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Preface

This book presents subject matter related to the analysis and design of reinforced
concrete structural members. The focus is on the design of elements in reinforced
concrete buildings where the primary reinforcement is steel reinforcing bars or

steel wire reinforcement that is not prestressed.
To safely and economically design reinforced concrete structures, a thorough under-

standing of the mechanics of reinforced concrete and the design provisions of current
codes is essential. The purpose of this book is to present and explain the following
in a simple and straightforward manner: (1) the underlying principles of reinforced
concrete design; (2) the analysis, design, and detailing requirements in the 2008 edition
of Building Code Requirements for Structural Concrete and Commentary by the American
Concrete Institute (ACI) and the 2009 edition of the International Building Code by the
International Code Council (ICC). Frequent reference is made to the sections of these
documents (especially those in the ACI Building Code), and it is assumed that the
reader will have access to them while using this book.

Information on the properties of the materials that constitute reinforced concrete
and a basic understanding of the mechanics of reinforced concrete must be acquired
prior to exploring code provisions. Design and detailing provisions given in the code
change frequently, and it is important to have an understanding of the core elements
of reinforced concrete design in order to correctly apply these provisions in practice.

Presented in Chap. 1 are a definition of reinforced concrete and a basic synopsis
of the mechanics of reinforced concrete. Typical reinforced concrete members and the
fundamental roles they play in buildings are discussed. The main purpose of this dis-
cussion is twofold: (1) to introduce the types of concrete elements that are covered in
the chapters that follow and (2) to illustrate how all of the members in a structure are
assembled. A brief overview of construction documents and the main events that oc-
cur in the construction of a cast-in-place concrete building are also covered. Again, the
purpose is to make the reader aware of the important topics that are encountered in
any building project.

Mechanical properties of concrete and reinforcing steel are summarized in Chap. 2.
Basic information on the mechanics of concrete deterioration and failure is provided,
which gives insight into the strengths and weaknesses of concrete. Also covered in
this chapter are (1) methodologies for proportioning concrete mixtures, (2) durability
requirements, and (3) evaluation and acceptance criteria.

ix
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General information that is applicable to the analysis and design of any reinforced
concrete building is provided in Chap. 3. Included are the loads that must be considered
in design and analysis methods pertinent to reinforced concrete structures. Approxi-
mate methods of analysis and moment redistribution are also covered.

Chapter 4 contains the general requirements that must be satisfied for strength and
serviceability. These requirements form the basis of design of all reinforced concrete
members. Concepts of the strength design method of analysis are introduced, including
required strength and design strength. Load factors, load combinations, and strength
reduction factors are also covered, as are general provisions for deflection control.

General principles and requirements of the strength design method are presented in
Chap. 5. The design assumptions of this method and the basic techniques to determine
nominal strength of a reinforced concrete section subjected to flexure, axial load, or a
combination of both are covered in detail. A thorough understanding of the material
presented in this chapter is essential before continuing on to subsequent chapters.

Chapters 6 through 10 contain design and detailing requirements for the follow-
ing reinforced concrete members: (1) beams and one-way slabs, (2) two-way slabs, (3)
columns, (4) walls, and (5) foundations. Each chapter contains techniques on how to
size the cross-section, calculate the required amount of reinforcement, and detail the
reinforcement. Design procedures and flowcharts provide road maps that guide the
reader through the requirements of the code. Also included are numerous design aids
and comprehensive worked-out examples that facilitate and demonstrate the proper
application of the design provisions. The examples follow the steps of the referenced
design procedures and flowcharts and have been formulated using structural layouts
that are found in typical concrete buildings. These examples further help the reader
to understand how members work together and how loads are transferred through a
structure.

Throughout the discussions and in the examples, the practical aspects of reinforced
concrete design are stressed at length. These fundamental concepts are presented to
familiarize the reader with important aspects of design (other than those that are the-
oretical) that need to be considered in everyday practice. Emphasis is placed on sizing
concrete members on the basis of formwork considerations and detailing reinforcement
so that they adequately fit within a section.

The content of this book is geared to both undergraduate and graduate students,
as well as to practicing engineers who need to become familiar with current code design
requirements or need an update on reinforced concrete design. Engineers studying for
licensing exams will also find the material presented here to be very useful.

My sincere thanks to John R. Henry, PE, Principal Staff Engineer, International Code
Council, Inc., for review of this text. His insightful suggestions for improvement are
most appreciated. I also wish to thank Adugna Fanuel, SE, LEED AP, and Angelo Cicero
of Klein and Hoffman, Inc., for reviewing Chap. 2 and producing some of the figures,
respectively. Their help was invaluable.

David A. Fanella
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C H A P T E R 1
Introduction

1.1 Reinforced Concrete

1.1.1 Definition of Reinforced Concrete
Reinforced concrete is concrete in which reinforcing bars or other types of reinforcement
have been integrated to improve one or more properties of the concrete. For many years,
it has been utilized as an economical construction material in one form or another in
buildings, bridges, and many other types of structures throughout the world. A large
part of its worldwide appeal is that the basic constituent materials—cement, sand,
aggregate, water, and reinforcing bars—are widely available and that it is possible to
construct a structure using local sources of labor and materials.

In addition to being readily obtainable, reinforced concrete has been universally
accepted because it can be molded essentially into any shape or form, is inherently
rigid, and is inherently fire-resistant. With proper protection of the reinforcement, a
reinforced concrete structure can be very durable and can have a long life even under
harsh climatic or environmental conditions. Reinforced concrete structures have also
demonstrated that they can provide a safe haven from the potentially devastating effects
of earthquakes, hurricanes, floods, and tornadoes.

Based on these and other advantages, it is evident that reinforced concrete can
provide viable and cost-effective solutions in a variety of applications. This book focuses
on the design of reinforced concrete members in building structures.

1.1.2 Mechanics of Reinforced Concrete
Concrete is a brittle, composite material that is strong in compression and weak in
tension. Cracking occurs when the concrete tensile stress in a member reaches the
tensile strength due to externally applied loads, temperature changes, or shrinkage.
Concrete members that do not have any type of reinforcement in them will typically
fail very suddenly once the first tension cracks form because there is nothing to prevent
the cracks from propagating completely through the member.

Consider the simply supported, unreinforced concrete beam shown in Fig. 1.1 that
is subjected to a concentrated load P at midspan. From the strength of materials, the
maximum tensile bending stress occurs at the bottom fibers of the beam section at
midspan and the maximum compressive bending stress occurs at the top fibers. Because
concrete is stronger in compression than in tension, the beam will be able to support
the concentrated load and its own weight as long as the maximum bending stress is
less than the tensile strength of the concrete in bending (Fig. 1.1a ). If the bending stress

1
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(a)

(b)

FIGURE 1.1 Response of a simply supported, unreinforced concrete beam due to external
loading. (a) Bending stress less than the tensile strength of the concrete in bending. (b) Bending
stress greater than the tensile strength of the concrete in bending.

is equal to or greater than the tensile strength, a crack will form immediately at the
bottom fiber of the beam and it will propagate instantaneously to the top fiber, splitting
the beam in two (Fig. 1.1b).

A different sequence of events would take place if reinforcing bars were present
near the bottom of the simply supported beam. Like in the case of an unreinforced
concrete beam, a crack will form at the bottom fiber of the reinforced concrete beam at
midspan when the bending stress is equal to or greater than the tensile strength of the
concrete in bending. However, in contrast to the unreinforced beam, crack propagation
will be arrested by the presence of the reinforcement, which has a much greater tensile
strength than that of the concrete.

If the magnitude of the concentrated load increases, the crack at midspan will
propagate upward in a stable manner and additional cracks will form at other locations
along the span where the bending stress exceeds the tensile strength of the concrete (see
Fig. 1.2). Assuming that the beam has sufficient shear strength, this process continues
until the concrete crushes in compression or until the reinforcement fails in tension. It is
shown in subsequent chapters of this book that it is desirable to have the reinforcement
fail in tension before the concrete fails in compression.

What is important to remember from this discussion is that reinforcement, which
has a tensile strength much greater than that of concrete, is used to counteract tensile

FIGURE 1.2
Response of a
simply supported,
reinforced concrete
beam due to
external loading.
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stresses in a reinforced concrete member, and that the reinforcement becomes effec-
tive in resisting tension only after cracking occurs. One of the major tasks in designing
reinforced concrete members is to determine the required amount and location of rein-
forcement.

The focus of this book is on the design of reinforced concrete members in build-
ing structures where the primary reinforcement is steel reinforcing bars or steel wire
reinforcement that is not prestressed. Such reinforcement is commonly referred to as
mild reinforcement or nonprestressed reinforcement; a nonprestressed concrete member is a
reinforced concrete member that contains this type of reinforcement. A discussion on
the material properties of concrete and reinforcing steel is given in Chap. 2.

1.2 Building Codes and Standards
In the United States and throughout the world, the design and construction of build-
ing structures is regulated by building codes. The main purpose of a building code is
to protect public health, safety, and welfare. Building code provisions are founded on
principles that do not unnecessarily increase construction costs; do not restrict the use
of new materials, products, or methods of construction; and do not give preferential
treatment to particular types or classes of materials, products, or methods of construc-
tion.

Many cities, counties, and states in the United States and some international jurisdic-
tions have adopted the International Building Code (IBC) for the design and construction
of building structures. The provisions of the 2009 edition of the IBC are covered in this
book.1 Chapter 16 of the IBC prescribes minimum nominal loads that must be used in
the design of any structure. Chapter 3 contains a summary of these loads as they pertain
to the design of reinforced concrete buildings.

Section 1901.2 of the IBC requires that structural concrete be designed and con-
structed in accordance with the provisions of Chap. 19 of the IBC and the 2008 edi-
tion of Building Code Requirements for Structural Concrete (ACI 318–08) and Commentary.2

ACI 318–08 is one of a number of codes and standards that is referenced by the IBC.
These documents, which can be found in Chap. 35 of the 2009 IBC, are considered
part of the requirements of the IBC to the prescribed extent of each reference (see
Section 101.4 of the 2009 IBC). Amendments to ACI 318–08 are given in IBC Section
1908.

Even though it is an American Concrete Institute (ACI) standard, ACI 318 is com-
monly referred to as the “ACI Code” or the “Code.” The ACI Code provides minimum
requirements for the design and construction of structural concrete members (see Sec-
tion 1.1 of that document). The term “structural concrete” refers to all plain and rein-
forced concrete members used for structural purposes. Section 1.1 also identifies the
types of concrete members that are not addressed in the Code and includes general
provisions for earthquake resistance.

Throughout this book, section numbers from the 2009 IBC are referenced as illus-
trated by the following: Section 1901.2 is denoted as IBC 1901.2. Similarly, Section 10.2
of the ACI Code is referenced as ACI 10.2 and Section R10.2 of the Commentary is
referenced as ACI R10.2.

It is important to acquire the building code of the local jurisdiction at the onset of
any project. Local building authorities may have amended the IBC or other adopted
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codes, and it is the responsibility of the registered design professional to be aware of
such amendments before designing the building.

1.3 Strength and Serviceability
Design philosophies related to reinforced concrete members have changed over the
years. Until the early 1960s, the primary design method for reinforced concrete was
working stress design. In this method, members are proportioned so that the maximum
elastic stresses due to service loads are less than or equal to allowable stresses prescribed
in the Code.

The strength design method was included for the first time in the 1956 edition of the
Code, and it became the preferred design method in the 1971 Code. The strength design
method requires that both strength and serviceability requirements be satisfied in the
design of any reinforced concrete member. In general, reinforced concrete members are
proportioned to resist factored load effects and to satisfy requirements for deflection
and cracking.

An in-depth discussion on the fundamental requirements of strength and service-
ability is given in Chap. 4. Presented are the basic concepts of required strength (in-
cluding load combinations) and design strength (including strength reduction factors).

Chapter 5 contains the general principles of the strength design method. This
method is based on the fundamental conditions of static equilibrium and compatibility
of strains. The information presented in this chapter forms the basis for the design of
reinforced concrete sections subjected to flexure, axial load, or a combination of both.

1.4 Reinforced Concrete Members in Building Structures

1.4.1 Overview
Structural members in any structure must be designed to safely and economically sup-
port the weight of the structure and to resist all of the loads superimposed on the
structure. In ordinary buildings, superimposed loads typically consist of live loads due
to the inhabitants, dead loads due to items permanently attached to the building, and
lateral loads due to wind or earthquakes. Some types of buildings must also be designed
for extraordinary loads such as explosions or vehicular impact. Chapter 3 provides a
comprehensive discussion on loads.

A typical reinforced concrete building is made up of a variety of different reinforced
concrete members. The members work together to support the applicable loads, which
are transferred through load paths in the structure to the foundation members. The
loads are ultimately supported by the soil or rock adjoining the foundations.

Unlike other typical types of construction commonly used in building structures,
such as structural steel and timber, reinforced concrete construction possesses inherent
continuity. Cast-in-place reinforced concrete structures are essentially monolithic with
reinforcement that extends into adjoining members. As such, reinforced concrete mem-
bers are analyzed as continuous members in a statically indeterminate structure where
bending moments, shear forces, and axial forces are transferred through the joints. Un-
derstanding the behavior and response of a reinforced concrete structure is imperative
in the proper analysis, design, and detailing of the members in the structure.
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Chapters 6 through 10 of this book contain the design and detailing requirements
for typical reinforced concrete members found in building structures. A summary of the
different member types that are addressed in these chapters is given in the following
sections.

It is important to note that the information presented in Chaps. 6 through 10 is
applicable to the design of members in structures that are located in areas of low-to-
moderate seismic risk. Seismic risk is related to seismic design category (SDC), which
is defined in IBC 1613.5.6. In general, SDC is determined on the basis of the level
of seismicity and soil type at the site and on the occupancy of the building. Build-
ings assigned to SDC A and B are located in areas of low seismic risk, whereas build-
ings assigned to SDC C are located in areas of moderate seismic risk. SDC D, E, and F
are assigned to buildings located in areas of high seismic risk.

The provisions in ACI Chap. 21 relate design and detailing requirements to the
type of structural member and the SDC. The provisions of ACI Chaps. 1 through 19
and 22 are considered to be adequate for structures assigned to SDC A; no additional
requirements need to be satisfied (also see IBC 1908.1.2). ACI Table R21.1.1 gives the
sections of ACI Chap. 21 that need to be satisfied as a function of SDC.

Table 1.1 contains a summary of the reinforced concrete members addressed in
Chaps. 6 through 10 of this book. Included in the table is the applicability of the in-
formation presented in these chapters related to SDC. For example, the design and
detailing requirements presented in Chap. 6 are applicable to beams and one-way slabs
in buildings assigned to SDC A.

The information presented in Chaps. 6 through 10 is not as limited as it first might
appear. In fact, this information forms the basis of design regardless of SDC. For ex-
ample, the determination of the nominal moment strength of a beam is required in the
design of that member no matter what the SDC is for the building. The same is true
in regards to the design strength interaction diagram for a column as well as for other
important items.

It is also important to point out that satisfying the requirements for SDC B is readily
achievable for beams and columns without any special design or detailing. In particular,
beams in structures assigned to SDC B must have at least two bars that are continuous at
both the top and bottom of the section that must be developed at the face of the supports
(ACI 21.2.2). This is usually satisfied in typical beams because these bars are needed
over the full length to support the stirrups. In regards to columns, column dimensions
in typical buildings are such that the clear height of the column is greater than five times
the cross-sectional dimension of the column in the direction of analysis; thus, in many
cases, the special shear requirements of ACI 21.3.3 need not be satisfied (ACI 21.2.3).

Chapter Reinforced Concrete Member(s) Seismic Design Category (SDC)

6 Beams and one-way slabs A

7 Two-way slabs A, B

8 Columns A

9 Walls A, B, C

10 Foundations A, B, C

TABLE 1.1 Applicability of Design and Detailing Requirements in Chaps. 6 through 10
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Methods to determine the SDC and comprehensive design and detailing procedures
for reinforced concrete members in all SDCs can be found in Ref. 3.

1.4.2 Floor and Roof Systems

Overview
Reinforced concrete structural systems can be formed into virtually any geometry to
meet any requirement. Regardless of the geometry, standardized floor and roof systems
are available that provide cost-effective solutions in typical situations. The most com-
mon types are classified as one-way systems and two-way systems. Examined later are
the structural members that make up these types of systems.

It is common for one type of floor or roof system to be specified on one entire level
of building; this is primarily done for cost savings. However, there may be cases that
warrant a change in framing system. The feasibility of using more than one type of floor
or roof system at any given level needs to be investigated carefully.

One-Way Systems
A one-way reinforced concrete floor or roof system consists of members that have the
main flexural reinforcement running in one direction. In other words, reactions from
supported loads are transferred primarily in one direction. Because they are primarily
subjected to the effects from bending (and the accompanying shear), members in one-
way systems are commonly referred to as flexural members.

Members in a one-way system are usually horizontal but can be provided at a
slope if needed. Sloped members are commonly used at the roof level to accommodate
drainage requirements.

Illustrated in Fig. 1.3 is a one-way slab system. The load that is supported by the
slabs is transferred to the beams that span perpendicular to the slabs. The beams, in
turn, transfer the loads to the girders, and the girders transfer the loads to the columns.
Individual spread footings may carry the column loads to the soil below. It is evident
that load transfer between the members of this system occurs in one direction.

Main flexural reinforcement for the one-way slabs is placed in the direction parallel
to load transfer, which is the short direction. Similarly, the main flexural reinforcement
for the beams and girders is placed parallel to the length of these members. Concrete for
the slabs, beams, and girders is cast at the same time after the forms have been set and

FIGURE 1.3 One-way
slab system.
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FIGURE 1.4
Standard one-way
joist system.

the reinforcement has been placed in the formwork. This concrete is also integrated with
columns. In addition, reinforcing bars are extended into adjoining members. Like all
cast-in-place systems, this clearly illustrates the monolithic nature of reinforced concrete
structural members.

A standard one-way joist system is depicted in Fig. 1.4. The one-way slab transfers the
load to the joists, which transfer the loads to the column-line beams (or, girders). This
system utilizes standard forms where the clear spacing between the ribs is 30 in. or less.
Because of its relatively heavy weight and associated costs, this system is not used as
often as it was in the past.

Similar to the standard one-way joist system is the wide-module joist system shown
in Fig. 1.5. The clear spacing of the ribs is typically 53 or 66 in., which, according to the
Code, technically makes these members beams instead of joists. Load transfer follows
the same path as that of the standard joist system.

FIGURE 1.5 Wide-
module joist
system.
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FIGURE 1.6 Two-way
beam supported
slab system.

Reinforced concrete stairs are needed as a means of egress in buildings regardless of
the number of elevators that are provided. Many different types of stairs are available,
and the type of stair utilized generally depends on architectural requirements. Stair
systems are typically designed as one-way systems.

Design and detailing requirements for one-way systems (one-way slabs and beams)
are given in Chap. 6.

Two-Way Systems
As the name suggests, two-way floor and roof systems transfer the supported loads in
two directions. Flexural reinforcement must be provided in both directions.

A two-way beam supported slab system is illustrated in Fig. 1.6. The slab transfers the
load in two orthogonal directions to the column-line beams, which, in turn, transfer the
loads to the columns. Like a standard one-way joist system, this system is not utilized
as often as it once was because of cost.

A flat plate system is shown in Fig. 1.7. This popular system, which is frequently used
in residential buildings, consists of a slab supported by columns. The formwork that is

FIGURE 1.7 Flat
plate system.
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FIGURE 1.8 Flat
slab system.

required is the simplest of all floor and roof systems. Because the underside of the slab
is flat, it is commonly used as the ceiling of the space below; this results in significant
cost savings.

Similar to the flat plate system is the flat slab system (Fig. 1.8). Drop panels are pro-
vided around the columns to increase moment and shear capacity of the slab. They also
help to decrease slab deflection. Column capitals or brackets are sometimes provided
at the top of columns.

The two-way system depicted in Fig. 1.9 is referred to as a two-way joist system or a
waffle slab system. This system consists of rows of concrete joists at right angles to each
other, which are formed by standard metal domes. Solid concrete heads are provided at
the columns for shear strength. Such systems provide a viable solution in cases where
heavy loads need to be supported on long spans.

Design and detailing requirements for two-way systems are given in Chap. 7.

1.4.3 Columns
A column is a structural member in a building that supports axial loads from the roof and
floor members and that transfers the loads to the foundation. Load transfer to columns
was illustrated in the previous section for both one-way and two-way systems. Columns

FIGURE 1.9 Two-way
joist system.
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FIGURE 1.10 Walls
used to resist the
effects from
lateral loads.

are usually oriented vertically in a building, but any orientation can be provided if
needed.

In addition to axial loads, columns may be subjected to bending moments caused
by gravity loads or by lateral loads. In general, columns that are part of the structural
system that resists lateral loads (i.e., the lateral-force-resisting system) are typically
subjected to axial loads, bending moments, and shear forces due to gravity and lateral
loads. As such, columns are also referred to as members subjected to combined axial load
and bending.

Design and detailing requirements for columns are given in Chap. 8.

1.4.4 Walls
In general terms, a wall is a member, usually vertical, that is used to enclose or separate
spaces in a building or structure. Walls are usually categorized as non–load-bearing and
load-bearing: A non–load-bearing wall supports primarily its own weight, whereas a
load-bearing wall supports loads from the floor and roof systems. Like columns, load-
bearing walls are typically designed for the effects due to axial loads and bending
moments, and are referred to as members subjected to combined axial load and bending.

Illustrated in Fig. 1.10 are walls that are provided around elevator and stair openings
in the core of a building. In addition to supporting tributary gravity loads, they are
used alone or in combination with moment frames to resist the effects from wind and
earthquakes. Such walls are commonly referred to as shear walls.

Basement walls or foundation walls resist the effects from gravity loads plus lateral
earth pressure that acts perpendicular to the plane of the wall. Illustrated in Fig. 1.11
is a reinforced concrete foundation wall that resists the axial loads from a reinforced
concrete wall and lateral soil pressure.

Design and detailing requirements for walls are given in Chap. 9.

1.4.5 Foundations
Foundation systems transfer the loads from the structure above to the soil or rock below
the building. There are primarily two types of foundation systems: shallow foundations
and deep foundations.

Footings and mats are two common types of shallow foundations. A spread footing
spreads the load from the superstructure above to the soil so that the stress in the soil
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FIGURE 1.11 Reinforced concrete foundation wall.

is less than its allowable bearing capacity. Illustrated in Fig. 1.3 is an isolated spread
footing that is supporting a column in a one-way system. A mat foundation is a large
concrete slab that supports some or all of the columns and walls in a building. Shown
in Fig. 1.10 is a mat foundation beneath the core walls. The loads from the supported
members are transferred to the soil, and the mat is designed so that the maximum soil
pressure does not exceed the allowable bearing capacity of the soil.

Piles and drilled piers are deep foundations that are frequently used to support
columns and walls in building structures. Both types of foundation members extend
below the strata of poor soil to a level where the soil is adequate to support the loads
from the structure above.

Design and detailing requirements for both shallow and deep foundations are given
in Chap. 10.

1.5 Drawings and Specifications

1.5.1 Overview
The design and construction of a reinforced concrete building requires input from a vari-
ety of design professionals. Structural engineers are responsible for producing structural
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drawings and specifications that are used to eventually build the structure. Drawings
and specifications, as well as other documents, are referred to as construction documents
or contract documents.

Once the construction documents have been reviewed and approved by the local
building authority, a number of important processes are set in motion. One of the first
things to move forward is the production of the reinforcing steel placing drawings by the
reinforcing steel supplier. As the name suggests, these drawings are used in the actual
construction of the structure.

Additional information on construction and placing drawings, as well as other
pertinent information, is covered in the following sections.

1.5.2 Construction Documents
The following definition of construction documents is given in IBC 202:

Written, graphic, and pictorial documents prepared or assembled for describing the design,
location, and physical characteristics of the elements of a project necessary for obtaining a
building permit.

Construction documents consist of calculations, drawings, specifications, and any
other data that are needed to indicate compliance with the governing building code.
IBC 107 describes the information that must be included in the construction documents,
who must prepare them (the registered design professional), and procedures that are
used by the building official for approving them.

IBC 1603 and ACI 1.2 contain minimum requirements for construction documents.
The following design loads and information must be included in the construction doc-
uments (see IBC 1603):

� Floor live load
� Roof live load
� Roof snow load
� Wind design data
� Earthquake design data
� Geotechnical information
� Flood design data
� Special loads

These items are typically listed on the General Notes sheet of the structural draw-
ings. Chapter 3 of this book provides a summary of loads that are typically required in
the design of building structures.

For reinforced concrete structures, the following information must also be provided
in the construction documents (see ACI 1.2.1):

� Specified compressive strength of all concrete mixtures utilized in the structure
at the ages or stages of construction for which each part of the structure is
designed.
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� Specified strength or grade of all reinforcement utilized in the structure.
� Size and location of all structural members, reinforcement, and anchors.
� Provisions for dimensional changes resulting from creep, shrinkage, and tem-

perature.
� Anchorage length of reinforcement and location and length of lap splices.
� Type and location of mechanical and welded splices of reinforcement.

Structural drawings must show the size, section, and relative locations of all of
structural members in a building. The following items are usually included in a typical
set of drawings:

� Foundation plans
� Framing plans for all levels at and above ground
� Schedules for the structural members, including foundations, beams, slabs,

columns, and walls
� Sections and details

It is important that the structural and architectural drawings be coordinated on a
regular basis.

The size of the structural members can be given directly on the plans, or the members
can be identified by marks on the plan with the sizes given in applicable schedules (the
latter is typically done for beams, columns, walls, and foundations). The same is done
for the size, spacing, and length of reinforcing bars. Either method of identification (or
both) can be utilized in a project.

Typical details are provided for various types of members utilized in the structure.
These details, along with sections cut at various locations in the structure, help in
illustrating specific information about the structure.

Specifications are documents that supplement the structural drawings and provide
additional information on materials, methods of construction, and quality assurance.
Specifications for structural concrete are given in ACI 301.4 This specification may be
referenced or incorporated in its entirety in the construction documents of any rein-
forced concrete building project together with additional requirements for the specific
project. Included in ACI 301 is information on the following:

� Formwork and formwork accessories
� Reinforcement and reinforcement supports
� Concrete mixtures
� Handling, placing, and constructing
� Architectural concrete
� Lightweight concrete
� Mass concrete
� Prestressed concrete
� Shrinkage-compensating concrete
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Mandatory and optional requirements checklists are also provided in ACI 301. Al-
though these checklists do not form a part of ACI 301, they assist in selecting and spec-
ifying project requirements in the project specifications. The mandatory requirements
checklist includes requirements pertaining to specific qualities, procedures, materials,
and performance criteria that are not specifically defined in ACI 301. The optional re-
quirements checklist contains a list of actions that are required or available when the
specifications are being developed.

A number of master specifications are available that can be utilized in a reinforced
concrete building project. One such specification is MasterSpec.5 Section 033000 of that
specification contains comprehensive specifications for cast-in-place concrete. Master
specifications can be modified by deleting and inserting text to meet the specific re-
quirements of a project.

1.5.3 Placing Drawings
Once the construction documents have been approved by the local building authority,
the documents are used by the reinforcing steel detailer in the preparation of placing
drawings and bar lists. Placing drawings are used by the ironworkers at the job site
to place (or, install) the reinforcing steel in the formwork. Bar lists are used by the
reinforcing steel fabricator to fabricate the reinforcing bars.

When preparing the placing drawings for a specific project, the detailer uses the
structural drawings and the specifications to determine the quantity, lengths, bend
types, and positioning of the reinforcing bars in all of the members in the structure. The
registered design professional reviews and approves the placing drawings once they
are complete. Additional information on placing drawings and many other important
aspects related to reinforcing steel can be found in Ref. 6.

1.6 Construction of Reinforced Concrete Buildings

1.6.1 Overview
Although each reinforced concrete building is unique, the following sequence of events
occurs in the construction of any cast-in-place concrete building with mild reinforce-
ment:

1. Erect formwork

2. Place reinforcement

3. Place concrete

4. Strip forms and provide reshores

This cycle is repeated for each floor of the building. Numerous activities occur
within each segment of construction.

It is safe to state that no structure can be built that is perfectly level, plumb, straight,
and true. This does not imply that contractors are doing their jobs improperly; rather, it
is simply a reality that must be accepted because of the inherent nature of construction.

Fortunately, constructing a “perfect” structure is not necessary. However, some
requirements must be established so that the actual structure performs as originally



15I n t r o d u c t i o n

designed. Construction tolerances provide permissible variations in dimensions and lo-
cations of the members in a structure. Tolerances are essentially limits within which the
work is to be performed. ACI 117 contains comprehensive specifications for tolerances
in reinforced concrete construction and materials.7 This document can be referenced or
used in its entirety in the project specifications.

Details of the construction process are covered in the following sections. Included
is information that can be incorporated in the preliminary design stages to help in
achieving an economical structure.

1.6.2 Formwork Installation

Overview
According to ACI 347,8 formwork is the total system of support for freshly placed
concrete, including the mold or sheathing that contacts the concrete and all supporting
members, hardware, and necessary bracing. In essence, formwork is a temporary struc-
ture whose main purpose is to support and contain fresh concrete until it can support
itself. Concrete buildings require formwork for vertical members (columns and walls)
and horizontal members (slabs, beams, and joists). In addition to the weight of fresh
concrete, formwork must be designed to support construction loads (workers, material,
and equipment) and to resist the effects from wind.

The cost of formwork usually accounts for approximately 50% to 60% of the total
cost of the concrete frame. Thus, selecting the proper forming system is crucial to the
success of any project. Specifying standard form sizes, repeating the size and shape of
concrete members wherever possible, and striving for simple formwork are mandatory
in achieving a cost-effective structure.

The type of formwork system to be used is dictated primarily by the structural
system that will be utilized in the building. Formwork materials are shipped to the job
site and erected. The process of erecting the formwork includes the following:

1. Lifting, positioning, and assembling the various formwork elements.

2. Installing shoring to support the formwork, the weight of the fresh concrete,
and the construction loads.

To help ensure that the concrete does not bond to the forms, a form release agent
or coating may be applied to the inside of the formwork at this stage. The coating also
helps prevent wood formwork from absorbing water from the concrete mixture.

The following is a typical construction sequence in a conventional cast-in-place
concrete building:

1. Build formwork for vertical elements

2. Place reinforcement for vertical elements

3. Place concrete for vertical elements

4. Strip formwork for vertical elements

5. Build formwork for horizontal elements

6. Place reinforcement for horizontal elements

7. Place concrete for horizontal elements
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The forms for the horizontal elements are stripped after a sufficient amount of time,
and the process is repeated in multistory construction. Several levels of reshores are
typically required below the newly constructed level to support the weight of the fresh
concrete and the construction loads.

Brief descriptions of various types of vertical and horizontal forming systems that
are commonly used in reinforced concrete building construction follow. Additional
information on these and other types of forming systems can be found in Ref. 9.

Vertical Forming Systems
As noted earlier, the construction of vertical members in the structure (columns and
walls) precedes the construction of horizontal members. The following systems are
commonly used to form vertical members in a concrete building:

1. Conventional column/wall system

2. Ganged system

3. Jump forms

4. Slipforms

5. Self-raising forms

Slipform and self-raising formwork are classified as crane-independent systems
where formwork panels are moved vertically by mainly proprietary mechanisms. Here,
we describe the first three systems.

Conventional Column/Wall System A conventional column forming system consists of
plywood sheathing that is nailed together and stiffened by vertical studs. The sides of
the forms are held together by clamps that help prevent buckling of the sheathing due
to the horizontal pressure imposed by the fresh concrete. Prior to construction of the
formwork, a template is made on the floor slab or foundation to accurately locate the
position of the column. Round columns are typically formed by steel forms.

In a conventional wall forming system, studs and wales support plywood sheath-
ing that form the wall. Tie rods resist the pressure exerted by the fresh concrete and
help maintain the specified thickness of the wall. Wood spreaders can also be used to
maintain wall thickness.

Ganged Systems Ganged systems are large wall form units that consist of aluminum
or plywood panels joined together and braced by aluminum or steel frames. Once the
system has been assembled on the ground, it is raised into place by a crane. Ganged
formwork produces smoother concrete walls that have fewer joints than those con-
structed with conventional systems.

Jump Forms Jump forms consist of an upper-framed panel form that is used to form the
concrete in a wall member and a supporting structure that is attached to the completed
wall below, which carries the entire assembly. Once the concrete in the upper-framed
panel form gains sufficient strength, the jump forms are lifted to the next level and the
process is repeated.
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Horizontal Framing Systems
Wood System A conventional wood system consists of lumber and/or plywood and
is used to form slabs, beams, and foundations. Wood shoring is typically set on wood
mudsills. The pieces of this system are made and erected on site.

Metal System A conventional metal system consists of aluminum joists and stringers
that support plywood sheathing. Aluminum or steel scaffolding is commonly used for
shoring. Similar to the wood system, this system is also built on site.

Joist-Slab and Dome Forming System One-way and two-way joist systems are formed
by pan forms and dome forms, respectively. These forms come in standard sizes and
are made of steel and fiberglass. The forms are nailed to plywood sheathing and are
supported by wood or metal shoring.

Flying Form System A flying form system is a crane-set system that is constructed and
assembled as one unit and moved from floor to floor. Flying forms typically consist of
sheathing panels that are supported on aluminum joists. These elements, in turn, are
supported by steel or aluminum trusses, which have telescoping legs that are used as
shoring.

As the name implies, the formwork assembly is flown to the next level by a crane
once the concrete on that level has cured and attained sufficient strength.

1.6.3 Reinforcement Installation
Once the formwork has been erected, the required reinforcement is installed in the
columns and walls using the placing drawings. For columns, the reinforcement consists
of longitudinal bars and transverse reinforcement in the form of either ties or spirals.
One or two layers of vertical and horizontal reinforcing bars are provided in walls;
in some cases, horizontal ties are required as well. In general, reinforcement is tied
together with metal wires into what are commonly referred to as reinforcement cages.

The reinforcement in all of the beams, slabs, and other horizontal structural mem-
bers is placed and supported in the formwork according to the placing drawings. Inserts
for mechanical and electrical equipment and openings for ducts and conduits are some
of the typical elements that must be positioned at their proper locations in the form-
work as well. Beams require longitudinal and transverse reinforcement, whereas slabs
typically require only longitudinal reinforcement at the top and bottom of the section
in one or two directions.

Additional information on reinforcement, including recommended practices for
placing reinforcing bars, can be found in Ref. 6.

1.6.4 Concrete Placement
Concrete is deposited into the forms after the reinforcement and other construction
items, such as ducts and conduits, have been installed at the proper locations. Prior
to placement, the concrete is mixed and transported to the job site. Depending on a
number of factors, on-site ready-mix plants are sometimes used.

Belt conveyors, buckets and cranes, chutes, drop chutes, and pumping are the most
popular methods of transporting concrete to the point where it is needed in the structure.
Project size and site constraints are just two of the many factors that dictate which
method is the most effective in a particular project.
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Once placed, the concrete is consolidated by hand or mechanical vibrators to ensure
that the fresh concrete is properly compacted within the forms and around the rein-
forcement and other embedded items. Proper consolidation also helps in eliminating
honeycombs and entrapped air in the mix.

Finishing the exposed concrete surfaces occurs shortly after consolidation. Many at-
tributes can be achieved at this stage, including desired appearance, texture, or wearing
qualities.

It is very important to ensure that all newly placed and finished concrete be cured
and protected from rapid drying, extreme changes in temperature, and damage from
future construction activities. Curing should begin as soon as possible after finishing
so that hydration of the cement and strength gain of the concrete continues. Columns
and walls are usually cured after the forms are stripped, whereas slabs and beams are
cured before and after their formwork is stripped.

Comprehensive information on batching, mixing, transporting, and handling con-
crete can be found in Ref. 10.

1.6.5 Formwork Removal
Formwork is typically removed (stripped) after the concrete has gained sufficient
strength to carry its own weight plus any construction loads. Generally, the formwork
is not stripped before the concrete has reached at least 70% of its design compressive
strength. Various admixtures are available to accelerate strength development of con-
crete at an early age so that forms can be stripped sooner (see Chap. 2).

Temporary vertical support is required for the stripped concrete members that
have not yet acquired their design strength. Reshores and backshores are two types
of shoring that is provided beneath horizontal concrete members after the forms and
original shoring has been removed.

Reshores are spaced relatively far apart; this allows the horizontal members to
deflect, permitting the forms and original shores to be removed from a large area.
Reduced stripping costs are usually realized when using reshores.

Backshores are spaced closer than reshores. The horizontal members are not allowed
to deflect, resulting in a small area over which the forms and original shoring can be
removed. This permits stripping to occur sooner than if reshores were used.

Reshores and backshores are removed after the structural members have acquired
sufficient strength to support all of the required loads. More information on shoring
and reshoring of concrete buildings can be found in Ref. 11.
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C H A P T E R 2
Materials

2.1 Introduction
In order to fully comprehend the mechanics of reinforced concrete, an understanding
of the material properties of concrete and reinforcing steel is essential. This chapter
contains a basic overview of the properties of the constituent parts and how these
properties relate to the design and detailing of reinforced concrete members.

In addition to discussing the mechanical properties of concrete, this chapter covers
the ACI Code methodologies for proportioning concrete mixtures and how they relate to
compressive strength. Also included are the durability requirements and the evaluation
and acceptance requirements in Chaps. 4 and 5 of the Code, respectively.

The mechanical properties of both deformed reinforcing bars and welded wire
reinforcement are discussed in detail. Information on the various types, sizes, and
grades of reinforcement are also provided.

2.2 Concrete

2.2.1 Components of Concrete
The basic components of concrete—cement, water, and aggregates (sand and gravel)—
are shown in Fig. 2.1. Cement and water form a paste that fills the space between the
aggregates and binds them together. Chapter 3 of the ACI Code contains the min-
imum requirements for these components and other materials that are commonly
used in concrete. Included are references to standards developed by ASTM Inter-
national.

ASTM International, which was formerly known as the American Society for Testing
and Materials (ASTM), oversees the development of technical standards for materials,
products, systems, and services. In general, these standards are documents that have
been developed and established within the consensus principles of ASTM International
and that meet the requirements of its procedures and regulations.

ASTM standards for cementitious materials, aggregates, water, and admixtures are
specified in ACI 3.2, 3.3, 3.4, and 3.6, respectively, and are summarized in Table 2.1. For
example, portland cement must conform to ASTM C150-05, Standard Specification for
Portland Cement. Note that “C150” is the serial designation of the standard, and “05”
refers to 2005, which in this case is the year that the standard was last revised (otherwise,
it is the year of original adoption).

21
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FIGURE 2.1
Concrete
components:
cement, water, fine
aggregate, and
coarse aggregate.
(Courtesy of the
Portland Cement
Association.)

Cementitious Materials
The eight different types of portland cement referenced in ASTM C150 and their typ-
ical applications are summarized in Table 2.2. Type I cement is suitable for use in all
types of reinforced concrete structures that do not require the properties of the other
cement types. However, Type II cement is sometimes used instead of Type I because of
its increased availability, regardless of the need for sulfate resistance or moderate heat
generation. Some portland cements may be labeled with more than one type designa-
tion. For example, a designation of Type I/II means that the requirements of both Type
I and Type II cements have been met. Additional information on cement types can be
found in Refs. 1 and 2.

Supplementary cementitious materials such as fly ash, ground-granulated blast-
furnace slag, and silica fume are generally added to a concrete mix to enhance one or
more properties of the hardened concrete (see Fig. 2.2). Depending on the properties
of the materials and the desired effect on the concrete, such materials may be used
in addition to or as a partial replacement of cement. Calcined shale, calcined clay, or
metakaolin are examples of natural pozzolans that, when added to a concrete mix,
contribute to the properties of hardened concrete. In addition to the beneficial effects
they have on concrete properties, supplementary cementitious materials are recognized
for the potential positive effects they have on energy conservation and the environment.

Aggregates
Fine and coarse aggregates, which typically occupy 60% to 70% of the concrete volume,
have a strong influence on the properties of concrete. Fine aggregates usually consist
of sand or crushed stone and have diameters smaller than approximately 0.2 in. Coarse
aggregates typically have diameters ranging between 0.375 and 1.5 in and consist of
gravels, crushed stone, or a combination thereof.

Normal-weight concrete is concrete made with sand, gravel, and crushed stone
that conforms to ASTM C33. The density or unit weight of normal-weight concrete is
typically between 135 and 160 pcf and is normally taken as 145 or 150 pcf. Expanded
shale, clay, and slate are common aggregates used in the production of lightweight
concrete, which has a density of 90 to 115 pcf. Sand-lightweight concrete contains fine
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Component ASTM Standard

Cementitious Materials

Portland cement ASTM C150-05, Standard Specification for Portland
Cement

Blended hydraulic cements
(excluding Type IS)

ASTM C595-07, Standard Specification for Blended
Hydraulic Cements

Expansive hydraulic cement ASTM C845-04, Standard Specification for Expansive
Hydraulic Cement

Hydraulic cement ASTM C1157-03, Standard Performance Specification
for Hydraulic Cement

Fly ash and natural pozzolans ASTM C618-05, Standard Specification for Coal Fly
Ash and Raw or Calcinated Natural Pozzolan for Use in
Concrete

Ground-granulated
blast-furnace slag

ASTM C989-06, Standard Specification for Ground
Granulated Blast-furnace Slag for Use in Concrete and
Mortars

Silica fume ASTM C1240-05, Standard Specification for Silica
Fume Used in Cementitious Mixtures

Aggregates

Normal-weight ASTM C33-03, Standard Specification for Concrete
Aggregates

Lightweight ASTM C330-05, Standard Specification For
Lightweight Aggregates for Structural Concrete

Water ASTM C1602/C1602M-06, Standard Specification for
Mixing Water Used in the Production of Hydraulic
Cement Concrete

Admixtures

Water reduction and setting ASTM C494/C494M-05a, Standard Specification for
Chemical Admixtures for Concrete

Flowing concrete ASTM C1017/C1017M-03, Standard Specification for
Chemical Admixtures for Use in Producing Flowing
Concrete

Air entrainment ASTM C260-06, Standard Specification for
Air-entraining Admixtures for Concrete

TABLE 2.1 Summary of ASTM Standards for Concrete Components

aggregates that conform to ASTM C33 and lightweight aggregates that conform to
ASTM C330.

Water
In general, water that is drinkable can usually be used for making concrete. Acceptance
criteria for water used as mixing water in concrete can be found in ASTM C94/C94M-06,
Standard Specification for Ready-mixed Concrete.
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Cement Type Application

Type I—normal General purpose cement commonly used in all types
of structures

Type IA—normal, air-entraining Used in the same structures as Type I where air
entrainment is desired

Type II—moderate sulfate
resistance

General purpose cement used in structures where
protection against moderate sulfate attack is
important or where moderate heat of hydration is
desired

Type IIA—moderate sulfate
resistance, air-entraining

Used in the same structures as Type II where air
entrainment is desired

Type III—high early strength Used in structures where high early strength of the
concrete is desired or where structures must be put
into service quickly

Type IIIA—high early strength,
air-entraining

Used in the same structures as Type III where air
entrainment is desired

Type IV—low heat of hydration Used in structures where a low heat of hydration is
desired, such as in massive concrete structures like
dams

Type V—high sulfate
resistance

Used in structures where high sulfate resistance is
desired, such as elements in direct contact with soils
or ground waters that have a high sulfate content

TABLE 2.2 Types of Portland Cement and Their Common Applications

Admixtures
Admixtures are ingredients other than cement, aggregates, and water that are added to a
concrete mix immediately before or during mixing. Many different types of admixtures
are commercially available, and they are typically classified by function.1,2 Reducing the
cost of concrete construction, economically achieving desired properties in concrete, and

FIGURE 2.2
Supplementary
cementitious mate-
rials. From left to
right: fly ash (Class
C), metakaolin,
silica fume, fly ash
(Class F), slag, and
calcinated
shale. (Courtesy of
the Portland Cement
Association.)
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maintaining the quality of concrete during mixing, transporting, placing, and curing
are a few major reasons why admixtures are used in concrete. The licensed design
professional must approve the use of admixtures that are not identified in ACI 3.6.1
and 3.6.2.

The following are brief descriptions of some common admixtures:

� Air-entraining admixtures. These admixtures purposely introduce microscopic
air bubbles in concrete to improve its durability when exposed to repeated
freeze–thaw cycles. They also increase resistance to scaling due to exposure to
deicing chemicals and improve the workability of fresh concrete.

� Superplasticizers. These are high-range water reducers that can greatly re-
duce water demand and cement content without sacrificing workability. High-
strength concrete is typically produced with superplasticizers. Using a water
reducer can also lead to accelerated strength development of the concrete; this
permits formwork to be removed earlier and, thus, overall construction time
to be reduced.

� Corrosion inhibitors. These are usually used in parking structures, marine struc-
tures, and other structures exposed to chlorides, which can cause corrosion of
steel reinforcement in concrete. These admixtures chemically arrest the corro-
sion reaction.

2.2.2 Mechanical Properties of Concrete

Overview
It has been established by numerous experimental investigations that internal micro-
cracks exist in concrete prior to any external loading (see, e.g., the pioneering inves-
tigations reported in Refs. 3 through 6). These preexisting cracks, which are usually
due to bleeding, shrinkage, and the heat of cement hydration, are typically located on
the aggregate–cement paste interface. It is very important to acknowledge the role that
preexisting microcracks have in the deterioration and failure of concrete. Experimental
investigations have confirmed that the nucleation, growth, interaction, and coalescence
of these flaws are the controlling mechanisms that cause macroscopic failure.5,7

The mechanical properties of concrete are usually obtained by testing concrete spec-
imens in accordance with ASTM standards. Applicable ASTM standards are referenced
in the following sections.

Compressive Strength
Mechanics of Concrete Deterioration and Failure in Compression The compressive strength
of concrete is one of the most important quantities needed in the design of reinforced
concrete structural members. The mechanical behavior of concrete in compression is
typically acquired by performing tests on concrete cylinders, as shown in Fig. 2.3.

When a concrete cylinder is tested in uniaxial compression in a testing machine that
exerts a force at a moderate rate, vertical cracks will typically form at the midheight of
the specimen parallel to the direction of the maximum compressive force, as shown in
Fig. 2.4. Away from the midheight, the cracks tend to propagate at an angle to the com-
pressive force. This can be attributed to the friction forces that are generated between the
steel plates of the testing machine and the ends of the concrete cylinder because of the



26 C h a p t e r T w o

FIGURE 2.3 Testing
a 6 × 12
in cylinder in
compression.
(Courtesy of the
Portland Cement
Association.)

differences in the modulus of elasticity and Poisson’s ratio of steel and concrete. These
friction forces prevent lateral expansion of the cylinder ends and introduce a lateral
confining pressure and shear stresses at those locations. Thus, triaxial stresses occur at
the ends of the cylinder, and only a small portion of the cylinder near the midheight is
actually loaded in pure axial compression.

FIGURE 2.4 Typical
failure pattern for a
concrete cylinder
in uniaxial
compression.
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FIGURE 2.5 Generalized stress–strain curve for concrete in compression.

A generalized stress–strain curve for concrete in uniaxial compression is illus-
trated in Fig. 2.5. The relationship between stress and strain is relatively linear up to
approximately 30% of the maximum stress. With an increase in compressive stress,
preferentially oriented, preexisting microcracks at the aggregate–cement paste inter-
face (commonly referred to as bond cracks) propagate instantaneously to the edge of
the aggregate facet once the shear stress acting on the faces of the cracks reaches a
critical value. The cracks are temporarily arrested at the edge of the aggregate because
the toughness of the cement paste is greater than that of the interface.

An increasing number of interface cracks become destabilized and increase in length
as the compressive stress increases further. This is reflected in a gradual departure from
linearity in the stress–strain curve. Once the stress exceeds approximately 50% of the
maximum stress, the preferential interface cracks acquire enough energy to overcome
the cement paste barrier, and tension cracks form at their tips and extend into the cement
paste. These tension cracks kink from the original sliding direction and eventually align
themselves in the direction of the axial compressive stress.

The tension cracks in the cement paste propagate in a stable manner with increasing
compressive stress. When the applied compressive stress is at approximately 75% of
the maximum stress, the tension cracks begin to interact with one another and form a
network of internal damage in the concrete. The stress–strain curve becomes even more
nonlinear after this occurs.

Shortly after this stage, the network of cracking becomes unstable, and the load-
carrying capacity of the uncracked portions of the concrete reaches a maximum value.
This maximum stress is referred to as the compressive strength of the concrete and is
designated by the notation f ′

c .
After f ′

c is attained, the concrete can resist only smaller stresses with increasing
strains. If a stiff testing machine that can maintain a constant rate of strain is used,
it is possible to acquire a descending branch of the stress–strain curve. This indicates
that the concrete has not completely failed, even though the maximum stress has been
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FIGURE 2.6
Stress–strain
curves for
compression tests
on concrete mixes
of varying strength.

attained. In summary, the deterioration of concrete in compression is gradual and does
not occur suddenly because of the growth of a single crack.

When load is removed from concrete in the inelastic range, the recovery line is
usually not parallel to the original load line (see Fig. 2.5). Thus, the permanent set in the
concrete due to the compression load is typically different from the amount of inelastic
deformation.

Stress–strain curves of concrete with varying compressive strengths are shown in
Fig. 2.6. It is clear that lower-strength concretes have long and relatively flat peaks
compared with higher-strength concretes that have sharper peaks. It is also evident
that lower-strength concretes are less brittle and fracture at larger maximum strains
than higher-strength concretes.

General Requirements Because concrete is a composite material made of constituent
materials whose properties vary, the strength of concrete will vary. It is common for
compressive strength test results of cylinders cast from the same batch of concrete to
differ, sometimes by relatively large amounts. Thus, the Code utilizes a probabilistic
approach to ensure that adequate strength is developed in a structure. In particular,
the concrete is to be proportioned so that an average compressive strength f ′

cr that
exceeds the specified compressive strength f ′

c is provided. The details of this approach
are outlined in the next section.

According to ACI 5.1, compressive strength is to be determined for a concrete mix-
ture on the basis of compression tests of cylinders that have been molded and cured for
a specified number of days in accordance with ASTM C31/C31M-06, Standard Practice
for Making and Curing Concrete Test Specimens in the Field. Requirements for compression
tests are given in ASTM C39/C39M-05, Standard Test Method for Compressive Strength of
Cylindrical Concrete Specimens.

Cylinders that are 6 in in diameter and 12 in in length are commonly used in
compression tests. ACI 5.6.3.2 also permits the use of 4 × 8 in cylinders. Regardless of
the cylinder size, the procedures for obtaining representative samples of concrete to be
used in compression tests are given in ASTM C172-04, Standard Practice for Sampling
Freshly Mixed Concrete.

It is common practice to test concrete cylinders at 28 days, although it is permitted to
specify a larger number of days where warranted (ACI 5.1.3). Consider, for example, a
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reinforced concrete column that is in the first story of a high-rise building. The specified
compressive strength of the concrete for such columns will usually be greater than 6,000
psi (concrete mixtures with compressive strengths equal to or greater than 6,000 psi
are generally considered to be high-strength concrete). Depending on the size of the
building and the speed of construction, this column will not be fully loaded until a year
or more after it has been cast. Thus, a compressive strength based on 56- or 90-day test
results would typically be specified in a situation like this.

The specified compressive strength of the concrete f ′
c must be indicated in the design

drawings and specifications and must be used in the design calculations. The ACI Code
requires that the specified compressive strength be equal to or greater than 2,500 psi
for concrete structures designed and constructed in accordance with the provisions of
the Code (ACI 1.1.1 and 5.1.1). There is no upper limit on the value of f ′

c that can be
specified except for the maximum values given in specific Code provisions, which will
be discussed later.

Proportioning Concrete Mixtures and Required Average Compressive Strength It is impor-
tant to understand the methodologies in the Code for proportioning concrete mix-
tures and how they relate to compressive strength. In general, a concrete mixture must
be proportioned to satisfy both the strength and durability requirements of a project.
Chapter 5 of the Code describes procedures to produce concrete of adequate strength
and prescribes the minimum criteria for mixing and placing concrete. Chapter 4 con-
tains durability requirements for concrete mixtures on the basis of exposure categories.
Provisions are included in that chapter for maximum water/cementitious materials
ratios and minimum specified compressive strengths as a function of the exposure
class.

In addition to strength and durability, the materials for concrete must be propor-
tioned so that concrete is workable. Fresh concrete is generally considered to be work-
able when it can be easily placed and consolidated in formwork and around reinforcing
bars and when it can be easily finished. Concrete should not segregate during trans-
portation and handling, and excessive bleeding should not occur after it has been cast.
Additional information on workability can be found in Ref. 2.

Two methods are given in the Code for establishing concrete mixture proportions
to satisfy strength requirements. The first method, which is given in ACI 5.3, utilizes
laboratory trial batches, compressive strength test records, or both to determine f ′

cr. In
the second method, no trial mixture data or test records that meet the requirements of
ACI 5.3 are available, and the mixture proportions are based on other experience or
information (ACI 5.4). Details for both methods are discussed next.

Method 1: Proportioning on the basis of field experience or trial mixtures, or both (ACI
5.3) Three steps are given in ACI 5.3 for selecting a suitable concrete mixture that will
satisfy strength requirements:

1. Determine the standard deviation of test records, if available.

2. Determine the required average compressive strength f ′
cr.

3. Select mixture proportions that will produce an average strength equal to or
greater than f ′

cr and also meet the applicable requirements of ACI Chap. 4 for
durability.
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Step 1. When a concrete production facility has at least a single group of 30 consec-
utive strength test records that are not more than 12 months old, the standard deviation
ss can be determined by the requirements of ACI 5.3.1.1. The following equation can be
used to determine ss in this case:

ss =
[∑

(xi − x)2

(n − 1)

]1/2

(2.1)

In this equation, xi is the result from an individual strength test and x is the average
(mean) strength value of n strength tests. Note that one test record is the average strength
of at least two 6 × 12 in cylinders or at least three 4 × 8 in cylinders (see ACI 5.6.2.4 and
the discussion given later).

Where two groups of such tests are available, the standard deviation ss is determined
by the following equation, which is a statistical average value of standard deviation:

ss =
[

(n1 − 1)(ss1)2 + (n2 − 1)(ss2)2

n1 + n2 − 2

]1/2

(2.2)

The quantities ss1 and ss2 are the standard deviations from groups 1 and 2, respectively,
and the quantities n1 and n2 are the number of test results in each group.

If there are less than 30 but at least 15 test results available, the calculated sample
standard deviation must be multiplied by the appropriate modification factor given
in Table 5.3.1.2 of the Code, which is greater than 1.00. Larger values of ss result in
increased values of f ′

cr. In essence, these modification factors provide protection against
the possibility that the true standard deviation is underestimated because of the smaller
number of test results. ACI Table 5.3.2.2 must be used to determine f ′

cr where less than
15 test results are available.

The only test records that should be used in the calculation of ss are those obtained
from a concrete mixture that was produced with the same general types of components,
under similar conditions, and within 1,000 psi of f ′

c as the concrete mixture proposed
in the project. These requirements are deemed necessary to ensure acceptable concrete.
Obviously, test records of a concrete mixture with lightweight aggregate should not be
used to calculate ss for a concrete mixture where normal-weight aggregate is specified.
Similarly, test records of a 7,000 psi concrete mixture should not be used to calculate ss

for a proposed 5,000 psi concrete mixture.
Step 2. Once ss has been established, the equations in ACI Table 5.3.2.1 are used to

calculate the required average compressive strength f ′
cr:

� For f ′
c ≤ 5,000 psi, use the larger value of f ′

cr computed by ACI Eqs. (5-1) and
(5-2).

Equation (5-1): f ′
cr = f ′

c + 1.34ss

Equation (5-2): f ′
cr = f ′

c + 2.33ss − 500

� For f ′
c > 5,000 psi, use the larger value of f ′

cr computed by ACI Eqs. (5-1) and
(5-3).

Equation (5-1): f ′
cr = f ′

c + 1.34ss

Equation (5-3): f ′
cr = 0.9 f ′

c + 2.33ss
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If a concrete production facility does not have the required information needed
to calculate ss , the required average compressive strength f ′

cr is determined by the
equations given in ACI Table 5.3.2.2:

� For f ′
c < 3,000 psi, f ′

cr = f ′
c + 1,000.

� For 3,000 psi ≤ f ′
c < 5,000 psi, f ′

cr = f ′
c + 1,200.

� For f ′
c > 5,000 psi, f ′

cr = 1.10 f ′
c + 700.

Step 3. Once the required average compressive strength f ′
cr has been determined,

concrete mixture proportions that will produce an average compressive strength equal
to or greater than f ′

cr and that will satisfy the durability requirements of Chap. 4 for
the applicable exposure category must be selected. Field strength test records, several
strength test records, or trial mixtures can be used to document that concrete strengths
are satisfactory (see ACI 5.3.3 for more details).

Method 2: Proportioning without field experience or trial mixtures (ACI 5.4) The pre-
ceding discussion has focused on the requirements for determining concrete mix pro-
portions based on laboratory trial batches or strength test records. In cases where such
data are not available, “other experience or information” may be used to proportion a
concrete mixture that has a specified compressive strength f ′

c that is less than or equal
to 5,000 psi, provided the licensed design professional approves the mix (ACI 5.4). The
required average compressive strength f ′

cr determined by this alternative method must
be at least 1,200 psi greater than f ′

c . It is common for this method to be used in smaller
concrete projects where it would be cost-prohibitive to obtain trial mixture data. For
concrete strengths greater than 5,000 psi, proportioning on the basis of field experience
or trial mixture data is required.

The flowchart shown in ACI Fig. R5.3 contains a summary of the requirements for
the selection and documentation of concrete proportions in accordance with ACI 5.3
and 5.4. Utilizing laboratory trial batches or strength test records (ACI 5.3) is the pre-
ferred method for selecting concrete mixture proportions (see ACI R5.2.3). Additional
information on proportioning mixtures can be found in ACI 211.1, Standard Practice for
Selecting Proportions for Normal, Heavyweight, and Mass Concrete,8 ACI 211.2, Standard
Practice for Selecting Proportions Lightweight Concrete,9 and Ref. 2.

Evaluation and Acceptance of Concrete Once a concrete mixture has been selected on
the basis of the provisions of ACI 5.3 or 5.4, the provisions of ACI 5.6 are used to
determine if the concrete is acceptable or not. In addition to providing the criteria for
evaluation and acceptance, ACI 5.6 provides a course of action that must be followed
when unsatisfactory strength test results are obtained.

ACI 5.6.1 stresses the importance of using qualified laboratory and field technicians
to perform tests and other tasks in the laboratory and at the job site. Laboratory person-
nel should be certified in accordance with the ACI Laboratory Technician Certification
Program or ASTM C1077-07, Standard Practice for Laboratories Testing Concrete and Con-
crete Aggregates for Use in Construction and Criteria for Laboratory Evaluation. Similarly,
field technicians should be certified in accordance with the ACI Concrete Field Testing
Technician Certification Program or ASTM C1077-07.



32 C h a p t e r T w o

Frequency Minimum Number of Samples for Each Class of Concrete

Per day Largest of the following:
� One
� One for each 150 yd3 of concrete that is placed
� One for each 5,000 ft2 of surface area that is placed for slabs or walls

Per project � Five from five randomly selected batches where more than five batches
of concrete are used

� One from each batch where less than five batches of concrete are used

TABLE 2.3 Minimum Number of Samples for Strength Tests where the Total Quantity of a Given
Class of Concrete Is Equal to or Greater Than 50 yd3

Frequency of testing Because the Code utilizes probabilistic methodologies to es-
tablish the strength of concrete, a statistically significant number of samples must be
taken to validate strength results.

The minimum number of samples for strength tests is summarized in Table 2.3 in
cases where the total quantity of concrete is equal to or greater than 50 yd3. ACI 5.6.2
prescribes the minimum number of samples that must be taken per day and per project
for each class of concrete that is specified in a project. The larger of the two minimum
numbers of samples governs.

By examining the second and third criteria for sampling on a per day frequency,
it is evident that the third criterion will require more frequent sampling than once for
each 150 yd3 of concrete that is placed where the thickness of a slab or wall is less
than approximately 9.75 in. Only one side of a slab or wall should be considered when
calculating its surface area.

It is very important that the samples that are taken for a project are done so on a
strictly random basis to ensure validity of the statistical analysis. The procedure that
must be used for random selection of concrete batches to be tested is provided in ASTM
D3665-07, Standard Practice for Random Sampling of Construction Materials.

Where the total quantity of a given class of concrete is less than 50 yd3, strength
tests are not required provided that evidence of satisfactory strength is submitted to
and approved by the building official (ACI 5.6.2.3).

It was noted previously that the compressive strength of concrete is determined on
the basis of the results from compression tests using 6 × 12 in or 4 × 8 in cylinders. A
strength test is defined in ACI 5.6.2.4 as the average strength obtained from at least two
6 × 12 in cylinders or three 4 × 8 in cylinders. The cylinders must be made from the
same sample of concrete and must be tested at the date specified for the compressive
strength f ′

c .
At least three 4 × 8 in cylinders must be tested to preserve the confidence level of the

average strength results because the results obtained from the smaller cylinders tend to
be more variable than those obtained from the 6 × 12 in cylinders. The 4 × 8 in cylinders
are generally more popular because they weigh less and require approximately one-
half of the testing capacity of the 6 × 12 in cylinders. This last attribute is especially
important when high-strength concrete is tested: The smaller cylinders generally do
not require high-capacity testing equipment, which is typically not available in most
testing laboratories.
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For overall consistency, the size and number of concrete cylinders that are used for
a strength test should remain constant for each class of concrete that is specified in a
project.

Acceptability of strength Regardless of the method that was used to proportion a
concrete mixture, concrete strength of an individual class of concrete is considered to
be satisfactory when both of the following requirements are met (ACI 5.6.3.3):

1. Averages of any three consecutive strength tests are equal to or greater than the
specified concrete strength f ′

c .

2. No individual strength test falls below 500 psi when f ′
c ≤ 5,000 psi or by more

than 0.10 f ′
c when f ′

c > 5,000 psi.

Requirements and procedures for investigating test results that do not meet these
requirements are covered in the next section.

Investigation of low-strength test results When either of the two requirements of ACI
5.6.3.3 is not met, the average of the concrete tests results needs to be increased. ACI
R5.6.3.4 contains steps that can be taken to increase the average test results where the
first of these two requirements is not satisfied.

The procedures outlined in ACI 5.6.5 must be followed if it is found (1) that the
strength tests of laboratory-cured cylinders fall below f ′

c more than the values given in
the second of the two requirements of ACI 5.6.3.3 or (2) that tests of field-cured cylinders
do not satisfy the strength requirements of ACI 5.6.4.4.

There are many potential reasons for low-strength test results. Some of the most
common are the following:

1. Improper fabrication, handling, and testing of the cylinders. ASTM standards are not
followed and/or uncertified personnel perform the tasks in the field and/or in
the laboratory.

2. Error in concrete production. The intended concrete mixture was not produced at
the concrete production facility according to the specified mixture proportions.

3. Addition of mixing water at the site. Water was added to the concrete at the site
to achieve a higher slump concrete and/or to “improve” workability.

Regardless of the reason why concrete failed to meet the acceptance criteria, the
licensed design professional must ensure that the load-carrying capacity of the structure
is not jeopardized. In certain cases, a lower-strength concrete may not be detrimental
to the performance of the structure.

Nondestructive testing of the concrete in a structure can help determine whether
low-strength concrete is present or not. ACI R5.6.5 lists a number of such tests. The
results from nondestructive tests should primarily be used to compare the relative
strength of concrete in different portions of a structure rather than to establish the
actual strength of concrete.

Drilling and subsequently testing cores taken from the area of a structure with
suspect concrete is another method that is permitted to establish concrete strength. A
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minimum of three cores must be taken and tested in accordance with ASTM C42/C42M-
04, Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete,
for each strength test that falls below the second of the two values given in ACI 5.6.3.3
(ACI 5.6.5.2). Additional requirements for acquisition and testing are given in ACI
5.6.5.3. According to ACI 5.6.5.4, concrete in the area of a structure where core tests
have been performed is deemed structurally adequate when the following two criteria
are satisfied: (1) the strength obtained from the average of three cores is equal to or
greater than 0.85 f ′

c , and (2) the strength of no single core is less than 0.75 f ′
c .

Strength evaluation of the structure in accordance with Chap. 20 of the Code may
be undertaken on a questionable portion of a structure if the criteria for core tests are
not satisfied or if for any reason the adequacy of a structure remains in doubt (ACI
5.6.5.5). Load testing procedures and acceptance criteria are contained in that chapter.

Example 2.1 Table 2.4 contains the test records obtained from a concrete production facility for
a normal-weight concrete mixture that has a 28-day specified compressive strength f ′

c of 4,000
psi. Strength tests were obtained from 6 × 12 in cylinders. The concrete will be used for the floor
slabs in an enclosed building. Assume that the records were established in accordance with the
requirements of ACI 5.3.1.1.

Determine the following:

(a) The sample standard deviation ss for the test records

(b) The required average compressive strength f ′
cr

(c) The water/cementitious materials ratio to satisfy strength requirements and the applicable
durability requirements of ACI Chap. 4

Solution
(a) The results for the individual 6 × 12 in cylinders are given in columns 3 and 4 of Table 2.4. A

minimum of two 6 × 12 in cylinders are required per ACI 5.6.2.4. The average of the two cylinder
tests is given in column 5, which is the strength test result.

The sample standard deviation is determined by Eq. (2.1):

ss =
[∑

(xi − x)2

(n − 1)

]1/2

In this equation, xi is the result from an individual strength test and x is the average (mean) strength
value of n strength tests. The mean strength for 30 tests is equal to the sum of the values in column
5 of Table 2.4 (or column 2 of Table 2.5) divided by 30:

x = 4,845 + · · · + 4,990
30

= 156,320
30

= 5,211 psi

The data in column 3 of Table 2.5 are obtained by subtracting the 28-day average strength by
the mean strength. For example, for test 1, xi − x = 4,845 − 5,211 = −366 psi.

Given the data in Table 2.5, the sample standard deviation is

ss =
[

10,425,290
30 − 1

]1/2

= 600 psi

On the basis of the data in Table 2.4, the concrete satisfies the acceptance criteria of ACI 5.6.3:

1. The arithmetic average of each set of three consecutive strength tests, which is given in column
6 of Table 2.4, exceeds f ′

c = 4,000 psi.

2. No single strength test is less than 4,000 − 500 = 3,500 psi.
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28-day Average,
Test Mix F28 Test 1 F28 Test 2 28-day Average Three Consecutive
Number Code (psi) (psi) (psi) Tests (psi)

1 L-1000 4K 5,050 4,640 4,845 —

2 L-1000 4K 4,890 5,170 5,030 —

3 L-1000 4K 5,690 5,670 5,680 5,185

4 L-1000 4K 5,770 5,370 5,570 5,427

5 L-1000 4K 5,990 6,120 6,055 5,768

6 L-1000 4K 5,740 5,770 5,755 5,793

7 L-1000 4K 5,730 5,460 5,595 5,802

8 L-1000 4K 5,290 5,650 5,470 5,607

9 L-1000 4K 5,880 5,920 5,900 5,655

10 L-1000 4K 5,840 5,770 5,805 5,725

11 L-1000 4K 5,050 4,840 4,945 5,550

12 L-1000 4K 5,080 5,110 5,095 5,282

13 L-1000 4K 5,840 5,940 5,890 5,310

14 L-1000 4K 6,010 5,440 5,725 5,570

15 L-1000 4K 5,270 4,990 5,130 5,582

16 L-1000 4K 5,160 4,950 5,055 5,303

17 L-1000 4K 6,570 6,610 6,590 5,592

18 L-1000 4K 4,370 4,270 4,320 5,322

19 L-1000 4K 4,140 4,460 4,300 5,070

20 L-1000 4K 4,660 4,650 4,655 4,425

21 L-1000 4K 4,550 4,600 4,575 4,510

22 L-1000 4K 5,220 5,090 5,155 4,795

23 L-1000 4K 5,580 5,270 5,425 5,052

24 L-1000 4K 5,580 5,930 5,755 5,445

25 L-1000 4K 5,150 5,190 5,170 5,450

26 L-1000 4K 4,390 4,240 4,315 5,080

27 L-1000 4K 4,670 4,760 4,715 4,733

28 L-1000 4K 4,660 4,420 4,540 4,523

29 L-1000 4K 4,220 4,320 4,270 4,508

30 L-1000 4K 4,940 5,040 4,990 4,600

TABLE 2.4 Concrete Strength Test Records for Example 2.1
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Test Number 28-day Average (psi) xi − x (psi) (xi − x)2 (psi)

1 4,845 −366 133,956

2 5,030 −181 32,761

3 5,680 469 219,961

4 5,570 359 128,881

5 6,055 844 712,336

6 5,755 544 295,936

7 5,595 384 147,456

8 5,470 259 67,081

9 5,900 689 474,721

10 5,805 594 352,836

11 4,945 −266 70,756

12 5,095 −116 13,456

13 5,890 679 461,041

14 5,725 514 264,196

15 5,130 −81 6,561

16 5,055 −156 24,336

17 6,590 1,379 1,901,641

18 4320 −891 793,881

19 4,300 −911 829,921

20 4,655 −556 309,136

21 4,575 −636 404,496

22 5,155 −56 3,136

23 5,425 214 45,796

24 5,755 544 295,936

25 5,170 −41 1,681

26 4,315 −896 802,816

27 4,715 −496 246,016

28 4,540 −671 450,241

29 4,270 −941 885,481

30 4,990 −221 48,841∑
156,320 10,425,290

TABLE 2.5 Data for Calculation of Standard Deviation in Example 2.1

Note that the average of the first set of three consecutive tests is equal to (4,845 + 5,030 +
5,680)/3 = 5,185 psi; the average of the second set is equal to (5,030 + 5,680 + 5,570)/3 = 5,427 psi;
and so on.

(b) Because strength data were used to establish a sample standard deviation, the required
average compressive strength f ′

cr is the larger of the values determined by Eqs. (5-1) and (5-2)
where f ′

c ≤ 5,000 psi (see ACI Table 5.3.2.1):
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Additional Minimum Requirements

Limits on
Exposure Maximum Minimum Cementitious
Class w/cm f ′

c (psi) Air Content Materials

F0 N/A 2,500 N/A N/A

Cementitious materials—types Calcium
chloride
admixture

ASTM C150 ASTM C595 ASTM C1157

S0 N/A 2,500 No type
restriction

No type
restriction

No type
restriction

No
restriction

P0 N/A 2,500 None

Maximum water-soluble chloride ion
content in concrete, percent by weight
of cement for reinforced concrete

Related
provisions

C0 N/A 2,500 1.00 None

TABLE 2.6 Requirements for Concrete by Exposure Class for Example 2.1

Equation (5-1): f ′
cr = f ′

c + 1.34ss = 4,000 + (1.34 × 600) = 4,804 psi
Equation (5-2): f ′

cr = f ′
c + 2.33ss − 500 = 4,000 + (2.33 × 600) − 500 = 4,898 psi (governs)

(c) It was determined in part (b) of this example that the required average compressive strength
f ′
cr is equal to 4,898 psi, which for practical purposes will be rounded up to 5,000 psi. The durability

provisions of Chap. 4 of the Code will be examined to determine if a larger compressive strength
is required or not.

An exposure class must be assigned on the basis of the severity of the anticipated exposure of
the floor slabs in the building (ACI 4.2.1). It is common for structural members that are located
inside of a building (not exposed to the elements) to be assigned the following exposure classes
(see ACI Table 4.2.1):

� F0—Concrete is not exposed to freeze–thaw cycles.
� S0—Water-soluble sulfate concentration in contact with concrete is low, and sulfate attack is not

a concern.
� P0—No specific requirements are needed for permeability.
� C0—Additional protection against the initiation of corrosion of reinforcement is not required.

The applicable requirements for concrete mixtures from ACI Table 4.3.1 are summarized in
Table 2.6 for the exposure classes in this example.

It is evident from Table 2.6 that no durability limitations are prescribed on the water/
cementitious materials ratio w/cm for the concrete in this example. Also, the minimum compressive
strength of 2,500 psi is less than the required average compressive strength of 5,000 psi. Therefore,
the concrete production facility can utilize the concrete mixture design that is designated by the
mix code L-1000 4K for the concrete slabs.

Comments
Once test results from cylinders cast from the concrete during construction become available, it may
be possible to reduce the amount by which the value of f ′

cr must exceed the value of f ′
c [which is
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equal to approximately 900 psi; see part (b) of this example] by using a sample standard deviation
based on the actual construction data. This reduction will typically produce a more economical
concrete mixture.

If the concrete production facility had, for example, only the first 20 strength test records of
Table 2.4, the sample standard deviation is calculated by Eq. (2.1) for the 20 records. Because
there are less than 30 records, that number would be multiplied by the applicable modification
factor given in ACI Table 5.3.1.2, which in this case is 1.08 for 20 test records. The modified sample
standard deviation is used in ACI Eqs. (5-1) and (5-2) to determine the required average compressive
strength f ′

cr.

Example 2.2 The concrete in Example 2.1 will be placed in the floor slabs of a 20-story building. A
typical floor plate is 63 ft 3 in × 163 ft 0 in, and the slab is 8 in thick. The concrete will be delivered
to the site in concrete trucks that have a capacity of 10 yd3, and one typical floor will be placed in 1
day. Determine the minimum number of 6 × 12 in and 4 × 8 in cylinders that must be cast to satisfy
the sampling requirements of ACI 5.6.2.

Solution
Because the concrete will be placed in a 20-story building, the minimum required number of test
cylinders in accordance with ACI 5.6.2.1 will be greater than the minimum required in accordance
with ACI 5.6.2.2.

The minimum number of samples is the largest of the following:

1. One.

2. One for each 150 yd3 of concrete that is placed.

Total volume of concrete per floor = 8
12

× 68.33 × 163 = 7,425 ft3 = 275 yd3

Minimum required number of samples = 275
150

= 1.8

A minimum of two samples are required for each floor on the basis of this criterion.

3. One for each 5,000 ft2 of surface area that is placed for slabs or walls
Total surface area per floor = 68.33 × 163 = 11,138 ft2

Minimum required number of samples = 11,138
5,000

= 2.3

A minimum of three samples are required for each floor on the basis of this criterion (governs).

On the basis of the strength test requirements of ACI 5.6.2.4, the required number of cylinders
per floor is the following:
� For 6 × 12 in cylinders, 2 × 3 = 6 cylinders
� For 4 × 8 in cylinders, 3 × 3 = 9 cylinders

A minimum of 120 of the 6 × 12 in cylinders or 180 of the 4 × 8 in cylinders are required to
determine the acceptable strength of the floor slab concrete mixture in this project.

Comments
In a given project, additional cylinders are typically cast and kept in reserve in case any anomalies
occur in the test data. Some cylinders are usually tested at 7 days to check, among other things,
early strength development of the concrete; this information is used to determine when formwork
can be safely removed.

Example 2.3 The strength test data in Table 2.7 were obtained from 4 × 8 in cylinders that were
sampled from the concrete cast on site for one of the typical floors of the project outlined in Ex-
amples 2.1 and 2.2. The cylinders were tested at 28 days. Determine if the concrete is acceptable in
accordance with ACI 5.6.3.

Solution The average strength values in column 5 of Table 2.7 represent a single test record based
on the results from the three sample tests.
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28-day 28-day Average,
Test Sample 1 Sample 2 Sample 3 Average Three Consecutive
Number (psi) (psi) (psi) (psi) Tests (psi)

1 3,760 3,950 3,875 3,860 —

2 4,425 4,175 4,815 4,470 —

3 4,080 4,220 3,990 4,095 4,142

TABLE 2.7 Strength Test Results from Cylinders Cast on Site in Example 2.3

According to ACI 5.6.3.3, strength level is considered satisfactory when both of the following
criteria are satisfied:

� Every arithmetic average of any three consecutive strength tests is equal to or greater than f ′
c .

This criterion is satisfied because the average of the three sets of strength tests is equal to 4,142
psi, which is greater than 4,000 psi.

� No strength test falls below f ′
c by more than 500 psi when f ′

c is less than 5,000 psi.

The test record for test 1 is equal to 3,860 psi, which falls below the specified compressive
strength of 4,000 psi by 140 psi. Because this is less than 500 psi, this criterion is satisfied.

If this criterion is not satisfied, the procedure in ACI 5.6.5 must be followed to investigate the
low-strength test results.

Modulus of Elasticity
The modulus of elasticity of concrete Ec (Young’s modulus) is used in the design of con-
crete members, including design for deflections and of slender columns. The empirical
equation provided in ACI 8.5.1 gives an approximate value of Ec :

Ec = w1.5
c 33

√
f ′
c (2.3)

In this equation, wc is the unit weight of normal-weight concrete or the equilibrium
density of lightweight concrete, which must be between 90 and 160 pcf. The compressive
strength f ′

c has the units of pounds per square inch.
The equation is derived from experimental data and is based on the secant modulus

of elasticity, which is defined as the slope of the straight line connecting the point of
zero stress and the stress at approximately 0.45 f ′

c (see Fig. 2.5).
For normal-weight concrete with wc = 145 pcf,

Ec = 57,000
√

f ′
c (2.4)

The typical range of Ec for normal-weight concrete is 2,000,000 to 6,000,000 psi.
In addition to the compressive strength of concrete, other factors effect Ec , which are
discussed next.

The porosity of cement paste has a direct influence on the value of Ec . The porosity
of the paste increases as the water/cement ratio increases; thus, both the strength and
the modulus of elasticity of cement paste decrease as the water/cement ratio increases.
This is accounted for in the equation by expressing Ec as a function of f ′

c : An increase
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in the water/cement ratio translates into a lower compressive strength, which results
in a lower value of Ec .

The magnitude of Ec is also dependent on the amount and type of aggregate that is
used in a concrete mixture. It is evident from the mechanics of concrete deterioration and
failure in compression that the elastic modulus is partially dependent on the progressive
microcracking at the aggregate–cement paste interface. Thus, the shape, texture, and
total amount of aggregate have an influence on Ec . For example, concrete mixtures
produced with rounded gravel have values of Ec that are greater than those produced
with crushed stone. Similarly, concrete mixtures that have larger maximum aggregate
sizes have greater values of Ec than those that have smaller maximum aggregate sizes.

Normal-weight aggregates have modulus of elasticity values that are many times
greater than those of cement paste, whereas lightweight aggregates have values that
are closer to those of cement paste. Consequently, values of Ec are greater for normal-
weight concrete that contains larger amounts of normal-weight aggregate. The amount
of lightweight aggregate in a mixture generally has little effect on Ec . Values of Ec

for concrete mixtures with lightweight aggregate are typically 40% to 80% of those for
concrete mixtures with normal-weight aggregate.

The empirical equation does not capture the influence that aggregates have on the
value of Ec . Consequently, measured values of the elastic modulus can range between
80% and 120% of the values determined by Eq. (2.3) or (2.4).

For concrete mixtures with aggregates that have relatively low values of the mod-
ulus of elasticity, the provided equation will overestimate Ec . It is important to under-
stand the possible implications of overestimating Ec . Consider a reinforced concrete
beam in a building. The calculated deflection of the beam using the value of Ec from
the empirical equation would most probably be less than the actual deflection. This
may not be an issue in typical situations, but if the beam is to support a glass partition
wall that is sensitive to deflections, this could lead to problems. Where deflections are
critical, it is recommended to use measured values of Ec . Methods for determining
Ec are given in ASTM C469-02, Standard Test Method for Static Modulus of Elasticity and
Poisson’s Ratio of Concrete in Compression.

Tensile Strength
Mechanics of Concrete Deterioration and Failure in Tension The behavior of concrete in
tension is significantly different from its behavior in compression. Consider a plain
concrete specimen that is subjected to a uniform tensile force. The preexisting cracks at
the aggregate–cement paste interface that are oriented perpendicular to the direction
of the force propagate instantaneously to the edge of the aggregate facet once the stress
at the tips of the cracks reaches a critical value. Because the toughness of the paste is
greater than that of the interface, the cracks are arrested at the edge of the aggregate.

With an increase in tensile force, an increasing number of cracks become unstable.
Exactly which cracks become destabilized at a given tensile force depends on their
orientation with respect to the direction of the force and their initial length.

As the tensile force increases further, a point at which the preferentially oriented
cracks overcome the energy barrier at the facet edge is reached. The microcracks prop-
agate into the cement paste in an unstable manner. For all practical purposes, failure of
the entire specimen is imminent at this point because there is essentially no mechanism
that can prevent the cracks from splitting the concrete perpendicular to the applied
tensile force.



41M a t e r i a l s

Unlike concrete in compression, the deterioration of concrete in tension is not grad-
ual, and failure occurs suddenly because of the growth of a single crack.

The tensile strength of concrete is significantly smaller than the compressive
strength primarily because of the ease with which the cracks can propagate under ten-
sile loads. It is commonly assumed that the tensile strength is equal to 10% of the com-
pressive strength. More information on tensile tests and the relationship between the
tensile strength and the compressive strength is given later.

The tensile strength of concrete is usually not considered in the design of structural
members because it is small, and it is generally taken equal to zero. As was discussed
in Chap. 1, reinforcement is utilized to resist tensile stresses in concrete.

Tension Tests To date, there is no standard test by ASTM to determine the direct tensile
strength of concrete. ASTM D2936-08, Standard Test Method for Direct Tensile Strength of
Intact Rock Core Specimens, covers the determination of the direct tensile strength of intact
cylindrical rock specimens, but it does not specifically address concrete specimens.
Specimens with enlarged ends that resemble a “dog bone” and cylindrical or prismatic
specimens with end plates glued to the concrete have been used by various researchers
to obtain direct tensile strengths. However, issues with respect to specimen preparation
and test setup have made the results difficult to reproduce. As a result, indirect tests
have been standardized for estimating the tensile strength of concrete. The two most
common ones are discussed next.

Splitting tension test In a splitting tension test, a standard cylinder or a drilled core
is tested on its side as illustrated in Fig. 2.7a . Methods for determining the splitting
tensile strength of concrete are given in ASTM C496/C496M-04, Standard Test Method
for Splitting Tensile Strength of Cylindrical Concrete Specimens.

The compression force applied from a testing machine along the diameter of the
specimen introduces very high lateral compressive stresses near the points of load
application and a nearly uniform lateral tensile stress over approximately the middle

(b)(a)

FIGURE 2.7 Splitting tension test: (a) test procedure and (b) lateral stress distribution on vertical
diameter of cylinder.
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FIGURE 2.8 Flexural
test of concrete by
third-point loading
method.

two-thirds of the specimen (Fig. 2.7b). Because the concrete is stronger in compression
than in tension, the specimen will split along the diameter of the specimen before it
crushes at its ends. The stress at which splitting occurs is defined as the splitting tensile
strength of concrete T and can be calculated by Eq. (1) of ASTM C496/C496M:

T = 2P
π�d

(2.5)

where P = is maximum applied load indicated by the testing machine
� = length of specimen
d = diameter of specimen

The value of the tensile strength obtained from split cylinder tests is approximately
15% greater than that from direct tension tests.

Flexural test In a flexural test, a plain concrete beam is loaded at its third points,
as illustrated in Fig. 2.8. Methods for determining the flexural strength of concrete are
given in ASTM C78-02, Standard Test Method for Flexural Strength of Concrete (Using Simple
Beam with Third-point Loading).

The point loads introduce tensile stresses at the bottom surface of the specimen and
compressive stresses at the top surface. The tensile strength R (or modulus of rupture)
of concrete is calculated by Eq. (2) of ASTM C78 if fracture initiates in the tension surface
within the middle third of the span length:

R = PL
bd2 (2.6)

where P = maximum applied load indicated by the testing machine
L = span length
b = average width of the specimen
d = average depth of the specimen

If fracture occurs in the tension face outside of the middle third of the span length
by not more than 5% of the span length, R is determined by Eq. (3) of ASTM C78:

R = 3Pa

bd2 (2.7)
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where a = average distance between the line of fracture and the nearest support mea-
sured on the tension surface of the beam.

Results of a test are to be discarded where fracture occurs outside of the middle
third of the span length by more than 5% of the span length.

ASTM C293-02, Standard Test Method for Flexural Strength of Concrete (Using Simple
Beam with Center-point Loading), can also be used to determine the flexural strength. A
single concentrated load is applied to a plain concrete beam at midspan. The tensile
strength is calculated by Eq. (2) of ASTM C293:

R = 3PL

2bd2 (2.8)

where all terms have been defined previously.
The value of tensile strength obtained from flexural tests is approximately 50%

greater than that from direct tension tests. This can be attributed to the assumption that
the flexural stress varies linearly over the depth of the cross-section [see Eqs. (2.7) and
(2.8)]; the actual distribution of flexural stress is nonlinear, especially at the surfaces
farthest from the neutral axis.

Relationship Between Tensile and Compressive Strengths As was noted at the beginning of
this section, the tensile strength of concrete is commonly taken as 10% of the compressive
strength. However, test results have revealed that the ratio of the tensile strength to the
compressive strength decreases as the compressive strength increases.

It can be shown that the modulus of rupture is approximately proportional to the
square root of the compressive strength. ACI Eq. (9-10) defines the modulus of rupture
fr that is to be used when calculating deflections:

fr = 7.5λ
√

f ′
c (2.9)

In this equation, f ′
c has the units of pounds per square inch and λ is a modification

factor that reflects the reduced mechanical properties of lightweight concrete (see ACI
8.6.1):

� λ = 0.85 for sand-lightweight concrete.
� λ = 0.75 for all-lightweight concrete.
� λ = fct/6.7

√
f ′
c ≤ 1.0, where the average splitting tensile strength of light-

weight concrete fct has been determined by tests [Eq. (1) in ASTM C496/
C496M]. Note that 6.7

√
f ′
c is the average splitting tensile strength of normal-

weight concrete.
� λ = 1.0 for normal-weight concrete.

It is permitted to use linear interpolation to determine λ in cases where a concrete
mixture contains normal-weight fine aggregate and a blend of lightweight and normal-
weight coarse aggregates. The interpolation shall be between 0.85 and 1.0 on the basis
of the volumetric fractions of the aggregates.

A lower value of fr is used in strength calculations; this will be discussed in subse-
quent chapters of this book.
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Strength Under Combined Stress
Reinforced concrete structural members are rarely subjected to a single type of stress.
Most members must be designed to resist a combination of compressive, tensile, and
shear stresses that all act at the same time. For example, a beam in a building must be
designed to resist the combined effects due to flexural (compressive and tensile) and
shear stresses and sometimes due to axial (compressive and tensile) stresses.

Regardless of its complexity, a state of combined stress can be resolved into three
principal stresses that are oriented perpendicular to each other. The state of stress is
uniaxial when two of the principal stresses are zero and is biaxial when one of the
principal stresses is zero. A triaxial state of stress occurs when all three stresses are
nonzero. Both biaxial and triaxial states of stress are examined next for plain concrete
members.

Biaxial Stress
Biaxial tension In this case, both an axial tensile stress and a lateral tensile stress

are applied to concrete, as illustrated in Fig. 2.9a . Assume that the axial stress is greater
than the lateral stress. Like in the case of uniaxial tension, the first microcrack to increase
in size is the one of maximum length that is oriented perpendicular to the direction of
maximum tensile stress. Once this critical crack overcomes the energy barrier at the
edge of the aggregate, the crack propagates through the matrix in an unstable manner
and failure occurs.

Some experimental results have shown that the biaxial tensile strength of concrete
is equal to the uniaxial tensile strength,10 whereas others have reported an increase of
approximately 18% where the applied lateral stress is equal to 50% of the applied axial
stress.11

Biaxial compression-tension Where a lateral tensile stress is present with an axial
compressive stress, destabilization of the preferentially oriented interface cracks occurs
sooner than it does for uniaxial compression (see Fig. 2.9b). The kinked cracks propagate
into the matrix in a stable manner until they acquire a certain length. With the presence

(b)(a) (c)

FIGURE 2.9 Concrete specimen subjected to biaxial stresses: (a) biaxial tension, (b) biaxial
compression-tension, and (c) biaxial compression.



45M a t e r i a l s

of lateral tensile stresses, these cracks become destabilized, and failure of the specimen
occurs relatively quickly by splitting perpendicular to the direction of the tensile stress.

The experimental results reported in Ref. 10 show that concrete subjected to a state
of biaxial compression-tension fails sooner than it would if subjected to only uniaxial
compression. This is also shown to be true for concrete subjected to an axial tensile
stress and a compressive lateral stress.

Biaxial compression A concrete specimen subjected to biaxial compression is il-
lustrated in Fig. 2.9c. In general, lateral confining (compression) stresses inhibit the
damage processes: Crack propagation along the interface and into the cement matrix
occurs later than it does for uniaxial compression, and the period of stable crack growth
in the matrix is longer. In short, the concrete behaves in a more ductile manner, and it
fails at a larger stress than it would if subjected to only uniaxial compression.10

Where the applied lateral compressive stress is equal to or less than approximately
5% of the applied axial compressive stress, the mode of failure is similar to that of
uniaxial compression. For larger lateral confining pressures, the specimen typically
splits at an angle of approximately 60 degrees from the horizontal in a shearing mode
of failure. Where the lateral stress is almost equal to the axial stress, a strength increase
of approximately 20% is attained.

Triaxial Stress Concrete specimens subjected to triaxial compressive stresses generally
have greater strength and exhibit more ductility than those subjected to uniaxial com-
pressive stress. For relatively low lateral compressive stresses, the mode of failure is
similar to that for uniaxial and biaxial compressive stresses: The specimen eventually
splits parallel to the longitudinal axis of the member. A shearing mode of failure is
evident with relatively large lateral compressive stresses.

Triaxial tests on concrete cylinders show that concrete strength increases by approx-
imately a factor of 5 where the specimen is subjected to a constant lateral stress that
is approximately equal to the unconfined compressive strength of the concrete.12 The
tests also show that confined concrete exhibits significantly more ductility with long
and relatively flat descending branches of the stress–strain curve. For the case where
the lateral stress is approximately equal to the unconfined compressive strength, the
strain at the peak of the curve is equal to approximately 10 times that of the unconfined
concrete.

ASTM C801-98, Standard Test Method for Determining the Mechanical Properties of Hard-
ened Concrete Under Triaxial Loads, covers the procedures for testing hardened concrete
subjected to triaxial stresses. It was withdrawn in 2004 without a replacement.

Reinforcement is typically used to confine concrete to increase its strength and duc-
tility. Confining concrete in key structural elements of a building is especially important
in areas of high seismic risk.

The behavior of concrete subjected to uniaxial compression and lateral tension in
two orthogonal directions is similar to that for biaxial compression-tension.

Poisson’s Ratio
Poisson’s ratio, which is the ratio of the transverse strain to the axial strain of an axially
loaded member, can be determined by direct strain measurements when a concrete
specimen is tested in compression. Methods for determining Poisson’s ratio are given
in ASTM C469.
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Poisson’s ratio generally falls in the range of 0.15 to 0.20 for both normal-weight and
lightweight concretes, and it remains approximately constant under sustained loads. It
is commonly taken as 0.20.

At a stress of approximately 50% of f ′
c , which generally corresponds to the onset of

microcracks propagating into the cement matrix, there is an increase in Poisson’s ratio;
this is evident by an increase in the ratio of the lateral strain ε3 to the longitudinal strain
ε1. This trend continues as cracking increases with increased stress. Volumetric strain
(defined as the ratio of the change in volume of a body to the deformation to its original
volume, which is equal to ε1 + 2ε3) also increases at this stage. This translates into an
increase in concrete volume.

Volume Changes
Shrinkage, creep, and thermal expansion are the three main types of volume changes
that can occur in concrete members. These types of volume changes can cause strains
and cracking in a concrete member, which can have a direct influence on strength and
serviceability.

Shrinkage Shrinkage is defined as the decrease of hardened concrete volume with time.
The decrease in volume can be attributed to changes in moisture content and chemical
changes, which occur without the presence of external loading on the concrete. The
main types of shrinkage are the following:

1. Drying shrinkage. Drying shrinkage is due to moisture loss in concrete that is
exposed to the environment and is permitted to dry. Any workable concrete
mixture contains more water than is needed for hydration. The excess water—
commonly referred to as free water—evaporates with time, which leads to
gradual shortening of a concrete member. This is the predominant type of
shrinkage for concrete that is not high-strength concrete and is not exposed to
a carbon dioxide–rich environment.

2. Autogenous shrinkage. Autogenous shrinkage is due to the hydration reac-
tions taking place inside the cement matrix. It is typically neglected except
for high-strength concrete mixtures where the water/cement ratio is less than
0.40.13

3. Carbonation shrinkage. Carbonation shrinkage is caused by the reaction of cal-
cium hydroxide in the cement matrix with carbon dioxide in the atmosphere
(e.g., the atmosphere that can be present in a parking garage). This type of
shrinkage can be of the same order of magnitude as that of drying shrinkage
under certain environmental conditions.

Drying shrinkage is covered in the following discussion.
Ambient temperature, relative humidity, aggregate type, and concrete member size

and shape are variables that influence shrinkage. Larger amounts of shrinkage occur
in environments where the relative humidity is 40% or less, and virtually no shrinkage
occurs where the relative humidity is 100%. Shrinkage can partially be recovered by
rewetting the concrete, but complete recovery cannot occur.

Shrinkage takes place primarily in the cement paste and not in the aggregates. As a
result, the cement paste tends to pull away from the aggregates, which causes tension in
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where t = time after loading in days
νu = ultimate creep coefficient = 2.35

γ�a = correction coefficient that accounts for age of concrete at loading
= 1.25(t�a )−0.118

t�a = age of concrete at time of loading in days (greater than 7 days)
γλ = correction factor that accounts for relative humidity

= 1.27 − 0.0067λ for λ > 40
λ = relative humidity expressed as a percentage

γvs = correction factor that accounts for volume/surface ratio (v/s) of con-
crete member

= 2[1 + 1.13e−0.54(v/s)]/3 with (v/s) in inches

If concrete is unloaded, essentially all of the elastic strain is recovered immediately,
and a portion of the total creep strain is recovered over time (see Fig. 2.11). A rela-
tively large portion of the total creep strain is irreversible; this translates to permanent
deformation (strain) in the member.

A test method that measures the load-induced time-dependent creep strain at se-
lected ages for concrete under an arbitrary set of controlled environmental conditions
is given in ASTM C512-02, Standard Test Method for Creep of Concrete in Compression.

In reinforced concrete members, creep strains are distributed between concrete and
reinforcement, resulting in lower creep strains in the concrete. Nevertheless, the effects
of creep on deflections of structural members must be considered, and methods to
include the effects of creep in the design process are covered in subsequent chapters of
this book.

Thermal Expansion Concrete expands when subjected to increasing temperatures and
contracts when subjected to decreasing temperatures. The following factors have an
influence on the coefficient of thermal expansion of concrete: (1) type and amount of
aggregate, (2) moisture content, (3) mixture proportions, (4) cement type, and (5) age.
The first two factors typically have the greatest affect.

Reference 15 contains equations to predict the coefficient of thermal expansion
based on the degree of saturation of the concrete and the average thermal coefficient
of the aggregate. In general, the coefficient is within the range of 5.5 to 6.5 × 10−6/◦F
for normal-weight concrete and 4.0 to 6.0 × 10−6/◦F for lightweight concrete. A value
of 5.5 × 10−6/◦F is typically used when calculating stresses induced by changes in
temperature.

The test method in ASTM C531-00(2005), Standard Test Method for Linear Shrink-
age and Coefficient of Thermal Expansion of Chemical-resistant Mortars, Grouts, Monolithic
Surfacings, and Polymer Concretes, can be used to determine the coefficient of thermal
expansion for concrete.

Properties When Exposed to Temperature Effects
In general, the compressive strength and modulus of elasticity of concrete decrease
as external temperature increases. The degree to which these properties are affected
depends primarily on the type of aggregate present in the concrete mixture.

Up to approximately 800◦F, the strength of concrete in compression is approximately
90% of the compressive strength regardless of the type of aggregate in the mixture.17

Above 800◦F, the strength of concrete made with siliceous aggregates (such as quartzite,
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granite, and sandstone) drops off dramatically: At approximately 1,000◦F, the strength
is approximately 0.50 f ′

c , and at temperatures of 1,200◦F and 1,600◦F, it decreases to
0.30 f ′

c and 0.20 f ′
c , respectively. In contrast, the strength of concrete made with carbonate

aggregates (such as limestone) and with sand-lightweight aggregates is approximately
0.80 f ′

c at 1200◦F. The strength eventually drops to 0.20 f ′
c at a temperature of 1,600◦F. At

higher temperatures, the volume of concrete increases rapidly, which leads to spalling
at its outermost surfaces.

The modulus of elasticity decreases approximately linearly with an increase in
temperature, and the magnitude of the modulus varies at most by approximately 10%
for all types of concrete regardless of aggregate type. At 1,200◦F, the modulus is at
approximately 30% of its initial value.

The preceding discussion is valid for concrete strengths below 8,000 psi. Information
on temperature effects on high-strength concrete is given in the next section.

The strength of hardened concrete tends to increase when subjected to colder tem-
peratures.

2.2.3 High-Strength Concrete
ACI Committee 363 defines high-strength concrete as a concrete mixture with a specified
compressive strength equal to or greater than 6,000 psi.18,19

Components
The components used in the production of high-strength concrete are essentially the
same as those for normal-strength concrete. Chemical and mineral admixtures are essen-
tial in the creation of high-strength mixtures. Polymers, epoxies, and artificial normal-
weight and heavyweight aggregates have been utilized to produce high-strength con-
crete mixtures as well.

Guidelines on selection of materials and concrete mixture proportions can be found
in Ref. 18.

Mechanical Properties
A comprehensive summary of the mechanical properties of high-strength concrete is
given in Chap. 5 of Ref. 18 and in Chap. 5 of Ref. 20. When loaded in uniaxial compres-
sion, high-strength concrete behaves similar to normal-strength concrete. The shape of
a compressive stress–strain curve for high-strength concrete has a more linear ascend-
ing branch and a steeper descending branch compared with normal-strength concrete
(see Fig. 2.6). At the matrix level, there is greater bond strength at the aggregate–cement
paste interface, and there is significantly less microcracking. As such, the network of
cracking in high-strength concrete becomes unstable at approximately 0.90 f ′

c , compared
with 0.75 f ′

c for normal-strength concrete. A brittle type of failure subsequently occurs
by splitting through the aggregates and paste parallel to the direction of loading. For
higher-strength mixtures, failure is sudden and explosive. The compressive strength of
high-strength concrete is generally specified at 56 or 90 days.

As the compressive strength increases, test results are more sensitive to testing
conditions. Thus, quality control and testing for high-strength concrete are more critical
than for normal-strength concrete. Information on quality assurance and quality control,
testing, and evaluation of compressive strength results, including statistical concepts
and strength evaluation, can be found in Ref. 19.
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Modulus of elasticity Ec = 40,000
√

f ′
c + 1.0 × 106 psi

Poisson’s ratio 0.20–0.28

Modulus of rupture 11.7
√

f ′
c psi for 3,000 < f ′

c < 12,000 psi

Tensile splitting strength 7.4
√

f ′
c psi for 3,000 < f ′

c < 12,000 psi

TABLE 2.8 Recommended Mechanical Properties of High-Strength Concrete

Recommended properties of high-strength concrete given in Ref. 18 are summarized
in Table 2.8.

Volume Changes
According to Ref. 18, shrinkage in high-strength concrete is approximately proportional
to the percentage of water by volume in a concrete mixture and is unaffected by changes
in the water/cement ratio. Experimental studies have shown that shrinkage of high-
strength concrete is similar to that of normal-strength concrete.

Figure 5.9 in Ref. 18 shows that the creep coefficient is less for high-strength concrete
loaded at the same age. As is found in normal-strength concrete, creep decreases as the
age at loading increases, and it increases with larger water/cement ratios.

Temperature Effects
Experimental studies on full-scale concrete columns have shown that the fire resistance
of concrete with specified compressive strengths equal to or greater than 8,000 psi is
smaller than that of lower-strength concrete.21 When subjected to high temperatures,
extremely high water vapor pressure builds up inside higher-strength concrete because
of its high density (low permeability). Because there is virtually no means to relieve
this pressure, the concrete spalls, and failure occurs shortly thereafter.

2.2.4 High-Performance Concrete
High-performance concrete is typically defined as concrete that meets specific combi-
nations of performance and uniformity requirements that cannot always be achieved
when using conventional ingredients and normal mixing, placing, and curing methods.
A high-performance concrete mixture is designed to develop certain characteristics for
a particular application and environment and contains carefully selected high-quality
ingredients. The final product is batched, mixed, and finished to the highest industry
standards.

The following are some of the properties and characteristics that may be required
for high-performance concrete:

� High strength
� High early strength
� High modulus of elasticity
� High durability
� Low permeability
� Resistance to chemicals
� Resistance to frost
� Ease of placement
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High-strength concrete is a common type of high-performance concrete. However,
achieving high strength is not always necessary. For example, a normal-strength con-
crete with high durability and low permeability may be specified to satisfy the perfor-
mance requirements of a parking structure that is exposed to the environment.

It is important to work with a concrete production facility during the early stages
of a project to establish a concrete mixture design that will satisfy all of the required
performance criteria.

2.2.5 Fiber-Reinforced Concrete
Fiber-reinforced concrete (FRC) is a composite material consisting of cement, water,
aggregate, and discontinuous fibers that are dispersed throughout the mix.22 The fibers
are typically steel, polypropylene, or glass. In structural applications, fiber reinforce-
ment is usually used in a role ancillary to the main steel reinforcement and is added
to concrete mixes mainly to improve durability and crack control. Information on the
mechanical properties of FRC is available in Ref. 23.

Steel fiber–reinforced concrete is permitted to be used under certain conditions in
beams as an alternative to shear reinforcement (see ACI 3.5.1 and 11.4.6). The steel fibers
must conform to ASTM A820/A820M-06, Standard Specification for Steel Fibers for Fiber-
reinforced Concrete. The three conditions in ACI 5.6.6.2 must be satisfied in order for FRC
to be deemed acceptable. Strength testing of FRC must satisfy the same requirements
as those for concrete without fibers (ACI 5.6.1), and testing must follow the method in
ASTM C1609/C1609M-07, Standard Test Method for Flexural Performance of Fiber-reinforced
Concrete (Using Beam with Third-point Loading).

2.3 Reinforcement

2.3.1 Overview
Reinforcement is utilized in concrete members to resist primarily tensile forces caused
by externally applied loads or volume changes. The most common types of reinforce-
ment are reinforcing bars, prestressing steel, and wire reinforcement made of steel.

ACI 3.5 contains the material requirements for steel reinforcement. The different
types of reinforcement and the corresponding ASTM standards are summarized in
Table 2.9. Note that all of the referenced ASTM standards are combined standards; that
is, the metric (M) designation is included in the official designation of the standard. The
referenced ACI sections are also given in the table; these sections contain additional
requirements for some types of reinforcement.

Galvanized reinforcing bars, epoxy-coated bars and wires, and stainless-steel bars
and wires are commonly used in parking structures, bridges, and other structures in
highly corrosive environments where corrosion resistance of reinforcement is of partic-
ular concern.

Prestressing steel generally consists of wires, bars, strands, or bundles of such ele-
ments. The steel is stressed under high-tension forces either before the concrete is cast
(pretensioned) or after the concrete is cast and has hardened (posttensioned).

One type of reinforcement that is not addressed in the Code is fiber-reinforced
polymer (FRP) reinforcing bars. These bars are made of composite materials that consist
of high-strength fibers embedded in a resin matrix. Fibers provide strength and stiffness
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Type ASTM Standard ACI Section∗

Deformed Reinforcement

Reinforcing
bars

Carbon steel ASTM A615/A615M-07, Standard
Specification for Deformed and Plain
Carbon Steel Bars for Concrete
Reinforcement

3.5.3.1(a)

Low-alloy steel ASTM A706/A706M-06a, Standard
Specification for Low-alloy Steel
Deformed and Plain Bars for Concrete
Reinforcement

3.5.3.1(b)

Stainless steel ASTM A955/A955M-07a, Standard
Specification for Deformed and Plain
Stainless-Steel Bars for Concrete
Reinforcement

3.5.3.1(c)

Rail steel and
axle steel

ASTM A996/A996M-06a, Standard
Specification for Rail-Steel and
Axle-Steel Deformed Bars for
Concrete Reinforcement

3.5.3.1(d)

Low-carbon
chromium

ASTM A1035/A1035M-07, Standard
Specification for Deformed and Plain,
Low-carbon, Chromium, Steel Bars for
Concrete Reinforcement

3.5.3.3

Bar mats ASTM A184/A184M-06, Standard
Specification for Welded Deformed
Steel Bar Mats for Concrete
Reinforcement

3.5.3.4

Galvanized ASTM A767/A767M-05, Standard
Specification for Zinc-coated
(Galvanized) Steel Bars for Concrete
Reinforcement

3.5.3.8

Epoxy-coated ASTM A775/A775M-07a, Standard
Specification for Epoxy-coated Steel
Reinforcing Bars

3.5.3.8

ASTM A934/A934M-07, Standard
Specification for Epoxy-coated
Prefabricated Steel Reinforcing Bars

Wire
reinforcement

Deformed ASTM A496/A496M-07, Standard
Specification for Steel Wire,
Deformed, for Concrete
Reinforcement

3.5.3.5

Welded plain ASTM A185/A185M-07, Standard
Specification for Steel Welded Wire
Reinforcement, Plain, for Concrete

3.5.3.6

TABLE 2.9 Material Requirements for Steel Reinforcement (continued)
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Type ASTM Standard ACI Section∗

Welded
deformed

ASTM A497/A497M-07, Standard
Specification for Steel Welded Wire
Reinforcement, Deformed, for
Concrete

3.5.3.7

Epoxy-coated
wires and
welded wires

ASTM A884/A884M-06, Standard
Specification for Epoxy-coated Steel
Wire and Welded Wire Reinforcement

3.5.3.9

Deformed
stainless-steel
wire and
deformed
stainless-steel
welded wire

ASTM A1022/A1022M-07, Standard
Specification for Deformed and Plain
Stainless Steel Wire and Welded Wire
for Concrete Reinforcement

3.5.3.10

Plain Reinforcement

Plain bars ASTM A615/A615M-07, Standard
Specification for Deformed and Plain
Carbon Steel Bars for Concrete
Reinforcement

3.5.4.1

ASTM A706/A706M-06a, Standard
Specification for Low-alloy Steel
Deformed and Plain Bars for Concrete
Reinforcement

Plain wire ASTM A82/A82M-07, Standard
Specification for Steel Wire, Plain, for
Concrete Reinforcement

3.5.4.2

Headed Shear Stud Reinforcement

Headed studs and headed stud
assemblies

ASTM A1044/A1044M-05, Standard
Specification for Steel Stud
Assemblies for Shear Reinforcement
of Concrete

3.5.5.1

Prestressing Steel

Wire ASTM A421/A421M-05, Standard
Specification for Uncoated
Stress-relieved Steel Wire for
Prestressed Concrete

3.5.6.1(a)

Low-relaxation wire ASTM A421/A421M-05, Standard
Specification for Uncoated
Stress-relieved Steel Wire for
Prestressed Concrete

3.5.6.1(b)

Strand ASTM A416/A416M-06, Standard
Specification for Steel Strand,
Uncoated Seven-wire for Prestressed
Concrete

3.5.6.1(c)

TABLE 2.9 Material Requirements for Steel Reinforcement (continued)
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Type ASTM Standard ACI Section∗

High-strength bar ASTM A722/A722M-07, Standard
Specification for Uncoated
High-strength Steel Bars for
Prestressing Concrete

3.5.6.1(d)

Headed deformed bars ASTM A970/A970M-06, Standard
Specification for Headed Steel Bars
for Concrete Reinforcement

3.5.9

∗ See the referenced ACI sections for additional requirements.

TABLE 2.9 Material Requirements for Steel Reinforcement (continued)

to the composite and generally carry most of the applied loads in tension. The matrix
acts to bond and protect the fibers and transfers forces from fiber to fiber through shear.
The most common fibers are aramid, carbon, and glass. This type of reinforcement is
generally used in highly corrosive environments or in structures that house magnetic
resonance imaging units or other equipment sensitive to electromagnetic fields. Addi-
tional information on the properties of FRP reinforcing bars is given in Ref. 24, and a
specification for FRP reinforcing bars can be found in Ref. 25.

ACI 3.5.7 contains material requirements for structural steel, steel pipe, and steel
tubing that are used in composite compression members (members constructed of con-
crete and steel with or without longitudinal reinforcing bars; see ACI 10.13). Structural
steel wide-flange sections are encased in concrete, whereas steel pipe or tubing usually
encases a concrete core.

Material requirements for steel discontinuous fiber reinforcement are given in ACI
3.5.8. Also included in this section are limitations on the length-to-diameter ratio of the
fibers.

The focus of this book is on the design of reinforced concrete structural members
with nonprestressed reinforcement, such as deformed reinforcing bars and welded wire
reinforcement. Numerous references are available for the design of concrete members
utilizing prestressed reinforcement.

2.3.2 Welding of Reinforcing Bars
Where welding of reinforcing bars is permitted, it must be performed in compliance
with the requirements of the Structural Welding Code—Reinforcing Steel, ANSI/AWS
D1.4.26 ACI R3.5.2 provides information on the weldability of reinforcing steel and
provides guidance on welding to existing reinforcing bars where no mill test reports
on the existing steel are available.

Welded splices of reinforcement in special moment frames and in special structural
walls are permitted only at specific locations within these members (ACI 21.1.7). Such
splices are restricted at locations where it is anticipated that the member will yield
because the tension stresses developed in the reinforcement in these regions caused
by seismic excitations can easily exceed the strength requirements of ACI 12.4.3.4 for a
fully developed weld splice.
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FIGURE 2.12
Deformed
reinforcing bars.
(Courtesy of the
Concrete
Reinforcing Steel
Institute.)

2.3.3 Deformed Reinforcement

Deformed Reinforcing Bars
General Deformed reinforcing bars are circular rods with deformations rolled into
the surface (see Fig. 2.12). The purpose of the deformations (commonly referred to as
ribs) is to enhance the bond between the concrete and the bar (in order for a reinforced
concrete member to perform as designed, it is essential that a strong bond exist between
reinforcing bars and concrete). Reinforcing bars are placed at judicious locations in the
formwork before concrete is cast around them, and they generally do not undergo
any significant amount of stress until the structural member is subjected to external
loads.

Carbon-steel reinforcing bars conforming to the requirements of ASTM A615 are
the most commonly specified type of reinforcing bar and can be used in a wide vari-
ety of applications where there are no special performance requirements. ASTM A706
low-alloy bars are specified in situations where enhanced weldability and ductility
are needed. ACI 21.1.5 requires that reinforcement in special moment frames, special
structural walls, and coupling beams in structures located in areas of high seismic risk
comply with ASTM A706 (ASTM A615 bars that satisfy the special tensile strength and
yield strength requirements of ACI 21.1.5.2 may also be used in such cases).

Stainless-steel, galvanized, and epoxy-coated reinforcing bars are usually used in
applications where high corrosion resistance is needed. The physical and mechanical
properties of stainless-steel bars conforming to ASTM A955 are the same as those for
carbon-steel bars conforming to ASTM A615 with some exceptions (see the next section).
Stainless-steel bars are also used where low magnetic permeability is required.

Galvanized (zinc-coated) bars are obtained by dipping ASTM A615, ASTM A706,
or ASTM 996 bars in a molten bath of zinc in accordance with ASTM A767. Reinforcing
bars are usually galvanized after fabrication.
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Epoxy-coated bars are manufactured in one of two ways. In the first method, a
protective epoxy coating is applied by the electrostatic spray method to ASTM A615,
ASTM A706, or ASTM 996 bars (ASTM A775). The bars are usually fabricated after
application of the epoxy coating. In the second method, ASTM A615, ASTM A706,
or ASTM 996 bars are prefabricated and then coated with a protective fusion-bonded
epoxy coating by electrostatic spray or other suitable method (ASTM A934).

Low-carbon chromium bars conforming to ASTM A1035 are permitted to be used
only as spiral reinforcement in accordance with ACI 10.9.3 or transverse reinforcement
in columns of special moment frames in accordance with ACI 21.6.4 (ACI 3.5.3.3). These
limitations are imposed because the chromium steel used to manufacture reinforcing
bars has low ductility and a relatively large minimum yield strength of 80,000 psi.

Bar Sizes and Grades Bar sizes are designated by numbers, which range from No. 3 (No.
10) to No. 18 (No. 57). The numbers inside the parentheses following the inch-pound
designations are the soft metric bar size designations. More information on soft metric
bars is given later.

Designating bar sizes by numbers instead of diameters is necessary for deformed
bars because of the surface deformations. Requirements for the height, spacing, and
gap of deformations are given in the ASTM standards. The cross-section of a deformed
reinforcing bar is illustrated in Fig. 2.13. It is evident from the figure that the overall bar
diameter is greater than the nominal bar diameter. In general, nominal dimensions of a
deformed bar are equivalent to those of a round bar without deformations that has the
same weight per foot as the deformed bar.

For bars up to and including No. 8 bars, the nominal diameter is equal to the bar
number multiplied by one-eighth of an inch. For example, the nominal diameter of a
No. 3 bar is equal to 3 × (1/8) = 3/8 in. For Nos. 9, 10, 11, and 18 bars, the nominal
diameter is greater than the bar number times one-eighth of an inch, and for No. 14
bars, the nominal diameter is smaller.

The nominal cross-sectional area of a reinforcing bar is equal to πd2
b /4, where db

is the nominal diameter of the bar. Thus, for a No. 3 bar, the nominal cross-sectional
area is equal to π × 0.3752/4 = 0.11 in2. Nominal diameters and cross-sectional areas

FIGURE 2.13 Overall
reinforcing bar
diameter.
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ASTM Minimum Yield Minimum Tensile
Designation Bar Numbers Grade Strength (psi) Strength (psi)

A615 3, 4, 5, 6 40 40,000 60,000

3, 4, 5, 6, 7, 8, 9,
10, 11, 14, 18

60 60,000 90,000

3, 4, 5, 6, 7, 8, 9,
10, 11, 14, 18

75 75,000 100,000

A706 3, 4, 5, 6, 7, 8, 9,
10, 11, 14, 18

60 60,000 80,000

A955 3, 4, 5, 6 40 40,000 70,000

3, 4, 5, 6, 7, 8, 9,
10, 11, 14, 18

60 60,000 90,000

6, 7, 8, 9, 10, 11,
14, 18

75 75,000 100,000

TABLE 2.10 Requirements for ASTM Deformed Reinforcing Bars

for Nos. 3 through 18 reinforcing bars are given in ACI Appendix E and in Table A.1 of
Appendix A of this book.

Reinforcing bars with minimum yield strengths of 40, 50, 60, and 75 ksi are available.
The corresponding grades are designated as Grades 40, 50, 60, and 75, respectively.
Grade 60 bars are used in many common applications, and Grade 75 bars are utilized
primarily as longitudinal reinforcement in concrete columns that support relatively
large loads such as those in a high-rise building. Note that rail-steel and axle-steel
deformed bars are available in Grade 50 (ASTM A996).

A maximum yield strength of 80,000 psi is permitted to be used in design calcu-
lations for reinforced concrete structural members (ACI 9.4). However, for spiral rein-
forcement (ACI 10.9.3) and for confinement reinforcement in special moment frames
and special structural walls (ACI 21.1.5.4), a yield strength up to 100,000 psi can be
used. ACI R9.4 contains other sections of the Code that limit the yield strength of rein-
forcement.

Information on sizes, grades, and tensile properties of ASTM A615, ASTM A706,
and ASTM A955 deformed reinforcing bars is given in Table 2.10. Additional tensile
and bending requirements are given in the ASTM standards for all bar types. Note that
not all bar sizes are available in all grades. It is prudent to verify the availability of bar
sizes and grades with local reinforcement suppliers at the onset of a project. A list of
U.S. manufacturers of Grades 60 and 75 reinforcing bars can be found in Appendix A
of Ref. 27.

ASTM specifications require that identification marks be rolled onto the surface of
one side of a reinforcing bar, as shown in Fig. 2.14 for Grade 60 bars (see Ref. 27 for
marks on bars of other grades). The marks—mill designation of the producer, bar size,
type of steel, and grade—facilitate bar identification in the field as the structure is being
built.

The first identification mark, which is usually a letter, identifies the mill that pro-
duced the reinforcing bar. Mill identification marks for U.S. manufacturers of Grades
60 and 75 reinforcing bars are given in Appendix A of Ref. 27.
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FIGURE 2.14
Identification marks
for Grade 60
reinforcing bars.
(Courtesy of the
Concrete
Reinforcing Steel
Institute.)

The second identification mark is the bar size. In the United States, virtually all
reinforcing bars that are currently produced are soft metric bars that meet the metric
requirements of ASTM specifications. It is important to note that the dimensions of soft
metric bars are the same as those of inch-pound bars. Metric designations, which are
equal to the nominal diameter of an inch-pound bar converted to the nearest millimeter,
are essentially a relabeling of inch-pound designations. For example, a No. 3 bar has
a nominal diameter of 0.375 in or, equivalently, 9.5 mm, which is rounded up to 10
mm. Thus, a No. 10 bar (metric) is equivalent to a No. 3 bar (inch-pound). Inch-pound
designations and the corresponding metric designations are given in Table 2.11. Inch-
pound designations for bar size are used exclusively in this book.

The third mark identifies the type of steel that was used in the production of the
reinforcing bar. For example, an identification mark of “S” means that the bar was

Inch-pound Designation (No.) Metric designation (No.)

3 10

4 13

5 16

6 19

7 22

8 25

9 29

10 32

11 36

14 43

18 57

TABLE 2.11 Inch-pound and Metric Reinforcing Bar Designations



60 C h a p t e r T w o

ASTM Designation Identification Mark

A615 S

A706 W

A996 Rail I

R

Axle A

TABLE 2.12 Identification Marks for Steel Type

produced of steel that meets the requirements of ASTM A615. A summary of ASTM
designations and identification marks is given in Table 2.12.

The fourth identification mark is the minimum yield strength (grade) designation,
which is required for Grades 60 (420) and 75 (520) bars only; Grades 40 (280) and 50
(350) bars are required to have only the first three identification marks. The numbers
in parentheses following the inch-pound grade designations are the corresponding
metric grade designations in megapascals. The minimum yield strength of metric bars
is slightly greater than the corresponding minimum yield strength of inch-pound bars.
For example, the equivalent inch-pound yield strength of Grade 420 bars is equal to
420/(6.895 Mpa/ksi) = 60.9 ksi, which is greater than the yield strength of Grade 60
bars (60 ksi).

ASTM specifications provide two options for identifying Grade 420 or 520 soft
metric reinforcing bars. In the first option, the first digit in the grade number is rolled
onto the surface of the bar. An identification mark of “4” corresponds to Grade 420
(60) bars, and a mark of “5” corresponds to Grade 520 (75) bars. In the second option,
one additional longitudinal rib (grade line) is rolled onto the bar to designate Grade
420 (60) bars, and two additional longitudinal ribs are rolled onto the bar to designate
Grade 520 (75) bars. Inch-pound designations for the minimum yield strength are used
exclusively in this book.

Mechanical Properties Reinforcing steel is manufactured under strict quality control
conditions, and as noted previously, the final product must have properties that satisfy
applicable ASTM standards. Unlike concrete, there is relatively little variability between
the actual properties of reinforcing steel and the specified properties, primarily because
of the characteristics of the material. Some basic mechanical properties of reinforcing
steel that are pertinent to the design of reinforced concrete structural members are
examined later.

Tensile stress–strain curve Idealized tensile stress–strain curves for Grades 40, 60,
and 75 reinforcing bars are given in Fig. 2.15. It is clear from the figure that there are
essentially two distinct types of behavior that are dependent on the properties of the
steel and the manufacturing process.

In the first type, the stress–strain curve has three distinct parts: (1) an initial linear
elastic part up to the yield strength fy, (2) a relatively flat yield plateau up to the onset
of strain hardening, and (3) a strain-hardening part. In the second type, there are two
distinct parts: (1) an initial linear elastic part up to the proportional limit and (2) a
strain-hardening part.
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FIGURE 2.15 Idealized tensile stress–strain curves for reinforcing steel.

The initial elastic part of the stress–strain curve is essentially the same for all grades
of reinforcing steel. Stress is directly proportional to strain, and the modulus of elasticity
Es is equal to 29,000 ksi (ACI 8.5.2).

The stress–strain curve for low-carbon Grade 40 steel exhibits a relatively long yield
plateau where strain continues to increase at constant stress. The yield strength of the
steel is established at this plateau. Grade 60 steel will usually have a yield plateau that
is shorter in length than Grade 40 steel (or it may have no plateau at all), whereas Grade
75 steel typically enters strain hardening without exhibiting distinct yielding. In cases
where fy > 60 ksi, ACI 3.5.3.2 requires that the yield strength of the steel be taken as
the stress that corresponds to a strain of 0.0035.

In the strain-hardening part of the stress–strain curve, stress increases with increas-
ing strain. The tensile strength of the steel is reached at the top of the curve, and after
this point, stress decreases with increasing strain until fracture occurs.

When comparing the strength of reinforcing steel with that of plain concrete, it is
evident that the yield strength of reinforcing steel is at least 10 times the compressive
strength of normal-strength concrete and approximately 100 times the tensile strength
of concrete.

Thermal expansion The average value of the thermal-expansion coefficient of rein-
forcing steel (6.5 ×10−6/◦F) is relatively close to that for concrete (5.5 ×10−6/◦F). Thus,
differential movement between the reinforcing bars and the surrounding concrete is
relatively small because of changes in temperature, and detrimental effects such as
cracking or loss of bond are usually negligible. Having thermal expansion coefficients
that are compatible is important in order for the reinforced concrete member to perform
as designed.
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Side overhangs may be varied as required and do
not need to be equal. Overhang lengths are limited
by overall sheet width.

Longitudinal
wire

Overall width

W
idth

Length

Transverse
wire

End overhangs: The sum of the end overhangs should
equal one transverse wire space. Unless otherwise specified
by the architect/engineer, each end overhang equals one-half
of a transverse space.

Industry method of designating style:
Example: WWR 6 x 12 – W16 x W8 (152 x 305 – MW103 x MW52)

Longitudinal            Longitudinal
wire spacing = 6 in (152 mm)          wire size = W16 (MW103)
Transverse            Transverse
wire spacing = 12 in (305 mm)          wire size = W8 (MW52)

FIGURE 2.16 Style identification of WWR. (Courtesy of the Concrete Reinforcing Steel Institute.)

Temperature effects Similar to concrete, reinforcing bars lose strength when sub-
jected to high temperatures. Figure 2.11 of Ref. 28 shows yield and tensile degradation
with respect to temperature. The yield and tensile strengths are a little over 70% of their
original values at a temperature of 750◦F and are less than 20% at 1,400◦F.

Providing sufficient concrete cover protects reinforcing bars from the adverse effects
of high temperatures.

Welded Wire Reinforcement
General Welded wire reinforcement (WWR) consists of high-strength cold-drawn or
cold-rolled wires that are arranged in a square or rectangular pattern and are welded
together at their intersections (see Fig. 2.16). Like reinforcing bars, the WWR sheets are
placed before the concrete is cast, and no significant stress occurs in the WWR until
the structural member is subjected to external loads. In the case of plain WWR, bond
is developed with the concrete at each welded intersection of wires. Both the welded
intersections and wire deformations are utilized in deformed WWR to provide bond
and anchorage.

Style Designations The spacing and size of wires in WWR are identified by style desig-
nations. The first part of the designation corresponds to the spacing of the longitudinal
and transverse wires, and the second part corresponds to the size of the longitudinal
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and transverse wires. Plain wire is denoted by the letter “W” and deformed wire by the
letter “D.” The equivalent metric designations are “MW” and “MD,” respectively. The
number following the letter gives the cross-sectional area of the wire in hundredths of
a square inch. For example, WWR 6 × 12 − W16 × W8 corresponds to the following
(see Fig. 2.16):

� Longitudinal wire spacing = 6 in
� Transverse wire spacing = 12 in
� Longitudinal plain wire size = W16 (0.16 in2)
� Transverse plain wire size = W8 (0.08 in2)

The equivalent metric style designation is WWR 152 × 305 − MW103 × MW52,
where wire spacing is in millimeters and wire area in square millimeters. Note that the
terms “longitudinal” and “transverse” are related to the manufacturing process of the
WWR and do not refer to the position of the wires in a concrete member. A welded
deformed wire style is designated in the same way except that “D” is substituted for
“W.” Like deformed reinforcing bars, the nominal cross-sectional area of a deformed
wire is determined from the weight per foot of wire rather than from the diameter.

The cross-sectional areas for common styles of WWR sheets are given in ACI Ap-
pendix E and in Table A.2 of Appendix A of this book.

Mechanical Properties WWR must conform to the ASTM standards noted in Table 2.9
and to the applicable requirements of ACI 3.5.3. The specified minimum yield strength
and minimum tensile strength are 70,000 and 80,000 psi, respectively, for welded de-
formed wire and 65,000 and 75,000 psi, respectively, for welded plain wire. The mini-
mum shear strength of the welds is also provided in the ASTM standards.

The tensile stress–strain curve of WWR is similar to that for Grade 75 reinforcing
bars. Because there is no definite yield plateau, the yield strength is taken as the stress
that corresponds to a strain of 0.0035 (ACI 3.5.3.6 and 3.5.3.7). Additional information
on the properties of WWR can be found in Ref. 29.
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Problems
2.1. The strength test results for a normal-weight concrete mixture with a specified compressive
strength f ′

c of 7,000 psi are given in Table 2.13. Strength tests were obtained from 6 × 12 in cylinders.
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28-day
28-day Average, Three

Test Mix F28 Test 1 F28 Test 2 Average Consecutive Tests
Number Code (psi) (psi) (psi) (psi)

1 L-401 7K 7,580 7,940 7,760 —

2 L-401 7K 7,580 7,740 7,660 —

3 L-401 7K 6,670 6,880 6,775 7,398

4 L-401 7K 7,330 7,480 7,405 7,280

5 L-401 7K 7,710 7,600 7,655 7,278

6 L-401 7K 7,460 7,280 7,370 7,477

7 L-401 7K 7,650 7,150 7,400 7,475

8 L-401 7K 7,530 7,230 7,380 7,383

9 L-401 7K 7,930 7,620 7,775 7,518

10 L-401 7K 6,970 7,030 7,000 7,385

11 L-401 7K 7,400 7,030 7,215 7,330

12 L-401 7K 7,400 7,340 7,370 7,195

13 L-401 7K 8,200 7,030 7,615 7,400

14 L-401 7K 7,740 8,020 7,880 7,622

15 L-401 7K 7,620 8,030 7,825 7,773

16 L-401 7K 7,460 7,610 7,535 7,747

17 L-401 7K 7,370 7,380 7,375 7,578

18 L-401 7K 7,280 7,770 7,525 7,478

19 L-401 7K 8,230 7,520 7,875 7,592

20 L-401 7K 7,760 7,350 7,555 7,652

21 L-401 7K 7,860 7,940 7,900 7,777

22 L-401 7K 7,760 7,720 7,740 7,732

23 L-401 7K 7,600 7,670 7,635 7,758

24 L-401 7K 6,720 6,620 6,670 7,348

25 L-401 7K 6,150 6,380 6,265 6,857

26 L-401 7K 7,990 7,710 7,850 6,928

27 L-401 7K 7,900 7,460 7,680 7,265

28 L-401 7K 8,200 8,460 8,330 7,953

29 L-401 7K 8,030 7,820 7,925 7,978

30 L-401 7K 7,030 7,210 7,120 7,792

TABLE 2.13 Strength Test Results of Problem 2.1
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1. Determine (a) the sample standard deviation ss and (b) the required average compressive strength
f ′
cr.

2. Determine if the concrete is acceptable in accordance with ACI requirements.

2.2. Repeat Problem 2.1 using only the first 15 test records given in Table 2.13.

2.3. Determine the following quantities for concrete that is exposed to freeze–thaw cycles and is in
continuous contact with moisture and is furthermore exposed to deicing chemicals: (a) the maximum
water/cementitious materials ratio, (b) the minimum specified compressive strength, and (c) any addi-
tional requirements based on Chap. 4 of the ACI Code.

2.4. Determine the following quantities for concrete that is exposed to moisture but not to external
sources of chlorides: (a) the maximum water/cementitious materials ratio, (b) the minimum specified
compressive strength, and (c) any additional requirements based on Chap. 4 of the ACI Code.

2.5. Determine the modulus of elasticity Ec for a lightweight concrete mixture with a unit weight of
110 pcf and f ′

c equal to (a) 3,000, (b) 4,000, and (c) 5,000 psi.

2.6. Determine the modulus of rupture that is to be used when calculating deflections for sand-
lightweight concrete with f ′

c = 4,000 psi.

2.7. Determine the shrinkage strain of an unrestrained, plain concrete member with f ′
c = 5,000 psi as

a function of the volume/surface ratio at 2 years after the concrete has been placed in an environment
with a constant relative humidity of 70%. Plot the results.

2.8. Determine the creep coefficient of an unrestrained, plain concrete member with f ′
c = 5,000 psi as

a function of the volume/surface ratio at 2 years after the concrete has been loaded in an environment
with a constant relative humidity of 70%. The age of the concrete at time of loading is 60 days. Plot the
results.

2.9. Determine the following quantities for a concrete mixture with a specified compressive strength of
10,000 psi: (a) the modulus of elasticity, (b) the modulus of rupture, and (c) the tensile splitting strength.

2.10. Identify (a) the bar size, (b) the type of steel, and (c) the grade of steel in both inch-pound and
metric units for a steel reinforcing bar with the following markings: C, 29, W, 4.



C H A P T E R 3
General Considerations for

Analysis and Design

3.1 Introduction
Three major steps are typically undertaken in the analysis and design of any building or
structure: (1) determine nominal loads; (2) perform a structural analysis; and (3) design
the structural members. The procedures and methods within each step depend on a
number of factors, including the type of material used in construction.

Presented in this chapter is the basic information that is needed to analyze reinforced
concrete structural members (steps 1 and 2). Nominal loads are the minimum loads that
must be used in the design of a structure and are categorized as permanent loads (such
as the weight of the structure) and variable loads (including live, snow, wind, and
earthquake loads). The magnitudes of nominal loads are specified in building codes
(e.g., Chap. 16 of the IBC), and it is important to establish the governing code at the
onset of any project. A summary of nominal loads commonly encountered in the design
of reinforced concrete structures is given in Section 3.2.

An analysis of the structure is performed using the nominal loads determined in the
first step and the load combinations given in Chap. 9 of the Code. General requirements
for the analysis and design of concrete structures, which can be found in Chap. 8 of the
ACI Code, are covered in Section 3.3. Included is an approximate analysis method that
can be used to determine bending moments and shear forces in continuous beams and
one-way slabs.

Structural members are proportioned for adequate strength on the basis of the
load effects from the structural analysis. Members are designed in accordance with
the strength design method, which requires the use of the load factors and strength
reduction factors given in Chap. 9 of the Code (ACI 8.1.1). General requirements of the
strength design method are summarized in Chaps. 4 and 5, and design methods for
specific structural members are given in Chaps. 6 through 10 of this book.

3.2 Loading

3.2.1 Introduction
Applicable nominal loads on a structure are determined from the general building
code under which the project is to be designed and constructed. Chap. 16 of the IBC1

67
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Notation Load Code Section

D Dead load IBC 1606

Di Weight of ice Chap. 10 of ASCE/SEI 7

E Combined effect of horizontal and vertical earthquake-
induced forces as defined in ASCE/SEI 12.4.2

IBC 1613 and ASCE/SEI
12.4.2

Em Maximum seismic load effect of horizontal and vertical
forces as set forth in ASCE/SEI 12.4.3

IBC 1613 and ASCE/SEI
12.4.3

F Load due to fluids with well-defined pressures and
maximum heights

—

Fa Flood load IBC 1612

H Load due to lateral earth pressures, ground water
pressure, or pressure of bulk materials

IBC 1610 (soil lateral
loads)

L Live load, except roof live load, including any permitted
live load reduction

IBC 1607

Lr Roof live load including any permitted live load reduction IBC 1607

R Rain load IBC 1611

S Snow load IBC 1608

T Self-straining force arising from contraction or expansion
resulting from temperature change, shrinkage, moisture
change, creep in component materials, movement due
to differential settlement, or combinations thereof

—

W Load due to wind pressure IBC 1609

Wi Wind-on-ice load Chap. 10 of ASCE/SEI 7

TABLE 3.1 Summary of Loads Addressed in the IBC and ASCE/SEI 7

contains the minimum magnitudes of some nominal loads and references ASCE/SEI 72

for others. For a specific project, the governing local building code should be consulted
for any variances from the IBC or ASCE/SEI 7.

It is common for nominal loads to be referred to as service loads. These loads are
multiplied by load factors in the strength design method, which is the required design
method for reinforced concrete members (ACI 8.1.1). The exception is the earthquake
load effect E : It is defined to be a strength-level load where the load factor is equal to
1. Additional information on service-level and strength-level loads and on load combi-
nations is given in Chap. 4 of this book.

Table 3.1 contains a list of loads from the IBC and ASCE/SEI 7. A brief discussion
on some of the more commonly encountered loads in the design of reinforced con-
crete buildings follows the table. Comprehensive information on the determination of
structural loads can be found in Ref. 3.

3.2.2 Dead Loads
Nominal dead loads D are the actual weights of construction materials and fixed ser-
vice equipment that are attached to or supported by the building or structure. Specific
examples of such loads are listed under the definition of “dead load” in IBC 1602.
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Dead loads are considered to be permanent loads because their magnitude remains
essentially constant over time. Variable loads such as live loads and wind loads are not
permanent loads.

Superimposed dead loads are permanent loads other than the weights of the struc-
tural members and include the following: floor finishes and/or topping; walls; ceilings;
heating, ventilating, and air-conditioning (HVAC) and other service equipment; fixed
partitions; and cladding.

It is not uncommon for the weights of materials and service equipment (such as
plumbing stacks and risers, HVAC equipment, elevators and elevator machinery, fire
protection systems, and similar fixed equipment) not to be known during step 1 of
the analysis and design process. Minimum design dead loads for various types of
common construction components, including ceilings, roof and wall coverings, floor fill,
floors and floor finishes, frame partitions, and frame walls, are provided in ASCE/SEI
Table C3-1, and minimum densities for common construction materials are given in
ASCE/SEI Table C3-2. The weights in these tables are meant to be used as a guide
when estimating dead loads. Actual weights of construction materials and equipment
can be greater than tabulated values, so it is always prudent to verify the weights with
manufacturers or other similar resources. In cases where information on dead load is
unavailable, values of dead loads used in design must be approved by the building
official (IBC 1606.2).

Determining the dead load of reinforced concrete members is typically straight-
forward. In general, the total dead load is obtained by multiplying the volume of the
member by the unit weight of concrete. Thus, for an 18 × 18 in reinforced concrete
column that is 10 ft long and is made of concrete with a unit weight equal to 150 pcf,
the total dead load D = (18 × 18/144) × 10 × 150 = 3,375 lb.

The dead load of beams and one-way slabs (i.e., slabs that bend in primarily one
direction) is usually expressed in pounds per linear foot of the member length. Consider
a 20-in-wide and 24-in-deep reinforced concrete beam with a unit weight of 150 pcf. In
this case, the dead load D = (20 × 24/144) × 150 = 500 lb per foot of beam length. For
two-way reinforced concrete slabs (i.e., slabs that bend in two directions), the dead load
is commonly expressed in pounds per square foot: D = slab thickness × unit weight of
concrete.

3.2.3 Live Loads

General
Live loads are transient in nature and vary in magnitude over the life of a structure.
These loads are produced by the use and occupancy of a building or structure and do
not include construction loads, environmental loads (such as wind loads, snow loads,
rain loads, earthquake loads, and flood loads), or dead loads (IBC 1602).

IBC Table 1607.1 contains nominal design values of uniformly distributed and con-
centrated live loads Lo as a function of occupancy or use. The occupancy description
listed in the table is not necessarily group-specific (occupancy groups are defined in
IBC Chap. 3). For example, an office building with a Business Group B classification
may also have storage areas that may warrant live loads of 125 or 250 psf depending on
the type of storage, which are greater than the prescribed office live loads. Structural
members are designed on the basis of the maximum effects due to application of either
a uniform load or a concentrated load and need not be designed for the effects of both
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loads applied at the same time. The building official must approve live loads that are
not specifically listed in the table.

Partitions that can be relocated (i.e., those types that are not permanently attached
to the structure) are considered to be live loads in office and other buildings. A live load
equal to at least 15 psf must be included for movable partitions if the nominal uniform
floor live load is equal to or less than 80 psf.

IBC Table 1607.1 prescribes a minimum roof live load of 20 psf for typical roof
structures; larger live loads are required for roofs used as gardens or places of assembly.

ASCE Table 4-1 also contains minimum uniform and concentrated live loads, and
some of these values differ from those in IBC Table 1607.1. ASCE Tables C4-1 and C4-
2 can be used as a guide in establishing live loads for some commonly encountered
occupancies.

Reduction in Live Loads
Because live loads are transient in nature, the probability that a structural member will
be subjected to the full effects from nominal live loads decreases as the area supported
by the member increases. The minimum uniformly distributed live loads Lo in IBC
Table 1607.1 and uniform live loads of special-purpose roofs are permitted to be reduced
under certain circumstances in accordance with the methods in IBC 1607.9.1 or 1607.9.2.
The general method of live load reduction in IBC 1607.9.1 is also given in ASCE/SEI
4.8. Reduction of roof loads must conform to IBC 1607.11.2.

General Method of Live Load Reduction IBC Eq. (16-22) can be used to obtain a reduced
live load L for members that support an area KLL AT ≥ 400 ft2:

L = Lo

(
0.25 + 15√

KLL AT

)
(3.1)

In this equation, KLL is the live load element factor given in IBC Table 1607.9.1 and AT

is the tributary area supported by the member in square feet. The use of this equation
is subject to the limitations of IBC 1607.9.1.1 through 1607.9.1.4.

The live load element factor KLL converts the tributary area AT into an influence
area, which is considered to be the adjacent floor area from which the member derives
its load. In other words,

KLL = influence area/tributary area (3.2)

Consider interior column B3 depicted in Fig. 3.1. The influence area for this column
is equal to the area of the four bays adjacent to the column:

Influence area = (�A + �B) (�2 + �3)

The tributary area AT supported by this column is equal to the product of the
tributary widths in both directions:

AT =
(

�A

2
+ �B

2

)(
�2

2
+ �3

2

)
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FIGURE 3.1 Influence areas and tributary areas for columns and beams.

Note that the tributary width in this case is equal to the sum of one-half of the span
lengths on both sides of the column.

Using Eq. (3.2), it is evident that the live load element factor KLL is equal to 4 for
this interior column; this matches the value of KLL given in IBC Table 1607.9.1. It can be
shown that KLL is also equal to 4 for any exterior column (other than corner columns)
without cantilever slabs.

Now, consider the spandrel beam on line A between lines 1 and 2. The influence
area for this beam is equal to the area of the bay adjacent to the beam:

Influence area = �A�1
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The tributary area AT supported by this beam is equal to the tributary width times
the length of the beam:

AT =
(

�A

2

)
�1

Thus, KLL = 2 for an edge beam without a cantilever slab. Values of KLL for other
beams and other members can be derived in a similar fashion. ASCE/SEI Fig. C4-1
illustrates influence areas and tributary areas for a structure with regular bay spacing.

The general method of live load reduction outlined in IBC 1607.9.1 is summarized
in Fig. 3.2.

FIGURE 3.2 The procedure for the general method of live load reduction of IBC 1607.9.1. (Continued)
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Live Load Reduction for Roofs IBC 1607.11.2 permits nominal roof live loads of 20 psf on
flat, pitched, and curved roofs to be reduced in accordance with IBC Eq. (16-25):

Lr = Lo R1 R2 (3.3)

In this equation, Lr is the reduced roof live load per square foot of horizontal roof
projection and R1 and R2 are reduction factors based on the tributary area At of the

FIGURE 3.2 (Continued)
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member being considered and the slope of the roof, respectively:

R1 =



1 for At ≤ 200 ft2 IBC Eq. (16-26)
1.2 − 0.001At for 200 ft2

< At < 600 ft2 IBC Eq. (16-27)
0.6 for At ≥ 600 ft2 IBC Eq. (16-28)

R2 =



1 for F ≤ 4 IBC Eq. (16-29)
1.2 − 0.05F for 4 < F < 12 IBC Eq. (16-30)
0.6 for F ≥ 12 IBC Eq. (16-31)

The quantity F is the number of inches of rise per foot for a sloped roof and is the
rise-to-span ratio multiplied by 32 for an arch or dome.

The reduced roof live load cannot be taken less than 12 psf, and it need not exceed
20 psf.

Example 3.1 The elevation and typical floor plan of a five-story reinforced concrete building are
illustrated in Fig. 3.3.

All beams are 22 in wide and 20.5 in deep, and the wide-module joists are 16 + 41/2 × 7 + 53,
which weigh 84 psf.

The roof is an ordinary flat roof (slope of 1/2 on 12) that is not used as a place of public
assembly or for any special purposes. Floor level 5 is light storage with a specified live load of 125
psf. All other floors are office occupancy. Assume a 10 psf superimposed dead load on all levels
including the roof. Normal-weight concrete with a unit weight of 150 pcf is used for all structural
members. Neglect lobby/corridor loads on the typical floors, and neglect rain and snow loads on the
roof.

Determine the total axial dead and live loads at the base of column B2 in the first story.

Solution This example illustrates how to perform a column load rundown. This type of analysis is
typically done during the early stages of a project to obtain the loads that need to be supported by
the foundations so that preliminary foundation types and sizes can be obtained. The results of the
load rundown are also used to obtain preliminary columns’ sizes.

Dead Loads
The axial dead load supported by column B2 consists of the weight of the structural members and
the superimposed dead load that are tributary to this column:

� Weight of joists = 84
1,000

× 25 + 22
2

× 20 = 39.5 kips

� Weight of beams = 22 × 20.5
144

× 20 × 150
1,000

= 9.4 kips

� Weight of column (typical story) = 22 × 22
144

× 10 × 150
1,000

= 5.0 kips

� Weight of column (first story) = 22 × 22
144

× 12 × 150
1,000

= 6.1 kips

� Superimposed dead load = 10
1,000

× 25 + 22
2

× 20 = 4.7 kips

Live Loads
IBC Table 1607.1 is used to determine the nominal live loads on the basis of the given occupancies.
Live load reductions are taken wherever applicable.



75G e n e r a l C o n s i d e r a t i o n s f o r A n a l y s i s a n d D e s i g n

22 x 22 in column
(typical)

1

2

3

25 ft 0 in

A B C D E
20

 ft
 0

 in
20

 ft
 0

 in
22 ft 0 in 22 ft 0 in 25 ft 0 in

Beam (typical) Joist (typical)

41/2-in slab

(a)

T/Level 6
Elevation 52 ft 0 in

25 ft 0 in 22 ft 0 in 22 ft 0 in 25 ft 0 in

10
 ft

 0
 in

10
 ft

 0
 in

10
 ft

 0
 in

10
 ft

 0
 in

12
 ft

 0
 in

T/Level 5
Elevation 42 ft 0 in

T/Level 4
Elevation 32 ft 0 in

T/Level 3
Elevation 22 ft 0 in

T/Level 2
Elevation 12 ft 0 in

T/Level 1
Elevation 0 ft 0 in

(b)

A B C D E

FIGURE 3.3 The building of Example 3.1: (a) typical plan and (b) elevation.

� Roof: Lo = 20 psf

Reduced live load is determined by IBC Eq. (16-25):

Lr = Lo R1 R2

The tributary areaAt = 25 + 22
2

× 20 = 470 ft2
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Because 200 ft2 < At < 600 ft2, R1 is determined by IBC Eq. (16-27):

R1 = 1.2 − 0.001At = 1.2 − (0.001 × 470) = 0.73

A roof slope of 1/2 on 12 means that F = 1/2; because F < 4, R2 = 1.
Thus, Lr = 20 × 0.73 × 1 = 15 psf > 12 psf.

Axial live load = 15
1,000

× 470 = 7.1 kips

� Level 5: Because Level 5 is storage with a live load of 125 psf, which exceeds 100 psf, the live load
is not permitted to be reduced (IBC 1607.9.1.2).

Axial live load = 125
1,000

× 470 = 58.8 kips

� Typical floors:

(a) Reducible. From IBC Table 1607.1, reducible nominal live load for an office occupancy = 50
psf (lobby and corridor loads are neglected per the problem statement).

Reduced live load L is determined by IBC Eq. (16-22):

L = Lo

(
0.25 + 15√

KLL AT

)
= 50

(
0.25 + 15√

KLL AT

)

≥ 0.50Lo for members supporting one floor
≥ 0.40Lo for members supporting two or more floors

The live load element factor KLL = 4 for an interior column (IBC Table 1607.9.1), and the
tributary area AT at a particular floor level is equal to the sum of the tributary areas for that
floor and all the floors above it where the live load can be reduced. Thus,

Axial live load (reducible) = 50
1,000

(
0.25 + 15√

4AT

)
× 470 = 23.5

(
0.25 + 15√

4AT

)
kips

(b) Nonreducible. A movable partition load of 15 psf must be included because the live load does
not exceed 80 psf (IBC 1607.5). This load is not reducible because only the loads in IBC Table
1607.1 are permitted to be reduced (IBC 1607.9).

Axial live load (nonreducible) = 15
1,000

× 470 = 7.1 kips

It is usually convenient to organize the axial load information in a table; this clearly shows the
appropriate loads at each story. A summary of the axial dead and live loads on column B2 is given
in Table 3.2. In the table, the reduction multiplier is equal to [0.25 + (15/

√
4AT )].

At the base of column B2 in the first story, the total axial dead load is equal to the sum of the
dead loads in the second column of the table, which is 294.1 kips. Similarly, the total live load is
equal to 123.7 kips.

The last column in the table gives the cumulative axial dead plus live loads in each story. At
the base of column B2 in the first story, the total axial load is equal to 417.8 kips. As mentioned
previously, this load can be used to determine the size of the foundation that supports this column.
This load, once factored by the appropriate load factors given in Chap. 9 of the Code, is used to
determine the size of the column and the required amount of longitudinal reinforcement. Design
of columns is given in Chap. 8 of this book.
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� Superimposed dead load = 10
1,000

× 23.5 = 0.3 kips/ft (conservatively rounded up from 0.235

kips/ft)
� Total dead load = 2.8 kips/ft

Live Loads
� Reducible live load: From IBC Table 1607.1, reducible nominal live load for an office occupancy =

50 psf (lobby and corridor loads are neglected per the problem statement).
Reduced live load L is determined by IBC Eq. (16-22):

L = Lo

(
0.25 + 15√

KLL AT

)
= 50

(
0.25 + 15√

KLL AT

)

≥ 0.50Lo for members supporting one floor

The live load element factor KLL = 2 for an interior beam (IBC Table 1607.9.1), and the
tributary area is equal to 23.5 × 20 = 470 ft2. Thus,

Live load (reducible) = 50
1,000

(
0.25 + 15√

2AT

)
× 23.5 = 1.18

(
0.25 + 15√

2 × 470

)

= 1.18 × 0.74 = 0.9 kips/ft

� Nonreducible live load: A movable partition load of 15 psf must be included because the live load
does not exceed 80 psf (IBC 1607.5). This load is not reducible because only the loads in IBC Table
1607.1 are permitted to be reduced (IBC 1607.9).

Live load (nonreducible) = 15
1,000

× 23.5 = 0.4 kips/ft

� Total live load: The total live load is equal to 1.3 kips/ft.

The design of beams is covered in Chap. 6 of this book.

3.2.4 Rain Loads
The requirements for design rain loads are given in IBC 1611. Roofs equipped with
hardware that control the rate of drainage are required to have a secondary drainage
system at a higher elevation that limits accumulation of water on the roof above that
elevation. Such roofs must be designed to sustain the load of rainwater that will accu-
mulate to the elevation of the secondary drainage system plus the uniform load caused
by water that rises above the inlet of the secondary drainage system at its design flow.

The nominal rain load R is determined by IBC Eq. (16-35):

R = 5.2(ds + dh) (3.4)

In this equation, 5.2 is the unit load per inch depth of rainwater (pounds per square foot
per inch); ds is the depth of the rainwater on the undeflected roof up to the inlet of the
secondary drainage system when the primary drainage system is blocked; and dh is the
additional depth of rainwater on the undeflected roof above the inlet of the secondary
drainage system at its design flow. Figure 3.5 illustrates the rainwater depths for the
case of perimeter scuppers as the secondary drainage system.
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FIGURE 3.5 Example of rainwater depths for perimeter scuppers.

The nominal rain load R represents the weight of accumulated rainwater on the
roof, assuming that the primary roof drainage is blocked. The primary roof drainage
system can include, for example, roof drains, leaders, conductors, and horizontal storm
drains and is designed for the 100-year hourly rainfall rate indicated in IBC Fig. 1611.1
as well as the area of the roof that it drains. Secondary drainage systems can occur at
the perimeter of the roof (scuppers) or at the interior (drains).

3.2.5 Snow Loads
In accordance with IBC 1608.1, design snow loads S are to be determined by the pro-
visions of Chap. 7 of ASCE/SEI 7, which are based on over 40 years of ground snow
load data.

The first step in determining S is obtaining the ground snow load pg from ASCE/SEI
Fig. 7-1 or IBC Fig. 1608.2 for the conterminous United States and from ASCE/SEI Table
7-1 or IBC Table 1608.2 for locations in Alaska. Once pg is established, a flat-roof snow
load pf is obtained by ASCE/SEI Eq. (7-1):

pf = 0.7CeCtIpg (3.5)

The flat-roof snow load applies to roofs with a slope of 5 degrees or less. The
quantities Ce , Ct , and I are related to the roof exposure, roof thermal condition, and
occupancy category of the structure, respectively, and are determined from ASCE/SEI
Tables 7-2 to 7-4. The occupancy category of the structure is determined from IBC Table
1604.5.

Design snow loads S for all structures are based on the sloped-roof snow load ps ,
which is determined by ASCE/SEI Eq. (7-2):

ps = Cs pf (3.6)

The factor Cs depends on the slope and temperature of the roof, the presence or
absence of obstructions, and the degree of slipperiness of the roof surface. ASCE/SEI
Fig. 7-2 contains graphs of Cs for various conditions, and equations for this factor can
be found in ASCE/SEI C7.4.

The partial-loading provisions of ASCE/SEI 7.5 must be considered for continuous
or cantilevered roof framing systems and all other roof systems where removal of
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FIGURE 3.6
Unbalanced snow
loads on a gable
roof due to wind.

snow load on one span (e.g., by wind or thermal effects) causes an increase in stress or
deflection in an adjacent span. Only the three load cases given in ASCE/SEI Fig. 7-4
need to be investigated.

Wind and sunlight are the main causes for unbalanced snow loads on sloped roofs.
Unbalanced loads are unlike partial loads where snow is removed on one portion of the
roof and is not added to another portion. For example, wind tends to reduce the snow
load on the windward portion and increase the snow load on the leeward portion (see
Fig. 3.6). Provisions for unbalanced snow loads are given in ASCE/SEI 7.6.1 for hip and
gable roofs, in ASCE/SEI 7.6.2 for curved roofs, in ASCE/SEI 7.6.3 for multiple-folded
plate, sawtooth, and barrel vault roofs, and in ASCE/SEI 7.6.4 for dome roofs.

Snow drifts can occur on lower roofs of a building because of the following:

1. Wind depositing snow from higher portions of the same building or an adjacent
building or terrain feature (such as a hill) to a lower roof

2. Wind depositing snow from the windward portion of a lower roof to the portion
of a lower roof adjacent to a taller part of the building

The first type of drift is called a leeward drift, and the second type is called a
windward drift. Both types of drifts are illustrated in Fig. 3.7, which is adapted from
ASCE/SEI Fig. 7-7. Loads from drifting snow are superimposed on balanced snow
loads, as shown in ASCE/SEI Fig. 7-8. The provisions of ASCE/SEI 7.8 can be used to

FIGURE 3.7 Windward and leeward snow drifts.
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FIGURE 3.8 The distribution of active soil pressure.

determine drift loads on roof projections (such as mechanical equipment) and parapet
walls.

3.2.6 Soil Lateral Loads and Hydrostatic Pressure
Foundation walls of a building or structure and retaining walls must be designed to
resist the lateral loads caused by the adjacent soil. A geotechnical investigation is usually
undertaken to determine the magnitude of the soil pressure. In cases where the results
of such an investigation are not available, the lateral soil loads in IBC Table 1610.1 are
to be used. The design lateral soil load H depends on the type of soil and the boundary
conditions at the top of the wall. Walls that are restricted to move at the top are to be
designed for the at-rest pressures tabulated in IBC Table 1610.1, whereas walls that are
free to deflect and rotate at the top are to be designed for the active pressures in that
table. Figure 3.8 illustrates the distribution of active soil pressure over the height of a
reinforced concrete foundation wall.

In addition to lateral pressures from soil, walls must be designed to resist the effects
of hydrostatic pressure due to undrained backfill (unless a drainage system is installed)
and to any surcharge loads that can result from sloping backfills or from driveways or
parking spaces that are close to a wall. Submerged or saturated soil pressures include
the weight of the buoyant soil plus the hydrostatic pressure.

3.2.7 Flood Loads
IBC 1612.4 requires that buildings and structures located in flood hazard areas be de-
signed to resist flood loads determined by the provisions of ASCE/SEI Chap. 5. Flood-
waters can create the following loads:

� Hydrostatic loads: loads caused when stagnant or slowly moving water comes
into contact with a building or building component. Lateral hydrostatic pres-
sure is equal to zero at the surface of the water and increases linearly to γsds at
the stillwater depth ds, where γs is the unit weight of water.
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� Hydrodynamic loads: loads caused when water moving at a moderate to high
velocity above the ground level comes into contact with a building or building
component. ASCE/SEI 5.4.3 contains methods to determine such loads.

� Wave loads: loads caused when water waves propagating over the surface of
the water strike a building. Methods to determine wave loads are given in
ASCE/SEI 5.4.4.

References 3 and 4 contain comprehensive information on how to determine the
nominal loads Fa caused by floodwaters.

3.2.8 Self-Straining Loads
According to IBC 1602, self-straining loads T arise from contraction or expansion of a
member due to changes in temperature, shrinkage, moisture change, creep, movement
caused by differential settlement, or any combination thereof.

When a member is free to move, self-straining loads due to changes in temperature,
creep, and shrinkage do not occur. However, when a member is restrained or partially
restrained—which typically occurs in a cast-in-place reinforced concrete structure—
internal loads will develop.

Chapter 2 of this book provides some general information on how to determine
strains due to shrinkage and creep of plain concrete.

3.2.9 Wind Loads
Wind loads on buildings and structures are to be determined in accordance with
ASCE/SEI Chap. 6 or by the alternate all-heights method of IBC 1609.6 (IBC 1609.1.1).
Note that the basic wind speed, the exposure category, and the type of opening protec-
tion required may be determined by IBC 1609 or ASCE/SEI 7 because the provisions
in both documents are essentially the same.

Wind forces are applied to a building in the form of pressures that act normal to
the surfaces of the building. Positive wind pressure acts toward the surface and is
commonly referred to as just pressure. Negative wind pressure, which is also called
suction, acts away from the surface. Positive pressure acts on the windward wall of a
building, and negative pressure acts on the leeward wall, the sidewalls, and the leeward
portion of the roof (see Fig. 3.9). Either positive pressure or negative pressure acts on the
windward portion of the roof, depending on the slope of the roof (flatter roofs will be
subjected to negative pressure, whereas more sloped roofs will be subjected to positive
pressure). Note that the wind pressure on the windward face varies with respect to
height and that the pressures on all other surfaces are assumed to be constant.

Method 1 (Simplified Method) and Method 2 (Analytical Procedure) of ASCE/SEI
Chap. 6 and the Alternate All-heights Method of IBC 1609.6 are static methods for
estimating wind pressures. The magnitude of wind pressure on a structure depends
on its size, openness, importance, and location, as well as on the height above ground
level. Wind gust and local extreme pressures at various locations on a building are also
accounted for.

Although static methods are generally accurate for regularly shaped buildings that
deflect primarily in the direction of the wind, such methods cannot be used for many
tall, slender structures that respond dynamically to wind forces. Dynamic analyses
or Method 3 (Wind Tunnel Procedure) of ASCE/SEI Chap. 6 must be used in these
situations.
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FIGURE 3.9 The distribution of wind pressures on a building with a gable or hip roof.

Figure 3.10 illustrates how wind forces propagate through a concrete building. The
general response of the building can be summarized as follows:

1. The windward wall, which is supported laterally by the roof and floor slabs act-
ing as rigid diaphragms, receives the wind pressures and transfers the resulting
forces to the diaphragms.

2. The wind loads are transferred from the diaphragms to the elements of the main
wind force–resisting system (MWFRS), which is an assemblage of structural
members in a building that are assigned to provide resistance and stability for
the entire building. In this case, the walls are the MWFRS. The diaphragms
essentially act as beams that are supported by the walls that are parallel to the
direction of the wind.

3. The walls transfer the wind forces to the foundations.

The same sequence of events would occur if moment frames, or any other type of
lateral force–resisting system, were used instead of or in conjunction with walls.

Only those walls that are parallel to the direction of wind are assumed to be part
of the MWFRS. The windward wall, which initially receives the wind, is considered to
be a component of the building for analysis in that direction, and the wind pressure on
such elements is determined differently than that on the MWFRS. The wind pressure
on cladding attached to the building would be determined in a fashion similar to that
for components. The IBC and ASCE/SEI 7 refer to elements on the exterior envelope of
the building that are not considered MWFRS as components and cladding.

For purposes of analysis, the structure is assumed to remain elastic under the design
wind forces. Because the wind can occur in any direction, the corresponding critical
effects must be considered in design.

The equations given in ASCE/SEI 6.5.12 (Method 2, Analytical Procedure) can be
used to determine design wind pressures on the MWFRS and the components and
cladding of low-rise buildings and buildings of all heights. Simplified procedures are
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(a)

Wind

(b)

FIGURE 3.10 The propagation of wind forces in a concrete building: (a) wind load on overall
building and (b) distribution of wind load to elements of the MWFRS.
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given in ASCE/SEI 6.4 (Method 1) and IBC 1609.6 (Alternate All-heights Method) for
low-rise, regularly shaped buildings that meet specific sets of conditions.

Wind forces are determined by multiplying the design wind pressures by an ap-
propriate area. In terms of the MWFRS, it is clear that the magnitude of the wind force
is directly proportional to the area of the windward wall perpendicular to the direction
of the wind: The greater the area, the greater the wind force.

3.2.10 Earthquake Loads
According to IBC 1613.1, the effects of earthquake motion on structures and their com-
ponents are to be determined in accordance with ASCE/SEI 7, excluding Chap. 14 and
Appendix 11A. The design spectral accelerations, which are proportional to the mag-
nitude of the earthquake forces, can be determined by either IBC 1613 or ASCE/SEI
Chap. 11 because the provisions are the same.

The forces that a building must resist during a seismic event are caused by ground
motion: As the base of a building moves with the ground, the inertia of the building
mass resists this movement, which causes the building to distort. This distortion wave
travels along the height of the building. With continued shaking, the building undergoes
a series of complex oscillations.

In general, an analysis that considers the acceleration of every mass particle in a
building is necessary to determine the inertia forces due to earthquake motion. Such an
analysis is usually very complex because there are an inordinate number of degrees of
freedom even in small buildings. Because the floor and roof elements (horizontal ele-
ments) in a building are relatively heavy compared with the columns and walls (vertical
elements), it is reasonable to assume that the mass of the structure is concentrated at the
floor and roof levels. This is commonly referred to as a lumped-mass idealization of a
structure. For purposes of analysis, the mass of the horizontal and vertical elements of
the structure and the mass associated with all other dead loads tributary to a floor level
are assumed to be concentrated at the center of mass at that level, and the seismic force
is assumed to act through that point. Utilizing a discrete number of masses results in a
simpler analysis.

The manner in which a building responds to an earthquake depends on its mass,
stiffness, and strength (the strength of the structure generally plays a role beyond the
stage of elastic response). There are as many natural modes of vibration as there are
degrees of freedom. The seismic response of short, stiff buildings is dominated by the
first (fundamental) mode of vibration where all of the masses move in the same direction
in response to the ground motion (see Fig. 3.11). Higher modes of vibration contribute
significantly to the response of tall, flexible buildings.

Horizontal earthquake forces are transmitted through the diaphragms to walls,
frames, or a combination thereof. Collector elements are needed to transfer the di-
aphragm force where a wall or frame does not extend along the entire edge of the
diaphragm. The forces are subsequently transferred to the earth at the base of the foun-
dations. Well-defined load paths such as the one described earlier must be present in
every building or structure.

The Equivalent Lateral Force Procedure of ASCE/SEI 12.8 can be used to determine
earthquake forces for structures that meet the conditions in ASCE/SEI 12.6-1. It applies
to essentially regular buildings that respond to earthquake forces in primarily the first
mode. The base shear is computed as a function of the seismicity and soil conditions at
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Mode 1 Mode 2 Mode 3

FIGURE 3.11 Modes of vibration for idealized structures.

the site, the type of seismic force–resisting system, and the period of the building (which
is related to its stiffness). This force is distributed over the height of the building as a set
of equivalent static forces that are applied at each floor level. The magnitude of the force
at a given level is based on the height above ground and the weight assigned to that
level. This force, in turn, is distributed to the elements of the seismic force–resisting
system based on relative stiffness because the diaphragms in a reinforced concrete
building are typically rigid.

The simplified alternative method of ASCE/SEI 12.14 can be used to determine
design earthquake forces for bearing wall and building frame systems that meet the
conditions of ASCE/SEI 12.14.1.1.

For certain types of irregular buildings or for all other structures that cannot be
analyzed by the Equivalent Lateral Force Procedure (which are identified in ASCE/SEI
Table 12.6.1), more sophisticated analyses are required to determine the design earth-
quake effects.

The earthquake forces determined by the methods given in ASCE/SEI 7 will be less
than the elastic response inertia forces that will be induced in a structure during an actual
earthquake. It is expected that structures will undergo relatively large deformations
when subjected to a major earthquake. The use of code-prescribed design forces implies
that critical regions of certain members will have sufficient inelastic deformability to
enable the structure to survive the earthquake without collapsing. As such, these critical
regions must be detailed properly to perform in this manner.

The basic difference between wind and earthquake forces exists in the manner in
which they are induced in a structure and the way the structure responds. Wind forces
are proportional to the exposed surface of a structure, whereas earthquake forces are
essentially inertia forces that are generated from the mass of the structure. Structures
subjected to the effects of wind are assumed to remain elastic, whereas structures sub-
jected to the effects from a design earthquake are expected to have some level of inelastic
deformation depending on the type of structural system.

3.3 Methods of Analysis

3.3.1 Introduction
Once the nominal loads have been established from the applicable building code,
an analysis of the structure is performed using these nominal loads and the load
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FIGURE 3.12
Vertical load
propagation in a
reinforced concrete
frame.

combinations given in Chap. 9 of the Code. It was discussed previously that in the
strength design method, nominal loads are multiplied by appropriate load factors, and
the members are designed for the effects from critical load combinations. More infor-
mation on the strength design method is given in Chap. 4 of this book.

According to ACI 8.3.1, an elastic analysis is used to determine bending moments,
shear forces, and axial forces in reinforced concrete members due to the combinations of
vertical and lateral loads. The assumptions that are given in ACI 8.7 through 8.11 may
be used in such an analysis and are discussed later. The purpose of these assumptions
is to help simplify the analysis of reinforced concrete structures.

Unlike structural steel or timber structures where the majority, if not all, of the
individual members are joined by simple connections that do no transfer any signif-
icant bending moments, cast-in-place, reinforced concrete structures are by and large
monolithic with reinforcement that extends into adjoining members. Thus, bending
moments, shear forces, and axial forces are transferred through the joints. Steel and
timber members are commonly analyzed as simply supported members in statically
determinate structures, whereas cast-in-place, reinforced concrete members are almost
exclusively analyzed as continuous members in statically indeterminate structures.

Consider the two-story reinforced concrete frame illustrated in Fig. 3.12. When a
concentrated load P is applied to one bay at the roof level, the effects of the load spread
through the rest of the frame because of the continuity at the joints.

A similar scenario is shown in Fig. 3.13, where horizontal wind loads W act on the
two-story frame.

Classical methods of analysis, such as the slope-deflection and moment distribu-
tion methods, are suited to analyze regular frame buildings of limited size and height.

FIGURE 3.13
Horizontal load
propagation in a
reinforced concrete
frame.
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Numerous computer programs that can analyze structures of any size and complex-
ity including interaction between the various structural members and second-order
effects are available. When using any computer software, it is essential that the user
understands all aspects of the assumptions and limitations of the software.

An approximate method of analysis that can be used to quickly calculate bending
moments and shear forces for reinforced beams and one-way slabs in specific types
of frames is given at the end of this chapter. For lateral loads, simplified techniques
such as the portal method produce adequate results for symmetric frames that meet
the limitations of the method. Such simplified methods can also be utilized to obtain
preliminary member sizes and to check output from computer software.

3.3.2 Analysis Assumptions

Stiffness
The first analysis assumption is given in ACI 8.7, and it has to do with member stiffness.
Any reasonable set of assumptions can be used when computing flexural and torsional
stiffnesses of reinforced concrete structural members such as beams, columns, and walls,
and these assumptions must be used consistently throughout the analysis.

The stiffnesses used in an analysis for strength design should represent the stiff-
nesses of the members immediately before failure. Accordingly, flexural and torsional
stiffnesses must reflect the degree of cracking and inelastic action that occurs along the
length of each member before yielding. Determining these quantities in even a relatively
simple frame is very complex, and such a procedure is not efficient for use in a design
office. ACI R8.7 contains a number of simplifications that can be used in determining
member stiffnesses in some specific applications.

Braced frames are structures that have bracing elements such as walls that inhibit
lateral deflection of a building. According to ACI 10.10.1, a story in a structure is as-
sumed to be braced against sidesway when the bracing elements have a total lateral
stiffness equal to or greater than 12 times the gross stiffness of the columns in the story.
In such cases, one of two assumptions is usually made for member stiffness: (1) the gross
flexural stiffness values Ec I are used for all members in the structure, or (2) one-half of
the gross flexural stiffness value Ec I of the beam stem is used for beams, and the gross
flexural stiffness value Ec I is used for columns.

For frames that are free to sway, such as moment frames, it is especially important to
utilize the proper stiffnesses because a second-order analysis may be required. Guidance
for the choice of flexural stiffness Ec I in such cases is given in ACI R10.10.4.

Whether it is necessary to consider torsional stiffness in the analysis of a structure
depends on the type of torsion present. In the case of equilibrium torsion, where torsion
is required to maintain equilibrium of the structure, torsional stiffness should be con-
sidered in the analysis. Torsional stiffness may be neglected in the case of compatibility
torsion where members twist to maintain deformation compatibility, which is found
in a typical continuous system. The design of reinforced concrete beams for torsion is
covered in Chap. 6.

For structures subjected to lateral loads, it is important to utilize an appropriate
set of stiffness values for the members in the structure so that realistic estimates of
lateral deflections are obtained. A nonlinear analysis is required to fully capture the
actual behavior of a reinforced concrete structure subjected to lateral loads. In lieu
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of such an analysis, which is generally complex, the requirements of ACI 8.8 can be
used to estimate stiffness. The purpose of these requirements is to simplify the overall
procedure: Instead of a complicated nonlinear analysis, a linear analysis of the structure
is permitted where reduced member stiffnesses that take into account cracking and other
nonlinear behavior of the members are used.

ACI 8.8.2 contains two options for member stiffness that can be employed in the
analysis of structures subjected to factored lateral loads. The first of the two options per-
mits the use of the section properties given in ACI 10.10.4.1(a). These properties, which
are covered in more detail in Chap. 8, provide lower-bound values for stability analysis
of reinforced concrete buildings subjected to gravity and wind loads. Gross stiffnesses
of columns, walls, beams, and slabs are multiplied by stiffness reduction factors and
are utilized in the analysis along with the full values of the modulus of elasticity and
area. This option permits the same structural model to be used to determine lateral
deflections and slenderness effects in the columns. The second option permits the use
of 50% of the stiffness values based on the gross section properties of the members. Like
in the first option, this approximate method produces results that correlate well with
experimental results and more rigorous analytical results. References 5 and 6 contain
additional information on approximate stiffnesses.

Two-way slab systems without beams, which are commonly referred to as flat plates,
can be analyzed for factored lateral loads, using a linear analysis with column stiffness
determined by one of the two options of ACI 8.8.2 discussed earlier and slab stiffness
determined “by a model that is in substantial agreement with results of comprehensive
tests and analysis” (ACI 8.8.3). References 7 through 9 contain acceptable models that
can be used in such situations. In general, only a portion of the slab is effective across its
full width in resisting the effects from lateral loads. In the effective beam width model
of Ref. 8, the actual slab is replaced by a flexural element that has the same thickness
as the slab and an effective beam width be that is a fraction of the actual transverse slab
width. The following equation can be used to determine be for an interior column frame:

be = 2c1 + �1

3
(3.7)

In this equation, c1 and �1 are the dimension of the column and the center-to-center
span length in the direction of analysis, respectively (see Fig. 3.14). For an exterior
frame, be equals one-half of the value obtained by Eq. (3.7). To account for cracking,
the stiffness is usually set equal to one-half to one-quarter of the gross (uncracked)
stiffness based on the slab thickness and effective beam width.

For reinforced concrete structures subjected to service lateral loads, ACI 8.8.1 per-
mits the use of a linear analysis where the member stiffnesses are taken as 1.4 times
those established by ACI 8.8.2 or 8.8.3. It has been demonstrated that the 1.4 factor is
adequate to model effective section properties for structures subjected to service-level
lateral loads.

Span Length
The second analysis assumption has to do with span length. In a typical elastic frame
analysis, a structure is usually idealized as a simple line diagram where the dimen-
sions are based on the centerlines of the vertical and horizontal members. The usual
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FIGURE 3.14 The
effective width of
slab for use in
stiffness
calculations for
slab-column frames.

assumption is that the members are prismatic with constant moments of inertia between
centerlines. This assumption is not strictly correct. For example, a beam that intersects a
column in a monolithic frame is prismatic up to the face of the column. From the face to
the centerline of the column, the depth and the corresponding moment of inertia of the
beam are significantly larger than those in the span. The same is applicable to columns.
Thus, actual variations in member depth should be considered in analysis in order for
it to be strictly correct. In general, such an analysis is difficult and time-consuming. ACI
8.9 provides assumptions that help simplify the analysis.

According to ACI 8.9.2, the span length that is to be used in the analysis is the
distance between the centerlines of the supports when determining bending moments
in frames or similar types of continuous construction. This essentially implies that the
reactions are concentrated at the axes of the columns. For the flat-plate system depicted
in Fig. 3.14, the bending moments in the slabs must be determined using the span
lengths �1 and �2.

In the case of beams built integrally with supports, which is typical in cast-in-place,
reinforced concrete frame construction, it is permitted to design the beams for bending
on the basis of the reduced bending moments at the faces of the supports (ACI 8.9.3).
This simplification is based on the presence of a significantly large beam depth from
the face to the centerline of the supporting column compared with that in the span.
In other words, the critical section for negative bending moments occurs at the face of
the support. An acceptable method of reducing bending moments at support centers to
those at support faces can be found in Ref. 10. Most computer softwares for the design
of reinforced concrete structures automatically take this reduction into account.

Columns
The third analysis assumption deals with columns. Columns in a frame are to be de-
signed for the most critical combinations of factored axial loads and bending moments
due to the applied loads (ACI 8.10.1). The design of columns is covered in Chap. 8.
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(a) (b)

FIGURE 3.15 The arrangement of live load: (a) example frame and (b) simplified assumptions for
modeling the frame.

When determining gravity load bending moments in columns, it is permitted to
assume that the far ends of the column are fixed. More information on this simplification
is given next in the assumption on the arrangement of live load.

Arrangement of Live Load
The arrangement of live load on a structure is covered in the last of the four analysis
assumptions. There are two assumptions provided in ACI 8.11 that are applicable to
gravity load analysis and not to lateral load analysis.

The first assumption has to do with modeling of the frame. The Code permits the
use of a model that is limited to the horizontal and vertical framing members at the
level at which the far ends of the column are assumed to be fixed. For example, consider
the reinforced concrete frame depicted in Fig. 3.15a . If we were interested in designing
the beams on the second floor level, the live load need only be applied at that level, and
the columns above and below that floor level are assumed to be fixed (see Fig. 3.15b).

The second assumption considers the arrangement of live load. In typical situations,
the arrangement of live load on a structure that will cause critical reactions is not
always readily apparent. The engineer is expected to establish the most demanding
sets of design forces by investigating the effects of live load placed in various patterns.
It is permitted by the Code to assume that the arrangement of live load is limited to
combinations of (a) factored dead load on all spans with full factored live load on two
adjacent spans and (b) factored dead load on all spans with full factored live load on
alternate spans. These loading patterns will be investigated for the three-span frame
shown in Fig. 3.16a .

In the first loading pattern, the live load is applied on the exterior spans (Fig. 3.16a ).
This pattern produces the maximum negative gravity moment at support A or D and
the maximum positive gravity moment in span AB or CD.

In the second loading pattern, live load is applied on adjacent spans (Fig. 3.16b). This
pattern produces the maximum negative gravity moment at support B (or at support
C if spans BC and CD are loaded with the live load).
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(a)

(b)

(c)

FIGURE 3.16 The live load patterns for a three-span frame: (a) the loading pattern for negative
bending moment at support A or D and the positive bending moment in span AB or CD, (b) the
loading pattern for negative bending moment at support B, and (c) the loading pattern for
positive bending moment in span BC.

Finally, in the third loading pattern, live load is applied to the interior span only
(Fig. 3.16c). This pattern produces the maximum positive gravity moment in span BC.
Similar scenarios can be developed for other situations.

3.3.3 Approximate Method of Analysis
As an alternative to the frame analysis procedures that have been covered earlier in the
chapter, ACI 8.3.3 permits an approximate method of analysis to determine bending
moments and shear forces in continuous beams and one-way slabs.
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The approximate analysis method can be utilized when all of the following condi-
tions are met:

1. The structure has two or more spans.

2. The spans are approximately equal, with the larger of the two adjacent spans
not greater than the shorter one by more than 20%.

3. Loads are uniformly distributed.

4. The unfactored (service) live load L does not exceed 3 times the unfactored
(service) dead load D.

5. Members are prismatic; that is, they have a uniform cross-section throughout
the span.

Bending moments and shear forces along the span are illustrated in Fig. 3.17 for
various support conditions.

The bending moments of ACI 8.3.3 are based on the maximum points of a moment
envelope at the critical sections. The moment envelope is obtained by applying live
loads on all, alternate, or adjacent spans, considering the five limitations of the method
noted previously. This approximate method of analysis gives reasonably conservative
values for continuous structures that meet the prescribed conditions.

The quantity wu is the factored uniformly distributed load along the span length,
which is determined by multiplying the service dead and live loads by the load factors
given in ACI 9.2. More information on load factors and required strength is given in
Chap. 4. For beams, wu is the uniformly distributed load per length of beam in pounds
per linear foot, whereas for one-way slabs, wu is the uniformly distributed load per unit
area of slab in pounds per square foot. It is common to analyze a one-way slab using a
1-ft-wide design strip.

Negative bending moments and shear forces are at the faces of the supports. When
calculating negative bending moments, the average of the adjacent clear span lengths
�n,avg must be used.

Example 3.3 Given the five-story reinforced concrete building illustrated in Fig. 3.3 and the design
information given in Examples 3.1 and 3.2, determine the factored bending moments and shear
forces in the beam along column line B.

Solution In lieu of using a more rigorous analysis to determine bending moments and shear forces,
check if the approximate method of ACI 8.3.3 can be used:

1. There are two spans.

2. Spans are equal.

3. Loads are uniformly distributed (see Example 3.2).

4. Unfactored live load L from Example 3.2 = 1.3 kips/ft; unfactored dead load D from Example
3.2 = 2.8 kips/ft; L/D = 0.46 < 3.

5. Beams have constant cross-section over the entire length.

Because all five conditions are satisfied, the approximate method can be used.
The total factored load wu is the factored uniformly distributed load along the span length,

which is determined by multiplying the service dead and live loads by the load factors in ACI 9.2.
In this case, ACI Eq. (9-2) produces the critical effects on the beam:

wu = 1.2wD + 1.6wL = (1.2 × 2.8) + (1.6 × 1.3) = 5.4 kips/ft
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Location Bending Moment (ft kips) Shear Force (kips)

Interior face of
exterior support

wu�
2
n

16
= −5.4 × 18.172

16
= −111.4

wu�n

2
= 5.4 × 18.17

2
= 49.1

Midspan
wu�

2
n

14
= 5.4 × 18.172

14
= 127.3 —

Exterior face of
first interior
support

wu�
2
n

9
= −5.4 × 18.172

9
= −198.1

1.15wu�n

2
= 1.15 × 5.4 × 18.17

2
= 56.4

TABLE 3.3 Summary of Bending Moments and Shear Forces for the Beams Along Column Line B

Example 3.4 Given the five-story reinforced concrete building illustrated in Fig. 3.3 and the design
information given in Examples 3.1 and 3.2, determine the factored bending moments and shear
forces in the interior wide-module joists.

Solution Wide-module joists are essentially beams that are constructed using standardized pan
forms. The designation 16 + 41/2 × 7 + 53 in Example 3.1 means the following (see Fig. 3.18):

� Rib depth = 16 in
� Slab thickness = 41/2 in
� Rib width = 7 in
� Pan width = 53 in

Each joist supports the load over its length and a tributary width equal to 53 + 7 = 60 in = 5 ft.
The dead loads supported by the joists are as follows:

� Weight of joists = 84
1,000

× 5 = 0.42 kips/ft

� Superimposed dead load = 10
1,000

× 5 = 0.05 kips/ft

� Total dead load = 0.47 kips/ft

The live loads supported by the joists are as follows:

� Reducible live load: From IBC Table 1607.1, reducible nominal live load for an office occupancy =
50 psf (lobby and corridor loads are neglected per the problem statement).

12
1

53 in 7 in

16 in

41/2 in

FIGURE 3.18 The dimensions of wide-module joists specified in Figure 3.3.
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Reduced live load L is determined by IBC Eq. (16-22):

L = Lo

(
0.25 + 15√

KLL AT

)
= 50

(
0.25 + 15√

KLL AT

)

≥ 0.50Lo for members supporting one floor

The live load element factor KLL = 2 for an interior beam (IBC Table 1607.9.1), and the smallest
tributary area is equal to 22 × 5 = 110 ft2. Because KLL AT = 2 × 110 = 220 ft2 < 400 ft2, this live
load cannot be reduced.

Live load = 50
1,000

× 5 = 0.25 kips/ft

� Nonreducible live load: A movable partition load of 15 psf must be included because the live load
does not exceed 80 psf (IBC 1607.5). This load is not reducible because only the loads in IBC Table
1607.1 are permitted to be reduced (IBC 1607.9).

Live load (nonreducible) = 15
1,000

× 5 = 0.08 kips/ft

� Total live load: The total live load is equal to 0.33 kips/ft.

As in Example 3.4, check if the approximate method of ACI 8.3.3 can be used:

1. There are more than two spans.

2. Ratio of adjacent span lengths = 25/22 = 1.14 < 2.

3. Loads are uniformly distributed (see Example 3.2).

4. Unfactored live load L = 0.33 kips/ft; unfactored dead load D = 0.47 kips/ft; L/D = 0.70 < 3.

5. Joists have constant cross-section over the entire length.

Because all five conditions are satisfied, the approximate method can be used.
As in Example 3.3, the total factored load wu is determined by ACI Eq. (9-2):

wu = 1.2wD + 1.6wL = (1.2 × 0.47) + (1.6 × 0.33) = 1.1 kips/ft

The clear spans of the joists are equal to the following:

� End spans: �n = 25 − (22/12) = 23.17 ft
� Interior spans: �n = 22 − (22/12) = 20.17 ft

A summary of the factored bending moments and shear forces is given in Table 3.4.
Two negative moments are calculated at the interior face of exterior supports because the joists

along column line 2 frame into columns and the other interior joists frame into beams. In accordance
with ACI 8.3.3, the average of the clear span lengths is used to determine the bending moment at
the exterior face of the first interior supports. The magnitude of the bending moment at this location
(51.7 ft kips) is greater than the magnitude of the bending moment on the other side of the first
interior column (47.0 ft kips). It will be shown later that the larger of these two bending moments
is used to determine the required amount of negative reinforcement at this location.

Figure 3.19 provides a summary of the factored bending moments and shear forces along the
span of the joists.

Example 3.5 Given the five-story reinforced concrete building illustrated in Fig. 3.3 and the design
information given in Examples 3.1 and 3.2, determine the factored bending moments and shear
forces in the one-way slabs.

Solution The slabs are supported by the ribs of the wide-module joists and bend primarily in one
direction, that is, in the direction perpendicular to the supports. One-way slabs are commonly
analyzed and designed using a 1-ft-wide design strip.
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Location Bending Moment (ft kips) Shear Force (kips)

End Interior Column wu�
2
n

16
= −1.1 × 23.172

16
wu�n

2
= 1.1 × 23.17

2
= 12.7

span face of support
= − 36.9exterior

Spandrel wu�
2
n

24
= −1.1 × 23.172

24
support

support
= −24.6

Midspan
wu�

2
n

14
= 1.1 × 23.172

14
= 42.2 —

Exterior face of wu�
2
n,avg

10
= −1.1 × 21.672

10
1.15wu�n

2
= 1.15 × 1.1 × 23.17

2first interior
= −51.7 = 14.7support

Interior Interior face of wu�
2
n,avg

11
= −1.1 × 21.672

11
wu�n

2
= 1.1 × 20.17

2
= 11.1span first interior

= −47.0support

Midspan
wu�

2
n

16
= 1.1 × 20.172

16
= 28.0 —

Interior face of wu�
2
n

11
= −1.1 × 20.172

11
wu�n

2
= 1.1 × 20.17

2
= 11.1interior support

= −40.7

TABLE 3.4 Summary of Bending Moments and Shear Forces for the Wide-module Joists

The dead loads supported by the one-way slab are as follows:

� Weight of slab = 4.5
12

× 1 × 150
1,000

= 0.06 kips/ft per foot width of slab

� Superimposed dead load = 10
1,000

× 1 = 0.01 kips/ft per foot width of slab

� Total dead load = 0.07 kips/ft per foot width of slab

M (ft  kips)

V (kips)

–36.9

12.7
42.2

–51.7

14.7

–47.0

11.1
28.0 28.0 42.2

12.7

–40.7 –40.7 –47.0 –51.7 –36.9

11.1 11.1 11.1 14.7

FIGURE 3.19 Summary of factored bending moments and shear forces along the span of the
wide-module joists.
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According to IBC 1607.9.1.1, the tributary area AT for one-way slabs shall not exceed the area de-
fined by the span length times a width normal to the span length of 1.5 times the span length. In this
case, AT = 1.5 × 52 = 37.5 ft2; this is also equal to the influence area because KLL = 1 in IBC Table
1607.9.1. It is evident that no live load reduction can be taken on the slab because KLL AT < 400 ft2.
Therefore,

Live load = 50 + 15
1,000

× 1 = 0.07 kips/ft per foot width of slab

It can be shown that all five conditions of ACI 8.3.3 are satisfied, so the approximate method
can be used to determine the bending moments and shear forces.

As in the previous examples, the total factored load wu is determined by ACI Eq. (9-2):

wu = 1.2wD + 1.6wL = (1.2 × 0.07) + (1.6 × 0.07) = 0.2 kips/ft

Because the center-to-spacing distance between the wide-module joists is only slightly greater
than the actual clear span between the joist ribs, conservatively use �n = 5 ft.

Because the slabs have spans that are less than 10 ft, the negative bending moment at the faces
of all of the supports is

wu�2
n

12
= −0.2 × 52

12
= −0.42 ft kips per foot width of slab

For simplicity, use the positive bending moment in the end span for all of the spans:

wu�2
n

14
= 0.2 × 52

14
= 0.36 ft kips per foot width of slab

Similarly, use the shear force at the face of the first interior support for all of the spans:

1.15wu�n

2
= 1.15 × 0.2 × 5

2
= 0.6 kips per foot width of slab

3.4 Moment Redistribution
ACI 8.4 permits bending moments calculated by elastic theory at supports of continuous
flexural members to be increased or decreased, except where the moments have been
computed using the approximate coefficients in ACI 8.3.3. It is customary to reduce the
negative moments at the supports and then to increase the positive moment in the span.

The maximum percentage of redistribution is the lesser of 1,000 times the net tensile
strain in the reinforcement εt or 20%. Methods on how to calculate εt are given in Chap. 5.

Moment redistribution is dependent on adequate ductility in plastic hinge regions,
which develop at points of maximum moment and which cause a shift in the elastic
bending moment diagram. Thus, redistribution of negative moments is only permitted
where εt is equal to or greater than 0.0075 at the section in which the moment is reduced.
Adjustments of the negative moments at the supports are made for each loading con-
figuration, taking into account pattern live loading. It is important to ensure that static
equilibrium is maintained at all joints before and after moment redistribution. Thus, a
decrease in the negative moments at the supports warrants an increase in the positive
moment in the span under consideration.

Figure 3.20 illustrates moment redistribution for a span of a continuous beam. The
bending moment diagram determined by analytical methods before redistribution is
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FIGURE 3.20
Redistribution of
bending moments in
accordance with ACI
8.4.

shown along with the maximum negative and positive moments at the faces of the
supports and in the span, respectively.

The adjusted bending moment diagram is also shown after redistribution of the
negative moments. In this case, it was decided to decrease the negative moments at the
supports and to increase the positive moment using statics.

Adjusted negative bending moments at the faces of the supports can be determined
by the following equation:

(M−
i )adj =

(
1 − A%

100

)
M−

i (3.8)

In this equation, A% = 1,000εt% ≤ 20%, which is the permitted percentage adjustment
given in ACI 8.4.1.

The required flexural reinforcement at the critical sections can be obtained for these
redistributed bending moments using the general principles of the strength design
method, which is covered in Chaps. 5 and 6.
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Problems
3.1. For a one-story reinforced concrete building, determine the total axial dead and live loads at the
base of an interior column that supports a tributary area of 625 ft2. The slope of the roof is 30 degrees,
and the load data are as follows:

Dead load (including weight of column) = 90 psf
Superimposed dead load = 5 psf
Roof live load = 20 psf

16 ft 6 in 18 ft 0 in 18 ft 0 in 16 ft 6 in

18 x 20 in beam
(typical perimeter)

24 x 20 in beam
(typical interior)

24 x 24 in co umn
(typical interior)

18 x 18 in column
(typical perimeter)

9-in one-way slab

BA

1

2

3

4

5

6

C D E

20
 ft

 6
 in

24
 ft

 6
 in

20
 ft

 6
 in

24
 ft

 6
 in

20
 ft

 6
 in

FIGURE 3.21 The floor plan of the reinforced concrete hotel of Problem 3.6.
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3.2. Given the five-story building and load data of Example 3.1, determine the total axial dead and
live loads at the base of columns (a) A1, (b) B1, and (c) A2.

3.3. Given the five-story building and load data of Example 3.1, determine the total axial dead and
live loads at the base of column B2 assuming all floors are typical office occupancy.

3.4. Given the five-story building and load data of Example 3.1, determine the total axial dead and
live loads at the base of column B2 assuming that the storage occupancy is on level 4 and that all other
floors are typical office occupancy.

3.5. Given the five-story building and load data of Example 3.1, determine the dead and live loads
along the span of the beam on column line A between 1 and 2 on (a) a typical floor with office occupancy,
(b) the floor with storage occupancy, and (c) the roof.

3.6. The typical floor plan of a reinforced concrete hotel is illustrated in Fig. 3.21.

Determine the factored bending moments and shear forces (a) in the beam along column line A,
(b) in the beam along column line D, and (c) in the one-way slab between A and E.

Assume the following: normal-weight concrete with a density of 150 pcf, a superimposed dead load
of 5 psf, and the load combination given in ACI Eq. (9-2) produce the critical effects on the members.
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C H A P T E R 4
General Requirements for

Strength and Serviceability

4.1 Introduction
This chapter contains the fundamental requirements for strength and serviceability
that form the basis of design of all reinforced concrete members. The basic concepts of
the strength design method are presented, as are the general provisions for deflection
control.

Throughout the years, there have been basically two design philosophies for rein-
forced concrete members: working stress design and limit state design (referred to as
the strength design method).

From the early 1900s until the early 1960s, working stress design was the primary
design method for reinforced concrete. In working stress design, members are pro-
portioned so that maximum elastic stresses due to unfactored loads (also identified as
service or working loads) are equal to or less than the allowable stresses prescribed in
the Code.

Limit state design involves identifying applicable limit states and determining ac-
ceptable levels of safety against occurrences of each limit state. In general, a limit state
is a set of performance criteria that must be met when a structure is subjected to loads.
The two fundamental limit states are as follows: (1) ultimate limit states, which cor-
respond to the loads that cause failure (strength and stability), and (2) serviceability
limit states, which correspond to the criteria that govern the service life of a struc-
ture (e.g., deflection and crack width). A structure or structural member is said to
have reached a limit state (or, equivalently, is said to have “failed”) when it is unable
to carry out one or more of the required performance criteria. The statistical meth-
ods used to determine the level of safety required in the design process are discussed
later.

The 1956 edition of the ACI Code was the first to include provisions for the “ulti-
mate strength design method.” The strength method was essentially established as the
preferred design method in the 1971 Code, although an updated form of the working
stress design method—referred to as the alternate design method—was still permitted
to be used. It was not until 2002 that the alternate design method was officially deleted
from the Code (however, it has been mentioned in Commentary Section R1.1 in every
edition of the Code since then). A more comprehensive history of the evolution of the
strength design method can be found in Chap. 5 of Ref. 1.
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The gradual elimination of the working stress design method from the ACI Code
primarily had to do with the following shortcomings of the method2:

� Inability to correctly account for the variability of loads and member resistances
� Inconsistent factor of safety in member design

Chapter 9 of the Code contains the basic requirements for proportioning reinforced
concrete members to resist load effects. The main limit states for reinforced concrete
structures are strength (ACI 9.1.1) and serviceability (ACI 9.1.2), and both must be
considered in the design process.

The basic requirement for strength design is

Design strength ≥ Required strength (4.1)
or

φ(nominal strength) ≥ U (4.2)

In general, the design strength of a member, which is equal to the applicable strength
reduction factor φ times the nominal strength of the member, must be equal to or greater
than the required strength. The required strength, which is represented by the symbol
U, is determined by multiplying service load effects by code-prescribed load factors.
Design and required strengths are discussed in more detail in the following sections.

Prior to the 2002 edition of the Code, the load factor combinations in Chap. 9 of
the Code were different from those in ASCE/SEI 7, with the latter being the combi-
nations that were used in the design of just about all of the other structural materials.
A significant change occurred in the 2002 edition of the Code: The load combinations
that were introduced in Chap. 9 matched those in ASCE/SEI 7-02. This change helped
in simplifying the overall design process, especially in structures utilizing more than
one type of material. Revised strength reduction factors accompanied the revised load
combinations in order to provide a consistent factor of safety in design. Details of the
statistical analysis that was used to calibrate the resistance factors to the ASCE/SEI load
factors can be found in Refs. 3 and 4.

The load combinations in the 2008 edition of the Code match those in ASCE/SEI 7-
05 and, for the most part, the load combinations in IBC 1605.2.1. Additional information
on the ACI load combinations is given in Section 4.2.

ACI 9.1.3 permits the use of the load factor combinations and strength reduction
factors contained in Appendix C of the Code in lieu of those in Chap. 9. These load and
strength reduction factors appeared in various forms in Chap. 9 of the Code from the
1960s until 2002, when they were revised and moved to Appendix C. When designing
a reinforced concrete member, it is important to use the load factor combinations in
conjunction with the corresponding strength reduction factors; in other words, it is not
permitted to use the load factor combinations of Chap. 9 with the strength reduction
factors of Appendix C.

4.2 Required Strength

4.2.1 ACI Load Combinations
The required strength U is obtained by multiplying service-level (nominal) load ef-
fects caused by the nominal loads prescribed in the governing building code by the
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ACI Equation Number Load Combination

9-1 U = 1.4(D + F)

9-2 U = 1.2(D + F + T) + 1.6(L + H) + 0.5(L r or S or R)

9-3 U = 1.2D + 1.6(Lr or S or R) + (1.0Lor 0.8W)

9-4 U = 1.2D + 1.6W + 1.0L + 0.5(Lr or S or R)

9-5 U = 1.2D + 1.0E + 1.0L + 0.2S

9-6 U = 0.9D + 1.6W + 1.6H

9-7 U = 0.9D + 1.0E + 1.6H

TABLE 4.1 ACI Load Factor Combinations

appropriate load factors given in ACI 9.2. Determination of nominal loads is covered
in Chap. 3 of this book.

The load combinations given in ACI 9.2.1 are given in Table 4.1, with the nominal
load notation defined in Table 3.1. As noted in Section 4.1, these load combinations are
the same as those in ASCE/SEI 2.3.2 and are also the same as those in IBC 1605.2.1 with
the following exceptions:

� The variable f1 that is present in IBC Eqs. (16-3) to (16-5) is not found in the
corresponding ACI Eqs. (9-3) to (9-5). Instead, the load factor on the live load L
in the ACI combinations is equal to 1.0 with the exception that the load factor
on L is permitted to be equal to 0.5 for all occupancies where the live load is
equal to or less than 100 psf, except for parking garages or areas occupied as
places of public assembly [see ACI 9.2.1(a)]. This exception makes these load
combinations in the Code the same as those in the IBC (see IBC 1605.2.1 for
the definition of f1). Note that this load modification factor on L should not be
confused with the live load reduction factor presented in Chap. 3; the live load
reduction factor is based on the loaded area of a member, and it can be used in
combination with the 0.5 load modification factor specified in ACI 9.2.1(a).

� The variable f2 that is present in IBC Eq. (16-5), which is defined in IBC 1605.2.1,
is not found in the corresponding ACI Eq. (9-5). Instead, a load factor of 0.2 is
applied to S in the ACI combination. More information on this factor can be
found in the third exception in ASCE/SEI 2.3.2, which states that in combina-
tions 2, 4, and 5 [which are the same as ACI Eqs. (9-2), (9-4), and (9-5)], S shall
be taken as either the flat-roof snow load pf or the sloped-roof snow load ps .
This essentially means that the balanced snow load defined in ASCE/SEI 7.3
for flat roofs and in ASCE/SEI 7.4 for sloped roofs can be used in ACI Eqs. (9-2),
(9-4), and (9-5). Drift loads and unbalanced snow loads are covered by ACI Eq.
(9-3).

Load factors are typically greater than or less than 1.0. Earthquake load effects are an
exception to this: A load factor of 1.0 is used to determine the maximum effect because
an earthquake load is considered a strength-level load. If the governing building code
has provisions where the earthquake effects E are based on service-level earthquake
loads, then 1.4E must be substituted for 1.0E in ACI Eqs. (9-5) and (9-7) [ACI 9.2.1(c)].
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This situation will occur where the governing building code is one of the following
legacy codes:

� Building Officials and Code Administrators International (BOCA) National
Building Code, all editions prior to 19935

� Standard Building Code, all editions prior to 19946

� Uniform Building Code, all editions prior to 19977

Service-level earthquake loads also appear in all editions of ASCE/SEI 7 prior to
1993.

The magnitude of the load factor assigned to each nominal load effect is influenced
primarily by the following:

1. The degree of accuracy to which the load effect can be determined. Dead loads can vary
for a variety of reasons, including the following: member sizes in a structure
can be constructed differently than those identified on the construction docu-
ments, and the density of the concrete can be different from that specified in
the project specifications. However, dead loads are more accurately determined
than variable loads. Also, assumptions made in the analysis of a structure—
such as stiffness and span length (see Chap. 3)—can result in calculated load
effects that are different from those in the actual structure.

2. The variation that might be expected in the load during the life of a structure. Variable
loads can vary significantly over the life span of a structure. Changes in the
magnitudes of such loads can occur over relatively short time intervals.

3. The probability that different load types will occur at the same time. The probability
that the maximum effects of different variable loads will occur simultaneously
on a structure or a structural member is relatively low.

Load combinations are constructed by adding to the dead load D one or more of
the variable loads at its maximum value, which is typically indicated by a load factor
of 1.6 (except for earthquake load effects where the maximum load factor is 1.0, as was
discussed previously). Variable loads are assigned a higher load factor than dead loads
D and weights and pressures of liquids with well-defined densities and controllable
maximum heights F because they are far less predictable than D or F . Also included
in the combinations are variable loads with load factors less than 1.0 that take into
account the probability of these loads acting at the same time as the other loads in the
combination.

Prior to the 2003 IBC and ASCE/SEI 7-02, the maximum load factor assigned to
wind load effects W was 1.3. A wind directionality factor of 0.85 for buildings was
explicitly introduced into the wind load provisions of the 2003 IBC and ASCE/SEI
7-02, and it appears in all subsequent editions of both documents. If wind forces are
calculated using this directionality factor, the appropriate load factor on W is equal to
the previous factor of 1.3 divided by 0.85, which is equal to 1.53 (this factor was rounded
up to 1.6 for use in the load combinations). If wind forces are determined from sources
where the wind directionality factor is not explicitly considered, such as in editions of
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the IBC and ASCE/SEI 7 prior to 2003 and 2002, respectively, the previous wind load
factor of 1.3 is permitted to be used [ACI 9.1.2(b)].

For structures located in a flood zone and for structures subjected to forces from at-
mospheric ice loads, the loads and appropriate load combinations are to be determined
by the applicable provisions of ASCE/SEI 7 (ACI 9.2.4). Methods to determine nominal
loads Fa caused by floodwaters are given in Refs. 3 and 4 of Chap. 3. Once these loads
are determined, they are utilized in the following load combinations:

� In V Zones or Coastal A Zones

ACI Eq. (9-4): U = 1.2D + 1.6W + 2.0Fa + 1.0L + 0.5(Lr or S or R)
ACI Eq. (9-6): U = 0.9D + 1.6W + 2.0Fa + 1.6H

� In noncoastal A Zones

ACI Eq. (9-4): U = 1.2D + 0.8W + 1.0Fa + 1.0L + 0.5(Lr or S or R)
ACI Eq. (9-6): U = 0.9D + 0.8W + 1.0Fa + 1.6H

Definitions of V Zones, Coastal A Zones, and noncoastal A Zones are given in Refs.
3 and 4 of Chap. 3.

Atmospheric ice and wind-on-ice loads are determined by the provisions of Chap.
10 of ASCE/SEI 7. The weight of ice Di and the wind-on-ice load Wi are combined with
other loads in the following load combinations:

� ACI Eq. (9-2): U = 1.2(D + F + T) + 1.6(L + H) + 0.2Di + 0.5S
� ACI Eq. (9-4): U = 1.2D + 1.0L + Di + Wi + 0.5S
� ACI Eq. (9-6): U = 0.9D + Di + Wi + 1.6H

The subscript u is used to denote the required strength. For example, Mu is the
factored bending moment at a section of a reinforced concrete member that has been
determined by the applicable load combination(s).

4.2.2 Critical Load Effects
In general, all of the load combinations presented in the previous section must be
investigated when designing structural members. The critical load effects obtained by
the load combinations are used in determining the size of a member and the required
amount of reinforcement. Design methods for various types of structural members are
given in subsequent chapters of this book.

The load combinations in Eqs. (9-1) through (9-5) will typically produce the most
critical effects in flexural members (i.e., members subjected primarily to bending) where
the effects due to dead loads and those due to variable loads are additive. For flexural
members subjected to only dead load D effects and floor live load L effects where
D/L < 8, ACI Eq. (9-2) will produce the critical effects on the member. ACI Eq. (9-1)
will produce critical effects in cases where D/L > 8. Examples 3.3 through 3.5 illustrate
the calculation of factored bending moments and shear forces for flexural members
subjected to D and L .

Which of the seven load combinations will produce the most critical effects for
members subjected to bending and axial forces (compression or tension) is usually not
obvious, so all of them must be investigated.



108 C h a p t e r F o u r

Certain types of variable loads, such as wind and earthquake loads, act in more
than one direction on a building or structure, and the appropriate sign of the variable
load must be considered in the load combinations. ACI Eqs. (9-4) and (9-5) are to be
used where gravity load effects and lateral load effects are additive, whereas ACI Eqs.
(9-6) and (9-7) are applicable where a dead load effect D counteracts a horizontal load
effect W or E . Example 4.1 illustrates the determination of load combinations with a
horizontal variable load.

It is possible that the critical effects will occur when one or more of the variable
loads are set equal to zero. ACI 9.2.1 requires this type of investigation to be performed
in every situation. ACI 9.2.1(d) further requires that the load factor on H be set equal
to zero in Eqs. (9-6) and (9-7) in situations where it counteracts the effects due to W or
E . Because the loads due to lateral earth pressure, groundwater pressure, or pressure
of bulk materials are likely to change over time, they are not to be considered as part
of the overall resistance to the effects from wind or earthquakes.

Example 4.1 The one-story reinforced concrete frame depicted in Fig. 4.1 is subjected to the loads
shown in the figure. The columns are 12 in wide and 12 in deep, and the beam is 12 in wide and 18
in deep. Table 4.2 contains a summary of the bending moments and shear forces in beam BC due
to the nominal loads.

Determine the factored load combinations for beam BC.

Solution Considering the applied loads on this frame, all of the load combinations in ACI 9.2.1
must be investigated except for those in Eqs. (9-5) and (9-7) that contain earthquake effects E .

It is evident that the critical effects on this beam will be obtained by not taking one or more of
the variable loads equal to zero in the applicable load combinations. It is also evident by examining
Eqs. (9-2) to (9-4) that critical effects will be obtained by using those due to the rain load R because
this load produces greater factored bending moments and shear forces than those produced by the
roof live load Lr or snow load S. Because critical effects are used to design a member, only the load
combinations that contain R are investigated.

The effects of the wind load W must be investigated for sidesway to the right (wind blowing
from left to right, as shown in Fig. 4.1) and for sidesway to the left (wind blowing from right to
left).

D, Lr, R, S

W
B

A D

C

18 ft 6 in

10
 ft

 0
 in

FIGURE 4.1
One-story
reinforced
concrete
frame of
Example 4.1.
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Bending Moment (ft kips)

Supports Midspan Shear Force (kips)

Dead load D −32.0 74.9 23.1

Roof live load Lr −4.3 9.9 3.1

Rain R −14.1 33.0 10.2

Snow S −5.4 12.6 3.9

Wind W ±10.0 — ±1.1

TABLE 4.2 Nominal Bending Moments and Shear Forces for Beam BC in Example 4.1

A summary of the factored load combinations for beam BC is given in Table 4.3. In Eqs. (9-2)
to (9-4) and (9-6), the “plus” sign preceding the load factor on W refers to sidesway to the right
and the “minus” sign refers to sidesway to the left. For example, in Eq. (9-3), 1.2D + 1.6R + 0.8W
corresponds to sidesway to the right and 1.2D + 1.6R − 0.8W corresponds to sidesway to the left.

A review of Table 4.3 yields the following maximum factored bending moments and shear force,
which are obtained by Eq. (9-3):

� Negative factored bending moment Mu at support B or C = −69.0 ft kips
� Positive factored bending moment Mu at midspan = 142.7 ft kips
� Factored shear force Vu at support B or C = 44.9 kips

Because of symmetry, the maximum bending moments and shear forces occur at joints B and
C for sidesway to the left and sidesway to the right, respectively. The size of the beam and the
required amount of reinforcement are determined for these maximum effects.

As expected, Eq. (9-6) did not yield the critical effects for this flexural member.

Example 4.2 For the frame shown in Fig. 4.1, determine the factored load combinations for column
AB using the nominal load data in Table 4.4.

Solution As in Example 4.1, all of the load combinations in ACI 9.2.1 must be investigated for this
column except for those in Eqs. (9-5) and (9-7) that contain earthquake effects E .

A summary of the factored load combinations for beam BC is given in Table 4.5. In Eqs. (9-2)
to (9-4) and (9-6), the “plus” sign preceding the load factor on W refers to sidesway to the right
and the “minus” sign refers to sidesway to the left. For example, in Eq. (9-3), 1.2D + 1.6Lr + 0.8W
corresponds to sidesway to the right and 1.2D + 1.6Lr − 0.8W corresponds to sidesway to the
left.

In this example, taking one or more of the variable loads equal to zero in Eq. (9-2), (9-3), or (9-4)
results in factored effects less than those shown in Table 4.5.

Unlike beam BC of Example 4.1, which of the factored load combinations that will produce the
critical effects on column AB for combined axial compression and flexure is not readily obvious.
The largest factored axial force and bending moment are obtained by Eq. (9-3) for rain loads R
with sidesway to the left. However, Eq. (9-5) needs to be considered as well because the combined
factored axial force and bending moment obtained from this combination occur in one of the critical
areas of the interaction diagram for the column. The design of members subjected to combined axial
load and bending is covered in Chap. 8.

In this example, the column remains in compression under all of the load combinations. It is
possible that one or more of the load combinations—especially Eq. (9-6) or (9-7)—could yield a net
factored tensile force on the column. This would have an important impact on the design of the
column and that of the foundation that supports the column.
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Equation Load Bending Moment
Number Combination Location Mu (ft kips) Shear Force Vu (kips)

(9-1) 1.4D Supports B
and C

1.4 × (−32.0) = −44.8 1.4 × 23.1 = 32.3

Midspan 1.4 × (74.9) = 104.9 —

(9-2) 1.2D +
0.5R

Supports B
and C

[1.2 × (−32.0)] + [0.5 ×
(−14.1)] = −45.5

(1.2 × 23.1) + (0.5 ×
10.2) = 32.8

Midspan (1.2 × 74.9) + (0.5 ×
33.0) = 106.4

—

(9-3) 1.2D +
1.6R +
0.8W

Support B [1.2 × (−32.0)] + [1.6 ×
(−14.1)] + (0.8 × 10.0) =
−53.0

(1.2 × 23.1) + (1.6 ×
10.2) − (0.8 × 1.1) = 43.2

Support C [1.2 × (−32.0)] + [1.6 ×
(−14.1)] + [0.8 × (−10.0)]
= −69.0

(1.2 × 23.1) + (1.6 ×
10.2) + (0.8 × 1.1) = 44.9

Midspan (1.2 × 74.9) + (1.6 ×
33.0) = 142.7

—

1.2D +
1.6R −
0.8W

Support B [1.2 × (−32.0)] + [1.6 ×
(−14.1)] + [0.8 × (−10.0)]
= −69.0

(1.2 × 23.1) + (1.6 ×
10.2) + (0.8 × 1.1) = 44.9

Support C [1.2 × (−32.0)] + [1.6 ×
(−14.1)] + (0.8 × 10.0) =
−53.0

(1.2 × 23.1) + (1.6 ×
10.2) − (0.8 × 1.1) = 43.2

Midspan (1.2 × 74.9) + (1.6 ×
33.0) = 142.7

—

(9-4) 1.2D +
0.5R +
1.6W

Support B [1.2 × (−32.0)] + [0.5 ×
(−14.1)] + (1.6 × 10.0) =
−29.5

(1.2 × 23.1) + (0.5 ×
10.2) − (1.6 × 1.1) = 31.1

Support C [1.2 × (−32.0)] + [0.5 ×
(−14.1)] + [1.6 × (−10.0)]
= −61.5

(1.2 × 23.1) + (0.5 ×
10.2) + (1.6 × 1.1) = 34.6

Midspan (1.2 × 74.9) + (0.5 ×
33.0) = 106.4

—

1.2D +
0.5R −
1.6W

Support B [1.2 × (−32.0)] + [0.5 ×
(−14.1)] + [1.6 × (−10.0)]
= −61.5

(1.2 × 23.1) + (0.5 ×
10.2) + (1.6 × 1.1) = 34.6

Support C [1.2 × (−32.0)] + [0.5 ×
(−14.1)] + (1.6 × 10.0) =
−29.5

(1.2 × 23.1) + (0.5 ×
10.2) − (1.6 × 1.1) = 31.1

Midspan (1.2 × 74.9) + (0.5 ×
33.0) = 106.4

—

TABLE 4.3 Summary of Load Combinations for Beam BC Given in Example 4.1 (continued)
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Equation Load Bending Moment
Number Combination Location Mu (ft kips) Shear Force Vu (kips)

(9-6) 0.9D +
1.6W

Support
B

[0.9 × (−32.0)] + (1.6
× 10.0) = −12.8

(0.9 × 23.1) − (1.6 × 1.1)
= 19.0

Support
C

[0.9 × (−32.0)] + [1.6
× (−10.0)] = −44.8

(0.9 × 23.1) + (1.6 × 1.1)
= 22.6

Midspan 0.9 × 74.9 = 67.4 —

0.9D −
1.6W

Support
B

[0.9 × (−32.0)] + [1.6
× (−10.0)] = −44.8

(0.9 × 23.1) + (1.6 × 1.1)
= 22.6

Support
C

[0.9 × (−32.0)] + (1.6
× 10.0) = −12.8

(0.9 × 23.1) − (1.6 × 1.1)
= 19.0

Midspan 0.9 × 74.9 = 67.4 —

TABLE 4.3 Summary of Load Combinations for Beam BC Given in Example 4.1 (continued)

4.3 Design Strength

4.3.1 Overview
The design strength of a reinforced concrete member is equal to the nominal strength
of the member, which is calculated in accordance with the provisions of the Code,
multiplied by a strength reduction factor φ that is always less than 1 [see Eq. (4.2)].
The subscript n is used to denote nominal strength. For example, the notation for nom-
inal flexural strength of a reinforced concrete member is Mn. Subsequent chapters of
this book contain methods for determining the nominal strength. A discussion on the
purpose of strength reduction factors follows.

ACI 9.4 places an upper limit of 80,000 psi for the yield strength of reinforcement
that can be used in design calculations. A list of Code sections that have other limitations
on reinforcement yield strength is given in ACI R9.4. It is shown in Section 4.4 that the
deflection provisions of ACI 9.5 are directly related to fy.

4.3.2 Strength Reduction Factors
Strength reduction factors are commonly referred to as resistance factors or φ-factors
and play a key role in the determination of the design strength of a reinforced concrete
member. The main purposes of these factors are as follows:

Axial Force (kips) Bending Moment (ft kips) Shear Force (kips)

Dead load D 23.1 32.0 3.2

Roof live load Lr 3.1 4.3 0.4

Rain R 10.2 14.1 1.4

Snow S 3.9 5.4 0.5

Wind W ±1.1 ±10.0 1.0

TABLE 4.4 Nominal Axial Forces, Bending Moments, and Shear Forces for Column AB Given in
Example 4.2



Equation Load Com- Axial Force Bending Moment
Number bination Pu (kips) Mu (ft kips) Shear Force Vu (kips)
(9-1) 1.4D 1.4 × 23.1 = 32.3 1.4 × 32.0 = 44.8 1.4 × 3.2 = 4.5

(9-2) 1.2D +
0.5Lr

(1.2 × 23.1) + (0.5
× 3.1) = 29.3

(1.2 × 32.0) + (0.5 ×
4.3) = 40.6

(1.2 × 3.2) + (0.5 × 0.4) =
4.0

1.2D +
0.5S

(1.2 × 23.1) + (0.5
× 3.9) = 29.7

(1.2 × 32.0) + (0.5 ×
5.4) = 41.1

(1.2 × 3.2) + (0.5 × 0.5) =
4.1

1.2D +
0.5R

(1.2 × 23.1) + (0.5
× 10.2) = 32.8

(1.2 × 32.0) + (0.5 ×
14.1) = 45.5

(1.2 × 3.2) + (0.5 × 1.4) =
4.5

(9-3) 1.2D +
1.6Lr +
0.8W

(1.2 × 23.1) + (1.6
× 3.1) − (0.8 × 1.1)
= 31.8

(1.2 × 32.0) + (1.6 ×
4.3) − (0.8 × 10.0) =
37.3

(1.2 × 3.2) + (1.6 × 0.4) −
(0.8 × 1.0) = 3.7

1.2D +
1.6S +
0.8W

(1.2 × 23.1) + (1.6
× 3.9) − (0.8 × 1.1)
= 33.1

(1.2 × 32.0) + (1.6 ×
5.4) − (0.8 × 10.0) =
39.0

(1.2 × 3.2) + (1.6 × 0.5) −
(0.8 × 1.0) = 3.8

1.2D +
1.6R +
0.8W

(1.2 × 23.1) + (1.6
× 10.2) − (0.8 ×
1.1) = 43.2

(1.2 × 32.0) + (1.6 ×
14.1) − (0.8 × 10.0) =
53.0

(1.2 × 3.2) + (1.6 × 1.4) −
(0.8 × 1.0) = 5.3

1.2D +
1.6Lr −
0.8W

(1.2 × 23.1) + (1.6
× 3.1) + (0.8 × 1.1)
= 33.6

(1.2 × 32.0) + (1.6 ×
4.3) + (0.8 × 10.0) =
53.3

(1.2 × 3.2) + (1.6 × 0.4) +
(0.8 × 1.0) = 5.3

1.2D +
1.6S −
0.8W

(1.2 × 23.1) + (1.6
× 3.9) + (0.8 × 1.1)
= 34.8

(1.2 × 32.0) + (1.6 ×
5.4) + (0.8 × 10.0) =
55.0

(1.2 × 3.2) + (1.6 × 0.5) +
(0.8 × 1.0) = 5.4

1.2D +
1.6R −
0.8W

(1.2 × 23.1) + (1.6
× 10.2) + (0.8 ×
1.1) = 44.9

(1.2 × 32.0) + (1.6 ×
14.1) + (0.8 × 10.0) =
69.0

(1.2 × 3.2) + (1.6 × 1.4) +
(0.8 × 1.0) = 6.9

(9-4) 1.2D +
0.5Lr +
1.6W

(1.2 × 23.1) + (0.5
× 3.1) − (1.6 × 1.1)
= 27.5

(1.2 × 32.0) + (0.5 ×
4.3) − (1.6 × 10.0) =
24.6

(1.2 × 3.2) + (0.5 × 0.4) −
(1.6 × 1.0) = 2.4

1.2D +
0.5S +
1.6W

(1.2 × 23.1) + (0.5
× 3.9) − (1.6 × 1.1)
= 27.9

(1.2 × 32.0) + (0.5 ×
5.4) − (1.6 × 10.0) =
25.1

(1.2 × 3.2) + (0.5 × 0.5) −
(1.6 × 1.0) = 2.5

1.2D +
0.5R +
1.6W

(1.2 × 23.1) + (0.5
× 10.2) − (1.6 ×
1.1) = 31.1

(1.2 × 32.0) + (0.5 ×
14.1) − (1.6 × 10.0) =
29.5

(1.2 × 3.2) + (0.5 × 1.4) −
(1.6 × 1.0) = 2.9

1.2D +
0.5Lr −
1.6W

(1.2 × 23.1) + (0.5
× 3.1) + (1.6 × 1.1)
= 31.0

(1.2 × 32.0) + (0.5 ×
4.3) + (1.6 × 10.0) =
56.6

(1.2 × 3.2) + (0.5 × 0.4) +
(1.6 × 1.0) = 5.6

1.2D +
0.5S −
1.6W

(1.2 × 23.1) + (0.5
× 3.9) + (1.6 × 1.1)
= 31.4

(1.2 × 32.0) + (0.5 ×
5.4) + (1.6 × 10.0) =
57.1

(1.2 × 3.2) + (0.5 × 0.5) +
(1.6 × 1.0) = 5.7

1.2D +
0.5R −
1.6W

(1.2 × 23.1) + (0.5
× 10.2) + (1.6 ×
1.1) = 34.6

(1.2 × 32.0) + (0.5 ×
14.1) + (1.6 × 10.0) =
61.5

(1.2 × 3.2) + (0.5 × 1.4) +
(1.6 × 1.0) = 6.1

(9-6) 0.9D +
1.6W

(0.9 × 23.1) − (1.6
× 1.1) = 19.0

(0.9 × 32.0) − (1.6 ×
10.0) = 12.8

(1.2 × 3.2) − (1.6 × 1.0) =
2.2

0.9D −
1.6W

(0.9 × 23.1) + (1.6
× 1.1) = 22.6

(0.9 × 32.0) + (1.6 ×
10.0) = 44.8

(1.2 × 3.2) + (1.6 × 1.0) =
5.4

TABLE 4.5 Summary of Load Combinations for Column AB Given in Example 4.2
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1. To account for the understrength of a member due to variations in material strengths
and dimension. As was discussed in Chap. 2, the strength of concrete can vary
because concrete is a composite material made of constituent materials whose
properties vary. The strength of reinforcing steel can also vary but usually to a
lesser degree than concrete.

Member dimensions can differ from those specified in the construction
documents because of construction and fabrication tolerances. The diameter of
reinforcing bars can also fluctuate because of rolling and fabrication tolerances.

Reinforcing bars in a concrete section can be placed at locations that are
different from those specified in the construction documents. Tolerances on
reinforcement placement are prescribed by the ACI.

2. To allow for inaccuracies in the design equations. As will be shown in subsequent
chapters, a number of assumptions and simplifications are made in the design
equations for nominal strength. These assumptions and simplifications intro-
duce inaccuracies that must be accounted for when determining the design
strength.

3. To reflect the degree of ductility and required reliability of a member. Reinforced
concrete members that are more ductile, such as beams, are less sensitive to
variations in concrete strength compared with members that are less ductile,
such as columns.

Spiral reinforcement confines the concrete in a column better than tied
reinforcement. Thus, spirally reinforced columns are more ductile and have
greater toughness than tied columns.

4. To reflect the importance of a member. The failure of a column in a structure is
usually considered to be more detrimental than failure of a beam.

As an example of why strength reduction factors are used in design, consider a
concrete mixture for a beam that is part of a cast-in-place concrete building. The engineer
of record has specified a compressive strength of 4,000 psi at 28 days. At the time the
beam is cast, specimens of the concrete mixture are collected in the field in cylinders and
are subsequently tested in accordance with the provisions given in Chap. 5 of the Code.
It is found that the test specimens yield an average strength of 3,750 psi. Assume that
this average compressive strength satisfies the evaluation and acceptance provisions of
ACI Chap. 5, which have been discussed in detail in Chap. 2 of this book. The strength
factor that the engineer used in the design of the beam partly accounts for the lower
compressive strength of the concrete that is actually used in the beam. Thus, redesign
of the beam using the lower concrete compressive strength is not required.

ACI strength reduction factors are given in ACI 9.3.2 and are summarized in
Table 4.6.

Tension-controlled and compression-controlled sections are defined in ACI 10.3.4
and 10.3.3, respectively, and are covered in more detail in Chap. 5. In very general
terms, members with tension-controlled sections are usually beams, and members with
compression-controlled sections are usually columns. Lower strength reduction fac-
tors are assigned to compression-controlled sections because they are less ductile and
more sensitive to variations in concrete strength than tension-controlled sections. Also,
columns tend to support areas much greater than those for beams, and as noted in
Section 4.3, the consequences of column failure in a building or structure are generally
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Tension-controlled sections 0.90

Compression-controlled sections Members with spiral reinforcement
conforming to ACI 10.9.3

0.75

Other reinforced members 0.65

Shear and torsion 0.75

Bearing on concrete 0.65

Strut-and-tie models (Appendix A of the Code) 0.75

TABLE 4.6 ACI Strength Reduction Factors

more severe than those attributed to beam failure. The advantage of using spiral rein-
forcement in a column is reflected in a strength reduction factor that is greater than that
for other types of lateral reinforcement.

A linear transition in the strength reduction factor is permitted between the limits
for tension-controlled and compression-controlled sections (ACI 9.3.2); this transition
is illustrated in Fig. 4.2 for Grade 60 reinforcement ( fy = 60,000 psi). Equations for φ

are provided in the figure as a function of the net tensile strain in the extreme layer of
the longitudinal tension steel εt and the ratio of the depth of the neutral axis c to the
distance from the extreme compression fiber to the centroid of the extreme layer of the
longitudinal tension steel dt . Also provided in the figure are the strain diagrams corre-
sponding to compression-controlled and tension-controlled sections. These quantities
are discussed in detail in the next chapter.

According to ACI 9.3.3, development lengths for reinforcement do not require a
strength reduction factor. Strength reduction factors are also not required when de-
termining lap splice lengths because such lengths are a function of the development
length.

ACI 9.3.4 contains strength reduction factors for the design of members in structures
assigned to higher levels of seismic risk.

4.4 Control of Deflections

4.4.1 Overview
Deflection control is part of the serviceability limit state that must be satisfied in
the design of reinforced concrete members. The main material parameters that affect
deflections are the modulus of elasticity Ec , the modulus of rupture fr , shrinkage, and
creep. More information on these parameters can be found in Chap. 2.

Excessive deflections of floor or roof members can result in damage to nonstructural
components of a building, such as partitions, doors, or glass windows, to name a few.
Such deflections can also result in the malfunction of sensitive equipment inside a
building. Unsightly cracks can appear in structural members that have deflected in
excess of the established limitations. Excessive deflection of roof members can cause
ponding of water on the roof. Roof members will deflect under the weight of water, and
if the deflection is excessive, additional water can accumulate on the roof, which can
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FIGURE 4.3 The minimum thickness of beams and one-way slabs in accordance with ACI 9.5.2.

Values of minimum thickness shown in Fig. 4.3 are applicable to members with
normal-weight concrete (wc = 145 pcf) and Grade 60 reinforcement. For other condi-
tions, the values in the figure must be modified as follows:

� For structural lightweight having wc in the range 90 to 115 pcf, multiply the
values by (1.65 − 0.005wc) ≥ 1.09.

� For fy other than 60,000 psi, multiply the values by (0.4 + fy/100,000).

No correction factor is provided for concrete with wc greater than 115 pcf because
research has shown that the correction factor would be close to 1 where wc is between
115 and 145 pcf.8 The correction factor on yield stress of reinforcement produces con-
servative results for values of fy between 40,000 and 80,000 psi.

For simply supported members, minimum thickness is �/20 and �/16 for one-way
slabs and beams, respectively.

The minimum thickness limitations outlined earlier are an integral part of the design
procedure for typical beams and one-way slabs: The thickness of a member will usually
be determined first on the basis of strength requirements and then checked against the
minimum thickness requirements for deflection.
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In cases where members are supporting elements that are likely to be damaged by
relatively large deflections, the provisions in ACI 9.5.2.2 through 9.5.2.6 must be used to
determine deflections. Immediate and long-term deflections must both be calculated,
and the magnitudes of the deflections must be less than or equal to the limiting values
given in ACI Table 9.5(b). Methods for determining deflections of one-way reinforced
concrete members are covered in Section 6.5.

4.4.3 Two-Way Construction
ACI 9.5.3 contains minimum thickness requirements for two-way construction. By def-
inition, a two-way slab system has a ratio of long-to-short spans that is less than or
equal to 2.

For two-way slab systems that do not have any interior beams, the minimum slab
thicknesses are given in ACI Table 9.5(c) as functions of fy and the clear span length
in the long direction �n. For slabs without drop panels, the thickness must be at least
5 in, and for slabs with drop panels, the thickness must be at least 4 in. Drop pan-
els are defined in ACI 13.2.5 and are covered in more detail in Chap. 7. It has been
demonstrated through the years that slabs conforming to these minimum thickness
requirements have performed adequately without any problems due to short-term or
long-term deflections.

For two-way slab systems with interior beams, the minimum slab thickness is deter-
mined by Eqs. (9-12) and (9-13). In addition to fy and �n, h is calculated as a function of
the beam stiffness along the column lines. Comprehensive coverage of these equations
is provided in Chap. 7.

The deflection limits of ACI Table 9.5(b) are also applicable to immediate and long-
term calculated deflections for two-way slabs. Calculation of deflections for two-way
slabs is complex, and more information on the methods used to determine such deflec-
tions can be found in Chap. 7.
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Problems
4.1. A reinforced concrete beam is subjected to the following nominal bending moments:

Supports: MD = 75 ft kips, ML = 20 ft kips, and MW = ±55 ft kips
Midspan: MD = 50 ft kips and ML = 12 ft kips

Determine the factored load combinations at the supports and at midspan.

4.2. A reinforced concrete column is subjected to the nominal effects given in Table 4.7.

Axial Force (kips) Bending Moment (ft kips)

Dead load D 80 20
Live load L 40 10
Roof live load Lr 15 0
Snow S 20 0
Rain R 25 0
Wind W ±20 ±50

TABLE 4.7 Nominal Axial Forces and Bending Moments for Column AB Given in Problem 4.2

Determine the factored load combinations.

4.3. Given the five-story building and load data of Example 3.1, determine the factored load combi-
nations for (a) column B2 in the fifth story and (b) column B2 in the first story.

4.4. An interior beam has a span of 24 ft in a continuous reinforced concrete frame. The beam is not
supporting or attached to any type of construction likely to be damaged by large deflections. Material
data are wc = 110 pcf and fy = 60,000 psi.

Determine the minimum thickness of the beam.

4.5. Given the floor system depicted in Fig. 3.21, determine the minimum thickness of the one-way
slab assuming that it is not supporting or attached to any type of construction likely to be damaged by
large deflections. Material data are wc = 145 pcf and fy = 60,000 psi.

4.6. Given the floor system depicted in Fig. 3.21, determine the minimum thickness of the beam
assuming the following: (1) it is not supporting or attached to any type of construction likely to be
damaged by large deflections, and (2) a single beam thickness must be provided for the entire floor
system for economy. Material data are wc = 145 pcf and fy = 60,000 psi.



C H A P T E R 5
General Principles of the
Strength Design Method

5.1 Introduction
This chapter covers the fundamental principles and requirements of the strength design
method. Presented are the design assumptions of the method and the basic techniques
to determine the nominal strength of a reinforced concrete section subjected to flexure,
axial load, or a combination of both.

Beginning in 1886, numerous theories on strength design of reinforced concrete have
been published through the years. Reference 1 contains a summary of the significant
aspects of these early theories, which were primarily based on results acquired from
tests of reinforced concrete members and from analytical investigations.

As a reinforced concrete member approaches its ultimate strength, both the concrete
and the reinforcing steel behave inelastically. This inelastic behavior must be captured
in the design theory. It is evident from the information on material properties given in
Chap. 2 that it is far easier to analytically express the inelastic behavior of reinforcing
steel than that of concrete. As such, simplifying assumptions are made in the strength
design method related to stress distribution in concrete (see Section 5.2).

The strength design method is based on the following two fundamental conditions:

1. Static equilibrium. The compressive and tensile forces acting on any cross-section
of a member are in equilibrium.

2. Compatibility of strains. The strain in a reinforcing bar that is embedded in con-
crete is equal to the strain in concrete at that level.

The first condition must be satisfied at every cross-section of a member. It is shown
later in this chapter that the basic equations of equilibrium are used in determining
nominal strengths of reinforced concrete members.

The second condition implies that there is a perfect bond between the concrete
and the reinforcing steel and that both the materials act together to resist the effects
from external loads. Tests have shown that this condition is very close to being cor-
rect, especially where deformed reinforcing bars are utilized. In addition to the natural
surface adhesion that exists between concrete and steel, bar deformations play an im-
portant role in limiting the amount of slip that occurs between the two materials (see
Chap. 2).

119
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5.2 Design Assumptions
The design assumptions used in the strength design method are outlined in ACI 10.2.
They are applicable in the design of members subjected to flexure, axial loads, or a com-
bination of both. The nominal strength of a reinforced concrete member is determined
on the basis of these design assumptions.

Design Assumption No. 1: The strains in the reinforcement and the concrete shall be assumed directly
proportional to the distance from the neutral axis.

The first design assumption is the traditional assumption made in beam theory: Plane sections
that are perpendicular to the axis of bending prior to bending remain plane after bending. This
inherently implies that the concrete and the reinforcing steel act together to resist load effects
(recall that this is the second of the conditions required in the strength design method; see Sec-
tion 5.1).

Strictly speaking, this assumption is not correct for reinforced concrete members after cracking
occurs because the strain on the tension side of the neutral axis varies significantly at any given
level owing to the presence of cracks. However, many experimental tests have confirmed that
the distribution of strain is essentially linear across a reinforced concrete cross-section, even near
ultimate strength, when strains are measured across the same gage length on the compressive and
tensile faces of a member.2 The gage lengths that were used in the tests included several cracks on
the tension face of the member.

For deep beams, which are defined in ACI 10.7, the strain is not linear, and a nonlinear distri-
bution of strain must be utilized, or a strut-and-tie model as outlined in Appendix A of the Code
may be used.

The strain distribution over the depth of a rectangular reinforced concrete section at ultimate
strength is depicted in Fig. 5.1. For illustrative purposes, it is assumed that the strains are compres-
sive above the neutral axis and are tensile below it. The strains in the concrete and the reinforcement
are directly proportional to the distance from the neutral axis, which is located a distance c from
the compression face of the section.

Because the strain distribution is linear, the strain in the concrete εc at the extreme compression
fiber is directly proportional to the strains in the reinforcement. For example, the ratio of εc to

FIGURE 5.1 The assumed strain distribution in a reinforced concrete section.
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the strain in the reinforcement farthest from the compression face εs4 can be obtained by similar
triangles:

εc

εs4
= c

d4 − c
(5.1)

Similar relationships can be established between εc and the other reinforcement strains and
between the various reinforcement strains.

Note that the largest tensile strain occurs in the reinforcing steel farthest from the compression
face. The concrete below the neutral axis is cracked at ultimate strength, and for all intents and
purposes, it cannot resist any tensile strains (see design assumption no. 4). That is why no strain is
shown on the tension face of the concrete in Fig. 5.1.

Design Assumption No. 2: The maximum usable strain at the extreme concrete compression fiber is
0.0030.

The maximum compressive strain at crushing of concrete has been measured in many ex-
perimental tests of reinforced concrete members (beams and eccentrically loaded columns) and
eccentrically loaded plain concrete prisms. Test data vary between 0.0030 and 0.0080 (see Ref. 2 for
a summary of the test results). A maximum strain of εc = 0.0030 is a reasonably conservative value
proposed for design (see the compressive stress–strain curves for concrete shown in Fig. 2.6).

Design Assumption No. 3: The stress in the reinforcement fs below its specified yield strength fy
is equal to the modulus of elasticity of the steel Es times the steel strain εs . The stress in the
reinforcement is equal to fy for strains εs greater than or equal to fy/Es .

On the basis of the stress diagram of reinforcing steel (see Fig. 2.15), it is reasonable to assume
that there is a linear relationship between stress and strain up to the yield strength fy. As noted in
Chap. 2, the modulus of elasticity can be taken as 29,000,000 psi for all grades of reinforcing steel
(ACI 8.5.2).

The second part of the assumption implies that the effect of strain hardening of the steel above
the yield point is neglected in strength computations. In other words, the stress in the reinforcement
fs is equal to fy for any value of steel strain εs that is greater than the yield strain εy = fy/Es . The
idealized stress–strain curve based on this assumption is illustrated in Fig. 5.2.

S
tr

es
s

Strain

FIGURE 5.2 The idealized stress–strain curve of reinforcing steel used in the strength design
method.
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Design Assumption No. 4: The tensile strength of concrete is neglected in the axial and flexural
calculations of reinforced concrete.

It was discussed in Chap. 2 that the tensile strength of concrete is small compared with the
tensile strength of reinforcing steel. Within the tension portion of a reinforced concrete cross-section,
the tensile force in the cracked concrete is significantly less than the tensile force in the reinforcing
steel. Thus, the tensile strength of concrete is conservatively taken as zero in the axial and flexural
calculations of nominal strength.

The tensile resistance of concrete is used in other situations, most notably in serviceability
calculations. For example, the modulus of rupture fr , which is related to the tensile strength (see
Chap. 2), is utilized in the determination of the immediate deflection of a reinforced concrete
member.

Design Assumption No. 5: The relationship between the concrete compressive stress distribution and
the concrete strain shall be assumed to be rectangular, trapezoidal, parabolic, or of any other shape
that results in prediction of strength in substantial agreement with the results of comprehensive
tests.

Concrete behaves inelastically when subjected to a relatively high compressive stress, as is
evident from the stress–strain curves in Fig. 2.6. Nonlinear behavior becomes pronounced after the
stress reaches approximately 50% of the compressive strength f ′

c (see Fig. 2.5).
Although a general nonlinear model for compressive stress distribution could be used when

determining the nominal strength of a reinforced concrete member, such as the one illustrated
in Fig. 5.3 for a flexural member, it is simpler to make use of a less complicated distribution as
long as the simpler model yields results close to those from tests. Note that the shape of the stress
distribution in the figure follows that of a stress–strain curve in compression where, as expected,
zero stress occurs at the level of the neutral axis. The tension force T in the reinforcing steel must
be equal to the resultant force C of the compressive stress in the concrete so that equilibrium is
satisfied.

Numerous compressive stress distributions have been proposed through the years, and a
summary of these can be found in Chap. 6 of Ref. 3. Additional information on the historical
background of the distributions and a review of the tests that were performed to support the
proposed stress distributions are given in Ref. 2.

Research has shown that models using rectangular, parabolic, trapezoidal, and other-shaped
compressive stress distributions can adequately predict test results. The assumption given in ACI
10.2.7 permits the use of an equivalent rectangular concrete stress distribution, which is covered
under design assumption no. 6.

Design Assumption No. 6: The requirements of ACI 10.2.6 are satisfied by an equivalent rectangular
concrete stress distribution, which is defined in ACI 10.2.7.

FIGURE 5.3 Stress
conditions at
nominal strength.
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FIGURE 5.4 The
equivalent
rectangular
concrete stress
distribution.

The Code permits the use of the equivalent rectangular concrete stress distribution defined in
ACI 10.2.7, which is illustrated in Fig. 5.4. Although he was not the first to propose the use of a
rectangular stress block, C. S. Whitney is best known in the United States for advocating it.4

A uniform stress equal to 85% of the concrete compressive strength f ′
c is distributed over the

depth a , which is equal to the factor β1 times the depth to the neutral axis c. Although this assumed
stress distribution does not represent the actual compressive stress distribution in the concrete at
the ultimate state, it does provide basically the same results as those obtained from experimental
investigations2; as noted previously, this is a requirement of the strength design method (see design
assumption no. 5).

The need for the factor β1 is due to the variation in shape of the stress–strain curves for different
concrete strengths. It is evident that the stress–strain curves of higher-strength concretes are more
linear and exhibit less inelastic behavior than those of lower-strength concretes (see Fig. 2.6). Up to
compressive strengths of 4,000 psi, the ratio of the rectangular stress block depth a to the neutral
axis depth c that best approximates the actual concrete stress distribution is equal to 0.85, that is,
β1 = 0.85. For compressive strengths greater than 4,000 psi, β1 must be less than 0.85 in order to
produce adequate results. ACI 10.2.7.3 requires that β1 be reduced linearly at the rate of 0.05 for
each 1,000 psi in excess of 4,000 psi for compressive strengths up to 8,000 psi; above 8,000 psi,
β1 = 0.65. The following equations define β1:

� For 2,500 psi ≤ f ′
c ≤ 4,000 psi, β1 = 0.85.

� For 4,000 psi < f ′
c ≤ 8,000 psi, β1 = 1.05 − 0.00005 f ′

c .
� For f ′

c > 8,000 psi, β1 = 0.65.

The lower limit of 0.65 was introduced in the 1976 supplement to the 1971 Code on the basis of
the results of experiments that were performed on concrete specimens with compressive strengths
exceeding 8,000 psi.5,6

5.3 General Principles and Requirements

5.3.1 Overview
The nominal strength of a reinforced concrete member is established using the funda-
mental conditions of equilibrium and strain compatibility (Section 5.1) and the assump-
tions presented in Section 5.2. Presented in this section are the basic principles utilized
in the strength design method.

Design strength equations for cross-sections subjected to flexure or combined flex-
ure and axial load were originally presented in Ref. 2 and were derived using essentially
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the same design assumptions as those summarized in Section 5.2. These equations form
the basis of the nominal strength equations stipulated in the Code. The values of strength
obtained from the design equations of Ref. 2 were compared with the test results of 364
beams whose strength was controlled by yielding of the reinforcing steel in tension (as
opposed to strength controlled by crushing of the concrete in compression). A statis-
tical analysis of the data revealed an excellent correlation between the analytical and
experimental results.

5.3.2 Balanced Strain Conditions
A balanced strain condition exists at a cross-section of a reinforced concrete member
when the strain in the tension reinforcement εs farthest from the compression face
reaches the strain corresponding to yield (i.e., εs = εy = fy/Es) just as the strain in the
extreme compression fiber of the concrete reaches its maximum value of 0.0030.

Consider the rectangular reinforced concrete cross-section with one layer of ten-
sion reinforcement depicted in Fig. 5.5. The balanced strain condition using design
assumption no. 1 (linear strain distribution) is also shown in the figure. At the extreme
compression fiber, the strain in the concrete is equal to the maximum value of 0.0030
(design assumption no. 2), and the strain in the tension reinforcement, which is located
a distance dt from the extreme compression fiber, is equal to εy (design assumption no.
3). By definition, dt is the distance from the extreme compression fiber to the centroid of
the longitudinal tension steel that is farthest from the extreme compression fiber. With
only one layer of steel, the distance dt is the same as that from the extreme compression
fiber to the centroid of the longitudinal tension steel, which is designated as d . The
significance of this definition will become evident shortly.

The ratio of the neutral axis depth cb to the extreme depth dt to produce a balanced
strain condition in a section with tension reinforcement alone may be obtained by ap-
plying strain compatibility conditions. Referring to Fig. 5.5 and using similar triangles,

cb

εu
= dt − cb

εy
. (5.2)

FIGURE 5.5 The balanced strain condition with Grade 60 reinforcement.
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Substituting the definitions of εu = 0.0030 and εy = fy/Es into Eq. (5.2) and rear-
ranging the terms result in

cb

dt
= εu

εu + εy
= 0.0030

0.0030 + ( fy/Es)
(5.3)

For Grade 60 reinforcement, ACI 10.3.3 permits the yield strain εy of the reinforce-
ment to be taken as 0.0020, as opposed to 0.00207 that would be obtained by dividing
the yield stress (60 ksi) by the modulus of elasticity (29,000 ksi). Substituting 0.0020
for fy/Es in Eq. (5.3) results in the ratio cb/dt = 0.6. Note that this value applies to all
sections with Grade 60 reinforcement and not just to rectangular sections.

5.3.3 Compression-controlled Sections
According to ACI 10.3.3, a section is compression-controlled if the net tensile strain in
the extreme tension steel εt is less than or equal to the compression-controlled strain
limit when the concrete in compression reaches its assumed strain limit εu of 0.0030.
Note that εt is defined as the strain in the reinforcement after applicable strains due to
creep, shrinkage, and temperature have been deducted from the total strain.

The compression-controlled strain limit is defined as the net tensile strain in the
reinforcement at balanced conditions, which is equal to fy/Es (see the discussion
on balanced strain conditions in the previous section). The strain distribution at the
compression-controlled strain limit is illustrated in Fig. 4.2 for Grade 60 reinforcement
where εt = 0.0020.

A brittle type of failure is generally expected in compression-controlled sections.
This type of failure occurs suddenly with little or no warning. It is common for com-
pression members (columns) to have compression-controlled sections, that is, sections
where εt ≤ fy/Es . However, compression members that are subjected to a relatively
small axial compressive force and a relatively large bending moment, for example, may
have sections that are not compression-controlled.

5.3.4 Tension-controlled Sections
A tension-controlled section is defined as a section where εt ≥ 0.0050 when the concrete
in compression reaches its assumed strain limit εu of 0.0030 (ACI 10.3.4). The strain
distribution illustrated in Fig. 4.2 for the case in which εt = 0.0050 is also shown in
Fig. 5.6.

The ratio of the neutral axis depth ct to the extreme depth dt at the tension-controlled
limit may be obtained by applying strain compatibility conditions. Referring to Fig. 5.6
and using similar triangles,

ct

εu
= dt − ct

εt
(5.4)

Substituting εu = 0.0030 and εt = 0.0050 into Eq. (5.4) and rearranging the terms
result in

ct

dt
= εu

εu + εt
= 0.0030

0.0030 + 0.0050
= 0.375 (5.5)
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FIGURE 5.6 Strain distribution at the tension-controlled limit.

Flexural members, such as beams, usually have tension-controlled sections. Unlike
compression-controlled sections, tension-controlled sections are ductile and generally
exhibit significant deflections and cracking before failure.

Sections with εt between the compression-controlled strain limit and 0.0050 are said
to be in a transition region between compression- and tension-controlled sections. A lin-
ear transition in the strength reduction factor occurs between the limits for compression-
and tension-controlled sections (see Section 4.3). This transition is illustrated in Fig. 4.2
along with the applicable strength reduction factors for compression- and tension-
controlled sections.

Although the preceding discussion has focused on a rectangular section with one
layer of tension reinforcement, the basic methods are applicable to rectangular and
nonrectangular sections with more than one layer of reinforcement. The effects of cross-
section shape and multiple layers of reinforcement are automatically accounted for in
the strain compatibility equations that are used to determine εt .

The concepts of compression-controlled, tension-controlled, and transition sections
first appeared in 1992 as part of the Unified Design Method.7 It has been demonstrated
that this method produces results similar to those from previous strength design meth-
ods. A slightly modified version of the Unified Design Method appeared in Appendix
B of the 1995 Code. Provisions of the method were moved into the main body of the
1999 Code, whereas those that were displaced from the main body were transferred to
Appendix B.

5.4 Flexural Members

5.4.1 Overview
ACI 10.3.5 defines flexural members as members with a factored axial compressive
force less than 0.1 f ′

c Ag , where Ag is the gross area of the concrete section. For purposes
of discussion, it is assumed that flexural members have sections that are primarily
subjected to bending moments.
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FIGURE 5.7 The
idealized moment–
curvature diagram
for a reinforced
concrete beam with
one layer of tension
reinforcement.

Presented next are the different types of flexural failure and the relationship be-
tween failure and the amount of reinforcement in a section. Also presented are the
basic equations to determine the nominal strength of members or sections subjected to
flexure.

5.4.2 Types of Flexural Failure
Consider a reinforced concrete beam with tension reinforcement only. Assume that the
amount of tension reinforcement in the section is such that at failure, the reinforcing
steel will yield in tension before the concrete crushes in compression. The relationship
between bending moment and curvature of this beam is plotted to failure in Fig. 5.7. It
is evident from the diagram that there is a long plastic region—that is, the beam exhibits
a ductile response—up to failure. This is commonly referred to as tension failure, and
the section is tension-controlled (see Section 5.3). In such cases, a member will typically
exhibit large deformations and significant cracking prior to collapse, and it is anticipated
that there will be ample warning prior to failure.

Now, assume that additional reinforcing steel is added to the section—with all of
the other parameters remaining the same—so that at failure, the reinforcing steel yields
at the same time the concrete crushes. This is commonly referred to as balanced failure.
Referring to Fig. 5.5, balanced failure occurs when the strain in the extreme compression
fiber of the concrete reaches the assumed crushing strain of 0.0030 at the same time
that the strain in the reinforcing steel reaches the yield strain. The moment–curvature
relationship for balanced failure is also plotted in Fig. 5.7. It is evident that no ductility
is exhibited when such a failure occurs.

Finally, assume that even more reinforcing steel is added to the section so that
the total amount is greater than that corresponding to balanced failure. In such cases,
the concrete in the extreme compression fiber reaches the assumed crushing strain of
0.0030 prior to the reinforcing steel yielding. The moment–curvature diagram for such
a member does not have the ductile postyielding response displayed by a member
with an amount of reinforcement smaller than the balanced amount (see Fig. 5.7). This
type of failure, which is called compression failure, occurs suddenly in a brittle manner
without warning.

Tension failures are favored over compression failures in flexural members. The
amount of reinforcement in a flexural member is limited by the Code to ensure that it
is achieved in design.
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5.4.3 Maximum Reinforcement
The Code requires that all flexural members and members with a factored axial com-
pressive force less than 0.1 f ′

c Ag (typically, beams and one-way slabs) have properties
that ensure that tension failure occurs.

Instead of specifying a maximum reinforcement ratio, which was stipulated in
editions of the Code prior to 2002 as 75% of the balanced reinforcement ratio, ACI
10.3.5 requires that nonprestressed flexural members be designed so that εt ≥ 0.0040.
In essence, this requirement limits the amount of tension reinforcement that can be
provided at a section: For a given cross-section and material properties, the strain
in the reinforcement at nominal strength is inversely proportional to the amount of
reinforcement that is provided at that section. Thus, the strain decreases as the amount
of reinforcement increases. The limitation on εt is slightly more conservative than that
required previously (see ACI R10.3.5).

5.4.4 Minimum Reinforcement
ACI 10.5 contains minimum reinforcement requirements for beams, slabs, and footings.
These requirements are generally applicable to members with cross-sections that are
larger than that required for strength. For example, spandrel beams in a building may
be deeper and have more strength than needed because they are incorporated into the
architectural design of the facade.

When a small amount of tensile reinforcement is provided in such members, the
strength of the reinforced concrete section based on a cracked section analysis becomes
less than that of an unreinforced concrete section based on the modulus of rupture (see
Chap. 2). Failure of reinforced sections with less than a minimum amount of reinforce-
ment can occur suddenly.

To avoid this sudden type of failure, the Code prescribes a minimum amount of
reinforcement As,min that is to be provided at any positive or negative bending moment
region of a flexural member where such tensile reinforcement is required [ACI Eq.
(10-3)]:

As,min = 3
√

f ′
c bwd
fy

≥ 200 bwd
fy

(5.6)

In this equation, the concrete compressive strength f ′
c has the unit of pounds per square

inch and bw is defined as the web width of the member. The limit of 200bwd/fy controls
for concrete compressive strengths less than approximately 4,400 psi.

ACI 10.5.2 contains minimum reinforcement requirements for statically determinate
members where the flange of the member is in tension. An example of such a member
is given in Fig. 5.8. The flange of the cantilever beam, which has a width of bf , is in
tension due to the uniformly distributed load that is applied along the length of the
member. According to ACI 10.5.2, As,min is determined by ACI Eq. (10-3), where bw in
the equation is replaced by the larger of two times the actual web width of the member
(2bw) or the flange width bf . It is especially important to provide a minimum amount
of reinforcement in members such as cantilever beams where bending moments cannot
be redistributed to adjoining framing members.

The aforementioned minimum areas of reinforcement need not be provided at any
section that contains at least one-third of the required amount of reinforcement at that
location (ACI 10.5.3). This exception is deemed sufficient for large members where the
amount required by ACI 10.5.1 or 10.5.2 would be excessive.
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FIGURE 5.8
A cantilever beam
with the flange in
tension.

The minimum amount of reinforcement for slabs and footings of uniform cross-
sections is equal to the minimum amount required by ACI 7.12.2.1 for shrinkage and
temperature reinforcement (ACI 10.5.4):

� As,min = 0.0020bh where Grade 40 or 50 deformed bars are used
� As,min = 0.0018bh where Grade 60 deformed bars or welded wire reinforcement

are used
� As,min = (0.0018 × 60,000)bh/fy where reinforcement with fy > 60,000 psi mea-

sured at a strain of 0.0035 is used

In these expressions, b is the width of the member and h is the overall thickness. A
design width of 12 in is typically used in such cases, and reinforcement is specified in
square inches per foot. The maximum spacing of this reinforcement is the smaller of
three times the member thickness or 18 in.

5.4.5 Nominal Flexural Strength

Overview
The nominal flexural strength of a reinforced concrete member is determined using the
two fundamental conditions given in Section 5.1—static equilibrium and compatibility
of strains—and the design assumptions given in Section 5.2. Methods to determine the
nominal flexural strength Mn are covered in this section.

Rectangular Sections
Single Layer of Tension Reinforcement Consider the reinforced concrete beam with one
layer of tension reinforcement depicted in Fig. 5.9. The strain distribution and equivalent
rectangular stress distribution are also shown in the figure. Because there is only one
layer of reinforcement in this beam, the distance dt from the extreme compression
fiber to the centroid of the extreme layer of longitudinal tension steel is equal to the
distance d from the extreme compression fiber to the centroid of the longitudinal tension
reinforcement.
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FIGURE 5.9 The strain and stress distributions in a rectangular beam with tension reinforcement.

The ultimate strain in the concrete is 0.0030, and the strain in the reinforcement is
greater than the yield strain εy, assuming that the total area of reinforcement As is such
that the reinforcing steel yields in tension before the concrete crushes in compression.

The resultant compressive force C in the concrete is equal to the compressive stress
times the area over which the stress acts:

C = 0.85 f ′
c ba (5.7)

In Eq. (5.7), b is the width of the cross-section as shown in Fig. 5.9.
The tension force T in the reinforcement is equal to the total area of reinforcement

As times the yield strength of the reinforcement fy:

T = As fy (5.8)

In order for equilibrium to be satisfied, the sum of the forces and bending moments
on the section must be equal to zero. From force equilibrium, C = T . The depth of the
equivalent stress block a can be obtained by equating Eqs. (5.7) and (5.8) and solving
for a :

a = As fy

0.85 f ′
c b

(5.9)

The nominal flexural strength of the section Mn is obtained from moment equilib-
rium. Moments can be summed about any point on the section. It is usually convenient
to sum moments about either C or T . Summing moments about the point of application
of the resultant force C yields the following expression for Mn:

Mn = As fy

(
d − a

2

)
(5.10)
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Substituting Eq. (5.9) into Eq. (5.10) results in the following:

Mn = As fy

(
d − 0.59As fy

b f ′
c

)
(5.11)

Define the reinforcement ratio ρ = As/bd and the reinforcement index ω = ρ fy/f ′
c .

Substituting these quantities into Eq. (5.11) results in the following nondimensional
equation for Mn:

Mn

bd2 f ′
c

= ω (1 − 0.59ω) (5.12)

The amount of reinforcement in a section that is needed to resist factored load effects
can be calculated by this equation (see Chap. 6).

The flowchart shown in Fig. 5.10 can be used to determine Mn for rectangular
sections with one layer of tension reinforcement.

FIGURE 5.10 Nominal flexural strength—rectangular section with one layer of tension
reinforcement. (Continued)
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FIGURE 5.10 (Continued)

Example 5.1 Determine the nominal flexural strength Mn of the reinforced concrete beam depicted
in Fig. 5.11. Assume f ′

c = 4,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).

Solution The flowchart shown in Fig. 5.10 is utilized to determine Mn.

Step 1: Determine As,min. The minimum amount of reinforcement is determined by ACI 10.5.1.
Because the compressive strength of the concrete is less than 4,400 psi, the minimum amount is

FIGURE 5.11 The reinforced concrete beam of Example 5.1.
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determined by the lower limit given in that section:

As,min = 200bwd
fy

= 200 × 18 × 21.7
60,000

= 1.30 in2

As,min < As = 5 × 0.31 = 1.55 in2

Step 2: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 3: Determine neutral axis depth c.

c = As fy

0.85 f ′
c bβ1

= 1.55 × 60,000
0.85 × 4,000 × 18 × 0.85

= 1.8 in

Step 4: Determine εt. The strain εt is determined by similar triangles (see Fig. 5.11):

c
0.0030

= dt − c
εt

or εt = 0.0030
(

dt

c
− 1

)

εt = 0.0030
(

21.7
1.8

− 1
)

= 0.0332 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4).

Step 5: Determine depth of the equivalent stress block a.

a = β1c = 0.85 × 1.8 = 1.5 in

Step 6: Determine the nominal flexural strength Mn. Equation (5.10) is used to determine Mn:

Mn = As fy

(
d − a

2

)
= 1.55 × 60,000

(
21.7 − 1.5

2

)
/12,000 = 162.4 ft kips

Comments
The reinforcement in this example is referred to as positive reinforcement because it is positioned
near the bottom of the section to resist the effects from a positive bending moment. Accordingly,
Mn in such cases is referred to as the positive nominal flexural strength. Positive moments typically
occur within the span away from the supports for members subjected to only gravity loads that
are supported at each end; however, a net positive bending moment could occur at the face of a
support in such cases because of combined gravity and lateral effects.

Example 5.2 Determine the nominal flexural strength Mn of the one-way slab depicted in Fig. 5.12.
Assume f ′

c = 3,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).

Solution The flowchart shown in Fig. 5.10 is utilized to determine Mn.

FIGURE 5.12 The
one-way slab of
Example 5.2.
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Step 1: Determine As,min. When investigating one-way slab systems, it is customary to base
the calculations on a 1-ft-wide design strip. Because the reinforcement is spaced at 12 in on center
in this example, there is one No. 4 bar in the design strip.

For a one-way slab with Grade 60 reinforcement, the minimum area of steel is determined in
accordance with ACI 7.12.2.1 (ACI 10.5.4):

As,min = 0.0018bh = 0.0018 × 12 × 8 = 0.17 in2

As,min < As = 0.20 in2

The reinforcement in this example is referred to as negative reinforcement because it is posi-
tioned near the top of the section to resist the effects from a negative bending moment. This negative
bending moment produces tension at the top of the section and compression at the bottom of the
section.

Step 2: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 3,000 psi (see Section 5.2).

Step 3: Determine neutral axis depth c.

c = As fy

0.85 f ′
c bβ1

= 0.20 × 60,000
0.85 × 3,000 × 12 × 0.85

= 0.46 in

Step 4: Determine εt. The strain εt is determined by similar triangles:

c
0.0030

= dt − c
εt

or εt = 0.0030
(

dt

c
− 1

)

Therefore,

εt = 0.0030
(

7
0.46

− 1
)

= 0.0427 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4).

Step 5: Determine depth of the equivalent stress block a.

a = β1c = 0.85 × 0.46 = 0.39 in

Step 6: Determine the nominal flexural strength Mn. Equation (5.10) is used to determine Mn:

Mn = As fy

(
d − a

2

)
= 0.20 × 60,000

(
7 − 0.39

2

)
/12,000 = 6.8 ft kips per foot width of slab

Multiple Layers of Tension Reinforcement Under certain conditions, the required tension
reinforcement cannot adequately fit within one layer in a section (spacing requirements
for reinforcing steel is covered in Chap. 6). In such cases, the bars are provided in more
than one layer, as shown in Fig. 5.13.

The nominal flexural strength is determined for sections with multiple layers of ten-
sion reinforcement in the same way as that for sections with one layer. When determin-
ing the nominal flexural strength, it is important to check that all of the reinforcement
yields.

Considering the section shown in Fig. 5.13, assume that the bar size and the number
of bars are the same in each layer and that all of the bars are located below the neutral
axis. Also assume that the yield strain εy occurs at a distance of dy from the extreme com-
pression fiber. From similar triangles, the following relationship is established between



135G e n e r a l P r i n c i p l e s o f t h e S t r e n g t h D e s i g n M e t h o d

FIGURE 5.13 A reinforced concrete beam with multiple layers of tension reinforcement.

dy and c:

c
0.0030

= dy − c
εy

(5.13)

Solving for dy results in the following:

dy = c
(

1 + εy

0.0030

)
(5.14)

For Grade 60 reinforcement (εy = 60/29,000 = 0.00207), Eq. (5.14) reduces to

dy = 1.7c (5.15)

Reinforcement located a distance equal to or greater than dy from the extreme com-
pression fiber yields (i.e., εs ≥ εy and fs = fy). The nominal flexural strength is calcu-
lated by Eq. (5.10), assuming that the total area of reinforcement is concentrated at d.
In situations where one or more layers of the reinforcement do not yield, the reinforce-
ment at those levels is separated from the reinforcement in the layers that yield, and
the actual stress in those bars ( fs < fy) is used in the calculation of Mn.

Example 5.3 Determine the nominal flexural strength Mn of the beam depicted in Fig. 5.14. Assume
f ′
c = 5,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).

Solution The flowchart shown in Fig. 5.10 is utilized to determine Mn.

Step 1: Determine As,min. The minimum amount of reinforcement is determined by ACI 10.5.1.
Because the compressive strength of the concrete is greater than 4,400 psi, the minimum amount is
determined by ACI Eq. (10-3):

As,min = 3
√

f ′
c bwd
fy

= 3
√

5,000 × 12 × 14.8
60,000

= 0.63 in2

As,min < As = 6 × 0.44 = 2.64 in2
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FIGURE 5.14 The
reinforced concrete
beam of Example
5.3.

Step 2: Determine β1.

β1 = 1.05 − 0.00005 f ′
c = 1.05 − (0.00005 × 5,000) = 0.80 for f ′

c

= 5,000 psi (see ACI 10.2.7.3 and Section 5.2)

Step 3: Determine the neutral axis depth c.

c = As fy

0.85 f ′
c bβ1

= 2.64 × 60,000
0.85 × 5,000 × 12 × 0.80

= 3.9 in

Step 4: Determine εt. The strain εt is determined by similar triangles (see Fig. 5.14):

c
0.0030

= dt − c
εt

or εt = 0.0030
(

dt

c
− 1

)

Therefore,

εt = 0.0030
(

15.6
3.9

− 1
)

= 0.0090 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4).

Because Grade 60 reinforcement is specified in this example, use Eq. (5.15) to check the assump-
tion that all of the reinforcement yields:

dy = 1.7c = 1.7 × 3.9 = 6.6 in

Thus, the reinforcement layer located 13.9 in from the extreme compression fiber yields. Verify
this by calculating the strain in the reinforcement at that layer:

εs

13.9 − 3.9
= 0.0030

3.9
or εs = 0.0077 > εy = 0.00207

Step 5: Determine the depth of the equivalent stress block a.

a = β1c = 0.80 × 3.9 = 3.1 in
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FIGURE 5.15 Doubly
reinforced
rectangular beam.

Step 6: Determine the nominal flexural strength Mn. Equation (5.10) is used to determine Mn:

Mn = As fy

(
d − a

2

)
= 2.64 × 60,000

(
14.8 − 3.1

2

)
/12,000 = 174.9 ft kips

Tension and Compression Reinforcement
Overview The beam depicted in Fig. 5.15 contains reinforcement in both the ten-

sion and compression zones of the section, where the compression reinforcement A′
s

is located a distance d ′ from the extreme compression fiber. Sections with both ten-
sion and compression reinforcement are commonly referred to as doubly reinforced
sections.

Compression reinforcement can be added to a section to increase its design flexural
strength φMn (ACI 10.3.5.1). This additional strength can be achieved in situations
where the dimensions of a beam are limited and the amount of tensile reinforcement
that is required to resist the factored bending moments is greater than that permitted
by ACI 10.3.5.

Reinforcement in the compression zone contributes to the total nominal flexural
strength of a section, though the increase in Mn is usually relatively small. The presence
of compression reinforcement in a section also results in larger values of εt , which essen-
tially produces more ductile behavior. This has a direct impact on the magnitude of the
strength reduction factor φ because φ is directly proportional to εt (see Section 4.3). For
example, consider a rectangular beam where the strain εt is equal to 0.0045. The maxi-
mum reinforcement provisions of ACI 10.3.5 are satisfied because εt > 0.0040; however,
the section is not tension-controlled because εt < 0.0050. Thus, the strength reduction
factor is less than 0.90 (see Fig. 4.2). Adding a sufficient amount of reinforcement in
the compression zone transforms the section from one that is in the transition region
(φ < 0.90) to one that is tension-controlled (φ = 0.90). Chapter 6 contains additional
information on why it is advantageous for flexural members to have tension-controlled
sections.

Compression reinforcement is also added to help reduce long-term deflections.
More information on this topic is also provided in Chap. 6.

Longitudinal reinforcement must be provided at both the top and the bottom of
a reinforced concrete beam at certain locations regardless of whether it is needed or
not for flexure. It is shown in Chap. 6 that transverse reinforcement, which is usually
in the form of stirrups, is required in a beam to resist the effects from shear. Stirrups
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FIGURE 5.16 Strain and stress distributions in a doubly reinforced concrete beam.

must be anchored to the top and bottom longitudinal bars to properly develop them
in tension (see ACI 12.13). Thus, longitudinal bars are needed wherever stirrups are
required. Stirrups enclose the compression reinforcement and prevent it from buckling
(see ACI 7.11).

Nominal flexural strength when compression reinforcement yields The strain and stress
distributions in a doubly reinforced section are illustrated in Fig. 5.16. Similar to the
case with multiple layers of tension steel, the nominal flexural strength of a doubly
reinforced section depends on whether the compression reinforcement yields or not.

Assume that the yield strain εy occurs at a distance of d ′
y from the extreme compres-

sion fiber. From similar triangles, the following relationship is established between d ′
y

and c:

c
0.0030

= c − d ′
y

εy
(5.16)

Solving for d ′
y results in the following:

d ′
y = c

(
1 − εy

0.0030

)
(5.17)

For Grade 60 reinforcement (εy = 60/29,000 = 0.00207), Eq. (5.17) reduces to

d ′
y = 0.31c (5.18)

Compression reinforcement located a distance equal to or less than d ′
y from the

extreme compression fiber yields (i.e., ε′
s ≥ εy and f ′

s = fy).
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FIGURE 5.17 Force distribution in a doubly reinforced beam when the compression reinforcement
yields.

When the compression steel yields, the depth of the equivalent stress block a can
be obtained by satisfying force equilibrium:

T = C + C ′
s (5.19a)

As fy = 0.85 f ′
c ba + A′

s fy (5.19b)

a =
(

As − A′
s

)
fy

0.85 f ′
c b

(5.19c)

The total nominal flexural strength Mn is considered to be the sum of two parts.
The first part Mn1 is provided by the couple consisting of the force in the compression
steel A′

s and the force in an equal area of tension steel (see Fig. 5.17):

Mn1 = A′
s fy(d − d ′) (5.20)

The second part Mn2 is provided by the couple consisting of the remaining tension
steel As − A′

s and the compression force in the concrete C :

Mn2 = (
As − A′

s

)
fy

(
d − a

2

)
(5.21)

Thus, the total nominal flexural strength of a doubly reinforced section where
f ′
s = fy is

Mn = (
As − A′

s

)
fy

(
d − a

2

)
+ A′

s fy(d − d ′) (5.22)

Nominal flexural strength when compression reinforcement does not yield When the
compression reinforcement does not yield ( f ′

s < fy), the depth of the stress block a can-
not be determined by Eq. (5.19c) because the magnitude of f ′

s is unknown. A relationship



140 C h a p t e r F i v e

between f ′
s and the neutral axis depth c can be obtained from strain compatibility. The

strain in the compression reinforcement ε′
s is related to c as follows:

c
0.0030

= c − d ′

ε′
s

(5.23)

Substituting ε′
s = f ′

s /Es into Eq. (5.23) and solving for f ′
s results in

f ′
s = 0.0030 Es

(
1 − d ′

c

)
(5.24)

The neutral axis depth c can be obtained by satisfying force equilibrium:

T = C + C ′
s (5.25a)

As fy = 0.85 f ′
c ba + A′

s f ′
s (5.25b)

Substituting a = β1c and Eq. (5.24) into Eq. (5.25b) results in

As fy = 0.85 f ′
c bβ1c + 0.003A′

s Es

(
1 − d ′

c

)
(5.26a)

a1c2 + b1c − 87A′
sd ′ = 0 (5.26b)

c =
−b1 ±

√
b2

1 + 348a1 A′
sd ′

2a1
(5.26c)

where a1 = 0.85 f ′
c bβ1

b1 = 87A′
s − As fy

Es = 29,000 ksi

Note that f ′
c and fy have the units of kips per square inch in the preceding equations.

Once the neutral axis depth c is determined by Eq. (5.26c), Eq. (5.24) can be used to
calculate f ′

s . The nominal flexural strength is obtained by satisfying moment equilib-
rium. Summing moments about the centroid of the tensile reinforcement results in the
following equation for Mn where f ′

s < fy:

Mn = 0.85 f ′
c ab

(
d − a

2

)
+ A′

s f ′
s

(
d − d ′) (5.27)

Regardless of whether the compression steel yields or not, the strain εt must be
equal to or greater than 0.0040 in order to satisfy the provisions of ACI 10.3.5.

The flowchart shown in Fig. 5.18 can be used to determine Mn for rectangular
sections with tension and compression reinforcement.

It is important to note that the contribution of compression reinforcement can be
conservatively neglected where it is not specifically required for strength. In such cases
the nominal flexural strength can be computed using the equations developed previ-
ously for sections with only tension reinforcement.
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FIGURE 5.18 Nominal flexural strength—rectangular section with tension and compression
reinforcement. (Continued)

Example 5.4 Determine the nominal flexural strength Mn of the beam depicted in Fig. 5.19. Assume
f ′
c = 4,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).

Solution The flowchart shown in Fig. 5.18 is utilized to determine Mn.

Step 1: Determine As,min. The minimum amount of reinforcement is determined by ACI 10.5.1.
Because the compressive strength of the concrete is less than 4,400 psi, the minimum amount is
determined by the lower limit given in ACI 10.5.1:

As,min = 200bwd
fy

= 200 × 12 × 20.6
60,000

= 0.82 in2

As,min < As = 8 × 0.60 = 4.80 in2

Step 2: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).
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FIGURE 5.18 (Continued)

Step 3: Determine the depth of the equivalent stress block a. Assuming that the compression
steel yields, the depth of the equivalent stress block a is determined by Eq. (5.19c):

a =
(

As − A′
s
)

fy

0.85 f ′
c b

= (4.80 − 0.40) × 60
0.85 × 4 × 12

= 6.5 in

Step 4: Determine the neutral axis depth c.

c = a
β1

= 6.5
0.85

= 7.7 in
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FIGURE 5.18 (Continued)

Step 5: Determine d′
y. Because Grade 60 reinforcement is specified in this example, use Eq.

(5.18) to determine d ′
y:

d ′
y = 0.31c = 0.31 × 7.7 = 2.4 in

Thus, the compression reinforcement layer located 2.3 in from the extreme compression fiber
yields because d ′ < d ′

y. Verify this by determining the strain in the compression reinforcement:

ε′
s

7.7 − 2.3
= 0.0030

7.7
or ε′

s = 0.0021 > εy = 0.00207

FIGURE 5.19 The
doubly reinforced
concrete beam of
Example 5.4.
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Step 6: Determine εt. The strain εt is determined by similar triangles (see Fig. 5.19):

c
0.0030

= dt − c
εt

or εt = 0.0030
(

dt

c
− 1

)

Therefore,

εt = 0.0030
(

21.6
7.7

− 1
)

= 0.0054 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4).

Verify that the tension reinforcement located 19.7 in from the extreme compression fiber yields:

εs

19.7 − 7.7
= 0.0030

7.7
or εs = 0.0047 > εy = 0.00207

Step 7: Determine the nominal flexural strength Mn. Equation (5.22) is used to determine Mn:

Mn = (
As − A′

s
)

fy

(
d − a

2

)
+ A′

s fy
(
d − d ′)

=
[

(4.80 − 0.40) × 60,000 ×
(

20.6 − 6.5
2

)
+ 0.40 × 60,000 × (20.6 − 2.3)

]
/12,000

= 381.7 + 36.6 = 418.3 ft kips

Example 5.5 Determine the nominal flexural strength Mn of the beam shown in Fig. 5.19 with the
following modification: use four No. 7 compression bars located at d ′ = 2.4 in instead of two No.
4 compression bars located at d ′ = 2.3 in.

Solution The flowchart shown in Fig. 5.18 is utilized to determine Mn.

Step 1: Determine As,min.

As,min = 0.82 in2 < As = 8 × 0.60 = 4.80 in2 (see Step 1 in Example 5.4)

Step 2: Determine β1.

β1 = 0.85 for f ′
c = 4,000 psi (see Step 2 in Example 5.4).

Step 3: Determine the depth of equivalent stress block a. Assuming that the compression
steel yields, the depth of the equivalent stress block a is determined by Eq. (5.19c):

a =
(

As − A′
s
)

fy

0.85 f ′
c b

= (4.80 − 2.40) × 60
0.85 × 4 × 12

= 3.5 in

Step 4: Determine neutral axis depth c.

c = a
β1

= 3.5
0.85

= 4.1 in

Step 5: Determine d′
y. Because Grade 60 reinforcement is specified in Example 5.4, use Eq.

(5.18) to check the assumption that the compression reinforcement yields:

d ′
y = 0.31c = 0.31 × 4.1 = 1.3 in
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Thus, the compression reinforcement layer located 2.4 in from the extreme compression fiber
does not yield because d ′ > d ′

y.
Step 6: Determine the revised neutral axis depth c. Equation (5.26c) is used to determine the

revised neutral axis depth c:

c =
−b1 ±

√
b2

1 + 348a1 A′
sd ′

2a1

a1 = 0.85 f ′
c bβ1 = 0.85 × 4 × 12 × 0.85 = 34.7

b1 = 87A′
s − As fy = (87 × 2.40) − (4.80 × 60) = −79.2

c =
79.2 +

√
(−79.2)2 + (348 × 34.7 × 2.40 × 2.4)

2 × 34.7
= 5.1 in

Step 7: Determine the stress in the compression reinforcement f ′
s . Equation (5.24) is used to

determine f ′
s :

f ′
s = 0.003Es

(
1 − d ′

c

)
= 0.0030 × 29,000

(
1 − 2.4

5.1

)
= 46.1 ksi

Step 8: Determine εt. The strain εt is determined by similar triangles:

c
0.0030

= dt − c
εt

or εt = 0.0030
(

dt

c
− 1

)

Therefore,

εt = 0.0030
(

21.6
5.1

− 1
)

= 0.0097 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4).

Verify that the tension reinforcement located 19.7 in from the extreme compression fiber yields:

εs

19.7 − 5.1
= 0.0030

5.1
or εs = 0.0086 > εy = 0.00207

Step 9: Determine the revised depth of the equivalent stress block a.

a = β1c = 0.85 × 5.1 = 4.3 in

Step 10: Determine the nominal flexural strength Mn. Equation (5.27) is used to determine
Mn:

Mn = 0.85 f ′
c ab

(
d − a

2

)
+ A′

s f ′
s
(
d − d ′)

=
[

0.85 × 4,000 × 4.3 × 12 ×
(

20.6 − 4.3
2

)
+ 2.40 × 46,100 × (20.6 − 2.4)

]
/12,000

= 269.7 + 167.8 = 437.5 ft kips

Comments
Comparing the results from Examples 5.4 and 5.5, it is evident that the depth of the neutral axis
c determined in step 6 of this example is less than that determined in step 4 of Example 5.4. A
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FIGURE 5.20
Comparison of
strain distributions
given in Examples
5.4 and 5.5.

reduction in the neutral axis depth occurs whenever the compression steel does not yield (ε′
s < εy).

It is also evident that increasing A′
s increases εt (approximately an 80% increase in these exam-

ples; see Fig. 5.20). In general, this can lead to larger values of the strength reduction factor φ.
The sections in these examples are tension-controlled, so φ = 0.90 in both cases; however, increas-
ing A′

s in certain situations can transform a section in the transition zone to one that is tension-
controlled.

Also, an increase in A′
s increases Mn. As expected, the increase is not linear: Approximately a

5% increase in Mn is realized when A′
s is increased by a factor of 6.

T-section and Inverted L-section with Tension Reinforcement
Overview The discussions in the previous sections have focused on rectangular rein-
forced concrete beams without considering the slab that is supported by the beams. In
typical cast-in-place concrete construction, the beams and slabs at a level are cast to-
gether with reinforcement that extends between the members; this forms a monolithic
structure. Therefore, beams do not act alone but rather work together with the slab to
resist the effects from applied loads.

A cast-in-place concrete floor/roof system is shown in Fig. 5.21. The interior beams
are commonly referred to as T-beams, where the slab forms the flange of the T-beam and
the concrete projection below the slab forms the web or stem of the T-beam. Similarly,
the edge beam is referred to as an inverted L-beam.

FIGURE 5.21 T-beam and inverted L-beam construction.
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FIGURE 5.22 Distribution of compressive stress in a T-beam subjected to a positive moment.

Effective Flange Width The beams depicted in Fig. 5.22 are subjected to a positive mo-
ment that produces compressive stresses at the top of the section above the neutral axis.
As seen in the figure, the compressive stresses are greatest over the web and decrease
between the webs. In lieu of using a variable compressive stress, the maximum uni-
form compressive stress is assumed to act over an effective slab (flange) width. The
effective width is determined such that the compressive force obtained by multiplying
the maximum compressive stress by the effective width is equal to the resultant force
of the actual compressive stress distribution.

Effective flange widths depend on the geometry of the system (beam spacing, slab
thickness, and span length) and are defined in ACI 8.12 for both T-beams and inverted
L-beams as follows:

� For beams with slabs on both sides of the web (T-beams),

Total effective flange width = the lesser of the following:
Span length/4
Web width + 16(slab thickness)
Web width + one-half the clear distances to the next webs

� For beams with a slab on only one side of the web (inverted L-beams),

Total effective flange width = the lesser of the following:
Span length/4
Web width + 6(slab thickness)
Web width + one-half the clear distances to the next webs

The requirements of ACI 8.12 are summarized in Fig. 5.23 for the general case of
varying web width and beam spacing. The nominal flexural strength of flanged sections
is determined using this effective flange width.

Nominal Flexural Strength—Flange in Tension The flange of a T-beam or an inverted L-
beam will be in tension at locations of negative moment, which in a continuous system
usually occur at the faces of a support. The strain and stress distributions for a T-beam
in such a case are illustrated in Fig. 5.24, where it can be seen that the compression
zone falls within the web of the member. An inverted L-beam would have similar
distributions.

The nominal flexural strength is determined by the equations developed previously
for rectangular sections with a single layer or multiple layers of tension reinforcement
(i.e., two layers of reinforcement in the slab) where b = bw . The flowchart shown in
Fig. 5.10 can be used to determine Mn. If needed, the contribution of the compression
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FIGURE 5.23 Effective flange widths for a T-beam and an inverted L-beam.

reinforcement in the web can be included where the nominal flexural strength is deter-
mined by the equations developed previously for doubly reinforced sections (see the
flowchart shown in Fig. 5.18).

Nominal Flexural Strength—Flange in Compression At locations of positive moment, which
usually occur away from the faces of a support in a continuous system, a portion of the
flange or the entire flange of a T-beam or an inverted L-beam will be in compression.
The determination of the nominal flexural strength depends on whether the depth of
the stress block a is less than or greater than the thickness of the flange. Both cases are
examined next.

Depth of stress block less than or equal to flange thickness (a ≤ hf ) When the depth
of the compression zone a falls within the flange of a T-beam or an inverted L-beam, the
compressive zone is rectangular with a width equal to the effective flange width be (see

FIGURE 5.24 Strain and stress distributions in a T-beam with the flange in tension.
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FIGURE 5.25 Strain and stress distributions in a T-beam with the flange in compression and
a ≤ hf .

Fig. 5.25). The nominal flexural strength of the section is determined by the equations
developed earlier for rectangular sections.

Depth of stress block greater than flange thickness (a > hf ) When the depth of the
stress block a falls within the web of the beam, the compressive zone is T or L shaped as
opposed to rectangular (see Fig. 5.26). The resultant force C is equal to 0.85 f ′

c times the
area of the compressive zone and is located at its centroid. In such cases, it is convenient
to divide the tensile reinforcement into two parts. The first part Asf is defined as the area
of steel that is required to balance the compressive force in the overhanging portions of
the flange. This is depicted in Fig. 5.27. The following equation for Asf is obtained from
horizontal equilibrium, assuming that the tension reinforcement yields:

Asf = 0.85 f ′
c (be − bw)hf

fy
(5.28)

The nominal flexural resistance provided by the tensile reinforcement Asf is ob-
tained from moment equilibrium:

Mn1 = Asf fy

(
d − hf

2

)
(5.29)

FIGURE 5.26 Strain and stress distributions in a T-beam with the flange in compression and
a > hf .
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FIGURE 5.27 Stress distribution corresponding to overhanging flanges.

The remaining part of the tensile reinforcement As − Asf is balanced by the com-
pression force in the rectangular part of the web (see Fig. 5.28). As usual, the depth of
the stress block a is determined from horizontal equilibrium:

a = (As − Asf) fy

0.85 f ′
c bw

(5.30)

The nominal flexural resistance provided by the tensile reinforcement (As − Asf) is
obtained from moment equilibrium:

Mn2 = (As − Asf) fy

(
d − a

2

)
(5.31)

Thus, the total nominal flexural strength of the section Mn where a > hf is the
addition of the two parts corresponding to the overhanging flanges and the web:

Mn = Mn1 + Mn2 = Asf fy

(
d − hf

2

)
+ (As − Asf) fy

(
d − a

2

)
(5.32)

The flowchart shown in Fig. 5.29 can be used to determine Mn for a T-beam or an
inverted L-beam where the flange is in compression. Like in the case of rectangular

FIGURE 5.28 Stress distribution corresponding to the web.
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FIGURE 5.29 Nominal flexural strength—T-section or inverted L-section with the flange in
compression. (Continued)

sections, the minimum and maximum reinforcement requirements of ACI 10.5 and
10.3.5, respectively, must be satisfied.

Example 5.6 Given the plan of the reinforced concrete floor system illustrated in Fig. 5.30, determine
the nominal flexural strength Mn at the midspan of a typical wide-module joist in an end span.
Assume f ′

c = 4,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).

Solution The floor plan depicted in Fig. 5.30 is the same as the one depicted in Fig. 3.3 that was used
in Examples 3.1 through 3.5. Figure 5.31 shows a section through the wide-module joist system.
The flowchart shown in Fig. 5.29 is utilized to determine Mn.

Step 1: Determine As,min. The minimum amount of reinforcement is determined by ACI 10.5.1.
Because the compressive strength of the concrete is less than 4,400 psi, the minimum amount is
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FIGURE 5.29 (Continued)

determined by the lower limit given in ACI 10.5.1:

As,min = 200bwd
fy

= 200 × 7 × 18.7
60,000

= 0.44 in2

As,min < As = 2 × 0.31 = 0.62 in2

Note that the web of a typical wide-module joist is tapered as shown in Fig. 5.31. The width
of the web bw used in calculations is generally taken as the least dimension at the bottom of the
web, which in this case is 7 in. With a web taper of 1 to the horizontal and 12 to the vertical, the
average web width is equal to (9.7 + 7)/2 = 8.4 in. The minimum area of steel corresponding
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FIGURE 5.30 The plan of the floor system for Example 5.6.

to the average web width is As,min = 200bwd/ fy = 200 × 8.4 × 18.7/60,000 = 0.52 in2, which is less
than that provided. The width of the equivalent stress block is also taken as 7 in.

Step 2: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 3: Determine the effective flange width be. Figure 5.23 is used to determine be :

be =




span length/4 = (25 × 12)/4 = 75 in
bw + 16h = 7 + (16 × 4.5) = 79 in
spacing = 60 in (governs)

Step 4: Determine the depth of the equivalent stress block a. Assuming that the depth of the
stress block falls within the flange, a is determined by Eq. (5.9) where b = be :

a = As fy

0.85 f ′
c be

= 0.62 × 60
0.85 × 4 × 60

= 0.18 in

FIGURE 5.31 A section through the wide-module joist system of Example 5.6.
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Because a < hf , the assumption that the stress block falls within the flange is correct, and the
section can be treated as a rectangular section.

Step 5: Determine the neutral axis depth c.

c = a
β1

= 0.18
0.85

= 0.21 in

Step 6: Determine εt. The strain εt is determined by similar triangles:

c
0.0030

= dt − c
εt

or εt = 0.0030
(

dt

c
− 1

)

Therefore,

εt = 0.0030
(

18.7
0.21

− 1
)

= 0.2641 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4).

Step 7: Determine the nominal flexural strength Mn. Equation (5.10) is used to determine Mn:

Mn = As fy

(
d − a

2

)
= 0.62 × 60,000 ×

(
18.7 − 0.18

2

)
/12,000 = 57.7 ft kips

Comments
It was found in step 6 that the section is tension-controlled, so the strength reduction factor φ =
0.9 (see Section 4.3 and Fig. 4.2). Thus, the positive design strength of this wide-module joist is
φMn = 0.9 × 57.7 = 51.9 ft kips. It was determined in Example 3.4 that the maximum factored
positive moment Mu = 42.2 ft kips (see Table 3.4). Thus, the basic requirement for strength design
is satisfied for this member at the positive moment section because φMn > Mu [see Eq. (4.2)].

Example 5.7 Given the floor plan illustrated in Fig. 5.30, determine the nominal flexural strength
Mn at the face of the first interior support of a typical wide-module joist in an end span. Assume
f ′
c = 4,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).

Solution Figure 5.32 shows the section through the wide-module joist system. The spacing of the
six No. 3 bars meets the requirements of ACI 10.6.6 for T-beam construction where the flange is in
tension. Because the web of the wide-module joist is in compression, the flowchart shown in Fig.
5.10 is utilized to determine Mn for rectangular sections.

FIGURE 5.32 A section through the wide-module joist system of Example 5.7.
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Step 1: Determine As,min. The minimum amount of reinforcement is determined by ACI 10.5.1.
Because the compressive strength of the concrete is less than 4,400 psi, the minimum amount is
determined by the lower limit given in ACI 10.5.1:

As,min = 200bwd
fy

= 200 × 7 × 19.6
60,000

= 0.46 in2

As,min < As = 6 × 0.11 = 0.66 in2

Step 2: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 3: Determine the neutral axis depth c.

c = As fy

0.85 f ′
c bwβ1

= 0.66 × 60,000
0.85 × 4,000 × 7 × 0.85

= 2.0 in

Step 4: Determine εt. The strain εt is determined by similar triangles:

c
0.0030

= dt − c
εt

or εt = 0.0030
(

dt

c
− 1

)

εt = 0.0030
(

19.6
2.0

− 1
)

= 0.0264 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4).

Step 5: Determine the depth of the equivalent stress block a.

a = β1c = 0.85 × 2.0 = 1.7 in

Step 6: Determine the nominal flexural strength Mn. Equation (5.10) is used to determine Mn:

Mn = As fy

(
d − a

2

)
= 0.66 × 60,000

(
19.6 − 1.7

2

)
/12,000 = 61.9 ft kips

Comments
It was found in step 4 that the section is tension-controlled, so the strength reduction factor φ = 0.9
(see Section 4.3 and Fig. 4.2). Thus, the negative design strength of this wide-module joist is φMn =
0.9 × 61.9 = 55.7 ft kips. It was determined in Example 3.4 that the maximum factored negative
moment Mu = 51.7 ft kips (see Table 3.4). Thus, the basic requirement for strength design is satisfied
for this member at the negative moment section because φMn > Mu [see Eq. (4.2)].

Example 5.8 Determine the positive nominal flexural strength Mn of the T-beam in Fig. 5.33. Assume
f ′
c = 3,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).

Solution

Step 1: Determine As,min. The minimum amount of reinforcement is determined by ACI 10.5.1.
Because the compressive strength of the concrete is less than 4,400 psi, the minimum amount is
determined by the lower limit given in ACI 10.5.1:

As,min = 200bwd
fy

= 200 × 12 × 14.5
60,000

= 0.58 in2

As,min < As = 6 × 0.79 = 4.74 in2

Step 2: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 3,000 psi (see Section 5.2).
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FIGURE 5.33 The
T-beam of
Example 5.8.

Step 3: Determine the effective flange width be. In Fig. 5.33, the effective flange width be is
given as 24 in.

Step 4: Determine the depth of equivalent stress block a. Assuming that the depth of the
stress block falls within the flange, a is determined by Eq. (5.9) where b = be :

a = As fy

0.85 f ′
c be

= 4.74 × 60
0.85 × 3 × 24

= 4.65 in

Because a > hf , the assumption that the stress block falls within the flange is not correct, and
the section must be treated as a T-section.

Step 5: Determine Asf. The area of steel Asf that is required to balance the compressive force
in the overhanging portion of the slab is determined by Eq. (5.28):

Asf = 0.85 f ′
c (be − bw)hf

fy
= 0.85 × 3 × (24 − 12) × 4

60
= 2.04 in2

Step 6: Determine the revised depth of the equivalent stress block a. The revised depth of
the stress block is determined by Eq. (5.30):

a =
(As − Asf) fy

0.85 f ′
c bw

= (4.74 − 2.04) × 60
0.85 × 3 × 12

= 5.3 in

Step 7: Determine the neutral axis depth c.

c = a
β1

= 5.3
0.85

= 6.2 in

Step 8: Determine εt. The strain εt is determined by similar triangles:

c
0.0030

= dt − c
εt

or εt = 0.0030
(

dt

c
− 1

)

Therefore,

εt = 0.0030
(

15.5
6.2

− 1
)

= 0.0045 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is in the transition region because 0.0020 < εt < 0.0050 (ACI 10.3.4).
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Verify that the tension reinforcement located 13.5 in from the extreme compression fiber yields:

εs

13.5 − 6.2
= 0.0030

6.2
or εs = 0.0035 > εy = 0.00207

Step 9: Determine the nominal flexural strength Mn. Equation (5.32) is used to determine Mn:

Mn = Mn1 + Mn2 = Asf fy

(
d − hf

2

)
+ (As − Asf) fy

(
d − a

2

)

=
[

2.04 × 60,000 ×
(

14.5 − 4
2

)
+ (4.74 − 2.04) × 60,000 ×

(
14.5 − 5.3

2

)]
/12,000

= 127.5 + 160.0 = 287.5 ft kips

Comments
From Step 8, it was found that the section is in the transition region, so the strength reduction factor
φ is determined in accordance with ACI 9.3.2 (see Section 4.3 and Fig. 4.2):

φ = 0.65 + (εt − 0.002)
(

250
3

)
= 0.65 + (0.0045 − 0.002)

(
250

3

)
= 0.86

or

φ = 0.65 + 0.25
(

1
c/dt

− 5
3

)
= 0.65 + 0.25

(
1

6.2/15.5
− 5

3

)
= 0.86

Thus, the positive design strength of this beam is φMn = 0.86 × 287.5 = 247.3 ft kips.

5.5 Compression Members

5.5.1 Overview
The term compression member is used to refer to columns and other members, such as
walls, that are subjected primarily to compressive forces. This section focuses on the
determination of the nominal axial strength Pn for short, reinforced concrete columns
that are subjected to essentially concentric axial loads. A short column is defined as one
in which slenderness effects need not be considered. Slender columns are discussed in
Chap. 8.

The nominal axial strength of a short column is related to the area of the column,
the compressive strength of the concrete, the area and yield stress of the longitudinal
reinforcement, and the type of transverse reinforcement. These quantities and their
relationship to axial strength are discussed later.

5.5.2 Maximum Concentric Axial Load
Consider a reinforced concrete column subjected to a concentric axial load P . Assume
that the longitudinal reinforcement is symmetrically distributed in the section and
that lateral reinforcement that meets the size and spacing requirements of ACI 7.10 is
provided. The type of lateral reinforcement is not relevant to the discussion at this time.

When subjected to P , the length of the column L decreases by an amount equal
to the longitudinal strain ε times the original length L . For a concentric axial load, ε is
uniform across the section. The strains in the concrete and the steel are equal because the
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concrete and the longitudinal steel are bonded together. For any given ε, it is possible
to compute the stresses in the concrete and longitudinal steel using the stress–strain
curves of the materials (see Chap. 2). The loads in the concrete and the longitudinal
steel are equal to the stresses multiplied by the corresponding areas, and the total load
that a short column can carry is the sum of the maximum loads carried by the concrete
and the steel.

The maximum compressive axial load that can be resisted by the concrete Pc is equal
to the following:

Pc = 0.85 f ′
c (Ag − Ast) (5.33)

In this equation, Ag is the gross area of the column and Ast is the total area of
longitudinal reinforcement in the column; thus, (Ag − Ast) is equal to the area of the
concrete. The factor 0.85 is based on the results of numerous tests.8

The maximum axial load that can be carried by the longitudinal reinforcement Ps

is equal to the area times the yield strength of the reinforcement:

Ps = fy Ast (5.34)

Therefore, the maximum concentric axial load Po that can be carried by a short
column is equal to the summation of the maximum loads of the concrete and the steel:

Po = 0.85 f ′
c (Ag − Ast) + fy Ast (5.35)

Equation (5.35) forms the basis of the nominal axial strength, which is discussed
next.

5.5.3 Nominal Axial Strength
In general, the maximum nominal axial strength Pn,max is equal to a constant times
the concentric axial load strength Po . The constant depends on the type of transverse
reinforcement utilized in the section and accounts for any accidental eccentricities—
or, equivalently, any accidental bending moments—that may exist in a compression
member and were not considered in the analysis. These eccentricities can arise from
unbalanced moments in the beams framing into the column, misalignment of columns
from floor to floor, or misalignment of the longitudinal reinforcement in the column, to
name a few.

For members with spiral reinforcement, the constant is equal to 0.85. Therefore,

Pn,max = 0.85[0.85 f ′
c (Ag − Ast) + fy Ast] (5.36)

The constant 0.85 produces nominal strength approximately equal to that from
earlier Codes with the axial load applied at an eccentricity equal to 5% of the column
depth.

Similarly, for members with tie reinforcement, the constant is equal to 0.80, and
Pn,max is

Pn,max = 0.80[0.85 f ′
c (Ag − Ast) + fy Ast] (5.37)
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In this case, the axial load is applied at an eccentricity equal to approximately 10%
of the column depth.

Equations (10-1) and (10-2) in ACI 10.3.6 give the design axial strengthφPn = φPn,max
for columns with spiral and tie lateral reinforcement, respectively. These equations are
formed by multiplying the maximum nominal axial strength Pn,max by the correspond-
ing strength reduction factor φ. Thus,

� For members with spiral reinforcement

φPn,max = 0.85φ[0.85 f ′
c (Ag − Ast) + fy Ast] (5.38)

� For members with tie reinforcement

φPn,max = 0.80φ[0.85 f ′
c (Ag − Ast) + fy Ast] (5.39)

The strength reduction factor φ is equal to 0.75 for compression-controlled sections
with spiral reinforcement and 0.65 for other reinforced members including tied rein-
forcement (see Section 4.3 and ACI 9.3.2.2). It was noted in Section 4.3 that the larger
φ− factor for columns with spiral reinforcement reflects the more ductile behavior of
such columns compared with columns with tied reinforcement.

5.5.4 Longitudinal Reinforcement Limits
ACI 10.9.1 prescribes the limits on the amount of longitudinal reinforcement for com-
pression members, which are applicable to all such members regardless of the type of
lateral reinforcement:

� Minimum Ast = 0.01Ag

� Maximum Ast = 0.08Ag

The lower limit is meant to provide resistance to bending, which may exist even
though an analysis shows that it is not present, and to reduce the effects of creep and
shrinkage of the concrete under sustained compressive stresses (see Chap. 2).

The upper limit is a practical maximum for longitudinal reinforcement in terms of
economy and placement of the bars: For proper concrete placement and consolidation,
the size and number of longitudinal bar sizes must be chosen to minimize reinforce-
ment congestion, especially at beam–column joints. If column bars are lap spliced, the
maximum area of longitudinal reinforcement should not exceed 4% of the gross column
area at the location of the splice.

ACI 10.9.2 also contains requirements on the minimum number of longitudinal bars
in compression members and the minimum volumetric reinforcement ratio for columns
with spiral reinforcement. These and other requirements are covered in Chap. 8.

The flowchart shown in Fig. 5.34 can be used to determine Pn,max for compression
members.

Example 5.9 Determine the maximum nominal axial strength Pn,max of the 24-in-diameter column
shown in Fig. 5.35. Assume f ′

c = 6,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).
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FIGURE 5.34 Maximum nominal axial strength for compression members.

Solution The flowchart shown in Fig. 5.34 is utilized to determine Pn,max for this compression
member.

Step 1: Check the minimum and maximum longitudinal reinforcement limits. The minimum
and maximum amounts of longitudinal reinforcement permitted in a compression member are
specified in ACI 10.9.1.

Minimum: Ast = 0.01Ag = 0.01 × π × 242/4 = 4.52 in2

Maximum: Ast = 0.08Ag = 0.08 × π × 242/4 = 36.2 in2

The provided area of longitudinal reinforcement Ast = 8 × 1.00 = 8.00 in2 falls between the
minimum and maximum limits.
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FIGURE 5.35 The
column of
Example 5.9.

Step 2: Identify the type of lateral reinforcement. Spiral reinforcement is identified in
Fig. 5.35.

Step 3: Determine the maximum nominal axial strength Pn,max. For compression members
with spiral reinforcement conforming to ACI 7.10.4, Pn,max is determined by Eq. (5.36):

Pn,max = 0.85[0.85 f ′
c (Ag − Ast) + fy Ast]

= 0.85[0.85 × 6 × (452.4 − 8.00) + (60 × 8.00)] = 2,335 kips

Comments
The design axial strength φPn,max is equal to the strength reduction factor φ, which is 0.75 for
compression-controlled sections with spiral reinforcement [see Section 4.3 and ACI 9.3.2.2(a)], times
Pn,max:

φPn,max = 0.75 × 2,335 = 1,751 kips

5.6 Tension Members
Reinforced concrete tension members occur in certain specialty structures such as arches
and trusses. As was discussed in Chap. 2, the tensile strength of concrete is relatively
small compared with its compressive strength. As such, the tensile strength of con-
crete is neglected in the design of tension members, and it is assumed that the tension
load is resisted solely by the longitudinal reinforcement. Therefore, the nominal tensile
strength Tn of a symmetrical reinforced concrete tension member subjected to a concen-
tric axial tension load is equal to the area times the yield strength of the longitudinal
steel:

Tn = Ast fy (5.40)

The design strength φTn is obtained by multiplying Tn in Eq. (5.40) by the strength
reduction factor φ for tension, which is equal to 0.9 (see ACI 9.3).
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5.7 Members Subjected to Flexure and Axial Load

5.7.1 Overview
Columns in reinforced concrete buildings are commonly subjected to the effects from
more than just compressive loads. Consider columns AB and CD in the rigid frame
depicted in Fig. 4.1. These members are subjected to axial compressive loads, bending
moments, and shear forces from gravity loads and wind loads (see Table 4.4 in Example
4.2 for a summary of these effects).

Like all reinforced concrete members, the nominal strength of a section subjected
to both flexure and axial load is determined using equilibrium, strain compatibility,
and the design assumptions given in Section 5.2. Methods to determine the nominal
strength of such members are presented later for the case of axial compression and
flexure.

5.7.2 Nominal Strength
The general principles and assumptions of the strength design method are applied to
the section depicted in Fig. 5.36, which is subjected to an axial compressive load and
flexure. For purposes of discussion, assume that the longitudinal reinforcement in layer
1 is located closest to the extreme compression fiber of the section.

In accordance with design assumption no. 2 in Section 5.2, the maximum strain
in the extreme compression fiber of the concrete εc = 0.0030. By assuming a value for
the strain εs3 in the reinforcement in layer 3, the depth to the neutral axis c can be
determined from similar triangles (see Fig. 5.37). Because the reinforcement in layer 3
is farthest from the extreme compression of the section, εs3 = εt and

c = 0.0030d3

εt + 0.0030
(5.41)

Utilizing design assumption no. 6 of Section 5.2, the resultant compressive force
C in the concrete is obtained by multiplying the stress 0.85 f ′

c by the area under the

FIGURE 5.36
A reinforced
concrete section
subjected to
uniaxial
compression and
flexure.
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FIGURE 5.37 Strain and stress distributions in a section subjected to uniaxial compression and
flexure.

equivalent rectangular stress block:

C = 0.85 f ′
c ab (5.42)

In Eq. (5.42), the depth of the equivalent stress block a = β1c.
The strain εsi in the reinforcement in layer i can also be determined from similar

triangles:

εsi = 0.0030 (c − di )
c

(5.43)

For elastic–plastic reinforcement with the stress–strain curve defined by design
assumption no. 3 given in Section 5.2, the stress in the reinforcement at each layer fsi
is equal to the strain εsi at that level determined by Eq. (5.43) times the modulus of
elasticity of steel Es . It is important to keep in mind that fsi must not exceed the yield
stress fy in tension or compression.

The magnitude of the force Fsi in the reinforcement depends on whether the steel
is in the equivalent compression zone or not:

� If di is greater than the depth of the equivalent stress block a ,

Fsi = fsi Asi (5.44)

For the section depicted in Fig. 5.37, this equation would apply to layers 2
and 3.

� If di is less than the depth of the equivalent stress block a,

Fsi = (
fsi − 0.85 f ′

c

)
Asi (5.45)
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FIGURE 5.38 Nominal strength.

In this case, which is applicable to layer 1 shown in Fig. 5.37, the area of
reinforcement in that layer has been included in the area ab used to compute
the compressive force in the concrete C . Thus, 0.85 f ′

c must be subtracted from
the steel stress fsi in that layer before computing the force Fsi.

The nominal axial strength Pn for the assumed strain distribution is obtained by
summing the axial forces on the section (see Fig. 5.38):

Pn = C +
∑

Fsi (5.46)

Similarly, the nominal flexural strength Mn for the assumed strain distribution is
determined by summing moments about the centroid of the column because this is the
axis about which moments are computed in a conventional structural analysis (see Fig.
5.38):

Mn = 0.5C(h − a ) +
∑

Fsi(0.5h − di ) (5.47)

The flowchart shown in Fig. 5.39 can be used to determine Pn and Mn as a function
of the net tensile strain in the extreme layer of longitudinal tension steel εt .

As demonstrated earlier, the nominal strengths Pn and Mn are determined by Eqs.
(5.46) and (5.47), respectively, for a particular assumed strain distribution. An interaction
diagram for a column is a collection of Pn and Mn values that have been determined
for a series of strain distributions (see Fig. 5.40). Nominal strengths represent a single
point on the interaction diagram. The construction of interaction diagrams for columns
is covered in Chap. 8.

Example 5.10 Determine the nominal strengths Pn and Mn corresponding to balanced failure for
the rectangular column shown in Fig. 5.41. Assume that the extreme compression fiber occurs at
the top of the section and that ties are utilized as the lateral reinforcement. Also assume f ′

c = 7,000
psi and Grade 60 reinforcement ( fy = 60,000 psi).
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FIGURE 5.39 Nominal axial and flexural strengths for compression members. (Continued)

Solution The flowchart shown in Fig. 5.39 is utilized to determine Pn and Mn for this compression
member.

Step 1: Check the minimum and maximum longitudinal reinforcement limits. The minimum
and maximum amounts of longitudinal reinforcement permitted in a compression member are
specified in ACI 10.9.1.

Minimum: Ast = 0.01Ag = 0.01 × 18 × 24 = 4.32 in2

Maximum: Ast = 0.08Ag = 0.08 × 18 × 24 = 34.6 in2

The provided area of longitudinal reinforcement Ast = 10 × 1.27 = 12.7 in2 falls between the
minimum and maximum limits.

Step 2: Determine the neutral axis depth c. Balanced failure occurs when crushing of the
concrete and yielding of the reinforcing steel occur simultaneously (see Section 5.3). The balanced
failure point also represents the change from compression failures for higher axial loads and tension
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FIGURE 5.39 (Continued)

failures for lower axial loads for a given bending moment. ACI 10.3.3 permits the yield strain of
the reinforcement to be taken as 0.0020 for Grade 60 reinforcement; thus, εs4 = εt = 0.0020.

The neutral axis depth is determined by Eq. (5.41):

c = 0.0030dt

εt + 0.0030
= 0.0030 × 21.4

0.0020 + 0.0030
= 12.8 in

Step 3: Determine β1.

β1 = 1.05 − 0.00005 f ′
c = 1.05 − (0.00005 × 7,000) = 0.70 for f ′

c

= 7,000 psi (see ACI 10.2.7.3 and Section 5.2)



FIGURE 5.39 (Continued)

FIGURE 5.40
A nominal strength
interaction diagram.

FIGURE 5.41 The
rectangular column
of Example 5.10.
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Step 4: Determine the depth of the equivalent stress block a.

a = β1c = 0.70 × 12.8 = 9.0 in

Step 5: Determine C. The concrete compression resultant force C is determined by Eq. (5.42):

C = 0.85 f ′
c ab = 0.85 × 7 × 9.0 × 18 = 963.9 kips

Step 6: Determine εsi. The strain in the reinforcement εsi at the various layers is determined
by Eq. (5.43) where compression strains are positive.

� Layer 1 (d1 = 2.6 in): εs1 = 0.0030 (12.8 − 2.6)
12.8

= 0.0024

� Layer 2 (d2 = 8.9 in): εs2 = 0.0030 (12.8 − 8.9)
12.8

= 0.0009

� Layer 3 (d3 = 15.1 in): εs3 = 0.0030 (12.8 − 15.1)
12.8

= −0.0005

� Layer 4 (d4 = 21.4 in): εs4 = 0.0030 (12.8 − 21.4)
12.8

= −0.0020 (checks)

It is evident that the top two layers of reinforcement are in compression and that the bottom
two layers are in tension. Also, the layers of reinforcement closest to and farthest from the extreme
compression fiber yield.

Step 7: Determine f si. The stress in the reinforcement fsi at the various layers is determined
by multiplying εsi by the modulus of elasticity of the steel Es .

� Layer 1: fs1 = 0.0024 × 29,000 = 69.6 ksi > 60 ksi; use fs1 = 60 ksi
� Layer 2: fs2 = 0.0009 × 29,000 = 26.1 ksi
� Layer 3: fs3 = −0.0005 × 29,000 = −14.5 ksi
� Layer 4: fs4 = −60 ksi

Step 8: Determine F si. The force in the reinforcement Fsi at the various layers is determined
by Eqs. (5.44) or (5.45), which depends on the location of the steel layer.

� Layer 1 (d1 = 2.6 in < a = 9.0 in): Fs1 = [60 − (0.85 × 7)] × 3 × 1.27 = 205.9 kips
� Layer 2 (d2 = 8.9 in < a = 9.0 in): Fs2 = [26.1 − (0.85 × 7)] × 2 × 1.27 = 51.2 kips
� Layer 3: Fs3 = −14.5 × 2 × 1.27 = −36.8 kips
� Layer 4: Fs4 = −60 × 3 × 1.27 = −228.6 kips

Note that the compression steel in the top two layers falls within the depth of the equivalent
stress block; thus, Eq. (5.45) is used to determine the forces in the reinforcement in those layers.

Step 9: Determine Pn and Mn. The nominal axial strength Pn and the nominal flexural strength
Mn of the section are determined by Eqs. (5.46) and (5.47), respectively:

Pn = C +
∑

Fsi = 963.9 + (205.9 + 51.2 − 36.8 − 228.6) = 955.6 kips

Mn = 0.5C(h − a ) +
∑

Fsi(0.5h − di )

= [0.5 × 963.9 × (24 − 9.0)] + [205.9(12 − 2.6) + 51.2(12 − 8.9)

+ (−36.8)(12 − 15.1) + (−228.6)(12 − 21.4)]

= 7,229.3 + 4,357.1 = 11,586.4 in kips = 965.5 ft kips

Comments
This section is compression-controlled because εt is equal to the compression-controlled strain limit
of 0.0020 (see ACI 10.3.3). Thus, in accordance with ACI 9.3.2.2, the strength reduction factor φ is
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equal to 0.65 for a compression-controlled section with lateral reinforcement consisting of ties (or,
equivalently, a compression-controlled section without spiral reinforcement conforming to ACI
10.9.3). Therefore, the design axial strength φPn and design flexural strength φMn are

φPn = 0.65 × 955.6 = 621.1 kips

φMn = 0.65 × 965.5 = 627.6 ft kips
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Problems
5.1. Determine the nominal flexural strength Mn of a 32-in-wide and 20-in-deep beam reinforced with
a single layer of 10 No. 10 bars (Grade 60). Assume d = 17.4 in and f ′

c = 5,000 psi.

5.2. Determine the nominal flexural strength Mn of a 20-in-wide and 28-in-deep beam reinforced with
a single layer of three No. 7 bars (Grade 60). Assume d = 25.6 in and f ′

c = 4,000 psi.

5.3. Determine the nominal flexural strength Mn of a 28-in-wide and 18.5-in-deep beam reinforced
with a single layer of 10 No. 8 bars (Grade 60). Assume d = 16.0 in and f ′

c = 4,000 psi.

5.4. Determine the nominal flexural strength Mn of a 9-in-thick one-way slab reinforced with a single
layer of No. 5 bars spaced 8 in on center (Grade 60). Assume d = 7.9 in and f ′

c = 4,000 psi.

5.5. Determine the nominal flexural strength Mn of the beam depicted in Fig. 5.42. Assume that the
extreme compression fiber is at the bottom of the section. Also assume f ′

c = 4,000 psi and Grade 60
reinforcement.

5.6. Determine the nominal flexural strength Mn of the beam depicted in Fig. 5.43. Assume that the
extreme compression fiber is at the bottom of the section. Also assume f ′

c = 4,000 psi and Grade 60
reinforcement.

5.7. Determine the nominal flexural strength Mn of the beam depicted in Fig. 5.43. Assume that the
extreme compression fiber is at the bottom of the section and that the two No. 3 bars are replaced with
two No. 5 bars located 2.3 in from the bottom of the section. Also assume f ′

c = 4,000 psi and Grade 60
reinforcement.
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FIGURE 5.42 The
reinforced concrete
beam of Problem
5.5.

FIGURE 5.43 The
reinforced concrete
beam of Problem
5.6.

FIGURE 5.44 The reinforced concrete floor system of Problem 5.8.
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5.8. Given the reinforced concrete floor system in Fig. 5.44, determine the following: (1) the nominal
flexural strength Mn at the midspan of an edge beam and (2) the nominal flexural strength Mn at the
midspan of a typical interior beam. Assume f ′

c = 4,000 psi and Grade 60 reinforcement. Also assume
that the span is 25 ft.

FIGURE 5.45 The
reinforced concrete
beam of
Problem 5.9.

FIGURE 5.46 The
compression
member of Problem
5.10.

FIGURE 5.47 The
compression
member of Problem
5.12.
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5.9. Determine the nominal flexural strength Mn of the beam depicted in Fig. 5.45. Assume f ′
c = 4,000

psi and Grade 60 reinforcement.

5.10. Given the compression member depicted in Fig. 5.46, determine the following: (1) the maximum
nominal axial strength Pn,max, (2) the nominal flexural strength Mn corresponding to zero axial load,
(3) the nominal strengths Pn and Mn corresponding to εt = 0, (4) the nominal strengths Pn and Mn
corresponding to balanced failure, (5) the nominal strengths Pn and Mn corresponding to εt = −3εy,
and (6) the nominal tensile strength Tn. Assume f ′

c = 8,000 psi and Grade 60 reinforcement. Also assume
that the extreme compression fiber is on the AB side of the section.

5.11. Repeat Problem 5.10 assuming the extreme compression fiber is on the AC side of the section.

5.12. Repeat Problem 5.10 for the section depicted in Fig. 5.47.



C H A P T E R 6
Beams and One-Way Slabs

6.1 Introduction
This chapter covers the design and detailing of beams and one-way slabs. The discussion
is limited to beams that are not deep beams. A deep beam is defined in ACI 10.7 and
11.7 as a member that has a clear span equal to or less than four times the overall
member depth or regions in a member that have concentrated loads within twice the
member depth from the face of the support. Deep beams must be designed using a
nonlinear strain distribution over the depth of the member or by the provisions of
Code Appendix A, “Strut-and-Tie Models.” The focus of this chapter is on members
that can be designed using a linear distribution of strain in accordance with the general
principles of the strength design method (see Chap. 5).

In general, the required cross-sectional dimensions and reinforcement for flexural
members are determined using the general requirements for strength and serviceability
given in Chap. 4 and the principles of the strength design method given in Chap. 5.
Addressed in this chapter are the following criteria:

1. Flexure

2. Shear

3. Torsion

4. Deflection

5. Reinforcement details

Items 1 through 4 govern the size and amount of reinforcement in flexural members.
Usually, the depth of a member is determined initially to satisfy deflection requirements.
The cross-sectional dimensions of a member are chosen to ensure that strength require-
ments are fulfilled. Sizing members for economy, which is related to formwork and
constructability, must also be considered.

The required amounts of flexural, shear, and torsional reinforcement are governed
by strength and serviceability (including cracking). When choosing the size and spacing
of the reinforcing bars, it is important to ensure that the reinforcement can be placed
within a section without violating the requirements pertaining to the minimum and
the maximum spacing. Additionally, the provided reinforcement must be fully devel-
oped so that it performs in accordance with the assumptions of the strength design
method.
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6.2 Design for Flexure

6.2.1 Overview
The cross-sectional dimensions of a flexural member and the required amount of flexu-
ral reinforcement at critical sections are determined using the strength and serviceability
requirements of the Code. Typically, the member depth is determined first on the basis
of the deflection requirements of ACI 9.5, which have been presented in Section 4.4
for one-way construction. The minimum thickness requirements given in ACI Table
9.5(a) are applicable to beams and one-way slabs that are not attached to partitions or
other construction that is likely to be damaged by relatively large deflections. Section
6.5 contains methods to calculate deflections in any situation.

Once the depth of a member has been established, the width of the member and the
required flexural reinforcement are determined using the basic requirement for flexural
design strength:

φMn ≥ Mu (6.1)

In this equation, φMn is the design strength of the member at a particular section,
which consists of the strength reduction factor φ (Section 4.3) and the nominal flexural
strength Mn that is determined in accordance with the provisions and assumptions of
the strength design method (Section 5.4). The required strength Mu is calculated at a
section by combining the bending moments obtained from the analysis of the structure,
using nominal loads in accordance with the load combinations of ACI Chap. 9 (Section
4.2).

The following sections provide the fundamental requirements and methods for
sizing the cross-section and determining the required amount of flexural reinforcement
for a reinforced concrete flexural member.

6.2.2 Sizing the Cross-Section
Establishing the dimensions of the cross-section is typically the initial step in the design
of a reinforced concrete flexural member. The depth h is usually determined first on the
basis of deflection requirements. This depth is sometimes modified for constructability,
economy, or architectural reasons, to name a few. For a rectangular beam, the width b
is subsequently determined on the basis of strength requirements, assuming that the
section is tension-controlled, whereas for a one-way slab, the design width is commonly
taken as 12 in. The following steps can be utilized to determine the dimensions of a
reinforced concrete flexural member.

Step 1: Determine the depth of the member. As noted earlier, it is common to
determine the depth of the member first on the basis of the serviceability requirements
for deflection given in ACI 9.5 for one-way construction (i.e., members that bend in
primarily one direction, such as beams and one-way slabs).

Consider the reinforced concrete beam depicted in Fig. 6.1. Although the following
discussion focuses on beams, it applies equally to one-way slabs. If this member is not
attached to partitions or other construction that is likely to be damaged by relatively
large deflections, the minimum depth h that will satisfy the deflection requirements of
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FIGURE 6.1 Minimum thickness requirements for continuous beams.

ACI 9.5.2 is determined by ACI Table 9.5(a). These requirements are summarized in
Fig. 4.3. Alternatively, the member depth can be established on the basis of calculated
deflections and the maximum permissible deflections given in ACI Table 9.5(b) (see
Section 6.5).

It is important to consider economical formwork when choosing a member thick-
ness from ACI Table 9.5(a). For the usual case of continuous construction and assuming
normal-weight concrete and Grade 60 reinforcement, it is permitted to use a minimum
thickness of �2/21 for the interior spans and a minimum thickness of �1/18.5 for the end
spans. More than one beam depth along the same line of beams results in formwork that
is not economical. Thus, the minimum depth of all of the beams should be determined
on the basis of the span that yields the largest minimum h because this thickness will
satisfy deflection criteria for all spans. In the case of equal end and interior spans or
where �2 < �1 (see Fig. 6.1), the minimum h based on the end span governs, whereas
in cases where �2 > 1.14�1, the minimum h based on the interior span governs. Recall
that deflections need not be computed where a thickness equal to at least the minimum
is provided.

The beam or one-way slab depth h that is actually constructed is specified in whole-
or half-inch increments. For beams, whole-inch increments are usually used; however,
this is not mandatory (in joist systems, half-inch increments for beam depths are com-
mon). An approximate value of d can be calculated as follows:

� Beams with one layer of reinforcement: d = h − 2.5 in
� One-way slabs: d = h − 1.25 in

The values of 2.5 and 1.25 in for beams and one-way slabs, respectively, are based
on cover requirements and other reinforcement details, which are covered later in this
chapter.

Step 2: Assume that the section is tension-controlled. The graph shown in Fig.
6.2 illustrates the effect of the strength reduction factor φ on the design strength φMn

for the case of 4,000 psi concrete and Grade 60 reinforcement. In particular, it shows
what happens to the design strength when the limit for tension-controlled sections
(φ = 0.9) is passed. Similar curves can be generated for other material strengths. The
reinforcement ratio corresponding to tension-controlled sections (εt = 0.0050) is ρt , and



176 C h a p t e r S i x

FIGURE 6.2 Design strength curve for 4,000 psi concrete and Grade 60 reinforcement.

the reinforcement ratio corresponding to the maximum permitted reinforcement (εt =
0.0040) is ρmax.

The strength reduction factor φ for tension-controlled sections is equal to 0.9. If a
section contains reinforcement greater than that corresponding to ρt , then φ < 0.9 and
the strength gain is minimal up to ρmax (see Fig. 6.2). Any gain in strength with higher
reinforcement ratios is canceled by the reduction in φ when net strains are less than
0.0050. Thus, for overall efficiency, flexural members should be designed as tension-
controlled sections whenever possible.

Step 3: Determine the width of the member. The width of a beam is determined by
setting φMn = Mu for an assumed reinforcement ratio ρ. A range for ρ is established as
follows. Because a minimum amount of flexural reinforcement is required at any section,
the assumed value of ρ must be greater than or equal to the minimum value prescribed
in ACI 10.5 (see Section 5.4). Flexural members should be designed as tension-controlled
sections whenever possible (see Step 2). As such, the assumed value of ρ should be less
than or equal to ρt .

The reinforcement ratio ρt corresponding to tension-controlled sections with εt =
0.0050 can be derived using the basic principles and assumptions of the strength de-
sign method presented in Chap. 5. Figure 5.6 illustrates the strain condition in a rect-
angular, tension-controlled section with a single layer of tension reinforcement where
εt = 0.0050. It is evident from the figure that the depth to the neutral axis ct = 0.375dt .
Because at = β1ct , at = 0.375β1dt . Substituting at into Eq. (5.9) and solving for As result
in the following:

As = 0.319β1 f ′
c bdt

fy
(6.2)

Substituting As = ρtbdt into Eq. (6.2) and solving for ρt give

ρt = 0.319β1 f ′
c

fy
(6.3)
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f ′
c (psi) ρt

3,000 0.0136

4,000 0.0181

5,000 0.0213

TABLE 6.1 Reinforcement Ratio ρt at Strain Limit of 0.0050 for Tension-controlled Sections,
Assuming Grade 60 Reinforcement

Values of ρt are given in Table 6.1 as a function of the concrete compressive strength
for Grade 60 reinforcement.

Once the assumed value of ρ has been established, it is used to determine the width
of the beam b. The nominal flexural strength Mn is given by Eq. (5.11):

Mn = As fy

(
d − 0.59As fy

b f ′
c

)
(6.4)

Substituting Mn = Mu/φ into Eq. (6.4) and rearranging the terms result in the fol-
lowing:

Mu

φbd2 = ρ fy

(
1 − 0.59ρ fy

f ′
c

)
= Rn (6.5)

The strength reduction factor φ in Eq. (6.5) is equal to 0.9 because it is assumed that
the section is tension-controlled. The term Rn is commonly referred to as the nominal
strength coefficient of resistance.

Because d has been determined in Step 1, Eq. (6.5) can be solved for b:

b = Mu

φRnd2 (6.6)

It is important to reiterate that d has been calculated on the basis of deflection
requirements. Thus, providing a beam width that is equal to greater than the value from
this equation will result in cross-sectional dimensions that satisfy both the strength and
deflection requirements of the Code.

A note on determining the beam width from Eq. (6.6) is in order at this time. Because
beams are part of a continuous floor and/or roof system, the largest factored bending
moment Mu along the spans should be used in this equation. In order to achieve eco-
nomical formwork, the beam width determined from the maximum bending moment
must be specified for all spans. Varying the amount of flexural reinforcement along the
span lengths for different factored bending moments is by far more economical than
varying the beam width (or depth).

As stated previously, the design width of a one-way slab is usually taken as 12 in.

The following guidelines should be followed when sizing members for economy:

� Use whole-inch increments for beam dimensions, if possible, and half-inch
increments for slabs.

� Use beam widths in multiples of 2 or 3 in.
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� Use constant beam size from span to span, and vary the reinforcement as re-
quired.

� Use wide, flat beams rather than narrow, deep beams.
� Use beam width equal to or greater than the column width.
� Use uniform width and depth of beams throughout the building, wherever

possible.

Considerable cost savings can usually be realized by following these guidelines.
The flowchart shown in Fig. 6.3 can be used to determine h and b for a rectangular

reinforced concrete beam.

Given
FIGURE 6.3
Determination of
cross-section
dimensions—
rectangular
beam.
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Example 6.1 Check if the thickness of the one-way slab given in Example 3.5 satisfies the deflection
requirements of the Code. Assume f ′

c = 4,000 psi and Grade 60 reinforcement. Also assume that
the one-way slabs are not attached to partitions or other construction that is likely to be damaged
by relatively large deflections.

Solution The minimum thickness based on one end continuous governs [see ACI Table 9.5(a)].
Thus, for a 5-ft span length:

h = �

24
= 5 × 12

24
= 2.5 in < provided h = 4.5 in

Comments
A 4.5-in-thick one-way slab is used in this example to satisfy fire resistance requirements.

Example 6.2 Check if the dimensions of the wide-module joists given in Example 3.4 satisfy the
deflection and strength requirements of the Code. Assume f ′

c = 4,000 psi and Grade 60 reinforce-
ment. Also assume that the wide-module joists are not attached to partitions or other construction
that is likely to be damaged by relatively large deflections.

Solution The flowchart shown in Fig. 6.3 is utilized to check if the dimensions of the wide-module
joists are adequate.

Step 1: Determine the minimum h based on deflection requirements. For economical form-
work, the depth of the wide-module joists (which are beams) is determined on the basis of the
exterior span because this will give the greatest minimum depth. Using ACI Table 9.5(a),

h = �

18.5
= 25 × 12

18.5
= 16.2 in

Step 2: Round h to the next largest appropriate whole number, if possible. The available pan
depths for wide-module joists that have a pan width of 53 in are 16, 20, and 24 in. A pan depth of
16 in is chosen in this example because it is the minimum depth that satisfies the deflection criteria.
Thus, with a slab depth of 4.5 in (see Example 6.1), the overall depth of the wide-module joists is
equal to 16 + 4.5 = 20.5 in > 16.2 in.

Step 3: Compute approximate d. Assuming one layer of tension reinforcement, d = 20.5 −
2.5 = 18.0 in.

Step 4: Assume tension-controlled section. Sections that are tension-controlled are efficient
for flexure. Thus, assume φ = 0.9.

Step 5: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi.

Step 6: Select an appropriate value of ρ. For beams, the minimum value of the reinforcement
ratio is given in ACI 10.5:

ρmin = 3
√

f ′
c

fy
= 3

√
4,000

60,000
= 0.0032 <

200
fy

= 200
60,000

= 0.0033 (governs)

The upper limit must not be greater than ρt for tension-controlled sections:

ρt = 0.319β1 f ′
c

fy
= 0.319 × 0.85 × 4

60
= 0.0181

As expected, this value matches that in Table 6.1 for 4,000 psi concrete and Grade 60 reinforce-
ment.

In this example, a range of joist (beam) widths will be determined on the basis of the range of
reinforcement ratios.

Step 7: Determine Rn. The nominal strength coefficient of resistance Rn is determined for the
range of reinforcement ratios determined in step 6:
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� For ρmin = 0.0033,

Rn = ρ fy

(
1 − 0.59ρ fy

f ′
c

)

= 0.0033 × 60
(

1 − 0.59 × 0.0033 × 60
4

)
= 0.192 ksi

� For ρt = 0.0181,

Rn = 0.0181 × 60
(

1 − 0.59 × 0.0181 × 60
4

)
= 0.912 ksi

Step 8: Determine b. The width of the joists (beams) b is determined for the range of reinforce-
ment ratios determined in step 6. For economical formwork, the largest factored moment in the
spans is used to compute b. From Table 3.4, the maximum factored moment occurs at the exterior
face of the first interior support in an end span: Mu = 51.7 ft kips. Thus,

� For ρmin = 0.0033 (Rn = 0.192 ksi),

b = Mu

φRnd2 = 51.7 × 12
0.9 × 0.192 × 182 = 11.1 in

� For ρt = 0.0181 (Rn = 0.912 ksi),

b = Mu

φRnd2 = 51.7 × 12
0.9 × 0.912 × 182 = 2.3 in

In this example, a 7-in-wide joist is chosen. This is a common rib width for wide-module systems
with 53-in-wide pan forms because the center-to-center joist spacing is equal to 5 ft.

Example 6.3 Check if the dimensions of the beam given in Example 3.3 satisfy the deflection and
strength requirements of the Code. Assume f ′

c = 4,000 psi and Grade 60 reinforcement. Also assume
that the beams are not attached to partitions or other construction that is likely to be damaged by
relatively large deflections.

Solution The flowchart shown in Fig. 6.3 is utilized to check if the dimensions of the beam are
adequate.

Step 1: Determine the minimum h based on deflection requirements. Both beams along col-
umn line B are exterior spans, and both have the same span length. Thus, the minimum depth of
the beam h from ACI Table 9.5(a) is

h = �

18.5
= 20 × 12

18.5
= 13.0 in

Step 2: Round h to the next largest appropriate whole number, if possible. The depth of
the wide-module joists has been determined to be 20.5 in (see Example 6.2). Thus, for economical
formwork, the depth of the beams should be specified as 20.5 in as well. This depth is greater than
that required for deflection (see Step 1).

Step 3: Compute approximate d. Assuming one layer of tension reinforcement, d = 20.5 −
2.5 = 18.0 in.

Step 4: Assume tension-controlled section. Sections that are tension-controlled are efficient
for flexure. Thus, assume φ = 0.9.

Step 5: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi.
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Step 6: Select an appropriate value of ρ. For beams, the minimum value of the reinforcement
ratio is given in ACI 10.5:

ρmin = 3
√

f ′
c

fy
= 3

√
4,000

60,000
= 0.0032 <

200
fy

= 200
60,000

= 0.0033 (governs)

The upper limit must not be greater than ρt for tension-controlled sections:

ρt = 0.319β1 f ′
c

fy
= 0.319 × 0.85 × 4

60
= 0.0181

As expected, this value matches that in Table 6.1 for 4,000 psi concrete and Grade 60 reinforce-
ment.

In this example, a range of beam widths will be determined on the basis of the range of rein-
forcement ratios.

Step 7: Determine Rn. The nominal strength coefficient of resistance Rn is determined for the
range of reinforcement ratios determined in step 6:

� For ρmin = 0.0033,

Rn = ρ fy

(
1 − 0.59ρ fy

f ′
c

)

= 0.0033 × 60
(

1 − 0.59 × 0.0033 × 60
4

)
= 0.192 ksi

� For ρt = 0.0181,

Rn = 0.0181 × 60
(

1 − 0.59 × 0.0181 × 60
4

)
= 0.912 ksi

Step 8: Determine b. The width of the beam b is determined for the range of reinforcement
ratios determined in step 6. For economical formwork, the largest factored moment in the two
spans is used to compute b. From Table 3.3, the maximum factored moment occurs at the exterior
face of the first interior support: Mu = 198.1 ft kips. Thus,

� For ρmin = 0.0033 (Rn = 0.192 ksi),

b = Mu

φRnd2 = 198.1 × 12
0.9 × 0.192 × 182 = 42.5 in

� For ρt = 0.0181 (Rn = 0.912 ksi),

b = Mu

φRnd2 = 198.1 × 12
0.9 × 0.912 × 182 = 8.9 in

A wide range of beam widths that satisfy the requirements are available. In this example, a
22-in-wide beam is chosen to match the width of the column. If it is found later that there is
congestion of reinforcement at the beam–column joint, the beam width can be made greater than
the column width. As noted previously, a beam width that is narrower than the column width
results in formwork that is not economical.

6.2.3 Determining Required Reinforcement
Once the cross-section dimensions of the flexural member have been determined,
the required amount of flexural reinforcement can be calculated using φMn = Mu. In
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continuous systems, both negative and positive reinforcement must be provided at the
top and the bottom of a section, respectively, to resist the factored negative and posi-
tive bending moments determined from the applicable load combinations. Given later
are methods to determine the required amount of flexural reinforcement for (1) rect-
angular sections with a single layer of tension reinforcement, (2) rectangular sections
with multiple layers of tension reinforcement, (3) rectangular sections with tension and
compression reinforcement, and (4) T-sections and inverted L-sections with tension
reinforcement.

Rectangular Sections with a Single Layer of Tension Reinforcement
Equation (6.5) can be used to determine the required amount of flexural reinforcement
As for a factored bending moment Mu by solving for the reinforcement ratio ρ:

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
(6.7)

In this equation, Rn = Mu/φbd2 and φ = 0.9 for tension-controlled sections.
Once ρ is determined, the required area of flexural reinforcement is As = ρbd. Rein-

forcing bars that provide an area of steel equal to or slightly greater than that required
are chosen. It is important to check that the minimum and maximum reinforcement
limits are satisfied. If it is found that the maximum limit is violated, the section must
be redesigned. In cases where the section is found to be in the transition zone instead
of tension-controlled, either the section and/or material properties can be revised, or
compression reinforcement can be added.

In addition to satisfying strength requirements, the size and the number of flexural
reinforcing bars must also satisfy the minimum and maximum spacing requirements
of the Code. Additional information on these requirements is provided later.

The flowchart shown in Fig. 6.4 can be used to determine the required flexural
reinforcement for a rectangular section with a single layer of tension reinforcement.

Rectangular Sections with Multiple Layers of Tension Reinforcement
Where the required tension reinforcement cannot adequately fit within one layer, the
bars can be provided in more than one layer, as depicted in Fig. 5.13. A section with two
layers of tension reinforcement can conservatively be designed using dt = d . However,
as discussed later, there is an advantage of using dt and d separately.

The required As is determined in the same way as for sections with one layer of
reinforcement, using d and dt . The reinforcement ratio ρ based on d can be written in
terms of the tensile force T = As fy as follows:

ρ = T
bdfy

(6.8)

Similarly, the reinforcement ratio ρt corresponding to tension-controlled sections (εt =
0.0050) based on dt is

ρt = T
bdt fy

(6.9)
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Given

FIGURE 6.4 Required flexural reinforcement—rectangular section with a single layer of tension
reinforcement. (continued)

Solving Eqs. (6.8) and (6.9) for T provides a relationship between ρ and ρt :

ρ = ρt

(
dt

d

)
(6.10)

It is important to determine whether the layer of reinforcement above the extreme
steel layer yields or not (see Section 5.4). For design purposes, it is advantageous for
this layer of reinforcement to yield. Grade 60 reinforcement located a distance equal
to or greater than dy = 1.7c from the extreme compression fiber yields. For normally
proportioned sections, this is usually the case.
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FIGURE 6.4 (Continued)

Rectangular Sections with Tension and Compression Reinforcement
For rectangular sections where it has been found that εt < 0.0050 (i.e., the section is not
tension-controlled), compression reinforcement may be added to the section so that it
becomes tension-controlled.

One of the design philosophies in this situation is to set εt = 0.0050, which means
that the section is going to be designed at the tension-controlled net tensile strain limit.
The need for compression reinforcement is determined by comparing the required
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nominal strength coefficient of resistance Rn = Mu/φbd2 with the nominal strength
coefficient of resistance Rnt corresponding to εt = 0.0050, which is obtained by the
following equation [see Eq. (6.5)]:

Rnt = ρt fy

(
1 − 0.59ρt fy

f ′
c

)
(6.11)

In this equation, ρt = 0.319β1 f ′
c/ fy [see Eq. (6.3) and Table 6.1]. If Rn > Rnt, compression

reinforcement is needed.
Once it has been established that compression reinforcement is needed, the next

step is to determine the nominal flexural strength Mnt that corresponds to εt = 0.0050.
From strength design, Mnt can be calculated as follows:

Mnt = As fy

(
d − a

2

)

= ρ fy

(
1 − 0.59ρ fy

f ′
c

)
bd2 (6.12)

For a single layer of tension reinforcement, the reinforcement ratio to be used in
Eq. (6.12) is ρ = ρt = 0.319β1 f ′

c/ fy. In situations where compression reinforcement is
required, it is common for two layers of tension reinforcement to be needed; therefore,
the reinforcement ratio to be used in Eq. (6.12) is ρ = ρt(dt/d) = 0.319β1 f ′

c dt/d fy [see
Eq. (6.10)].

The required nominal flexural strength M′
n that needs to be resisted by the com-

pression reinforcement is the difference between the required nominal flexural strength
and the nominal flexural strength provided by the tension reinforcement:

M′
n = Mu

φ
− Mnt (6.13)

where φ = 0.9.

It was shown in Section 5.4 that compression reinforcement (Grade 60) that is located
a distance equal to or less than d ′

y = 0.31c from the extreme compression fiber yields.
In general, the stress in the compression reinforcement f ′

s can be determined by the
following equation [see Eq. (5.24)]:

f ′
s = 0.0030Es

(
1 − d ′

ct

)
≤ fy (6.14)

In this equation, c = ct = 0.375dt because εt = 0.0050. The required area of compression
reinforcement A′

s is determined from strength design (see Section 5.4):

A′
s = M′

n

f ′
s (d − d ′)

(6.15)

Finally, the total required area of tension reinforcement As is the summation of the
area of reinforcement corresponding to the tension-controlled net strain limit and A′

s
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from Eq. (6.15) with f ′
s = fy:

As = ρbd + M′
n

fy(d − d ′)
(6.16)

Like in the case of rectangular sections with tension reinforcement only, the size
and the number of flexural reinforcing bars must satisfy the minimum and maximum
spacing requirements in addition to satisfying strength requirements.

The flowchart shown in Fig. 6.5 can be used to determine the required flexural
reinforcement for a rectangular section with tension and compression reinforcement.

FIGURE 6.5 Determination of flexural reinforcement—rectangular section with tension and
compression reinforcement. (continued)
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FIGURE 6.5 (Continued)

T-Sections and Inverted L-Section with Tension Reinforcement
A typical cast-in-place concrete floor/roof system is depicted in Fig. 5.21. It was dis-
cussed in Section 5.4 that because of the nature of concrete construction, the beams and
the slab work together to resist the effects from applied loads. A portion of the slab
supported by the beam web is considered effective in resisting the factored bending
moment. Methods to determine the required area of flexural reinforcement where the
flange is in tension and compression are presented next.
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Flange in Tension The flange of a T-beam or an inverted L-beam is in tension at locations
of negative bending moment. Once the effective flange width be has been determined
in accordance with ACI 8.12 (see Section 5.4 and Fig. 5.23), the required area of flexural
reinforcement can be calculated using the methods presented previously for rectangular
sections with tension reinforcement (see Fig. 6.4).

Special requirements for the distribution of the flexural reinforcement in the flange
are given in ACI 10.6.6; these are discussed later in the chapter.

Flange in Compression The flange of a T-beam or an inverted L-beam is in compression
at locations of positive bending moment. Assuming that the section is tension-controlled
with rectangular section behavior (i.e., the depth of the equivalent stress block a ≤ hf ),
a can be determined by the following equation:

a = a1d −
√

(a1d)2 − (2a1 Mu/φ)
a1

(6.17)

This equation is obtained by substituting Eq. (6.7) with As = ρbd into Eq. (5.9) where
a1 = 0.85 f ′

c be .
If the value of a determined by Eq. (6.17) is equal to or less than the slab thickness

hf , the assumption that the section behaves as a rectangular section is correct, and As

can be determined using the methods presented previously for rectangular sections
with tension reinforcement (see Fig. 6.4).

If it is found that a > hf , the assumption of rectangular section behavior is not
correct, and the compressive zone is T or L shaped instead of rectangular. The next step
is to calculate the area of reinforcement Asf and the design strength φMn1 corresponding
to the overhanging beam flange by Eqs. (5.26) and (5.27), respectively (see Fig. 5.27).

The required moment strength that needs to be carried by the beam web is deter-
mined by subtracting the design strength φMn1 from the total factored moment Mu:

Mu2 = Mu − φMn1 (6.18)

The required flexural reinforcement Asw to develop Mu2 can be determined by the
following strength design equations:

Rnw = Mu2

φbwd2 (6.19)

ρw = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rnw

0.85 f ′
c

]
(6.20)

Asw = ρwbwd (6.21)

The total required flexural reinforcement is the sum of the steel areas from the
overhanging flange and the web:

As = Asf + Asw (6.22)
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Once As is determined, the assumption that the section is tension-controlled needs
to be checked; that is, verify that εt ≥ 0.0050 or, equivalently, that c = aw/β1 ≤ 0.375dt ,
where aw = (As − Asf) fy/0.85 f ′

c bw [see Eq. (5.30)]. If it found that the assumption is
correct, the size and the number of flexural reinforcing bars are chosen to satisfy
the minimum and maximum spacing requirements. If the assumption is not cor-
rect, compression reinforcement may be added to the section to make it tension-
controlled.

The flowchart shown in Fig. 6.6 can be used to determine the required flexural
reinforcement for a T-section or an inverted L-section with tension reinforcement where
the flange is in compression.

FIGURE 6.6 Determination of flexural reinforcement—T-section or inverted L-section with tension
reinforcement and the flange in compression. (continued)
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FIGURE 6.6 (Continued)

6.2.4 Detailing the Reinforcement

Overview
Once the required area of steel has been determined using the methods presented earlier,
the size and the number of reinforcing bars must be chosen to provide an area of steel
that is equal to or greater than the amount that is required.
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FIGURE 6.6 (Continued)

In general, the minimum and the maximum number of reinforcing bars in a layer
of a given cross-section are a function of the cover and spacing requirements given
in the Code. Minimum spacing between the longitudinal bars is required in order to
adequately place the concrete. Concrete may not be able to flow in the voids between the
bars if they are spaced too closely together, especially with concrete mixes with larger
aggregates. Bars that are spaced too far apart could result in relatively large flexural
crack widths. A maximum spacing between the longitudinal bars is required to limit
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(b)(a)

FIGURE 6.7 Concrete cover for (a) beams and (b) one-way slabs.

such crack widths. Finally, a minimum amount of concrete cover is required to protect
the reinforcement from the effects of fire, weather, and corrosive environments, to name
a few.

In addition to satisfying size and spacing requirements, the flexural reinforcing bars
must be properly developed or anchored on both sides of a critical section. This ensures
that the reinforcement will perform as intended in accordance with the strength design
method.

Requirements for concrete cover, bar spacing, bar development and anchorage,
splices of reinforcement, and structural integrity reinforcement are covered later.

Concrete Protection for Reinforcement
A discussion on concrete protection for reinforcement is needed prior to discussing
requirements for bar spacing and bar development because it plays an important role
in the formulation of those requirements.

Reinforcing bars are placed in a concrete member with a minimum concrete cover
to protect it from weather, fire, and other effects. Minimum cover requirements for
nonprestressed, cast-in-place concrete construction are given in ACI 7.7.1. For beams
that have transverse reinforcement in the form of stirrups that enclose the main flexural
reinforcing bars, concrete cover is measured from the surface of the concrete to the outer
edge of the stirrups, as illustrated in Fig. 6.7a . For one-way slabs, which are designed
and constructed without stirrups, concrete cover is measured from the surface of the
concrete to the outermost layer of the flexural bars (see Fig. 6.7b).

Concrete that is cast against and permanently exposed to earth requires a clear
cover of at least 3 in to protect the reinforcement from possible deleterious substances
in the soil. For concrete that is exposed to earth or weather (i.e., concrete that has
direct exposure to moisture changes and temperature changes), the minimum cover
varies from 1.5 to 2 in, depending on the bar size. The minimum cover for members
that are not exposed to ground or weather varies from 0.75 to 1.5 in; this minimum
cover is typically utilized in members that are in enclosed, environmentally controlled
structures.

Distribution of Flexural Reinforcement for Crack Control
Requirements for the distribution of flexural reinforcement in beams and one-way slabs
are given in ACI 10.6. The intent of these requirements is to control flexural cracking.
In general, a larger number of fine cracks are preferable to a few wide cracks mainly for
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reasons of durability and appearance. For example, wider cracks may not be acceptable
in exposed concrete for architectural reasons and could give the erroneous impression
that the structure is not safe.

Research has shown that crack width at service loads is directly proportional to the
stress in the reinforcing bars.1−3 The thickness of the concrete cover and the spacing of
the bars are important variables that directly affect crack width. Control of cracking is
improved when the reinforcing bars are well distributed in the flexural tension zones of
a member. Using several smaller bars at a smaller spacing is more effective than using
larger bars of equivalent area that are spaced farther apart.

Maximum Spacing of Reinforcing Bars in a Single Layer A simple approach to address crack
control in flexural members is given in ACI 10.6.4. The maximum center-to-center bar
spacing s determined by ACI Eq. (10-4) is specifically meant to control cracking4−6:

s = 15
(

40,000
fs

)
− 2.5cc ≤ 12

(
40,000

fs

)
(6.23)

In this equation, fs is the calculated stress in the flexural reinforcement closest to the
tension face of the section, caused by the service loads. The stress fs can be calculated
by dividing the unfactored bending moment by the product of the steel area and the
internal moment arm. This calculation requires knowledge of the working stress de-
sign method, which was prevalent prior to the strength design method. In lieu of that
calculation, the Code permits fs = 2 fy/3; this simplification is used throughout this
discussion.

The term cc is related to the clear cover of the reinforcement and is defined as the
least distance from the surface of the reinforcement to the tension face of the member.
For example, for a beam with No. 4 stirrups that is located inside of a building, cc = 2
in [1.5-in concrete cover in accordance with ACI 7.7.1(c) plus the diameter of the No. 4
stirrup, which is 0.5 in; see Fig. 6.7]. Thus, according to Eq. (6.23), s = 10 in for Grade
60 flexural reinforcing bars. This means that the bars in this example must be spaced
no greater than 10 in on center in order to satisfy crack control requirements. Note that
s is independent of the size of the flexural bars.

In one-way slabs, cc is usually equal to 0.75 in, so, s = 12 in for Grade 60 reinforce-
ment. This value is generally less than the maximum spacing prescribed in ACI 10.5.4
for structural slabs of uniform thickness.

On the basis of the information given in Fig. 6.8, the following equation provides
the minimum number of bars nmin required in a single layer to control cracking:

nmin = bw − 2(cc + 0.5db)
s

+ 1 (6.24)

In this equation, s is limited to that obtained by Eq. (6.23). The values of nmin de-
termined by Eq. (6.24) should be rounded up to the next whole number. Note that a
minimum of two bars are required to anchor the stirrups in beams.

The minimum number of bars can be tabulated for various beam widths, as shown
in Table 6.2. The information in this table is based on the following:
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FIGURE 6.8
Maximum spacing
requirements of
flexural
reinforcement.

� Grade 60 reinforcement
� Least distance from the surface of the reinforcement to the tension face of the

member cc = 2 in
� Calculated stress in the flexural reinforcement closest to the tension face of the

section, caused by the service loads fs = 40 ksi

Given these assumptions, s = 10 in from Eq. (6.23).
Providing at least the number of flexural reinforcing bars in Table 6.2 for a given

beam width automatically satisfies the crack control requirements of ACI 10.6.4.

Corrosive Environments ACI 10.6.5 states that the crack control provisions of ACI 10.6.4
are not sufficient for structures that are subjected to very aggressive exposures (such as
concrete exposed to moisture and external sources of chlorides) or structures that are
designed to be watertight (such as tanks). Exposure tests have revealed that concrete
quality, adequate concrete compaction, and ample cover to the reinforcing bars may

Beam Width (in)

Bar size 12 14 16 18 20 22 24 26 28 30 36 42 48

No. 4 2 2 3 3 3 3 3 4 4 4 5 5 6

No. 5 2 2 3 3 3 3 3 4 4 4 5 5 6

No. 6 2 2 3 3 3 3 3 4 4 4 5 5 6

No. 7 2 2 3 3 3 3 3 4 4 4 5 5 6

No. 8 2 2 3 3 3 3 3 4 4 4 5 5 6

No. 9 2 2 3 3 3 3 3 4 4 4 5 5 6

No. 10 2 2 3 3 3 3 3 4 4 4 5 5 6

No. 11 2 2 3 3 3 3 3 4 4 4 5 5 6

TABLE 6.2 Minimum Number of Reinforcing Bars Required in a Single Layer
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FIGURE 6.9
Distribution of
tension
reinforcement in
a T-beam.

play a more important role in the prevention of corrosion of the reinforcing bars than
crack width at the surface of the concrete. As such, special precautions should be taken
when detailing the reinforcement.

Flanges of T-Beams and Inverted L-Beam in Tension Requirements for the control of crack-
ing in the flanges of T-beams and inverted L-beam that are in tension are given in ACI
10.6.6 and are summarized in Fig. 6.9 for the case of a T-beam.

The flexural reinforcement in the flange (slab) must be uniformly distributed over
a width equal to the lesser of the effective width be defined in ACI 8.12 (see Fig. 5.23) or
one-tenth of the span length. Additional reinforcement must be provided in the outer
portions of the flange where be exceeds one-tenth of the span length to help ensure that
these outer portions do not develop wide cracks. Although the Code does not specify
the amount of reinforcement that needs to be provided in such cases, the tempera-
ture and shrinkage reinforcement prescribed in ACI 7.12 for slabs should be used as a
minimum.

Beams with Depth Greater than 36 in Research has shown that wide cracks can form on
the side faces of relatively deep beams or joists between the flexural reinforcement and
the neutral axis.7,8 In some cases, these cracks have been found to be wider than those
at the level of the flexural reinforcement.

To minimize these crack widths, ACI 10.6.7 requires that longitudinal skin rein-
forcement be provided on both faces of a member where h > 36 in. This reinforcement
must be uniformly distributed over a distance of h/2 from the tension face. ACI Fig.
R10.6.7 illustrates the skin reinforcement distribution for sections with positive and
negative reinforcement.

The maximum spacing s of the skin reinforcement is calculated by Eq. (6.23) where
cc is the least distance from the surface of the skin reinforcement to the side face. The size
of the skin reinforcement is not specified in ACI 10.6.7 because tests have shown that
the spacing of the skin reinforcement is more important in crack control than the size.8

However, ACI R10.6.7 recommends using Nos. 3 to 5 bars or welded wire reinforcement
with a minimum area of 0.1 in2 per foot of depth.
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FIGURE 6.10 Spacing limits for reinforcing bars.

Minimum Spacing of Flexural Reinforcing Bars
Spacing limits for reinforcing bars are given in ACI 7.6 and 3.3.2. These limits have
been established primarily so that concrete can flow readily into the spaces between
adjoining bars and between bars and formwork. This helps to ensure that concrete fully
surrounds the reinforcing bars without honeycombing and, thus, that a good bond is
established between the concrete and the steel.

The spacing requirements are summarized in Fig. 6.10. The following equation
provides the maximum number of bars nmax that can fit in a single layer on the basis of
the spacing limits of ACI 7.6 and 3.3.2:

nmax = bw − 2(cs + ds + r )
(clear space) + db

+ 1 (6.25)

where cs = clear cover to stirrups
ds = diameter of stirrups
r = bend radius of stirrups (ACI 7.2.2)

= 2ds for No. 5 stirrups and smaller
= one-half the minimum bend diameters given in ACI Table 7.2 for

bars larger than No. 5
clear space = minimum clear space defined in Fig. 6.10

The values of nmax determined by Eq. (6.25) should be rounded down to the next
whole number.
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Beam Width (in)

Bar size 12 14 16 18 20 22 24 26 28 30 36 42 48

No. 4 5 6 8 9 10 12 13 14 16 17 21 25 29

No. 5 5 6 7 8 10 11 12 13 15 16 19 23 27

No. 6 4 6 7 8 9 10 11 12 14 15 18 22 25

No. 7 4 5 6 7 8 9 10 11 12 13 17 20 23

No. 8 4 5 6 7 8 9 10 11 12 13 16 19 22

No. 9 3 4 5 6 7 8 8 9 10 11 14 17 19

No. 10 3 4 4 5 6 7 8 8 9 10 12 15 17

No. 11 3 3 4 5 5 6 7 8 8 9 11 13 15

TABLE 6.3 Maximum Number of Bars Permitted in a Single Layer

The maximum number of bars that can fit in a single layer can be tabulated for
various beam widths, as shown in Table 6.3. The information in this table is based on
the following:

� Grade 60 reinforcement.
� Clear cover to the stirrups cs = 1.5 in.
� Maximum aggregate size of 3/4 in.
� No. 3 stirrups are used for Nos. 4 to 6 bars, and No. 4 stirrups are used for No.

7 and larger bars.

Selecting the number of bars within the limits of Tables 6.2 and 6.3 provides au-
tomatic conformity with the Code requirements for cover and spacing given the as-
sumptions noted earlier. Tables for other parameters can be generated by Eqs. (6.24)
and (6.25).

Example 6.4 Determine the required positive and negative reinforcement for the one-way slab in
Examples 3.5 and 6.1 (see Fig. 3.3). Assume f ′

c = 4,000 psi and Grade 60 reinforcement.

Solution The flowchart shown in Fig. 6.4 is utilized to determine As . The thickness of the slab is
equal to 4.5 in from Example 6.1. A 12-in-wide design strip is utilized for this one-way slab.

Step 1: Assume tension-controlled section. Sections of flexural members should be tension-
controlled whenever possible. Thus, assume that the strength reduction factor φ = 0.9.

Step 2: Determine the nominal strength coefficient of resistance Rn. For a rectangular section,
Rn is determined by Eq. (6.5), which is a function of the factored bending moment Mu. The negative
factored bending moment was determined in Example 3.5 as 0.42 ft kips/ft. Also, because the
thickness of the slab is 4.5 in, only one layer of reinforcement is able to fit in the section in the main
direction of analysis. Therefore, the flexural reinforcement will be positioned at mid-depth, so that
d = h/2 = 4.5/2 = 2.25 in. Thus,

Rn = Mu

φbd2 = 0.42 × 12,000
0.9 × 12 × 2.252 = 92.2 psi
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Step 3: Determine the required reinforcement ratioρ. The reinforcement ratio ρ is determined
by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 92.2

0.85 × 4,000

]
= 0.0016

Step 4: Determine the required area of tension reinforcement As. For a 1-ft-wide design strip,
the required area of negative reinforcement is

As = ρbd = 0.0016 × 12 × 2.25 = 0.04 in2/ft

Step 5: Determine the minimum required area of reinforcement As,min. For one-way slabs
with Grade 60 reinforcement, As,min is determined in accordance with ACI 10.5.4:

As,min = 0.0018bh = 0.0018 × 12 × 4.5 = 0.10 in2/ft > As

Use As = 0.10 in2/ft.
Step 6: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c b

= 0.10 × 60,000
0.85 × 4,000 × 12

= 0.15 in

Step 7: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 8: Determine the neutral axis depth c.

c = a
β1

= 0.15
0.85

= 0.18 in

Step 9: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
2.25
0.18

− 1
)

= 0.0345 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4), and the initial assumption that
the section is tension-controlled is correct.

Step 10: Choose the size and spacing of the reinforcing bars. The required area of reinforce-
ment is 0.10 in2/ft. No. 3 bars spaced 12 in on center provide an area of reinforcement equal to 0.11
in2/ft. Note that No. 4 bars spaced at 24 in on center also satisfy strength requirements (provided
As = 0.20 × 12/24 = 0.10 in2/ft).

Bar spacing is governed by the crack control requirements of ACI 10.6.4. Because the bars are
located at the mid-depth of the slab, cc is relatively large, and the maximum bar spacing is governed
by the upper limit of Eq. (6.23):

s = 12
(

40,000
fs

)
= 12

(
40,000

2 × 60,000/3

)
= 12 in

Check the maximum spacing requirements of ACI 10.5.4:

s = 3h = 3 × 4.5 = 13.5 < 18.0 in

Therefore, the maximum spacing of the bars is 12.0 in.
Use No. 3 bars at 12 in on center.



199B e a m s a n d O n e - W a y S l a b s

Comments
Although the No. 4 bars are adequate for strength, the 24-in spacing is greater than that re-
quired for crack control. Specifying No. 4 bars at a 12-in spacing is adequate for both strength
and crack control, but the provided reinforcement is twice as much as required, which is not econo-
mical.

The positive factored bending moment is equal to 0.36 ft kips per foot width of slab (see Example
3.5). Because only one layer of reinforcement is being provided in the direction of analysis, use No.
3 bars at a spacing of 12 in throughout the span, as this amount of reinforcement is also adequate
for the positive factored bending moment.

A minimum amount of temperature and shrinkage reinforcement must be provided in the slab
perpendicular to the main flexural reinforcement (ACI 7.12.2.1). This amount is the same as that
for minimum reinforcement with a maximum spacing equal to 5h = 22.5 in or 18 in (governs). Use
No. 3 bars at a spacing of 12 in on center for temperature and shrinkage reinforcement (provided
As = 0.11 in2/ft).

Example 6.5 Determine the required negative reinforcement at the exterior face of the first inte-
rior support in the end span of a typical interior wide-module joist in Examples 3.4 and 6.2 (see
Fig. 3.3). Assume f ′

c = 4,000 psi, a 3/4-in maximum aggregate, and Grade 60 reinforcement.

Solution The height and the width of the wide-module joist are 20.5 and 7 in, respectively, which
were determined in Example 6.2. For a negative bending moment, the reinforcement is located
within the flange. Because the flange is in tension, the required area of flexural reinforcement can
be determined using the methods for rectangular sections with tension reinforcement. Thus, the
flowchart shown in Fig. 6.4 is utilized to determine As .

Step 1: Assume tension-controlled section. Sections of flexural members should be tension-
controlled whenever possible. Thus, assume that the strength reduction factor φ = 0.9.

Step 2: Determine the nominal strength coefficient of resistance Rn. For a rectangular section,
Rn is determined by Eq. (6.5), which is a function of the factored bending moment Mu. The negative
factored bending moment at the exterior face of the first interior support in the end span is equal
to 51.7 ft kips (see Table 3.4). Also assume that d = h − 2.5 = 20.5 − 2.5 = 18.0 in.

Rn = Mu

φbwd2 = 51.7 × 12,000
0.9 × 7 × 18.02 = 303.9 psi

Step 3: Determine the required reinforcement ratioρ. The reinforcement ratio ρ is determined
by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 303.9

0.85 × 4,000

]
= 0.0053

Step 4: Determine the required area of tension reinforcement As.

As = ρbd = 0.0053 × 7 × 18.0 = 0.67 in2

Step 5: Determine the minimum required area of reinforcement As,min. The minimum
amount of reinforcement is determined by ACI 10.5.1. Because the compressive strength of the
concrete is less than 4,400 psi, the minimum amount is determined by the lower limit given in that
section:

As,min = 200bwd
fy

= 200 × 7 × 18.0
60,000

= 0.42 in2 < 0.67 in2

Use As = 0.67 in2.
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Step 6: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c b

= 0.67 × 60,000
0.85 × 4,000 × 7

= 1.7 in

Step 7: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 8: Determine the neutral axis depth c.

c = a
β1

= 1.7
0.85

= 2.0 in

Step 9: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
18.0
2.0

− 1
)

= 0.0240 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4) and the initial assumption that
the section is tension-controlled is correct.

Step 10: Choose the size and spacing of the reinforcing bars. The required area of reinforce-
ment is 0.67 in2. Because the flange of the wide-module joist is in tension, a portion of the rein-
forcement must be distributed over the lesser of the effective flange width be or one-tenth the span.
Using Fig. 5.23, determine be :

be =




span length/4 = 25 × 12/4 = 75.0 in

bw + 16h = 7 + (16 × 4.5) = 79.0 in

joist spacing = 60 in (governs)

Also, span/10 = 25 × 12/10 = 30.0 in.
Because be exceeds one-tenth the span, provide the required reinforcement within the 30-in

width and provide additional reinforcement in the 15-in-wide outer portions of the flange:

As = 0.67
30/12

= 0.27 in2/ft

Try No. 5 bars spaced at 12 in on center within the 2.5-ft-wide strip over the web (provided
As = 0.31 in2/ft).

Bar spacing is governed by the crack control requirements of ACI 10.6.4 and the spacing limits
of ACI 7.6 and 3.3.2. Assuming 1.5 in of cover to the flexural bars in accordance with ACI 7.7.1(c),
cc = 1.5 in. The maximum bar spacing is determined by Eq. (6.23):

s = 15
(

40,000
fs

)
− 2.5cc = 15

(
40,000

2 × 60,000/3

)
− (2.5 × 1.5) = 11.3 in (governs)

≤ 12
(

40,000
fs

)
= 12

(
40,000

2 × 60,000/3

)
= 12.0 in

Therefore the No. 5 bars at 12 in on center are not adequate for crack control. Try No. 5 spaced
at 10 in on center.

Check the spacing limits of ACI 7.6 and 3.3.2.
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FIGURE 6.11 Details of the negative reinforcement in the wide-module joist given in Example 6.5.

From Fig. 6.10,

Minimum clear space =



1.0 in
db = 0.625 in
1.33 (maximum aggregate size) = 1.33 × 0.75 = 1.0 in

Therefore, the minimum clear space is 1.0 in.
The provided clear space = 10.0 − 0.625 = 9.4 > 1.0 in.
Use No. 5 bars spaced 10 in on center. For simpler detailing, provide the same reinforcement in

the outer portions of the flange.

Comments
No. 5 bars spaced at 11 in on center are adequate for both strength and spacing requirements.
However, a 10-in spacing was chosen on the basis of the spacing of the wide-module joists (see
Fig. 6.11).

Example 6.6 Determine the required positive reinforcement in the end span of a typical interior
wide-module joist of Examples 3.4 and 6.2 (see Fig. 3.3). Assume f ′

c = 4,000 psi, a 3/4-in maximum
aggregate, and Grade 60 reinforcement.

Solution The height and the width of the wide-module joist are 20.5 and 7 in, respectively, which
were determined in Example 6.2. For a positive bending moment, the reinforcement is located
within the web of the joist. Because the flange is in compression, the required area of flexural
reinforcement is determined depending on whether the depth of the equivalent stress block a is
less than or greater than the thickness of the flange. Thus, the flowchart shown in Fig. 6.6 is utilized
to determine As .

Step 1: Assume tension-controlled section. Sections of flexural members should be tension-
controlled whenever possible. Thus, assume that the strength reduction factor φ = 0.9.

Step 2: Determine the effective flange width be . The effective flange width be = 60 in (see step
10 in Example 6.5).

Step 3: Determine the depth of the equivalent stress block a, assuming rectangular section
behavior. The positive factored bending moment in the end span is equal to 42.2 ft kips (see Table
3.4). Assuming d = 20.5 − 2.5 = 18.0 in, a is determined from the following equation:

a = a1d −
√

(a1d)2 − (2a1 Mu/φ)
a1

= (204.0 × 18.0) −
√

(204.0 × 18.0)2 − (2 × 204.0 × 42.2 × 12/0.9)
204.0

= 0.15 in

where a1 = 0.85 f ′
c be = 0.85 × 4 × 60 = 204.0 kips/in.
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Because a < hf = 4.5 in, the section behaves as a rectangular section, and the flowchart shown
in Fig. 6.4 can be used to determine As with b = be .

Step 4: Determine the nominal strength coefficient of resistance Rn.

Rn = Mu

φbe d2 = 42.2 × 12,000
0.9 × 60 × 18.02 = 28.9 psi

Step 5: Determine the required reinforcement ratioρ. The reinforcement ratio ρ is determined
by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 28.9

0.85 × 4,000

]
= 0.0005

Step 6: Determine the required area of tension reinforcement As.

As = ρbd = 0.0005 × 60 × 18.0 = 0.54 in2

Step 7: Determine the minimum required area of reinforcement As,min. The minimum
amount of reinforcement is determined by ACI 10.5.1. Because the compressive strength of the
concrete is less than 4,400 psi, the minimum amount is determined by the lower limit given in that
section:

As,min = 200bwd
fy

= 200 × 7 × 18.0
60,000

= 0.42 in2 < 0.54 in2

Use As = 0.54 in2.
Step 8: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c be

= 0.54 × 60,000
0.85 × 4,000 × 60

= 0.16 in

Step 9: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 10: Determine the neutral axis depth c.

c = a
β1

= 0.16
0.85

= 0.19 in

Step 11: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
18.0
0.19

− 1
)

= 0.2812 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4), and the initial assumption that
the section is tension-controlled is correct.

Step 12: Choose the size and spacing of the reinforcing bars. The required area of reinforce-
ment is 0.54 in2. Try two No. 5 bars (provided As = 0.62 in2).

Bar spacing is governed by the crack control requirements of ACI 10.6.4 and the spacing limits
of ACI 7.6 and 3.3.2. It is typically assumed that stirrups are not used in narrow members such as
wide-module joists; therefore, cc = 1.5 in. The maximum bar spacing is determined by Eq. (6.23):

s = 15
(

40,000
fs

)
− 2.5cc = 15

(
40,000

2 × 60,000/3

)
− (2.5 × 1.5) = 11.3 in (governs)

≤ 12
(

40,000
fs

)
= 12

(
40,000

2 × 60,000/3

)
= 12.0 in
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FIGURE 6.12 Details
of the positive
reinforcement in
the wide-module
joist given in
Example 6.6.

Check if two No. 5 bars can fit within the 7-in-wide section without violating the spacing limits
of ACI 7.6 and 3.3.2.

From Fig. 6.10,

Minimum clear space =




1.0 in
db = 0.625 in
1.33 (maximum aggregate size) = 1.33 × 0.75 = 1.0 in

Therefore, the minimum clear space is 1.0 in.
The provided clear space = 7 − 2(1.5 + 0.625) = 2.75 > 1.0 in.
Also, the provided bar spacing 2.75 + 0.625 = 3.375 in is less than the maximum bar spacing

for crack control, which is equal to 12 in.
Use two No. 5 bars.
A section of the joist near the midspan is shown in Fig. 6.12.

Comments
The actual effective depth d is equal to 20.5 − 1.5 − (0.625/2) = 18.7 in. Using the actual d in the
calculations will provide a design strength that is greater than that based on the assumed value of
18.0 in.

The positive design strength φMn for the wide-module joist reinforced with two No. 5 bars is
determined by Eq. (5.11):

φMn = φ As fy

(
d − 0.59As fy

be f ′
c

)

= 0.9 × (2 × 0.31) × 60
(

18.7 − 0.59 × 2 × 0.31 × 60
60 × 4

)
/12

= 51.9 ftkips > Mu = 42.2 ftkips

Example 6.7 Determine the required negative reinforcement at the exterior face of the first interior
support for the beam along column line B of Examples 3.3 and 6.3 (see Fig. 3.3). Assume f ′

c = 4,000
psi, a 3/4-in maximum aggregate, and Grade 60 reinforcement.

Solution The height and the width of the beams are 20.5 and 22.0 in, respectively, which were
determined in Example 6.3. For a negative bending moment, the reinforcement is located within
the top portion of the beam. The flowchart shown in Fig. 6.4 is utilized to determine As .

Step 1: Assume tension-controlled section. Sections of flexural members should be tension-
controlled whenever possible. Thus, assume that the strength reduction factor φ = 0.9.

Step 2: Determine the nominal strength coefficient of resistance Rn. For a rectangular section,
Rn is determined by Eq. (6.5), which is a function of the factored bending moment Mu. The negative
factored bending moment at the exterior face of the first interior support in the end span is equal



204 C h a p t e r S i x

to 198.1 ft kips (see Table 3.3). Also assume that d = h − 2.5 = 20.5 − 2.5 = 18.0 in.

Rn = Mu

φbwd2 = 198.1 × 12,000
0.9 × 22.0 × 18.02 = 370.6 psi

Step 3: Determine the required reinforcement ratioρ. The reinforcement ratio ρ is determined
by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 370.6

0.85 × 4,000

]
= 0.0066

Step 4: Determine the required area of tension reinforcement As.

As = ρbd = 0.0066 × 22.0 × 18.0 = 2.61 in2

Step 5: Determine the minimum required area of reinforcement As,min. The minimum amount
of reinforcement is determined by ACI 10.5.1. Because the compressive strength of the concrete is
less than 4,400 psi, the minimum amount is determined by the lower limit given in that section:

As,min = 200bwd
fy

= 200 × 22.0 × 18.0
60,000

= 1.32 in2 < 2.61 in2

Use As = 2.61 in2.
Step 6: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c b

= 2.61 × 60,000
0.85 × 4,000 × 22.0

= 2.1 in

Step 7: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 8: Determine the neutral axis depth c.

c = a
β1

= 2.1
0.85

= 2.5 in

Step 9: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
18.0
2.5

− 1
)

= 0.0186 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4), and the initial assumption that
the section is tension-controlled is correct.

Step 10: Choose the size and spacing of the reinforcing bars. The required area of reinforce-
ment is 2.61 in2. Try six No. 6 bars (provided As = 2.64 in2).

Bar spacing is governed by the crack control requirements of ACI 10.6.4 and the spacing limits
of ACI 7.6 and 3.3.2. From Table 6.2, three No. 6 bars are required in a single layer for crack control
for a 22-in-wide beam. From Table 6.3, 10 No. 6 bars can fit within a 22-in-wide beam without
violating the spacing limits of ACI 7.6 and 3.3.2. Providing six No. 6 bars automatically satisfies
the requirements of ACI 10.6.4, 7.6, and 3.3.2.

Use six No. 6 bars.
As an exercise, assume that a No. 3 stirrup (ds = 0.375 in) is provided in the beam, and determine

the minimum and maximum numbers of No. 6 bars that can be provided in the section.
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The maximum bar spacing is determined by Eq. (6.23) where cc = 1.5 + 0.375 = 1.875 in:

s = 15
(

40,000
fs

)
− 2.5cc = 15

(
40,000

2 × 60,000/3

)
− (2.5 × 1.875) = 10.3 in (governs)

≤ 12
(

40,000
fs

)
= 12

(
40,000

2 × 60,000/3

)
= 12.0 in

The minimum number of bars nmin required in a single layer to control cracking is determined
by Eq. (6.24):

nmin = bw − 2(cc + 0.5db )
s

+ 1

= 22 − 2[1.875 + (0.5 × 0.75)]
10.3

+ 1 = 2.7

Thus, the minimum number of No. 6 bars required in the section is three.
From Fig. 6.10,

Minimum clear space =




1.0 in
db = 0.75 in
1.33 (maximum aggregate size) = 1.33 × 0.75 = 1.0 in

Therefore, the minimum clear space is 1.0 in.
The maximum number of bars nmax that can fit in a single layer on the basis of the spacing limits

of ACI 7.6 and 3.3.2 is determined by Eq. (6.25):

nmax = bw − 2(cs + ds + r )
(clear space) + db

+ 1

= 22 − 2[1.5 + 0.375 + (2 × 0.375)]
1.0 + 0.75

+ 1 = 10.6

Thus, the maximum number of No. 6 bars permitted in the section is 10.
Figure 6.13 shows the reinforcement at the face of the support.

Example 6.8 Because of architectural constraints, a beam is limited to a width of 12 in and an overall
depth of 24 in. Determine the required reinforcement for a positive factored bending moment of
370 ft kips. Assume f ′

c = 4,000 psi, a 3/4-in maximum aggregate, and Grade 60 reinforcement.

Solution Use the flowchart shown in Fig. 6.4 to determine the required flexural reinforcement.

FIGURE 6.13 Details
of the negative
reinforcement in
the beam given in
Example 6.7.
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Step 1: Assume tension-controlled section. Sections of flexural members should be tension-
controlled whenever possible. Thus, assume that the strength reduction factor φ = 0.9.

Step 2: Determine the nominal strength coefficient of resistance Rn. For a rectangular section,
Rn is determined by Eq. (6.5), which is a function of the factored bending moment Mu. The positive
factored bending moment is given as 370.0 ft kips. Because the beam is relatively narrow, assume
that the tension reinforcement will be placed in two layers where dt = h − 2.5 = 21.5 in and d =
h − 3.5 = 20.5 in.

Rn = Mu

φbwd2 = 370.0 × 12,000
0.9 × 12.0 × 20.52 = 978.3 psi

Step 3: Determine the required reinforcement ratioρ. The reinforcement ratio ρ is determined
by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 978.3

0.85 × 4,000

]
= 0.0197

Step 4: Determine the required area of tension reinforcement As.

As = ρbd = 0.0197 × 12.0 × 20.5 = 4.85 in2

Step 5: Determine the minimum required area of reinforcement As,min. The minimum
amount of reinforcement is determined by ACI 10.5.1. Because the compressive strength of the
concrete is less than 4,400 psi, the minimum amount is determined by the lower limit given in that
section:

As,min = 200bwd
fy

= 200 × 12.0 × 20.5
60,000

= 0.82 in2 < 4.85 in2

Use As = 4.85 in2.
Step 6: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c b

= 4.85 × 60,000
0.85 × 4,000 × 12.0

= 7.1 in

Step 7: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 8: Determine the neutral axis depth c.

c = a
β1

= 7.1
0.85

= 8.4 in

Step 9: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
21.5
8.4

− 1
)

= 0.0047 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. How-
ever, the section is not tension-controlled because εt < 0.0050 (ACI 10.3.4), and the initial assump-
tion that the section is tension-controlled is not correct.

Thus, add compression reinforcement to change the section to tension-controlled. Use the
flowchart shown in Fig. 6.5.
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Note that Fig. 6.5 could also have been used to determine if the section was tension-controlled
or not. In particular, calculate Rnt and compare it with Rn:

ρt = 0.319β1 f ′
c

fy
= 0.319 × 0.85 × 4

60
= 0.0181

Rnt = ρt fy

(
1 − 0.59ρt fy

f ′
c

)

= 0.0181 × 60,000
(

1 − 0.59 × 0.0181 × 60
4

)

= 912.0 psi < Rn = 978.3 psi

Because Rn > Rnt the section is not tension-controlled.
Step 10: Determine the reinforcement ratio ρ. The reinforcement ratio ρ is determined from

the following equation:

ρ = ρt

(
dt

d

)
= 0.0181

(
21.5
20.5

)
= 0.0190

Step 11: Determine Mnt. The nominal flexural strength Mnt that corresponds to εt = 0.0050 is
determined by Eq. (6.12):

Mnt = ρ fy

(
1 − 0.59ρ fy

f ′
c

)
bd2

= 0.0190 × 60
(

1 − 0.59 × 0.0190 × 60
4

)
× 12 × 20.52/12 = 398.5 ft kips

Step 12: Determine M′
n. The required nominal flexural strength M′

n that needs to be resisted
by the compression reinforcement is determined by Eq. (6.13):

M′
n = Mu

φ
− Mnt = 370

0.9
− 398.5 = 12.6 ft kips

Step 13: Determine ct.

ct = 0.375dt = 0.375 × 21.5 = 8.1 in

Step 14: Determine f ′
s. Assuming that the distance d ′ from the extreme compression fiber to

the centroid of the compression reinforcement is equal to 1.5 + 0.5 + 0.5 = 2.5 in, the stress in the
compression reinforcement is determined by Eq. (6.14):

f ′
s = 0.0030Es

(
1 − d ′

ct

)
= 0.0030 × 29,000

(
1 − 2.5

8.1

)
= 60.1 ksi > fy = 60 ksi

Thus, the compression reinforcement yields ( f ′
s = fy = 60 ksi).

Step 15: Determine A′
s . The required area of compression reinforcement A′

s is determined by
Eq. (6.15):

A′
s = M′

n

f ′
s (d − d ′)

= 12.6 × 12
60(20.5 − 2.5)

= 0.14 in2
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FIGURE 6.14 Details
of the tension
and compression
reinforcement in
the beam given in
Example 6.8.

Step 16: Determine As. The total required area of tension reinforcement As is the summation
of the area of reinforcement corresponding to the tension-controlled net strain limit and A′

s from
Eq. (6.15) with f ′

s = fy [see Eq. (6.16)]:

As = ρbd + M′
n

fy(d − d ′)
= (0.0190 × 12 × 20.5) + 0.14

= 4.67 + 0.14 = 4.81 in2

Step 17: Choose the size and spacing of reinforcing bars. The required area of tension rein-
forcement is 4.81 in2. Try eight No. 7 bars in two layers (provided As = 4.80 in2 ≈ 4.81 in2).

Bar spacing is governed by the crack control requirements of ACI 10.6.4 and the spacing limits
of ACI 7.6 and 3.3.2. From Table 6.2, two No. 7 bars are required in a single layer for crack control
for a 12-in-wide beam. From Table 6.3, four No. 7 bars can fit within a 12-in-wide beam without
violating the spacing limits of ACI 7.6 and 3.3.2. Providing four No. 7 bars in a layer automatically
satisfies the requirements of ACI 10.6.4, 7.6, and 3.3.2.

For the tension reinforcement, use eight No. 7 bars in two layers.
Similarly, it can be shown that two No. 3 bars (provided As = 0.22 in2 > 0.14 in2) are adequate

for strength and spacing requirements.
For the compression reinforcement, use two No. 3 bars.
Figure 6.14 shows the reinforcement at the location of positive moment.

Development of Flexural Reinforcement
Overview Flexural reinforcement must be properly developed or anchored in a concrete
flexural member in order for the member to perform as intended in accordance with
the strength design method. Prior to the 1971 Code, the concepts of flexural bond and
anchorage bond were used to determine the required lengths of flexural reinforcing
bars. In particular, to prevent bond failure or splitting, the calculated tension force in
any bar at any section was required to be developed on each side of that section by
proper embedment length, end anchorage, or hooks.

The development length concept was first introduced in the 1971 Code and is based
on an average bond stress over the embedment length of the reinforcement.9 Consider
the reinforcing bar embedded near the bottom of the concrete beam illustrated in Fig.
6.15. The bond stress between the concrete and the steel varies along the length of the
member, and its magnitude depends on the stress in the bar and the presence of cracks.
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FIGURE 6.15
Splitting of
concrete along
a single bar
of flexural
reinforcement.

When subjected to high stresses due to external bending moments, the relatively thin
concrete that is restraining the bar can split as shown. This splitting is primarily due
to the ribs of the deformed bars bearing against the concrete. If the splitting extends
to the end of a bar that is not properly anchored, complete bond failure occurs, and
the beam can no longer resist the applied bending moment as originally designed. The
bar must be long enough (or properly anchored) so that this type of failure does not
occur.

For the more common situation where more than one reinforcing bar is present
in the section, horizontal splitting along the plane of the bars can also occur (see
Fig. 6.16). This type of splitting commonly begins at a diagonal crack due to flexure
and/or shear. The required development length of the bars in this case would gener-
ally be greater than that for the single bar shown in Fig. 6.15.

FIGURE 6.16
Splitting of
concrete along
multiple bars
of flexural
reinforcement.
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The concept of development length can be simply stated as follows: Minimum
lengths or extensions of reinforcement must be provided beyond the locations of
peak stress in the reinforcement in order to fully develop the bars. These locations of
peak stress are often referred to as critical sections, and they occur at points of maximum
stress (maximum bending moment) and at locations where adjacent reinforcement is
terminated. Development length or anchorage of reinforcement is required on both
sides of a critical section.

In addition to embedment length, development or anchorage can be achieved with
hooks, headed deformed bars, mechanical devices, or a combination thereof. The fol-
lowing discussion focuses on the development of flexural reinforcement where de-
formed bars or deformed wire are in tension. The Code provisions for the development
length of reinforcing bars in tension must be examined prior to the general requirements
for flexural reinforcement.

Development of Deformed Bars and Deformed Wire in Tension ACI 12.2 contains provisions
for the development of deformed bars and deformed wire in tension. The development
length �d is determined using the provisions of ACI 12.2.2 or 12.2.3 along with the
modification factors of ACI 12.2.4 and 12.2.5. Because the requirements of ACI 12.2.2
are based on the requirements of ACI 12.2.3, the latter requirements are covered first.

Method 1—ACI 12.2.3 The development length �d is given by ACI Eq. (12-1):

�d =
[

3
40

fy

λ
√

f ′
c

ψtψeψs

(cb + Ktr ) /db

]
db ≥ 12 in (6.26)

The terms that make up this equation are examined next.

� Modification factor for lightweight concrete λ: The factor λ reflects the lower tensile
strength of lightweight aggregate concrete. A lower tensile strength results in
a reduction of splitting resistance. To account for this, the Code stipulates the
following:

λ = 0.75 for lightweight concrete.

λ = fct/6.7
√

f ′
c ≤ 1.0, where the average splitting tensile strength of lightweight

concrete fct has been determined by tests [Eq. (1) in ASTM C496/C496M].
Note that 6.7

√
f ′
c is the average splitting tensile strength of normal-weight

concrete. Also,
√

f ′
c must not exceed 100 psi in accordance with ACI 12.1.2;

this requirement must be satisfied throughout ACI Chap. 12.

λ = 1.0 for normal-weight concrete.

� Reinforcement location factor ψt : The reinforcement location factor ψt reflects the
adverse effects that can occur to the top reinforcement in a member. During the
placement of concrete, water and mortar migrate vertically through the member
and collect on the underside of the reinforcing bars. It has been shown that the
bond between concrete and steel can be weakened because of the presence of
mortar where the depth of concrete cast below the bars exceeds 12 in.10,11 To
account for this, ψt = 1.3; that is, the development length is increased by 30%.
In all other cases, ψt = 1.0.
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� Reinforcement coating factor ψe : The reinforcement coating factor ψe accounts for
the reduced bond strength between the concrete and the epoxy-coated reinforc-
ing bars: The coating prevents adhesion and friction between the bar and the
concrete.12−14

In cases where the cover to the epoxy-coated bars is small (<3db) or where
the clear spacing between the bars is small (<6db), splitting failure can occur,
and the anchorage or bond strength is substantially reduced. Thus, in these
situations, ψe = 1.5.

Where the cover or clear spacing is greater than these limits, splitting failure
is avoided and ψe = 1.2; this accounts for the reduced bond strength due to the
epoxy coating.

For uncoated and zinc-coated (galvanized) bars, ψe = 1.0.
Note that the Code stipulates that the product of ψtψe need not be greater

than 1.7. This limit takes into consideration that the bond of epoxy-coated bars
is already reduced because of the loss of adhesion between the bars and the
concrete.

� Reinforcement size factor ψs : The reinforcement size factor ψs reflects the more fa-
vorable performance of smaller-diameter reinforcement. For No. 6 and smaller
deformed bars and wires, ψs = 0.8, whereas for No. 7 and larger bars, ψs = 1.0.

� Spacing or cover dimension cb : The spacing or cover dimension cb is defined as the
smaller of (1) the distance from the center of the bar or wire being developed
to the nearest concrete surface and (2) one-half the center-to-center spacing of
the bars or wires being developed. These criteria are illustrated in Fig. 6.17.
As discussed previously, small cover or clear spacing increases the likelihood
that splitting failure can occur. Thus, an increase in the development length is
warranted in such cases.

� Transverse reinforcement index Ktr : The transverse reinforcement index Ktr rep-
resents the role of confining reinforcement across potential splitting planes:
Larger amounts of confining reinforcement reduce the potential for splitting
failure, thus, reducing the overall required development length of the rein-
forcement. For beams, confining reinforcement is typically made up of stirrups
that are required to resist shear forces (see Section 6.3).

FIGURE 6.17
Spacing or
cover
dimension cb.
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The index Ktr is determined by ACI Eq. (12-2):

Ktr = 40Atr

sn
(6.27)

where Atr = total cross-sectional area of all confining (transverse)
reinforcement within a spacing of s that crosses the
potential plane of splitting through the reinforcement
being developed

s = center-to-center spacing of the confining reinforcement
n = number of bars or wires being developed across the plane

of splitting

Because the presence of confining reinforcement has the potential to de-
crease development length, it is conservative to take Ktr = 0.

The Code prescribes that the confining term (cb + Ktr )/db used in Eq. (12-1)
must be equal to or less than 2.5. It has been shown that when this term is
less than 2.5, splitting failures are likely to occur. A pullout failure of the re-
inforcement is more likely when this term is greater than 2.5, so an increase
in the anchorage capacity due to an increase in cover or amount of confining
reinforcement is not likely.

ACI 12.2.5 permits the development length �d to be reduced in cases where the
provided flexural reinforcement is greater than that required from analysis. In such
cases, the tensile stress in the bars being developed is less than the yield stress fy.
The reduction factor that can be applied to �d is equal to the required area of flexural
reinforcement divided by the provided area of reinforcement. This reduction factor
must not be used where development for fy is required (ACI R12.2.5 provides some
examples of this). This reduction factor is also not permitted in the design of members
resisting the effects from seismic forces. Obviously, ignoring this reduction factor will
lead to a conservative value of �d .

The flowchart shown in Fig. 6.18 can be used to determine the development length
�d of deformed bars or wires in tension in accordance with ACI 12.2.3.

Method 2—ACI 12.2.2 The method given in ACI 12.2.2 to determine the develop-
ment length �d is based on the requirements given in ACI 12.2.3 and the preselected
values of the confining term (cb + Ktr )/db . Two cases are presented in ACI 12.2.2. In the
first case, the spacing, cover, and confinement of the bars being developed meet one
set of the conditions illustrated in Fig. 6.19. These conditions are presumed to occur
frequently in practical construction cases. When these conditions are met, it is assumed
that (cb + Ktr )/db = 1.5. Substituting this confining term into Eq. (6.26) results in the
following:

�d =
(

3
40

fy

λ
√

f ′
c

ψtψeψs

1.5

)
db =

(
fyψtψeψs

20λ
√

f ′
c

)
db (6.28)
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FIGURE 6.18 Development length of deformed bars or wires in tension—ACI 12.2.3. (continued)

For No. 7 and larger bars, ψs = 1.0, so Eq. (6.28) becomes

�d =
(

fyψtψe

20λ
√

f ′
c

)
db (6.29)

Equation (6.29) is the equation given in the table under ACI 12.2.2 for No. 7 and
larger bars. The equation in the table for No. 6 and smaller bars and deformed wires
is obtained by multiplying Eq. (6.29) by ψs = 0.8, which results in a factor of 0.8/20 =
1/25.

The second case is applicable where the conditions of the first case are not satisfied,
and it is assumed that (cb + Ktr )/db = 1.0. Substituting this confining factor into Eq.
(6.26) results in the equation given in the table under ACI 12.2.2 for “other cases” and
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FIGURE 6.18 (Continued)

No. 7 and larger bars. Substitution of ψs = 0.8 into that equation results in the equation
given in the table for No. 6 and smaller bars and deformed wires.

The flowchart shown in Fig. 6.20 can be used to determine the development length
�d of deformed bars or wires in tension in accordance with ACI 12.2.2.

Development of Standard Hooks in Tension
Hooks are provided at the ends of reinforcing bars to provide additional anchorage
where required development length cannot be attained with straight bars. Standard
hooks are defined in ACI 7.1 and are illustrated in Fig. 6.21.
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FIGURE 6.18 (Continued)

When subjected to tensile forces, high compressive stresses can occur on the inside
of a hook. At failure, splitting of the concrete cover occurs in the plane of the hook
because of these compressive stresses. Thus, the development of a hook in tension is
directly proportional to the diameter of the bar because this governs the magnitude of
the compressive stresses.
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FIGURE 6.19 Spacing, cover, and confinement conditions of ACI 12.2.2.

Given

FIGURE 6.20 Development length of deformed bars or wires in tension—ACI 12.2.2. (continued)
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FIGURE 6.20 (Continued)

The development length �dh of a deformed reinforcing bar with a standard hook is
given in ACI 12.5.2:

�dh =
(

0.02ψe fy

λ
√

f ′
c

)
db ≥ larger of 8db and 6 in (6.30)

In this equation, ψe = 1.2 for epoxy-coated bars and λ = 0.75 for lightweight concrete.
In all other cases, ψe and λ are taken as 1.0.
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FIGURE 6.20 (Continued)

ACI Fig. R12.5 illustrates the details for development of bars with standard 90-
degree and 180-degree hooks. The development length �dh is measured from the critical
section to the outside end of the hook.

The values of �dh determined by Eq. (6.30) are permitted to be reduced by the factors
given in ACI 12.5.3 wherever applicable. Reduction factors for increased cover, trans-
verse ties or stirrups, and excess reinforcement are provided and may be applied where
the conditions outlined in ACI 12.5.3 are met. ACI Fig. R12.5.3(a) and (b) illustrates the
conditions for the use of the reduction factor given in ACI 12.5.3(b) for bars enclosed
by ties or stirrups.
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FIGURE 6.21
Standard hooks in
accordance with
ACI 7.1.

Hooked bars at discontinuous ends of members must be confined with ties or stir-
rups where the side cover and the top or bottom cover are less than 2.5 in (ACI 12.5.4).
The additional confinement provided by this transverse reinforcement is essential in
order to prevent splitting failure. ACI Fig. R12.5.4 illustrates the details of the reinforce-
ment. Note that the reduction factors given in ACI 12.5.3(b) and (c) are not applicable
in this case.

Development of Headed and Mechanically Anchored Deformed Bars in Tension ACI 12.6
contains provisions for the development of headed deformed bars and the development
and anchorage of reinforcement using mechanical devices in concrete. These provisions
are based on the anchorage requirements contained in Appendix D of the Code and
the bearing requirements contained in ACI 10.14. A headed deformed reinforcing bar
is illustrated in ACI Fig. R3.5.9.
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The terms “development” and “anchorage” are distinguished in the provisions as
follows: Development refers to cases where the force in a headed bar is transferred to
the concrete through a combination of bearing force at the head and bond forces along
the bar, whereas anchorage refers to cases where the force in a headed bar is transferred
to the concrete through bearing force alone.

Headed deformed bars are permitted to be used only when the conditions of ACI
12.6.1 are satisfied. These conditions are based on tests that have been performed to
establish the development length �dt . This development length, which is measured from
the critical section to the bearing face of the head [see ACI Fig. R12.6(a)], is given in
ACI 12.6.2:

�dt =
(

0.016ψe fy√
f ′
c

)
db ≥ the larger of 8db and 6 in (6.31)

In this equation, the compressive strength of the normal-weight concrete must be less
than or equal to 6,000 psi. Also, ψe is equal to 1.2 for epoxy-coated bars and is equal to
1.0 in all other cases. Like in the case of straight bar development length, it is permitted
to decrease �dt by the excess reinforcement factor.

Comparing Eq. (6.30) for hooked bars and Eq. (6.31) for headed bars, it is evi-
dent that the development length of headed bars is smaller than that for hooked bars.
Staggering headed bars can avoid congestion at locations of termination, especially at
beam–column joints. ACI Fig. R12.6(b) illustrates the termination of headed reinforce-
ment at the far face of the confined core of a column.

ACI 12.6.4 permits the use of (1) headed deformed reinforcement that does not meet
the requirements of ACI 3.5.9 or is not anchored in accordance with ACI 12.6.1 and 12.6.2
and (2) any other type of mechanical anchorage or device capable of developing the
yield strength of the reinforcement, provided that test results that demonstrate that the
system can adequately develop or anchor the bar are available.

Development of Positive and Negative Flexural Reinforcement As noted at the beginning of
this section, critical sections for development of flexural reinforcement occur at the fol-
lowing: (1) points of maximum stress, that is, at sections of maximum bending moment;
and (2) locations where adjacent reinforcement is terminated. Development length or
anchorage of reinforcement is required on both sides of a critical section.

In continuous beams and one-way slabs subjected to uniform loads, the maximum
positive and negative bending moments typically occur near the midspan and at the
faces of the supports, respectively. Positive and negative flexural reinforcing bars must
be developed or anchored on both sides of these critical sections. The following discus-
sion focuses on continuous members; additional requirements for simply supported
members are given in ACI 12.10 and 12.11.

The required area of reinforcement at a critical section can be determined using the
methods presented earlier in this chapter. Referring to Fig. 6.22, assume that the total
required area of negative reinforcement for the maximum negative factored bending
moment (M−

u )A at critical section A is equal to A−
s and that the total required area

of positive reinforcement for the maximum positive factored bending moment (M+
u )C

at critical section C is equal to A+
s . Also assume that the total number of negative

reinforcing bars at section A is n and that the total number of positive reinforcing bars
at section C is p.
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FIGURE 6.22 Development of flexural reinforcement.

It is evident that at sections away from the critical section, the required area of rein-
forcement decreases because the magnitude of the factored bending moment decreases.
For cost savings, it is common for some of the reinforcing bars to be terminated (or cut
off) at locations away from the critical sections. For example, reinforcing bars are no
longer required past a point of inflection on the bending moment diagram. Also, a por-
tion of the bars can be theoretically cut off prior to the point of inflection at a location
where the continuing bars are adequate to supply the required design strength. Because
a critical section occurs at a cutoff point, the bars must be properly developed at that
location as well.

Negative reinforcement Referring to Fig. 6.22, assume that a portion of the total
negative reinforcement is cut off at section B. Thus, section B is a critical section. It is
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assumed that this reinforcement has an area equal to A−
s2 and consists of n2 bars. The

remaining portion of the negative reinforcement has an area equal to A−
s1 = A−

s − A−
s2

and consists of n1 = n − n2 bars that continue to the point of inflection. Requirements
for the development of these two sets of reinforcing bars are discussed next.

The continuing reinforcement must be able to resist the negative factored bending
moment (M−

u )B at section B. Because section B is a critical section, n1 bars must be
adequately developed to the right of this section. In other words, these bars must extend
a minimum distance of �d past section B as shown in Fig. 6.22 where �d is determined
in accordance with ACI 12.2.

Also, at least one-third of the total negative reinforcement provided at a support
must have an embedment length equal to the larger of d , 12db , and �n/16 past the point
of inflection (ACI 12.12.3). This provision provides for possible shifting of the bending
moment diagram at the point of inflection because the bending moment diagrams
customarily used in design are approximate. Therefore, to satisfy the requirements of
ACI 12.12.3, n1 ≥ n/3.

Given the requirements mentioned earlier, the minimum length of n1 bars to the
right of section A must be the larger of the lengths determined from items 1 and 2 of
the following list (see Fig. 6.22):

1. xAB + �d

2. The larger of

(a) xAB + xBE + d

(b) xAB + xBE + 12db

(c) xAB + xBE + �n/16

where xAB = distance from section A to the theoretical cutoff point at section B
xBE = distance from section B to the point of inflection at section E

Because section A is a critical section (location of maximum negative factored bend-
ing moment), the bars that are cut off at section B must be developed to a distance that
is equal to or greater than the tension development length �d beyond that section. Addi-
tionally, ACI 12.10.3 stipulates that these bars must extend beyond the point where they
are no longer required by a distance equal to the larger of d and 12db . The minimum
length of n2 bars to the right of section A must be the larger of the lengths determined
from items 1 and 2 of the following list (see Fig. 6.22):

1. �d

2. The larger of

(a) xAB + d

(b) xAB + 12db

Reinforcement is not permitted to be terminated in a tension zone unless one of
the conditions given in ACI 12.10.5.1, 12.10.5.2, or 12.10.5.3 is satisfied (ACI 12.10.5).
Tests have shown that cutting off bars in a tension zone typically leads to reduced shear
strength and loss of ductility. Also, flexural cracks tend to open early in such cases. If it
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is determined that the minimum length of n2 bars based on development requirements
is less than the length to the inflection point, which is equal to xAB + xBE in Fig. 6.22,
then there are essentially two options, which are to (1) increase the bar lengths past the
point of inflection or (2) satisfy one or more of the following conditions:

(a) At the cutoff point, Vu ≤ 2φVn/3, where φVn is the shear design strength of the
section at that point (see Section 6.3 for determination of Vn).

(b) Stirrup area in excess of that required for shear and torsion is provided along
each terminated bar or wire over a distance of 3d/4 from the termination point
where the excess stirrup area ≥ 60bws/fyt , stirrup spacing s ≤ d/(8βb), and βb =
area of reinforcement cut off/total area of tension reinforcement at section.

(c) For No. 11 and smaller bars, continuing reinforcement provides at least double
the area required for flexure at the cutoff point and Vu ≤ 3φVn/4.

The development of the negative bars to the left of section A depends on the location
in the frame. At interior joints, like that depicted in Fig. 6.22, anchorage is achieved by
continuing the negative reinforcement into the span that is to the left of the joint. At
exterior columns, a standard hook is provided at the ends of the negative reinforcement,
as depicted in ACI Fig. R12.12(a).

Positive reinforcement Assume that a portion of the total positive reinforcement
shown in Fig. 6.22 is cut off at section D. Thus, section D is a critical section. It is assumed
that this reinforcement has an area equal to A+

s2 and consists of p2 bars. The remaining
portion of the positive reinforcement that has an area equal to A+

s1 = A+
s − A+

s2 and
consists of p1 = p − p2 bars must be able to resist the positive factored bending moment
(M+

u )D at section D. Requirements for the development of the positive reinforcement
are discussed next.

The bars that are cut off at section D must be developed to a distance that is equal
to or greater than the tension development length �d beyond the critical section at C
(location of maximum factored positive bending moment), where �d is determined in
accordance with ACI 12.2. Like in the case of the negative reinforcement, these bars
must extend beyond the point where they are no longer required by a distance equal
to the larger of d and 12db (ACI 12.10.3). Given that the distance between section C and
the theoretical cutoff point located at section D is equal to xCD, the minimum length of
p2 bars to the left of section C must be the larger of the lengths determined from items
1 and 2 of the following list (see Fig. 6.22):

1. �d

2. The larger of

(a) xCD + d

(b) xCD + 12db

The requirements of ACI 12.10.5 pertaining to reinforcement terminated in a tension
zone are also applicable in this situation.

ACI 12.11.1 requires that at least one-fourth of the positive moment reinforcement in
continuous members must extend along the same face of the member into the support.
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FIGURE 6.23
Maximum bar
size in
accordance with
ACI 12.11.3.

In the case of beams, this reinforcement must extend at least 6 in into the support.
Therefore, p1 ≥ p/4.

If the bottom bars are used as compression reinforcement in conjunction with the
top bars, the bottom bars must extend to the left of section A to a distance equal to
the larger of (1) the tension development length �d determined in accordance with ACI
12.2.1 and (2) the compression development length determined in accordance with ACI
12.3. The following requirement must also be satisfied, if applicable.

For flexural members that are part of a seismic force–resisting system, such as
moment frames, the positive reinforcement that is required by ACI 12.11.1 to extend into
the supports must be anchored to develop the full yield strength of the reinforcement.
During a seismic event, loads that are greater than those anticipated in design may
be generated, and load reversals can occur at the supports. In such cases, the positive
reinforcement at the bottom of the section must be capable of resisting the tension forces
from the load reversals and, thus, must be properly anchored into the supports.

The diameter of the positive moment reinforcement is limited at points of inflec-
tion in accordance with the provisions of ACI 12.11.3. This requirement addresses the
possibility that positive reinforcing bars located away from the critical section at the
location of the maximum positive bending moment may not be developed.

Consider the required bending moment and design bending moment diagrams il-
lustrated in Fig. 6.23. These diagrams are similar to those depicted in ACI Fig. R12.11.3(a)
for a simply supported beam. Assume that φM+

n increases linearly from zero at the ends
of the positive bars at point a1 to a maximum value near the location of the maximum
positive bending moment where φM+

n ≥ M+
u . It is evident from the figure that between

points a2 and a3, φM+
n < M+

u , which means that the stresses in the bars between these
two points are larger than those that can be developed in the bars.

In order to circumvent this situation, the slope of the design bending moment
diagram at the point of inflection (i.e., the location of zero bending moment) must be
equal to or greater than the tangent of the required bending moment diagram:

d(φM+
n )

dx
= φM+

n

�d
≥ d(M+

u )
dx

= Vu (6.32)

Thus, solving for �d ,

�d ≤ φM+
n

Vu
(6.33)
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Equation (6.33) forms the basis of ACI Eq. (12-5):

�d ≤ Mn

Vu
+ �a (6.34)

The nominal flexural strength Mn is used instead of the design flexural strength
φMn because it results in more conservative results. The quantity �a is equal to the
larger of d and 12db , which satisfies ACI 12.10.3. ACI Fig. R12.11.3(b) illustrates this
case at points of inflection.

ACI Eq. (12-5) is not applicable in regions of negative bending moments because
the shape of the bending moment diagram is concave downward as shown in Fig. 6.22.
Thus, the critical location for bar development occurs only at the face of the support.

The preceding discussion on development lengths and bar cutoff points was devel-
oped for the most part on the basis of a single load case that produces a single bending
moment diagram. In general, the diagrams for the maximum span bending moment
and the maximum support bending moment should be used. These bending moment
diagrams will have distinct inflection points in the span. A typical bending moment
envelope is illustrated in ACI Fig. R12.10.2. This envelope is obtained, for example, by
considering alternate span loading on a continuous member. Regardless of the bending
moment diagram that is utilized, the basic principles for development length and cutoff
points must be satisfied.

Splices of Reinforcement
Fabricators typically supply reinforcing bars with the following standard mill lengths:
(1) 60 ft for No. 5 and larger bars and (2) 40 ft for No. 4 and smaller bars. Although it
may be possible to acquire reinforcing bars that are longer than standard mill lengths,
transporting longer bars may be problematic, because the standard length of a rail car
is approximately 65 ft and the lengths of flatbed semitrailers range from 48 to 60 ft. One
of the primary reasons that reinforcing bars are spliced together at the construction site
has to do with transportation restrictions. Another reason has to do with handling and
placing the reinforcement: It is usually more convenient to move and place shorter bars
because they weigh less than longer bars.

Three types of reinforcement splices are commonly used:

� Lap splices
� Mechanical splices
� Welded splices

These types of splices are examined next for flexural reinforcement.

Lap Splices Lap splices are frequently specified and are usually the most economical
type of splice. In a lap splice, the bars are generally in contact over a specified length and
are wired together. This is commonly referred to as a contact lap splice. The force in one
bar is transferred to the surrounding concrete by bond, which subsequently transfers
it to the adjoining bar. Splitting cracks can occur at the ends of a splice. In general, the
following should be considered when specifying lap splices:
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� Provide splices at locations away from maximum stress (maximum bending
moment).

� Stagger the location of splices wherever possible.

The required lap splice length depends on the tension development length of the
bars, the area of reinforcement provided over the length of the splice, and the percentage
of reinforcement that is spliced at any one location. Because experimental data on lap
splices using Nos. 14 and 18 bars are sparse, the use of tension lap splices for these bar
sizes is prohibited (ACI 12.14.2.1).

Lap splices in tension are classified as Class A or Class B. The length of the lap splice
is given as a multiple of the tension development length �d :

� Class A splice length = 1.0�d ≥ 12 in
� Class B splice length = 1.3�d ≥ 12 in

ACI 12.15.1 stipulates that �d be determined by the provisions of ACI 12.2; however,
the 12-in minimum length specified in ACI 12.2.1 and the excess reinforcement modi-
fication factor of ACI 12.2.5 are not applicable (the splice length must be based on the
full fy because the provided area of reinforcement is accounted for in the definition of
the splice classification). The effective clear spacing that is to be used in the calculation
of �d is illustrated in Fig. 6.24 for a beam. The clear space that is to be used for staggered
splices in one-way slabs is the minimum distance between adjacent splices [see ACI
Fig. R12.15.1(b)].

The default splice classification for a lap splice is Class B. However, if both of the
following two conditions are satisfied, a Class A splice is permitted:

1. The provided As ≥ 2(required As) over entire splice length.

2. Less than or equal to 0.5As is spliced within the required lap length.

The first of these two conditions basically encourages splices to be located away
from sections where the tensile stress in the bars is high. In situations without load
reversals, negative reinforcing bars should be spliced near the midspan of a member,
whereas positive reinforcing bars should be spliced over the supports.

(typical)

FIGURE 6.24 Clear spacing of spliced bars in a beam.
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Transverse reinforcement, such as stirrups, should be used over the length of a lap
splice to improve its capacity. Tests have shown that transverse reinforcement delays
or prevents the opening of splitting cracks that typically initiate at the ends of a splice.
A decrease in splice length can also be realized by using a certain amount of transverse
reinforcement (see ACI 12.2).

ACI 12.15.3 contains the requirements when bars of different size are lap spliced in
tension. In such cases, the minimum lap splice length is the greater of the following: (1)
tension development length �d of the larger bar and (2) tension lap splice length of the
smaller bar.

Noncontact lap splices are permitted in flexural members. Unlike contact lap splices,
the bars that are spliced in a noncontact lap splice are not in contact with each other.
According to ACI 12.14.2.3, the bars must be spaced no farther than the smaller of
(1) one-fifth the required lap splice length and (2) 6 in. A spacing any larger than the
limiting value can result in an essentially unreinforced section of concrete between the
bars. Contact lap splices are usually specified because the likelihood that the bars will
displace during concrete placement is much smaller than that for noncontact splices.

Mechanical Splices According to Ref. 15, a mechanical splice is defined as a “complete
assembly of a coupler, a coupling sleeve, or an end-bearing sleeve, including any ad-
ditional intervening material or other components required to accomplish the splicing
of reinforcing bars.” A variety of proprietary mechanical devices that can be used to
splice flexural reinforcing bars are available. More information on the various systems
can be found in Ref. 15.

Mechanical splices can be used in a number of situations and can be more cost-
effective than lap splices under a number of conditions, including the following:

1. When long lap splices are needed. Long lap splices are commonly required when
using No. 9 and larger bars and when using epoxy-coated bars.

2. When lap splices cause reinforcement congestion. This can occur at beam–column
joints and other locations where bars are spliced in close proximity to each
other.

3. Where spacing of the flexural reinforcement is insufficient to permit lap splices. This
can happen in beams with relatively large reinforcement ratios and larger bar
sizes.

Unlike lap splices, splitting failures are not a concern when utilizing mechanical
splices because mechanical splices do not rely on the surrounding concrete to transfer
the tensile force from one bar to the other. As such, the compressive strength of the
concrete and the cover to the splice do not affect the strength of a mechanical splice.

ACI 12.14.3.2 requires that mechanical splices develop in tension or compression
125% of the specified yield strength of the bar. This is to ensure that some yielding
occurs in the reinforcing bar adjacent to the mechanical splice prior to the failure of the
splice. However, this requirement can be waived for No. 5 and smaller bars used in
splices that meet the provisions of ACI 12.15.5 (ACI 12.14.3.5).

Welded Splices The Code permits the use of welded splices for flexural reinforcement.
The welding must conform to the provisions of Ref. 16, which cover aspects of welding
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reinforcing bars and criteria to qualify welding procedures. Because ASTM A615, A616,
and A617 do not contain limits on the chemical elements that affect the weldability of
the steel, these specifications must be supplemented to require a report of material
properties necessary to conform to the requirements of Ref. 16 (ACI 3.5.2). ASTM A706
steel is intended for welding, and such supplements on material properties are not
needed. Additional information on welded splices can be found in Ref. 17.

Like mechanical splices, a full welded splice, which is generally intended for No. 6
and larger bars, must be able to develop 125% of the specified yield strength of the bar.
The exception given in ACI 12.14.3.5 is applicable in this case as well.

Structural Integrity Reinforcement
Although the probability of occurrence is generally low, it is possible that a structure
can be subjected to extraordinary events during its lifetime. These events can arise from
service or environmental conditions that are not considered explicitly in the design of
ordinary buildings or structures. Examples of such events are explosions, vehicular
impact, misuse by occupants, and tornadoes. The loads generated by these events are
usually of short duration, but they can lead to damage or failure.

In an attempt to limit damage to relatively small areas, the overall integrity of a
reinforced concrete structure can be substantially enhanced by relatively minor changes
in reinforcement detailing. Thus, in addition to the requirements pertaining to detailing
of flexural reinforcement that are given in Chap. 12 of the Code, the structural integrity
requirements of ACI 7.13 must also be satisfied. The main purpose of these requirements
is to improve the redundancy and ductility of reinforced concrete structures.

Table 6.4 contains a summary of the structural integrity requirements. A structure
is essentially tied around its perimeter by requiring that a portion of the negative and
positive reinforcements be continuous in perimeter or spandrel beams. The continuous
reinforcement in these beams must be enclosed by closed stirrups or ties that satisfy the
torsional detailing requirements of ACI 11.5.4.1. The transverse reinforcement must be
anchored around the longitudinal bars using a 135-degree standard hook or a seismic
hook, which is defined in ACI 2.2. A two-piece stirrup that satisfies the requirements
of ACI 7.13.2.3 is depicted in ACI Fig. R7.13.2. A 90-degree hook is permitted where an
adjoining slab or flange can prevent spalling, as shown in the figure. Note that pairs
of U-stirrups that lap one another in accordance with ACI 12.13.5 are not permitted in
perimeter beams because such stirrups usually cannot prevent themselves and the top
reinforcement from tearing out of the concrete in the event that damage occurs to the
side concrete cover.

Recommended Flexural Reinforcement Details
Recommended flexural reinforcement details for beams and one-way slabs are given
in Figs. 6.25 and 6.26, respectively. The bar lengths in the figures are based on members
subjected to uniformly distributed gravity loads. Adequate bar lengths must be deter-
mined by calculation for members subjected to the effects from other types of gravity
loads and lateral loads. The bar lengths in these figures can also be used for members
that have been designed using the approximate bending moment coefficients given in
ACI 8.3.3 (see Section 3.3).

Additional information on reinforcement detailing can be found in Refs. 18 and 19.



Flexural ACI Section
Member Requirements Number

Joists
(defined
in ACI
8.13.1
through
8.13.3)

At least one bottom bar shall be continuous or shall be spliced
with a Class B tension splice or a mechanical or welded splice in
accordance with ACI 12.14.3.

7.13.2.1

At noncontinuous supports, the bottom bars shall be anchored to
develop fy at the face of the support, using a standard hook in
accordance with ACI 12.5 or a headed deformed bar in
accordance with ACI 12.6.

Perimeter
beams

At least one-sixth of the negative reinforcement required at the
support, but not less than two bars, must be continuous over the
span length and must pass through the region bounded by the
longitudinal reinforcement of the column.

7.13.2.2(a)

At least one-quarter of the positive reinforcement required at the
midspan, but not less than two bars, must be continuous over the
span length and must pass through the region bounded by the
longitudinal reinforcement of the column.

7.13.2.2(b)

At noncontinuous supports, the reinforcement shall be anchored
to develop fy at the face of the support, using a standard hook in
accordance with ACI 12.5 or a headed deformed bar in
accordance with ACI 12.6.

7.13.2.2

The continuous negative and positive reinforcements required in
ACI 7.13.2.2 shall be enclosed by transverse reinforcement in
accordance with ACI 11.5.4.1. This transverse reinforcement shall
be anchored in accordance with ACI 11.5.4.2 but need not be
extended through the column.

7.13.2.3

Where splices are used to satisfy ACI 7.13.2.4, the splices shall
be Class B tension splices or mechanical or welded splices in
accordance with ACI 12.14.3. The splice locations are as follows:
� Top reinforcement: at or near the midspan
� Bottom reinforcement: at or near a support

7.13.2.4

Beams
other
than
perimeter
beams

No additional requirements for longitudinal integrity reinforcement
need to be satisfied where transverse reinforcement in
accordance with ACI 7.13.2.3 is provided.

7.13.2.5

Where transverse reinforcement in accordance with ACI 7.13.2.3
is not provided, the following requirements need to be fulfilled:
� At least one-quarter of the positive reinforcement required at

the midspan, but not less than two bars, must pass through the
region bounded by the longitudinal reinforcement of the column.
This reinforcement shall be continuous or shall be spliced over
or near the support with a Class B tension splice or a
mechanical or welded splice in accordance with ACI 12.14.3.

� At noncontinuous supports, the reinforcement shall be
anchored to develop fy at the face of the support, using a
standard hook in accordance with ACI 12.5 or a headed
deformed bar in accordance with ACI 12.6.

TABLE 6.4 Structural Integrity Requirements of ACI 7.13
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FIGURE 6.25 Recommended flexural reinforcement details for beams.

FIGURE 6.26 Recommended flexural reinforcement details for one-way slabs.
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6.3 Design for Shear

6.3.1 Overview
In addition to flexure, reinforced concrete beams and one-way slabs must be designed
for the effects of shear forces due to the weight of the member and any superimposed
nominal loads. Typically, a reinforced concrete flexural member is designed for flexure
prior to the design for shear. The dimensions of the cross-section and the amount of
flexural reinforcement are determined using the strength design requirements given
in the Code for flexure (see the previous sections). Included in those requirements are
limits on the amount of flexural reinforcement, which ensure that the member behaves
in a ductile manner.

Experiments have demonstrated that shear failure is brittle and usually occurs
without any warning; thus, it is important to make certain that the shear strength of a
member equals or exceeds the flexural strength at all sections so that a ductile failure
is ensured.

In order to acquire an understanding on how to design for shear forces in a rein-
forced concrete beam, consider the rectangular beam depicted in Fig. 6.27. Assume that
the beam is simply supported and subjected to a uniformly distributed load. Also as-
sume that the beam is homogeneous, elastic, and uncracked. Two elements are shown
in the figure: Element 1 is located above the neutral axis, and element 2 is located below
the neutral axis. Both elements are subjected to flexural stresses f and shear stresses
v due to the loads (Fig. 6.27a ). As expected, the flexural stresses acting on element 1

(a)

(b)

FIGURE 6.27 Flexural and shear stresses in a homogeneous, elastic, uncracked beam.
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FIGURE 6.28 Principal compressive stress trajectories in a homogeneous, elastic, uncracked
beam.

are compressive, whereas those on element 2 are tensile. Figure 6.27b shows the princi-
pal stresses acting on elements 1 and 2, which can be determined from the strength of
materials using Mohr’s circle.

The magnitudes of f and v change along the span because of changes in the magni-
tudes of the bending moment and shear forces, respectively. They also change vertically
on the basis of the distance from the neutral axis. As such, the principal stresses change
from one location to another. A plot of the principal compressive stress trajectories is
shown in Fig. 6.28.

When the principal tensile stresses exceed the tensile strength of the concrete, the
cracking pattern should resemble the lines depicted in Fig. 6.28 because the principal
tensile stresses act perpendicular to the principal compressive stresses. In the center
portion of the span where shear forces are small, the cracks are primarily vertical and
are caused by the tension forces due to flexure. These cracks start at the bottom of the
beam where the tension forces are the largest. Toward the ends of the member where
shear forces are relatively large, the cracks are inclined and are due to flexure and shear.
Such cracks are commonly referred to as shear cracks or diagonal tension cracks. Thus, in
addition to flexural tension, diagonal tension due to combined flexure and shear must
be considered in the design of a flexural member.

If there were no flexural reinforcement in the concrete beam shown in Figs. 6.27 and
6.28, a tension crack would form at the bottom of the beam at the location of maximum
bending moment once the load was large enough so that the tensile stress exceeded the
tensile strength of the concrete. This crack would immediately propagate to the top of
the section, causing the beam to fail. In this case, shear forces have virtually no effect
on the failure of the beam.

If longitudinal reinforcement is provided at the bottom of the beam, tension cracks
would form as described earlier, and the reinforcement would provide the necessary
tensile strength so that larger loads can be supported by the beam. If the reinforcement
is detailed properly, the crack widths and lengths are relatively small.

Shear forces also increase with increasing loads. In regions where the bending mo-
ment is small and shear forces are large, web-shear cracks will form when the diagonal
tension stress in the vicinity of the neutral axis exceeds the tensile strength of the con-
crete (see Fig. 6.29). These types of cracks are rare. It is more common for flexure-shear
cracks to form at locations where both the bending moment and the shear force are
large. Once the load that causes the formation of these diagonal cracks is reached, it is
possible for the cracks to immediately propagate to the compression face of the member,
thereby causing splitting failure. It is also possible for failure to occur shortly after the
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FIGURE 6.29
Flexural and
diagonal cracks in
a flexural member.

onset of diagonal cracking. In any case, it is evident from this discussion that flexural
reinforcement alone is not sufficient to arrest this type of crack propagation; transverse
reinforcement is needed to increase shear resistance.

Flexure-shear cracking cannot be predicted by determining the principal tensile
stresses in an uncracked beam. Empirical equations based on experimental results have
been derived to determine the nominal shear stress at which such cracking occurs.

Providing the proper amount of shear (transverse) reinforcement will enable a flexu-
ral member to develop its full bending moment capacity. Otherwise, its overall strength
will be limited by its shear capacity, which is based on the tensile strength of concrete.
The Code requirements for shear design are outlined in the following sections.

6.3.2 Shear Strength

Introduction
In general, the design for shear consists of calculating the maximum factored shear
force Vu and requiring that it is equal to or less than the design shear strength φVn:

Vu ≤ φVn (6.35)

The factored shear force Vu is determined by combining the nominal shear forces
determined from analysis in accordance with the load combinations given in ACI 9.2
(see Section 4.2). According to ACI 9.3.2.3, the strength reduction factor φ is equal to
0.75 for shear.

The nominal shear strength Vn is determined by ACI Eq. (11-2):

Vn = Vc + Vs (6.36)

In this equation, Vc is the nominal shear strength provided by concrete and Vs is the
nominal shear strength provided by shear reinforcement. These items are discussed in
detail later.

Required Shear Strength
The factored shear force Vu is determined at a section using the load combinations
given in ACI 9.2. More information on ACI load combinations can be found in Section
4.2. Recall from the discussion of analysis methods in Section 3.3 that an approximate
shear force at the face of a support for gravity load effects can be determined using the
coefficients given in ACI 8.3.3.
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FIGURE 6.30 Critical
section for shear in
accordance with
ACI 11.1.3.

The locations of the critical sections for shear are given in ACI 11.1.3. It is permitted
to design sections located less than a distance d from the face of a support for Vu

computed at the distance d, provided the following three criteria are satisfied:

1. Support reactions in the direction of the applied shear force introduce compres-
sion into the end regions of the member.

2. Loads are applied at or near the top of the member.

3. No concentrated loads occur between the face of the support and a distance d
from the face of the support.

It has been shown from numerous experiments that the inclined shear crack that
is closest to the support will extend upward from the face of the support, reaching the
compression zone at a distance of approximately d from the face of the support (see
Fig. 6.30).

Shown in Fig. 6.31 are the free-body diagrams of the beam sections above and below
the location of the crack. The loads are applied to the top of the beam, and the stirrups
across the crack have a force equal to the area of the stirrups Av times the yield stress of
the stirrups fyt . It is evident from the upper free-body diagram that the loads applied
to the beam between the face of the support and the section located a distance d from
the face of the support are transferred directly to the support by compression in the
web above the crack. Thus, the Code permits design for a maximum Vu at a distance d
from the face of the support.

FIGURE 6.31 Free-
body diagrams
of the end
of the beam.
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FIGURE 6.32 Critical
section in
members with
concentrated forces
near the support.

Stirrups are required across the potential crack plane between the face of the support
and the distance d. If this member were loaded near the bottom of the beam instead
of at the top, the transfer of forces would be different than that shown here, and the
critical section for shear would be at the face of the support.

Generally, the critical location for shear will be at a distance d from the face of a
support. Members supported by bearing at the bottom of the member and members
in a continuous frame supporting uniformly distributed loads are typical conditions
where this would be applicable [see ACI Fig. R11.1.3.1(c) and (d)].

Because there is a radical change in shear when a concentrated load occurs between
the face of the support and a section located at a distance d from the face of the support,
the critical section is taken at the face of the support (see Fig. 6.32).

The critical section for shear is also at the face of the support for members framing
into a supporting member that is in tension [see ACI Fig. R11.1.3.1(e)].

Shear Strength Provided by Concrete
ACI 11.2 permits ACI Eq. (11-3) or (11-5) to be used to determine the shear strength
provided by the concrete Vc for members subjected to flexure and shear:

Vc = 2λ
√

f ′
c bwd (6.37)

Vc =
(

1.9λ
√

f ′
c + 2,500ρw

Vud
Mu

)
bwd ≤ 3.5λ

√
f ′
c bwd (6.38)

In both equations, f ′
c has the units of pounds per square inch and λ is a modification

factor that reflects the reduced mechanical properties of lightweight concrete (see ACI
8.6.1):

� λ = 0.85 for sand-lightweight concrete.
� λ = 0.75 for all-lightweight concrete.
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� λ = fct/6.7
√

f ′
c ≤ 1.0, where the average splitting tensile strength of lightweight

concrete fct has been determined by tests [Eq. (1) in ASTM C496/C496M]. Note
that 6.7

√
f ′
c is the average splitting tensile strength of normal-weight concrete.

� λ = 1.0 for normal-weight concrete.

It is permitted to use linear interpolation to determine λ in cases where a concrete
mixture contains normal-weight fine aggregate and a blend of lightweight and normal-
weight coarse aggregates. The interpolation shall be between 0.85 and 1.0 on the basis
of the volumetric fractions of the aggregates.

ACI 11.1.2 requires that values of
√

f ′
c be limited to 100 psi, except as allowed in ACI

11.1.2.1. This limitation is primarily due to the fact that there is a lack of test data and
practical experience with concrete having compressive strengths greater than 10,000 psi.
According to the exception given in Section 11.1.2.1, values of

√
f ′
c may be greater than

100 psi for reinforced concrete beams and joist construction that satisfy the minimum
web reinforcement requirements given in ACI 11.4.6.3, 11.4.6.4, or 11.5.5.2.

Equation (6.38) is based on a large number of test results and conservatively pre-
dicts the nominal shear stress when flexure-shear cracks occur.20 In this equation, the
term λ

√
f ′
c is related to the tensile strength of the concrete (see Chap. 2) and ρw is the

reinforcement ratio of the flexural reinforcement, that is, ρw = As/bwd . Larger amounts
of flexural reinforcement result in smaller and narrower tension cracks; thus, a larger
area of uncracked concrete is available to resist shear, which translates into an increase
in the shear at which diagonal cracks will form. Equation (6.38) also captures the influ-
ence that the ratio of the shear force to the bending moment has on the development of
diagonal cracking that was described previously. The minimum value of Mu, which is
equal to Vu times d , limits Vc near points of inflection (ACI 11.2.2.1).

It has been found that Eq. (6.38) overestimates the influence of f ′
c on the shear

strength of the concrete and underestimates the influence of ρw and Vud/Mu.20,21 Other
research has indicated that member size has an influence on the shear strength of the
concrete: The shear strength decreases as the overall depth of the member increases.22

Equation (6.37) is obtained by setting the second term in the parentheses in Eq.
(6.38) equal to 0.1

√
f ′
c . This equation is essentially a lower bound to Eq. (6.38), and it is

convenient to use in most designs.
The flowchart shown in Fig. 6.33 can be used to determine the design shear strength

for concrete φVc .
For joist construction that meets the size and spacing limitations of ACI 8.13.1

through 8.13.3, Vc is permitted to be increased by 10% more than that specified by Eq.
(6.37) or (6.38). This increase is based on the relatively close spacing between the joists,
which enables redistribution of loads to adjacent joists. It is also based on the satisfactory
performance of joists designed by previous editions of the ACI Code which permitted
higher shear strengths.

Shear Strength Provided by Shear Reinforcement
Types of Shear Reinforcement ACI 11.4.1 permits the following types of shear reinforce-
ment for flexural members:

1. Stirrups perpendicular to the axis of the member

2. Welded wire reinforcement with wires located perpendicular to the axis of the
member
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Given

FIGURE 6.33 Design shear strength for concrete φVc. (continued)

3. Spirals, circular ties, or hoops

4. Stirrups making an angle of 45 degrees or more with the longitudinal flexural
reinforcement

5. Longitudinal reinforcement that is bent an angle of 30 degrees or more with
respect to the longitudinal flexural reinforcement

Stirrups that are oriented perpendicular to the axis of the member and are anchored
to the longitudinal flexural reinforcement are the most commonly used type of shear
reinforcement in beams. However, in areas of moderate to high seismic risk, spirals
or hoops must be used in accordance with ACI Chap. 21. Inclined stirrups and bent
longitudinal bars are rarely used in practice and, thus, will not be covered in this book.

For the two-legged stirrups shown in Fig. 6.34, the total area of shear reinforcement
Av is equal to two times the area of the stirrup bar Ab . These are commonly referred to
as U-stirrups because of their shape. In general, Av is equal to the area of the stirrup bar
times the number of legs that are provided. Figure 6.35 illustrates typical configurations
of stirrups with multiple legs. The four-legged configuration is commonly used for



238 C h a p t e r S i x

FIGURE 6.33 (Continued)

beams that are 24 to 48 in wide, whereas the six-legged configuration is utilized for
beams that are more than 48 in wide. Note that ACI 12.13.2.5 permits the use of single-
leg stirrups in joist construction conforming to ACI 8.11 (see Example 6.10).

ACI 11.4.4.2 limits the values of the specified yield strength to 60,000 and 80,000
psi for, respectively, reinforcing bars and welded deformed wire reinforcement that is

FIGURE 6.34 Two-legged U-stirrup.
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FIGURE 6.35 Multiple-legged stirrup configurations.

used as shear reinforcement. These limits are meant to control the width of diagonal
cracks.

Development of Shear Reinforcement Like in the case of flexural reinforcement, it is
essential to properly develop and anchor shear reinforcement in order for it to be fully
effective (i.e., in order for it to develop its full tensile force, which is equal to Av fyt).

Requirements for the development of shear (web) reinforcement are given in ACI
12.13 and are illustrated for the case of stirrups in Fig. 6.36. Note that stirrups are to
be provided as close to the tension and compression faces of the member as cover
requirements and other reinforcement in the section permits; this is stipulated because
at or near ultimate load, cracks can extend over a large portion of the member. Each

FIGURE 6.36 Anchorage details for U-stirrups.
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Minimum Beam Height h (in.)

Concrete Compressive Strength f ′
c (psi)

Stirrup Size 3,000 4,000 5,000 6,000

No. 6 26 23 21 20

No. 7 30 27 24 22

No. 8 34 30 27 25

TABLE 6.5 Minimum Beam Height to Accommodate No. 6, 7, or 8 Stirrups

bend in the continuous portion of the U-stirrup must enclose a longitudinal bar (ACI
12.13.3). The ends of the stirrups must be anchored around the longitudinal bars, using
a standard hook defined in ACI 7.1.3(a) for No. 5 bars and smaller and in ACI 7.1.3(b)
for Nos. 6 to 8 bars. In addition to a standard hook, a minimum embedment length
equal to 0.014db fyt/(λ

√
f ′
c ) must be provided between the outside edge of the hook

and the midheight of the member where No. 6, 7, or 8 stirrups are utilized (see ACI
12.13.2.2 and Fig. 6.36 of this book). This additional anchorage requirement takes into
consideration the following: (1) It is not possible to bend a No. 6, 7, or 8 stirrup tightly
around a longitudinal bar. (2) A large force can exist in the larger stirrup bars with
fyt ≥ 40,000 psi.

The use of larger stirrup bars controls the beam height that must be provided in order
to satisfy the development requirements of ACI 12.13.2.2. Table 6.5 contains minimum
beam heights for various concrete compressive strengths, assuming normal-weight
concrete, Grade 60 reinforcement, and a cover of 1.5 in to the stirrup hook. No. 6,
7, or 8 stirrups cannot be used in beams with heights less than those listed in the
table.

Specific requirements for anchorage of welded plain wire reinforcement in the form
of U-stirrups are given in ACI 12.13.2.3 and 12.13.2.4. ACI Fig. R12.13.2.3 illustrates the
proper anchorage of such reinforcement in compression zones of beams.

ACI 12.13.5 contains provisions for closed stirrups that are formed from two U-
stirrups. The legs of the stirrups must be lap spliced with a splice length equal to or
greater than 1.3�d but not less than 12 in where the tension development length �d is
determined in accordance with ACI 12.2 (see Fig. 6.37). If the required lap length cannot
fit within a member that has a height of at least 18 in, such stirrups can still be used,
provided that the force in each leg is equal to or less than 9,000 lb. Thus, for Grade
60 reinforcement, only a No. 3 stirrup satisfies this requirement (force in stirrup leg =
0.11 × 60,000 = 6,600 lb).

Design of Shear Reinforcement Shear reinforcement is required to augment the overall
shear strength of a reinforced concrete flexural member. Prior to diagonal cracking, the
stress in such reinforcement is essentially zero. After diagonal cracks develop, shear
reinforcement restricts crack growth and penetration into the compression zone. The
width of the cracks is also controlled.

The required shear reinforcement depends on the magnitude of the factored shear
force Vu and the design shear strength of the concrete φVc . The Code requirements are
summarized in the following three cases.
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FIGURE 6.37 Pairs
of U-stirrups
forming a
closed stirrup.

Case 1: Vu ≤φVc/2 Shear reinforcement is not requirement at any section where
the factored shear force is less than 50% of the design shear strength of the concrete.
For members subjected to uniform loads, these sections typically occur in the center
segment of the span.

Case 2: φVc/2 < Vu ≤φVc A minimum area of shear reinforcement is required
where Vu is greater than 50% of φVc (ACI 11.4.6). This requirement provides a minimum
level of shear strength in otherwise-unreinforced portions of a member where the sud-
den formation of a diagonal crack because of an unexpected tensile force or overload
could cause failure. The following members are exempt from this requirement:

� Footings and solid slabs
� Concrete joist construction defined by ACI 8.13
� Beams with h ≤ 10 in
� Beams integral with slabs with (a) h ≤ 24 in and (b) h ≤ the larger of 2.5hf and

0.5bw

� Beams constructed from steel fiber–reinforced, normal-weight concrete with (a)
f ′
c ≤ 6,000 psi, (b) h ≤ 24 in, and (c) Vu ≤ φ2

√
f ′
c bwd

The minimum area of shear reinforcement Av,min is determined by ACI Eq. (11-13):

Av,min = 0.75
√

f ′
c bws

fyt
≥ 50bws

fyt
(6.39)

Tests have indicated that the minimum required area of shear reinforcement is
dependent on the strength of the concrete.23 The lower bound limit in Eq. (6.39) is
applicable in cases where the concrete compressive strength is less than approximately
4,400 psi.
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The spacing of shear reinforcement s must be equal to or less than the smaller of
d/2 and 24 in (ACI 11.4.5.1).

Case 3: Vu > φVc Where Vu exceeds φVc , more than the minimum amount of
shear reinforcement is required at a section. Prior to calculating the required shear
reinforcement, it is important to check the provisions of ACI 11.4.7.9: The nominal
shear strength of shear reinforcement Vs must be equal to or less than 8

√
f ′
c bwd . Using

Eqs. (6.35) and (6.36), this requirement can be expressed as follows:

Vu − φVc ≤ φ8
√

f ′
c bwd (6.40)

This provision attempts to guard against excessive shear crack widths by limiting
the maximum shear that can be transmitted by the stirrups to four times the design shear
strength of the concrete. The size of the section and/or the strength of the concrete must
be increased in cases where this limit has been exceeded.

Once the requirements of ACI 11.4.7.9 have been satisfied, the next step is to establish
the segments along the span where shear reinforcement is required and where it is not
required, using the information in cases 1 and 2. These segments are illustrated in
Fig. 6.38.

In the segments where Vu exceeds φVc , ACI Eq. (11-15) is used to determine the
nominal shear strength provided by shear reinforcement:

Vs = Av fytd
s

(6.41)

FIGURE 6.38 Segments along the span where shear reinforcement is and is not required.
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Substituting Eqs. (6.35) and (6.36) into Eq. (6.41) results in an expression for the
required area and spacing of shear reinforcement:

Av

s
= (Vu − φVc)

φ fytd
(6.42)

It is evident from Eq. (6.42) that shear reinforcement is designed to carry the shear
exceeding that which causes diagonal cracking.

Assuming a stirrup size and number of stirrup legs, Eq. (6.42) can be solved for the
required stirrup spacing s:

s = φ Av fytd
Vu − φVc

(6.43)

The maximum spacing requirements are summarized as follows:

� Where Vu − φVc ≤ φ4
√

f ′
c bwd, maximum s = d/2 or 24 in (ACI 11.4.5.1).

� Where Vu − φVc > φ4
√

f ′
c bwd, maximum s = d/4 or 12 in (ACI 11.4.5.3).

The purpose of the first of these two spacing requirements is to ensure that each
45-degree diagonal shear crack is intercepted by at least one stirrup. In situations where
the shear force is relatively large, providing closer stirrup spacing leads to narrower
inclined cracks; this is the reason why the maximum spacing in the second of the two
requirements is one-half of that in the first requirement.

The required stirrup size and spacing is normally established at the critical sec-
tion first. At sections away from the critical section, the spacing can be increased. For
economy, stirrup spacing should be changed as few times as possible over the required
length. If possible, no more than three different stirrup spacings should be specified
along the span, with the first stirrup located 2 in from the face of the support. Also, larger
stirrup sizes at a wider spacing are usually most cost-effective than smaller stirrup sizes
at a closer spacing. The latter require disproportionately high costs for fabrication and
placement.

The flowchart shown in Fig. 6.39 can be used to determine the required amount of
shear reinforcement for members subjected to shear and flexure with stirrups perpen-
dicular to the axis of the member.

Example 6.9 Determine the required shear strength of the one-way slab given in Examples 3.5,
6.1, and 6.4 (see Fig. 3.3), and compare it with the design shear strength. Assume normal-weight
concrete with f ′

c = 4,000 psi and Grade 60 reinforcement.

Solution It was determined in Example 3.5 that the maximum factored shear force Vu = 0.6 kips
per foot width of slab. This shear force is located at the face of the first interior support and was
determined using the approximate method of ACI 8.3.3. The critical section for shear occurs at
a distance d from the face of the support; however, in this example, the shear strength will be
conservatively checked at the face of the support.

The design shear strength of the slab is equal to the design shear strength of the concrete and is
determined by ACI Eq. (11-3):

φVc = φ2λ
√

f ′
c bwd = 0.75 × 2 × 1.0

√
4,000 × 12 × 2.25/1,000

= 2.6 kips > Vu = 0.6 kips
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FIGURE 6.39 Required shear reinforcement for members subjected to shear and
flexure. (continued)

Comments
If it had been determined that Vu > φVc , then the design shear strength would have been increased
by increasing the slab thickness and/or increasing the compressive strength of the concrete. It is
evident from Eq. (6.37) that an increase in the slab thickness has a greater impact on shear strength
than does the compressive strength. Rarely are stirrups used in slabs. It would be impossible to
fabricate and develop stirrups for use in a thin slab like the one in this example.

Example 6.10 Determine the required shear reinforcement in the end span of a typical interior
wide-module joist given in Examples 3.4, 6.2, 6.5, and 6.6 (see Fig. 3.3). Assume normal-weight
concrete with f ′

c = 4,000 psi and Grade 60 reinforcement.

Solution The flowchart shown in Fig. 6.39 will be used to determine the required shear reinforce-
ment for this member subjected to shear and flexure.

Step 1: Establish the strength reduction factor. In accordance with ACI 9.3.2.3, φ = 0.75 for
shear.
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FIGURE 6.39 (Continued)

Step 2: DetermineφVc . The design shear strength φVc is determined using the flowchart shown
in Fig. 6.33:

(a) Determine the lightweight concrete modification factor λ.

Because normal-weight concrete is specified, λ = 1.0.

(b) Determine φVc from ACI Eq. (11-3) or (11-5).

From Examples 6.5 and 6.6, d = 18 in. The width of the joist bw at the bottom is equal to 7 in.
Because the width increases at a slope of 12 to 1, an average value of bw could be used to calculate
φVc . Conservatively use bw = 7 in. Also, this system does not meet the size and spacing limitations
for joist construction in accordance with ACI 8.13.1 through 8.13.3; thus, a 10% increase in Vc is not
permitted (ACI 8.13.8), and the member must be designed as a beam (ACI 8.13.4).

Using ACI Eq. (11-3):

φVc = φ2λ
√

f ′
c bwd = 0.75 × 2 × 1.0

√
4,000 × 7 × 18/1,000 = 12.0 kips
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FIGURE 6.40
Single-leg
stirrup detail.

Step 3: Determine Vu and check if shear reinforcement is required. From Table 3.4 given in
Example 3.4, the maximum factored shear force in the end span occurs at the exterior face of the
first interior support and is equal to 14.7 kips.

The critical section occurs at a distance d from the face of the support, and the factored shear
force at that location is equal to

Vu = 14.7 − [1.1 × (18/12)] = 13.1 kips

where wu = 1.1 kips/ft from Example 3.4.
Because Vu = 13.1 kips > φVc/2 = 12.0/2 = 6.0 kips, shear reinforcement is required at the

critical section.
Also, Vu = 13.1 kips > φVc = 12.0 kips.
Step 4: Determine the required shear reinforcement.

Vu − φVc = 13.1 − 12.0 = 1.1 kips < φ4
√

f ′
c bwd = 0.75 × 4

√
4,000 × 7 × 18/1,000 = 23.9 kips

Therefore, the maximum stirrup spacing = d/2 = 18/2 = 9 in (governs) or 24 in.
Because of the sloping joist face and the narrow width of the joist, a single-leg stirrup will

be used instead of a two-legged stirrup. A single-leg stirrup is a continuous bar located near the
centerline of the joist, which is bent into the profile shown in Fig. 6.40. It is attached to the bottom
bars of the joist and has a standard hook at the top. (Note that this type of shear reinforcement is
permitted only for joist construction conforming to ACI 8.11; however, it is assumed that it can be
used in narrow beams like the one in this example.)

Assuming a No. 3 bar, the required spacing is determined by Eq. (6.43):

s = φ Av fytd
Vu − φVc

= 0.75 × 0.11 × 60 × 18
1.1

= 81.0 in > 9.0 in (governs)

Check the minimum shear reinforcement requirements. Because the compressive strength of
the concrete is less than 4,400 psi, the lower bound limit in Eq. (6.39) governs:

Av,min = 50bws
fyt

= 50 × 7 × 9
60,000

= 0.05 in2 < 0.11 in2

Determine the length over which stirrups are required. Stirrups are no longer required where
Vu ≤ φVc/2 = 6.0 kips:

Length = Vu @ support − (φVc/2)
wu

= (14.7 − 6.0)
1.1

= 7.9 ft from the face of the support

Use 12 No. 3 single-leg stirrups at a 9.0-in spacing, with the first stirrup located 2 in from the
face of the support.

Reinforcement details for the wide-module joist are shown in Fig. 6.41. The lengths of the
negative reinforcing bars were determined using Fig. 6.25 for beams other than perimeter beams.

Comments
Because the stirrups are spaced at the maximum permitted spacing, the same stirrup spacing is
used over the entire length over which stirrups are required. The stirrups at the exterior end of the



247B e a m s a n d O n e - W a y S l a b s

FIGURE 6.41 Reinforcement details for wide-module joist.

wide-module joist are detailed the same as those at the interior end, even though the factored shear
forces are less (see Table 3.4).

Example 6.11 Determine the required shear reinforcement for the beam along column line B given
in Examples 3.3, 6.3, and 6.7 (see Fig. 3.3). Assume normal-weight concrete with f ′

c = 4,000 psi and
Grade 60 reinforcement.

Solution The flowchart shown in Fig. 6.39 will be used to determine the required shear reinforce-
ment for this member subjected to shear and flexure.

Step 1: Establish the strength reduction factor. In accordance with ACI 9.3.2.3, φ = 0.75 for
shear.

Step 2: DetermineφVc. The design shear strength φVc is determined using the flowchart shown
in Fig. 6.33.

(a) Determine the lightweight concrete modification factor λ.

Because normal-weight concrete is specified, λ = 1.0.

(b) Determine φVc from ACI Eq. (11-3) or (11-5).

From Examples 6.3 and 6.7, d = 18 in and bw = 22 in.
Using ACI Eq. (11-3),

φVc = φ2λ
√

f ′
c bwd = 0.75 × 2 × 1.0

√
4,000 × 22 × 18/1,000 = 37.6 kips

Alternatively, calculate φVc by ACI Eq. (11-5):

φVc = φ

(
1.9λ

√
f ′
c + 2,500ρw

Vud
Mu

)
bwd ≤ φ3.5λ

√
f ′
c bwd

For a factored positive bending moment of 127.3 ft kips (see Table 3.3), it can be determined
that four No. 6 bars are adequate. Thus,

ρw = As

bwd
= 4 × 0.44

22 × 18
= 0.0044
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At the critical section, which is located a distance equal to d = 18 in from the face of the exterior
face of the first interior support, Vu and Mu are (see Table 3.3)

Vu = 56.4 − [5.4 × (18/12)] = 48.3 kips

Mu = 198.1 + [5.4 × (18/12)2/2] − [56.4 × (18/12)] = 119.6 ft kips

Vud/Mu = 48.3 × (18/12)/119.6 = 0.61 < 1.0

Thus,

φVc = 0.75[(1.9 × 1.0
√

4,000) + (2,500 × 0.0044 × 0.61)] × 22 × 18/1,000 = 37.7 kips

< 0.75 × 3.5 × 1.0
√

4,000 × 22 × 18/1,000 = 65.7 kips

The values of φVc obtained from ACI Eqs. (11-3) and (11-5) are essentially the same. Use φVc =
37.6 kips.

Step 3: Determine Vu and check if shear reinforcement is required. The value of Vu at the
critical section was determined in Step 2 to be 48.3 kips.

Because Vu = 48.3 kips > φVc/2 = 37.6/2 = 18.8 kips, shear reinforcement is required at the
critical section.

Also, Vu = 48.3 kips > φVc = 37.6 kips.
Step 4: Determine the required shear reinforcement.

Vu − φVc = 48.3 − 37.6 = 10.7 kips < φ4
√

f ′
c bwd = 0.75 × 4

√
4,000 × 22 × 18/1,000 = 75.1 kips

Therefore, the maximum stirrup spacing = d/2 = 18/2 = 9 in (governs) or 24 in.
Assuming No. 3 U-stirrups with two legs, the required spacing is determined by Eq. (6.43):

s = φ Av fytd
Vu − φVc

= 0.75 × 2 × 0.11 × 60 × 18
10.7

= 16.7 in > 9.0 in (governs)

Check the minimum shear reinforcement requirements. Because the compressive strength of
the concrete is less than 4,400 psi, the lower bound limit in Eq. (6.39) governs:

Av,min = 50bws
fyt

= 50 × 22 × 9
60,000

= 0.17 in2 < 0.22 in2

Determine the length over which stirrups are required. Stirrups are no longer required where
Vu ≤ φVc/2 = 18.8 kips:

Length = Vu at support − (φVc/2)
wu

= (56.4 − 18.8)
5.4

= 7.0 ft from the face of the support

Use 11 No. 3 U-stirrups with two legs at a 9.0-in spacing, with the first stirrup located 2 in from
the face of the support.

Reinforcement details for the beam are shown in Fig. 6.42. The lengths of the negative reinforcing
bars were determined using Fig. 6.25 for beams that are not at the perimeter.

Comments
Because the stirrups are spaced at the maximum permitted spacing, the same stirrup spacing is
used over the entire length over which stirrups are required. The stirrups at the exterior end of the
beam are detailed the same as those at the interior end even though the factored shear forces are
less (see Table 3.3).
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FIGURE 6.42 Reinforcement details for beam on column line B.

Example 6.12 Determine the required shear reinforcement for the reinforced concrete beam sub-
jected to the factored loads in Fig. 6.43. Assume bw = 16 in, h = 22 in, and d = 19.5 in. Also assume
sand-lightweight concrete with f ′

c = 5,000 psi and Grade 60 reinforcement.

Solution The flowchart shown in Fig. 6.39 will be used to determine the required shear reinforce-
ment for this member subjected to shear and flexure.

Step 1: Establish the strength reduction factor. In accordance with ACI 9.3.2.3, φ = 0.75 for
shear.

Step 2: DetermineφVc . The design shear strength φVc is determined using the flowchart shown
in Fig. 6.33:

FIGURE 6.43 Beam given in Example 6.12.
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(a) Determine the lightweight concrete modification factor λ.

Because sand-lightweight concrete is specified, λ = 0.85.

(b) Determine φVc from ACI Eq. (11-3) or (11-5).

Using ACI Eq. (11-3),

φVc = φ2λ
√

f ′
c bwd = 0.75 × 2 × 0.85

√
5,000 × 16 × 19.5/1,000 = 28.1 kips

Step 3: Determine Vu and check if shear reinforcement is required. The critical section occurs
at a distance d from the face of the support, and the factored shear force at that location is equal to

Vu = 78.3 − [4.0 × (19.5/12)] = 71.8 kips

Because Vu = 71.8 kips > φVc/2 = 28.1/2 = 14.0 kips, shear reinforcement is required at the
critical section.

Also, Vu = 71.8 kips > φVc = 28.1 kips.
Step 4: Determine the required shear reinforcement.

Vu − φVc = 71.8 − 28.1 = 43.7 kips < φ4
√

f ′
c bwd = 0.75 × 4

√
5,000 × 16 × 19.5/1,000 = 66.2 kips

Therefore, the maximum stirrup spacing = d/2 = 19.5/2 = 9.8 in (governs) or 24 in.
Assuming No. 3 U-stirrups with two legs, the required spacing is determined by Eq. (6.43):

s = φ Av fytd
Vu − φVc

= 0.75 × 2 × 0.11 × 60 × 19.5
43.7

= 4.4 in

Because the required spacing of the No. 3 U-stirrups is small, recalculate the spacing using No.
4 U-stirrups:

s = φ Av fytd
Vu − φVc

= 0.75 × 2 × 0.20 × 60 × 19.5
43.7

= 8.0 in

Check the minimum shear reinforcement requirements. Because the compressive strength of
the concrete is greater than 4,400 psi, ACI Eq. (11-13) governs:

Av,min = 0.75
√

f ′
c bws

fyt
= 0.75

√
5,000 × 16 × 8
60,000

= 0.11 in2 < 0.40 in2

Determine the length over which stirrups are required. Stirrups are no longer required where
Vu ≤ φVc/2 = 14.0 kips (see Fig. 6.43):

Length = Vu @ support − (φVc/2)
wu

= (78.3 − 14.0)
4.0

= 16.1 ft from the face of the support

Determine the distance x where the maximum stirrup spacing of 9.0 in may be used:

s = φ Av fytd
Vu − φVc

9 = 0.75 × 2 × 0.20 × 60 × 19.5
Vu − 28.1

Vu = 67.1 kips
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From the face of the support,

x = 78.3 − 67.1
4.0

= 2.8 ft

Use five No. 4 U-stirrups with two legs at an 8.0-in spacing, with the first stirrup located 2 in
from the face of the support. Use No. 4 U-stirrups spaced at a 9.0-in spacing for the remainder of
the span.

Comments
Even though the factored shear force at the left support is less than φVc/2, shear reinforcement is
provided over the entire span length.

6.4 Design for Torsion

6.4.1 Overview
Reinforced concrete beams must be designed for the effects from torsional loads wher-
ever applicable. Spandrel beams and beams supporting transverse spans that differ
significantly in length are two examples where torsion is likely to play a major role in
the design of the member.

Both transverse reinforcement and longitudinal reinforcement are needed to resist
the effects from torsional loads. The former type is added to that required for shear, and
the latter type is added to that required for flexure. Because of the way torsional cracks
propagate in a member, closed stirrups are required. Background information on the
Code design requirements are provided later.

Design for torsion in the ACI Code is based on a thin-walled tube, space truss
analogy. A beam is idealized as a tube where the center portion of a solid beam is
conservatively neglected (see Fig. 6.44). Prior to cracking, torsion is resisted through a
constant shear flow q acting around the centerline of the tube, as depicted in Fig. 6.44.
The following equation is obtained from equilibrium of the external torque T and the
internal stresses:

T = 2Aoq = 2Aoτ t (6.44)

FIGURE 6.44
Thin-walled
tube.
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FIGURE 6.45 Area
enclosed by
shear flow
path.

In this equation, Ao is the gross area enclosed by the shear flow path (see Fig. 6.45);
τ is the shear stress at any point along the perimeter of the tube; and t is the thickness
of the wall where τ is being computed.

Equation (6.44) can be rearranged as follows:

q = τ t = T
2Ao

(6.45)

Diagonal cracks form around a beam when it is subjected to a torsional moment
in excess of that which causes cracking. After cracking, the tube is idealized as a space
truss (see Fig. 6.46). The resultant of the shear flow in the wall tubes induces forces
in the truss members. The truss diagonals, which are inclined at an angle θ , are in
compression and consist of concrete “compression struts.” The truss members that are
in tension consist of the longitudinal reinforcement and closed stirrups and are called
“tension ties.” Therefore, once a reinforced concrete beam has cracked in torsion, its
torsional resistance is provided primarily by closed stirrups and longitudinal bars.
Any concrete outside of the closed stirrups is essentially ineffective in resisting torsion.

FIGURE 6.46 Space truss analogy.
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FIGURE 6.47
Free-body
diagram—vertical
equilibrium.

A free-body diagram of a portion of the truss depicted in Fig. 6.46 is shown in Fig.
6.47. The shear flow q creates the shear forces V1 to V4 around the walls of the tube.
The shear force Vi on any face of the tube is equal to the shear flow q times the height
or width of the corresponding wall. For example, the shear force V2 is equal to q times
the height of the wall y1. Assuming that the stirrups are designed to yield when the
maximum torque is reached and that the height of the wall y1 is equal to the center-
to-center vertical length of the closed stirrups, the following equation can be obtained
from vertical equilibrium:

V2 = At fyt

s
y1 cot θ (6.46)

In this equation, At is the area of one leg of the closed stirrup and s is the center-to-center
spacing of the stirrups. Also note that y1 cot θ is the horizontal projection of the inclined
surface.

As noted previously, the shear flow is constant over the height of the wall; thus,
using Eq. (6.45),

V2 = q y1 = T
2Ao

y1 (6.47)

Equating Eqs. (6.46) and (6.47) results in the following:

T = 2Ao At fyt

s
y1 (6.48)

It is shown later that this equation forms the basis of ACI Eq. (11-21) that is used
to determine the nominal torsional moment strength Tn of a member or the required
amount of torsional reinforcement At/s.

The vertical shear force Vi can be resolved into diagonal compressive stresses and
axial tension forces as shown in the free-body diagram of the beam in Fig. 6.48. The
diagonal compressive component Di is resisted by the concrete and is equal to Vi/sin θ ,
and the axial tension force Ni is resisted by the longitudinal reinforcement and is equal
to Vi cot θ . Because q is constant along the walls, Ni is centered at the midheight of the
wall. The top and bottom chords (i.e., the top and bottom longitudinal reinforcement)
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FIGURE 6.48 Free-body diagram—horizontal equilibrium.

resist a tension force of Ni/2. Assuming that the longitudinal reinforcement A� yields
when the maximum torque is reached, horizontal equilibrium results in the following:

A� fy =
∑

Ni =
∑

Vi cot θ = q cot θ
∑

yi = T
2Ao

cot θ
∑

yi (6.49)

In this equation,
∑

yi = 2(x1 + y1), which is equal to the perimeter of the centerline of
the closed stirrups ph . Rearranging Eq. (6.49) and substituting ph for

∑
yi results in the

following:

A� = Tph cot θ

2Ao fy
(6.50)

This equation forms the basis of ACI Eq. (11-22) that is used to determine the amount
of longitudinal reinforcement that is required to resist torsional effects.

The transverse reinforcement and the longitudinal reinforcement are added to the
reinforcement required for shear and flexure, respectively (ACI 11.5.3.8).

6.4.2 Threshold Torsion
Threshold torsion is defined as the torsional moment below which torsion effects can
be neglected. According to the Code, torsion can be neglected in a section where the
factored torsional moment Tu is less than one-fourth of the cracking torque Tcr . For the
case of pure torsion, Tcr is derived using an equivalent thin-walled tube that has a wall
thickness t equal to the following prior to cracking:

t = 3Acp

4pcp
(6.51)

In this equation, Acp is the area that is enclosed by the outside perimeter of the concrete
cross-section and pcp is the outside perimeter of the concrete cross-section. The area
enclosed by the wall centerline Ao is

Ao = 2Acp

3
(6.52)
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For spandrel beams and other members that are cast monolithically with a slab, a
portion of the slab may be able to contribute to the torsional resistance of the section. The
overhanging flange defined in ACI 13.2.4 and illustrated in ACI Fig. R13.2.4 is permitted
to be used in the calculation of Acp and pcp (ACI 11.5.1). However, overhanging flanges
shall be neglected in cases where A2

cp/pcp calculated for a beam with flanges is less than
A2

cp/pcp calculated for the beam without flanges.
In a beam subjected to pure torsion, the principal tensile stress is equal to the

torsional stress:

τ = T
2Aot

(6.53)

Cracking is assumed to occur when the principal tensile stress is equal to or greater
than 4λ

√
f ′
c . Substituting τ = 4λ

√
f ′
c into Eq. (6.53) results in

4λ
√

f ′
c = T

2Aot
(6.54)

An equation for the cracking torque Tcr is obtained by substituting Eqs. (6.51) and
(6.52) into Eq. (6.54):

Tcr = 4λ
√

f ′
c

(
A2

cp

pcp

)
(6.55)

Therefore, the threshold torsional moment is equal to Tcr/4; that is, torsion can be
neglected when the following equation is satisfied:

Tu < φλ
√

f ′
c

(
A2

cp

pcp

)
(6.56)

The strength reduction factor for torsion is equal to 0.75 in accordance with ACI
9.3.2.3. Like in the case for shear, ACI 11.1.2 requires that values of

√
f ′
c be limited to

100 psi for members subjected to torsion.

6.4.3 Calculation of Factored Torsional Moment

Equilibrium Torsion
Once a beam cracks because of torsion, the torsional stiffness of the member decreases.
It has been shown that the reduction in torsional stiffness after cracking is much larger
than the reduction in flexural stiffness after cracking.24 If a torsional moment Tu at a
section is greater than the threshold torsion and if Tu cannot be reduced by redistribution
of internal forces in the structure, a member must be designed for Tu determined from
analysis (ACI 11.5.2.1). This type of torsion is referred to as equilibrium torsion because the
torsional moment is required for the structure to be in equilibrium. ACI Fig. R11.5.2.1
illustrates a typical condition where torsional moment redistribution is not possible;
there are no adjoining members in the structure that can assist in redistribution of the
torsional moment.
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Compatibility Torsion
In indeterminate structures, redistribution of internal forces can occur. This type of
torsion is referred to as compatibility torsion. In cases like the one illustrated in ACI
Fig. 11.5.2.2 for typical cast-in-place construction, a large twist occurs at the onset of
torsional cracking (i.e., when Tu = Tcr ); this results in a large redistribution of forces in
the structure.25,26 As such, the member can be designed for the reduced cracking torque
Tcr at the critical section instead of the torsional moment obtained from analysis:

Tu = φ4λ
√

f ′
c

(
A2

cp

pcp

)
(6.57)

Adjoining members must be designed for the redistributed bending moments and
shear forces due to the application of the compatibility torsional moment (ACI 11.5.2.2).
In other words, a beam that frames into the edge beam shown in ACI Fig. 11.5.2.2 must
be designed for a concentrated bending moment at its end equal to the compatibility
torsional moment given by Eq. (6.57), in addition to the bending moments and shear
forces corresponding to gravity and other loads.

In cases where the factored torsional moment Tu obtained from analysis is greater
than the threshold torsional moment and is less than the compatibility torsional moment
defined in Eq. (6.57), the section should be designed to resist the factored torsional
moment from analysis.

The flowchart shown in Fig. 6.49 can be used to determine the factored torsional
moment Tu. Torsional section properties for edge and interior beams are given in Fig.
6.50.

Critical Section
Like in the case of shear, the critical section for torsion is located at a distance d from the
face of the support (ACI 11.5.2.4). In other words, sections located less than a distance
d from the face of a support are permitted to be designed for Tu computed at a distance
d. Note that Tu is determined by either equilibrium torsion or compatibility torsion as
discussed previously.

The critical section for torsion occurs at the face of the support if a concentrated
torque occurs between the face of the support and a distance d from it. This commonly
occurs where a beam frames into the side of girder near the support of the girder.

6.4.4 Torsional Moment Strength

Adequacy of Cross-section
Prior to determining the required transverse and longitudinal reinforcements for tor-
sion, the adequacy of the cross-section must be checked in accordance with ACI 11.5.3.1.
Cross-sectional dimensions are limited to help reduce unsightly cracking and to pre-
vent crushing of the inclined concrete compression struts due to shear and torsion. ACI
Eq. (11-18) must be satisfied for solid sections:

√√√√(
Vu

bwd

)2

+
(

Tu ph

1.7A2
oh

)2

≤ φ

(
Vc

bwd
+ 8

√
f ′
c

)
(6.58)
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Given

FIGURE 6.49 Factored torsional moment Tu. (continued)

The terms on the left-hand side of Eq. (6.58) are the stresses due to shear and torsion.
This equation essentially sets an upper limit on the maximum stresses that a section can
resist when subjected to shear and torsion. This limit is analogous to the one prescribed
in ACI 11.4.7.9 for shear alone (see Section 6.3).

In solid sections, stresses due to shear are resisted by the full width of a mem-
ber, whereas those due to torsion are resisted by a thin-walled tube [see ACI Fig.
R11.5.3.1(b)]. That is why the stresses in Eq. (6.58) are combined using the square root
of the sum of the squares rather than by direct addition.

The parameters Aoh and ph are defined as the area enclosed by the centerline of the
outermost closed transverse torsional reinforcement and the perimeter of the centerline
of the outermost closed transverse torsional reinforcement, respectively. Equations for
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FIGURE 6.49 (Continued)

these parameters are provided in Fig. 6.50 for edge and interior beams. On the basis
of these definitions, it is evident that the concrete cover surrounding the transverse
reinforcement is ignored in the analysis.

Dimensions of a cross-section must be modified if Eq. (6.58) is not satisfied. Increas-
ing the cross-sectional dimensions of a section will typically have a greater impact than
increasing the compressive strength of the concrete.
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FIGURE 6.50 Torsional section properties.

Design Torsional Strength and Required Torsional Reinforcement
In sections where the factored torsional moment Tu exceeds the threshold torsion
φλ

√
f ′
c (A2

cp/pcp), ACI Eq. (11-20) must be satisfied:

φTn ≥ Tu (6.59)

After a section has cracked, it assumed that Tu is resisted by transverse reinforce-
ment and longitudinal reinforcement only; that is, the concrete contribution to the
total nominal torsional moment strength is assumed to be zero. The nominal torsional
moment strength Tn was derived previously from equilibrium and is given by ACI
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Eq. (11-21) [see Eq. (6.48)]:

Tn = 2Ao At fyt

s
cot θ (6.60)

It is assumed that the nominal shear strength provided by the concrete Vc is not
affected by the presence of torsion.

As noted earlier, the concrete outside of the stirrups is essentially ineffective once
torsional cracking develops. Thus, the gross area Ao enclosed by the shear flow path
around the tube after cracking must be determined. Reference 27 provides a rigorous
theoretical method to determine Ao . Alternatively, Ao can simply be taken as Ao =
0.85Aoh (ACI 11.5.3.6).

The angle of the concrete compression diagonals θ can also be determined by
analysis.27 ACI 11.5.3.6 sets a range for θ between 30 and 60 degrees and permits it
to be 45 degrees for nonprestressed members.

Substituting Eq. (6.59) into Eq. (6.60) results in the following equation that can be
used to determine the required transverse torsional reinforcement:

At

s
= Tu

2φ cot θ Ao fyt
(6.61)

The additional longitudinal reinforcement that is required for torsion is determined
by ACI Eq. (11-22) [see Eq. (6.50)]:

A� = At

s
ph

(
fyt

fy

)
cot2 θ (6.62)

In this equation, the term At/s is computed by Eq. (6.61), but the modifications to At/s
given in ACI 11.5.5.2 and 11.5.5.3 related to minimum reinforcement are not applicable
when calculating A� by Eq. (6.62).

The minimum area of longitudinal reinforcement for torsion is determined by ACI
Eq. (11-24):

A�,min = 5
√

f ′
c Acp

fy
− At

s
ph

(
fyt

fy

)
(6.63)

In this equation, At/s that is determined by Eq. (6.61) must be taken equal to or greater
than 25bw/ fyt .

Compressive stresses in the flexural compression zone of a member can offset a
part of the longitudinal tensile stresses due to torsion. Consequently, the required area
of the longitudinal torsional reinforcement can be reduced at the top of a continuous
beam near the midspan and at the bottom near the supports. ACI 11.5.3.9 permits the
area of the longitudinal torsional reinforcement to be reduced by an amount equal
to Mu/(0.9 fyd), where Mu is the factored bending moment that occurs at the section
simultaneously with the factored torsional moment Tu. Note that the reduced area of
longitudinal steel must be greater than the minimum values specified in ACI 11.5.5.3
and 11.5.6.2.
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FIGURE 6.51 Transverse and longitudinal reinforcements for torsion. (continued)

ACI 11.5.3.4 limits the values of the yield strength of the longitudinal and transverse
torsional reinforcements to 60,000 psi. The purpose of this requirement is to control the
widths of diagonal cracks.

The flowchart shown in Fig. 6.51 can be used to determine the required transverse
and longitudinal reinforcements for torsion.

6.4.5 Details of Torsional Reinforcement
The longitudinal bars must be enclosed by one or more of the following:

� Closed stirrups or closed ties perpendicular to the axis of the member
� A closed cage of welded wire reinforcement with transverse wires perpendic-

ular to the axis of the member
� Spiral reinforcement
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FIGURE 6.51 (Continued)

Stirrups must be closed because the inclined cracking due to torsion can occur on
all faces of a member.

Tests have shown that the corners of beams subjected to torsion can spall off be-
cause of the inclined compressive stresses in the concrete diagonals as the maximum
torsional moment is reached. The diagonal forces bear against the longitudinal corner
reinforcement, and the component perpendicular to the longitudinal reinforcement is
transferred to the transverse reinforcement. Thus, the transverse reinforcement must
be properly anchored so that it does not fail. Spalling is essentially prevented in beams
with a slab on one or both sides of the web; in such cases, ACI 11.5.4.2 permits the
transverse reinforcement to be anchored by standard 90-degree hooks like in the case
for shear anchorage (see Fig. 6.52). Note that the 90-degree hooks on the closed stirrups
for the beam shown in Fig. 6.52 are located on the side that is adjacent to the slab, which
restrains spalling.

For beams where spalling cannot be restrained, the transverse reinforcement must
be anchored by a 135-degree hook or a seismic hook [see ACI 11.5.4.2(a) and Fig. 6.53
of this book]. Tests have shown that closed stirrups anchored by 90-degree hooks fail
when there is no restraint.28 Lapped U-stirrups (Fig. 6.37) have also been found to be
inadequate for resisting torsion due to a loss of bond when the concrete cover spalls.
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FIGURE 6.52
Transverse
reinforcement
detail for
torsion—spalling
restrained.

According to ACI 11.5.6.1, the spacing of transverse torsional reinforcement is lim-
ited to the smaller of ph/8 and 12 in. This limitation helps to ensure the following: (1) the
ultimate torsional strength of the member is developed; (2) excessive loss of torsional
stiffness after cracking is prevented; and (3) crack widths are controlled.

Longitudinal torsional reinforcement must also be developed at both ends for ten-
sion. Proper anchorage is especially important at the ends of a beam that is subjected
to high torsional moments.

The following detailing requirements must be satisfied for the longitudinal rein-
forcement for torsion (ACI 11.5.6):

1. The longitudinal reinforcement must be distributed around the perimeter of
the closed stirrups at a maximum spacing of 12 in (see Fig. 6.54). As was shown
earlier, the longitudinal tensile forces due to torsion act along the centroidal
axis of the section. Thus, the additional longitudinal reinforcement for torsion
should approximately coincide with the centroid of the section. This is accom-
plished by requiring the longitudinal torsional reinforcement to be distributed
around the perimeter of the closed stirrups.

2. At least one longitudinal bar is required in each corner of the stirrups. These
bars provide anchorage for the stirrups and have also been found to be very
effective in developing torsional strength and in controlling cracks.

FIGURE 6.53
Transverse
reinforcement
detail for
torsion—spalling
not restrained.
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FIGURE 6.54
Detailing
requirements for
longitudinal
torsional
reinforcement.

3. The diameter of the longitudinal bars must be equal to or greater than s/24 but
not less than three-eighths of an inch, the latter of which corresponds to a No.
3 bar. This is meant to prevent buckling of the longitudinal reinforcement due
to the transverse component of the stress in the diagonal concrete compression
struts.

Torsional reinforcement must be provided for a distance that is equal to or greater
than bt + d beyond the point that it is theoretically required, where bt is the width of that
part of the cross-section that contains the closed stirrups resisting torsion (ACI 11.5.6.3).
This distance is larger than that used for shear reinforcement and flexural reinforcement
because torsional diagonal tension cracks develop in a helical form around a member.

6.4.6 Design for Combined Torsion, Shear, and Bending Moment
In members subjected to torsion, shear, and bending moments, the amounts of trans-
verse reinforcement and longitudinal reinforcement required to resist all actions are
determined using superposition (ACI 11.5.3.8).

The total required amount of transverse reinforcement per stirrup leg is equal to
that required for shear plus that required for torsion:

Av

2s
+ At

s
≥ the greater of




0.375
√

f ′
c bw

fyt

25bw

fyt

(6.64)

Only the two legs of the stirrups that are adjacent to the sides of the beam are
effective for torsion; this is consistent with the methodology that was presented earlier,
where only a thin-walled tube resists torsion. Therefore, Av in Eq. (6.64) is equal to the
area of two legs of a closed stirrup. One-half of Av is used in the equation because the
summation is based on one stirrup leg. The area of transverse torsional reinforcement
At was derived previously on the basis of one leg of a closed stirrup.

The minimum values of combined transverse reinforcement on the right-hand side
of Eq. (6.64) are consistent with those presented in Section 6.2 for shear.

Longitudinal reinforcement for torsion is added to that required for flexure and
is distributed around the perimeter of the beam in accordance with ACI 11.5.6.3. The
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minimum amount of longitudinal torsional reinforcement is given in Eq. (6.63). An area
of steel equal to A�/4 is added to each face of the beam.

The following must also be considered when designing and detailing the reinforce-
ment:

� The most restrictive requirements for reinforcement spacing, cutoff points, and
placement for torsion, shear, and flexure must be satisfied.

� Negative and positive flexural reinforcement may be cut off using the provi-
sions of ACI 12.10 through 12.12 (see Section 6.2). However, when determining
theoretical cutoff points, the area of longitudinal torsional reinforcement (A�/4)
must be subtracted from the total area of longitudinal steel provided at that face;
the design flexural strength of the member at that section must be determined
on the basis of the area of reinforcement required for flexure only.

� The structural integrity requirements of ACI 7.13 must also be satisfied when
detailing the reinforcement.

The following example illustrates the design of a beam subjected to torsion, shear,
and bending moments.

Example 6.13 Determine the required reinforcement for beam CD in the reinforced concrete floor
system shown in Fig. 6.55. Assume normal-weight concrete with f ′

c = 4,000 psi and Grade 60
reinforcement. Additional data are as follows:

FIGURE 6.55 Partial
floor plan of the
floor system given
in Example 6.13.
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Superimposed dead load = 30 psf

Live load = 100 psf

Story height = 12 ft

Solution

Step 1: Determine Tu and check if torsional effects need to be considered. The flowchart
shown in Fig. 6.49 is used to determine Tu.

(a) Strength reduction factor φ = 0.75 for torsion and shear.

(b) Because normal-weight concrete is specified, λ = 1.0.

(c) The maximum factored bending moment at the exterior end of the 18 × 24 in beam that frames
into the side of beam CD is determined from analysis and is equal to 243.2 ft kips. From
equilibrium, this bending moment is transferred to beam CD as a torsional moment that acts
at the midspan of the beam. Therefore, the maximum factored torsional moment Tu at the face
of beam CD is equal to 243.2/2 = 121.6 ft kips. This is also Tu at the critical section because the
torsional moment is a constant from the face of the support to the midspan of the beam.

(d) Torsion can be neglected when the factored torsional moment from analysis is less than the
threshold torsion determined by Eq. (6.56):

Tu < φλ
√

f ′
c

(
A2

cp

pcp

)

Because the beam and slab are cast monolithically, Acp and pcp for beam CD can include
a portion of the adjoining slab (ACI 11.5.1.1). In accordance with ACI 13.2.4, the overhanging
flange width be is the smaller of the following (see Fig. 6.50):

h − hf = 24 − 8 = 16 in (governs)
4hf = 4 × 8 = 32 in

Thus, the torsional properties of the section are as follows:

Acp = bwh + be hf = (18 × 24) + (16 × 8) = 560 in2

pcp = 2(h + bw + be ) = 2 × (24 + 18 + 16) = 116 in
A2

cp/pcp = 5602/116 = 2,704 in3

(This is greater than A2
cp/pcp for the beam without flanges, which is equal to (18 × 24)2/2(24 +

18) = 2,222 in3.)

Tu = 121.6 ft kips > 0.75 × 1.0
√

4,000

(
5602

116

)
/12,000 = 10.7 ft kips

Therefore, torsional effects must be considered in beam CD.

(e) Because beam CD is part of an indeterminate system in which redistribution of internal forces
can occur following torsional cracking, the maximum factored torsional moment at the critical
section need not exceed the compatibility torsional moment determined by Eq. (6.57):

Tu = φ4λ
√

f ′
c

(
A2

cp

pcp

)
= 4 × 10.7 = 42.8 < 121.6 ft kips
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FIGURE 6.56 Free-body diagram of three-span beam.

Therefore, design beam CD for a torsional moment of 42.8 ft kips at the critical section.
Note that ACI 11.5.2.2 requires that the concentrated torsional moment of 2 × 42.8 =85.6

ft kips at the center of the span must be used in determining the redistribution of bending
moments and shear forces in the beam that frames into beam CD. The reactions that are obtained
after redistribution are transferred to beam CD (see Step 2).

Step 2: Determine the shear forces and bending moments in the beam that frames into beam
CD. The total factored gravity load is as follows:

wD =
[(

8
12

× 15
)

+
(

18 × 16
144

)]
× 0.150 + (0.030 × 15) = 2.3 kips/ft

wL = 0.100 × 15 = 1.5 kips/ft

wu = (1.2 × 2.3) + (1.6 × 1.5) = 5.2 kips/ft

The free-body diagram of this three-span beam is shown in Fig. 6.56. Note that the bending
moments at lines 1 and 4 must be equal to 85.6 ft kips after redistribution. The 75.3-kip reaction at
line 1 must be transferred to beam CD.

Step 3: Determine the shear forces, bending moments, and torsional moments in beam CD.
The total uniformly distributed load on beam CD is

wD =
(

18 × 24
144

)
× 0.150 = 0.5 kips/ft

wu = 1.2 × 0.5 = 0.6 kips/ft

A two-dimensional analysis of the frame along column line 1 was performed assuming the far
ends of the columns to be fixed (see Section 3.3 and Fig. 6.57).

FIGURE 6.57 Two-dimensional analysis model for the frame along column line 1.
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FIGURE 6.58 Shear, bending moment, and torsional moment diagrams for beam CD.

The shear diagram, bending moment diagram, and torsional moment diagram for beam CD
are shown in Fig. 6.58.

Step 4: Determine the transverse and longitudinal reinforcements required for torsion. The
flowchart shown in Fig. 6.51 is used to determine At/s and A�.

(a) As determined in step 1, reduction factor φ = 0.75 for torsion and shear.

(b) The torsional moment Tu was determined in step 1 to be equal to 42.8 ft kips at the critical
section (see Fig. 6.58).

(c) Determine φVc from Fig. 6.33.

Because normal-weight concrete is specified, λ = 1.0.

Assume d = 24 − 2.5 = 21.5 in.

φVc = φ2λ
√

f ′
c bwd = 0.75 × 2 × 1.0

√
4,000 × 18 × 21.5/1,000 = 36.7 kips
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(d) Determine Aoh and ph from Fig. 6.50.

Assuming 1.5-in clear cover to No. 4 closed stirrups in the beam web only,

x1 = 18 − (2 × 1.5) − 0.5 = 14.5 in

y1 = 24 − (2 × 1.5) − 0.5 = 20.5 in

Aoh = x1 y1 = 14.5 × 20.5 = 297.3 in2

ph = 2(x1 + y1) = 2 × (14.5 + 20.5) = 70.0 in

(e) Check the adequacy of cross-sectional dimensions.

For solid section, check Eq. (6.58):

√√√√(
Vu

bwd

)2

+
(

Tu ph

1.7A2
oh

)2

≤ φ

(
Vc

bwd
+ 8

√
f ′
c

)

From Fig. 6.58, the factored shear force and torsional moment at the critical section, which
is located 21.5 in from the face of the support, are

Vu = 45.1 kips

Tu = 42.8 ft kips

Also, Vc = 36.7/0.75 = 48.9 kips.

√√√√(
Vu

bwd

)2

+
(

Tu ph

1.7A2
oh

)2

=
√(

45.1 × 1,000
18 × 21.5

)2

+
(

42.8 × 12,000 × 70.0
1.7 × 297.32

)2

= 266 psi

φ

(
Vc

bwd
+ 8

√
f ′
c

)
= 0.75

(
48.9 × 1,000

18 × 21.5
+ 8

√
4,000

)
= 474 psi > 266 psi

Thus, the cross-sectional dimensions are adequate.

(f) Determine Ao :

Ao = 0.85Aoh = 0.85 × 297.3 = 252.7 in2

(g) Determine θ .

In accordance with ACI 11.5.3.6(a), θ may be taken equal to 45 degrees.

(h) Determine At/s.

Equation (6.61) is used to determine At/s:

At

s
= Tu

2φ cot θ Ao fyt
= 42.8 × 12,000

2 × 0.75 × cot 45 × 252.7 × 60,000
= 0.0226 in2/in

(i) Determine Acp from Fig. 6.50.

From step 1, Acp = 560 in2.

(j) Determine A�.

Equation (6.62) is used to determine A�:

A� = At

s
ph

(
fyt

fy

)
cot2 θ = 0.0226 × 70.0 ×

(
60
60

)
× 1.0 = 1.58 in2
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Check A�,min using Eq. (6.63):

A�,min = 5
√

f ′
c Acp

fy
− At

s
ph

(
fyt

fy

)

In this equation, At/s is the larger of 0.0226 in2/in from Eq. (6.61) (governs) and 25bw/ fyt =
25 × 18/60,000 = 0.0075 in2/in.

Therefore,

A�,min = 5 × √
4,000 × 560
60,000

− 0.0226 × 70.0 ×
(

60
60

)
= 1.37 in2 < 1.58 in2

Use A� = 1.58 in2.

Step 5: Determine the transverse reinforcement required for shear. The flowchart shown in
Fig. 6.39 is used to determine Av/s.

(a) As determined in Step 1, reduction factor φ = 0.75 for torsion and shear.

(b) Determine φVc from Fig. 6.33.

From Step 4, φVc = 36.7 kips.

(c) Determine Vu and check if shear reinforcement is required.

At the critical section, Vu = 45.1 kips > φVc/2 = 36.7/2 = 18.4 kips (see Fig. 6.58); therefore,
shear reinforcement is required at the critical section.

Also, because Vu = 45.1 kips > φVc = 36.7 kips, more than minimum shear reinforcement
is required at the critical section.

(d) Determine the required shear reinforcement:

Vu − φVc = 45.1 − 36.7 = 8.4 kips < φ4
√

f ′
c bwd = 0.75 × 4

√
4,000 × 18 × 21.5/1,000 = 73.4 kips

The required shear reinforcement is determined by Eq. (6.42):

Av

s
= (Vu − φVc )

φ fytd
= 8.4

0.75 × 60 × 21.5
= 0.0087 in2/in

Step 6: Determine the total transverse reinforcement. The total required amount of transverse
reinforcement per stirrup leg is determined by Eq. (6.64):

Av

2s
+ At

s
= 0.0087

2
+ 0.0226 = 0.0270 in2/in >




0.375
√

f ′
c bw

fyt
= 0.375

√
4,000 × 18

60,000
= 0.0071 in2/in

25bw

fyt
= 25 × 18

60,000
= 0.0075in2/in

Maximum spacing s =




ph

8
= 70.0

8
= 8.8 in (governs)

12 in

d
2

= 21.5
2

= 10.8 in
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Location Mu(ft kips) As(in2)

Face of support 292.3 3.26

Midspan 305.1 3.42

TABLE 6.6 Required Longitudinal Reinforcement for Flexure

For a No. 4 closed stirrup, the required spacing at the critical section is

s = Ab
Av
2s + At

s

= 0.20
0.0270

= 7.4 in < 8.8 in

Provide No. 4 closed stirrups spaced at 7.0 in on center at the critical section. From the torsional
moment diagram in Fig. 6.58, it is evident that transverse torsional reinforcement is required over
the entire span length. Because the maximum permitted spacing of 8.0 in is close to the provided
spacing of 7.0 in at the critical section, use No. 4 closed stirrups over the entire span length for
simpler detailing.

Step 7: Determine the longitudinal reinforcement required for flexure. The flowchart shown
in Fig. 6.4 can be used to determine both the negative and positive flexural reinforcement. A
summary of the required longitudinal reinforcement for flexure is given in Table 6.6.

Step 8: Determine the total longitudinal reinforcement. In accordance with ACI 11.5.6.2, the
longitudinal torsional reinforcement must be distributed around the perimeter of the section with
a maximum spacing of 12 in and must be combined with that required for flexure. Assign approx-
imately one-fourth of this reinforcement to each face (1.58/4 = 0.40 in2).

Use two No. 4 bars on each side face (area = 2 × 0.20 = 0.40 in2; bar diameter = 0.50 in >

s/24 = 7/24 = 0.29 in and 0.375 in). The spacing of these bars on the 24-in-deep sides of the beam
is less than 12 in, which satisfies the spacing requirement of ACI 11.5.6.2.

The remaining longitudinal reinforcement for torsion is distributed equally between the top
and the bottom of the section: 0.5[1.58 − (2 × 0.40)] = 0.39 in2.

� Face of support: Total top steel required = 3.26 + 0.39 = 3.65 in2. For 4,000 psi concrete, minimum
As = 200bwd/ fy = 1.29 in2 < 3.65 in2. Use four No. 9 bars (As = 4.00 in2 > 3.65 in2). These bars
also satisfy the Code requirements for cover and spacing (see Tables 6.2 and 6.3).

� Midspan: Total bottom steel required = 3.42 + 0.39 = 3.81 in2. Use four No. 9 bars (As = 4.00 in2

> 3.81 in2).

Step 9: Detail the reinforcement. According to the structural integrity requirements of ACI
7.13.2, at least one-sixth of the negative reinforcement (but not less than two bars) and at least
one-quarter of the positive reinforcement (but not less than two bars) must be continuous over
the span length (see Table 6.4). Thus provide two No. 9 bars at both the top and the bottom of the
section, which are either continuous or are spliced using Class B tension splices or mechanical or
welded splices. The splice locations of the top and bottom bars should be at or near the midspan
and at or near the supports, respectively.

Two of the four No. 9 top bars can be theoretically cut off at the location where the factored
bending moment is equal to the design flexural strength of the section based on a total area of steel
equal to the area of two No. 9 bars minus the area of steel required for torsion: 2.00 − 0.39 = 1.61
in2. Thus, with As = 1.61 in2 and using Fig. 5.10, φMn = 150.1 ft kips. The distance x from the face
of the support to the location where Mu = 150.1 ft kips is obtained by summing moments about
the section at this location (see Fig. 6.58):

0.6x2

2
− 46.2x + 292.3 = 150.1
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Solution of this equation gives x = 3.1 ft from the face of the support. The two No. 9 bars must
extend a distance of d = 21.5 in (governs) or 12db = 12 × 1.128 = 13.5 in beyond the distance x (see
Fig. 6.22). Thus, from the face of the support, the total bar length must be at least equal to 3.1 +
(21.5/12) = 4.9 ft.

The bars must also extend a full development length beyond the face of the support (see Fig.
6.22). The development length of the No. 9 bars is determined by Eq. (6.26):

�d =
[

3
40

fy
λ
√

f ′
c

ψtψeψs

(cb + Ktr ) /db

]
db ≥ 12 in

where λ = 1.0 for normal-weight concrete
ψt = 1.3 for top bars
ψe = 1.0 for uncoated reinforcement
ψs = 1.0 for No. 9 bars

cb = 1.5 + 0.5 + 1.128
2

= 2.6 in

= 18 − 2(1.5 + 0.5) − 1.128
2 × 3

= 2.2 in (governs)

Ktr = 0 (conservative)

cb + Ktr

db
= 2.2 + 0

1.128
= 2.0 < 2.5

Therefore,

�d =
(

3
40

60,000
1.0

√
4,000

1.3 × 1.0 × 1.0
2.0

)
× 1.128 = 52.2 in = 4.4 ft

Thus, the total length of the No. 9 bars must be at least 4.9 ft beyond the face of the support.
According to ACI 12.10.5, flexural reinforcement shall not be terminated in a tension zone

unless one or more of the conditions in that section are satisfied. The point of inflection is located
approximately 6.6 ft from the face of the support (see Fig. 6.58). Thus, the No. 9 bars cannot be
terminated at 4.9 ft. Check if the condition given in ACI 12.10.5.1 is satisfied; that is, check if the
factored shear force Vu at the cutoff point is equal to or less than 2φVn/3.

With No. 4 closed stirrups spaced at 7.0 in on center, φVn is determined by Eqs. (6.36), (6.37),
and (6.41):

φVn = φ(Vc + Vn) = 0.75
(

48.9 + 0.4 × 60 × 21.5
7.0

)
= 92.0 kips

At 4.9 ft from the face of the support, Vu = 46.2 − (0.6 × 4.9) = 43.3 kips, which is less than
2 × 92.0/3 = 61.3 kips. Therefore, the two No. 9 bars can be terminated at 4.9 ft from the face of the
support.

It is assumed in this example that the four No. 9 positive bars are continuous with Class B splices
over the columns.

Figure 6.59 shows the reinforcement details for the beam.

Comments
Because there is a constant torsional moment along the entire span length, the transverse rein-
forcement and the two No. 4 side bars must be provided over the entire span. A reduction in the
longitudinal torsional reinforcement in the flexural compression zones in accordance with ACI
11.5.3.9 has not been considered in this example.
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FIGURE 6.59 Reinforcement details for beam CD.

6.4.7 Alternative Design for Torsion
ACI 11.5.7 permits the use of torsion design procedures other than those presented in the
Code for solid members with an aspect ratio h/bt of 3 or greater, where bt is the width of
that part of a cross-section containing the closed stirrups. Such procedures must produce
results that are in substantial agreement with results from comprehensive tests. Also,
the detailing requirements of ACI 11.5.4 and the spacing of torsional reinforcement
requirements of ACI 11.5.6 must be satisfied regardless of the procedure that is used.

References 29 through 31 contain examples of torsion design procedures that meet
the requirements of ACI 11.5.7.

6.5 Deflections

6.5.1 Overview
It was discussed in Section 4.4 that two methods for controlling deflections are provided
in ACI 9.5: (1) minimum thickness limitations and (2) computed deflection limitations.
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Figure 4.3 contains a summary of the minimum thickness limitations for beams and
one-way slabs that are not attached to partitions or other construction that is likely to
be damaged by relatively large deflections.

The provisions given in ACI 9.5.2.2 through 9.5.2.6 may be used to determine the
deflection of any reinforced concrete beam or one-way slab regardless of whether the
minimum thickness requirements of ACI 9.5.2.1 are met or not. However, these pro-
visions must be used where members are supporting elements that are likely to be
damaged by relatively large deflections. Both immediate and long-term deflections of
a member must be calculated, and these deflections must be equal to or less than the
limiting deflections given in ACI Table 9.5(b) in order for this serviceability requirement
to be satisfied.

Procedures for determining the deflection of beams and one-way slabs are presented
later. Additional information on deflections can be found in Ref. 32. Although there are
numerous methods available to determine deflections in reinforced concrete structures,
it is important to note that these methods can only estimate deflections within an ac-
curacy range of 20% to 40%. This is primarily due to the variability in the properties
of the constituent materials of concrete (see Chap. 2) and to tolerances in construction.
It is important for the designer to be aware of this range of accuracy, especially in the
design of deflection-sensitive members.

6.5.2 Immediate Deflections
When a one-way reinforced concrete flexural member is loaded such that the maximum
bending moment at service loads produces a tensile stress less than the modulus of
rupture fr of the concrete, the section is uncracked, and the immediate deflection can
be calculated using methods (such as the moment-area method) or formulas for elastic
deflections. In such cases, the gross moment of inertia Ig of the section (neglecting
reinforcement) can be used in the calculations.

Once the tensile stress due to the applied loads equals or exceeds fr , tension cracks
occur, and the stiffness of the member decreases. Cracks occur when the bending mo-
ment exceeds the cracking moment Mcr , which is determined by ACI Eq. (9-9):

Mr = fr Ig

yt
(6.65)

The modulus of rupture fr is defined in ACI Eq. (9-10) as 7.5λ
√

f ′
c and yt is the distance

from the centroidal axis of the gross section (neglecting reinforcement) to the tension
face of the member.

At cracked sections, the moment of inertia can no longer be calculated using gross
section properties; instead, a cracked moment of inertia Icr must be used. The moment
of inertia Icr of a cracked rectangular beam with tension reinforcement can be computed
using the information given in Fig. 6.60. A cracked section is obtained by transforming
the reinforcing steel into an equivalent area of concrete. This is achieved by multiplying
the area of steel As by the modular ratio n, which is the ratio of the modulus of elasticity
of the reinforcing steel Es to that of the concrete Ec . The cracked concrete below the
neutral axis is ignored in the analysis, and the distance from the extreme compression
face to the neutral axis is defined as a constant k times the effective depth d .



275B e a m s a n d O n e - W a y S l a b s

FIGURE 6.60 Cracked transformed section of a rectangular beam with tension reinforcement.

Taking the moment of areas about the neutral axis results in the following:

b × kd × kd
2

= nAs × (d − kd) (6.66)

Define a1 = b/nAs and solve Eq. (6.66) for kd:

kd =
√

2a1d + 1 − 1
a1

(6.67)

Thus, the cracked moment of inertia Icr is

Icr = b(kd)3

3
+ nAs(d − kd)2 (6.68)

Similar equations can be derived for rectangular sections with tension and com-
pression reinforcement and for flanged sections. A summary of these equations can be
found in Fig. 6.61.

On the basis of the earlier discussion, it is evident that two different values of the mo-
ment of inertia would be required for calculating short-term or immediate deflections.
In order to eliminate the need for two distinct moments of inertia, the Code permits the
use of an effective moment of inertia Ie .

An idealized bilinear relationship between bending moment and immediate de-
flection is depicted in Fig. 6.62. When the applied moment Ma is less than the cracking
moment Mcr , the section is uncracked, and the gross moment of inertia of the section
Ig would be used to calculate the deflection. Once Ma equals or exceeds Mcr , crack-
ing occurs, and the reduced moment of inertia of the cracked section I cr is needed. In
essence, Ie provides a transition between the upper bound Ig and the lower bound I cr

as a function of the applied bending moment.
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FIGURE 6.61 Cracked section properties: (a) rectangular sections and (b) flanged
sections. (continued)

ACI Eq. (9-8) is used to determine Ie for simply supported and cantilevered mem-
bers:

Ie =
(

Mcr

Ma

)3

Ig +
[

1 −
(

Mcr

Ma

)3
]

Icr ≤ Ig (6.69)

In this equation, Ma is the maximum bending moment due to applicable service loads.
In most cases, Ie will be less than Ig . However, in certain heavily reinforced flanged
sections, Ie may be larger than Ig , which is not permitted.

For continuous members, ACI 9.5.2.4 permits Ie to be taken as the average of the
values calculated by Eq. (9-8) at the critical negative and positive locations. It is also
permitted to calculate Ie at the midspan for prismatic members because it has been
shown that the midspan rigidity has the dominant effect on deflections.33,34 The follow-
ing equation from the 1989 edition of the Code can be used to determine Ie in continuous
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FIGURE 6.61 (Continued)

members, which is based on the average values at the supports (Ie(1) and Ie(2)) and at
the midspan (Ie(m)):

Ie = 0.50Ie(m) + 0.25(Ie(1) + Ie(2)) (6.70)

In lieu of Eq. (6.70), the 1983 Code Commentary to Section 9.5.2.4 suggested the
following weighted averages for continuous members:

For members continuous on both ends, Ie = 0.70Ie(m) + 0.15(Ie(1) + Ie(2)) (6.71)

For members continuous on one end, Ie = 0.85Ie(m) + 0.15Ie(1) (6.72)
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FIGURE 6.62 Bilinear bending moment–deflection relationship.

Note that in Eq. (6.72), Ie(1) is the effective moment of inertia at the internal support;
the effective moment of inertia at the external support is not required in the calculation
of Ie for a member that is continuous on one end.

Also given in the 1983 Code Commentary to Section 9.5.2.4 is the following elas-
tic equation that can be used to determine the immediate deflection �i at the tips of
cantilevers and at the midspan of simply supported and continuous members:

�i = 5KMa�
2

48Ec Ie
(6.73)

In this equation, Ma is the support bending moment for cantilevers and the midspan
bending moment for simply supported and continuous beams. Values of the deflection
coefficient K are given in Table 6.7 for members subjected to uniformly distributed loads
with different span conditions. Values of K for other types of loading can be found in
Ref. 35.

6.5.3 Long-term Deflections
Section 2.2 of this book describes the time-dependent effects of creep and shrink-
age due to sustained loads. In one-way flexural members, creep and shrinkage cause
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Span Condition K

Cantilever 2.0

Simple 1.0

Continuous 1.2 − 0.2(Mo/Ma), where Mo = w�2/8

TABLE 6.7 Deflection Coefficient K

long-term deflections that can be two to three times greater than the immediate de-
flections. Not accounting for long-term deflection in reinforced concrete members can
result in a significant underestimation of total deflection.

The Code method for determining long-term deflections is given in ACI 9.5.2.5.
Long-term deflections due to creep and shrinkage �cs are obtained by multiplying the
immediate deflection �i due to sustained loads by the factor λ� given in ACI Eq. (9-11),
which was developed on the basis of deflection data for rectangular, flanged, and box
beams36:

λ� = ξ

1 + 50ρ ′ (6.74)

In this equation, ξ is the time-dependent factor for sustained loads, which is given
in ACI 9.5.2.5 and ACI Fig. R9.5.2.5 (see Table 6.8). The influence that compression
reinforcement (ρ ′ = A′

s/bd) has on long-term deflections is also accounted for in this
equation, where ρ ′ is determined at the midspan of simply supported and continuous
spans and at the support of cantilevers.

Thus, the long-term deflection due to creep and shrinkage �cs can be determined
from the following equation:

�cs = λ��i = ξ

1 + 50ρ ′ �i (6.75)

It is important to reiterate that only the dead load and any portion of the live load
that is sustained need to be considered in the calculation of long-term deflections.

Reference 32 contains a method to determine long-term deflections, which considers
the effects of creep and shrinkage separately. This method is usually utilized in cases

Sustained Load Duration ξ

5 years or more 2.0

12 months 1.4

6 months 1.2

3 months 1.0

TABLE 6.8 Time-dependent Factor for Sustained Loads
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where part of the live load is considered as a sustained load. Other methods available
in the literature are also given in that reference.

6.5.4 Maximum Permissible Computed Deflections
ACI Table 9.5(b) contains the maximum permissible deflections that are applicable when
deflections are computed using the methods presented earlier. This table is the result
of an effort to simplify an extensive set of limitations that would be required to cover
all possible types of construction and loading conditions.

As expected, the deflection limitations are more stringent for members that sup-
port or are attached to nonstructural elements that are likely to be damaged by large
deflections. The limitations given in ACI Table 9.59(b) may not be adequate in pre-
venting instability (such as ponding of water on a roof) or adverse effects on other
structural members; in such cases, the deflections must be limited (or, equivalently,
member stiffness must be increased) to prevent the occurrence of such detrimental
events.

Example 6.14 Determine the immediate and long-term deflections for the floor beam on line C
between lines 1 and 2 in the reinforced concrete floor system shown in Fig. 6.55, given the design
data in Example 6.13. Assume that the beam is not supporting or attached to nonstructural elements
likely to be damaged by large deflections. Also assume that 30% of the live load is sustained and
that the beam is reinforced with five No 9 bars at the midspan and five No. 10 bars at the interior
support.

Solution

Step 1: Determine the service loads and bending moments.

wD =
[(

8
12

× 150
)

+ 30
]

× 15 +
(

18 × 16
144

× 150
)

= 2,250 plf

wL = 100 × 15 = 1,500 plf

The approximate moment coefficients given in ACI 8.3.3 are used to determine the service
bending moments (see Fig. 3.17). The bending moments at the external support are not required
for the calculation of the effective moment of inertia Ie for a member that is continuous on one end
[see Eqs. (6.69) and (6.72)].

� At the midspan,

M+
D = wD�2

n

14
= 2.25 × 33.52

14
= 180.4 ft kips

M+
L = wL�2

n

14
= 1.50 × 33.52

14
= 120.2 ft kips

Sustained bending moment M+
sus = M+

D + 0.3M+
L = 180.4 + (0.3 × 120.2) = 216.5 ft kips

� At the exterior face of the first interior support,

M−
D = wD�2

n

10
= 2.25 × 33.52

10
= 252.5 ft kips

M−
L = wL�2

n

10
= 1.50 × 33.52

10
= 168.3 ft kips

Sustained bending moment M−
sus = M−

D + 0.3M−
L = 252.5 + (0.3 × 168.3) = 303.0 ft kips
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FIGURE 6.63 Gross section of beam at positive moment section.

Step 2: Determine the material properties of the concrete and the steel.

For normal-weight concrete, fr = 7.5λ
√

f ′
c = 7.5 × 1.0

√
4,000 = 474 psi

From ACI 8.5.1, Ec = 57,000
√

f ′
c = 57,000

√
4,000 = 3,605,000 psi

From ACI 8.5.2, Es = 29,000,000 psi

The modular ratio n = Es/Ec = 8.0

Step 3: Determine the gross and cracked moments of inertia. Determine the effective width
of the flange be from Fig. 5.23:

be =



span length/4 = 35 × 12/4 = 105.0 in (governs)
bw + 16hf = 18 + (16 × 8.0) = 146.0 in
beam spacing = 15 × 12 = 180 in

� Positive moment section: The gross section at the positive moment section at the midspan is de-
picted in Fig. 6.63.

The gross section properties are (see Fig. 6.61)

yt = (be − bw)(h − 0.5hf )hf + 0.5bwh2

(be − bw)hf + bwh

= (105 − 18) × [24 − (0.5 × 8)] × 8 + (0.5 × 18 × 242)
[(105 − 18) × 8] + (18 × 24)

= 16.9 in

Ig = 1
12

(be − bw)h3
f + (be − bw)hf (h − 0.5hf − yt)2 + 1

12
bwh3 + bwh(yt − 0.5h)2

= 1
12

(105 − 18)(8)3 + (105 − 18)(8)(24 − 4 − 16.9)2 + 1
12

(18)(24)3 + (18)(24)(16.9 − 12)2

= 41,509 in4

Assuming a rectangular compression area, the cracked section properties are the following (see
Figs. 6.61 and 6.64):

a1 = be

nAs
= 105

8 × (5 × 1.0)
= 2.6/in

kd =
√

2da1 + 1 − 1
a1

=
√

(2 × 21.5 × 2.6) + 1 − 1
2.6

= 3.7 in < hf = 8.0 in
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FIGURE 6.64 Cracked transformed section of beam at positive moment section.

Therefore, the assumption of a rectangular compression area is correct.

Icr = be (kd)3

3
+ nAs (d − kd)2

= 105 × 3.73

3
+ 8 × 5 × (21.5 − 3.7)2 = 14,447 in4

� Negative moment section: The negative moment section is the 18 × 24 in web. Thus,

Ig = 1
12

bwh3 = 1
12

× 18 × 243 = 20,736 in4

a1 = bw

nAs
= 18

8 × (5 × 1.27)
= 0.35/in

kd =
√

2da1 + 1 − 1
a1

=
√

(2 × 21.5 × 0.35) + 1 − 1
0.35

= 8.6 in

Icr = bw(kd)3

3
+ nAs (d − kd)2

= 18 × 8.63

3
+ 8 × 6.35 × (21.5 − 8.6)2 = 12,270 in4

Step 4: Determine the effective moments of inertia.

� Positive moment section: The cracking moment is determined by Eq. (6.65):

Mcr = fr Ig

yt
= 474 × 41,509

16.9 × 12,000
= 97.0 ft kips

The effective moment of inertia Ie is determined by Eq. (6.69) for dead, sustained, and dead
plus live load cases:

Mcr

M+
D

= 97.0
180.4

= 0.54

(Ie )+D =
(

Mcr

M+
D

)3

Ig +

1 −

(
Mcr

M+
D

)3

 Icr

= [(0.54)3 × 41,509] + [1 − (0.54)3] × 14,447 = 18,708 in4 < Ig
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Mcr

M+
sus

= 97.0
216.5

= 0.45

(Ie )+sus =
(

Mcr

M+
sus

)3

Ig +
[

1 −
(

Mcr

M+
sus

)3
]

Icr

= [(0.45)3 × 41,509] + [1 − (0.45)3] × 14,447 = 16,913 in4 < Ig

Mcr

M+
D+L

= 97.0
300.6

= 0.32

(Ie )+D+L =
(

Mcr

M+
D+L

)3

Ig +

1 −

(
Mcr

M+
D+L

)3

 Icr

= [(0.32)3 × 41,509] + [1 − (0.32)3] × 14,447 = 15,334 in4 < Ig

� Negative moment section:

Mcr = fr Ig

yt
= 474 × 20,736

12 × 12,000
= 68.3 ft kips

Mcr

M−
D

= 68.3
252.5

= 0.27

(Ie )−D =
(

Mcr

M−
D

)3

Ig +

1 −

(
Mcr

M−
D

)3

 Icr

= [(0.27)3 × 20,736] + [1 − (0.27)3] × 12,270 = 12,437 in4 < Ig

Mcr

M−
sus

= 68.3
303.0

= 0.23

(Ie )−sus =
(

Mcr

M−
sus

)3

Ig +
[

1 −
(

Mcr

M−
sus

)3
]

Icr

= [(0.23)3 × 20,736] + [1 − (0.23)3] × 12,270 = 12,373 in4 < Ig

Mcr

M−
D+L

= 68.3
420.8

= 0.16

(Ie )−D+L =
(

Mcr

M−
D+L

)3

Ig +

1 −

(
Mcr

M−
D+L

)3

 Icr

= [(0.16)3 × 20,736] + [1 − (0.16)3] × 12,270 = 12,305 in4 < Ig

� Average effective moments of inertia: The average effective moments of inertia are obtained from
Eq. (6.72) for one end continuous:

(Ie )D = 0.85(Ie )+D + 0.15(Ie )−D = (0.85 × 18,708) + (0.15 × 12,437) = 17,767 in4

(Ie )sus = 0.85(Ie )+sus + 0.15(Ie )−sus = (0.85 × 16,913) + (0.15 × 12,373) = 16,232 in4

(Ie )D+L = 0.85(Ie )+D+L + 0.15(Ie )−D+L = (0.85 × 15,334) + (0.15 × 12,305) = 14,880 in4

Step 5: Determine the immediate deflections and check the maximum permissible deflection
for live load. The immediate deflections �i are determined using Eq. (6.73) and Table 6.7:

�i = 5KMa �2

48Ec Ie
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For continuous members,

K = 1.2 − 0.2(Mo/Ma )

where Mo = w�2/8
Ma = w�2/14

Thus, K = 1.2 − 0.2(14/8) = 0.85.

(�i )D = 5KM+
D�2

48Ec (Ie )D
= 5 × 0.85 × 180.4 × 12,000 × (33.5 × 12)2

48 × 3,605,000 × 17,767
= 0.48 in

(�i ) sus = 5KM+
sus�

2

48Ec (Ie )sus
= 5 × 0.85 × 216.5 × 12,000 × (33.5 × 12)2

48 × 3,605,000 × 16,232
= 0.64 in

(�i )D+L = 5KM+
D+L�2

48Ec (Ie )D+L
= 5 × 0.85 × 300.6 × 12,000 × (33.5 × 12)2

48 × 3,605,000 × 14,880
= 0.96 in

(�i )L = (�i )D+L − (�i )D = 0.96 − 0.48 = 0.48 in

For a floor member that is not supporting or attached to nonstructural elements likely to be
damaged by large deflections, the maximum permissible immediate live load deflection from ACI
Table 9.5(b) is �/360 = 33.5 × 12/360 = 1.1 in > 0.48 in.

Step 6: Determine the long-term deflections and check the maximum permissible deflection.
Determine the factor λ� by Eq. (6.74) and Table 6.8, assuming a 5-year duration of loading:

λ� = ξ

1 + 50ρ′ = 2.0
1 + 0

= 2.0

The long-term deflection due to creep and shrinkage �cs is determined by Eq. (6.75), using the
immediate deflection for the sustained loads:

�cs = λ�(�i )sus = 2.0 × 0.64 = 1.3 in

The sum of the long-term deflection due to the sustained loads and the immediate deflection
due to any additional live load is 1.3 + 0.48 = 1.8 in.

For a floor member that is not supporting or attached to nonstructural elements likely to be
damaged by large deflections, the maximum permissible deflection from ACI Table 9.5(b) is �/240 =
33.5 × 12/240 = 1.7 in < 1.8 in.

Comments
Generally, the most efficient way to decrease deflections is to increase the depth of a member.
However, this may not always be possible because of architectural or other considerations.

In this case, because the long-term deflection due to the sustained loads plus the immediate
deflection due to any additional live load are slightly larger than the permissible value, increasing
the width of the beam and the compressive strength of the concrete are two viable options for
decreasing deflections. Also, using compressive reinforcement would decrease the factor λ� and
the long-term deflection �cs .
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Problems
6.1. Determine the slab thickness to satisfy the deflection criteria of ACI 9.5 for a six-span continuous
one-way slab supported on beams. The center-to-center span lengths are 18 ft 0 in for the end spans
and 20 ft 0 in for all interior spans. The widths of the edge beams and interior beams are 20 and 24 in,
respectively. Assume normal-weight concrete with f ′

c = 4,000 psi.

6.2. Given the one-way slab system described in Problem 6.1, determine the required negative and pos-
itive reinforcements in an end span and in an interior span, assuming a 9.5-in-thick slab, a superimposed
service dead load of 20 psf, a service live load of 50 psf, and Grade 60 reinforcement.

6.3. Determine the required flexural reinforcement for a 20-in-wide and 28-in-deep cantilever beam
subjected to a factored bending moment equal to 140 ft kips. Assume normal-weight concrete with
f ′
c = 4,000 psi, a 3/4-in maximum aggregate size, and Grade 60 reinforcement. Draw a section of the

beam showing the reinforcement.

6.4. Determine the required positive flexural reinforcement of a 32-in-wide and 20-in-deep beam
subjected to a positive factored bending moment equal to 700 ft kips. Assume normal-weight concrete
with f ′

c = 5,000 psi, a 1-in maximum aggregate size, and Grade 60 reinforcement.

6.5. Given the information provided in Problem 6.4, determine the required flexural reinforcement for
a positive factored bending moment equal to 825 ft kips and a tension-controlled section.

6.6. Determine the beam thickness to satisfy the deflection criteria of ACI 9.5 for a three-span contin-
uous beam supported on columns. The center-to-center span lengths are 25 ft 0 in for one of the end
spans, 32 ft 6 in for the interior span, and 29 ft 7 in for the other end span. The edge columns are 18 ×
18 in, and the interior columns are 22 × 22 in. The beams are spaced 12 ft 0 in on center, and they are
not supporting or attached to partitions or other construction likely to be damaged by large deflections.
The slab thickness is 7 in. Assume lightweight concrete with a density of 110 pcf, f ′

c = 4,000 psi, and
Grade 60 reinforcement.
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6.7. Given the information provided in Problem 6.6, determine the required positive and negative
flexural reinforcement for the interior beam. Assume that the beam is 26 in wide and 20 in deep. Also
assume a superimposed dead load of 20 psf and a live load of 100 psf.

6.8. Given the information provided in Problems 6.6 and 6.7, determine the required shear reinforce-
ment for the interior beam.

6.9. Determine the required spacing of shear reinforcement over the span of a 28-in-wide and 18-in-
deep beam with a clear span equal to 30 ft 2 in. The beam supports a total factored uniformly distributed
load of 5.0 kips/ft. Assume No. 4 U-stirrups with two legs (Grade 60) and normal-weight concrete with
f ′
c = 4,000 psi.

6.10. A 36-in-wide and 24-in-deep beam is reinforced with 10 No. 8 top bars at a support. It has been
determined that 6 of the 10 No. 8 bars can be theoretically cut off at a distance of 3.5 ft from the face
of the support. Determine the total required length of the six No. 8 bars from the face of the support.
Assume normal-weight concrete with f ′

c = 4,000 psi, Grade 60 reinforcement, and a clear cover to the
No. 8 bars of 1.875 in.

6.11. Given the information provided in Example 6.13, determine the positive and negative flexural
reinforcement in the beam on line 2 between C and D for the given gravity loads and a nominal wind
bending moment at each end of the beam equal to 50 ft kips. Also determine the theoretical cutoff points
of the negative reinforcement.

6.12. Determine the required spacing of the closed stirrups at the critical section of a 20-in-wide and
32-in-deep beam subjected to a factored shear force Vu = 100 kips and factored torsional moment
Tu = 75 ft kips. Assume normal-weight concrete with f ′

c = 4,000 psi and No. 4 closed stirrups (Grade
60) with a clear cover of 1.5 in.

6.13. Given the information provided in Problem 6.12, determine the required longitudinal reinforce-
ment for torsion A�, assuming At/s = 0.021 in2/in.

6.14. Given the information provided in Example 6.13, determine the reinforcement for combined
torsion, shear, and bending moment for beam CD, assuming that there are two beams framing into
beam CD instead of one. The beams are spaced at 10 ft 0 in on center.

6.15. Determine immediate and long-term deflections of a 36-in-wide and 22-in-deep rectangular beam
reinforced with 12 No. 8 bars at the interior supports and 9 No. 8 bars at the midspan. The clear span of
the beam is 28 ft 0 in, and the beam is continuous at both ends. The beams are spaced 32 ft 6 in on center.
The total dead load, including the weight of the beam, is 130 psf, and the live load is 100 psf (20% of the
live load is sustained). Assume normal-weight concrete with f ′

c = 4,000 psi. Also assume that the beam
is not supporting or attached to nonstructural elements likely to be damaged by large deflections.
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C H A P T E R 7
Two-Way Slabs

7.1 Introduction
A two-way slab is defined on the basis of the ratio of its panel dimensions. Where
the ratio of the long to the short side of a slab panel is two or more, load transfer is
predominantly by bending in the short direction, and the panel essentially acts as a one-
way slab. In such cases, the slab can be designed and detailed using the methods and
procedures outlined in Chap. 6. As the ratio of the sides of a slab panel approaches unity
(i.e., as a panel approaches a square shape), significant load is transferred by bending
in both orthogonal directions, and the panel must be treated as a two-way slab rather
than a one-way slab. Thus, by definition, a two-way slab system has a long-to-short
panel (span) ratio that is two or less. Design and detailing requirements for two-way
slab systems are covered in this chapter.

Descriptions of the different types of two-way slab systems are given, and informa-
tion is provided on when these systems are economical for various span and loading
conditions.

The minimum slab thickness requirements of the Code, based on serviceability and
shear strength, are presented for slabs with and without interior beams. A brief discus-
sion on the calculation of immediate and long-term deflections in two-way systems is
also included.

Analysis methods for two-way slabs are covered, including approximate methods
(the Direct Design Method and the Equivalent Frame Method) that can be used to
analyze typical concrete framing systems. These approximate methods greatly simplify
the determination of the positive and negative bending moments at the critical sections
in the slab system.

Design requirements are presented for flexure, serviceability, and shear. Included
are methods and procedures on how to determine a minimum slab thickness that sat-
isfies all three of these requirements. As in the case of beams and one-way slabs, the
required amount of flexural reinforcement in two-way slabs is determined using the
strength design method presented in Chap. 5. The size and spacing of the reinforce-
ment must be chosen so that the provisions related to strength and serviceability are not
violated. Flexural reinforcement must be fully developed. Furthermore, reinforcement
details are presented for typical two-way systems.

289
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7.2 Two-Way Slab Systems

7.2.1 Beam-Supported Slab
A solid slab supported on beams on all four sides is depicted in Fig. 7.1. This system,
which was the original slab system in reinforced concrete, can accommodate a wide
range of span and loading conditions. However, it is not as economical as other two-
way systems with similar span and loading conditions, due to formwork costs and
costs associated with deeper overall floor thickness. As such, column-line beams are
not used as often as they once were, except in cases where the demands for lateral force
resistance are relatively large. For example, because flat-plate systems are not permitted
to be the primary seismic force–resisting system in areas of high seismicity, moment-
resisting frames with column-line beams must be used as the seismic force–resisting
system.

The minimum thickness of the slab h that satisfies serviceability requirements de-
pends on the longer of the two spans and the average flexural stiffness of the beams on
the perimeter of the panel (see ACI 9.5.3.3). Distribution of bending moment and shear
force between the slab and beams also depends on the relative stiffness of the beams.
Two-way (punching) shear, which is discussed later, is usually not a concern for this
type of two-way system. The largest required slab and beam thickness from all of the
panels should be used over the entire floor or roof area whenever possible for economy
in formwork.

The beams in this system are designed and detailed using the methods presented
in Chap. 6 on the basis of the portion of load that is assigned to them in accordance
with the provisions in Chap. 13 of the Code.

FIGURE 7.1
Beam-supported
slab.
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FIGURE 7.2 Flat-
plate system.

7.2.2 Flat Plate
A flat-plate floor system is a two-way concrete slab supported directly on columns
with reinforcement in two orthogonal directions (Fig. 7.2). This system, which is popu-
lar in residential buildings (e.g., hotels and apartments), has the advantages of simple
construction and formwork and a flat ceiling, the latter of which reduces ceiling fin-
ishing costs because the architectural finish can be applied directly to the underside
of the slab. Even more significant are the cost savings associated with the low story
heights made possible by the shallow floor system. Smaller vertical runs of cladding,
partition walls, mechanical systems, plumbing, elevators, and a number of other items
of construction translate into large cost savings, especially for medium- and high-rise
buildings. Moreover, where the total height of a building is restricted, using a flat plate
can result in more stories accommodated within the set height.

Flat plates are typically economical for span lengths between 15 and 25 ft when
subjected to moderate live loads. The thickness h of a flat plate will usually be con-
trolled by the deflection requirements of ACI 9.5.3.2 for relatively short spans and live
loads of 50 psf or less. Flexural reinforcement at the critical sections will be approxi-
mately the minimum amount specified in ACI 13.3 in such cases. Therefore, utilizing a
slab thickness greater than the minimum required for serviceability is not economical
because a thicker slab requires more concrete without an accompanying reduction in
reinforcement. Because the minimum slab thickness requirements of ACI 9.5.3.2 are in-
dependent of the concrete compressive strength, a 4,000 psi concrete mixture is usually
the most economical; using a concrete strength that is greater than 4,000 psi increases
cost without a reduction in slab thickness.

Two-way (or punching) shear plays an important role in determining the thickness
of a flat plate, especially where the spans are relatively long and/or the live load is
100 psf or greater. In order to satisfy the shear strength requirements of ACI 11.12, the
required thickness is usually found to be greater than that required for serviceability.
Shear stresses at edge columns and corner columns are particularly critical because
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FIGURE 7.3 Flat-slab
system.

relatively large unbalanced moments can occur at those locations. Providing spandrel
beams significantly increases shear strength at perimeter columns, but as noted pre-
viously, there is additional material and forming costs associated with such members,
and they may not fit into the architectural scheme.

Headed shear stud reinforcement provides an economical means of resisting shear
stresses and helps to alleviate congestion at slab–column joints (see ACI 11.11.5). More
information on this type of shear reinforcement is given in Section 7.6.

For a live load of 50 psf or less, flat plates are economically viable for spans between
15 and 25 ft. The economical range for live loads of 100 psf is 15 to 20 ft. A flat-plate
floor subjected to a 100 psf live load is only approximately 8% more expensive than one
subjected to a 50 psf live load, primarily due to the minimum thickness requirements
for deflection, which typically control for smaller live loads.

7.2.3 Flat Slab
A flat-slab floor system is similar to a flat-plate floor system, with the exception that
the slab is thickened around the columns as shown in Fig. 7.3. The thickened portions
of the slab are called drop panels, and they must conform to the dimensional require-
ments of ACI 13.2.5, which are illustrated in Fig. 7.4. In the figure, �A and �B are the

FIGURE 7.4
Minimum drop
panel
dimensions.
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FIGURE 7.5 Shear
cap.

center-to-center span lengths in the directions shown; similar dimensional requirements
must be satisfied in the orthogonal direction as well.

The main purpose of the drop panels is to increase the shear strength around the
columns. Additionally, properly proportioned drop panels result in a reduction in the
required amount of negative reinforcement and in the overall slab thickness [see ACI
9.5.3.2 and ACI Table 9.5(c)].

Shear caps are thickened concrete elements that extend horizontally below the slab
a minimum distance from the edge of the column equal to the thickness of the projection
below the slab soffit (see Fig. 7.5). These elements are similar to drop panels, but they
are provided exclusively to increase shear strength (see ACI 13.2.6).

The specified thickness of a drop panel or shear cap is controlled by formwork
considerations. Using depths other than the standard depths indicated in Fig. 7.6, which
are dictated by lumber dimensions, will unnecessarily increase formwork costs. It is
common to initially check shear strength requirements, using a total drop panel or shear
cap thickness that is 2.25 in greater than the required slab thickness. If this thickness
is not adequate, then a 4.25-in thickness is checked. This process continues using the
thicknesses in Fig. 7.6 until all required criteria are satisfied.

Another way to reduce shear around columns is to flare the top of a column, creating
column capitals (see Fig. 7.7). For purposes of design, a column capital is part of the

FIGURE 7.6 Drop
panel and shear
cap formwork
details.
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FIGURE 7.7 Column
capitals and drop
panels.

column, whereas a drop panel or shear cap is part of the slab. Because of relatively large
formwork costs, column capitals are not commonly used any more.

For a live load of 50 psf or less, flat slabs are economically viable for spans between
25 and 30 ft. The economical range for live loads of approximately 100 psf is 20 to 25 ft.
Total material costs increase by only approximately 4% when going from a 50 psf live
load to a 100 psf live load because the material quantities are usually controlled by
deflections.

7.2.4 Two-Way Joist
Two-way joist construction, which is commonly referred to as a waffle slab system,
consists of rows of concrete joists at right angles to each other with solid heads at the
columns, which are needed for shear strength (see Fig. 7.8). The joists are formed by
using standard square “dome” forms that are 30, 41, and 52 in wide, resulting in 3-, 4-,
and 5-ft modules, respectively. Depending on the dome width, the depth of the dome
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FIGURE 7.8 Two-way joist (waffle) system.

varies from 8 to 24 in. Waffle slabs are economically viable for long spans (40 to 50 ft)
with heavy loads and are used in office buildings, warehouses, libraries, museums, and
industrial buildings.

For design purposes, waffle slabs are considered as flat slabs with the solid heads
acting as drop panels. Thus, the minimum thickness requirements of ACI 9.5.3.2 must
be satisfied. This is accomplished by transforming the actual cross-section of the floor
system into an equivalent section of uniform thickness. In other words, a slab thickness
that provides the same moment of inertia as the two-way joist section is determined.

Waffle slab construction allows a considerable reduction in dead load compared
with conventional flat-slab construction because the slab thickness can be minimized
owing to the short span between the joists. Thus, this system is particularly advanta-
geous where long spans and/or heavy loads are desired without the use of deepened
drop panels or support beams. The geometric shape formed by the joist ribs is generally
considered to be architecturally desirable and is often left exposed.

Like beam-supported slabs, waffle slabs are not specified as often as they once were.
This is primarily due to the cost attributed to the formwork. Increasing the live load
from 50 to 100 psf results in an approximately 7% increase in the overall cost of this
system.

7.3 Minimum Thickness Requirements

7.3.1 Overview
The first step in the design of a two-way slab system is to determine a preliminary slab
thickness. A minimum slab thickness must be provided to control deflections and to
provide adequate shear strength.

Serviceability requirements for two-way construction with nonprestressed rein-
forcement are given in ACI 9.5.3. The governing provisions depend on whether beams
are present or not in the slab system.
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Both one- and two-way shear must be investigated at the critical sections around
the supports. Two-way shear requirements play an important role in the selection of
slab thickness in systems without beams.

7.3.2 Control of Deflections
Provisions for minimum thickness of two-way slab systems based on deflection re-
quirements are contained in ACI 9.5.3 and are summarized later for slabs (1) without
interior beams spanning between the supports and (2) with beams spanning between
the supports.

The provisions in the Code greatly simplify the determination of minimum slab
thickness for deflection control in routine designs. Complex deflection calculations need
not be performed if the overall thickness is equal to or greater than that determined by
ACI 9.5.3.

Slabs without Interior Beams
The information presented in Fig. 7.9 is a summary of the minimum slab thickness
requirements of ACI Table 9.5(c) for slabs without interior beams that utilize Grade 60
reinforcement. Similar to beams and one-way slabs, the minimum thickness of a two-
way slab without drop panels (flat plates) and with drop panels (flat slabs) is a function
of the clear span length �n. In slabs without beams, �n is the length of the clear span in
the long direction measured face-to-face of supports. In all other cases, �n is measured
face-to-face of beams or other supports.

It is evident that flat slabs with drop panels that meet the minimum size require-
ments illustrated in Fig. 7.4 are permitted to have an overall thickness that is 10% less
than that required for flat plates. In cases where a drop panel is provided with overall
dimensions greater than the minimum specified (e.g., the thickness is greater than the
minimum in order to increase shear strength), a corresponding decrease in the mini-
mum slab thickness is not permitted unless deflections are computed.

A decrease of 10% in the minimum thickness is also permitted in exterior panels
with relatively stiff edge beams. In particular, this reduction is allowed in panels where
the stiffness ratio αf is equal to or greater than 0.8. Methods on how to determine αf

are given later.
ACI 9.5.3.2(a) requires that a 5-in minimum slab thickness be provided for slabs

without drop panels and a 4-in minimum thickness be provided for slabs with drop
panels. It has been demonstrated that slabs conforming to the limitations of ACI 9.5.3.2
have not exhibited any deflection problems for both short- and long-term loads.

The greatest minimum slab thickness that is determined from all panels is used for
the entire floor or roof system. Like the case for beams and one-way slabs, the most
economical solution is obtained by varying the reinforcement and not the slab thickness.

Slabs with Interior Beams
Provisions for minimum slab thickness of two-way systems with beams spanning be-
tween the supports on all sides of a panel are given in ACI 9.5.3.3. These provisions
are based on the average value of the relative beam stiffness αfm. A discussion on the
computation of this stiffness ratio follows.

Stiffness Ratios αf and αfm The term αf is the ratio of the flexural stiffness of a beam
section to the flexural stiffness of a width of slab bounded laterally by centerlines of
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FIGURE 7.9 Minimum slab thickness for two-way slabs without interior beams (Grade 60
reinforcement).

any adjacent panels on each side of the beam [see ACI Eq. (13-3)]:

α f = Ecb Ib

Ecs Is
(7.1)

In this equation, Ecb and Ecs are the moduli of elasticity of the concrete for the beam
and slab, respectively, which are determined in accordance with ACI 8.5.1 (also see
Section 2.2.2). In most monolithic cast-in-place structures, the same concrete is used for
the beams and slabs, so, Ecb = Ecs.
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The moment of inertia of the slab section Is is determined using the full width of
the slab that is tributary to the beam:

Is = 1
12

�2h3
f (7.2)

In this equation, �2 is the width of the slab that is tributary to the beam and hf is the
slab thickness (see Fig. 7.10 for both interior and edge beams).

The moment of inertia of the beam section Ib is determined using the web portion
of the section in combination with the flange portion that has an effective width be ,

FIGURE 7.10
Effective beam and
slab sections for
computation of
stiffness ratio for
interior and
edge beams.
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which is defined in ACI 13.2.4. Figure 7.10 contains interior and edge beams where the
beam web projects below the slab; in general, the greater of the projections above or
below the slab is used to calculate be . Beams that project above the slab are commonly
referred to as upturned beams and are usually located at the perimeter of a structure.

The following equation can be used to determine Ib for both interior and edge
beams:

Ib = 1
12

bwh3
b + bwhb

(
yb − hb

2

)2

+ 1
12

be h3
f + be hf

(
hb + hf

2
− yb

)2

(7.3)

The term yb is the distance from the bottom of the beam section to the centroid of
the combined section:

yb = be h f [(hb + (hf/2))] + (
bwh2

b/2
)

be h f + bwhb
(7.4)

The stiffness ratio αfm is defined as the average value of the stiffness ratios αf for all
beams on the edges of a panel. Thus, for a panel with four beams, αfm = (αf 1 + αf 2 +
αf 3 + αf 4)/4.

Minimum Slab Thickness Once αfm has been established, the minimum slab thickness
h = hf is determined by ACI 9.5.3.3. A summary of these requirements is given in
Table 7.1.

In ACI Eqs. (9-12) and (9-13), �n is the length of the clear span in the long direction
measured face-to-face of supporting beams and β is the ratio of the long to the short
clear span dimensions of the panel.

It is evident from Table 7.1 that panels with an average relative stiffness ratio αfm less
than 0.2 must have a minimum thickness that is equal to or greater than that required
for two-way systems without interior beams. In other words, the beams in such cases
are not stiff enough to warrant a decrease in minimum thickness.

ACI Eqs. (9-12) and (9-13) must be modified where beams at discontinuous panel
edges do not meet certain minimum stiffness requirements. In particular, the minimum
thickness values obtained by these equations must be increased by at least 10% where
an edge beam has a stiffness ratio αf less than 0.80. This requirement exemplifies the
positive effect that stiff edge beams have in controlling overall deflections.

αfm ACI Equation Number Minimum h

αfm ≤ 0.2 — Use the provisions of ACI 9.5.3.2.

0.2 < αfm ≤ 2.0 9–12
�n[0.8 + ( fy/200,000)]

36 + 5β(αfm − 0.2)
≥ 5.0 in

αfm > 2.0 9–13
�n[0.8 + ( fy/200,000)]

36 + 9β
≥ 3.5 in

TABLE 7.1 Minimum Slab Thickness for Two-way Slabs with Beams Spanning Between
the Supports
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Calculated Deflections
ACI 9.5.3.4 permits the use of a two-way slab thickness less than that determined by
the appropriate provisions of ACI 9.5.3.1 to 9.5.3.3 if it can be shown that calculated
immediate and long-term deflections are equal to or less than the limiting values given
in ACI Table 9.5(b). In general, the size and shape of the panel and the support conditions
must be taken into account in the model.

The calculation of deflections for two-way slab systems is complex even when the
calculations are based on linearly elastic behavior. A number of approximate procedures
that make the calculations more tenable have been developed, and a summary of these
procedures can be found in Refs. 1 and 2. Regardless of the approximate procedure that is
employed, the results must be in reasonable agreement with those from comprehensive
tests.

In the calculation of immediate deflections, the modulus of elasticity Ec defined
in ACI 8.5.1 and the effective moment of inertia Ie defined in ACI 9.5.2.3 for one-way
construction may be used for two-way construction as well (see Section 6.5).3 ACI 9.5.3.4
permits the long-term multiplier given in ACI 9.5.2.5 for one-way construction to be
used in the calculation of long-term deflections in two-way systems. Data on long-term
deflections in such systems are limited, so a more sophisticated procedure to determine
such deflections is not justified.

It is important for the designer to be aware of the range of accuracy of estimated de-
flections in two-way construction. Approximate methods can provide only approximate
deflections, so a conservative approach should be followed in the design of deflection-
sensitive systems.

7.3.3 Shear Strength Requirements
When establishing a slab thickness in the preliminary design stage, it is important
to check the shear strength requirements, especially for slab systems without beams.
Both one- and two-way shear must be investigated at the critical sections around the
supports. More often than not, slab thickness will be controlled by two-way shear
requirements, so it is important to establish a preliminary slab thickness based on shear
strength at the onset of the design procedure. One- and two-way shear requirements
for two-way slab systems are given in Section 7.6.

Because two-way shear requirements of ACI 11.11 are related to flexural require-
ments (namely, the assumed distribution of shear stress around the critical section of
a column includes the effects of unbalanced bending moments at a support), a slab
thickness that satisfies both sets of requirements cannot be obtained in the preliminary
design stage unless some simplifying assumptions are made. Figure 7.11 can be used to
obtain a preliminary slab thickness for flat plates where the slab thickness is typically
controlled by two-way shear requirements. The information in the figure is based on
the following assumptions:

� Square edge column of size c1 bending perpendicular to the slab edge with a
three-sided critical section

� Column supporting a tributary area A
� Square bays
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FIGURE 7.11 Preliminary slab thickness for flat plates.

� Gravity load moment transferred between the slab and the edge column in
accordance with the Direct Design Method requirement of ACI 13.6.3.6

� 4,000 psi normal-weight concrete

The term qu is the total factored load, which must include an estimate of the slab
weight. The ratio d/c1 is determined from Fig. 7.11 as a function of qu and the area ratio
A/c2

1. A preliminary slab thickness h can be obtained by adding 1.25 in to d acquired from
the figure. The purpose of this design aid is to help decrease the number of iterations that
are needed to establish a viable slab thickness based on shear strength requirements;
it is not meant to replace shear strength calculations. Determining a preliminary slab
thickness based on the conditions at an edge column was chosen because the shear
requirements are usually the most critical at that location.

7.3.4 Fire Resistance Requirements
Even though concrete floor systems offer inherent fire resistance, the thickness of the slab
must be chosen in the preliminary design stage to satisfy fire resistance requirements.
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State and municipal codes regulate the fire resistance of the various elements and
assemblies of a building structure. In general, structural frames, floor and roof systems,
and other load-bearing elements must be able to withstand the strains imposed by
fully developed fires and must carry their tributary loads, including their own weight,
without collapsing.

Fire resistance rating requirements generally vary from 1 to 4 hours, with buildings
typically requiring 2 hours. Chap. 7 of the International Building Code (IBC) contains both
prescriptive and calculated fire resistance provisions for a variety of structural elements
and assemblies.4

It is important to note that the minimum thickness requirements given in the ACI
Code do not consider fire resistance. In general, the thickness of a two-way slab that
satisfies strength and serviceability requirements of the ACI Code will usually be greater
than that required for fire resistance. However, for relatively short spans, the minimum
thickness may be governed by fire resistance requirements.

Consider a square, two-way slab panel with beams spanning between the supports
where αfm = 2.5 and �n = 11 ft. Assuming Grade 60 reinforcement, the minimum slab
thickness from ACI Eq. (9-13) is (see Table 7.1)

h = �n[0.8 + ( fy/200,000)]
36 + 9β

= (11 × 12)[0.8 + (60,000/200,000)]
36 + (9 × 1.0)

= 3.2 in < 3.5 in

Therefore, the minimum slab thickness required for deflection control is 3.5 in.
Assume that the IBC has been adopted by the local jurisdiction and that a 2-hour
fire resistance rating is needed. For a concrete mixture with normal-weight siliceous
aggregate, IBC Table 721.2.2.1 requires at least a 4.6-in-thick slab to achieve a 2-hour fire
resistance rating. Specifying lightweight aggregate instead of normal-weight aggregate
requires a minimum thickness of 3.6 in for a 2-hour rating. Regardless of the aggregate
type, the minimum slab thickness is governed in this case by fire resistance requirements
instead of deflection requirements.

It is good practice to check the requirements of the local building code governing a
project early in design to ensure that minimum fire resistance requirements are satisfied.

Example 7.1 Determine the minimum slab thickness that satisfies the deflection criteria of ACI 9.5.3
for the flat-plate system depicted in Fig. 7.12. Assume Grade 60 reinforcement.

Solution For slabs without interior beams spanning between the supports, the provisions of ACI
9.5.3.2 must be used to determine the minimum slab thickness.

The minimum slab thickness is determined using the information given in ACI Table 9.5(c) for
slab systems without drop panels and edge beams and with Grade 60 reinforcement (see Fig. 7.9):

� Exterior panel: longest �n = (23.5 × 12) − 20 = 262 in

hmin = �n

30
= 262

30
= 8.7 in

� Interior panel: longest �n = (23.5 × 12) − 24 = 258 in

hmin = �n

33
= 258

33
= 7.8 in
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Five at 23 ft 6 in

Edge columns: 20 × 20 in

Interior columns: 24 × 24 in

Fi
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 2

1 
ft 

8 
in

FIGURE 7.12 The flat-plate system of Example 7.1.

Thus, the minimum slab thickness for an exterior panel governs.
Use a 9-in-thick slab. This thickness is greater than the minimum thickness of 5 in prescribed in

ACI 9.5.3.2(a) for slabs without drop panels.

Example 7.2 Determine the minimum slab thickness that satisfies the deflection criteria of ACI 9.5.3
for the flat-slab system depicted in Fig. 7.13. Assume Grade 60 reinforcement.

Solution For slabs without interior beams spanning between the supports, the provisions of ACI
9.5.3.2 must be used to determine the minimum slab thickness.

Check if the plan dimensions of the drop panel meet the minimum requirements of ACI 13.2.5(b):

Minimum extension from centerline of support = �

6
= 23.5

6
= 3.9 ft

Minimum width of drop panel = 2 × 3.9 = 7.8 ft

Note that the largest center-to-center distance between columns was used to determine the
minimum drop panel extension.

The requirements of ACI 13.2.5(b) are satisfied for the plan dimensions of the drop panels
because 8 × 8 ft drop panels are provided. Once a slab thickness has been determined, the thickness





305T w o - W a y S l a b s

Thus, the minimum slab thickness for an exterior panel governs.
Try a 7.5-in slab thickness, and calculate αf for an edge beam, using Eq. (7.1):

α f = Ecb Ib

Ecs Is

Effective width be =
{

bw + hb = 20 + (24 − 7.5) = 36.5 in (governs)

bw + 4hf = 20 + (4 × 7.5) = 50.0 in
(see Fig. 7.10)

Using Eq. (7.4),

yb = be hf [hb + (hf /2)] + (
bwh2

b/2
)

be hf + bwhb
= (36.5 × 7.5)(16.5 + 3.75) + (0.5 × 20 × 16.52)

(36.5 × 7.5) + (20 × 16.5)
= 13.7 in

Using Eq. (7.3),

Ib = 1
12

bwh3
b + bwhb

(
yb − hb

2

)2

+ 1
12

be h3
f + be hf

(
hb + hf

2
− yb

)2

=
(

1
12

× 20 × 16.53
)

+ (20 × 16.5)
(

13.7 − 16.5
2

)2

+
(

1
12

× 36.5 × 7.53
)

+ (36.5 × 7.5)
(

16.5 + 7.5
2

− 13.7
)2

= 30,317 in4

Also, from Eq. (7.2),

Is = 1
12

�2h3
f = 1

12
×

(
23.5 × 12

2
+ 20

2

)
× 7.53 = 5,309 in4

Note that Is was calculated using the largest �2; this results in the maximum Is , which is required
in order to obtain the minimum αf .

Therefore,

α f = Ecb Ib

Ecs Is
= 30,317

5,309
= 5.7 > 0.8

Thus, the assumption that αf ≥ 0.8 is correct.
Use a 7.5-in-thick slab. This thickness is greater than the minimum thickness of 4 in prescribed

in ACI 9.5.3.2(b) for slabs with drop panels.
The minimum thickness of the projection of the drop panel below the slab must be 0.25 × 7.5 =

1.9 in (see Fig. 7.4). From Fig. 7.6, use a 2.25-in drop panel projection. The overall thickness of the
drop panel and the slab adjacent to the drop panel need to be checked for two-way shear.

Example 7.3 Determine the minimum slab thickness that satisfies the deflection criteria of ACI 9.5.3
for the beam-supported slab system depicted in Fig. 7.14. Assume Grade 60 reinforcement.

Solution For slabs with interior beams spanning between the supports, the provisions of ACI 9.5.3.3
must be used to determine the minimum slab thickness.

The minimum slab thickness is determined on the basis of the stiffness ratio αfm. Because the
slab thickness is not known at this stage, αf and αfm cannot be determined. In lieu of assuming a
slab thickness, a minimum slab thickness will be determined assuming αfm > 2.0; this assumption
will be checked after the slab thickness has been calculated.
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Edge columns: 20 × 20 in

Interior columns: 24 × 24 in

Edge beams: 20 × 24 in

Interior beams: 24 × 24 in

Five at 23 ft 6 in
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 at
 2

1 
ft 

8 
in

FIGURE 7.14 The beam-supported slab system of Example 7.3.

For an edge bay (see Table 7.1),

hmin = �n[0.8 + ( fy/200,000)]
36 + 9β

= [(23.5 × 12) − 20] [0.8 + (60,000/200,000)]
36 + [9 × (262/238)]

= 6.3 in > 3.5 in

In this equation, the longest clear span was used for �n (this occurs between two edge columns).
This results in a maximum value of hmin. The same value of hmin is obtained using the clear spans
in a corner bay.

Try a 6.5-in slab thickness, and calculate αf for the beams and αfm for the panels.

North-South Edge Beams

Effective width be =
{

bw + hb = 20 + (24 − 6.5) = 37.5 in (governs)

bw + 4hf = 20 + (4 × 6.5) = 46.0 in
(see Fig. 7.10)
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Using Eq. (7.4),

yb = be hf [hb + (hf/2)] + (
bwh2

b/2
)

be hf + bwhb
= (37.5 × 6.5)(17.5 + 3.25) + (0.5 × 20 × 17.52)

(37.5 × 6.5) + (20 × 17.5)
= 13.7 in

Using Eq. (7.3),

Ib = 1
12

bwh3
b + bwhb

(
yb − hb

2

)2

+ 1
12

be h3
f + be hf

(
hb + hf

2
− yb

)2

=
(

1
12

× 20 × 17.53
)

+ (20 × 17.5)
(

13.7 − 17.5
2

)2

+
(

1
12

× 37.5 × 6.53
)

+(37.5 × 6.5)
(

17.5 + 6.5
2

− 13.7
)2

= 30,481 in4

Also, from Eq. (7.2),

Is = 1
12

�2h3
f = 1

12
×

(
23.5 × 12

2
+ 20

2

)
× 6.53 = 3,456 in4

Therefore,

α f = Ecb Ib

Ecs Is
= 30,481

3,456
= 8.8

East-West Edge Beams
Because the beam size in the east-west direction is the same as that in the north-south direction,
Ib = 30,481 in4.

Is = 1
12

�2h3
f = 1

12
×

(
21.67 × 12

2
+ 20

2

)
× 6.53 = 3,204 in4

α f = Ecb Ib

Ecs Is
= 30,481

3,204
= 9.5

North-South Interior Beams

Effective width be =
{

bw + 2hb = 24 + [2 × (24 − 6.5)] = 59.0 in (governs)

bw + 8hf = 24 + (8 × 6.5) = 76.0 in
(see Fig. 7.10)

Using Eq. (7.4),

yb = be hf [hb + (hf/2)] + (
bwh2

b/2
)

be hf + bwhb
= (59.0 × 6.5)(17.5 + 3.25) + (0.5 × 24 × 17.52)

(59.0 × 6.5) + (24 × 17.5)
= 14.5 in

Using Eq. (7.3),

Ib = 1
12

bwh3
b + bwhb

(
yb − hb

2

)2

+ 1
12

be h3
f + be hf

(
hb + hf

2
− yb

)2

=
(

1
12

× 24 × 17.53
)

+ (24 × 17.5)
(

14.5 − 17.5
2

)2

+
(

1
12

× 59.0 × 6.53
)

+ (59.0 × 6.5)
(

17.5 + 6.5
2

− 14.5
)2

= 40,936 in4
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Also, from Eq. (7.2),

Is = 1
12

�2h3
f = 1

12
× (23.5 × 12) × 6.53 = 6,454 in4

Therefore,

α f = Ecb Ib

Ecs Is
= 40,936

6,454
= 6.3

East-West Interior Beams
Because the beam size in the east-west direction is the same as that in the north-south direction,
Ib = 40,936 in4.

Is = 1
12

�2h3
f = 1

12
× (21.67 × 12) × 6.53 = 5,951 in4

α f = Ecb Ib

Ecs Is
= 40,936

5,951
= 6.9

For a corner panel, αfm = (8.8 + 9.5 + 6.3 + 6.9)/4 = 7.9.
For an edge panel on the east or west face, αfm = (8.8 + 6.9 + 6.3 + 6.9)/4 = 7.2.
For an edge panel on the north or south face: αfm = (6.3 + 9.5 + 6.3 + 6.9)/4 = 7.3
For an interior panel: αfm = (6.3 + 6.9 + 6.3 + 6.9)/4 = 6.6
Because αfm > 2.0 for all panels, the initial assumption is correct.
Use a 6.5-in-thick slab. This thickness is greater than the minimum thickness of 3.5 in prescribed

in ACI 9.5.3.3(c) for slabs with beams spanning between the supports and αfm > 2.0.

7.4 Analysis Methods

7.4.1 Overview
Methods of analysis for reinforced concrete two-way slabs are given in ACI 13.5. Any
method based on the fundamental principles of structural mechanics that satisfy equi-
librium and geometric compatibility is permitted, provided the results are in reasonable
agreement with test data.

Two methods of analysis for two-way slab systems under gravity loads are ad-
dressed in ACI Chap. 13. The approximate Direct Design Method gives reasonably
conservative bending moment values for slab systems that meet the specified limita-
tions. This method is much simpler to use than the more complex Equivalent Frame
Method, which gives more exact results.

Before the Direct Design Method and the Equivalent Frame Method are covered,
the fundamental assumptions that are made when analyzing two-way slab systems are
examined, including a discussion on the variation of bending moments in two-way
slabs. This discussion gives additional insight into the requirements of the analysis
methods.

Approximate methods of analysis for slab systems subjected to the effects of lateral
loads are also covered, as are the requirements pertaining to openings.
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FIGURE 7.15
Deflection of a
two-way slab on
simple edge
supports.

7.4.2 Gravity Loads

Variation of Bending Moments
When a two-way slab is subjected to uniform gravity loads, it bends in two directions
as illustrated in Fig. 7.15 for the case of simple edge supports. This behavior is different
from that of a one-way slab, which bends primarily in one direction.

Strips of slab located at the center of the panel in each direction are also shown
in Fig. 7.15. In order to satisfy compatibility requirements, the deflections of the strips
must be the same at the point of intersection at the center of the span. Equating the
deflections of both simply supported strips results in the following:

5q1�
4
1

384EI
= 5q2�

4
2

384EI
(7.5)

In this equation, q1 and q2 are the portions of the total load q carried in the long and short
directions, respectively. Because EI is a constant, Eq. (7.5) can be rewritten as follows:

q2 = �4
1

�4
2

q1 (7.6)

Because �1 is greater than �2, the larger portion of the total load q is carried in the
short direction.

When other than the center slab strips are considered in each direction, it becomes
evident that these strips must bend and twist in order to maintain equilibrium. Thus,
in general, the total load q is carried in both directions by bending moments and by
twisting moments.

The largest bending moment in the slab occurs where the curvature is the sharpest,
which is at the midspan of the strip in the short direction (see Fig. 7.15); other strips
in that direction have smaller bending moments. A similar situation occurs in the per-
pendicular direction. Therefore, bending moments vary across both the width and the
length of a two-way slab.

To illustrate the variation of bending moments in other than edge-supported slabs,
consider the flat plate supported by the four columns shown in Fig. 7.16. Assume that the
slab is subjected to a uniformly distributed gravity load q . The following discussion,
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FIGURE 7.16 Bending moment diagram in the direction of �1.

which is applicable to any column-supported two-way slab system, focuses on the
variation in bending moments in the direction parallel to �1 and perpendicular to �2. A
similar discussion is applicable in the perpendicular direction.

Figure 7.16 shows the bending moment diagram along span �1. In this direction, the
slab may be considered a beam that has a width equal to �2 where the load per width
of span is equal to q�2. If strips are considered in the short and long directions, it can
be shown from statics that 100% of the applied gravity load must be carried in each
direction. This requirement is essential in the determination of bending moments in a
column-supported two-way slab system.

In any span of a continuous system, the sum of the midspan positive moment
and the average of the negative moments at the supports is equal to the midspan
positive moment of a simply supported beam of the same length and applied load.
This bending moment is represented by Mo in Fig. 7.16 and can be expressed by the
following equation:

Mo = q�2�
2
1

8
= M12 + M34

2
+ Mcl (7.7)

Approximate methods, such as the Direct Design Method, provide ways to deter-
mine the negative bending moments at the supports and the positive bending moments
in the span as a function of Mo .
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FIGURE 7.17 Variation of bending moments across width of critical section in column-supported
two-way slab.

The variation in bending moment across the width of the critical sections at 1-2 (or
3-4) and the critical section at the centerline of the span are depicted in Fig. 7.17. The
exact variation of the bending moments depends on the magnitude of the applied load,
the presence of beams on the column lines, and the presence of drop panels or column
capitals. It is evident from the figure that the larger bending moments are concentrated
along the column lines.

Also shown in Fig. 7.17 are column strips and middle strips. In order to simplify
the design, it is assumed that the bending moments are constant within these strips.
Column strips and middle strips are defined in ACI 13.2 and depend on the span lengths
�1 and �2, where �1 is the center-to-center distance between supports in the direction
of analysis (i.e., in the direction bending moments are being computed) and �2 is the
center-to-center span length perpendicular to �1. A column strip is a design strip with a
width on each side of a column centerline equal to 25% of �1 or �2, whichever is less (see
Fig. 7.18). Note that column-line beams, if present, are included in the column strips.
Middle strips are bounded by two column strips.

Approximate methods of analysis, such as the Direct Design Method, provide dis-
tribution factors for determining the bending moments in the column strips and middle
strips at each critical location along the span.

Direct Design Method
Limitations The Direct Design Method of ACI 13.6 is an approximate method that
can be utilized to determine the bending moments in two-way slab systems. Before
discussing the details of the method, it is important to know the limitations under
which this method can be used.

The limitations contained in ACI 13.6.1 are as follows (see Fig. 7.19):

1. Three continuous spans must be present in each direction.

2. Slab panels must be rectangular with a ratio of the longer to the shorter span,
centerline-to-centerline of supports, equal to or less than 2.
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FIGURE 7.18 Column strips and middle strips.

FIGURE 7.19 Limitations of the Direct Design Method.
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3. Successive span lengths, centerline-to-centerline of supports, in each direction
must not differ by more than one-third of the longer span.

4. Columns must not be offset more than 10% of the span in the direction of offset
from either axis between the centerlines of successive columns.

5. Loads applied to the slab must be uniformly distributed gravity loads where
the ratio of the unfactored live load to the unfactored dead load is equal to or
less than 2.

6. For panels with column-line beams on all sides, ACI Eq. (13-2) must be satisfied.

7. Redistribution of bending moments in accordance with ACI 8.4 is not permitted.

It is important to note that the Direct Design Method is based on tests where only
uniformly distributed gravity loads were considered.5 A frame analysis is required
where lateral forces, such as wind or seismic forces, act on a structure. Combining the
results from the Direct Design Method with those from the frame analysis is permitted
(ACI 13.5.1.3). The rationale behind other limitations of this method can be found in
ACI R13.6.1.

ACI 13.6.1.8 permits the use of the Direct Design Method even when the limitations
are not satisfied, provided it can be shown by analysis that a particular limitation does
not apply to the structure.

Analysis Procedure In cases where all of the applicable limitations outlined in ACI 13.6.1
are satisfied, the Direct Design Method may be used to determine the bending moments
in the slab. The three-step analysis procedure is summarized next.

Step 1: Determine the total factored static moment Mo in each span. The total
factored static moment Mo is determined by ACI Eq. (13-4), which is similar to Eq. (7.7)
derived earlier:

Mo = qu�2�
2
n

8
(7.8)

In this equation, qu is the total factored gravity loads acting on the slab; �n is the clear
span in the direction of analysis; and �2 is the centerline-to-centerline span length per-
pendicular to �n. Where the transverse spans of panels on either side of the centerline of
supports are not the same (see Fig. 7.18), �2 is set equal to the average of these transverse
span lengths (i.e., �2 = [(�2)A + (�2)B]/2). Also, where the span adjacent and parallel to
an edge is considered, the value of �2 that is to be used in Eq. (7.8) is equal to the distance
from the edge of the slab to the panel centerline. Thus, for the edge design strip de-
picted in Fig. 7.18, �2 is equal to (�2)B/2 plus one-half of the column dimension parallel
to (�2)B .

Requirements on how to determine the clear span length �n are given in ACI 13.6.2.5
and are illustrated in Fig. 7.20. In general, �n is to extend face-to-face of columns, capitals,
brackets, or walls. In cases where the supporting member does not have a rectangular
cross-section or if the sides of the rectangle are not parallel to the spans, such members
are to be treated as a square support that has the same area as that of the actual support.
ACI 13.6.2.5 also requires that �n be equal to or greater than 65% of the span length �1.
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FIGURE 7.20 Definition of clear span.

Step 2: Distribute Mo into negative and positive bending moments in each span.
Once Mo has been calculated, it is divided into negative and positive moments within
each span in accordance with the distribution factors given in ACI 13.6.3. The resulting
bending moments are the total bending moments in the design strip in the direction of
analysis. The negative factored bending moments are located at the face of a support
(ACI 13.6.3).

According to ACI 13.6.3.2, the total negative factored bending moment at the face
of a support in an interior span is equal to 65% of Mo . The positive factored bending
moment is equal to 35% of Mo .

A summary of the bending moment coefficients of ACI 13.6.3.3 for an end span
is given in Table 7.2. These coefficients are based on the equivalent column stiffness
expressions derived in Refs. 6 through 8. An unrestrained edge would correspond to
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Slab without Beams

Exterior Slab with Between All Supports Exterior
Edge Beams Between Without With Edge Fully

Unrestrained All Supports Edge Beam Edge Beam Restrained

Exterior negative 0 0.16 0.26 0.30 0.65

Positive 0.63 0.57 0.52 0.50 0.35

Interior negative 0.75 0.70 0.70 0.70 0.65

TABLE 7.2 Bending Moment Coefficients for an End Span

a slab that is simply supported on a masonry or concrete wall. A fully restrained edge
would include a slab that is integrally constructed with a concrete wall that has a flexural
stiffness much greater than that of the slab so that little rotation occurs at the slab–wall
connection. Beam-supported slabs are slabs with beams between all supports, and flat
plates and flat slabs are slabs without beams between all supports (see Section 7.2). The
coefficients given in Table 7.2 for these systems yield upper-bound values for positive
and interior negative bending moments. As such, exterior negative bending moments
are close to lower-bound values.

The total bending moments in the design strip are obtained by multiplying Mo by
the bending moment coefficients given in Table 7.2.

An important requirement related to shear stresses that develop at edge columns is
given in ACI 13.6.3.6: The gravity load bending moment that is to be transferred between
the slab and an edge column bending perpendicular to the edge must be 30% of Mo

when the Direct Design Method is utilized. This bending moment is the unbalanced
moment at the edge column and contributes to the total shear stress at that location.
More details on shear requirements are given in Section 7.6.

Step 3: Distribute the total negative and positive bending moments in the de-
sign strip to the columns strips and middle strips. ACI 13.6.4 to 13.6.6 provide the
percentages of the negative and positive bending moments at the critical sections that
are to be assigned to the column strips, beams (if any), and middle strips, respectively.
In general, the percentages depend on the relative beam-to-slab stiffness ratio α f 1 in the
direction of analysis, the torsional stiffness parameter βt , and the panel width-to-length
ratio �2/�1. These percentages are based on studies of linearly elastic slabs with different
beam stiffness.9

Column strip—negative factored bending moments at interior supports The percentages
for interior negative factored bending moments in a column strip are given in ACI
13.6.4.1 as a function of α f 1�2/�1 and �2/�1, where α f 1 is determined by Section 7.3. In
lieu of using the table in that section, the percentage can be calculated by the following
equation2:

75 + 30
(

α f 1�2

�1

)(
1 − �2

�1

)
(7.9)

Column strip—negative factored bending moments at exterior supports Percentages for
exterior negative factored bending moments in a column strip, which are given in ACI
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13.6.4.2, depend not only on the aforementioned parameters but also on the torsional
stiffness parameter βt of the edge beam, which is defined in ACI Eq. (13-5):

βt = EcbC
2Ecs Is

(7.10)

In this equation, the shear modulus of the concrete has been taken as 50% of the modulus
of elasticity of the concrete for the beam Ecb.

The cross-sectional constant C is determined by dividing the beam section into its
component rectangles, each having a smaller dimension x and a larger dimension y,
and by summing the contributions of each rectangle:

C =
∑(

1 − 0.63
x
y

)
x3 y
3

(7.11)

The subdivision can be done in such as way as to maximize C . Equations for the
calculation of C for an edge beam are given in Fig. 7.21. The larger of CA and CB is to
be used in Eq. (7.10).

In lieu of the table given in ACI 13.6.4.2, the percentage of negative factored
bending moment at the exterior support in a column strip can be calculated by the

FIGURE 7.21
Calculation of
cross-sectional
constant C .
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following equation2:

100 − 10βt + 12βt

(
α f 1�2

�1

)(
1 − �2

�1

)
(7.12)

In cases where βt is greater than 2.5, use βt = 2.5 in Eq. (7.12).
It is evident from the previous discussion that all of the exterior negative factored

bending moment is assigned to the column strip unless an edge beam that has a rela-
tively large torsional stiffness compared with the flexural stiffness of the slab is provided
(i.e., where βt > 2.5).

For purposes of analysis, walls along column lines in the direction of analysis can be
regarded as stiff beams with α f 1�2/�1 > 1.0. If an exterior support consists of a masonry
wall that is perpendicular to the direction of analysis, it is conservative to assume that
the wall has no torsional resistance (i.e., assume βt = 0). However, if the wall is concrete
instead of masonry and if it is monolithic with the slab, significant torsional resistance
occurs at that location and βt can be taken as 2.5.

ACI 13.6.4.3 contains an exception to the percentages given earlier, when propor-
tioning factored bending moments in column strips where the supports, consisting of
columns or walls, have a large width perpendicular to the direction of analysis. When
the transverse width of a column or wall extends for a distance equal to or greater than
75% of the width of the design strip �2, negative factored bending moments are to be
uniformly distributed across �2.

Column strip—positive factored bending moments The percentage of positive factored
bending moments in a column strip is obtained from the table given in ACI 13.6.4.4 or
from the following equation2:

60 + 30
(

α f 1�2

�1

)(
1.5 − �2

�1

)
(7.13)

For cases where α f 1�2/�1 is greater than 1.0, use α f 1�2/�1 = 1.0 in Eqs. (7.9), (7.12),
and (7.13).

Factored bending moments in beams In slabs with column-line beams, the fac-
tored bending moments in the beams are obtained in accordance with the provi-
sions of ACI 13.6.5. For relatively stiff beams (α f 1�2/�1 ≥ 1.0), it is assumed that
the beams attract a significant portion of the bending moments in the column strip.
Thus, the beams must be designed to carry 85% of the factored column strip bending
moments.

Where α f 1�2/�1 < 1.0, ACI 13.6.5.2 permits the portion of the column strip bending
moments resisted by the beams to be determined by linear interpolation between 85%
and 0%, which corresponds to α f 1�2/�1 = 1.0 and α f 1�2/�1 = 0, respectively.

In addition to the factored bending moments from the column strip, column-line
beams must be designed for the factored bending moments from loads applied directly
to the beam, that is, loads located within the width of the beam web. Any load located
on the slab outside of the width of the beam web needs to be distributed accordingly
between the slab and beam.
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End Span Interior Span

Exterior Negative Positive Interior Negative Positive Interior Negative

Flat Plate or Flat Slab

Total moment 0.26Mo 0.52Mo 0.70Mo 0.35Mo 0.65Mo

Column strip 0.26Mo 0.31Mo 0.53Mo 0.21Mo 0.49Mo

Middle strip 0 0.21Mo 0.17Mo 0.14Mo 0.16Mo

Flat Plate or Flat Slab with Spandrel Beams (βt ≥ 2.5)∗

Total moment 0.30Mo 0.50Mo 0.70Mo 0.35Mo 0.65Mo

Column strip 0.23Mo 0.30Mo 0.53Mo 0.21Mo 0.49Mo

Middle strip 0.07Mo 0.20Mo 0.17Mo 0.14Mo 0.16Mo

∗ For βt < 2.5, the exterior negative column strip bending moment is equal to (0.30 − 0.03βt)Mo .

TABLE 7.3 Design Bending Moments for Flat Plates and Flat Slabs Using the Direct Design Method

Factored bending moments in middle strips The portion of the negative and positive
factored moments in the design strip that are not resisted by the column strip must be
resisted by the half middle strips in that design strip (ACI 13.6.6).

Any middle strip that is adjacent and parallel to a panel edge that is supported by
a wall must be designed to resist two times the factored bending moment assigned to
the half middle strip corresponding to the first row of interior supports.

Table 7.3 contains bending moments for flat plates and flat slabs with and without
spandrel beams based on the Direct Design Method.

Modification of Factored Moments ACI 13.6.7 permits a reduction of 10% in the negative
or positive factored bending moments calculated in accordance with the Direct Design
Method, provided the total static moment in the panel in the direction of analysis is not
less than Mo determined by Eq. (7.8). This provision permits a modest redistribution
of bending moments in slabs designed by this method.

Factored Shear in Slab Systems with Beams Requirements for the shear design of column-
line beams in beam-supported slabs are given in ACI 13.6.8. ACI Figure R13.6.8 shows
the tributary area that is to be used when determining the shear forces on an inte-
rior beam in cases where α f 1�2/�1 ≥ 1.0. Beams must be designed to resist the total
factored shear forces caused by the factored loads on the tributary area shown in the
figure where α f 1�2/�1 ≥ 1.0; shear forces in the slab around the column are essentially
zero.

In cases where α f 1�2/�1 < 1.0, the shear forces resisted by the beam may be obtained
by linear interpolation, assuming that the beam will carry no load at α f 1 = 0. When the
beams carry less than the total load, the portion of the shear forces that are not carried
by the beams must be carried by the slab around the column. These shear forces will
cause shear stresses in the slab that must be checked in the same manner as for slabs
without beams (see Section 7.6).
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Column-line beams must also be designed for the shear forces due to factored loads
applied directly to the beam, that is, loads located within the width of the beam web.

Factored Moments in Columns and Walls Columns and walls that support a two-way slab
system must be designed to resist the appropriate negative factored bending moments
transferred from the slab. In lieu of a more exact analysis, ACI Eq. (13-7) can be used to
determine unbalanced moment transfer at interior supports due to gravity loads:

Mu = 0.07[(qDu + 0.5qLu)�2�
2
n − q ′

Du�
′
2(�′

n)2] (7.14)

This equation is applicable to two adjoining spans with one span longer than the other
(all of the span lengths without a “prime” are longer than those with a “prime”) and
with full dead load plus one-half live load on the longer span and full dead load on the
shorter span. Where the longitudinal and transverse spans are equal, Eq. (7.14) reduces
to the following:

Mu = 0.035qLu�2�
2
n (7.15)

The moment Mu obtained by Eq. (7.14) or (7.15) is distributed to the interior sup-
porting elements above and below the slab in direct proportion to their stiffness. If
the cross-sectional dimensions above and below the slab are the same, the moment is
transferred on the basis of the lengths of the elements (the longer elements will resist a
lesser amount of the moment than the shorter elements).

At an exterior support, the total exterior negative bending moment from the slab
is transferred directly to the support. This moment is transferred to the supporting
elements in proportion to their stiffness.

Example 7.4 Determine the factored bending moments at the critical sections for an interior design
strip in the north-south direction, using the Direct Design Method for the flat-plate system depicted
in Fig. 7.12. Assume a 9-in-thick slab, normal-weight concrete, a superimposed dead load of 20 psf,
and a live load of 50 psf.

Solution Prior to determining the factored bending moments at the critical sections, check if the
Direct Design Method can be used to analyze this two-way system:

1. Three continuous spans must be present in each direction.

There are five spans in each direction.

2. Slab panels must be rectangular with a ratio of longer to shorter span, centerline-to-centerline
of supports, equal to or less than 2.

Longer span/shorter span = 23.5/21.67 = 1.1 < 2.0

3. Successive span lengths, centerline-to-centerline of supports, in each direction must not differ
by more than one-third of the longer span.

In each direction, the span lengths are equal.

4. Columns must not be offset more than 10% of the span in the direction of offset from either axis
between the centerlines of successive columns.

No column offsets are present.
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5. Loads applied to the slab must be uniformly distributed gravity loads where the ratio of the
unfactored live load to the unfactored dead load is equal to or less than 2.

Live load = 50 psf

Dead load of slab = 9
12

× 150 = 112.5 psf

Superimposed dead load = 20 psf

Uniform live to dead load ratio = 50/(112.5 + 20) = 0.4 < 2

6. For panels with column-line beams on all sides, ACI Eq. (13-2) must be satisfied.

No column-line beams are present.

7. Redistribution of bending moments in accordance with ACI 8.4 is not permitted.

Bending moments will not be redistributed in accordance with ACI 8.4.

Therefore, the Direct Design Method can be used for gravity load analysis.
The factored bending moments at the critical sections are determined using the steps presented

earlier.

Step 1: Determine the total factored static moment Mo in each span. The total factored static
moment Mo is determined by Eq. (7.8):

Mo = qu�2�
2
n

8

The total factored gravity loads acting on the slab qu are determined using the load combination
of ACI Eq. (9-2) because this combination yields the maximum effects for dead and live loads (see
Table 4.1 in Section 4.2):

qu = 1.2qD + 1.6qL = (1.2 × 132.5) + (1.6 × 50) = 239 psf

The longest clear span �n for the design strip in the direction of analysis occurs in an end span.
Because the difference in the clear span lengths between the end and interior spans is relatively
small, conservatively use the longest clear span to calculate Mo . This moment is used for all spans:

�n = 21.67 − 20
2 × 12

− 24
2 × 12

= 19.83 ft

�2 = 23.5 ft

Mo = qu�2�
2
n

8
= 0.239 × 23.5 × 19.832

8
= 276.2 ft kips

Step 2: Distribute Mo into negative and positive bending moments in each span. The moment
Mo is divided into negative and positive moments in accordance with the distribution factors given
in ACI 13.6.3 (see Tables 7.2 and 7.3 of this book). A summary of the total design strip moments at
the critical sections of this flat plate is given in Table 7.4.

Step 3: Distribute the total negative and positive bending moments in the design strip to the
columns strip and middle strip. The percentages of the negative and positive bending moments

End Span Moments (ft kips) Interior Span Moments (ft kips)

Exterior Negative Positive Interior Negative Positive Interior Negative

0.26Mo = −71.8 0.52Mo = 143.6 0.70Mo = −193.3 0.35Mo = 96.7 0.65Mo = −179.5

TABLE 7.4 Summary of Total Design Strip Moments for the Flat Plate Given in Example 7.4
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End Span Moments (ft kips) Interior Span Moments (ft kips)

Exterior Interior Interior
Negative Positive Negative Positive Negative

Column strip 0.26Mo = −71.8 0.31Mo = 85.6 0.53Mo = −146.4 0.21Mo = 58.0 0.49Mo = −135.3

Middle strip 0 0.21Mo = 58.0 0.17Mo = −47.0 0.14Mo = 38.7 0.16Mo = −44.2

TABLE 7.5 Summary of Factored Bending Moments at the Critical Sections for the Flat Plate Given
in Example 7.4

at the critical sections that are to be assigned to the column strips and middle strips are given in
ACI 13.6.4 to 13.6.6 (see Table 7.3 of this book). A summary of the factored bending moments at the
critical sections is given for this flat plate in Table 7.5.

Comments
The negative factored bending moments occur at the face of the column supports. Note that 100%
of the negative bending moment at the exterior columns in the end spans must be resisted by the
column strip.

Example 7.5 Determine the factored bending moments at the critical sections for an interior design
strip in the north-south direction, using the Direct Design Method for the flat-slab system depicted
in Fig. 7.13. Assume a 7.5-in-thick slab, an overall drop panel thickness of 9.75 in, normal-weight
concrete, a superimposed dead load of 20 psf, and a live load of 80 psf.

Solution Prior to determining the factored bending moments at the critical sections, check if the
Direct Design Method can be used to analyze this two-way system:

1. Three continuous spans must be present in each direction.

There are five spans in each direction.

2. Slab panels must be rectangular with a ratio of longer to shorter span, centerline-to-centerline
of supports, equal to or less than 2.

Longer span/shorter span = 23.5/21.67 = 1.1 < 2.0

3. Successive span lengths, centerline-to-centerline of supports, in each direction must not differ
by more than one-third of the longer span.

In each direction, the span lengths are equal.

4. Columns must not be offset more than 10% of the span in the direction of offset from either axis
between the centerlines of successive columns.

No column offsets are present.

5. Loads applied to the slab must be uniformly distributed gravity loads where the ratio of the
unfactored live load to the unfactored dead load is equal to or less than 2.

Live load = 80 psf

Dead load of slab = 7.5
12

× 150 = 93.8 psf

Dead load of drop panel = 4 × 2.25
12

× 150 × 8 × 8/(23.5 × 108.33) = 2.8 psf (weight

of four drop panel projections averaged over area of
design strip)

Superimposed dead load = 20 psf

Uniform live to dead load ratio = 80/(93.8 + 2.8 + 20) = 0.7 < 2
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6. For panels with column-line beams on all sides, ACI Eq. (13-2) must be satisfied.

No column-line beams are present.

7. Redistribution of bending moments in accordance with ACI 8.4 is not permitted.

Bending moments will not be redistributed in accordance with ACI 8.4.

Therefore, the Direct Design Method can be used for gravity load analysis.
The factored bending moments at the critical sections are determined using the steps presented

earlier.

Step 1: Determine the total factored static moment Mo in each span. The total factored static
moment Mo is determined by Eq. (7.8):

Mo = qu�2�
2
n

8

The total factored gravity loads acting on the slab qu are determined using the load combination
of ACI Eq. (9-2) because this combination yields the maximum effects for dead and live loads (see
Table 4.1 in Section 4.2):

qu = 1.2qD + 1.6qL = (1.2 × 116.6) + (1.6 × 80) = 268 psf

The longest clear span �n for the design strip in the direction of analysis occurs in an end span.
Because the difference in the clear span lengths between the end and interior spans is relatively
small, conservatively use the longest clear span to calculate Mo . This moment is used for all spans:

�n = 21.67 − 20
2 × 12

− 24
2 × 12

= 19.83 ft

�2 = 23.5 ft

Mo = qu�2�
2
n

8
= 0.268 × 23.5 × 19.832

8
= 309.6 ft kips

Step 2: Distribute M o into negative and positive bending moments in each span. The moment
Mo is divided into negative and positive moments in accordance with the distribution factors given
in ACI 13.6.3 (see Tables 7.2 and 7.3 of this book). A summary of the total design strip moments at
the critical sections of this flat slab is given in Table 7.6.

Step 3: Distribute the total negative and positive bending moments in the design strip to the
columns strips and middle strips. The percentages of the negative and positive bending moments
at the critical sections that are to be assigned to the column strips and middle strips are given in
ACI 13.6.4 to 13.6.6 (see Table 7.3 of this book).

The percentage of the total bending moment in the end spans at the face of the exterior column
that is assigned to the column strip depends on the torsional stiffness βt of the edge beam, which
is determined by Eq. (7.10):

βt = EcbC
2Ecs Is

The cross-sectional constant C is determined by dividing the section into separate rectangular
parts and summing the values of C for each part [see Eq. (7.11) and Fig. 7.21]. Using the effective

End Span Moments (ft kips) Interior Span Moments (ft kips)

Exterior Negative Positive Interior Negative Positive Interior Negative

0.30Mo = −92.9 0.50Mo = 154.8 0.70Mo = −216.7 0.35Mo = 108.4 0.65Mo = −201.2

TABLE 7.6 Summary of Total Design Strip Moments for the Flat Slab Given in Example 7.5
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FIGURE 7.22 Calculation of C for the edge beam given in Example 7.5.

flange width be = 36.5 in, which was determined in Example 7.2, C is the larger of the following
(see Fig. 7.22):

CA =
(

1 − 0.63
20
24

)(
203 × 24

3

)
+

(
1 − 0.63

7.5
16.5

)(
7.53 × 16.5

3

)
= 32,056 in4 (governs)

CB =
(

1 − 0.63
16.5
20

)(
16.53 × 20

3

)
+

(
1 − 0.63

7.5
36.5

)(
7.53 × 36.5

3

)
= 18,851 in4

The moment of inertia of the slab Is is determined by Eq. (7.2):

Is = 1
12

�2h3
f = 1

12
×

(
21.67 × 12

2
+ 20

2

)
× 7.53 = 4,923 in4

Therefore,

βt = EcbC
2Ecs Is

= 32,056
2 × 4,923

= 3.3

Because βt > 2.5, 75% of the total bending moment is assigned to the column strip (see ACI
13.6.4.2). Thus, Table 7.3 can be used to determine the factored bending moments at the critical
locations. A summary of the factored bending moments at the critical sections is provided for this
flat slab in Table 7.7.

Comments
Unlike the case of the flat plate given in Example 7.4, not all of the total bending moment at the
exterior column is assigned to the column strip in this flat slab; this has to do with the presence of
the edge beam.

The distribution of the total moments to the column strip and middle strip at the first inte-
rior columns of the end spans and in the interior spans are the same as that for the flat plate of
Example 7.4.

End Span Moments (ft kips) Interior Span Moments (ft kips)

Exterior Negative Positive Interior Negative Positive Interior Negative

Column strip 0.23Mo = −71.2 0.30Mo = 92.9 0.53Mo = −164.1 0.21Mo = 65.0 0.49Mo = −151.7

Middle strip 0.07Mo = −21.7 0.20Mo = 61.9 0.17Mo = −52.6 0.14Mo = 43.3 0.16Mo = −49.5

TABLE 7.7 Summary of Factored Bending Moments at the Critical Sections for the Flat Slab Given
in Example 7.5
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Example 7.6 Determine the factored bending moments at the critical sections for an interior design
strip in the north-south direction, using the Direct Design Method for the beam-supported slab
system depicted in Fig. 7.14. Assume a 6.5-in-thick slab, normal-weight concrete, a superimposed
dead load of 20 psf, and a live load of 100 psf.

Solution Prior to determining the factored bending moments at the critical sections, check if the
Direct Design Method can be used to analyze this two-way system:

1. Three continuous spans must be present in each direction.

There are five spans in each direction.

2. Slab panels must be rectangular with a ratio of longer to shorter span, centerline-to-centerline
of supports, equal to or less than 2.

Longer span/shorter span = 23.5/21.67 = 1.1 < 2.0

3. Successive span lengths, centerline-to-centerline of supports, in each direction must not differ
by more than one-third of the longer span.

In each direction, the span lengths are equal.

4. Columns must not be offset more than 10% of the span in the direction of offset from either axis
between the centerlines of successive columns.

No column offsets are present.

5. Loads applied to the slab must be uniformly distributed gravity loads where the ratio of the
unfactored live load to the unfactored dead load is equal to or less than 2.

Live load = 100 psf

Dead load of slab = 6.5
12

× 150 = 81.3 psf

Average weight of beam stem = 24 × (24 − 6.5)
144

× 150
23.5

= 18.6 psf

Superimposed dead load = 20 psf

Uniform live to dead load ratio = 100/(81.3 + 18.6 + 20) = 0.8 < 2

6. For panels with column-line beams on all sides, ACI Eq. (13-2) must be satisfied.

This requirement must be checked for both an interior and an exterior panel. The stiffness ratios
αf are determined in Example 7.3.

Interior panel:

North-south interior beam: α f 1 = 6.3

East-west interior beam: αf 2 = 6.9

α f 1�
2
2

αf 2�
2
1

= 6.3 × 23.52

6.9 × 21.672 = 1.1

0.2 < 1.1 < 5.0

Exterior panel:

North-south interior beam: α f 1 = 6.3

East-west edge beam: αf 2 = 9.5

α f 1�
2
2

αf 2�
2
1

= 6.3 × 23.52

9.5 × 21.672 = 0.8

0.2 < 0.8 < 5.0
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7. Redistribution of bending moments in accordance with ACI 8.4 is not permitted.

Bending moments will not be redistributed in accordance with ACI 8.4.

Therefore, the Direct Design Method can be used for gravity load analysis.
The factored bending moments at the critical sections are determined using the steps presented

earlier.

Step 1: Determine the total factored static moment Mo in each span. The total factored static
moment Mo is determined by Eq. (7.8):

Mo = qu�2�
2
n

8

The total factored gravity loads acting on the slab qu are determined using the load combination
of ACI Eq. (9-2) because this combination yields the maximum effects for dead and live loads (see
Table 4.1 in Section 4.2):

qu = 1.2qD + 1.6qL = (1.2 × 119.9) + (1.6 × 100) = 304 psf

The longest clear span �n for the design strip in the direction of analysis occurs in an end span.
Because the difference in the clear span lengths between the end and interior spans is relatively
small, conservatively use the longest clear to calculate Mo . This moment is used for all spans:

�n = 21.67 − 20
2 × 12

− 24
2 × 12

= 19.83 ft

�2 = 23.5 ft

Mo = qu�2�
2
n

8
= 0.304 × 23.5 × 19.832

8
= 351.2 ft kips

Step 2: Distribute Mo into negative and positive bending moments in each span. The moment
Mo is divided into negative and positive moments in accordance with the distribution factors given
in ACI 13.6.3 (see Table 7.2 of this book). A summary of the total design strip moments at the critical
sections of this beam-supported slab is given in Table 7.8.

Step 3: Distribute the total negative and positive bending moments in the design strip to
the columns strips and middle strips. The percentages of the total negative and positive bending
moments at the critical sections that are to be assigned to the column strips and middle strips are
given in ACI 13.6.4 to 13.6.6.

Column Strip
Equations (7.9), (7.12), and (7.13) are used to determine the percentages of negative and positive
factored bending moments in the column strip.

Exterior negative moment [Eq. (7.12)]: 100 − 10βt + 12βt

(
α f 1�2

�1

)(
1 − �2

�1

)
α f 1�2

�1
= 6.3 × 23.5

21.67
= 6.8 > 1; Therefore, use αf 1�2

�1
= 1 in Eq. (7.12).

Because the edge beam and span dimensions in this example are the same as those in Example
7.5, βt = 3.3 (see Example 7.5 for details). However, because βt > 2.5, use βt = 2.5 in Eq. (7.12).

End Span Moments (ft kips) Interior Span Moments (ft kips)

Exterior Negative Positive Interior Negative Positive Interior Negative

0.16Mo = −56.2 0.57Mo = 200.2 0.70Mo = −245.8 0.35Mo = 122.9 0.65Mo = −228.3

TABLE 7.8 Summary of Total Design Strip Moments for the Beam-supported Slab Given in Example 7.6
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Thus,

100 − 10βt + 12βt

(
α f 1�2

�1

)(
1 − �2

�1

)
= 100 − (10 × 2.5) + (12 × 2.5) (1.0)

(
1 − 23.5

21.67

)
= 72.5%

Interior negative moment [Eq. (7.9)]: 75 + 30
(

α f 1�2

�1

)(
1 − �2

�1

)
= 75 + 30(1)

(
1 − 23.5

21.67

)
= 72.5%

Positive moment [Eq. (7.13)]: 60 + 30
(

α f 1�2

�1

)(
1.5 − �2

�1

)
= 60 + 30(1)

(
1.5 − 23.5

21.67

)
= 72.5%

Note than these percentages can also be obtained by linear interpolation of the values given in
ACI 13.6.4.

Middle Strip
The half middle strips are proportioned for the percentages of the total bending moments not
resisted by the column strip. Therefore, at all critical sections, the half middle strips must resist
100 − 72.5 = 27.5% of the total moments.

Beams
In columns strips where α f 1�2/�1 > 1.0, the beams are to be proportioned for 85% of the columns
strip bending moments. Therefore, at all critical sections, the beams must resist 0.85 × 72.5 = 61.6%
of the total moments.

A summary of the design bending moments at the critical sections of this beam-supported slab
is given in Table 7.9.

The following illustrates the calculation of the interior negative bending moment in the end
span.

The total moment in the column strip is equal to 72.5% of the total moment: 0.725 × 0.70Mo =
0.51Mo = 0.51 × 351.2 = −179.1 ft kips.

The beam resists 85% of the column strip moment: 0.85 × 0.51Mo = 0.43Mo = −151.0 ft kips.
The slab resists the portion of the bending moment not resisted by the beam: 0.15 × 0.51Mo =

0.08Mo = −28.1 ft kips.
The middle strip resists the portion of the total bending moment not resisted by the column

strip: 0.70Mo − 0.51Mo = 0.19Mo = −66.7 ft kips.
The bending moments at the other critical sections can be determined in a similar fashion.

Interior Span
End Span Moments (ft kips) Moments (ft kips)

Exterior Interior Interior
Negative Positive Negative Positive Negative

Total
0.16Mo

= −56.2
0.57Mo

= 200.2
0.70Mo

= −245.8
0.35Mo

= 122.9
0.65Mo

= −228.3

Column strip Total
0.12Mo

= −42.1
0.41Mo

= 144.0
0.51Mo

= −179.1
0.25Mo

= 87.8
0.47Mo

= −165.1

Beam
0.10Mo

= −35.1
0.35Mo

= 122.9
0.43Mo

= −151.0
0.21Mo

= 73.8
0.40Mo

= −140.5

Slab
0.02Mo

= −7.0
0.06Mo

= 21.1
0.08Mo

= −28.1
0.04Mo

= 14.0
0.07Mo

= −24.6

Middle strip
0.04Mo

= −14.0
0.16Mo

= 56.2
0.19Mo

= −66.7
0.10Mo

= 35.1
0.18Mo

= −63.2

TABLE 7.9 Summary of Factored Bending Moments at the Critical Sections for the Beam-supported Slab
Given in Example 7.6
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FIGURE 7.23
Equivalent frames
to be used in
the Equivalent
Frame Method.

Equivalent Frame Method
Introduction Provisions for the Equivalent Frame Method, which are based on the stud-
ies reported in Refs. 6 through 8, are given in ACI 13.7. In this method, the structure is
considered to be made up of equivalent frames on column lines in both the longitudi-
nal and transverse directions. The three-dimensional building is divided into a series
of two-dimensional equivalent frames in both directions, as shown in Fig. 7.23.

The two-dimensional frames, which are centered on the support lines, extend the
full height of the building and consist of the columns and the portion of the slab bounded
by the panel centerlines on each side of the columns. Although analysis of each equiv-
alent frame in its entirety is permitted, a separate analysis of each floor or roof is also
permitted for gravity loads (ACI 13.7.2.5). In such cases, the far ends of the columns are
considered to be fixed (see Fig. 7.24).

Members of the equivalent frame are slab-beams, columns, and torsional members
(see Fig. 7.25 and ACI Fig. R13.7.4). The initial step in the frame analysis is to determine

FIGURE 7.24
Equivalent frame
permitted in
analysis.
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FIGURE 7.25 Equivalent column.

the flexural stiffness of the equivalent frame members. Once the stiffnesses and other
important quantities have been determined, the moment distribution method is used
to determine the factored bending moments at the critical sections.

Slab-Beams When determining the stiffness of slab-beam members, it is permitted to
determine the moment of inertia at any cross-section outside of the joints or column
capitals, using the gross area of the concrete (ACI 13.7.3.1). Also, any variation in the
moment of inertia along the axis of the slab-beams must be taken into account; this
variation would occur, for example, where drop panels are present.

Because the analysis is based on a frame where the span lengths are measured from
the centerlines of the supports, ACI 13.7.3.3 requires that the moment of inertia of the
slab-beams from the center of the column to the face of the column, bracket, or capital be
determined by dividing the moment of inertia of the slab-beam at the face of the support
by (1 − c2/�2)2, where c2 and �2 are the widths of the column and the column-beam in
the direction perpendicular to the direction of analysis, respectively.

Figure 7.26 depicts the cross-sections that are to be used when calculating the stiff-
ness of a slab-beam in a flat plate. The stiffness of the slab-beam Ksb can be determined
from the following equation:

Ksb = kAB Ecs Isb

�1
(7.16)
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FIGURE 7.26 Slab-beam stiffness in a flat plate.

In this equation, kAB is the stiffness factor that takes into account the stepwise variation
in the moment of inertia over the span and Isb is the moment of inertia of the slab-
beam away from the supports, which in this case, is the moment of inertia of the
slab: Isb = Is = �2h3/12. It is evident that the stiffness factor cannot be based on the
assumption of uniform prismatic members.

Methods on how to determine stiffness factors and carryover factors CAB can be
found in numerous analysis references, including Ref. 10. Table 7.10 provides these
factors for a flat plate as a function of column and span lengths, assuming cA1 = cB1

and cA2 = cB2. Also included in the table are fixed-end moment coefficients mAB; these
factors can be used to determine the fixed-end moments MFE in a flat-plate sys-
tem subjected to a factored uniformly distributed load qu acting over the entire span
length:

MFE = mABqu�2�
2
1 (7.17)
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Stiffness Factor Carryover Factor Fixed-end Moment
cA1/�1 cA2/�2 kAB CAB Coefficient mAB

0.00 — 4.00 0.50 0.0833

0.10 0.00 4.00 0.50 0.0833

0.10 4.18 0.51 0.0847

0.20 4.36 0.52 0.0860

0.30 4.53 0.54 0.0872

0.40 4.70 0.55 0.0882

0.20 0.00 4.00 0.50 0.0833

0.10 4.35 0.52 0.0857

0.20 4.72 0.54 0.0880

0.30 5.11 0.56 0.0901

0.40 5.51 0.58 0.0921

0.30 0.00 4.00 0.50 0.0833

0.10 4.49 0.53 0.0863

0.20 5.05 0.56 0.0893

0.30 5.69 0.59 0.0923

0.40 6.41 0.61 0.0951

0.40 0.00 4.00 0.50 0.0833

0.10 4.61 0.53 0.0866

0.20 5.35 0.56 0.0901

0.30 6.25 0.60 0.0936

0.40 7.37 0.64 0.0971

TABLE 7.10 Moment Distribution Constants for Slab-beams in Flat Plates

The cross-sections that are to be used when calculating the stiffness of a slab-beam
in a flat slab are shown in Fig. 7.27. Table 7.11 contains moment distribution constants
for a flat slab where the following conditions are applicable: (1) cA1 = cB1 and cA2 = cB2;
(2) the lengths of the drop panels on each side of the columns are equal to one-sixth the
span length in the direction of analysis; (3) the overall thickness of the drop panel is
equal 125% of the slab thickness; and (4) a factored uniformly distributed load qu acts
over the entire span length.

Reference 2 contains moment distribution factors for a wide range of geometric and
loading conditions for flat-plate and flat-slab systems. Moment distribution factors for
other systems can be derived using the methods given in Ref. 10.

Columns Similar to slab-beams, the stiffness of a column is based on the moment of
inertia at any cross-section outside of the joints or column capitals, using the gross area
of the concrete (ACI 13.7.4.1). The length of the column from the mid-depth of the slab
above to that of the slab below is to be used in the calculation of the stiffness. Variation in
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FIGURE 7.27 Slab-beam stiffness in a flat slab.

the moment of inertia along the axis of the slab-beams must also be taken into account;
this variation would usually occur where column capitals are present.

The moment of inertia of the column from the center to the top or bottom face of
the slab at a joint is assumed to be infinite (ACI 13.7.4.3). Thus, as with slab-beams, the
stiffness factor cannot be based on the assumption of uniform prismatic members.

Figure 7.28 depicts the sections that are to be used when calculating the stiffness of
a column in a flat plate or a flat slab. The stiffness of a column is

Kc = kAB Ecc Ic

Lc
(7.18)
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Stiffness Factor Carryover Factor Fixed-end Moment
cA1/�1 cA2/�2 kAB CAB Coefficient mAB

0.00 — 4.79 0.54 0.0879

0.10 0.00 4.79 0.54 0.0879

0.10 4.99 0.55 0.0890

0.20 5.18 0.56 0.0901

0.30 5.37 0.57 0.0911

0.20 0.00 4.79 0.54 0.0879

0.10 5.17 0.56 0.0900

0.20 5.56 0.58 0.0918

0.30 5.96 0.60 0.0936

0.30 0.00 4.79 0.54 0.0879

0.10 5.32 0.57 0.0905

0.20 5.90 0.59 0.0930

0.30 6.55 0.62 0.0955

TABLE 7.11 Moment Distribution Constants for Slab-beams in Flat Slabs

In this equation, Lc is the length of the column from the mid-depth of the slab above to
that of the slab below.

Table 7.12 contains moment distribution constants for columns in a flat plate where
the thicknesses of the slab above and below the column are equal. Note that �c is
the length of the column from the underside of the slab above to the top of the slab
below.

The moment distribution constants in Table 7.13 can be used for a column in a flat
slab where the thicknesses of the slab above and below the column are equal and the
overall thickness of the drop panel is 125% of the slab thickness.

Torsional Members Torsional members provide moment transfer between the slab-
beams and the columns and are assumed to have a constant cross-section throughout
their length (ACI 13.7.5.1). Two conditions are specified, depending on the framing
members:

1. No transverse beams frame into the columns.

In such cases, the transverse member consists of a portion of the slab having a
width equal to that of the column, bracket, or capital in the direction of analysis,
as illustrated in Fig. 7.29.

2. Transverse beams frame into the columns.

For monolithic construction, T- or L-beam action is assumed, with the flanges
extending on each side of the beam a distance equal to the projection of the
beam above or below the slab but not greater than four times the thickness of
the slab (see Fig. 7.30).
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Lc/�c Stiffness Factor kAB Carryover Factor cAB

1.05 4.52 0.54

1.10 5.09 0.57

1.15 5.71 0.60

1.20 6.38 0.62

1.25 7.11 0.65

1.30 7.89 0.67

1.35 8.73 0.69

1.40 9.63 0.71

1.45 10.60 0.73

1.50 11.62 0.74

TABLE 7.12 Moment Distribution Constants for Columns in Flat Plates

FIGURE 7.28 Column
stiffness for
a flat plate
or flat slab.
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Lc/�c Stiffness Factor kAB Carryover Factor CAB

1.05 4.59 0.53

1.10 5.24 0.55

1.15 5.95 0.58

1.20 6.74 0.60

1.25 7.59 0.61

1.30 8.51 0.62

1.35 9.51 0.63

1.40 10.59 0.64

1.45 11.76 0.65

1.50 13.01 0.66

TABLE 7.13 Moment Distribution Constants for Columns in Flat Slabs

The stiffness of the torsional member Kt is calculated by the following approximate
expression, which is given in ACI R13.7.5:

Kt =
∑ 9EcsC

�2 [1 − (c2/�2)]3 (7.19)

The constant C is determined by Eq. (7.11) where the cross-section is divided into
separate rectangular parts.

Where beams frame into the support in the direction of analysis, the torsional stiff-
ness Kt must be increased in accordance with ACI 13.7.5.2. The increased torsional
stiffness Kta due to these beams is determined by multiplying Kt by the ratio of the
moment of inertia of the slab with the beam Isb to that of the slab without the beam Is :

Kta = Kt

(
Isb

Is

)
= Kt

(
12Isb

�2h3

)
(7.20)

Analysis Procedure Once the stiffnesses of the members have been obtained in the
equivalent frame, the factored moments at the critical locations can be determined
using the moment distribution method. This method is convenient for analyzing partial
frames such as those in the Equivalent Frame Method. The concept of an equivalent
column is discussed next, and it is used to determine the distribution factors at the
joints.

Equivalent column An equivalent column is assumed to consist of the actual
columns above and below the slab-beam plus the attached torsional members on each
side of the columns extending to the centerline of the adjacent panels (see Fig. 7.25). The
stiffness of the equivalent column Kec is a combination of the stiffnesses of the columns
and torsional members:

1
Kec

= 1∑
Kc

+ 1∑
Kta

(7.21)
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FIGURE 7.29
Torsional member
where no transverse
beams frame
into the
columns.

Distribution factors The generic frame shown in Fig. 7.31 is used to illustrate how
distribution factors DF are determined for each member framing into a joint. Shown are
the stiffnesses of the slab-beams, columns, and torsional members that are determined
using the methods described previously.

The slab-beam distribution factors for both spans are given as follows:

DF (span B-A) = Ksb1

Kec + Ksb1 + Ksb2
(7.22a)

DF (span B-C) = Ksb2

Kec + Ksb1 + Ksb2
(7.22b)

These distribution factors are used in the moment distribution procedure to obtain
bending moments in the slab-beams.
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FIGURE 7.30
Torsional member
where transverse
beams frame
into the
columns.

The equation for the distribution factor for the equivalent column is

DF (equivalent column) = Kec

Kec + Ksb1 + Ksb2
(7.23)

This represents the unbalanced moment that is transferred to the columns from the
slab-beams.

The unbalanced moment determined by Eq. (7.23) is distributed to the columns
above and below the slab-beam in proportion to the actual column stiffnesses at the
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FIGURE 7.31
Moment
distribution
factors DF.

joint. Thus, the portions of the unbalanced moment that are transferred to the upper
and lower columns at a joint can be determined from the following equations:

Portion of unbalanced moment transferred to upper column = Kct

Kcb + Kct
(7.24a)

Portion of unbalanced moment transferred to lower column = Kcb

Kcb + Kct
(7.24b)

The actual columns are designed for these bending moments.

Arrangement of live load The arrangement of live load that will cause critical reac-
tions is not always readily apparent. The most demanding sets of design forces must be
established by investigating the effects of live load placed in various critical patterns.

ACI 13.7.6 permits the arrangement of the live load to be limited to the following
conditions:

1. In cases where the unfactored live load is equal to or less than three-quarters
the unfactored dead load, it is permitted to assume that maximum factored
moments occur at all sections when the full factored live load acts on all of the
spans at the same time.

2. In all other cases, pattern live loading must be used to obtain the maximum
moments. It is permitted by the Code to use only three-quarters of the live
load in such cases. The use of less than the full factored live load is based on
the fact that maximum negative and positive live load moments cannot occur
simultaneously and that redistribution of maximum moments is possible before
failure occurs.

Critical section for factored moments As was the case in the Direct Design Method,
the critical section for negative factored moments at interior supports is at the face of
rectilinear supports but not farther away than 0.175�1 from the center of the support
(ACI 13.7.7.1). This limit applies in cases where there is a long, narrow support in the
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direction of analysis, and it helps to ensure that there is not an unwarranted reduction
in the design moment. The critical sections at exterior supports are the same as those
in the Direct Design Method.

In cases where the supporting member does not have a rectangular cross-section or
if the sides of the rectangle are not parallel to the spans, such members are to be treated
as a square support having the same area as the actual support.

Factored bending moments in column strips, middle strips, and beams Negative and
positive factored moments may be distributed to the column strips, middle strips, and
beams of the slab-beam in accordance with ACI 13.6.4 to 13.6.6, which are given in
the Direct Design Method. The requirement of ACI 13.6.1.6 must be satisfied for slab
systems with beams.

Moment redistribution In cases where the Equivalent Frame Method is used to ana-
lyze a slab system that meets the limitations of the Direct Design Method, the factored
bending moments may be reduced so that the total static factored moment, which is
equal to the sum of the average positive and negative bending moments, does not ex-
ceed Mo [see Eq. (7.8)]. This permitted reduction in design moments essentially means
that the Code is not requiring the design to be based on the greater bending moments
obtained from the two acceptable methods of analysis.

The flowchart shown in Fig. 7.32 can be used to determine the design bending
moments, using the Equivalent Frame Method.

Example 7.7 Determine the factored bending moments at the critical sections for an interior design
strip in the north-south direction, using the Equivalent Frame Method for the flat-plate system
depicted in Fig. 7.33. Assume a 9-in-thick slab, normal-weight concrete, f ′

c = 4,000 psi, a superim-
posed dead load of 20 psf, and a live load of 50 psf. The length of the columns from the mid-depth
of the slab above to the that of the slab below is equal to 12 ft, and the same slab thickness is used
on all floors.

Solution The flowchart shown in Fig. 7.32 is used to determine the factored bending moments in
this example.

Step 1: Determine the preliminary slab thickness h, using Section 7.3. A preliminary slab
thickness of 9 in was given in the problem statement.

Step 2: Determine the column strips and middle strips, using Fig. 7.18. For an interior design
strip, �1 = 19.5 ft and �2 = 21.167 ft. Because �1 < �2, the width of the column strip is equal to
�1/2 = 9.75 ft. The width of each half middle strip is equal to (21.167 − 9.75)/2 = 5.71 ft.

Step 3: Determine l2 for analysis. Because this is an interior design strip that is not adjacent
and parallel to an edge beam, �2 is equal to the center-to-center span length that is perpendicular
to �1, which is 21.167 ft.

Step 4: Determine the modulus of elasticity of the slab-beam. For normal-weight, 4,000 psi
concrete,

Ecs = w1.5
c 33

√
f ′
c = (150)1.5 × 33

√
4,000 = 3.83 × 106 psi

Step 5: Determine the moment of inertia of the slab-beam. Because there are no column-line
beams, the moment of the inertia of the slab-beam is equal to that of the slab (see Fig. 7.26):

Isb = �2h3

12
= (21.167 × 12) × 93

12
= 15,431 in4
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FIGURE 7.32 Analysis procedure for the Equivalent Frame Method. (continued)

Step 6: Determine stiffness factors kAB and kBA at the near and far ends of the slab-beam.

cA1

�1
= 24

19.5 × 12
= 0.10 and

cA2

�2
= 24

21.167 × 12
= 0.10

Use Table 7.10 to obtain the following stiffness factors:

kAB = kBA = 4.18
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FIGURE 7.32 (Continued)

Step 7: Determine stiffness Ksb at the near and far ends of the slab-beam.

(Ksb)A = (Ksb)B = kAB Ecs Isb
�1

= 4.18 × 3.83 × 106 × 15,431
19.5 × 12

= 1,056 × 106 in lb

Step 8: Determine the carryover factors and fixed-end moment coefficients at the near and
far ends of the slab-beam.

From Table 7.10 with cA1/�1 = 0.10 and cA2/�2 = 0.10,

CAB = CBA = 0.51

mAB = mBA = 0.0847
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FIGURE 7.32 (Continued)

Step 9: Determine fixed-end moments at the near and far ends of the slab-beam.

Live load = 50 psf

Dead load of slab = 9
12

× 150 = 112.5 psf

Superimposed dead load = 20 psf

The total factored gravity loads acting on the slab qu is determined using the load combina-
tion given in ACI Eq. (9-2), because this yields the maximum effects for dead and live loads (see
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FIGURE 7.32 (Continued)

Table 4.1 in Section 4.2):

qu = 1.2qD + 1.6qL = (1.2 × 132.5) + (1.6 × 50) = 239 psf

(MFE)AB = (MFE)BA = mABqu�2�
2
1 = 0.0847 × 0.239 × 21.167 × 19.52 = 162.9 ft kips

Step 10: Determine the modulus of elasticity of the columns. For normal-weight, 4,000 psi
concrete,

Ecc = w1.5
c 33

√
f ′
c = (150)1.5 × 33

√
4,000 = 3.83 × 106 psi



FIGURE 7.32 (Continued)
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FIGURE 7.33 The
flat-plate system
given in
Example 7.7.

Step 11: Determine the moment of inertia of the columns at the near and far ends of the
slab-beam. For 24 × 24 in columns,

Ic = cA1c3
A2

12
= 244

12
= 27,648 in4

Step 12: Determine stiffness factors at the ends of the columns.

Lc = 12 ft

�c = 12 − 9
12

= 11.25 ft

Lc

�c
= 1.07

Thus, kAB = kBA = 4.75 by interpolation from Table 7.12.
Step 13: Determine column stiffness.

Kc = kAB Ecc Ic

Lc
= 4.75 × 3.83 × 106 × 27,648

12 × 12
= 3,493 × 106 in lb

Step 14: Determine the torsional constant C of the torsional member. Because there are no
transverse beams, the torsional member consists of a portion of the slab having a width equal to
that of the column in the direction of analysis, as illustrated in Fig. 7.29.

Therefore, using x = 9 in and y = 24 in,

C =
(

1 − 0.63
x
y

)
x3 y

3
=

[
1 −

(
0.63 × 9

24

)]
93 × 24

3
= 4,454 in4

Step 15: Determine the torsional stiffness Kt of the torsional member.

Kt = 9EcsC

�2 [1 − (c2/�2)]3 = 9 × 3.83 × 106 × 4,454
(21.167 × 12){1 − [24/(21.167 × 12)]}3 = 814 × 106 in lb
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Step 16: Determine the torsional stiffness Kta of the torsional member. Because there are no
column-line beams, Kta = Kt = 814 × 106 in lb

Step 17: Determine the equivalent column stiffness Kec at each joint. At each joint, there are
two columns (one above and one below) and two torsional members (one on each side of each
column).

1
Kec

= 1∑
Kc

+ 1∑
Kta

= 1
2 × 3,493 × 106 + 1

2 × 814 × 106

Kec = 1,320 × 106 in lb

Step 18: Determine slab distribution factors DF at exterior and interior joints. In general,

DF = Ksb
Kec + ∑

Ksb

At an exterior joint, there is only one slab-beam framing into the joint:

DF = 1,056
1,320 + 1,056

= 0.44

At an interior joint, there are two slab-beams framing into the joint:

DF = 1,056
1,320 + (2 × 1,056)

= 0.31

Step 19: Determine the loading pattern.

Uniform live to dead load ratio = 50/(112.5 + 20) = 0.4 < 0.75

Because this ratio is less than 0.75, apply full dead and live loads on all spans.
Step 20: Determine the factored bending moments at the critical sections, using the moment

distribution method. A summary of the computations in the moment distribution is given in Table
7.14 for the negative bending moments. It is assumed that counterclockwise bending moments are
positive.

The positive factored bending moments in the end and interior spans can be determined by
subtracting the average of the negative factored bending moments in the span from the total factored
bending moment at the midspan for a simply supported beam:

M+
u = qu�2�

2
1

8
− M−

uL + M−
uR

2

For span A-B or span C-D,

(
M+

u
)
AB = (

M+
u
)
CD = 0.239 × 21.167 × 19.52

8
− 95.1 + 187.4

2
= 99.2 ft kips

For span B-C,

(
M+

u
)
BC = 0.239 × 21.167 × 19.52

8
− 169.7 + 169.7

2
= 70.8 ft kips

The negative factored bending moments to be used in design can be taken at the faces of
the supports (i.e., 24/2 = 12 in from the centers of supports) but not at distances greater than
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Joint A B C D

Member A-B B-A B-C C-B C-D D-C

Distribution factor DF 0.44 0.31 0.31 0.31 0.31 0.44

Carryover factor 0.51 0.51 0.51 0.51 0.51 0.51

Fixed-end moment MFE 162.9 −162.9 162.9 −162.9 162.9 −162.9

Distribution −71.7 0.0 0.0 0.0 0.0 71.7

Carryover 0.0 −36.6 0.0 0.0 36.6 0.0

Distribution 0.0 11.4 11.4 −11.4 −11.4 0.0

Carryover 5.7 0.0 −5.7 5.7 0.0 −5.7

Distribution −2.5 1.8 1.8 −1.8 −1.8 2.5

Carryover 0.9 −1.3 −0.9 0.9 1.3 −0.9

Distribution −0.4 0.4 0.4 −0.4 −0.4 0.4

Carryover 0.2 −0.2 −0.2 0.2 0.2 −0.2

Distribution −0.1 0.1 0.1 −0.1 −0.1 0.1

Carryover 0.1 −0.1 −0.1 0.1 0.1 −0.1

Negative moment 95.1 −187.4 169.7 −169.7 187.4 −95.1

TABLE 7.14 Moment Distribution Computations for Negative Factored Bending Moments Given in
Example 7.7

0.175�1 = 41 in from the centers of supports. Therefore, because 12 in is less than 41 in, use the faces
of supports as the critical sections for design.

The factored negative bending moments at the critical sections can be obtained from statics. For
example, in the end spans, the shear force at the centerline of the exterior supports is equal to

(Vu)A = (Vu)D = [(0.239 × 21.167 × 19.52)/2] − 187.4 + 95.1
19.5

= 44.6 kips

The factored bending moment at the face of the support at A or D is then

(Mu)A = (Mu)D = 0.239 × 21.167 × 12

2
− (44.6 × 1) + 95.1 = 53.0 ft kips

The factored bending moments at the faces of the other supports can be obtained in a similar
fashion. A summary of these bending moments is given in the next step.

Step 21: Determine the factored bending moments at the critical sections in the column strip
and middle strip. The distribution of the design factored bending moments at the critical sections
in the column strip and middle strip is performed using ACI 13.6.4 and 13.6.6 for this flat plate.
The following percentages are applicable to the column strip:

� Exterior negative: 100%
� Positive: 60%
� Interior negative: 75%

The bending moments not resisted by the column strip are resisted by the middle strip.
A summary of the design factored bending moments is given in Table 7.15.
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End Span Moments (ft kips) Interior Span Moments (ft kips)

Exterior Interior Interior
Negative Positive Negative Positive Negative

Total 53.0 99.2 135.8 70.8 122.9

Column strip 53.0 59.5 101.9 42.5 92.2

Middle strip 0 39.7 33.9 28.3 30.7

TABLE 7.15 Summary of Factored Bending Moments at the Critical Sections for the Flat Plate Given
in Example 7.7

Comments
The unbalanced bending moments that occur at the joints from the slab-beams are distributed to
the columns above and below the slab-beam in proportion to their stiffnesses. Because the columns
have the same cross-section and length above and below the slab-beam, the stiffnesses are the same,
and one-half of the unbalanced bending moment is distributed to the column above and below.

At an exterior column, the unbalanced bending moment is equal to 95.1 ft kips (see Table 7.14).
The bottom of the column above the slab-beam and the top of the column below the slab-beam are
subjected to a bending moment equal to 95.1/2 = 47.6 ft kips. From Table 7.13, the carryover factor
is equal to 0.54 for Lc/�c = 1.07. Therefore, the bending moment at the top of the column above
the slab-beam and at the bottom of the column below the slab-beam is equal to 0.54 × 47.6 = 25.7
ft kips.

At the interior columns, the unbalanced bending moment is equal to 187.4 − 169.7 = 17.7 ft kips.
Distribution of this moment to the columns above and below the slab-beam is similar to that of the
exterior column.

Note that all of these bending moments are at the centerline of the slab-beam. For design
purposes, the bending moments can be determined at the top and bottom of the slab-beam; however,
the difference between these moments is small, and it is conservative to use the bending moment
at the slab-beam centerline in the design of the column.

7.4.3 Lateral Loads
A structure utilizing two-way concrete floor and roof systems can be modeled for lateral
loads, using any method that satisfies both equilibrium and compatibility. Additionally,
the results obtained from such an analysis should be in reasonable agreement with test
data.

Numerous analytical procedures exist for modeling frames subjected to lateral
loads. The following methods have been shown to produce acceptable results11:

1. Finite element models

2. Effective beam width model

3. Equivalent frame model

Regardless of the analysis method that is used, stiffness of slabs, beams, columns,
walls, and any other elements that are part of the lateral force–resisting system must
take into account the effects of cracking so that drift caused by lateral loads is not
underestimated.

Similar to beam-supported slabs, flat-plate structures behave like rigid frames when
subjected to lateral loads. It has been demonstrated that only a portion of the slab is
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effective across its full width in resisting the effects from lateral loads. The effective
beam width model will give reasonably accurate results in routine situations. In this
method, the actual slab is replaced by a flexural element that has the same thickness
as the slab and an effective beam width that is a fraction of the transverse width of the
slab. The following equation can be used to determine the effective slab width for an
interior slab–column frame12:

Effective slab width = 2c1 + �1

3
(7.25)

In this equation, c1 and �1 are the column dimension and the span length in the direction
of analysis, respectively. For an exterior frame, the effective slab width is equal to one-
half the value determined by Eq. (7.25). Reference 12 demonstrates that this method
produces an accurate estimate of elastic stiffness for regular frames.

To account for cracking, bending stiffness is typically reduced between one-half
and one-quarter of the uncracked stiffness, which is a function of the slab thickness
and effective slab width. When determining drifts or secondary effects in columns (see
Chap. 8), lower-bound slab stiffness should be assumed in the analysis. In structures
where slab–column frames interact with structural walls, a range of slab stiffnesses
should be investigated in order to assess the importance of interaction.

ACI 13.5.1.3 permits combining the results of the gravity load analysis with the
results from the lateral load analysis. For example, the slab can be analyzed using
the Direct Design Method, and the results from that analysis can be combined with
the results from the effective beam width model, using the load combinations given in
ACI 9.2. The slab and other elements are subsequently designed for the effects from the
critical load combinations.

7.5 Design for Flexure

7.5.1 Overview
Two-way slab systems are designed for flexure, using the basic principles of the strength
design method, which are given in Chap. 5. In general, the flexural design strength φMn

must be equal to or greater than the required strength Mu where the factored bending
moments are determined at the critical sections in the column strips, middle strips,
and column-line beams (if any), using the Direct Design Method, the Equivalent Frame
Method, or any other rational method of analysis.

Requirements for transfer of moment between a slab and a column must also be
satisfied. In general, a fraction of the unbalanced moment at such joints must be resisted
by reinforcement in a specified portion of the slab centered on the column.

7.5.2 Determining Required Reinforcement
Once the thickness of the slab has been determined on the basis of deflection and two-
way shear criteria, the required amount of flexural reinforcement can be obtained in
the column strips, middle strips, and any column-line beams, using φMn = Mu.

Like in the case of beams, members in two-way slab systems should be designed as
tension-controlled sections whenever possible for overall efficiency. The methods given
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in Section 6.2 for rectangular sections with a single layer of reinforcement can be used
to determine the required reinforcement for two-way systems.

An average effective d is typically used when calculating the required flexural
reinforcement. Two layers of perpendicular reinforcement are needed at both the top
and the bottom of the slab. Assuming that the concrete is not exposed to weather and
that stirrups will not be used for shear, the minimum clear cover to the reinforcement is
0.75 in in accordance with ACI 7.7.1(c) (see the discussion under detailing requirements
for concrete protection for reinforcement and Section 7.6 for shear design). The average d
for both negative and positive reinforcement in both orthogonal directions can be taken
as the thickness of the slab minus 0.75 in minus one bar diameter. Thus, assuming No.
5 bars, d = h − (0.75 + 0.5) = h − 1.25 in. Using an average d is accurate enough in
flexural calculations.

Minimum reinforcement requirements are given in ACI 13.3.1. In particular, the area
of flexural reinforcement in a two-way slab system must not be less than that required
in ACI 7.12.2.1 for shrinkage and temperature:

1. Slabs with Grade 40 or 50 deformed bars: 0.0020bh

2. Slabs with Grade 60 deformed bars or welded wire reinforcement: 0.0018bh

3. Slabs with reinforcement exceeding 60,000 psi measured at a yield strain of
0.35%: (0.0018 × 60,000)bh/fy

It is evident that the minimum reinforcement requirements are based on the gross
area of the concrete section bh. Thus, for a column strip and middle strip, the minimum
reinforcement is determined using the thickness of the slab and the width of the column
strip and middle strip, respectively.

7.5.3 Transfer of Moment at Slab–Column Connections
Studies of moment transfer between slabs and columns have shown that the unbalanced
moment at slab–column joints due to gravity and/or lateral load effects is transferred
by a combination of flexure and eccentricity of shear (ACI 13.5.3). The requirements
pertaining to the portion of the unbalanced moment transferred by flexure are discussed
here; the discussion on transfer due to eccentricity of shear is given in Section 7.6.

The portion of the unbalanced moment Mu that is transferred by flexure is equal to
γ f Mu, where the fraction γ f is determined by ACI Eq. (13-1):

γ f = 1

1 + (2/3)
√

b1/b2

(7.26)

In this equation, b1 and b2 are the dimensions of the critical section for two-way shear
that are measured parallel and perpendicular to the direction of analysis, respectively.
According to ACI 11.11.1.2, the critical section for two-way shear is located so that its
perimeter bo is a minimum. However, the perimeter need not approach closer than d/2
to the following:

� Edges or corners of columns, concentrated loads, or reaction areas
� Changes in slab thickness such as edges of column capitals, drop panels, or

shear caps
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FIGURE 7.34
Transfer of moment
γ f Mu at an edge
column in a
flat plate.

ACI 11.11.1.3 permits the use of a critical section with four straight edges for slabs
supported by square or rectangular columns. Methods to determine b1 and b2 are given
in Section 7.6.

It is evident from Eq. (7.26) that for a rectangular column, the portion of unbalanced
moment transferred by flexure increases as the dimension of the column that is parallel
to the applied moment increases.

The moment γ f Mu is assumed to be transferred to an effective slab width that is
equal to three times the thickness of the slab or the drop panel plus the width of the
column or column capital. Figure 7.34 illustrates the transfer of moment at an edge
column in a flat plate. The amount of flexural reinforcement that is required within the
effective slab width is calculated using the moment γ f Mu.

This requirement is applicable primarily to two-way slab systems without beams
where only reinforcement is available to resist the effects caused by the unbalanced
moment. If edge beams are present, they must be designed to resist the torsional and
shear stresses due to the unbalanced moment at the exterior joint.

The provisions given in ACI 13.5.3.3, which are based primarily on test results,
permit an adjustment in the amount of unbalanced moment that is transferred by
flexure at edge and interior slab–column connections, provided certain limitations are
met.

At exterior supports where the unbalanced moment causes bending perpendicular
to the edge (i.e., unbalanced moments about an axis parallel to the edge), it is permitted
to take γ f equal to 1.0, provided the factored shear force at the section Vu (excluding
the shear caused by moment transfer) is equal to or less than 75% of the design shear
strength φVc at edge supports or 50% of φVc at corner supports. The two-way shear
strength provided by the concrete Vc is calculated in accordance with ACI 11.11.2.1 (see
Section 7.6 of this book). Tests have shown that all of the unbalanced moment at an edge
support can be transferred by flexure where the factored shear force does not exceed
the fractions of the design shear strength indicated.13,14

At interior supports and edge columns where the unbalanced moment causes bend-
ing parallel to an edge, γ f is permitted to be increased by up to 25% (but not greater
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than 1.0) provided that Vu is equal to or less than 40% of the design shear strength φVc .
An additional requirement that must be satisfied is that the net tensile strain εt in the
reinforcement concentrated in the effective width defined in ACI 13.5.3.2 be equal to or
greater than 0.010, based on the recommendations in Ref. 14. This requirement is not
applicable to edge and corner columns.

When a frame is subjected to wind or earthquake loads, a reversal of moment can
occur at the joints. In such cases, both top and bottom flexural reinforcement must be
concentrated in the effective width. ACI R13.5.3.3 recommends a ratio of top to bottom
reinforcement of approximately 2.

7.5.4 Detailing the Reinforcement

Concrete Protection for Reinforcement
Reinforcing bars must be placed with sufficient concrete cover to protect them from
weather, fire, and other effects. ACI 7.7.1 contains the minimum requirements for non-
prestressed, cast-in-place construction.

Similar to one-way slabs, concrete cover in two-way slabs without stirrups is mea-
sured from the surface of the concrete to the outermost layer of the flexural bars (see
Fig. 6.7b).

For two-way slabs located in building structures that are not exposed to environ-
mental effects, the clear cover is usually taken as three-quarters of an inch.

General Requirements
Summary of Requirements ACI 13.3 contains detailing requirements that must be sat-
isfied for slab reinforcement in two-way systems. The purpose of these requirements
is to ensure the proper performance of the system. A summary of these provisions is
given in Table 7.16.

Distribution of Flexural Reinforcement for Crack Control In all two-way slab systems except
waffle slabs, the maximum center-to-center spacing of the reinforcement at the critical
sections must be equal to or less than 2h. In addition to crack control, this limitation
takes into consideration the effects that could be caused by loads concentrated on small
areas of the slab. For the portions of slab over cellular spaces, such as in waffle slabs,
the minimum reinforcement requirements are given in ACI 7.12.

Corner Reinforcement The provisions of ACI 13.3.6 address exterior corners of slabs that
are supported by stiff elements such as walls and edge beams. If stiff elements were
not present at the exterior edges of a slab, the slab edges would lift when loaded. The
presence of stiff elements restrains the lifting and causes additional bending moments
at the exterior corners.

Corner reinforcement must be provided at both the top and the bottom of the slab,
and the reinforcement in each layer in each direction must be designed for a bending
moment equal to the largest positive bending moment per unit width in the slab panel.
The top and bottom reinforcement must be placed parallel and perpendicular to the
diagonal, respectively, as shown in Fig. 7.35 for a distance of at least one-fifth of the
longer of the two span lengths in the corner panel.

Reinforcement parallel to the edges is permitted to be used instead of the diagonal
bars (see Fig. 7.36).
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Requirement ACI Section Number(s)

Minimum flexural reinforcement shall not be less than that required
by ACI 7.12.2.1.

13.3.1

Maximum spacing of flexural reinforcement is equal to 2h. 13.3.2

Positive moment reinforcement perpendicular to a discontinuous
edge shall extend to the edge of the slab and shall have straight or
hooked embedment of at least 6 in into spandrel beams, columns,
or walls.

13.3.3

Negative moment reinforcement perpendicular to a discontinuous
edge shall be bent, hooked, or otherwise anchored into spandrel
beams, columns, or walls. The reinforcement shall be developed at
the face of the support in accordance with the provisions of ACI
Chapter 12.

13.3.4

Anchorage of reinforcement shall be permitted within a slab where
a slab is not supported by a spandrel beam or a wall at a
discontinuous edge or where a slab cantilevers beyond a support.

13.3.5

Top and bottom reinforcement shall be provided at exterior corners
in accordance with ACI 13.3.6.1 through 13.3.6.4 at exterior
corners of slabs supported by edge walls or where one or more
edge beams have a value of α f > 1.0.

13.3.6

The amount of negative reinforcement over the column of a flat
slab may be reduced provided the dimensions of the drop panel
conform to ACI 13.2.5. For purposes of computing the required
negative reinforcement, the thickness of the drop panel below the
slab shall not be assumed to be greater than one-quarter the
distance from the edge of the drop panel to the face of the column
or the column capital.

13.3.7

For two-way slabs without beams, reinforcement shall have
minimum extensions prescribed in ACI Fig. 13.3.8. Extension of
negative reinforcement is based on the longer of adjacent spans.

13.3.8.1, 13.3.8.2

Lengths of reinforcement shall be based on analysis where two-way
slabs are part of the lateral force–resisting system, but shall not
be less than those given in ACI Fig. 13.3.8.

13.3.8.4

All bottom bars within the column strip must be continuous or
spliced with Class B tension splices or with mechanical or welded
splices satisfying ACI 12.14.3. At least two bars must pass within
the region bounded by the longitudinal reinforcement of the column
and shall be anchored at exterior supports.

13.3.8.5

TABLE 7.16 Summary of Detailing Requirements for Two-way Slabs

Slabs without Beams Minimum bar extensions for two-way slabs without beams are
given in ACI 13.3.8 and are summarized in Fig. 7.37. It is important to note that these
minimum bar lengths are based on systems subjected to uniformly distributed gravity
loads only.
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FIGURE 7.35
Reinforcement
required at corners
of slabs supported
by stiff edge
members.

FIGURE 7.36
Alternative
reinforcement layout
at corners of slabs
supported by stiff
edge members.
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FIGURE 7.37 Minimum bar lengths for two-way slabs without beams.

The intent of the structural integrity requirements of ACI 13.3.8.5 is to enable two-
way slab systems to span to adjacent supports should a single intermediate support
be damaged or destroyed. The main purpose of the two continuous column strip bars
through a support is to give the slab some residual strength after two-way shear failure
at a single support.15

In frames that utilize the two-way slabs as part of the main lateral force–resisting
system, ACI 13.3.8.4 requires that the lengths of the bars be determined by “analysis.”
The precise locations of inflection points cannot explicitly be found using approximate
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methods of analysis, because they depend on the ratio of the panel dimensions, the ratio
of live to dead load, and the continuity conditions at the edges of a panel. Furthermore,
there is no explicit way of determining the distribution of applied load to column strips
and middle strips. A conservative approach to circumvent this problem is to make a
portion of the negative reinforcing bars in the column strip continuous or to splice
them using Class B splices. It is recommended that 25% of the top reinforcement in the
column strip be continuous throughout the span; this is consistent with the requirement
of ACI 21.3.6.4 that pertains to two-way slabs in intermediate moment frames, which
are required in areas of moderate seismic risk.

7.5.5 Openings in Slab Systems
ACI 13.4.1 permits openings of any size in two-way slab systems provided that an
analysis of the system with the openings that shows that all applicable strength and
serviceability requirements of the Code are satisfied is performed.

For slabs without beams, such an analysis is waived when the provisions of ACI
13.4.2.1 through 13.4.2.4 are met:

1. In the area common to intersecting middle strips, openings of any size are
permitted provided the total amount of reinforcement that is required for that
panel without openings is maintained.

2. In the area common to intersecting column strips, the maximum permitted
opening size is one-eighth the width of the column strip in either span. Also,
an amount of reinforcement equivalent to that interrupted by an opening must
be added on the sides of the opening.

3. In the area common to one column strip and one middle strip, the maximum
permitted opening size is limited such that not more than one-quarter of the
reinforcement in either strip is interrupted by openings. Also, as in the second
case, an amount of reinforcement equivalent to that interrupted by an opening
must be added on the sides of the opening.

The total area of reinforcement in a panel without an opening must be preserved
in both directions of a panel with an opening. In other words, any reinforcement that
is interrupted by an opening must be replaced on each side of the opening. Figure 7.38
illustrates these three cases.

Example 7.8 Determine the required flexural reinforcement at the critical sections for an interior
design strip in the north-south direction for the flat-plate system depicted in Fig. 7.12. Assume a 9-
in-thick slab, normal-weight concrete with f ′

c = 4,000 psi, Grade 60 reinforcement, a superimposed
dead load of 20 psf, and a live load of 50 psf.

Solution The required flexural reinforcement at the critical sections can be obtained using the
strength design methods presented in Chap. 6 for tension-controlled, rectangular sections with a
single layer of reinforcement.

Factored bending moments at the critical sections are given in Table 7.5 of Example 7.4 and
were obtained using the Direct Design Method. Reinforcement is determined in the column strip
and middle strip through the appropriate bending moments given in Table 7.5.

Because �1 = 21.67 ft is less than �2 = 23.5 ft, the width of the column strip in this interior design
strip is equal to �1/2 = 10.83 ft (see Fig. 7.18). Therefore, the width of the middle strip is equal to
23.5 − 10.83 = 12.67 ft. These widths are used in the calculation of the flexural reinforcement.
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FIGURE 7.38 Openings in slab systems without beams in accordance with ACI 13.4.2.

The required flexural reinforcement at the critical sections is summarized in Table 7.17. An
average d = 9 − 1.25 = 7.75 in was used in the calculations.

Calculations are provided for the required area of steel in the column strip at the first interior
support in an end span.

The flowchart shown in Fig. 6.4, which is applicable to rectangular sections with a single layer
of reinforcement, is utilized to determine As . It is modified as needed to satisfy the requirements
for this flat plate.

Step 1: Assume tension-controlled section. Sections of flexural members, including two-way
slabs, should be tension-controlled whenever possible. Thus, assume that the strength reduction
factor φ = 0.9.
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Location Mu (ft kips) b (in) As (in2) Reinforcement

End span Column strip Exterior
negative

−71.8 130 2.11∗ 8 No. 5†

Positive 85.6 130 2.51 9 No. 5

Interior
negative

−146.4 130 4.33 14 No. 5

Middle strip Exterior
negative

0.0 152 2.46∗ 9 No. 5†

Positive 58.0 152 2.46∗ 9 No. 5†

Interior
negative

−47.0 152 2.46∗ 9 No. 5†

Interior span Column strip Positive 58.0 130 2.11∗ 8 No. 5†

Negative −135.3 130 4.02 13 No. 5

Middle strip Positive 38.7 152 2.46∗ 9 No. 5†

Negative −44.2 152 2.46∗ 9 No. 5†

∗ Based on minimum reinforcement requirements.
† Based on maximum spacing requirements.

TABLE 7.17 Required Slab Reinforcement for an Interior Design Strip Given in Example 7.8

Step 2: Determine the nominal strength coefficient of resistance Rn. For a rectangular section,
Rn is determined by Eq. (6.5), which is a function of the factored bending moment Mu. The negative
factored bending moment is given in Example 7.4 as 146.4 ft kips.

Assuming that the concrete is not exposed to weather and that stirrups will not be used as shear
reinforcement, the average d = 9 − 1.25 = 7.75 in. Thus,

Rn = Mu

φbd2 = 146.4 × 12,000
0.9 × 130 × 7.752 = 250.0 psi

Step 3: Determine the required reinforcement ratioρ. The reinforcement ratio ρ is determined
by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 250.0

0.85 × 4,000

]
= 0.0043

Step 4: Determine the required area of tension reinforcement As. For a 130-in-wide column
strip, the required area of negative reinforcement is

As = ρbd = 0.0043 × 130 × 7.75 = 4.33 in2

Step 5: Determine the minimum required area of reinforcement As,min. For two-way slabs
with Grade 60 reinforcement, As,min is determined in accordance with ACI 13.3.1:

As,min = 0.0018bh = 0.0018 × 130 × 9.0 = 2.11 in2 < As
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Use As = 4.33 in2.
Note that for the middle strip,

As,min = 0.0018bh = 0.0018 × 152 × 9 = 2.46 in2

Step 6: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c b

= 4.33 × 60,000
0.85 × 4,000 × 130

= 0.59 in

Step 7: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000psi (see Section 5.2).

Step 8: Determine the neutral axis depth c.

c = a
β1

= 0.59
0.85

= 0.69 in

Step 9: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
7.75
0.69

− 1
)

= 0.0307 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4), and the initial assumption that
the section is tension-controlled is correct.

Step 10: Choose the size and spacing of the reinforcing bars. The required area of reinforce-
ment is 4.33 in2.

Maximum bar spacing = 2h = 18 in

For b = 130 in, 130/18 = 7.2, say, eight, bars are needed to satisfy the maximum spacing re-
quirements in the column strip.

Use 14 No. 5 bars (As = 4.34 in2) .
For b = 152 in, 152/18 = 8.4, say nine, bars are needed to satisfy the maximum spacing require-

ments in the middle strip.
Similar calculations can be performed for the other critical sections in the column strip and

middle strip.
It is evident from Table 7.17 that reinforcement based on maximum bar spacing is required in

the middle strip in both the end and interior spans. This is common in flat-plate structures.
Check that the flexural reinforcement at the end support is adequate to satisfy the moment

transfer requirements of ACI 13.5.3.
The total unbalanced moment at this slab–column connection is equal to 71.8 ft kips, which is

the total moment in the column strip (see Table 7.17).
A fraction of this moment γ f Mu must be transferred over an effective width equal to c2 + 3h =

20 + (3 × 9) = 47 in.
The fraction of unbalanced moment transferred by flexure is calculated in accordance with Eq.

(7.26):

γ f = 1

1 + (2/3)
√

b1/b2
= 1

1 + (2/3)
√

23.9/27.8
= 0.62

where b1 = c1 + d
2

= 20 + 7.75
2

= 23.9 in

b2 = c2 + d = 20 + 7.75 = 27.8 in
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FIGURE 7.39
Reinforcement
detail at the
exterior column
given in
Example 7.8.

For edge columns bending perpendicular to the edge, the value of γ f computed by Eq. (7.26)
may be increased to 1.0 provided that Vu ≤ 0.75φVc [ACI 13.5.3.3(a)]. No adjustment to γ f is made
in this example.

Unbalanced moment transferred by flexure = γ f Mu = 0.62 × 71.8 = 44.5 ft kips. The required
area of steel to resist this moment in the 47-in-wide strip is As = 1.32 in2, which is equivalent to
five No. 5 bars.

As,min = 0.0018bh = 0.0018 × 47 × 9.0 = 0.76 in2 < As

Provide the five No. 5 bars by concentrating five of the eight column strip bars within the 47-in
width over the column (see Table 7.17). For symmetry, add another bar in the column strip and
check bar spacing:

For five No. 5 bars within the 47-in width, 47/5 = 9.4 in < 18 in.
For four No. 5 bars within the 130 − 47 = 83-in width, 83/4 = 20.8 in > 18 in.
Therefore, add two more No. 5 bars in the 83-in width; bar spacing 83/6 = 13.8 in.
A total of 11 No. 5 bars are required at the end supports within the column strip, with 5 of the

11 bars concentrated within a width of 47 in centered on the column.
Reinforcement details for the top bars at the exterior column are shown in Fig. 7.39.
Similar analyses can be performed at interior columns.
Because the slab is subjected to gravity loads only, the lengths of the reinforcing bars shown in

Fig. 7.37 for slabs without drop panels can be used for this flat plate.

Example 7.9 Determine the required flexural reinforcement at the critical sections for an interior
design strip in the north-south direction for the flat-slab system depicted in Fig. 7.13. Assume a
7.5-in-thick slab, an overall drop panel thickness of 9.75 in, normal-weight concrete with f ′

c = 4,000
psi, Grade 60 reinforcement, a superimposed dead load of 20 psf, and a live load of 80 psf.
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Solution The required flexural reinforcement at the critical sections can be obtained using the
strength design methods presented in Chap. 6 for tension-controlled, rectangular sections with a
single layer of reinforcement.

Factored bending moments at the critical sections are given in Table 7.7 of Example 7.5, and
were obtained using the Direct Design Method. Reinforcement is determined in the column strip
and middle strip through the appropriate bending moments given in Table 7.7.

Because �1 = 21.67 ft is less than �2 = 23.5 ft, the width of the columns strip in this interior
design strip is equal to �1/2 = 10.83 ft (see Fig. 7.18). Therefore, the width of the middle strip is
equal to 23.5 − 10.83 = 12.67 ft. These widths are used in the calculation of the flexural reinforce-
ment.

It was shown in Example 7.2 that the dimensions of the drop panel satisfy the requirements of
ACI 13.2.5. Therefore, the effective depth d that can be used at the interior negative critical sections
in the column strip can be taken as 9.75 − 1.25 = 8.5 in. At all other locations, d = 7.5 − 1.25 =
6.25 in.

For the column strip at the interior negative critical sections, As,min = 0.0018bh = 0.0018 ×
130 × 9.75 = 2.28 in2.

For the column strip at all locations other than the interior negative critical sections, As,min =
0.0018bh = 0.0018 × 130 × 7.5 = 1.76 in2.

For the middle strip, As,min = 0.0018bh = 0.0018 × 152 × 7.5 = 2.05 in2.
Maximum bar spacing = 2h = 2 × 7.5 = 15.0 in.
For b = 130 in, 130/15 = 8.7, say nine, bars are needed to satisfy the maximum spacing require-

ments in the column strip.
For b = 152 in, 152/15 = 10.1, say, 11, bars are needed to satisfy the maximum spacing require-

ments in the middle strip.
The required flexural reinforcement is given in Table 7.18.

Location Mu (ft kips) b (in) As (in2) Reinforcement

End span Column strip Exterior
negative

−71.2 130 2.61 9 No. 5

Positive 92.9 130 3.43 12 No. 5

Interior
negative

−164.1 130 4.45 15 No. 5

Middle strip Exterior
negative

−21.7 152 2.05∗ 11 No. 5†

Positive 61.9 152 2.25 11 No. 5†

Interior
negative

−52.6 152 2.05∗ 11 No. 5†

Interior span Column strip Positive 65.0 130 2.37 9 No. 5†

Negative −151.7 130 4.10 14 No. 5

Middle strip Positive 43.3 152 2.05∗ 11 No. 5†

Negative −49.5 152 2.05∗ 11 No. 5†

∗ Based on minimum reinforcement requirements.
† Based on maximum spacing requirements.

TABLE 7.18 Required Slab Reinforcement for an Interior Design Strip Given in Example 7.9
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The transfer of unbalanced moment at the edge columns need not be checked in this example
because of the beams at the perimeter of the slab. These spandrel beams must be designed for the
shear forces and torsional moments transferred from the slab.

Because the slab is subjected to gravity loads only, the lengths of the reinforcing bars shown in
Fig. 7.37 for slabs with drop panels can be used for this flat slab.

Example 7.10 Determine the required flexural reinforcement at the critical sections in the slab and
in the beams for an interior design strip in the north-south direction for the beam-supported slab
system depicted in Fig. 7.14. Assume a 6.5-in-thick slab, normal-weight concrete with f ′

c = 4,000
psi, Grade 60 reinforcement, a superimposed dead load of 20 psf, and a live load of 100 psf.

Solution The required flexural reinforcement at the critical sections in the slab and beams can be
obtained using the strength design methods presented in Chap. 6 for tension-controlled, rectangular
sections with a single layer of reinforcement.

Factored bending moments at the critical sections are given in Table 7.9 of Example 7.6 and were
obtained using the Direct Design Method. Reinforcement is determined in the column strip (slab
and beams) and middle strip through the appropriate bending moments given in Table 7.9.

Because �1 = 21.67 ft is less than �2 = 23.5 ft, the width of the column strip in this interior design
strip is equal to �1/2 = 10.83 ft (see Fig. 7.18). Therefore, the width of the middle strip is equal to
23.5 − 10.83 = 12.67 ft. These widths are used in the calculation of the flexural reinforcement for
the slab.

For the slab, assume d = 6.5 − 1.25 = 5.25 in.
For the beams, assume d = 24 − 2.5 = 21.5 in.
For the slab in the column strip, As,min = 0.0018bh = 0.0018 × 130 × 6.5 = 1.52 in2.
For the middle strip, As,min = 0.0018bh = 0.0018 × 152 × 6.5 = 1.78 in2.

Minimum reinforcement for the beams As,min = 200bwd
fy

= 200 × 24 × 21.5
60,000

= 1.72 in2

Maximum bar spacing in slab = 2h = 2 × 6.5 = 13.0 in

For b = 130 in, 130/13 = 10; 11 bars are needed to satisfy the maximum spacing requirements
in the column strip.

For b = 152 in, 152/13 = 11.7, say, 12, bars are needed to satisfy the maximum spacing require-
ments in the middle strip.

The required flexural reinforcement is given in Table 7.19.
It can be shown that the beams and slabs are tension-controlled sections with the provided

reinforcement and that the maximum reinforcement requirement of ACI 10.3.5 is satisfied.
The reinforcement in the beams satisfies the crack control requirements of ACI 10.6.4 and the

spacing limits of ACI 7.6 and 3.3.2 (for a 24-in-wide beam, the minimum number of No. 5 bars is 3
from Table 6.2 and the maximum number is 12 from Table 6.3).

As expected, the reinforcement in the column strip slab is governed by minimum reinforcement
and bar spacing requirements because stiff column-line beams are present, which carry most of the
factored bending moments.

The transfer of unbalanced moment at the edge columns need not be checked in this example
because of the beams at the perimeter of the slab. These spandrel beams must be designed for the
shear forces and torsional moments transferred from the slab.

Because this beam-supported slab is subjected to gravity loads only, the lengths of the reinforc-
ing bars shown in Fig. 7.37 for slabs without drop panels can be used for the slab, and the bar
lengths shown in Fig. 6.25 for beams other than perimeter beams can be used for the column-line
beams.

When detailing the flexural reinforcement in the edge beams, the additional structural integrity
reinforcement requirements illustrated in Fig. 6.25 for perimeter beams must also be satisfied.
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Location Mu (ft kips) b (in) As (in2) Reinforcement

End span Column strip Beam Exterior
negative

−35.1 24 1.72∗ 6 No. 5

Positive 122.9 24 1.72∗ 6 No. 5

Interior
negative

−151.0 24 1.72∗ 6 No. 5

Slab Exterior
negative

−7.0 130 1.52∗ 11 No. 4†

Positive 21.1 130 1.52∗ 11 No. 4†

Interior
negative

−28.1 130 1.52∗ 11 No. 4†

Middle strip Exterior
negative

−14.0 152 1.52∗ 11 No. 4†

Positive 56.2 152 2.66 14 No. 4

Interior
negative

−66.7 152 2.92 15 No. 4

Interior span Column strip Beam Positive 73.8 24 1.72∗ 6 No. 5

Negative −140.5 24 1.72∗ 6 No. 5

Slab Positive 14.0 130 1.52∗ 11 No. 4†

Negative −24.6 130 1.52∗ 11 No. 4†

Middle strip Positive 35.1 152 1.78∗ 12 No. 4†

Negative −63.2 152 2.76 14 No. 4

∗ Based on minimum reinforcement requirements.
† Based on maximum spacing requirements.

TABLE 7.19 Required Beam and Slab Reinforcement for an Interior Design Strip Given in Example 7.10

7.6 Design for Shear

7.6.1 Overview
The requirements of ACI 11.12 must be satisfied for shear design in two-way slabs and
footings. Included are requirements for critical shear sections, nominal shear strength
of concrete, and nominal shear strength of shear reinforcement.

It was shown in Section 7.5 that the shear force that needs to be resisted by the slab
in two-way systems with column-line beams or walls is relatively small. In systems
with stiff beams, all of the shear force is carried by the beams.

The design for shear is critical in slab systems without beams (flat plates and flat
slabs), especially at exterior slab–column connections where the total exterior bend-
ing moment is transferred directly to the critical section of the exterior column. Edge
beams in such cases would essentially solve the shear problems at edge and corner
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columns, but they add cost (additional material and time for formwork) and may not
be architecturally acceptable.

Both one- and two-way shear must be considered in two-way systems supported
directly on columns. One-way shear rarely governs; in most cases, two-way shear is
more critical, and it has a direct impact on the required thickness of the slab. Regardless
of the type of shear, the following strength equation must be satisfied:

Vu ≤ φVn = φ(Vc + Vs) (7.27)

In this equation, Vu is the factored shear force at the critical section for shear and Vc and Vs

are the nominal shear strengths provided by the concrete and the shear reinforcement,
respectively. The strength reduction factor φ for shear is equal to 0.75 in accordance
with ACI 9.3.2.3.

Shear reinforcement is rarely used to enhance one-way shear nominal strength
and is used to increase two-way shear nominal strength in situations where other
measures—such as increasing the slab thickness, increasing the column size, using
drop panels, or using column-line beams—are not feasible or are uneconomical.

7.6.2 One-Way Shear
Analysis for one-way shear, which is referred to as “beam action shear” in the Code,
considers the slab to act as a beam spanning between columns. The critical section
extends in a plane across the entire width of the slab at a distance d from the face of
the support as depicted in Fig. 7.40. Except for long, narrow slabs, this type of shear
is seldom critical. However, it must be checked to ensure that shear strength is not
exceeded.

FIGURE 7.40 Critical
section for one-way
shear.
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FIGURE 7.41 Failure
surface for punching
shear.

The following equation must be satisfied at the critical sections, which are located
a distance d from the face of the support:

Vu ≤ φVc = φ2
√

f ′
c�d (7.28)

In this equation, the factored shear force at the critical section Vu is equal to the factored
load on the slab qu times the tributary area indicated in Fig. 7.40. The length � is equal
to the width of slab that resists the shear force. For the slab depicted in Fig. 7.40, � = �2.

A 1-ft-wide section can be used to check the one-way shear strength in lieu of using
the entire panel width. In such cases, the longer of the distances from the critical section
to the panel edge should be used because this results in maximum Vu.

7.6.3 Two-Way Shear

Critical Shear Section
General Requirements Two-way or punching shear is generally the critical of the two
types of shear in flat plates and flat slabs. At failure, a truncated cone or pyramid-
shaped surface forms around the column at failure, as illustrated in Fig. 7.41. This type
of failure is brittle and can occur with virtually no warning.

In slabs without shear reinforcement, the forces due to direct shear and bending
are resisted by the concrete slab section around a column. This section consists of the
effective slab thickness (and the overall drop panel or shear cap thickness where appli-
cable) and the critical perimeter bo . According to ACI 11.11.1.2, the critical section for
two-way shear is located so that its perimeter bo is a minimum but never less than d/2
from edges or corners of columns, concentrated loads, reaction areas, and changes in
slab thickness, such as edges of column capitals, drop panels, or shear caps.

A rigorous interpretation of this definition would result in the corners of the crit-
ical section being rounded. However, the actual intent of the Code is set forth in ACI
11.11.1.3: A critical section with four straight edges is permitted for slabs supported by
square or rectangular columns.

The critical section for two-way shear in a flat plate is illustrated in Fig. 7.42.
The critical sections for flat slabs are illustrated in Fig. 7.43. Shear requirements

need to be checked at the critical sections located a distance d2/2 from the face of the
column and d1/2 from the face of the drop panel, because shear failure can occur at
either location. The critical sections for a system utilizing shear caps are the same as
those in a system utilizing drop panels.
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FIGURE 7.42 Critical
section for
two-way shear
in a flat plate.

FIGURE 7.43 Critical
sections for two-way
shear in a flat slab.
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FIGURE 7.44 Critical section for two-way shear at a column capital.

The critical section for columns with capitals is depicted in Fig. 7.44. Because the
capital is part of the column, shear requirements need only be checked at the critical
section located a distance d/2 from the face of the capital. In cases where a column
capital and a drop panel are both utilized, the shear strength needs to be investigated
at the critical section located a distance d/2 from the column capital (Fig. 7.44) and at
the critical section located a distance d1/2 from the drop panel (Fig. 7.43).

In slab systems where shear reinforcement is used to increase overall shear capacity,
an additional critical section occurs near the termination of the shear reinforcement.
Figures R11.11.3(d) and (e), R11.11.4.7, and R11.11.5 illustrate the critical sections for
slabs utilizing shear reinforcement consisting of stirrups (interior and edge columns),
shearheads, and headed shear studs, respectively. Additional information on these
types of shear reinforcement is given later.

Effect of Slab Edges Critical shear perimeters for exterior (edge and corner) columns
that are flush with the edge of a slab are clearly defined in the Code. Without any
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FIGURE 7.45 Critical shear perimeters for exterior columns where the columns are flush with the
slab edges.

nearby openings in the slab, edge and corner columns would generally have three- and
two-sided critical shear perimeters, respectively, as illustrated in Fig. 7.45.

Critical shear perimeters are not as clearly defined in the Code in cases where the
slab edges cantilever beyond the face(s) of an exterior column. However, some general
guidelines can be established on the basis of the provision of ACI 11.11.1.2, which
requires that the perimeter of the critical section bo be a minimum.

Consider the edge column depicted in Fig. 7.46. Depending on the length of the
cantilever, the critical shear perimeter will be either three-sided or four-sided.

In the four-sided case, bo = 2(c1 + c2 + 2d), whereas in the general three-sided case,
bo = 2(x1 + c1) + c2 + d. The cantilever length that results in equal perimeters is x1 =
(c2/2) + d . Therefore, the following perimeters of the critical section can be used to
obtain minimum b14

o :

FIGURE 7.46 Critical section perimeters for edge columns with slab cantilevers.
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� If x1 ≤ (c2/2) + d , use a three-sided critical perimeter.
� If x1 > (c2/2) + d , use a four-sided critical perimeter.

Similar derivations can be performed for corner columns.

Effect of Openings Provisions for the effect of openings in slabs on the critical shear
perimeter are given in ACI 11.11.6. These provisions were originally presented in Ref.
16, and additional research has confirmed that these provisions are conservative.17

In general, the closer a slab opening is to a column, the greater the effect it has
on the critical shear perimeter that is available to resist the shear forces. The effects of
openings can be neglected where the opening is at the following locations:

1. A distance equal to or greater than 10 times the slab thickness from a concen-
trated load or reaction area

2. Outside of a column strip

For openings that do not satisfy these criteria and are located in slabs without
shearhead reinforcement, the perimeter of the critical section is reduced by a length
equal to the projection of the opening that is formed by two lines that extend from
the centroid of the column, concentrated load, or reaction area and are tangent to the
boundaries of the opening. Figure 7.47 illustrates the ineffective portions of bo for both
flat-plate and flat-slab systems (also see ACI Fig. 11.11.6). A reduction in bo results in a
reduction in shear strength; the relationship between bo and the nominal shear strength
provided by the concrete Vc is given later.

For slabs with shearhead reinforcement, the ineffective portion of bo is to be taken
as one-half of that defined earlier for slabs without shearhead reinforcement (ACI
11.11.6.2).

Shear Strength Provided by Concrete
The nominal shear strength provided the concrete Vc for slabs without shear reinforce-
ment is given in ACI 11.11.2.1. In general, the shear stress provided by concrete vc

is a function of the compressive strength of the concrete and is limited to 4λ
√

f ′
c for

FIGURE 7.47 Effect
of openings
on critical
shear perimeter.
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square columns, where λ is the modification factor that reflects the reduced mechanical
properties of lightweight concrete (see ACI 8.6.1 and Chap. 2 of this book).

The nominal shear strength Vc is obtained by multiplying the allowable stress vc by
the area of the critical section, which is equal to the perimeter of the critical section bo

times the effective depth of the slab d (see ACI Eq. 11-33):

Vc = 4λ
√

f ′
c bod (7.29)

Tests have indicated that the value of Vc is not conservative when the ratio β of
the lengths of the long and short sides of a rectangular column or loaded area is larger
than 2.0.18 In such cases, the applied shear stress on the critical section varies from a
maximum of approximately 4λ

√
f ′
c around the corners of a column (or loaded area) to

approximately 2λ
√

f ′
c or less along the long sides of the perimeter between the two end

sections. The nominal shear strength Vc is given by ACI Eq. (11-31):

Vc =
(

2 + 4
β

)
λ
√

f ′
c bod (7.30)

It is evident from this equation that as the ratio β increases, the stress decreases
linearly to a minimum of 2λ

√
f ′
c , which is equivalent to shear stress for one-way shear.

ACI Fig. R11.11.2 illustrates the determination of β for an L-shaped column or reaction
area.

Other tests have indicated that the allowable shear stress vc decreases as the ratio
bo/d increases.18 This is accounted for in ACI Eq. (11-32):

Vc =
(

αsd
bo

+ 2
)

λ
√

f ′
c bod (7.31)

In this equation, αs is equal to 40, 30, and 20 for interior, edge, and corner columns,
respectively. Reference to these three types of columns does not suggest the actual
location of a column in a building; instead, they refer to the number of sides of the
critical section that are available to resist shear stress. For example, αs is equal to 30
for the interior column depicted in ACI Fig. R11.11.6(c) with an opening on one side of
the critical section, because only three sides of the critical section are available to resist
shear stress caused by the external loads.

The nominal shear strength Vc for two-way shear action of slabs without shear
reinforcement is the least of the values obtained by Eqs. (7.29) to (7.31).

Where shear reinforcement consisting of bars or wires and single- and multiple-leg
stirrups is utilized in a slab, Vc is limited to 2λ

√
f ′
c bod (ACI 11.11.3.1).

Shear Strength Provided by Shear Reinforcement
Shear Strength Provided by Bars, Wires, and Stirrups Research has shown that the two-way
shear strength of slabs can be increased by shear reinforcement consisting of properly
anchored bars or wires and single- or multiple-leg stirrups or closed stirrups.19−23 The
use of such reinforcement is permitted provided that the effective depth of the slab is
greater than 6 in but not less than 16 times the bar diameter of the shear reinforcement.
ACI Fig. R11.11.3(a)–(c) illustrates three different types of this shear reinforcement.



370 C h a p t e r S e v e n

The nominal shear strength provided by the shear reinforcement Vs is determined
by the requirements of ACI 11.4. Thus, the two-way nominal shear strength Vn, which
consists of the nominal shear strength provided by the concrete Vc and the nominal
shear strength provided by the shear reinforcement Vs , can be determined from the
following equation:

Vn = Vc + Vs = 2λ
√

f ′
c bod + Av fytd

s
≤ 6

√
f ′
c bod (7.32)

In this equation, Av is the cross-sectional area of all legs of reinforcement on one pe-
ripheral line that is geometrically similar to the perimeter of the column section. For
an interior column, there are four sides that contain shear reinforcement. On each side,
there are two legs of reinforcement on the peripheral line, so Av is equal to eight times
the area of one stirrup leg in this case. The total shear reinforcement is determined in a
similar fashion for edge and corner columns.

Shear requirements must be checked at two critical sections: The first critical section
is located a distance d/2 from the column face, and the second is located a distance d/2
from the outermost line of stirrups (see Fig. 7.48). The following strength equations
must be satisfied at the critical sections:

� The critical section located d/2 from column face:

Vu ≤ φVn = φ(Vc + Vs) = φ2λ
√

f ′
c bod + φ Av fytd

s
≤ φ6

√
f ′
c bod (7.33)

� The critical section located d/2 from the outmost peripheral line of stirrups:

Vu ≤ φVn = φVc = φ2λ
√

f ′
c bod (7.34)

At the critical section located d/2 from the face of the column, both the concrete
and shear reinforcement contribute to the overall design shear strength, whereas at the
critical section located d/2 from the last line of stirrups, only the design shear strength of
the concrete is available to resist the factored shear force. The distance from the column
face to the last line of stirrups (i.e., the location where the stirrups can be cut off) can be
conservatively determined by setting Vu = φVc in Eq. (7.34).

In general, the factored shear force Vu is calculated by multiplying the total factored
gravity load qu by the net tributary area of the column, which is equal to the tributary
area minus the area enclosed by the critical shear perimeter.

The spacing requirements of ACI 11.12.3.3 are summarized in Fig. 7.48 for interior,
edge, and corner columns with closed stirrups. The first line of stirrups is located at a
distance equal to or less than d/2 from the column face. The intent of this is to elimi-
nate the possibility of shear failure between the face of the column and the innermost
peripheral line of shear reinforcement. Successive lines of stirrups must be spaced per-
pendicular to a column face at a distance that is not to exceed d/2; once again, the
intent is to avoid failure between consecutive peripheral lines of stirrups. The spacing
between adjacent stirrup legs in the first line of stirrups in the direction parallel to a
column face must be equal to or less than 2d. These spacing limits correspond to slab
shear reinforcement details that have been shown to be effective.
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FIGURE 7.48 Details for closed stirrup shear reinforcement.

A symmetric distribution of the shear reinforcement should be provided around
the critical section for interior columns where unbalanced moment is negligible. Even
though the shear stresses are greater on the interior face of the critical section of an edge
or corner column because of significant unbalanced moment (see the next section), a
symmetrical distribution of the shear reinforcement is also recommended because the
stirrups placed parallel to the slab edge provide some torsional strength along that
edge.
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It is essential that shear reinforcement (1) satisfy the requirements of ACI 12.13
for the development of web reinforcement and (2) engage longitudinal reinforcement
at both the top and the bottom of the slab. When specifying shear reinforcement, it is
important to keep in mind that it is very difficult to satisfy the anchorage requirements of
ACI 12.13 for slabs that are less than approximately 10 in thick; it is virtually impossible
to properly develop shear reinforcement in thin slabs.

Shear Strength Provided by Shearheads Shearheads are structural steel shapes (com-
monly I- or channel-shaped sections) that are encased in the concrete slab immediately
above the column. Like stirrups, the main purpose of the shearheads is to increase the
two-way shear capacity of the slab.

Provisions for shearhead reinforcement can be found in ACI 11.11.4. Because this
type of shear reinforcement is rarely used anymore (primarily because of material and
labor costs), it is not covered in this book. Additional design information and an example
can be found in Ref. 2.

Shear Strength Provided by Headed Shear Stud Reinforcement Tests have shown that shear
reinforcement consisting of large headed studs welded to flat steel rails are effective
in resisting two-way shear in slabs.23 Headed shear stud reinforcement can take the
place of or can be used in conjunction with stirrups, drop panels, or column capitals to
increase design shear strength.

A typical headed shear stud arrangement is shown in Fig. 7.49. The base rail, which
is set on chairs, is nailed to the formwork around the column. The size and spacing of
the studs and the length of the base rail depends on the shear requirements.

Like reinforcing bars, sufficient concrete cover must be provided to protect the base
rail and head from weather, fire, and other effects. ACI 7.7.5 contains the minimum cover
requirements for headed shear stud reinforcement. In particular, the concrete cover for
the base rail and heads must not be less than that required for the reinforcement in the
slab. ACI Fig. R7.7.5(a) illustrates these concrete cover requirements for headed shear
stud reinforcement in slabs with both top and bottom bars (also see ACI 11.11.5).

Similar to stirrups, the nominal shear strength provided by the headed shear stud
reinforcement Vs is determined by the requirements of ACI 11.4. The two-way nominal
shear strength Vn, which consists of the nominal shear strength provided by the concrete
Vc and the nominal shear strength provided by the shear reinforcement Vs , can be

FIGURE 7.49 Headed
shear stud
reinforcement.
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determined from the following equation (see ACI 11.11.5.1):

Vn = Vc + Vs = 3λ
√

f ′
c bod + Av fytd

s
≤ 8

√
f ′
c bod (7.35)

In this case, Av is the cross-sectional area of all the headed studs on one periph-
eral line that is approximately parallel to the perimeter of the column section. This is
analogous to the number of stirrup legs in slabs with closed stirrups.

ACI 11.11.5.1 also requires that Av fyt/(bos), which is the nominal shear stress pro-
vided by the shear reinforcement, be equal to or greater than 2

√
f ′
c .

Shear requirements must be checked at two critical sections: The first critical section
is located a distance d/2 from the column face, and the second is located a distance
d/2 from the outermost peripheral line of headed studs (see Fig. 7.50). The following
strength equations must be satisfied at the critical sections:

FIGURE 7.50 Details for headed shear stud reinforcement.



374 C h a p t e r S e v e n

� The critical section located d/2 from column face (ACI 11.11.5.1):

Vu ≤ φVn = φ(Vc + Vs) = φ3λ
√

f ′
c bod + φ Av fytd

s
≤ φ8

√
f ′
c bod (7.36)

� The critical section located d/2 from the outmost peripheral line of headed studs
(ACI 11.11.5.4):

Vu ≤ φVn = φVc = φ2λ
√

f ′
c bod (7.37)

The factored shear force Vu is calculated by multiplying the total factored gravity
load qu by the net tributary area of the column, which is equal to the tributary area minus
the area enclosed by the critical shear perimeter. Where there is appreciable unbalanced
moment, shear stresses must be computed (as described later).

The spacing s of the peripheral lines of headed studs, that is, the center-to-center
spacing of the headed shear studs, must satisfy the following requirements, which have
been verified by experiments23:

� For vu ≤ 6φ
√

f ′
c , s ≤ 0.75d

� For vu > 6φ
√

f ′
c , s ≤ 0.50d

Other detailing requirements are as follows:

1. Spacing between the column face and the first peripheral line of shear rein-
forcement must not exceed d/2.

2. Spacing between adjacent reinforcement elements must not exceed 2d .

Spacing requirements for interior, edge, and corner columns are shown in Fig.
7.50. A symmetric distribution of shear reinforcement should be provided around any
column type. Overall economy can be achieved by specifying a minimum number of
stud diameters and using the same spacing and base rail lengths at as many column
locations as possible.

Compared with stirrups, it is evident that headed shear stud reinforcement pro-
vides larger limits for shear strength and spacing between peripheral lines of shear
reinforcement. This is primarily due to performance: A stud head exhibits smaller slip
than the leg of closed stirrup, which results in smaller crack widths.

The use of headed shear stud reinforcement can also alleviate reinforcement conges-
tion at slab–column joints, as shown in Fig. 7.51. This facilitates placement of concrete
in these important areas. Additional information on this type of shear reinforcement
can be found in Ref. 24.

Transfer of Moment at Slab–Column Connections
Unbalanced Moment Transferred by Eccentricity of Shear It was discussed in Section 7.5
that an unbalanced moment at a slab–column joint due to gravity and/or lateral load
effects is transferred by a combination of flexure and eccentricity of shear (ACI 13.5.3).
The portion of the unbalanced moment Mu that is transferred by flexure is equal to
γ f Mu, where the fraction γ f is determined by ACI Eq. (13-1) [see Eq. (7.26)]. Design and
detailing requirements pertaining to the moment γ f Mu are given in Section 7.5.
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FIGURE 7.51 Headed shear reinforcement at a slab–column joint (Photo courtesy of Decon USA,
Inc.).

The portion of the unbalanced moment transferred by eccentricity of shear is equal
to γv Mu. The factored moment Mu is defined in the Code as the unbalanced moment
that occurs at the centroid of the critical section. It was discussed in Section 7.4 that
moments are computed at the face of supports in the Direct Design Method and at
the centerline of the supports in the Equivalent Frame Method. Strictly speaking, the
moments from these analysis methods would have to be calculated at the centroid
of the critical section to obtain the unbalanced moment Mu. Because of the approx-
imations that are used in the procedure to determine shear stresses, using the mo-
ments obtained directly from analysis to determine shear stresses is accurate enough;
in other words, determining the moments at the centroid of the critical section is
unnecessary.

The fraction γv is determined by ACI Eq. (13-37):

γv = 1 − γ f = 1 − 1

1 + (2/3)
√

b1/b2

(7.38)

Factored Shear Stress The factored shear stresses vu on the near and far faces of the
critical section that is located a distance d/2 from the face of a column in the direction
of analysis consists of two parts:

1. The shear stress caused by the shear force Vu, which acts over the area of the
critical section. As noted previously, Vu is determined by multiplying the total
factored gravity load qu by the net tributary area of the column, which is equal
to the tributary area minus the area enclosed by the critical shear perimeter.
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FIGURE 7.52 Assumed distribution of shear stress due to direct shear and the portion of the
unbalanced moment transferred by eccentricity of shear.

2. The shear stress caused by the portion of the unbalanced moment due to the
eccentricity of shear γv Mu, which acts over the property of the critical section
that is analogous to the polar moment of inertia. It is assumed that the shear
stress resulting from the moment γv Mu varies linearly about the critical section
for two-way shear (ACI 11.11.7.2).

The shear stress distributions for an interior and edge column subjected to Vu and
γv Mu are illustrated in Fig. 7.52 for the critical sections located at distance d/2 from the
face of the columns.

The total factored shear stresses on faces AB and CD of the critical section can be
determined from the following equations:

vu(AB) = Vu

Ac
+ γv MucAB

Jc
(7.39a)

vu(C D) = Vu

Ac
− γv MucCD

Jc
(7.39b)
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In these equations, cAB and cCD are the distances from the centroid of the critical section
to faces AB and CD of the critical section, respectively. The area of the critical section Ac

is determined by multiplying the effective depth of the slab d by the perimeter of the
critical section. The quantity Jc is the property of the critical section that is analogous
to the polar moment of inertia.

Critical section properties for interior rectangular columns can be found in Fig. 7.53.
Figures. 7.54 to 7.57 contain critical section properties for edge rectangular columns
bending parallel to the edge, edge rectangular columns bending perpendicular to the
edge, corner rectangular columns, and circular interior columns, respectively. The prop-
erties given in these figures are applicable to the critical sections located a distance d/2
from the faces of a column.

Appendix B contains derivations of the critical section properties for a variety of
support conditions. It also contains tabulated values of the constants f1, f2, and f3 that
can be used to facilitate the calculation of these properties.

Appendix B of Ref. 25 contains methods to determine the properties of the nonrect-
angular critical section that is located d/2 from the outermost peripheral line of shear
reinforcement. The methods presented in that reference are applicable to the critical
sections of any shape regardless of the type of shear reinforcement that is used.

Requirements for Strength Design Once the maximum factored shear stress vu has been
determined, the following strength design equations must be satisfied at the applicable
critical sections:

FIGURE 7.53
Properties of
critical section—
interior rectangular
column
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FIGURE 7.54
Properties of
critical section—
edge rectangular
column bending
parallel to
the edge.

� For members without shear reinforcement,

vu ≤ φvn = φVc

bod
(7.40)

The minimum value of Vc determined by Eqs. (7.29) to (7.31) is used in
Eq. (7.40).

� For members with shear reinforcement (other than shearheads),

vu ≤ φvn = φ(Vc + Vs)
bod

(7.41)

The nominal strengths Vc and Vs that are to be used in Eq. (7.41) depend on the type
of shear reinforcement that is specified and on the location of the critical section.

Requirements pertaining to two-way shear strength design are applicable primarily
to slab systems without column-line beams. The stiffness of normally proportioned
beams is generally large enough so that either most or all of the required shear force is
resisted by the beams (see Section 7.4).

Example 7.11 Check shear strength requirements at the first interior column and an exterior column
in an interior design strip for the flat-plate system depicted in Fig. 7.12. Assume a 9-in-thick slab,
normal-weight concrete with f ′

c = 4,000 psi, Grade 60 reinforcement, a superimposed dead load of



379T w o - W a y S l a b s

FIGURE 7.55
Properties of
critical section—
edge rectangular
column bending
perpendicular to
the edge.

20 psf, and a live load of 50 psf. Also assume that the Direct Design Method can be used to compute
bending moments in the slab.

Solution Both one- and two-way shear requirements must be checked at both the first interior
column and an edge column in an interior design strip.

First Interior Column
One-way shear The critical section for one-way shear is located a distance d = 9 − 1.25 = 7.75 in

from the face of the column (see Fig. 7.40).
The total factored gravity loads acting on the slab qu is determined using the load combination

given in ACI Eq. (9-2), because this yields the maximum effects for dead and live loads (see Table
4.1 in Section 4.2 and Example 7.4):

qu = 1.2qD + 1.6qL = (1.2 × 132.5) + (1.6 × 50) = 239 psf
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FIGURE 7.56
Properties of
critical section—
corner rectangular
column.

The maximum factored shear force at the critical section is

Vu = 0.239 ×
(

23.5
2

− 24
2 × 12

− 7.75
12

)
× 21.67 = 52.3 kips

Design shear strength is computed by Eq. (7.28):

φVc = φ2λ
√

f ′
c�d = 0.75 × 2 × 1.0

√
4,000 × (21.67 × 12) × 7.75/1,000 = 191.2 kips

Because Vu < φVc , one-way shear strength requirements are satisfied.

Two-way shear The total factored shear stress is the sum of the direct shear stress plus the shear
stress due to the fraction of the unbalanced moment transferred by eccentricity of shear.
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FIGURE 7.57 Properties of critical section—circular interior column.

The critical section for two-way shear is located a distance d/2 = 3.9 in from the face of the
column (see Fig. 7.42).

At the first interior column, the factored shear force due to gravity loads is

Vu = qu(At − b1b2)

= 0.239
[

(23.5 × 21.67) −
(

31.75
12

)(
31.75

12

)]
= 120.0 kips

where b1 = b2 = 24 + 7.75 = 31.75 in

The total unbalanced moment is equal to the difference between the total interior negative
moments on both sides of the column (see Table 7.4):

Mu = 193.3 − 179.5 = 13.8 ft kips

Determine γv by Eq. (7.38):

γv = 1 − γ f = 1 − 1

1 + (2/3)
√

b1/b2
= 1 − 1

1 + (2/3)
√

31.75/31.75
= 0.40
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The section properties of the critical section are determined using Fig. 7.53 for an interior column:

cAB = b1/2 = 31.75/2 = 15.9 in

f1 = 2
[(

1 + c2

c1

)( c1

d

)
+ 2

]
= 2

[
(1 + 1)

(
24

7.75

)
+ 2

]
= 16.39

Ac = f1d2 = 16.39 × 7.752 = 984.4 in2

f2 = 1
6

[(
1 + 3c2

c1

)( c1

d

)2 +
(

5 + 3c2

c1

)( c1

d

)
+ 5

]

= 1
6

[
(1 + 3)

(
24

7.75

)2

+ (5 + 3)
(

24
7.75

)
+ 5

]
= 11.36

Jc/cAB = 2 f2d3 = 2 × 11.36 × 7.753 = 10,576 in3

These section properties can also be obtained using the tables given in Appendix B.
The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv MucAB

Jc

= 120,000
984.4

+ 0.4 × 13.8 × 12,000
10,576

= 121.9 + 6.3 = 128.2 psi

The allowable stress for a square column is obtained by Eq. (7.29):

φvc = φVc

bo d
= φ4λ

√
f ′
c = 0.75 × 4 × 1.0

√
4,000 = 189.7 psi > 128.6 psi

Edge Column
One-way shear The critical section for one-way shear is located a distance d = 9 − 1.25 = 7.75 in

from the face the column (see Fig. 7.40).
The maximum factored shear force at the critical section is

Vu = 0.239 ×
(

21.67
2

− 20
2 × 12

− 7.75
12

)
× 23.5 = 52.6 kips

Design shear strength is computed by Eq. (7.28):

φVc = φ2λ
√

f ′
c�d = 0.75 × 2 × 1.0

√
4,000 × (23.5 × 12) × 7.75/1,000 = 207.3 kips

Because Vu < φVc , one-way shear strength requirements are satisfied.

Two-way shear The total factored shear stress is the sum of the direct shear stress plus the shear
stress due to the fraction of the unbalanced moment transferred by eccentricity of shear.

The critical section for two-way shear is located a distance d/2 = 3.9 in from the face of the
column (see Fig. 7.42).

At the edge column, the factored shear force due to gravity loads is

Vu = qu(At − b1b2)

= 0.239
[(

21.67
2

+ 20
2 × 12

)
(23.5) −

(
23.88

12

)(
27.75

12

)]
= 64.4 kips
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where b1 = 20 + 7.75
2

= 23.88 in

b2 = 20 + 7.75 = 27.75 in

Because the Direct Design Method was used to compute the moments, ACI 13.6.3.6 requires
that the unbalanced moment at the edge column that is transferred by eccentricity of shear be
0.3Mo = 0.3 × 276.2 = 82.9 ft kips (see Example 7.4).

Determine γv by Eq. (7.38):

γv = 1 − γ f = 1 − 1

1 + (2/3)
√

b1/b2
= 1 − 1

1 + (2/3)
√

23.88/27.75
= 0.38

The section properties of the critical section are determined using Fig. 7.55 for an edge column
bending perpendicular to the edge:

f1 = 2 + c1

d

(
2 + c2

c1

)
= 2 + 20

7.75

(
2 + 20

20

)
= 9.74

f2 =
[(c1/d) + (1/2)]2 {(c1/d) [1 + (2c2/c1)] + (5/2)} + {(c1/d) [1 + (c2/2c1)] + 1)}

[
c1

d

(
1 + c2

2c1

)
+ 1

]
6[(c1/d) + (1/2)]

= [(20/7.75) + (1/2)]2{(20/7.75)[1 + (2 × 20)/20] + (5/2)} + {(20/7.75)[1 + 20/(2 × 20)] + 1}
6[(20/7.75) + (1/2)]

= 5.52

f3 =
[(c1/d) + (1/2)]2 {(c1/d) [1 + (2c2/c1)] + (5/2)} + {(c1/d) [1 + (c2/2c1)] + 1)}

[
c1

d

(
1 + c2

2c1

)
+ 1

]
6{(c1/d)[1 + (c2/c1)] + (3/2)}

= [(20/7.75) + (1/2)]2{(20/7.75)[1 + (2 × 20)/20] + (5/2)} + {(20/7.75)[1 + 20/(2 × 20)] + 1}
6{(20/7.75)[1 + (20/20)] + (3/2)} = 2.55

cAB = f3

f2 + f3

(
c1 + d

2

)
= 2.55

5.52 + 2.55

(
20 + 7.75

2

)
= 7.5 in

Ac = f1d2 = 9.74 × 7.752 = 585.0 in2

Jc/cAB = 2 f2d3 = 2 × 5.52 × 7.753 = 5139 in3

These section properties can also be obtained using the tables given in Appendix B.
The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv MucAB

Jc

= 64,400
585.0

+ 0.38 × 82.9 × 12,000
5,139

= 110.1 + 73.6 = 183.7 psi

The allowable stress for a square column is obtained from Eq. (7.29):

φvc = φVc

bo d
= φ4λ

√
f ′
c = 0.75 × 4 × 1.0

√
4,000 = 189.7 psi > 183.7 psi

Shear strength requirements are satisfied at both the first interior column and the edge column.
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Example 7.12 Check shear strength requirements at the first interior column and an exterior
column in an interior design strip for the flat-slab system depicted in Fig. 7.13. Assume a
7.5-in-thick slab, an overall drop panel thickness of 9.75 in, normal-weight concrete with f ′

c =
4,000 psi, Grade 60 reinforcement, a superimposed dead load of 20 psf, and a live load of
80 psf.

Solution Both one- and two-way shear requirements must be checked at both the first interior
column and an edge column in an interior design strip.

First Interior Column
One-way shear The critical section for one-way shear is located a distance d from the face of

the column and traverses overall slab thicknesses of 9.75 in within the drop panel region and
7.5 in outside of the drop panel region. In the calculations for one-way shear, conservatively use
d = 7.5 − 1.25 = 6.25 in. The critical section located a distance d from the face of the drop panel is
not critical and need not be checked for one-way shear.

The total factored gravity loads acting on the slab qu is determined using the load combination
given in ACI Eq. (9-2), because this yields the maximum effects for dead and live loads (see Table
4.1 in Section 4.2 and Example 7.5):

qu = 1.2qD + 1.6qL = (1.2 × 116.6) + (1.6 × 80) = 268 psf

The maximum factored shear force at the critical section is

Vu = 0.268 ×
(

23.5
2

− 24
2 × 12

− 6.25
12

)
× 21.67 = 59.4 kips

Design shear strength is computed by Eq. (7.28):

φVc = φ2λ
√

f ′
c�d = 0.75 × 2 × 1.0

√
4,000 × (21.67 × 12) × 6.25/1,000 = 154.2 kips

Because Vu < φVc , one-way shear strength requirements are satisfied.

Two-way shear The total factored shear stress is the sum of the direct shear stress plus the shear
stress due to the fraction of the unbalanced moment transferred by eccentricity of shear.

Two critical sections must be checked when drop panels are utilized: the critical section lo-
cated a distance d/2 = (9.75 − 1.25)/2 = 4.25 in from the face of the column and the critical
section located a distance d/2 = (7.5 − 1.25)/2 = 3.13 in from the face of the drop panel (see
Fig. 7.43).

Critical section located at d/2 from face of column At the first interior column, the factored
shear force due to gravity loads is

Vu = qu(At − b1b2)

= 0.268
[

(23.5 × 21.67) −
(

32.5
12

)(
32.5
12

)]
= 134.5 kips

where b1 = b2 = 24 + 8.5 = 32.5 in
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The total unbalanced moment is equal to the difference between the total interior negative
moments on both sides of the column (see Table 7.6):

Mu = 216.7 − 201.2 = 15.5 ft kips

Determine γv by Eq. (7.38):

γv = 1 − γ f = 1 − 1

1 + (2/3)
√

b1/b2
= 1 − 1

1 + (2/3)
√

32.5/32.5
= 0.40

The section properties of the critical section are determined using Fig. 7.53 for an interior column:

cAB = b1/2 = 32.5/2 = 16.3 in

f1 = 2
[(

1 + c2

c1

)( c1

d

)
+ 2

]
= 2

[
(1 + 1)

(
24
8.5

)
+ 2

]
= 15.29

Ac = f1d2 = 15.29 × 8.52 = 1,104.7 in2

f2 = 1
6

[(
1 + 3c2

c1

)( c1

d

)2 +
(

5 + 3c2

c1

)( c1

d

)
+ 5

]

= 1
6

[
(1 + 3)

(
24
8.5

)2

+ (5 + 3)
(

24
8.5

)
+ 5

]
= 9.91

Jc/cAB = 2 f2d3 = 2 × 9.91 × 8.53 = 12,172 in3

These section properties can also be obtained using the tables given in Appendix B.
The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv MucAB

Jc

= 134,500
1,104.7

+ 0.4 × 15.5 × 12,000
12,172

= 121.8 + 6.1 = 127.9 psi

The allowable stress for a square column is obtained from Eq. (7.29):

φvc = φVc

bo d
= φ4λ

√
f ′
c = 0.75 × 4 × 1.0

√
4,000 = 189.7 psi > 127.9 psi

Critical section located at d/2 from face of drop panel The factored shear force due to gravity
loads at this location is

Vu = qu(At − b1b2)

= 0.268 [(23.5 × 21.67) − (8.5)(8.5)] = 117.0 kips

where b1 = b2 = 8 + 6.25
12

= 8.5 ft

The section properties of the critical section are determined using Fig. 7.53 for an interior column:

cAB = b1/2 = 8.5/2 = 4.3 ft
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In the equations for f1 and f2, use c1 = c2 = 8 × 12 = 96 in.

f1 = 2
[(

1 + c2

c1

)( c1

d

)
+ 2

]
= 2

[
(1 + 1)

(
96

6.25

)
+ 2

]
= 65.44

Ac = f1d2 = 65.44 × 6.252 = 2,556.3 in2

f2 = 1
6

[(
1 + 3c2

c1

)( c1

d

)2 +
(

5 + 3c2

c1

)( c1

d

)
+ 5

]

= 1
6

[
(1 + 3)

(
96

6.25

)2

+ (5 + 3)
(

96
6.25

)
+ 5

]
= 178.6

Jc/cAB = 2 f2d3 = 2 × 178.6 × 6.253 = 87,207 in.3

The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv MucAB

Jc

= 117,000
2,556.3

+ 0.4 × 15.5 × 12,000
87,207

= 45.8 + 1.0 = 46.8 psi

It is evident that the factored shear stress due to moment transfer by eccentricity of shear is
small compared with that from direct shear at the outermost critical section.

For large rectangular critical sections that typically occur around drop panels, the shear strength
given in Eq. (7.31) will usually govern:

φvc = φVc

bo d
= φ

(
αsd
bo

+ 2
)

λ
√

f ′
c

Because the critical section is four-sided, αs = 40.

Also, bo = 2(b1 + b2) = 2(8.5 + 8.5) × 12 = 408 in.
Thus,

φvc = φ

(
40 × 6.25

408
+ 2

)
λ
√

f ′
c = φ2.6λ

√
f ′
c psi

As expected, this design shear strength is less than that from Eq. (7.29), which is equal to φ4λ
√

f ′
c ,

and that from Eq. (7.30), which is equal to φ[2 + (4/4)]λ
√

f ′
c = φ3λ

√
f ′
c .

Therefore,

φvc = 0.75 × 2.6 × 1.0
√

4,000 = 123.3 psi > 46.8 psi

These calculations clearly show the significant effect that relatively large values of bo/d can
have on the design shear strength.

Edge Column
One- and two-way shear requirements need not be checked in the slab at the edge column because
of the spandrel beams. These beams must be designed for the bending moments, shear forces, and
torsional moments that are transferred from the slab.

Shear strength requirements are satisfied at both the first interior column and the edge column.

Example 7.13 Check shear strength requirements in an interior design strip for the beam-supported
slab system depicted in Fig. 7.14. Assume a 6.5-in-thick slab, normal-weight concrete with f ′

c = 4,000
psi, Grade 60 reinforcement, a superimposed dead load of 20 psf, and a live load of 100 psf.
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Solution According to ACI 13.6.8.1, beams with α f 1�2/�1 ≥ 1.0 are to be proportioned for the entire
shear force caused by the factored loads on the tributary area defined in ACI Fig. R13.6.8.

Determine α f 1�2/�1 for the beams in the interior design strip.
From Example 7.3, it was determined that αf = 6.3 for the north-south interior beams. Thus,

α f 1�2/�1 = 6.3 × 23.5/21.67 = 6.8 > 1.0

Therefore, the column-line beams in the interior design strip must be designed to resist the
entire shear force.

The total factored gravity loads acting on the slab qu are determined using the load combination
given in ACI Eq. (9-2), because this yields the maximum effects for dead and live loads (see Table
4.1 in Section 4.2 and Example 7.6):

qu = 1.2qD + 1.6qL = (1.2 × 119.9) + (1.6 × 100) = 304 psf

The factored load per unit length at the center of a beam is equal to (see ACI Fig. R13.6.8)

wu = 0.304 × 21.67 = 6.6 kips/ft

The load decreases linearly to zero at the centerlines of the columns.
The factored shear force Vu in the beam at the critical section located a distance d from face

of support can be determined from statics, and the required shear reinforcement can be obtained
using the methods given in Chap. 6.

Example 7.14 Check two-way shear strength requirements at the edge column in an interior de-
sign strip for the flat-plate system depicted in Fig. 7.58. Assume a 10-in-thick slab, normal-weight
concrete with f ′

c = 4,000 psi, Grade 60 reinforcement, a superimposed dead load of 20 psf, and a
live load of 80 psf. Also assume that the Direct Design Method can be used to determine moments
in the slab. Provide shear reinforcement if needed.

FIGURE 7.58 The
flat-plate system
given in
Example 7.14.
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Solution The total factored shear stress is the sum of the direct shear stress plus the shear stress
due to the fraction of the unbalanced moment transferred by eccentricity of shear.

The total factored gravity loads acting on the slab qu is determined using the load combination
given in ACI Eq. (9-2), because this yields the maximum effects for dead and live loads (see Table
4.1 in Section 4.2).

qD =
(

10
12

× 150
)

+ 20 = 145 psf

qu = 1.2qD + 1.6qL = (1.2 × 145) + (1.6 × 80) = 302 psf

The critical section for two-way shear is located a distance d/2 = (10 − 1.25)/2 = 4.4 in from the
face of the column (see Fig. 7.42).

At the edge column, the factored shear force due to gravity loads is

Vu = qu(At − b1b2)

= 0.302
[(

24
2

+ 18
2 × 12

)(
22.0 + 23.5

2

)
−

(
22.38

12

)(
36.75

12

)]
= 85.9 kips

where b1 = 18 + 8.75
2

= 22.38 in

b2 = 28 + 8.75 = 36.75 in

Because it is assumed that the Direct Design Method can be used to compute the moments, ACI
13.6.3.6 requires that the unbalanced moment at the edge column that is transferred by eccentricity
of shear is equal to 0.3Mo , where Mo is

Mo = qu�2�
2
n

8
= 0.302 × [(22.0 + 23.5)/2] × {24 − [18/(2 × 12)] − [28/(2 × 12)]}2

8
= 418.8 ft kips

Thus,

Mu = 0.3 × 418.8 = 125.6 ft kips

Determine γv by Eq. (7.38):

γv = 1 − γ f = 1 − 1

1 + (2/3)
√

b1/b2
= 1 − 1

1 + (2/3)
√

22.38/36.75
= 0.34

The section properties of the critical section are determined using Fig. 7.55 for an edge column
bending perpendicular to the edge:

f1 = 2 + c1

d

(
2 + c2

c1

)
= 2 + 18

8.75

(
2 + 28

18

)
= 9.31

f2 = [(c1/d) + (1/2)]2{(c1/d)[1 + (2c2/c1)] + (5/2)} + {(c1/d)[1 + (2c2/c1)] + 1}
6[(c1/d) + (1/2)]

= [(18/8.75) + (1/2)]2{(18.8.75)[1 + (2 × 28)/18] + (5/2)} + {(18/18.75)[1 + 28/(2 × 18)] + 1}
6[(18/8.75) + (1/2)]

= 4.97

f3 = [(c1/d) + (1/2)]2{(c1/d)[1 + (2c2/c1)] + (5/2)} + {(c1/d)[1 + (c2/2c1)] + 1}
6{(c1/d)[1 + (c2/c1)] + (3/2)}

= [(18/8.75) + (1/2)]2{(18.8.75)[1 + (2 × 28)/18] + (5/2)} + {(18/18.75)[1 + 28/(2 × 18)] + 1}
6{(18/8.75)[1 + (28/18)] + (1/2)} = 1.88
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cAB = f3

f2 + f3

(
c1 + d

2

)
= 1.88

4.97 + 1.88

(
18 + 8.75

2

)
= 6.1 in

Ac = f1d2 = 9.31 × 8.752 = 712.8 in2

Jc/cAB = 2 f2d3 = 2 × 4.97 × 8.753 = 6,659 in3

These section properties can also be obtained using the tables given in Appendix B.
The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv MucAB

Jc

= 85,900
712.8

+ 0.34 × 125.6 × 12,000
6,659

= 120.5 + 77.0 = 197.5 psi

The allowable stress is the smallest of the values obtained from Eqs. (7.29) to (7.31):

φvc = φVc

bo d
= φ4λ

√
f ′
c = 0.75 × 4 × 1.0

√
4,000 = 189.7 psi (governs)

φvc = φVc

bo d
= φ

(
2 + 4

β

)
λ
√

f ′
c = 0.75 ×

(
2 + 4

1.56

)
× 1.0

√
4,000 = 216.5 psi

φvc = φVc

bo d
= φ

(
αsd
bo

+ 2
)

λ
√

f ′
c = 0.75 ×

[
30 × 8.75

(2 × 22.38) + 36.75
+ 2

]
× 1.0

√
4,000 = 330.2 psi

Because vu > φvc , shear strength requirements are not satisfied at the edge column.
Increase shear strength by providing (1) closed stirrups and (2) headed shear studs.

Increase Shear Strength by Closed Stirrups
Step 1: Determine if stirrups can be utilized in this slab in accordance with ACI 11.11.3.

Assuming No. 4 stirrups (db = 0.50 in),

Average d = 8.75 in >

{
6.0 in
16db = 16 × 0.50 = 8.0 in

Step 2: Check the maximum shear strength permitted with stirrups in accordance with ACI
11.11.3.2.

vu(AB) = 197.5 psi < φ6
√

f ′
c = 0.75 × 6

√
4,000 = 284.6 psi

Step 3: Determine the design shear strength of the concrete with stirrups in accordance with
ACI 11.11.3.1.

φvc = φ2λ
√

f ′
c = 0.75 × 2 × 1.0

√
4,000 = 94.9 psi

Step 4: Determine the required area of stirrups. The required area of stirrups Av at the critical
section located a distance d/2 from the face of the column can be determined from Eq. (7.33).
Assuming a stirrup spacing s equal to 4 in, which is less than the maximum spacing of d/2 = 4.4
in (ACI 11.11.3.3), the total area of stirrups Av required on the three sides of the column is

Av = (vu(AB) − φvc )bo s
φ fy

= (197.5 − 94.9)[(2 × 22.38) + 36.75] × 4
0.75 × 60,000

= 0.74 in2
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The required area of stirrups per side is

Av (per side) = 0.74
3

= 0.25 in2

Use No. 4 stirrups spaced at 4.0 in on center [Av (per side) = 0.40 in2].
Step 5: Determine the distance from faces of column where stirrups can be terminated.

Stirrups can be terminated where the design strength of the concrete can resist the factored shear
stress without stirrups.

At the critical section located a distance d/2 from the outermost peripheral line of stirrups, the
design shear strength of the concrete is determined by Eq. (7.34):

φVn = φVc = φ2λ
√

f ′
c bo d

Assume that the stirrups are terminated 24 in from the faces of the column. Therefore, the
outermost critical section is located 24 + 4.4 = 28.4 in from the faces of the column.

The perimeter of the critical section is (see Fig. 7.48)

bo = (2 × 18) + 28 + (2
√

2 × 28.4) = 144.3 in

Thus,

φVc = 0.75 × 2 × 1.0
√

4,000 × 144.3 × 8.75/1,000 = 119.8 kips

The factored shear force at the face of the critical section located d/2 from the face of the column
was determined earlier as 85.9 kips. At the critical section located d/2 from the outermost stirrups,
Vu is significantly less than 85.9 kips, and the shear stress due to the portion of the unbalanced
moment transferred by eccentricity of shear is negligible. Therefore, because φVc is greater than
Vu at the critical section located d/2 from the outermost stirrups, shear strength requirements are
adequate at that section.

Use six No. 4 closed stirrups spaced at 4.0 in along the three sides of the column.
The first peripheral line of stirrups must be located not farther than d/2 from the face of the

column. Thus, locate the first line of stirrups 4.0 in from the faces of the column. See Fig. 7.48 for
other detailing requirements.

Increase Shear Strength by Headed Shear Stud Reinforcement
Step 1: Check the maximum shear strength permitted with headed shear studs in accordance

with ACI 11.11.5.1.

vu(AB) = 197.5 psi < φ8
√

f ′
c = 0.75 × 8

√
4,000 = 379.5 psi

Step 2: Determine the design shear strength of the concrete with headed shear studs in
accordance with ACI 11.11.5.1.

φvc = φ3λ
√

f ′
c = 0.75 × 3 × 1.0

√
4,000 = 142.3 psi

Step 3: Determine the required spacing of headed shear studs. The required spacing of headed
shear studs sat the critical section located a distance d/2 from the face of the column can be deter-
mined from Eq. (7.35).

In order to satisfy the requirements of ACI 11.11.5.3 related to spacing between adjacent shear
reinforcement elements (i.e., spacing between elements must not exceed 2d = 17.5 in), three lines
of headed studs are provided on each column face.
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Assuming 1/2-in diameter studs (Astud = 0.196 in.2), the required spacing is

s = Av fyt

(vu(AB) − φvc )bo

= (9 × 0.196) × 51,000
(197.5 − 142.3)[(2 × 22.38) + 36.75]

= 20.0 in

In this equation, Av is the cross-sectional area of all the headed shear studs on one peripheral line
that is parallel to the perimeter of the column section, and the minimum specified yield strength
of the headed studs is 51,000 psi (see ACI R3.5.5).

Because vu(AB) < φ6
√

f ′
c , maximum stud spacing = 0.75d = 6.6 in.

Assuming a 6-in spacing, check the requirement of ACI 11.11.5.1:

Av fyt

bo s
= (9 × 0.196) × 51,000

[(2 × 22.38) + 36.75] × 6
= 184.0 psi > 2

√
f ′
c = 126.5 psi

Step 4: Determine distance from faces of column where headed shear studs can be termi-
nated. Headed shear studs can be terminated where the design strength of the concrete can resist
the factored shear stress without the headed shear studs.

At the critical section located a distance d/2 from the outermost peripheral line of headed studs,
the design shear strength of the concrete is determined by Eq. (7.37):

φVn = φVc = φ2λ
√

f ′
c bo d

Assume that the headed studs are terminated 22 in from the faces of the column. Therefore, the
outermost critical section is located 22 + 4.4 = 26.4 in from the faces of the column.

The perimeter of the critical section is (see Fig. 7.50)

bo = (2 × 18) + 28 + (2
√

2 × 26.4) = 138.7 in

Thus,

φVc = 0.75 × 2 × 1.0
√

4,000 × 138.7 × 8.75/1,000 = 115.1 kips

The factored shear force at the face of the critical section located d/2 from the face of the column
was determined earlier as 85.9 kips. At the critical section located d/2 from the outermost line of
headed shear studs, Vu is significantly less than 85.9 kips, and the shear stress due to the portion of
the unbalanced moment transferred by eccentricity of shear is negligible. Therefore, because φVc
is greater than Vu at the critical section located d/2 from the outermost line of studs, shear strength
requirements are adequate at that section.

Use 1/2-in-diameter headed studs spaced at 6.0 in on center along the three sides of the column.
The first peripheral line of headed shear studs must be located not farther than d/2 from the

face of the column. Thus, locate the first line of stirrups 4.0 in from the faces of the column. See Fig.
7.50 for other detailing requirements.

7.7 Design Procedure
The following design procedure can be used in the design of two-way slab systems.
Included is the information presented in the previous sections on how to analyze,
design, and detail a two-way system for flexure and shear.
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Step 1: Determine the preliminary slab thickness (Section 7.3). The first step
in the design procedure is to determine a preliminary slab thickness. A minimum
slab thickness must be provided to satisfy serviceability requirements. For slab sys-
tems without beams, it is also advisable at this stage to run a preliminary investiga-
tion of the shear strength of the slab in the vicinity of the columns or other support
locations.

For overall economy, the slab thickness for the entire floor plate should be based
on the minimum thickness for the panel that requires the largest thickness. Varying the
amount of flexural reinforcement, and not the thickness of the slab, produces the most
economical solution.

Step 2: Determine bending moments at the critical sections (Section 7.4). Once a
preliminary slab thickness has been obtained, the next step is to determine the factored
bending moments in the column strips and middle strips at the critical locations along
the span of a design strip. The Direct Design Method can be used to determine bending
moments due to gravity loads, provided that the limitations of ACI 13.6.1 are satisfied.
The Equivalent Frame Method can be used in cases where the Direct Design Method
cannot be used.

The Code also permits other analysis methods to determine bending moments, as
long as equilibrium and geometric compatibility are satisfied.

Step 3: Determine the required flexural reinforcement (Section 7.5). The required
flexural reinforcement is determined at the critical locations in both the column strips
and the middle strips. It is advantageous to design the slab as a tension-controlled
section with the strength reduction factor equal to 0.9. The methods presented in Chap.
6 for rectangular sections with a single layer of tension reinforcement can be used to
determine the required area of flexural reinforcement in slabs.

Minimum reinforcement requirements are given in ACI 13.3.1. The area of rein-
forcement at any critical section must not be less than that required for temperature
and shrinkage in accordance with ACI 7.12.2.2. For Grade 60 reinforcement, the mini-
mum reinforcement ratio is 0.0018, which is based on the gross concrete area. According
to ACI 13.3.2, spacing of the flexural reinforcement is limited to two times the thickness
of the slab.

Flexural strength requirements with respect to unbalanced moments at slab–column
joints must also be satisfied. The portion of the unbalanced moment transferred by
flexure is resisted by the reinforcement in the effective slab width defined in ACI 13.5.3.2.

Step 4: Check shear strength requirements at columns (Section 7.6). Both one-
and two-way shear must be checked at the critical sections around columns. The total
factored two-way shear stress at a critical section around a support consists of the shear
stress due to direct shear force and the shear stress due to the portion of the unbalanced
moment that is transferred by eccentricity of shear.

The total factored shear stress must be equal to or less than the design shear strength.
In cases where the design shear strength of the concrete is not sufficient, shear reinforce-
ment can be utilized to increase the total design shear strength.

Typically, proportioned column-line beams usually resist most, if not all, of the
shear force in a column strip.

Step 5: Detail the reinforcement (Sections 7.5 and 7.6). Detailing requirements for
slab reinforcement in two-way systems are given in ACI 13.3. ACI Fig. 13.3.8 provides
minimum bar extensions for reinforcement in slabs without beams on the basis of
uniformly distributed gravity loads.
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For bending moments resulting from combined gravity and lateral loads, the mini-
mum lengths given in this figure may not be sufficient. Bar lengths must be determined
by the development requirements of ACI 12.10 to 12.12 for general load cases. The
provided bar lengths must not be taken less than those prescribed in ACI Fig. 13.3.8.

According to ACI 13.3.6, special top and bottom reinforcement must be provided at
the exterior corners of a slab with spandrel beams that have a stiffness αf greater than 1.0.
The reinforcement must be designed for a moment equal to the largest positive moment
per unit width in the panel and must be placed in a band parallel to the diagonal at
the top of the slab and a band perpendicular to the diagonal at the bottom of the slab.
Additionally, the reinforcement must extend at least one-fifth of the longer span in each
direction from the corner. Alternatively, the reinforcement may be placed in two layers
parallel to the edges of the slab at both the top and the bottom of the slab.

For slabs with shear reinforcement, the detailing requirements of ACI 11.11 must
be satisfied for the particular type of reinforcement that is used in the slab.

Example 7.15 Design the interior strip for the flat-plate system depicted in Fig. 7.59.
The flat plate is part of the lateral force–resisting system, and the interior design strip is subjected

to the following bending moments:

End span: ±27 ft kips at exterior column, ±25 ft kips at first interior column

Interior span: ±20 ft kips at interior column

FIGURE 7.59 The
flat-plate system
given in
Example 7.15.
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Assume normal-weight concrete with f ′
c = 4,000 psi, Grade 60 reinforcement, a superimposed

dead load of 15 psf, and a live load of 80 psf.

Solution The design procedure outlined earlier will be used to design this flat plate.

Step 1: Determine the preliminary slab thickness. For slabs without interior beams spanning
between the supports, the provisions of ACI 9.5.3.2 must be used to determine the minimum slab
thickness based on serviceability requirements.

The minimum slab thickness is determined from ACI Table 9.5(c) for slab systems without drop
panels and edge beams and with Grade 60 reinforcement:

Exterior panel: longest �n = (21 × 12) − 22 = 230 in

hmin = �n

30
= 230

30
= 7.7 in

Interior panel: longest �n = (24 × 12) − 22 = 266 in

hmin = �n

33
= 266

33
= 8.1 in

Thus, the minimum slab thickness is governed by an interior panel.
Use Fig. 7.11 to estimate minimum slab thickness based on two-way shear strength at an edge

column, assuming a 9-in-thick slab.
The total factored gravity loads acting on the slab qu is determined using the load combination

of ACI Eq. (9-2) because this yields the maximum effects for dead and live loads (see Table 4.1 in
Section 4.2):

qD =
(

9
12

× 150
)

+ 15 = 127.5 psf

qu = 1.2qD + 1.6qL = (1.2 × 127.5) + (1.6 × 80) = 281 psf

Tributary area A = 1
2

(
21 + 22

12

)
× 20 = 228.33 ft2

Area of edge column c2
1 = 222/144 = 3.36 ft2

A/c2
1 = 228.33/3.36 = 68.0

From Fig. 7.11, obtain d/c1 ∼= 0.25 for qu = 281 psf.
Therefore, d = 0.25 × 22 = 5.5 in.

h = 5.5 + 1.25 = 6.75 in. < 8.1 in

Try a 9-in-thick slab. This thickness is greater than the minimum thickness of 5 in prescribed in
ACI 9.5.3.2(a) for slabs without drop panels.

Step 2: Determine bending moments at the critical sections. Prior to determining the factored
bending moments at the critical sections, check if the Direct Design Method can be used to analyze
this two-way system:

1. Three continuous spans must be present in each direction.

There are five spans in the north-south direction and four spans in the east-west direction.

2. Slab panels must be rectangular with a ratio of the longer to shorter span, centerline-to-centerline
of supports, equal to or less than 2.

Longer span/shorter span = 24/20 = 1.2 < 2.0



395T w o - W a y S l a b s

3. Successive span lengths, centerline-to-centerline of supports, in each direction must not differ
by more than one-third of the longer span.

In the north-south direction, 21/24 = 0.875 > 0.67.

4. Columns must not be offset more than 10% of the span in the direction of offset from either axis
between the centerlines of successive columns.

No column offsets are present.

5. Loads applied to the slab must be uniformly distributed gravity loads where the ratio of the
unfactored live load to the unfactored dead load is equal to or less than.

Live load = 80 psf

Dead load = 127.5 psf

Uniform live to dead load ratio = 80/127.5 = 0.63 < 2

6. For panels with column-line beams on all sides, ACI Eq. (13-2) must be satisfied.

No column-line beams are present.

7. Redistribution of bending moments in accordance with ACI 8.4 is not permitted.

Bending moments will not be redistributed in accordance with ACI 8.4.

Therefore, the Direct Design Method can be used for gravity load analysis.
The steps presented in Section 7.4 will be used to determine the bending moments at the critical

sections. Instead of using factored gravity loads, service dead and live load moments will be
computed because these moments must be combined with those due to the effects from wind,
using the load combinations of ACI 9.2.

Step 2A: Determine the static moment Mo in each span. The static moment Mo is determined
by Eq. (7.8):

Mo = q�2�
2
n

8

In this equation, q is the uniformly distributed service dead or live load.
Calculate Mo for the end and interior spans.
End span:

�n = 21 − 22
12

= 19.17 ft

�2 = 20.0 ft

(Mo )D = qD�2�
2
n

8
= 0.128 × 20.0 × 19.172

8
= 117.6 ft kips

(Mo )L = qL�2�
2
n

8
= 0.080 × 20.0 × 19.172

8
= 73.5 ft kips

Interior span:

�n = 24 − 22
12

= 22.17 ft

�2 = 20.0 ft

(Mo )D = qD�2�
2
n

8
= 0.128 × 20.0 × 22.172

8
= 157.3 ft kips

(Mo )L = qL�2�
2
n

8
= 0.080 × 20.0 × 22.172

8
= 98.3 ft kips

Step 2B: Distribute Mo into negative and positive bending moments in each span. The mo-
ment Mo is divided into negative and positive moments in accordance with distribution factors
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End Span Moments (ft kips) Interior Span Moments (ft kips)

Exterior Negative Positive Interior Negative Positive Interior Negative

0.26(Mo)D =
−30.6

0.52(Mo)D =
61.2

0.70(Mo)D =
−82.3

0.35(Mo)D =
55.1

0.65(Mo)D =
−102.3

0.26(Mo)L =
−19.1

0.52(Mo)L =
38.2

0.70(Mo)L =
−51.5

0.35(Mo)L =
34.4

0.65(Mo)L =
−63.9

TABLE 7.20 Summary of Dead and Live Load Moments for the Flat Plate Given in Example 7.15

given in ACI 13.6.3 (see Tables 7.2 and 7.3 of this book). A summary of the dead and live load
moments at the critical sections is given in Table 7.20.

Step 2C: Distribute the dead and live load moments to the column strip and middle strip.
The percentages of the negative and positive bending moments at the critical sections that are
assigned to the column strips and middle strips are given in ACI 13.6.4 to 13.6.6 (see Table 7.3 of
this book). A summary of the dead and live load moments at the critical section is given for this
flat plate in Table 7.21.

According to ACI 13.5.1.3, the results of the gravity load analysis are combined with the moments
due to wind, using the applicable load combinations given in ACI 9.2.

Equation (7.25) is used to determine the effective width of the slab to resist the effects from the
wind loads.

For the end span,

Effective slab width = 2c1 + �1

3
= (2 × 22) + 21 × 12

3
= 128 in

For the interior span,

Effective slab width = 2c1 + �1

3
= (2 × 22) + 24 × 12

3
= 140 in

The width of the column strip for the end and interior spans is equal to �2/2 = (20 × 12)/2 =
120 in.

Therefore, because the effective slab width in the end span and the column strip width are
almost equal, conservatively assume that the column strip resists all of the effects from the wind
loads.

A summary of the factored load combinations is given in Table 7.22 for an end span and a typical
interior span. Two values of bending moments are given at the supports in the column strip: The

End Span Moments (ft kips) Interior Span Moments (ft kips)

Exterior Interior Interior
Negative Positive Negative Positive Negative

Column strip 0.26Mo 0.31Mo 0.53Mo 0.21Mo 0.49Mo

Dead −30.6 Dead 36.5 Dead −62.3 Dead 33.0 Dead −77.1

Live −19.1 Live 22.8 Live −39.0 Live 20.6 Live −48.2

Middle strip 0 0.21Mo 0.17Mo 0.14Mo 0.16Mo

Dead 24.7 Dead −20.0 Dead 22.0 Dead −25.2

Live 15.4 Live −12.5 Live 13.8 Live −15.7

TABLE 7.21 Summary of Dead and Live Load Moments at the Critical Sections for the Flat Plate Given
in Example 7.15



End Span Interior Span

Column Strip Middle Strip Column Strip Middle Strip

Load Exterior Interior Exterior Interior
Combination Negative Positive Negative Negative Positive Negative Positive Negative Positive Negative

1.4D −42.8 51.1 −87.2 0.0 34.6 −28.0 46.2 −107.9 30.8 −35.3

1.2D + 1.6L −67.3 80.3 −137.2 0.0 54.3 −44.0 72.6 −169.6 48.5 −55.4

1.2D + 1.6L+0.8W −45.7 80.3 −157.2 0.0 54.3 −44.0 72.6 −153.6 48.5 −55.4

−88.9 −117.2 −185.6

1.2D + 0.5L+1.6W −3.1 55.2 −134.3 0.0 37.3 30.3 49.9 −84.6 33.3 −38.1

−89.5 −54.3 −148.6

0.9D + 1.6W 15.7 32.9 −96.1 0.0 22.2 −18.0 29.7 −37.4 19.8 −22.7

−70.7 −16.1 −101.4

TABLE 7.22 Summary of Design Bending Moments (ft kips) for the Interior Design Strip Given in Example 7.15

397
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FIGURE 7.60 Combination of gravity and wind load effects.

top value corresponds to wind blowing from left to right (sidesway right), and the bottom value
corresponds to wind blowing from right to left (sidesway left). Figure 7.60 illustrates the proper
combination of the effects due to gravity and wind loads in the end span for the load combination
1.2D + 1.6L + 0.8W for sidesway to the right (SSR) and sidesway to the left (SSL).

Note that at the exterior column in the end span, a positive moment occurs at the face of the
column due to reversal of moments caused by the wind load effects.

Step 3: Determine the required flexural reinforcement. The required flexural reinforcement
at the critical sections can be obtained using the strength design methods presented in Chap. 6 for
tension-controlled, rectangular sections with a single layer of reinforcement.

It was determined in step 2 that the width of the column strip is equal to 120 in. Therefore, the
width of the middle strip is equal to 240 − 120 = 120 in. These widths are used in the calculation
of the flexural reinforcement.

A summary of the required flexural reinforcement at the critical sections in the column strip
and middle strip is given in Table 7.23.
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Location Mu (ft kips) b (in) As (in2) Reinforcement

End span Column strip Exterior
negative

−89.5 120 2.63 9 No. 5

Positive 80.3 120 2.35 8 No. 5

Interior
negative

−157.2 120 4.72 16 No. 5

Middle strip Exterior
negative

0.0 120 1.94∗ 7 No. 5

Positive 54.3 120 1.94∗ 7 No. 5

Interior
negative

−44.0 120 1.94∗ 7 No. 5

Interior span Column strip Positive 72.6 120 2.12 7 No. 5

Negative −185.6 120 5.62 19 No. 5

Middle strip Positive 48.5 120 1.94∗ 7 No. 5

Negative −55.4 120 1.94∗ 7 No. 5

∗Based on minimum reinforcement requirements: As,min = 0.0018bh = 1.94 in2.

TABLE 7.23 Required Slab Reinforcement for the Flat Plate Given in Example 7.15

Maximum spacing requirements:

Maximum bar spacing = 2h = 18 in.

For b = 120 in, 120/18 = 6.7, say, seven bars are needed to satisfy maximum spacing require-
ments.

Note that the eight No. 5 bars that are provided at the bottom of the slab in the column strip
in the end span are adequate to resist the 15.7 ft kip positive bending moment at the face of the
exterior column due to the reversal of wind load effects. Additional positive reinforcement would
have been required at that location if that moment were greater than the positive moment near the
midspan.

Check that the flexural reinforcement at the end support is adequate to satisfy the moment
transfer requirements of ACI 13.5.3.

The total unbalanced moment at this slab–column connection is equal to 89.5 ft kips, which is
the total moment in the column strip (see Table 7.23).

A fraction of this moment γ f Mu must be transferred over an effective width equal to c2 + 3h =
22 + (3 × 9) = 49 in.

The fraction of unbalanced moment transferred by flexure is calculated in accordance with
Eq. (7.26):

γ f = 1

1 + (2/3)
√

b1/b2
= 1

1 + (2/3)
√

25.88/29.75
= 0.62

where b1 = c1 + d
2

= 22 + 7.75
2

= 25.88 in

b2 = c2 + d = 22 + 7.75 = 29.75 in
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For edge columns bending perpendicular to the edge, the value of γ f computed by Eq. (7.26)
may be increased to 1.0 provided that Vu ≤ 0.75φVc [ACI 13.5.3.3(a)]. No adjustment to γ f is made
in this example.

Unbalanced moment transferred by flexure = γ f Mu = 0.62 × 89.5 = 55.5 ft kips. The required
area of steel to resist this moment in the 49-in-wide strip is As = 1.66 in2, which is equivalent to
six No. 5 bars.

As,min = 0.0018bh = 0.0018 × 49 × 9.0 = 0.79 in2 < As

Provide the six No. 5 bars by concentrating six of the nine column strip bars (see Table 7.23)
within the 49-in width over the column. For symmetry, add another bar in the column strip and
check bar spacing:

For six No. 5 bars within the 49-in width, 49/6 = 8.2 in < 18 in.
For four No. 5 bars within the 120 − 49 = 71-in width, 71/4 = 17.8 in < 18 in.
A total of 10 No. 5 bars are required at the end supports within the column strip, with 6 of the

10 bars concentrated within a width of 49 in centered on the column.
Similar calculations can be performed for the first interior column and an interior column.
Step 4: Check the shear strength requirements at columns (Section 7.6). Both one- and two-

way shear requirements must be checked at the first interior column and at an edge column in an
interior design strip. Similar calculations can be performed for an interior column.

First Interior Column
One-way shear The critical section for one-way shear is located a distance d = 9 − 1.25 = 7.75 in

from the face of the column (see Fig. 7.40).
The total factored gravity load acting on the slab qu isdetermined using the load combination

of ACI Eq. (9-2) because this yields the maximum effects for dead and live loads (see Table 4.1 in
Section 4.2):

qu = 1.2qD + 1.6qL = (1.2 × 127.5) + (1.6 × 80) = 281 psf

The maximum factored shear force at the critical section is

Vu = 0.281 ×
(

24
2

− 22
2 × 12

− 7.75
12

)
× 20 = 58.7 kips

Design shear strength is computed by Eq. (7.28):

φVc = φ2λ
√

f ′
c�d = 0.75 × 2 × 1.0

√
4,000 × (20 × 12) × 7.75/1,000 = 176.5 kips

Because Vu < φVc , one-way shear strength requirements are satisfied.

Two-way shear The total factored shear stress is the sum of the direct shear stress plus the shear
stress due to the fraction of the unbalanced moment transferred by eccentricity of shear.

The critical section for two-way shear is located a distance d/2 = 3.9 in from the face of the
column (see Fig. 7.42).

Factored shear stresses must be checked for gravity load combinations and gravity plus wind
load combinations. It is not readily apparent which of these combinations produces the greatest
combined shear stress.

Gravity loads: 1.2D + 1.6L At the first interior column, the factored shear force due to gravity
loads is

Vu = qu(At − b1b2)

= 0.281
[

(22.5 × 20) −
(

29.75
12

)(
29.75

12

)]
= 124.7 kips

where b1 = b2 = 22 + 7.75 = 29.75 in
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The total unbalanced moment is equal to the difference between the total interior negative
moments on both sides of the column (see Table 7.20):

Mu = [(1.2 × 102.3) + (1.6 × 63.9)] − [(1.2 × 82.3) + (1.6 × 51.5)] = 43.8 ft kips

Determine γv by Eq. (7.38):

γ f = 1

1 + (2/3)
√

b1/b2
= 1

1 + (2/3)
√

29.75/29.75
= 0.6

γv = 1 − γ f = 1 − 0.6 = 0.4

The section properties of the critical section are determined using Fig. 7.53 for an interior column:

cAB = b1/2 = 29.75/2 = 14.9 in

f1 = 2
[(

1 + c2

c1

)( c1

d

)
+ 2

]
= 2

[
(1 + 1)

(
22

7.75

)
+ 2

]
= 15.36

Ac = f1d2 = 15.36 × 7.752 = 922.6 in2

f2 = 1
6

[(
1 + 3c2

c1

)( c1

d

)2 +
(

5 + 3c2

c1

)( c1

d

)
+ 5

]

= 1
6

[
(1 + 3)

(
22

7.75

)2

+ (5 + 3)
(

22
7.75

)
+ 5

]
= 9.99

Jc/cAB = 2 f2d3 = 2 × 9.99 × 7.753 = 9,300 in3

These section properties can also be obtained using the tables given in Appendix B.
The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv MucAB

Jc

= 124,700
922.6

+ 0.4 × 43.8 × 12,000
9,300

= 135.2 + 22.6 = 157.8 psi

The allowable stress for a square column is obtained from Eq. (7.29):

φvc = φVc

bo d
= φ4λ

√
f ′
c = 0.75 × 4 × 1.0

√
4,000 = 189.7 psi > 157.8 psi

Gravity plus wind loads
1. 1.2D + 1.6L + 0.8W

From previous calculations, qu = 281 psf and Vu = 124.7 kips.
The maximum shear force due to wind loads is determined from statics by dividing the sum

of the wind moments in the span by the span length: (27 + 25)/21 = 2.5 kips.
Thus, the total factored shear force at the first interior column is

Vu = 124.7 + (0.8 × 2.5) = 126.7 kips

The total unbalanced moment is equal to the sum of the unbalanced moments due to gravity
and wind loads:

Mu = 43.8 + [0.8 × (25 + 20)] = 79.8 ft kips
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Note that the unbalanced moment due to the wind loads is the sum of the moments acting
on opposite sides of the column.

Therefore, the total factored shear stress is

vu(AB) = 126,700
922.6

+ 0.4 × 79.8 × 12,000
9,300

= 137.3 + 41.2 = 178.5 psi < 189.7 psi

2. 1.2D + 0.5L + 1.6W

qu = 1.2qD + 0.5qL = (1.2 × 127.5) + (0.5 × 80) = 193 psf

Vu = 0.193
[

(22.5 × 20) −
(

29.75
12

)(
29.75

12

)]
= 85.7 kips

The total factored shear force due to gravity plus wind loads is

Vu = 85.7 + (1.6 × 2.5) = 89.7 kips

The total unbalanced moment is equal to the sum of the unbalanced moments due to gravity
and wind loads:

Mu = [(1.2 × 102.3) + (0.5 × 63.9)] − [(1.2 × 82.3) + (0.5 × 51.5)] + [1.6 × (25 + 20)]

= 30.2 + 72.0 = 102.2 ft kips

Therefore, the total factored shear stress is

vu(AB) = 89,700
922.6

+ 0.4 × 102.2 × 12,000
9,300

= 97.2 + 52.8 = 150.0 psi < 189.7 psi

Therefore, shear strength requirements are satisfied at the first interior column.

Edge Column
One-way shear The critical section for one-way shear is located a distance d = 9 − 1.25 = 7.75 in

from the face of the column (see Fig. 7.40).
The maximum factored shear force at the critical section is

Vu = 0.281 ×
(

21
2

− 22
2 × 12

− 7.75
12

)
× 20 = 50.2 kips

Design shear strength is computed by Eq. (7.28):

φVc = φ2λ
√

f ′
c�d = 0.75 × 2 × 1.0

√
4,000 × (20 × 12) × 7.75/1,000 = 176.5 kips

Because Vu < φVc , one-way shear strength requirements are satisfied.

Two-way shear Like at the interior column, factored shear stresses must be checked for gravity
load combinations and gravity plus wind load combinations.

Gravity loads: 1.2D + 1.6L At the edge column, the factored shear force due to gravity loads is

Vu = qu(At − b1b2)

= 0.281
[(

21
2

+ 22
2 × 12

)
(20) −

(
25.88

12

)(
29.75

12

)]
= 62.7 kips
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where b1 = 22 + 7.75
2

= 25.88 in

b2 = 22 + 7.75 = 29.75 in

Because the Direct Design Method was used to compute the moments, ACI 13.6.3.6 requires
that the unbalanced moment at the edge column that is transferred by eccentricity of shear be (see
step 2)

Mu = 0.3Mo = 0.3 × [(1.2 × 117.6) + (1.6 × 73.5)] = 77.6 ft kips

Determine γv by Eq. (7.38):

γv = 1 − γ f = 1 − 1

1 + (2/3)
√

b1/b2
= 1 − 1

1 + (2/3)
√

25.88/29.75
= 0.38

The properties of the critical section are determined using Fig. 7.55 for an edge column bending
perpendicular to the edge:

f1 = 2 + c1

d

(
2 + c2

c1

)
= 2 + 22

7.75
(2 + 1) = 10.52

f2 = [(c1/d) + (1/2)]2{(c1/d)[1 + (2c2/c1)] + (5/2)} + {(c1/d)[1 + (c2/2c1)] + 1}
6[(c1/d) + (1/2)]

= [(22/7.75) + (1/2)]2 [(22/7.75) (1 + 2) + (5/2)] + {(22/7.75)[1 + (1/2)] + 1}
6[(22/7.75) + (1/2)]

= 6.39

f3 = [(c1/d) + (1/2)]2{(c1/d)[1 + (2c2/c1)] + (5/2)} + {(c1/d)[1 + (c2/2c1)] + 1}
6{(c1/d)[1 + (c2/c1)] + (1/2)}

= [(22/7.75) + (1/2)]2 [(22/7.75) (1 + 2) + (5/2)] + {(22/7.75)[1 + (1/2)] + 1}
6[(22/7.75)(1 + 1) + (3/2)]

= 2.97

cAB = f3

f2 + f3

(
c1 + d

2

)
= 2.97

6.39 + 2.97

(
22 + 7.75

2

)
= 8.2 in

Ac = f1d2 = 10.52 × 7.752 = 631.9 in2

Jc/cAB = 2 f2d3 = 2 × 6.39 × 7.753 = 5,949 in3

These section properties can also be obtained using the tables given in Appendix B.
The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv MucAB

Jc

= 62,700
631.9

+ 0.38 × 77.6 × 12,000
5,949

= 99.2 + 59.5 = 158.7 psi < 189.7 psi

Gravity plus wind loads
1. 1.2D + 1.6L + 0.8W

From previous calculations, qu = 281 psf and Vu = 62.7 kips.
The maximum shear force due to wind loads is determined from statics by dividing the sum

of the wind moments in the span by the span length: (27 + 25)/21 = 2.5 kips.
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Thus, the total factored shear force at the edge column is

Vu = 62.7 + (0.8 × 2.5) = 64.7 kips

When lateral loads are considered, shear stress calculations can be based on the actual unbal-
anced moment rather than that based on the provision of ACI 13.6.3.6, which, as shown earlier,
requires the unbalanced moment to be 0.3Mo . Thus, using Table 7.22, the total unbalanced
moment is equal to the sum of the unbalanced moments due to gravity and wind loads:

Mu = 67.3 + (0.8 × 27) = 88.9 ft kips

Therefore, the total factored shear stress is

vu(AB) = 64,700
631.9

+ 0.38 × 88.9 × 12,000
5,949

= 102.4 + 68.1 = 170.5 psi < 189.7 psi

2. 1.2D + 0.5L + 1.6W

qu = 1.2qD + 0.5qL = (1.2 × 127.5) + (0.5 × 80) = 193 psf

Vu = 0.193
[(

21
2

+ 22
2 × 12

)
(20) −

(
25.88

12

)(
29.75

12

)]
= 43.0 kips

The total factored shear force is

Vu = 43.0 + (1.6 × 2.5) = 47.0 kips

From Table 7.22, the unbalanced moment at the exterior column for this load combination is
Mu = 89.5 ft kips.

Therefore, the total factored shear stress is

vu(AB) = 47,000
631.9

+ 0.38 × 89.5 × 12,000
5,949

= 74.4 + 68.6 = 143.0 psi < 189.7 psi

Therefore, shear strength requirements are satisfied at the edge column.
Step 5: Detail the reinforcement. The flexural reinforcement must be developed at the critical

sections in the column strip and middle strip. Because the slab is subjected to the effects from wind,
the minimum bar extensions given in Fig. 7.37 may not be adequate.

Conservatively provide 25% of the top bars in the column strip continuous over the span. This
eliminates the need to locate inflection points for the various load combinations. The remaining
bars in the column strip and the bars in the middle can be cut off at the locations indicated in
Fig. 7.37.
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Problems
7.1. Determine the slab thickness to satisfy the deflection criteria of ACI 9.5.3 for a flat-plate floor
system with six bays in the north-south direction and five in the east-west direction. The center-to-
center span lengths are 21 ft 9 in in the north-south direction and 18 ft 2 in in the east-west direction.
All interior columns are 26 × 26 in, and all perimeter columns are 24 × 18 in where the 24-in dimension
is parallel to the east-west direction. Assume Grade 60 reinforcement.
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7.2. Determine the slab thickness to satisfy the deflection criteria of ACI 9.5.3 for a two-way concrete
floor system with eight bays in the north-south direction and six in the east-west direction. The center-
to-center span lengths are 22 ft 2 in in the north-south direction and 19 ft 8 in in the east-west direction.
All interior columns are 22 × 22 in, and all perimeter columns are 18 × 18 in. Perimeter beams are 18 in
wide and 24 in deep, and interior beams are 22 in wide and 24 in deep. Beams are centered on all of the
column lines. Preliminary calculations indicate that a 6-in-thick slab can be utilized. Assume Grade 60
reinforcement.

7.3. Given the two-way slab system in Problem 7.2, determine bending moments at the critical sections
in an interior design strip in the north-south direction. Assume a 6-in-thick slab, a superimposed service
dead load of 10 psf, and a service live load of 80 psf. Also assume that the Direct Design Method can be
used to determine bending moments.

7.4. Given the two-way slab system in Problem 7.3, determine bending moments at the critical sections
in an edge design strip in the east-west direction.

7.5. Determine the maximum factored one-way shear force at the critical section of an interior column
for the interior panel of a flat-plate floor system that has center-to-center span lengths of 21 and 19 ft.
Columns are 22 × 18 in with the 22-in side parallel to the 21-ft span. Assume a slab thickness of 8 in,
a superimposed service dead load of 15 psf, and a live load of 100 psf. Also assume normal-weight
concrete with a compressive strength of 4,000 psi and Grade 60 reinforcement.

7.6. Given the two-way system in Problem 7.5, determine the factored two-way shear force at the
critical section of an interior column.

7.7. Given the two-way slab system in Problem 7.5, determine the allowable one- and two-way shear
strength at an interior column.

7.8. Determine the required flexural reinforcement at the critical sections in the end bay of a flat-plate
floor system. The end bay is square with center-to-center span lengths of 22 ft. The edge column is 16 ×
16 in, and the interior column is 20 × 20 in. Assume an 8-in-thick slab (lightweight with a compressive
strength of 4,000 psi) and Grade 60 reinforcement. Also assume a superimposed service dead load of
20 psf and a service live load of 50 psf. The Direct Design method can be used to determine bending
moments.

7.9. Given the flat-plate system in Example 7.8, design and detail an edge design strip in the east-west
direction.

7.10. Given the flat-slab system in Example 7.9, design and detail an edge design strip in the east-west
direction.

7.11. Given the flat-plate system in Example 7.15, determine the following at the edge column: (a)
drop panel dimensions, (b) shear cap dimensions, (c) size and spacing of closed stirrups, and (d) size
and spacing of headed stud shear reinforcement. Assume a service live load of 125 psf.
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Columns

8.1 Introduction
Columns are structural elements that support axial loads from the roof and floors. They
are usually oriented vertically in a building, and a typical cross-section is rectangular
or circular. However, virtually any orientation and shape can be provided as needed.

ACI 2.2 provides the following definition of a column:

Member with a ratio of height-to-least lateral dimension exceeding 3 used primarily to sup-
port axial compressive load. For a tapered member, the least lateral dimension is the average
of the top and bottom dimensions of the smaller side.

In a typical column stack, the loads are collected at each floor level and are trans-
mitted to the column below; the columns in the lowest level of the building transfer
the loads from above to the foundations. Columns may also be supported by beams or
walls at any level above ground. Transfer beams are members that support one or more
columns from above, and are generally used at locations where open, column-free space
(like a lobby) is needed below. These beams are supported by one or more columns or
walls.

In addition to axial loads, columns may be subjected to bending moments. Gravity
loads can cause unbalanced moments at column–beam or column–slab joints, especially
at the perimeter of a structure. These unbalanced moments are transmitted from the roof
or floor system to the columns. Columns that are in a frame that is part of the lateral
force–resisting system of a structure must be designed to resist axial loads, bending
moments, and shear forces due to the combined effects of gravity and lateral forces
caused by wind or earthquakes.

The axial loads on a column are usually compressive. As such, columns are often
referred to as compression members. However, if the effects from lateral loads are large
enough, it is possible for a column to be subjected to a net tensile axial load under one
or more load combinations. Columns are also described as members subjected to combined
axial load and bending, as are similar members such as walls.

Pedestals are also members that support primarily axial compressive loads. A
pedestal is defined as a member having a ratio of height to least horizontal lateral
dimension equal to or less than 3.

In addition to sectional and material properties, the design strength of a column
depends on the type of lateral reinforcement in the member. The primary types are
ties and spirals. Tied columns have rectangular or circular ties that enclose the lon-
gitudinal reinforcement in the column. Spiral reinforcement consists of an essentially

407
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continuously wound reinforcing bar that is in the form of a cylindrical helix that en-
closes the longitudinal reinforcement at a specified pitch. It is usually used in circular
columns and provides a higher degree of lateral confinement than that provided by
ties.

Design strength also depends on the slenderness of a column. Use of high-strength
concrete has resulted in smaller column cross-sectional dimensions, which increases
the likelihood of slenderness (secondary) effects being included in the design of the
column.

Design requirements are presented in this chapter for columns subjected to ax-
ial loads, combined flexure and axial loads, and shear. Methods are presented on the
following:

1. Sizing the cross-section

2. Determining the required amount of reinforcement

3. Detailing the reinforcement

The effects of slenderness, which depend on the geometric properties (cross-
sectional dimensions and length) and end-support conditions, are also covered.

8.2 Preliminary Column Sizing
Preliminary sizes of typical columns in a structure are needed for a variety of reasons,
including frame analysis and initial cost estimation.

In the early stages of design, it is common practice to obtain preliminary column
sizes, utilizing axial gravity loads only. The axial load in a column at a particular floor
level is obtained by multiplying the dead and live loads at that level by the area that is
tributary to the column. The tributary area depends on the sizes of the bay, which are fre-
quently dictated by architectural and functional requirements. The type of floor system
also influences column spacing. For example, a flat-plate floor system usually requires
columns to be spaced closer than those supporting a beam-supported floor system (see
Section 7.2). Live loads at the roof and at the floor levels can be reduced in accordance
with the applicable provisions of the governing building code (see Section 3.2). In gen-
eral, larger tributary areas translate into greater permitted reductions in live load.

The total axial gravity loads in the first-story columns are calculated by summing
the loads at each floor level over the height of the building.

Factored axial loads Pu are determined by the load combinations given in ACI 9.2.
The load factors can be applied at each floor level, and the summation can be performed
using factored loads. Equivalently, the service loads can be summed over the column
stack, and the load factors can be applied later.

A preliminary column size is obtained by setting the total factored axial load Pu

equal to the design axial load strength φPn,max given by ACI Eq. (10-1) or (10-2). These
equations are applicable to members with spiral reinforcement and tie reinforcement,
respectively (see Section 5.5). The appropriate equation is subsequently solved for the
gross area of the column Ag , assuming practical values for the total area of longitudinal
reinforcement Ast, the compressive strength of the concrete f ′

c , and the yield strength
of the reinforcement fy.

It is evident from the preceding discussion that a preliminary column size is often
obtained by assuming that the effects from bending moments are relatively small and
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that the column section is nonslender; that is, secondary effects are negligible. The first
of these assumptions is usually valid for columns that are not part of the lateral force–
resisting system. However, unbalanced gravity load moments due to unequal spans are
just one example where gravity loads cause bending moments on a column. Methods
to determine when slenderness effects need to be considered are given in Section 8.5.
For many columns, slenderness effects are not an issue.

A preliminary column size should be determined using a low percentage of lon-
gitudinal reinforcement. This allows reinforcement to be added in the final design
stage without having to change the column dimensions. Additional longitudinal rein-
forcement may also be required to account for the effects of axial load in combination
with bending moments and/or slenderness effects. Columns that have longitudinal
reinforcement ratios Ast/Ag in the range of 1% to 2% are usually the most economical
because concrete carries axial compressive loads more cost-effectively than reinforc-
ing steel. Generally, it is usually more economical to use larger column sizes with less
longitudinal reinforcement.

The design chart shown in Fig. 8.1 can be used to obtain a preliminary size of a
nonslender, tied column with Grade 60 longitudinal reinforcement that is loaded at an

Ast/Ag

P u
/A

g (
ks

i)

FIGURE 8.1 Design chart for nonslender column with tie reinforcement.
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eccentricity of no more than 10% of the column dimension (i.e., the bending moments
are zero or relatively small). The information provided in the chart was derived for
various concrete compressive strengths f ′

c and longitudinal reinforcement ratios Ast/Ag

by setting the factored axial load Pu equal to the design axial load strength φPn,max given
in ACI Eq. (10-2). Similar design charts can be generated for other column sizes and
shapes and other material strengths.

The dimensions of a column can be influenced by architectural and functional re-
quirements. One or both dimensions of a rectangular column may be limited, which
could result in a column that is slender.

Columns must be sized not only for strength but also for constructability. To ensure
proper concrete placement and consolidation, column dimensions and bar sizes must
be selected to minimize reinforcement congestion, especially at beam–column or slab–
column joints. A smaller number of larger bars usually improve constructability. Section
8.7 contains information and design aids that facilitate the selection of longitudinal bars
that adequately fit within a column section.

Significant cost savings are often realized where column forms can be reused from
story to story. In low-rise buildings, it is generally more economical to use the same
column size over the full height of the building and to vary the amount of longitudinal
reinforcement as required. In taller buildings, the size of the column should change
over the height, but the number of changes should be kept to a minimum. The same
column size can be used over a number of stories by judiciously varying the amount
of longitudinal reinforcement and the strength of the concrete. In any building, it is
economically unsound to vary column size to suit the load at each story level.

Example 8.1 Determine a preliminary column size for a tied reinforced concrete column that is
subjected to a factored axial load of 1,200 kips. Assume f ′

c = 7,000 psi and Grade 60 reinforcement.

Solution Because no additional information is provided, initially assume that bending moments
and second-order effects are negligible. As such, ACI Eq. (10-2) can be used to determine a pre-
liminary column size by setting the factored axial load Pu equal to the design axial load strength
φPn,max:

Pu = φPn,max = φ0.80[0.85 f ′
c (Ag − Ast) + fy Ast)]

This equation can be rewritten in the following form:

Pu

Ag
= φ0.80

[
0.85 f ′

c

(
1 − Ast

Ag

)
+ fy

(
Ast
Ag

)]

Substituting the known quantities into this equation and rearranging terms results in

1,200
Ag

= (0.65 × 0.80)
[

(0.85 × 7)
(

1 − Ast
Ag

)
+ 60

(
Ast
Ag

)]

Ag = 1,200
3.09[1 − (Ast/Ag)] + 31.2(Ast/Ag)

Columns with a longitudinal reinforcement ratio Ast/Ag between 1% and 2% are usually the
most economical. Table 8.1 provides a summary of required column areas Ag for 1%, 1.5%, and 2%
reinforcement ratios.
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Ast/Ag Ag (in.2)

0.010 356.0

0.015 341.7

0.020 328.6

TABLE 8.1 Preliminary Size of the Column Given in Example 8.1

The required column area can also be determined from Fig. 8.1. For a longitudinal reinforcement
ratio of 1% and f ′

c = 7 ksi, obtain from the figure a value of Pu/Ag equal to approximately 3.375.
Thus, Ag = 1,200/3.375 = 355.6 in2, which essentially matches the value given in Table 8.1.

A 20 × 20 in cross-section with a gross area of 400 in2 is satisfactory for all three reinforcement
ratios. Column dimensions may be dictated by architectural or other requirements.

Once a preliminary column section has been established, it can be used in a structural model,
and the analysis will yield refined values of axial loads, bending moments, and shear forces on
the member. Prior to final design, it must be determined if the effects of slenderness need to be
considered in the design of the column.

8.3 Analysis and Design Methods

8.3.1 Analysis Methods
Methods of analysis for reinforced concrete structures are presented in ACI 8.3 and
are summarized in Section 3.3 of this book. A discussion of the provisions relevant to
columns follows.

Frames are permitted to be analyzed by a number of different methods. A first-
order frame analysis is an elastic analysis that does not include the internal force effects
resulting from the overall lateral deflection of the frame (i.e., it is assumed that secondary
effects are negligible). In such cases, it is permitted to fix the far ends of the column when
computing gravity load moments. Bending moments at a beam–column or slab–column
joint are distributed to the columns above and below the joint in accordance with the
relative column stiffnesses and the restraint conditions at the ends of the column. The
stiffness of a column is proportional to the modulus of elasticity of the concrete and the
moment of inertia of the cross-section and is inversely proportional to the length of the
column.

A second-order analysis considers the effects of deflections on geometry and axial
flexibility. Second-order effects need to be considered in the design of certain columns
in order to obtain the correct amplified moments for design. Column slenderness and
its effects on design moments are covered in Section 8.5.

8.3.2 Design Methods
Regardless of the method of analysis, columns must be designed for the most critical
combinations of factored axial loads and bending moments due to the applied loads.
The effects of unbalanced floor or roof loads as well as any eccentric loading must be
considered in the design of all columns.

Derivation of the nominal axial strength and the flexural strength of compression
members is given in Section 5.7 and is based on the general principles of the strength
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design method. Nominal strengths are determined by a strain compatibility analysis
for given strain distribution. Design strengths are obtained by multiplying the nom-
inal strengths by the strength reduction factor defined in ACI 9.3, which depends on
the magnitude of the strain in the reinforcing bars that are farthest from the extreme
compression face of the section.

The following equations must be satisfied in the design of any column:

φPn ≥ Pu (8.1)

φMn ≥ Mu (8.2)

The factored axial load and bending moment acting on a reinforced concrete section
must be equal to or less than the corresponding design value in order for the section to
satisfy strength requirements.

Interaction diagrams are usually used to determine the adequacy of a reinforced
concrete column subjected to axial loads and bending moments. As noted in Section
5.7, these diagrams are a collection of design strength values that are determined using
strain compatibility analyses. The cross-sectional dimensions of the column, the amount
and distribution of longitudinal reinforcement in the section, the compression strength
of the concrete, and the yield strength of the longitudinal reinforcement are all used in
the construction of interaction diagrams.

Section 8.4 contains methods to construct interaction diagrams for rectangular and
circular reinforced concrete sections. Slenderness effects and their impact on the design
of columns are covered in Section 8.5.

8.4 Interaction Diagrams

8.4.1 Overview
For concrete members subjected to combined flexure and axial load, it is convenient
to construct interaction diagrams. In general terms, an interaction diagram shows the
relationship between axial load and bending moment at failure. The results from strain
compatibility analyses for a number of strain distributions are summarized in an inter-
action diagram.

An interaction diagram is commonly used in establishing the adequacy of a section
that is subjected to a combination of factored axial loads and bending moments, which
are determined by the load combinations in ACI 9.2. Methods to construct interactions
diagrams for rectangular and circular sections are presented next.

8.4.2 Rectangular Sections

Nominal Strength
The general principles and assumptions of the strength design method can be applied
to reinforced concrete sections subjected to axial compressive load and bending (see
Section 5.7). Figure 5.39 contains a step-by-step procedure that can be used to determine
the nominal axial strength Pn and the nominal flexural strength Mn for a particular strain
distribution in a rectangular section. Failure of the section is assumed to occur when
the applied axial load and bending moment attain these values.
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FIGURE 8.2 Strain distributions related to key points on an interaction diagram.

A number of different strain distributions that correspond to key points on an
interaction diagram are illustrated in Fig. 8.2.

Point 1 corresponds to the case of pure compression. The strain over the entire depth
of the section in this case is equal to the ultimate strain in the concrete (εc = 0.0030). The
strength of the column under pure axial load is equal to Po [see Eq. (5.35) in Section 5.5]:

Po = 0.85 f ′
c (Ag − Ast) + fy Ast (8.3)

Recall that the Code reduces this axial load to account for minimum eccentricities,
based on the type of lateral reinforcement in the section [see Eqs. (5.36) and (5.37) in
Section 5.5 for members with spiral reinforcement and tie reinforcement, respectively].

Point 2 corresponds to crushing of the concrete at the compression face of the section
and zero stress at the other face. Because the tensile strength of the concrete is taken as
zero, which is the fourth design assumption of the strength design method (see Section
5.2), this point represents the onset of cracking at the face of the section farthest from
the compression face. All points on the interaction diagram that fall below this point
represent cases in which the section is partially cracked. At this point, and at other points
similar to this one, the column fails as soon as the maximum compressive strain reaches
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The maximum allowable axial load Pn,max for a tied column is shown in the figure
and is equal to 80% of the strength of the column under pure axial load Po where Po is
determined by Eq. (8.3).

Also identified in Fig. 8.3 are the portions of the diagrams that correspond to
compression-controlled sections, tension-controlled sections, and sections in the tran-
sition region.

Compression-controlled sections are those with axial load–bending moment combi-
nations above and to the left of the balanced failure point. The strength reduction factor
φ for compression-controlled sections with other than spiral reinforcement is 0.65 (ACI
9.3.2.2). Thus, the design strength interaction diagram in this region has values that are
65% of the values on the nominal diagram. For axial loads at or near the nominal axial
compressive strength, it is possible for the depth to the neutral axis and the depth of the
stress block to be greater than the depth of the section. In such cases, the depth of the
stress block a should be taken as the depth of the section, and the strain compatibility
analysis should be performed using that value.

Tensioned-controlled sections are those with axial load–bending moment combi-
nations in the lower portion of the interaction diagram indicated in Fig. 8.3. In ac-
cordance with ACI 9.3.2.1, the strength reduction factor for these sections is equal
to 0.9.

Between the compression- and tension-controlled sections are sections in the transi-
tion region. As indicated previously, the φ-factor varies linearly in this region (see ACI
9.3.2.2 and Fig. 4.2 of this book).

For purposes of design, factored axial load–bending moment combinations that fall
on or within the boundaries of the design strength interaction diagram can be safely
carried by the column section For example, the column section is adequate for the
factored axial load–bending moment combination denoted by Point 1 in Fig. 8.3. No
modifications need to be made to the concrete column in such cases.

In contrast, the column dimensions, amount of longitudinal steel, and/or com-
pressive strength of the concrete must be increased when factored axial load–bending
moment combinations fall outside the boundaries of the design strength interaction
diagram (see Point 2 in Fig. 8.3).

Example 5.10 illustrates the determination of the nominal strengths Pn and Mn

corresponding to balanced failure for a rectangular reinforced concrete column. Other
key points on the interaction diagram for that column are determined in the following
example.

Example 8.2 Determine the following points on the design strength interaction diagram for the
rectangular column shown in Fig. 8.4:

1. Maximum axial load capacity

2. Crushing of the concrete at the compression face and zero stress at the other face

3. Strain in the reinforcing bars farthest from the compression face εt equal to zero

4. Balanced failure

5. Strain in the reinforcing bars farthest from the compression face εt equal to 2εy

6. Pure bending

Assume that the extreme compression fiber occurs at the top of the section and that ties are
utilized as the lateral reinforcement. Also assume normal-weight concrete with f ′

c = 7,000 psi and
Grade 60 reinforcement ( fy = 60,000 psi).
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FIGURE 8.4 The
rectangular column
given in Example
8.2.

Solution
Point 1—Maximum Axial Load Capacity
The design maximum axial load capacity φPn,max is determined by ACI Eq. (10-2) for a tied column
[see Eq. (5.39)]:

φPn,max = 0.80φ[0.85 f ′
c (Ag − Ast) + fy Ast]

= 0.80 × 0.65[0.85 × 7 × (432 − 12.7) + (60 × 12.7)] = 1,694 kips

Point 2—Crushing of the Concrete at the Compression Face and Zero Stress at the Other Face
The strain in the reinforcing steel farthest from the compression face can be determined from similar
triangles (see Figs. 8.2 and 8.4):

0.003
24

= εt

24 − 21.4

εt = 0.0030 × 2.6
24

= 0.00033

The flowchart shown in Fig. 5.39 is utilized to determine Pn and Mn for this strain distribution.

Step 1: Check the minimum and maximum longitudinal reinforcement limits. The minimum
and maximum amounts of longitudinal reinforcement permitted in a compression member are
specified in ACI 10.9.1:

Minimum Ast = 0.01Ag = 0.01 × 18 × 24 = 4.32 in2

Maximum Ast = 0.08Ag = 0.08 × 18 × 24 = 34.6 in2

The provided area of longitudinal reinforcement Ast = 10 × 1.27 = 12.7 in2 falls between the
minimum and maximum limits.

Step 2: Determine the neutral axis depth c. In this case, the neutral axis depth is equal to the
depth of the section, which is 24 in.

Step 3: Determine β1.

β1 = 1.05 − 0.00005 f ′
c = 1.05 − (0.00005 × 7,000) = 0.70 for f ′

c = 7,000 psi

(see ACI 10.2.7.3 and Section 5.2 of this book)
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Step 4: Determine the depth of the equivalent stress block a.

a = β1c = 0.70 × 24.0 = 16.8 in

Step 5: Determine C. The concrete compression resultant force C is determined by Eq. (5.42):

C = 0.85 f ′
c ab = 0.85 × 7 × 16.8 × 18 = 1,799.3 kips

Step 6: Determine εsi. The strain in the reinforcement εsi at the various layers is determined
by similar triangles where compression strains are positive (see Fig. 8.2):

� Layer 1 (d1 = 2.6 in):

εs1 = 0.0030(24 − 2.6)
24

= 0.0027

� Layer 2 (d2 = 8.9 in):

εs2 = 0.0030(24 − 8.9)
24

= 0.0019

� Layer 3 (d3 = 15.1 in):

εs3 = 0.0030(24 − 15.1)
24

= 0.0011

� Layer 4 (d4 = 21.4 in):

εs4 = 0.0030(24 − 21.4)
24

= 0.00033 (checks)

It is evident that all of the layers of reinforcement are in compression. Also, the layer of rein-
forcement closest to the extreme compression fiber yields (i.e., εs1 > εy = 0.0020).

Step 7: Determine fsi. The stress in the reinforcement fsi at the various layers is determined
by multiplying εsi by the modulus of elasticity of the steel Es :

� Layer 1: fs1 = 0.0027 × 29,000 = 78.3 ksi > 60 ksi; use fs1 = 60 ksi
� Layer 2: fs2 = 0.0019 × 29,000 = 55.1 ksi
� Layer 3: fs3 = 0.0011 × 29,000 = 31.9 ksi
� Layer 4: fs4 = 0.00033 × 29,000 = 9.6 ksi

Step 8: Determine Fsi. The force in the reinforcement Fsi at the various layers is determined
by Eq. (5.44) or (5.45), which depends on the location of the steel layer:

� Layer 1 (d1 = 2.6 in < a = 16.8 in): Fs1 = [60 − (0.85 × 7)] × 3 × 1.27 = 205.9 kips
� Layer 2 (d2 = 8.9 in < a = 16.8 in): Fs2 = [55.1 − (0.85 × 7)] × 2 × 1.27 = 124.8 kips
� Layer 3 (d3 = 15.1 in < a = 16.8 in): Fs3 = [31.9 − (0.85 × 7)] × 2 × 1.27 = 65.9 kips
� Layer 4: Fs4 = 9.6 × 3 × 1.27 = 36.6 kips

Note that the compression steel in the top three layers fall within the depth of the equivalent
stress block; thus, Eq. (5.45) is used to determine the forces in the reinforcement in those layers.
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Step 9: Determine Pn and Mn. The nominal axial strength Pn and nominal flexural strength
Mn of the section are determined by Eqs. (5.46) and (5.47), respectively:

Pn = C +
∑

Fsi = 1,799.3 + (205.9 + 124.8 + 65.9 + 36.6) = 2,232.5 kips

Mn = 0.5C(h − a ) +
∑

Fsi (0.5h − di )

= [0.5 × 1,799.3 × (24 − 16.8)] + [205.9(12 − 2.6) + 124.8(12 − 8.9)

+ 65.9(12 − 15.1) + 36.6(12 − 21.4)]

= 6,477.5 + 1,774.0 = 8,251.5 in kips = 687.6 ft kips

The design axial load and bending moment are obtained by multiplying Pn and Mn by
the strength reduction factor φ. Because εt = εs4 = 0.00033, which is less than the compression-
controlled strain limit of 0.0020 for sections with Grade 60 reinforcement (ACI 10.3.3), the section
is compression-controlled and φ = 0.65 (see ACI 9.3.2.2 and Fig. 4.2 of this book).

Therefore,

φPn = 0.65 × 2,232.5 = 1,451.1 kips

φMn = 0.65 × 687.6 = 446.9 ft kips

Point 3—Strain in the Reinforcing Bars Farthest from the Compression Face Is Equal to Zero
Step 1: Check the minimum and maximum longitudinal reinforcement limits. The provided

area of longitudinal reinforcement falls between the minimum and maximum limits (see the cal-
culations under Point 2).

Step 2: Determine the neutral axis depth c. In this case, the neutral axis depth is equal to the
depth from the compression face to the reinforcing bars farthest from the compression face, which
is 21.4 in.

Step 3: Determine β1.

β1 = 1.05 − 0.00005 f ′
c = 1.05 − (0.00005 × 7,000) = 0.70 for f ′

c = 7,000 psi

(see ACI 10.2.7.3 and Section 5.2 of this book)

Step 4: Determine the depth of the equivalent stress block a.

a = β1c = 0.70 × 21.4 = 15.0 in

Step 5: Determine C. The concrete compression resultant force C is determined by Eq. (5.42):

C = 0.85 f ′
c ab = 0.85 × 7 × 15.0 × 18 = 1,606.5 kips

Step 6: Determine εsi. The strain in the reinforcement εsi at the various layers is determined
by similar triangles where compression strains are positive (see Fig. 8.2):

� Layer 1 (d1 = 2.6 in):

εs1 = 0.0030(21.4 − 2.6)
21.4

= 0.0026

� Layer 2 (d2 = 8.9 in):

εs2 = 0.0030(21.4 − 8.9)
21.4

= 0.0018
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� Layer 3 (d3 = 15.1 in):

εs3 = 0.0030(21.4 − 15.1)
21.4

= 0.0009

� Layer 4 (d4 = 21.4 in):

εs4 = 0.0030(21.4 − 21.4)
21.4

= 0 (checks)

It is evident that all of the layers of reinforcement are in compression, except for layer 4 where it
was given that the strain is zero. Also, the layer of reinforcement closest to the extreme compression
fiber yields (i.e., εs1 > εy = 0.0020).

Step 7: Determine fsi. The stress in the reinforcement fsi at the various layers is determined
by multiplying εsi by the modulus of elasticity of the steel Es :

� Layer 1: fs1 = 0.0026 × 29,000 = 75.4 ksi > 60 ksi; use fs1 = 60 ksi
� Layer 2: fs2 = 0.0018 × 29,000 = 52.2 ksi
� Layer 3: fs3 = 0.0009 × 29,000 = 26.1 ksi
� Layer 4: fs4 = 0 ksi

Step 8: Determine Fsi. The force in the reinforcement Fsi at the various layers is determined
by Eq. (5.44) or (5.45), which depends on the location of the steel layer:

� Layer 1 (d1 = 2.6 in < a = 15.0 in): Fs1 = [60 − (0.85 × 7)] × 3 × 1.27 = 205.9 kips
� Layer 2 (d2 = 8.9 in < a = 15.0 in): Fs2 = [52.2 − (0.85 × 7)] × 2 × 1.27 = 117.5 kips
� Layer 3: Fs3 = 26.1 × 2 × 1.27 = 66.3 kips
� Layer 4: Fs4 = 0 kips

Note that the compression steel in the top two layers fall within the depth of the equiva-
lent stress block; thus, Eq. (5.45) is used to determine the forces in the reinforcement in those
layers.

Step 9: Determine Pn and Mn. The nominal axial strength Pn and nominal flexural strength
Mn of the section are determined by Eqs. (5.46) and (5.47), respectively:

Pn = C +
∑

Fsi = 1,606.5 + (205.9 + 1,17.5 + 66.3 + 0) = 1,996.2 kips

Mn = 0.5C(h − a ) +
∑

Fsi (0.5h − di )

= [0.5 × 1,606.5 × (24 − 15.0)] + [205.9(12 − 2.6) + 117.5(12 − 8.9)

+ 66.3(12 − 15.1) + 0]

= 7,229.3 + 2,094.2 = 9,323.5 in kips = 777.0 ft kips

The design axial load and bending moment are obtained by multiplying Pn and Mn by the
strength reduction factor φ. Because εt = εs4 = 0, which is less than the compression-controlled
strain limit of 0.0020 for sections with Grade 60 reinforcement (ACI 10.3.3), the section is
compression-controlled and φ = 0.65 (see ACI 9.3.2.2 and Fig. 4.2 of this book).

Therefore,

φPn = 0.65 × 1,996.2 = 1,297.5 kips

φMn = 0.65 × 777.0 = 505.1 ft kips
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Point 4—Balanced Failure
The design strength values for this strain distribution are determined in Example 5.10:

φPn = 0.65 × 955.6 = 621.1 kips

φMn = 0.65 × 965.5 = 627.6 ft kips

At balanced failure, εt = εs4 = 0.0020, which is the limit for compression-controlled sections.

Point 5—Strain in the Reinforcing Bars Farthest from the Compression Face Is Equal to Two Times the Yield Strength
Step 1: Check the minimum and maximum longitudinal reinforcement limits. The provided

area of longitudinal reinforcement falls between the minimum and maximum limits (see the cal-
culations under Point 2).

Step 2: Determine the neutral axis depth c. The strain in reinforcing bars farthest from the
compression face is given as two times the yield strain: εs4 = 2εy = 2 × 0.0020 = 0.0040.

The neutral axis depth is determined by Eq. (5.41):

c = 0.0030dt

εt + 0.0030
= 0.0030 × 21.4

0.0040 + 0.0030
= 9.2 in

Step 3: Determine β1.

β1 = 1.05 − 0.00005 f ′
c = 1.05 − (0.00005 × 7,000) = 0.70 for f ′

c = 7,000 psi

(see ACI 10.2.7.3 and Section 5.2 of this book)

Step 4: Determine the depth of the equivalent stress block a.

a = β1c = 0.70 × 9.2 = 6.4 in

Step 5: Determine C. The concrete compression resultant force C is determined by Eq. (5.42):

C = 0.85 f ′
c ab = 0.85 × 7 × 6.4 × 18 = 685.4 kips

Step 6: Determine εsi. The strain in the reinforcement εsi at the various layers is determined
by Eq. (5.43) where compression strains are positive:

� Layer 1 (d1 = 2.6 in):

εs1 = 0.0030(9.2 − 2.6)
9.2

= 0.0022

� Layer 2 (d2 = 8.9 in):

εs2 = 0.0030(9.2 − 8.9)
9.2

= 0.0001

� Layer 3 (d3 = 15.1 in):

εs3 = 0.0030(9.2 − 15.1)
9.2

= −0.0019

� Layer 4 (d4 = 21.4 in):

εs4 = 0.0030(9.2 − 21.4)
9.2

= −0.0040 (checks)
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It is evident that the top two layers of reinforcement are in compression and that the bottom
two layers are in tension. Also, the layer of reinforcement closest to the extreme compression fiber
and the layer farthest from the extreme compression fiber yield (i.e., εs1 and εs4 > εy = 0.0020).

Step 7: Determine fsi. The stress in the reinforcement fsi at the various layers is determined
by multiplying εsi by the modulus of elasticity of the steel Es :

� Layer 1: fs1 = 0.0022 × 29,000 = 63.8 ksi > 60 ksi; use fs1 = 60 ksi
� Layer 2: fs2 = 0.0001 × 29,000 = 2.9 ksi
� Layer 3: fs3 = −0.0019 × 29,000 = −55.1 ksi
� Layer 4: fs4 = −0.0040 × 29,000 = −116.0 ksi > −60 ksi; use fs4 = −60 ksi

Step 8: Determine Fsi. The force in the reinforcement Fsi at the various layers is determined
by Eq. (5.44) or (5.45), which depends on the location of the steel layer:

� Layer 1 (d1 = 2.6 in < a = 6.4 in): Fs1 = [60 − (0.85 × 7)] × 3 × 1.27 = 205.9 kips
� Layer 2: Fs2 = 2.9 × 2 × 1.27 = 7.4 kips
� Layer 3: Fs3 = −55.1 × 2 × 1.27 = −140.0 kips
� Layer 4: Fs4 = −60 × 3 × 1.27 = −228.6 kips

Note that the compression steel in the top layer falls within the depth of the equivalent stress
block; thus, Eq. (5.45) is used to determine the forces in the reinforcement in that layer.

Step 9: Determine Pn and Mn. The nominal axial strength Pn and nominal flexural strength
Mn of the section are determined by Eqs. (5.46) and (5.47), respectively:

Pn = C +
∑

Fsi = 685.4 + (205.9 + 7.4 − 140.0 − 228.6) = 530.1 kips

Mn = 0.5C(h − a ) +
∑

Fsi (0.5h − di )

= [0.5 × 685.4 × (24 − 6.4)] + [205.9(12 − 2.6) + 7.4(12 − 8.9)

+ (−140.0)(12 − 15.1) + (−228.6)(12 − 21.4)]

= 6,031.5 + 4,541.2 = 10,572.7 in kips = 881.1 ft kips

The design axial load and bending moment are obtained by multiplying Pn and Mn by the
strength reduction factor φ. Because εt = εs4 = 0.0040 falls between the limits of compression- and
tension-controlled sections (0.0020 and 0.0050, respectively), the section is in the transition region,
and φ can be calculated by the following equation (see ACI 9.3.2.2 and Fig. 4.2 of this book):

φ = 0.65 + (εt − 0.0020)
(

250
3

)
= 0.65 + (0.0040 − 0.0020)

(
250
3

)
= 0.82

Therefore,

φPn = 0.82 × 530.1 = 434.7 kips

φMn = 0.82 × 881.1 = 722.5 ft kips

Point 6—Pure Bending
For sections with multiple layers of reinforcement, there is no easy way of determining Mn for
the case of pure bending. A trial-and-error procedure is usually utilized using various neutral
axis depths c. A strain compatibility analysis is performed using the assumed value of c, and the
nominal axial strength Pn is calculated using Eq. (5.46). The iterations can end after a value of zero
(or a value close to zero) is found for Pn.

For the case of pure bending, the neutral axis should be located within the upper half of the
section. After several iterations, determine Pn, assuming c = 5.225 in. Also, a = β1c = 3.658 in.
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The concrete compression resultant force C is determined by Eq. (5.42):

C = 0.85 f ′
c ab = 0.85 × 7 × 3.658 × 18 = 391.8 kips

The strain in the reinforcement εsi at the various layers is determined by Eq. (5.43) where
compression strains are positive:

� Layer 1 (d1 = 2.6 in):

εs1 = 0.0030(5.225 − 2.6)
5.225

= 0.0015

� Layer 2 (d2 = 8.9 in):

εs2 = 0.0030(5.225 − 8.9)
5.225

= −0.0021

� Layer 3 (d3 = 15.1 in):

εs3 = 0.0030(5.225 − 15.1)
5.225

= −0.0057

� Layer 4 (d4 = 21.4 in):

εs4 = 0.0030(5.225 − 21.4)
5.225

= −0.009

It is evident that the top layer of reinforcement is in compression and that the bottom three
layers are in tension. Also, the reinforcement in all three of the layers that are in tension yield (i.e.,
εs2, εs3, and εs4 > εy = 0.0020).

The stress in the reinforcement fsi at the various layers is determined by multiplying εsi by the
modulus of elasticity of the steel Es :

� Layer 1: fs1 = 0.0015 × 29,000 = 43.5 ksi
� Layer 2: fs2 = −60 ksi
� Layer 3: fs3 = −60 ksi
� Layer 4: fs4 = −60 ksi

The force in the reinforcement Fsi at the various layers is determined by Eq. (5.44) or (5.45),
which depends on the location of the steel layer:

� Layer 1 (d1 = 2.6 in < a = 3.658 in): Fs1 = [43.5 − (0.85 × 7)] × 3 × 1.27 = 143.1 kips
� Layer 2: Fs2 = −60 × 2 × 1.27 = −152.4 kips
� Layer 3: Fs3 = −60 × 2 × 1.27 = −152.4 kips
� Layer 4: Fs4 = −60 × 3 × 1.27 = −228.6 kips

Note that the compression steel in the top layer falls within the depth of the equivalent stress
block; thus, Eq. (5.45) is used to determine the forces in the reinforcement in that layer.

The nominal axial strength Pn is determined by Eq. (5.46):

Pn = C +
∑

Fsi = 391.8 + (143.1 − 152.4 − 152.4 − 228.6) = 1.5 kips ∼= 0
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FIGURE 8.6 Nominal and design strength interaction diagrams about the minor axis of the
column given in Example 8.2.

The factored load effects are added together in all of the load combinations except in load com-
bination 6, which corresponds to ACI Eq. (9-6). The factored wind load effects are subtracted from
the factored dead load effects in load combination 6 because the dead load counteracts the effects
from wind; this produces a more critical effect on the column (see the discussion in Section 4.2).

The six load combinations in Table 8.2 are plotted in Fig. 8.7, which contains the design strength
interaction diagram that was constructed for this column in Example 8.2.

Axial Loads Bending Moment
Load Case (kips) (ft kips)

Dead (D ) 675 15

Roof live (L r ) 18 —

Live (L ) 270 10

Wind (W ) ±40 ±150

Load Combination

1 1.4D 945 21

2 1.2D + 1.6L + 0.5Lr 1,251 34

3 1.2D + 1.6Lr + 0.5L 974 23

4 1.2D + 1.6Lr + 0.8W 871 138

5 1.2D + 1.6W + 0.5L + 0.5Lr 1,018 263

6 0.9D − 1.6W 544 227

TABLE 8.2 Summary of Axial Loads and Bending Moments for the Column Given in Example 8.3
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FIGURE 8.7 Design strength interaction diagram about the major axis of the column given in
Example 8.3.

It is clear from Fig. 8.7 that all of the load combination points fall within the interaction diagram;
therefore, the 18 × 24 in column reinforced with 10 No. 10 bars is adequate.

Example 8.4 Check the adequacy of the column given in Example 8.2, using the axial loads and
bending moments in Example 8.3, assuming that the column resists the bending moments about
its minor axis.

Solution The six load combinations given in Table 8.2 are plotted in Fig. 8.8, which contains the
design strength interaction diagram that was constructed for this column in Example 8.2.

It is clear from Fig. 8.8 that all of the load combination points fall within the interaction diagram;
therefore, the 18 × 24 in column reinforced with 10 No. 10 bars is adequate for bending about the
minor axis as well.

8.4.4 Circular Sections
The procedure outlined earlier for rectangular sections, which is based on strain compat-
ibility analyses, can also be used to construct interaction diagrams for circular sections.

The main difference between the analyses of a rectangular and a circular section
pertains to the shape of the compression zone: For a rectangular section, the shape of
the compression zone is rectangular, whereas for a circular section, the shape is related
to a segment of a circle.

Two cases are possible for circular sections, which are based on the depth of the
compression area a . Nominal strength equations for axial load and bending moment
are derived for both cases.

� Case 1: a ≤ h/2

In the first case, the depth of the compression zone is equal to or less than
the radius of the circular section h/2 (see Fig. 8.9).
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FIGURE 8.8 Design strength interaction diagram about the minor axis of the column given in
Example 8.4.

The compression zone in this case is a segment of a circle of depth a . Because
the compressive force and its moment about the centroid of the section are
needed to calculate the nominal axial load and bending moment, the area of
the segment and the location of its centroid must be determined. The area A of
the circular segment can be calculated by the following equation:

A = h2

8
(θ − sin θ ) (8.4)

FIGURE 8.9 Circular
column where the
depth of the
compression zone
a is equal to or less
than h/2.
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The angle θ , which is expressed in radians, can be determined from
trigonometry (see Fig. 8.9):

θ = 2 cos−1
(

1 − 2a
h

)
(8.5)

The centroid y of the circular segment is located at the following distance
from the center of the circle:

y = 2h sin3 (θ/2)
3(θ − sin θ )

(8.6)

The resultant compressive force C in the concrete is obtained by multiplying
the stress 0.85 f ′

c by the area A:

C = 0.85 f ′
c h2(θ − sin θ )

8
(8.7)

This compressive force is added to the forces in the reinforcing bars to obtain
the nominal axial strength Pn:

Pn = C +
∑

Fsi (8.8)

Recall that the magnitude of the force Fsi depends on whether the steel is
located in the compression zone or not (see the discussion in Section 5.7).

The nominal flexural strength Mn is determined by summing the moments
about the centroid of the column:

Mn = C y +
∑

Fsi(0.5h − di ) (8.9)

In this equation, y is determined by Eq. (8.6) and di is the distance from
the compression face of the section to the centroid of the reinforcing bar(s) at
level i .

� Case 2: a > h/2

Illustrated in Fig. 8.10 is the case where the depth of the compression zone
a is greater than the radius h/2. Similar to case 1, both the area and the centroid
of the shaded area are needed for nominal strength calculations.

The area of the compression zone A can be determined by subtracting the
area of the segment below a from the area of the circle:

A = π

(
h
2

)2

− h2

8
(θ − sin θ ) (8.10)

The angle θ is determined from trigonometry (see Fig. 8.10):

θ = 2 cos−1
(

2a
h

− 1
)

(8.11)
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FIGURE 8.10 Circular column where the depth of the compression zone a is greater than h/2.

The following equation for A is obtained by first substituting θ = 2(π − θ )
into Eq. (8.11) and solving for θ and then substituting θ into Eq. (8.10):

A = h2

4
(θ − sin θ cos θ ) (8.12)

The distance y from the center of the section to the centroid of the shaded
area is

y = h sin3 θ

3(θ − sin θ cos θ )
(8.13)

Equations (8.8) and (8.9) can be utilized to determine the nominal axial load
and bending moment, using the appropriate quantities derived earlier.

Example 8.5 Determine the design strengths φPn and φMn corresponding to balanced failure for
the tied circular column shown in Fig. 8.11. Assume normal-weight concrete with f ′

c = 5,000 psi
and Grade 60 reinforcement.

Solution The flowchart shown in Fig. 5.39 is utilized to determineφPn andφMn for this compression
member; some of the steps are modified to account for the differences pertaining to the circular
section.

It is important to note in this example that the design axial load strength and bending moment
strength for bending about the x-axis are different from the values for bending about the y-axis
because of the different bar orientations relative to the direction of the neutral axis. Design strengths
are determined in both cases.

Case 1—Bending About the x-axis
Step 1: Check the minimum and maximum longitudinal reinforcement limits. The minimum

and maximum amounts of longitudinal reinforcement permitted in a compression member are
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FIGURE 8.11 The
circular column
given in Example
8.5.

specified in ACI 10.9.1:

Minimum Ast = 0.01Ag = 0.01 × π × (24/2)2 = 4.52 in2

Maximum Ast = 0.08Ag = 0.08 × π × (24/2)2 = 36.2 in2

The provided area of longitudinal reinforcement Ast = 6 × 1.0 = 6.00 in2 falls between the
minimum and maximum limits.

Step 2: Determine the neutral axis depth c. Balanced failure occurs when crushing of the
concrete and yielding of the reinforcing steel occur simultaneously (see Section 5.3). The bal-
anced failure point also represents the change from compression failures for higher axial loads
and tension failures for lower axial loads for a given bending moment. ACI 10.3.3 permits the
yield strain of the reinforcement to be taken as 0.0020 for Grade 60 reinforcement; thus, εs4 = εt =
0.0020.

The neutral axis depth is determined by Eq. (5.41):

c = 0.0030dt

εt + 0.0030
= 0.0030 × 21.56

0.0020 + 0.0030
= 12.9 in

Step 3: Determine β1.

β1 = 1.05 − 0.00005 f ′
c = 1.05 − (0.00005 × 5,000) = 0.80 for f ′

c = 5,000 psi

(see ACI 10.2.7.3 and Section 5.2 of this book)

Step 4: Determine the depth of the compression zone a.

a = β1c = 0.80 × 12.9 = 10.3 in
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Step 5: Determine C. Because the depth of the compression zone a is less than the radius of
the section, the area of the compression zone is determined by Eq. (8.4):

A = h2

8
(θ − sin θ)

where θ = 2 cos−1
(

1 − 2a
h

)
= 2 cos−1

(
1 − 2 × 10.3

24

)
= 2.86 rad [see Eq. (8.5)]

Thus,

A = 242

8
(2.86 − sin 2.86) = 185.9 in2

The concrete compression resultant force C is determined by Eq. (8.7):

C = 0.85 f ′
c h2(θ − sin θ )

8
= 0.85 × 5 × 185.9 = 790.1 kips

Step 6: Determine εsi. The strain in the reinforcement εsi at the various layers is determined
by Eq. (5.43) where compression strains are positive:

� Layer 1 (d1 = 2.44 in):

εs1 = 0.0030(12.9 − 2.44)
12.9

= 0.0024

� Layer 2 (d2 = 7.22 in):

εs2 = 0.0030(12.9 − 7.22)
12.9

= 0.0013

� Layer 3 (d3 = 16.78 in):

εs3 = 0.0030(12.9 − 16.78)
12.9

= −0.0009

� Layer 4 (d4 = 21.56 in):

εs4 = 0.0030(12.9 − 21.56)
12.9

= −0.0020 (checks)

It is evident that the top two layers of reinforcement are in compression and that the bottom
two layers are in tension. Also, the layers of reinforcement closest to and farthest from the extreme
compression fiber yield.

Step 7: Determine fsi. The stress in the reinforcement fsi at the various layers is determined
by multiplying εsi by the modulus of elasticity of the steel Es :

� Layer 1: fs1 = 0.0024 × 29,000 = 69.6 ksi > 60 ksi; use fs1 = 60 ksi
� Layer 2: fs2 = 0.0013 × 29,000 = 37.7 ksi
� Layer 3: fs3 = −0.0009 × 29,000 = −26.1 ksi
� Layer 4: fs4 = −60 ksi

Step 8: Determine Fsi. The force in the reinforcement Fsi at the various layers is determined
by Eq. (5.44) or (5.45), which depends on the location of the steel layer:
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� Layer 1 (d1 = 2.44 in < a = 10.3 in): Fs1 = [60 − (0.85 × 5)] × 1 × 1.00 = 55.8 kips
� Layer 2 (d2 = 7.22 in < a = 10.3 in): Fs2 = [37.7 − (0.85 × 5)] × 2 × 1.00 = 66.9 kips
� Layer 3: Fs3 = −26.1 × 2 × 1.00 = −52.2 kips
� Layer 4: Fs4 = −60 × 1 × 1.00 = −60.0 kips

Note that the compression steel in the top two layers fall within the depth of the compression
zone; thus, Eq. (5.45) is used to determine the forces in the reinforcement in those layers.

Step 9: Determine Pn and Mn. The nominal axial strength Pn is determined by Eq. (8.8):

Pn = C +
∑

Fsi = 790.1 + (55.8 + 66.9 − 52.2 − 60.0) = 800.6 kips

The nominal flexural strength Mn is determined by Eq. (8.9) where the centroid y of the circular
segment is determined by Eq. (8.6):

y = 2h sin3 (θ/2)
3(θ − sin θ )

= 2 × 24 × sin3 (2.86/2)
3(2.86 − sin 2.86)

= 6.0 in

Mn = C y +
∑

Fsi(0.5h − di )

= (790.1 × 6.0) + [55.8(12 − 2.44) + 66.9(12 − 7.22)

+ (−52.2)(12 − 16.78) + (−60.0)(12 − 21.56)]

= 4,740.6 + 1,676.4 = 6,417.0 in kips = 534.8 ft kips

This section is compression-controlled because εt is equal to the compression-controlled strain
limit of 0.0020 (see ACI 10.3.3). Thus, in accordance with ACI 9.3.2.2, the strength reduction factor
φ is equal to 0.65 for a compression-controlled section with lateral reinforcement consisting of ties
(or, equivalently, a compression-controlled section without spiral reinforcement, conforming to
ACI 10.9.3). Therefore, the design axial strength φPn and design flexural strength φMn are

φPn = 0.65 × 800.6 = 520.4 kips

φMn = 0.65 × 534.8 = 347.6 ft kips

Case 2—Bending About the y-axis
Step 1: Check the minimum and maximum longitudinal reinforcement limits. It was shown

in Case 1 that the provided area of longitudinal reinforcement falls between the minimum and
maximum limits.

Step 2: Determine the neutral axis depth c. The neutral axis depth is determined by Eq. (5.41):

c = 0.0030dt

εt + 0.0030
= 0.0030 × 20.28

0.0020 + 0.0030
= 12.2 in

Step 3: Determine β1.

β1 = 1.05 − 0.00005 f ′
c = 1.05 − (0.00005 × 5,000) = 0.80 for f ′

c = 5,000 psi

(see ACI 10.2.7.3 and Section 5.2 of this book)

Step 4: Determine the depth of the compression zone a.

a = β1c = 0.80 × 12.2 = 9.8 in
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Step 5: Determine C. Because the depth of the compression zone a is less than the radius of
the section, the area of the compression zone is determined by Eq. (8.4):

A = h2

8
(θ − sin θ )

where θ = 2 cos−1
(

1 − 2a
h

)
= 2 cos−1

(
1 − 2 × 9.8

24

)
= 2.77 rad [see Eq. (8.5)]

Thus,

A = 242

8
(2.77 − sin 2.77) = 173.3 in2

The concrete compression resultant force C is determined by Eq. (8.7):

C = 0.85 f ′
c h2(θ − sin θ )

8
= 0.85 × 5 × 173.3 = 736.5 kips

Step 6: Determine εsi. The strain in the reinforcement εsi at the various layers is determined
by Eq. (5.43) where compression strains are positive:

� Layer 1 (d1 = 3.72 in):

εs1 = 0.0030(12.2 − 3.72)
12.2

= 0.0021

� Layer 2 (d2 = 12.0 in):

εs2 = 0.0030(12.2 − 12.0)
12.2

= 0.00005

� Layer 3 (d3 = 20.28 in):

εs3 = 0.0030(12.2 − 20.28)
12.2

= −0.0020 (checks)

It is evident that the top two layers of reinforcement are in compression and that the bottom layer
is in tension. Also, the layers of reinforcement closest to and farthest from the extreme compression
fiber yield.

Step 7: Determine fsi. The stress in the reinforcement fsi at the various layers is determined
by multiplying εsi by the modulus of elasticity of the steel Es :

� Layer 1: fs1 = 0.0021 × 29,000 = 60.9 ksi > 60 ksi; use fs1 = 60 ksi
� Layer 2: fs2 = 0.00005 × 29,000 = 1.5 ksi
� Layer 3: fs3 = −60 ksi

Step 8: Determine Fsi. The force in the reinforcement Fsi at the various layers is determined
by Eq. (5.44) or (5.45), which depends on the location of the steel layer:

� Layer 1 (d1 = 3.72 in < a = 9.8 in): Fs1 = [60 − (0.85 × 5)] × 2 × 1.00 = 111.5 kips
� Layer 2: Fs2 = 1.5 × 2 × 1.00 = 3.0 kips
� Layer 3: Fs3 = −60.0 × 2 × 1.00 = −120.0 kips
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Note that the compression steel in the top layer falls within the depth of the compression zone;
thus, Eq. (5.45) is used to determine the forces in the reinforcement in that layer.

Step 9: Determine Pn and Mn. The nominal axial strength Pn is determined by Eq. (8.8):

Pn = C +
∑

Fsi = 736.5 + (111.5 + 3.0 − 120.0) = 731.0 kips

The nominal flexural strength Mn is determined by Eq. (8.9) where the centroid y of the circular
segment is determined by Eq. (8.6):

y = 2h sin3 (θ/2)
3(θ − sin θ )

= 2 × 24 × sin3 (2.77/2)
3(2.77 − sin 2.77)

= 6.3 in

Mn = C y +
∑

Fsi(0.5h − di )

= (736.5 × 6.3) + [111.5(12 − 3.72) + 3.0(12 − 12) + (−120.0)(12 − 20.28)]

= 4,640.0 + 1,916.8 = 6,556.8 in kips = 546.4 ft kips

Because the section is compression-controlled, the strength reduction factor φ is equal to 0.65,
and the design axial strength φPn and design flexural strength φMn are

φPn = 0.65 × 731.0 = 475.2 kips

φMn = 0.65 × 546.4 = 355.2 ft kips

Comments
Other points on the interaction diagram can be determined using the method outlined earlier.
For strain distributions that are primarily compressive, a large portion of the section is under
compression, and Eqs. (8.12) and (8.13) would be utilized in the determination of the design
strengths.

As illustrated in this example, the design axial load and moment strengths depend on the
bar arrangement for reinforced concrete columns with six longitudinal bars. Because the designer
has no control over the arrangement of the bars when they are placed in the formwork, the col-
umn must be checked for the most critical cases. Utilizing eight or more longitudinal bars in
a section essentially eliminates the need to determine different design strengths based on bar
arrangement.

8.4.5 Design Aids
A number of design aids that assist in the design of columns subjected to axial load
and bending moment are available. The intent of the design aids is to eliminate the rou-
tine and repetitious calculations that are required in the construction of an interaction
diagram.

Reference 1 contains nondimensionalized nominal strength interaction diagrams
for rectangular and circular sections with a variety of bar arrangements. Numerous
tables for rectangular and circular columns are contained in Ref. 2, which cover a wide
range of cross-sectional dimensions, concrete compressive strength, longitudinal rein-
forcement ratios, and bar arrangements. These tables contain values corresponding to
key points on the interaction diagram.
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8.5 Slenderness Effects

8.5.1 Overview
It is important to determine whether the effects of slenderness need to be considered
or not early in the design of any column, because second-order effects can have a
significant influence on design strength. In very simple terms, a column is slender if its
applicable cross-sectional dimension is small in comparison with its length.

The term “short column” is often used to indicate a column that has a strength equal
to that computed for its cross-section. In such cases, strength can be represented by an
interaction diagram, which is constructed on the basis of the geometric and material
properties of the section (see Section 8.4). If a column does not deflect laterally, actual
failure is theoretically represented by any point along the nominal strength interaction
curve. In other words, any combination of axial load and bending moment that falls
outside of the interaction curve is assumed to cause failure. This is commonly referred
to as a material failure. For purposes of design, a column that is not slender has adequate
strength when all of the factored combinations of axial load and bending moment that
are obtained from an elastic first-order analysis of the frame fall within or on the design
strength interaction curve.

A slender column is defined as a column whose strength is reduced by second-order
deformations due to horizontal displacements. Consider the column shown in Fig. 8.12
that is subjected to an axial load P and a bending moment M. The moment M can be
expressed as the axial load P times an eccentricity e.

FIGURE 8.12 P-delta
effects in a column.
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The column has a horizontal deflection � along the span because of the applied
loading. This deflection, in turn, causes an additional (or secondary) moment, as shown
in the free-body diagram of the deflected shape of the column. Thus, the total moment
in the column is equal to the applied moment Pe due to the external loading plus the
moment P� due to the horizontal deflection of the member. Secondary effects caused
by horizontal deflection are commonly referred to as P-delta effects.

Secondary effects have a relatively small impact on the design of columns that are
not slender. In contrast, the deflection � due to the applied loading can increase and
become unstable with an increase in P for columns that are slender. When this occurs,
the column buckles under the effects of the applied loads. This type of failure is known
as a stability failure or elastic instability, and it generally occurs at a load that is less than
that corresponding to material failure of the section.

It is important to keep in mind that a column with a given slenderness ratio may be
considered a short column for design under one set of constraints and a slender column
under another set. This is discussed in more detail later.

The effects of slenderness can be neglected in compression members with slender-
ness ratios that are equal to or less than the limiting values given in ACI 10.10.1. These
limiting values are given for members not braced against sidesway and those braced
against sidesway. The Code requirements on what constitutes a braced member are
discussed next.

In the Code, slenderness ratio is defined as the effective length factor k times the
unsupported length of the column �u divided by the radius of gyration of the column
cross-section r , which is equal to

√
I/Ag , where I and Ag are the moment of inertia in

the direction of analysis and the gross area of the cross-section, respectively. More infor-
mation on these quantities is given after the discussion on braced and unbraced frames.

8.5.2 Compression Members Braced and Unbraced Against Sidesway
Sway in buildings due to lateral or other loads can have a dramatic influence on second-
order effects in columns. It is common for secondary effects to increase with increasing
sway.

Distinguishing between members that are braced against sidesway and those that
are not can usually be done by comparing the total lateral stiffness of the columns in a
story with that of the bracing elements. Moment frame buildings are typically laterally
flexible, and the columns are more susceptible to secondary effects than those in a frame
with more rigid bracing elements, such as walls.

The Code provides information that can be used where it is not readily apparent
whether a frame is braced against sidesway or not. ACI 10.10.1 permits compression
members to be considered braced against sidesway when the bracing elements in the
structure have a total lateral stiffness in the direction of analysis of at least 12 times the
gross stiffness of all the columns within a given story. For moment frames, the bracing
elements are the beams and columns that are part of the lateral force–resisting system.
In buildings with walls, the walls alone or in combination with specifically identified
frames are the bracing elements.

It is evident from the preceding discussion that entire stories in a building are either
braced or not braced against sidesway. Depending on a number of factors, it is possible
for a column in one story to be braced and for the same column immediately above or
below that story to be unbraced.
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ACI 10.10.5.1 and 10.10.5.2 give two additional ways of determining whether a story
or member is braced or not (the terms that are used in these Code sections that refer to
frames or members that are braced and not braced are nonsway frames and sway frames,
respectively).

According to ACI 10.10.5.1, a column or story can be considered nonsway when the
end moments due to second-order effects are equal to or less than 1.05 times the end
moments determined by a first-order analysis. It has been demonstrated that this 5%
limitation provides a reasonable limit on nonsway conditions.3

An alternate method is given in ACI 10.10.5.2, which utilizes the stability index Q.
A story in a structure is assumed to be nonsway when Q is equal to or less than 0.05
[see ACI Eq. (10-10)]:

Q =
∑

Pu�o

Vus�c
≤ 0.05 (8.14)

In this equation �Pu is the total factored axial load in the story of the building that is
being evaluated (i.e., the sum of all the factored loads on the columns and walls in that
story); �o is the first-order relative lateral deflection between the top and the bottom
of the story; Vus is the factored horizontal shear in the story; and �c is the length of the
columns in the story measured center-to-center of the joints in the frame. This method
should not be used in cases where the factored horizontal shear force Vus is equal to zero.
Also, the sum of the factored axial loads �Pu must correspond to the lateral loading
case for which this sum is the greatest.

Equation (8.14) is commonly used in a P-delta analysis. When the externally applied
horizontal story shear Vus is applied to a story in a frame, the story deflects an amount
equal to �o (see Fig. 8.13). The sum of the factored axial loads in the story �Pu is
displaced horizontally by this amount.

The numerator of Eq. (8.14) is the moment in the story due to the axial loads being
displaced by the amount �o , and the denominator is the overall moment in the story
due to Vus . This equation essentially means that second-order (or P-delta) effects need
not be considered when the overall story moment due to the axial loads is equal to or
less than 5% of the overall moment due to the horizontal shear.

FIGURE 8.13
Definition of
stability index Q .
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In cases where service loads are used to calculate the lateral deflection of a frame,
the following equation can be used to determine Q (see the discussion in ACI R10.10.5):

Q = 1.2
∑

(PD + PL )(1.43�S)
Vs�c

≤ 0.05 (8.15)

In this equation, �(PD + PL ) is the sum of the total service dead and live axial loads in a
story; �S is the first-order, service-level interstory deflection; and Vs is the service-level
story shear.

Stories in a building that do not meet the criteria of ACI 10.10.5.1 or 10.10.5.2 are
considered sway stories. As noted previously, a frame may contain both nonsway and
sway stories.

Example 8.6 The following quantities have been determined for a story in a multistory building by
a first-order elastic analysis: �Pu = 20,000 kips, �o = 0.40 in, and Vus = 350 kips. The story height
�c = 12 ft. Determine if the story is nonsway or sway.

Solution Because factored loads are given, Eq. (8.14) is used to determine if this story is nonsway
or sway:

Q =
∑

Pu�o

Vus�c
= 20,000 × 0.40

350 × (12 × 12)
= 0.16 > 0.05

Because the stability index for the story is greater than 0.05, the story is sway.

8.5.3 Consideration of Slenderness Effects

Introduction
Consideration of column slenderness for nonsway and sway frames depends on the
slenderness ratio of the column k�u/r . Different slenderness limits are prescribed in the
Code for nonsway and sway frames.

Prior to discussing these limits, information is presented on the quantities that make
up the slenderness ratio.

Unsupported Length �u
According to ACI 10.10.1, the unsupported length of a compression member �u shall
be taken as the clear distance between floor slabs, beams, or other members capable
of providing lateral support in the direction of analysis. The beam shown in Fig. 8.14
provides lateral support to the column in the direction parallel to the x-axis. That is
why the unsupported length (�u)1 is equal to the distance from the bottom of the beam
to the top of the slab in that direction. The beam does not provide lateral support to
the column parallel to the y-direction, and the unsupported length (�u)2 is the distance
from the bottom of the slab at the top of the column to the top of the slab at the bottom
of the column.

Where column capitals or haunches are present, �u is measured to the lower ex-
tremity of the capital or haunch in the plane considered, as illustrated in Fig. 8.15 for a
column capital.
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FIGURE 8.14 Unsupported column length with beams and slab.

Radius of Gyration r
The radius of gyration r is defined as

√
I/Ag , where I is the moment of inertia of the

section in the direction of analysis and Ag is the gross cross-sectional area of the section.
For a rectangular section where the dimension of the column parallel to the direction
of analysis is h1 and the dimension perpendicular to the direction of analysis is h2, the
radius of gyration is

r =
√

h2h3
1/12

h1h2
= 0.29h1

Note that ACI 10.10.1.2 permits r to be taken as 0.3h1 for rectangular sections.
Similarly, r can be taken as 0.25h for a circular member where h is the diameter of

the section.

Effective Length Factor k
The effective length factor k for a compression member depends on rotational and
lateral restraints at the ends of a column and on the type of frame (nonsway or sway).
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FIGURE 8.15
Unsupported
column length with
a column capital.

In general, the effective column length is equal to k�u; this corresponds to the length of
the column between inflection points on the deflected shape of the column at the onset
of buckling.

For the column on the left in Fig. 8.16, which is pinned at both ends and laterally
braced against sidesway, the shape of the deflected column at the onset of buckling is a
half-sine wave. In this case, the inflection points occur at the ends of the member, which
means that the effective length of the column is equal to the unbraced column length
�u. Thus, k is equal to 1.0 in this case.

FIGURE 8.16
Effective length
factors k for
columns in nonsway
frames.
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FIGURE 8.17
Effective length
factors k for
columns in sway
frames.

Similarly, for the column on the right in Fig. 8.16, which is fixed at both ends in
a nonsway frame, the effective length of the column is one-half of �u (i.e., the length
between the inflection points is equal to one-half of the unbraced length). Therefore, k
is equal to 0.5 for these end conditions.

Figure 8.17 illustrates the idealized effective length factors for columns in a sway
frame. The column on the left represents the case of a cantilevered column that is fully
fixed against rotation and translation at the base and is free to rotate and deflect at the
top. In this situation, the distance between the points of inflection is equal to twice the
unbraced length of the column �u; thus, the effective length factor k = 2.0. The column
on the right is fixed against rotation at both ends, and the top end is free to deflect
horizontally. The distance between the points of inflection is equal to the unbraced
length �u, and k = 1.0.

Rarely does a column have end supports that are perfectly pinned or fixed. In
general, the degree of end restraint depends on the relative stiffnesses of the flexural
members and columns that frame into the joint.

In lieu of a more exact analysis, the most commonly used design aid for estimating k
is the Jackson and Moreland Alignment Charts, which are given in ACI Fig. R10.10.1.1.
These charts allow a graphical determination of k for columns of constant cross-section
in both nonsway and sway frames.4,5

The effective length factor k is determined on the basis of the stiffness ratio � at
the ends of the column. This ratio is determined by dividing the sum of the stiffnesses
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of the columns at a joint by the sum of the stiffnesses of the flexural members framing
into that joint in the direction of analysis:

� =
∑

EI/�c∑
EI/�

(8.16)

In this equation, �c is the length of the columns measured center-to-center of the joints
in the frame and � is the span length of the flexural members measured center-to-center
of the joints.

The charts are based on the following equations6:
For nonsway frames,

� = −2k
�

tan
�

2k
(8.17)

For sway frames,

� = 6k
�

cot
�

2k
(8.18)

A value of the stiffness ratio must be determined at both the top and the bottom
of the column. The charts can be used to graphically obtain k by drawing a line from
the stiffness ratio �A at the top of the column to the stiffness ratio �B at the bottom
of the column. The value of k is obtained from the chart at the location where the line
crosses the k-axis. For example, consider a column in a nonsway frame where �A = 3.0
and �B = 0.7. From the chart shown in ACI Fig. R10.10.1.1(a) for nonsway frames,
graphically obtain k ≈ 0.8.

Nonsway Frames
Slenderness effects may be neglected in nonsway frames when ACI Eq. (10-7) is satisfied:

k�u

r
≤ 34 − 12

(
M1

M2

)
≤ 40 (8.19)

In this equation, M1 and M2 are the smaller factored end moment and the larger factored
end moment, respectively, that are obtained from an elastic analysis of the frame. The
ratio M1/M2 is positive if the column is bent in single curvature and negative if the
column is bent in double curvature. Because columns are more stable when bent in
double curvature, the limiting slenderness ratio is larger than that for columns bent in
single curvature. The negative value of M1/M2 allows a wider range of columns to be
treated as short columns. In no case shall the slenderness limit exceed 40.

The effective length factor k can be taken as 1.0 for all nonsway frames regardless
of the stiffness factors at both ends of a column; this will produce conservative results
in frames where the actual stiffnesses result in k-values less than 1.0.

Sway Frames
For sway frames, slenderness effects can be neglected when k�u/r is less than 22 [see
ACI 10.10.1(a) and ACI Eq. (10-6)]. In such cases, the required cross-sectional dimen-
sions, longitudinal reinforcement, and material properties can be determined for the
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governing factored load combinations based on the results from a first-order elastic
analysis.

The effective length factor k must always be greater than 1.0 for columns in a sway
frame [see ACI Fig. R10.10.1.1(b)]. Depending on the relative stiffnesses of the columns
and flexural members framing into the joint, values of k equal to or greater than 2.0 are
possible.

8.5.4 Methods of Analysis

Overview
ACI 10.10.2 outlines three methods that are permitted to analyze compression members
where slenderness effects cannot be neglected:

1. Nonlinear second-order analysis

2. Elastic second-order analysis

3. Moment magnification procedure

In general, a second-order analysis yields results that are more reasonable than those
obtained from an approximate method like the moment magnification procedure. Thus,
the second-order procedures will usually result in a more economical design, especially
for sway frames. As expected, approximate methods tend to give more conservative
results.

Regardless of the analysis method that is used, it is important to limit the overall
total moment in the structural members of a frame to ensure that the structure is stable.
According to ACI 10.10.2.1, the total moment, which includes the second-order (or P-
delta) effects due to slenderness, shall not exceed 140% of the moments obtained from a
first-order analysis. It has been demonstrated by analytical research that the probability
of stability failure increases significantly when the stability index Q exceeds 0.2.3 When
Q is equal to 0.2, the ratio of the secondary moment to the primary moment is equal to
1/(1 − Q) = 1.25. In Section 12.8.7 of ASCE/SEI 7-05, which addresses P-delta effects in
structures subjected to earthquake loads, the maximum value of the stability coefficient
θ is given as 0.25 (θ is similar to the Code stability factor Q). This corresponds to a ratio
of the secondary moment to the primary moment equal to 1.33. The 1.4 limit in ACI
10.10.2.1 is based on both of these findings.

Nonlinear Second-order Analysis
This analysis method is the most comprehensive and usually the most accurate in pre-
dicting the behavior of slender columns. Material nonlinearity, member curvature and
lateral drift, duration of loads, shrinkage and creep, and interaction with the foundation
must all be included in the analysis.

The methodology for a nonlinear second-order analysis is beyond the scope of this
book. More information on how to undertake such an analysis is given in ACI R10.10.3.

Elastic Second-order Analysis
As the name implies, this method of analysis is performed in the elastic range, using
member stiffnesses that represent those immediately prior to failure. In addition to using
a strength reduction factor φ that accounts for variability in cross-sectional strength, a
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Member Moment of Inertia

Compression members

Columns 0.70Ig

Walls—uncracked 0.70Ig

Walls—cracked 0.35Ig

Flexural members

Beams 0.35Ig

Flat plates and flat slabs 0.25Ig

TABLE 8.3 Moments of Inertia to Use in an Elastic Second-order Analysis

stiffness reduction factor that accounts for variability of member stiffness (i.e., cracked
regions) along the length of the member is used. The influence of axial loads and the
effects of load duration must also be accounted for in this type of analysis.

The section properties of the members in the frame must be determined prior to
analysis. The effects of cracking and the other effects outlined earlier must be included
when establishing the section properties. In lieu of a more sophisticated analysis, ACI
10.10.4.1 permits the use of reduced moments of inertia for purposes of analysis. These
values are obtained by multiplying the reduced moments of inertia derived in Ref. 3
for nonprestressed members by a stiffness reduction factor of 0.875. Reduced values
of the moment of inertia based on these reduction factors result in an overestimation
of the second-order deflections obtained from analysis on the order of 1.20 to 1.25. A
summary of the reduced moments of inertia is given in Table 8.3.

In addition to reduced moments of inertia, ACI 10.10.4.1 requires that the modulus
of elasticity of the concrete determined by ACI 8.5.1 and the gross area of the section
be used in the analysis.

The reduced moments of inertia in Table 8.3 are based on an analysis where strength-
level (factored) loads are used. An analysis using service-level loads is needed, for
example, when determining lateral deflections or when calculating the period of a
building. ACI R10.10.4.1 notes that it is satisfactory to perform a service-level analysis
using 1.43 times the tabulated values of the reduced moments of inertia in Table 8.3.

More refined values of I are given in ACI 10.10.4.1 for compression members and
flexural members that can be used in the analysis instead of the corresponding values
given in Table 8.37,8:

For compression members,

0.35Ig ≤ I =
(

0.80 + 25Ast

Ag

)(
1 − Mu

Puh
− 0.5Pu

Po

)
Ig ≤ 0.875Ig (8.20)

For flexural members,

I = (0.10 + 25ρ)
(

1.2 − 0.2bw

d

)
Ig ≤ 0.50Ig (8.21)
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In Eq. (8.20), Pu and Mu are the factored axial load and bending moment on the
compression member for the load combination under consideration and Po is the max-
imum concentric axial load that can be carried by a short column, which is determined
by Eq. (5.35).

Equations (8.20) and (8.21) were derived using a stiffness reduction factor compara-
ble to the one used in deriving the reduced moments of inertia given in Table 8.3. These
equations are also applicable for all levels of loading, including ultimate and service,
even though they are presented in terms of factored loads. For service-level analysis,
Pu and Mu in the equations should be replaced by a corresponding service-level axial
load and bending moment.

When analyzing a system with walls, it is customary to initially assume that the
walls are uncracked in flexure, using a reduced moment of inertia of 0.70Ig . If the
analysis indicates that the walls will crack in flexure based on the modulus of rupture,
the analysis should be repeated using a reduced moment of inertia of 0.35Ig .

In systems with beams, the moment of inertia of the beams should be determined
using the web of the beam and the effective flange width defined in ACI 8.12. It is
permitted to take I as the average of the values obtained from Eq. (8.21) for the critical
positive and negative moment sections. Note that I need not be taken less than 25% of
the gross moment of inertia.

Sustained lateral loads are not commonly encountered in building design because
wind and earthquake loads are not sustained loads. However, a sustained load can
occur, for example, where unequal earth pressures act on two sides of a building. In
such cases, the moment of inertia I for compression members must be divided by
(1 + βds), where βds is the ratio of the maximum sustained shear within a story to the
maximum factored shear in that story associated with the same load combination (ACI
10.10.4.2). The magnitude of βds must be equal to or less than 1.0.

Moment Magnification Procedure
Overview The moment magnification procedure is an approximate method that ac-
counts for slenderness effects by magnifying the moments obtained from a first-order
analysis. In general, a slender column must be designed to resist the combined ef-
fects from factored axial compressive loads and magnified bending moments, which
are obtained by multiplying the first-order bending moments by a moment mag-
nifier that is a function of the factored axial load and the critical buckling load of
the column. The column is adequate when all of the factored load combinations for
combined axial load and bending fall within or on the design strength interaction
diagram, which is obtained from a strain compatibility analysis of the section (see
Section 8.4).

Requirements for nonsway and sway frames are given in ACI 10.10.6 and 10.10.7,
respectively, and are discussed next.

Nonsway Frames Provisions for slender columns in nonsway frames are given in ACI
10.10.6. Columns must be designed for combinations of factored axial loads Pu and
factored magnified moments Mc where Mc is determined by ACI Eq. (10-11):

Mc = δns M2 (8.22)
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In this equation, M2 is the larger of the two factored end moments and δns is the moment
magnification factor that accounts for second-order effects [see ACI Eq. (10-12)]:

δns = Cm

1 − (Pu/0.75Pc)
≥ 1.0 (8.23)

The factor Cm relates the actual moment diagram to an equivalent uniform moment
diagram. The moment magnification procedure assumes that the maximum moment
is at or near the midheight of the column. If the maximum moment occurs at one end
of the column instead of at the midheight, the design must be based on an equivalent
uniform moment equal to Cm M2. This would lead to the same maximum moment when
magnified.

Two cases related to transverse loads between the supports must be examined. If
transverse loads do not act between the supports of a compression member, the value
of Cm is determined by ACI Eq. (10-16):

Cm = 0.6 + 0.4
M1

M2
(8.24)

In this equation, the ratio M1/M2 of the smaller factored end moment to the larger
factored end moment is positive if the column is bent in single curvature and negative
if the column is bent in double curvature.

For compression members that are subject to transverse loads between their sup-
ports, it is possible that the maximum moment will occur at a section away from the
end of the member. In such cases, the largest calculated moment occurring anywhere
along the member should be used for M2, and this moment is magnified by δns . The
factor Cm is to be taken as 1.0 in this case.

The critical buckling load Pc is determined by ACI Eq. (10-13):

Pc = π2EI
(k�u)2 (8.25)

In this equation, which is essentially Euler’s equation for column buckling, k is the
effective length factor, which can be taken equal to 1.0 for nonsway frames; �u is
the unsupported length of the compression member (see Figs. 8.14 and 8.15); and EI is
the stiffness of the column in the direction of analysis.

The stiffness EI must account for variations due to cracking, creep, and nonlinearity
of the concrete stress–strain curve (see Chap. 2). Three methods to determine EI are
presented in ACI 10.10.6.1. In the first method, EI is calculated by ACI Eq. (10-14):

EI = 0.2EcIg + EsIse

1 + βdns
(8.26)

The term Ise is the moment of inertia of the longitudinal reinforcement about the
centroidal axis of the cross-section in the direction of analysis and βdns is defined in ACI
10.10.6.2 as the ratio of the maximum factored axial sustained load to the maximum
factored axial load associated with the same load combination. This factor, which is
typically equal to the factored dead load divided by the total factored load in a column,
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accounts for the increase in lateral deflections and corresponding moments due to
creep. As discussed in Chap. 2, creep of concrete transfers some of the axial load from
the concrete to the longitudinal reinforcing bars over time. In columns with relatively
small amounts of longitudinal reinforcement, the additional stress due to creep can
eventually lead to compression failure in the bars and a corresponding reduction in
stiffness. In no case shall βdns be taken greater than 1.0.

Equation (8.26) was originally derived for small eccentricity ratios Mu/Puh and large
axial load ratios Pu/Po and represents the lower limit of the practical range of stiffness
values, especially for columns with larger longitudinal reinforcement ratios. Under
these conditions, axial load effects and, thus, slenderness effects are most pronounced.

In the second method, EI is determined by ACI Eq. (10-15):

EI = 0.4Ec Ig

1 + βdns
(8.27)

This equation is a simplified version of Eq. (8.26) and does not directly account for the
amount of longitudinal reinforcement in the section. As such, this equation is not as
accurate as Eq. (8.26), especially in columns with greater amounts of longitudinal rein-
forcement (in such cases, the effects of the reinforcement are greatly underestimated).

In the third method, EI is determined by the following equation:

EI = E[0.80 + (25Ast/Ag)][1 − (Mu/Puh) − (0.5Pu/Po)]Ig

1 + βdns
(8.28)

Equation (8.28), which is obtained by dividing ACI Eq. (10-8) by 1 + βdns, generally
yields more accurate values of EI than those determined by Eqs. (8.26) and (8.27).

The factor 0.75 in the denominator of Eq. (8.23) is a stiffness reduction factor similar
to the one derived for the reduced moments of inertia, which is equal to 0.875. Additional
information on the development of this stiffness factor can be found in ACI R10.10.6.

If the factored column moments from the structural analysis are very small or are
equal to zero, the Code requires that the minimum moment defined by ACI Eq. (10-17)
be used in the design of the column for slenderness:

M2,min = Pu(0.6 + 0.03h) (8.29)

In situations where M2,min > M2, the factored column end moments M1 and M2

from the structural analysis are to be used in Eq. (8.24) to determine Cm. Alternatively,
Cm can be taken equal to 1.0. In either case, this eliminates what would otherwise be a
discontinuity between columns with computed moments less than M2,min and columns
with computed moments equal to or greater than M2,min.

Example 8.7 A typical floor plan in a five-story building is given in Fig. 8.18.
Determine the required longitudinal reinforcement in the first story of column C4 for analysis

in the north-south direction. Assume normal-weight concrete with f ′
c = 4,000 psi and Grade 60

reinforcement. Also assume (1) that the walls provide all of the resistance to wind loads in the
north-south direction and (2) that the first-order relative lateral deflection �o between the top and
the bottom of the first story due a total factored wind load Vus of 246 kips is equal to 0.05 in. The
16-ft story height for the first story is measured from the mid-depth of the first elevated slab to the
top of the foundation.
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Columns: 18 × 18 in Slab: 9 in

Beams: 18 × 22 in Walls: 10 in

FIGURE 8.18 The typical floor plan of building given in Example 8.7.

Solution
Step 1: Determine the factored axial loads and bending moments for column C4 in the first

story. A summary of the service axial loads and bending moments on the column is given in Table
8.4. These values were obtained from an elastic analysis of the frame, using the appropriate reduced
moments of inertia given in ACI 10.10.4.1. Because the walls are designed to resist all of the effects
from wind, column C4 is not part of the lateral force–resisting system and can be designed for
the effects of gravity loads only. The applicable load combinations of ACI 9.2 are also given in
Table 8.4.

Step 2: Determine if the frame in the first story is nonsway or sway. From inspection, it would
appear that the frame is a nonsway frame in the north-south direction, owing to the relatively stiff
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Bending Moment (ft kips)

Load Case Axial Loads (kips) Top Bottom

Dead (D ) 218.8 27.2 13.7

Snow (S) 17.2 — —

Live (L ) 109.9 17.0 8.6

Load Combination

1 1.4D 306.3 38.1 19.2

2 1.2D + 1.6L + 0.5S 447.0 59.8 30.2

3 1.2D + 1.6S + 0.5L 345.0 41.1 20.7

TABLE 8.4 Summary of Axial Loads and Bending Moments on Column C4

walls that brace the frame over its entire height in that direction. Use Eq. (8.14) to confirm that the
frame is a nonsway frame:

Q =
∑

Pu�o

Vus�c
≤ 0.05

The following total loads at the first floor level were determined from the analysis:

PD = 5,251 kips

PL = 2,636 kips

PS = 412 kips

PW = 0 kips

The total factored axial load �Pu must correspond to the lateral loading case for which it is a
maximum. In this example, ACI Eq. (9-4) produces the largest �Pu:

�Pu = 1.2PD + 1.6PW + 0.5PL + 0.5PS

= (1.2 × 5,251) + (1.6 × 0) + (0.5 × 2,636) + (0.5 × 412)

= 7,825 kips

Therefore,

Q =
∑

Pu�o

Vus�c
= 7,825 × 0.05

246 × 16 × 12
= 0.01 < 0.05

Because Q < 0.05, the frame in the first story is a nonsway frame, as expected.
Step 3: Determine if slenderness effects need to be considered. Because the frame is a nonsway

frame, slenderness effects need not be considered where Eq. (8.19) is satisfied:

k�u

r
≤ 34 − 12

(
M1

M2

)
≤ 40

For the 18-in square column, r = 0.3 × 18 = 5.4 in.



449C o l u m n s

Also, the unsupported length �u of the column in the north-south direction is the distance
between the bottom of the slab and the top of the foundation:

�u = (16 × 12) − (9/2) = 187.5 in

Using an effective length factor k = 1.0 for a nonsway frame results in the following slenderness
ratio:

k�u

r
= 1.0 × 187.5

5.4
= 34.7 < 40.0

Because the column is subjected to the effects of gravity loads only, it is bent in single curva-
ture. From Table 8.4, it is evident that the ratio M1/M2 is approximately 0.5 for all of the load
combinations. Thus,

k�u

r
= 34.7 > 34 − 12

(
M1

M2

)
= 34 − (12 × 0.5) = 28

Therefore, slenderness effects must be considered in the design of this column.
Step 4: Determine the magnified moments in the column, using the moment magnification

procedure. In lieu of an elastic or nonlinear second-order analysis, the moment magnification
procedure is used to determine the magnified factored moments due to second-order effects.

Calculations are provided for load combination 2 of Table 8.4.
From Eq. (8.22):

Mc = δns M2

where

δns = Cm

1 − (Pu/0.75Pc )
≥ 1.0

Because there are no transverse loads between the supports of this column, use Eq. (8.24) to
determine Cm:

Cm = 0.6 + 0.4
M1

M2
= 0.6 + 0.4

(
30.2
59.8

)
= 0.8

The critical buckling load Pc is determined by Eq. (8.25):

Pc = π2EI
(k�u)2

Compare the stiffness values determined by Eqs. (8.26) to (8.28).
The EI from Eq. (8.26) is

EI = 0.2Ec Ig + Es Ise

1 + βdns

The modulus of elasticity of the concrete is determined by ACI 8.5.1:

Ec = w1.5
c 33

√
f ′
c = (150)1.5 × 33

√
4,000 = 3,834,254 psi

Ig = 184

12
= 8,748 in4

Es = 29,000,000 psi (see ACI 8.5.2)
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FIGURE 8.19
Longitudinal
reinforcement
layout for
column C4.

The moment of inertia Ise of the longitudinal reinforcement about the centroidal axis of the
cross-section in the direction of analysis is determined for a specific reinforcement layout. Assume
the layout depicted in Fig. 8.19. The provided area of steel is equal to 12 × 0.44 = 5.28 in2, which is
greater than the lower limit of 0.01 × 182 = 3.24 in2 and is less than the upper limit of 0.08 × 182 =
25.92 in2.

Thus,

Ise = 2[(4 × 0.44)(15.75 − 9)2 + (2 × 0.44)(11.25 − 9)2] = 169.3 in4

Because the dead load is the only sustained load, βdns is determined as follows:

βdns = 1.2D
1.2D + 1.6L + 0.6S

= 1.2 × 218.8
447.0

= 0.59

Therefore, the EI from Eq. (8.26) is

EI = 0.2EcIg + EsIse

1 + βdns
= (0.2 × 3,834 × 8,748) + (29,000 × 169.3)

1 + 0.59
= 7.31 × 106 kip in2

The EI from Eq. (8.27) is

EI = 0.4EcIg

1 + βdns
= 0.4 × 3,834 × 8,748

1 + 0.59
= 8.44 × 106 kip in2

The EI from Eq. (8.28) is

EI = E[0.80 + (25Ast/Ag)] [1 − (Mu/Puh) − (0.5Pu/Po )] Ig

1 + βdns

The maximum concentric axial load Po is determined by Eq. (5.35):

Po = 0.85 f ′
c (Ag − Ast) + fy Ast

= [0.85 × 4 × (182 − 5.28)] + (60 × 5.28) = 1,400.5 kips



451C o l u m n s

Load EI × 106 M2,min Mc

Combination βdns (kips in2) Pc (kips) δns (ft kips) (ft kips)

1 1.00 5.81 1,631 1.07 29.1 40.8

2 0.59 7.31 2,052 1.13 42.5 67.6

3 0.76 6.60 1,852 1.07 32.8 44.0

TABLE 8.5 Summary of Results from Moment Magnification Procedure for Column C4

Therefore, the EI from Eq. (8.28) is

EI = 3,834×{0.80 + [(25×5.28) /182]} {1 − [(59.8×12) / (447.0 × 18)] − [(0.5 × 447.0)/1,400.5]}×8,748
1 + 0.59

= 19.1 × 106 kip in2

The smallest value of EI will result in the smallest value of Pc , which in turn, will result in the
largest moment magnification factor δns . Therefore, use the EI determined by Eq. (8.26) to calculate
Pc :

Pc = π2EI
(k�u)2 = π2 × 7.31 × 106

(1.0 × 187.5)2 = 2,052.2 kips

The moment magnification factor δns is equal to the following:

δns = Cm

1 − (Pu/0.75Pc )
= 0.8

1 − [447.0/ (0.75 × 2,052.2)]
= 1.13 > 1.0

Thus,

Mc = δns M2 = 1.13 × 59.8 = 67.6 ft kips

Check the minimum factored bending moment requirement [see Eq. (8.29)]:

M2,min = Pu(0.6 + 0.03h) = 447.0 × [0.6 + (0.03 × 18)] = 509.6 in kips = 42.5 ft kips < Mc

Therefore, the factored axial load and moment in load combination 2 become Pu = 447.0 kips
and Mu = Mc = 67.6 ft kips.

Similar calculations can be performed for the other two load combinations.
A summary of the results from the moment magnification procedure for the three governing

load combinations is given in Table 8.5.
Step 5: Check the adequacy of the section for combined axial load and bending. The design

strength interaction diagram for column C4 reinforced with 12 No. 6 bars is given in Fig. 8.20. Also
shown in the figure are the factored axial loads and magnified bending moments for the three load
combinations.

Because all three load combination points fall within the design strength interaction diagram,
the column is adequate for analysis in the north-south direction.

Sway Frames Provisions of the moment magnification procedure for sway frames are
given in ACI 10.10.7. The design procedure essentially consists of two steps.
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FIGURE 8.20 Design strength interaction diagram for column C4.

Step 1: Determine the magnified sway moments. In the first step, the magnified
sway moments δs M1s and δs M2s at the ends of the columns are calculated. The moments
M1s and M2s are due to loads that cause appreciable sidesway (e.g., wind and seismic
loads) and are determined using a first-order elastic analysis of the frame.

The Code recognizes two methods of determining the moment magnification factor
δs for sway frames. In the first method, δs is determined using the stability index Q for
the story [see ACI Eq. (10-20)]:

δs = 1
1 − Q

≥ 1 (8.30)

This equation is the solution of the infinite series that represents a general iterative P-
delta analysis for second-order moments.3 It has been demonstrated that this equation
closely predicts the magnitudes of second-order moments in a sway frame for δs equal
to or less than 1.5.9 If it is found that δs exceeds 1.5, then δs must be calculated using a
second-order elastic analysis in accordance with ACI 10.10.3 or 10.10.4 or the method
given in ACI 10.10.7.4.

In the derivation of Eq. (8.30), it is assumed that the second-order moments are
caused by equal and opposite forces of P�/�c , applied at the top and bottom of the
story. This produces a second-order moment diagram that is a straight line. The ac-
tual moment diagram is curved, and it leads to displacements that are approximately
15% greater than those from the approximate second-order moment diagram. This
effect can be included in the analysis by changing the denominator in Eq. (8.30) to
(1 − 1.15Q). However, the Code permits the simpler form of Eq. (8.30) without this
modification.

The stability index Q is determined by Eq. (8.14) and is based on deflections that
are calculated using an elastic first-order analysis and reduced section properties in
accordance with Table 8.3.
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In the second method, δs is permitted to be determined by ACI Eq. (10-21), which
was used in the magnified moment procedure that appeared in earlier editions of the
Code:

δs = 1
1 − (�Pu/0.75�Pc)

≥ 1 (8.31)

In this equation, the factored axial loads Pu are summed over the entire story, and the
critical buckling loads Pc are summed over the sway-resisting columns in that story.
This equation reflects the interaction of all of the columns in a story of a sway frame. In
the absence of torsional displacements about a vertical axis, the lateral displacements of
all the columns in a sway frame should be the same. A three-dimensional second-order
analysis should be used in situations where there is a significant torsional displacement
of the structure due to lateral loads; the moment magnification in the columns farthest
from the center of twist can be underestimated in such cases by the approximate moment
magnification procedure.

Like in the case of nonsway frames, the stiffness EI that is used in the calculation
of Pc is determined by ACI 10.10.6.1. The term βds , which is defined in ACI 10.10.4.2,
is used in the denominator of the equations for EI instead of βdns. As noted previously,
βds will normally be zero for a sway frame because wind and seismic loads are not
sustained loads. In certain cases, sustained loads may act on a structure (such as lateral
earth pressure) and βds will not be zero.

In the case of very slender columns, it is possible for the midheight deflection to be
substantial even though the column is adequately braced by other columns in the frame.
ACI R10.10.7.4 recommends that the adequacy of such columns be checked using the
nonsway provisions given in ACI 10.10.6.

Step 2: Determine total moments at the ends of the column. The magnified sway
moments determined in Step 1 are added to the unmagnified moments Mns at each end
of the column. The moments Mns are due to loads that cause no appreciable sidesway
(such as gravity loads) and are computed using a first-order elastic analysis.

The following equations can be used to determine the minimum and maximum
total moments M1 and M2 at the ends of the column [see ACI Eqs. (10-18) and (10-19)]:

M1 = M1ns + δs M1s (8.32)

M2 = M2ns + δs M2s (8.33)

In these equations, M1ns and M1s are the factored ends moments due to loads that cause
no appreciable sidesway and due to those that cause appreciable sidesway, respectively,
at the end of the column at which M1 acts. Similarly, M2ns and M2s are the factored
ends moments due to loads that cause no appreciable sidesway and due to those that
cause appreciable sidesway, respectively, at the end of the column at which M2 acts.
By definition, M1 and M2 are the smaller and larger end moments, respectively. The
magnitude of M1 is taken as positive if a column is bent in single curvature and negative
if bent in double curvature, and M2 is taken as the largest moment in the member if
transverse loading occurs between the supports.

In lieu of determining the magnified sway moments, using the two methods pre-
sented earlier, δs Ms1 and δs M2s can be determined by an elastic or nonlinear second-
order analysis in accordance with ACI 10.10.4 and 10.10.3, respectively.
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Bending Moment (ft kips)Axial Loads
Load Case (kips) Top Bottom M1 M2

Dead (D ) 218.8 0.0 0.0 0.0 0.0

Snow (S) 17.2 — — — —

Live (L ) 109.9 −15.5 −7.8 −7.8 −15.5

Wind (W ) 0 ±50.6 ±421.5 50.6 421.5

Load Combination

1 1.4D 306.3 0.0 0.0 0.0 0.0

2 1.2D + 1.6L + 0.5S 447.0 −24.8 −12.5 −12.5 −24.8

3 1.2D + 1.6S + 0.5L 345.0 −7.8 −3.9 −3.9 −7.8

4 1.2D + 1.6S + 0.8W 290.1 40.5 337.2 40.5 337.2

5 1.2D + 1.6S − 0.8W 290.1 −40.5 −337.2 −40.5 −337.2

6 1.2D + 1.6W + 0.5L + 0.5S 326.1 73.2 670.5 73.2 670.5

7 1.2D − 1.6W + 0.5L + 0.5S 326.1 −88.7 −678.3 −88.7 −678.3

8 0.9D + 1.6W 196.9 81.0 674.4 81.0 674.4

9 0.9D − 1.6W 196.9 −81.0 −674.4 −81.0 −674.4

TABLE 8.6 Summary of Axial Loads and Bending Moments on Column C4

ACI 10.10.7.1 requires that the magnified moments at the ends of a column must
be considered in the design of the beams framing into the column. The stiffnesses of
the beams in a sway frame play a key role in the stability of the columns, and this
provision ensures that the beams will have adequate strength to resist the magnified
column moments.

Example 8.8 Check the adequacy of column C4 of Example 8.7 for analysis in the east-west direction.
Assume that the first-order relative lateral deflection �o between the top and the bottom of the first
story due a total factored wind load Vus of 169 kips is equal to 0.55 in.

Solution
Step 1: Determine the factored axial loads and bending moments for column C4 in the first

story. A summary of the service axial loads and bending moments on the column is given in
Table 8.6. These values were obtained from an elastic analysis of the frame, using the appropriate
reduced moments of inertia given in ACI 10.10.4.1. The moments M1 and M2, which correspond
to the smaller and larger end moments, respectively, are also given in the table.

Column C4 is in the moment frame along line 4 that forms part of the lateral force–resisting
system in the east-west direction; therefore, it is subjected to the effects of gravity and wind loads.
The live load bending moments at the top and bottom of the column are due to pattern live loading
on the spans adjacent to the column.

Also included in Table 8.6 are the applicable load combinations of ACI 9.2. The corresponding
factored moments M1 and M2 are also given in the table.

The bending moments must be categorized as those that do and those that do not cause apprecia-
ble sway. Because the frame is symmetrical, the gravity loads do not cause appreciable sidesway.
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Bending Moments (ft kips)Load
Combination M1 M2 M1ns M2ns M1s M2s

1 0.0 0.0 0.0 0.0 — —

2 −12.5 −24.8 −12.5 −24.8 — —

3 −3.9 −7.8 −3.9 −7.8 — —

4 40.5 337.2 0.0 0.0 40.5 337.2

5 −40.5 −337.2 0.0 0.0 −40.5 −337.2

6 73.2 670.5 −7.8 −3.9 81.0 674.4

7 −88.7 −678.3 −7.8 −3.9 −81.0 −674.4

8 81.0 674.4 0.0 0.0 81.0 674.4

9 −81.0 −674.4 0.0 0.0 −81.0 −674.4

TABLE 8.7 Summary of Nonsway and Sway Moments for Column C4

Therefore, the gravity load moments are designated as Mns . The wind loads cause appreciable
sidesway, and these moments are designated as Ms . A summary of the nonsway and sway mo-
ments for each load combination is given in Table 8.7.

It is important to note that the moments M1ns and M1s are the factored nonsway and sway
moments, respectively, at the end of the column at which M1 acts. Similarly, M2ns and M2s are the
factored nonsway and sway moments, respectively, at the end of the column at which M2 acts. For
example, in load combination 6, M1 = 73.2 ft kips, and it acts at the top of the column (see Table
8.6). Therefore, the moments M1ns and M1s are determined using the service load moments at the
top of the column because they correspond to M1:

M1ns = 1.2MD + 0.5ML

= (1.2 × 0.0) + [0.5 × (−15.5)] = −7.8 ft kips

M1s = 1.6MW = 1.6 × 50.6 = 81.0 ft kips

The moments M2ns and M2s are determined using the service loads at the bottom of the column
because they correspond to M2:

M2ns = 1.2MD + 0.5ML

= (1.2 × 0.0) + [0.5 × (−7.8)] = −3.9 ft kips

M2s = 1.6MW = 1.6 × 421.5 = 674.4 ft kips

The other moments given in Table 8.7 can be obtained in a similar fashion.
Step 2: Determine if the frame in the first story is nonsway or sway. From inspection, it would

appear that the frame is a sway frame in the east-west direction, owing to the relatively flexible
moment frames that are used to brace the frame over the height of the building in that direction.
Use Eq. (8.14) to confirm that the frame is a sway frame:

Q =
∑

Pu�o

Vus�c
> 0.05
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The following total loads at the first floor level were determined from the analysis:

PD = 5,251 kips

PL = 2,636 kips

PS = 412 kips

PW = 0 kips

The total factored axial load �Pu must correspond to the lateral loading case for which it is a
maximum. In this example, ACI Eq. (9-4) produces the largest �Pu:

�Pu = 1.2PD + 1.6PW + 0.5PL + 0.5PS

= (1.2 × 5,251) + (1.6 × 0) + (0.5 × 2,636) + (0.5 × 412)

= 7,825 kips

The length of the column �c in this direction of analysis is equal to the distance from the
midheight of the beam to the top of the foundation (recall from Example 8.7 that the 16-ft story
height for the first story is measured from the mid-depth of the first elevated slab to the top of the
foundation):

�c = 16 − 9
2 × 12

− 22 − 9
12

+ 22
2 × 12

= 15.46 ft

Therefore,

Q =
∑

Pu�o

Vus�c
= 7,825 × 0.55

169 × 15.46 × 12
= 0.14 > 0.05

Because Q > 0.05, the frame in the first story is a sway frame, as expected.
Step 3: Determine if slenderness effects need to be considered. Because the frame is a sway

frame, slenderness effects need not be considered where ACI Eq. (10-6) is satisfied:

k�u

r
≤ 22

For the 18-in square column, r = 0.3 × 18 = 5.4 in.
Because the column-line beam provides lateral support to the top of the column in the east-west

direction, the unsupported length �u of the column in this direction is the distance between the
bottom of the beam and the top of the foundation:

�u = 16 − 9
2 × 12

− 22 − 9
12

= 14.54 ft

The effective length factor k is determined using the alignment chart shown in ACI Fig.
R10.10.1.1(b) for sway frames. At the bottom of the column, which is essentially fixed against
rotation, use a stiffness ratio �B = 1.0.

The stiffness ratio �A at the top of the column is determined using the ratio of the stiffness of
the columns to the stiffness of the beams.

The moments of inertia of the columns and beams are calculated using the reduction factors
given in ACI 10.10.4.1.

Icol = 0.7 × 1
12

× 184 = 6,124 in4

Ec = 33(wc )1.5√ f ′
c = 33 × (150)1.5 ×

√
4,000/1,000 = 3,834 ksi
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For the column below the first elevated level,

Ec Icol
�c

= 3,834 × 6,124
15.46 × 12

= 127 × 103 in kips

For the column above the first elevated level,

Ec Icol
�c

= 3,834 × 6,124
12 × 12

= 163 × 103 in kips

Ibeam = 0.35 × 1
12

× 18 × 223 = 5,590 in4

Ec Ibeam
�

= 3,834 × 5,590
24 × 12

= 74 × 103 in kips

Thus, �A at the top of the column is determined by Eq. (8.16):

�A =
∑

EI/�c∑
EI/�

= 127 + 163
2 × 74

= 2.0

From the alignment chart shown in ACI Fig. R10.10.1.1(b) for sway frames with �A = 2.0 and
�B = 1.0, k ≈ 1.45.

The slenderness ratio for column C4 is

k�u

r
= 1.45 × 14.54 × 12

5.4
= 47 > 22

Because, k�u/r > 22, slenderness effects must be considered.
Step 4: Determine the total moment M2 in the column including slenderness effects. The

total moment M2 in the column is determined by Eq. (8.33) for each of the load combinations:

M2 = M2ns + δs M2s

This moment is used in the design of the column because it is greater than the moment M1.
The nonsway and sway moments M2ns and M2s , respectively, are given in Table 8.7 for all of

the load combinations.
Two methods are given in the Code to determine the magnification factor δs for sway frames.

Both methods are examined next.

Determination of δs by ACI 10.10.7.3
In ACI 10.10.7.3, δs is determined using the stability index Q for the story:

δs = 1
1 − Q

≥ 1

where

Q =
∑

Pu�o

Vus�c

In the equation for Q, the only constant is �c ; all of the other quantities depend on the load
combination.

Table 8.8 contains a summary of the calculations for δs and M2, using ACI 10.10.7.3.
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Load
Combination ΣPu (kips) ∆o (in.) Vus (kips) Q δs M2 (ft kips)

1 7,351 — — — — 0.0

2 10,725 — — — — −24.8

3 8,278 — — — — −7.8

4 6,960 0.27 84.5 0.12 1.14 384.4

5 6,960 0.27 84.5 0.12 1.14 −384.4

6 7,825 0.55 169.0 0.14 1.16 774.5

7 7,825 0.55 169.0 0.14 1.16 −786.2

8 4,726 0.55 169.0 0.08 1.09 735.1

9 4,726 0.55 169.0 0.08 1.09 −735.1

TABLE 8.8 Summary of Slenderness Calculations for Column C4, Using ACI 10.10.7.3

The calculations are illustrated for load combination number 7. Similar calculations can be
performed for the other load combinations.

�Pu = 1.2PD − 1.6PW + 0.5PL + 0.5PS

= (1.2 × 5,251) − (1.6 × 0) + (0.5 × 2,636) + (0.5 × 412)

= 7,825 kips

Q =
∑

Pu�o

Vus�c
= 7,825 × 0.55

169 × 15.46
= 0.14

δs = 1
1 − Q

= 1
1 − 0.14

= 1.16

M2 = M2ns + δs M2s

= −3.9 + [1.16 × (−674.4)] = −786.2 ft kips

Determination of δs by ACI 10.10.7.4
In ACI 10.10.7.4, δs is determined using Eq. (8.31):

δs = 1
1 − (�Pu/0.75�Pc )

≥ 1

In this equation, the sum of the critical buckling loads Pc for all of the sway-resisting columns in
the first story is determined by Eq. (8.25):

Pc = π2EI
(k�u)2

The stiffness EI is calculated in accordance with ACI 10.10.6.1, and the effective length factor k
is determined in accordance with ACI 10.10.7.2 for sway frames.

It is evident from the design strength interaction diagram of this column shown in Fig. 8.20 that
the section reinforced with 12 No. 6 bars is not adequate for the total bending moment combined
with a factored axial load of 326.1 kips. Therefore, because the reinforcement is not known at this
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point in the analysis, use Eq. (8.27) to determine EI:

EI = 0.4EcIg

1 + βds
= 0.4 × 3,834 × 184

12(1 + 0)
= 13.42 × 106 in2 kips

The term βds is equal to zero in this equation because the wind load is not a sustained lateral
load.

This value of EI is applicable to all of the columns in the moment frames (sway-resisting columns)
along lines 1 and 4 because the sizes of these columns are all the same.

The effective length factor k was determined in step 3 for column C4 and is equal to 1.45. This
value of k is applicable to columns B1, C1, D1, B4, C4, and D4 because they all have two beams
framing into the top of the columns. Therefore, Pc for these columns is equal to the following:

Pc = π2EI
(k�u)2 = π2 × 13.42 × 106

(1.45 × 14.54 × 12)2 = 2,069 kips

Columns A1, E1, A4, and E4 have only one beam framing into the top of the columns, and the
ratio �A is determined using Eq. (8.16):

�A =
∑

EI/�c∑
EI/�

= 127 + 163
74

= 3.9

With �A = 3.9 and �B = 1.0, the effective length factor k from ACI Fig. R10.10.1.1(b) for sway
frames is approximately equal to 1.61.

Therefore, Pc for these columns is equal to the following:

Pc = π2EI
(k�u)2 = π2 × 13.42 × 106

(1.61 × 14.54 × 12)2 = 1,679 kips

The summation of Pc for all of the sway-resisting columns in the first story is equal to

�Pc = (6 × 2,069) + (4 × 1,679) = 19,130 kips

Table 8.9 contains a summary of the calculations for δs and M2, using ACI 10.10.7.4.

Load
Combination ΣPu (kips) Vus (kips) δs M2 (ft kips)

1 7,351 — — 0.0

2 10,725 — — −24.8

3 8,278 — — −7.8

4 6,960 84.5 1.94 654.9

5 6,960 84.5 1.94 −654.9

6 7,825 169.0 2.20 1,479.6

7 7,825 169.0 2.20 −1,487.4

8 4,726 169.0 1.49 1,005.6

9 4,726 169.0 1.49 −1,005.6

TABLE 8.9 Summary of Slenderness Calculations for Column C4, Using ACI 10.10.7.4
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It is evident from Table 8.9 that the magnification factor δs is greater than the limiting value
of 1.4 given in ACI 10.10.2.1. As such, this approximate method, which is generally conservative,
should not be used. The results from Table 8.8 are used to design the column.

Step 5: Check the adequacy of the section for combined axial load and bending. The column
reinforced with 12 No. 6 bars is not adequate for the critical load combinations given in Table 8.8.
Initially, try increasing the amount of longitudinal reinforcement and the compressive strength of
the concrete.

It can be shown that this column is not adequate even when the reinforcement ratio is increased
to approximately 6% and the compressive strength is increased to 7,000 psi.

Therefore, the dimensions of the column must be increased. This entails performing another
first-order elastic analysis of the structure for combined gravity and wind loads. The results of this
analysis and subsequent design of the column are not shown here.

It may be possible to determine a column size so that slenderness effects can be neglected. In
this example, the beam stiffness at the top of the column has a significant influence on the degree
of slenderness for this sway frame. A few iterations using different combinations of column and
beam sizes can result in a design where the effects from slenderness need not be considered.

8.6 Biaxial Loading
Axial load in combination with biaxial bending moments must be considered in the
design of corner columns and other columns where moments occur simultaneously
about both principal axes.

As was discussed in Section 8.4, an interaction diagram for a reinforced concrete
section represents the strength of the section for combinations of axial load and bending
moment about one of the principal axes. These interaction diagrams facilitate the design
of such members.

The strength of an axially loaded column subjected to bending moments about both
principal axes can be represented by a biaxial strength interaction surface, as shown in
Fig. 8.21.

This surface is formed by a series of uniaxial interaction diagrams that are drawn
radially from the vertical axis. Intermediate interaction diagrams between the angle θ

equal to 0 degrees (uniaxial bending about the y-axis) and 90 degrees (uniaxial bending
about the x-axis) are obtained by varying the angle of the neutral axis for assumed
strain configurations.

In general, a biaxial strength interaction surface is obtained by performing a series
of strain compatibility analyses that are involved and time-consuming. Designing a
column for combined axial load and biaxial bending is a very lengthy process without
the use of a computer program.

A number of simplified methods that have produced satisfactory results have been
developed through the years. A summary of these methods can be found in ACI R10.3.6
and R10.3.7.

The reciprocal load method provides a simple and conservative estimate of the
strength of a member under biaxial loading conditions.10 The nominal axial load
strength Pni corresponding to eccentricities about both axes of a section can be obtained
from the following equation:

1
Pni

= 1
Pnx

+ 1
Pny

− 1
Po

(8.34)
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FIGURE 8.21 Biaxial
strength interaction
surface.

where Pnx = nominal axial load strength when the member is subjected to the
uniaxial moment Mnx

Pny = nominal axial load strength when the member is subjected to the
uniaxial moment Mny

Po = nominal axial load strength at zero eccentricity

Determination of the quantities that make up Pni is relatively straightforward. The
nominal axial load strengths Pnx and Pny can be obtained from uniaxial nominal strength
strain compatibility analyses, and Po is determined by Eq. (5.35).

The design axial load strength φPni is obtained by multiplying Pni from Eq. (8.34) by
the appropriate strength reduction factor φ based on the strain in the reinforcing bars
farthest from the compression face of the section. This design strength must be equal
to or greater than the factored axial load Pu in order to satisfy the requirements of the
strength design method.

The reciprocal load method produces reasonably accurate results when flexure does
not govern the design of the section, that is, when Pnx and Pny are greater than the axial
load Pb corresponding to balanced failure. In cases where flexure governs, one of the
other methods referenced in ACI R10.3.6 and R10.3.7 should be utilized.

Slenderness effects must also be considered in the design of columns subjected to
biaxial bending. The moment about each axis is magnified separately on the basis of
the restraint conditions corresponding to that axis. The adequacy of the compression
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member is checked for the factored axial load Pu and the maximum magnified bending
moment for all applicable load combinations in accordance with ACI 9.2.

Example 8.9 A 28 × 28 in column is reinforced with 12 No. 10 bars. Assume normal-weight concrete
with f ′

c = 6,000 psi and Grade 60 reinforcement. The column is subjected to the following factored
loads:

Pu = 2,000 kips

Mux = 400 ft kips

Muy = 200 ft kips

Check the adequacy of the column, using the reciprocal load method.

Solution The required nominal strength axial load and bending moments are determined assuming
compression-controlled behavior (φ = 0.65):

Pn = 2,000
0.65

= 3,077 kips

Mnx = 400
0.65

= 615.4 ft kips

Mny = 200
0.65

= 307.7 ft kips

The uniaxial load strengths Pnx and Pny can be determined from the nominal strength interac-
tion diagram of the section. Because the section is symmetrical, the same diagram can be utilized
for bending about the x-axis and y-axis (see Fig. 8.22).

The following uniaxial load strengths are obtained from Fig. 8.22:

� For Mnx = 615.4 ft kips, Pnx = 4,195 kips
� For Mny = 307.7 ft kips, Pny = 4,505 kips

Bending moment Mn (ft kips)
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FIGURE 8.22 Nominal strength interaction diagram for the column given in Example 8.9.
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Note that both Pnx and Pny are greater than the axial load at balanced failure, which confirms
that the section is compression-controlled. Thus, the reciprocal load method can be used.

The nominal axial load strength at zero eccentricity Po is determined by Eq. (5.35):

Po = 0.85 f ′
c (Ag − Ast) + fy Ast

= 0.85 × 6 × [282 − (12 × 1.27)] + (60 × 12 × 1.27) = 4,835 kips

The nominal axial load strength Pni is determined by Eq. (8.34):

1
Pni

= 1
Pnx

+ 1
Pny

− 1
Po

= 1
4,195

+ 1
4,505

− 1
4,835

or Pni = 3,944 kips.
Because the section is compression-controlled,

φPni = 0.65 × 3,944 = 2,564 kips > Pu = 2,000 kips

Thus, the section is adequate for combined axial load and biaxial bending.

8.7 Reinforcement Details

8.7.1 Overview
Longitudinal and lateral reinforcement for compression members must satisfy the re-
quirements given in ACI Chaps. 7 and 10. Limitations are provided on the size and
spacing of both types of reinforcement.

The longitudinal and lateral bars must be spaced far enough apart so that concrete
can flow easily between the bars without honeycombing. Minimum bar spacing is
especially critical at splice locations. The lateral reinforcement must be spaced close
enough to provide adequate lateral support to the longitudinal reinforcement and to
provide sufficient shear strength where needed.

Splice requirements for longitudinal reinforcement in columns are given in ACI
12.17. The type of lap splice that must be provided is based on the stress in the reinforcing
bars under factored loads.

8.7.2 Limits for Reinforcement

Longitudinal Reinforcement
Minimum and Maximum Areas of Longitudinal Reinforcement The minimum and maximum
areas of longitudinal reinforcement are prescribed in ACI 10.9.1 (see Section 5.5 of this
book). The following limits are applicable regardless of the type of lateral reinforcement
that is used in the member:

� Minimum Ast = 0.01Ag

� Maximum Ast = 0.08Ag

In these equations, Ag is the gross cross-sectional area of the member.
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The 1% lower limit is meant to provide resistance to any bending moments that
are not accounted for in the analysis because of, for example, construction tolerances
or misalignments. This lower limit is also meant to help reduce creep and shrinkage
in the concrete under sustained compressive stresses. After time, a portion of the sus-
tained compressive stress is transferred to the longitudinal reinforcement, and having
a minimum amount of such reinforcement helps in resisting these stresses.

In order for the concrete to be properly placed and consolidated, the size and number
of longitudinal reinforcing bars must be chosen to minimize reinforcement congestion.
The upper limit on the longitudinal reinforcement is meant to help achieve these goals.
The maximum area of reinforcement must not exceed 4% of the gross column area at
sections where lap splices are utilized. As noted previously, economy is achieved in
column design when the ratio of the longitudinal reinforcement is between 1% and 2%
of the gross area of the section.

ACI 10.8.2 through 10.8.4 permit a column to be designed of sufficient size to carry
the required factored loads and to add additional concrete to the section without hav-
ing to increase the minimum longitudinal reinforcement to satisfy ACI 10.9.1. The ad-
ditional concrete should not be considered to carry any load; however, it should be
considered in analysis because it increases the stiffness of the section.

The provision given in ACI 10.8.4 is commonly employed in the design of columns
in the upper floors of a building. It is economical to use the same column size over a
number of floors, so at the top of the building where the load requirements are usually
less, the column cross-section is typically larger than required for loading. ACI 10.8.4
permits the minimum reinforcement to be based on a reduced effective area that is
equal to or greater than 50% of the total gross area. For example, assume that a column
has a required axial strength Pu = 250 kips. Also assume that the cross-section and
area of longitudinal reinforcement have been determined on the basis of a minimum
reinforcement ratio of 1% and that φPn = 450 kips. The ratio of the required strength to
the design strength is Pu/φPn = 250/450 = 0.56. Therefore, according to ACI 10.8.4, the
minimum longitudinal reinforcement ratio may be taken as 0.56 × 1.0 = 0.56% instead
of 1%. If φPn = 600 kips instead of 450 kips, Pu/φPn = 250/600 = 0.42, which is less
than 0.50. In this case, the minimum longitudinal reinforcement ratio may be taken as
0.50% instead of 1%.

The reduction of the minimum area of longitudinal reinforcement according to ACI
10.8.4 is not applicable to special moment frames or special structural walls designed
in accordance with the seismic provisions given in ACI Chap. 21.

Minimum Number of Longitudinal Bars A minimum of four longitudinal bars are required
in compression members where rectangular or circular ties are used as lateral reinforce-
ment (ACI 10.9.2). For bars enclosed by spirals conforming to ACI 10.9.3, a minimum
of six longitudinal bars are required.

For members that have a circular arrangement of longitudinal bars, the orientation
of the bars will affect the moment strength of the column where the number of lon-
gitudinal bars is less than eight. Calculations that illustrate this are given in Example
8.5. Because it is impossible to know the orientation of the bars placed in the field, the
design of the column must be based on the most critical bar orientation, that is, the
orientation that results in the lowest strength.

A minimum of three longitudinal bars are required in sections that utilize triangular
ties. A tied triangular column needs three longitudinal bars located at each apex of the
triangular ties.
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Spacing of Longitudinal Bars The longitudinal bars in reinforced concrete columns must
be spaced at a sufficient distance so that concrete can flow easily between the bars and
between the bars and the formwork. The provisions given in ACI 7.6.3 are intended to
satisfy this objective.

In spiral or tie columns, the minimum clear distance that is to be provided between
longitudinal bars is equal to the largest of the following (see ACI 7.6.3):

1. 1.5 times the diameter of the bar

2. 1.5 in

3. 1.33 times the maximum aggregate size

The third criterion is related to the maximum aggregate size and is provided to
ensure that the concrete fully encases the reinforcing bars without honeycombing.

Minimum clear distance requirements are also applicable to the clear distance be-
tween a contact lap splice and any adjacent bars or splices.

Figure 8.23 contains the minimum face dimension of rectangular tied columns with
normal lap splices based on the requirements presented earlier. The column face di-
mensions have been rounded to the nearest inch and have been determined using a
1.5-in clear cover to No. 4 ties.

The following equations were utilized to generate the information given in Fig. 8.23:

Bar
size No.

5

6

7

8

9

10

11

1.5 in for Nos. 5 to 8

1.5 in

1.5db for Nos. 9 to 11

FIGURE 8.23 Minimum face dimension (inches) of rectangular tied columns with normal lap
splices.
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� For Nos. 5 through 8 longitudinal bars,

Minimum face dimension = 2(cover + dtie) + ndb + 1.5(n − 1)

+ [(3 + 2db) × cos θ − 0.586db − 3] (8.35)

� For Nos. 9 through 11 longitudinal bars,

Minimum face dimension = 2(cover + dtie) + ndb + 1.5(n − 1) + 1.38db (8.36)

In these equations,

n = number of longitudinal bars per face

dtie = diameter of tie bars

db = diameter of longitudinal bars

θ = arcsin
(1 − 1/

√
2)db

1.5 + db
(see Fig. 8.24)

FIGURE 8.24 Distance between bars at the corner of a column with normal lap splices.
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These equations can also be used to determine minimum column face dimensions
for other tie sizes and cover.

Example 8.10 Determine the minimum face dimension of a rectangular column to accommodate
seven No. 8 bars. Assume a 1.5-in clear cover to No. 4 ties.

Solution Equation (8.35) is used to determine the minimum face dimension because No. 8 bars are
specified:

Minimum face dimension = 2(cover + dtie) + ndb + 1.5(n − 1) + [(3 + 2db ) cos θ − 0.586db − 3]

= 2(1.5 + 0.50) + (7 × 1.0) + 1.5(7 − 1) + [(3 + (2 × 1.0)) cos 11.3 − (0.586 × 1.0) − 3] = 21.3 in

where

θ = arcsin
(1 − 1/

√
2)db

1.5 + db
= arcsin

(1 − 1/
√

2) × 1.0
1.5 + 1.0

= 11.3 degrees

Round the minimum face dimension up to 22 in; this matches the minimum face dimension
shown in Fig. 8.23.

Figure 8.25 contains the maximum number of bars in a circular or square column
that has longitudinal bars arranged in a circle with normal lap splices. The information
given in this figure satisfies the minimum clear distance requirements of ACI 7.6.3 and
the reinforcement limits of ACI 10.9.1. The number of bars have been rounded to the
nearest whole number and were determined using a 1.5-in clear cover to No. 4 spirals
or ties.

The following equation was utilized to generate the information given in Fig. 8.25
(see Fig. 8.26):

n = 180
arcsin [(s/2) /a ]

(8.37)

In this equation,

n = maximum number of longitudinal bars

s = minimum clear space between longitudinal bars

= 1.5 in + db for Nos. 5 though 8 bars

= 1.5db + db = 2.5db for Nos. 9 through 11 bars

a = h/2 − [cover + (ds or dtie)] − 1.5db

ds = diameter of spiral bar

dtie = diameter of tie bars

db = diameter of longitudinal bars

This equation can also be used to determine the maximum number of bars for other
spiral or tie sizes and cover.
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1.5 in

Bar size (No.)

5 6 7 8 9 10 11

1.5 in for Nos. 5 to 8

1.5db for Nos. 9 to 11

FIGURE 8.25 Maximum number of bars in columns having longitudinal bars arranged in a circle
and normal lap splices.

Example 8.11 Determine the maximum number of bars that can be accommodated in an 18-in-
diameter column with No. 7 bars. Assume a 1.5-in clear cover to No. 4 spirals.

Solution Use Eq. (8.37) to determine the maximum number of bars n:

n = 180
arcsin [(s/2) /a ]

= 180
arcsin [(2.375/2) /5.69]

= 14.9
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db (typical)FIGURE 8.26
Distance between
bars in a column
with bars arranged
in a circle and
normal lap splices.

where s = 1.5 + db = 1.5 + 0.875 = 2.375 in for No. 7 bars

a = h/2 − (cover + ds ) − 1.5db

= (18/2) − (1.5 + 0.5) − (1.5 × 0.875) = 5.69 in

Round the number of bars down to 14; this matches the maximum number of bars shown in
Fig. 8.25.

Minimum Spiral Reinforcement The minimum amount of spiral reinforcement that must
be provided in a spiral column is given by ACI Eq. (10-5):

ρs = 0.45
(

Ag

Ach
− 1

)
f ′
c

fyt
(8.38)

The volumetric spiral reinforcement ratio is equal to the volume of the spiral rein-
forcement divided by the volume of the concrete core measured to the outside edges of
the spiral reinforcement.

The volume of the spiral reinforcement is determined by multiplying the area of
the spiral bar Abs by the length of one 360-degree loop of the spiral; this length is equal
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FIGURE 8.27 Spiral reinforcement.

to the circumference of the spiral π Dch, where Dch is the diameter of the column core
measured to the outside edges of the spiral reinforcement (see Fig. 8.27).

The volume of the concrete core is equal to the area of the core Ach = π D2
ch/4 times

the center-to-center spacing s of the spirals (the center-to-center spacing of the spirals
is commonly referred to as spiral pitch).

Thus, ρs can be expressed as

ρs = Absπ Dch(
π D2

ch/4
)

s
= 4Abs

Dchs
(8.39)

Substituting Eq. (8.39) into Eq. (8.38) and solving for s results in

s = 8.9Abs

Dch[(Ag/Ach) − 1]
(

f ′
c/ fyt

) (8.40)

Thus, for a given spiral bar size, the center-to-center spacing of the spirals s must
be less than or equal to that given by Eq. (8.40) in order to satisfy the minimum require-
ments of ACI 10.9.3. The clear spacing between spirals shall not exceed 3 in or be less
than 1 in (ACI 7.10.4.3). Additionally, the spacing must satisfy the requirements of ACI
3.3.2. These limitations must also be considered when choosing the spiral pitch.

The yield strength of the spiral reinforcement fyt that can be used in determining
the minimum amount of spiral reinforcement must be equal to or less than 100,000 psi.
Research has confirmed that 100,000 psi reinforcement can be used for confinement.11−13

However, lap splices determined in accordance with ACI 7.10.4.5(a) are not permitted
in cases where fyt exceeds 60,000 psi.

Spiral reinforcement increases the strength of the concrete that is within the core
of the column after the concrete shell outside of the core spalls off caused by load and
deformation. The purpose of minimum spiral reinforcement is to provide additional
load-carrying strength for concentrically loaded columns that is equal to or slightly



471C o l u m n s

greater than the strength that is lost when the outer concrete shell spalls off. It has been
shown that concrete columns that contain the minimum amount of spiral reinforcement
required by the section exhibit considerable toughness and ductility.

Example 8.12 Determine the maximum allowable spiral pitch for a 24-in-diameter column, assum-
ing f ′

c = 5,000 psi with a 3/4-in maximum aggregate size and a 1.5-in clear cover to No. 4 spirals
(Grade 60).

Solution Equation (8.40) is used to determine the maximum spiral pitch s:

s = 8.9Abs
Dch[(Ag/Ach) − 1]

(
f ′
c/ fyt

)
= 8.9 × 0.20

(24 − 3){[(π × 122)/(π × 10.52)] − 1} × (5/60)
= 3.3 in

Try a 3-in spiral pitch.
Check the spacing requirements of ACI 7.10.4.3:

Clear spacing = 3 − 0.5 = 2.5 in, which is less than 3 in and greater than 1 in

Minimum clear spacing in accordance with ACI 3.3.2 = 1.33 (maximum aggregate size) =
1.33 × 0.75 = 1.0 in < 3 in

Therefore, use a maximum spiral pitch of 3 in.

Lateral Reinforcement
Spiral Reinforcement Requirements for compression members with spiral reinforce-
ment are given in ACI 7.10.4 and are summarized in Table 8.10.

Standard spiral sizes are Nos. 3 to 5 bars. Minimum sizes are based on practical
considerations in cast-in-place construction.

The main purposes of the spiral reinforcement are as follows:

1. To hold the longitudinal reinforcement in the proper position when the concrete
is placed

2. To prevent the longitudinal reinforcement from buckling outward through the
relatively thin layer of concrete cover

Spirals are permitted to be terminated at the level of the lowest horizontal reinforce-
ment of the members framing into the column. In cases where one or more sides of the
column are not enclosed by beams or brackets, ties are required from the termination
of the spiral to the bottom of the slab, drop panel, or shear cap. These ties must enclose
the longitudinal column reinforcement and the portion of the bars from the beams that
are bent into the column for anchorage.

The proper pitch and alignment of the spirals must be maintained during concrete
placement. Prior to the 1989 Code, spacers were required to hold the spiral cage in place.
Information on the number of recommended spacers based on spiral bar size and core
diameter is given in ACI R7.10.4. Note that any method of installation is acceptable
provided the spirals are held firmly in place.

Tie Reinforcement Requirements for compression members with tie reinforcement are
given in ACI 7.10.5 and are summarized in Table 8.11.
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Requirement ACI Section Number

Spirals shall consist of evenly spaced continuous bar or wire
of such size and so assembled to permit handling and
placing without distortion from designed dimensions.

7.10.4.1

Minimum spiral diameter = 3/8 in. 7.10.4.2

Clear spacing between spirals shall not exceed 3 in or be
less than 1 in. Also see ACI 3.3.2.

7.10.4.3

Anchorage of spiral reinforcement shall be provided by 1-1/2
turns of spiral bar or wire at each end of a spiral unit.

7.10.4.4

Spiral reinforcement shall be spliced using lap splices
conforming to ACI 7.10.4.5(a) or mechanical or welded
splices conforming to ACI 7.10.4.5(b).

7.10.4.5

Spirals shall extend from the top of the footing or slab in any
story to the level of the lowest horizontal reinforcement in
the members supported above.

7.10.4.6

Ties shall extend above the termination of the spiral to the
bottom of a slab, drop panel, or shear cap where beams or
brackets do not frame into all sides of a column.

7.10.4.7

In columns with capitals, spirals shall extend to a level at
which the diameter or width of the capital is 2 times that of
the column.

7.10.4.8

Spirals shall be held firmly in place and true to line. 7.10.4.9

TABLE 8.10 Summary of Requirements for Spiral Reinforcement

Standard hook dimensions for ties, which are the same as those for stirrups, are
given in ACI 7.1.3.

The main purposes of the ties are the same as those of spirals: to hold the longitudinal
reinforcement in the proper position when the concrete is placed and to prevent the lon-
gitudinal bars from buckling outward through the relatively thin layer of concrete cover.
The maximum spacing criteria in ACI 7.10.5.2 are intended to achieve these purposes.

ACI Fig. R7.10.5 illustrates the requirements of ACI 7.10.5.3 pertaining to tie ar-
rangement and maximum clear spacing between laterally supported bars. The corner
bars and every other longitudinal bar must have lateral support in cases where the
center-to-center spacing of the longitudinal bars on a side is equal to or less than 6
in plus the diameter of the longitudinal bar. If the spacing is greater than that, lateral
support must be provided for the intermediate bars as well.

Crossties are commonly used in columns to provide lateral support for intermediate
bars. A crosstie is a continuous reinforcing bar that has a seismic hook on one end and
a hook not less than 90 degrees with at least a six-diameter extension on the other. A
seismic hook is defined as a hook with a bend that is not less than 135 degrees and an
extension that is not less than 6 bar diameters or 3 in, whichever is greater.

Figure 8.28 illustrates crossties in a column where the clear spacing of the longi-
tudinal bars on a side is equal to or less than 6 in. Note that all of the hooks engage
the peripheral longitudinal bars and that the 90-degree hooks of successive crossties
alternate from one side of the column to the other.
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Requirement ACI Section Number

At least No. 3 ties shall enclose No. 10 or smaller longitudinal
bars, and at least No. 4 ties shall enclose Nos. 11, 14, and 18
bars and bundled longitudinal bars.

7.10.5.1

Vertical spacing of ties shall not exceed the smaller of the
following:

1. 48 tie bar diameters

2. 16 longitudinal bar diameters

3. The least dimension of the compression member

7.10.5.2

Ties shall be arranged such that every corner or alternate
longitudinal bar has lateral support provided by the corner of a
tie with an included angle of not more than 135 degrees. No bar
shall be farther than 6 in clear on each side along the tie from a
laterally supported bar. A complete circular tie is also
permitted.

7.10.5.3

Ties shall be located vertically not more than one-half a tie
spacing above the top of a footing or slab in any story and
should be spaced to not more than one-half a tie spacing below
the lowest horizontal reinforcement in a slab, drop panel, or
shear cap above.

7.10.5.4

Where beams or brackets frame from four directions into a
column, it is permitted to terminate the ties not more than 3 in
below the lowest reinforcement in the shallowest of the beams
or brackets.

7.10.5.5

Where anchor bolts are placed in the top of a column or
pedestal, the bolts must be enclosed by the lateral
reinforcement that also surrounds at least four vertical bars of
the column or pedestal. The lateral reinforcement must be
distributed within 5 in of the top of the column or pedestal and
must consist of at least two No. 4 or three No. 3 bars.

7.10.5.6

TABLE 8.11 Summary of Requirements for Tie Reinforcement

The tie detail requirements of ACI 7.10.5 are illustrated in Fig. 8.29. Also illus-
trated in the figure are the offset bends that must be provided in the longitudinal bars
immediately below the splice locations. Offset longitudinal bars must conform to the
requirements of ACI 7.8.1. Additional ties must be provided within 6 in of the offset
to help resist the horizontal component of the force transmitted through the inclined
portion of the bars (see ACI 7.8.1.3).

Lap splice locations for the longitudinal bars are also depicted in Fig. 8.29. Infor-
mation on the different types of splices for columns is given next.

8.7.3 Splices

Overview
Splice requirements for column are given in ACI 12.17. Provisions are provided for lap
splices, mechanical or welded splices, and end-bearing splices.
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FIGURE 8.29 Tie and splice details.

In cases where the compressive strength of the concrete is less than 3,000 psi, the
lap splice must be increased by one-third.

A minimum tensile strength is required for all compression splices. This accounts
for misalignments and other types of situations that can introduce tensile stresses in
the bars. A compression lap splice length determined in accordance with ACI 12.16 has
a tensile strength of at least 0.25Ab fy.

Longitudinal bar sizes are typically reduced at designated locations over the height
of a column for overall economy. At such locations, the splice length must be equal to
or greater than the larger of the following:
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Bending moment

Zone 1
Zone 2

Zone 3
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FIGURE 8.30 Lap splice requirements for columns.

� The development length in compression �dc of the larger bar, determined in
accordance with ACI 12.3

� The compression lap splice length of the smaller bar

Lap splices are prohibited for Nos. 14 and 18 bars (see ACI 12.14.2.1). However, ACI
12.16.2 permits such bar sizes to be lap spliced to No. 11 and smaller bars in compression.

The lap splice length determined by Eq. (8.41) may be multiplied by 0.83 in tied
columns where ties that have an effective area equal to or greater than 0.0015hs in both
directions of analysis are provided over the lap splice length (ACI 12.17.2.4).

Consider the column depicted in Fig. 8.28. In the direction of analysis perpendicular
to the column dimension h1, there are four tie bars with an area per bar of Ab . In the
direction of analysis perpendicular to h2, there are three tie bars. The compression lap
splice length determined by Eq. (8.41) may be multiplied by 0.83 when both of the
following equations are satisfied:

4Ab ≥ 0.0015h1s

3Ab ≥ 0.0015h2s

In these equations, s is the vertical spacing of the ties along the splice length. Note that
the reduced lap splice length must not be taken less than 12 in.

Because spiral reinforcement provides increased resistance to splitting, lap splice
lengths in columns with spiral reinforcement may be taken as 0.75 times the length
determined by Eq. (8.41). The spiral reinforcement must conform to ACI 7.10.4 and
10.9.3, and in no case shall the lap splice length be taken less than 12 in.

Zone 2 Zone 2 corresponds to the portion of the interaction diagram where the stress
in the longitudinal bars on the tension face of the member is tensile and does not exceed
50% of the yield strength of the reinforcement.
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A tension lap splice conforming to the requirements of ACI 12.15 must be used
in columns where one or more of the factored load combinations fall within Zone
2. Details on how to determine tension lap splice lengths can be found in Sec-
tion 6.2.

If half or fewer of the longitudinal bars are spliced at any section and alternate
lap splices are staggered a distance not less than the tension development length �d ,
a Class A tension lap splice may be used. A Class B tension lap splice is required
where more than one-half of the longitudinal bars are spliced at one section. In typical
column construction, all of the bars are spliced above the slab, so a Class B splice is
required.

Zone 3 Zone 3 corresponds to the portion of the interaction diagram where the stress
in the longitudinal bars on the tension face of the member is tensile and exceeds 50%
of the yield strength of the reinforcement.

A Class B tension lap splice conforming to the requirements of ACI 12.15 must
be used in columns where one or more of the factored load combinations fall within
Zone 3.

Example 8.13 Determine the required lap splice length for a 20-in square tied column reinforced
with 12 No. 6 bars. Assume normal-weight concrete with f ′

c = 4,000 psi and Grade 60 reinforcement.
Also assume a 1.5-in clear cover to No. 3 ties and that all of the bars will be spliced at the same
location.

The governing factored load combinations determined in accordance with ACI 9.2 are given in
Table 8.12.

Solution Figure 8.31 contains the design strength interaction diagram for this column along with
the load points corresponding to the four load combinations.

It is evident from the figure that load combinations 3 and 4 produce tensile stresses in the
longitudinal bars closest to the tension face of the section, which exceed 50% of the yield strength
of the reinforcement. Because all bars are to be spliced at the same location, a Class B tension lap
splice must be provided in accordance with ACI 12.15.1:

Class B splice length = 1.3�d ≥ 12 in

The tension development length �d is determined by ACI Eq. (12-1):

�d =
(

3
40

fy

λ
√

f ′
c

ψtψeψs

[(cb + Ktr ) /db ]

)
db ≥ 12 in

Load Combination Axial Load (kips) Bending Moment (ft kips)

1 1.4D 220 16

2 1.2D + 1.6L + 0.5S 242 31

3 1.2D + 0.5L + 0.5S + 1.6W 213 197

4 0.9D− 1.6W 136 167

TABLE 8.12 Summary of Factored Axial Loads and Bending Moments for the Column Given in
Example 8.13
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Use a splice length of 2 ft 0 in with the splice located just above the slab.
Reinforcement details for this column are similar to those shown in Fig. 8.29.

Example 8.14 Determine the required compression lap splice length for a column where 12 No. 7
bars are spliced to 12 No. 9 bars. Assume normal-weight concrete with f ′

c = 6,000 psi and Grade
60 reinforcement. Also assume a 1.5-in clear cover to the No. 4 ties and that all of the bars will be
spliced at the same location.

Solution ACI 12.16.2 requires that the compression splice length be taken as the larger of the
following:

� The development length in compression �dc of the larger bar, determined in accordance with
ACI 12.3

� The compression lap splice length of the smaller bar

The development length �dc of the No. 9 bars is the larger of the following (see ACI 12.3.2):

�
0.02 fydb

λ
√

f ′
c

= 0.02 × 60,000 × 1.128
1.0

√
6,000

= 17.5 in

� 0.0003 fydb = 0.0003 × 60,000 × 1.128 = 20.3 in (governs)

The compression lap splice length of the No. 7 bars is determined by Eq. (8.41a) for Grade 60
reinforcement:

0.0005 fydb = 0.0005 × 60,000 × 0.875 = 26.2 in

Therefore, the splice length must be equal to a minimum of 26.2 in.
Use a splice length of 2 ft 4 in.

Mechanical or Welded Splices
Mechanical or welded splices are permitted in columns and must meet the requirements
of ACI 12.14.3.2 and 12.14.3.4, respectively. As noted previously, these types of splices
may be used in both compression and tension.

A mechanical splice is defined in Ref. 14 as a “complete assembly of a coupler, a
coupling sleeve, or an end-bearing sleeve, including any additional intervening material
or other components required to accomplish the splicing of reinforcing bars.” More
information on the different types of mechanical splices can be found in Ref. 14.

A variety of proprietary mechanical devices are available that can be used to splice
the longitudinal reinforcing bars in a column. They are commonly specified at locations
where long lap splices would be required or at locations where lap splices would cause
congestion, such as at beam–column joints.

A full mechanical splice must be able to develop in tension or compression 125%
of the yield strength of the reinforcing bar. The 25% increase above the yield strength
is considered an economical way of achieving a ductile failure (rather than a brittle
failure) in the mechanical splice.

A full welded splice must also be able to develop 125% of the yield strength of the
reinforcing bar. These types of splices are primarily intended for No. 6 bars and larger.
The requirement of 1.25 fy is intended to provide sound welding that is adequate in
both tension and compression.
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End-Bearing Splices
End-bearing splices transmit compressive stresses from one longitudinal bar to another
by bearing of square cut ends held in concentric contact by a suitable device. Tolerances
for the bar ends are given in ACI 12.16.4.2.

These types of splices are almost exclusively used in columns with vertical longi-
tudinal bars. ACI 12.16.4.3 requires that end-bearing splices be used only in members
where closed ties, closed stirrups, or spiral reinforcement is provided. This requirement
ensures that a minimum shear resistance is provided in members containing these types
of splices.

End-bearing splices must have a minimum tensile strength of 25% of the yield
strength of the longitudinal reinforcement area on each face of a column. This is typ-
ically achieved by either staggering the location of the end-bearing splices or adding
additional longitudinal reinforcement through the splice locations.

8.8 Shear Requirements
Shear strength requirements for columns are essentially the same as those for flexural
members. The following equation must be satisfied at all sections along the length of a
column:

φVn ≥ Vu (8.42)

The required shear strength Vu is determined by the applicable load combinations
in ACI 9.2, based on an elastic analysis of the structure. The nominal shear strength Vn

is the sum of the nominal shear strength provided by the concrete Vc and that provided
by the lateral reinforcement Vs . The strength reduction factor φ is equal to 0.75 for shear
(ACI 9.3.2.3).

ACI 11.2 provides two methods to determine Vc for members subjected to axial
compression. In the first method, Vc is determined by ACI Eq. (11-4):

Vc = 2
(

1 + Nu

2,000Ag

)
λ
√

f ′
c bwd (8.43)

In this equation, Nu is the factored axial compressive load determined by the applicable
load combinations given in ACI 9.2. The magnitude of Nu is taken as positive for com-
pressive loads. The effective depth d should be determined from a strain compatibility
analysis for each applicable load combination.

The second method to determine Vc is more complex than the first. In this method,
ACI Eq. (11-5) is used to calculate Vc where Mm, which is determined by ACI Eq. (11-6),
is substituted for Mu in that equation. Also, the ratio Vud/Mu is not limited to 1 as
required by ACI 11.2.2.1. Thus, Vc can be determined by the following:

Vc =
(

1.9λ
√

f ′
c + 2,500ρw

Vud
Mm

)
bwd

≤ 3.5λ
√

f ′
c bwd

√
1 + Nu

500Ag
(8.44)
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In this equation, Mm = Mu − Nu [(4h − d) /8] > 0 and ρw = As/bwd . The reinforcement
ratio ρw is determined using the area of the tensile reinforcement As in the section. If
Mm ≤ 0, then Vc is determined by the upper limit given in Eq. (8.44). Derivations of
these equations along with comparisons with test data are given in Ref. 15.

In the rare occasions where axial tension acts on a column, Vc can be taken equal to
zero (ACI 11.2.1.3), or it can be determined by ACI Eq. (11-8):

Vc = 2
(

1 + Nu

500Ag

)
λ
√

f ′
c bwd ≥ 0 (8.45)

In this equation, the factored axial tension load Nu is taken as negative, and the tensile
stress Nu/Ag is expressed in pounds per square inch.

A comparison of shear strength equations for members subjected to axial load can
be found in ACI Fig. R11.2.2.2.

For circular columns, ACI 11.2.3 permits the area bwd that is used to compute Vc

to be taken as the product of the diameter of the section and the effective depth d . In
lieu of determining d by a strain compatibility analysis, it can be taken as 80% of the
diameter of the section.

The nominal shear strength of the lateral reinforcement Vs is determined by ACI
Eq. (11-15):

Vs = Av fytd
s

(8.46)

Typically, Vs is initially calculated using the lateral reinforcement required by ACI
7.10. If additional shear strength is needed, the amount and spacing of the lateral rein-
forcement can be adjusted appropriately or the strength of the concrete can be increased.
In cases where the shear demand is very high, the size of the column may need to be
increased as well.

Example 8.15 Determine the design shear strength φVn for the column given in Example 8.13.

Solution Because no information is provided on the factored shear forces Vu for the four load
combinations, determine the nominal shear strength of the concrete Vc , using Eq. (8.43).

It can be shown for all four load combinations that the layer of reinforcement closest to the
compression face of the section is in compression and that the other three layers are in tension; that
is, the neutral axis c in all four cases lies between the layer of steel that is closest to the compression
face and the adjoining layer of steel. Therefore, the effective depth d is equal to the distance from the
extreme compression fiber to the centroid of the three layers of longitudinal reinforcement below
the neutral axis.

The distance from the tension face of the section to the centroid of these three layers of tension
reinforcement can be determined as follows (see Fig. 8.32):

y = [(4 × 0.44) × 2.25] + [(2 × 0.44) × 7.42] + [(2 × 0.44) × 12.58]
8 × 0.44

= 6.1 in

Thus, d = 20 − 6.1 = 13.9 in.
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1.5-in clear cover (typical)

12 No. 6

20 in

20
 in

2.
25

 in

7.
42

 in

12
.5

8 
in

17
.7

5 
in

FIGURE 8.32 Location of the centroid of tensile reinforcement given in Example 8.15.

The nominal shear strength of the concrete Vc is determined using the smallest factored axial
load given in Table 8.12:

Vc = 2
(

1 + Nu

2,000Ag

)
λ
√

f ′
c bwd

= 2
(

1 + 136,000
2,000 × 202

)
× 1.0

√
4,000 × 20 × 13.9/1,000 = 41.1 kips

The nominal shear strength of the lateral reinforcement Vs is determined by Eq. (8.46), using
No. 3 ties with four legs spaced at 12 in on center (see Example 8.13):

Vs = Av fytd
s

= (4 × 0.11) × 60 × 13.9
12

= 30.6 kips

Therefore, the design shear strength φVn is

φVn = φ(Vc + Vs ) = 0.75 (41.1 + 30.6) = 53.8 kips

Example 8.16 Check the adequacy of the column in Example 8.13, assuming that the factored shear
force Vu is equal to 39 kips for load combination 3.

Solution Equation (8.44) will be used to determine Vc .
It was shown in Example 8.15 that the effective depth d of the section is equal to 13.9 in for all

four load combinations.
The moment Mm is calculated from the following equation for the third load combination (see

Table 8.12):

Mm = Mu − Nu
4h − d

8

= (197 × 12) − 213
[

(4 × 20) − 13.9
8

]
= 604.1 in kips
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Also, the reinforcement ratio ρw is determined using the area of tensile reinforcement in the
section:

ρw = As

bwd
= 8 × 0.44

20 × 13.9
= 0.0127

The nominal shear strength of the concrete Vc is

Vc =
(

1.9λ
√

f ′
c + 2,500ρw

Vud
Mm

)
bwd

=
[

1.9 × 1.0
√

4,000 +
(

2,500 × 0.0127 × 39 × 13.9
604.1

)]
× 20 × 13.9/1,000

= 41.3 kips

Check the upper limit on Vc :

Vc = 3.5λ
√

f ′
c bwd

√
1 + Nu

500Ag

= 3.5 × 1.0
√

4,000 × 20 × 13.9

√
1 + 213,000

500 × 202 /1,000

= 88.4 kips > 41.3 kips

Since Vu = 39 kips > φVc = 31 kips, the maximum spacing of the ties is equal to d/2 = 13.9/2 =
6.95 in (see ACI 11.4.5.1). Assume the ties are spaced 6 in on center.

Therefore, the design shear strength φVn is

φVn = φ(Vc + Vs ) = 0.75 (41.3 + 61.2) = 76.9 kips > Vu = 39 kips

Comments
The nominal shear strength of the concrete Vc determined by Eq. (8.43) is

Vc = 2
(

1 + Nu

2,000Ag

)
λ
√

f ′
c bwd

= 2
(

1 + 213,000
2,000 × 202

)
× 1.0

√
4,000 × 20 × 13.9/1,000 = 44.5 kips

In this example, this value of Vc determined by Eq. (8.43) is essentially the same as the value
determined by Eq. (8.44).

8.9 Design Procedure
The following design procedure can be used in the design of columns. Included is the
information presented in the previous sections on analysis, design, and detailing.

Step 1: Determine the preliminary column size (Section 8.2). The first step in the
design procedure is to select a preliminary column size and amount of longitudinal
reinforcing steel in the column.

Unless column size is dictated by architectural requirements, a preliminary column
size should be based on a low percentage of longitudinal reinforcement, considering
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only axial load and temporarily ignoring the effects from bending moments and slen-
derness. This allows the column capacity to be increased in the final design stages by
adding reinforcement rather than by increasing the column dimensions.

Figure 8.1 can be used to quickly select a preliminary column size for nonslender,
tied columns loaded at an eccentricity of no more than approximately 10% of the overall
column thickness, that is, with zero or small bending moments.

When choosing the amount of longitudinal reinforcement in a compression member,
it is important to keep in mind the limits that are prescribed in ACI 10.9.1. The area of
longitudinal steel Ast must be between 1% and 8% of the gross area of the section. The
reinforcement ratio should not exceed 4% if column bars are lap spliced. Columns with
reinforcement ratios in the range of 1% to 2% are usually the most cost-effective.

Step 2: Choose the reinforcing bar size and layout (Section 8.7). The size of the
reinforcing bars and their layout are chosen on the basis of the preliminary area of
longitudinal reinforcement determined in Step 1. For proper concrete placement and
consolidation, bar sizes that minimize reinforcement congestion, especially at beam–
column joints, must be chosen. A smaller number of larger bars usually improve con-
structability.

The minimum number of longitudinal bars in compression members is four for
bars within rectangular or circular ties, three for bars within triangular ties, and six for
bars enclosed by spirals conforming to ACI 10.9.3.

Figure 8.23 can be used to determine the number of longitudinal bars that can be
accommodated on the face of a rectangular, tied column with normal lap splices, based
on the provisions of ACI 7.6.3 and assuming a 1.5-in clear cover to No. 4 ties. Similarly,
Fig. 8.25 contains the maximum number of bars that can be accommodated in circular
columns or square columns with longitudinal reinforcement arranged in a circle with
normal lap splices, assuming a No. 4 spiral or tie.

Step 3: Acquire an interaction diagram (Section 8.4). For columns subjected to
bending moments primarily about one axis, interaction diagrams (or equivalent) facili-
tate the determination of adequacy for columns subjected to combined axial loads and
bending moments.

An interaction diagram for a specific column size and longitudinal bar arrangement
can be constructed using the methods given in Section 8.4. The design aids referenced
in that section can also be utilized.

For biaxial bending, the approximate method discussed in Section 8.6 can be used
to determine the adequacy of a column.

Step 4: Determine whether the frame is a nonsway or sway frame (Section 8.5).
The methods given in Section 8.5 can be used to determine whether a frame is a nonsway
or sway frame. Consideration of slenderness effects depends on whether the frame is
nonsway or sway.

Step 5: Determine whether slenderness effects need to be considered (Section
8.5). The limiting slenderness ratios for both nonsway and sway frames are presented
in Section 8.5.

If slenderness effects need not be considered, all that is left to be done is as follows:
detail the transverse reinforcement; check the shear strength; and provide splices for
the longitudinal reinforcement. These items are discussed later.

Where slenderness effects must be considered, continue to step 6.
Step 6: Determine the magnified moments in cases where slenderness effects

must be considered (Section 8.5). In cases where slenderness effects must be considered,
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the bending moments acquired from the first-order elastic analysis must be magnified
in accordance with ACI 10.10.3, 10.10.4, or 10.10.6 for nonsway frames and ACI 10.10.3,
10.10.4, or 10.10.7 for sway frames.

For compression members subjected to biaxial bending, the moment about each axis
is magnified separately on the basis of the restraint conditions corresponding to that
axis. The adequacy of the compression member is checked for the factored axial load
Pu and the maximum magnified bending moment for all applicable load combinations
in accordance with ACI 9.2.

At this point, the size of the column, the amount of longitudinal reinforcement,
and/or the compressive strength of the concrete may have to be adjusted in order to
satisfy strength requirements.

Step 7: Detail the lateral reinforcement (Section 8.7). Once the combined flexural
and axial load strength requirements have been satisfied for all load combinations,
lateral (or transverse) reinforcement in the column must be detailed in accordance with
ACI 7.10.

Spiral reinforcement must conform to ACI 10.9.3 and 7.10.4, and tie reinforcement
must satisfy the requirements of ACI 7.10.5 (see Fig. 8.29).

Step 8: Check shear strength requirements (Section 8.8). The design provisions
for shear that are applicable to columns are given in ACI Chap. 11. The required shear
strength Vu must be equal to or less than the design shear strength φVn, which consists
of the design shear strength of the concrete φVc and that of the lateral reinforcement
φVs .

ACI 11.2 gives two methods to determine the nominal concrete strength Vc for
members subjected to axial compression. The nominal shear strength of the lateral
reinforcement Vs is determined by ACI Eq. (11-15).

In cases where lateral reinforcement is required for shear, it is common to check
shear strength requirements based on the minimum transverse reinforcement obtained
from Step 7. Additional transverse reinforcement above the minimum required may be
needed in certain cases.

Step 9: Provide splices for the longitudinal reinforcement (Section 8.7). ACI 12.17
contains requirements for lap splices, mechanical splices, welded splices, and end-
bearing splices. End-bearing splices are permitted only where the longitudinal bars are
in compression.

Lap splices are the most commonly used type of splices in columns. The type of lap
splice (compression, Class A tension, or Class B tension) that is required depends on
the factored load combinations and the magnitude of stress in the longitudinal bars (see
Fig. 8.30). Lap splices can occur immediately above the top of the slab, as illustrated in
Fig. 8.29.
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Problems
8.1. Determine the design axial strength φPn,max of a 28-in-diameter column reinforced with nine No. 9
bars. The column has spiral reinforcement conforming to ACI 7.10.4 and 10.9.3. Assume normal-weight
concrete with f ′

c = 6,000 psi and Grade 60 reinforcement.

8.2. Determine the design axial load strength φPn corresponding to a strain limit at the limit for
a compression-controlled section of a 22 × 22 in column reinforced with eight No. 10 bars that are
uniformly distributed in the cross-section. The clear cover to No. 4 ties is 1.5 in. Assume normal-weight
concrete with f ′

c = 5,000 psi and Grade 60 reinforcement.

8.3. Given the column in Problem 8.2, determine the design axial moment strength φMn corresponding
to a balanced strain condition.

8.4. Given the column in Problem 8.2, determine the design axial load strength φPn corresponding to
a strain limit at the limit for a tension-controlled section.

8.5. Determine the magnified moment Mc of a 24 × 24 in column reinforced with 12 No. 9 bars that are
uniformly distributed in the cross-section. The clear cover to No. 3 ties is 1.5 in. Assume normal-weight
concrete with f ′

c = 5,000 psi and Grade 60 reinforcement. The column is part of a nonsway frame where
k = 1.0 and βdns = 0.95. The factored loads are Pu = 1,000 kips, M1 = 10 ft kips, and M2 = 25 ft kips.

8.6. Given the column in Problem 8.5, determine the design moment strength φMn corresponding to
a design axial load φPn = 650 kips.

8.7. Determine the effective length factor k of a 28 × 28 in column in the first story of a sway frame.
The column is essentially fixed at its base, and at the top of the column, 28- × 20-in- beams frame into
the column at both sides. The lengths of the column and beams are 16 and 24 ft, respectively. Assume
normal-weight concrete with f ′

c = 5,000 psi for the column and f ′
c = 4,000 for the beams.
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8.8. Given the column in Problem 8.7, determine the moment magnification factor δs . Assume �Pu =
25,000 kips, �o = 0.35 in, Vus = 300 kips, and k = 1.6.

8.9. Determine the required vertical spacing of ties for a 24 × 18 in tied column reinforced with eight
No. 9 bars. Assume normal-weight concrete with f ′

c = 5,000 psi and Grade 60 reinforcement. Also
assume that the clear cover to No. 3 ties is 1.5 in. The column is subjected to Nu = 675 kips and Vu = 125
kips acting parallel to the short side of the column.

8.10. Determine the required Class B lap splice length of a 36 × 36 in column reinforced with 20 No.
10 bars that are uniformly distributed in the cross-section. The clear cover to No. 4 ties is 1.5 in. Assume
normal-weight concrete with f ′

c = 9,000 psi and Grade 60 reinforcement.
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C H A P T E R 9
Walls

9.1 Introduction
A wall is defined in ACI 2.2 as a member, usually vertical, that is used to enclose or sep-
arate spaces in a building or structure. There are many different types of walls, but they
are typically categorized as non–load-bearing and load-bearing. A non–load-bearing
wall supports primarily its own weight. In contrast, a load-bearing wall supports dead
and live loads from the floor and roof systems in addition to its own weight. IBC 202
contains more precise definitions of these wall types.

Because of their relatively large in-plane lateral stiffness, walls can attract a sig-
nificant portion of the effects due to wind or earthquakes. They are used alone or in
combination with moment frames to resist these load effects. Because a wall is much
stiffer in the direction parallel to the plane of the wall than perpendicular to this plane,
it is commonly assumed that only the walls that are oriented parallel to the direction
of the lateral loads resist the lateral load effects in that direction. Such walls must be
designed for combinations of axial loads, bending moments about their strong axis,
and shear forces, and they are referred to as structural walls in ACI 318.

Walls must also be designed for any bending moments about their minor axis,
caused by lateral loads applied perpendicular to the plane of the wall (e.g., a wall that
is situated at the perimeter of a building is subjected to wind loads perpendicular to its
face) or by axial loads acting at an eccentricity from the centroid of the wall.

Basement walls and retaining walls are subjected to lateral earth pressure perpen-
dicular to the plane of the wall. A cantilever retaining wall is designed for flexure in
accordance with the strength design method presented in Chaps. 5 and 6.

Like columns, load-bearing walls are designed for the effects of axial loads in combi-
nation with bending moments and, thus, are referred to as members subjected to combined
axial load and bending. They are also identified as shear walls because they usually resist
most, if not all, of the shear forces generated by the horizontal loads in the direction
parallel to the length of the wall.

Properly proportioned walls can reduce lateral displacements of a building frame,
which can result in the frame being designated as nonsway. This can have a significant
impact on the design of the columns in the frame (especially in regard to second-order
effects) and on the overall performance of the structure. Section 8.5 contains methods
on how to determine if a frame is nonsway or sway.

This chapter focuses on the analysis and design of walls that are subjected to axial
loads, combined axial loads and bending, and shear. In general, provisions are presented
on the following:

489
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1. Sizing the cross-section

2. Determining the required amount of reinforcement

3. Detailing the reinforcement.

The requirements for reinforced concrete walls are given in ACI Chap. 14. These
requirements are applicable to the design of cast-in-place, precast, and tilt-up wall
systems.

Cast-in-place concrete walls are cast on site, utilizing formwork that is also built
on site. After the forms have been erected, the required reinforcing bars are set in the
forms at the proper location. The concrete is subsequently deposited into the forms.

Precast concrete walls are manufactured in a precasting plant under controlled con-
ditions and are subsequently shipped to the site for erection. Such walls are reinforced
with either nonprestressed or prestressed reinforcement.

Tilt-up concrete walls are cast in a horizontal position at the jobsite and then tilted
up into their final position in the structure. According to the Code, tilt-up concrete
construction is a form of precast concrete.

This chapter covers design methods that are applicable for these three types of
walls after they are in their final positions within the structure. In the case of precast
and tilt-up concrete walls, design methods for handling or erection are not covered, as
they are beyond the scope of this book.

9.2 Design Methods for Axial Loads and Flexure

9.2.1 Overview
Chapter 14 of the Code gives three methods that can be utilized to design reinforced
concrete walls: walls designed as compression members (ACI 14.4), the empirical design
method (ACI 14.5), and an alternate design method for slender walls (ACI 14.8). The
limitations and provisions of each method are covered later.

Regardless of the analysis method that is used in the design of a wall, the mini-
mum reinforcement requirements of ACI 14.3 must be satisfied. A summary of these
requirements is given in Table 9.1.

9.2.2 Walls Designed as Compression Members
According to ACI 14.4, walls subjected to axial loads or axial loads and bending mo-
ments are permitted to be designed in accordance with the following provisions:

� ACI 10.2 (design assumptions of the strength design method)
� ACI 10.3 (general principles and requirements of the strength design method)
� ACI 10.10 (slenderness effects in compression members)
� ACI 10.11 (axially loaded members supporting a slab system)
� ACI 10.14 (bearing strength)
� ACI 14.2 (general design requirements for walls)
� ACI 14.3 (minimum reinforcement requirements for walls)
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Requirement ACI Section Number

Minimum ratio of the vertical reinforcement area to the gross
concrete area ρ�:

For deformed bars not larger than No. 5 bars with
fy ≥ 60,000 psi, ρ� = 0.0012.

For other deformed bars, ρ� = 0.0015.
For welded wire reinforcement not larger than W31 or D31,

ρ� = 0.0012.

14.3.2

Minimum ratio of the horizontal reinforcement area to the gross
concrete area ρt :

For deformed bars not larger than No. 5 bars with
fy ≥ 60,000 psi, ρt = 0.0020.

For other deformed bars, ρt = 0.0025.
For welded wire reinforcement not larger than W31 or D31,

ρt = 0.0020.

14.3.3

Walls that are more than 10 in thick (except basement walls)
must have two layers of reinforcement placed in each direction
according to the following:

One layer must consist of not less than one-half and not
more than two-thirds of the total reinforcement required for
each direction. This layer must be placed not less than 2
in or more than one-third the thickness of the wall from the
exterior surface.

The other layer, which consists of the balance of the
reinforcement in that direction, must be placed not less
than three-quarters of an inch or more than one-third the
thickness of the wall from the interior surface.

14.3.4

The maximum center-to-center spacing of the vertical
reinforcement is three times the wall thickness or 18 in,
whichever is smaller.

14.3.5

Vertical reinforcement need not be enclosed by lateral ties
where the following conditions are met:

The vertical reinforcement area is equal to or less than 1%
of the gross concrete area.

The vertical reinforcement is not required as compression
reinforcement.

14.3.6

Additional reinforcement must be provided around window,
door, and similar-sized openings in a wall.

14.3.7

TABLE 9.1 Minimum Reinforcement Requirements for Walls

Any wall may be designed using the general principles of the strength design
method. However, walls that do not meet the limitations of ACI 14.5 or 14.8 must be
designed as compression members by this method.

The following equations must be satisfied in the design of any wall subjected to
combined axial load and bending:

φPn ≥ Pu (9.1)

φMn ≥ Mu (9.2)
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The factored axial load Pu and bending moment Mu acting on a reinforced concrete
section must be equal to or less than the corresponding design values φPn and φMn in
order for strength requirements to be satisfied.

A design strength interaction diagram facilitates the design of a wall section. Details
on how to construct such a diagram are given in Chap. 8.

Like columns, slenderness effects must be considered in the design of walls where
required. In the direction parallel to the length of the wall, slenderness effects can usually
be neglected because the radius of gyration of the wall in that direction is relatively large;
this results in a slenderness ratio less than the limits given in ACI 10.10.1. However, in
the direction parallel to the thickness of a wall, the slenderness ratio is usually greater
than the prescribed slenderness limits. As such, the factored bending moments about
the minor axis of the wall must be magnified to account for slenderness effects.

The three methods of analysis that are permitted for analyzing compression mem-
bers where slenderness effects cannot be neglected are (1) nonlinear second-order anal-
ysis (ACI 10.10.3), (2) elastic second-order analysis (ACI 10.10.4), and (3) moment
magnification procedure (ACI 10.10.5). More often than not, the frame in the direc-
tion of analysis can be considered nonsway where walls are used to resist the lateral
loads.

ACI Eqs. (10-14) and (10-15) that are given in the moment magnification procedure
to determine the stiffness EI were not originally derived for members, like walls, that
have a single layer of reinforcement. Reference 1 contains the following equation of EI
for members with a single layer of reinforcement:

0.1EcIg

β
≤ EI = EcIg

β

(
0.5 − e

h

)
≤ 0.4EcIg

β
(9.3)

In this equation, Ec is the modulus of elasticity of the concrete; Ig is the gross moment
of inertia of the wall section in the direction of analysis; e is the eccentricity of the axial
loads and lateral loads for all applicable load combinations; h is the overall thickness
of the wall section; and β is a term related to the sustained axial loads and the area of
vertical reinforcement:

β = 0.9 + 0.5β2
d − 12ρ ≥ 1.0 (9.4)

The term βd is the ratio of the sustained load to the total load on the wall section
and ρ is the ratio of the area of vertical reinforcement to the gross concrete area of the
wall section.

Example 9.1 Check the adequacy of the wall depicted in Fig. 9.1 for the factored load combinations
given in Table 9.2, which occur at the base of the wall. Assume that the wall resists the bending
moments about its major axis. Also assume normal-weight concrete with f ′

c = 5,000 psi and Grade
60 reinforcement ( fy = 60,000 psi) and that the frame is nonsway.

Solution
Step 1: Determine the factored load combinations. The service-level axial loads and bend-

ing moments were obtained from an elastic analysis of the frame, using the appropriate reduced
moments of inertia given in ACI 10.10.4.1. The applicable load combinations are determined in
accordance with ACI 9.2. A summary of the axial loads and bending moments is given in Table 9.2.
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Load Case Axial Load (kips) Bending Moment (ft kips)

Dead (D ) 500 0

Roof live (Lr ) 8 0

Live (L ) 400 0

Wind (W ) 0 ±3,004

Load Combination

1 1.4D 700 0

2 1.2D + 1.6L + 0.5Lr 1,244 0

3 1.2D + 1.6Lr + 0.5L 813 0

4 1.2D + 1.6Lr + 0.8W 613 2,403

5 1.2D + 1.6W + 0.5L + 0.5Lr 804 4,806

6 0.9D − 1.6W 450 −4,806

TABLE 9.2 Summary of Axial Loads and Bending Moments on the Wall Given in Example 9.1

10 in

10
 ft

 1
0 

in

Two No. 4 at 18 in (typical)

FIGURE 9.1 Wall
section of
Example 9.1.
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Step 2: Determine if slenderness effects need to be considered. Because the frame is a nonsway
frame, slenderness effects need not be considered where Eq. (8-19) is satisfied:

k�u

r
≤ 34 − 12

(
M1

M2

)
≤ 40

For the 130-in wall in the direction of analysis, r = 0.3 × 130 = 39.0 in.
The bending moment at the top of the wall at this level is equal to approximately 98% of the

bending moment at the base, and the wall is bent in single curvature. Therefore,

k�u

r
= 1.0 × 10 × 12

39.0
= 3.1 ≤ 34 − (12 × 0.98) = 22.2

Thus, slenderness effects may be neglected in the design of the wall in this direction.
Step 3: Determine the design strength interaction diagram for bending about the strong

axis. The interaction diagram for this member is determined using strain compatibility analyses
for bending about the strong axis (see Chap. 8).

Construction of the interaction diagram is illustrated by calculating the nominal strengths Pn
and Mn corresponding to balanced failure. The flowchart shown in Fig. 5.39 is utilized to determine
Pn and Mn for this compression member; it is modified to account for the requirements in wall
design.

Step 3A: Check the minimum reinforcement limit. The minimum ratio ρ� of the vertical
reinforcement area to the gross concrete area for a wall section is specified in ACI 14.3.2 (see Table
9.1):

Minimum ρ� = 0.0012 for Grade 60 deformed bars not larger than No. 5 bars.

Thus, the minimum area of vertical reinforcement = 0.0012 × 10 × 130 = 1.6 in2.

The provided area of vertical reinforcement = 16 × 0.2 = 3.2 in2 > 1.6 in2.

Step 3B: Determine the neutral axis depth c. Balanced failure occurs when crushing of the
concrete and yielding of the reinforcing steel occur simultaneously (see Section 5.3). The balanced
failure point also represents the change from compression failures for higher axial loads and tension
failures for lower axial loads for a given bending moment. ACI 10.3.3 permits the yield strain of
the reinforcement to be taken as 0.0020 for Grade 60 reinforcement; thus, εs4 = εt = 0.0020.

The neutral axis depth is determined by Eq. (5.41):

c = 0.0030dt

εt + 0.0030
= 0.0030 × 128

0.0020 + 0.0030
= 76.8 in

Step 3C: Determine β1.

β1 = 1.05 − 0.00005 f ′
c = 1.05 − (0.00005 × 5,000) = 0.80 for f ′

c = 5,000 psi

(see ACI 10.2.7.3 and Section 5.2 of this book)

Step 3D: Determine the depth of the equivalent stress block a.

a = β1c = 0.80 × 76.8 = 61.4 in

Step 3E: Determine C. The concrete compression resultant force C is determined by Eq. (5.42):

C = 0.85 f ′
c ab = 0.85 × 5 × 61.4 × 10 = 2,609.5 kips
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Step 3F: Determine εsi. The strain in the reinforcement εsi at the various layers is determined
by Eq. (5.43) where compression strains are positive:

� Layer 1 (d1 = 2.0 in):

εs1 = 0.0030(76.8 − 2.0)
76.8

= 0.0029

� Layer 2 (d2 = 20.0 in):

εs2 = 0.0030(76.8 − 20.0)
76.8

= 0.0022

� Layer 3 (d3 = 38.0 in):

εs3 = 0.0030(76.8 − 38.0)
76.8

= 0.0015

� Layer 4 (d4 = 56.0 in):

εs4 = 0.0030(76.8 − 56.0)
76.8

= 0.0008

� Layer 5 (d5 = 74.0 in):

εs5 = 0.0030(76.8 − 74.0)
76.8

= 0.0001

� Layer 6 (d6 = 92.0 in):

εs6 = 0.0030(76.8 − 92.0)
76.8

= −0.0006

� Layer 7 (d7 = 110.0 in):

εs7 = 0.0030(76.8 − 110.0)
76.8

= −0.0013

� Layer 8 (d8 = 128.0 in):

εs8 = 0.0030(76.8 − 128.0)
76.8

= −0.0020 (checks)

It is evident that the top five layers of reinforcement are in compression and that the bot-
tom three layers are in tension. Also, the two layers of reinforcement closest to the extreme
compression fiber and the layer of reinforcement farthest from the extreme compression fiber
yield.
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Step 3G: Determine fsi. The stress in the reinforcement fsi at the various layers is determined
by multiplying εsi by the modulus of elasticity of the steel Es :

� Layer 1: fs1 = 0.0029 × 29,000 = 84.1 ksi > 60 ksi; use fs1 = 60 ksi
� Layer 2: fs2 = 0.0022 × 29,000 = 63.8 ksi > 60 ksi; use fs2 = 60 ksi
� Layer 3: fs3 = 0.0015 × 29,000 = 43.5 ksi
� Layer 4: fs4 = 0.0008 × 29,000 = 23.2 ksi
� Layer 5: fs5 = 0.0001 × 29,000 = 2.9 ksi
� Layer 6: fs6 = −0.0006 × 29,000 = −17.4 ksi
� Layer 7: fs7 = −0.0013 × 29,000 = −37.7 ksi
� Layer 8: fs8 = −60 ksi

Step 3H: Determine Fsi. The force in the reinforcement Fsi at the various layers is determined
by Eq. (5.44) or (5.45), which depends on the location of the steel layer:

� Layer 1 (d1 = 2.0 in < a = 61.4 in): Fs1 = [60 − (0.85 × 5)] × 2 × 0.20 = 22.3 kips
� Layer 2 (d2 = 20.0 in < a = 61.4 in): Fs2 = [60 − (0.85 × 5)] × 2 × 0.20 = 22.3 kips
� Layer 3 (d3 = 38.0 in < a = 61.4 in): Fs3 = [43.5 − (0.85 × 5)] × 2 × 0.20 = 15.7 kips
� Layer 4 (d4 = 56.0 in < a = 61.4 in): Fs4 = [23.2 − (0.85 × 5)] × 2 × 0.20 = 7.6 kips
� Layer 5: Fs5 = 2.9 × 2 × 0.2 = 1.2 kips
� Layer 6: Fs6 = −17.4 × 2 × 0.2 = −7.0 kips
� Layer 7: Fs7 = −37.7 × 2 × 0.2 = −15.1 kips
� Layer 8: Fs8 = −60.0 × 2 × 0.2 = −24.0 kips

Note that the compression steel in the top four layers falls within the depth of the equivalent
stress block; thus, Eq. (5.45) is used to determine the forces in the reinforcement in those layers.

Step 3I: Determine Pn and Mn. The nominal axial strength Pn and nominal flexural strength
Mn of the section are determined by Eqs. (5.46) and (5.47), respectively:

Pn = C +
∑

Fsi = 2,609.5 + (22.3 + 22.3 + 15.7 + 7.6 + 1.2 − 7.0 − 15.1 − 24.0) = 2,632.5 kips

Mn = 0.5C(h − a ) +
∑

Fsi (0.5h − di )

= [0.5 × 2,609.5 × (130 − 61.4)] + [22.3(65 − 2) + 22.3(65 − 20)

+ 15.7(65 − 38) + 7.6(65 − 56) + 1.2(65 − 74)

+ (−7.0)(65 − 92) + (−15.1)(65 − 110) + (−24.0)(65 − 128)]

= 89,505.9 + 5,270.4 = 94,776.3 in kips = 7,898.0 ft kips

This section is compression-controlled because εt is equal to the compression-controlled strain
limit of 0.0020 (see ACI 10.3.3). Thus, in accordance with ACI 9.3.2.2, the strength reduction factor
φ is equal to 0.65 for a compression-controlled section with lateral reinforcement consisting of ties
(or, equivalently, a compression-controlled section without spiral reinforcement conforming to ACI
10.9.3). Therefore, the design axial strength φPn and the design flexural strength φMn are

φPn = 0.65 × 2,632.5 = 1,711.1 kips

φMn = 0.65 × 7,898.0 = 5,133.7 ft kips

Additional points on the design strength interaction diagram, which is shown in Fig. 9.2, can
be obtained in a similar manner.

Step 4: Check the adequacy of the section. As mentioned earlier, the design strength interaction
diagram is shown in Fig. 9.2. The load combinations of Table 9.2 are also shown in the figure. It
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Span = 30 ft 0 in

14 ft 0 in

FIGURE 9.3
Reinforced
concrete wall of
Example 9.2.

The wind load does not cause any axial load on the wall, but it does cause the following bending
moment that acts at the midheight section of the wall:

MW = 0.020 × 142

8
= 0.5 ft kips/ft = 6.0 in kips/ft

A summary of the factored load combinations is given in Table 9.3. The axial loads and bending
moments are expressed in kips and inch-kips, respectively, per foot length of wall.

Step 2: Determine if slenderness effects need to be considered. Because the frame is a nonsway
frame, slenderness effects need not be considered where Eq. (8.19) is satisfied:

k�u

r
≤ 34 − 12

(
M1

M2

)
≤ 40

For this 8-in wall, in the direction of analysis (i.e., bending about the minor axis) r = 0.3 × 8 =
2.4 in.

Thus,

k�u

r
= 1.0 × 14 × 12

2.4
= 70 > 40

Thus, slenderness effects must be considered in the design of this wall in this direction.
Step 3: Determine the magnified moments in the column using the moment magnification

procedure. In lieu of an elastic or a nonlinear second-order analysis, the moment magnification
procedure of ACI 10.10.6 is used to determine the magnified factored moments due to second-order
effects.
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Load Case Axial Load (kips) Bending Moment (in kips)

Dead (D ) 1.8 0

Roof live (Lr ) 0.3 0

Wind (W ) 0 ±6.0

Load combination

1 1.4D 2.5 0

2 1.2D + 0.5Lr 2.3 0

3 1.2D + 1.6Lr + 0.8W 2.6 4.8

4 1.2D + 1.6W + 0.5Lr 2.3 9.6

5 0.9D − 1.6W 1.6 −9.6

TABLE 9.3 Summary of Axial Loads and Bending Moments on the Wall Given in Example 9.2

Calculations are provided for load combination number 4 of Table 9.3.
From Eq. (8.22),

Mc = δns M2

where

δns = Cm

1 − (Pu/0.75Pc )
≥ 1.0

Because there are transverse loads between the supports of this wall, Cm = 1.0 (ACI 10.10.6.4)
The critical buckling load Pc is determined by Eq. (8.25):

Pc = π2EI
(k�u)2

Because the wall has one layer of vertical reinforcement, use Eq. (9.3) to determine the stiffness
EI:

0.1EcIg

β
≤ EI = EcIg

β

(
0.5 − e

h

)
≤ 0.4EcIg

β

The modulus of elasticity of the concrete is determined by ACI 8.5.1:

Ec = w1.5
c 33

√
f ′
c = (150)1.5 × 33

√
4,000 = 3,834,254 psi

For a 1-ft design strip,

Ig = 12 × 83

12
= 512 in4

Because the dead load is the only sustained load, βd is determined as follows:

βd = 1.2D
1.2D + 1.6W + 0.5Lr

= 0.94
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The eccentricity e = Mu/Pu = 9.6/2.3 = 4.2 in.
Therefore, the EI from Eq. (9.3) is

EI = EcIg

β

(
0.5 − e

h

)
= EcIg

β

(
0.5 − 4.2

8.0

)
= −0.03

EcIg

β
< 0.1

EcIg

β
; use 0.1

EcIg

β

ρ = 0.11 × (12/10)
8 × 12

= 0.0014 > 0.0012

β = 0.9 + 0.5β2
d − 12ρ = 0.9 + (0.5 × 0.942) − (12 × 0.0014) = 1.33

Thus,

EI = 0.1
EcIg

β
= 0.1 × 3,834 × 512

1.33
= 147.6 × 103 kip in2

Determine the critical buckling load Pc :

Pc = π2EI
(k�u)2 = π2 × 147.6 × 103

(1.0 × 14 × 12)2 = 51.6 kips

The moment magnification factor δns is equal to the following:

δns = Cm

1 − (Pu/0.75Pc )
= 1.0

1 − [2.3/ (0.75 × 51.6)]
= 1.06 > 1.0

Thus,

Mc = δns M2 = 1.06 × 9.6 = 10.2 in kips

Check the minimum factored bending moment requirement [see Eq. (8.29)]:

M2,min = Pu(0.6 + 0.03h) = 2.3 × [0.6 + (0.03 × 8)] = 1.9 in kips < Mc

Therefore, the factored axial load and moment in this load combination become Pu = 2.3 kips
and Mu = Mc = 10.2 in kips.

Similar calculations can be performed for the other load combinations.
A summary of the results from the moment magnification procedure is given in Table 9.4.
Step 4: Check the adequacy of the section for combined axial load and bending. The design

strength interaction diagram for a 1-ft-wide section of the wall reinforced with No. 3 bars at 10 in

Load Pu Mu EI × 103 Mc

Combination (kips) (in kips) βd β (kip in2) Pc (kips) δns (in kips)

1 2.5 0 1.00 1.38 567.7 198.3 1.02 0

2 2.3 0 0.94 1.32 594.2 207.8 1.02 0

3 2.6 4.8 0.82 1.22 439.6 153.6 1.02 4.9

4 2.3 9.6 0.94 1.33 147.6 51.6 1.06 10.2

5 1.6 9.6 1.00 1.38 141.9 49.6 1.05 10.1

TABLE 9.4 Summary of the Results from the Moment Magnification Procedure Given in Example 9.2
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FIGURE 9.5
Eccentricity
limitations in the
empirical design
method.

The design axial strength φPn of a wall satisfying the limitations of this method is
determined by ACI Eq. (14-1):

φPn = 0.55φ f ′
c Ag

[
1 −

(
k�c

32h

)2
]

(9.5)

In this equation, Ag is the gross area of the wall and k is the effective length factor
prescribed in ACI 14.5.2.

For walls that are braced against lateral translation at both ends of the wall, k is
defined as follows:

� k = 0.8 when the wall is restrained against rotation at one or both ends
� k = 1.0 when the wall is unrestrained against rotation at both ends

A k-value of 0.8 implies that the end of the wall is attached to a member that has
a flexural stiffness that is at least equal to that of the wall in the direction of analysis.
Members with lesser stiffnesses cannot adequately restrain the wall against rotation.

For walls that are not braced against lateral translation, k = 2.0. This would be
applicable, for example, to freestanding (cantilever) walls or to walls that are connected
to diaphragms that undergo significant deflections when subjected to lateral loads.

Equation (9.5) takes into consideration both load eccentricity and slenderness ef-
fects. The eccentricity factor 0.55 was originally selected to give strengths comparable to
those determined by ACI Chap. 10 for members with an axial load applied at an eccen-
tricity of h/6. The strength reduction factor φ corresponds to compression-controlled
sections in accordance with ACI 9.3.2.2. Thus, φ is equal to 0.65 for wall sections de-
signed by this method.

In order to satisfy strength requirements, the design strength φPn determined by
Eq. (9.5) must be equal to or greater than the factored axial load Pu.
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The empirical design method is best suited for relatively short walls subjected to
vertical loads. Because the total eccentricity must not exceed h/6, its application becomes
extremely limited when lateral loads need to be considered.

Walls not meeting the limitations of this method must be designed as compres-
sion members subjected to axial load and bending by the provisions of Chap. 10 or, if
applicable, by the alternative design method of ACI 14.8, which is covered later.

Example 9.3 A reinforced concrete wall with an unsupported length of 16 ft is subjected to the
following service axial loads: PD = 15 kips and PLr = 8 kips.

Assume that these loads act through the centroid of the wall and over a width of 12 in. Also
assume normal-weight concrete with f ′

c = 4,000 psi and Grade 60 reinforcement ( fy = 60,000 psi).
The ends of the wall are braced against lateral translation and are unrestrained against rotation
(i.e., the ends of the wall are pinned).

Design the wall in accordance with the empirical design method.

Solution
Step 1: Select a trial wall thickness. According to ACI 14.5.3.1, the minimum thickness of a

wall that is designed by the empirical design method is

h = �u

25
≥ 4 in

For a 16-ft wall height,

h = 16 × 12
25

= 7.7 in

Try h = 8 in.
Step 2: Determine the factored axial loads. The governing factored axial load is determined

by ACI Eq. (9.3):

Pu = 1.2PD + 1.6PLr = (1.2 × 15) + (1.6 × 8) = 31 kips

Step 3: Determine the design strength of the wall. The design strength φPn is determined by
Eq. (9.5):

φPn = 0.55φ f ′
c Ag

[
1 −

(
k�c

32h

)2
]

= 0.55 × 0.65 × 4 × (8 × 12) ×
[

1 −
(

1.0 × 16 × 12
32 × 8

)2
]

= 60 kips > Pu = 31 kips

Step 4: Provide minimum reinforcement in wall. Minimum requirements for vertical rein-
forcement and horizontal reinforcement are given in ACI 14.3.2 and 14.3.3, respectively.

Minimum vertical reinforcement = 0.0012 × 8 × 12 = 0.12 in2.
Provide a single layer of No. 4 bars spaced 12 in on center (As = 0.20 in2).
Minimum horizontal reinforcement = 0.0020 × 8 × 12 = 0.19 in2.
As also for minimum vertical reinforcement, provide a single layer of No. 4 bars spaced 12 in

on center (As = 0.20 in2).
The 12-in spacing of the vertical and horizontal bars is less than the maximum allowable spacing

of 18 in for this 8-in-thick wall (ACI 14.3.5).

Comments
Even though the loads in this example were not applied at an eccentricity, the design strength φPn
that was determined is applicable up to a total eccentricity of h/6 = 1.3 in.
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When any of these six conditions is not satisfied, the wall must be designed as a
compression member in accordance with the provisions of ACI 14.4. For example, it
is common for walls to have relatively large window and door openings. Such walls
are not considered to have a constant cross-section over their full height. Thus, the
alternate design method is not applicable because the second limitation of this method
is not satisfied. Instead, the wall must be designed in accordance with ACI 14.4.

Design Requirements
Flexure The following strength equation must be satisfied at the midheight of a wall:

φMn ≥ Mu (9.6)

The factored moment Mu includes second-order effects and consists of two parts:

Mu = Mua + Pu�u (9.7)

The moment Mua is the maximum factored moment at the midheight of the wall
due to lateral loads (wind or seismic) and/or vertical factored loads Pu applied at an
eccentricity from the centroid of the wall. The deflection �u is the total deflection at the
midheight of the wall due to the factored loads. This deflection is determined by ACI
Eq. (14-5):

�u = 5Mu�
2
c

(0.75)48EcIcr
(9.8)

In this equation, �c is the length of the wall, measured center-to-center of joints, and Icr
is the moment of inertia of the cracked wall section transformed into concrete. ACI Eq.
(14-7) is used to determine Icr:

Icr = Es

Ec

(
As + Puh

2 fyd

)
(d − c)2 + �wc3

3
(9.9)

In this equation, Es is the modulus of elasticity of the reinforcing steel; Ec is the modulus
of elasticity of the concrete; As is the area of the vertical reinforcement in the wall; d is
the distance from the extreme compression fiber to the centroid of As ; c is the distance
from the extreme compression fiber to the neutral axis; and �w is the length of the wall.
The ratio Es/Ec must be taken equal to or greater than 6 in this equation.

In the strength design method, the neutral axis depth c is related to the depth of the
equivalent rectangular stress block a by c = a/β1. In general, a is equal to the force in
the tension reinforcement (As fy) divided by the equivalent compressive stress (0.85 f ′

c )
times the width of the section (b) [see Eq. (5.9)]. In the alternative design method, an
effective area of longitudinal reinforcement Ase,w is used in the determination of a and
c and is calculated by the following equation:

Ase,w = As + Puh
2 fyd

(9.10)

This effective area of longitudinal reinforcement is used in the determination of Icr
[see Eq. (9.9)].
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Thus, the depth of the equivalent stress block for bending about the minor axis of
the wall is

a = As fy + (Puh/2d)
0.85 f ′

c�w
(9.11)

Also, the distance from the extreme compression fiber to the neutral axis is

c = As fy + (Puh/2d)
0.85 f ′

c�wβ1
(9.12)

It is evident from Eq. (9.8) that the deflection �u is a function of Mu. However, Mu is
a function of �u, as is apparent from Eq. (9.7). This clearly illustrates the iterative nature
inherent to this method. Thus, Mu can be determined by assuming a value of �u and
then performing several calculation iterations until convergence occurs. Alternatively,
it can be determined by ACI Eq. (14-6):

Mu = Mua

1 − [
5Pu�2

c/(0.75)48EcIcr
] (9.13)

Consider the simply supported wall depicted in Fig. 9.7. The wall is subjected to a
factored gravity load Pug acting at an eccentricity e from the centroid of the section and
a factored uniform lateral load wu.

FIGURE 9.7 Wall analysis in accordance with ACI 14.8.
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As noted earlier, the critical section occurs at the midheight. At that location, the
total factored load Pu is equal to Pug plus the weight of the wall Pusw from the top to the
midheight.

The maximum factored moment at the midheight of the wall Mua is equal to the
moment due to the factored gravity load Pug applied at an eccentricity e plus the moment
due to wu:

Mua = Puge
2

+ wu�
2
c

8
(9.14)

Assuming that the lateral load is due to wind and/or earthquakes, which means
that it can act in either horizontal direction, the critical loading case occurs when the
bending moments due to the gravity loads and the lateral loads are additive, which is
reflected in Eq. (9.14).

Once Mua has been calculated, Mu is determined by Eq. (9.13). The third, fourth,
and sixth limitations of the procedure are subsequently checked. These calculations are
performed for each load combination.

Deflection In addition to satisfying strength requirements, the deflection requirement
of ACI 14.8.4 must be satisfied. The maximum deflection due to service loads �s , which
includes second-order effects, depends on the magnitude of the service load moment
Ma at the midheight of the wall where Ma is equal to the following:

Ma = Msa + Ps�s (9.15)

The quantities Msa and Ps are the first-order, service-level bending moment and
axial load at the midheight of the wall, respectively.

It has been demonstrated that out-of-plane deflections increase rapidly when Ma

exceeds two-thirds of the cracking moment Mcr.2 Thus, �s is determined by one of the
following two equations:

� Case 1: Ma ≤ 2Mcr/3

�s =
(

Ma

Mcr

)
�cr (9.16)

� Case 2: Ma > 2Mcr/3

�s = 2�cr

3
+

[
Ma − (2Mcr/3)
Mn − (2Mcr/3)

](
�n − 2�cr

3

)
(9.17)

In these equations, �cr and �n are the midheight deflections corresponding to the crack-
ing moment Mcr and the nominal flexural strength Mn, respectively, and are determined
as follows:

�cr = 5Mcr�
2
c

48EcIg
(9.18)

�n = 5Mn�
2
c

48EcIcr
(9.19)
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Because �s is a function of Ma [Eq. (9.16) or (9.17)] and Ma is a function of �s [Eq.
(9.15)], there is no closed-form solution for �s . A value of �s is obtained by iteration; that
is, an initial value of �s is assumed, and calculations are performed until convergence
occurs.

In order to satisfy the deflection requirements of ACI 14.8.4, the service-level de-
flection �s calculated by the method outlined earlier must not exceed �c/150.

Example 9.4 A reinforced concrete wall with an unsupported length of 28 ft supports a roof system
consisting of precast double-tee beams (see Fig. 9.8). The double tees weigh 720 lb per linear foot
and have 3.75-in-wide webs that are spaced 5 ft on center. The webs bear on the top of the wall,
and the span length of the double-tees is 48 ft 0 in.

Span =48 ft 0 in

28 ft 0 in

2 ft 6 in

3.75 in

1 
ft

 1
0 

in
4 

in 5 ft 0 in 2 ft 6 in

FIGURE 9.8 Reinforced concrete wall of Example 9.4.
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The superimposed dead load on the roof is 10 psf; the roof live load is 25 psf; and the wind load
is 25 psf.

Assume that the gravity loads act at the eccentricity indicated in Fig. 9.8. Also assume normal-
weight concrete with f ′

c = 4,000 psi and Grade 60 reinforcement ( fy = 60,000 psi). The ends of the
wall are braced against lateral translation and are unrestrained against rotation.

Design the wall in accordance with the alternative design method of ACI 14.8.

Solution
Step 1: Select a trial wall thickness. Try an 8-in-thick wall, and assume one layer of No. 5 bars

spaced at 8 in on center.
For a 1-ft-wide design strip, the vertical reinforcement ratio is equal to

0.31 × (12/8)
12 × 8

= 0.0048 > 0.0012 [ACI 14.3.2(a)]

Step 2: Determine axial loads and moments at the midheight of wall. The loads carried by
the double-tee beams are distributed to the wall through their webs. The loads at the interior of the
wall are distributed at the midheight over a width prescribed in ACI 14.8.2.5 (see Fig. 9.6):

w2 = B + (�c/2) = (3.75/12) + (28/2) = 14.3 ft > spacing = 5 ft; use 5 ft

Determine the axial loads per foot at the midheight of the wall:

Weight of the wall from the top to the midheight = 8
12

× 0.150 × 28
2

= 1.4 kips/ft

Roof dead load = [(720/2 webs) + (10 × 5)] × (48/2)
5 × 1,000

= 2.0 kips/ft

Roof live load = (25 × 5) × (48/2)
5 × 1,000

= 0.6 kips/ft

Eccentricity of axial loads = 2
3

× 4 = 2.7 in

A summary of the axial loads and bending moments per foot length of the wall at the midheight
is given in Table 9.5. Included in the table are the applicable factored load combinations.

The service-level bending moments in the table are determined as follows (see Fig. 9.7):

Service dead load moment = (Ps )D × e
2

= 2.0 × 2.7
2

= 2.7 in kips (only the axial dead

load from the roof causes bending moment at the midheight)

Service roof live load moment = (Ps )Lr × e
2

= 0.6 × 2.7
2

= 0.8 in kips

Service wind load moment = w�2
c

8
= 0.025 × 282

8
= 2.5 ft kips = 29.4 in kips

Step 3: Determine the factored axial loads and moments at the midheight of the wall, in-
cluding slenderness effects. A summary of the factored axial loads and moments, which include
slenderness effects, is given in Table 9.6.

Calculations are provided for load combination number 4.
The total moment Mu, which includes slenderness effects, is determined by Eq. (9.13):

Mu = Mua

1 − [
5Pu�2

c /(0.75)48EcIcr
]
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Load Case Axial Load Ps (kips) Bending Moment (in kips)

Dead (D ) 3.4 2.7

Roof live (L r ) 0.6 0.8

Wind (W ) 0 ±29.4

Load Combination Axial Load Pu (kips) Bending Moment Mua (in kips)

1 1.4D 4.8 3.8

2 1.2D + 0.5Lr 4.4 3.6

3 1.2D + 1.6Lr + 0.8W 5.0 28.0

4 1.2D+ 1.6W + 0.5Lr 4.4 50.7

5 0.9D − 1.6W 3.1 −44.6

TABLE 9.5 Summary of Axial Loads and Bending Moments for the Wall Given in Example 9.4

The only unknown in this equation is Icr, which is determined by Eq. (9.9):

Icr = Es

Ec

(
As + Puh

2 fyd

)
(d − c)2 + �wc3

3
= Es

Ec
Ase,w(d − c)2 + �wc3

3
[see Eq. (9.10)]

Ase,w = As + Puh
2 fyd

= 0.31
(

12
8

)
+ 4.4 × 8

2 × 60 × 4
= 0.54 in2/ft

The neutral axis depth c is determined by Eq. (9.12):

c = As fy + (Puh/2d)
0.85 f ′

c�wβ1
= Ase,w fy

0.85 f ′
c�wβ1

= 0.54 × 60
0.85 × 4 × 12 × 0.85

= 0.93 in

Check if the section is tension-controlled:

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
4

0.93
− 1

)
= 0.0099 > 0.0050

Therefore, the section is tension-controlled. It can be determined that this wall section is tension-
controlled for all load combinations.

Load Combination Pu (kips) Mua (in kips) Ase,w (in2) c (in) Icr (in4) Mu (in kips)

1 1.4D 4.8 3.8 0.54 0.94 41.8 7.0

2 1.2D + 0.5Lr 4.4 3.6 0.54 0.93 41.9 6.3

3 1.2D + 1.6Lr + 0.8W 5.0 28.0 0.55 0.95 42.1 54.9

4 1.2D+ 1.6W + 0.5Lr 4.4 50.7 0.54 0.93 41.9 88.9

5 0.9D − 1.6W 3.1 −44.6 0.52 0.89 40.5 71.5

TABLE 9.6 Summary of Factored Axial Loads and Bending Moments, Including Slenderness Effects,
for the Wall Given in Example 9.4
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Also,

Ec = 33w1.5
c

√
f ′
c = 33 × (150)1.5 ×

√
4,000 = 3,834,254 psi

Es/Ec = 29,000,000/3,834,254 = 7.6 > 6

Thus,

Icr = Es

Ec
Ase,w(d − c)2 + �wc3

3

= 7.6 × 0.54 × (4 − 0.93)2 + 12 × 0.933

3
= 41.9 in4

Mu = Mua[
5Pu�2

c /(0.75)48Ec Icr
]

= 50.7
1 − [5 × 4.4 × (28 × 12)2/(0.75 × 48 × 3834 × 41.9)]

= 88.9 in kips

Similar calculations can be performed for the other load combinations.
Step 4: Determine the cracking moment Mcr. The cracking moment is determined by the

following equation:

Mcr = fr Ig

yt
= 7.5λ

√
f ′
c Ig

yt
= 7.5 × 1.0

√
4,000 × (12 × 83/12)
4 × 1,000

= 60.7 in kips

Step 5: Determine the design moment strength φMn, and check the adequacy of the wall
section. The design moment strength of the wall is determined by the following equation:

φMn = φ Ase,w fy

(
d − a

2

)

A summary of the design moment strengths for the applicable load combinations is given in
Table 9.7. The strength reduction factor φ is equal to 0.9 because the section is tension-controlled for
all load combinations. It is evident from the table that the design moment strength φMn is greater
than the required strength Mu and the cracking moment Mcr.

Step 6: Determine the maximum axial stress at the midheight section of the wall. The max-
imum stress at the midheight section of the wall is determined using the greatest axial load from
the load combinations (see Table 9.6):

Pu

Ag
= 5,000

8 × 12
= 52.1 psi < 0.06 f ′

c = 240 psi

Load Combination Ase,w (in2) c (in) a (in) φMn (in kips) Mu (in kips)

1 1.4D 0.54 0.94 0.80 105.0 7.0

2 1.2D + 0.5Lr 0.54 0.93 0.79 105.1 6.3

3 1.2D + 1.6Lr + 0.8W 0.55 0.95 0.81 106.8 54.9

4 1.2D+ 1.6W + 0.5Lr 0.54 0.93 0.79 105.1 88.9

5 0.9D − 1.6W 0.52 0.89 0.76 101.7 71.5

TABLE 9.7 Summary of Design Moment Strength for the Wall Given in Example 9.4
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Step 7: Determine the service-level deflection at the midheight section of the wall. The maxi-
mum service-level deflection �s occurs at the midheight section of the wall for the load combination
that includes wind loads. Because there is no closed-form solution for�s , assume that Ma < 2Mcr/3.
Also assume the following value of �s for the initial iteration:

�s =
(

Msa
Mcr

)
�cr

The value of the maximum service-level bending moment Msa at the midheight section of the
wall is equal to the sum of the moments due to dead load, roof live load, and wind (see step 2 of
this example):

Msa = 2.7 + 0.8 + 29.4 = 32.9 in kips

The deflection �cr is determined by Eq. (9.18):

�cr = 5Mcr�2
c

48EcIg

= 5 × 60.7 × (28 × 12)2

48 × 3,834 × (12 × 83)/12
= 0.36 in

Thus,

�s =
(

32.9
60.7

)
× 0.36 = 0.20 in

Determine Ma from Eq. (9.15):

Ma = Msa + Ps�s = 32.9 + [(3.4 + 0.6) × 0.20] = 33.7 in kips

Because it has been assumed that Ma < 2Mcr/3, determine �s from Eq. (9.16):

�s =
(

Ma

Mcr

)
�cr =

(
33.7
60.7

)
× 0.36 = 0.20 in

This value of �s is the same as the value that was initially assumed for �s , so no additional
iterations are required.

Check the initial assumption:

Ma = 33.7 in kips < 2Mcr/3 = 40.5 in kips

Check the deflection limit:

�s = 0.20 in <
�c

150
= 28 × 12

150
= 2.2 in

Therefore, the 8-in wall section is adequate with No. 5 bars spaced 8 in on center.
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9.3 Design for Shear

9.3.1 Overview
Shear requirements for walls are given in ACI 11.9. Provisions are provided for shear
forces perpendicular to the face of the wall and those in the plane of the wall.

According to ACI 11.9.1, design for horizontal shear forces acting perpendicular to
the face of a wall shall be in accordance with the provisions for slabs in ACI 11.11. These
design requirements are applicable to walls subjected to loads that act perpendicular to
the face, such as wind loads. Both one-way and two-way shear must be investigated at
the corresponding critical sections. Section 7.6 covers the requirements for both types
of shear.

Design for horizontal in-plane forces shall be in accordance with ACI 11.9.2 through
11.9.9. In-plane shear forces are typically critical for walls with relatively small height-
to-length ratios that resist the effects of lateral loads. Taller walls are usually governed
by flexure rather than by shear.

It is permitted to design certain types of walls for shear using a strut-and-tie model
in accordance with Appendix A of the Code. In particular, the walls must have a height-
to-length ratio that is equal to or less than 2. The requirements of ACI 11.9.9.2 through
11.9.9.5 must also be satisfied.

The focus of this section is on the design of walls subjected to horizontal in-plane
shear forces. Provided next are the shear strength design requirements given in ACI
11.9.2 through 11.11.9.

9.3.2 Design Shear Strength
The following equation must be satisfied for shear strength:

φVn ≥ Vu (9.20)

In this equation, the strength reduction factor φ is equal to 0.75 in accordance with ACI
9.3.2.3. The nominal shear strength Vn consists of two parts: the nominal shear strength
provided by the concrete Vc and the nominal shear strength provided by the shear
reinforcement Vs .

The nominal strength Vn is limited to 10
√

f ′
c hd at any horizontal section of a wall,

where h is the thickness of the wall and d is the effective depth of the wall defined in
ACI 11.9.4. The limiting shear stress of 10

√
f ′
c is based on tests on walls with a thickness

equal to the length of the wall divided by 25.4

The required strength Vu is determined from the analysis of the structure and the
applicable load combinations of ACI 9.2.1.

9.3.3 Shear Strength Provided by Concrete
Two methods are given in the Code to determine Vc . The simpler of the two methods
can be found in ACI 11.9.5. In this method, Vc is calculated by the following equation,
which is applicable to walls subjected to axial compression:

Vc = 2λ
√

f ′
c hd (9.21)
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The lesser of

FIGURE 9.9 Critical
section for shear.

ACI 11.9.4 permits d to be taken as 80% of the length of the wall. However, a larger
value of d can be used in Eq. (9.21) if it is determined by a strain compatibility analysis.

For walls subjected to axial tension, ACI Eq. (11-8) may be used to determine Vc .
This equation is also applicable to the design of columns subjected to axial tension (see
Section 8.8).

In the second method, Vc is taken as the smaller of the values obtained by ACI Eqs.
(11-27) and (11-28):

Vc = 3.3λ
√

f ′
c hd + Nud

4�w
(9.22)

Vc =
[

0.6λ
√

f ′
c + �w

(
1.25λ

√
f ′
c + 0.2Nu/�wh

)
(Mu/Vu) − (�w/2)

]
hd (9.23)

In these equations, the term Nu is positive for axial compression and negative for axial
tension. Also, Eq. (9.23) is not applicable where �w/2 ≥ Mu/Vu.

Equation (9.22) corresponds to the occurrence of a principal tensile stress of approx-
imately 4λ

√
f ′
c at the centroid of the wall cross-section. Similarly, Eq. (9.23) corresponds

to the occurrence of a flexural tensile stress of approximately 6λ
√

f ′
c at a section �w/2

above the section being investigated.
The location of the critical section for shear is given in ACI 11.9.7. The governing

value of Vc at a section located a distance of 50% of the wall length or wall height,
whichever is smaller, above the base of the wall applies not only to that section but
also to all sections between that section and the base (see Fig. 9.9). However, as noted
previously, the maximum factored shear force Vu at any section, including the base of
the wall, is limited to φVn in accordance with ACI 11.9.3.

9.3.4 Shear Strength Provided by Shear Reinforcement
Both horizontal shear reinforcement and vertical shear reinforcement are required for
all walls. The required amount of shear reinforcement depends on the magnitude of
the maximum factored shear force Vu.
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� Vu < 0.5φVc

When Vu is less than 50% of φVc , reinforcement in accordance with ACI
11.9.9 or ACI Chap. 14 must be provided. Table 9.1 contains a summary of
the minimum reinforcement ratios for the vertical and horizontal shear rein-
forcement for Grade 60 reinforcement according to ACI 14.3.2 and 14.3.3, re-
spectively. Note that these reinforcement ratios are based on the gross concrete
area.

� 0.5φVc ≤ Vu ≤ φVc

In cases where Vu is equal to or between 50% and 100% of φVc , both the
horizontal and vertical reinforcement ratios must be at least equal to 0.0025
(ACI 11.9.9).

� Vu > φVc

When Vu exceeds φVc, horizontal shear reinforcement must be provided to
satisfy ACI Eqs. (11-1) and (11-2). The nominal shear strength provided by the
horizontal shear reinforcement Vs is calculated by ACI Eq. (11-29):

Vs = Av fyd
s

(9.24)

In this equation, Av is the area of the horizontal shear reinforcement within
spacing s and d is determined in accordance with ACI 11.9.4.

The minimum ratio of horizontal shear reinforcement area to gross concrete
area ρt is 0.0025. Also, the maximum spacing of the horizontal reinforcement is
the smallest of �w/5, 3h and 18 in.

The minimum ratio of vertical shear reinforcement area to gross concrete
area ρ� is the larger of that determined by ACI Eq. (11-30) and 0.0025:

ρ� = 0.0025 + 0.5
(

2.5 − hw

�w

)
(ρt − 0.0025) ≥ 0.0025 (9.25)

The value of ρ� calculated by Eq. (9.25) need not be taken greater than ρt

determined by ACI 11.9.9.1. For low-rise walls, tests indicate that horizontal
shear reinforcement becomes less effective and vertical reinforcement becomes
more effective in resisting the effects from shear.5 This change in reinforcement
effectiveness is recognized in Eq. (9.25). In cases where hw/�w is less than 0.5,
the amount of vertical reinforcement is equal to the amount of horizontal rein-
forcement. However, if hw/�w is greater than 2.5, only a minimum amount of
vertical reinforcement, which is equal to 0.0025sh, is required.

The maximum spacing of the vertical reinforcement is the smallest of �w/3,
3h, and 18 in.

Example 9.5 Design the wall of Example 9.1 for shear. Figure 9.10 shows the service-level wind
loads that act over the height of the wall.

Solution
Step 1: Determine the factored load combinations. Table 9.8 contains a summary of the service-

level loads at the base of the wall (see Table 9.2). The shear forces on the wall due to gravity load
effects are negligible. Also included in the table are the applicable factored load combinations.
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FIGURE 9.10 Wind
load distribution
over the height
of the wall given
in Example 9.5.

Axial Load Bending Moment Shear Force
Load Case (kips) (ft kips) (kips)

Dead (D ) 500 0 0

Roof live (Lr ) 8 0 0

Live (L ) 400 0 0

Wind (W ) 0 ±3,004 54.4

Load Combination

1 1.4D 700 0 0

2 1.2D+ 1.6L + 0.5Lr 1,244 0 0

3 1.2D + 1.6Lr + 0.5L 813 0 0

4 1.2D + 1.6Lr + 0.8W 613 2,403 43.5

5 1.2D+ 1.6W+ 0.5L + 0.5Lr 804 4,806 87.0

6 0.9D − 1.6W 450 −4,806 −87.0

TABLE 9.8 Summary of Axial Loads, Bending Moments, and Shear Forces on the Wall Given
in Example 9.5
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Step 2: Check maximum shear strength requirements. The design shear strength φVn is limited
to the following at any horizontal section of the wall (ACI 11.9.3):

φVn = φ10
√

f ′
c hd = 0.75 × 10 ×

√
5,000 × 10 × (0.8 × 130)/1,000 = 551.5 kips

Note that d was taken as 80% of the length of the wall in this equation (ACI 11.9.4).
Because φVn > Vu = 87.0 kips, maximum shear strength requirements are satisfied.
Step 3: Determine the shear strength provided by the concrete. The nominal shear strength

provided by the concrete Vc is determined in this example using both of the methods permitted in
the Code. The critical section for shear is located at

�w/2 = 10.83/2 = 5.4 ft (governs)

hw/2 = 100/2 = 50 ft

This critical section occurs in the first story where the shear force is equal to that at the base of
the wall.

Method 1:

Vc = 2λ
√

f ′
c hd = 2 × 1.0

√
5,000 × 10 × (0.8 × 130)/1,000 = 147.1 kips

Method 2: The nominal shear strength Vc is equal to the smaller of the values obtained by Eqs. (9.22)
and (9.23). The minimum value of Vc is obtained using the factored axial load in load combi-
nation number 6 because it is smaller than the axial load in load combination number 5.

Equation (9.22):

Vc = 3.3λ
√

f ′
c hd + Nud

4�w

= 3.3 × 1.0
√

5,000 × 10 × (0.8 × 130)
1,000

+ 450 × (0.8 × 130)
4 × 130

= 332.7 kips

Equation (9.23):

Vc =
[

0.6λ
√

f ′
c + �w

(
1.25λ

√
f ′
c + 0.2Nu/�wh

)
(Mu/Vu) − (�w/2)

]
hd

At the base of the wall for load combination numbers 5 and 6,

Mu

Vu
− �w

2
= 4,806

87.2
− 10.83

2
= 49.7 ft > 0

The ratio Mu/Vu is the same for load combination number 4 as well.
Thus, for load combination number 6,

Vc =
{

0.6 × 1.0
√

5,000
1,000

+
[

130 ×
(

1.25 × 1.0
√

5,000
1,000

+ 0.2 × 450
130 × 10

)]/
(49.7 × 12)

}

× 10 × (0.8 × 130) = 79.9 kips

Therefore, according to Method 2, Vc = 79.9 kips.

The value of Vc determined by Method 2 is used throughout the remainder of this example.
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Step 4: Determine the shear strength provided by the shear reinforcement. Because Vu =
87.0 kips > φVc = 59.9 kips, the nominal shear strength provided by the horizontal shear rein-
forcement Vs is calculated by Eq. (9.24):

Vs = Av fyd
s

Assuming two No. 4 horizontal bars spaced at 18 in on center (see Example 9.1), the provided
horizontal shear reinforcement ratio is

ρt = 2 × 0.20 × 12/18
10 × 12

= 0.0022 < 0.0025

Thus, additional horizontal reinforcement must be provided to satisfy the minimum require-
ment in accordance with ACI 11.9.9.2. The horizontal reinforcement ratio for two No. 5 bars spaced
at 18 in is 0.0034, which is greater than the minimum ratio of 0.0025.

The maximum spacing of the horizontal shear reinforcement is the smallest of the following:

� �w/5 = 130/5 = 26.0 in
� 3h = 30 in
� 18 in (governs)

The required vertical shear reinforcement is determined by Eq. (9.25):

ρ� = 0.0025 + 0.5
(

2.5 − hw

�w

)
(ρt − 0.0025)

= 0.0025 + 0.5
(

2.5 − 100
10.83

)
(0.0034 − 0.0025) < 0

Thus, ρ� = 0.0025.
The provided vertical shear reinforcement ratio for two No. 6 bars spaced at 9 in on center is

(see Example 9.1)

ρt = 2 × 0.44 × 12/9
10 × 12

= 0.0098 > 0.0025

The maximum spacing of the vertical shear reinforcement is the smallest of the following:

� �w/3 = 130/3 = 43.3 in
� 3h = 30 in
� 18 in (governs)

Check shear strength requirement where Vs is determined by Eq. (9.24):

φVn = φ(Vc + Vs )

= 0.75
[

79.9 + (2 × 0.31) × 60 × (0.8 × 130)
18

]
= 221.1 kips > Vu = 87.0 kips

Use two No. 5 bars at 18-in horizontal bars and two No. 6 bars at 9-in vertical bars at the base
of the wall.

Comments
The reinforcement determined in this example is adequate for shear and combined axial load and
bending. The amount of reinforcement can be decreased over the height of the wall, but it must not
be less than the minimum prescribed in the Code.
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9.4 Design Procedure
The following design procedure can be used in the design of walls. Included is the
information presented in the previous sections on analysis, design, and detailing.

Step 1: Determine a preliminary wall thickness. The first step in the design pro-
cedure is to determine a preliminary wall thickness. From a practical standpoint, a
minimum thickness of 6 in is required for a wall with a single layer of reinforcement
and 10 in for a wall with a double layer. In the case of low-rise walls, shear requirements
usually govern, so a preliminary thickness can be determined on the basis of shear. In
high-rise structures, a preliminary wall thickness is not as obvious. In such structures,
the thickness can vary a number of times over the height of the structure, and an initial
value is usually determined from experience. Although fire resistance requirements
seldom govern wall thickness, the governing building code requirements should not
be overlooked.

More often than not, the size of openings required for stairwells and elevators
dictates the minimum wall plan layouts. Thus, the lengths of walls are usually controlled
by architectural considerations.

Step 2: Determine the design method (Section 9.2). The next step is to determine
which of the three available methods can be used to design a wall. As discussed pre-
viously, designing walls as compression members in accordance with Chap. 10 of the
Code is permitted in all cases.

Both the empirical design method and the alternative design method have limita-
tions. The empirical design method is fairly limited in application and is best suited
for relatively short walls with vertical loads. Wall sections designed by this method are
compression-controlled. The alternative design method has a number of limitations that
must be satisfied, and wall sections designed by this method must be tension-controlled.

Step 3: Determine the required reinforcement (Sections 9.2 and 9.3). Vertical and
horizontal reinforcements must be determined to satisfy the strength requirements for
axial load, bending, and shear. In low-rise walls, which are typically governed by shear
requirements, the amount of vertical and horizontal reinforcements is initially deter-
mined on the basis of the shear provisions of ACI 11.9. The axial load and bending
requirements of the appropriate design method are then checked on the basis of the re-
inforcement for shear. It is not uncommon for low-rise walls to have minimum amounts
of reinforcement over their entire height.

In the case of high-rise walls, wall sections at the base of the structure are usually
governed by the requirements for axial load and bending. Once the amount of rein-
forcement is determined on the basis of those requirements, the shear requirements of
ACI 11.9 are checked. For walls subjected to relatively large bending demands, larger
amounts of vertical reinforcement are sometimes concentrated at the ends of a wall to
increase its flexural capacity. The amounts of vertical and horizontal reinforcements are
typically varied over the height of high-rise walls. In no case shall the provided areas
of reinforcement be less than the minimum values prescribed in the Code.
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Problems
9.1. Determine the minimum thickness of a load-bearing concrete wall that has a height of 12 ft 0 in
and a length of 18 ft 6 in. It has been determined that the empirical design method can be used.

9.2. Determine the design axial strength φPn for the wall in Problem 9.1, assuming a wall thickness of
7 in and normal-weight concrete with f ′

c = 4,000 psi. Also assume that the wall is unrestrained against
rotation at both ends.

9.3. Double-tee beams that have 60-ft spans are supported by a reinforced concrete wall that has a
height of 16 ft. The double-tees have webs that are 4.75 in wide and are spaced 6 ft on center. Determine
the midheight distribution width of interior concentrated loads. Use the provisions in ACI 14.8.

9.4. For the wall system described in Problem 9.3, determine the minimum area of vertical reinforce-
ment for a 7-in-thick wall, assuming Grade 60 reinforcement and deformed bars not larger than No. 5
bars.

9.5. Determine the factored axial load Pu at the midheight of the 7-in-thick wall described in Problem
9.3 given the following loads:

Dead load of double-tee beams = 1,000 plf
Superimposed dead load = 20 psf
Roof live load = 30 psf
Wind load = 30 psf

Assume that the gravity loads from the double-tee beams are applied to the wall at an eccentricity
of 2.3 in from the centroid of the wall. Also assume normal-weight concrete with f ′

c = 4,000 psi.

9.6. For the wall system described in Problems 9.3 and 9.5, assume that the factored load due to the
roof gravity loads is equal to 4.0 kips/ft. Determine the factored moment Msa at the midheight of the
wall.

9.7. Assume that the 7-in-thick wall described in Problem 9.3 is reinforced with one layer of No. 4 bars
spaced at 10 in on center. Given that Mua = 30 in kips and Pu = 4 kips/ft, determine the total factored
moment Mu at the midheight of the wall.

9.8. For the wall system described in Problem 9.3, determine the midheight deflection �s .

9.9. A 12-in-thick wall is 20 ft long and has a height of 12 ft. Assuming normal-weight concrete with
f ′
c = 5,000 psi, determine the maximum shear strength that is permitted.

9.10. The wall described in Problem 9.9 is subjected to a factored horizontal force of 250 kips applied
at the top of the wall. Determine the nominal shear strength provided by the concrete at the critical
section.



C H A P T E R 10
Foundations

10.1 Introduction

10.1.1 Overview
The main function of a foundation is to transmit the loads from the structure above to
the soil below. In buildings, the loads usually come directly or indirectly from columns
and walls. Foundations must be located on a soil or rock stratum that has adequate
strength to support the loads. The loads must be spread out over a sufficient area so
that the resulting pressure is not greater than the allowable bearing capacity of the soil
or rock. In addition to strength, total settlement of a structure and differential settlement
between adjoining foundations must be limited to tolerable amounts in order to prevent
possible damage to the structure. Any foundation system must also be safe against
overturning, sliding, and excessive rotation. The overall stability of a building depends
on the foundations performing as intended. Chapter 18 of the International Building
Code (IBC) contains provisions for foundation systems used to support buildings.

There are numerous types of foundations, and this chapter focuses on those types
that are commonly used to support building structures. Design requirements are pre-
sented for both shallow and deep foundations. Methods are provided on how to size
the members and how to design and detail the required reinforcement.

10.1.2 Shallow Foundations
A shallow foundation transfers the load from the superstructure to a soil stratum that is
relatively close to the ground surface. A number of factors need to be considered when
locating the depth of a shallow foundation. As noted previously, a soil stratum that
has adequate bearing capacity needs to be identified. Also, shallow foundations must
be placed below the frost line to avoid possible frost heave. Local building codes con-
tain approximate frost-depth contours. Topsoil, organic materials, and unconsolidated
materials are just a few of the soil types that shallow foundations should not bear on.
A geotechnical report provides guidance on the appropriate depth for particular site
conditions.

Footings and mats are two types of shallow foundations. In general, a spread footing
supports one or more vertical elements. An isolated spread footing carries a single column
(Fig. 10.1a ). Its function is to spread the column load to the soil so that the stress intensity
is equal to or less than the allowable bearing capacity of the soil. Flexural reinforcement
is provided in two orthogonal directions at the bottom of the footing. A wall footing
is similar to a spread footing and is usually continuous under the length of the wall
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FIGURE 10.4 Mat
foundation.

tends to spread the concentrated loads from the columns and walls over larger areas,
thereby reducing the local effects caused by these loads. Settlement is also reduced at
pockets of weaker soils; the concrete mat essentially bridges over these weak pockets
and equalizes differential settlements.

For purposes of analysis and design, a mat foundation can be thought of as a con-
crete slab where the columns and walls are supports and the soil pressure is the applied
load. Similar to elevated reinforced concrete slabs in a building, both positive reinforce-
ment and negative reinforcement is required in both directions of a mat foundation.
Reference 1 provides additional information on the analysis and design of this type of
foundation.
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FIGURE 10.5 Pile
foundations.

10.1.3 Deep Foundations
A deep foundation is generally any type of foundation that extends below strata of poor
soil to a level where the soil is adequate to support the loads. The most common types
of deep foundations utilized under buildings are piles and drilled piers.

Piles are foundation members that have relatively small cross-sectional dimensions
compared with their length (Fig. 10.5). They are available in various materials and
shapes, and most concrete piles are circular, square, or octagonal in cross-section. Piles
are typically placed vertically into the soil but can be installed at a slight inclination to
help resist lateral loads.

Concrete piles may be cast-in-place or precast. A cast-in-place pile is formed either
by driving a casing or by drilling a hole into the ground. In the former, the casing is
typically removed after concrete has been deposited into the hole. In the latter, concrete
is poured directly into the hole. Many other procedures are used in the construction of
cast-in-place concrete piles, most of which depend on the type of proprietary system
that is utilized.

Precast piles are constructed in a precast casting yard and are transported to the site,
where they are driven into the ground by a pile driver. Either mild reinforcing bars or
prestressed tendons are used as reinforcement. Additional information on the design,
manufacture, and installation of concrete piles can be found in Ref. 2.

More than one pile is usually used beneath a column or wall to support the loads.
A pile cap is a reinforced concrete element that ties the tops of the piles together and
distributes the loads to the individual piles in the group. In the case of symmetrically
loaded pile caps with a symmetric arrangement of piles, it is assumed that the load
supported by the pile cap is shared equally by each pile. Piles are embedded into the
cap a minimum distance depending on the type of pile. Figure 10.6 illustrates just a few
pile cap layouts for individual columns.

The capacity of an individual pile depends on a number of factors, including cross-
sectional dimensions, material strength, and reinforcement type and arrangement. Ca-
pacity is typically reported by the manufacturer in tons, and the type and number of
piles is chosen on the basis of the applied service loads.
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FIGURE 10.6 Pile
cap layouts
for individual
columns.

FIGURE 10.7 Typical
belled concrete
drilled pier without
a cap.
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FIGURE 10.8 Typical
belled concrete
drilled pier
with a cap.

A drilled pier is similar to a cast-in-place pile in that it is a shaft that is drilled into the
soil. The shaft may be lined with a casing that may or may not be extracted as the shaft
is filled with concrete. A permanent casing is generally required where unstable soil
conditions are encountered, which could lead to the soil caving into the drilled shaft.
A drilled pier is also referred to as a pier or a caisson. Reference 3 provides additional
information on construction methods.

Drilled piers have a circular cross-section, and a circular bell is usually provided
at the bottom of the shaft to distribute the load over a greater area of soil or rock
(Fig. 10.7). It is common for a single column to be supported by a single drilled pier,
whereas multiple piers are provided beneath walls. A column, wall, or grade beam can
be supported directly on the top of the shaft as shown in Fig. 10.7. A drilled pier cap is
proved under individual columns to increase bearing area (Fig. 10.8).

Under certain conditions, a socketed drilled shaft is provided, which consists of a
permanent pipe or tube casing that extends to the top of a rock layer and an uncased
socket that is drilled a predetermined depth into the rock. The socket helps to ensure
that full bearing occurs between the shaft and the rock.

A grade beam is a reinforced concrete member that directly supports columns and
walls from the superstructure and transfers the loads from these members to drilled
piers. The loads from the supported members cause bending, shear, and possibly torsion
in the grade beams. As such, the grade beams are designed for these load effects, using
the general principles of the strength design method. As an example where grade
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In cases where piles are used in conjunction with footings (i.e., piles are embedded
into the bottom of footings; these elements are commonly referred to as pile caps), the
number and arrangement of the piles is determined using unfactored loads (ACI 15.2.2).
In such cases, ACI 15.2.3 permits the moments and shears in the footing or pile cap to
be determined assuming that the reaction from any pile is concentrated at the center of
the pile.

10.2.3 Sizing the Base Area

Allowable Bearing Capacity
As noted earlier, the base dimensions of a footing are determined using unfactored loads
and allowable soil bearing capacities. The bearing capacity of soil or rock can be obtained
from soil borings and tests performed by a geotechnical engineer. These values along
with other important information and data are typically summarized in a geotechnical
report. In the absence of site-specific data, allowable bearing pressures may be available
from local building authorities. Section 1806 of the IBC contains presumptive load-
bearing values for a variety of different soil types.4 It is important to check with the
local building authority to ensure that these presumptive values are permitted to be
used in the design of the foundation.

Soil Pressure Distribution
Once the bearing capacity of the soil has been established, the next step is to determine
the pressure distribution at the base of the footing. Elastic analyses and observations
reveal that the stress distribution beneath a symmetrically loaded footing is not uniform.
The actual stress distribution is highly indeterminate and depends on the rigidity (or
flexibility) of the footing and the type of soil beneath the footing. For footings on coarse-
grained soil, like loose sand, soil near the edge of the footing tends to displace laterally,
whereas soil located in the interior region is relatively confined (see Fig. 10.10a ).

The pressure distribution for cohesive soils, like clay, is depicted in Fig. 10.10b.
The high stresses at the edges of the footing are a result of shears that occur before
settlement takes place. Because these soil types generally have low rupture strength, it
is very likely that these stresses do not last long.

(b)(a)

FIGURE 10.10 Soil
pressure distribution
beneath a footing bearing
on (a) coarse-grained soils
and (b) cohesive soils.
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FIGURE 10.11 Soil
pressure
distribution for
load acting through
centroid of footing.

It is common practice to disregard nonuniform pressure distributions in design
and to use a linear pressure distribution, because of the following: (1) the magnitude
of the nonuniform pressure is uncertain and highly variable, and (2) the influence of
the nonuniform stress on the magnitudes of bending moments and shear forces in the
footing is relatively small.

Consider the footing depicted in Fig. 10.11 subjected to an applied service load P
that acts through the centroid of the footing plan area Af . For purposes of design, the
footing is assumed to be rigid, and the resulting soil pressure q at the base of the footing
is assumed to be uniform.

For footings subjected to an axial load and bending moment or, equivalently, to
an axial load acting at an eccentricity e from the centroid of the footing area, the total
combined stress at the base of the footing is equal to the sum of the stress due to the axial
load P (axial load/footing area) and the bending moment M (bending moment/section
modulus of footing). The pressure is assumed to vary linearly, as shown in Fig. 10.12a .
This distribution is valid where the axial load falls within the kern of the footing area,
that is, where the eccentricity e is less than L/6. The following equation for q can be
used to determine the minimum and maximum pressures at the extreme edges of the
footing:

q = P
Af

± 6M

BL2 (10.1)

When the eccentricity e is equal to L/6, the minimum pressure along one edge of
the footing is equal to zero [see Eq. (10.1) and Fig. 10.12b]. The maximum pressure at
the other edge is equal to 2P/Af .

When the eccentricity e falls outside of the kern, that is, where e is greater than L/6,
the combined stress determined by Eq. (10.1) gives a negative value for the pressure
along one edge of the footing. Because no tension can be transmitted between the
footing and the soil at the contact area, Eq. (10.1) is no longer applicable, and the bearing
pressure is distributed as shown in Fig. 10.12c. The maximum pressure is determined
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(a)

(c)(b)

FIGURE 10.12 Soil pressure distribution for footing subjected to axial load and bending moment:
(a) e < L/6, (b) e = L/6, and (c) e > L/6.
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FIGURE 10.13 Soil pressure distribution for a combined rectangular footing.

as a function of the axial load, eccentricity, and plan dimensions of the footing:

qmax = 2P
3(0.5L − e)B

(10.2)

In the case of combined footings, it is desirable to design the footing so that the
centroid of the footing area coincides with the resultant of the column loads. This
produces uniform bearing pressure over the entire area of the footing and helps in
preventing the footing from rotating. For the combined rectangular footing shown in
Fig. 10.13, the columns are supporting axial loads P1 and P2 at the locations x1 and x2

measured from the edge of the left column. The resultant force P is equal to P1 + P2,
and the distance x from the edge of the footing to P is obtained by summing moments
about this point and solving for x:

x = P1x1 + P2x2

P
(10.3)

A uniform pressure at the base of the footing is obtained by setting the footing
dimension L equal to 2x.

Required Footing Area
Once the maximum bearing pressure has been determined at the base of the footing, the
required footing area can be determined using the net permissible soil pressure q p. By
definition, q p is equal to the allowable bearing capacity of the soil qa minus the weight
of the surcharge above the footing. The weight of the surcharge typically consists of the
weight of the soil and concrete above the base of the footing plus any additional service
surcharge applied at the surface. Because the thickness of the footing is not known at
this stage, an estimate of the concrete weight must be made. In general, a footing area
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is determined so that the maximum computed bearing pressure qmax is equal to or less
than the permissible soil pressure qp.

Isolated Spread Footings For a concentrically loaded isolated spread footing, the re-
quired area of the footing Af is determined by dividing the total service load P by the
permissible soil pressure qp:

Af = BL = P
qp

(10.4)

There are obviously an infinite number of solutions to this equation. When one of the
plan dimensions is fixed, the other dimension can be easily computed by Eq. (10.4). In
the case of square footings, the length or width is equal to

√
P/qp.

For spread footings subjected to an axial load P and a moment M or, equivalently,
to an axial load P at an eccentricity e where e is equal to or less than L/6, the footing area
is found by trial and error, using the condition that the maximum combined pressure
qmax is equal to or less than qp:

qmax = P
Af

+ 6M

BL2 ≤ qp (10.5)

The required footing size must also be determined by trial and error in cases where
the eccentricity is greater than L/6, on the basis of the maximum pressure along the
edge of the footing:

qmax = 2P
3(0.5L − e)B

≤ qp (10.6)

Combined Footings For combined rectangular footings, the length L of the footing is
equal to 2x, where x is determined such that uniform pressure is obtained at the base of
the footing [see Eq. (10.3)]. In this case, the width B of the footing is obtained as follows:

B = P
Lqp

(10.7)

The dimensions of a combined trapezoidal footing can be determined using simi-
lar methods. Consider the trapezoidal footing shown in Fig. 10.14. Assuming that the
length L is established on the basis of column size and spacing, the dimensions B1 and
B2 can be determined so that a uniform soil pressure occurs at the base of the footing.

Defining x as the distance from the center of the heavier-loaded column on the left
to the location where the centroid of the footing area coincides with the resultant of
the column loads, it is evident that a trapezoidal footing is not possible if x + (c1/2) <

L/3; in such cases, the result is a triangular footing with the column on the right,
not fully supported on the foundation. A combined rectangular footing occurs where
x + (c1/2) = L/2.

On the basis of the limits established earlier, a combined trapezoidal footing solution
exists where L/3 < x + (c1/2) < L/2. Defining x = x + (c1/2), the following equation
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FIGURE 10.14
Dimensions of a
combined
trapezoidal footing.

locates the centroid of the footing with respect to the left edge:

x = L
3

(
2B2 + B1

B1 + B2

)
(10.8)

Like in the case of a combined rectangular footing, the resultant force P is equal
to P1 + P2, where P1 and P2 are the service axial loads on the left and right columns,
respectively. The distance x from the center of the left column to P is obtained by
summing moments about this point and solving for x:

x = P2 L ′

P
= x − c1

2
= L

3

(
2B2 + B1

B1 + B2

)
− c1

2
(10.9)

In this equation, L ′ is the distance between P1 and P2, that is, the center-to-center
distance between the columns.

Also, the pressure at the base of the footing must not exceed the permissible soil
pressure:

qp = P
Af

= 2P
L(B1 + B2)

(10.10)

Equations (10.9) and (10.10) can be solved for the two unknowns B1 and B2.

Example 10.1 Determine the required area of the concentrically loaded spread footing depicted
in Fig. 10.15, given an allowable soil-bearing capacity qa = 4,000 psf. Assume that the combined
weight of soil and concrete above the base of the footing is equal to 120 pcf.

Solution Because the footing is concentrically loaded, Eq. (10.4) can be used to determine the
required area.

Determine the permissible soil pressure qp :

qp = 4,000 − (120 × 6) = 3,280 psf

Therefore,

Af = P
qp

= 300,000 + 150,000
3,280

= 137.2 ft2

Use an 11-ft 9-in square footing (provided area = 138.1 ft2).







537F o u n d a t i o n s

The dimension B of the footing is determined by Eq. (10.7):

B = P
Lqp

= 1,140
29 × 3

= 13.1 ft

Use B = 13 ft 6 in.

Example 10.5 Determine the required area of a combined trapezoidal footing supporting the two
columns shown in Fig. 10.17. Assume a permissible soil pressure of 3,500 psf.

Solution The base dimensions B1 and B2 of the footing are determined so that the pressure at the
base is uniform:

L = 24
2 × 12

+ 20 + 20
2 × 12

= 21.83 ft

The distance x from the center of the left column to P is obtained by summing moments about
this point and solving for x:

x = P2 L ′

P
= 350 × 20

550 + 350
= 7,000

900
= 7.8 ft

Check if a combined trapezoidal solution exists:

L
3

= 7.3 ft < x + c1

2
= 8.8 ft <

L
2

= 10.9 ft

From Eq. (10.9),

x = P2 L ′

P
= L

3

(
2B2 + B1

B1 + B2

)
− c1

2

7.8 = 7.3
(

2B2 + B1

B1 + B2

)
− 1

1.5B1 − 5.8B2 = 0

FIGURE 10.17 The combined footing given in Example 10.5.
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From Eq. (10.10),

qp = P
Af

= 2P
L(B1 + B2)

3.5 = 2 × 900
21.83(B1 + B2)

76.41B1 + 76.41B2 = 1,800

Solving Eqs. (10.9) and (10.10) for B1 and B2 results in

B1 = 18.7 ft

B2 = 4.8 ft

Use L = 21 ft 10 in.
Use B1 = 18 ft 9 in.
Use B2 = 4 ft 10 in.

10.2.4 Sizing the Thickness
Once the required area of the footing has been established on the basis of the service
loads and the allowable bearing capacity of the soil, the thickness h of a footing must
be determined considering both flexure and shear.

In general, a spread footing must be designed for the bending moments that are
induced because of the pressure developed at the base of the footing from the factored
loads. Requirements for both one- and two-way shear must also be satisfied. Methods
to determine the thickness are provided in the following sections.

ACI 15.7 requires a minimum footing depth of 6 in above the bottom reinforcement
for footings on soil and 12 in for footings on piles. According to ACI 7.7.1, the minimum
concrete cover to the reinforcement is equal to 3 in for concrete cast against and perma-
nently exposed to earth. Therefore, for footings on soil, the minimum overall thickness
is equal to approximately 10 in. Similarly, the minimum overall thickness of footings
on piles is 16 in.

10.2.5 Design for Flexure

Critical Section
A spread footing must be designed for the bending moments that are induced because
of the pressure developed at the base of the footing from the factored loads. Illustrated
in Fig. 10.18 is an isolated spread footing subjected to a concentric factored axial load
Pu. The factored pressure qu at the base of the footing is equal to Pu divided by the area
of the footing Af .

According to ACI 15.4.2, the critical section for flexure for an isolated footing sup-
porting a concrete column, pedestal, or wall is located at the face of the supported
member. The maximum factored bending moment Mu at this critical section in this di-
rection can be determined by the following equation, which is applicable to cantilevered
members:

Mu = quc2

2
(10.11)
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FIGURE 10.18
Critical section for
an isolated footing
supporting a
column, pedestal,
or wall.

In this equation, c is the distance from the critical section to the edge of the footing (i.e.,
c is the length of the cantilevered portion of the footing).

If the footing were subjected to a moment or load acting at an eccentricity, the
resulting factored pressure would be nonuniform. In such cases, the bending moment
at the critical section can be obtained from statics.

ACI 15.4.2 also contains critical section locations for two other cases. For footings
supporting masonry walls, the critical section is located halfway between the middle
and the edge of the wall (Fig. 10.19a ), whereas for footings supporting columns with a
steel base plate, the critical section is located halfway between the face of the column

(b)(a)

FIGURE 10.19 Critical section locations for (a) footings supporting masonry walls and (b) footings
supporting columns with a steel base plate.
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and the edge of the base plate (Fig. 10.19b). In the case of combined footings, the critical
section for negative moments is taken at the face of the supports. A maximum positive
moment occurs near the midspan between columns. The Direct Design Method of
analysis given in ACI 13.6 is not permitted to be used to determine factored bending
moments in combined footings or mat foundations (ACI 15.10.2).

ACI 15.3 permits circular or regular polygon-shaped columns or pedestals to be
replaced by an equivalent square member with the same area as the original shape for
location of critical sections for moments, shear, and development of flexural reinforce-
ment.

Determining the Required Reinforcement
Once the maximum factored moment Mu at the critical section has been determined,
the required area of reinforcing steel As can be calculated using the strength design
requirements of Chap. 5. The following equation must be satisfied for a concentrically
loaded isolated footing where the nominal flexural strength Mn is given by Eq. (5.10)
for a rectangular section with tension reinforcement:

Mu = quc2

2
≤ φMn = φ As fy

(
d − a

2

)
(10.12)

The required strength Mu must be equal to or less than the design strength φMn. An
efficient design for footings would be one where the section is tension-controlled. Thus,
the strength reduction factor φ is equal to 0.9 in accordance with ACI 9.3.2.1. Similar
equations can be derived for other pressure distributions.

According to ACI 10.5.4, the minimum area of flexural reinforcement As, min for
footings of uniform cross-section is equal to the required shrinkage and temperature
reinforcement prescribed in ACI 7.12.2.1. For footings with Grade 60 reinforcement,
the minimum area of steel is equal to 0.18% of the gross area of the footing, which is
equal to the overall thickness h times footing plan dimension B or L , depending on the
direction of analysis. The maximum spacing of flexural reinforcement is the lesser of
3h or 18 in.

Assuming that a square column is supported by a square footing that has a mini-
mum area of flexural reinforcement, Eq. (10.12) can be solved for the required effective
depth d:

d = 2.2c

√
Pu

Af
(10.13)

In this equation, c is in feet; Pu is in kips; Af is in square feet; and d is in inches.
Equation (10.13) provides an initial estimate of footing thickness based on flexure.
Shear provisions must also be checked.

Detailing the Reinforcement
Requirements for the distribution of flexural reinforcement in footings are given in ACI
15.4. For one-way (wall) and two-way square footings, reinforcement is to be distributed
uniformly across the entire width of the footing. In square footings, the reinforcement
in both orthogonal layers is the same because the maximum factored bending moments
at the critical sections are the same. Uniform distribution of the reinforcement is shown
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FIGURE 10.20 Distribution of flexural reinforcement in one- and two-way square footings.

in Fig. 10.20 for a one-way spread footing supporting a wall and for an isolated square
spread footing supporting a column. Other reinforcement is not shown for clarity.

Flexural reinforcement in two-way rectangular footings must be distributed in ac-
cordance with ACI 15.4.4. Reinforcement in the long direction is uniformly distributed
across the entire width of the footing. In the short direction, a portion of the total re-
inforcement γs As must be uniformly distributed over a band width centered on the
column or pedestal that is equal to the length of the short side of the footing. The term
γs is determined by ACI Eq. (15-1):

γs = 2
β + 1

(10.14)

In this equation, β is the ratio of the long side to the short side of the footing.
The remainder of the reinforcement outside of the center band must be uniformly

distributed. This distribution reflects the fact that the moment is largest immediately
under the column and decreases with increasing distance from the column.

Figure 10.21 illustrates the provisions of ACI 15.4.4. In the long direction, the re-
quired area of steel AsB is uniformly distributed at a spacing of s3 over the width B.
In the short direction, the portion As1 of the total required area of reinforcement AsL
is uniformly distributed at a spacing of s1 over a width equal to B centered on the
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FIGURE 10.21 Distribution of flexural reinforcement in a rectangular footing.

column. Note that As1 is equal to γs AsL. The remaining reinforcement As2 is uniformly
distributed at a spacing of s2 on either side of the center band. The minimum reinforce-
ment and maximum spacing requirements of the Code must be satisfied in all portions
of the footing.

Development of Reinforcement
Flexural reinforcement in footings must be fully developed in accordance with the
applicable provisions of ACI Chap. 12. The bars must extend at least a tension devel-
opment length �d beyond the critical section defined in ACI 15.4.2 (see ACI 15.6 and
Figs. 10.18 and 10.19 of this book).

For a concrete column supported by an isolated footing, the required development
length �d must be equal to or less than the available development length:

�d ≤ L − c1

2
− 3 in (10.15)

In this equation, L and c1 are the lengths of the footing and the column in the direction
of analysis, respectively. As noted previously, a minimum cover of 3 in is required for
concrete cast against and permanently exposed to earth.

Section 6.2 contains information on how to determine �d for flexural reinforcement.
The provided reinforcing bar size and spacing in the footing must satisfy Eq. (10.15) so
that the bars can be fully developed.
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Bar Size (No.) Development Length �d (in)

4 19

5 24

6 29

7 42

8 48

9 54

10 60

11 67

TABLE 10.1 Minimum Tension Development Length for Flexural Reinforcement in Footings

In typical cases, the clear spacing and cover requirements listed in the first row of
the table given in ACI 12.2.2 are satisfied for flexural reinforcement in footings, and the
required �d can be calculated by the appropriate equations given in the table:

� For No. 6 and smaller bars, �d =
(

fy�t�e

25λ
√

f ′
c

)
db

� For No. 7 and larger bars, �d =
(

fy�t�e

20λ
√

f ′
c

)
db

The factors �t and �e are the horizontal reinforcement factor and the coating factor,
respectively [see ACI 12.2.4(a) and 12.2.4(b)]. Table 10.1 contains the minimum develop-
ment lengths �d for normal-weight concrete that has a compressive strength of 4,000 psi
and Grade 60 reinforcement that is uncoated and is placed at the bottom of the footing
(i.e., not top bars). The values have been rounded up to the next whole number.

The provisions of ACI 12.2.2 usually produce conservative development lengths
compared with those obtained by the provisions of ACI 12.2.3. ACI Eq. (12-1) may be
used to determine �d in any case and must be used where the spacing and/or cover
requirements of ACI 12.2.2 are not satisfied.

10.2.6 Design for Shear

Overview
Provisions for shear strength in footings are the same as those required for slabs and are
given in ACI 11.11. Requirements for both one- and two-way shear must be satisfied.
The required footing thickness for shear is based on the severer of these two conditions.

The critical section for shear is measured from the face of a column, pedestal, or wall
for footings supporting such elements (ACI 15.5.2). For footings supporting columns
or pedestals with steel base plates, the critical section is measured from the position
halfway between the face of the column or pedestal and the edge of the steel base plate.

One-Way Shear
The factored shear force Vu at the critical section, based on the factored pressure at the
base of the footing within the tributary area, must be equal to or less than the design
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FIGURE 10.22
Critical section
for one-way
shear in a footing.

shear strength φVc determined in accordance with ACI 11.2.1.1. Figure 10.22 illustrates
the tributary area that is to be used in the calculation of Vu for a column supported by
an isolated rectangular footing. The following equation must be satisfied at the critical
section, which in this case is located a distance d from the face of the column (see ACI
11.11.1.1 and 15.5.2):

Vu = qu B(c − d) ≤ φVc = φ2λ
√

f ′
c Bd (10.16)

According to ACI 9.3.2.3, the strength reduction factor φ is equal to 0.75 for shear.
One-way shear needs to be checked in the other direction as well.

Equation (10.16) can be used to determine the minimum effective depth d that
satisfies one-way shear requirements:

d = quc

qu + φ2
√

f ′
c

(10.17)

This equation is applicable where a concrete column is supported by a square footing.
Even though one-way shear requirements rarely control the design of footings, they

must still be checked. Providing an effective depth d that is equal to or greater than that
obtained by Eq. (10.17) ensures that one-way shear strength requirements are satisfied.

Two-Way Shear
The factored shear force Vu at the critical section, based on the factored pressure at the
base of the footing within the tributary area, must be equal to or less than the design
shear strength φVc determined in accordance with ACI 11.11.2.1. The tributary area that
is to be used in the calculation of Vu for a column supported by an isolated rectangular
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FIGURE 10.23
Critical section
for two-way shear
in a footing.

footing is illustrated in Fig. 10.23. The following equation must be satisfied at the critical
section, which in this case is located a distance d/2 from the face of the column (see ACI
11.11.1.2 and 15.5.2):

Vu = qu [BL − (c1 + d)(c2 + d)] ≤ φVc (10.18)

In this equation, the design shear strength of the concrete φVc is the smallest of the
values defined in ACI Eqs. (11-31) through (11-33):

φVc =




φ

(
2 + 4

β

)
λ
√

f ′
c bod

φ

(
αsd
bo

+ 2
)

λ
√

f ′
c bod

φ4λ
√

f ′
c bod

(10.19)

Illustrated in Fig. 10.23 is the perimeter bo of a four-sided critical section.
ACI Eq. (11-31) accounts for the effect of β, which is equal to ratio of the long side

to the short side of the column, concentrated load, or reaction area. As β increases, the
design shear strength decreases. ACI Eq. (11-32) accounts for the effect of bo/d . Also
included in this equation is αs , which is equal to 40 for critical sections with four sides,
30 for critical sections with three sides, and 20 for critical sections with two sides. ACI
Eq. (11-32) yields the smallest design strength where d/c1 ≤ 0.25, which rarely occurs.
For footings supporting square columns, ACI Eq. (11-33) usually governs.

In cases where ACI Eq. (11-33) results in the smallest design shear strength, the
following equation can be used to determine the minimum effective depth d that is
required to satisfy two-way shear requirements for a square column supported by a



546 C h a p t e r T e n

square footing:

d = c1

[
−a +

√
a2 + qubc
2b

]
(10.20)

where a = qu

2
+ φvc

b = qu

4
+ φvc

c = Af

c2
1

− 1

vc = 4λ
√

f ′
c

Generally, two-way shear is more critical than one-way shear. Because shear rein-
forcement is not economical, the depth of the footing must be increased where shear
capacity is not sufficient.

The largest d computed by Eqs. (10.13), (10.17), and (10.20) is to be used in deter-
mining the overall thickness of a footing.

10.2.7 Force Transfer at Base of Supported Members

Overview
The interface between the supported and the supporting member must be designed
to adequately transfer vertical and horizontal forces between the members. ACI 15.8
contains design requirements for force transfer from a column, wall, or pedestal to a
pedestal or footing.

Vertical compressive loads are transferred by bearing on the concrete or by a com-
bination of bearing and reinforcement. Tensile loads must be resisted entirely by rein-
forcement, which may consist of extended longitudinal bars, dowels, anchor bolts, or
mechanical connectors. Provisions are given in ACI 15.8.1 for both cast-in-place and
precast members supported by footings. Lateral loads are transferred using the shear-
friction provisions of ACI 11.6 or other appropriate methods. Interface reinforcement
is designed to resist lateral loads.

Vertical Transfer
Bearing Stress According to ACI 15.8.1.1, the bearing strength requirements of ACI
10.14 must be satisfied for both the supported and the supporting member. For bearing
on the supported member, the factored axial load Pu must be equal to or less than the
design-bearing strength φPnb :

Pu ≤ φPnb = φ0.85 f ′
c A1 (10.21)

In this equation, A1 is the area of the column, wall, or pedestal that is supported by the
footing and the strength reduction factor φ for bearing is equal to 0.65 (ACI 9.3.2.4).

The following equation must be satisfied for bearing on a footing or pedestal:

Pu ≤ φPnb = φ0.85 f ′
c A1

√
A2/A1 ≤ 2φ0.85 f ′

c A1 (10.22)
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FIGURE 10.24 Determination of area A 2.

The term A1 is the area of the supported member and A2 is defined as the area of the
lower base of the largest frustrum of a pyramid, cone, or tapered wedge contained
wholly within the footing and having for its upper base the loaded area A1 and having
side slopes of 1 vertical to 2 horizontal.

When the supporting area is wider than the loaded area on all sides, the surrounding
concrete confines the bearing area, resulting in an increase in bearing strength. This
increase is reflected in Eq. (10.22), where the basic design bearing strength is multiplied
by

√
A2/A1. An upper limit of two times the basic design bearing strength is required

regardless of the magnitude of the adjustment factor.
The determination of A2 where the lower base falls within and outside of the base

dimensions of a footing is illustrated in Fig. 10.24. In this case, A2 is equal to the projected
length b, which is less than the footing width B times L .

Reinforcement across the Interface The amount of reinforcement that is required be-
tween the supported and the supporting member depends on the type of stress in
the bars of the supported member under all applicable load combinations. Minimum
embedment lengths into both members also depend on this stress.

Dowels are commonly used as interface reinforcement between columns or walls
and footings. The dowel bars are set in the footing prior to casting the footing concrete
and are subsequently spliced to the column or wall bars.
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Compressive stress in the bars of the supported member Where Pu > φPnb, reinforce-
ment must be provided to transfer the excess compressive stress from the supported
member to the footing. The required area of interface reinforcement can be determined
by the following equation:

As = Pu − φPnb

φ fy
≥ As, min (10.23)

A minimum area of reinforcement As, min across the interface is required even where
concrete-bearing strength is not exceeded. Minimum reinforcement requirements are
based on the type of member that is supported.

Cast-in-place columns or pedestals supported on footings. In cases where cast-
in-place columns or pedestals are supported on footings, the minimum area of rein-
forcement As, min across the interface is equal to 0.5% of the gross area of the supported
member A1 (ACI 15.8.2.1). This reinforcement can consist of (1) extended reinforcing
bars from the column or pedestal into the footing or (2) dowels emanating from the
footing (ACI 15.8.2). Providing a minimum area of interface reinforcement helps to en-
sure ductile behavior between the two members and also helps to provide a degree of
structural integrity during the construction stage and the life of the structure. Note that
the Code does not require that all of the column bars be extended and anchored into a
footing when the stress in them is compressive.

Illustrated in Fig. 10.25 are dowels across the interface between a reinforced concrete
column and footing. In situations where all of the bars are in compression in all appli-
cable load combinations, the dowels must be extended into the footing a compression
development length �dc determined in accordance with ACI 12.3.2:

�dc =
{

(0.02 fy/λ
√

f ′
c )db

(0.0003 fy)db
≥ 8 in (10.24)

The value of �dc determined by Eq. (10.24) may be reduced by the applicable factors
given in ACI 12.3.3.

The dowel bars are usually hooked and extend to the level of the flexural reinforce-
ment in the footing. The hooked portion of the dowels cannot be considered effective
for developing the dowels in compression (ACI 12.5.5). The following equation must
be satisfied to ensure adequate development of the dowels into the footing:

h ≥ �dc + r + (db)dowel + 2(db) f + 3 in (10.25)

In this equation, r is the radius of the dowel bar bend, which is defined in ACI Table 7.2.
The bar diameters (db)dowel and (db)f correspond to the dowels and flexural reinforce-
ment, respectively. In cases where Eq. (10.25) is not satisfied, either a greater number of
smaller dowel bars can be used, or the depth of the footing must be increased.

Dowels must also be fully developed in the column. These bars are typically lap
spliced to the column bars. In cases where the dowel bars are the same size as the column
bars, the minimum compression lap splice length is equal to (0.0005 fy)db = 30db or
12 in for Grade 60 reinforcement. ACI 12.16.1 contains additional requirements for
other grades of reinforcement and concrete strengths less than 3,000 psi.
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FIGURE 10.25 Footing dowels.

Where the dowel bars are smaller in diameter than the column bars, the compression
lap splice length must be equal to or greater than the larger of the following (ACI 12.16.2):

1. The development length in compression �dc of the larger bar, which is deter-
mined in accordance with ACI 12.3

2. The compression lap splice length of the smaller bar, which is determined in
accordance with ACI 12.16.1

According to ACI 15.8.2.3, it is permitted to lap splice Nos. 14 and 18 column
bars that are in compression to dowel bars that are No. 11 or smaller. The required
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lap splice length is determined in accordance with the requirements outlined earlier.
This provision is an exception to ACI 12.14.2.1, which prohibits lap splicing of Nos. 14
and 18 bars and is based on many years of satisfactory performance of these types of
connections.

Cast-in-place walls supported on footings. The minimum area of reinforcement
As, min across the interface between a cast-in-place wall and footing is equal to the
minimum vertical reinforcement given in ACI 14.3.2, which depends on the size of the
bars passing through the interface:

As, min =
{

0.0012Ag for No. 5 and smaller deformed bars

0.0015Ag for other deformed bars
(10.26)

Like cast-in-place columns, extended reinforcing bars from the wall or dowels can
be used to satisfy this requirement.

Tensile stress in the bars of the supported member Tensile forces—either applied
directly or transferred by a moment—from a supported element to a footing or pedestal
must be resisted entirely by reinforcement across the interface (ACI 15.8.1.2 and 15.8.1.3).
In such cases, dowel bars are provided for all of the column bars.

Tensile anchorage of the dowel bars into the footing is typically accomplished by
providing 90-degree standard hooks at the ends of the dowel bars. The development
length of the hooked bars is determined in accordance with ACI 12.5.

A tension lap splice or a mechanical connection in accordance with ACI 12.17 must
be provided between the dowel bars and the column reinforcement (ACI 15.8.1.3). The
type of tension lap splice (Class A or B) that must be used depends on the conditions set
forth in ACI 12.17.2.2 and 12.17.2.3 (see Section 8.7 of this book for a detailed discussion
on lap splices in columns).

Horizontal Transfer
ACI 15.8.1.4 permits the shear-friction method of ACI 11.6 to be used for transfer of
lateral loads from a supported member to a footing or pedestal. The reinforcement Avf
provided across the interface between the supported and the supporting member must
satisfy the following equation, which is applicable where the shear-friction reinforce-
ment is perpendicular to the interface:

Avf ≥ Vu

φ fyµ
(10.27)

In this equation, Vu is the maximum factored shear force due to the lateral load effects
obtained by the applicable load combinations given in ACI 9.2.1 and µ is the coefficient
of friction that is determined by ACI 11.6.4.3. The strength reduction factor φ is equal
to 0.75.

It is commonly assumed that the concrete of the supported member is placed against
the hardened concrete of the footing or pedestal without intentionally roughening the
surface of the supporting member. In such cases, the effects of the lateral loads are
primarily resisted by dowel action of the reinforcement across the interface, and tests
have shown that µ can be taken as 0.6λ.5 The modification factor λ is equal to 1.0 for
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normal-weight concrete and 0.75 for all lightweight concrete. Note that λ can also be
determined on the basis of the volumetric proportions of the lightweight and normal-
weight aggregates in the concrete mixture, but it must not exceed 0.85 (ACI 11.6.4.3).

In cases where no intentional roughening is provided, the following strength equa-
tion must also be satisfied (ACI 11.6.5):

Vu ≤ φVn = φ0.2 f ′
c Ac ≤ φ800Ac (10.28)

The term Ac is the area of the concrete section that resists Vu. For example, Ac is equal to
the area of a column that is supported by a footing. Where the supported and supporting
concretes have different compressive strengths, the smaller of the two strengths must be
used. Equation (10.28) provides an upper limit on shear-friction strength, and it should
be checked prior to design.

Because shear-friction reinforcement acts in tension, full tension anchorage must be
provided into the footing or pedestal and the supported member. The lengths of these
dowel bars are determined in the same way as those for vertical transfer where tension
forces or bending moments are present.

Typically, the area of the dowel bars is initially determined on the basis of the
requirements for vertical transfer. That area is then compared with the area determined
by Eq. (10.27) for horizontal transfer and the larger of the two areas is provided at the
interface.

10.2.8 Design Procedure
The following design procedure can be used in the design of footings. Included is the
information presented in the previous sections on analysis, design, and detailing.

Step 1: Determine the area of the footing. The base dimensions of a footing are
calculated using service loads and the permissible bearing capacity of the soil.

For a concentrically loaded isolated footing, the maximum pressure at the base
of the footing is uniform, and Af can be obtained by dividing the service axial load
by the permissible bearing capacity. For isolated footings subjected to an axial load
and bending moment, Af is determined by trial and error. Closed-form solutions are
available for combined rectangular and trapezoidal footings where the dimensions are
determined so that uniform pressure occurs at the base of the footing.

Step 2: Determine the thickness of the footing. The thickness of the footing h must
satisfy flexural requirements and the one- and two-way shear requirements of ACI 15.5.
Factored loads are used to compute the maximum bending moments and shear forces
at the critical sections.

According to ACI 15.7, the depth of the footing above the bottom reinforcement
layer must be 6 in for footings supported on soil and 12 in for footings on piles. The
minimum cover to reinforcement in concrete elements cast against and permanently
exposed to earth is 3 in in accordance with ACI 7.7.1.

Step 3: Determine the required flexural reinforcement. Once a footing thickness
has been established, the flexural reinforcement can be determined using the general
requirements of the strength design method. The location of the critical section for the
maximum factored moment in a footing is given in ACI 15.4 for three cases (see Figs.
10.18 and 10.19).
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The required area of reinforcement is calculated at the critical section, assuming
a tension-controlled section. The provided area of reinforcement must be equal to or
greater than the minimum reinforcement prescribed in ACI 10.5.4.

Step 4: Distribute the flexural reinforcement. The flexural reinforcement is dis-
tributed in the footing according to the provisions of ACI 15.4. For one-way footings
and two-way square footings, reinforcement is uniformly distributed across the en-
tire width of the footing. In two-way rectangular footings, reinforcement in the long
direction is uniformly distributed across the entire width of the footing. In the short
direction, distribution must satisfy the requirements of ACI 15.4.4.2 (see Figs. 10.20 and
10.21).

Step 5: Develop the flexural reinforcement. The flexural reinforcement is devel-
oped according to the provisions of ACI Chap. 12. The location of the critical sections for
development of reinforcement are the same as those defined in ACI 15.4.2 for maximum
factored moments.

Step 6: Check transfer of forces at the base of the supported member. Both vertical
and horizontal force transfer must be checked at the interface between the supported
and the supporting member. Vertical compression forces are transferred by bearing on
the concrete and by reinforcement, if required. Provisions for bearing are given in ACI
10.14. Tensile forces must be resisted entirely by reinforcement.

A minimum area of reinforcement is required across the interface of the supported
member and the footing even where concrete bearing strength is not exceeded. Hori-
zontal force transfer must satisfy the shear-friction requirements of ACI 11.7.

Example 10.6 Determine the thickness and reinforcement for the footing given in Example 10.1.
The column that is supported by the footing is 16 × 16 in, has normal-weight concrete with a
compressive strength of 5,000 psi, and is reinforced with eight No. 7 bars. Assume that the footing
has normal-weight concrete with a compressive strength of 4,000 psi and Grade 60 reinforcement.

Solution
Step 1: Determine the area of the footing. The area of the footing has been determined in

Example 10.1 on the basis of the permissible soil pressure. The base dimensions are 11 ft 9 in ×
11 ft 9 in.

Step 2: Determine the thickness of the footing. The thickness of the footing must be deter-
mined using the factored pressure at the base of the footing, considering both flexure and shear.
The maximum factored pressure qu is calculated by dividing the factored load Pu by the area of the
footing Af :

qu = Pu

Af
= (1.2 × 300) + (1.6 × 150)

11.752 = 600
138.1

= 4.35 ksf

� Design for flexure. The critical section for flexure for a footing supporting a concrete column is at
the face of the column (see Fig. 10.18). Using Eq. (10.13), the required effective depth d of the
footing for flexure assuming minimum flexural reinforcement is

d = 2.2c

√
Pu

Af
= 2.2 ×

(
11.75

2
− 16

2 × 12

)
×

√
4.35 = 23.9 in

The required flexural reinforcement is determined after the effective depth is established
considering both flexure and shear strength.
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� Design for shear. The minimum effective depth d that is required to satisfy one-way shear require-
ments is determined by Eq. (10.17):

d = quc

qu + φ2
√

f ′
c

= (4,350/144) × {(11.75/2) − [16/ (2 × 12)]} × 12
(4,350/144) + (0.75 × 2 × √

4,000)
= 15.1 in

Equation (10.20) is used to determine the minimum effective depth d to satisfy two-way shear
requirements:

d = c1

[
−a +

√
a2 + qubc
2b

]

= 16

{
−204.9 +

√
204.92 + [(4,350/144) × 197.3 × 76.7]

2 × 197.3

}
= 20.3 in

where a = qu

2
+ φvc = 4,350

2 × 144
+ (0.75 × 253.0) = 204.9 psi

b = qu

4
+ φvc = 4,350

4 × 144
+ (0.75 × 253.0) = 197.3 psi

c = Af

c2
1

− 1 = 11.752

(16/12)2 − 1 = 76.7

vc = 4λ
√

f ′
c = 4 × 1.0

√
4,000 = 253.0 psi

Therefore, a 23.9 + 4 = 27.9 in footing is adequate for flexure and shear.
Try a 28-in thick footing (d = 24 in).
Step 3: Determine the required flexural reinforcement. The maximum factored moment Mu

at the critical section is (see Fig. 10.18)

Mu = quc2

2
= 4.35 × {(11.75/2) − [16/ (2 × 12)]}2

2
= 59.0 ft kips/ft

The flowchart shown in Fig. 6.4 is used to determine As . It is modified to account for the
differences applicable to footing design.

Step 3A: Assume tension-controlled section. Footings should be designed as tension-
controlled sections whenever possible. Thus, assume that the strength reduction factor φ = 0.9.

Step 3B: Determine the nominal strength coefficient of resistance Rn. For a rectangular sec-
tion, Rn is determined by Eq. (6.5), which is a function of the factored bending moment Mu:

Rn = Mu

φbwd2 = 59.0 × 12,000
0.9 × 12 × 242 = 113.8 psi

Step 3C: Determine the required reinforcement ratio ρ. The reinforcement ratio ρ is deter-
mined by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 113.8

0.85 × 4,000

]
= 0.0019

Step 3D: Determine the required area of tension reinforcement As.

As = ρbd = 0.0019 × 12 × 24 = 0.55 in2/ft
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Step 3E: Determine the minimum required area of reinforcement As, min. The minimum
amount of reinforcement is determined by ACI 10.5.4:

As, min = 0.0018bh = 0.0018 × 12 × 28 = 0.61 in2/ft > 0.55 in2/ft

Use As = 0.61 in2/ft.
Step 3F: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c b

= 0.61 × 60,000
0.85 × 4,000 × 12

= 0.9 in

Step 3G: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 3H: Determine the neutral axis depth c.

c = a
β1

= 0.9
0.85

= 1.1 in

Step 3I: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
24
1.1

− 1
)

= 0.0625 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4), and the initial assumption that
the section is tension-controlled is correct.

Step 3J: Choose the size and spacing of the reinforcing bars.

Total area of steel required = 0.61 × 11.75 = 7.17 in2

Try 12 No. 7 bars (provided As = 7.20 in2) spaced 12 in on center.
Step 4: Distribute the flexural reinforcement. The provided spacing of 12 in is less than the

maximum spacing of 3h = 84 in or 18 in (governs).
Because the footing is square, the bars are uniformly distributed in both orthogonal directions.
Step 5: Develop the flexural reinforcement. Check if the tension development length �d of the

No. 7 bars can be determined by ACI 12.2.2:

Clear spacing of bars being developed = 12 − 0.875 = 11.1 in > 2db = 1.8 in

Clear cover = 3.0 in > db = 0.875 in

Thus, �d may be determined by the following equation that can be found in the first row of the
table given in ACI 12.2.2, which is applicable to No. 7 bars and larger:

�d =
(

fy�t�e

20λ
√

f ′
c

)
db =

(
60,000 × 1.0 × 1.0

20 × 1.0
√

4,000

)
× 0.875 = 41.5 in

where ψt = 1.0 for bars other than top bars
ψe = 1.0 for uncoated reinforcement

In lieu of this equation, �d can be calculated by Eq. (6.28):

�d =
[

3
40

fy

λ
√

f ′
c

ψtψeψs

(cb + Ktr ) /db

]
db ≥ 12 in
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where λ = 1.0 for normal-weight concrete
ψt = 1.0 for bars other than top bars
ψe = 1.0 for uncoated reinforcement
ψs = 1.0 for No. 7 bars

cb = 3.0 + 0.875
2

= 3.4 in (governs)

= 12
2

= 6.0 in

Ktr = 0

cb + Ktr

db
= 3.4 + 0

0.875
= 3.9 > 2.5; use 2.5

Therefore,

�d =
(

3
40

60,000
1.0

√
4,000

1.0 × 1.0 × 1.0
2.5

)
× 0.875 = 24.9 in

As expected, Eq. (6.28) results in a development length that is less than that determined by ACI
12.2.2.

The available development length is determined by Eq. (10.15):

L − c1

2
− 3 = (11.75 × 12) − 16

2
− 3 = 59.5 in

Because this available length is greater than the required development length, the No. 7 bars
are fully developed for flexure.

Use 12 No. 7 bars at 12 in, which are 11 ft long each way.
Step 6: Check force transfer at the base of the column.

1. Check bearing stress on the concrete column and footing.

The bearing strength of the column is determined by Eq. (10.21):

φPnb = φ0.85 f ′
c A1 = 0.65 × 0.85 × 5 × 162 = 707 kips > Pu = 600 kips

The bearing strength of the footing is determined by Eq. (10.22):

φPnb = φ0.85 f ′
c A1

√
A2/A1 ≤ 2φ0.85 f ′

c A1

Using Fig. 10.24, the area A2 is determined as follows:

Thickness of footing h = 28 in

Horizontal projection for a 1:2 slope = 2 × 28 = 56 in

Projected length b = 56 + 16 + 56 = 128 in < 11.75 × 12 = 141 in

A2 = b2 = 1282 = 16,384 in2

Thus,

√
A2

A1
=

√
16,384

162 = 8.0 > 2.0; use 2.0

φPnb = 2φ0.85 f ′
c A1 = 2 × 0.65 × 0.85 × 4 × 162 = 1,132 kips > Pu = 600 kips
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2. Determine the required interface reinforcement.

Because the design-bearing strength is adequate for the column and footing, provide the
minimum area of reinforcement across the interface in accordance with ACI 15.8.2.1:

As, min = 0.005Ag = 0.005 × 162 = 1.28 in2

Provide four No. 6 dowel bars (As = 1.76 in2).
3. The dowel bars in compression are developed as follows.

� Development of the dowel bars into the footing. The dowel bars must be extended into the footing
a compression development length �dc determined by Eq. (10.24):

�dc =
{

(0.02 fy/λ
√

f ′
c )db = [(0.02 × 60,000)/(1.0

√
4,000)] × 0.75 = 14.2 in (governs)

(0.0003 fy)db = 0.0003 × 60,000 × 0.75 = 13.5 in

The minimum footing thickness for development of the dowel bars is determined by Eq.
(10.25):

�dc + r + (db )dowel + 2(db )f + 3 in = 14.2 + (6 × 0.75) + 0.75 + (2 × 0.875) + 3 = 24.2 in

Because the provided footing thickness h = 28 in is greater than 24.2 in, the hooked dowel
bars can be fully developed in the footing.

� Development of the dowel bars into the column. The dowel bars must be lap spliced to the column
bars. Because the dowel bars are smaller in diameter than the column bars, the compression
lap splice length must be equal to or greater than the larger of the following:

(a) The development length in compression �dc of the larger bar, which is determined in
accordance with ACI 12.3.

The development length �dc in compression of the No. 7 column bars is

�dc =
{

(0.02 fy/λ
√

f ′
c )db = [(0.02 × 60,000)/(1.0

√
5,000)] × 0.875 = 14.9 in

(0.0003 fy)db = 0.0003 × 60,000 × 0.875 = 15.8 in (governs)

This length can be reduced in accordance with ACI 12.3.3(a), which takes into account
excess reinforcement in the section; no reduction is taken in this example.

(b) The compression lap splice length of the smaller bar.

The compression lap splice length of the No. 6 bars is determined in accordance with
ACI 12.16.1:

Compression lap splice length =
{

(0.0005 fy)db = 30db = 30 × 0.75 = 22.5 in (governs)
12 in

Therefore, provide a lap splice length equal to 2 ft 0 in.

No horizontal forces are transferred from the column to the footing, so horizontal force transfer
is not investigated.

Reinforcement details for this column and footing are similar to those shown in Fig. 10.25.

Example 10.7 Determine the thickness and reinforcement for the footing given in Example 10.2.
The column that is supported by the footing is 20 × 20 in, has normal-weight concrete with a
compressive strength of 5,000 psi, and is reinforced with 12 No. 7 bars. Assume that the footing has
normal-weight concrete with a compressive strength of 4,000 psi and Grade 60 reinforcement.
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Solution
Step 1: Determine the area of the footing. The area of the footing has been determined in

Example 10.2 on the basis of the permissible soil pressure. The base dimensions are 12 ft 6 in × 12 ft
6 in.

Step 2: Determine the thickness of the footing. The thickness of the footing must be deter-
mined using the factored pressure at the base of the footing, considering both flexure and shear.
The total factored pressure qu at the edge of the footing is equal to the stress due to the factored load
Pu plus the stress due to the factored moment Mu, considering the applicable load combinations
given in ACI 9.2.1. A summary of the total pressure is given in Table 10.2 for the governing load
combinations.

It is evident from Table 10.2 that the third load combination yields the maximum pressure. A
preliminary footing thickness will be determined on the basis of two-way shear requirements.

1. Two-way shear: A preliminary effective depth d to satisfy two-way shear requirements can be
obtained from Eq. (10.20), which is based on a uniform pressure distribution; the total shear
stress considering both axial load and bending moment will be checked later. Conservatively
assume that the maximum factored pressure is uniformly distributed over the entire area of the
footing.

d = c1

[
−a +

√
a2 + qubc
2b

]

= 20

{
−200.9 +

√
200.92 + [(3,210/144) × 195.3 × 55.3]

2 × 195.3

}
= 16.9 in

where a = qu

2
+ φvc = 3,210

2 × 144
+ (0.75 × 253.0) = 200.9 psi

b = qu

4
+ φvc = 3,210

4 × 144
+ (0.75 × 253.0) = 195.3 psi

c = Af

c2
1

− 1 = 12.52

(20/12)2 − 1 = 55.3

vc = 4λ
√

f ′
c = 4 × 1.0

√
4,000 = 253.0 psi

Because the bending moment in this example is relatively large, the shear stress due to this
moment will have a relatively large impact on the total shear stress. Thus, try a 24-in-thick
footing (d = 20 in).

The critical section around the 20-in column occurs at a distance d/2 = 10 in from the face of
the column (see Fig. 10.23). The total factored shear stresses due to the axial load and bending
moment must be determined.

Axial Bending Pressure Due Pressure Due to Total
Load Load Moment to Axial Bending Moment Pressure
Combination Pu (kips) Mu (ft kips) Load Pu/Af (ksf) 6Mu/BL2, ksf (ksf)

1.4D 280 11.2 1.79 0.03 1.82

1.2D + 1.6L 480 16.0 3.07 0.05 3.12

1.2D + 0.5L + 1.6W 323 371.6 2.07 1.14 3.21

0.9D − 1.6W 172 −352.8 1.10 1.08 2.18

TABLE 10.2 Summary of Total Pressure at the Base of the Footing Given in Example 10.6
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FIGURE 10.26
Free-body diagram
of the critical
section given in
Example 10.7.

The stress distribution in this example is similar to that depicted in Fig. 10.12a , where the
maximum factored pressure is 3.21 ksf and the minimum factored pressure is 2.07 − 1.14 = 0.93
ksf (see Table 10.2). The magnitude of the factored pressure along the length of the footing can
be determined by the following equation:

Factored pressure = 3.21 − 0.93
12.5

x + 0.93 = 0.1824x + 0.93

The distance x is measured from the edge of the footing with minimum factored pressure.
The free-body diagram of the critical section illustrated in Fig. 10.26 will assist in the deter-

mination of Vu and Mu at this location.
The boundaries of the critical section are at the following locations from the edge of the

footing with minimum factored pressure:

x1 = 12.5
2

− 20
2 × 12

− 10
12

= 4.58 ft

x2 = 12.5
2

+ 20
2 × 12

+ 10
12

= 7.92 ft

The corresponding pressures at these locations are (see Fig. 10.26)

qu(x1) = (0.1824 × 4.58) + 0.93 = 1.77 ksf

qu(x2) = (0.1824 × 7.92) + 0.93 = 2.37 ksf

The factored shear force at the critical section is equal to the factored column load minus the
factored soil pressure in the area bounded by the critical section:

Vu = 323 −
[

1.77 ×
(

40
12

)2
]

−
[

1
2

(2.37 − 1.77) ×
(

40
12

)2
]

= 323 − 23 = 300 kips
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The unbalanced moment Mu is obtained by summing the moments due to the load from the
column and the load from the soil about the centroid of the critical section:

Mu = 371.6 −
(

23 × 1
12

)
= 369.7 ft kips

Determine the shear factor γv by Eq. (7.38):

γ f = 1
1 + (2/3)

√
b1/b2

= 1
1 + (2/3)

√
40/40

= 0.6

γv = 1 − γ f = 1 − 0.6 = 0.4

The section properties of the critical section are determined using Fig. 7.53 for an interior
column:

c AB = b1/2 = 40/2 = 20.0 in

f1 = 2
[(

1 + c2

c1

)( c1

d

)
+ 2

]
= 2

[
(1 + 1)

(
20
20

)
+ 2

]
= 8.0

Ac = f1d2 = 8.0 × 202 = 3,200 in2

f2 = 1
6

[(
1 + 3c2

c1

)( c1

d

)2 +
(

5 + 3c2

c1

)( c1

d

)
+ 5

]

= 1
6

[
(1 + 3)

(
20
20

)2

+ (5 + 3)
(

20
20

)
+ 5

]
= 2.83

Jc/c AB = 2 f2d3 = 2 × 2.83 × 203 = 45,280 in3

These section properties can also be obtained using the tables given in Appendix B.
The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv Muc AB

Jc

= 300,000
3,200

+ 0.4 × 369.7 × 12,000
45,280

= 93.8 + 39.2 = 133.0 psi

The allowable stress for a square column is obtained by Eq. (10.19):

φvc = φVc

bo d
= φ4λ

√
f ′
c = 0.75 × 4 × 1.0

√
4,000 = 189.7 psi > 133.0 psi

Therefore, try a 24-in-thick footing (d = 20 in).

2. One-way shear. The critical section for one-way shear is located a distance d = 20 in from the face
of the column (see Fig. 10.22).

Conservatively assuming a uniform factored pressure of 3.21 ksf over the entire footing area,
the maximum factored shear force at the critical section is [see Eq. (10.16)]

Vu = qu B(c − d) = 3.21 × 12.5 ×
(

12.5
2

− 20
2 × 12

− 20
12

)
= 150.5 kips
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Design shear strength is also given in Eq. (10.16):

φVc = φ2λ
√

f ′
c Bd = 0.75 × 2 × 1.0

√
4,000 × (12.5 × 12) × 20/1,000 = 284.6 kips

Because Vu < φVc , one-way shear strength requirements are satisfied.
Use h = 24.0 in. (d = 20.0 in.).

Step 3: Determine the required flexural reinforcement. The maximum factored moment Mu
at the critical section is determined considering the nonuniform distribution of pressure at the base
of the footing.

The distance x is measured from the edge of the footing with minimum factored pressure.
At the critical section,

x = 12.5
2

+ 20
2 × 12

= 7.08 ft

Therefore, the pressure at the critical section = (0.1824 × 7.08) + 0.93 = 2.22 ksf.
The factored bending moment at the critical section can be obtained by summing moments about

the critical section for flexure. The trapezoidal pressure is divided into rectangular and triangular
portions:

Mu = 2.22 × [(12.5/2) − 20/ (2 × 12)]2

2
+ 1

2
× (3.21 − 2.22) × 2

3
×

(
12.5

2
− 20

2 × 12

)2

= 42.3 ft kips/ft

For comparison purposes, conservatively calculate the factored moment at the critical section,
assuming that the maximum pressure is uniformly distributed over the entire area of the footing:

Mu = 3.21 × [(12.5/2) − 20/ (2 × 12)]2

2
= 47.1 ft kips

This bending moment is approximately 11% greater than the bending moment obtained from
the actual pressure distribution. The factored bending moment of 42.3 ft kips/ft is used throughout
the remainder of this example.

The flowchart shown in Fig. 6.4 is used to determine As . It is modified to account for the
differences applicable to footing design.

Step 3A: Assume tension-controlled section. Footings should be designed as tension-
controlled sections whenever possible. Thus, assume that the strength reduction factor φ = 0.9.

Step 3B: Determine the nominal strength coefficient of resistance Rn. For a rectangular sec-
tion, Rn is determined by Eq. (6.5), which is a function of the factored bending moment Mu:

Rn = Mu

φbwd2 = 42.3 × 12,000
0.9 × 12 × 202 = 117.5 psi

Step 3C: Determine the required reinforcement ratio ρ. The reinforcement ratio ρ is deter-
mined by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 117.5

0.85 × 4,000

]
= 0.0020

Step 3D: Determine the required area of tension reinforcement As.

As = ρbd = 0.0020 × 12 × 20 = 0.48 in2/ft



561F o u n d a t i o n s

Step 3E: Determine the minimum required area of reinforcement As, min. The minimum
amount of reinforcement is determined by ACI 10.5.4:

As, min = 0.0018bh = 0.0018 × 12 × 24 = 0.52 in2/ft > 0.48 in2/ft

Use As = 0.52 in2/ft.
Step 3F: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c b

= 0.52 × 60,000
0.85 × 4,000 × 12

= 0.8 in

Step 3G: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 3H: Determine the neutral axis depth c.

c = a
β1

= 0.8
0.85

= 0.9 in

Step 3I: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
20
0.9

− 1
)

= 0.0637 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4), and the initial assumption that
the section is tension-controlled is correct.

Step 3J: Choose the size and spacing of the reinforcing bars.

Total area of steel required = 0.52 × 12.5 = 6.50 in2

Try 15 No. 6 bars (provided As = 6.60 in2) spaced 10 in on center.
Step 4: Distribute the flexural reinforcement. The provided spacing of 10 in is less than the

maximum spacing of 3h = 72 in or 18 in (governs).
Because the footing is square, the bars are uniformly distributed in both orthogonal directions.
Step 5: Develop the flexural reinforcement. Determine �d by Eq. (6.28):

�d =
[

3
40

fy

λ
√

f ′
c

ψtψeψs

(cb + Ktr ) /db

]
db ≥ 12 in

where λ = 1.0 for normal-weight concrete
ψt = 1.0 for bars other than top bars
ψe = 1.0 for uncoated reinforcement
ψs = 0.8 for No. 6 bars

cb = 3.0 + 0.75
2

= 3.4 in (governs)

= 10
2

= 5.0 in

Ktr = 0

cb + Ktr

db
= 3.4 + 0

0.75
= 4.5 > 2.5; use 2.5
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Therefore,

�d =
(

3
40

60,000
1.0

√
4,000

1.0 × 1.0 × 0.8
2.5

)
× 0.75 = 17.1 in

The available development length is determined by Eq. (10.12):

L − c1

2
− 3 = (12.5 × 12) − 20

2
− 3 = 62.0 in

Because this available length is greater than the required development length, the No. 6 bars
can be fully developed for flexure.

Use 15 No. 6 bars at 10 in, which are 12 ft long each way.
Step 6: Check force transfer at the base of the column.

1. Check bearing stress on the concrete column and footing.

The third load combination produces the largest stresses on the column:

Axial compressive stress = Pu

c2
1

= 323,000
202 = 808 psi

Bending stress = 6Mu

c3
1

= 6 × 371.6 × 12,000
203 = 3,344 psi (compression and tension)

Total maximum compressive stress pu = 808 + 3,344 = 4,152 psi

Allowable bearing stress is obtained by Eq. (10.21):

φpnb = φ0.85 f ′
c = 0.65 × 0.85 × 5,000 = 2,763 psi < pu = 4,152 psi

Therefore, reinforcement must be provided across the interface to resist the additional com-
pressive stress.

Note that tensile stresses are also present because the net stress at the other face is equal
to pu = 808 − 3,344 = −2,536 psi. Interface reinforcement must be provided to resist the entire
tensile force.

There is no need at this stage to check the bearing strength of the footing, because interface
reinforcement must be provided on the basis of the bearing strength of the column.

2. Determine the required interface reinforcement.

For simplicity, provide 12 No. 7 dowel bars. This reinforcement matches the reinforcement
in the column and ensures that both the compressive and tensile forces will be adequately
transferred through the interface.

Check the minimum area of reinforcement across the interface in accordance with ACI
15.8.2.1:

As, min = 0.005Ag = 0.005 × 202 = 2.00 in2

The provided interface reinforcement As = 7.20 in2 > 2.00 in2.

3. The dowel bars in tension are developed as follows:
� Development of the dowel bars into the footing. Because some of the dowel bars are in tension, a

standard 90-degree hook will be provided at the ends of all of the dowel bars. The tension
development length for deformed bars terminating in a standard hook �dh is determined in
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accordance with ACI 12.5.2:

�dh = 0.02�e fydb

λ
√

f ′
c

= 0.02 × 1.0 × 60,000 × 0.875
1.0

√
4,000

= 16.6 in > 8db = 7.0 in and 6 in

Because the hooked portion of the dowel bars can be developed in tension, the minimum
thickness of the footing for development of the dowel bars is determined by the following:

�dh + 2(db )f + 3 in = 16.6 + (2 × 0.75) + 3 = 21.1 in

Because the provided footing thickness h = 24 in is greater than 21.1 in, the hooked dowel
bars can be fully developed in tension into the footing.

� Development of the dowel bars into the column. The dowel bars must be lap spliced to the column
bars. The design strength interaction diagram for the column is shown in Fig. 10.27. Also
shown in the figure are the factored load combinations from Table 10.2.

It is evident that the third and fourth load combinations fall within the region of the
interaction diagram where the tensile stress in the column bars is greater than 50% of the
yield stress of the reinforcement. Thus, the column and dowel bars must be spliced with a
Class B tension splice in accordance with ACI 12.15.1:

Class B splice length = 1.3�d ≥ 12 in

The tension development length �d is determined by Eq. (6.28):

�d =
[

3
40

fy

λ
√

f ′
c

ψtψeψs

(cb + Ktr ) /db

]
db ≥ 12 in

FIGURE 10.27 Design strength interaction diagram for the column given in Example 10.7.
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where λ = 1.0 for normal-weight concrete
ψt = 1.0 for bars other than top bars
ψe = 1.0 for uncoated reinforcement
ψs = 1.0 for No. 7 bars

Assuming No. 3 ties in the column,

cb = 1.5 + 0.375 + 0.875
2

= 2.3 in (governs)

= 20 − 2(1.5 + 0.375) − 0.875
2 × 3

= 2.6 in

The required spacing of the No. 3 ties is the smallest of the following:

� 16 (longitudinal bar diameters) = 16 × 0.875 = 14.0 in (governs)
� 48 (tie bar diameters) = 48 × 0.375 = 18.0 in
� Least column dimension = 20 in

Use No. 3 ties spaced 14.0 in on center.

Clear space between the longitudinal bars = 20 − 2(1.5 + 0.375) − 0.875
3

− 0.875 = 4.3 in

Because the clear space between the bars is less than 6 in, one of the longitudinal bars on
each face does not need lateral support. However, for symmetry, provide a No. 3 crosstie on
each of the interior bars (i.e., provide two crossties in each direction).

Ktr = 40Atr

sn
= 40 × 4 × 0.11

14 × 4
= 0.3

cb + Ktr

db
= 2.3 + 0.3

0.875
= 3.0 > 2.5; use 2.5

Therefore,

�d =
(

3
40

60,000
1.0

√
5,000

1.0 × 1.0 × 1.0
2.5

)
× 0.875 = 22.3 in = 1.9 ft

Class B splice length = 1.3 × 1.9 = 2.5 ft

Use a splice length of 2 ft 6 in.
� Horizontal transfer. From Example 10.2, a service shear force of 23 kips is transferred between

the column and the footing. Use Eq. (10.27) to compute the required area of shear-friction
reinforcement, assuming that the surface between the column and the footing has not been
intentionally roughened:

Avf = Vu

φ fyµ
= 1.6 × 23

0.75 × 60 × 0.6 × 1.0
= 1.36 in2

This reinforcement is less than the area of the dowel bars that are provided. Check the
upper shear limit using Eq. (10.28):

Vu = 1.6 × 23 = 36.8 kips < φ0.2 f ′
c Ac = 0.75 × 0.2 × 4 × 202 = 240.0 kips
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Thus, horizontal transfer requirements are satisfied using the dowel bars determined
previously.

Reinforcement details for this column and footing are similar to those shown in Fig. 10.25.

Example 10.8 Determine the thickness and reinforcement for the footing given in Example 10.3. The
10-in-thick wall that is supported by the footing has normal-weight concrete with a compressive
strength of 4,000 psi and is reinforced with two No. 4 vertical bars spaced at 12 in on center. Assume
that the footing has normal-weight concrete with a compressive strength of 4,000 psi and Grade 60
reinforcement.

Solution
Step 1: Determine the width of the footing. The width of the footing has been determined in

Example 10.3 on the basis of the permissible soil pressure and is equal to 2 ft 6 in.
Step 2: Determine the thickness of the footing. The thickness of the footing must be deter-

mined using the factored pressure at the base of the footing, considering both flexure and shear.
The maximum factored pressure qu is determined by dividing the factored load Pu by the area of
the footing Af :

qu = Pu

Af
= [1.2 × (1.5 + 2.0)] + (1.6 × 1.0)

2.5 × 1
= 2.32 ksf

� Design for flexure. The critical section for flexure for a footing supporting a concrete wall is at the
face of the wall (see Fig. 10.18). Using Eq. (10.13), the required effective depth d of the footing
for flexure, assuming minimum flexural reinforcement, is

d = 2.2c

√
Pu

Af
= 2.2 ×

(
2.5
2

− 10
2 × 12

)
×

√
2.32 = 2.8 in

The required flexural reinforcement is determined after the required effective depth is estab-
lished considering both flexure and shear strength.

� Design for shear. The minimum effective depth d to satisfy one-way shear requirements is deter-
mined by Eq. (10.17):

d = quc

qu + φ2
√

f ′
c

= (2,320/144) × [(2.5/2) − 10/ (2 × 12)] × 12
(2,320/144) + (0.75 × 2 × √

4,000)
= 1.5 in

Two-way shear requirements are not applicable to one-way footings.
It is clear that the minimum thickness requirements of ACI 15.7 govern in this situation.

Try a 12-in-thick footing (d = 8 in).
Step 3: Determine the required flexural reinforcement. The maximum factored moment Mu

at the critical section is (see Fig. 10.18)

Mu = quc2

2
= 2.32 × [(2.5/2) − 10/ (2 × 12)]2

2
= 0.8 ft kips/ft

The required area of reinforcement for this factored moment is equal to 0.02 in2/ft.
The minimum amount of reinforcement is determined by ACI 10.5.4:

As, min = 0.0018bh = 0.0018 × 12 × 12 = 0.26 in2/ft > 0.02 in2/ft

Use As = 0.26 in2/ft.
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It can be determined that the maximum reinforcement requirement of ACI 10.3.5 is satisfied
and that the section is tension-controlled.

Try No. 5 bars spaced 12 in on center (provided As = 0.31 in2/ft).
Step 4: Distribute the flexural reinforcement. The provided spacing of 12 in is less than the

maximum spacing of 3h = 36 in or 18 in (governs).
Step 5: Develop the flexural reinforcement. Determine the development length �d by Eq. (6.28):

�d =
[

3
40

fy

λ
√

f ′
c

ψtψeψs

(cb + Ktr ) /db

]
db ≥ 12 in

where λ = 1.0 for normal-weight concrete
ψt = 1.0 for bars other than top bars
ψe = 1.0 for uncoated reinforcement
ψs = 0.8 for No. 5 bars

cb = 3.0 + 0.625
2

= 3.3 in (governs)

= 12
2

= 6.0 in

Ktr = 0

cb + Ktr

db
= 3.3 + 0

0.625
= 5.3 > 2.5; use 2.5

Therefore,

�d =
(

3
40

60,000
1.0

√
4,000

1.0 × 1.0 × 0.8
2.5

)
× 0.625 = 14.2 in

The available development length is determined by Eq. (10.12):

L − c1

2
− 3 = (2.5 × 12) − 10

2
− 3 = 7.0 in

Because this available length is less than the required development length determined by
Eq. (6.28), the No. 5 bars cannot be fully developed.

Try a footing that is 3 ft 6 in wide, reinforced with No. 4 bars spaced at 9 in on center (provided
As = 0.27 in2/ft).

�d =
(

3
40

60,000
1.0

√
4,000

1.0 × 1.0 × 0.8
2.5

)
× 0.5 = 11.4 in < 12.0 in; use 12.0 in

L − c1

2
− 3 = (3.5 × 12) − 10

2
− 3 = 13.0 in > �d = 12.0 in

Use 3-ft-long No. 4 bars at 9 in.
The required temperature and shrinkage reinforcement is determined in accordance with ACI

7.12.2.1 and is placed perpendicular to the main flexural reinforcement:

As = 0.0018bh = 0.0018 × 3.5 × 12 × 12 = 0.91 in2

Provide four No. 5 bars perpendicular to the main reinforcement for temperature and shrinkage.
Step 6: Check force transfer at the base of the wall.
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1. Check bearing stress on the concrete wall and footing.

The bearing strength of the wall is determined by Eq. (10.21):

φPnb = φ0.85 f ′
c A1 = 0.65 × 0.85 × 4 × 10 × 12 = 265 kips > Pu = 6 kips

The bearing strength of the footing is determined by Eq. (10.22):

φPnb = φ0.85 f ′
c A1

√
A2/A1 ≤ 2φ0.85 f ′

c A1

Using Fig. 10.24, the area A2 is determined as follows:

Thickness of footing h = 12 in

Horizontal projection for a 1:2 slope = 2 × 12 = 24 in

Projected length b = 24 + 10 + 24 = 58 in > 42 in

A2 = 12 × 12 = 144 in2

Thus,

√
A2

A1
=

√
144

10 × 12
= 1.1 < 2.0

φPnb = φ0.85 f ′
c A1

√
A2/A1

= 0.65 × 0.85 × 4 × 10 × 12 × 1.1 = 292 kips > Pu = 6 kips

2. Determine the required interface reinforcement.

Because the design-bearing strength is adequate for the wall and footing, provide the mini-
mum area of reinforcement across the interface in accordance with ACI 15.8.2.2, which is equal
to the minimum vertical reinforcement given in ACI 14.3.2:

As, min = 0.0012Ag = 0.0012 × 10 × 12 = 0.14 in2/ft

Try two No. 4 dowel bars spaced at 12 in on center. This matches the vertical reinforcement
in the wall and provides 0.40 in2/ft interface reinforcement. The size of the dowel bars will be
confirmed after the requirements for development have been checked.

3. The dowel bars in compression are developed as follows:
� Development of the dowel bars into the footing. The dowel bars must be extended into the footing

a compression development length �dc, which is determined by Eq. (10.24):

�dc =
{

(0.02 fy/λ
√

f ′
c )db = [(0.02 × 60,000)/(1.0

√
4,000)] × 0.50 = 9.5 in (governs)

(0.0003 fy)db = 0.0003 × 60,000 × 0.50 = 9.0 in

The minimum required thickness of the footing for development of the dowel bars is

�dc + r + (db )dowel + 2(db )f + 3 in = 9.5 + (6 × 0.5) + 0.5 + (2 × 0.5) + 3 = 17.0 in
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Because the provided footing thickness h = 12 in is less than 17.0 in, the hooked dowel
bars cannot be fully developed in the footing.

In lieu of increasing the footing depth to 17 in, change the size of the dowel bars. Providing
No. 3 dowel bars satisfies the minimum interface reinforcement requirements and results in
a minimum footing thickness of 13.2 in for development.

Use a 14-in-thick footing with two No. 3 dowel bars spaced at 12 in on center.
The flexural and temperature reinforcement provided for the 12-in-thick footing is also

adequate for the 14-in-thick footing.
� Development of the dowel bars into the wall. The dowel bars must be lap spliced to the wall bars.

Because the dowel bars are smaller in diameter than the wall bars, the compression lap splice
length must be equal to or greater than the larger of the following:

(a) The development length in compression �dc of the larger bar, which is determined in
accordance with ACI 12.3.

The development length �dc in compression of the No. 4 wall bars is

�dc =
{

(0.02 fy/λ
√

f ′
c )db = [(0.02 × 60,000)/(1.0

√
4,000)] × 0.5 = 9.5 in (governs)

(0.0003 fy)db = 0.0003 × 60,000 × 0.5 = 9.0 in

This length can be reduced to account for excess reinforcement in accordance with ACI
12.3.3(a); no reduction is taken in this example.

(b) The compression lap splice length of the smaller bar.

The compression lap splice length of the No. 3 bars is determined in accordance with
ACI 12.16.1:

Compression lap splice length =
{

(0.0005 fy)db = 30db = 30 × 0.375 = 11.3 in
12 in (governs)

Therefore, provide a lap splice length equal to 1 ft 0 in.

No horizontal forces are transferred from the wall to the footing, so horizontal force transfer is
not investigated.

Reinforcement details for this wall footing are given in Fig. 10.28.

Example 10.9 Determine the thickness and reinforcement for the footing given in Example 10.4.
The 18-in square column has normal-weight concrete with a compressive strength of 5,000 psi and
is reinforced with eight No. 8 bars. The 22-in square column also has normal-weight concrete with a
compressive strength of 5,000 psi and is reinforced with eight No. 10 bars. Assume that the footing
has normal-weight concrete with a compressive strength of 4,000 psi and Grade 60 reinforcement.

Solution
Step 1: Determine the area of the footing. The area of the footing has been determined in

Example 10.4 on the basis of the permissible soil pressure. The base dimensions are L = 29 ft 0 in
and B = 13 ft 6 in.

Step 2: Determine the thickness of the footing. The thickness of the footing must be deter-
mined using the factored pressure at the base of the footing, considering both flexure and shear.

The factored uniformly distributed load along the length of the footing is obtained by dividing
the total factored axial load by the length of the footing L :

qu = Pu

L
= [1.2 × (300 + 500)] + [(1.6 × (115 + 225)]

29.0
= 1,504

29.0
= 51.86 kips/ft

Shear and moment diagrams for the footing are shown in Fig. 10.29.
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10 in

Two No. 4 at 12 in

Two No. 3 at 12 in

Four No. 5

No. 4 at 9 in
3 ft 6 in

1 
ft 

2 
in

1 
ft 

0 
in

FIGURE 10.28 Reinforcement details for the wall footing given in Example 10.8.

1. One-way shear: The effective depth d will be determined on the basis of one-way shear require-
ments. Two-way shear requirements will be checked later on the basis of this d.

The maximum factored shear force occurs at the interior column (see Fig. 10.29). The factored
shear force at a distance d from the face of the column is

Vu = 609.9 − 51.86
(

22
2 × 12

+ d
)

= 562.4 − 51.86d

The design one-way shear strength is given in Eq. (10.16):

φVc = φ2λ
√

f ′
c Bd = 0.75 × 2 × 1.0

√
4,000 × 13.5 × 12 × d/1,000 = 15.37d kips

Set the required strength equal to the design strength and solve for d:

562.4 − (51.86/12)d = 15.37d

d = 28.6 in

Thus, an effective depth of 29 in is adequate for one-way shear.
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FIGURE 10.29 Shear and moment diagrams for the combined footing given in Example 10.9.

2. Two-way shear: Preliminary calculations indicate that an effective depth of 32 in is required for
two-way shear. Check two-way shear requirements at both columns using d = 32 in.
� Edge column: The edge column has a three-sided critical section, which is located at a distance

d/2 from the face of the column in both directions.
The maximum factored shear force at the critical section is equal to the factored column

load minus the factored soil pressure in the area bounded by the critical section:

Vu = 544 − 1,504
29 × 13.5 × 144

[
(18 + 32) ×

(
18 + 32

2

)]
= 544.0 − 45.4 = 498.6 kips
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Unlike two-way slabs, the unbalanced moment at the face of the column and that at the
centroid of the critical section in a combined footing typically vary significantly because of the
relatively large critical area and the variation in moment along the span. Therefore, determine
the unbalanced moment at the centroid of the critical section of the edge column because this
moment will be greater than that at the face of the column.

A free-body diagram of the edge column is shown in Fig. 10.30. Figure 7.55 is used to
determine the location of the centroid of the critical section from the edge of the column:

FIGURE 10.30
Free-body diagram
of critical section
at the edge column
given in Example
10.9.
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cCD =
(

f2

f2 + f3

)(
c1 + d

2

)

f2 = [(c1/d) + 1/2]2 [(c1/d) (1 + 2c2/c1) + 5/2] + [(c1/d) (1 + c2/2c1) + 1]
6 [(c1/d) + 1/2]

= [(18/32) + 1/2]2 [(18/32) (1 + 2) + 5/2] + [(18/32) (1 + 1/2) + 1]
6 [(18/32) + 1/2]

= 1.03

f3 = [(c1/d) + 1/2]2 [(c1/d) (1 + 2c2/c1) + 5/2] + [(c1/d) (1 + c2/2c1) + 1]
6 [(c1/d) (1 + c2/c1) + 3/2]

= [(18/32) + 1/2]2 [(18/32) (1 + 2) + 5/2] + [(18/32) (1 + 1/2) + 1]
6 [(18/32) (1 + 1) + 1/2]

= 0.42

cCD =
(

1.03
1.03 + 0.42

)(
18 + 32

2

)
= 24.2 in

The unbalanced moment is obtained by summing the moments due to the load from the
column and the load from the soil about the centroid of the critical section (see Fig. 10.30):

Mu =
(

544 × 24.2 − 9
12

)
−

(
45.4 × 24.2 − 17

12

)
= 689.1 − 27.2 = 661.9 ft kips

For comparison purposes, the moment at the face of the edge column is equal to
349.6 ft kips, which is slightly greater than one-half of the moment at the centroid of the
critical section.

Determine the shear factor γv by Eq. (7.38):

γ f = 1
1 + (2/3)

√
b1/b2

= 1

1 + (2/3)
√

(18 + 16)/(18 + 32)
= 0.65

γv = 1 − γ f = 1 − 0.65 = 0.35

The section properties of the critical section are determined using Fig. 7.55 for an edge
column bending perpendicular to the edge:

c AB = b1 − cCD = 34 − 24.2 = 9.8 in

f1 = 2 + c1

d

(
2 + c2

c1

)
= 2 + 18

32
(2 + 1) = 3.69

Ac = f1d2 = 3.69 × 322 = 3,779 in2

Jc/c AB = 2 f2d3 = 2 × 1.03 × 323 = 67,502 in3

The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv Muc AB

Jc

= 498,600
3,779

+ 0.35 × 661.9 × 12,000
67,502

= 131.9 + 41.2 = 173.1 psi
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The allowable stress for a square column is obtained by Eq. (10.19):

φvc = φVc

bo d
= φ4λ

√
f ′
c = 0.75 × 4 × 1.0

√
4,000 = 189.7 psi > 173.1 psi

� Interior column: The interior column has a four-sided critical section (see Fig. 10.23), which is
located a distance d/2 from the face of the column in both directions.

The maximum factored shear force at the critical section is equal to the factored column
load minus the factored soil pressure in the area bounded by the critical section:

Vu = 960 − 1,504
29 × 13.5 × 144

[(22 + 32) × (22 + 32)] = 882.2 kips

The load from the column and that from the soil act through the centroid of the critical
section; thus, no unbalanced moment occurs at this location.

The section properties of the critical section are determined using Fig. 7.53 for an interior
column:

c AB = cCD = b1/2 = (22 + 32)/2 = 27.0 in

f1 = 2
[(

1 + c2

c1

)( c1

d

)
+ 2

]
= 2

[
(1 + 1)

(
22
32

)
+ 2

]
= 6.75

Ac = f1d2 = 6.75 × 322 = 6,912 in2

The total factored shear stress is

vu = Vu

Ac
= 882,200

6,912
= 127.6 psi < φvc = 189.7 psi

Therefore, a 32-in effective depth is adequate for one- and two-way shear.
Use a 36-in-thick footing (d = 32 in).
Step 3: Determine the required flexural reinforcement.

� Moment in the longitudinal direction near the midspan: The maximum moment near the midspan is
equal to 2,445.2 ft kips (see Fig. 10.29). The flexural reinforcement needed to resist this moment
must be placed at the top of the footing section; it is analogous to positive reinforcement.

The flowchart shown in Fig. 6.4 is used to determine As . It is modified to account for the differences
applicable to footing design.

Step 3A: Assume tension-controlled section. Footings should be designed as tension-
controlled sections whenever possible. Thus, assume that the strength reduction factor φ = 0.9.

Step 3B: Determine the nominal strength coefficient of resistance Rn. For a rectangular sec-
tion, Rn is determined by Eq. (6.5), which is a function of the factored bending moment Mu:

Rn = Mu

φbwd2 = 2,445.2 × 12,000
0.9 × (13.5 × 12) × 322 = 196.5 psi

Step 3C: Determine the required reinforcement ratio ρ. The reinforcement ratio ρ is deter-
mined by Eq. (6.7):

ρ = 0.85 f ′
c

fy

[
1 −

√
1 − 2Rn

0.85 f ′
c

]
= 0.85 × 4

60

[
1 −

√
1 − 2 × 196.5

0.85 × 4,000

]
= 0.0034
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Step 3D: Determine the required area of tension reinforcement As.

As = ρbd = 0.0034 × (13.5 × 12) × 32 = 17.6 in2

Step 3E: Determine the minimum required area of reinforcement As,min. The minimum
amount of reinforcement is determined by ACI 10.5.4:

As, min = 0.0018bh = 0.0018 × (13.5 × 12) × 36 = 10.5 in2 < 17.6 in2

Use As = 17.6 in2.
Step 3F: Determine the depth of the equivalent rectangular stress block a.

a = As fy

0.85 f ′
c b

= 17.6 × 60,000
0.85 × 4,000 × (13.5 × 12)

= 1.9 in

Step 3G: Determine β1. According to ACI 10.2.73, β1 = 0.85 for f ′
c = 4,000 psi (see Section 5.2).

Step 3H: Determine the neutral axis depth c.

c = a
β1

= 1.9
0.85

= 2.2 in

Step 3I: Determine εt.

εt = 0.0030
(

dt

c
− 1

)
= 0.0030

(
32
2.2

− 1
)

= 0.0406 > 0.0040

Because εt > 0.0040, the maximum reinforcement requirement of ACI 10.3.5 is satisfied. Also,
the section is tension-controlled because εt > 0.0050 (ACI 10.3.4), and the initial assumption that
the section is tension-controlled is correct.

Step 3J: Choose the size and spacing of the reinforcing bars. Try 18 No. 9 top bars (provided
As = 18.0 in2).

� Moment in the longitudinal direction at the interior column: The maximum moment at the interior
column is equal to 1,141.0 ft kips (see Fig. 10.29). Because it is anticipated that minimum flexural
reinforcement will govern at this critical section, determine the required flexural reinforcement
on the basis of this moment rather than the moment at the face of the column. The flexural
reinforcement needed to resist this moment must be placed at the bottom of the footing section;
it is analogous to negative reinforcement.

The flowchart shown in Fig. 6.4 is used to determine As . Following the steps similar to
those shown earlier for the moment near the midspan, the required reinforcement at the interior
column is As = 7.8 in2, which is less than As, min = 10.5 in2.

Try 11 No. 9 bars (provided As = 11.0 in2).
� Moment in the longitudinal direction at the face of the edge column: The maximum moment at the

face of the edge column is equal to 349.6 ft kips. Minimum reinforcement requirements govern
at this critical section also.

Try 11 No. 9 bars (provided As = 11.0 in2).
Check that the provided flexural reinforcement at the edge column is adequate to satisfy the

moment transfer requirements of ACI 13.5.3.
The total unbalanced moment at this slab–column connection is equal to 661.9 ft kips, which

was determined in Step 2.
A fraction of this momentγ f Mu must be transferred over an effective width equal to c2 + 3h =

18 + (3 × 36) = 126 in.
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It was determined in step 2 that γ f = 0.65. For edge columns bending perpendicular to the
edge, the value of γ f may be increased to 1.0 provided that Vu ≤ 0.75φVc [ACI 13.5.3.3(a)]. No
adjustment to γ f is made in this example.

Unbalanced moment transferred by flexure = γ f Mu = 0.65 × 661.9 = 430.2 ft kips. The re-
quired area of steel to resist this moment in the 126-in-wide strip is As = 2.82 in2, which is
equivalent to three No. 9 bars.

Check minimum reinforcement requirements:

As, min = 0.0018bh = 0.0018 × 126 × 36 = 8.2 in2 > As

Thus, nine No. 9 bars are required within the 126-in-wide strip.
Uniformly spacing 12 No. 9 bars at 14 in within the 162-in-wide footing provides a suffi-

cient amount of reinforcement within the 126-in-wide strip centered on the column for moment
transfer; that is, nine No. 9 bars are provided within the 126-in-wide strip.

� Moment in the transverse direction at the interior column: The bending moment in the transverse
direction is determined by assuming that the factored load from the column is distributed over
a width on each side of the column. The actual width is not important at this stage because the
moments are independent of it.

The factored distributed load at the interior column in the transverse direction is (see
Fig. 10.31)

qu = 960
13.5

= 71.1 kips/ft

Thus, the factored moment at the critical section is

Mu = 71.1 × 5.832

2
= 1,208.3 ft kips

Assuming that the effective width of the transverse member is equal to the width of the
column plus the effective depth d (i.e., the width extends d/2 on each side of the column), the
required area of flexural reinforcement is As = 0.0051 × 54 × 32 = 8.8 in2.

5.83 ft 22 in 5.83 ft

36
 in

71.1 kips/ft

FIGURE 10.31
Bending moment in
the transverse
direction at the
interior column of
Example 10.9.
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Check minimum reinforcement requirements:

As, min = 0.0018bh = 0.0018 × 54 × 36 = 3.5 in2 < As

Try nine No. 9 (provided As = 9.0 in2) bottom bars.
� Moment in the transverse direction at the edge column: Similar calculations can be performed for the

required transverse reinforcement at the edge column. At this location, the assumed effective
width of the transverse members is 18 + (32/2) = 34 in.

Mu = (544/13.5) × 6.02

2
= 725.3 ft kips

As = 0.0048 × 34 × 32 = 5.2 in2 > As, min = 2.2 in2

Try six No. 9 bars (provided As = 6.0 in2) bars.

Step 4: Distribute the flexural reinforcement.

� Reinforcement in the longitudinal direction near the midspan: Providing a uniform spacing of 9 in is
less than the maximum spacing of 3h = 108 in or 18 in (governs).

� Reinforcement in the longitudinal direction at the interior and edge columns: Providing a uniform
spacing of 14 in is less than the maximum spacing of 3h = 108 in or 18 in (governs).

� Reinforcement in the transverse direction at the interior and edge columns: Uniformly distributing the
reinforcement in the respective widths satisfies maximum spacing requirements.

Step 5: Develop flexural reinforcement.

� Reinforcement in the longitudinal direction near the midspan: The 18 No. 9 top bars must be developed
on either side of the critical section, which is located 9 ft 0 in from the face of the edge column
(see Fig. 10.29).

It is evident from the moment diagram shown in Fig. 10.29 that the points of inflection occur
within and very close to the edge and interior columns, respectively. Consequently, the top bars
will be extended over the entire footing length.

Use 18 No. 9 top bars at 9 in, which are 28 ft long.
� Reinforcement in the longitudinal direction at the columns: Bottom bars are provided over the entire

width of the footing for simpler detailing.

Use 12 No. 9 bottom bars at 14 in, which are 28 ft long.
� Reinforcement in the transverse direction: The transverse reinforcement is developed by providing

hooks at both ends of the bars.

Use nine No. 9 bottom bars 13 ft long, uniformly distributed within a 4-ft 6-in width below
the interior column.

Use six No. 9 bottom bars 13 ft long, uniformly distributed within a 3-ft 0-in width below the
edge column.

Use No. 9 bottom bars spaced at 12 in on center in the remainder of the footing.
Step 6: Check force transfer at the base of the columns. Vertical force transfer is illustrated for

the edge column. Similar calculations can be performed for the interior column.

1. Check bearing stress on the concrete column and footing.

The bearing strength of the column is determined by Eq. (10.21):

φPnb = φ0.85 f ′
c A1 = 0.65 × 0.85 × 5 × 182 = 895 kips > Pu = 544 kips
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The bearing strength of the footing is determined by Eq. (10.22). Because the supporting area
is not on all sides, assume the following bearing strength:

φPnb = φ0.85 f ′
c A1 = 0.65 × 0.85 × 4 × 182 = 716 kips > Pu = 544 kips

2. Determine the required interface reinforcement.

Provide the minimum area of reinforcement across the interface in accordance with ACI
15.8.2.1:

As, min = 0.005Ag = 0.005 × 182 = 1.62 in2

Provide four No. 6 dowel bars (As = 1.76 in2).
3. The dowel bars in compression are developed as follows:

� Development of the dowel bars into the footing: The dowel bars must be extended into the footing
a compression development length �dc, which is determined by Eq. (10.24):

�dc =
{

(0.02 fy/λ
√

f ′
c )db = [(0.02 × 60,000)/(1.0

√
4,000)] × 0.75 = 14.2 in (governs)

(0.0003 fy)db = 0.0003 × 60,000 × 0.75 = 13.5 in

The minimum required thickness of the footing for development of the dowel bars is
determined by Eq. (10.25):

�dc + r + (db )dowel + 2(db )f + 3 in = 14.2 + (6 × 0.75) + 0.75 + (2 × 1.128) + 3 = 24.7 in

Because the provided footing thickness h = 36 in is greater than 24.7 in, the hooked dowel
bars can be fully developed in the footing.

� Development of the dowel bars into the column: The dowel bars must be lap spliced to the column
bars. Because the dowel bars are smaller in diameter than the column bars, the compression
lap splice length must be equal to or greater than the larger of the following:

(a) The development length in compression �dc of the larger bar, which is determined in
accordance with ACI 12.3.

The development length �dc in compression of the No. 8 column bars is

�dc =
{

(0.02 fy/λ
√

f ′
c )db = [(0.02 × 60,000)/(1.0

√
5,000)] × 1.0 = 17.0 in

(0.0003 fy)db = 0.0003 × 60,000 × 1.0 = 18.0 in (governs)

This length can be reduced to account for excess reinforcement in accordance with ACI
12.3.3(a); no reduction is taken in this example.

(b) The compression lap splice length of the smaller bar.

The compression lap splice length of the No. 6 bars is determined in accordance with
ACI 12.16.1:

Compression lap splice length =
{

(0.0005 fy)db = 30db = 30 × 0.75 = 22.5 in (governs)
12 in

Therefore, provide a lap splice length equal to 2 ft 0 in.

No horizontal forces are transferred from the column to the footing, so horizontal force transfer
is not investigated.

Reinforcement details for this column and footing are shown in Fig. 10.32.
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1 ft 6 in 1 ft 10 in19 ft 10 in

18 No. 9

12 No. 9

No. 9 at 12 in Nine No. 9 No. 9 at 12 in
4 ft 6 in

Six No. 9

3 
ft

 0
 in

2 
ft

 0
 in

29 ft 0 in
3 ft 0 in

4 No. 6 Four No. 7

FIGURE 10.32 Reinforcement details for the combined footing given in Example 10.9.

10.3 Mat Foundations

10.3.1 Overview
Mat foundations are used to support all or a portion of the vertical elements of a building
(see Fig. 10.4). They are commonly specified where erratic or relatively weak soil strata
are encountered or where a large number of spread footings would be needed to support
the loads and bending moments from the structure above.

Mats are commonly designed and analyzed as either rigid bodies or flexible plates
supported by an elastic foundation, which is the soil. Each of these methods is discussed
in the sections that follow.

The base dimensions of the mat are proportioned so that the maximum pressure
due to service loads is equal to or less than the permissible soil pressure. The thickness
is typically based on shear strength requirements. Both one- and two-way shear must
be investigated at the critical sections around the vertical elements supported by the
mat. Like footings, it is common practice not to use shear reinforcement in mats for
overall economy.

10.3.2 Analysis Methods

Rigid Mats
A wide variety of analysis methods can be used in the design of mat foundations. The
most appropriate method typically depends on the rigidity of the mat. For purposes of
analysis, a mat is considered to be rigid when all of the following criteria are met1:

� Variation in adjacent column loads is equal to or less than 20%.
� Columns are regularly spaced where the distance between adjacent columns

does not differ by more than 20%.
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� Column spacing is less than 1.75/λ, where λ is the stiffness evaluation factor
defined as follows:

λ =
(

Ks

4EcI

)0.25

(10.29)

In this equation, Ks is the spring constant of the soil, which is related to the
coefficient (or modulus) of the subgrade reaction ks as follows:

Ks = ksB ′ (10.30)

The terms B ′ and I are the width and moment of inertia of the design
strip, respectively (it will become evident shortly why design strips are used
in the analysis of rigid mats). The value of ks is determined by the geotechnical
engineer and is typically provided in the geotechnical report that is prepared
for the site. The stiffness evaluation factor given in Eq. (10.29) is used in the
solution of the basic differential equation for a beam on an elastic foundation.

Once it has been established that a mat is rigid, the soil pressures beneath the mat
can be determined using the service loads from the structure above. Because the mat
is rigid, the pressure diagram is linear and the magnitude of the pressure at any point
can be determined by the following equation:

q =
∑

P
(

1
BL

± exx
Iy

± ey y
Ix

)
(10.31)

The term �P is the resultant of the axial loads from the columns. Eccentricities ex

and ey are measured from the centroid of the mat to the location of this resultant force
and include the effects from any moments transferred from the columns. The variables
x and y locate the point where the soil pressure is computed, and Iy and Ix are the
moments of inertia of the mat with respect to the y-axis and x-axis, respectively.

Because the plan dimensions B and L of the mat are usually dictated by the overall
geometry of the building, it is common to initially assume values of B and L and then
to calculate pressures at various locations by Eq. (10.31). The maximum pressure at the
base of the mat must be equal to or less than permissible soil pressure qp. Depending
on qp and other factors, B and L may need to be adjusted accordingly.

Like in the case of footings and flat-plate slabs, the depth of a mat is usually con-
trolled by shear requirements. Factored one- and two-way shear stresses need to be
checked at the critical locations around the interior, edge, and corner columns. It is
common practice not to use shear reinforcement in mats; this results in a thicker and
more rigid mat, which increases the reliability of this analysis method.

The maximum bending moments and corresponding flexural reinforcement are
determined using factored loads. For purposes of determining these moments, rigid
mats can be divided into design strips in both directions, similar to two-way slabs (see
Fig. 10.33). Each design strip is assumed to act independently and is analyzed as a
combined footing subjected to known bearing pressures and column loads.

The design strips do not actually act independently; there is some shear transfer
between adjoining strips. Thus, vertical equilibrium may not be satisfied on any given
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FIGURE 10.33 Design strips in a mat foundation.

design strip. It may be found that the resultant of the column loads and the centroid of
the bearing pressure are not equal and do not act at the same point. Reference 6 presents
a method of analysis that can be used so that equilibrium is satisfied in such cases.

It is important to note that the Direct Design Method of analysis is not permitted to
be used in the design of mat foundations (ACI 15.10.2).

Nonrigid Mats
If a mat does not meet the rigidity requirements outlined earlier, it must be designed
as a flexible plate. Approximate methods and computer analyses can be utilized.

An approximate flexible method was introduced in 1966 by ACI Committee 436.7 In
this method, the required mat depth is computed on the basis of shear requirements, and
bending moments, shear forces, and deflections are determined using charts. Additional
information on the details of this method can be found in Refs. 8 and 9.

A computer analysis is typically based on an approximation where the mat is di-
vided into a number of discrete or finite elements. The finite difference method, the
finite grid method, and the finite element method are three common methods of so-
lution. Most commercial computer programs are based on the finite element method,
which idealizes the mat as a mesh of rectangular and/or triangular elements that are
connected at the nodes. The soil is modeled as a set of isolated springs. The details of
these methods are beyond the scope of this book; more information can be found in
Ref. 1 and other publications devoted to finite element analysis.

10.3.3 Design Procedure
The following design procedure can be used in the design of mat foundations. Included
is the information presented in the previous section on analysis and additional infor-
mation on design and detailing.

Step 1: Determine the preliminary plan dimensions of the mat. The plan dimen-
sions of a mat are typically dictated by the geometry of the building and the layout of the
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vertical elements supported by the mat. Property lines and other factors may also influ-
ence plan dimensions. The assumed plan dimensions can be adjusted later as required.

Step 2: Determine the soil pressure distribution and refine the plan dimensions
of the mat. Assuming that the mat is rigid, soil pressures at various locations beneath
the mat can be determined by Eq. (10.31). The maximum pressure determined using the
preliminary plan dimensions must be equal to or less than the permissible soil pressure.
If this is not the case, the dimensions of the mat must be adjusted accordingly.

The third of the three conditions of a rigid mat is checked once a preliminary thick-
ness is determined. It is assumed at this stage that the first two conditions related to
column load and spacing have been satisfied.

A computer analysis of the mat gives the soil pressure contours based on the applied
loads. The maximum pressure determined from this method must be equal to or less
than the permissible soil pressure.

Step 3: Determine the thickness of the mat. Both one- and two-way shear must be
investigated at the critical sections around the vertical elements supported by the mat
in accordance with the requirements of ACI 11.11. Factored loads are used to compute
the shear forces at the critical sections. Like footings, it is common practice not to use
shear reinforcement in mats.

In cases where a rigid mat has been assumed, the third of the three conditions should
be checked at this stage on the basis of the mat thickness and the width of the design
strip, using Eqs. (10.29) and (10.30). The thickness of the mat may need to be increased
or a computer analysis of the foundation system can be performed if this condition is
not satisfied.

Step 4: Determine the factored moments. Maximum bending moments are deter-
mined at the critical sections in the mat, using factored loads. In the case of rigid mats,
the mat can be divided into a series of design strips (see Fig. 10.33), and the bending
moments are determined from statics. Because of the simplifying assumptions of this
method, adjustments to the design strips may be needed to ensure that vertical equi-
librium is satisfied. A computer analysis provides moment contours of the mat based
on the factored loads.

Step 5: Check shear requirements. Once the factored bending moments have been
determined, shear strength requirements need to be checked at the critical sections of
the interior, edge, and corner columns. Like in two-way slabs, shear stress due to direct
shear and the portion of the unbalanced moment transferred by shear is usually critical
at the edge and corner columns.

Step 6: Determine the required flexural reinforcement. The required flexural rein-
forcement is determined using the general requirements of the strength design method.
Like footings, mat foundations should be designed as tension-controlled sections. The
provided area of reinforcement must be equal to or greater than the minimum rein-
forcement prescribed in ACI 10.5.4.

Step 7: Develop the flexural reinforcement. Flexural reinforcement must be de-
veloped at the critical sections in the mat. The requirements of ACI Chap. 12 are used
to determine the required lengths and cutoff points of the reinforcing bars.

Step 8: Check transfer of forces at the base of the supported members. Transfer of
forces between the supported elements and the mat foundation needs to be checked. It is
important to ensure that both the vertical and lateral loads are adequately transferred
across the interface by satisfying the appropriate Code requirements, which are the
same as those for footings.
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FIGURE 10.34 The mat foundation given in Example 10.10.

Example 10.10 Design the mat foundation shown in Fig. 10.34. Determine the required reinforce-
ment in the end span of the interior design strip along line C. The interior columns are 24 × 24 in,
and the edge columns are 20 × 20 in. The column loads are given in Table 10.3. Assume that the mat
has normal-weight concrete with a compressive strength of 4,000 psi and Grade 60 reinforcement.
Also assume that the soil has a permissible bearing capacity of 2,000 psf and a modulus of subgrade
reaction of 150 kips/ft3.

Solution The analysis of the mat will proceed assuming that the mat is rigid, even though adjoining
axial loads differ by more than 20% (see Table 10.3). Columns are regularly spaced, and the distance
between adjacent columns does not differ by more than 20%.

Step 1: Determine the preliminary plan dimensions of mat. The plan dimensions of the mat
shown in Fig. 10.34 are used and may be adjusted later in the analysis.

Column Service Axial Load (kips) Factored Axial Load (kips)

A1, A4 224 302

A2, A3 381 515

B1, B4 318 430

B2, B3 542 733

C1, C4 325 439

C2, C3 554 749

D1, D4 258 348

D2, D3 439 593

TABLE 10.3 Service and Factored Axial Loads on the Mat Foundation Given in Example 10.10
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Step 2: Determine soil pressure distribution and refine the plan dimensions of the mat.
Equation (10.31) is used to determine the soil pressure on the basis of the service axial loads given
in Table 10.3.

The location of the resultant force in the east-west direction is determined by summing moments
about the west edge of the mat:

x = 2{[(224 + 381) × 4] + [(318 + 542) × 29] + [(325 + 554) × 51] + [(258 + 439) × 77]}
2(224 + 381 + 318 + 542 + 325 + 554 + 258 + 439)

= 251,716
6,082

= 41.4 ft

Similarly, the location of the resultant force in the north-south direction is determined by sum-
ming moments about the north edge of the mat. Because of the symmetric load distribution,
y = 34.5 ft.

The eccentricities ex and ey are measured from the geometric center of the mat:

ex = 41.5 − 41.4 = 0.1 ft (west of center)

ey = 0

The pressure q at any point on the mat can be determined by Eq. (10.31):

q =
∑

P
(

1
BL

± ex x
Iy

± ey y
Ix

)

= 6,082,000
69 × 83

± (6,082,000 × 0.1)x(
69 × 833

)
/12

± 0 = 1,062 ± 0.2x

The pressure is greatest along the west edge of the mat (x = −41.5 ft):

q = 1,062 + (0.2 × 41.5) = 1,062 + 8 = 1,070 psf < 2,000 psf

It is evident from this calculation that the soil pressure is essentially uniform beneath the mat.
Use a 69-ft 0-in × 83-ft 0-in mat.
Step 3: Determine the thickness of the mat. The thickness of the mat is determined on the

basis of two-way shear strength requirements at the interior column C2 (or C3), based on factored
soil pressure (see Table 10.3):

Total factored axial load Pu = 8,218 kips

As shown in step 2, the soil pressure is essentially uniform; thus,

qu = 8,218
69 × 83

= 1.44 ksf

For column C2, the critical section for two-way shear occurs at a distance of d/2 from the face
of the column. The factored shear force at the critical section is

Vu = 1.44 × 1,000
144

[(24 × 21.75 × 144) − (24 + d)2] = 745,920 − 10d2 − 480d

For an interior square column, the design shear strength is given by ACI Eq. (11-33):

φVc = φ4λ
√

f ′
c bo d = 0.75 × 4 × 1.0

√
4,000 × [4 × (24 + d)] × d = 18,215d + 7,59d2
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Equating the required and design strengths results in the following equation that can be solved
for d:

769d2 + 18,695d − 745,920 = 0

d = 21.3 in

Try d = 22 in.
Step 4: Determine the factored moments. Check the third condition for a rigid mat, assuming

that the width of the design strip B ′ is 24 ft and that the thickness of the mat is 26 in:

I = 24 × (26/12)3

12
= 20.3 ft4

The subgrade spring constant is determined by Eq. (10.30):

Ks = ks B ′ = 150 × 24 = 3,600 ksf

The modulus of elasticity of the concrete is determined in accordance with ACI 8.5.1:

Ec = 57,000
√

f ′
c = 57,000 ×

√
4,000/1,000 = 3,605 ksi = 519,120 ksf

The stiffness evaluation factor is determined by Eq. (10.29):

λ =
(

Ks

4EcI

)0.25

=
(

3,600
4 × 519,120 × 20.3

)0.25

= 0.096

Maximum column spacing = 1.75
λ

= 1.75
0.096

= 18.2 ft < 23.6 ft

In lieu of performing a computer analysis of the mat, increase the thickness of the mat.
A thickness of approximately 36 in results in a rigid mat based on the requirement of the third

condition.
Check vertical equilibrium on the 24-ft-wide design strip:

Soil reaction = qu B ′ B = 1.44 × 24 × 69 = 2,385 kips

Column loads = 2(439 + 749) = 2,376 kips

The soil pressure and the column loads will be averaged so that the strip is in equilibrium. Note
that the resultant of the soil pressure and column loads acts at the center of the design strip, so a
uniform soil distribution can be used.

Average load in design strip = 2,385 + 2,376
2

= 2,381 kips

Soil pressure for this average load = 1.44 × 2,381
2,385

= 1.438 ksf

The column loads must be increased by the following factor: 2,381/2,376 = 1.002. The column
loads are multiplied by this factor so that vertical equilibrium is satisfied in this design strip.

A free-body diagram of the design strip and the shear and moment diagrams are shown in
Fig. 10.35.
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FIGURE 10.35 Shear and moment diagrams for the design strip given in Example 10.10.

Step 5: Check shear requirements.

1. Two-way shear: The edge column has a three-sided critical section, which is located at a distance
d/2 from the face of the column in both directions.

The maximum factored shear force at the critical section is equal to the factored column load
minus the factored soil pressure in the area bounded by the critical section:

Vu = 439.9 − 1.438
144

[
(20 + 22) ×

(
20 + 22

2

)]
= 439.9 − 13.0 = 426.9 kips

The unbalanced moment Mu is determined at the centroid of the critical section, similar to
that shown in step 2 of Example 10.9; in this example, Mu = 425.8 ft kips.
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The section properties of the critical section are determined using Fig. 7.55 for an edge column
bending perpendicular to the edge:

c AB = b1 − cCD = 31 − 21.8 = 9.2 in

f1 = 2 + c1

d

(
2 + c2

c1

)
= 2 + 20

22
(2 + 1) = 4.73

Ac = f1d2 = 4.73 × 222 = 2,289 in2

Jc/c AB = 2 f2d3 = 2 × 1.51 × 223 = 32,157 in3

The total factored shear stress is determined by Eq. (7.39):

vu(AB) = Vu

Ac
+ γv Muc AB

Jc

= 426,900
2,289

+ 0.36 × 425.8 × 12,000
32,157

= 186.5 + 57.2 = 243.7 psi

The allowable stress for a square column is obtained from Eq. (10.19):

φvc = φVc

bo d
= φ4λ

√
f ′
c = 0.75 × 4 × 1.0

√
4,000 = 189.7 psi < 243.7 psi

It can be determined that an effective depth of 28 in satisfies two-way shear requirements at
the edge column and at an interior column.

2. One-way shear: The maximum factored shear force occurs at the interior column (see Fig. 10.35).
The factored shear force at a distance of d from the face of the column is

Vu = 405.6 − 34.51
(

24
2 × 12

+ 28
12

)
= 290.6 kips

The design one-way shear strength is given in Eq. (10.16):

φVc = φ2λ
√

f ′
c B ′d = 0.75 × 2 × 1.0

√
4,000 × 24 × 12 × 28/1,000 = 765.0 kips > 290.6 kips

Use a 32-in-thick mat (d = 28 in).
Step 6: Determine the required flexural reinforcement. The maximum moment near the

midspan is equal to 2,364.5 ft kips (see Fig. 10.35). The flexural reinforcement needed to resist
this moment must be placed at the top of the mat; it is analogous to positive reinforcement.

The flowchart shown in Fig. 6.4 is used to determine As . It can be determined that the required
area of flexural reinforcement is As = 19.2 in2 > As, min = 16.6 in2

The bar size and spacing must also be selected considering the moment transfer requirements
of ACI 13.5.3.

Minimum flexural reinforcement must be provided at the bottom of the footing on the basis of
the factored moments shown in Fig. 10.35.

Step 7: Develop the flexural reinforcement. The flexural reinforcement must be developed on
either side of the critical sections for flexure in accordance with ACI Chap. 12.

Continuous bars are provided at the top of the mat. Bottom bars can be cut off where they are no
longer required. In certain situations, it may be advantageous to provide continuous bars at both
the top and the bottom of the mat in both directions.

Step 8: Check transfer of forces at the base of the supported members. Transfer of forces
between the supported elements and the mat foundation needs to be checked. In this example,
only vertical force transfer needs to be investigated.

Calculations for vertical force transfer have been illustrated in previous examples.
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Comments
To complete the design of this mat, other strips need to be designed in both directions. It is usu-
ally advantageous to provide the same amount of flexural reinforcement wherever possible; this
facilitates bar placement in the field.

10.4 Pile Caps

10.4.1 Overview
A pile cap is a reinforced concrete element that distributes the loads from the super-
structure to the individual piles in a pile group below the supported member. These
elements are sometimes referred to as footings on piles.

The plan dimensions of a pile cap depend on the number of piles that are needed to
support the load. Pile spacing is generally a function of pile type and capacity; a common
spacing is 3 ft on center. The number and arrangement of the piles is determined using
unfactored loads.

The thickness of a pile cap depends primarily on shear. One- and two-way shear
requirements must be satisfied at critical sections around both the supported member
and the piles, using factored loads. Once a thickness has been established, the required
flexural reinforcement is calculated using the general principles of the strength design
method. Reinforcing bars are located at the bottom of the pile cap and must be fully
developed in accordance with ACI Chap. 12.

Vertical and horizontal transfer between the supported member and the pile cap
must be checked similar to footings. Vertical compression forces are transferred by
bearing on the concrete and by reinforcement (if required), whereas vertical tension
forces must be resisted entirely by reinforcement. Shear-friction requirements must be
satisfied for horizontal transfer.

10.4.2 Design for Shear

Shear Requirements
General shear strength requirements for pile caps are given in ACI 15.5. For purposes
of analysis, it is assumed that the reaction from any pile is a concentrated load that acts
at the center of the pile (ACI 15.2.3).

Geometric properties dictate the shear requirements that need to be satisfied. Ac-
cording to ACI 15.5.3, the one- and two-way shear strength requirements for slabs and
footings given in ACI 11.11 and the additional requirements of ACI 15.5.4 must be sat-
isfied for pile caps where the distance x between the axis of any pile to the axis of the
supported column is greater than two times the distance y between the top of the pile
cap and the top of the pile (see Fig. 10.36). For pile caps that do not meet this condition,
the pile cap is assumed to be “deep,” and the requirements of either ACI Appendix A
or ACI 11.11 and 15.5.4 must be satisfied.

Critical Sections—Supported Members
Similar to footings, critical sections for one- and two-way shear occur at d and d/2
from the face of the supported member, respectively (see Figs. 10.22 and 10.23). The
magnitude of the factored shear force that needs to be considered at these critical sections
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FIGURE 10.36
Geometric
properties of
a pile cap.

depends on the location of the center of a pile with respect to these sections (ACI 15.5.4).
Consider the three piles illustrated in Fig. 10.37. The discussion that follows is applicable
to the critical section for two-way shear; a similar discussion is applicable to the critical
section for one-way shear.

The reaction from Pile A, which is assumed to act at the center of the pile, is located
at a distance that is greater than 50% of the pile diameter dpile inside the critical section
for two-way shear; thus, the reaction from this pile does not produce shear force on
that section (ACI 15.5.4.2). The center of Pile C is located more than dpile/2 outside

FIGURE 10.37
Consideration of
shear forces on
pile cap.
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of the critical section, so the full reaction from this pile must be considered in shear
calculations (ACI 15.5.4.1). Because the center of Pile B is located outside of the critical
section, all or part of the reaction will contribute to the total shear at that section. If
x ≥ dpile/2, then the full reaction of the pile must be considered. However, if x < dpile/2,
then only a part of the reaction needs to be included; ACI 15.5.4.3 permits a reduced
reaction to be determined by linear interpolation between the full value of the reaction
at dpile/2 outside of the section and zero at dpile/2 inside the section.

For relatively deep pile caps, it is possible that all or most of the pile reactions can
be excluded in shear calculations based on the requirements of ACI 15.5.4.2; in other
words, the length of the critical section is large enough so that most or all of the piles fall
inside the critical section by more than dpile/2. In extreme cases, the critical section may
fall outside of the pile cap. Reference 10 contains two special investigation methods
that can be used to determine the required shear force in such cases.

Critical Sections—Piles
In addition to critical sections around supported members, shear requirements need to
be investigated at critical sections around piles. Figure 10.38 illustrates four possible
conditions that may need to be investigated.

� Condition 1: Two-way shear at an interior pile. Two-way shear requirements must
be investigated at the critical section of an interior pile. The factored shear force
at the critical section is equal to the factored axial load in the pile. The design
shear strength is the smallest of the values obtained by ACI Eqs. (11-31) through
(11-33). For the usual case of square or round piles, ACI Eq. (11-33) governs.

� Condition 2: Two-way shear at interior piles with overlapping critical perimeters. In
cases where the shear perimeters of adjacent piles overlap, a modified shear

FIGURE 10.38 Critical sections around piles.
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critical perimeter bo must be used. The perimeter bo should be taken as that
portion of the smallest envelope of individual shear perimeter for the piles
under consideration. ACI Fig. R15.5 illustrates the modified critical perimeter
for two piles with overlapping critical perimeters.

� Condition 3: Two-way shear at corner piles. For piles located at the corners of pile
caps, the shear around two critical sections needs to be investigated, as shown
in Fig. 10.38. In particular, the smaller of the two perimeters bo must be used
in determining the design shear strength. This is similar to the investigation of
two-way shear in two-way slabs where a cantilevered portion of slab is adjacent
to an edge column (see Fig. 7.46).

� Condition 4: One-way shear at corner piles. One-way shear requirements need to
be checked at a distance d , but no more than 13 in, from the face of a corner
pile. The critical section occurs at a 45-degree angle with respect to the edges
of the pile cap.

10.4.3 Design for Flexure
Once a thickness has been established on the basis of shear requirements, design of the
pile cap for flexure follows the general requirements of the strength design method.

The maximum factored moment at the critical section for flexure, which is defined
in ACI 15.4.2, is determined by multiplying the factored pile loads by the respective dis-
tances from the center of the pile to the critical section. Required flexural reinforcement
is calculated on the basis of this moment. Because the thickness of a pile cap is typically
established on the basis of shear requirements, the minimum flexural reinforcement
requirements of ACI 10.5.4 usually govern.

Like isolated spread footings, flexural reinforcement is placed at the bottom of a pile
cap. A minimum 3-in clear cover is typically provided from the top of the embedded
piles to the reinforcing steel. Concrete piles are typically embedded a minimum distance
of 4 in into the pile cap, whereas steel piles are usually embedded a minimum of 6 in.

For square pile caps, reinforcing bars are uniformly distributed in both orthogonal
directions, whereas for rectangular pile caps, the spacing requirements of ACI 15.4.4.2
must be satisfied. The bars must be developed in accordance with the applicable provi-
sions of ACI Chap. 12. Because of the relatively short length that is available for devel-
opment of the bars in tension, hooks are frequently provided at both ends of the bars.

10.4.4 Design Procedure
The following design procedure can be used in the design of pile caps. Included is the
information presented in the previous section on analysis and additional information
on design and detailing.

Step 1: Determine the plan dimensions of the pile cap. The number of piles that
are needed to support the load from the superstructure dictates the plan dimensions of
a pile cap. Piles are typically spaced 3 ft on center, and the distance from the center of
an edge pile to the edge of the pile cap is usually 1 ft 3 in. Reference 10 contains plan
dimensions for a variety of pile cap layouts.

Step 2: Determine the thickness of the pile cap. Both one- and two-way shear
must be investigated at the critical sections around the vertical elements supported by
the pile cap in accordance with the requirements of ACI 11.11 and 15.5.4. Factored loads



591F o u n d a t i o n s

are used to compute the shear forces at the critical sections. Like footings, it is common
practice not to use shear reinforcement in pile caps.

A preliminary thickness can be determined on the basis of two-way shear require-
ments at the critical section around the supported column, considering the requirements
of ACI 15.5.4. One-way shear requirements are subsequently checked at the critical sec-
tion of the column, and one- and two-way shear requirements are checked at the piles.
Adjustments are made to the thickness, if required.

Step 3: Determine the factored moments. Maximum bending moments are deter-
mined at the critical sections in the pile cap, using factored loads. In particular, Mu is
determined by multiplying the factored pile loads by the respective distances from the
center of the pile to the critical section.

Step 4: Determine the required flexural reinforcement. The required flexural rein-
forcement is determined using the general requirements of the strength design method.
Like footings, pile caps should be designed as tension-controlled sections. The provided
area of reinforcement must be equal to or greater than the minimum reinforcement pre-
scribed in ACI 10.5.4.

The reinforcing bars are uniformly distributed in both orthogonal directions in
square pile caps. For rectangular pile caps, the reinforcement in the short direction
must be spaced in accordance with ACI 15.4.4.2.

Step 5: Develop the flexural reinforcement. The flexural reinforcement must be
developed at the critical sections in the pile cap. The requirements of ACI Chap. 12 are
used to determine the required lengths of the reinforcing bars. Hooks are frequently
provided at both ends of the bars to achieve the required development.

Step 6: Check transfer of forces at the base of the supported members. Transfer
of forces between the supported elements and the pile cap needs to be checked. It is
important to ensure that both vertical and lateral loads are adequately transferred across
the interface by satisfying the appropriate Code requirements, which are the same as
those for footings.

Example 10.11 Design the pile cap illustrated in Fig. 10.39. The piles have a diameter of 12 in and
a service load capacity of 50 tons each. Assume that the pile cap has normal-weight concrete with
a compressive strength of 4,000 psi and Grade 60 reinforcement. Also assume that the piles are
embedded 4 in into the pile cap. The axial loads on the column are due to dead and live loads and
are equal to 425 and 250 kips, respectively.

Solution
Step 1: Determine the plan dimensions of the pile cap. The plan dimensions of the pile cap

are given in Fig. 10.39. A 3-ft spacing is provided between the piles (including the piles closest to
the column and the adjacent piles, which occur on the diagonal), and the edge distance is 1 ft 3 in.

Step 2: Determine the thickness of the pile cap. The thickness of the pile cap is initially
determined on the basis of two-way shear requirements at the column. One-way shear requirements
will be checked around the column, and one- and two-way shear requirements will be checked
around the piles based on this thickness.

The total factored axial load on the column is

Pu = (1.2 × 425) + (1.6 × 250) = 910 kips

Load per pile = 910/8 = 114 kips

Assuming that the centers of the two piles closest to the column are located dpile/2 = 6 in or
more inside the perimeter of the critical section for two-way shear, their contribution to the total
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FIGURE 10.39 The pile cap given in Example 10.11.

shear can be neglected (ACI 15.5.4.2). This assumption will be checked later. Therefore, the factored
shear force at the critical section is Vu = 6 × 114 = 684 kips.

For an interior square column, the design shear strength is given by ACI Eq. (11-33):

φVc = φ4λ
√

f ′
c bo d = 0.75 × 4 × 1.0

√
4,000 × [4 × (22 + d)] × d = 16,697d + 759d2

Equating the required and design shear strengths results in the following equation that can be
solved for d:

759d2 + 16,697d − 684,000 = 0

d = 21.0 in

On the basis of d = 21.0 in, the center of the two piles that are closest to the column is located
(43/2) − 18 = 3.5 in inside the section, which is less than dpile/2 = 6 in (see Fig. 10.40). Thus, the
initial assumption is not valid; that is, part of the reactions from these two piles must be considered
in the shear force at the critical section. By increasing d to 26 in, the center of the piles is located at
dpile/2 inside the critical section, and these reactions can be neglected.

Try d = 26.0 in

1. Check shear requirements at the column.
� Two-way shear: Because the provided effective depth d is greater than that determined for the

actual factored shear force, two-way shear requirements are automatically satisfied. Note that
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Therefore, Vu = 3 × 5 = 15 kips.
The design one-way shear strength is

φVc = φ2λ
√

f ′
c Ld = 0.75 × 2 × 1.0

√
4,000 × 8.5 × 12 × 26/1,000 = 252 kips > 15 kips

For the critical section located a distance d = 26 in from the east or west face of the
column, the center of the two piles closet to the column is located 26 − 1 − 6 = 19 in inside
the critical section; thus, the reactions from these two piles are not considered. Two piles
are located 26 − (36 − 11) = 1 in inside of the critical section, which is less than dpile/2 = 6 in.
The reaction in each pile is

114 ×
(

25
32 − 20

− 1.667
)

= 48 kips

Therefore, Vu = 2 × 48 = 96 kips.
The design one-way shear strength is

φVc = φ2λ
√

f ′
c Bd = 0.75 × 2 × 1.0

√
4,000 × 7.75 × 12 × 26/1,000 = 229 kips > 96 kips

2. Check shear requirements at the corner pile.
� Two-way shear: The factored shear force at the critical section is equal to the reaction of the

pile, which is 114 kips (see Fig. 10.42 for the critical shear perimeter).

The design two-way shear strength is

φVc = φ4λ
√

f ′
c bo d = 0.75 × 4 × 1.0

√
4,000 ×

[π

4
× (12 + 26) + (2 × 15)

]
× 26/1,000

= 295 kips > 114 kips

� One-way shear: As in the case for two-way shear, the factored shear force at the critical section
for one-way shear is equal to the reaction of the pile, which is 114 kips (see Fig. 10.43 for the
location of the critical section).

The design one-way shear strength is

φVc = φ2λ
√

f ′
c bd = 0.75 × 2 × 1.0

√
4,000 × (2 × 40.2) × 26/1,000 = 198 kips > 114 kips

13 in 6 in 15 in

6 
in

9 
in

FIGURE 10.42
Critical perimeter
for two-way shear
at the corner pile
given in Example
10.11.
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40.2 in

40.2 in
13 in

12 in

15.2 in

9 
in

6 
in

FIGURE 10.43 Location of critical section for one-way shear at the corner pile given in Example
10.11.

3. Check shear requirements at other piles.

The critical sections for two-way shear of the piles closest to the column overlap. Thus, the
design two-way shear strength is

φVc = φ4λ
√

f ′
c bo d = 0.75 × 4 × 1.0

√
4,000 × 2 ×

[π

2
× (12 + 26) + 36

]
× 26/1,000

= 944 kips

> Vu = 2 × 114 = 228 kips

The critical sections for two-way shear of the edge piles overlap and are incomplete (i.e.,
they fall outside of the pile cap). Thus, shear requirements do not control for these piles.

The minimum overall thickness for footings on piles (pile caps) is 16 in (ACI 15.7).
Use a pile cap that is 2 ft 9 in thick (d = 26 inches).
Step 3: Determine the factored moments. In the short direction, the factored moment at the

critical section (i.e., at the face of the column) is obtained by multiplying the reactions from three
piles by the distance from the center of the piles to the critical section:

Mu = (3 × 114) ×
(

7.75
2

− 1.25 − 22
2 × 12

)
= 584.3 ft kips

Similarly, in the long direction,

Mu = 114 ×
(

1.5 − 22
2 × 12

)
+ (2 × 114) ×

(
3 − 22

2 × 12

)
= 541.5 ft kips



596 C h a p t e r T e n

Step 4: Determine the required flexural reinforcement. The required area of steel is determined
using the general principles of the strength design method.

Short direction: As = 0.0019 × (8.5 × 12) × 26 = 5.04 in2

< As, min = 0.0018 × (8.5 × 12) × 33 = 6.06 in2

Providing 11 No. 7 bars satisfies strength requirements (As = 6.60 in2). These short bars must
be spaced in accordance with ACI 15.4.4.2. The fraction of the total bars that must be distributed
uniformly over the band width of 7 ft 9 in is determined by ACI Eq. (15-1):

γs = 2
β + 1

= 2
(8.5/7.75) + 1

= 0.95

Provide 10 bars spaced at 9 in on center in the center band, and add one additional bar outside
of the center band. Thus, try 12 No. 7 bars in the short direction.

Long direction: As = 0.0020 × (7.75 × 12) × 26 = 4.84 in2

< As, min = 0.0018 × (7.75 × 12) × 33 = 5.52 in2

Try 10 No. 7 bars in the long direction (provided As = 6.00 in2). These bars are spaced uniformly
over the width of the pile cap.

Step 5: Develop the flexural reinforcement. The flexural reinforcement must be developed in
tension a minimum distance of �d past the critical section. Using ACI Eq. (12-1), �d = 2.1 ft for the
No. 7 bars. The available development length in the short direction is

7.75
2

− 22
24

− 3
12

= 2.7 ft > 2.1 ft

Thus, the bars in the short direction can be fully developed. Because the available development
length is greater in the long direction, the bars in that direction can be fully developed as well.

Use 12 No 7 bars in the short direction, which are 7 ft 0 in long.
Use 10 No. 7 bars in the long direction, which are 8 ft 0 in long.
Step 6: Check transfer of forces at the base of the column. Transfer of forces between the

column and the pile cap needs to be checked. In this example, only vertical force transfer needs to
be investigated.

Calculations for vertical force transfer have been illustrated in previous examples.

10.5 Drilled Piers

10.5.1 Overview
A drilled pier, which is sometimes referred to as a pier or caisson, transfers the loads
from the superstructure to a soil or rock stratum that is usually well below the ground
surface. Often, the bottom of the shaft is belled out to provide a larger end-bearing
area (see Figs. 10.7 and 10.8). Concrete is deposited into the shaft after the required
reinforcing bars have been set into place.

The loads from the supported member are transferred to the shaft by bearing. Skin
resistance (or friction), point bearing, and a combination of the two are ways in which
the load is transferred to the soil surrounding and below the shaft or bell. Drilled piers
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are categorized on the basis of the manner in which the loads are transferred to the soil
or rock.

10.5.2 Determining the Shaft and Bell Sizes
The diameter of the shaft and bell are determined using service loads and the allowable
bearing capacity of the concrete and soil or rock, respectively.11 The current edition of
the Code does not contain design provisions based on allowable stresses; the working
stress method last appeared in Appendix A of the 1999 Code and was identified in that
document as the Alternate Design Method.

Shaft Diameter
Table 1810.3.2.6 of Ref. 4 contains allowable stresses for materials used in deep foun-
dation elements. For cast-in-place concrete with a permanent casing that satisfies the
requirements of IBC 1810.3.2.7, the allowable stress in compression is 0.4 f ′

c . When a
permanent casing is not provided, the allowable stress is 0.3 f ′

c , which is the same as
that provided for bearing in the working stress method (see, e.g., Appendix A of the
1999 edition of the Code).

The diameter of the shaft dshaft can be determined by the following equation, which
is valid for drilled piers without permanent casing subjected to a total service axial
dead and live load P :

dshaft =
[

4P
π (0.3 f ′

c )

]1/2

(10.32)

The diameter is specified in multiples of 6 in. A similar equation can be derived for
drilled piers with permanent casing.

Equation (10.32) is based on the assumption that full lateral support is provided
over the entire length of the shaft; that is, the surrounding soil provides sufficient lateral
resistance to prevent buckling of the piers. Guidelines on the soil properties that may be
considered to provide lateral support are given in Ref. 11. If available, the geotechnical
report for the site should provide information on this as well. In situations where soil
cannot provide lateral resistance or where piers extend above the soil surface or through
subsurface layers of air or water, the piers should be designed as columns. This includes
checking if the shaft must be designed for the effects of slenderness (see Section 8.5).

Where significant bending moments and shear forces are transferred to the shaft in
combination with axial loads, the shaft is typically designed by approximate methods.
Reference 11 provides a number of such methods, including ways to calculate the lateral
deflection at the top of the pier.

Reference 11 also provides guidelines for piers that resist loads by skin friction or
by a combination of end bearing and shear friction. Allowable frictional resistance can
be found in Ref. 4.

IBC 1810.3.5.2 gives minimum shaft dimensions for both uncased and cased drill
piers:

� Cased: dshaft ≥ 8 in
� Uncased: dshaft ≥ 12 in
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For uncased shafts, the length of the pier is limited to 30 times the diameter of
the shaft; the length is permitted to exceed this limiting value where the design and
installation are under the direct supervision of the registered design professional.

Bell Diameter
For the common case of end-bearing drilled piers, the diameter of the bell dbell is de-
termined on the basis of the total service axial dead and live load P and the allowable
bearing capacity of the soil or rock qa :

dbell =
[

4P
πqa

]1/2

(10.33)

Like the diameter of the shaft, the bell diameter is specified in multiples of 6 in.
The height of the bell depends on the diameter of the shaft and the slope of the bell

(see Figs. 10.7 and 10.8). The thickness of the edge of the bell (i.e., the lower portion of
the bell that is not sloped) is typically 1 ft, although a thickness not less than 6 in has
been recommended in various sources. The angle of the sloped portion of the bell is
usually 60 degrees or more so that effects of vertical shear do not need to be considered
in the design (IBC 1810.3.9.5).

Reference 10 contains tables that facilitate the selection of shaft and bell diameters
for a variety of cases.

10.5.3 Reinforcement Details
The recommended reinforcement details for drilled piers subjected to axial compressive
loads are given in Fig. 10.44.10 A minimum longitudinal reinforcement ratio of 0.005 is
used, which corresponds to compression members with cross-sections that are larger
than required for the applied loads (ACI 10.8.4). The minimum embedment length of
the longitudinal bars is three times the diameter of the shaft or 10 ft, whichever is
greater.

Ties are provided over the length of the longitudinal bars and must conform to the
requirements for lateral reinforcement for compression members (ACI 7.10.5).

The recommended number, size, and spacing of the longitudinal bars and tie bars
in drilled piers subjected to axial compression loads can be found in Ref. 10.

In cases where drilled piers are subjected to uplift or to bending moments that
exceed the cracking moment of the shaft, reinforcement must be provided to resist these
tension effects (IBC 1810.3.9.2). The shaft is designed for the effects of factored loads,
using the general principles of the strength design method. Longitudinal reinforcement
must extend into the shaft a sufficient distance to fully develop the bars in tension.

Vertical and horizontal loads must be transferred from the supported member to
the top of the shaft or cap. See Section 10.2 for more information on force transfer.

Example 10.12 Design a drilled pier subjected to the following compressive axial loads: PD = 1,000
kips and PL = 575 kips. A bell will be provided at the bottom of the pier and will bear on a rock
stratum with an allowable bearing capacity of 12,000 psf. Assume normal-weight concrete with a
compressive strength of 4,000 psi and Grade 60 reinforcement. Also assume that the pier will not be
permanently cased and that the surrounding soil provides adequate lateral support for the shaft.
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FIGURE 10.44
Reinforcement
details for drilled
piers subjected to
axial compression
loads.

Solution The diameter of the shaft is determined by Eq. (10.32):

dshaft =
[

4P
π (0.3 f ′

c )

]1/2

=
[

4 × 1,575
π (0.3 × 4)

]1/2

= 40.9 in

Use a shaft with a diameter of 3 ft 6 in.
The diameter of the bell is determined by Eq. (10.33):

dbell =
[

4P
πqa

]1/2

=
[

4 × 1,575
π × 12

]1/2

= 12.9 ft
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Use a bell with a diameter of 13 ft 0 in.
The area of the longitudinal reinforcement is equal to the following:

As = 0.005 × π × (3.5 × 12/2)2 = 6.92 in2

The minimum extension into the shaft = 3d = 10.5 ft (governs) or 10 ft.
Use seven No. 9 bars, which are 10 ft 6 in long.
No. 3 ties are used for longitudinal bars that are No. 10 bars and smaller (ACI 7.10.5.1), and the

maximum spacing of the circular ties is the lesser of the following (ACI 7.10.5.2):

� 16 (longitudinal bar diameters) = 16 × 1.128 = 18.1 in
� 48 (tie bar diameters) = 48 × 0.375 = 18.0 in (governs)
� Least dimension of compression member = 42.0 in

Use No. 3 ties spaced at 18 in on center.
Reinforcement details for this drilled pier are similar to those shown in Fig. 10.44.
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Problems
10.1. Determine the net permissible soil pressure beneath a footing, given the following information:
(1) allowable bearing capacity of soil = 4,000 psf; (2) base of footing is located 4 ft below ground level;
and (3) service surcharge at ground level = 100 psf. Assume that the weight of the soil and concrete
above the footing base is 130 pcf.

10.2. Determine the required size of the footing in Problem 10.1, assuming a net permissible soil
pressure of 4,000 psf. The applied axial service dead and live loads are 450 kips and 200 kips, respectively.
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10.3. Determine the factored one-way shear force at the critical section for the footing described in
Problems 10.1 and 10.2, assuming the following: (1) footing thickness = 30 in; (2) plan dimensions of
footing = 13 ft 0 in × 13 ft 0 in, (3) normal-weight concrete with a compressive strength of 3,000 psi, (4)
18 × 24-in column centered on the footing.

10.4. For the design conditions of Problem 10.3, determine the design one-way shear strength at the
critical section.

10.5. For the design conditions of Problem 10.3, determine the factored two-way shear force at the
critical section.

10.6. For the design conditions of Problem 10.3, determine the design two-way shear strength at the
critical section.

10.7. For the design conditions of Problems 10.2 and 10.3, determine the required area of flexural
reinforcement at the critical section.

10.8. A combined footing supports two 20 × 20 in columns. The centerline of the column on the left
is located 12 in from the edge of the footing, and the centerline of the column on the right is located
12 ft from the centerline of the column on the left. The column on the left supports service axial dead and
live loads of 125 and 55 kips, respectively, and the column on the right supports service axial dead and
live loads of 200 and 125 kips, respectively. Determine the length of the footing that results in uniform
pressure at the base of the footing.

10.9. Determine the bearing strength of the columns in Problem 10.8, assuming normal-weight concrete
with a compressive strength of 6,000 psi for the columns and 3,500 psi for the footing.

10.10. A 12-ft square footing supports a 24-in square column that transmits a total service axial load
of 700 kips and a service bending moment of 500 ft kips. Determine the maximum soil pressure at the
base of the footing.

10.11. Design the combined footing in Example 10.9, assuming that the 22-in square column and
accompanying loads occur at the edge and that the 18-in square column and accompanying loads occur
at the interior of the footing.

10.12. Design the edge strip in the east-west direction for the mat foundation depicted in Fig. 10.34,
given the design data of Example 10.10.

10.13. Design the pile cap for the five-pile arrangement depicted in Fig. 10.6. The piles are spaced 3 ft
0 in on center and have an edge distance of 1 ft 3 in. Assume that the pile cap supports a 16-in square
column with axial dead and live loads of 250 and 120 kips, respectively. Also assume 3,000 psi concrete
and Grade 60 reinforcement.

10.14. Design a drilled pier for service axial dead and live loads of 2,000 and 1,275 kips, respectively.
Assume that the shaft is uncased, that the soil provides lateral support to the shaft over the entire length,
and that a bell is provided, which will bear on a rock stratum with an allowable bearing capacity of
15,000 psf. Also assume 4,000 psi concrete and Grade 60 reinforcement.
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A P P E N D I X A
Steel Reinforcement

Information

A.1 ASTM Standard Reinforcing Bars

Bar Size Number Nominal Diameter (in) Nominal Area (in2) Nominal Weight (lb/ft)

3 0.375 0.11 0.376

4 0.500 0.20 0.668

5 0.625 0.31 1.043

6 0.750 0.44 1.502

7 0.875 0.60 2.044

8 1.000 0.79 2.670

9 1.128 1.00 3.400

10 1.270 1.27 4.303

11 1.410 1.56 5.313

14 1.693 2.25 7.650

18 2.257 4.00 13.600

TABLE A.1 Information for ASTM Standard Reinforcing Bars
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A.2 Wire Reinforcement Institute (WRI) Standard Wire Reinforcement

Nominal Nominal Nominal
Diameter Area Weight

Area (in2/ft)

W & D Size Center-to-Center Spacing (in)

Plain Deformed (in) (in2) (lb/ft) 2 3 4 6 8 10 12

W31 D31 0.628 0.310 1.054 1.86 1.24 0.93 0.62 0.46 0.37 0.31

W30 D30 0.618 0.300 1.020 1.80 1.20 0.90 0.60 0.45 0.36 0.30

W28 D28 0.597 0.280 0.952 1.68 1.12 0.84 0.56 0.42 0.33 0.28

W26 D26 0.575 0.260 0.934 1.56 1.04 0.78 0.52 0.39 0.31 0.26

W24 D24 0.553 0.240 0.816 1.44 0.96 0.72 0.48 0.36 0.28 0.24

W22 D22 0.529 0.220 0.748 1.32 0.88 0.66 0.44 0.33 0.26 0.22

W20 D20 0.504 0.200 0.680 1.20 0.80 0.60 0.40 0.30 0.24 0.20

W18 D18 0.478 0.180 0.612 1.08 0.72 0.54 0.36 0.27 0.21 0.18

W16 D16 0.451 0.160 0.544 0.96 0.64 0.48 0.32 0.24 0.19 0.16

W14 D14 0.422 0.140 0.476 0.84 0.56 0.42 0.28 0.21 0.16 0.14

W12 D12 0.390 0.120 0.408 0.72 0.48 0.36 0.24 0.18 0.14 0.12

W11 D11 0.374 0.110 0.374 0.66 0.44 0.33 0.22 0.16 0.13 0.11

W10.5 — 0.366 0.105 0.357 0.63 0.42 0.315 0.21 0.15 0.12 0.105

W10 D10 0.356 0.100 0.340 0.60 0.40 0.30 0.20 0.15 0.12 0.10

W9.5 — 0.348 0.095 0.323 0.57 0.38 0.285 0.19 0.14 0.11 0.095

W9 D9 0.338 0.090 0.306 0.54 0.36 0.27 0.18 0.13 0.10 0.09

W8.5 — 0.329 0.085 0.289 0.51 0.34 0.255 0.17 0.12 0.10 0.085

W8 D8 0.319 0.080 0.272 0.48 0.32 0.24 0.16 0.12 0.09 0.08

W7.5 — 0.309 0.075 0.255 0.45 0.30 0.225 0.15 0.11 0.09 0.075

W7 D7 0.298 0.070 0.238 0.42 0.28 0.21 0.14 0.10 0.08 0.07

W6.5 — 0.288 0.065 0.221 0.39 0.26 0.195 0.13 0.09 0.07 0.065

W6 D6 0.276 0.060 0.204 0.36 0.24 0.18 0.12 0.09 0.07 0.06

W5.5 — 0.264 0.055 0.187 0.33 0.22 0.165 0.11 0.08 0.06 0.055

W5 D5 0.252 0.050 0.170 0.30 0.20 0.15 0.10 0.07 0.06 0.05

W4.5 — 0.240 0.045 0.153 0.27 0.18 0.135 0.09 0.06 0.05 0.045

W4 D4 0.225 0.040 0.136 0.24 0.16 0.12 0.08 0.06 0.04 0.04

W3.5 — 0.211 0.035 0.119 0.21 0.14 0.105 0.07 0.05 0.04 0.035

W3 — 0.195 0.030 0.102 0.18 0.12 0.09 0.06 0.04 0.03 0.03

W2.9 — 0.192 0.029 0.098 0.174 0.116 0.087 0.058 0.04 0.03 0.029

W2.5 — 0.178 0.025 0.085 0.15 0.10 0.075 0.05 0.03 0.03 0.025

W2 — 0.159 0.020 0.068 0.12 0.08 0.06 0.04 0.03 0.02 0.02

W1.4 — 0.135 0.014 0.049 0.084 0.056 0.042 0.028 0.02 0.01 0.014

TABLE A.2 Information for WRI Standard Wire Reinforcement



A P P E N D I X B
Critical Section Properties

for Two-Way Shear

B.1 Derivation of Critical Section Properties

B.1.1 Overview
Equations to determine the properties of critical sections for use in two-way shear
calculations are given in Figs. 7.53 through 7.57 for interior, edge, and corner rectangular
columns and for circular interior columns. This section contains derivations of the
critical section properties for a variety of support conditions.

B.1.2 Interior Rectangular Column
Properties are derived for the critical section of an interior rectangular column. Refer
to Fig. B.1.

Perimeter of Critical Section

bo = 2(c1 + d) + 2(c2 + d) = 2(b1 + b2)

Area of Critical Section

Ac = bod = 2(b1 + b2)d = 2c1d + 2c2d + 4d2

Ac

d2 = 2
( c1

d

)
+ 2

( c2

d

)
+ 4

= 2
[(

1 + c2

c1

)( c1

d

)
+ 2

]

Define

f1 = 2
[(

1 + c2

c1

)( c1

d

)
+ 2

]

Therefore,

Ac = f1d2
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FIGURE B.1 Interior
rectangular column.

Center of Gravity
From symmetry,

c AB = cCD = b1/2 = (c1 + d)/2

Polar Moment of Inertia
For faces c1 + d ,

(Jc)1 = Ixx + Izz = 2 ×
[

d(c1 + d)3

12
+ (c1 + d)d3

12

]
= b3

1d + b1d3

6

For faces c2 + d :

(Jc)2 = Ixx = 2 × d(c2 + d)
(

c1 + d
2

)2

= b2
1b2d
2

Thus,

Jc = (Jc)1 + (Jc)2 = b3
1d + b1d3

6
+ b2

1b2d
2

Jc

c AB
= Jc

cCD
= b2

1d + d3

3
+ b1b2d = 1

3

[(
1 + 3c2

c1

)
c2

1

d2 +
(

5 + 3c2

c1

)
c1

d
+ 5

]
d3
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Define

f2 = 1
6

[(
1 + 3c2

c1

)( c1

d

)2
+

(
5 + 3c2

c1

)( c1

d

)
+ 5

]

Therefore,

Jc

c AB
= Jc

cCD
= 2 f2d3

B.1.3 Edge Rectangular Column Bending Parallel to the Edge
Properties are derived for the critical section of an edge rectangular column that is
bending parallel to the edge of the slab. Refer to Fig. B.2.

Perimeter of Critical Section

bo = (c1 + d) + 2
(

c2 + d
2

)
= b1 + 2b2

FIGURE B.2 Edge
rectangular column
bending parallel to
the edge.
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Area of Critical Section

Ac = bod = (b1 + 2b2)d = (c1 + d)d + (2c2 + d)d

Ac

d2 =
(

c1 + d
d

)
+

(
2c2 + d

d

)

=
(

1 + 2c2

c1

)( c1

d

)
+ 2

Define

f1 =
(

1 + 2c2

c1

)( c1

d

)
+ 2

Therefore,

Ac = f1d2

Center of Gravity
From symmetry,

c AB = cCD = b1/2 = (c1 + d)/2

Polar Moment of Inertia
For face c1 + d ,

(Jc)1 = Ixx + Izz =
[

d(c1 + d)3

12
+ (c1 + d)d3

12

]
= b3

1d + b1d3

12

For faces c2 + (d/2),

(Jc)2 = Ixx = 2 × d
(

c2 + d
2

)(
c1 + d

2

)2

= b2
1b2d
2

Thus,

Jc = (Jc)1 + (Jc)2 = b3
1d + b1d3

12
+ b2

1b2d
2

Jc

c AB
= Jc

cCD
= b2

1d + d3

6
+ b1b2d = 1

6

[(
1 + 6c2

c1

)
c2

1

d2 +
(

5 + 6c2

c1

)
c1

d
+ 5

]
d3

Define

f2 = 1
12

[(
1 + 6c2

c1

)( c1

d

)2
+

(
5 + 6c2

c1

)( c1

d

)
+ 5

]
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Therefore,

Jc

c AB
= Jc

cCD
= 2 f2d3

B.1.4 Edge Rectangular Column Bending Perpendicular to the Edge
Properties are derived for the critical section of an edge rectangular column that is
bending perpendicular to the edge of the slab. Refer to Fig. B.3.

Perimeter of Critical Section

bo = 2
(

c1 + d
2

)
+ (c2 + d) = 2b1 + b2

FIGURE B.3 Edge
rectangular column
bending
perpendicular to
the edge.
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Area of Critical Section

Ac = bod = (2b1 + b2)d = 2
(

c1 + d
2

)
d + (c2 + d)d

Ac

d2 =
(

2c1 + d
d

)
+

(
c2 + d

d

)

= 2 + c1

d

(
2 + c2

c1

)

Define

f1 = 2 + c1

d

(
2 + c2

c1

)

Therefore,

Ac = f1d2

Center of Gravity
Summing moments about face c2 + d ,

cAB = 2 × b1d × (b1/2)
Ac

= b2
1d

(2b1 + b2)d
= b2

1

2b1 + b2
= [c1 + (d/2)]2

2 [c1 + (d/2)] + (c2 + d)

= [c1 + (d/2)]2

[2 + (c2/c1)] c1 + 2d

Define

f2 = [(c1/d) + (1/2)]2 {(c1/d) [1 + (2c2/c1)] + (5/2)} + {(c1/d) [1 + (c2/2c1)] + 1}
6 [(c1/d) + (1/2)]

f3 = [(c1/d) + (1/2)]2 {(c1/d) [1 + (2c2/c1)] + (5/2)} + {(c1/d) [1 + (c2/2c1)] + 1}
6 {(c1/d) [1 + (c2/c1)] + (3/2)}

Therefore,

c AB =
(

f3

f2 + f3

)(
c1 + d

2

)

cCD = b1 − cAB =
(

f2

f2 + f3

)(
c1 + d

2

)

Polar Moment of Inertia
For faces c1 + (d/2),

(Jc)1 = Ixx + Izz = 2 × d [c1 + (d/2)]3

12
+ 2d

(
c1 + d

2

)[
c1 + (d/2)

2
− cAB

]2

+ 2 × [c1 + (d/2)] d3

12
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For face c2 + d,

(Jc)2 = Ixx = (c2 + d)dc2
AB

Thus,

Jc = (Jc)1 + (Jc)2 = b1d3

6
+ 2d

3

(
c3

AB + c3
CD

) + db2c2
AB

Jc

c AB
= b1d3

6c AB
+ 2d

3

(
c2

AB + c3
CD

cAB

)
+ db2c2

AB = f2d3

Jc

cCD
= b1d3

6cCD
+ 2d

3

(
c3

AB

cCD
+ c2

CD

)
+ db2

(
c2

AB

cCD

)
= 2 f3d3

B.1.5 Corner Rectangular Column Bending Perpendicular to the Edge
Properties are derived for the critical section of a corner rectangular column that is
bending perpendicular to the edge of the slab. Refer to Fig. B.4.

Perimeter of Critical Section

bo =
(

c1 + d
2

)
+

(
c2 + d

2

)
= b1 + b2

Area of Critical Section

Ac = bod = (b1 + b2)d =
(

c1 + d
2

)
d +

(
c2 + d

2

)
d

Ac

d2 =
(

c1

d
+ 1

2

)
+

(
c2

d
+ 1

2

)

= 1 + c1

d

(
1 + c2

c1

)

Define

f1 = 1 + c1

d

(
1 + c2

c1

)

Therefore,

Ac = f1d2

Center of Gravity
Summing moments about face c2 + (d/2),

cAB = b1d × (b1/2)
Ac

= b2
1d

2(b1 + b2)d
= b2

1

2(b1 + b2)
= [c1 + (d/2)]2

2 {[c1 + (d/2)] + [c2 + (d/2)]}

= [c1 + (d/2)]2

2 {c1[1 + (c2/c1)] + d}
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FIGURE B.4 Corner
rectangular column
bending
perpendicular to
the edge.

Define

f2 = [(c1/d) + (1/2)]2 {(c1/d)[1 + (4c2/c1) + (5/2)]} + {(c1/d)[1 + (c2/c1)] + 1}
12[(c1/d) + (1/2)]

f3 = [(c1/d) + (1/2)]2 {(c1/d)[1 + (4c2/c1) + (5/2)]} + {(c1/d)[1 + (c2/c1)] + 1}
12{(c1/d)[1 + (2c2/c1)] + (3/2)}

Therefore,

cAB =
(

f3

f2 + f3

)(
c1 + d

2

)

cCD = b1 − cAB =
(

f2

f2 + f3

)(
c1 + d

2

)
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Polar Moment of Inertia
For face c1 + (d/2),

(Jc)1 = Ixx + Izz = d[c1 + (d/2)]3

12
+ d

(
c1 + d

2

)[
c1 + (d/2)

2
− c AB

]2

+ [c1 + (d/2)]d3

12

For face c2 + d,

(Jc)2 = Ixx =
(

c2 + d
2

)
dc2

AB

Thus,

Jc = (Jc)1 + (Jc)2 = b1d3

12
+ d

3

(
c3

AB + c3
CD

) + db2c2
AB

Jc

c AB
= b1d3

12c AB
+ d

3

(
c2

AB + c3
CD

cAB

)
+ db2c2

AB = f2d3

Jc

cCD
= b1d3

12cCD
+ d

3

(
c3

AB

cCD
+ c2

CD

)
+ db2

(
c2

AB

cCD

)
= 2 f3d3

B.1.6 Circular Interior Column
Properties are derived for the critical section of a circular interior. Refer to Fig. B.5.

Perimeter of Critical Section

bo = π (D + d)

Area of Critical Section

Ac = bod = π (D + d)d

Ac

d2 = π

(
D
d

+ 1
)

Define

f1 = π

(
D
d

+ 1
)

Therefore,

Ac = f1d2
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FIGURE B.5 Circular
interior column.

Center of Gravity
From symmetry,

c = c ′ = (D + d)/2

Polar Moment of Inertia
Moments of inertia are obtained for projections on two orthogonal planes:

Ixx = d

2π∫
0

y2ds

= d

2π∫
0

(
D + d

2
cos θ

)2 (
D + d

2

)
dθ

= d
(

D + d
2

)3 2π∫
0

(cos θ )2dθ

= d
(

D + d
2

)3 (
θ

2
+ sin 2θ

4

)∣∣∣∣
2π

0

= πd
(

D + d
2

)3
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Izz = 2 × 2
(

D + d
2

) d/2∫
−d/2

z2dz

= 4
(

D + d
2

)(
z3

3

)∣∣∣∣
d/2

−d/2

=
(

D + d
6

)
d3

Thus,

Jc = Ixx + Iyy = πd
(

D + d
2

)3

+
(

D + d
6

)
d3

Jc

c
= Jc

c ′ = π

(
D + d

2

)2

+ d3

3

=
[

π

4

(
D
d

+ 1
)2

+ 1
3

]
d3

Define

f2 = π

8

(
D
d

+ 1
)2

+ 1
6

Therefore,

Jc

c
= Jc

c ′ = 2 f2d3

B.2 Tabulated Values of Critical Shear Constants

B.2.1 Overview
This section contains tabulated values of the constants f1, f2, and f3 that are used to
facilitate the calculation of the critical section properties for two-way shear. Included
are constants for the following:

� Interior rectangular columns (Table B.1; Fig. 7.53)
� Edge rectangular columns bending parallel to the edge (Table B.2; Fig. 7.54)
� Edge rectangular columns bending perpendicular to the edge (Table B.3;

Fig. 7.55)
� Corner rectangular columns bending perpendicular to the edge (Table B.4;

Fig. 7.56)
� Circular interior columns (Table B.5; Fig. 7.57)

Linear interpolation may be used to obtain constants that are not listed in the tables.
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B.2.2 Interior Rectangular Column

f1 f2

c2/c1 c2/c1

c1/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.00 7.00 7.50 8.00 8.50 9.00 9.50 10.00 2.33 2.58 2.83 3.08 3.33 3.58 3.83

1.50 8.50 9.25 10.00 10.75 11.50 12.25 13.00 3.40 3.86 4.33 4.80 5.27 5.74 6.21

2.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 4.67 5.42 6.17 6.92 7.67 8.42 9.17

2.50 11.50 12.75 14.00 15.25 16.50 17.75 19.00 6.15 7.24 8.33 9.43 10.52 11.61 12.71

3.00 13.00 14.50 16.00 17.50 19.00 20.50 22.00 7.83 9.33 10.83 12.33 13.83 15.33 16.83

3.50 14.50 16.25 18.00 19.75 21.50 23.25 25.00 9.73 11.70 13.67 15.64 17.60 19.57 21.54

4.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 11.83 14.33 16.83 19.33 21.83 24.33 26.83

4.50 17.50 19.75 22.00 24.25 26.50 28.75 31.00 14.15 17.24 20.33 23.43 26.52 29.61 32.71

5.00 19.00 21.50 24.00 26.50 29.00 31.50 34.00 16.67 20.42 24.17 27.92 31.67 35.42 39.17

5.50 20.50 23.25 26.00 28.75 31.50 34.25 37.00 19.40 23.86 28.33 32.80 37.27 41.74 46.21

6.00 22.00 25.00 28.00 31.00 34.00 37.00 40.00 22.33 27.58 32.83 38.08 43.33 48.58 53.83

6.50 23.50 26.75 30.00 33.25 36.50 39.75 43.00 25.48 31.57 37.67 43.76 49.85 55.95 62.04

7.00 25.00 28.50 32.00 35.50 39.00 42.50 46.00 28.83 35.83 42.83 49.83 56.83 63.83 70.83

7.50 26.50 30.25 34.00 37.75 41.50 45.25 49.00 32.40 40.36 48.33 56.30 64.27 72.24 80.21

8.00 28.00 32.00 36.00 40.00 44.00 48.00 52.00 36.17 45.17 54.17 63.17 72.17 81.17 90.17

8.50 29.50 33.75 38.00 42.25 46.50 50.75 55.00 40.15 50.24 60.33 70.43 80.52 90.61 100.71

9.00 31.00 35.50 40.00 44.50 49.00 53.50 58.00 44.33 55.58 66.83 78.08 89.33 100.58 111.83

9.50 32.50 37.25 42.00 46.75 51.50 56.25 61.00 48.73 61.20 73.67 86.14 98.60 111.07 123.54

10.00 34.00 39.00 44.00 49.00 54.00 59.00 64.00 53.33 67.08 80.83 94.58 108.33 122.08 135.83

TABLE B.1 Properties of the Critical Section—Interior Rectangular Column
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B.2.3 Edge Rectangular Column Bending Parallel to the Edge

f1 f2

c2/c1 c2/c1

c1/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.00 4.00 4.50 5.00 5.50 6.00 6.50 7.00 1.42 1.67 1.92 2.17 2.42 2.67 2.92

1.50 5.00 5.75 6.50 7.25 8.00 8.75 9.50 2.17 2.64 3.10 3.57 4.04 4.51 4.98

2.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 3.08 3.83 4.58 5.33 6.08 6.83 7.58

2.50 7.00 8.25 9.50 10.75 12.00 13.25 14.50 4.17 5.26 6.35 7.45 8.54 9.64 10.73

3.00 8.00 9.50 11.00 12.50 14.00 15.50 17.00 5.42 6.92 8.42 9.92 11.42 12.92 14.42

3.50 9.00 10.75 12.50 14.25 16.00 17.75 19.50 6.83 8.80 10.77 12.74 14.71 16.68 18.65

4.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 8.42 10.92 13.42 15.92 18.42 20.92 23.42

4.50 11.00 13.25 15.50 17.75 20.00 22.25 24.50 10.17 13.26 16.35 19.45 22.54 25.64 28.73

5.00 12.00 14.50 17.00 19.50 22.00 24.50 27.00 12.08 15.83 19.58 23.33 27.08 30.83 34.58

5.50 13.00 15.75 18.50 21.25 24.00 26.75 29.50 14.17 18.64 23.10 27.57 32.04 36.51 40.98

6.00 14.00 17.00 20.00 23.00 26.00 29.00 32.00 16.42 21.67 26.92 32.17 37.42 42.67 47.92

6.50 15.00 18.25 21.50 24.75 28.00 31.25 34.50 18.83 24.93 31.02 37.11 43.21 49.30 55.40

7.00 16.00 19.50 23.00 26.50 30.00 33.50 37.00 21.42 28.42 35.42 42.42 49.42 56.42 63.42

7.50 17.00 20.75 24.50 28.25 32.00 35.75 39.50 24.17 32.14 40.10 48.07 56.04 64.01 71.98

8.00 18.00 22.00 26.00 30.00 34.00 38.00 42.00 27.08 36.08 45.08 54.08 63.08 72.08 81.08

8.50 19.00 23.25 27.50 31.75 36.00 40.25 44.50 30.17 40.26 50.35 60.45 70.54 80.64 90.73

9.00 20.00 24.50 29.00 33.50 38.00 42.50 47.00 33.42 44.67 55.92 67.17 78.42 89.67 100.92

9.50 21.00 25.75 30.50 35.25 40.00 44.75 49.50 36.83 49.30 61.77 74.24 86.71 99.18 111.65

10.00 22.00 27.00 32.00 37.00 42.00 47.00 52.00 40.42 54.17 67.92 81.67 95.42 109.17 122.92

TABLE B.2 Properties of the Critical Section—Edge Rectangular Column Bending Parallel to Edge



B.2.4 Edge Rectangular Column Bending Perpendicular to the Edge

f1 f2 f3
c2/c1 c2/c1 c2/c1

c1/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.00 4.50 4.75 5.00 5.25 5.50 5.75 6.00 1.38 1.51 1.65 1.79 1.93 2.07 2.21 0.69 0.70 0.71 0.72 0.72 0.73 0.74

1.50 5.75 6.13 6.50 6.88 7.25 7.63 8.00 2.07 2.34 2.60 2.87 3.14 3.40 3.67 1.11 1.13 1.16 1.18 1.19 1.21 1.22

2.00 7.00 7.50 8.00 8.50 9.00 9.50 10.00 2.94 3.38 3.81 4.24 4.68 5.11 5.54 1.63 1.69 1.73 1.77 1.80 1.82 1.85

2.50 8.25 8.87 9.50 10.13 10.75 11.38 12.00 3.98 4.62 5.26 5.91 6.55 7.19 7.83 2.27 2.36 2.43 2.49 2.53 2.58 2.61

3.00 9.50 10.25 11.00 11.75 12.50 13.25 14.00 5.18 6.08 6.97 7.86 8.76 9.65 10.54 3.02 3.15 3.25 3.34 3.41 3.46 3.51

3.50 10.75 11.62 12.50 13.37 14.25 15.12 16.00 6.56 7.74 8.93 10.11 11.30 12.48 13.67 3.89 4.06 4.20 4.31 4.41 4.49 4.56

4.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 8.10 9.62 11.13 12.65 14.17 15.69 17.21 4.86 5.09 5.27 5.42 5.55 5.65 5.74

4.50 13.25 14.37 15.50 16.62 17.75 18.87 20.00 9.80 11.70 13.59 15.49 17.38 19.27 21.17 5.94 6.24 6.47 6.66 6.82 6.95 7.06

5.00 14.50 15.75 17.00 18.25 19.50 20.75 22.00 11.68 13.99 16.30 18.61 20.92 23.23 25.54 7.14 7.51 7.80 8.03 8.22 8.38 8.51

5.50 15.75 17.12 18.50 19.87 21.25 22.62 24.00 13.72 16.49 19.26 22.03 24.80 27.56 30.33 8.44 8.89 9.24 9.52 9.76 9.95 10.11

6.00 17.00 18.50 20.00 21.50 23.00 24.50 26.00 15.93 19.20 22.46 25.73 29.00 32.27 35.54 9.86 10.40 10.82 11.15 11.43 11.65 11.85

6.50 18.25 19.87 21.50 23.12 24.75 26.37 28.00 18.30 22.11 25.92 29.73 33.54 37.36 41.17 11.39 12.02 12.51 12.91 13.23 13.50 13.72

7.00 19.50 21.25 23.00 24.75 26.50 28.25 30.00 20.84 25.24 29.63 34.02 38.42 42.81 47.21 13.03 13.77 14.34 14.79 15.17 15.47 15.74

7.50 20.75 22.62 24.50 26.37 28.25 30.12 32.00 23.55 28.57 33.59 38.61 43.63 48.65 53.67 14.78 15.63 16.29 16.81 17.24 17.59 17.89

8.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 26.42 32.11 37.80 43.48 49.17 54.86 60.54 16.64 17.61 18.36 18.95 19.44 19.84 20.18

8.50 23.25 25.37 27.50 29.62 31.75 33.87 36.00 29.47 35.86 42.25 48.65 55.04 61.44 67.83 18.61 19.71 20.56 21.23 21.78 22.23 22.61

9.00 24.50 26.75 29.00 31.25 33.50 35.75 38.00 32.67 39.82 46.96 54.11 61.25 68.40 75.54 20.69 21.93 22.88 23.63 24.25 24.75 25.18

9.50 25.75 28.12 30.50 32.87 35.25 37.62 40.00 36.05 43.98 51.92 59.86 67.79 75.73 83.67 22.89 24.27 25.33 26.17 26.85 27.41 27.89

10.00 27.00 29.50 32.00 34.50 37.00 39.50 42.00 39.59 48.36 57.13 65.90 74.67 83.44 92.21 25.19 26.72 27.90 28.83 29.59 30.21 30.74

TABLE B.3 Properties of the Critical Section—Edge Rectangular Column Bending Perpendicular to the Edge
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B.2.5 Corner Rectangular Column Bending Perpendicular to the Edge

f1 f2 f3

c2/c1 c2/c1 c2/c1

c1/d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.00 2.50 2.75 3.00 3.25 3.50 3.75 4.00 0.83 0.97 1.10 1.24 1.38 1.52 1.66 0.35 0.36 0.37 0.37 0.38 0.38 0.38

1.50 3.25 3.63 4.00 4.38 4.75 5.13 5.50 1.30 1.57 1.83 2.10 2.36 2.63 2.90 0.58 0.60 0.61 0.62 0.63 0.64 0.64

2.00 4.00 4.50 5.00 5.50 6.00 6.50 7.00 1.90 2.34 2.77 3.20 3.64 4.07 4.50 0.87 0.90 0.92 0.94 0.96 0.97 0.98

2.50 4.75 5.37 6.00 6.62 7.25 7.87 8.50 2.63 3.27 3.92 4.56 5.20 5.84 6.49 1.21 1.27 1.31 1.33 1.36 1.37 1.39

3.00 5.50 6.25 7.00 7.75 8.50 9.25 10.00 3.49 4.38 5.27 6.16 7.06 7.95 8.84 1.63 1.70 1.76 1.80 1.83 1.85 1.88

3.50 6.25 7.12 8.00 8.87 9.75 10.62 11.50 4.46 5.65 6.83 8.02 9.20 10.39 11.57 2.10 2.20 2.28 2.33 2.37 2.41 2.44

4.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 5.57 7.09 8.60 10.12 11.64 13.16 14.68 2.64 2.77 2.87 2.94 2.99 3.04 3.07

4.50 7.75 8.87 10.00 11.12 12.25 13.37 14.50 6.80 8.69 10.58 12.48 14.37 16.26 18.16 3.24 3.41 3.53 3.62 3.68 3.74 3.78

5.00 8.50 9.75 11.00 12.25 13.50 14.75 16.00 8.15 10.46 12.77 15.08 17.39 19.70 22.01 3.90 4.11 4.26 4.37 4.45 4.52 4.57

5.50 9.25 10.62 12.00 13.37 14.75 16.12 17.50 9.63 12.40 15.17 17.94 20.70 23.47 26.24 4.62 4.88 5.06 5.19 5.29 5.37 5.43

6.00 10.00 11.50 13.00 14.50 16.00 17.50 19.00 11.23 14.50 17.77 21.04 24.31 27.58 30.85 5.41 5.71 5.92 6.08 6.20 6.29 6.37

6.50 10.75 12.37 14.00 15.62 17.25 18.87 20.50 12.96 16.77 20.58 24.39 28.21 32.02 35.83 6.26 6.61 6.86 7.04 7.18 7.29 7.38

7.00 11.50 13.25 15.00 16.75 18.50 20.25 22.00 14.82 19.21 23.60 28.00 32.39 36.79 41.18 7.17 7.58 7.87 8.08 8.24 8.36 8.46

7.50 12.25 14.12 16.00 17.87 19.75 21.62 23.50 16.79 21.81 26.83 31.85 36.87 41.89 46.91 8.14 8.62 8.94 9.18 9.36 9.51 9.62

8.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 18.90 24.58 30.27 35.96 41.64 47.33 53.02 9.18 9.72 10.09 10.36 10.57 10.73 10.86

8.50 13.75 15.87 18.00 20.12 22.25 24.37 26.50 21.13 27.52 33.92 40.31 46.71 53.10 59.50 10.28 10.89 11.31 11.61 11.84 12.02 12.17

9.00 14.50 16.75 19.00 21.25 23.50 25.75 28.00 23.48 30.63 37.77 44.92 52.06 59.21 66.35 11.44 12.12 12.59 12.93 13.19 13.39 13.56

9.50 15.25 17.62 20.00 22.37 24.75 27.12 29.50 25.96 33.90 41.83 49.77 57.71 65.64 73.58 12.66 13.42 13.94 14.32 14.61 14.83 15.02

10.00 16.00 18.50 21.00 23.50 26.00 28.50 31.00 28.56 37.33 46.10 54.87 63.64 72.41 81.18 13.95 14.79 15.37 15.79 16.10 16.35 16.55

TABLE B.4 Properties of the Critical Section—Corner Rectangular Column Bending Perpendicular to the Edge
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B.2.6 Circular Interior Column

D/d f1 f2

1.00 6.28 1.74

1.50 7.85 2.62

2.00 9.42 3.70

2.50 11.00 4.98

3.00 12.57 6.45

3.50 14.14 8.12

4.00 15.71 9.98

4.50 17.28 12.05

5.00 18.85 14.30

5.50 20.42 16.76

6.00 21.99 19.41

6.50 23.56 22.26

7.00 25.13 25.30

7.50 26.70 28.54

8.00 28.27 31.98

8.50 29.85 35.61

9.00 31.42 39.44

9.50 32.99 43.46

10.00 34.56 47.68

TABLE B.5 Properties of the Critical Section—Circular Interior Column



Index

621



This page intentionally left blank 



Note: Page numbers followed by t and f indicate tables and figures, respectively.

A
ACI Code, 3, 103
ACI Concrete Field Testing Technician

Certification Program, 31
ACI Laboratory Technician

Certification Program, 31
ACI load factor combinations,

104–107
ACI strength reduction factors,

114f
Active soil pressure, distribution of,

81f
Admixtures, 24–25
Aggregates, 22–23
Air-entraining admixtures, 25
American Concrete Institute (ACI)

standard, 3
American Society for Testing and

Materials (ASTM), 21
for concrete components, 23t

Analysis and design, of concrete
structures

general considerations for
analysis methods, 86–98
loading, 67–86
moment redistribution, 98–99
overview, 67

ASTM standard reinforcing bars,
603t

Autogenous shrinkage, 46
Axial load, 454t

design strengths for, 414–415
and flexure, design methods for

compression members, walls
designed as, 490–501

empirical design method, 501–503
overview, 490
slender walls, alternative design

of, 504–512

B
Backshores, 18
Balanced failure, 127
Balanced strain conditions, 124–125
Basement walls, 10, 11f, 489
Beam action shear. See One-way shear
Beams and one-way slabs

concrete cover for, 192f
deflections

immediate deflections, 274–278
long-term deflections, 278–280
maximum permissible computed

deflections, 280–284
overview, 273–274

flexural reinforcement details for,
230f

flexure, design for
cross-section, sizing, 174–181
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Beams and one-way slabs (contd.)
overview, 174
reinforcement, detailing, 190–230
required reinforcement

determination, 181–190
overview, 173
shear, design for

overview, 231–233
shear strength, 233–251

torsion, design for
alternative design, for torsion,

273
combined torsion, shear, and

bending moment, design for,
264–273

factored torsional moment,
calculation of, 255–256

overview, 251–254
threshold torsion, 254–255
torsional moment strength,

256–261
torsional reinforcement, details of,

261–264
Beam-supported slab, 290, 290f, 315
Bearing stress, 546–547
Bending moments

coefficients, for end span, 315t
design for, 264–273
design strengths for, 414–415
determining, 372
variation of, 309–311, 310f, 311f

Bending stiffness, 348
Biaxial compression, 45
Biaxial compression-tension, 44–45
Biaxial loading, 460–462, 461f
Biaxial stress, 44–45
Biaxial tension, 44
Building Code Requirements for

Structural Concrete and
Commentary, 3

Building codes and standards, 3–4
Building Officials and Code

Administrators International
(BOCA) National Building Code,
106

C
Caisson. See Drilled piers
Cantilever footing, 523
Cantilever retaining wall, 489
Carbon-steel reinforcing bars, 56
Carbonation shrinkage, 46
Cast-in-place concrete building,

15
Cast-in-place concrete floor/roof

system, 146
Cast-in-place concrete walls, 490
Cast-in-place pile, 525
Cast-in-place reinforced concrete

structures, 4
Cementitious materials, 22,

24f, 24t
Circular reinforced concrete sections,

constructing interaction diagrams
for, 425–428, 426f, 428f

Clear span, 313, 314f
Coarse aggregates, 22
Coarse-grained soils, 529, 529f
Cohesive soils, 529, 529f
Column capitals and drop panels, 294f
Column strip, 311, 312f

negative factored bending moments
in

at exterior supports, 315–317
at interior supports, 315

positive factored bending moments
in, 317

Columns, 9–10, 330, 407
analysis methods, 411
biaxial loading, 460–462
in concrete structures, 90–91
design methods, 411–412, 483–485
interaction diagrams, 412

circular sections, 425–428
design aids, 433
design strength, 414–415
rectangular sections, 412–414

preliminary sizing, 408–411
reinforcement, 463

limits, 463–473
splices, 473–480
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shear requirements, 480–481
slenderness effects, 434

compression members braced and
unbraced against sidesway,
435–437

consideration of, 437–442
methods of analysis, 442–446

stiffness of, 331–332, 411
for flat plate/flat slab, 333f, 334f

and walls, factored moments in, 319
Combined footing, 522, 522f, 533
Combined rectangular footings, 533,

536–537
Combined stress, strength under, 44–45
Combined trapezoidal footings,

533–534, 534f, 537–538
Compatibility torsion, 256
Compression and tension

reinforcement
rectangular sections with

nominal flexural strength, 138–146
overview, 137–138

Compression-controlled sections, 415
definition of, 125

Compression failure, 127
Compression members, 407

longitudinal reinforcement limits,
159–161

maximum concentric axial load,
157–158

nominal axial strength, 158–159
overview, 157
walls designed as, 490–501

Compression struts, 252
Compression zone, area of, 427
Compressive strength

compression, failure in, 25–28
concrete deterioration, mechanics of,

25–28
concrete, evaluation and acceptance

of, 31–39
general requirements, 28–29
proportioning concrete mixtures and

average compressive strength,
29–31

Concentric axial load, 157–158
Concrete, 21

components of, 21, 23t
admixtures, 24–25
aggregates, 22–23
cementitious materials, 22, 24f, 24t
water, 23

evaluation and acceptance of, 31
acceptability, of strength, 33
low-strength test results,

investigation of, 33–39
testing, frequency of, 32–33

fiber-reinforced concrete, 52
high-performance concrete, 51–52
high-strength concrete, 50–51
meaning of, 1
mechanical properties

combined stress, strength under,
44–45

compressive strength, 25–39
modulus of elasticity, 39–40
overview, 25
Poisson’s ratio, 45–46
temperature effects, properties

exposure to, 49–50
tensile strength, 40–43
volume changes, 46–49

mixtures and average compressive
strength, 29–31

shear strength provided by, 235–236,
368, 513–514

Concrete core, volume of, 470
Concrete cover

for beams, 192f
for one-way slabs, 192f

Concrete deterioration, mechanics of,
25–28, 40–41

Concrete piles, 525
Concrete placement, 17–18
Concrete protection, 351

for reinforcement, 192
Construction documents, 12–14
Contact lap splices, 227
Contract documents. See Construction

documents
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Conventional column forming system,
16

Conventional metal forming system, 17
Conventional wall forming system, 16
Conventional wood forming system, 17
Corner reinforcement, 351
Corrosion inhibitors, 25
Corrosive environments, 194–195
Crack control, 351

flexural reinforcement for, 192–195,
351

Cracking, 1
Creep, definition of, 48–49
Critical buckling load, 445
Critical load effects, 107–111
Critical section properties, for two-way

shear
critical shear constants, values of

circular interior column, 620
corner rectangular column, 619t
edge rectangular column, 617t,

618t
interior rectangular column,

616t
overview, 615

derivation
circular interior column, 613–615,

614f
corner rectangular column,

611–613, 612f
edge rectangular column, 607–611,

607f, 609f
interior rectangular column,

605–607, 606f
overview, 605

Critical sections
for development lengths, 210
for torsion, 256

Critical shear constants, values of
circular interior column, 620
corner rectangular column, 619t
edge rectangular column

parallel to edge, 617t
perpendicular to edge, 618t

interior rectangular column, 616t
overview, 615

Critical shear section
general requirements, 364–366
openings, effect of, 368
slab edges, effect of, 366–368

Cross-section dimensions,
determination of, 174–181

Crossties, 472, 474f

D
Dead loads, 68–69
Deep beam, 173
Deep foundation systems, 10, 11,

525–528
Deflection control, 296

calculated deflections, 300
one-way construction, 115–117
overview, 114–115
slabs with interior beams, 296

minimum slab thickness, 299
stiffness ratios, 296–299

slabs without interior beams, 296
two-way construction, 117

Deflections
immediate deflections, 274–278
long-term deflections, 278–280
maximum permissible computed

deflections, 280–284
overview, 273–274
of slender walls, 507–512

Deformed bars and deformed wire in
tension, development of,
210–214

Deformed reinforcement, 56–63
Deformed reinforcing bars

bar sizes and grades, 57–60
general, 56–57
mechanical properties, 60–62

Design aids for columns, 433
Design axial load strength, 461
Development length, concept of, 210
Diagonal tension cracks, 232
Direct Design Method, 308, 311

analysis procedure, 312–318, 318f
factored moments

in columns and walls, 319
modification of, 318
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factored shear in slab systems with
beams, 318–319

limitations, 311–312, 312f
Distribution factor, for equivalent

column, 336
Dome width, 294–295
Dowels, 547, 548
Drawings and specifications, in

reinforced concrete
construction documents, 12–14
overview, 11–12
placing drawings, 14

Drilled piers, 527
bell size, determining, 598
with cap, 527f
without cap, 526f
overview, 596–597
reinforcement details for, 598–600
shaft size, determining, 597–598

Drop panels, 292, 292f, 296
column capitals and drop panels,

294f
purpose of, 293
thickness of, 293

Drying shrinkage, 46

E
Earthquake loads, 85–86
Effective length factor, 438–441
Effective slab width, 348
Elastic instability, 435
Elastic second-order analysis, 442–444,

492
moments of inertia, 443t

Elasticity, modulus of, 300
Embedment length, 210
Empirical design method, for walls,

501–503
End-bearing splices, 480
Epoxy-coated reinforcing bars, 56, 57
Equilibrium torsion, 255
Equivalent column, distribution factor

for, 336
Equivalent Frame Method, 327, 327f

analysis procedure, 334, 339–343f
distribution factors, 335–337

equivalent column, 334
factored bending moments, 338
factored moments, critical section

for, 337–338
live load, arrangement of, 337
moment redistribution, 338–347

columns, 330–332
slab-beams, 328–330
torsional members, 332–334

Equivalent Lateral Force Procedure,
85, 86

F
Factored axial loads, 408
Factored bending moments, 338

in beams, 317
in middle strips, 318
negative, 315

at exterior supports, 315–317
at interior supports, 315

positive, 317
Factored loads, 528, 581
Factored moments

in columns and walls, 319
critical section for, 337–338
modification of, 318

Factored shear force in two-way slabs,
362–374

Factored shear in slab systems with
beams, 318–319

Factored shear stress, 375–377
Factored torsional moment, calculation

of
compatibility torsion, 256
critical section, 256
equilibrium torsion, 255

Fiber-reinforced concrete (FRC), 52
Fiber-reinforced polymer (FRP)

reinforcing bars, 52
Fine aggregates, 22
Finite difference method, 580
Finite element method, 580
Finite grid method, 580
Fire resistance rating requirements, 302
First-order frame analysis, 411
Flat-plate floor system, 291–292, 291f
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Flat-plate structures, 347
Flat plate system, 8–9, 89

column stiffness for, 333f
slab-beam stiffness in, 328, 329f

moment distribution constants for,
330t

Flat-slab floor system, 292–294, 292f
Flat slab system, 9, 9f

column stiffness for, 333f
Flexural members, 6

flexural failure, types of, 127
maximum reinforcement, 128
minimum reinforcement, 128–129
nominal flexural strength, 129–157
overview, 126–127

Flexural reinforcement, 182, 291, 522,
540, 541

for crack control
beams, with greater depth, 195
corrosive environments, 194–195
maximum spacing of reinforcing

bars in single layer, 193–194
T-beams and inverted L-beam in

tension, flanges of, 195
determining, 392
development of

deformed bars and deformed wire,
in tension, 210–214

headed and mechanically
anchored deformed bars, in
tension, 219–220

overview, 208–210
positive and negative flexural

reinforcements, 220–225
standard hooks in tension, 214–219

distribution for corner
reinforcement, 351

in rectangular footing, 542f
Flexural reinforcing bars, minimum

spacing of, 196–208
Flexural stiffness, 88
Flexural test, 42–43
Flexure, design for, 348

cross-section, sizing, 174–181
determining required reinforcement,

348–349

moment transfer at slab–column
connections, 349–351

overview, 174
reinforcement, detailing, 190–230,

351–355
concrete protection, 351
corner reinforcement, 351
flexural reinforcement distribution

for crack control, 351
slabs without beams, 352
summary of requirements, 351

required reinforcement
determination, 181–190

slab systems, openings in, 355–362
Flexure and axial load

nominal strength, 162–169
overview, 162

Flexure-shear cracking, 232, 233
Flood loads, 81–82
Floor and roof systems

one-way systems, 6–8
overview, 6
two-way systems, 8–9

Flying form system, 17
Footing dowels, 549
Footings

base area, sizing
allowable bearing capacity, 529
required footing area, 532–538
soil pressure distribution,

529–532
design for flexure

critical section, 538–540
reinforcement, 540–543

design for shear
one-way shear, 543–544
overview, 543
two-way shear, 544–546

design procedure for, 551–577, 578f
force transfer, at supported members

horizontal transfer, 550–551
overview, 546
vertical transfer, 546–550

loads and reactions, 528–529
overview, 528
thickness, sizing, 538
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Footings on piles, 587
Formwork installation

horizontal framing systems, 17
overview, 15–16
vertical forming systems, 16

Formwork removal, 18
Foundation systems, 10–11
Foundation walls. See Basement walls
Foundations, 521

deep foundations, 525–528
drilled piers

overview, 596–597
reinforcement details for,

598–600
shaft and bell, determining,

597–598
footings

base area, sizing, 529–538
design for flexure, 538–543
design for shear, 543–546
design procedure for, 551–577,

578f
force transfer at base of supported

members, 546–551
loads and reactions, 528–529
overview, 528
thickness, sizing, 538

mat foundations
analysis methods, 578–580
design procedure, 580–587
overview, 578

overview, 521
pile caps

design for flexure, 590
design for shear, 587–590
design procedure for,

590–596
overview, 587

shallow foundations, 521–524
Frame analysis, columns, 411

G
Galvanized (zinc-coated) bars, 56
Galvanized reinforcing bars, 56
Ganged systems, 16
Grade beam, 527–528, 528f

Gravity loads, 309, 407
bending moments, variation of,

309–311, 310f, 311f
Direct Design Method, 308, 311

analysis procedure, 312–318
columns and walls, factored

moments in, 319
factored moments, modification of,

318
factored shear in slab systems with

beams, 318–319
limitations, 311–312

Equivalent Frame Method, 327
analysis procedure, 334–347
columns, 330–332
slab-beams, 328–330
torsional members, 332–334

H
High-performance concrete,

51–52
High-strength concrete, 50–51, 52

components, 50
mechanical properties, 50–51
temperature effects, 51
volume changes, 51

Horizontal earthquake forces, 85
Horizontal framing systems

flying form system, 17
joist-slab and dome forming system,

17
metal system, 17
wood system, 17

Horizontal reinforcement, 519
Hydrodynamic loads, 82
Hydrostatic loads, 81

I
Immediate deflections, 274–278
Interaction diagrams, 412, 413f

circular sections, 425–428, 426f,
428f

design aids, 433
design strength, 414–415, 414f
rectangular sections

nominal strength, 412–414, 414f
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International Building Code (IBC), 3
Inverted L-beam and T-beams

with tension reinforcement
compression, flange in, 148–157
flange width, 147
overview, 146
tension, flange in, 147–148

Inverted L-section and T-sections, with
tension reinforcement, 187

compression, flange in, 188–190, 191f
tension, flange in, 188

Isolated spread footing, 521, 533, 535

J
Jackson and Moreland Alignment

Chart, 441
Joist-slab and dome forming system,

17
Jump forms, 16

L
Lap splices, 225–227, 474–479, 475f,

476f
Lapped U-stirrups, 262
Lateral loads, 347–348
Lateral reinforcement, 471–473

spiral reinforcement, 471
tie reinforcement, 471–473

Leeward snow drift, 80, 80f
Lightweight concrete, modification

factor for, 210
Limit state design, 103. See also

Strength design method
Live loads

arrangement of, 337
in concrete structures, 91–92

general, 69–70
reduction, 70

for roofs, 73–78
general method of, 70–72

Load-bearing wall, 10, 489
Load factor, magnitude of

factors influencing, 106
Loading

dead loads, 68–69
earthquake loads, 85–86

flood loads, 81–82
live loads, 69–78
overview, 67–68
rain loads, 78–79
self-straining loads, 82
snow loads, 79–81
soil lateral loads and hydrostatic

pressure, 81
wind loads, 82–85

Long-term deflections, 278–280
Longitudinal reinforcement, 137, 251,

446, 450f, 463–471
limits, 159–161
minimum and maximum areas of,

463–464
minimum number of longitudinal

bars, 464
minimum spiral reinforcement,

469–471
spacing of longitudinal bars, 465–469
for torsion, 260, 261f

Longitudinal torsional reinforcement,
263

requirements for, 263–264
Low-carbon chromium bars, 57
Lumped-mass idealization, of

structure, 85

M
Main wind force–resisting system

(MWFRS), 83
MasterSpec, 14
Mat foundations, 11, 521, 523, 524, 524f

analysis methods
nonrigid mats, 580
rigid mats, 578–580

design procedure, 580–587
overview, 578

Material failure, 434
Materials

concrete, 21
components, 21–25
fiber-reinforced concrete, 52
high-performance concrete, 51–52
high-strength concrete, 50–51
mechanical properties, 25–50
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overview, 21
reinforcement

deformed reinforcement, 56–63
overview, 52–55
welding, of reinforcing bars,

55–56
Maximum permissible deflections,

280–284
Maximum reinforcement ratio, 128
Mechanical splices, 227
Mechanical/welded splices, 479
Methods of analysis, in concrete

structures
approximate method, of analysis,

92–98
assumptions

columns, 90–91
live load, arrangement of, 91–92
span length, 89–90
stiffness, 88–89

overview, 86–88
Middle strips, 311, 312f
Mild reinforcement, 3
Minimum reinforcement requirements,

of flexural members, 128–129
Minimum slab thickness, for two-way

slabs, 296, 297f, 299, 299f, 302
Minimum thickness requirements, of

two-way slabs, 295
deflections, control of, 296

calculated deflections, 300
slabs with interior beams,

296–299
slabs without interior beams, 296

fire resistance requirements, 301–302
shear strength requirements,

300–301
Modulus of elasticity, 39–40

definition of, 300
Moment distribution constants

for columns
in flat plates, 333t
in flat slabs, 334t

for slab-beam
in flat plate, 328, 330t
in flat slab, 332t

Moment distribution factors, 337f
Moment magnification procedure,

444, 492
nonsway frames, 444–446
sway frames, 451–454

Moment redistribution, 98–99, 338
Moment transfer at slab–column

connections, 349–351, 350f
Multiple layers, of tension

reinforcement
rectangular sections with, 134–137,

182–183
Multiple legged stirrups, 237, 239f

N
Negative factored bending moments,

in column strip
at exterior supports, 315–317
at interior supports, 315

Negative flexural reinforcement,
220–225

Negative wind pressure, 82
Nominal axial strength, 158–159, 427
Nominal dead loads, 68–69
Nominal flexural strength, 427

compression, flange in, 148–157
overview, 129
rectangular sections

multiple layers, of tension
reinforcement, 134–137

single layer, of tension
reinforcement, 129–134

tension and compression
reinforcement, 137–146

T-beams and inverted L-beams,
with tension reinforcement,
146–157

tension, flange in, 147–148
Nominal loads, 67
Nominal shear strength, 369, 370, 372
Nominal strength, 412

coefficient of resistance, 177
of flexure and axial load, 162–169

Noncontact lap splices, 227
Nonlinear second-order analysis, 442,

492
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Non–load-bearing wall, 10, 489
Nonprestressed concrete member, 3
Nonprestressed reinforcement, 3
Nonrigid mats, 580
Nonslender column with tie

reinforcement, 409f
Nonsway frames, 455t

effective length factors for, 439f
moment magnification procedure

for, 444–446
slenderness effects for, 436, 441

Normal-weight concrete, 22

O
One-way floor and roof systems

deflection control in, 115–117
One-way joist systems, 17
One-way reinforced concrete

floor/roof system, 6–8
One-way shear, 300, 363–364,

363f
at corner piles, 590

One-way slab system, 6, 6f
concrete cover for, 192f
flexural reinforcement details for,

230f

P
P-delta effects, 434f, 435
Partial loads, 80
Pedestals, 407
Phi-factors (φ-factors). See Strength

reduction factors, of reinforced
concrete member

Pier. See Drilled piers
Pile caps, 525, 529

design procedure for, 590–596
flexure, design for, 590
for individual columns, 526f
overview, 587
shear, design for, 587–590

Pile foundations, 525, 525f
Placing drawings, 14
Poisson’s ratio, 45–46
Positive factored bending moments, in

column strip, 317

Positive flexural reinforcement,
220–225

Positive wind pressure, 82
Precast concrete walls, 490
Precast piles, 525
Preliminary column size, 408–411
Preliminary slab thickness, 301, 301f
Preliminary wall thickness

determination, 519
Prestressing steel, 52
Punching shear. See Two-way shear

R
Radius of gyration, 438
Rain loads, 78–79
Reciprocal load method, 461
Recommended flexural reinforcement

details, 228
for beams, 230f
for one-way slabs, 230f

Rectangular columns
corner, 377, 380f
edge, 377, 378f, 379f
interior, 377, 377f

Rectangular footing, 522f, 523
Rectangular reinforced concrete beam,

178f
Rectangular sections

with multiple layers of tension
reinforcement, 134–137, 182–183

with single layer of tension
reinforcement, 129–134, 182,
183f–184f

with tension and compression
reinforcement, 137–146, 184–187

Reinforced concrete
beams, 251
building codes and standards,

3–4
building structures, reinforced

concrete members in
columns, 9–10
floor and roof systems, 6–9
foundations, 10–11
overview, 4–6
walls, 10
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definition of, 1
drawings and specifications

construction documents, 12–14
overview, 11–12
placing drawings, 14

mechanics of, 1–3
reinforced concrete buildings, 4

concrete placement, 17–18
formwork installation, 15–17
formwork removal, 18
overview, 14–15
reinforcement installation, 17

strength and serviceability, 4
Reinforced concrete members, in

building structures
columns, 9–10
floor and roof systems

one-way systems, 6–8
overview, 6
two-way systems, 8–9

foundations, 10–11
overview, 4–6
walls, 10

Reinforced concrete stairs, 8
Reinforced concrete tension members,

161
Reinforced concrete two-way slabs,

analysis methods for, 308
gravity loads, 309

bending moments, variation of,
309–311

Direct Design Method, 308, 311
Equivalent Frame Method,

327–347
lateral loads, 347–348

Reinforcement, 392–393, 353f, 463
coating factor, 211
concrete protection for, 192
deformed reinforcement, 56–63
detailing, 351–355

concrete protection, 192, 351
corner reinforcement, 351
flexural reinforcement, 192–195,

208–225, 351
minimum spacing of flexural

reinforcing bars, 196–208

overview, 190–192
recommended flexural

reinforcement details, 228,
230

slabs without beams, 352
splices of reinforcement, 225–228
structural integrity reinforcement,

228, 229f
summary of requirements, 351

limits, 463
lateral reinforcement, 471–473
longitudinal reinforcement,

463–471
overview, 52–55
splices, 473

end-bearing splices, 480
lap splices, 225–227, 474–479
mechanical splices, 227, 479
welded splices, 227–228, 479

welding, of reinforcing bars, 55–56
Reinforcement installation, 17
Reinforcement location factor, 210
Reinforcement size factor, 211
Reinforcing bars, 52, 351

deformed reinforcing bars
bar sizes and grades, 57–60
general, 56–57
mechanical properties, 60–62

in single layer, 193–194
spacing limits for, 196–208
temperature effects of, 62
welding of, 55–56

Required flexural reinforcement, 181
tension reinforcement

and compression reinforcement,
184–187

multiple layers of, 182–184
single layer of, 182
T-sections and inverted L-section

with, 187–190
Required shear strength of flexural

members, 233–235
Required strength, of reinforced

concrete member
ACI load combinations, 104–107
critical load effects, 107–111
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Reshores, 18
Resistance factors. See Strength

reduction factors, of reinforced
concrete member

Retaining walls, 489
Rigid mats, 578–580
Roofs, live load reduction for,

73–78

S
Sand-lightweight concrete, 22–23
Second-order analysis, 411

elastic, 442–444
nonlinear, 442

Seismic design category (SDC), 5
Seismic hook, 472
Seismic risk, 5
Self-raising forms, 16
Self-straining loads, 82
Serviceability limit, 103
Shallow foundation systems, 10–11,

521–524
Shear, design for, 264–273, 362

concrete, shear strength provision by,
513–514

one-way shear, 363–364, 363f
overview, 231–233, 513
shear reinforcement, shear strength

provision by, 514–518
shear strength, 233–251, 513
two-way shear, 364–391

critical shear section, 364–368
shear strength, 368–374
transfer of moment at slab–column

connections, 374–378
Shear caps, 293, 293f

thickness of, 293
Shear cracks, 232
Shear eccentricity, unbalanced moment

transferred by, 374–375
Shearheads, 372
Shear reinforcement, 363

shear strength provided by, 233–251,
369–374, 514–518

bars, wires, and stirrups, 369–372

concrete, 368
design of, 240–251
development of, 239–240
headed shear stud reinforcement,

372–374, 372f, 373f, 375f
shearheads, 372
types, 236–239

symmetric distribution, 371
Shear requirements, 480–481
Shear strength, 233–251

by concrete, 235–236
design of, 513–518
overview, 233
required shear strength, 233–235
by shear reinforcement, 236–251

Shear stress, factored, 375–377
Shear stud reinforcement, 292
Shear-friction reinforcement, 551
Shear walls, 10, 489
Short column, 157, 434
Shrinkage, definition of, 46–48
Single layer

reinforcing bars in, spacing of,
193–194

of tension reinforcement, rectangular
sections with, 129–134, 182,
183f–184f

Single-leg stirrup, 246f
Slab-beam distribution factors, 335
Slab-beam stiffness, 328

in flat plate, 328, 329f
moment distribution constants for,

330t
in flat slab, 331f

moment distribution constants for,
332t

Slab–column connections, transfer of
moment at, 349–351, 374

factored shear stress, 375–377
strength design, requirements for,

377–378
unbalanced moment transferred

by eccentricity of shear,
374–375

Slab edges, effect of, 366–368
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Slabs
without beams, 352, 354f
effect of openings, 368
with interior beams, 296

minimum slab thickness, 299
stiffness ratios, 296–299

without interior beams, 296
Slab stiffness, 348
Slab systems, openings in, 355–362
Slab thickness

determining, 392
of two-way systems, 296, 297f, 299,

302
Slab width, effective, 348
Slender column, 434
Slender walls, alternative design of,

504–512
design requirements

deflection, 507–512
flexure, 505–507

limitations, 504–505
Slenderness effects, 434

compression members braced and
unbraced against sidesway,
435–437

consideration of, 437
effective length factor, 438–441
nonsway frames, 441
radius of gyration, 438
sway frames, 441–442
unsupported length, 437

methods of analysis, 442–446
elastic second-order analysis,

442–444
moment magnification procedure,

444
nonlinear second-order analysis,

442
Slenderness ratio, 435
Slipforms, 16
Snow drifts, 80
Snow loads, 79–81
Soil lateral loads and hydrostatic

pressure, 81
Space truss analogy, 252f

Spacing/cover dimension, definition
of, 211

Spacing limits, for reinforcing bars,
196–208

Span length, in concrete structures,
89–90

Spiral reinforcement, 470f, 472t
lateral reinforcement, 471
volumetric ratio, 469
yield strength of, 470

Splices, of reinforcement, 225, 473
end-bearing splices, 480
lap splices, 225–227, 474–479
mechanical splices, 227, 479
welded splices, 227–228, 479

Splitting tension test, 41–42
Spread footing, 10–11, 521, 522f,

534–535, 535f, 538
Stability failure, 435
Stability index, 436, 436f
Stainless-steel reinforcing bars, 56
Standard Building Code, 106
Standard hooks in tension,

development of, 214–219
Standard one-way joist system,

7, 7f
State and municipal codes, 302
Static equilibrium, of strength design

method, 119
Steel fiber–reinforced concrete, 52
Steel reinforcement information

for ASTM standard reinforcing bars,
603t

for WRI standard wire
reinforcement, 604t

Steel reinforcement, material
requirements for, 53t–55t

Stiffness
in concrete structures, 88–89
of column, 331, 411
of slab-beam, 328

Stiffness ratios, 296–299
definition of, 299

Stirrup shear reinforcement, 369–372,
371f
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Strain compatibility, of strength design
method, 119

Strap beam, 523
Strap footing, 523, 523f
Strength and serviceability, general

requirements for
deflections, control of

one-way construction, 115–117
overview, 114–115
two-way construction, 117

design strength
overview, 111
strength reduction factors,

111–114, 115f
overview, 103–104
required strength

ACI load combinations,
104–107

critical load effects, 107–111
Strength design method, 4, 103

compatibility of strains, 119
compression members

longitudinal reinforcement limits,
159–161

maximum concentric axial load,
157–158

nominal axial strength, 158–159
overview, 157

design assumptions, 120–123
flexure and axial load, members

subjected to
nominal strength, 162–169
overview, 162

flexural members
flexural failure, types of, 127
maximum reinforcement, 128
minimum reinforcement,

128–129
nominal flexural strength,

129–157
overview, 126–127

general principles and requirements
balanced strain conditions,

124–125
compression-controlled sections,

125

overview, 123–124
tension-controlled sections,

125–126
overview, 119
requirement for, 104, 377–378
static equilibrium, 119
tension members, 161

Strength reduction factors, of
reinforced concrete member,
111–114, 115f

Structural concrete, meaning of, 3
Structural integrity reinforcement, 228,

229f
Structural walls, 489
Strut-and-tie models, 173
Suction. See Negative wind pressure
Superimposed dead loads, 69
Superplasticizers, 25
Sway frames, 455t

effective length factors for, 440f
moment magnification procedure

for, 451–454
slenderness effects for, 436,

441–442

T
T-beams, and inverted L-beam

with tension reinforcement
compression, flange in, 148–157
flange width, 147
overview, 146
tension, flange in, 147–148,

195
T-sections and inverted L-section,

with tension reinforcement,
187

compression, flange in, 188–190,
191f

tension, flange in, 188
Temperature effects

in concrete, 49–50
in high-strength concrete, 51
of reinforcing bars, 62

Tensile strength
and compressive strengths,

relationship between, 43



637I n d e x

concrete deterioration, mechanics of,
40–41

tension, failure in, 40–41
tension tests, 41–43

Tensile stress–strain curves, 60–61
Tension, failure in, 40–41, 127
Tension, flange in, 188
Tension members. See Reinforced

concrete tension members
Tension reinforcement

and compression reinforcement,
137–146, 184–187

rectangular sections with,
137–146

multiple layers of, 134–137, 182–183
single layer of, 129–134, 182,

183f–184f
T-beams and inverted L- beams with,

146–157, 187–190
Tension-controlled sections, 125–126,

415
Tension tests, 41–43
Tension ties, 252
Thermal expansion

coefficient of reinforcing steel, 61
of concrete, 49

Threshold torsion, 254–255
Tie reinforcement, 471–473, 473f
Tilt-up concrete walls, 490
Torsion, design for, 264–273

combined torsion, shear, and
bending moment, design for,
264–273

design procedures, 273
factored torsional moment,

calculation of, 255–256
overview, 251–254
threshold torsion, 254–255
torsional moment strength, 256–261
torsional reinforcement, details of,

261–264
Torsional members, 332–334, 335f, 336f

stiffness of, 334
Torsional moment strength, 256–261

cross-section, adequacy of, 256–259
and torsional reinforcement, 259–261

Torsional reinforcement
details of, 261–264
and torsional strength, 259–261

Torsional stiffnesses, 88
Total factored load, 301
Total factored static moment

determining, 313
negative and positive bending

moments distribution,
314–315

Transfer beams, 407
Transverse reinforcement, 227, 251

index, 211
Transverse torsional reinforcement,

260, 261f, 263
Trapezoidal footing, 522f, 523
Triaxial stress, 45
Two-legged stirrups, 237, 238f
Two-way beam supported slab system,

8, 8f
Two-way floor and roof systems

deflection control in, 117
Two-way joist system, 9, 9f, 17

construction, 294–295, 395f
Two-way reinforced concrete

floor/roof system, 8–9
Two-way slab systems, 117, 289

analysis methods, 308
gravity loads, 309–347
lateral loads, 347–348

beam-supported slab, 290, 290f
deflection, on simple edge supports,

309f
design procedure, 391–404
flat-plate floor system, 291–292,

291f
flat-slab floor system, 292–294,

292f
flexure, design for, 348

determining required
reinforcement, 348–349

reinforcement, detailing, 351–355
slab–column connections, transfer

of moment at, 349–351
slab systems, openings in,

355–362
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Two-way slab systems (contd.)
minimum thickness requirements,

295
control of deflections, 296–300
fire resistance requirements,

301–302
shear strength requirements,

300–301
requirements, 352t
shear, design for, 362

one-way shear, 363–364, 363f
two-way shear, 364–391

two-way joist construction, 294–295
Two-way/punching shear, 291,

364–391
at corner piles, 590
critical shear section, 364f, 365f, 366f,

367f
effect of openings, 368
general requirements, 364–366
slab edges, effect of, 366–368

at interior pile, 589
with overlapping critical

perimeters, 589–590
requirements, 300
shear strength

provided by concrete, 368
provided by shear reinforcement,

369–374
slab–column connections, transfer of

moment at, 374
factored shear stress, 375–377
strength design, requirements for,

377–378
unbalanced moment transferred

by eccentricity of shear,
374–375

U
Ultimate limit, 103
Ultimate strength design method,

103
Unbalanced loads, 80
Unfactored loads, 528
Unified Design Method, 126
Uniform Building Code, 106, 504

Unreinforced concrete beam, 1, 2
U-stirrups, 237, 239f
Unsupported length, of compression

member, 437, 438f, 439f

V
Variable loads, 67, 106
Vertical forming systems

conventional column/wall system,
16

ganged systems, 16
jump forms, 16
self-raising forms, 16
slipforms, 16

Vertical reinforcements, 519
Volume changes

in concrete members, 46–49
in high-strength concrete, 51

Volumetric spiral reinforcement ratio,
469

W
Waffle slab system. See Two-way joist

system
Wall footing, 521–522, 522f, 536
Walls, 10

axial loads and flexure, design
methods for

compression members, walls
designed as, 490–501

empirical design method, 501–503
overview, 490
slender walls, alternative design

of, 504–512
definition of, 489
design procedure, 519
minimum reinforcement

requirements for, 491t
overview, 489–490
shear, design for

design shear strength, 513
overview, 513
shear strength, for concrete,

513–514
shear strength provided by shear

reinforcement, 514–518
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Water, for making concrete, 23
Wave loads, 82
Web-shear cracks, 232
Welded splices, 227–228, 479
Welded wire reinforcement (WWR),

236, 604t
general, 62
mechanical properties, 63
style designations, 62–63

Welding, of reinforcing bars, 55–56
Wide-module joist system, 7, 7f

reinforcement details for, 247f
Wind loads, 82–85
Windward snow drift, 80, 80f
Wire reinforcement institute (WRI)

standard wire reinforcement, 604t
Working stress design method, 4, 10,

103
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