flow is always applied at the center line of the region in which 
it is acting.

To create a shear flow diagram for the cross section of Figure 10-9a (as 
shown in Figure 10-9b), you follow a few basic steps.

 1. Trace vertical stress requirements through the web of the member.

  Usually, the web is oriented vertically, but in some sections it may 
actually be inclined. The vertical component of the shear flow arrow 
through the web is always in the same direction as the internal shear 
force, which in this example is from top to bottom (or downward) — 
from Point D to Point C to Point E.

 2. Draw flow lines (or arrows) from the free ends (entrance) at the top to 
the top of the web location.

  As I indicate earlier, the shear flow at the free ends of the cross section 
must be equal to zero. For this example, one flow path goes from Point 
A to Point D. In some cross sections, you may have multiple free ends 
where the shear flow enters the cross section. Figure 10-9 has two 
entrance points; the second flow path runs from Point B to Point D.

 3. Draw flow lines from the bottom of the web(s) to the free ends (exit) of 
the cross section.

  Just as with the entrance points, the shear flow at the exit points must 
also be equal to zero, so the shear flows from the bottom of the web to 
each of the exit points. That is, for this example, one path flows from 
Point E to Point G, and the other flows from Point E to Point F.

After you have the path determined, you can actually begin to calculate 
values of shear flow at important points, such as the ends of the member, 
the top and bottom of the web section, and the neutral axis. You also want 
to compute the values of shear flow at any corners or bends that may occur 
along the cross section.

Figuring shear flow quantities
When you have the directions of the shear flow established, you’re ready to 
actually begin calculating the numerical values.
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The computation required for computing the shear flow q in a cross section 
is given by the basic relationship

where V is the applied vertical shear force on the cross section, Q is the 
first moment of area for the cross section, and I is the moment of inertia 
of the cross section. (Head to Chapter 5 for more on moments of area and 
moments of inertia.)

This relationship is basically the same as the shear stress equation earlier 
in the chapter except that it removes the thickness from the calculation, 
making q = (τ)(t).

 Shear flow is actually a gradient of the shear stress and is independent of 
thickness, whereas a shear stress actually changes instantly when a cross 
section thickness varies.

To compute the shear flow q
1
, which is the value of the shear flow as it 

moves from Point A to Point D, you simply take a rectangular region — for 
this region, it’s the entire upper-left flange — and calculate the first moment 
of area Q for this region: Q

1
 = (4 in)(0.75 in)(5.625 in) = 16.875 in3. The shear 

flow from q
1
 at Point A is then given as

Because the flange is oriented parallel to the neutral axis, the shear flow 
increases linearly from zero at Point A to the value of q

1
 at Point D.

Similarly, you calculate the shear flow q
2
 in the same fashion. Because the 

dimensions of the flange between Point B and Point D are the same as the 
flange from Point A to Point D, q

2
 must also be equal to q

1
.

At Point D, where the flows from each of the entrance points combine into 
one shear flow value moving down the web of the cross section, you can 
compute the flow at the top of the web by adding the flows from the ends 
of each of the flanges:

Finally, you can compute the maximum shear flow q
4
, which also occurs at 

the neutral axis. To compute the first moment of area, Q
4
 = (2)(16.875 in3) + 

(5.25 in)(0.75 in)(2.625 in) = 44.09 in3. With this value determined, you now 
know that the shear flow at the neutral axis is
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175 Chapter 10: Shear Madness: Surveying Shear Stress

Because the shear flow from Point D to Point C is moving toward the neutral 
axis (as opposed to parallel to it), the shear flow distribution is parabolic. 
The lower portion of the shear flow diagram is similar to the upper because 
of the symmetry of this shape about the horizontal neutral axis. Figure 10-10 
shows this final shear stress distribution.

 

Figure 10-10: 
Shear flow 

diagram for 
I-section 
example 
problem.
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Finding shear centers from shear flow diagrams
You can use a completed shear flow diagram to 
actually calculate the equivalent shear forces 
in different parts of a cross section, such as 
horizontal forces in the flanges or vertical 
forces in the vertical web of an I-section. The 
force in a particular part of the object is equal to 
the area under the shear flow diagram and can 
be computed from the basic integral

  

where q is the shear flow in that part. With these 
shear forces determined, you can then determine 
a very special point in a cross section by 
summing moments to find the point where all of 
the shear forces are balanced rotationally. This 

point, known as the shear center, is the point 
through which you can apply an applied shear 
force without causing a twisting or rotational 
effect on the cross section. The shear center 
is always located on an axis of symmetry (see 
Chapter 4) if the object has one. If an object 
has two axes of symmetry, the shear center 
occurs at the intersection of those two axes. If a 
shear force is applied to a cross section at any 
location other than the shear center, it creates 
a torsion effect (which I cover in Chapter 11), 
and the object twists about its longitudinal axis. 
This occurrence is a major problem for some 
sections, such as channel sections (C-shapes) 
as shown in this figure.

(continued)
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(continued)
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As you can see, the shear flow diagram and, 
consequently, the resulting forces FTOP, FBOT, 
and V induce a rotational effect about the 
centroid at Point C. These forces together 
want to rotate the shape in a counterclockwise 

direction. The equivalent location of just the 
vertical applied force V would have to be applied 
at Point E to provide an equivalent force-couple 
system. In these shapes, the shear center can 
be located outside of the cross section.
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Chapter 11

Twisting the Night 
Away with Torsion

In This Chapter
▶ Developing the assumptions for torsion

▶ Exploring torsional stresses

▶ Determining shear stresses in various cross sections

Other chapters in Part II look at different types of loading and the 
stresses they cause on an object. In this chapter, I show you another 

type of loading: torsion, which creates shear stresses in the object on which 
it acts. From spinning shafts in a hydroelectric power generating station to 
the simple task of turning a doorknob or twisting the cap off a bottle of your 
favorite beverage, torsion is an everyday part of your life.

In this chapter, I show you some of the basic assumptions required for classi-
cal torsional analysis, and how you can use these assumptions to determine 
the shear stresses in circular and non-circular cross sections. I then explain 
a basic methodology for performing basic shear stress analysis of cross 
sections of multiple enclosed cells.

Considering Torsion Characteristics
A torsional moment, sometimes referred to as torque, is a moment that acts 
around a longitudinal axis of the object. Unlike bending moments, which 
cause a beam to curve, torsional moments cause an object to twist.

Torsional moments vary from bending moments in that they always rotate 
about an axis that isn’t in the plane of the cross section. For an object with a 
cross section in the XY plane, a torsional moment acts around the z-axis. For 
the same cross section in the XY plane, moments about the x- and y-axes 
produce a bending result, which creates normal stresses on a stress 
element (as I explain in Chapter 9).

16_9780470942734-ch11.indd   17716_9780470942734-ch11.indd   177 6/1/11   6:33 PM6/1/11   6:33 PM
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Defining the direction of torsion can sometimes be a bit difficult because you 
have to be thinking about which end of the object the torque is acting on. 
Consider the object shown in Figure 11-1a, which is subjected to a torque T 
acting in opposite directions on the end of the shaft. In the position shown, 
these torsional moments represent a positive torque situation as defined by 
the right-hand rule for moments in Chapter 3.

 

Figure 11-1: 
Sign 

convention 
for torsion.

 (a) (b)

T

T

Longitudinal
axis

T

T

You can also display this convention by using the double-headed vector nota-
tion that I describe in Chapter 3. For the bar shown in 11-1a, the correspond-
ing double-headed notation has both of the double arrowheads pointing 
away from the object (as in Figure 11-1b), which indicates a positive torque.

As with all stresses, the units of a shearing stress from torsion are measured 
in a force-per-area form. These units are the same as the basic units of stress 
I discuss back in Chapter 6.

Working with Shear Stresses 
Due to Torsion

You need to keep a few factors that affect an object’s response to torsion in 
mind when you start analyzing those twisting objects. The following factors 
play a key role in an object’s response:

 ✓ Internal torque: Like all stress calculations, you must first determine 
the internal loads from statics that act on the cross section. For torsion 
problems, those loads are the internal torsional moments about the lon-
gitudinal axis of the member. If you increase the torque on a cross sec-
tion of a shaft, you also increase the shear stress.

 ✓ Position in cross sections: Shear stresses from torsion are directly 
related to the distance from the centroid (or longitudinal axis) of the 
cross section to the point at which you’re calculating the shear stress. 
You must measure this position radially outward from the centroid.
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179 Chapter 11: Twisting the Night Away with Torsion

 ✓ Torsional constant: The torsional constant is a section property that is 
a measure of the resistance of a beam or shaft to applied torque and 
is a function of the cross section’s geometric dimensions and shape. 
Different shapes of cross sections behave differently under torque. 
Round shapes are the simplest, and that’s where I start the discussion 
later in the chapter.

 An important assumption I make in this book is that any torque applied to 
the shaft doesn’t cause permanent deformation after it’s removed. The ability 
of an object to rebound to its initial position is known as elasticity (which I 
discuss further in Chapter 14).

Defining the shear stress element for torsion
Just as with axial stress in Chapter 8, the direction of the shear stress due to 
torsion on an exposed face is always in the same direction as the internal 
torsion on that face. Consider the object shown in Figure 11-2a.

 

Figure 11-2: 
Establishing 

a shear 
stress 

element for 
torsion.
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 Torque applied to round or circular cross sections (such as many mechanical 
shafts), creates stress on an element in a state of pure shear — that is, a state 
of stress with no normal stress, only shear stresses.

If torsion combines with other effects, such as bending or axial loads, you 
can actually have an element with both normal and shear stresses on it as 
well. Don’t worry too much about combined stress effects here; I clarify 
more about them in Chapter 15.
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 For the shaft of this example (which is subjected to positive torsion), if you 
draw an element such that the left face of the element lies on the left end of 
the bar, the shear stress that appears on the left end of the shaft must be 
acting in the same direction as the internal torque T on the cross section. 
Using the methodology for balancing a stress element (see Chapter 6), you can 
develop the pure shear stress element shown in Figure 11-2b.

Computing the torsional constant
The torsional constant is a section property that describes an object’s resis-
tance to a torsional moment. In classic mechanics, the torsional constant is 
the same constant that St. Venant helped to develop and is represented by 
the variable J. The larger this constant is numerically, the more torque you 
need to apply to make an object twist a given amount.

The most common (and perhaps the simplest) cross sections to analyze for 
torsion are circular shafts. Solid shafts and hollow circular tubes behave very 
similarly under torsion loads, and consequently have very similar torsional 
constants. For a circular sections

and for hollow circular tube sections

where c is the radius of a solid circular shaft; c
o
 is the outer radius of a hollow 

circular shaft; and c
i
 is the inner radius of the hollow circular shaft (see 

Figure 11-4 later in the chapter for reference).

 You may recognize that the values for the torsional constants for round cross 
sections are actually identical to their polar moments of inertia (see Chapter 5). 
Although mathematically this observation makes little difference in your calcu-
lations, it’s a very important yet subtle difference.

Circular cross sections don’t experience any unusual response to torsion. The 
behavior of circular shafts is fairly uniform because as a round shaft twists, the 
cross section doesn’t experience any distortion, also known as warping.

The torsional constant is vastly different for non-circular shapes. For non-
circular cross sections, torsion causes the cross section to distort, so you 
need a different approach to estimate their torsion constant. In fact, in many 
cases you can’t compute this constant directly; you have to experimentally 
obtain it. Fortunately, scientists and physicists have already done this task 
for many cases and have tabulated the coefficients that can help you approxi-
mate this value in many references and textbooks.
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For a single rectangular cross section, the torsional constant is J = βab3, where a 
is the long dimension of the rectangle and b is the short dimension (usually the 
thickness). The coefficient β is determined based on the proportions of the two 
sides of the rectangle a/b. Table 11-1 shows several values for β.

Table 11-1 Warping Coefficient for Rectangular Sections

a/b 1.0 1.5 2.0 5.0 10.0 Infinity

β 0.141 0.196 0.229 0.291 0.312 0.333

For composite shapes consisting of multiple rectangular sections, you can 
get an approximation of the torsional constant by summing the torsional 
constants for each of the individual rectangular regions that make up the 
composite shape. For example, consider the T-section in Figure 11-3.

 

Figure 11-3: 
Torsional 

constant for 
T-section 
example.

 

Area

Area

5 in
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For this shape, you can divide the region into two rectangular shapes and 
compute the torsional constant for each. With this torsion constant com-
puted, you can approximate the shear stress of non-circular shafts, which I 
discuss a little later in the chapter.
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Computing Shear Stress from Torsion
Most torsion examples in a basic mechanics of materials textbook require 
that your computations be conducted on solid round or hollow circular 
sections (which I highlight in the next section). However, you can also use 
other techniques for evaluating torsion on non-circular cross sections and 
cross sections of multiple cells, which I explain a little later.

Tackling torsion of circular shafts
Basic torsional stress formulations center on the assumption that deforma-
tion of a point in the cross section of a shaft is directly proportional to the 
distance of that point from the center of the shaft (or the longitudinal axis). 
To determine the shear stress τ at any point within a circle cross section

where T is the internal torque on the cross section; J is the torsional constant 
for the cross section (which I discuss in the preceding section); and r is the 
direct distance from the center (or longitudinal shaft) to the point of interest. 
You must measure r radially within the cross section.

 If you plot this relationship (as I do in Figure 11-4a), you can see that for a 
solid circular shaft, the stress increases radially from the centroid, where the 
shear stress is zero, to its maximum value τ

MAX 
at the outer fiber (or the outer 

edge of the cross section) of the shaft.

 

Figure 11-4: 
Shear stress 
distributions 
for solid and 

hollow 
circular 
shafts.
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For a hollow shaft, the maximum stress is still located at the outer fiber, but 
the stress distribution is truncated such that no stress is acting on the empty 
region of the hollow shaft (see Figure 11-4b).
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 If you look at Figure 11-4, you may notice that for a hollow shaft, only a small 
portion of the total shear stress is actually missing from the middle of the 
shaft — that is, that the middle of the shaft is never fully stressed. That 
means that the outer portions of a circular cross section carry the majority 
of the torque. If designed properly, hollow tubes are generally more efficient 
when dealing with torsion because a hollow shaft typically weighs less but 
can support similar torsional moments.

To compute the maximum stress in a solid round shaft with a radius of 200 mil-
limeters (or 0.2 meters) and an applied torque of 5,000 Newton-meters,

where T is the internal torque on a cross section; J is the torsional constant; 
and c is the outer radius of the cross section.

Determining torsion of 
non-circular cross sections
For non-circular sections (such as the T-section shown in Figure 11-3 earlier 
in the chapter), the largest shear stresses occur at the centers of the cross 
section’s faces. For rectangular sections the maximum shear stress is

where T is the internal torque on the cross section; t is the thickness of the 
cross section perpendicular to the longest side; and J is the torsional constant 
that I show in “Computing the torsional constant” earlier in this chapter.

For example, a rectangular beam with dimensions of 5 inches (height) x 1 inch 
(thickness) is subjected to an internal torque of 1,200 pound-inches. The maxi-
mum shear stress in the 5-inch sidewall is computed as

Note: In this equation, 0.291 = β as given by Table 11-1 (for a/b = 5.0) earlier in 
the chapter.
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Applying shear flow to torsion problems 
in thin-walled sections
A very useful method known as the Bredt-Batho theory can greatly simplify 
torsion problems of thin-walled sections. In fact, for this theory to work, 
the shape no longer even has to be circular, and you don’t need to compute 
those pesky torsional constants (J) that I describe earlier in this chapter.

The theory utilizes the idea that in a thin-walled object, the shear flow q result-
ing from torsion is constant at all locations around the cross section. Further, 
it states that you can express the average shear stress at any location as the 
product of the shear flow q and the thickness t at that location: τ

AVG
 = (q) ÷ (t).

This theory says that the average stress at a given location can be given by

where T is the internal torque; t is the thickness at a given location; and A
M

 is 
the area of the cross section bounded by the median centerline of the outer 
wall thickness (see Figure 11-5).

However, as with other torsion methods, you need to keep some 
limitations in mind:

 ✓ Sections are thin walled. A thin-walled section is a cross section where 
thickness of the object is significantly smaller than the dimensions of 
the cross sections.

 ✓ Sections are closed sections. A closed section is a section, such as a tube 
or hollow section, with an outer perimeter that closes on itself. Objects 
with slits don’t count as closed sections.

St. Venant: Jack of all (engineering) trades
Adhémar Jean Claude Barré de Saint-Venant 
(1797–1886) was a mathematician who did con-
siderable work in the areas of mathematics and 
fluid and solid mechanics. In fluid mechanics, he 
was the first to publish the correct derivation for 
the Navier-Stokes equation, which describes the 
flow of viscous fluids. In mathematics, he devel-
oped a version of vector calculus known as exte-
rior differential forms. And in solid mechanics, he 

was one of the first to recognize that every cross 
section, except for circular shapes, experiences 
some degree of warping when subjected to tor-
sion loading. His principle is what shows that cir-
cular cross sections have the greatest torsional 
stiffness. Accounting for the effects of warping 
requires experimental data, some of which you 
can see in the section “Computing the torsional 
constant” in this chapter.
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185 Chapter 11: Twisting the Night Away with Torsion

 ✓ Shear flow is constant. The shear flow (which I introduce in Chapter 10), is 
assumed to be constant around the cross section that’s subjected to torsion.

 

Figure 11-5: 
Thin-walled 

section 
showing 
median 

area.

 

t1 2

C

1

2

3

Longitudinal axis

Median centerline

AM (shaded region)
t1 2

t3 2

t3 2

t2 2
t2 2

Consider the rectangular tube shown in Figure 11-6a, which has a height of 
200 millimeters, a width of 90 millimeters, and a wall thickness of 10 millimeters.

 

Figure 11-6: 
Torsion of a 
thin-walled 
rectangular 

section.

 

Thickness
10 mm

90 mm

200 mm

Median center line

(a) Tube Cross Section

80 mm

190 mm
AM

(b) Median Center Line
Area (AM)
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You can find the median center line area in Figure 11-6b with the equation 
A

M
 = (80 mm)(190 mm) = 15,200 mm2. If the applied torque is 5,000 Newton-

meters, you can determine the shear stress as

Using shear flow to analyze torsion 
of multicell cross sections
In some structures, a cross section is subdivided into several small compart-
ments that are attached to an outer shell or skin. This type of construction is 
common in ship hulls and airplane wings, where intermediate stiffeners help 
transmit forces from an inner region of a cross section to an outer skin. These 
types of systems are referred to as multicell cross sections (see Figure 11-7.)

 

Figure 11-7: 
Multicell 

cross 
section 

example.

 Multi-Cell Cross Section

A
1

A
2

12 in

10 in
¼ in

10 in

20 in

12 in 20 in

¼ inin1 8

in3 16

in1 16 in1 16

in3 16

Divider wall
q2

q1

In multicell systems subjected to torsion, each of the individual compart-
ments works to resist applied torsion. Using statics, you can show that the 
total torque T that can be applied to a multicell region is

T = 2q
1
A

1
 + 2q

2
A

2

where q
1
 and q

2
 are the shear flows of each of the cells, and A

1
 and A

2
 are 

areas of each of the cells. From this equation, you can see that the system is 
statically indeterminate (see Chapter 3) because at this point you don’t know 
the individual values of the cell’s shear flow at the start. To provide the extra 
information, you have to look at the deformation behavior equations of the 
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187 Chapter 11: Twisting the Night Away with Torsion

element, known as compatability equations (which I explore in more detail in 
Chapter 16). For now, I just mention the relationships that you use:

w
11

q
1
 + w

12
q

2
 = 2A

1
Ψ

w
21

q
1
 + w

22
q

2
 = 2A

2
Ψ

where Ψ is the twist per unit length of the member, and w
11

, w
12

, w
21

, and w
22

 
are equations that correlate the deformation between each of the cells. These 
formulas are of the following basic relationship:

w
11

 is for Cell 1; w
22

 is for Cell 2; and w
12 

= w
21

 is for the portion that connects the 
two individual cells — the divider wall. w

12
 and w

21
 are also a negative value.

 The variable G that you see in the equation is a material constant for shear that I 
discuss in Chapter 14. As long as the whole cross section has the same G value, 
this shear constant doesn’t ultimately affect the calculations. For now, you can 
just leave this value in its variable form. With these basic relationships, you can 
then set up a system of equations related to the parameter Ψ, which then allows 
you to compute the shear flow in each cell, and ultimately the shear stress.

To determine the stress in the walls of a multicell section (such as Figure 11-7), 
just follow these steps.

 1. Compute w
11

, w
12 

, w
21

, and w
22

.

  For Figure 11-7, use the following equation. Remember that when you calcu-
late w

12
 and w

21
 for the divider wall, you need to make these values negative.

 

 2. Substitute the correlations from Step 1 into the compatibility 
equations and solve for the twist per unit length, or Ψ.

  If A
1
 = (12 in)(10 in) = 120.0 in2 and A

2 
= (20 in)(10 in) = 200.0 in2, you can 

write the compatibility equations as follows:

16_9780470942734-ch11.indd   18716_9780470942734-ch11.indd   187 6/1/11   6:33 PM6/1/11   6:33 PM



188 Part II: Analyzing Stress 

 3. Use basic algebra to solve these two equations simultaneously for q
1
 and q

2
.

  For this example, q
1
 = 0.819GΨ and q

2
 = 0.852GΨ.

 4. Substitute the two expressions from Step 3 into the original equilib-
rium equation to solve for GΨ.

  Suppose the multicell cross section of Figure 11-7 is subjected to an 
internal torque T of 200,000 lb-in. You can solve for GΨ as follows:

 5. Determine the shear flow in each section by substituting the value of 
GΨ back into the q

1
 and q

2
 equations.

  For Figure 11-7, that math looks like this:

 

 6. Determine the shear stresses in the outer walls.

  As Chapter 10 states, the shear flow q = τt. The shear stresses are maximum 
in the thinnest walls of each section. For the outer walls of cell #1, 
τ

MAX
 = (304.8 lb/in) ÷ (0.0625 in) = 4,877 psi. For the outer walls of cell #2, 

τ
MAX

 = 317.1 lb/in ÷ (0.0625 in) = 5,074 psi.

 7. Calculate the shear stresses in the divider walls.

  The shear stresses in the divider walls are a little different. Notice that 
for Cell 1, a clockwise shear flow q

1
 acts downward through the divider 

wall. On the other hand, for Cell 2, a clockwise shear flow q
2
 acts upward 

through the divider wall. This discrepancy means that the two shear flows 
are fighting against each other. Thus, the shear stress in the divider wall 
can be expressed as the difference of the shear stress from each of the 
shear flows of the adjacent cells:

 

 Although this example deals with shear stresses for rectangular sections, the 
shape of the section really makes no difference in the calculations as long as 
you know the length of each wall (or an arc-length if it’s curved) and the cor-
responding uniform thickness for that segment. The only other major require-
ment is that the wall’s thickness must be much smaller than the dimensions of 
the wall’s length. You can also extend this methodology to cells of any combina-
tion of shapes and size. Just remember that each cell within the cross section 
has its own unique value for shear flow.

16_9780470942734-ch11.indd   18816_9780470942734-ch11.indd   188 6/1/11   6:33 PM6/1/11   6:33 PM



Part III

Investigating 
Strain
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In this part . . .

Strains are the second major fundamental area of 
mechanics of materials, so in this part I explain 

the basic concept of strain and how to calculate both 
longitudinal and shear strain values. I show how you can 
use these values to determine maximum and minimum 
strain values (known as principal strains) and their 
orientations by using strain transformation techniques. 
I also define the different material properties that let you 
relate load to deformation and, more importantly, stress 
to strain.
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Chapter 12

Don’t Strain Yourself: Exploring 
Strain and Deformation

In This Chapter
▶ Defining the basics of strain

▶ Computing normal and shear strains

▶ Analyzing objects under thermal loads

▶ Introducing plane strains

When you’re working in your yard on Saturdays, strain is what you 
feel when you overstuff that bag of leaves and then try to move it. It 

starts as a pain in your lower back and can eventually lead to you blacking 
out on the front lawn or experiencing a loss of feeling in your toes.

Fortunately for you (and your insurance provider), strain in mechanics of 
materials is usually a bit less painful. When an object is trying to support a 
given load, strain is the effort with which it’s trying to resist; you measure it 
in terms of a deformation.

Assumptions regarding deformation vary a bit from statics to mechanics 
of materials. Statics equations are limited to rigid bodies (bodies that don’t 
experience deformation under a load). However, in the real world, this sce-
nario can’t be entirely true, simply because all objects are actually deform-
able bodies — they experience deformation when they’re loaded.

In this chapter, I describe one of the most important links between statics 
and deformation: the concept of strain in objects. I also introduce you to 
several different types of strain that an object can experience under a load. 
Finally, I cover thermal strains, which are caused by changes in temperature.
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192 Part III: Investigating Strain 

Looking at Deformation to Find Strain
 Strain is a measure of the deformation of an object in response to internal 

loads, so the more you strain an object, the more it deforms.

 Although you can technically only use the equations of equilibrium in Chapter 3 
on rigid bodies, you usually find that the deformations of an object under 
normal loads typically remain so small that you can reasonably assume that 
their actual magnitude is almost zero. For this reason, you can usually say that a 
deformable object with very small deformations is basically the same as a rigid 
body, which then allows you to use the basic statics relationships of equilibrium.

Unlike stress in an object (see Chapter 6), which you can’t actually see, defor-
mation is a visible and measurable quantity. When you pull on a tension rod, 
you can see the rod physically increase in length (or elongate). When you bend 
a beam, you see it curve. Deformations are a direct indicator of strain. And the 
best part is that unlike stress, you can physically measure deformation, which 
lets you compute strain. (I explain more about how to do that in Chapter 13.)

In mechanics of materials, you work with two basic types of strain:

 ✓ Normal strains: A normal strain is a strain computed from relative dis-
placements that are measured perpendicular to two reference planes. 
Normal strains measure the relative perpendicular movement of one 
reference plane with respect to another. The symbol for normal strain is 
usually the lowercase Greek symbol epsilon (ε).

 ✓ Shear strains: A shear strain is a strain computed from relative displace-
ments that are measured parallel to two reference planes. Shear strains 
measure the relative parallel movement of one reference plane with 
respect to another. The symbol for shear strain is usually the 
lowercase Greek symbol gamma (γ).

In the following sections, I introduce the basic relationships for strain and 
then show you how to calculate both normal strains and shear strains.

Strained relationships: Comparing lengths
All strain calculations are affected by two primary factors, reference length 
and deformation:

 ✓ Reference length: The reference length (sometimes referred to as a 
gauge length) is the length prior to the deformation occurring and is 
measured in specific directions depending on the type of strain you’re 
calculating. In experimental testing, this gauge length is typically speci-
fied to be a particular dimension.
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193 Chapter 12: Don’t Strain Yourself: Exploring Strain and Deformation

 ✓ Deformation: The deformation is a measure of how much an object 
deforms from its original dimensions or size in a given direction. 
Depending on which deformation you measure, you can calculate 
different types of strain, which I describe later in this chapter.

The basic relationship for all types of strain is given as

Examining units of strain
Strain is actually a unitless quantity, even though units are often reported 
as meter per meter in SI units and inch per inch in U.S. customary units. 
Algebraically speaking, these units cancel each other out. However, 
engineers often leave them in this form as a reminder of which units the 
calculation involved.

Because deformations of objects are generally much smaller than the original 
length, in most engineering applications the strains you actually calculate 
are usually on the order of 10–5 or 10–6 in size. When they aren’t expressed as 
meter per meter or inch per inch, you commonly see the units written as the 
Greek lowercase symbol mu (μ), which is actually the SI prefix for micro- (see 
Chapter 2). However, you can use this symbol with strains calculated from 
either SI or U.S. customary units.

The SI prefix micro is actually 10–6. By using this unit, you can convert a really 
small number such as 0.00001 in/in or 10.0 × 10–6 in/in to a much more simpli-
fied representation of 10μ. This setup simplifies the numerical expressions 
significantly and can help you avoid costly errors in writing strain values or 
miscounting all of those extra zeroes in the decimal answers (don’t worry, it’s 
an easy mistake to make)!

Using formulas for engineering 
and true strains
In mechanics of materials, you actually find two variations of normal strain: 
engineering strain and true strain. Each of these strain values serves a unique 
purpose.

Engineering strain is a strain calculation that you typically use when defor-
mations in objects remain really small (usually less than about 5 percent of 
the original reference length). In this case the engineering strain equation 
looks like the same basic strain relationship I describe in the earlier section 
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“Strained relationships: Comparing lengths.” For a normal strain calculation, 
this expression may look like the following:

where ΔL is the total change in length (or the deformation) and L
o
 is the origi-

nal length measured in the direction of the deformation.

True strain, on the other hand, is used for larger deformations because in 
reality, strain increases exponentially based on the force applied to the 
object because the reference length is constantly changing due to the defor-
mation. For a normal strain calculation, you can express the true strain by 
using the following equation:

where L
o
 is the initial reference length and L is the current length when you 

calculate the strain value.

 For very small strains, the true strain and engineering strain yield similar values.

Normal and Shear: Seeking Some 
Direction on the Types of Strain

Depending on the type of stress you put on it, an object can experience a 
normal strain, a shear strain, or a combination of both. These strains are 
a direct result of the stresses applied to the object; normal stresses cause 
normal strains and shear stresses cause shear strains.

In the following sections, I show you how to actually identify normal and 
shearing strains, how to represent this information on a basic graphic, and 
how to perform their basic calculation.

Getting it right with normal strain
Just as with normal stress components (see Chapter 6), normal strains are 
usually measured parallel to a longitudinal axis or perpendicular to the cross 
section on which the normal stresses are acting. The member in Figure 12-1 
illustrates a simple element that shows the normal strains that can develop 
from a uniaxial (or single direction) load in the x-direction.
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Figure 12-1: 
Defining 

normal 
strains.

 
Normal Strain

(Uniaxial Load Case)

y

x

Deformed shape

Original
shape (1 × 1)

The strain in the x-direction (ε
xx

) is an elongation, but the applied stress also 
causes a shortening in the transverse (or y-direction for this problem), which 
causes a transverse normal strain, ε

yy
. (I discuss these transverse normal 

strains in more detail in Chapter 14.)

 Normal strains are often caused by axial or bending effects (though other 
effects such as temperature can also cause normal strains — I talk more 
about these effects later in this chapter). In two dimensions, you can have 
two normal strains. In three dimensions, you can have as many as three 
normal strains — just like stresses!

Establishing a sign convention for normal strains
The sign convention for normal strains is similar to the sign convention for 
normal stress. The sign convention I use in this book is fairly standard among 
most classic textbooks (see Figure 12-1). I define normal strains as being posi-
tive if they result in an elongation of the strain element. In Figure 12-1, ε

xx
 is 

a positive strain. Likewise, I consider normal strains negative if they cause a 
shortening of the strain element, like ε

yy
 in Figure 12-1 does.

 Like normal stresses in two and three dimensions, you can have stresses that 
are both positive and negative acting on the same element. That is, the state 
of strain on an element may be such that it has an elongation in one direction 
and a shortening in another direction.

Computing average normal strains
For normal strains, you measure the percent elongation in the same direction 
as both the basic length and the deformation.

For example, consider a 2.0-meter-long bar that experiences an axial elonga-
tion of 0.1 meters. The normal strain in the longitudinal direction is
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Compare this example to a 20.0-meter-long bar that experiences an axial 
elongation of 0.1 meters. The normal strain for this bar is

Although strain is important, deformation is also a concern for design. The bar 
of the second example is much longer and has deformations nearly ten times as 
large, but the strain in the bar is still the same value. Consider the 6-inch-round, 
1-inch-diameter cylinder in Figure 12-2. Under a compressive load, the axial 
deformation (in the z-direction) is 0.02 inches. At the same time, this load 
causes an increase in the radius of 0.00074 inches (or 7.4 × 10–4 inches).

 

Figure 12-2: 
Normal 

strains on a 
cylinder.

 

z

x

0.02 in

6 in

0.0074 in

0.0074 in
0.5 in0.5 in

Deformed
shape

Original
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Longitudinal axis

y

You can compute the strain in the axial direction (along the z-axis) as

And in the radial direction (which happens to also include the x- and y-directions),

Finding a new angle with shear strain
Instead of causing a member (or element) to become longer or shorter, shear 
strain defines the behavior of opposite faces of an element (see Figure 12-3). 
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Under a shear strain, a square cross section may become a rhombus as 
opposite faces move parallel with respect to each other.

 

Figure 12-3: 
Defining 

shear 
strains.

 

y

x

Lx

Ly

γ

 You encounter shear strains in problems that include internal shear forces 
from bending (which I define in Chapter 10) and in problems involving torsion, 
which I mention in Chapter 11.

Establishing a sign convention for shear strains
The sign convention for shear strains is somewhat different than the conven-
tion for shear stresses in Chapter 6. To define shear strain, you have to look at 
the deformation of the strain element — and more specifically, the angles of 
the horizontal and vertical faces.

Because shear stresses are equal on horizontal and vertical faces of a 
two-dimensional element, the shear strains that result from these stresses 
are also equal. For this reason, the shear strain of the horizontal face is 
one-half the total shear strain on the element; the shear strain on the vertical 
face is also one-half (as shown in Figure 12-4a).

 

Figure 12-4: 
Sign 

convention 
for positive 

shear strain.
 

y

x

y

x

(a)  Half Angles on Horizontal
and Vertical Face

(b)  Full Angle on Vertical Face
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 A counterclockwise rotation of the horizontal face and a clockwise rotation of 
the vertical face both correspond to a positive shear strain.

 To help you keep these two competing sign conventions for shear strains 
straight, I often find lumping the shear strain completely onto one face (as I 
show in Figure 12-4b) more convenient. In this figure, the horizontal faces 
are parallel to the Cartesian x-axis, and the vertical faces are parallel to the 
Cartesian y-axis. If you keep the horizontal face on the bottom of the element 
in its original position, you can then state that a positive shear strain is a 
clockwise rotation of the vertical faces. The top horizontal face moves parallel 
to the bottom. As long as the shear strains remain small (and they usually 
are), this representation should be acceptable.

Determining average shear strains
Shear strains are often very small, and as a result, the shear strain is often 
approximately equal to the angle of the rotated face. Shear strain relates the 
movement of one parallel plane with respect to another and is also depen-
dent on the perpendicular distance between those planes. For example, con-
sider the strain element shown in Figure 12-3.

If the basic element has a length L
y
=2 in, and the top plane moves horizontally 

(and parallel to the bottom) by an x-distance of Δ = +0.00005 inches, you can 
compute the shear strain from the following:

The shear strain in this calculation is positive because the vertical faces 
(the faces that are parallel to the y-axis in this example) rotate in a clockwise 
direction. Remember that technically, both the vertical and horizontal faces 
will actually rotate by an amount of γ

xy
 ÷ 2 = 12.5μ on each face.

Expanding on Thermal Strains
In most applications, strains are usually caused by some sort of applied 
external stress. But another unique category of problems that cause strain 
exists within mechanics of materials: Thermal effects are often a significant 
source of normal strains. These thermal strains are a type of normal strain 
that occurs when changes in temperature cause changes in the dimensions 
of an object, and they always happen simultaneously in all directions (two 
directions for two dimensions and three directions for three dimensions). 
The thermal strain in each direction is the same, although the thermal defor-
mations may be different.
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 The primary factors affecting thermal strains are

 ✓ Change in temperature: The more you heat or cool an object, the larger 
the magnitude of the thermal strains you experience.

 ✓ Coefficient of thermal expansion: The thermal coefficient, known as 
the coefficient of thermal expansion, is a material constant that describes 
how an object reacts when subjected to changes in temperature. The 
thermal coefficient is a measure of a material’s change in volume due to 
temperature effects. This value is based on the behavior of a material’s 
atoms, which begin to move faster under increased temperature, result-
ing in a larger average distance between the molecules.

The basic relationship for thermal strains is given as

ε
THERMAL

 = α(ΔT)

where ΔT is the change in temperature and α is the coefficient of thermal 
expansion for the material. You can also calculate the deformation due to 
temperature, Δ

THERMAL
 by remembering that strain is a function of original 

length and deformation:

Δ
THERMAL

 = α(ΔT)L
O

where L
O
 is the original length of the object.

 Although you typically find the coefficient of thermal expansion expressed 
in units of per degree Celsius (or /°C), some resources may express these 
values in degrees Fahrenheit or in Kelvin. The temperature change ΔT must 
be expressed in the same units as the thermal coefficient.

Table 12-1 shows you some example values of these coefficients under 
normal temperatures (usually taken as approximately 20 degrees Celsius).

Table 12-1 Approximate Coefficients of Thermal Expansion

Material α (× 10–6/°F) 
(approximate)

α (× 10–6/°C) 
(approximate)

Steel 6.7 12

Brass 10.5 19

Aluminum 12.8 23
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You can see that metals have a wide range of thermal coefficients. For the 
values shown in Table 12-1, an aluminum bar experiences a thermal deforma-
tion that is nearly twice as much as the same length of a bar made from steel.

 Most mechanics of materials textbooks list typical values (or ranges of values) 
for common materials’ coefficients of thermal expansion in a table or appen-
dix. These values are based on results from experimental testing of materials, 
so if you can’t find it in a table, you can always test for it.

Consider a steel cable in a suspension bridge support. If this cable is 500 meters 
long and experiences a change in temperature of 30 degrees Celsius, the corre-
sponding axial deformation due to thermal effects is

Δ
THERMAL

 = α(ΔT )L
O
 = (12 × 10–6/°C)(30°C) (500 m) = 0.18 m = 18 cm

Although this deformation may seem small, thermal strains can produce tre-
mendous forces in other parts of the structure if you don’t account for them 
in the design process.

Considering Plane Strains
In two dimensions, the strain element has two normal strains and one shear 
strain. In three dimensions, you may encounter elements with as many as three 
normal strains and three shear strains. A special state of strain known as plane 
strain exists if all strains in or acting on a given plane have a zero value. You 
can often assume a state of plane strain in objects with one very long dimen-
sion (such as the length or thickness), such as dams or thick-walled pipes.

For example, if you have an element with a normal strain in the z-direction, 
a normal strain in the y-direction, and a shear strain in the YZ plane, this 
situation is a plane strain condition. Notice that none of the strains in this 
example has an x subscript, meaning that the element of this example has no 
normal strain acting in the x-direction and no shear strain acting in either the 
XY or XZ planes.

 If you can define the strains and the planes they’re acting on, as I show in 
Chapter 13, you can tell whether you have a plane strain condition by simply 
examining the subscripts of the strains. If none of the nonzero strain values has 
a particular x-, y-, or z-direction subscript, you know that you have a plane strain 
condition. For example, if you determine that an element has a state of strain 
defined as normal strains of ε

xx
 = 100μ, ε

yy
 = 0μ, and ε

zz 
= –200μ and shear strains 

of γ
xy

 = 0μ, γ
xz

 = +150μ, and γ
yz

 = 0μ, you know this element is a plane strain ele-
ment because all strains in the y-direction are all zero — that is, all strains that 
contain a y subscript have a zero value.
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Chapter 13

Applying Transformation 
Concepts to Strain

In This Chapter
▶ Sketching strain elements

▶ Transforming strains with equations and Mohr’s circle

▶ Working with strain gauges and strain rosettes

The ability to transform strains (calculate them at specific orientations 
within an object) becomes especially important in experimental testing 

of structures. Although you can’t physically measure stress in an object, you 
can measure the deformations by using instruments such as strain gauges. 
However, to determine the state of strain, you must be able to apply strain 
transformation equations to the readings you get from those sensors.

In this chapter, I show you how to perform the basic strain transformations 
by using both equations and the graphical Mohr’s circle, both of which are 
similar to the tools I use with stresses in Chapters 6 and 7. I conclude the 
chapter by showing you how to use strain gauges to measure the strains at 
a point in an object. After you master strain transformations, you’re then 
ready for a wide array of application problems.

Extending Stress Transformations 
to Plane Strain Conditions

The strain transformation equations — like the stress transformation equa-
tions in Chapter 7 — are derived based on simple equilibrium equations and 
aren’t affected by the material properties of the object. In fact, the relation-
ships between stresses in two transformed states are almost identical to the 
relationships between strains.
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 Using the stress transformation equations, you can make the following substi-
tutions to create the strain transformation equations:

 ✓ Normal strain ε
xx

 for any normal stress σ
xx

 ✓ Normal strain ε
yy

 for any normal stress σ
yy

 ✓ Half of the in-plane shear strain (γ
xy

/2), for the in-plane shear stress τ
xy

Just as with stress transformations, strain transformations become very impor-
tant when you start to analyze materials with imperfections or fibers oriented 
at specific angles (such as with wood products or along welded seams).

In this section, I show you how to perform the strain transformation calcula-
tions by using the transformation equations and then introduce you to a modi-
fied form of Mohr’s circle for plane stress that you can apply to plane strain 
conditions.

Transforming strains
Figure 13-1 illustrates the strain deformation of an element, and from these fig-
ures you can derive the basic strain transformation equations. In Figure 13-1a, 
you see the effects of a normal strain in the x-direction, or ε

xx
. Figure 13-1b 

shows the effects of normal strain in the y-direction, or ε
yy

. And Figure 13-1c 
displays the effects of the shear strain in the XY plane, or γ

xy
.

 You can illustrate the orientation of a shear strain on a plane strain element 
in multiple ways, as I show in Chapter 12. For the examples of this chapter, 
I lump all shear strain into a single value reference from the vertical axis.

The basic equation for the normal strain transformation ε
x1

 for a plane strain 
condition in the XY plane is given by the following:

ε
x1

 = ε
xx

 cos2 θ + ε
yy

 sin2 θ + γ
xy

 sin θ cos θ

which relates a strain onto a rotated x1 axis at an angle θ from the original 
x-axis.

Likewise, you can define the equation for the shear strain transformation 
(γ

x1y1
) by using the same strain values in the following:
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For example, if the current state of strain on an element is ε
xx

 = 200μ, ε
yy

 = –400μ, 
and the shear strain γ

xy
 = 550μ, you can easily compute the state of strain at an 

orientation angle of 43 degrees by calculating the following:

ε
x1

 = 200μ cos2 (43°) + (–400μ)sin2 (43°) + 550μ sin (43°) cos (43°) = +195μ

And the transformed shear strain is then

γ
x1y1

 = – (200μ – (–400μ)) sin (2(43°)) + 550μ cos (2(43°)) = –560μ

To determine the state of strain in the y1-direction, you can use the transforma-
tion equation and substitute (θ = 90° + 43° = 133°) for the orientation angle:

ε
y1

 = 200μ cos2 (133°) + (–400μ) sin2 (133°) +550μ sin (133°) cos (133°) = –395μ

With these transformed strains, you can then sketch the transformed strain 
element, using the procedure that I show in the following section.
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Sketching a rotated strain element
The rotated strain element is a method for graphically displaying transformed 
strains. Rotated strain elements simultaneously show the states of strain 
on two mutually perpendicular planes, which is very useful when you start 
calculating maximum strain values (I cover those later in this chapter). Just 
follow these steps.

 1. Draw the original Cartesian axis with respect to the bottom edge of an 
unrotated strain element.

 2. Draw the rotated x1-axis for the specified orientation angle θ.

 3. Draw the rotated y1-axis at an angle of θ + 90° from the original x-axis.

  You can also locate this axis by rotating an angle θ from the original 
y-axis as well. 

 4. Draw the undeformed rotated element such that the x1-face is perpen-
dicular to the x1-axis and the y1-face is perpendicular to the y1-axis.

  Complete the basic square shape of an undeformed strain element at 
this new rotated orientation.

 5. Sketch a line parallel to the x1-face to illustrate the ε
x1

 strain condition.

  For example, consider the transformed element I use in the preceding 
section where

  ε
x1

 = +195μ, ε
y1

 = –395μ, and the shear strain γ
x1y1

 = –560μ.

  The fact that the transformed strain of this example is a positive value 
(ε

x1
 = +195μ) indicates that the strain in the x1-direction causes the 

undeformed element of Step 4 to elongate in the x1-direction.

 6. Sketch a line parallel to the y1-face to illustrate the ε
y1

 strain condition.

  Because this strain in this example is a negative strain (ε
y1

 = –395μ), the 
undeformed element you drew in Step 4 shrinks (becomes smaller with 
respect to the y1-axis).

 7. Draw the basic strain element bounded by the x1- and y1-axes and the 
normal strain deformation lines from Steps 4 and 5.

  Connecting these lines creates a basic rectangle that accurately displays 
the transformed normal strains.

 8. Apply the transformed shear strains by rotating the x1 faces by an 
amount equal to γ

x1y1
.

  If the transformed shear strain is a negative value as in this example 
(γ

x1y1
 = –560μ), these faces rotate in a counterclockwise direction from 

the y1-axis. 
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You can see the final transformed strain element for this example in Figure 13-2.
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Calculating and Locating Principal 
Strain Conditions

The strains at a point in an object vary depending on the orientation of the 
strain element (sometimes referred to as a material element). At one special 
orientation, you have a maximum normal strain, and at another you have a 
maximum shear strain for a given plane strain element.

The principal strains for a plane strain element are the maximum and mini-
mum strains that occur in an object. You need to be aware of two types of prin-
cipal strain values, each of which affects a strain element in different ways:

 ✓ Principal normal strains: Principal normal strains are the maximum and 
minimum strains that make an element elongate or contract.

 ✓ Maximum shear strain: Principal shear strains (or maximum shear 
strains) are a maximum shearing strain that makes one edge of an ele-
ment deform relative to the opposite (and parallel) edge of the element. 
However, for a three-dimensional strain problem, the principal shear 
strain in a given plane may not actually be the maximum shear strain.

You need to be able to determine these values in order to form a basis for all 
your basic strain transformation calculations. In this section, I present the 
basic formulas for those calculations.
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Defining the principal normal strains
 Using the current state of strain (defined by ε

xx
, ε

yy
, and γ

xy
 in the XY plane), 

you can compute the basic principal normal strains for a plane strain condi-
tion by using the following equation:

where ε
xx 

is the normal strain in the x-direction; ε
yy

 is the normal strain in the 
y-direction; and γ

xy
 is the shear strain in the plane of the normal strains.

 When you evaluate this expression, you actually get two different values 
because of the ± in front of the second term. This operation is what deter-
mines the maximum and minimum value.

Consider an example like the one in the preceding section, where ε
xx

 = 200μ, 
ε

yy
 = –400μ, and the shear strain γ

xy
 = 550μ. The principal normal strains are 

as follows:

From these principal strains, you can conclude that the maximum normal 
strain ε

P,MAX
 is the larger of these two values, or +307μ, and the minimum 

normal strain ε
P,MIN

 is the smaller of these two values, or –507μ.

 Depending on the signs of the principal normal strains for the current state of 
strain, the maximum value can actually be either ε

P1
 or ε

P2
, so make sure you 

calculate both.

Determining the angles for 
principal normal strains
After you have the principal normal strains determined (see the preceding 
section), the next step is to determine how they’re oriented within the object. 
This task becomes especially important because it serves as a basis for your 
design calculations (which I show in Chapter 19) and for determining the 
state of strain at specific orientation angles within the section.
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 To determine the principal strain angles, you use a simple relationship that 
relates the shear strain γ

xy
 to the normal strains (ε

xx
 and ε

yy
) to the original 

state of strain:

So for the example in the preceding section, the principal strain angle θ
P
 is

which indicates that one of the principal stresses occurs at an orientation 
angle of 21.25 degrees positive (or counterclockwise) from the original x-axis. 
But just as with the principal angles for stress (see Chapter 7), you don’t 
know which of the two principal values is related to this angle. To determine 
that, you need to substitute the current state of strain and this angle into the 
transformation equation.

ε
x1

 = 200μ cos2 (21.25°) + (–400 μ) sin2 (21.25°) + 550μ sin (21.25°) cos (21.25°)
  = +307μ

So based on this calculation, you know that the principal angle of 21.25° cor-
responds to ε

P1
 = +307μ, or the maximum strain ε

P,MAX
. You also know that the 

other principal angle occurs at 90 degrees counterclockwise from the first 
angle, or (90° + 21.25°) = 111.25° from the original x-axis, making ε

P2
 the mini-

mum strain ε
P,MIN

 with a value of –507μ.

 The principal strains occur at an orientation that has zero shear strain acting on 
the element, which you can prove by substituting into the shear strain transfor-
mation equations I present in the earlier section “Transforming strains.”

Computing the principal shear strain
Another significant state of strain that engineers want to investigate is the 
principal shear strain, which happens to be the other principal strain value 
you can compute for a plane-strain problem. Principal shear strains are 
important calculations for deformations of keyways in motor shaft connec-
tions or for elastomeric bearing pads (a type of rubber support) used in 
applications such as machinery supports or bridge girders.

19_9780470942734-ch13.indd   20719_9780470942734-ch13.indd   207 6/1/11   6:32 PM6/1/11   6:32 PM



208 Part III: Investigating Strain 

 To compute the principal shear strain, you use the relationship

 You may recognize this expression for the principal shear strain as the term 
after the ± sign in the equation for the principal normal strains I discuss in the 
earlier section “Defining the principal normal strains.”

For the example I lay out in that earlier section, the principal shear strains 
are as follows:

As with all principal calculations, you also need to determine the orientation 
angles that result in these maximum shear strain values. You can compute 
the angle of the principal shear strain orientation from

which means the orientation angle (θ
S
) of one of the principal shear strains 

for this example is

So the principal shear strains occur at an angle of –23.75° and (90° – 23.75°) = 
66.25°. Finally, you just need to check which of these two angles corresponds 
to the maximum in-plane shear strain γ

P,MAX
 = +814μ. You can perform this 

check by using the basic transformation equation for shear strains:

γ
x1y1

 = –(200μ – (–400μ)) sin (2(–23.75°)) + 550μ cos (2(–23.75°)) = +814μ

Thus, you now know that the maximum positive shear strain occurs at an 
angle of –23.75° from the original x-axis.
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If you look at the angle for the principal normal strain (which was +21.25°, or 
counterclockwise from the x-axis) and the principal shear strain (which was 
–23.75°, or clockwise from the x-axis), the angle between these two values is

Δθ = θ
P
 – θ

S
 = +21.25° – (–23.75°) = +45.00°

 It turns out the maximum shear strain is always oriented on a strain element 
that is rotated 45 degrees clockwise from the maximum principal normal 
strain element. So if you have already calculated the principal normal strain 
angles, you don’t even need to perform the angle check I show in this section — 
just subtract 45 degrees from the principal normal strain angle, and you’re 
done!

Exploring Mohr’s Circle for Plane Strain
In Chapter 7, I show you Mohr’s circle for plane stress, a graphical method 
that uses a state of stress (shown on a stress element) to find transformed 
stresses at any other orientation. You can apply the same basic methodol-
ogy to strain transformation as well. Although the methods are very similar, 
Mohr’s circle for plane strain contains a couple of slightly different steps. In 
this section, I outline the basic procedure for creating Mohr’s circle for plane 
strain for a strain element in the XY plane.

 If you make a couple of simple modifications to the variables, the technique 
for Mohr’s circle for plane strain is identical to Mohr’s circle for plane stress 
for all steps. Make the following substitutions:

An invariant rule for normal strains
In Chapter 7, I discuss a relationship known as 
the stress invariant rule, which states that the 
two normal stresses on perpendicular faces of 
any stress element are constant (or invariant) 
regardless of the element’s orientation. A simi-
lar relationship known as the strain invariant 

relates normal strains (εxx and εyy) on one set 
of mutually perpendicular planes to the normal 
strains (εx1 and εy1) on another set of mutually 
perpendicular planes:

  εxx + εyy = εx1 + εy1
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 ✓ Normal strain ε
xx

 for any normal stress σ
xx

 ✓ Normal strain ε
yy

 for any normal stress σ
yy

 ✓ Half of the in-plane shear strain γ
xy

/2 for the in-plane shear stress τ
xy

As with Mohr’s circle for stress, a Mohr’s circle for strain represents the 
state of strain for a given strain element by coordinates on the opposite ends 
of a diameter on the circle. As the element is transformed (or the diameter 
is rotated), the state of strain on the element changes because the coordi-
nates at the end of the diameter of Mohr’s circle also change. By using a bit 
of simple geometry, you can determine the state of strain at any orientation 
relative to the current state of strain.

Otherwise, the other basic assumptions remain similar, with the word 
“strain” substituting for “stress” in the procedure I outline in Chapter 7:

 ✓ Normal strain plots on the horizontal axis. Positive strains make the 
elements elongate, and compressive strains make the element shorten. 
Your strain elements may contain both positive and negative normal 
strain values (or even values of zero!) simultaneously.

 ✓ All angles measured from Mohr’s circle are twice their real value. If you 
want to find the state of strain for an element that is rotated +10 degrees, 
the angle that you measure on Mohr’s circle is 2(+10) = +20 degrees. You 
need the double angles so that the circle produces the same results as the 
transformation equations I mention earlier in this chapter.

Before you can apply Mohr’s circle to plane strain, you need to know the 
current state of strain (which you can see on a properly configured plane 
strain element) with known shear strain (γ

xy
) and normal strains (ε

xx
 and ε

yy
). 

After you have the basic state of strain established, you’re ready to construct 
the circle. At this point, the procedure for Mohr’s circle for strain becomes 
identical to the Mohr’s circle for stress.

 1. Establish the Cartesian axes.

  On the horizontal axis, you plot the normal strain with positive normal 
strains (or tension) at the right end of the axis, and negative normal 
strains (or compression) at the left end. The upper end of the vertical 
axis is for negative shear strains and the lower end of the vertical axis is 
for positive shear strains.

  This first major difference between Mohr’s circle for stress and Mohr’s 
circle for strain is in dealing with the vertical axis (or the shear strain 
axis) of the circle. The vertical axis is reserved for one half of the shear 
strain value (or γ

xy
/2), and it crosses the normal strain (or horizontal) 

axis at a normal strain value of zero. You must divide your strain values 
by two when plotting them.
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 2. Determine the strain coordinates for the positive x- and y-axes of the 
current strain element.

  The first point you plot is the V coordinate, which for an XY plane is of 
the form (ε

xx
,γ

xy
/2), where ε

xx
 is the normal strain on the x-face (or verti-

cal face) and γ
xy

 is the shear strain for the element. The second point is 
the H coordinate, which for an XY plane is of the form (ε

yy
,–γ

xy
/2), where 

ε
yy

 is the normal strain on the y-face (or horizontal face) and γ
xy

 is the 
shear strain for the element.

  If the shear strain is negative for the element, the shear strain for the V 
coordinate is negative and the shear strain for the H coordinate is posi-
tive. The shear strain assigned to the H coordinate always has an oppo-
site sign to the shear strain assigned to the V coordinate.

  Figure 13-3 shows an example of a strain element and the corresponding 
Mohr’s circle for strain.

 

Figure 13-3: 
A strain 
element 
and the 

correspond-
ing Mohr’s 

circle.
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 3. Draw a line connecting the two points of Step 2.

  With these two points plotted, you can then draw the diameter of the 
circle by connecting Point V and Point H.

  Note: At this point, the steps and calculations become identical to 
the calculations for Mohr’s circle for stress. You can find more on those 
calculations in Chapter 7.

19_9780470942734-ch13.indd   21119_9780470942734-ch13.indd   211 6/1/11   6:32 PM6/1/11   6:32 PM



212 Part III: Investigating Strain 

 4. Determine the coordinates of the center of the circle.

  In Figure 13-3, this point is labeled as Point C.

 5. Draw a circle (with the center you located in Step 4) that connects 
Points V and H.

 6. Compute the radius R of the Mohr’s circle.

 7. Calculate the principal strains by adding the radius R to the 
x-coordinate of the center point.

 8. Find the principal angle of the nearest principal strain.

 9. Compute the principal angle to the other principal strain.

Gauging Strain with Strain Rosettes
Because you can’t measure stress directly, you have to focus on experimen-
tally measuring the strain behavior of an object and then compute the cor-
responding stresses by using the principles of Hooke’s law (which I discuss 
in Chapter 14). To help with these measurements, engineers and scientists 
utilize special sensors known as strain gauges.

 A strain gauge is an electromechanical sensor that consists of a foil filament; the 
gauge is affixed to an object (usually by gluing it to the surface). As the object 
is stressed and consequently experiences strain, the strain gauge lengthens or 
shortens, which changes the electrical resistance characteristics of the wire/foil. 
A Wheatstone bridge circuit connected to the gauge by wires then calibrates the 
changes in electrical resistance to actual strains. Each strain gauge has a unique 
calibration factor that then relates these resistance changes to strains.

The strains read by a single strain gauge are normal strains in the direction 
of the gauge’s axis, which means you can’t actually measure a shear strain 
with an individual strain gauge by itself. However, if you orient multiple strain 
gauges in different orientations, you can use the strain transformation equa-
tions to take your experimental measurements of normal strains and compute 
the complete state of strain at a point. That’s where strain rosettes come in.

A strain rosette is a grouping of three individual strain gauges at different 
orientation angles used to determine the state of strain at a point. Strain 
rosettes come in a wide variety of orientations. By far, the two most common 
arrangements (shown in Figure 13-4) are the 45- and 60-degree rosettes:

 ✓ 45-degree rosette: The 45-degree strain rosette pattern features three 
gauges oriented at 0, 45, and 90 degrees so that the distance between 
each sensor is 45 degrees.
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 ✓ 60-degree rosette: The 60-degree strain rosette pattern includes three 
gauges oriented at 0, 60, and 120 degrees so that the distance between 
each sensor is 60 degrees.

  The 60-degree rosettes are frequently used in one of two variations. The 
first variation is similar to the 45-degree pattern, except that the angles 
between the gauges are 60 degrees. The second variation, known as a delta 
rosette pattern, forms a triangle configuration. The difference between 
the delta rosette and the 60-degree strain rosette pattern has to do with 
the implied location of the strain (shown as Point O in Figure 13-4) for the 
three patterns. For the 60-degree rosette pattern, the strains are assumed 
to be acting at the point of intersection of the axis of the three individual 
gauges. For the delta rosette pattern, the strains are assumed to be acting 
at a point inside the triangle made by the rosette patterns.

 

Figure 13-4: 
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 With improvements in both computers and the manufacturing of sensors, the 
45- and 60-degree rosette patterns are now nearly equally accurate. However, for 
many years, engineers and scientists preferred the 60-degree pattern because it 
maximized the orientation angle of three gauges within a 180-degree arc.
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To illustrate how you can use three normal strain readings to determine 
a state of strain, suppose a 60-degree strain rosette reports ε

a
 = 200μ at 0°, 

ε
b
 = –150μ at 60°, and ε

c
 = 400μ at 120°. With these three readings, you can 

then write three separate transformation equations as follows based on the 
same current state of unknown strain (normal strains ε

xx
 and ε

yy
 and the 

shear strain γ
xy

) — one for each of the three strain gauge readings.

You can then substitute the readings and their corresponding angles into 
these equations and determine the states of strain:

Solving these three relationships simultaneously allows you to find the three 
unknown strains at any point:

From this point, you can then find principal strains and move on to all those 
other transformation calculations I describe throughout this chapter.
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Chapter 14

Correlating Stresses and Strains 
to Understand Deformation

In This Chapter
▶ Understanding basic material behavior

▶ Examining important locations in stress-strain diagrams

▶ Putting Young’s modulus of elasticity, Poisson’s ratio, and Hooke’s law to work

▶ Connecting stresses to strains

The deformation of an object under load is very important to engineers. 
Although you can easily determine the strength of a member by simply 

looking at stresses and computing required areas, strength isn’t the only 
criteria that makes a structure successful. If you design the beams of your 
floor such that the vertical deflections are excessive, the floor will be awkward 
to walk on, and most people won’t be happy with the design (though skaters 
may be able to do some cool tricks). For a design to be truly successful, you 
have to make sure that it doesn’t deflect or vibrate too much (known as 
serviceability conditions) in addition to being strong enough.

 Different applications have tighter tolerances with regards to deformation. 
Machinery may require deformations within a few thousandths of an inch, 
while a fishing pole may deflect several inches and still perform satisfactorily.

Understanding the relationship between stress and strain is your first step in 
relating applied forces to their deformation responses. To be able to relate 
stress and strain, you must have a solid understanding about the properties 
and behavior of materials. I start this chapter by introducing some basic 
terminology, and then I present two important constants, Poisson’s ratio and 
Young’s modulus of elasticity, that you need when relating stress to strain. 
Finally, I show you the Hooke’s law relationship that provides the necessary 
equations that you actually use to relate stress to strain.
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Describing Material Behavior
In reality, no object is truly rigid; all objects are deformable, so you need to 
take deformations and material behaviors into account by way of the strain 
calculations that I show you in Chapter 12. Fortunately, if you make a few 
simplifying assumptions, the equations of statics still remain valid.

You can experimentally determine many of the material properties by 
conducting a tension test on a sample of materials. In a tension test, you 
subject a material of a prescribed length (known as the gauge length) and 
cross-sectional area to an applied axial load. Using these values, you determine 
an average normal stress (see Chapter 6) and plot it versus the corresponding 
strain (see Chapter 12). These stress-versus-strain relationships provide the 
basis for the material properties I discuss in this chapter.

But before you can work with material properties, you need to get some basic 
terminology down first. In this section, I explain elastic and plastic behavior, 
describe the difference between a ductile material and a brittle material, and 
introduce the concept of material fatigue.

Elastic and plastic behavior: 
Getting back in shape?
When you design an object, you typically perform your calculations and 
select your member sizes with the anticipation that the object will return 
to its original position — after all, if you apply a load to a structure and the 
structure doesn’t rebound, pretty soon it’s unusable because deformations 
become permanent.

The ability of an object to return to its original shape when you remove a 
load is known as elastic behavior; all materials have basic elastic characteristics 
up to a point. You can see an example of a highly elastic behavior with the 
simple rubber band: It stretches when you pull on it but returns to its original 
dimensions or shape easily.

 Design is almost always done to ensure that a material maintains its elastic 
behavior. So engineers need to know especially where elastic behavior ends 
(known as the elastic limit). I show you where to find the elastic limit in the 
later section “Defining the regions of a stress-strain curve.”
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After you reach a certain stress and its corresponding strain level in a mate-
rial, the behavior changes. After a material is stressed beyond its elastic 
limit, it experiences permanent deformations (known as plastic deformations) 
that remain even after the object is unloaded.

Ductile and brittle materials: 
Stretching or breaking
Ductility (the ability of a material to undergo large plastic deformations prior 
to failure) is one of many very important characteristics that engineers consider 
during design. Ductility is an important factor in allowing a structure to 
survive extreme loads, such as those due to earthquakes and hurricanes, 
without experiencing a sudden failure or collapse. Materials that are very 
ductile include many types of metal (such as steel) and some types of plastic.

Ductility is often evaluated in one of two ways: by measuring the change in 
the length of a member or by measuring the change in cross-sectional area of 
a sample under load to failure. To calculate the percent elongation due to a 
change in length, use the following equation:

where L
f
 is the length of the specimen when it finally ruptures (or breaks) and 

L
o
 is the initial length of the specimen. 

 If you recognize this formula, it’s the same calculation as the basic normal 
strain equation in Chapter 12, but now it’s expressed as a percentage. The 
larger the strain that a material can sustain before rupture, the more ductile 
the material is said to be.

Another representation of ductility, particularly for tension applications, is 
measured by a percent reduction in area. It measures the amount of necking 
(or change in cross-sectional area) that occurs prior to the ultimate failure 
as follows:

where A
i
 is the initial area of the test specimen and A

f
 is the final area of the 

test specimen when it ruptures.
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A material that behaves with very little ductility is said to be brittle. An errant 
baseball effectively demonstrates the brittle behavior of your living room 
window (not to mention the impact it has on your wallet). A brittle material 
displays very little visible deformation before it ruptures, and it usually fails 
without advance warning. Examples of materials that are typically brittle are 
cast iron, stone, and glass.

 Unfortunately, the distinction between brittleness and ductility isn’t readily 
apparent, especially because both ductility and brittle behavior are dependent 
not only on the material in question but also on the nature and type of stress, 
the temperature, and the rate of loading.

In your high-school chemistry class, your teacher may have illustrated the 
effect of liquid nitrogen on a bouncy rubber ball. By subjecting the normally 
ductile rubber ball to extreme cold, your teacher could cause it to shatter 
(a brittle behavior) simply by dropping it on the ground.

Fatigue: Weakening with repeated loads
Fatigue is caused by the repeated loading and unloading of a material, which 
results in damage to the material on a microscopic level. Consider twisting 
a simple paper clip. As you unfold the paper clip and bend it back and forth 
slightly, you may not actually reach a yield point of the base metal. However, 
if you repeat that simple bending process enough times (sometimes measured 
in the hundreds of thousands of cycles), you can actually break the paper 
clip without ever reaching the ultimate strength of the material. (You can 
read more about yield point and ultimate strength in the later section “Site-
seeing at points of interest on a stress-strain diagram.”)

Fatigue is a very serious concern for objects and structures subjected to 
repeated and cyclical loadings, such as vibrations from machinery, or even 
very old buildings subjected to repeated wind loadings. Member connections 
are also very susceptible to fatigue effects. A failure due to fatigue is always a 
brittle failure — and brittle failures are bad news because they’re sudden and 
often unexpected. (See the preceding section for more on brittle behavior.)

 Strength of a material under fatigue is dependent on the number of load cycles 
and the basic intensity of the repeated loading. The larger the load (and hence 
the stress), the fewer cycles you need to break an object due to fatigue. You 
determine the fatigue performance of a material by plotting the number of 
cycles to failure under a specified applied stress.
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Creating the Great Equalizer: 
Stress-Strain Diagrams

In experimental analysis, you can easily measure the load and corresponding 
deformation from your basic tests (such as the tension test I describe earlier 
in the chapter). But the real challenge is to describe the behavior of materi-
als in a way that’s independent of the size or shape of whatever you’re trying 
to design. Using stress compensates for any variations in loads and cross-
sections, and using strain compensates for differences in deformation. In other 
words, comparing stress and strain lets you focus on the intrinsic properties 
of a material.

A brief history of common material tests
In addition to a simple tension test to determine 
Young’s modulus of elasticity, designers have 
used a number of other tests for many years to 
determine useful material properties:

 ✓ The Mohs hardness test: Around 1812, 
Friedrich Mohs, a German mineralogist, 
created a relative scale of material 
hardness by studying which materials were 
capable of scratching other materials. The 
Mohs hardness test conceptually dates 
back to ancient Greece.

 ✓ The Brinell hardness test: Johan Brinell 
developed this test in 1900 as a basic 
method for determining the hardness of 
a material by measuring the amount a 
standard round object could be pushed into 
a test specimen under a specific load. The 

test provided numerical results to quantify 
the hardness of a material.

 ✓ The Rockwell hardness test: Hugh Rockwell 
and Stanley Rockwell (no relation) created 
this hardness measurement for their work 
at a ball bearing manufacturer around 1915 
to help quantify the hardness of a material. 
Results of this test have been correlated to 
the tensile strength of the base material.

 ✓ The Charpy V-notch test: This method came 
from French scientist Georges Charpy 
around 1905; it helps quantify the amount of 
impact energy an object can absorb before 
it ruptures (or breaks). The Charpy V-notch 
test can also qualitatively describe the 
amount of ductility a material possesses.
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Justifying stress-strain relationships
Imagine that you tie a small cable to a weight lying on the floor. If your cable 
is exactly the right size, you can’t pick up any additional weight without fail-
ing the cable. The only way to pick up a heavier weight (assuming you use 
the same cable material) is to change the size of the cable, which means 
that you change the cross-sectional area.

However, when working with load-deformation relationships, you soon 
realize that getting a feel for the material’s true behavior is difficult. You can 
create plots of load versus deformation — which are useful when you’re 
trying to determine whether the floor beam you’re sitting on will deflect 
too much and cause your furniture to slide to the middle of the room — but 
these diagrams don’t directly take into account the size of the actual member 
doing the work. For this reason, you’re better off working with stresses.

Figure 14-1a shows three different objects made of the same material that can 
have vastly different load versus deflection curves.

 

Figure 14-1: 
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Plotting stress versus deformation isn’t a much better option. As you can see 
in Figure 14-1b, two objects can have the same deformation while experiencing 
significantly different stresses. This discrepancy commonly occurs in flexural 
members. For beams, stresses (see Chapter 9) and deformations (see Chapter 16) 
are both based on the cross section’s moment of inertia. However, stress is 
also a function of the depth of the beam, whereas deflection is also a function 
of the length. Thus, two different beams can experience the same stress but 
have uniquely different deformations and moments of inertia. That’s why even 
the stress versus deformation plots aren’t completely sufficient.

Describing materials with 
stress versus strain
Analyzing the behavior of a member based on its characteristic stresses and 
strains (as shown in Figure 14-1c) is often a better method than plotting 
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load or stress versus deformation (see the preceding section). With this 
information, you can

 ✓ Normalize different loads and parameters, such as cross-sectional 
properties and member length, into the stress calculations

 ✓ Normalize the deformation and member length into the strain calculations

Doing so allows you to investigate the behavior of the material itself without 
having to worry about the loads or geometry of a given application. With 
these parameters aside (because you’ve already incorporated them into 
the stresses and strains), you can easily select an appropriate material type 
because the stress-strain diagrams for a given material are always identical.

 If you plot stress versus strain rather than load versus deflection, you 
automatically take into account the deformation of the object with respect 
to the intensity of the load on a given cross-sectional property.

Exploring Stress-Strain 
Curves for Materials

After you’ve constructed the stress-strain diagram from experimental testing, 
you may be ready to ask the question “Which points on a materials stress-
strain plot do I need to consider?” Figure 14-2 shows a typical stress-strain 
curve. The following sections explore the different regions of the stress-strain 
curve and the importance of several specific locations.

 

Figure 14-2: 
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curve.
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Defining the regions of 
a stress-strain curve
The stress-strain relationship shown in Figure 14-2 divides into two 
primary regions:

 ✓ Elastic region: The elastic region is the region of the stress-strain curve 
where removing a load from an object results in the object returning to 
its original or unloaded shape. When an object’s current stress level is 
within the elastic region, it rebounds to its original state by retracing the 
original stress-strain curve without retaining permanent deformation 
whenever the applied load is removed. 

 ✓ Plastic region: The plastic region is the region of the curve that extends 
beyond the elastic region of the curve. When a material is stressed to a 
point on the stress-strain curve within the plastic region (such as Point B), 
the curve recedes with a straight-line segment that’s parallel to the 
straight-line portion within the elastic region when the load is removed. 
As a result, even when the entire load is removed, a permanent strain 
remains even when stress is no longer applied (Point A). When load is 
reapplied, the stress-strain plot typically retraces the unloading portion of 
the curve back up to the original stress-strain curve (at Point B) and then 
continues to follow the original material curve as the strain increases.

The point on the stress-strain curve that separates the elastic and plastic 
regions is known as the elastic limit (at Point C) and is found by observing the 
plot of the data from experimental tests (such as the tension test). Exceeding 
the elastic limit results in a plastic deformation. See the following section for 
more on this location.

 If a load is repeatedly applied and released, the end of the straight-line 
portion of the reloading actually increases slightly with each reloading. This 
phenomenon is known as strain hardening (or work hardening). If you bend 
a paper clip back and forth repeatedly, you may observe that it becomes 
increasingly difficult to deform after several bends (known as cyclic strain 
hardening) or as you increase the angle of bend (even if it’s only bent one 
time and not repeatedly).

Some types of deformations actually increase without actually increasing 
the applied stress. Plastic deformation that continues to increase under a 
constant or sustained load is known as creep.
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Site-seeing at points of interest 
on a stress-strain diagram
After you understand the basic regions on a stress-strain diagram (see the 
preceding section), you can turn your attention to several specific and very 
important points, some of which I include in Figure 14-2:

 ✓ Proportional limit: The proportional limit (at Point D) corresponds to 
the location of stress at the end of the linear region (or the straight-line 
portion within the elastic region), where the stress and strain values 
remain linearly (or proportionally) related.

 ✓ Elastic limit: The elastic limit (at Point C) is where the material stops 
behaving elastically, and you can measure permanent (irreversible) 
deformation. As I note earlier in the chapter, it’s the transition point 
between the elastic region and the plastic region of the stress-strain 
diagram. 

 ✓ Yield point: The yield point is a point on the curve where strain 
increases significantly more for an incremental increase in stress and 
is often located somewhere between the proportional limit (Point C) 
and the elastic limit (Point D), though for some materials it may occur 
beyond the elastic limit as well.

  The yield point for many materials can be difficult to locate because of a 
gradual transition between elastic and plastic behavior, which is why I don’t 
note it in Figure 14-2. However, you can often define it as the point beyond 
the elastic limit where the strain increase becomes bigger for a given 
increment of applied stress.

  One common method for locating the yield point uses a strain of 
0.2 percent at zero stress as a starting point. You trace a line parallel 
to the linear region of the stress-strain diagram from this point until the 
straight line crosses the stress-strain curve. The point where this line 
crosses the curve is an often accepted measure of the yield point of 
a material.

  In some materials, such as certain types of metal, a well-defined yield 
point is visible on a stress-strain diagram. For these materials, the 
elastic limit, proportional limit, and the yield point often occur very 
close to each other.
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 ✓ Ultimate strength: The ultimate strength (or the ultimate tensile stress) is 
the absolute maximum stress a material feels (which occurs at Point F) 
before it actually ruptures. Often, this value is significantly more than 
the yield stress (as much as 50 to 60 percent more than the yield for 
some types of metals). When a ductile material reaches its ultimate 
strength, it experiences necking where the cross-sectional area reduces 
locally. The stress-strain curve contains no higher stress than the 
ultimate strength. Even though deformations can continue to increase, 
the stress usually decreases after the ultimate strength has been achieved.

 ✓ Rupture point: The rupture point is the point of strain where the material 
physically separates (Point G). At this point, the strain reaches its 
maximum value and the material actually ruptures (or fractures), 
even though the corresponding stress may be less than the ultimate 
strength at this point.

In design, the yield point and the ultimate strength point become locations 
of interest to an engineer. The stresses that occur at these points are two 
stresses that structural designers frequently use.

Knowing Who’s Who among 
Material Properties

When you start calculating the relationship between stress and strain, two 
material constants quickly rise to the top of the heap: Young’s modulus of 
elasticity and Poisson’s ratio. These constants quantify a material’s stiffness 
and deformation under load, and I cover them in the following sections.

Finding stiffness under load: 
Young’s modulus of elasticity
Young’s modulus of elasticity was named for British scientist Thomas Young 
(1773–1829), who helped quantify the stiffness of a material under load. 
Though this property bears Young’s name, several other scientists and 
mathematicians (such as Leonhard Euler and Giordano Ricatti) actually 
established this relationship earlier.

Young’s modulus of elasticity is a material property that defines the relation-
ship between an elastic uniaxial strain in one direction to the elastic uniaxial 
stress (in the same direction) that’s causing it. (See Chapter 8 for more on 
uniaxial stresses and Chapter 13 for more on uniaxial strains.) In a material 
test, the Young’s modulus of elasticity is actually the slope of the linear region 
of the stress-strain diagram. A quick way to determine this value is to take a 
ratio of the stress and strain at the proportional limit:
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where σ
PROP

 is the uniaxial stress at the proportional limit and ε
PROP

 is the 
corresponding uniaxial strain at the same point (at Point D on Figure 14-2 
earlier in the chapter). Young’s modulus of elasticity is typically characterized 
by the variable E and has units that match the units of the applied stress at the 
proportional limit. (Flip to “Site-seeing at points of interest on a stress-strain 
diagram” earlier in the chapter for more on the proportional limit.) Typically, 
Young’s modulus of elasticity has SI units of giga-Newton per square meter 
(GN/m2 or GPa) and U.S. customary units of kip per square inch (ksi).

For a certain mild steel, the normal stress at the proportional limit may be 
around σ

PROP
 = 32 ksi, and the corresponding strain at this point is ε

PROP
 = 

1,100μ. The Young’s modulus of elasticity in this example is then E = (32 ksi) ÷ 
(1,100μ) = 29,000 ksi. Table 14-1 shows examples of several values for Young’s 
modulus of elasticity for different materials. Fortunately, many design guides 
have values for Young’s modulus of elasticity for various materials tabulated 
for you already.

Table 14-1 Values of Young’s Modulus of Elasticity

Material SI (GPa) U.S. customary (ksi)

Aluminum 69 10,000

Concrete 30 4,350

Steel 200 29,000

 Young’s modulus of elasticity is actually one of several modulii that you can 
use to relate stress to the strain in a material.

 ✓ Secant modulus of elasticity: This modulus is the relationship of stress 
to strain for any point on the stress-strain curve. You represent it as a 
line from the origin (0,0) to the point on the curve.

 ✓ Tangent modulus of elasticity: This relationship is the measure of the 
slope of the line at a particular point on the stress-strain curve and is 
very useful in nonlinear or plastic analysis of mechanics of materials.

 Young’s modulus of elasticity is both a secant modulus and a tangent modulus 
in that it represents the slope of the linear region with respect to the origin (0,0) 
of the stress-strain curve.

Another modulus of elasticity that you may see from time to time is the shear 
modulus of elasticity (or the modulus of rigidity), which relates shear stress to 
shear strain. I explain more about modulus of rigidity in “Relating Stress to 
Strain” later in this chapter.
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Getting longer and thinner (or shorter 
and fatter) with Poisson’s ratio
Poisson’s ratio was named for French mathematician Siméon Denis Poisson 
(1781–1840) who quantified the relationship for strains in multiple directions of 
objects under load. He explained a phenomenon, now referred to as Poisson’s 
effect. An object that’s subjected to tension experiences an elongation (which 
is a normal longitudinal strain) in the direction of the applied stress. At the 
same time, it also experiences a reduction in the dimensions that are transverse 
(perpendicular) to the direction of stress causing the deformation — that is, 
a lateral strain also occurs in a direction due to a longitudinal stress. You 
can demonstrate Poisson’s effect with a simple ball of clay: When you mash 
the ball between your hands, it gets smaller in one dimension (between 
your hands) while getting larger in the perpendicular directions. Figure 14-3 
illustrates such an object.

 

Figure 14-3: 
Poisson’s 

effect.
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 The lateral strain has the opposite sign of the longitudinal strain (which is the 
strain in the direction of the stress). If an object gets longer due to a uniaxial 
stress, the lateral strain is negative; if an object gets shorter, the lateral strain 
is positive.

Depending on the material, the relationship between these longitudinal 
strains and the lateral strains varies; however, these strains are related to 
each other by a constant ratio for a given material (as long as the strains 
you’re dealing with remain very small). This constant of variation is known as 
Poisson’s ratio, and it relates the normal strain in the lateral direction to the 
normal strain in the longitudinal direction of an applied stress as follows:

where ε
LONG

 is the longitudinal normal strain in the direction of the applied 
stress and ε

LAT
 is the lateral normal strain in the transverse (or lateral) 

direction. Poisson’s ratio is usually assigned to the Greek letter nu (ν) and 
is a unitless parameter, so it doesn’t require conversion for SI or U.S. 
customary units.
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 Poisson’s ratio is a single numeric value that quantifies the magnitude 
of Poisson’s effect. The bigger the Poisson’s ratio value is, the more lateral 
(or transverse) strain in relation to a longitudinal strain that an object 
experiences under a given stress.

One use of Poisson’s ratio is to help identify a material based on its strain 
relationships. For example, perhaps you experimentally measure the strains 
at a point in a tension rod to have a longitudinal strain of ε

LONG
 = 1,000μ 

and ε
LAT

 = –300μ. Using Poisson’s ratio, ν =–(–300μ) ÷ (1,000μ) = +0.3, which 
corresponds to most types of steel.

 The directions of the lateral normal strains don’t necessarily have to align 
with one of the Cartesian x-, y-, or z-axes — the lateral strains just have to act 
in any perpendicular direction to a longitudinal strain. A round bar subjected 
to a tensile load experiences an elongation along the axis of the bar, but 
decreases in the radial directions by equal amounts.

Poisson’s ratio is often a positive value and is typically in the range of 0.25 
to 0.35 for many common materials, including metals. Materials such as 
concrete and some members of the wood family have Poisson’s ratios closer 
to 0.15. An incompressible material at low strains can have a Poisson’s ratio 
as high as 0.5. Some types of materials (known as auxetic materials) such as 
foams actually can have a negative value for Poisson’s ratio. Other materials 
that are not isotropic can sometimes have different values of Poisson’s ratio 
in different directions, and in some cases their Poisson’s ratio can exceed 
even 0.5.

Relating Stress to Strain
Relating stress to strain is one of the key concepts you use in mechanics of 
materials. In this section, I show several basic assumptions to keep in mind 
as well as the actual equations that make it work. In Parts IV and V of this 
text, I illustrate various examples that utilize these relationships.

Making assumptions in stress 
versus strain relationships

 In order for the stress-strain relationships I present in the coming section to 
work, you must make sure your problem satisfies the following assumptions:
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 ✓ Linear elastic behavior: The analysis of stress and strain (using the 
methods in this chapter) assumes that the current state of stress versus 
strain is still within the elastic region (see “Defining the regions of a 
stress-strain curve” earlier in the chapter).

 ✓ Homogeneous and isotropic materials: A material is homogeneous if 
the material properties don’t vary with position within an object, and 
it’s isotropic if the material properties don’t vary with direction.

 ✓ Validity of principle of superposition: The principle of superposition 
allows you to separate multiple stress and strain behaviors, analyze 
them independently, and then recombine their effects for a combined 
(or net) effect. Don’t worry about the technical aspects here; I describe 
this concept in more detail in Chapter 15.

Hooke springs eternal! Using Hooke’s 
law for one dimension
Robert Hooke (1625–1703) was an English scientist who investigated the 
elastic properties of materials and made an important revelation about the 
behavior of a spring object (shown in Figure 14-4).

He concluded that the force F in any spring is proportional to the extension 
(the deformation from the relaxed state) Δ as follows:

F = k · Δ

where the term k is the stiffness of the spring.

 

Figure 14-4: 
Hooke’s 

law in one 
dimension.
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All objects deform under load, so in a sense, all objects behave as springs. 
The stiffness of an object is directly related to the section properties of the 
cross section, the material from which the object is made, and the length or 
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span of the member. The stiffness of the member varies depending on the 
type of loading; the member may have one stiffness when loaded axially, 
and another when the member is subjected to bending.

If you recognize that this formula is an axial application, you may notice 
that you can manipulate this expression to reflect terms for stress (F/A) and 
strain (Δ/L) and their relationship within the elastic region. Based on the 
material’s proportional limit (which I introduce earlier in the chapter), 
you can show that σ

xx
 = Eε

xx
 for a uniaxial stress state, where E is Young’s 

modulus of elasticity (which I also describe earlier in this chapter), ε
xx

 is the 
axial strain, and σ

xx
 is the axial stress. See Chapter 8 for more on axial stress 

applications and Chapter 12 for more on axial strains.

 This relationship is the same as the one in the straight-line portion of the 
stress-strain graph in Figure 14-2 earlier in the chapter, meaning that as the 
stresses increase in a material, the strains increase by a proportional amount. 
This correlation is true up to the proportional limit. After the proportional limit, 
a relationship still exists, but Young’s modulus of elasticity is no longer valid.

 Some approaches for analyzing stress-strain behavior beyond the propor-
tional limit actually use a pseudo-Young’s modulus of elasticity as the 
value for E in this basic stress-strain relationship equation. The value of 
this modified modulus is actually the slope of a tangent line to the stress-
strain curve at the location of interest (or the tangent modulus I describe 
earlier in this chapter).

So if you can define the equation of the curve and then find the tangent 
(which you can do by taking the first derivative of the stress-strain curve at 
the point of interest), this relationship still holds. Remember that the tangent 
modulus of the linear region of the stress-strain curve is the same as Young’s 
modulus of elasticity. Outside the linear region, you need to use the appropriate 
tangent modulus value at the point of interest on the curve.

You can extend the same idea of relating stress to strain to shear applica-
tions in the linear region, relating shear stress to shear strain to create 
Hooke’s law for shear stress: τ

xy
 = Gγ

xy
, where τ

xy
 is the shear stress, γ

xy
 is 

the corresponding shear strain, and G is the shear modulus of elasticity 
(or the modulus of rigidity).

 For materials within the elastic region, you can relate Poisson’s ratio (ν), 
Young’s modulus of elasticity (E), and the shear modulus of elasticity (G):

E = 2(1 + ν)G

So if you happen to know two of these three material properties, you can 
easily find the third value.
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Developing a generalized relationship for 
Hooke’s law in two or three dimensions
You can extend the ideas behind Hooke’s law for one dimension to help you 
analyze stress and strain in multiple dimensions. Consider the stress element 
shown in Figure 14-5a, which is subjected to a normal stress in the x-direction 
and a second normal stress in the y-direction. The material is aluminum, 
which has a Young’s modulus of elasticity E of 10,000 ksi and a Poisson’s 
ratio ν of 0.333.

 

Figure 14-5: 
Hooke’s law 

for plane 
stress.

 (b) x-Direction
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Hooke’s law for plane stress
Because the element remains elastic and the deformations remain very small, 
the principle of superposition lets you actually analyze this element as two 
separate one-dimensional problems as shown in Figures 14-5b and 14-5c. 
When you look at the element of 14-5b, you may notice that it’s the same 
uniaxial case I describe in the previous section. The tensile stress of 
σ

xx
 = 9 ksi results in a longitudinal strain ε

xx
 that’s positive and a corresponding 

lateral strain ε
yy

 = –νε
xx

 due to Poisson’s effect. Similarly, from Figure 14-5c, 
the uniaxial tension σ

yy
 = 14 ksi results in a longitudinal strain ε

yy
 and a 

lateral strain ε
xx

= –νε
yy

.

The principle of superposition says that you can then add the combined 
effects for each of these strains to compute a single net strain in a 
given direction:

ε
xx,TOT

 = ε
xx,B

 + ε
xx,C

 = ε
xx + (–νε

yy
)

20_9780470942734-ch14.indd   23020_9780470942734-ch14.indd   230 6/1/11   6:43 PM6/1/11   6:43 PM
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where ε
xx,B

 is the strain for the uniaxial case shown in Figure 14-5b and ε
xx,C

 
is the uniaxial strain from the case shown in Figure 14-5c. Substituting into 
Hooke’s law, you can rewrite the expression as follows:

So for this example, if you substitute in the appropriate normal stress values 
in each of the three Cartesian directions, you can compute the net strain in a 
given direction. For the strain in the x-direction,

From this calculation, you can see that the combined effect of this loading 
results in a net positive strain in the x-direction. You can then compute the 
net strain in the y-direction through a similar derived relationship:

which indicates that under this loading, the element experiences a positive 
net strain in the y-direction as well.

Hooke’s law in three dimensions
You can apply the same logic you use to create the two-dimensional generalized 
equations (see the preceding section) to three dimensions as well; you just 
need to add a third term to represent the z-Cartesian axis as follows:

 From Hooke’s law, the strain in any direction is a result of the stress in 
that direction plus the Poisson effects from the stresses in the other two 
Cartesian directions.
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232 Part III: Investigating Strain 

 The generalized relationship for three dimensions works for the uniaxial case 
as well. If the uniaxial stress (σ

yy
) is in the y-direction, the other two stresses 

 are both zero: σ
xx

 = σ
zz

 = 0 ksi. (See Chapter 8 for more on uniaxial stress.) 
Substituting into the generalized expressions, you get the original formula 
for one-dimensional Hooke’s law. Just remember, even with stress in a single 
direction, you still get strains in all three directions. 

Similarly, you can extend Hooke’s law for shear to relate the shear stress in a 
given direction to the shear strain in the same direction:

Calculating stress from 
known strain values
You can also rework the strain relationship equations in reverse. Applying 
a bit of algebra to the generalized relationships I show in the preceding 
section, you can solve for each of the three stresses:

If you happen to know the strains in each of the three Cartesian directions, 
you can determine a corresponding stress in each of those directions.
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and Strain
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In this part . . .

This part shows you how to apply the principles of 
stress and strain to different types of problems you 

encounter in mechanics of materials. I start by showing 
how you can combine different types of stresses from 
Part II into one combined net effect. I then show you how 
you can predict deformation based on loads by utilizing 
stress-strain relationship. You discover how to use 
these deformation relationships to analyze statically 
indeterminate structures, and I explain how compression 
members can experience failure due to geometric 
considerations as opposed to material stress failure.

You also find out how to use all these basic applications 
to perform basic designs for different types of members. 
Finally, the part explores analysis techniques that allow 
you to handle advanced situations, such as impact, that 
use physics-based work-energy methods and their 
relationships to stress and strain.
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Chapter 15

Calculating Combined Stresses
In This Chapter
▶ Applying the principle of superposition

▶ Combing stresses from axial, shear, and moment loads

▶ Incorporating torsion into shear applications

Stresses come in a wide array of sources and directions. You may be 
analyzing the axial loads in the column of a building due to vertical (or 

gravity) loads when a wind force suddenly hits your building and causes 
extra bending moments to appear. If you designed only for the vertical axial 
stresses, your design may not be sufficient for the added stress effects from 
the bending moments.

For scenarios such as this (and for many more different scenarios in general), 
you need to be able to compute the combined effects of multiple stresses on 
an object. In this chapter, I show you the basic methodology for combining 
stresses through a process known as the principle of superposition. I start 
by explaining several of the key assumptions of this method, and then I show 
you how to calculate combined stresses for several different categories of 
stresses.

After you have this step completed, you can start calculating all those maximum 
and minimum stress values that I show you in Part II for transforming stresses.
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Understanding the Principle 
of Superposition: A Simple 
Case of Addition

As you learned in statics, the principle of superposition states that multiple 
actions on an object are equivalent to the sum of each of the effects when 
applied separately. This technique is very handy for dealing with complex 
load cases when you’re finding support reactions and internal forces. But 
you can also apply this method in the area of mechanics of materials, and 
it’s especially useful when working with stresses and strains as long as you 
recall the basic assumptions behind the principle — most of which I cover in 
Chapter 14:

 ✓ Small displacement theory: Small displacement theory implies that 
when a structural system has a load applied to it, the system deflects (or 
deforms), but only a small or negligible amount.

 ✓ Linear system behavior: Linear system behavior indicates that a given 
load results in a given deformation. If the system is linear, it experiences 
twice the deformation when you apply twice the load. I talk more about 
this requirement in Chapter 14.

  Although many common structures behave linearly under small loads, 
this response may no longer be valid when a structure begins to deform 
plastically or fail due to larger and larger loads.

 ✓ Elastic material behavior: Elastic material behavior is what occurs 
when a deformable body completely returns to its original and 
undeformed shape after an applied load is removed. This behavior 
implies a direct relationship between the applied stress on an object and 
the object’s deformation (or strain) response. If this assumption is valid 
for your situation, you can use Young’s modulus of elasticity to move 
quickly and easily between these two values. For more information on 
this topic, turn to Chapter 14.

 Statics problems naturally satisfy the major assumptions in this list because 
in statics you assume that all objects are rigid bodies. However, that isn’t the 
case in mechanics of materials, so you cheat a little bit by making the major 
assumption that although objects do deform under load, their deformations 
remain small enough that they still don’t cause a problem.

In mechanics of materials, you can use the principle of superposition in two 
different but important applications: combining stress (which I cover in this 
chapter) and deformation of structures (which I cover in Chapter 16).
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The principle of superposition allows you to break up an otherwise-complex 
problem into more manageable pieces. After you have the actions separated, 
you can compute the stress magnitudes individually and then recombine 
them based on the signs of their values as I show in Figure 15-1 for a simple 
stress element.

 

Figure 15-1: 
Superposition 

of stress 
elements.
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 If you determine the individual state of stress at your point of interest for each 
individual action, you can then combine their effects by using the guidelines I 
explain in the following section.

Setting the Stage for Combining Stresses
Combining stresses is fundamental to your ability to be able to accurately 
apply mechanics of materials to the objects in the world around you. 
Although the concept itself is fairly simple, you need to make sure to 
remember a couple of rules and conventions.

Following some simple rules
The basic idea for combining stresses boils down to this basic idea: Normal 
stresses only combine with other normal stresses, and shear stresses only 
combine with other shear stresses, as long as you follow a few simple rules:
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 ✓ Normal stresses combine only if they’re acting along the same 
direction. For example, you can only combine a normal stress in the 
x-direction with another normal stress in the x-direction, and the other 
axes behave similarly. You can, however, combine stresses that have a 
different sense as long as their lines of action are all in the same direction.

 ✓ Shear stresses combine only if they’re in the same plane and same 
direction. You can only add a shear stress in a given plane (such as 
the XY plane) to other shear stresses in the same plane and to shear 
stresses that are acting in the same direction. 

  You can think of this idea as adding shear stresses if the lines of action 
of the individual shear stress arrows are in the same direction.

 If a normal stress and a shear stress act at the same time, you must consider 
both as you apply the principle of superposition even though a normal stress 
contributes a value of zero to the superposition involving the shear stresses. 
Likewise, a shear stress contributes a value of zero to the superposition 
involving the normal stresses.

Establishing a few handy conventions
For the purposes of the examples in this chapter, I use the axis convention 
shown in Figure 15-2, where the cross section of the member lies in the 
XY plane and the longitudinal axis is parallel to the z-axis. This orientation 
helps illustrate how you can determine whether you should add or subtract 
stresses in the same direction or plane.

 

Figure 15-2: 
General axis 

orientation 
convention.
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239 Chapter 15: Calculating Combined Stresses

For normal stresses from axial loads, if the arrows are pulling on the object 
(which is a tensile normal stress), they’re a positive value. If the arrows 
are pushing on the object (or a compressive normal stress), the stresses 
associated with that arrow have a negative value. The direction of these 
normal stresses is always in the direction of the axial force that causes 
them. Remember, for many objects (including the pressure vessels, which I 
discuss in Chapter 8), you can actually have multiple normal stresses acting 
simultaneously in multiple directions.

For normal stresses from bending moments, the sign convention follows the 
convention I establish in Chapter 9: positive for a tensile effect, and negative 
for compression. However, the directions of these stresses vary within the 
cross section based on the direction of the moment. To illustrate these direc-
tions, consider a cross section that lies in the XY plane of the Cartesian coor-
dinate system shown in Figure 15-2.

 ✓ A bending moment about an x-axis gives you normal stresses in the 
z-direction; the maximum positive and minimum negative occur on 
opposite sides of the neutral axis at the extreme fibers that are parallel 
to the x-axis.

 ✓ A bending moment about a y-axis gives you a normal stress in the 
z-direction; the maximum positive and minimum negative occur on 
opposite sides of the neutral axis at the extreme fibers that are parallel 
to the y-axis.

Shear stresses, whether they come from torsion or flexure are handled 
according to the sign convention I establish in Chapter 6: positive if the 
shear effects on opposite vertical edges of the stress element tend to rotate 
the element in a counterclockwise direction and negative if the rotation is 
clockwise. However, in the case of torsion (see Chapter 11), you also have 
to pay special attention to which edge of the cross section you are working 
with because the direction of these stresses is dependent on the direction of 
the internal torque on the object. On one side of the exposed cross section, 
you get a positive shear stress, and on the opposite side, you get a negative 
shear stress. Just watch the direction of the torque to give you a hint on the 
direction ; shear stress is always in the same direction as the direction of the 
torque on a given face.

Handling Multiple Axial Effects
After you’ve got your conventions squared away (see the earlier section 
“Setting the Stage for Combining Stresses”), you’re ready to explore the 
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240 Part IV: Applying Stress and Strain 

different load and stress combinations you may encounter. The simplest 
of these cases involve only normal stresses. For these, you simply need to 
examine each of the cases separately and then add their effects together 
(assuming they meet the requirements of the principle of superposition — 
flip to “Understanding the Principle of Superposition: A Simple Case of 
Addition” earlier in the chapter). Consider the simple cylindrical pressure 
vessel (shown in Figure 15-3a), which is also subjected to a compressive 
axial force at the same time. I discuss both of these scenarios separately in 
Chapter 8.

 

Figure 15-3: 
Pressure 
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to an axial 

load.
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 If the applied loads don’t produce a stress in a given direction, you can always 
display them as a zero value.

Assume that for the presssure vessel loads, you computed the hoop stress 
to be 16 MPa (T) and the axial stress to be 8 MPa (T). If the normal stress 
from only the axial load is 14 MPa (C), you have all the information you need 
to determine the combined normal stress element by using the method of 
superposition. You can analyze each of the cases separately and display one 
stress element for the pressure vessel and a second for the axial load (for 
this example both of these elements are shown in Figure 15-3b).

Using the Cartesian coordinate system I establish in Figure 15-2, you know 
that the hoop stress of 16MPa is a tension stress in the y-direction. Because 
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the axial load is acting only in the z-direction in this problem, this load 
creates no stress in the y-direction. You compute the net normal stress acting 
in the y-direction, or

 
σ

yy
, as follows:

σ
yy

 = σ
yy,1

 + σ
yy,2

 = (+16 MPa) + (0 MPa) = +16 MPa = 16 MPa (T)

The axial (or longitudinal) stress from the pressure vessel is +8 MPa in the 
z-direction, and the stress from the applied axial load is a compressive stress 
of –14 MPa in the z-direction. Thus, the net normal stress in the z-direction, or  
σ

zz
, is

σ
zz

 = σ
zz,1

 + σ
zz,2

 = (8 MPa) + (–14 MPa) = –6 MPa = 6 MPa (C)

You also need to examine the shear stresses, but because all the stresses of 
this example are normal stresses, you automatically know that τ

xy 
= 0 MPa. 

You can see the final combined stress element in Figure 15-3c.

Including Bending in Combined Stresses
A large number of combined stress problems are the result of bending effects 
in conjunction with other effects (such as axial loads, torsion, and so on). A 
shear force on the end of a cantilever beam produces a bending moment at 
the fixed support (as well as other locations along the length) at the same 
time as a flexural shear force. An axial force that doesn’t pass through the 
centroid of the cross section (or along the longitudinal axis) can even create 
multiple bending moments about multiple axes simultaneously. Sounds like 
a great opportunity for combined stress techniques, doesn’t it? Good news: 
That’s what I cover in the following sections!

Bending biaxially from 
inclined point loads
Sometimes you encounter a beam where the load doesn’t act parallel to 
Cartesian axes but rather acts at some angle such that its line of action is 
through the centroid (see Chapter 4) of the cross section. To solve this, 
you must find the component of the moment parallel to the each of the 
Cartesian axes.
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Consider the rectangular cross section shown in Figure 15-4a, which is 
60 millimeters high and 20 millimeters wide and is loaded at the end of the 
cantilever with a load of 1,000 Newton at an inclined angle of 30 degrees. In 
this example, you want to compute the stresses at the support (or Point 2).

 

Figure 15-4: 
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section.
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For this example, you can establish the Cartesian coordinate system such 
that the cross section of the beam lies in the XY plane and the origin is 
located at the centroid of the cross section — making the z-centroidal axis 
the longitudinal (or axial direction) axis for the member. 

 To keep the signs of the stresses straight for biaxial bending problems, I like to 
compute the magnitude of the bending stresses (see Chapter 9), assuming that 
the moments are all positive (as indicated by absolute value brackets) and apply 
the signs by hand at the end of the calculation based on the direction of bending.

For Case 1 (shown in Figure 15-4b), which contains the horizontal component 
of the load, you calculate the applied moment at Point 2 about the y-axis M

y
 

as 1,000 N(sin 30°)(3 m) = 1,500 N-m. To compute the stress at a particular 
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location (such as the extreme fibers) within the cross section, you also need 
the moment of inertia about the y-centroidal axis, (see Chapter 4) as I

yy
 = 4.0 × 

10–8 m4. You can then compute the stress due to Case 1 as

Similarly, Case 2 (shown in Figure 15-4c) contains the vertical component 
of the load. You find the applied moment about the x-axis at Point 2 as 
M

x
 = –1,000 N (cos 30°)(3 m) =   –2,598 N-m. To compute the stress at a par-

ticular location, you need to first compute the moment of inertia about the 
x-centroidal axis as I

xx
 = 3.6 × 10–7 m4. The stress due to Case 2 is then

 To combine these stresses, you need to look at the signs of the stress relative 
to the direction of bending. That is, you know that on either side of the neutral 
axis, a member is either in tension or compression, and it can’t be in both 
on the same side of the neutral axis. If the member is in tension, the normal 
stress is positive, and if it’s in compression, the normal stress is negative.

Using the magnitude of the normal stresses (σ
zz,1

 for Case 1 and σ
zz,2

 for 
Case 2), you’re now ready to apply the signs manually for specific points and 
finally compute the combined stresses. For Case 1, Point A and Point D 
experience a tension stress, so the signs of the normal stress at these locations 
are positive, or +σ

zz,1
, such that σ

zz,A1
 = σ

zz,D1
 = +375.0 MPa. Points B and C 

experience a compression stress of –σ
zz,1

. Therefore, σ
zz,B1

 = σ
zz,C1

 = –375.0 MPa.

You can repeat this process for the moment of Case 2. The moment about 
the x-axis in this example results in a tension (or positive) stress above the 
neutral axis and a compression (or negative) stress below the neutral axis. 
That means that σ

zz,A2
 = σ

zz,B2
 = +216.5 MPa and σ

zz,C2
 = σ

zz,D2
 = –216.5 MPa.

Finally, to determine the combined stress from both of these two cases 
together, you simply add (or superimpose) these stress quantities together:

σ
zz,A

 = σ
zz,A1

 + σ
zz,A2

 = (+375.0 + 216.5 MPa) = +591.5 MPa = 591.5 MPa (T)

σ
zz,B

 = σ
zz,B1

 + σ
zz,B2

 = (–375.0 + 216.5 MPa) = –158.5 MPa = 158.5 MPa (C)

σ
zz,C

 = σ
zz,C1

 + σ
zz,C2 = (–375.0 – 216.5 MPa) = –591.5 MPa = 591.5 MPa (C)

σ
zz,D 

= σ
zz,D1 + σ

zz,D2
 = (+375.0 – 216.5 MPa) = +158.5 MPa = 158.5 MPa (T)
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Figure 15-5 shows a plot of the normal stresses at their respective locations 
in the cross section. In this figure, I’ve rounded the normal stresses to the 
nearest MPa.

 

Figure 15-5: 
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Plotting the four stresses, you can see that at Point A, the combined stress 
in this example, is a maximum positive value, and the maximum negative 
stress appears in the opposite corner at Point C. The dotted line along the 
cross section represents a line that connects the location of zero stress in the 
member. To the left of this line, all normal stresses are tension, and to the 
right, all normal stresses are compression. Regardless of whether the stress 
is in tension or compression, each of these stresses still acts in the longitudinal 
or z-direction.

 Incidentally, you also have multiple shear effects in this example, but this 
example deals only with the normal stresses from the bending effects. I show 
you how to include shear effects from flexural stresses into your combined 
stress elements in the following section.

Combining flexural shear 
and bending stresses
One of the most common combined stress cases you encounter appears 
when you start working with flexural stresses (stresses resulting from transverse 
loads that produce bending and shear simultaneously). The vast majority 
of flexural load cases result in both normal stresses from bending (see 
Chapter 9) as well as shear stresses from shear (see Chapter 10).

Just as with the other cases of combined stresses, you can use the principle 
of superposition to separate the effects of normal stresses due to flexural 
bending and the shear stresses due to flexural shear.

When you work with flexural stresses, remember that both the shear and the 
moment vary with location within the cross section. To compute these basic 
stresses for vertical forces and moments about the x-centroidal axis, you use 
the following relationships:
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Although the moment M
x
, the shear V

y
, and the moment of inertia I

xx
 are 

constant values for a given cross section at a given location on the flexural 
member, the values for y, first moment of area Q

x
, and thickness t are all 

dependent on the exact point within the cross section at which you want to 
compute the stress.

 You can have shear stresses in multiple directions from flexural loads when 
you have an inclined load, such as the one I show in Figure 15-4.

Consider the simply supported beam shown in Figure 15-6 that has a cross 
section of width b and height h lying in the XY plane. The beam is subjected 
to a vertical uniform load along the full length of the beam. Typically, you 
should analyze the combined stress state for this problem at multiple points 
within the cross section, but you definitely want to include at least the 
following points:

 ✓ Point of minimum shear stress: Point A and Point E are important 
because they’re the locations of minimum shear stress; actually, the 
value of shear stress at both of these points is exactly zero (you can 
read more about why in Chapter 10).

 ✓ Point of minimum normal stress: Point C is a vital analysis point 
because it’s located at the horizontal neutral axis. It also happens to 
be the location of zero bending stress as well as the location of maxi-
mum shearing stress.

 You also want to include additional points within the cross section because 
sometimes the largest combined effects (such as principal stresses, which 
I discuss in Chapter 7) don’t occur at the locations of maximum normal or 
minimum shear stresses. Other possible locations you may want to consider 
include

 ✓ Geometric changes: In members such as I-sections and T-sections, the 
section changes width at different locations within the cross section. 
You usually want to include a point on either side of these sudden 
geometry changes in your analysis, particularly because shear stress 
can change dramatically at these points.

 ✓ Material property changes: For members composed of multiple materials 
or multiple pieces of similar materials that are attached by some 
mechanical means (such as nails, screws, glues or welds), the interfaces 
of these materials are typically points worth investigating.
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Figure 15-6: 
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In this example, I don’t actually have either of these cases, so I arbitrarily 
choose a point between the maximum and zero bending stress locations 
and the maximum and zero shear stress locations. I choose Point B to be 
a distance of h/4 from the top and Point D to be a distance of h/4 from the 
bottom.

Because the loading in this example causes a positive moment, the normal 
stresses at Point A and Point B are all negative (compressive) values. Point 
A has the largest negative normal stress because it’s at a larger distance 
(+y-value) than Point B. The normal stress at Point C is zero because it’s the 
location of the neutral axis. Point D and Point E are both positive normal 
stress values because they both have a negative y value (because they’re 
below the neutral axis). Point E has the largest tensile stress because it’s the 
largest negative distance (in the –y-direction) to Point E. Figure 15-7 shows 
the normal stresses for these locations.

You then determine the shear stresses from the flexural loads on a point-by-
point basis as well. At Points A and E, you know that the shear stress is zero, 
and at the neutral axis (Point C), the shear stress is maximum. The shear 
stresses at Points B and D have a value between zero and the maximum. 
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247 Chapter 15: Calculating Combined Stresses

You can see the shear stresses for these locations in Figure 15-7. You can 
then combine these normal and shear stresses by using the principle of 
superposition at each point to create the combined stress elements (which I 
also show in Figure 15-7).
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Acting eccentrically about axial loads
When working with axial loads, you typically assume that they act at the 
centroid of the cross section (or concentrically) because the longitudinal axis 
perpendicular to the plane of the cross section acts through that point. When 
the axial loads act through the centroid of the cross section, you can usually 
assume that these normal stresses are actually average normal stresses from 
axial loads (as I discuss in Chapter 8) and that they have the same numeric 
value at all locations within the cross section. However, in some structures, 
the axial load may well be applied eccentrically (or not concentrically) to the 
centroid of the object.

 Eccentric load behavior can happen in structures when a beam sitting on a 
column or foundation experiences a rotation that moves the center of the 
reaction away from an intended position.
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248 Part IV: Applying Stress and Strain 

Fortunately, when you handle these types of situations, you can use the same 
basic superposition techniques that I present in the preceding section; you 
just have a couple of extra bending stresses to consider.

To illustrate this process, consider the member shown in Figure 15-8a that is 
subjected to an axial tension load applied at Point O.

 

Figure 15-8: 
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To handle eccentric axial loads, you simply need to relocate the axial load 
to the centroid of the cross section. Remember from statics that when you 
relocate a force on a rigid body, you get an equivalent axial force of the same 
magnitude acting at the centroid (producing an axial normal stress), and you 
create additional bending moments about the x- and y-axes, which both pro-
duce normal stresses in the z-direction.

For this example, the location of the axial load is in the lower-left quadrant 
of the cross section as shown in Figure 15-8a, with eccentric dimensions e

x
 

and e
y
, which are both negative when measured with respect to the centroid 

at Point C. That means that for a positive axial force P, the corresponding 
moment of this force about the x-axis is negative and the moment of the force 
about the y-axis is positive.

To compute the magnitude of each these moments, you simply take the 
magnitude of the force and multiply it by its perpendicular distance from the 
centroid: M

x
 = –Pe

y
 and M

y
 = Pe

x
. I show these moments on the cross section 

of Figure 15-8b.

 In these equations, you want to be sure to input both the magnitudes of the 
forces and their respective eccentricities as positive values. You can then 
apply the signs (or the sense) to these moments by using a bit of logic.
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249 Chapter 15: Calculating Combined Stresses

After you have the moments computed, you can then determine the bending 
stresses in the z-direction (as I outline in Chapter 9) separately about each 
axis in the plane of the cross sections. Finally, you can then combine each of 
these normal stresses with the axial stress (which is also in the z-direction) 
to get a single normal stress acting in the z-direction.

 Eccentric axial loads can actually create moments about both Cartesian axes 
within the cross section. To handle these cases, you compute the effective 
moment about each axis and then treat the problem as a type of biaxial 
bending problem (which I discuss in “Bending biaxially from inclined point 
loads” earlier in this chapter). Just remember that you also have an equivalent 
axial load effect that produces an extra normal stress that you must include in 
the combined stress element.

Putting a Twist on Combined 
Stresses of Torsion and Shear

Another stress that can play a role in your combined stress analysis is the 
shear stress as a result of torsion. As I describe in Chapter 11, torsion is a 
twisting phenomenon that causes rotation about the longitudinal axis of 
rotation, which is assumed to pass through the centroid. Because it’s a 
twisting effect, torsion applies to the principle of superposition a bit differently 
than other bending moments do: It can be positive in one location on a cross 
section and negative in another. For direct shear, shear stresses in a cross 
section usually have the same sign at every location. Although the methodology 
for superposition is still sound, the signs associated with a torsional 
stress are worth investigating. (Head to “Understanding the Principle of 
Superposition: A Simple Case of Addition” earlier in the chapter for more on 
superposition.)

 As long as your situation meets all the criteria for the principle of superposition, 
you can still use the basic idea to include shear stresses from torsion. But 
here’s the warning up front: Beware of the signs and direction of the torsional 
stresses.

For circular shafts, where warping isn’t an issue, the stresses from the applied 
torque are all shear stresses. Consider the round shaft of Figure 15-9a, which 
is subjected to both direct shear V and an applied torque T. (Remember that 
whenever you have a direct shear, you need to be very mindful about the 
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250 Part IV: Applying Stress and Strain 

flexural bending stresses when you perform your superposition. However, in 
this example, I assume the bending stresses are zero.)
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In Figure 15-9b, the applied torque is acting counterclockwise on the cross 
section and produces a negative shear stress at Point A in the cross section 
and a positive shear stress at Point B. However, for the direct shear load V, 
the resulting shear stress is a negative value (because the direction of the 
applied shear is negative). (I show both of these shear stress distributions in 
Figure 15-9c.) So at Point A, the shear stresses from torsion and direct shear 
are both in the same direction and become additive. But at Point B, the two 
shear stresses are opposing each other, and the net shear stress is reduced. 
Figure 15-9d shows the combined stress elements that result for both of 
these points.

After you determine these combined stress elements, you’re free to continue 
your stress analysis by computing principal stresses and angles using the 
techniques of Chapter 7 and then relating those stresses to strains using the 
concepts of Chapter 14.
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Chapter 16

When Push Comes to Shove: 
Dealing with Deformations

In This Chapter
▶ Squaring away conventions

▶ Using integrals to compute axial and flexural deflections in beams

▶ Determining the angle of twist due to torsion

Aside from computing the actual stresses in a member due to applied 
load (which I cover in Part II), another computation that engineers find 

extremely important is the calculation of deformations (or displacements and 
rotations), which come in many shapes and varieties. In this chapter, I show 
you how objects subjected to loads actually deform. 

Displacements from bending moments are what occur while you’re standing 
on a diving board pondering a back flip into the deep end of a pool. Axial 
displacements are what cause pressure vessels to expand or small columns 
to shorten. Torsional deformations can be used in the study of rotation in 
power-transmission shafts.

You express the basic relationship for determining deformations in structures 
as differential equations that relate the deformation to an internal force. 
However, before you panic at the thought of spending your time solving 
differential equations, I keep it fairly simple here. In this chapter, I show you 
that a little integration goes a long way. And in some cases, you don’t even 
have to do that.
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252 Part IV: Applying Stress and Strain 

Covering Deformation Calculation Basics
Before you can begin to calculate deformations, you need to understand how 
applied loads and deformations are actually interrelated; this interrelation is 
known as the stiffness of a member. In this section, I define the parameters of 
stiffness and discuss the key assumptions behind the deformation calculations 
that I introduce later in this chapter.

Defining stiffness
You can define the basic relationship between load and deformation as 
follows:

load = stiffness × deformation

where the stiffness term refers to the properties of an object to resist 
deformations under applied loads. The stiffness of an object is related to the 
following factors:

 ✓ Cross-sectional properties: Properties such as the cross-sectional area 
(see Chapter 4) and the second moment of area (or the area moment of 
inertia) and the torsion constant (both in Chapter 5) play a significant 
role in helping you determine the stiffness of an object.

 ✓ Structural dimensions: Dimensions of the object within a structure 
often affect the stiffness of the object. An object’s length is an important 
factor in its deformation response under load.

 ✓ Material properties: Material properties such as Young’s modulus of 
elasticity, Poisson’s ratio, and the modulus of rigidity are specific to the 
material of the object and can affect the deformation of the object.

For each load type, calculating stiffness helps determine the response of the 
structure. You can calculate some structural stiffnesses (for members sub-
jected to axial loads and torsion) with a simple formula, but others (such as 
those due to bending) require more complex calculations involving calculus or 
differential equations.

Depending on the type of applied load, the corresponding deformation may 
be a displacement or rotation. An object can also have multiple load effects 
and consequently experience multiple types of deformation simultaneously. 
This situation occurs frequently in objects such as columns of buildings that 
can be subjected to both axial loads and bending moments.
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253 Chapter 16: When Push Comes to Shove: Dealing with Deformations

Making some key assumptions
Displacements are usually measured in inches for U.S. customary units and 
in meters for SI units (though for very small displacements, you can always 
convert to millimeters). Rotations in the calculations of this chapter have no 
units, but they’re generally expressed as radians in both U.S. customary and 
SI systems.

For the deformation calculations I show in this chapter, a few key assumptions 
are constant throughout, many of which I mention in Chapter 14:

 ✓ The structural object behaves linearly with respect to the load. A 
member deflects under a load. It deflects twice as much under twice the 
load.

  Not all structures behave linearly. In fact, cable systems can demonstrate 
highly nonlinear behavior. However, I don’t deal with nonlinear systems 
in this text, so you’re safe for now!

 ✓ The material of the object is elastic, isotropic, and homogenous. 
Remember that elastic refers to the region of material behavior where 
any deformation due to applied load totally disappears when the load 
is removed. A material is homogeneous if its properties don’t vary with 
position within the object and isotropic if its properties don’t vary with 
direction.

 ✓ The member is prismatic. A member that is prismatic has a cross-sectional 
area that is constant (or uniform) along the length (or longitudinal axis) 
of the member. However, for some calculations in this chapter, I show 
you how you can work around this requirement and actually work with 
non-prismatic sections.

 ✓ All displacements remain small. The calculations observe small 
displacement theory, meaning that the displacements remain very small. 
I discuss this theory more in Chapter 15.

Addressing Displacement 
of Axial Members

Displacements are always relative calculations, meaning you measure them 
with respect to some reference location. For axial members, you usually use 
one end of the member as the reference and determine axial displacements 
with respect to that end. Even though a bar subjected to tension grows at 
both ends, the calculations I present here assign the combined displacement 
to one end.

23_9780470942734-ch16.indd   25323_9780470942734-ch16.indd   253 6/1/11   6:32 PM6/1/11   6:32 PM



254 Part IV: Applying Stress and Strain 

 For some problems, you often conveniently take the reference location for 
displacement calculations as a support or wall location (if one is available) 
because those locations don’t usually move.

 If you’re calculating a displacement, you must include a reference location, 
such as a support location or some other arbitrary point, from which you can 
base your calculations. Without this reference clearly defined, the techniques 
I present in this chapter only provide deformation over a given length, and 
you can’t necessarily always use them to describe a system’s total displacement.

Computing axial deformations
Determining axial deformations is fairly straightforward, and fortunately, it 
doesn’t usually require solving a differential equation. For simple cases, you 
calculate axial deformation by taking Hooke’s law for stress and strain and 
substituting the equation for axial stress (from Chapter 8) and the equation 
for strain (from Chapter 12):

If you perform a bit of algebra, you can relate the axial deformation in terms 
of the load:

where P
INT

 is the internal force in the member; L is the length over which the 
internal force is constant; A is the cross-sectional area of the member; and E 
is Young’s modulus of elasticity for the material.

Imagine an aluminum bar with a cross-sectional area A of 2 square inches, a 
length L of 12 feet, a Young’s modulus of elasticity E of 10,000 ksi, and a single 
tensile force of 40,000 pounds at the end — which makes the internal force 
P

INT
 = 40,000 pounds at every point along the length. You can compute the 

deformation (or axial elongation) to the load as follows:
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255 Chapter 16: When Push Comes to Shove: Dealing with Deformations

 Even though the calculations are usually fairly simple, you must be careful 
about the units. In this example, the load is in pounds, and the Young’s 
modulus of elasticity is in ksi, which actually has a kip in it. If you don’t make 
the units in your calculations agree, you’ll be off by a factor of 1,000 (because 
1 kip = 1,000 lbs)! Also, another potential unit hazard comes in the length of 
structural members. For larger members, you may see the length expressed in 
feet (or meters), where the cross-sectional area is in square inches (or square 
millimeters).

Determining relative displacements
For members with different cross-sectional areas along the length, or subjected 
to different internal loads throughout, you have to use a slight variation on 
the axial displacement formula:

where the terms in the equation are the same as the original equation, but 
the i subscript indicates that you need to do this calculation for different 
subregions. The subregions that you must analyze occur when you split an 
axial member because of changes in geometry, in material properties, or in 
internal force.

You actually compute the elongation of each individual region separately and 
then combine them to determine total deformation. To illustrate the process, 
consider the aluminum assembly (where E = 10,000 ksi) shown in Figure 16-1a 
that has three different cross sections lying in XY planes, lengths, and mul-
tiple axial loads applied at the locations shown.

To compute the total displacement at the end of the axial member (as well 
as intermediate displacements) with respect to a reference location, you can 
use the following simple procedure:

 1. Divide the axial member into subregions for your analysis.

  You can divide the member in Figure 16-1a into distinct subregions. The 
figure has three different cross-sectional areas, so you know that you 
need at least three regions. However, the 30-kip load applied at Point C 
causes different internal forces within Section BCD, so you need to break 
this region into separate subregions as well, each of which has a cross-
sectional area of A

BC
 = A

CD
 = 1.2 in2. For this reason, you need a total of 

four subregions: AB, BC, CD, and DE.
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257 Chapter 16: When Push Comes to Shove: Dealing with Deformations

 2. Determine the internal force in each subregion from Step 1.

  For each of the subregions, use statics to determine the internal forces 
in each subregion. You can use the free-body diagrams shown in 
Figure 16-1b to help you with your equilibrium calculations, or you can 
draw an axial load diagram for the entire system. (Notice that I’ve 
omitted the shear and moment from these internal forces because all 
loads are axial and acting through the centroid of the member.)

  P
AB

 = 10 kip (C) P
BC

 = 10 kip (C) P
CD

 = 20 kip (T) P
DE

 = 20 kip (T)

 3. Calculate the relative deformation within each subregion.

  Next, you compute the relative axial deformation within each subregion 
by substituting the length, cross-sectional area, Young’s modulus of 
elasticity, and the internal load for each subregion. For example,

  

  The negative sign in this value indicates that the length of the member 
gets shorter (or decreases), which should make sense because the inter-
nal axial force in this section is also negative (indicating compression). 
You can perform a similar calculation for the remaining three subre-
gions and find that

  Δ
BC

 = –0.017 in Δ
CD

 = +0.033 in Δ
DE

 = +0.20 in

 4. Determine displacement of points of interest, starting at the reference 
location.

  If you choose the wall at Point A as the reference, you know that Point B 
experiences a movement in the amount of Δ

AB
 = –0.02 in (or 0.02 in to the 

left) from where it started.

  Relative to Point B, you know that Point C moves an amount equal to 
Δ

BC
 = –0.017 in. The total displacement with respect to the wall is then 

Δ
AB

 + Δ
BC

 = (–0.02 in + (–0.017 in)) = –0.037 in of total displacement from 
its original position.

  Similarly, relative to Point C, Point D moves +0.033 in (or to the right), 
and the total displacement with respect to the wall is Δ

AB
 + Δ

BC
 + Δ

CD = 
(–0.02 in + (–0.017 in) + 0.033 in) = –0.004 in (which is still slightly to the 
left of its original position).

  Finally, the tip of the member moves a total amount equal to the sum of 
all of the displacements, Δ

AB
 + Δ

BC
 + Δ

CD
 + Δ

DE
 = (–0.02 in + (–0.017 in) + 

0.033 in + 0.20 in) = +0.204 in, which is to the right of the original position 
of Point E.

  Despite the fact that Points A, B, C, and D all end up moving to the left 
(as indicated by their negative values), the total deformation at the end 
of the object ends up being a net elongation of +0.204 in.
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Handling non-prismatic 
sections under axial load
Another type of axial problem that you may encounter deals with computing 
deformations of a tapered section (or a section that doesn’t have a uniform 
cross section along the length), such as the one shown in Figure 16-2a. An 
example of this type of problem involves determining the behavior of a 
tapered chimney smokestack.

 

Figure 16-2: 
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sections.
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Although you can determine an exact solution to this problem if you know 
the profile of the taper and if all cross sections are concentric with a 
longitudinal axis, you have to revert to a slightly different variation of 
Hooke’s law (see Chapter 14) where the axial strain, ε

xx
 = du/dx and the 

axial stress is σ
xx

 = P/A. In this variation, both the stress and the strain of 
the object become dependent on the location of the cross section. You can 
determine the displacement of a member by integrating both sides of this 
equation:

 In this equation, the variable A is no longer constant but becomes a function 
of its position (x) within the member, so you need to include that term in your 
integral. The benefit of this equation is that you can also handle problems 
where the load varies along the length (such as from the self weight or from 
problems involving surface friction or drag on objects) or where material 
properties vary with position.
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 An alternative way to analyze this system is to slice it into pieces that have a 
constant cross section of a small subregion within the member, such as either 
of the figures shown in Figure 16-2b. You then analyze this system as I show in 
the preceding section. The problem is that if you don’t use enough subregions 
to define the taper, your calculations may not be very accurate. The more 
pieces you slice an object into, the closer your answer usually becomes to the 
theoretical (or exact) values; you just need to perform a lot more work in your 
calculations. The idea of slicing an object into a lot of different pieces is actu-
ally the basis for mathematical solution techniques such as differential meth-
ods and finite element methods.

Discovering Deflections 
of Flexural Members

The classical form of flexural analysis utilizes the Euler-Bernoulli beam theory 
(sometimes known as the engineer’s beam theory), which was developed 
around 1750. The Euler-Bernoulli beam equation relates a beam’s deflection 
to the moments applied to the member and produces the following second-
order differential equation:

where v is the displacement at a location x on the beam; E is Young’s modulus 
of elasticity (which I discuss in Chapter 14); and I is the second moment of 
area (as I describe in Chapter 5). The M value always turns out to be those 
generalized moment equations I mention in Chapter 3.

Setting up flexural assumptions
To use the classic beam equations from the preceding section, the beam 
must meet a couple of requirements:

 ✓ All loads act laterally to the member. The loads are applied perpendicular 
to the beam, meaning no axial force is present. But the beam can have 
shear and moments.

 ✓ The beam neglects deformations due to shear. The classic beam relation-
ship neglects the effects of axial and shear forces on the overall displace-
ments of the beam due to flexural loads. 

  In reality, shear deformations should also be included, but it becomes a 
much more involved process (see the nearby sidebar for more on this 
topic).
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 In this text, I work only with basic Euler-Bernoulli beam theory, which neglects 
shear deformations. This assumption is typically okay because in most 
applications, transverse deformations due to shear are usually less than 5 percent 
of the total deformation for very long members — although this amount varies 
depending on the length of the beam and the depth of the cross section.

Defining the elastic curve 
for displacements
The equation represented by v(x) is the solution of the classic beam equation 
(or the differential equation) I show at the beginning of this section. This 
equation, which is known as the elastic curve for the member, is an equation 
that defines the displacements of a beam at all locations as a function of posi-
tion x along the length. If you plotted this function, you could actually show 
the entire deflected shape of the beam.

You can actually write the equations for elastic curves over any incremental 
length as long as you write enough equations to account for every point 
along the length of the member. For an elastic curve, you have to keep a 
couple of requirements in mind:

 ✓ Elastic curve is a smooth function. A smooth function has no kinks (or 
instant changes in slope). These kinks can actually occur whenever you 
have an internal hinge in a structure — where one side of a point rotates 
more than the other side (see Figure 16-3a).

 ✓ Elastic curve is a continuous function. The function for classic bending-
type problems must be continuous, meaning that it doesn’t have any 
sudden jumps or breaks in the elastic curve (see Figure 16-3b).
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261 Chapter 16: When Push Comes to Shove: Dealing with Deformations

A compatibility condition (or continuity requirement) is a relationship that 
relates displacements or rotations on one side of a cut line to their similar 
values on the other. These compatibility conditions prevent your elastic 
curve from becoming disjointed or kinked.

Closing in on a twice-integrated solution
To actually find the equation for the elastic curve, for statically determinate 
structures, you simply need to apply a little bit of calculus. To illustrate 
the process, consider the simply supported beam with span L, shown in 
Figure 16-4, which is subjected to a triangular load of magnitude, w.

To find the equation of the elastic curve, you just follow a few basic steps.

 1. Determine the generalized moment equation.

  To start the process, you must generate an expression for the generalized 
moments as a function of the position x on the beam as I discuss in 
Chapter 3. The generalized moment M(x) for the general section shown 
in Figure 16-4b is

  

  where x is the position along the beam measured from the left end (or 
Point A). You can then substitute this expression into the classic beam 
equation and start the integration process.

Shear displacement and Timoshenko’s beam theory
Stephen Timoshenko was an instrumental 
figure in the formulation of modern engineering 
mechanics. His work in flexural theory 
expanded upon the classic Euler-Bernoulli 
beam equation by also incorporating the 
effects of shear displacement into the flexural 
calculations as follows:

  

where κ is a shear deformation coefficient 
based on the shape of the cross section, and 
w is the load function acting on the member. 

If you neglect shear deformations, you usually 
take this value as zero.

The Euler-Bernoulli classic beam equation 
is actually just a specialized case of the 
Timoshenko beam theory. The solution of 
this fourth-order differential equation yields 
a higher-order function, which is typically 
more accurate in dealing with transient 
(or time-dependent) loads and is a better 
predictor of total beam displacements. For 
more on this topic, I leave you to consult an 
advanced mechanics textbook or your friendly 
neighborhood graduate professor.
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 2. Integrate the beam equation to find the equation for the slope of the 
elastic curve.

  

  where C
1
 is a constant of integration that appears as a result of the 

integration process. I show you how to solve for this constant in the 
following section.

  Although this expression isn’t actually the equation of the elastic curve 
that you’re after, it does have another important significance: The first 
derivative of the displacement, or dv/dx, is actually the slope of the 
elastic curve. With this equation, you can determine how much a beam 
has rotated from its original positions at any location on the beam. 
Engineers use both displacements and slopes in their design and 
analysis of beams and bending members.

 3. Integrate the equation of Step 2 to determine the equation for the 
elastic curve.

  To get v(x), the equation of the elastic curve, you simply need to inte-
grate the slope equation from Step 2 once more:

  

  where C
2
 is a second constant of integration.
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 A situation where the double integration technique may not be sufficient is if 
the loads applied to the beam are fairly complex or the beam itself is statically 
indeterminate. In these cases, determining the support reactions and generalized 
moment equation can be a bit tricky. For indeterminate problems, you may 
prefer to use the method I show in the later section “Integrating the load 
distribution to solve for beam displacements.”

Using boundary conditions to find constants of integration
As you may recall from your calculus or differential equations class, anytime 
you integrate a function (such as the solution to the beam equation I show 
in Step 3 in the preceding section), you end up with one constant of integra-
tion for each time you integrate; in that example, you actually end up with 
two constants, C

1
 and C

2
. These constants represent a unique solution to 

the equation that takes into account known values of the function at specific 
locations known as boundary conditions.

Boundary conditions come in a wide variety of forms, and they help make a 
function for an elastic curve meet a specific set of criteria, such as support 
reactions for displacements and rotations, or even for internal moments. I 
show several common boundary conditions for different types of supports 
and internal forces in Figure 16-5.

Here’s how you calculate constants of integration:

 1. Determine the boundary conditions for the problem.

  For Figure 16-4, the support at Point A (located at x = 0) is a pinned 
support, which has no vertical displacement, and the support at 
Point B (located at x = L) is a roller support, which also has no vertical 
displacement. From the diagrams shown in Figure 16-5, the boundary 
conditions for this problem are

  

 2. Solve for the constants of integration.

  From the first boundary condition, you can substitute a value of x = 0 
into the equation for the elastic curve and set it equal to the value of 
v = 0. Doing so gives you a value for the constant of integration C

2
 = 0. 

Repeating the process for the second boundary condition requires a bit 
more algebra, but substituting in the values of x = L and v = 0 into the 
equation gives you the value for the constant of integration C

1
:
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 3. Substitute the constants of integration into the equations for the 
elastic curve and slope.

  With the constants determined from the boundary conditions, you can 
then write the complete equations for the elastic curve and the slope for 
any position x for this example:

  

  The slope of the elastic curve is

  

Defining differential equations for deformation
You can apply the basic concepts of this section to other types of deformation 
and load as well; you just need to know the differential equation that relates 
the internal loads to the deformation and determine the appropriate boundary 
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conditions. For torsion, the following second-order differential equation 
relates the angle of twist to the torque applied to the member:

where ϕ is the angle of twist (a measure of rotation) at a location x on the 
beam or shaft, G is the shear modulus of elasticity (see Chapter 14); J is the 
torsion constant for the cross section; and T is the applied internal torque 
with respect to x. To solve this equation, you simply integrate this equa-
tion twice with respect to x and apply boundary conditions to find the two 
unknown constants of integration that arise.

For axially loaded members, the following equation relates the axial 
deformation to the internal axial loads on the member:

where u is the axial displacement at a location x on the member; E is Young’s 
modulus of elasticity; A is the cross-sectional area; and P is the internal axial 
force with respect to x. To solve this equation, you need to integrate once 
only, and apply only a single boundary condition to obtain the constant of 
integration.

Integrating the load distribution to 
solve for beam displacements
Unfortunately, for statically indeterminate beams (or beams with more 
unknown support reactions than available equilibrium equations), you 
typically have one or more of the unknown reaction supports appearing on 
the free-body diagram when you go to write the generalized moment equations. 
Without more information, the equations of static equilibrium may be 
insufficient to determine all of the support reactions and internal forces of 
the member.

You can actually modify the methodology I present in the preceding section 
and come up with a couple of new expressions that allow you solve certain 
indeterminate problems (though it also works on statically determinate 
problems as well). Starting with the classic beam equation, you know the 
relationship between the moment and the displacement function:
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As I note in Chapter 3, if you differentiate this equation, you get an expression 
for shear because dM/dx = V:

Finally, differentiating this equation once more gets you an expression for 
the load, because dV/dx = w. The final equation is a fourth-order differential 
equation and relates the displacement of the elastic curve (see the earlier 
section “Defining the elastic curve for displacements”) to a function related 
to the load:

 This equation is actually a special case of Timoshenko’s beam theory without 
the contribution from shear deformations, which you often neglect because 
they tend to be very small. Flip to the sidebar “Shear displacement and 
Timoshenko’s beam theory” in this chapter for more on this theory.

As with the double integration technique I show earlier in the chapter, 
working with the fourth-order equation in this section requires you to find 
boundary conditions. However, the advantage of using the fourth-order equa-
tion is that you can use additional information about the beam aside from 
the known displacements and rotations at the support reactions; now you 
can also use internal moments and shears. The disadvantage of the fourth-
order equation is that you now have to perform a series of four integration 
steps, and each step creates an extra constant of integration — that is, your 
equation for the elastic curve has a C

1, C2
, C

3
, and C

4
 in the final expression. 

(“Defining the elastic curve for displacements” earlier in the chapter gives 
you the lowdown on these boundary conditions and how to find them.)

Four consecutive integrations
Consider the indeterminate beam shown in Figure 16-6, which is subjected to 
a uniform load w as shown.

The fourth-order beam equation from the preceding section tells you that

where w = w(x) is constant. So if you start integrating, you can develop the 
expressions for the lower-order derivatives — just don’t forget the constants 
of integration at each step:
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which generates the equation for the elastic curve, v(x).
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Finding boundary conditions to help solve for constants of integration
After you find the elastic curve equation, you’re ready to apply the boundary 
conditions. In addition to the displacement and rotation boundary conditions 
(or support boundary conditions) I show in Figure 16-5a earlier in the chap-
ter, you can also use the value of shears and moments at specific locations 
if you know them. For these items, you usually want to look for places where 
the moments and shear are equal to zero, such as the situations I show in 
Figure 16-5b.

For the beam of Figure 16-6, start by looking at locations of known displace-
ment. At the fixed support of Point A, you know that both the displacement and 
rotation must be zero because it’s a fixed support. That is, at x = 0 → v(0) = 0 
and θ(0) = 0. At the support at Point B, the displacement is 0, giving a bound-
ary condition of . Finally, at the roller support at Point B, 
the value of the moment is zero, which gives you a boundary condition of 

.
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 If you have an internal moment boundary condition, you can’t have a rotational 
(or slope) related boundary condition. Likewise, if you have a shear force 
boundary condition, you can’t have a displacement boundary condition, and 
vice versa.

From this information, you can substitute these boundary conditions into the 
appropriate differential equations and determine the constants of integration:

These calculations then allow you to write the equation of the elastic curve.

 Fortunately, many textbooks and design aids provide you with some of the 
more-common basic equations for internal loads and elastic curves already 
computed for you. Just remember to pay special attention to where they mea-
sure their reference position x from. Most measure it from the left end of the 
diagram, but some resources may do it differently, so keep your eyes open!

Finding maximum slope and deflection from elastic curve equations
After you have the equations of the elastic curve defined as a function, 
you can determine the maximum and minimum values of the curve — the 
maximum and minimum displacements. Using some basic calculus, which I 
refresh in Chapter 2, you can take the derivative of the elastic curve (or the 
slope equation) and set that equation to equal zero. Solving for the location x 
gives you the location of the maximum and minimum values. With these loca-
tions, you can then substitute into the equation for the elastic curve v(x) and 
actually compute these maximum or minimum values.

Angling for a Twist Angle
When a load is applied in objects such as beams and axial members, the 
deformation (or displacement) is usually a linear displacement. However, 
objects under torsion (such as the ones I discuss in Chapter 11) behave a bit 
differently. The following sections examine how torsion affects deformation.
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Measuring the angle of twist 
in prismatic shafts
Under torsion loads, as long as the object is a circular shape (either hollow 
or solid), the object twists within the plane of the cross section when a 
torque is applied. Figure 16-7a shows a circular shaft subjected to a torque at 
each end.

 

Figure 16-7: 
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Within circular shapes, such as the one in Figure 16-7b, Point 1 on the outer 
surface rotates to its final position at Point 2. Points within the cross section 
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remain in the same plane of the cross section, and they simply orbit around 
the center of the cross section. Although you can measure the distance that 
this point moves around the circumference of the cross section, a better 
representation of this displacement is to measure the change in angle between 
these two points with respect to the axis of rotation (or the longitudinal axis) 
of the shaft.

This change in angle is known as the angle of twist and can be calculated as

where T is the internal torque at the cross section of interest; L is the length 
of the shaft (or distance from a reference location) on which the torque T is 
measured; G is the shear modulus of elasticity (or the modulus of rigidity, which 
I explain in Chapter 14); and J is the torsion constant I describe in Chapter 11.

For example, consider a 2-meter-long solid circular steel shaft (G = 79 GPa) 
that has a radius r of 10 millimeters and is subjected to an applied torque 
of 100 kN-m. Computing the torsion constant for this shaft, J = 0.5π(r4) = 
15,700 mm4. To get the angle of twist, use the following equation:

When calculated correctly, the units on the angle of twist should all cancel 
out, which means the units are typically measured in radians (or rad) for 
both U.S. customary and SI units.

 You must be careful with the units of this calculation. For many objects, 
particularly those measured in the metric (or SI) system, the shear modulus G 
is usually reported in GPa (or 1 × 109 Pa); at the same time, shaft dimensions 
are commonly reported in millimeters (which means the torsion constant J is 
calculated in mm4). You can see the necessary conversions I use to avoid this 
problem in the preceding calculation.

Measuring the angle of twist 
in compound torsion problems
Shafts are frequently used to transmit power through torque and are often 
subjected to multiple pulley loads or other torque connections such as gears 
and cogs. To determine the angle of twist for shafts subjected to multiple 
applied torques or consisting of multiple diameter shafts, you follow a 
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procedure that is very similar to the procedure I outline for axial loads in the 
earlier section “Determining relative displacements.” Instead of calculating 
relative displacements, you now calculate relative angles of twist.

To illustrate the process, consider the brass shaft (where G = 5,800 ksi) 
shown in Figure 16-8a that consists of two different shaft diameters: a 
100-inch-long shaft ABC with a diameter of 0.75 inches and a 60-inch-long 
shaft CD with a 0.25-inch diameter. Two torques are applied at the locations 
indicated; their magnitudes are T

1
 = 50 kip-ft at the end of the shaft and T

2
 = 

75 kip-ft applied at 80 inches from the wall.
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Just as with axial members, you must divide a shaft into subregions and 
determine the internal torsion applied within each region.

To solve angle of twist problems, follow these steps:

 1. Divide the shaft into subregions for your analysis.

  You can divide the member in Figure 16-8a into three distinct subre-
gions. The figure has two different cross-sectional areas, so you know 
that you need at least two subregions. However, the 0.75-kip-ft torque 
applied at Point B causes different internal torques within shaft ABC. 
Thus, for this problem, you need three subregions: AB, BC, and CD.
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 2. Determine the internal torque in each subregion from Step 1.

  Use statics to determine the internal loads in each subregion. You can 
use the free-body diagrams to draw the torque diagram, which I show 
in Figure 16-8b. (Turn to Chapter 3 for more guidance.) As the torque 
diagram shows

  T
AB

 = +1.25 kip-ft T
BC

 = +0.50 kip-ft  T
CD

 = +0.50 kip-ft

 3. Calculate the torsion constant for each subregion.

  For the angle of twist calculation, you need to compute the torsion 
constant J for each subregion as I outline in Chapter 11. For subregions 
AB and BC, the torsion constant is the same:

  

 4. Calculate the relative angle of twist within each subregion.

  Next, you compute the relative angle of twist by substituting values for 
each subregion into the basic angle of twist equation. For example,

  

  The positive sign in this value indicates that the cross section rotates 
counterclockwise under the internal torque. You can perform a similar 
calculation for the remaining three subregions and find that

  ϕ
BC

 = +0.00260 rad ϕ
CD

 = +0.1249 rad

 5. Determine the total angle of twist at points of interest, starting at the 
reference location.

  If you choose the wall at Point A as the reference, you now know that the 
cross section at Point B experiences a positive rotation relative to Point 
A in the amount of ϕ

AB
 = +0.0260 rad.

  Relative to Point B, you know that the cross section at Point C rotates 
an amount equal to ϕ

BC
 = +0.00260 rad. The total rotation with respect to 

the wall at Point A is then the sum of ϕ
AB + ϕ

BC = (+0.0260 rad + (+0.00260 
rad)) = +0.0286 rad of total rotation.

  Similarly, relative to Point C, the cross section at Point D moves +0.0286 
rad and the total angle of twist with respect to the wall at Point A is 
ϕ

AB
 + ϕ

BC
 + ϕ

CD
 = (+0.0260 rad + (+0.00260 rad) + (+0.1249 rad)) = +0.1535 rad.
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Chapter 17

Showing Determination 
When Dealing with 

Indeterminate Structures
In This Chapter
▶ Understanding indeterminate structures

▶ Computing behaviors by using redundant methods

▶ Working with systems of multiple materials

▶ Analyzing systems with rigid components

If a structure is statically determinate (or solvable using just the equations 
of equilibrium), you can use the principles of equilibrium from Chapter 3 

to compute the internal loads and then use those loads to calculate stresses 
and strains. However, in the real world, many structures aren’t statically 
determinate. Some of these systems have more supports than static equilib-
rium equations, while others may be built from multiple materials that resist 
applied loads by carrying different portions of their loads.

In this chapter, I show you several different methods for solving statically inde-
terminate systems. I introduce you to several different types of compatibility 
conditions and how you can apply them to problems of axial forces, torsional 
moments, and flexural effects. This chapter’s techniques should add signifi-
cantly to your arsenal of tricks for solving mechanics of materials problems.

Tackling Indeterminate Structures
In a statically determinate system, the number of support reactions and 
internal forces that you’re trying to find are never more than the available 
equilibrium equations — you have a maximum of three unknowns for two-
dimensional problems and no more than six unknowns for three-dimensional 
problems.
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Unfortunately, most of the structural problems you actually encounter often 
have more unknowns than they do available equilibrium equations. Such 
structures are said to be statically indeterminate, meaning that equilibrium 
equations alone aren’t sufficient to solve for all the unknown support 
reactions or internal forces.

Depending on the type of system and the number of degrees of indetermi-
nacy, you actually have a few tricks up your sleeve for solving these prob-
lems. For example, if the structural system you’re dealing with constitutes 
a statically indeterminate frame or machine that contains internal hinges, 
you can separate the members at internal hinge locations and give yourself 
additional equilibrium equations to work with; these extra equations can 
often give you enough extra information to solve for all the unknown support 
reactions. However, in some situations, even these statics tricks may not be 
sufficient for you to solve a particular problem.

For the majority of indeterminate applications, you must look at the behavior 
of the material itself to determine the characteristics of the deformation, and 
then you can develop equations that relate those deformations to each other. 
These equations are known as compatibility conditions (which I introduce in 
Chapter 16), and they become the basis for unlocking indeterminate problems.

In this section, I introduce several types of indeterminate structures, all 
of which require working with different types of compatibility equations. I 
also note some of the assumptions you make when solving indeterminate-
structure problems.

Categorizing indeterminate structures
You can classify many indeterminate structural systems into one of the three 
following categories based on characteristics of the system:

 ✓ Indeterminate supports: Structures with indeterminate supports are 
structures that are indeterminate because they have an insufficient 
number of equilibrium equations (which I describe in Chapter 3) to 
solve for all the external support reactions. Solving these types of sys-
tems usually requires techniques known as redundant methods. Flip to 
the later section “Withdrawing Support: Creating Multiple Redundant 
Systems” for more on these methods.

 ✓ Multiple materials: Problems involving objects constructed from mul-
tiple materials require compatibility equations to relate the strains (or 
forces) in one material to the strains (or forces) in another.

 ✓ Rigid bar problems: Rigid bar problems are typically the easiest to iden-
tify because they contain a clearly defined rigid structural member. With 
these problems, you can define the compatibility conditions for defor-
mations based on the behavior of the rigid member itself.
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After you classify the type of indeterminate system, you’re then ready to 
utilize an appropriate method to solve the problem. Each of these methods 
requires you to establish different compatibility conditions, which I explain 
later in the chapter.

Clarifying assumptions for 
indeterminate methods

 To apply the techniques of this chapter, you must ensure that the structure 
or object you’re dealing with satisfies the following criteria (the same criteria 
that I outline in Chapter 14 for materials and stress-strain relationship):

 ✓ Linear system behavior: The response of the structure is directly 
proportional to the load applied. If you double the load, you double 
the deformation.

 ✓ Elastic material behavior: When a material deforms under load, it 
returns to its original position when the load is removed.

 ✓ Isotropic and homogenous material properties: Isotropic means that the 
materials are constant in a given direction, and homogenous means the 
material properties are uniform throughout.

Withdrawing Support: Creating 
Multiple Redundant Systems

A redundant system is a statically indeterminate system that you make statically 
determinate by removing extra unknown internal forces or support reactions. 
You then reapply these removed forces and reactions as separate behaviors, 
compute the corresponding deformation, and finally recombine all this 
information by using compatibility conditions.

After you remove the extra degrees of indeterminacy from the original 
system, the new resulting statically determinant system is known as the 
primary system. You use basic statics to analyze the primary system under 
the effects of the original applied loads.

 Regardless of whether the system is an axial, flexural, or torsional system, 
you follow a few basic steps to solve a problem with multiple redundant 
support systems:

 1. Determine the number of degrees of indeterminacy for the problem.

  Degrees of indeterminacy are the number of extra unknown reactions or 
internal forces in your system in excess of equilibrium equations.
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 2. Create a primary system by removing one support degree of freedom 
for every degree of indeterminacy.

 3. Compute the deformation(s) of the statically determinate primary 
system at each removed degree of freedom in Step 2.

 4. One at a time, apply unit loads to each degree of freedom from Step 2 
and calculate the corresponding deformations at all removed degrees 
of freedom throughout the structure.

 5. Write the compatibility equations and solve for the unknown 
redundant support reactions.

 6. Apply the equilibrium equations for the unknown support reactions 
(if necessary).

The following sections discuss the types of compatibility equations required 
for axial, flexural, and torsional problems and illustrate how you can use 
redundant systems to solve them.

Axial bars with indeterminate supports
Computing deformations with axial members is generally pretty straightforward 
with the help of Hooke’s law (see Chapter 14). If the member is subjected to 
internal axial loads, you can compute the stress in the member and then use 
Hooke’s law to compute the strain, which lets you estimate the deformation. 
Thermal effects (or strains induced by changes in temperature — see 
Chapter 12) are another cause of deformations, and they can also cause 
support reactions in indeterminate structures. However, the procedure for 
analysis is the same whether you’re dealing with a thermal deformation or a 
deformation from applied loads.

Consider the axial bar in Figure 17-1a, which is restrained at both ends and 
experiences a temperature change of 60 degrees Celsius. The bar is aluminum 
and has a cross-sectional area A of 0.1 m2; a length L

AB
 of 6 m; a coefficient of 

thermal expansion α of 23 × 10–6/°C; and a Young’s modulus of elasticity E of 
69 GPa. 

This example is an indeterminate problem because it has two unknown 
forces in the x-direction. Summing forces in the x-direction for the top 
figure of Figure 17-1 produces the following equation:

Because this one equation contains two unknowns (R
A
 and R

B
), this prob-

lem is statically indeterminate to the first degree. You know this because 
the other equations of equilibrium provide no additional useful information 
about these axial support reactions. 
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Suppose you’re interested in determining the reactions at Points A and B if 
the temperature increases by ΔT = 60 degrees Celsius. Applying the basic 
steps I outline earlier,

 1. This problem has one degree of axial indeterminacy.

 2. You can choose either support; it really makes no difference for axial 
systems. Here, I create the primary system by removing the support at 
Point B (as shown in Figure 17-1b).

 3. You can find the deformation due to the increase in temperature at the 
free end of the primary system by using the equation for thermal defor-
mation (which I cover in Chapter 12). Use the following equation:

ΔBO = α(ΔT )(L
AB

) = (23 × 10–6/°C)(50°C)(6 m) = 0.0069 m = 6.9 mm

 4. The applied unit load is a 1-kN load applied at Point B (as shown in 
Figure 17-1c). Under this unit load, the axial bar deforms as follows:

  This calculation shows that for every 1 kN of applied load, the bar expe-
riences a deformation at Point B in the amount of 8.7 × 10–4 mm. For this 
problem, the direction of the applied load was to the left at Point B, so 
the deformation is negative, indicating that the bar has shortened.
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 5. The compatibility condition for this problem is that for every 1 kN, the 
bar experiences a deformation of 8.7 × 10–4 mm. However, you also know 
from Step 3 that for the primary system, the end of the bar at Point B 
experiences a total displacement of 6.9 mm (with respect to the support 
at Point A) due to the thermal changes. You can then express the com-
patibility relationship as

  The positive sign on this reaction force at Point B indicates that it is 
acting in the same direction to the direction of the unit load in the 
redundant system. This means that the redundant reaction is actually 
resisting the displacement.

  From this calculation, you can see that if a thermal expansion is 
restrained, very significant restraint forces can occur.

 6. From here, you can determine any of the remaining unknown support 
reactions and internal forces using the basic equations of equilibrium 
as I describe in Chapter 3.

Systems of axial members
The key to handling a system of axial rods is basically no different than working 
with a single axial rod. You can relate the deformation in any of the members 
to the internal force of the member through the basic relationship I describe 
in Chapter 16:

where P is the internal force; L is the original length; A is the cross-sectional 
area; and E is the Young’s modulus of elasticity for the member. Consider the 
system of axial members shown in Figure 17-2a, which consists of three axial 
bars with the dimensions shown and is subjected to a vertical load of 10 kip. 
To analyze a system of axial rods, you must relate the deformations in each 
bar to the deformation of the combined system by using compatibility:

 1. Draw the free-body diagram of the system and write the equations of 
equilibrium at the node that is experiencing displacement.

  To start the analysis, you must develop a free-body diagram that relates 
all the internal forces in each rod to the applied load (as shown in 
Figure 17-2b) at Point D. Next you apply the equations of equilibrium 
to the free-body diagram.
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 2. Sketch the deformed shape of the system under the load.

  Due to the load, Point D moves to its new position at Point D1 vertically 
downward an amount ΔD

y
, as well as horizontally an amount ΔD

x
 as 

shown in Figure 17-2c. From this sketch, you can use the Pythagorean 
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theorem to show the total displacement ΔD in terms of the horizontal 
and vertical displacements:

 

 3. Express the elongation of each axial bar in terms of its internal 
axial force.

  For example, you can express the elongation in bar AD by rearranging 
the basic axial deformation equation from Chapter 16:

 

  You can similarly create expressions for the other bars in the system.

 4. Compute the final deformed length for each bar in terms of the 
unknown displacement.

  For example, the final length of bar AD is given as the length of the line 
between Point A and Point D1. Use the Pythagorean theorem:

 

 5. Calculate the axial deformation in each bar as the difference between 
the final length and the original length.

  Many engineers make a major simplifying assumption that because ΔD
x
 

and ΔD
y
 are assumed to be very small, (ΔD

x
)2 and (ΔD

y
)2 are both practi-

cally zero — or at least very, very small. Mathematically, you can sim-
plify the preceding equation as follows:

  You can then repeat this process for each of the remaining bars 
to express their deformations in terms of the unknown displacement 
components, ΔD

x
 and ΔD

y
.
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 6. For each bar in the system, express the bar’s axial deformation in 
terms of the bar’s internal force.

  From the relationship between the bar’s axial deformation and the verti-
cal displacement of the system (as shown in Step 2), you can conclude 
that the corresponding internal force in the bar can be expressed as 
follows:

  You can then repeat the process for each of the other bars of the system.

 7. Substitute the internal force equations from Step 6 into the equilib-
rium equations of Step 1 and solve for the unknown deformations 
for each of the bars in the system.

  You now have two equilibrium equations with different expressions con-
taining ΔD

x
 and ΔD

y
. You can use basic algebra to simultaneously solve 

these equations for the displacements at Point D.

 8. Use the displacements of Step 7 to determine the internal forces in 
each bar by substituting into the equations of Step 6.

After you have the internal forces in each bar determined, you’re free to cal-
culate stresses and strains within the member using the basic principles in 
Chapter 16 for axial deformations.

Flexural members of multiple supports
Redundant systems for flexural loads follow a similar procedure to the axial 
method I show in the preceding sections. To solve flexural problems with 
indeterminate supports, you remove extra supports from the model and 
compute the displacements at the locations of the removed supports. You then 
apply a unit load at the location of each removed support and determine the 
corresponding displacements. However, you also have to consider whether the 
system is a single indeterminate support system or a multiple indeterminate 
support system. The following sections explain the calculations for each.

 When dealing with indeterminate flexural problems, you typically want to 
remove degrees of determinacy that result in either a simply supported beam 
or a cantilever system, because the corresponding calculations are usually 
much simpler. In fact, you can often find the necessary displacement 
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calculations directly in design aids or tables for these support scenarios for a 
wide array of loading patterns.

Single indeterminate support systems
Single indeterminate support systems are systems where the beam has only 
one degree of static indeterminacy. Consider the simply supported continu-
ous beam in Figure 17-3a, which has an extra support applied at Point B.

 

Figure 17-3: 
Single inde-

terminate 
support 
flexural 
system.

 

w = 2 kip/ft

1 kip (Unit load)
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(a) Original System
A B C
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y
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The beam is steel (with a Young’s modulus of elasticity E of 29,000 ksi), and 
the moment of inertia I is 150 in4. (Note: For prismatic and uniform beams, 
these values actually don’t matter because they end up canceling out in the 
final step, but including them anyway is a good habit.) If each span is L

AB
 = L

BC
 

= 10 ft and the distributed load is w = –2 kip/ft, you can apply the same basic 
redundant methodology I describe in the earlier section “Withdrawing Support: 
Creating Multiple Redundant Systems.” You first must start by determining how 
many degrees of freedom to remove.
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To determine the number of degrees of freedom in the system, you simply 
count up the total number of unknown support reactions — A

x
 and A

y
 at the 

pinned support at Point A; B
y
 at the roller at Point B; and C

y
 at the roller at 

Point C — which results in a total of four unknown reactions. Each free-body 
diagram gives you three equilibrium equations, so for this example, you have 
one degree of indeterminacy (four unknown support reactions minus the 
three equations). Now you know that you need to remove one of the sup-
ports to actually work this method.

As long as you’re careful in your calculations, which degree of freedom you 
remove to make the primary system really doesn’t matter. In the example 
of Figure 17-3a, I choose to remove the support at Point B (as I show in 
Figure 17-3b) because with this support removed, the primary system is actually 
a simply supported beam.

For this example, the displacement you need to calculate is Δ
BO, which you 

compute at Point B, the midspan of the primary system. Using the principles 
in Chapter 16, you can find Δ

BO
 as follows:

 When computing these displacements, remember to be careful about the 
units. Distributed loads and beam spans are often measured in feet or meters, 
while section properties are often measured in inches or millimeters. Make 
sure to convert these units so that they cancel out and you can end up with 
the units of displacement that you want.

You then apply a unit load at Point B (as I show in Figure 17-3c) and deter-
mine the corresponding displacement (δ

BB
) due to the applied unit load. For 

this example, you can compute this displacement as

If the following compatibility equation for this system looks very familiar, you 
may be recognizing it as the expression for the axial problems in “Axial bars 
with indeterminate supports” earlier in the chapter:

 A positive numerical value once again tells you that the direction of R
B
 is in 

the same direction as the applied unit load. For this example, because it’s 
positive, R

B
 is acting upward at the support at Point B, which is in the 

opposite direction of the displacement of the primary system.
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Multiple indeterminate support systems
Flexural members (such as beams) commonly have multiple degrees of inde-
terminacy, often as a result of continuous spans and support. The redundant 
method you use for the single support systems in the preceding section still 
works (as long as you meet the assumptions I state in “Clarifying assump-
tions for indeterminate methods” earlier in the chapter); it just requires a 
bit of modification to the single support system compatibility expressions.

Consider Figure 17-4a, which shows a continuous beam with two degrees 
of indeterminacy. For this example, you need to remove two degrees of 
freedom to create the primary system. For this example, I choose to remove 
the supports at Points B and C simply because doing so results in a simply 
supported structure (as shown in Figure 17-4b).

 

Figure 17-4: 
Multiple 
indeter-
minate 

supports 
flexural 
system.
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The difference is that you need to create two redundant systems for this 
example — one system for each degree of freedom that you removed. For the 
unit load at Point B, you then calculate the displacements per unit load at 
both Point B and Point C and determine the values of δ

BB
 and δ

CB
 (as shown 

in Figure 17-4c). Similarly, you compute the values of δ
BC

 and δ
CC

 due to a unit 
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load at Point C (as I show in Figure 17-4d). Finally, you establish compatibility 
relationships for each degree of freedom that you originally removed (which 
are similar to those for the earlier single support systems):

 ✓ At Point B: 0 = Δ
BO

 + δ
BB

R
B
 + δ

BC
R

C

 ✓ At Point C: 0 = Δ
BO

 + δ
CB

R
B
 + δ

CC
R

C

To find the support reactions R
B
 (which is B

y
) and R

C
 (which is C

y
), you 

simply need to simultaneously solve both of these compatibility equations 
(with the displacements substituted in, of course).

For problems with more than two supports, you need to write additional 
equations for each degree of indeterminacy and then create one redundant 
system for each degree of indeterminacy.

 For one or two degrees of indeterminacy, these simultaneous equations may 
not be a challenge, but if you have a hundred degrees of indeterminacy, you 
have to solve a hundred simultaneous equations with a hundred different 
unknowns in each. Although this complication is a major drawback to this 
method, the method still works. You probably want to use a computer to 
solve all these simultaneous equations (and matrices), though.

Torsion of shafts with 
indeterminate supports
Indeterminate circular shafts are an important part of machine design and 
often have multiple moments or support reactions acting on them — 
especially if resistance or friction is present. You handle these problems in a 
method very similar to the method I cover earlier in the chapter for axial bars 
with indeterminate supports.

Consider the circular shaft shown in Figure 17-5a that is constrained from twist-
ing at each end — the end supports are fixed — and is one degree indetermi-
nate (which means you need to remove one degree of freedom when you start 
making your redundant systems). If an applied torque of T = –3 kN-m is applied 
at L

1
 = 0.67 m from the left end of a shaft that has length L = 3 m, you’re now 

ready to solve this indeterminate torsion problem. For this example, I assume 
that the diameter of the shaft is 40 millimeters and the shear modulus of the 
shaft material is G = 80 GPa. (Head to Chapter 14 for more on shear modulus.)

As with axially loaded members, the first step is to release one of the redun-
dant supports. In this case, I arbitrarily choose Point B to create the primary 
system shown in Figure 17-5b. With the redundant support at Point B removed, 
you can then compute the deformation at Point B due to the applied loads (or 
torque in this case).
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 The deformation for torsion of circular shafts is always the angle of twist of 
the circular cross section. You can then calculate the angle of twist of the 
system with the released support at Point B using the basic angle of twist 
equation (see Chapter 16):

Next, you can apply a unit load (which in this case is a moment of 1 kN-m) 
to the end at Point B to determine the deformation per unit load (see Figure 
17-5c):

After you have determined this angle of twist per unit torque, you can then 
create a compatibility expression that relates the three systems:
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As with the other redundant methods, a positive value for T
B
 indicates that 

this support reaction is in the same direction as the unit torque from the 
redundant system. After you have this support reaction for T

B
, you can then 

use the principles of equilibrium in Chapter 3 to solve for internal forces or 
the other support reactions at Point A.

Dealing with Multiple Materials
Members composed of multiple materials are also known as composite mem-
bers. The trick to dealing with multiple materials is recognizing that all mate-
rials in a cross section contribute to the resistance of the total applied load. 
Structural members made from reinforced concrete (where a concrete cross 
section contains steel reinforcing bars) are a common use of multiple mate-
rials in engineering. Unfortunately, prior to solving the problem, you don’t 
actually know how much each material contributes toward the total resis-
tance. But with the right free-body diagrams, you can quickly create expres-
sions that relate these forces to the total and then apply a bit of logic to get 
your compatibility condition. This section shows you how.

Axial bars of multiple materials
The simplest of the multiple material problems you encounter appears when 
you’re working with the axial loads of composite members. Materials in axial 
members must be concentric (or symmetric) about the longitudinal axis 
(otherwise, you need to include flexural effects, which I show in the following 
section).

To analyze multiple materials subjected to the axial load P = 18 kip, con-
sider Figure 17-6a, which shows an axial member of length L = L

1
 = L

2
 = 48 in. 

It’s composed of two materials having known areas A
1
 and A

2
 and material 

properties E
1
 and E

2
. To illustrate the calculations, assume that Material 1 

has a cross-sectional area A
1
 of 2 in2 and a Young’s modulus of elasticity E

1
 

of 29,000 ksi. Material 2 has a cross-sectional area A
2
 of 4 in2 and a Young’s 

modulus of elasticity E
2
 of 10,000 ksi.
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To analyze this system (or any axial system with two concentric materials), 
you follow several simple steps:

 1. Cut a section through both materials, including any known loads, and 
write the axial equilibrium equation for that piece.

  Figure 17-6b shows you the section cut through the end of the member 
(including the load) for this example in terms of the internal axial forces 
P

1
 and P

2
. The following is that section’s axial equilibrium equation:

 

 2. Determine the compatibility requirements for both materials.

  For systems of multiple materials, the compatibility equation usually 
comes from the idea that for the object to deform, all the materials in the 
object must deform equally (as you can see in Figure 17-6c). (Of course, 
this rule assumes that one material can’t slip relative to another — that is, 
they’re perfectly fused or joined together.) For this example, the compat-
ibility equation is Δ

1
 = Δ

2
 = Δ.

 3. Write expressions for Δ
1
 and Δ

2
 of each material in terms of their 

respective loads (P
1
 and P

2
) and section properties.

  Because both materials in this example are being axially loaded, the 
deformation of each material is based on the internal load in the mate-
rial and that material’s section properties. Here are the expressions:
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 4. Substitute the expressions from Step 3 into the compatibility equation 
of Step 2 and solve for one of the two internal forces in terms of 
the other.

  Whether you solve for the load in Material 1 or Material 2 first doesn’t 
matter. For this example, I choose to solve for the force in Material 1 
(or P

1
) in terms of the force in material 2 (or P

2
):

 

 5. Substitute the equation of Step 4 into the equilibrium equation of Step 
1 and solve for the unknown reaction (P

2
).

  For this example,

 

  After you know P
2
, you can then substitute into the expression from 

Step 4 and solve for P
1
:

 

  Be careful when you assume the forces on your free-body diagram as 
being positive when pushing (or compressing). You must look back 
at your free-body diagram to determine whether a computed force is 
tensile (T) or compressive (C).

 6. Calculate the corresponding stresses in each material.

  After you have the internal forces, you can compute the corresponding 
stresses (using negative values for the forces because of the (C) in the 
answer from Step 5) in each material:

 

 7. Calculate the corresponding deformations from Step 3 (or other values 
such as stresses and strains in the materials).
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  After you know both internal forces, you can compute the deformation 
in Material 1 (which happens to be the same as the deformations in 
both Material 2 and the system’s deformation.):

 

  You can also verify that both materials deflect the same amount by 
substituting into the deformation equation for Material 2:

 

  Both of these calculations produce the same numerical result for 
the displacement, which indicates that your compatibility equation 
worked correctly.

  

If you have more than two materials, you can expand the compatibility 
equation in Step 2 to include as many materials as you want — just remem-
ber that you also need to write the additional expressions in Step 3 and 
then relate all of the unknown forces in terms of one common force (it 
doesn’t matter which you choose) in Step 4.

Flexure of multiple materials
Many flexural designs use multiple materials together to take advantage of 
particular material properties. For example, concrete is very strong in com-
pression but very weak in tension. To utilize concrete as a material, design-
ers often embed steel reinforcing bars (known as rebar) in regions of high 
tensile stresses to exploit the high tensile strength of steel.

Beams composed of multiple materials require a bit of manipulation before you 
can apply the flexural analysis principles I describe in Chapters 9 and 10. The 
biggest issue is tackling the assumption about homogenous material properties 
(see the earlier section “Clarifying assumptions for indeterminate methods”). 
Based on this assumption, if plane sections remain planar, you can assume that 
the normal strain along the cross section varies linearly with distance from the 
neutral axis (as shown in Figure 17-7a), which then means that the basic formu-
las for stress from flexural bending are also valid.

As I note in Chapter 9, the formula for the normal stress in flexural member 
(whose cross section lies in the XY plane) for a bending moment about the 
x-centroidal axis is
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However, you still need to take care of that pesky homogenous material 
assumption. As long as deformations remain small and within the elastic 
region, you can accomplish this task by creating a simple transformation 
relationship, which I discuss in the following section.

 

Figure 17-7: 
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Transforming sections with a modulus ratio
 The basic methodology for handling flexural members of multiple materials 

is to convert all materials within the cross section to equivalent cross sec-
tions of multiple materials by creating a modulus ratio n that is based on the 
Young’s modulus of elasticity for each material:

where E
1
 is the Young’s modulus of elasticity of Material 1 and E

2
 is the 

Young’s modulus of elasticity of Material 2. With this ratio in hand, you then 
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alter the cross-sectional area of Material 2 by multiplying the width of the 
section by the modulus ratio, a process that creates the transformed cross 
section. If the Young’s modulus of elasticity of Material 2 is larger than the 
Young’s modulus of elasticity of Material 1, the stress distribution in the 
cross section actually looks as shown in Figure 17-7b. After you have trans-
formed the cross section, you then recalculate the cross section properties 
and continue with your analysis.

Following basic steps for working with transformed cross sections
To illustrate the methodology, consider the composite beam shown in 
Figure 17-7. Material 1 is aluminum (E

1
 = 10,000 ksi), and Material 2 is steel 

(E
2
 = 29,000 ksi). The dimensions for Material 1 are h

1
 = 11.5 in high and 

b = 6 in wide. The dimensions for Material 2 are h
2 
 = 0.5 in high and b = 6 in 

wide. Suppose you want to determine the maximum stress at the bottom of 
the beam (σ

zz,BOT
) and at the top of the beam (σ

zz,TOP
) when subjected to a 

positive bending moment of M
x
 = +800 kip-in.

 For a member of two materials, many textbooks and references use the con-
vention of assigning the material with the larger stiffness (with the larger 
Young’s modulus of elasticity) as Material 2, and the smaller stiffness (with 
the smaller Young’s modulus of elasticity) as Material 1.

With this example in mind, consider the following process for analyzing 
flexural beams of two materials:

 1. Compute the modulus ratio for the materials.

  To transform to an equivalent area of aluminum (Material 1), you need to 
compute the modulus ratio with respect to the steel (Material 2) as follows:

 

  Because this modulus ratio is greater than 1.0, the transformed width of 
Material 2 must be larger than its original width. Conversely, for a modu-
lus ratio less than 1.0, the transformed width must be smaller than the 
original width.

 2. Construct a transformed cross section.

  The height remains constant for each material, and the width of Material 
1 remains unchanged. However, you multiply the width of Material 2 by 
the ratio of Step 1 such that

 b
2,TR

 = n · b
2
 = (2.9) (6 in) = 17.4 in

  The dimensions of Material 2 after you’ve transformed it are now 
h

2
 = 0.5 in and b

2,TR
 = 17.4 in.
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 3. Compute the centroid of the transformed cross section.

  Remember that you can find the centroid of the transformed a region by 
using the basic relationship

 

  Using the principles in Chapter 4, you can compute the location of the 
neutral axis (at the centroid) of the transformed cross section:

 4. Compute the moment of inertia of the transformed cross section.

  To compute the moment of inertia for a region about its own centroidal 
axis with respect to some other parallel axis (the centroid of the trans-
formed section in this case), use the following formula:

 

  For the two rectangular regions of the transformed section about the 
transformed neutral axis:

  Remember that because you have multiple regions with different cen-
troidal axes, you need to use the parallel axis theorem to compute the 
moment of inertia (see Chapter 5) as I’ve done here.

 5. Compute the stresses at the location of interest by using the section 
properties from Step 3 and Step 4.

  At this point, you’re ready to compute stresses at different locations. 
For this example, I choose to compute the stress at the top of the 
cross section (in the aluminum) by using the basic stress equation. 
Because you didn’t transform this material, you just use the basic 
normal stress calculation:

  To compute the stress in the steel, you need to perform a similar calcu-
lation, but now you must transform the stress back to the original mate-
rial by incorporating the modulus ratio:
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Torsion of multiple materials
To analyze torsion of a tube concentrically filled with a second material, you 
follow a similar set of rules as I cover for axial problems of multiple materials 
(see the earlier section “Axial bars of multiple materials”). The only differ-
ence is that instead of writing compatibility equations for the deformations of 
each material, you need to correlate the angles of twist for the two materials, 
which for concentric shafts (if one material doesn’t slip relative to another) 
means they all have the same angle of twist: ϕ

1
 = ϕ

2
 = ϕ.

Consider the 2-meter-long composite shaft of two concentric materials 
shown in Figure 17-8a. Material 1 is an inner core of brass (G

1
 = 40 GPa), and 

Material 2 is an outer shell of steel (G
2
 = 80 GPa) whose inner radius (r

1
) is 

40 mm and outer radius (r
2
) is 80 mm. Assume the composite shaft is sub-

jected to an applied torque of T = 200 kN-m.

 

Figure 17-8: 
Analyzing 
torsion of 

composite 
shafts.
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You can use the following steps to analyze this and other indeterminate 
torsion systems of two materials:

 1. Cut a section through both materials including any known loads and 
write the torsion equilibrium equation for that piece.

  Figure 17-8b shows you such a load cut; the following equation spells 
out the equilibrium equation.

 

 2. Determine the compatibility requirements for both materials.

  Because this problem involves concentric cross sections as shown in 
Figure 17-8c, you know that the angle of twist for each of the materials 
must be the same. Therefore, ϕ

1
 = ϕ

2
 = ϕ.

 3. Write expressions for ϕ
1
 and ϕ

2
 in terms of their respective internal 

loads (T
1
 and T

2
) and their respective section properties.

  For this example,

 

  For composite shafts subjected to torsion, the lengths of the materials 
are usually the same: L

1
 = L

2
.

 4. Substitute the expressions from Step 3 into the compatibility equation 
of Step 2 and solve for one of the two internal forces in terms of 
the other.

  For this example, I arbitrarily choose to solve for the torque in the brass 
(T

1
) in terms of the torque in the steel (T

2
).

 

 5. Substitute the equation of Step 4 into the equilibrium equation of 
Step 1 and solve for the unknown internal forces.

  In this case, the unknown reaction is T
2
.
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  After you know T
2
, you can substitute into the expression from Step 4 

and solve for T
1
.

 

 6. Calculate the corresponding angle of twist for the combined section 
from Step 3 (or any other value, such as shear stress or shear strain in 
the composite shaft).

  Suppose you want to compute the angle of twist of the combined shaft; 
you can then substitute these values back into the equations of Step 3:

 

 If you have more than two materials, you can expand the compatibility equa-
tion in Step 2 to include as many materials as you want — just remember that 
you also need to write the additional expressions in Step 3 and then relate 
all of the unknown forces in terms of one common torque (it doesn’t matter 
which you choose) in Step 4.

Using Rigid Behavior to 
Develop Compatibility

Although you can analyze some indeterminate structures by relating the load 
in multiple materials to a single applied load on a cross section (as I discuss 
in the earlier section “Dealing with Multiple Materials”), that method isn’t suf-
ficient for some problems. If your system contains a rigid end cap or a rigid 
bar in it somewhere, you may actually be able to write a compatibility rela-
tionship based on multiple different locations.

These rigid members serve as the basis for your compatibility conditions. In 
this section, I show you how to analyze problems that contain rigid (or non-
deformable) elements.

Rigid bar problems
A rigid bar is a type of lever that retains its basic straight shape while rotating 
about a pin or support location known as a fulcrum (see Figure 17-9a). The 
fulcrum serves as the basis for rotation of the rigid bar, and you measure all 
your length proportions from this location.
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Figure 17-9: 
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Establishing proportions for compatibility
Rigid bars rotate about the fulcrum without deforming along their lengths — 
that is, a rigid bar remains straight even while rotating. With this information, 
you can then use proportions  (or similar triangles) with respect to the 
fulcrum to establish your compatibility criteria:

where the lengths have the relationships L
1
 = L

AB
, L

2
 = L

AC
, and L = L

AD
 as 

shown in Figure 17-9. Δ
B
 is the vertical deflection at Point B; Δ

C
 is the verti-

cal deflection at Point C; and Δ is the displacement at the tip of the rigid bar. 
You can calculate displacements at other locations as well by using similar 
triangles (or proportions) and the distance from the fulcrum to your location 
of interest along the rigid bar.

Following basic steps for solving rigid bar problems
Consider the rigid bar assembly in Figure 17-9. The bar is restrained by a axial 
bar BE (which has a cross-sectional area A

BE
 of 0.5 in2, a length L

BE
 of 24 in, and 

a Young’s modulus of elasticity E
BE

 = 29,000 ksi) and a second axial bar CF (which 
has cross-sectional area A

CF
 of 1.5 in2, a length L

CF
 of 48 in, and a Young’s modu-

lus of elasticity E
CF

 of 29,000 ksi). Point B is a distance of L
1
 = L

AB
 = 30 in, Point C 

is a distance of L
2 
= L

AC
 = 40 in, and Point D is a distance of L = L

AD
 = 60 in. Each 

of these dimensions is measured from the fulcrum point (or Point A in this 
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example, as shown in Figure 17-9a) to the other points. A P = 10 kip load is 
applied at the end of the rigid bar (at Point D).

To analyze rigid bar systems such as the one in Figure 17-9, you need to 
follow a few basic steps:

 1. Draw the free-body diagram by isolating the rigid bar and including 
the location of the fulcrum.

  Figure 17-9b shows the free-body diagram of this rigid bar. In this 
example, the fulcrum is located at Point A.

 2. Establish an equilibrium equation by summing moments about the 
fulcrum location on the free-body diagram of Step 1.

  In this example, summing moments about Point A produces the follow-
ing equilibrium equation:

  where T
BE

 and T
CF

 are the internal forces in their respective bars. This 
equation is the equilibrium equation for the rigid bar and provides a 
statics-based relationship between the internal forces in the axial bar 
and the applied external load.

  The reason you choose the fulcrum as your location for summing 
moments is to eliminate the unknown support reactions at that location. 
The only unknown forces that remain in the equilibrium equation are 
the internal forces from the axial bars and the applied point load on 
the rigid bar.

 3. Write the compatibility equations by establishing a proportion trian-
gle with respect to the fulcrum and the displacement at the locations 
where the axial bars attach to the rigid bar.

  If displacements remain very small, Δ
B
 and Δ

C
 remain approximately ver-

tical, which allows you to use similar triangles (or proportions) to relate 
these displacements to each other. This proportion triangle is shown in 
Figure 17-9c. The compatibility relationship is expressed as

 

 4. Relate the deformations in the axial bars to the system displacements 
at the location where the axial bars are attached to the rigid bar.

  In this example, you’re dealing with the displacement Δ
B
 and Δ

C
. Because 

BE and CF are axial bars, you know from statics that their internal forces 
must be entirely axial, and you know that the axial deformations in each 
bar can be directly related to their internal forces.
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  You can then substitute these relationships into the compatibility equa-
tion of Step 3 to produce another equation that relates the two forces, 
T

BE 
and T

CF
:

 

  In this example, I arbitrarily choose to solve for the axial force in BE, T
BE

, 
in terms of the axial force in CF, T

CF
. But you can actually solve for either 

force; it makes no difference in the end.

 5. Substitute the expressions from Step 4 into the equilibrium equation 
of Step 2 and solve for your chosen axial force.

  In this case, that’s T
CF

. Use the following equation:

 6. Compute other axial forces from the equilibrium equation of Step 2.

  Now that you know T
CF

, you want to find T
BE

.

 

 7. Compute displacements at any location along the rigid bar by using 
the compatibility expression of Step 3.

  For example, to compute the displacement at the tip of the rigid bar 
(or Point D),

Rigid end cap problems for 
axial and torsion cases
Another type of rigid object that you encounter from time to time in mechan-
ics of materials is the rigid end cap. A rigid end cap is a solid object that 
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connects multiple materials or multiple bars at a single location. Designers 
typically use rigid end caps to transmit a load to multiple members 
connected to it.

If you have a rigid end cap on an object of multiple materials, the rigid cap 
automatically tells you where to draw your free-body diagram and what your 
compatibility equation will look like. You just have to distinguish whether it’s 
an axial application or a torsion application.

 ✓ Axial rigid end caps: You find the equilibrium equation by drawing a 
free-body diagram of the rigid end cap including internal forces of the 
materials connected to the rigid cap, and write your equilibrium equa-
tions. To determine compatibility, you relate the deformations of all 
materials attached to the cap to the displacement of the cap itself:

 Δ
CAP

 = Δ
1
 = Δ

2
 = . . . = Δ

N

  where N is the number of different materials attached to each end cap. 
You then simply relate the deformations in each of the connecting mate-
rials as I show in the earlier section “Axial bars of multiple materials.”

 ✓ Torsional rigid end caps: For torsional caps, you find the equilibrium 
equation by drawing an isolation box around the rigid end cap and sum-
ming moments (or more specifically, torques) for each of the materials 
acting on the cap. You determine compatibility by relating the cap’s 
angle of twist to the angles of twist of all materials attached to the cap:

 ϕ
CAP

 = ϕ
1
 = ϕ

2
 = . . . = ϕ

N

  where N is the number of different materials attached to each end cap. 
You then simply relate the angles of twist in each of the connected mate-
rials (see “Torsion of multiple materials” earlier in this chapter).

  With rigid end caps for torsion applications, both the cap and all the 
materials must be concentric to the axis of rotation (or the longitudinal 
axis of the system). 
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Chapter 18

Buckling Up for Compression 
Members

In This Chapter
▶ Determining column properties and classifications

▶ Analyzing slender columns

▶ Including bending effects

Compression members are a type of axially loaded member in which the 
external forces are working to make the object shorter. Compression 

members appear in a wide assortment of applications, from the legs of the 
chair you’re sitting on to members of trusses that span the rivers you cross 
as you travel down the highway. 

Because compression members are axial members, you may think that you can 
readily apply the methods for axial stresses in Chapter 8 to your analysis of 
columns. However, the equations of axial stress (where stress is simply equal 
to force divided by area) are only valid up to a specific critical load. After this 
load, the behavior of members in compression changes, and the actual load 
that can be supported begins to decrease. It’s this behavior, known as buck-
ling, that you must consider in your analysis of members in compression.

In this chapter, I explain the basics of compression theory and show you how 
to determine a compression member’s ultimate loads, which can be signifi-
cantly lower than the loads you calculate from axial stress relationships. I 
also show you how the different cross-sectional properties of columns can 
affect the amount of load a column can carry. I start by illustrating how you 
can work with concentric axial compression loads and then conclude by 
showing you how to include additional bending moments.

Getting Acquainted with Columns
In the world of architecture, the word column may make you think of majestic 
Roman pillars from days long past or more-modern steel I-sections. Although 
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the aesthetic beauty of a column may be an important characteristic if you’re 
a tourist of ancient ruins, as a scientist or engineer, you’re actually more inter-
ested in the type of column (how it’s loaded) and its geometric properties. In 
this section, I explain the different types of columns and then show you how to 
compute an important cross-sectional property known as the slenderness ratio.

 

Typically, columns have a much longer axial (or longitudinal) dimension than 
their cross-sectional dimensions. Although this scenario isn’t always the case, 
this general definition means that a column doesn’t necessarily have to be 
vertical. Structures such as trusses often have a large number of compression 
members (or columns) that aren’t oriented vertically.

Considering column types
Mechanics features two types of columns:

 ✓ A concentric column (see Figure 18-1a) is a member that is subjected to 
a compressive and concentric axial load (an axial load that acts through 
the centroid of a cross section).

 ✓ An eccentric column or beam column (see Figure 18-1b) is a member 
subjected to both a compressive axial load and a bending moment. 
Beam columns form when a column structure is subjected to an 
eccentric axial load, an applied end moment, or even external effects 
from transverse loads on the member or structure.

 

Figure 18-1: 
Concentric 

and 
eccentric 
columns.
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Calculating a column’s slenderness ratio
When you begin to analyze objects under applied loads, you must keep in 
mind that the amount of load an object can carry is limited by either a 
material failure or a structural instability. In a material failure, the stress in 
the object due to the applied loads reaches the limits that the material itself 
can sustain. A structural instability, on the other hand, is a failure of a member 
due to excessive deformations that change the basic static equilibrium condi-
tions. To further complicate these matters, these deformations themselves are a 
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function of the loads and member properties, making the study of structural 
instabilities into a potentially complex problem.

Columns are one of the most basic examples of a structural object that can 
illustrate both of these methods of failure. A very short column with a given 
cross section may be able to sustain a compressive load such that the mate-
rial itself fails. However, the same cross section on a column of much longer 
length may only be able to support a fraction of the load carried by a shorter 
column. For this reason, you must come up with a way to classify a column 
in order to predict which mode of failure controls. That’s where the slender-
ness ratio comes in.

The slenderness ratio is a measure of a column’s ability to resist elastic 
instability or lateral displacements due to axial load, and it’s a function 
of two parameters:

 ✓ Effective length: The effective length of a column is a parameter that 
incorporates the overall length (L) of the column with the type of 
support conditions. I explain more about these support reactions in the 
section “Incorporating support reactions into buckling calculations” 
later in this chapter.

 ✓ Radius of gyration: The radius of gyration (see Chapter 5) is a geometric 
property that relates the moment of inertia of a cross section about its 
given axis to the cross-sectional area. For symmetric cross sections, you 
usually compute the radius of gyration about the x- and y-centroidal axes, 
which respectively are given as

  

  where I is the moment of inertia and A is the cross-sectional area. For 
unsymmetric sections, you compute the radius of gyration with respect 
to the principal axes of the cross section.

You express the slenderness ratio as KL/r, where KL is the effective length of the 
column, and r is the radius of gyration. Consider a column that has an effective 
length of 30 feet and radii of gyration of r

x
 = 8.5 inches and r

y
 = 3.5 inches. You 

can compute the slenderness ratios with respect to the x- and y-axes as follows:

 When computing the slenderness ratio for a column, you always choose the 
largest value, which for this example is 102.9.

Higher slenderness ratios typically result in lower column capacities. I 
explain more about how you can use the slenderness ratio to actually com-
pute a column’s capacity later in the chapter.
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Classifying columns with 
slenderness ratios
After you know the slenderness ratio of a column (see the preceding section), 
you’re ready to classify the type of column; this classification helps you decide 
how to proceed with analysis. Columns typically fall into one of three catego-
ries based on their slenderness ratios:

 ✓ Short columns: Short columns have a significantly large cross-sectional 
area and moment of inertia compared to their lengths, which results 
in a smaller slenderness ratio. A short steel column typically meets a 
slenderness ratio approximately less than 50.

 ✓ Slender columns: Slender columns are prone to buckling behavior (an 
instability that results from lateral displacements due to axial load). 
A slender steel column typically has a slenderness ratio greater than 
approximately 200. I explain buckling further in the section “Buckling 
Under Pressure: Analyzing Long, Slender Columns” a bit later in this 
chapter.

 ✓ Intermediate columns: Intermediate columns are columns that are classified 
as neither short columns nor slender columns. Their slenderness ratios 
fall somewhere between 50 and 200.

 The slenderness ratio limits I describe in the preceding bullets are also 
actually a function of the type of material that the column is made from. 
For example, a slender steel column may have a slenderness ratio greater 
than 200, whereas a slender concrete column may have a slenderness ratio 
greater than 10.

Each of these types of columns exhibits a unique behavior, and you compute 
their overall strength in drastically different ways. I describe their various 
analysis techniques throughout this chapter.

Determining the Strength 
of Short Columns

Short columns (see the earlier section “Classifying columns with slenderness 
ratios”) are the easiest class of column to work with because the stresses 
in the column cross section reach their material’s yield point (see Chapter 14)
before structural instability (or buckling) can occur.

You can compute the basic stress of a short column by simply calculating 
σ = P/A as I show in Chapter 8. If a short column is subjected to a load of 
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P = 100 kip and has a cross-sectional area of A = 5.0 in2, you find the axial 
normal stress in the column as follows:

Thus, for this example, as long as the material of the column is capable of 
supporting a minimum stress of 20 ksi, the column is sufficient for these loads. 
However, if the column isn’t classified as a short column, the maximum load that 
a column can support (known as the critical load) actually reduces based on the 
slenderness ratio. I explain this topic in more detail in the following section.

Buckling Under Pressure: Analyzing 
Long, Slender Columns

As long as a column stays straight, the principles of axial stress in Chapter 8 
are still valid. However, columns don’t always remain straight when subjected 
to a load, especially if that load is a compressive load.

For example, if you push on the ends of a piece of uncooked spaghetti, it begins 
to bend laterally. This lateral displacement from compression is actually an 
example of a structural instability known as buckling, and it results in a maxi-
mum load (known as the critical buckling load) that is less than the load that a 
short column of the same cross section can carry. In this section, I show you 
how to compute the critical buckling load for a slender column.

 If a column displaces laterally, the axial loads actually become eccentric (or 
not in line with the centroid of all the cross sections along the member), 
which creates additional bending stresses (see Chapter 9).

Determining column capacity
To compute the capacity (or amount of load a column can carry) for a slender 
column, you need to take a few factors into consideration:

 ✓ Slenderness ratio: As I note in “Calculating a column’s slenderness ratio” 
earlier in this chapter, the slenderness ratio compares the effective length 
of the column to one of the radii of gyration. The end support conditions 
also affect the slenderness ratio, and I discuss those conditions in more 
detail later in the chapter.

 ✓ Young’s modulus of elasticity: The Young’s modulus of elasticity is an 
important factor when determining a slender column’s strength. For 
more on Young’s modulus of elasticity, turn to Chapter 14.

25_9780470942734-ch18.indd   30525_9780470942734-ch18.indd   305 6/1/11   6:36 PM6/1/11   6:36 PM



306 Part IV: Applying Stress and Strain 

 ✓ Mode of buckling: The mode of buckling refers to the number of half-
sine shaped curves a column deforms into as it begins to buckle. The 
higher the mode number, the more force necessary to cause buckling.

To properly compute the capacity of a slender column, you have to first 
determine the type of failure or buckling that the column experiences — elastic 
or inelastic — a process that requires you to make some basic assumptions:

 ✓ Concentric axial loads: All loads in the columns of this section are 
concentric and axial, meaning that the column doesn’t have any applied 
moment or eccentric axial loads.

 ✓ Straight and prismatic columns: All columns in this section must be 
straight and prismatic (or having a constant cross section). If a column 
isn’t straight, you actually get a bending effect in the column, a result 
that violates the first assumption.

Computing the elastic buckling load
Elastic buckling is a type of buckling where the column’s failure occurs below 
the material’s yield stress. In 1757, Leonhard Euler developed an expression 
to estimate the critical elastic buckling load (known as the Euler buckling 
load) of a long slender column. In his derivation, Euler found that he could 
express the critical load as

where n is the buckling mode number; E is Young’s modulus of elasticity for 
the column material; I is the moment of inertia of the cross section with 
respect to the axis about which it’s buckling; and L is the length of the 
column. The derivation of this formula assumes that the ends of the column 
are both pinned supports, which means they’re free to rotate.

Defining the mode of buckling
The buckling mode is the shape that a column or compression element 
actually buckles into. Consider the columns of Figure 18-2, which show 
several different modes of buckling. In Figure 18-2a, you see the first mode of 
buckling (where n = 1), which is a simple bending example where all 
displacements are in the same direction (on the same side of the column).

If you brace the middle of the first column shown in Figure 18-2a and then 
push on the ends until buckling occurs, you actually end up with the buckled 
shape shown in Figure 18-2b, which is the second mode of buckling (or n = 2). 
As you may expect, you need significantly more effort — actually, four times 
as much — to cause a column to buckle into this shape. Similarly, Figure 18-2c 
shows the third mode of buckling (or n = 3) which takes nearly nine times the 
load to cause a column to buckle.
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 An infinite number of buckling modes actually exist, but after the first two or 
three, they become extremely rare under normal loading. However, vibrating 
loads can actually cause a column to buckle in these higher-order modes.

 A column wants to buckle into its lowest mode shape whenever possible 
because that shape is usually the easiest to achieve. To increase a column’s 
strength within the elastic buckling region, you simply need to brace the 
column to prevent it from buckling into a higher-mode shape.

Performing an elastic buckling calculation
With Euler’s buckling load formula in hand, you can predict the load at which 
elastic buckling occurs for a given mode number. For example, consider a 
steel column with both ends pinned and subjected to the first mode of 
buckling (or n = 1). It has a length L of 40 feet, a Young’s modulus of elasticity 
E of 29,000 ksi, and moments of inertia of I

xx
 = 100 in4 and I

yy
 = 33 in4.

For buckling in the y-direction in the first mode,

For buckling in the x-direction,

From these calculations, you can see that the axis about which buckling 
occurs plays a significant role in determining the critical buckling load. In 
this example, the elastic buckling load that causes buckling about the y-axis 
is about 30 percent of the load that causes buckling about the x-axis (or 
strong axis). In fact, this type of calculation is what lets an engineer know 
how to orient a column or in which directions to provide bracing.

Thus, for this example, the column does not fail due to buckling if the applied 
load is less than 41.0 kip — that is, the column doesn’t experience a struc-
tural instability.
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Computing elastic buckling stress
Although knowing the load that causes buckling is good information to have, 
you really need to determine the stress in the column at which buckling occurs 
in order to evaluate whether your applied axial load causes an axial stress in 
the column that exceeds the critical buckling stress. To compute the critical 
buckling stress, you can further modify the Euler buckling equations as follows 
to compute the critical stress as well as incorporate the effective length:

where K is a length correction factor that takes into account the type of 
support reactions other than the pinned-pinned ends of Euler’s basic 
assumption, and r is the smallest radius of gyration of the cross section (for 
more on radius of gyration, turn to Chapter 5).

For the steel column of the previous example, if the largest slenderness ratio 
of the column is 300, you can classify this column as a slender column and use 
the following equation to compute its buckling stress:

 This buckling stress of 3.17 ksi is actually a reasonably small number in the 
world of steel columns. An ASTM A36 column (which has a yield stress of 
36 ksi) with this length and slenderness ratio would buckle well before it 
reached its yield stress (at about 10 percent of the actual material strength); 
that’s a very inefficient design.

Incorporating support reactions 
into buckling calculations
Although columns with pinned ends (such as the ones I cover earlier in the 
chapter) cover a lot of scenarios in compression member design, not all 
compression members are pinned at both ends. The effect of end supports 
on a column can have a dramatic effect on the overall column capacity. For 
example, you need a larger load to cause a column with fixed ends to buckle 
than you need to buckle the same column with pinned ends, mostly because 
the moments at the fixed ends are fighting to keep the column from buckling. 
You account for these effects with an effective length correction factor 
(the K) in the slenderness ratio calculation.
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Euler’s buckling load equation already applies a correction factor of 1.0 to the 
length term (L) because the formulation assumes that the column is pinned 
at both ends (as shown in Figure 18-3a). However, if you restrain the rotation 
of the ends of the column such that they’re actually fixed ends at both ends 
of the column (as shown in Figure 18-3b), the effective length factor becomes 
0.5, or half of the pinned condition.

The case in Figure 18-3c is actually a column with one end fixed and the other 
end pinned. As you may expect, the buckling load for this case is somewhere 
between the buckling cases for both ends pinned and both ends fixed; in this 
case the correction factor is 0.7. Conversely, the column in Figure 18-3d shows 
a free end at one end and a fixed end at the other (which is similar to a flagpole 
situation). For this case, the effective length coefficient is actually 2.0, which is 
double the pinned-ends condition, meaning that the flagpole experiences buck-
ling at significantly lower load values, mostly due to the lateral movement of 
the free end of the column, which causes an eccentric load.

 

Figure 18-3: 
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Consider the pinned column I describe earlier in the chapter, where L = 40 
feet, E = 29,000 ksi, I

xx
 = 100 in4, and I

yy
 = 33 in4. If you modify this column so 

that its ends are fixed rather than pinned, the slenderness ratio changes from 
300, which qualifies it as a slender column, to a much more manageable 150, 
which makes it an intermediate column and requires you to use a slightly 
different formulation of the Euler buckling equation, which I show in the 
following section.
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Working with Intermediate Columns
When a column falls into the intermediate column category (which basically 
means it’s not a short column or a slender column in terms of its failure), it 
experiences inelastic buckling, a blend of those other two columns’ behaviors. 
When a column experiences inelastic buckling, it doesn’t fail by direct 
compression (which I discuss in Chapter 8) nor by elastic buckling (which 
I discuss earlier in the chapter). Instead, the material stresses at part of the 
cross section exceed the proportional limit at the time when buckling occurs.

Although you can actually handle inelastic buckling in multiple ways, 
perhaps the easiest method is to calculate the inelastic buckling load by 
using the generalized Euler buckling formula:

where this formula is the same as the elastic buckling load equation in the 
earlier section “Computing the elastic buckling load,” except that you replace 
Young’s modulus of elasticity (E) with the term E

t
, or the tangent modulus of 

elasticity, which I discuss in Chapter 14.

Improving column capacity
When a column fails because of inefficient 
design, as a design engineer you may find it 
prudent to make a few modifications:

 ✓ Increase the radius of gyration. Increasing 
the size of the cross section generally 
increases the moment of inertia and the 
cross-sectional area, which typically 
results in a larger radius of gyration. If you 
increase the minimum radius of gyration, 
you end up reducing the slenderness ratio 
in that direction, which is often good for 
the capacity of a column.

 ✓ Alter the mode number. Modifying the struc-
ture by incorporating additional bracing or 
supports can tremendously increase capac-
ity simply by altering the buckled shape.

 ✓ Decrease the slenderness ratio in the 
controlling direction. If the slenderness 

ratio is larger in a particular direction, 
you can reduce the effective length of the 
column by providing intermediate supports 
or providing additional material to reduce 
the radius of gyration in that direction.

  In some structures, a column isn’t braced 
the same in all directions. You can actually 
end up having a column length in one direction 
be significantly smaller than in the other. 
In fact, the strong axis may actually be the 
limiting direction if the length and support 
reactions are unfavorable in that direction.

 ✓ Modify the support reactions. Restraining 
one or both ends of the member can reduce 
your K factor (and consequently your 
slenderness ratio) by as much as 70 percent 
if one end is fixed or a whopping 50 percent 
if both ends are fixed.
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Figure 18-4 shows the relationship among the three column classifications that 
I discuss earlier in this chapter with respect to the slenderness of the column.

 

Figure 18-4: 
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Incorporating Bending Effects
Throughout this chapter, I describe the critical buckling load calculations 
and assumptions that you need for working with columns that are straight 
and axially loaded concentrically. However, in many applications columns 
can be subjected to bending moments at the same time as they’re axially 
loaded. Because the buckling phenomenon is related to the compressive 
normal stress in the cross section, buckling can occur even sooner if you 
add additional compressive stresses from bending, which means you must 
be sure to include their effects when you are analyzing columns.

 Bending stresses produce both tension and compression stresses in the cross 
section. Although tension stresses theoretically help improve a column’s 
performance against buckling, the compression stresses from bending also 
add to the compressive stresses from the axial loads, a situation that 
increases the likelihood of buckling.

To handle bending moments, you treat the moments on a cross section as 
an eccentric axial load (or a force applied at an eccentricity instead of being 
concentric), as I show in Figure 18-1 earlier in the chapter. You compute the 
maximum stress capacity of an eccentric column by
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which is also known as the secant formula. In this equation, P is the applied 
eccentric load; A is the cross-sectional area; e is the eccentricity of the load; 
c is the distance from the neutral axis to the extreme fiber in compression; 
r is the radius of gyration; E is the Young’s modulus of elasticity of the 
column material; and KL is the effective length.

 Remember that the sec(θ) or secant operator is actually 1/cos(θ) and that this 
operation requires that you express the terms within the parenthesis in units 
of radians, so be sure to check the mode on your calculator! And then remember 
to switch it back when you’re done.

For example, consider a steel column that is subjected to an axial load of  
P = 100 kip with an eccentricity of 4 inches. If the column has cross-sectional 
properties of a depth of 6 inches (which means the c is 3 inches), cross-
sectional area A of 1.43in2, radius of gyration r of 4.8inches, and an effective 
length KL of 480 inches, you can compute the maximum stress capacity of 
this column as follows:

For the case of the same column loaded concentrically (where the eccentricity 
e = 0), you can compute the maximum stress by substituting into the secant 
formula again:

Thus, by simply increasing the eccentricity by 4 inches (which seems like a small 
distance), you actually reduce the stress to cause buckling from 69.9 ksi to 22.8 
ksi (or approximately 32 percent of the stress from a concentric loading.) 

25_9780470942734-ch18.indd   31225_9780470942734-ch18.indd   312 6/1/11   6:36 PM6/1/11   6:36 PM



Chapter 19

Designing for Required Section 
Properties

In This Chapter
▶ Establishing the basic principles of design

▶ Working with factors of safety and allowable stresses

▶ Calculating member section properties from known internal loads

Engineers are responsible for ensuring that the members of a structure 
or system are capable of supporting anticipated loads throughout the 

structure’s life. In addition, engineers must make sure that the object per-
forms its intended function and doesn’t experience deflection, vibration, or 
cracking. On top of all that, they must also create the most economical and 
efficient design as possible.

The basis for design involves taking known loads and using your knowledge 
of statics to predict the external support reactions on a system. With these 
reaction loads known, you can compute internal forces and moments and 
then, if you know the sizes of the members, perform basic stress and strain 
analysis as I illustrate in Parts II and III.

However, one major problem arises with indeterminate structures: To 
compute the external support reactions, you have to know how much the 
object deforms under the applied loads. And before you can calculate 
deformation, you have to have some idea of the member’s cross-sectional 
properties (such as area, moment of inertia, and radius of gyration, to name a 
few), which you can’t possibly know without knowing the internal forces. So 
the issue you’re faced with is, “Where do I start?”

Design requires you to make some initial guesses based on experience, 
equations, and sometimes even a bit of luck to determine the necessary 
cross-sectional properties. This initial guessing gives you a starting point 
for your design, which you must be sure to confirm with proper analysis. 
After you know the section properties, you can then compute stresses and 
strains and verify (or dispute) your assumptions.
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The difficulty in design is that you can’t compute the actual stresses when 
you’re still trying to determine the required section properties of the 
member. However, you can use material properties to develop an upper limit 
on stresses and then use this limit to determine a required section property 
to ensure that actual stresses never exceed the limits of the material.

In this chapter, I show you how to calculate the capacity of a structural 
member and then how to compute a required area or moment of inertia to 
support a given internal force or moment. I also introduce factors of safety, 
which provide an extra degree of, well, safety to your structure.

Structural Adequacy: Adhering to Formal 
Guidelines and Design Codes

The goal of any engineer is to provide a safe, economical structure that 
performs its intended function for many years to come. A structure or object 
that meets all of these criteria is said to demonstrate characteristics of 
structural adequacy.

When you design an object, you can simplify the basis for structural adequacy 
into two basic criteria: strength and serviceability:

 ✓ Strength: Strength means that the structure is sufficient to support the 
anticipated design loads.

 ✓ Serviceability: Serviceability means that the structure can meet its 
intended function. For engineering structures, this criteria can mean 
that the object doesn’t experience excessive deflections or vibrations 
(among other non-strength-related issues).

As an engineer or designer, you should keep these two criteria in the back of 
your mind at all times. Just because the beams of your living room floor may 
be adequate to support the loads of your house and your furniture (known 
as the service loads, which I discuss in the following section), you don’t want 
the floor of your house to experience large amounts of deflection (especially 
if all your chairs are on wheels or casters).

For strength and serviceability considerations, engineers utilize design 
codes (material guidelines and standards of practice for design) to help 
them ensure minimum acceptable levels of performance. Literally hundreds 
of different codes help engineers and designers meet the requirements for 
strength and serviceability. These codes are based on experience and 
experimental research and are compiled by a wide range of organizations 
such as the following:
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 ✓ Fabrication organizations: Manufacturing organizations such as the 
American Concrete Institute (ACI) and the American Institute of Steel 
Construction (AISC) provide recommendations based on research 
within their specific materials.

 ✓ Professional engineering societies: Professional groups such as the 
American Society of Civil Engineers (ASCE), the American Society of 
Mechanical Engineers (ASME), and the Society of Automotive Engineers 
(SAE) may establish guidelines and standards to help practicing engineers.

 ✓ Government agencies: Agencies and councils within your county, town, 
state, or nation may provide formal building code requirements. Many 
different codes exist, and knowing which specific code applies within 
a given project jurisdiction becomes important. Codes such as the 
International Building Code (IBC) and the Uniform Building Code (UBC) 
all provide guidelines for structural engineers.

An example of a potential structural building code requirement is the 
limitation of deflection to some pertinent ratio. For example, for many codes, 
the deflection in a floor beam is limited to

where L is the span of the beam and Δ
LL,MAX

 is the maximum allowable live 
load flexural deflection in the beam. For more on these deflection calcula-
tions, turn to Chapter 16.

Exploring Principles of 
the Design Process

When you start design, you need to keep a couple of simple concepts in 
mind: The member needs to be able to carry the anticipated loads as well as 
perform its intended task without deflecting or vibrating excessively. Other 
considerations — including dimensional requirements and, of course, cost — 
can also factor into your design decisions. These principles are important 
because you always want an object to be safe, functional, and economical. In 
this book, I assume that cost is no problem and stick to considering issues 
involving strength and serviceability calculations.
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Explaining member strength 
and design loads
In design, you must first understand a bit of terminology regarding the loads 
that you expect to use in the design process:

 ✓ Design loads: Design loads are the loads that are applied to the object, 
including any factors of safety or other load increase. That is, design 
load = factor of safety × applied load. A factor of safety is a constant 
multiplier (usually larger than 1.0) meant to cover overload conditions 
(situations where the actual loads exceed the value that you normally 
expect) and other safety considerations. Different design methodologies 
require different values. For an allowable-stress-based design (such as 
what I describe in this chapter), you commonly see a factor of safety 
with a value of 2.0 or 3.0.

  These loads represent the maximum load (or the worst-case scenario) 
that you expect the object to ever experience. Design loads typically fall 
into two major categories:

 • Factored loads: Factored loads are loads you use to evaluate a 
structure for strength; they typically include factors of safety.

 • Service loads: Service loads are loads that act on an object or struc-
ture during normal usage. Engineers often use them to evaluate the 
serviceability criteria for deflections and vibrations (see the preced-
ing section for more on serviceability). However, some design meth-
ods actually use service loads rather than factored loads.

  For the Load and Resistance Factor Design (LRFD) method, you 
categorize loads separately and apply individual multipliers: dead 
loads (permanent loads that never move) may have a multiplier of 
1.2 or 1.4, while live loads (loads such as people, vehicles, and office 
furniture that move around during the life of a structure) may have a 
factor of 1.6. You then combine these individual factored loads into 
a single factored load combination that you use as the design load.

 ✓ Member capacity: Member capacity is a measure of the amount of load 
that you can expect a member to safely support. This value is often 
referred to as the member strength of an object.

The design loads are a function of the type of loading on the object. In many 
cases, an object can have multiple design loads. For example, if you take a 
pressure vessel (such as the ones I discuss in Chapter 8) and apply a torque 
to the ends of it (as I discuss in Chapter 11), the object has two different 
design loads: one for axial loads from the pressure vessel and another from 
twisting moments due to torsion.

Likewise, a member can have different capacities under different types of 
loading. For example, a long, slender column may have a large axial capacity 
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but a very small flexural capacity. These combined effects are a serious 
consideration for engineers during the design process as I show in the 
“Interacting with Interaction Equations” section later in this chapter.

Creating a design criteria

 

In all cases, for an object to be considered adequate for a particular design, 
the whole design process basically boils down to a single equation. In short, 
you want to ensure that 

capacity ≥ design loads

Capacity is usually expressed as a maximum load or maximum moment. 
However, working with stresses is typically more convenient because you 
can relate those stresses directly to material properties such as yield stress 
or ultimate stress (see Chapter 14). As you’re working through the design 
process, remember that you also need to consider issues with instability 
(such as buckling of compression members in Chapter 18).

In most design methods, you relate the allowable design stress σ
ALL

 or τ
ALL

 to 
a relationship involving both the actual maximum stress that a member can 
support (σ

MAX
 or τ

MAX
) and the factor of safety F.S.

In many design problems, you actually assign the yield strength or ultimate 
strength values to the actual value of the maximum stress (σ

MAX
). For example, 

if the yield strength of a material is 50 ksi and you want a factor of safety 
of 3.0, you use an allowable design stress of σ

ALL
 = (50 ksi) ÷ (3.0) = 16.7 ksi. 

You then design your member’s section properties to limit its allowable 
stress to 16.7 ksi under the applied design loads.

 Although the maximum tensile yield strength is usually well defined for 
normal stresses, the shear yield stress τ

y isn’t typically readily available. 
Experimental material tests indicate that the maximum shear stress is often 
about 50 to 60 percent of tensile yield stresses:

τ
y
 = 0.5(σ

y
)

where σ
y
 is the tensile yield stress of the material.

 In some more-advanced design methodologies, applying an additional type of safety 
factor in the form of a reduction in capacity isn’t uncommon. For example, in the 
design of bending members, some codes only allow you to use 90 percent of the 
actual capacity of a member, which results in a 0.9 reduction factor for the capacity.
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Developing a Design Procedure
In general, the design process is usually a methodical approach that may 
require a few repetitions to determine the ideal section properties for a 
design. In every design method, you must be able to identify all the possible 
failure modes, determine loads for those failure modes, and then calculate 
the required section properties to prevent those failure modes. This section 
outlines a basic design procedure to determine required section properties.

 Think of structural design as filling a bucket with water. The bucket represents 
the capacity of the structural object, and the water represents the load or 
stress applied. If you put too much water (design load) into your bucket 
(actual member capacity), the water overflows, creating a mess. Likewise, 
if you overload a structural member, something bad, such as a member 
breaking or deflecting too much, can (and usually does) happen, resulting in 
a completely different type of mess altogether.

Outlining a basic design procedure
Generally speaking, you can break down the procedure for designing an 
object into a few simple steps:

 1. Determine the design mode.

  The design mode is the mode of failure, which can be either a limitation 
due to strength or a limitation due to a serviceability requirement such 
as deflection or vibration. I explain more about determining design 
requirements in the next section.

 2. Compute the maximum design load for strength or the allowable 
deformation/vibration for serviceability for the design mode of Step 1.

  To help you find these maximum values, you almost always need to 
draw an internal force diagram, such as the shear and moment diagrams 
for flexural members (see Chapter 3) or torque diagrams for torsion in 
shafts.

 3. Apply factors of safety or load factors to compute design loads.

  The factor of safety effectively increases the size of your bucket, 
ensuring that you can safely handle all the loads on your structure. The 
earlier section “Explaining member strength and design loads” gives you 
the lowdown on factors of safety.

 4. Determine the required section property to resist the design loads of 
Step 3.

  In this step, you actually determine how the applied loads are related 
to the limiting stress of the material. I discuss more about these design 
requirements in the following section.
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Determining design requirements 
from modes of failure
The hardest part of the design process is actually knowing which section 
property you need to calculate. This section property usually depends on 
the type of load on the structure. For simple cases, Table 19-1 shows you the 
section properties that you usually need to calculate depending on the type 
of loading on the object.

Table 19-1 Design Requirement Section Properties

Loading Type Possible Mode of Failure Typical Design Requirement

Axial tension Axial normal stress Area

Axial compression Axial normal stress Area

Instability from buckling Slenderness ratio

Direct shear Shear stress Area

Simple bending Flexural normal stress Moment of inertia

Transverse shear stress First moment of area, moment 
of inertia, thickness

Torsion Shear stress Torsion constant

For example, for a beam or frame subjected to bending, you can expect to 
have both normal and shear stresses from flexural loads. To handle the 
normal stresses, you typically need to compute the second moment of area 
(I), and for the shear stress from flexural shear, you need the first moment of 
area (Q) and the second moment of area (or the moment of inertia).

 Structural objects can also be subjected to multiple simple effects simultane-
ously. For example, a column in a building is often subjected to an axial load as 
well as bending in multiple directions (such as the biaxial bending problems 
I discuss in Chapter 15). For these objects, you need to work with interaction 
diagrams that interrelate these different effects into a single capacity equa-
tion. Because one load uses up capacity, you can’t use the same portion of the 
total capacity to resist additional loads. You can think of these effects as being 
two different fluids you pour into your bucket. After you put one fluid in, you 
decrease the available space in the bucket for the additional fluid.

 I should point out that the design process involves considerably more than 
the basic calculations I present in the coming sections. A competent engineer 
must be familiar with the relevant design codes and standards that may 
require different or additional calculations from what I have presented here.

26_9780470942734-ch19.indd   31926_9780470942734-ch19.indd   319 6/1/11   6:36 PM6/1/11   6:36 PM



320 Part IV: Applying Stress and Strain 

Designing Axial Members
Whether you’re trying to determine the required size for a rope or designing 
a member in a truss, axial members are often one of the first types of design 
you learn. As with all types of design, designing for axial members has its 
roots in basic stress analysis and requires knowledge about both geometric 
and material properties, including Young’s modulus of elasticity (E), of the 
material that you’re planning to use.

Consider the truss assembly shown in Figure 19-1, which is subjected to a 
vertical load of 10 kip acting downward at Point C. The internal forces for 
Members AC and BC by using the equilibrium equations from statics (see 
Chapter 3) and are indicated on their respective members in the diagram. For 
this example, I assume that the factor of safety is 3.0 and that the bars are 
solid, square cross sections (having equal dimensions for width and height) 
made from steel (E = 29,000 ksi) with a maximum yield stress of 50 ksi.

You can find the allowable stress of the material based on the maximum yield 
stress and the factor of safety as I show in the earlier section “Creating a design 
criteria.” For this example, the allowable stress σ

ALL
 = (50 ksi) ÷ (3.0) = 16.7 ksi.

This example actually has two different axially loaded members, one in tension 
and one in compression. The following sections show you how to deal with 
each of these members.

 

Figure 19-1: 
Axial design 

example.
 

y

x
C

A

B

16.7 kip (T)

20.8 kip (C)

72 in

96 in
10 kip

σMAX = 50 ksi
F.S. = 3.0
σALL = 50 ksi

3.0
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Calculating for simple tension members
For tension members, you can rearrange the basic axial stress equation from 
Chapter 8 a bit to find a required cross-sectional area A

REQ
:

where P is the design axial load and σ
ALL

 is the allowable stress of the material 
(which also takes into account the safety factor). For this example, you can 
determine the required cross-sectional area as follows:

For a square bar, A = b2, so a bar with cross-sectional dimensions of 1 in x 1 in 
would be sufficient for this tension member AC.

Guessing a column classification 
for compression loads
Working with compression members is a bit more complex than working with 
tension members (see the preceding section). When you analyze a column (or 
compression member), you must consider buckling, a function of the effective 
length (the length of the column multiplied by a factor describing the end sup-
port conditions) and the radius of gyration (a cross-sectional property based 
on the moment of inertia and the cross-sectional area). Flip to Chapter 18 for 
more information on columns and compression members.

Unfortunately, without knowing a member’s size, you can’t possibly know which 
type of buckling the member experiences. And without knowing which type 
of buckling to design for, you can’t determine the critical loads on a column. 
At this point, all you can do is guess a type of buckling, perform your calcula-
tions based on this assumption, and then verify your assumption after you’ve 
selected a size.

To get started for the example in Figure 19-1, I assume that the column of 
Member BC is a short column and determine a minimum required area based 
on the assumption that short columns experience a material failure (that is, the 
cross section is able to reach its allowable stress limit before buckling occurs). 
You start with the same basic stress calculation you use for tension members:
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which makes the bar dimensions b = h = 1.11 in2. For this bar, the radius of 
gyration is 0.320, which makes the slenderness ratio for this member a 
whopping KL/r = 299! As I note in Chapter 18, the slenderness ratio limit for 
slender steel columns is 200, which means my assumption that Member BC 
is a short column was incorrect. I actually need to design this member as a 
slender column subjected to elastic buckling effects.

For this example, Member BC experiences the first mode of buckling (n = 1), 
and has an effective length of KL = (1.0)(96 in) = 96 in. You can determine the 
critical buckling load P

CR
 of a slender column from the Euler buckling equation 

(see Chapter 18):

In this equation, the one value that remains unknown is the moment of inertia 
of the member; if you don’t know this value, you can’t determine whether 
the applied load will cause the column to buckle. But you can determine the 
minimum moment of inertia for the column by setting the design load P

DESIGN  

equal to the critical buckling load P
CR

 and incorporating the factor of safety 
F.S. as follows:

Substituting this equation into the Euler buckling equation and solving for 
the moment of inertia,

For this example, you can calculate the minimum required moment of inertia 
with the following equation:

At this point, you’re ready to choose a member size from design tables or 
compute the dimensions from the basic moment of inertia formulas. For a 
square cross section (where b = h), the moment of inertia is given as 
I = bh3/12 = b4/12 = 2.01 in4. Solving this expression for the dimensions, 
b = h = 2.22 in, a figure that’s substantially larger than when you initially 
assumed the member was a short column.
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 When working with rectangular (and square) sections, you have to be very care-
ful about assigning the proper dimensions to the variables b and h, because 
these dimensions help determine the orientation of the member with respect to 
the applied loads. For square tubes, however, the variable assignment doesn’t 
make any difference because both dimensions have the same value.

Because of the effects of buckling on your design, you need a square bar with 
more than double the dimensions of your original guess!

 As you gain experience, you start to develop a sense (sometimes referred to as 
engineering judgment) for columns such as Member BC. Because the length is 
very long (96 inches) for a reasonably small load (which makes the required 
area very small), classifying this column as slender is a fairly safe bet. However, 
until you’re comfortable coming to this conclusion, confirming any guesses or 
intuition you choose to rely on with calculations is always a good idea.

Designing Flexural Members
Flexural members such as the ones in Chapter 9 are among the most common 
structural items you design. You encounter these objects in a wide variety of 
applications, the simplest being horizontal beams in roofs or floors of buildings.

The first step to analyzing any flexural member is to perform a static analysis, 
determine support reactions, and then sketch the shear and moment diagrams 
to help you locate the maximum shear force and maximum moment along 
the length of the beam. (Chapter 3 covers all these tasks.) Without shear and 
moment diagrams, you have no way of knowing where the maximum internal 
shear force and moment occur.

Consider the steel beam shown Figure 19-2 (with cross section lying in the 
XY plane) that is subjected to both a point load and a uniformly distributed 
load. For this beam, the steel’s maximum normal stress at yielding is given 
as 36 ksi, and its maximum shear stress is 24 ksi. I assume a factor of safety 
of F.S. = 1.5, making σ

ALL
 = 36 ksi ÷ 1.5 = 24 ksi and τ

ALL 
= 24 ksi ÷ 1.5 = 14.4 ksi. 

Figure 19-2 provides the already-developed support reactions and shear and 
moment diagrams (which you may recognize from Chapter 3).

For the example in Figure 19-2, the shear and moment diagrams clearly 
show that the maximum positive moment in this beam is M

MAX
 = 84 kip-ft and 

occurs at Point C, while the maximum shear force occurs at Point B and has a 
value of V

MAX
 = 31 kip.
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Planning for bending moments with 
the elastic section modulus
As I indicate in Chapter 9, you can calculate flexural bending stresses from 
the basic formula

In the second part of the equation, S
x
 is known as the elastic section modulus 

with respect to the x-axis. As you may recall, you can also find an S
y
, which is 

the elastic section modulus with respect to the y-axis. For more on actually 
computing the elastic section modulus, turn to Chapter 9.

 The formula for the elastic section modulus requires both the cross section’s 
moment of inertia and the distance from the neutral axis to the extreme fiber 
(the outer edge) of the cross section, both of which are independent of each 
other and dependent on the dimensions of the cross section. For the beam of 
the Figure 19-2 design example, you can compute the required elastic section 
modulus as follows:

Working with section property tables
In design, you often don’t know the dimensions of the beam at the beginning 
of the design process. However, by utilizing the elastic section modulus, you 
can compute a single value and use design tables to look up a specified value. 
Table 19-2 shows an example of a typical entry in a steel manual for an I-beam 
(shown in Figure 19-3). Figure 19-3 shows the location of dimensions b

f
, t

f,
, 

and t
w
 for the standard I-shaped cross section.

Table 19-2 Sample Section Property Table

1
Section

2 
Area  (in2)

3 
Depth (in)

4 
b

f
 (in)

5 
t
f
 (in)

6 
t
w

 (in)
7 
I
xx

 (in4)
8 
r

x
 (in)

9 
S

x
 (in3)

W12x35 10.3 12.5 6.56 0.520 0.30 285 5.25 45.6

W10x45 13.3 10.1 8.02 0.495 0.310 248 4.33 49.1

W8x48 14.1 8.5 8.11 0.685 0.400 184 3.61 43.3
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Column 1 is the designation of the section you’re working with. Most 
manufacturers fabricate their structural members to conform to a specified 
set of dimensions within prescribed tolerances. In this table, the W prefix 
indicates that the member conforms to a wide-flange design specification 
(which happens to include most I-shaped sections). The remaining columns 
2 through 9 are computed section properties for a given shape. Talk about a 
timesaver! If you use a standard shape, you don’t even have to do those 
repetitious section property calculations I show in Part I.

 Turn to the back of your mechanics of materials textbook, and you may 
actually find a short table in an appendix that contains similar information for 
different cross sections.

With these data values, you can perform a wide variety of stress calculations 
relatively quickly. Most design tables typically contain additional values, 
including elastic section properties about the y-axis (which I don’t list in 
Table 19-2), as well as additional shapes such as hollow tubes, round pipe, 
and channels (to name a few).

Looking at Table 19-2, you can see that each of those three shapes provides 
a sufficiently large elastic modulus and would be a suitable candidate to 
support the moments from the applied loads. However, designing flexural 
members involves many more considerations; you also need to design for 
flexural shear, connection details, and many other situations that I don’t 
necessarily cover in this book.

Selecting a most-efficient section
So how do you know which section to choose from a list of suitable options? 
The short answer is usually “Choose the most-efficient section,” which basically 
means you should select the shape that costs the least. Considerations for 
choosing a most-efficient section include the following:

 ✓ Most economical (smallest cross-sectional area): In most materials, the 
member that weighs the least is often the most economical because 
weight is often directly proportional to the cost. And the member that 
weighs the least usually has the smallest cross-sectional area (which 
you can see in column 2 of Table 19-2).

 ✓ Physical dimension requirements: Physical space restrictions can 
play a role as well. If the beam you choose is 20 inches deep and your 
structure only has room for a 12-inch beam, you have a problem. For 
these situations, you need to keep an eye on the overall depth (column 3 
of the table) of the member you select.
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 ✓ Serviceability: In beam design, you also want to keep an eye on the 
minimum moment of inertia (I

xx
). If you choose a beam with a very small 

moment of inertia, the deflections of your beam will be larger for a given 
loading. Using the deflection calculations in Chapter 16 and the appropriate 
design codes from “Structural Adequacy: Adhering to Formal Guidelines 
and Design Codes” earlier in this chapter, you may find that the moment 
of inertia actually controls, which means you then need to look to the 
value in column 7.

Accounting for flexural shear
Typically, design of flexural members (such as beams) is controlled by 
bending moments, so this category is a good place to start. After a design is 
complete, you can then check that the section remains adequate for shear 
effects as well. The shear capacity is usually performed as a follow-up check 
after you’ve designed the section. Depending on the code you use, your design 
requires different formulas and safety factors. In some codes, you’re allowed to 
use an average shear stress calculation (which I explain in Chapter 6):

where V is the internal shear force and A is the area on which the shear is 
acting. Rearranging the average shear stress equation,

Looking at column 2 of Table 19-2, you can see that each of the three chosen 
sections should provide sufficient shear capacity because their cross-sectional 
areas are significantly larger than the minimum required area you just 
calculated. If you find that your shear capacity is insufficient, you can always 
go back and increase the member size to satisfy shear requirements; doing so 
typically results in a design that’s still adequate for the flexural effects as well.

 I should point out that many design codes often don’t allow you to count the 
entire cross-sectional area for shear capacity when the cross section has 
flanges or legs. In these cases, you may only be allowed to use the area of the 
web, A

WEB
 = (t

w
)(h), where t

w
 is the web thickness shown in column 6 at the 

neutral axis and h is the height of the beam or web — usually the value in 
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column 3. ( The web is a part of a cross section that connects other structural 
elements such as the vertical region of the I-beam cross section.) For Figure 19-3, 
the area of the web, A

WEB
, of a W10x45 is still (10.1 in)(0.31 in) = 3.13 in2, which is 

still more than the A
REQ

 that you calculated earlier in this section.

 After you’ve selected a preliminary member size, you need to make sure to go 
back and add an additional load to account for the member’s self weight. In 
many common structures, a beam can require more than 100 pounds per foot 
(and actually more for really large beams) just for self weight.

Designing for Torsion and Power
One of the most important design problems related to torsion is the 
transmission of power from a motor or engine through a rotating shaft. 
Spinning shafts apply torque based on the speed of their rotation and the 
power being transmitted. The more slowly a shaft spins, the higher the 
torque is for a given power output.

To ensure that the shaft has sufficient dimensions, you typically work with 
the J/c ratio, which is a variation of the elastic section modulus for flexure 
that I describe in the earlier section “Designing for bending moments with 
the elastic section modulus:”

where J is the torsion constant (see Chapter 11); c is the outer radius of the 
shaft; power is the power (in watts) the shaft is transmitting; rpm is the speed 
of the rotating shaft in revolutions per minute; and τ

ALL
 is the maximum 

allowable shear stress in the shaft (as I define in the earlier section “Creating 
a design criteria”).

For example, consider a rotating shaft used to transmit 700 kW at a speed of 
90 rpm. If the shaft is steel with a tensile yield strength of σ

Y
 = 250 MPa and a 

factor of safety of F.S. = 1.5, you can then establish the dimensional requirements 
(J/c) for the shaft. First, you need to determine the allowable shear stress for 
the shaft material:
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Then you can determine the J/c ratio:

After you have this ratio, you can then compute viable alternatives for the 
shaft’s dimensions. For a solid shaft,

A radius of 86.6 millimeters corresponds to a shaft diameter of 173.2 millimeters.

Similarly, if you want to use a hollow shaft, you can use the expression

From this calculation, you can easily create a spreadsheet table to determine 
satisfactory inner (r

i
) and outer (r

o
) radii to transmit this torque. For static 

shafts subjected to applied torque, you simply need to follow the examples 
in Chapter 11.

Interacting with Interaction Equations
For simple designs, where objects are only subjected to a single load type, 
the design process is usually fairly simple. The basic relationship that you 
must satisfy is

where the applied loads are the design loads for the object, and the member 
capacity is the strength of the object in resistance to the load. If you rearrange 
this basic expression, you can create an inequality that looks something like 
the following:
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If you think of the 1.0 as being a 100 percent of the strength of the member, 
or the size of your bucket, as I describe in the earlier section “Developing a 
Design Procedure,” you can extend this bucket analogy to problems involving 
multiple load types. This relationship is known as an interaction equation, and 
design codes may require you to check many different types of interaction. 
One of the most popular interaction equations is the one for the interaction 
of axial load and bending moment (in one direction):

 

If you use up the capacity of a member on the axial load, you may not have 
enough capacity to resist the moments.

For example, consider a cross section that has an axial capacity of P
MAX

 = 100 
kN and a moment capacity of M

MAX 
= 400 kN-m. If you subject the member to 

an axial load of P = 30 kN, you can find the maximum applied moment by 
solving the interaction equation for the applied load M:

For this example, the maximum moment that can be applied to the section 
can only be 280 kN-m.
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Chapter 20

Introducing Energy Methods
In This Chapter
▶ Explaining the law of conservation of energy in mechanics of materials

▶ Working with strain energy

▶ Developing relationships for impact

The equilibrium methods that I describe earlier in this book take advantage 
of the equations of statics and the relationship between stress and strain 

of the object. These methods work very well as long as the basic assumptions 
in Chapter 14 remain valid.

However, many objects in engineering may not obey all those basic 
assumptions. For these cases, you need to use a more-generalized approach 
such as the energy methods I show in this chapter, which are all about 
calculating energy and its effect on stress-strain behavior of elastic objects.

In this chapter, I demonstrate the basics of computing internal strain energy 
and provide a bit of a physics refresher to help you with computing external 
work calculations. I conclude the chapter by showing how you can use these 
internal energy calculations to compute internal forces and stresses caused 
by impact of one object onto another.

 The study of energy methods I present in this chapter is a basic overview 
of energy methods focusing on linear systems; you can apply these ideas to 
simple applications such as calculating stresses and strains due to the impact 
of one object onto another. Analysis techniques involving energy methods can 
become quite involved in extreme cases, so for more advanced applications, 
check out an advanced mechanics or physics textbook.
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Obeying the Law of Conservation 
of Energy

In physics, the classic definition of energy is the ability of an object to perform 
work. Energy comes from a wide variety of sources, such as motion, chemical 
reactions, heat, light, and so on. The units of energy are the Joule (J), which 
is equivalent to 1 N-m, in SI units and the pound-foot (lb-ft) in U.S. customary 
units.

Now, before you go out and strap a solar panel on your house, I’m not talking 
about the energy that powers the appliances in your home. Engineers of 
structural objects are typically concerned with two specific types of energy:

 ✓ Kinetic energy: Kinetic energy is the energy of the mass of a system 
due to its motion, and it remains constant for a constant speed. Only a 
change in velocity can cause a change in kinetic energy. In general, the 
expression used to calculate kinetic energy (U

K
) is

  

  where m is the mass of a system and v is the velocity of the mass.

 ✓ Potential energy: Potential energy is a measure of the energy stored 
in an object. For example, if you hold a weight in the air, the potential 
energy is the gravitational force acting on the mass multiplied by the 
height through which the object is capable of traveling before reaching 
equilibrium. In equation form, you calculate the potential energy for 
such a weight as

  U
p
 = mgh

  where m is the mass of the suspended object; g is the acceleration due 
to gravity acting on the object; and h is the height of suspension.

 The law of conservation of energy is a significant principle in the application of 
physics. This law states that over time, the total energy of a system remains 
unchanged (or is conserved). The law of conservation of energy is the 
inspiration for the saying “Energy can neither be created nor destroyed.” 
Energy can change forms only.

In physics, the law of conservation of energy says that if you release a 
suspended object above the ground and allow gravity to grab hold of it, its 
potential energy transforms into kinetic energy, at which point the object 
increases in velocity as it falls toward the ground.

When you start working with energy methods, you must be careful to keep 
your different energy forms separated into two main categories:
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 ✓ Internal energy: Internal energy is the energy of an object that develops 
through stresses and strains in reaction to outside sources (or external 
energy sources). Mechanics of materials calls this internal energy strain 
energy, and I discuss that topic in more detail in the following section.

 ✓ External energy: External energy is the energy put into an object either 
by impacting the object directly through motion (which is classified as a 
kinetic form of energy) or through external potential energy or thermal 
energy sources.

Energy methods in mechanics of materials use the law of conservation of 
energy by obeying the principle that any energy put into an object or system 
from an external energy source is transformed into the internal energy stored 
inside the object in any of several different forms (such as deformation, 
changes in velocity, and heat emission).

You can express the law of conservation of energy in mechanics of materials 
by the following:

U
EXTERNAL

 = U
INTERNAL

where U
EXTERNAL

 is the system’s external energy and U
INTERNAL

 measures the 
system’s internal energy. For example, if you bend a paper clip back and 
forth quickly and then touch the bend, you may notice that the clip is warm 
(or even hot) to the touch. The external energy you put into the clip from the 
bending process was transformed into internal energy from the deformation 
of the clip (the bending displacement) and energy from internal friction (the 
heat).

 Both the energy from bending and the energy from heat contribute to the 
total internal energy of the system. However, in most basic mechanics of 
materials applications, the portion of the internal energy contributed from the 
deformations is often significantly larger than the energy from internal friction. 
For this reason, neglecting the internal energy contributed from internal 
friction is fairly common practice.

Working with Internal 
and External Energy

The law of conservation of energy tells you that the external applied energy 
must be equal to internal strain energy. The next challenge in your application 
of energy methods is knowing how to compute these basic energy values. In 
this section, I show you several different forms of internal strain energy 
calculations and then explain how you relate them to different types of 
external work energy calculations.

27_9780470942734-ch20.indd   33327_9780470942734-ch20.indd   333 6/1/11   6:35 PM6/1/11   6:35 PM



334 Part IV: Applying Stress and Strain 

Finding the internal strain energy
Strain energy is a measure of the internal potential energy of an object. If you 
squeeze a kitchen sponge in the palm of your hand, the energy you use to 
compress the sponge is the external work applied to the sponge. This energy 
is stored inside the sponge in the form of internal strain energy (energy due to 
stresses and strains). As long as the sponge has remained within the elastic 
region of its stress-strain relationship (see Chapter 14), this stored internal 
energy source is completely released when you open your hand because the 
stored energy is transformed into the energy that causes the object to return 
to its original shape. In equation form, the external work W you applied to the 
sponge is stored as an internal energy U within the object as follows:

where volume is simply the geometric volume of the object; σ is the internal 
stress; ε is the corresponding strain; and E is the value of Young’s modulus of 
elasticity for the material.

 I should also point out that energy is always a scalar quantity and doesn’t 
have a direction associated with it. So if you have an internal strain energy in 
conjunction with a chemical reaction energy, you can simply add these two 
effects together to compute a total internal energy. But I’ll leave the chemical 
energy to the chemists and focus simply on mechanical strain energy here.

 If you want to work with a system of multiple objects, you need only compute 
the strain energy of each individual part and then add them together to get 
the total energy of the system:

where n is the number of members in the system. Depending on the type of 
loading, stresses and strains can be quite different (see Part II). So your 
analysis of objects by using strain energy methods must begin with identifying 
the type of load being applied: axial, torsion, and flexure. You can then use 
this information to choose the appropriate strain energy calculations that I 
describe in the coming sections.

Strain energy under axial loading
You can calculate the internal strain energy of an axially loaded bar from the 
following equation:
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Consider the system of two axial bars AB and AC that have the length and 
cross section dimensions shown in Figure 20-1.
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If a load of P = 100 kN is applied to the end of this system, you can use your 
basic statics skills to deduce that the internal force F

AB
 in bar AB is 75.8 kN (T) 

and that the internal force F
AC

 in bar AC is 92.8 kN (T). With the statics out of 
the way, you can then compute the internal energy of the system:

Strain energy in beams
The internal strain energy of a beam is a bit more complex in that it requires 
using a bit of calculus to evaluate the internal energy:

where U
B
 is the internal strain energy due to bending and U

V
 is the internal 

strain energy due to shear. In these integrals, M and V are the generalized 
internal moment and internal shear equations, respectively, for the beam 
loading; E is the Young’s modulus of elasticity; G is the shear modulus of 
elasticity; I is the moment of inertia of the beam; and A is the cross-sectional 
area of the beam. The first term in the summation represents the internal 
strain energy due to flexural bending, and the second term represents the 
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internal strain energy due to flexural shear. In the flexural shear portion, you 
can see a numerical constant α that you can evaluate with yet another integral:

where Q is the first moment of area of the cross section about the neutral 
axis and b is the width of the cross section.

 In engineering, energy due to flexural shear, or the U
V
 term in the earlier 

equation, is often neglected. Calculating this term is actually cumbersome, 
and the result only ends up accounting for somewhere between 1 and 3 percent 
of the total energy of a member in flexure. However, this omission only works 
if the beam dimensions are such that flexural stresses control. If a beam is 
very deep and very short, you need to include the shear deformations (and 
hence the flexural shear energy contribution) in your calculations.

Consider the steel beam (E = 29,000 ksi) shown in Figure 20-2 that has a span 
of 10 ft and a moment of inertia of I = 100 in4. The beam is subjected to a 
uniformly distributed load of w = 3 kip/ft.

You can write the generalized equation for the moment as follows:
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Considering the energy from flexural shear as negligible, you can compute 
the internal strain energy of this beam due to the bending moments as follows:
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Strain energy in circular shafts subjected to torsion
You can compute the internal strain energy for a circular shaft subjected to 
torsion by using the following equation:

where T is the internal torque; G is the shear modulus of elasticity; J is the 
torsion constant for the shaft; L is the length over which the torque is constant; 
and ϕ represents the angle of twist over the length. For more on torsion 
calculations, flip to Chapter 11.

Setting the internal strain energy 
equal to the external work energy
As I discuss earlier in the chapter, the premise behind working with energy 
methods in mechanics of materials is that the internal strain energy (see the 
preceding section) must be equal to the external work energy.

Depending on the type of applied loading, you can compute the external work 
energy by using the following basic relationships:

 ✓ Axial external work: For an axial load, the external work done by a 
point load P that moves through a displacement Δ is given by

  

 ✓ Bending external work: For a bending effect, the external work done 
by a concentrated moment M that moves through a given rotation θ is 
given by

  

  For a bending affect resulting from a concentrated load P that moves 
through a given displacement Δ is given by
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  This relationship is the same relationship in the equation work energy 
of an axial bar. This correlation illustrates the analogy that structural 
systems can be considered to behave as types of springs, because the 
work energy calculation becomes directly affected by the stiffness of the 
member under load.

 ✓ Torsional external work: For a torsional effect, the external work done 
by a concentrated torque T that moves through an angle of twist ϕ is 
given by

  

 The units on both the applied moment (M) and the applied torque (T) are 
already expressed in either N-m (for SI) or lb-ft (for U.S. customary), which 
happen to match the units of energy already. If the angle of rotation (θ) and 
the angle of twist (ϕ) are both expressed in radians (or a unitless measure), 
the units on the external energy also work out.

After you have the internal strain energy computed (see the preceding 
section), you can compute the deflection by setting the internal strain energy 
equal to the external work. Consider the axial system from Figure 20-1 earlier 
in the chapter. If the applied load P = 100 kN moves through a vertical 
deflection Δ

V
, you determine the external work as follows:

Setting the external work equal to the internal work (U
INTERNAL

 = 16.9 N-m), you 
can rearrange the expression and solve directly for the vertical displacement 
in the direction of the load.

 Remember to be mindful of the units in your calculations. For example, if an 
applied load is expressed in kN but your energy calculations are in J or N-m, 
you have to make sure the units on the external energy calculations agree with 
the units on the internal energy calculations.

 A very popular method of structural analysis known as Virtual Work uses the 
equations in this section. In fact, the method of Virtual Work uses an imaginary 
unit load (which is a unit force [1 N or 1 lb] for linear displacements and a unit 
moment [1 N-m or 1 lb-ft] for rotation calculations) in the direction of interest 
to help predict the displacements and deformation in that direction.
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Brace Yourself: Figuring Stresses 
and Displacements from Impact

The energy methods of this chapter truly shine in the determination of 
stresses and displacements from impact. Impact occurs when one object 
strikes another with a dynamic force. As you may imagine, the impact causes 
external energy to be transmitted to the object, which then deforms (or 
experiences stresses and strains) in response. The calculations of internal 
strain energy remain the same as in the earlier “Finding the internal strain 
energy” section; the challenge here is to be able to determine the external 
work done by the moving load. But first, you must make a few assumptions:

 ✓ Displacements are directly proportional to the load applied.

 ✓ Material behaves elastically (see Chapter 14), meaning it doesn’t deform 
permanently due to the impact loads.

 ✓ No energy is lost because of localized deformation (or damage) at the 
point of impact.

 ✓ All impact-related energy is transferred completely to the impacted object.

Determining impact from kinetic energy
When a force from a mass is applied statically (without acceleration or 
velocity) to an object, the resulting energy is less than the energy that results 
when the same force hits (or impacts on) the same object with a constant 
velocity. This energy increase is due to the contribution of kinetic energy 
(which I discuss in the earlier section “Obeying the Law of Conservation of 
Energy”). The relationship between a static load and deflection is given by 
the basic relationship 

load = stiffness × deformation

 All structural objects can be classified as some type of spring, meaning that 
when a load is applied, the amount it deforms is a function of the geometric 
dimensions of the object and the material from which the object is made.

To illustrate the effect of impact, consider the simple spring with stiffness 
k as shown in Figure 20-3. A small mass m moving at a constant velocity v 
impacts the end of the spring.

27_9780470942734-ch20.indd   33927_9780470942734-ch20.indd   339 6/1/11   6:35 PM6/1/11   6:35 PM



340 Part IV: Applying Stress and Strain 

 

Figure 20-3: 
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 If you use the analogy that all members can be considered a type of spring, 
the stiffness k of an axial member is equal to the numeric constant AE ⁄ L of the 
member and the stiffness of a bending member is a function of some constant 
value and an EI/L3 term.

In this example, the internal strain energy from the spring is the same as the 
axial member; you compute it as follows:

The external work is actually equal to the kinetic energy of the mass:

You can then set these two expressions equal and solve for the internal force 
P

MAX
 that results from impact:

After you have this force computed, you can then calculate the stress that 
results as I show in Chapters 6 and 8.
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Determining energy relationships 
through vertical impact factors
You calculate vertical impact much the same as you do horizontal impact 
(which I cover in the preceding section). If an object starts at rest and is 
dropped from a height h, the external work is equal to the potential energy of 
the mass m as shown in Figure 20-4.

 

Figure 20-4: 
Vertical 
impact 

factors.
 (a) Dynamic Case (b) Static Case

My

z z

h

g (Gravity)

Deflected shape

A B M

y

A B

ΔMAX
ΔST

L
2

L
2

L
2

L
2

For the dynamic cases shown in Figure 20-4a, you can express the external 
energy done as

where Δ
MAX

 is the displacement due to impact.

Setting the external energy equal to the total bending external work W
EXTERNAL

 
for the beam (as I describe in the section “Setting the internal strain energy 
equal to the external work energy”) gives the expression

where k is the stiffness of the member at the location of impact.

Setting the external energy equal to the external work , you get the following 
energy expression:
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From Figure 20-4b, you express the static displacement Δ
ST

 as follows if the 
load (mg) is acting at the point of impact:

Substituting this relationship into the conservation of energy equation in the 
earlier section “Obeying the Law of Conservation of Energy,” you can apply a 
bit of algebra and then the quadratic formula to show that

where I.F. is an impact factor for the vertical load being dropped on the beam:

For a single mass applied at the midspan of a beam, you can use the principles 
of Chapter 16 to show that

which means that you can express the impact factor for a mass m dropped 
from a height h onto the middle of a beam of span L as

The impact factor is directly related to the beam’s stiffness parameters (E, I, 
and L), the mass, and the height you’re dropping the mass from.

All you need to do is compute the static displacement of an equivalent 
weight, and you can compute the impact factor. Because the impact factor 
is a ratio of the impact displacement over the static displacement, you can 
apply Hooke’s law (see Chapter 14) to show that the stresses can be affected 
by the same impact factor:

Depending on the height and mass of the weight being dropped, impact can 
significantly increase the stresses in an object.
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In this part . . .

In this part, I provide a basic list of ideas and concepts 
to watch out for when applying mechanics of materials 

to the world around you. I also provide a list of ten useful 
tips for solving mechanics of materials problems.
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Chapter 21

Ten Mechanics of Materials 
Pitfalls to Avoid

In This Chapter
▶ Using the correct aspects of mechanics of materials

▶ Noting important steps and formulas

Mastering mechanics of materials is no easy feat; with all the formulas, 
constants, and variables, you may feel like you’ll buckle before your 

structure does. To help you sidestep potential troubles, I’ve gathered the 
ten most common mistakes I see mechanics of materials students make. 
Although this chapter doesn’t cover all aspects of the topic, it does provide 
a good checklist of things to keep in mind when working with mechanics of 
materials.

Failing to Watch Your Units
One of the biggest unit mix-ups comes in dealing with the megapascal (MPa), 
which equals 1 million N/m2 and is a common SI unit for material properties 
such as Young’s modulus of elasticity and the shear modulus of elasticity. 
The problem occurs because force is often given in SI units of Newton (N) 
or kiloNewton (kN), and you may also encounter cross-sectional dimensions 
measured in millimeters or area values expressed in mm2. In order to match 
these units, you either need to convert the meters portion of the MPa to 
millimeters or convert the area back to m2.

Not Determining Internal Forces First
This one should seem fairly obvious; after all stresses and strains are measures 
of internal behaviors within an object, so you have to start there. If you’re 
interested in computing the normal stresses on an element, you need to 
consider both internal axial forces as well as internal bending moments. If 
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you want to work with shear stresses, you need to determine the internal 
shear from flexure and any torsional effects on the object. Internal force 
diagrams (which I cover in Chapter 3) prove very handy when working with 
stresses and strains.

Choosing the Wrong Section Property
Sometimes the hardest part about working with stresses is remembering 
which section property you need to use. When you’re working with normal 
stresses (such as from internal axial loads or bearing and contact pressures), 
you need to use the cross-sectional area of the member or the contact region. 
When you’re calculating normal stresses from bending, you need a moment 
of inertia (or an elastic section modulus that uses that value). For shear 
stresses from torsion, you need a polar moment of inertia; for shear stress 
from flexural shear, you need both the first and second moments of area.

Forgetting to Check for Symmetry 
in Bending Members

To compute bending stresses in a symmetric cross section, you need only 
compute the principal moments of inertia of the cross section; these moments 
conveniently happen to be the same as the moments of inertia about the cen-
troidal axes. However, some professors like to be a little sneaky by putting a 
nonsymmetric problem on an exam. When this situation happens, remember 
that you also need to compute a product moment of inertia.

The basic equations for computing normal stresses due to bending require 
that the cross section have at least one axis of symmetry, which physically 
means that the product moment of inertia is equal to zero. In the event that a 
section is unsymmetrical, the product moment is never zero, which means you 
need to then compute the principal moments of inertia and their orientation 
angles. These figures then help you to determine the orientation of the neutral 
axes of the cross section.

Carelessly Combining Stresses and Strains
Remember that you can combine multiple stress effects by using the prin-
ciple of superposition from Chapter 15. Normal stresses can combine with 
other normal stresses, and shear stresses can combine with other shear 
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stresses. Watch the signs on the stresses: Tension normal stresses are 
usually assumed as positive, and compression normal stresses are usually 
assumed as negative. Shear stresses involving torsion have one sign on one 
edge of the cross section and the opposite sign on the other. Similarly, you 
can combine normal strains together and shear strains together.

Ignoring Generalized Hooke’s Law
in Three Dimensions

Make this formula your friend. Instead of memorizing multiple formulas for 
the relationship between stress and strain, remember that the generalized 
Hooke’s law always works, even for uniaxial and plane stress situations. You 
just need to identify which of the normal stresses have a zero value; if no 
stress is acting in a given direction, the stress has to be zero. You can even 
analyze plane stress elements because the out-of-plane stress component 
is automatically zero. For more on Hooke’s law, turn to Chapter 14.

Classifying Columns Incorrectly
When considering compression members (columns), don’t forget that the 
length of the member plays a key role in computing the capacity of the 
member. If the column is classified as a short column, it follows the same 
normal stress calculations you use for computing normal stresses from axial 
loads. However, if the slenderness ratio becomes too big, buckling becomes 
a consideration, and you need to look to the Euler buckling equation, which 
includes the slenderness ratio. For more on columns, turn to Chapter 18.

Overlooking that Principal Normal 
Stresses Have No Shear

A principal stress element can have up to two normal stresses, but shear 
stress never acts on the principal element at that orientation. Conversely, a 
principal shear stress element not only has the shear stress, but it also has 
the same value of normal stress acting on all sides of the element.
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Neglecting to Test the Principal 
Angle after You Calculate It

If you’re using equations (instead of Mohr’s circle) to compute transformed 
stresses and strains, the principal angle that the equation gives you from the 
basic formula is only one of two possible answers. Although you may be able 
to compute both of the principal stresses (or strains), you don’t know which 
of these values is associated with the principal angle that you calculate from 
the formulas. To determine this piece of information, simply substitute the 
principal angle and the current state of stress (or strain) back into the 
transformation equations, and the transformed value that is associated 
with the angle pops right out.

 If you’re using Mohr’s circle, this step isn’t necessary. You can tell which 
principal value the angle is associated with by simply examining the circle 
directly. Mohr’s circle even tells you which way you need to rotate the 
element to get to a particular principal value. See Chapters 7 and 13 for 
more on Mohr’s circles.

Falling Victim to Tricky Issues 
with Mohr’s Circle

If you choose to utilize the graphical method of Mohr’s circle rather than 
transformation equations, keep the following pointers in mind:

 ✓ As you start plotting the stress and strain coordinates on Mohr’s 
circle, don’t forget that both the positive shear stress and positive 
shear strain values always plot below the horizontal axis. Although 
doing so may upset your middle-school math teacher, this change 
guarantees that the direction you rotate on Mohr’s circle agrees with the 
direction you rotate your transformed elements.

 ✓ The angle you measure on the circle is always twice the angle you 
would use with the transformation equations. The procedure for 
constructing Mohr’s circle is the same for both stress and strain. So if 
you’re rotating an element from one orientation to another, multiply the 
angle by two; if you’re calculating an angle from geometry on Mohr’s 
circle, divide that angle by two.

 ✓ The shear strain must be plotted at half its value. The Mohr’s circle for 
strain (see Chapter 13) has one additional tricky spot: You divide the shear 
strain that plots on the vertical axis by two. So if you measure a shear strain 
of +500μ, you actually need to change the vertical coordinate to +250μ.
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Chapter 22

Ten Tips to Solving Mechanics 
of Materials Problems

In This Chapter
▶ Applying statics to your mechanics problems

▶ Thinking in terms of failure

▶ Working with stresses and strains in design

So your professor walks in, throws a strange problem on the board, and 
informs you that today is your day to do analysis work. Armed with your 

knowledge of mechanics of materials (and possibly with this book), you set 
out on the mechanics of materials path laid before you.

The biggest problem you face is that no two problems (especially design 
problems) are ever the same. You have to determine how to quickly and 
effectively tackle a mechanics of materials problem. Fortunately for you, 
though, the actual equations of mechanics of materials never change; the 
method in which you need to apply them does. In this chapter, I present 
a general list of ten basic steps that you can use to tackle even the most 
ornery of mechanics of materials problems.

Do Your Statics
I’m sorry to say you just can’t avoid statics. Without statics, mechanics of 
materials problems are pretty much impossible (unless of course you have 
all the internal forces already given to you, which in design is rarely the 
case). For the sake of argument in this chapter, assume you aren’t that lucky.

The first step in tackling a mechanics of materials problem is to work through 
the statics involved in the problem, which means you need to draw free-body 
diagrams. These diagrams include exposed internal forces, external forces, sup-
port reaction forces, and self weight. You can then use the equations of equilib-
rium to possibly compute the magnitudes of unknown support reactions.
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Expose Internal Forces
After you have your basic statics done and the support reactions computed 
(see the preceding section), you need to determine internal forces by cutting 
the object to expose the internal forces (such as axial and shear forces and 
internal moments) required to balance one of the cut pieces of your structure. 
If you later want to calculate stresses or strains at a particular point (see the 
later section “Compute Strains and Deformations for Your Stress Elements”), 
you need to expose the internal forces at that point first. When you’ve 
included the internal forces on your free-body diagram, you can then apply 
the equations of equilibrium again to compute the unknown internal forces 
(as I outline in Chapter 3).

 If you repeat this process at multiple locations (or write the generalized 
equations instead), you can create internal force diagrams such as shear and 
moment diagrams, axial force diagrams, or torque diagrams. All these diagrams 
help you quickly locate the maximum internal forces within a member.

Identify How the Object Can Break
One of the hardest parts of mechanics of materials is determining exactly 
which stress or strain you need to calculate in the first place. One trick I like 
to use is to picture how an object can possibly break. To identify these 
situations, I usually start at one end of the assembly and mentally slice the 
object perpendicular to the longitudinal axis (if one exists), and then I confirm 
that I’ve accounted for that particular break scenario in my previous 
calculations. If I haven’t, I know I need to take care of the stress calculations 
at that location as well. I then repeat this process throughout the remainder 
of the object or system.

 If you see a hole or change in geometry, you know you need a slice at that 
location for sure because at those locations you can get localized increases in 
stress that exceed the average stresses in other sections.

Consider two plates bolted together by a single bolt. If you pull on the ends of 
each plate with a constant force, the assembly can break apart in a number of 
ways. For example, if the bolt breaks, the assembly will definitely fall apart. To 
check for this failure, you use an average shear stress calculation that involves 
the internal force of the bolt acting over its cross-sectional area. Another pos-
sibility is that the stress in the plate itself may become too much, causing the 
plate to fail. In that scenario, you need to check two normal stresses: the aver-
age normal stress of the gross cross-sectional area and the maximum normal 
stress acting adjacent to the hole on the net cross section. After you know 
these stresses, the formulas basically become a number-crunching process.
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 If the internal load is acting parallel to the cross section, you need a shear 
stress, so turn to Chapters 10 and 11. If the internal load is acting perpendicular 
to the cross section, you have a normal stress calculation in your future and 
may want to check out Chapters 8 and 9 for help with those. Just remember to 
watch out for members in compression, because buckling (see Chapter 18) is 
always a concern.

Compute Appropriate Section Properties
When you know the stress calculation you need to perform, the section 
property you need is generally fairly apparent from the corresponding 
formula. Most section properties require the location of the centroid (or 
neutral axis) as a reference, so you may as well do that first. After you have 
the centroid located and all the internal forces calculated at your location 
of interest, keep the following considerations in mind.

 ✓ Axial loads: Beware of the presence of holes or openings because you 
need to compute a net area at those locations. If your axial load is a 
compression load, you also need to compute the radius of gyration 
(which you use to compute the slenderness ratio) in order to consider 
buckling as a possibility.

 ✓ Bending moments: Bending moments always need a moment of inertia 
(which I discuss in Chapter 5). Make sure you correctly determine which 
of the cross section’s neutral axes is being displaced and then calculate the 
moment of inertia about that axis. If both axes are moving (as in the cases 
of biaxial bending problems), you need to compute both moments of 
inertia, which for symmetric sections are the principal moments of inertia.

  For unsymmetrical sections, you also need the product moment of 
inertia so that you can calculate the principal moments of inertia.

 ✓ Flexural shear: For flexural shear, you need to compute the first and 
second moments of area (see Chapter 5) for your location of interest.

 ✓ Torsion: Torsion problems always require you to compute the torsion 
constant. For circular shapes, this value is the same as the polar moment 
of inertia (see Chapter 5). For other shapes (including rectangles), you 
need to use the approach I illustrate in Chapter 11.

Sketch Combined Stress Elements
As long as your loading meets the material assumptions I outline in Chapter 14, 
you can combine stresses from simple cases to create a combined load case. So 
don’t be scared of those pressure vessels with torsion and bending loads on them.
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Just remember that you can only add normal stresses to other normal 
stresses, and you can only add shear stresses to other shear stresses. 
After you have these values determined, you can sketch the combined 
stress element, which I discuss in Chapter 15.

Transform Those Stresses!
Maximum stresses don’t always line up with the stresses you calculate from 
the loading. In fact, you can compute these maximum stresses (the principal 
normal stresses and maximum shear stresses) by using either Mohr’s circle 
for stress or the stress transformation equations. While you’re at it, you 
should also determine which orientation these stresses occur at within the 
object. This step becomes especially important if you’re investigating welds 
in metal or fiber stresses in wood construction because the orientation of 
those stresses plays a critical role in the design process.

 The majority of failure theories (which you find out about in an advanced 
mechanics class) need the basic principal stress values in order to be able 
to perform the theories’ advanced calculations. I show you how to calculate 
those principal stress values in Chapter 7.

Have Your Material Properties Handy
Make sure that you have the proper material properties for the object you’re 
investigating. These material properties can have a tremendous effect on 
design calculations. At the very least, you usually need Young’s modulus 
of elasticity and Poisson’s ratio for each material within the object (see 
Chapter 14). You should also note the yield stress and ultimate stress if 
you’re doing any sort of design work. Although Young’s modulus of elasticity 
and Poisson’s ratio are usually fairly constant across different types of the 
same material, the yield stress and ultimate stress can occur at uniquely 
different values. For example, steel comes in a wide variety of compositions, 
such as A36 (which has a yield stress of approximately 36 ksi) or A992 (which 
has a yield stress beginning at 50 ksi).
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Apply Factors of Safety and 
Local Code Requirements

If you can compute stresses from the applied loads and you know the stress 
your object’s material can withstand, you’re on your way to making an 
informed design decision. But remember, you can’t just jump straight into 
design with only these stresses; you need to incorporate a factor of safety 
to turn your actual stresses into allowable stresses. To compute allowable 
stresses, you need to know only the correct factor of safety (which is often 
specified in your local design codes). A factor of safety less than 1.0 is usually 
an unsafe design. Depending on your design and local codes, allowable factors 
of safety are often closer to 2.0 and are even higher in special circumstances.

Compute Strains and Deformations 
for Your Stress Elements

After you have your stresses computed, you’re ready to put Hooke’s law 
(see Chapter 14) to work to help you estimate the strains your object may be 
experiencing. After all, a structure that experiences too much deformation 
may not be able to perform its intended function, even if it’s capable of sup-
porting the intended loads. In systems that are statically indeterminate, the 
deformations are what actually let you compute the support reactions, as I 
describe in Chapter 16.

Design for Deflections
When designing flexural members (and particularly beams), remember that in 
addition to designing for stresses, you also need to design for deflections — 
which means you need to use the appropriate moment of inertia for your prob-
lem. Deflections can often control the minimum moment of inertia, the maximum 
span length of a flexural member, or even the type of material you use (specifi-
cally the Young’s modulus of elasticity), even when the stresses are acceptable.
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Index

• Symbols & Numerics •
ε (epsilon, normal strain), 192
γ (gamma, shear strain), 192
μ (micron, units of strain), 193
+ (plus signs) with magnitude values, 3
45-degree strain rosette pattern, 212, 213
60-degree strain rosette pattern, 213

• A •
algebraic equations, simultaneous, 16–17
Allen, James H., III 

Statics For Dummies, 1
ambient pressure, 136
American Concrete Institute, 315
American Institute of Steel Construction, 315
American Society of Civil Engineers, 315
American Society of Mechanical Engineers, 315
angles. See also angles, principal; angles of 

orientation
principal strain, 206–207
of twist, 268–272, 285–287

angles, principal
description of, 78
determining moments of area at specifi c 

angles, 80–82
fi nding, 79–80
product moments of inertia, 81–82
testing, 348

angles of orientation
for principal normal stresses, 114–116
for principal shear stresses, 118–120
for stress transformations, 105

angular units, converting from degrees to 
radians, 24

applied forces/loads
description of, 26
relation to deformations, 252

applied moments, 26
area calculations, drawing simple shear and 

moment diagrams using, 35–39
area moments of inertia

basic, calculating, 66–73
categorizing, 65–66
conceptualizing on, 64–65
description of, 63–64

polar, calculating, 76–78
principal, calculating, 78–82
product, calculating, 73–76

areas. See also cross-sectional areas
centroids of, 47–54
composite/compound, 43, 69

auxetic materials, 227
average normal stresses

for axial loads, computing, 89–90
bending moments, 91
description of, 87, 88–89
gross versus net areas for, 141–144
reducing for axial loads, 144

average shear stresses
axial stresses compared to, 162–163
for bolts and shafts, 163–166
computing, 90–92
description of, 87–88
for double shear, 165–166
on glue or contact surfaces, 163
punching shear, 166–167
for single shear, 164–165

axes
bending, 153, 154
Cartesian, 57, 121
centroidal, 56–57, 69
longitudinal, 45, 56, 131
neutral, 151
strong, 79, 81
weak, 81

axes of symmetry
centroid calculations, 54
description of, 46
shear centers, 175

axial bars
with indeterminate supports, 276–278
of multiple materials, 287–290

axial deformations, computing, 254–255
axial displacements, 251
axial external work, 337
axial forces/loads (N)

average normal stress for, computing, 89–90
bending moments and eccentric columns, 

311–312
bending moments compared to, 150–152
description of, 2–3, 28
eccentric, 150, 247–249, 311–312
force fl ow lines, 144–145
internal strain energy, 334–335
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axial forces/loads (N) (continued)

multiple, 240–241
in problem solving, 351
reducing average normal stresses for, 144

axial members. See also compression members
deformations, computing, 276–278
designing, 320–323
displacement of, 253–254
systems of, 278–281

axial rigid end caps, 300
axial stresses

average shear stresses compared to, 162–163
bearing type of, 133–136
description of, 12, 131–132
in pressure vessels, 136–141

axis convention, 238

• B •
balanced wedge elements, 107
basic moments of inertia

calculating, 66–73
defi nition of, 65
transferring reference locations with parallel 

axis theorem, 70–73
beam columns, 302
beams

cantilever, fl exural shear stresses on, 168–170
combined fl exural shear and bending stresses 

on, 244–247
defl ections of fl exural members, 259–268
fl exural, of two materials, 292–294
fl exure theory for, 155
internal strain energy of, 335–337
of multiple materials, 290
non-prismatic, bending stresses of, 158–160
plane stresses, 98
single indeterminate support systems, 282–283
T-beam sections, symmetric, calculating 

stresses for, 156
bearing stresses

description of, 133–134
on fl at surfaces, 134–135
on projected planes, 135–136

bending axes, 153, 154
bending external work, 337–338
bending members

checking for symmetry, 346
internal forces of, 28
straight and prismatic, 150
webs of, 117

bending moment diagrams, 36

bending moments
axial forces compared to, 150–152
causes of, 150
columns, 311–312
description of, 26
displacements from, 251
normal stresses, 91
planning for with elastic section modulus, 

324–327
in problem solving, 351
torsional moments compared to, 177

bending stresses
biaxial bending from inclined point loads, 

241–244
combining with fl exural shear, 244–247
defi nition of, 12
description of, 149–150
non-prismatic beams, 158–160
pure bending, 152–158

biaxial bending
description of, 13, 154
from inclined point loads, 241–244

bolts
average shear stresses on, 163–166
on edges of holes, bearing stresses of, 135–136

boundary conditions
description of, 20
using to fi nd constants of integration, 

263–265, 267–268
Bredt-Batho theory, 184–186
Brinell hardness test, 219
brittle failures, 218
brittleness of materials, 218
buckling

bending effects, 311–312
description of, 14, 301
elastic buckling load, 306–307
elastic buckling stress, 308
elements of, 321
inelastic buckling, 310–311
of slender columns, 305–309

buckling mode, 306–307

• C •
calculations. See also deformation calculations; 

stress transformations
area, drawing simple shear and moment 

diagrams using, 35–39
average normal strains, 195–196
average normal stresses, 89–90
average shear strains, 198
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average shear stresses, 90–92
axial deformations, 254–255
axial stresses, 132
centroids of areas, 47–54
cross-sectional areas, 41–46
double shear planes on bolts, 165
elastic buckling loads, 307
elastic buckling stresses, 308
elastic curves for displacements, 261–263
engineering strains, 193–194
equilibrium, 31
fl exural shear stresses, 168
multiple shear planes on bolts, 166
normal strain transformation, 202–203
normal stresses due to bending, 153
principal normal strains, 206–207
principal normal stresses, 114
principal normal stresses with orientation 

angles, 114–116
principal shear strains, 207–209
principal shear stresses, 117
secant formula, 311–312
shear fl ow for I-sections, 174–175
signifi cant digits in, 2
slenderness ratio, 302–303
stresses, 86–87
torsional constant, 180–181
transformed normal stresses, 105–106
true strains, 194

calculus concepts, 18–21
cantilever support, 29
capacity

of columns, improving, 310
defi nition of, 147
in design criteria, 317
for slender columns, 305–306

Cartesian axes
for Mohr’s circle, 121
orientation of, 57

Cartesian planes
description of, 41–42
exposing force components and stresses with, 

93–94
centroid coordinate tables, 49, 50
centroidal axes

calculating second moments of area with, 69
referencing with, 56–57

centroids of areas
continuous region calculations, 51–53
discrete region calculations, 47–51
using symmetry to avoid calculations, 54

Charpy V-notch test, 219

circles
area and centroid equations for, 48
moment of inertia values for, 68

circular cross sections and torsion, 180
circular shafts and torsion

angles of twist, 269–270
combined stresses, 249–250
indeterminate supports, 285–287
shear stress, computing, 182–183
strain energy, 337

circumferential stresses, 140
classifying columns, 304, 347
clevis assemblies, 165
closed sections, 184
coeffi cient of thermal expansion, 199
columns. See also buckling

bending effects, incorporating, 311–312
classifying with slenderness ratio, 304, 347
description of, 301–302
eccentric, 302
effective length of, 303, 309, 321
guessing classifi cation for compression loads, 

321–323
improving capacity of, 310
instability in, 14
intermediate, 310–311
short, strength of, 304–305
slender, 305–309
slenderness ratio, calculating, 302–303
types of, 302

combined stresses
bending biaxially from inclined point loads, 

241–244
description of, 13
eccentric axial load behavior, 247–249
fl exural shear and bending, 244–247
multiple axial effects, 240–241
principle of superposition, 236–237
rules for, 237–238
sign conventions for, 238–239
sketching, 351–352
torsion and shear, 249–250

compatibility conditions
description of, 261
indeterminate problems, 274
rigid behavior, 296–300

compatibility equations, 186–187
complementary shear stresses, 96
component force, 87
composite members, 287. See also multiple 

materials
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composite/compound areas
computing moment of inertia values for, 69
description of, 43

compression, 28
compression members. See also columns

column classifi cation, guessing, 321–323
description of, 301

compression stresses, 132
compressive stresses, 87, 150
concentrated forces, 26, 27
concentrated moments, 27, 38
concentric columns, 302
concentric materials, 287
concentric stresses, 96
concrete, reinforced, 287, 290
constants of integration, 262, 263–265, 267–268
contact forces, 26
contact stresses

description of, 133–134
on fl at surfaces, 134–135
on projected planes, 135–136

contact surfaces, average shear stresses on, 163
continuity requirements, 261
continuous functions, 260
continuous regions

computing centroids of, 51–53
description of, 43

conversions
angular units from degrees to radians, 24
SI, 22

coordinates at arbitrary angles, fi nding on 
Mohr’s circle, 126–128

cosine function, 18
Coulomb, Charles-Augustin de (physicist), 155
creep, 222
critical buckling loads, 305
critical loads, 305
critical points, 33
cross-sectional areas

centroidal axes, 56–57
classifying, 42–43
computing, 43–45
defi ning symmetry of, 46
fi nding centroids of, 47–54
nonuniform, shear stress distribution in, 

170–171
overview of, 41–42
prismatic members, 45
shear stresses from torsion, 179
for stress transformations, 105
uniform, shear stress distribution in, 168–170

cutting planes, 42, 45
cyclic strain hardening, 222
cylinders, normal strains on, 196

cylindrical pressure vessels
calculating, 139–141
multiple axial effects on, 240–241

• D •
dead loads, 316
defi ning behavior in mechanics of materials, 

11–12
defl ections

description of, 63
designing for, 353
of fl exural members, 259–268

deformable bodies, 10, 191
deformation calculations

assumptions for, 253
axial, 254
with axial members, 276–278
defl ections of fl exural members, 259–268
non-prismatic sections under axial load, 

258–259
relative displacements, 255–257
twist angles, 268–272
units in, 255, 270

deformation without load, strain concepts, 12
deformations. See also deformation 

calculations; displacements
differential equations for, 264–265
importance of, 215
as measurable, 86
plastic, 217, 222
shear, and Euler-Bernoulli beam theory, 

259–260
stiffness, defi ning, 252
strain, 191, 192, 193

degrees, converting angular units from radians 
to, 24

degrees of indeterminacy, 275, 283–285
delta rosette pattern, 213
derivatives of functions, 19
derived units, 23–24
design. See also design codes; design procedure

of axial members, 320–323
capacity, 317
challenges of, 313–314
defi nition of, 14
for defl ections, 353
of fl exural members, 323–328
interaction equations, 329–330
principles of, 315–317
structural adequacy, 314–315
for torsion and power, 328–329

design codes, 147, 314–315, 327–328, 353
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design loads, 316
design mode, 318
design procedure

determining requirements from modes of 
failure, 319

outline for, 318
determinate structures, 273
differential equations for deformations, 264–265
differential methods, 259
differentiation of polynomials, 18–20
direct shear, 12
discrete regions

computing centroids of, 47–51
description of, 43

displacements. See also deformations
of axial members, 253–259
from bending moments, 251
description of, 13
elastic curves for, 260–265
maximum and minimum, 268
measurement of, 253
relative, 255–257

displaying effects of stress transformations, 
109–113

distributed force effects as derived units, 23
distributed forces/loads, 26, 27
double integration technique for beam 

displacements, 261–263
double shear connections, 165–166
double shear planes, 164
double subscripts, use of, 67
drawing

shear fl ow diagrams, 172–173
simple shear and moment diagrams using area 

calculations, 35–39
stress elements for plane stresses, 100

ductility of materials, 217, 218
dynamics, 10

• E •
eccentric axial loads

bending moments, 150
bending moments and eccentric columns, 

311–312
combined stresses, 247–249

eccentric columns, 302
effective length of columns, 303, 309, 321
elastic behavior

combined stresses, 236
description of, 153, 179, 216–217

elastic buckling loads, 306–307
elastic buckling stresses, 308

elastic curves for displacements, 260–265
elastic limit, 216, 222, 223
elastic region of stress-strain curves, 222
elastic section modulus

planning for bending moments with, 324–327
using to fi gure bending stresses, 157–158

elongations, 132
energy

defi nition of, 332
law of conservation of energy, 332–333

energy methods
description of, 14, 331
internal strain energy, fi nding, 334–337
internal strain energy, setting equal to external 

work energy, 337–338
stresses and displacements from impact, 

fi guring, 339–342
engineering judgment, 323
engineering strains, 193–194
English units, 22
ε (epsilon, normal strain), 192
equilibrium

determinate structures, 273
for statics, 30–31

equilibrium equations for free-body diagrams, 104
Euler, Leonhard (scientist), 10, 65, 155, 224
Euler buckling load, 306, 309
Euler-Bernoulli beam theory, 259, 261
Euler Bernoulli bending theory, 153
experimental analysis, strains in, 12
exposing force components and stresses with 

Cartesian planes, 93–94
extensions, 228
exterior differential forms, 184
external energy, 333
external loads, 26–27
external pinned support, 29
external work energy, setting internal strain 

energy equal to, 337–338
extreme fi ber, 324

• F •
factored loads, 316
factors of safety, 316, 353
failure criteri, using principal stresses for, 113
failure theories, 352
failures

brittle, 218
material, 302, 303
modes of, determining design requirements 

from, 319
fatigue, 218

31_9780470942734-bindex.indd   35931_9780470942734-bindex.indd   359 6/1/11   6:35 PM6/1/11   6:35 PM



360 Mechanics of Materials For Dummies 

F.B.D.s (free-body diagrams)
constructing, 25
description of, 100
equilibrium equations for, 31, 104
external loads, 26–27
generalized, 33–34
internal loads on two-dimensional objects, 

27–28
self weight, 29
support reactions, 29, 30

fi nite element methods, 259
fi rst moment of area (Q)

centroid calculations with, 58–59
within cross sections, 59–61
description of, 57
establishing equations for, 58
table for calculating about centroidal axes, 

61–63
fi shing poles, bending stresses on, 149
fi xed support, 29, 30
fl anged members, 73
fl at surfaces, bearing stresses on, 134–135
fl exural loads, shear stresses from, 168–171
fl exural members. See also beams

defl ections of, 259–268
description of, 150
designing, 323–328, 353
of multiple materials, 290–294
of multiple supports, 281–285

fl exural shear stresses
combining with bending stresses, 244–247
description of, 12
in design, 327–328
energy due to, 335–336
in problem solving, 351

fl exure theory for beams, 155
force components at single points, 92–94
force fl ow lines, using to locate maximum 

stresses, 144–145
forces. See axial forces/loads; internal forces/

loads; loads
45-degree strain rosette pattern, 212, 213
fourth-order beam equation, 265–266
fourth-order solution method, 266–267
free-body diagrams (F.B.D.s)

constructing, 25
description of, 100
equilibrium equations for, 31, 104
external loads, 26–27
generalized, 33–34
internal loads on two-dimensional objects, 27–28
self weight, 29
support reactions, 29, 30

fulcrums, 296–297, 298

• G •
G, 187
Galileo Galilei (scientist), 10, 155
γ (gamma, shear strain), 192
gauge length, 192, 216
generalized equations, writing, 33–34
generalized Euler buckling formula, 310
geometric planes, 41
geometry concepts, 15–16
glue, average shear stresses on, 163
gross cross sections, 141–144
gyradius, 82

• H •
half parabolic areas

area and centroid equations for, 48
moment of inertia values for, 68

half parabolic complements, area and centroid 
equations for, 48

Hertz contact theory, 134
holes

in middle of fl at bars, stress concentration 
factors of, 146–147

stress variations at edges of, 145
hollow circular shafts, shear stress distributions 

for, 182–183
homogeneous materials, 152–153, 228
Hooke, Robert (scientist), 228
Hooke’s law

description of, 13, 155
in one dimension, 228–229
in problem solving, 353
relating stress to strain, 228–232
in three dimensions, 231–232, 347
in two dimensions, 230–231

hoop stresses, 140, 141
horizontal impact factors, 339–340

• I •
I (moments of inertia), 63–64. See also area 

moments of inertia
icons, explained, 6
impact

description of, 339
from kinetic energy, determining, 339–340
vertical impact factors, 341–342

inclined planes, transformed stresses on, 
107–108

indefi nite integral, 20

31_9780470942734-bindex.indd   36031_9780470942734-bindex.indd   360 6/1/11   6:35 PM6/1/11   6:35 PM



361361 Index

indeterminate structures. See also multiple 
redundant support systems

assumptions for, 275
categories of, 274–275
description of, 13
rigid bar problems, 296–299
rigid end cap problems, 299–300

indeterminate supports, 274. See also multiple 
redundant support systems

inelastic buckling, 310–311
inertia, 63. See also area moments of inertia
inner radius of pressure vessels, 138
in-plane maximum shear stresses, 120
integration of polynomials, 18–20
intensity of force. See stresses
interaction diagrams, 319
interaction equations, 329–330
intermediate columns, 304, 310–311
internal energy, 333
internal force variables, 2–3
internal forces/loads

in calculations of stress, 86, 87
determining fi rst, 345–346
exposing, 350
fi nding at multiple locations, 32–39
generalized equations, writing, 33–34
locating at points, 31–32
simple shear and moment diagrams, 

drawing, 35–39
on two-dimensional objects, 27–28

internal pinned support, 29
internal pressure, 138
internal strain energy

fi nding, 334–337
setting equal to external work energy, 337–338

internal torque, 178
internal vacuums in pressure vessels, 141
International Building Code, 315
International System of Units (SI), 21–22, 88
I-sections

axis of symmetry for, 54
computing shear fl ow for, 174–175
shear fl ow diagram for, 172

isotropic materials, 152–153, 228

• J •
J (torsional constant), 179, 180–181

• K •
K (stress concentration factor), 146
kilo-pounds, 22–23

kinetic energy
description of, 332
determining impact from, 339–340

kip, 22–23
kip per linear foot (klf), 23
ksi (kip per square inch), 88

• L •
labeling force components and stresses at 

single points, 93
law of conservation of energy, 332–333
lbs/ft (pounds per foot), 23
Leonardo da Vinci (scientist), 10, 155
linear behavior of structural objects, 253
linear distribution, 26
linear elastic behavior, 228
linear stress distribution, using to fi nd unknown 

stresses, 157
linear system behavior, 236
live loads, 316
Load and Resistance Factor Design method, 316
load distribution, integrating to solve for beam 

displacements, 265–268
loads. See also axial forces/loads; internal 

forces/loads
applied, 26, 262
concentrated, 27, 38
contact, 26
critical, 305
critical buckling, 305
design, 316
distributed, 26, 27
elastic buckling, 306–307
Euler buckling, 306, 309
external, 26–27
factored, 316
fl exural, shear stresses from, 168–171
relationship between defl ection and, 339
unit, 338

longitudinal axes, 45, 56, 131
lower stress wedge diagrams, 110

• M •
M (moments). See also area moments of inertia; 

bending moments; torsion and torsional 
moments

applied, 26
concentrated, 27, 38
defi nition of, 2–3, 28
as derived units, 23
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M (moments) (continued)

right-hand rule for, 26–27, 56, 104
machine punches and bearing stresses, 134

Mariotte, Edme (scientist), 155
mass moment of inertia, 65
material behavior

description of, 216
ductile and brittle, 217–218
elastic and plastic, 216–217
fatigue, 218

material constants
Poisson’s ratio, 226–227, 229
Young’s modulus of elasticity, 224–225, 229

material elements, 205
material failure, 302, 303
material properties

in problem solving, 352
stiffness, 252

material tests, 219
materials. See also mechanics of materials; 

multiple materials; stress-strain curves for 
materials

auxetic, 227
brittleness of, 218
concentric, 287
ductility of, 217, 218
homogeneous and isotropic, 152–153, 228
yield point for, 218, 223

mathematics
calculus concepts, 18–21
geometry concepts, 15–16
simultaneous algebraic equations, 16–17
trigonometry concepts, 18
units, 21–24

maximum displacements, 268
maximum shear strains, 205
maximum stresses

gross versus net areas for calculating, 141–144
stress concentration factors, 145–147
using force lines to locate, 144–145

maximum values, defi ning, 20–21
measuring

displacements, 253
ductility, 217

mechanics of materials
areas of study, 13–14
defi ning behavior in, 11–12
description of, 9
tying statics with, 10

meganewton per square meter, 88
megapascal, 88, 345

member capacity/strength, 316
members. See also axial members; bending 

members; fl exural members; prismatic 
members

composite, 287
fl anged, 73
tension, 321

μ (micron, units of strain), 193
micros, 23
minimum displacements, 268
minimum values, defi ning, 20–21
mixed second moment of area (product 

moments of inertia), 66, 73–76
mode of buckling, 306–307
modes of failure, determining design 

requirements from, 319
modulus of rigidity, 225
modulus ratio, 291–292
Mohr’s circle for plane strain, 209–212, 348
Mohr’s circle for plane stress

assumptions and requirements for, 121
calculating other items with, 125–126
computing coordinates and values on, 122–124
constructing, 121–122
description of, 120
fi nding stress coordinates at arbitrary angles 

on, 126–128
guidelines for using, 348
Mohr’s circle for plane strain compared to, 211
principal normal stresses and angles, 124–125
third dimension, adding to, 128–129

Mohs hardness test, 219
moment diagrams, drawing using area 

calculations, 35–39
moments (M). See also area moments of inertia; 

bending moments; torsion and torsional 
moments

applied, 26
concentrated, 27, 38
defi nition of, 2–3, 28
as derived units, 23
right-hand rule for, 26–27, 56, 104

moments of inertia (I), 63–64. See also area 
moments of inertia

most-effi cient sections, selecting, 326–327
motion, classifi cations of, 30–31
multicell cross sections, analyzing torsion of 

using shear fl ow, 186–188
multiple indeterminate support fl exural 

systems, 283–285
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multiple materials
axial bars of, 287–290
description of, 274
fl exure of, 290–294
rigid bar problems, 296–299
rigid end cap problems, 299–300
torsion of, 294–296

multiple objects, total energy of system of, 334
multiple redundant support systems

axial bars with indeterminate supports, 276–278
fl exural members of multiple supports, 281–285
solving problems with, 275–276
systems of axial members, 278–281
torsion of shafts with indeterminate supports, 

285–287

• N •
N (axial or normal forces/loads)

average normal stress for, computing, 89–90
bending moments and eccentric columns, 

311–312
bending moments compared to, 150–152
description of, 2–3, 28
eccentric, 150, 247–249, 311–312
force fl ow lines, 144–145
internal strain energy, 334–335
multiple, 240–241
in problem solving, 351
reducing average normal stresses for, 144

Navier, Claude-Louis-Marie-Henri (engineer), 155
Navier-Stokes equation, 184
necking, 217
net cross sections, 141–144
neutral axes, 151
neutral surfaces, 151
Newton, as derived unit, 23
Newton, Isaac (scientist), 155
noncircular cross sections and torsion, 

180–181, 183
non-prismatic beams, bending stresses of, 158–160
non-prismatic sections under axial loads, 258–259
nonsymmetrical cross sections, computing 

bending stresses in, 346
nonuniform cross sections, shear stress 

distributions for, 170–171
normal strains

computing, 195–196
description of, 192, 194–195
sign conventions for, 195

normal stresses. See also average normal 
stresses; axial stresses; bending stresses; 
principal normal stresses

combining, 238
sign conventions for, 102
stress invariant rule, 117
stress transformations for, 105–106

notation. See sign conventions

• O •
object orientation, effect of on moments of 

inertia, 64
oblique cross sections, 43
one dimension, Hooke’s law in, 228–229
orientation angles

for principal normal stresses, 114–116
for principal shear stresses, 118–120
for stress transformations, 105

origin, 2
orthogonal, strong axes as, 79
outer fi bers, 182
out-of-plane maximum shear stresses, 120
overload conditions, 316

• P •
parallel axis theorem, 70–73, 78, 293
Parent (scientist), 155
pascal (Pa), 24
perpendicular axis theorem, 77–78
physics, mechanics branch of, 9
pinned supports, 29, 30, 306
pipes, cutting through, 45
plane strains

description of, 200
Mohr’s circle for, 209–212
strain transformations for, 201–205

plane stress elements
principal shear stresses, 118–119
sign convention for positive shear stresses on, 

102–103
plane stress state

description of, 101
pure tension and pure compression stress 

elements, 132, 133
stress block diagram of, 100
stress transformations for, 106–109

plane stresses
description of, 97–98
drawing stress elements for, 100
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plane stresses (continued)

Hooke’s law for, 230–231
Mohr’s circle for, 120–129

planes
Cartesian, 41–42, 93–94
cutting, 42, 45
geometric, 41
inclined, transformed stresses on, 107–108

plastic behavior, 153
plastic deformations, 217, 222
plastic region of stress-strain curves, 222
plates

average shear stresses on glue seams of, 163
calculating net areas of, 142
punching shear on, 167

plf (pounds per linear foot), 23
plus signs (+) with magnitude values, 3
Poisson, Siméon Denis (mathematician), 226
Poisson’s ratio, 226–227, 229
polar moments of inertia

calculating, 76–78
description of, 66

polynomials, integration and differentiation of, 
18–20

positive normal stresses, sign conventions for, 102
positive shear stresses, sign conventions for, 

102, 103
potential energy, 332
pounds per foot (plf or lbs/ft), 23
pounds per square inch (psi or lbs/in2), 88
power, designing for, 328–329
power rule, 19
pressure effects, 24
pressure vessels. See also pressure vessels, 

thin-walled
description of, 136
multiple axial effects on, 240–241
thick-walled, 137

pressure vessels, thin-walled
description of, 137
plane stresses, 98
setting parameters, 138
spherical and cylindrical, 139–141

primary systems, 275
primitives, 43
principal angles

description of, 78
determining moments of area at specifi c 

angles, 80–82
fi nding, 79–80
product moments of inertia, 81–82
testing, 348

principal moments of inertia
calculating, 78–82
description of, 66
determining moments of area at specifi c 

orientation angles, 80–82
principal normal strains

defi ning, 206
description of, 205
determining angles for, 206–207

principal normal stress elements, 116
principal normal stresses

defi ning, 114
description of, 113
for Mohr’s circle, 124–125
orientation angles for, 114–116
for principal shear stresses, 118–119
shear, 347

principal shear strains
computing, 207–209
description of, 205

principal shear stress elements, 119
principal shear stresses

computing with Mohr’s circle, 125–126
description of, 117
orientation angles for, 118–120

principal strains
description of, 205
normal, 206–207
shear, 207–209

principal stress elements, axial stresses, 133
principle of superposition, 228, 230–231, 236–237
prismatic members

average normal stress calculations, 141
deformation calculations, 253
description of, 45, 152

prismatic shafts, angles of twist in, 269–270
problem solving

combined stress elements, sketching, 351–352
designing for defl ections, 353
factors of safety and design codes, applying, 353
identifying how objects can break, 350–351
internal forces, exposing, 350
material properties, 352
section properties, computing, 351
statics, doing, 349
strains and deformations, computing, 353
stresses, transforming, 352

product moments of inertia
calculating, 73–76
description of, 66
principal angles, 81–82
x- and y-axes for, 74
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projected planes, bearing stresses on, 135–136
proportional limit, 223
proportions for compatibility, 297
punching shear, 166–167
pure bending

assumptions of, 152–153
computing stresses, 153–155
of symmetrical cross sections, 155–158

pure shear and torsional moments, 162, 179
Pythagorean theorem, 16

• Q •
q (shear fl ow)

analyzing torsion of multicell cross sections, 
186–188

applying to torsion problems in thin-walled 
sections, 184–186

description of, 171–172
fi guring quantities, 173–175
fi nding shear centers from diagrams of, 

175–176
as gradient of shear stress, 174
sketching diagrams of, 172–173

Q (fi rst moment of area)
centroid calculations with, 58–59
within cross sections, 59–61
description of, 57
establishing equations for, 58
table for calculating about centroidal axes, 

61–63
quarter circles

area and centroid equations for, 48
moment of inertia values for, 68

• R •
radians, 24
radius of gyration

columns, 303, 321
principal moments of inertia, 82

radius of Mohr’s circle, computing, 123
rebar, 290
rectangles

area and centroid equations for, 48
moment of inertia values for, 68

rectangular bars, centroidal axes on, 57
rectangular sections

assigning dimensions to, 323
shear stresses for, 186–188
warping coeffi cient for, 181

redundant systems, 275. See also multiple 
redundant support systems

reference length, 192
reference locations for displacement 

calculations, 254
reinforced concrete, 287, 290
relating stress to strain. See stress-versus-strain 

relationships
relative displacements, 255–257
relative twist angles, 270–272
Remember icon, 6
resultant, 26
Ricatti, Giordano (mathematician), 224
right triangles, relationship between sides of, 16
right-hand rule for moments, 26–27, 56, 104
rigid bar problems, 274, 296–299
rigid bodies, 10, 191, 192
rigid end cap problems, 299–300
Rockwell hardness test, 219
roller support, 29, 30
rotated strain elements, 204–205
rotated stress elements, 111–113. See also 

Mohr’s circle for plane stress
rotation. See right-hand rule for moments
rotational equilibrium

description of, 31
shear stress identities for stresses at single 

points, 96
rupture point, 224

• S •
safety factors, 147
scaled units, 21
scarf splices, 104
secant formula, 311–312
secant modulus of elasticity, 225
second moment of area

basic, calculating, 66–73
categorizing, 65–66
conceptualizing on, 64–65
description of, 63–64
polar, calculating, 76–78
principal, calculating, 78–82
product, calculating, 73–76

section properties. See also cross-sectional areas
in calculations of stress, 86
choosing, 346
computation of, 55
computing, 351
design procedure to determine requirements 

for, 318–319
fi rst moment of area, 57–63
radius of gyration, 82
second moment of area, 63–66
torsional constant, 179, 180–181
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section property tables, 324–326
self weight, 29
service loads, 316
serviceability, 314
serviceability conditions, 215
shafts

average shear stresses on, 163–166
circular, and torsion, 182–183, 249–250, 

269–270, 285–287
circular, strain energy in, 337
composite, analyzing torsion of, 294–296
hollow circular, shear stress distributions for, 

182–183
prismatic, angles of twist in, 269–270
solid circular, shear stress distributions for, 

182–183
spinning, and power, 328–329

shapes, common
area and centroid equations for, 48
moment of inertia values for, 68

shear, description of, 161
shear behavior, description of, 161–162
shear centers, fi nding, 175–176
shear deformations and Euler-Bernoulli beam 

theory, 259–260
shear diagrams, drawing using area 

calculations, 35–39
shear fl ow (q)

analyzing torsion of multicell cross sections, 
186–188

applying to torsion problems in thin-walled 
sections, 184–186

description of, 171–172
fi guring quantities, 173–175
fi nding shear centers from diagrams of, 

175–176
as gradient of shear stress, 174
sketching diagrams of, 172–173

shear forces (V), 2–3, 28
shear modulus of elasticity, 225
shear strains

computing, 198
description of, 192, 196–197
sign conventions for, 197–198

shear stress elements
description of, 162
for torsion, 179–180

shear stress relationships, proving, 95–96
shear stresses. See also average shear stresses; 

fl exural shear stresses; principal shear 
stresses

calculating using shear fl ow, 171–176
combining, 238
computing from torsion, 182–188

description of, 12, 162
due to torsion, 177, 178–181
from fl exural loads, 168–171
in-plane and out-of-plane maximum, 120
principal normal stresses, 347
sign conventions for, 102–104
from torsion, 249–250

short columns, 304–305, 311
SI ( International System of Units), 21–22, 88
sign conventions

for combined stresses, 238–239
for normal strains, 195
for shear strains, 197–198
for stresses, 101–102
for torsion, 178

signifi cant digits in calculations, 2
simultaneous algebraic equations, 16–17
sine function, 18
single indeterminate support systems, 282–283
single points

deriving stresses at using force components, 
92–94

shear stress identities for stresses at, 95–96
single shear connections, 164–165, 166
single shear planes, 164
60-degree strain rosette pattern, 213
slender columns

capacity of, 305–306
description of, 304
elastic buckling load, 306–307
elastic buckling stress, 308
Euler buckling equation, 311
incorporating support reactions into buckling 

calculations, 308–309
slenderness ratio

calculating, 302–303
classifying columns with, 304

slicing objects into pieces, 259
slope

of elastic curves, 262
of functions, 20

small displacements theory, 153, 236
smooth functions, 260
Society of Automotive Engineers, 315
SOHCAHTOA anagram, 18
solid circular shafts, shear stress distributions 

for, 182–183
solving problems

combined stress elements, sketching, 351–352
designing for defl ections, 353
factors of safety and design codes, 

applying, 353
identifying how objects can break, 350–351
internal forces, exposing, 350
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material properties, 352
section properties, computing, 351
statics, doing, 349
strains and deformations, computing, 353
stresses, transforming, 352

spherical pressure vessels, 139–141
springs, impact of horizontal masses on, 339–340
squares

area and centroid equations for, 48
moment of inertia values for, 68

St. Venant, Adhémar Jean Claude Barré de 
(mathematician), 180, 184

states of stress
description of, 100–101
fi nding on Mohr’s circle, 126–128
three-dimensional, adding to Mohr’s circle, 

128–129
statically determinate objects

description of, 31
equilibrium for, 273

statically indeterminate objects
beams, 265
description of, 31, 274

statically indeterminate systems, 275. See also 
multiple redundant support systems

statics
defi nition of, 10
equilibrium for, 30–31
free-body diagrams, 25–30
internal forces at multiple locations, 32–39
internal forces at points, 31–32
mechanics of materials, tying with, 10
in problem solving, 349

Statics For Dummies (Allen), 1
Steiner’s rule (parallel axis theorem), 70–73
stepped beams, bending stresses on, 159
stiffness, defi ning, 252
strain elements, 205, 211
strain energy, 334
strain gauges, 212–214
strain hardening, 222
strain invariant rule, 209
strain rosettes, 212–214
strain transformations

plane strains, 201–205
principal strains, 205–209
rotated strain elements, 204–205

strains. See also stress-strain curves for 
materials; stress-versus-strain relationships

carelessly combining with stresses, 346–347
defi nition of, 11–12, 191, 192
deformation, 193
engineering, 193–194
Hooke’s law, 13

normal, 192, 194–196
plane, 200, 201–205, 209–212
reference length, 192
shear, 192, 196–198
studying behavior through, 12
thermal, 198–200
true, 194
types of, 192
units of, 193

strength, 218, 224, 314, 317
stress block diagrams, 100
stress concentration factors, 145–147
stress elements

drawing for plane stresses, 100
plane, 102–103, 118–119, 132, 133
for pressure vessels, 138
principal normal, 116
principal shear, 119
rotating, 111–113
shear, 162
for simply supported beam under uniform 

load, 247
strains and deformations, computing, 353
superposition of, 237
two-dimensional, 107

stress invariant rule, 117, 209
stress transformations

description of, 104
displaying effects of, 109–113
extending to plane stresses, 106–109
for normal stresses, 105–106
in problem solving, 352
rotated stress elements, 111–113
for scarf splices, 104–105
strain transformations compared to, 201–202
stress wedges, 109–111

stress wedges, 109–111
stresses. See also combined stresses; normal 

stresses; shear stresses; stress elements; 
stress transformations; stress-strain 
curves for materials; stress-versus-strain 
relationships

bearing, 133–136
calculating, 86–87
carelessly combining with strains, 346–347
concentric, 96
defi nition of, 11, 85–86
deformation compared to, 192
elastic buckling, 308
Hooke’s law, 13
hoop, 140, 141
maximum, 141–147
plane, 97–98, 100, 120–129, 230–231
preparing to work with, 99–104
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stresses (continued)

shear stress identities at points, 95–96
of short columns, 304–305
sign conventions for, 101–102
at single points, 92–94
states of, 100–101
studying behavior through, 12
tensile, 87, 150, 224
tension, 131–132
types of, 87–88
units of, 88

stress-strain curves for materials
defi ning regions of, 222
example of, 221
points of interest on, 223–224
uses of, 219–221

stress-versus-strain relationships
calculating stress from known strain values, 232
describing materials with, 220–221
Hooke’s law, 228–232
justifying, 220
making assumptions in, 227–228
overview of, 215–216
Poisson’s ratio, 226–227
Young’s modulus of elasticity, 224–225

strong axes, 79, 81
structural adequacy, 314–315
structural instability, 302–303
subscripts, double, use of, 67
superposition, principle of, 228, 230–231, 236–237
support reactions

description of, 29, 30
solving for unknown, 31

symmetrical cross sections
computing bending stresses in, 346
pure bending of, 155–158

symmetry of geometric regions, 46, 54
systems of axial members, 278–281

• T •
T (torque, torsion, and torsional moments)

applied moments, 26
applying shear fl ow to problems in thin-walled 

sections, 184–186
characteristics of, 177–178
of circular shafts, 182–183
computing shear stresses from, 182–188
description of, 12

deformations, 268–272
designing for, 328–329
of multicell cross sections, analyzing using 

shear fl ow, 186–188
of multiple materials, 294–296
of noncircular cross sections, 183
notation for, 27
polar moment of inertia, 76
in problem solving, 351
pure bending, 154
pure shear, 162, 179
of shafts with indeterminate supports, 285–287
shear centers, 175
shear stresses due to, 177, 178–181, 249–250
sign conventions for, 178

tables
for calculating Q about centroidal axes, 61–63
centroid coordinate, 49, 50
coeffi cients of thermal expansion, 199–200
parallel axis theorem, 71, 72, 73
for product moment of area, 75
section property, 324–326
warping coeffi cient for rectangular sections, 181

tangent function, 18
tangent modulus of elasticity, 225
tapered beams, bending stresses on, 158–160
tapered sections, computing axial deformations 

on, 258–259
T-beam sections, symmetric, calculating 

stresses for, 156
Technical Stuff icon, 6
tensile stresses, 87, 150, 224
tension, 28
tension members, 321
tension stresses, 131–132
tension tests, 216
thermal effects, 276–277
thermal strains, 198–200
thick-walled pressure vessels, 137
thin-walled pressure vessels

description of, 137
plane stresses, 98
setting parameters, 138
spherical and cylindrical, 139–141

thin-walled sections, applying shear fl ow to 
torsion problems in, 184–186

three dimensions, Hooke’s law in, 231–232, 347
three-dimensional states of stress

adding to Mohr’s circle, 128–129
computing at single points, 96
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Timoshenko, Stephen (engineer), 155, 261
Timoshenko’s beam theory, 261, 266
Tip icon, 6
torsion and torsional moments (torque, T)

applied moments, 26
applying shear fl ow to problems in thin-walled 

sections, 184–186
characteristics of, 177–178
of circular shafts, 182–183
computing shear stresses from, 182–188
description of, 12
deformations, 268–272
designing for, 328–329
of multicell cross sections, analyzing using 

shear fl ow, 186–188
of multiple materials, 294–296
of noncircular cross sections, 183
notation for, 27
polar moment of inertia, 76
in problem solving, 351
pure bending, 154
pure shear, 162, 179
of shafts with indeterminate supports, 285–287
shear centers, 175
shear stresses due to, 177, 178–181, 249–250
sign conventions for, 178

torsional constant (J), 179, 180–181
torsional external work, 338
torsional rigid end caps, 300
transformed cross sections

creating, 291–292
working with, 292–294

translational equilibrium, 30
transverse forces, 150
triangles

area and centroid equations for, 48
extracted, from Mohr’s circle, 124
moment of inertia values for, 68
right, relationship between sides of, 16
similar, using to fi nd unknown stresses, 157
trigonometry concepts, 18

triaxial state of stress
description of, 101
stress block diagram of, 100

trigonometry concepts, 18
true strains, 194
truss assemblies, 320
T-sections

axis of symmetry, 46
shear stress distributions for, 170–171

torsion of, 183
torsional constant for, 181

twist angles, 268–272, 285–287
two dimensions, Hooke’s law in, 230–231
two-dimensional stress elements, 107
two-dimensional support reactions, 27–30

• U •
ultimate strength, 218, 224, 317
uniaxial state of stress

description of, 101
pure tension and pure compression stress 

elements, 132, 133
stress block diagram of, 100
stress transformations for, 104–105

Uniform Building Code, 315
uniform cross sections, shear stress 

distributions for, 168–170
uniform distributions, 26
unit loads, 338
units

for angles, 24
in deformation calculations, 255, 270
derived, 23–24
of energy, 332
kip and micros, 22–23
mistakes when using, 345
SI system, 21–22, 88
of strain, 193
of stress, 88–89
U.S. customary system, 22, 88

upper stress wedge diagrams, 110
U.S. customary units, 22, 88

• V •
V (shear force), 2–3, 28
vertical faces, balancing shear stresses on, 

103–104
vertical impact factors, 341–342
Virtual Work method, 338
volumetric effects, 24

• W •
wall thickness of pressure vessels, 138. See also 

thin-walled pressure vessels
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Warning icon, 6
warping

of cross sections, 180, 184
description of, 153

weak axes, 81
webs, 117, 328
work hardening, 222

• Y •
yield point for materials, 218, 223
yield strength, 317
Young, Thomas (scientist), 224
Young’s modulus of elasticity, 224–225, 229
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