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Preface

The theory of statics of structures has developed from intuition via grad-
ual refinement to its current state, where the basic principles are put into a
systematic framework that enables precise analysis. Although the basic laws
governing statics of structures have been known for several centuries, the
methods of analysis have developed considerably over the last decades. At
the current state of this development an introductory book on statics should
aim at the dual goal of providing sufficient background for developing an
intuitive understanding of structures, and at the same time lay a solid foun-
dation for modern analysis, typically made by computational techniques. In
this vein the present book makes extensive use of simple but realistic exam-
ples to develop familiarity and understanding of how structures carry and
distribute the loads through the structural members to the supports. This is
then supplemented by a few simple computer programs that illustrate, how
the theories for trusses and frames are implemented, and open up to a more
general approach to computational mechanics as a natural extension of the
present book.

The book is organized as follows. The first five chapters build up a basic
understanding of the statics of structures. It starts with force systems and
reactions in Chapter 1, then proceeding to the intuitively very accessible
theory of trusses, first analyzed by hand calculation procedures and then
reformulated as a small systematic finite element program MiniTruss in
Chapter 2. Chapter 3 develops the statics of beams and introduces the con-
cept of internal forces. The internal forces are then related to deformation
mechanisms of curvature, shear and extension in Chapter 4, and the princi-
ple of virtual work is developed in a concise form and used for calculation
of specific displacements. The introductory part is rounded off in Chapter 5
on the analysis of columns, describing instability as a bifurcation problem,
solved by eigenvalue analysis, and design principles based on the existence of
a characteristic imperfection. This part of the book covers material suitable
for an introductory one-semester course on basic statics of structures.

The remaining six chapters treat various extensions, that are typically in-
cluded in one form or another in a second semester course. The Chapters 6
and 7 deal with analysis of statically indeterminate frame structures. The
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first of these chapters gives a systematic development of the force method
and describes how simple structures can conveniently be analyzed by hand.
The following chapter then develops the deformation method in which the
displacements of individual nodes play the key role. This then serves to in-
troduce the idea of the finite element formulation of frame structures. This
development is supported by the small program MiniFrame for internal
forces and displacements, and an extension MiniFrameS for linearized sta-
bility analysis. The Chapters 8 and 9 introduce three-dimensional states of
stress and strain, and present the theory of linear elasticity and some common
failure conditions. This material provides the background for the Chapters 10
and 11, in which the simple two-dimensional beam theory used in the previ-
ous chapters is extended to flexure and torsion of non-symmetric beams, and
the associated shear stress distributions.

The three small computer programs are coded in Matlab. The syntax and
input structure are described in connection with the corresponding theory in
the text, and the code is available from the authors via e-mail.

The authors are grateful for the permission to include photographs provided
by the following companies: Chapter 7, Rafsanjan Bridge, Waagner-Biro AG,
Vienna, Austria; Chapter 8, Test of wind turbine blade, LM Wind Power,
Kolding, Denmark; Chapter 10, Wind turbine, Siemens Wind Power, Brande,
Denmark.

Kgs. Lyngby Steen Krenk

September 2012 Jan Høgsberg
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Equilibrium and Reactions 1

Statics of structures deals with structures that are exposed to loads and
develop reactions and internal forces that leave the structure stationary. The
present book deals with buildings and civil engineering structures that are
supported to prevent motion, as opposed to space structures, trains etc. where
motion is an integral part of the behavior. A fundamental tool of statics is the
concept of equilibrium. In order to remain stationary the total effect of the
loads and the reactions provided by the supports must be in equilibrium. This
applies to the full structure and also to its different parts. In this chapter the
equilibrium conditions for the full structure are used to identify requirements
for the supports and to determine the reactions provided by the supports.
The concept of equilibrium is developed further in the following chapters to
deal with hypothetical parts of the structure, and thereby obtain knowledge
of the distribution of the forces inside the structure.

First the notion of a force is introduced in Section 1.1. A force is specified by
its magnitude and its line of action, and is closely related to the mathemat-
ical concept of a vector. If two forces have intersecting lines of action they
combine as vectors, and act at the point of intersection. However, this con-
cept of intersecting forces is too limited, and it is necessary to introduce the
notion of a moment, as described in Section 1.2. When considering forces and
moments together, the concept of equilibrium takes a precise mathematical
form, discussed in Section 1.3. The direct form of the equilibrium conditions
constitutes two vector equations for the total force and the total moment,
respectively. It is explained in detail, how these equations can be combined
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2 Equilibrium and Reactions

into a single scalar equation of virtual work – that is the work that the forces
and moments would perform, if subjected to an arbitrary small virtual dis-
placement. The virtual work is here introduced in its basic form, but appears
in a more advanced form later in connection with deformation of beams and
frames. The concept of virtual work plays a central role in the modern formu-
lation of theories for structures and solid bodies, e.g. in connection with the
formulation of numerical methods. The two last sections of the chapter deal
with the support conditions and the reactions developed in the supports.

1.1 Forces

The notion of a force is fundamental to the theory of structures. A force
is associated with a magnitude, a direction, and a point of action. In the
analysis of forces it is convenient first to focus on the direction and magnitude,
combined in the boldface vector symbol P. The magnitude is represented by
the length of the vector and is denoted by P = |P|. In practice a force often
has a specific point of action, but it is often convenient to consider the force
as acting in a line of action, defined as the line obtained by extending the
force vector in space. This notion permits the force to be translated along
its line of action, and leads to a fairly intuitive formulation of the theory of
equilibrium of a set of one or more forces.

1.1.1 The parallelogram rule

It is an important property of a force P that it can be resolved into com-
ponents according to the parallelogram rule, known from elementary vec-
tor analysis, see e.g. Strang (2001). The parallelogram rule is illustrated in
Fig. 1.1 showing the force P and two directions intersecting the line of action
of P. For convenience and clarity the point of intersection is shown as the
point of action of the force P in the figure. If this is not the case for the initial
location of P, it is translated to the point of intersection along the line of
action.

Fig. 1.1: Decomposition of force P in given direction.

The parallelogram rule for resolving a force P into components P1 and P2

with given directions consists in forming a parallelogram with P along a
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diagonal and the components P1 and P2 along adjoining sides as shown in
Fig. 1.1b.

The parallelogram rule can also be used to form the resulting force from two
given forces P1 and P2, when these forces have intersecting lines of action.
The construction of the parallelogram follows from sliding the forces P1 and
P2 to the point of intersection. They then form the sides of a parallelogram
with the resultant P along the diagonal as shown in Fig. 1.1b.

Example 1.1. Force on a string. Figure 1.2 shows a simple example of the force paral-
lelogram rule. A vertical force is acting on a string, which is stretched, forming two linear

parts. These parts carry constant forces T1 and T2, in the direction of the respective
strings. �

Fig. 1.2: Cable carries P via the forces T1 and T2.

In a static analysis of simple structures the forces may be referred directly to
directions in the structure, e.g. as along or transverse to a beam. However, in
larger analyzes, and when using a computer for the numerical computations,
it is often convenient to represent forces by their components in a Cartesian
coordinate system. In this case two forces P1 and P2 are represented by their
xyz-components as

P1 =

⎡
⎢⎣
P 1
x

P 1
y

P 1
z

⎤
⎥⎦ , P2 =

⎡
⎢⎣
P 2
x

P 2
y

P 2
z

⎤
⎥⎦ , (1.1)

and it then follows from the parallelogram composition rule that the resultant
force P has the components

⎡
⎢⎣
Px

Py

Pz

⎤
⎥⎦ =

⎡
⎢⎣
P 1
x

P 1
y

P 1
z

⎤
⎥⎦ +

⎡
⎢⎣
P 2
x

P 2
y

P 2
z

⎤
⎥⎦ . (1.2)

It should be noted that this standard addition rule of vector components
must be accompanied by an account of the resultant’s line of action.



4 Equilibrium and Reactions

1.1.2 Parallel forces

In the case of two parallel forces their lines of action do not intersect, and
thus the parallelogram rule needs an extension. The problem is illustrated in
Fig. 1.3 showing two parallel forces with distance a and magnitude P1 and
P2, respectively. In principle the magnitude and location of the resulting force
P can be obtained as a limit of the two forces, if inclined slightly with their
original common direction. However, it is more direct to obtain the result by
introducing two auxiliary forces as demonstrated here.

Fig. 1.3: Parallel forces with distance a.

In order to increase the clarity of the geometric construction the two forces
P1 and P2 are first translated along their respective lines of action, until
their points of application A1 and A2 lie on a line orthogonal to the lines of
action as shown in Fig. 1.4a. Two forces of equal magnitude Q but opposite
direction along the connecting line are now added as shown in the figure. As
these forces are opposite with the same line of action they have the sum zero,
and therefore do not change the resulting force of the system. There is now
a force P1 +Q acting at A1 and a force P2 −Q acting at A2. These forces
are not parallel, and they can therefore be combined by the parallelogram
rule, whereby the resulting force P = P1 + P2 passes through the point of
intersection C of the lines of action.

Fig. 1.4: Composition of parallel forces.

The line of action of the resulting force P is characterized by the distance a1
from P1 and the distance a2 from P2. The figure contains similar triangles
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formed by the force components and geometric distances. Thus, the force
triangle with sides P1 and Q is similar to the geometric triangle with sides h
and a1. An equivalent relation holds for P2 and a2. From this the following
two relations are obtained:

P1

Q
=

h

a1
,

P2

Q
=

h

a2
. (1.3)

Elimination of the product hQ between these equations then gives the relation

a1P1 = a2P2 . (1.4)

This is the lever rule, used since Antiquity for scales where two weights are
placed on a lever at different distance from a point of fixture.

Fig. 1.5: Composition or resolution of parallel forces.

The magnitude of the resulting force is illustrated in Fig. 1.4b, showing the
resolution of the forces P2 and −Q on top of the resolution of the forces P1

and Q. The double occurrence of ±Q implies that the resulting force retains
the original direction and has the magnitude

P = P1 + P2 . (1.5)

Thus, the vector components can also be found by direct summation as al-
ready indicated by the component summation formula (1.2).

1.2 Moments

The geometric construction of the line of action of the sum of two parallel
forces demonstrates that the two forces are translated in such a way that
the product ajPj is equal for the two forces. This is a special instance of a
moment. Moments play a central role in the mechanics of structures.

The basic form of a moment generated by a force is illustrated in Fig. 1.6.
Let C be a point and P a force in space. The moment of the force P about
the point C is defined by its magnitude and its direction, and can therefore
be represented by a vector. The magnitude is hP , where h is the distance of
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Fig. 1.6: Moment of force P about the point C.

C from the line of action of the force. The direction is orthogonal to the plane
defined by the line of action and the point C. The concept of a moment is
considered in the following subsections: first in the plane containing the line
of action and the point C, then by extending the concept to three-dimensional
vector form, and finally the relation between force couples and moments.

1.2.1 Moment from forces in a plane

Many problems within structural analysis can be resolved into one or more
planar problems. It is therefore convenient first to consider the moment of a
force P about a point C as a planar problem. The problem is illustrated in
Fig. 1.7a, showing the force P located in the xy-plane of a Cartesian coor-
dinate system with origin C. The components of the force in this coordinate
system are [Px, Py]. The moment of the force P about the point C can be
calculated as the sum of the moment of each of the force components Px

and Py.

Fig. 1.7: Moment calculation via components.

The procedure is illustrated in Fig. 1.7, where the point A with components
[ax, ay] indicates the point of application of the force. The moment MC is
considered positive when acting in a counter clockwise direction about C.
Thus, the force component Px gives the moment −ayPx, while the force
component Py gives the moment axPy. As a result the moment of the force
P about the point C is

M = ax Py − ay Px . (1.6)
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This procedure, where the moment is calculated from suitable components
instead of using lengths and angles of the corresponding vectors, is often the
most convenient, as illustrated extensively throughout the book.

The moment was here defined in terms of the components of a vector [ax, ay]
from the origin C to the point A of application of the force, here taken as the
origin of the force vector. It is easily demonstrated that the moment remains
unaffected if the point A is replaced by any point A′ on the line of action of
the force. Any such point may be represented in terms of the original point
A by a parameter representation of the form

[
a′x
a′y

]
=

[
ax
ay

]
+ α

[
Px

Py

]
, (1.7)

where α is a scalar parameter defining the location of the point A′. When
substituting these vector components into the moment definition (1.6) it is
seen that the result is independent of the parameter α. Thus, any point on
the line of action leads to the same moment.

Example 1.2. Moment of a force. This example illustrates two alternative methods of

computing the moment of a force in a plane: a) straightforward calculation using given
components, and b) translating the force along its line of action before computing the

moment.

Fig. 1.8: Moment by horizontal and vertical force components.

Figure 1.8 shows a force P acting at the point A located in the xy-plane with components

[Px, Py ] = [ 4, 3 ], [ ax, ay ] = [ 6, 3 ],

with dimension of force and length, respectively. Straightforward application of (1.6) gives

the moment about the origin C as

M = ax Py − ay Px = 6 · 3− 3 · 4 = 6.

It is observed that if the force was translated along its line of action to the intersection

with one of the coordinate axes, then the resulting expression would contain only one
product. In the present case the force can be translated to the point B on the x-axis with

coordinates [ bx, by ] = [ 2, 0 ]. The moment would then be obtained as

M = bx Py = 2 · 3 = 6,
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where it has been used that by = 0. In the analysis of e.g. truss structures it is quite

common to simplify the calculation of moments by sliding the forces along their line of
action, as illustrated in Chapter 2. �

In the form presented here the moment M appears as a scalar, i.e. a quantity
associated with a numerical value. However, in a more general context the
moment M calculated here is the moment about an axis normal to the plane
through C. Thus, the moment is actually the z-component Mz of a moment
vector, acting as a moment about the z-axis of the xyz-coordinate system.
While this may be of less importance in planar problems, it is important to
recognize the present problem as a special case applicable to forces located
in the xy-plane. The next subsection gives the extension to the fully three-
dimensional case.

1.2.2 Moment from forces in space

The three-dimensional problem of the moment of a force P about a point C is
illustrated in Fig. 1.9. The force vector P and the point C define a plane, and
the moment is defined by a vector M through C orthogonal to that plane,
with magnitude hP . This coincides with the definition of the vector product
between a vector a from the point C to any point on the line of action of the
force and the force vector P,

M = a×P . (1.8)

This relation defines the moment M about C as a vector.

Fig. 1.9: Moment vector M from force P.

The components of the moment vector M defined in (1.8) are given by the
determinant relation ⎡

⎣
Mx

My

Mz

⎤
⎦ =

⎡
⎣
∗ ∗ ∗
ax ay az
Px Py Pz

⎤
⎦ . (1.9)

The individual moment components are the sub-determinants defined by this
relation,
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⎡
⎣
Mx

My

Mz

⎤
⎦ =

⎡
⎣
ay Pz − az Py

az Px − ax Pz

ax Py − ay Px

⎤
⎦ . (1.10)

It is seen that the moment component Mz corresponds to the planar case
considered in (1.6).

1.2.3 Force couples

The construction from Section 1.1.2 for addition of parallel forces gives finite
distances, if the resultant force has a magnitude different from zero. This
leaves a special case, where one force is P while the other is −P with a parallel
line of action. This is called a force couple with two forces of equal magnitude
but opposite direction acting along parallel lines as illustrated in Fig. 1.10.
Let C be a point in the plane, and let a1 and a2 be vectors connecting C to a
point on the line of action of the force P and −P, respectively. This is shown
in Fig. 1.10a. Applying the vector product formula (1.8), the total moment
of the two forces about the point C then is

M = a1 ×P + a2 × (−P) = (a1 − a2)×P = a×P , (1.11)

where a = a1 − a2 is a vector connecting the two lines of action. Thus,
the moment M of the force couple is independent of the initial reference
point C. It follows from (1.10) that the magnitude of the moment component
orthogonal to the plane of the forces is M = hP , where h is the distance
between the lines of action and P is the length of the force vectors, see
Fig. 1.10b.

Fig. 1.10: Force couple with P and −P along parallel lines.

The force couple plays a central role, when a force is translated to a new line
of action. This problem is illustrated in Fig. 1.11a, showing the force P in its
original position in blue. This force is translated into a new line of action by
placing two new forces P and −P in the new line of action. As they act in
the same line and are of equal but opposite magnitude they are equivalent
to zero force. The original force P and the new force −P constitute a force
couple with moment M = hP , and thus the total effect of the three forces is
a translated force P and the moment M illustrated in Fig. 1.11b.
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Fig. 1.11: Offset of force by introduction of moment.

1.3 Equilibrium

Statics is the theory of equilibrium of force systems and the use of this theory
to study the equilibrium of solids and fluids. In particular statics of structures
deals with the equilibrium of structures under time-independent loads.

Fig. 1.12: Statics and kinematics of a rigid body.

A basic concept of statics is the notion of equilibrium. Figure 1.12a illustrates
a rigid body acted upon by forces P1,P2, · · · at points located relative to a
common point C by the vectors a1,a2, · · · and by moments M1,M2, · · · . In
order for the system of forces and moments, and thereby the rigid body, to
be in equilibrium the resulting total force and moment vectors must vanish.
The resulting force is found by direct summation of the individual forces
as vectors. The resulting moment consists of the vector sum of the applied
moments plus the sum of the moments of the forces about a point, e.g. the
point C. Thus, equilibrium of a rigid body is expressed by the two vector
equations

P =
∑
i

Pi = 0 , MC =
∑
j

Mj +
∑
i

ai ×Pi = 0 . (1.12)

The general equilibrium conditions, stated in vector form, are often used for
numerical computations, where generality is important. On the other hand
most calculations by hand are made by isolating one or more of the com-
ponents and treating the equilibrium conditions sequentially. Efficient proce-
dures for handling this problem is the main issue in the remaining examples
and the exercises in this chapter.
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1.3.1 Virtual work of rigid bodies

The equations of equilibrium are closely related to the conditions needed to
prevent motion of the body. In essence the three force components must van-
ish in order not to produce accelerated motion in any of the directions of
three-dimensional space. Similarly, the three moment conditions prevent the
occurrence of rotation with angular acceleration about any of three indepen-
dent directions in space. The theory of motion of bodies described in terms of
translations and rotations is termed kinematics, while equilibrium described
in terms of forces and moments is within the field of statics. There is an in-
teresting and important relation between the kinematic quantities describing
a possible motion of a body and the forces and moments acting on this body.
This relation is called the equation of virtual work. It is called virtual work,
because it deals with a hypothetical situation in which a body is acted upon
by actual forces Pi and moments Mj , and then a small hypothetical motion
in terms of displacements δu and rotations δθ is introduced. The symbol δ is
used on the displacement parameters to indicate that these are infinitesimal
quantities, similar in nature to the notation ‘d’ used for differentials, e.g. as
dx and dy.

A virtual displacement of a rigid body can be described by the virtual trans-
lation δuC of a point C and the virtual rotation δθ about this point as
illustrated in Fig. 1.12b. The virtual rotation is infinitesimal, and the result-
ing displacement at a point described by the position ai relative to the point
C can then be described as

δui = δuC + δθ × ai . (1.13)

The idea is now to consider the work that would result if the forces Pi, located
at ai, were translated via the virtual displacements δui, and the moments Mj

were rotated by the common virtual rotation δθ. Because the displacements
are virtual this work is called the virtual work and denoted δV . The virtual
work of the forces Pi and the moments Mj through the virtual displacements
δui and the common virtual rotation δθ is

δV =
∑
i

δui ·Pi +
∑
j

δθ ·Mj , (1.14)

where a dot denotes the scalar product of two vectors. It follows from the
representation (1.13) that an infinitesimal virtual rigid body motion can be
described in terms of the virtual translation δuC of the point C and the
virtual rotation δθ about this point. When the representation (1.13) is sub-
stituted, the expression for the virtual work becomes

δV =
∑
i

δuC ·Pi +
∑
i

(δθ × ai) ·Pi +
∑
j

δθ ·Mj . (1.15)
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The middle term is a summation of so-called triple vector products. A vector
triple product consists of a vector product of two vectors, multiplied via a
scalar product with a third vector – here in the form of the vector product δθ×
ai multiplied by Pi. The triple product has a simple geometric interpretation
as the volume of the parallelepiped spanned by the three vectors. This volume
does not depend on which of the two vectors are used to form the vector
product, and thus the factors can be interchanged according to the relation

(δθ × ai) ·Pi = δθ · (ai ×Pi) . (1.16)

When this expression is substituted into (1.15) the virtual work takes the
form

δV = δuC ·
(∑

i

Pi

)
+ δθ ·

(∑
i

(
ai ×Pi) +

∑
j

Mj

)
. (1.17)

The terms in the large parentheses have already been identified in (1.12) as
the resulting force P and the total moment MC about the point C. Further-
more it was found that equilibrium corresponds to the conditions P = 0 and
MC = 0 for an arbitrary point C. With these observations the virtual work
of a rigid body in equilibrium can be expressed as

δV = δuC ·P + δθ ·MC = 0 . (1.18)

The first equality defines the virtual work as the work of the resulting force
P through the virtual displacement δuC at some reference point C plus the
work of the resulting moment MC about C through the virtual rotation δθ
of the body.

Fig. 1.13: Virtual translation δuC and rotation δθ of a rigid body.

The second equality states that the virtual work, formed through six virtual
displacement components, must vanish. This holds for any choice of the vir-
tual displacement components, and thus the six equilibrium equations are
equivalent to the statement that the virtual work must vanish for any choice
of the virtual displacement components. This is called the principle of virtual
work. It is a fundamental tool in statics and mechanics of structures. The
principle of virtual work establishes a close relationship between the statics
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and kinematics of a structure. Thus, the force equilibrium equation P = 0
can be stated as: the work done by the forces by any virtual rigid body trans-
lation δuC must vanish. This is illustrated in Fig. 1.13a. Similarly, moment
equilibrium about a point C originally expressed as MC = 0 can be restated
in the form: the work done by forces and moments via any rotation about C
must vanish. This relation is illustrated in Fig. 1.13b.

The principle of virtual work is important in understanding and analyzing
structures. It will appear in the discussion of support conditions in Section 1.4
and calculation of reactions in Section 1.6. It is extended to deformable bodies
in the following chapters.

1.3.2 Equilibrium in a plane

Many structures can be decomposed into planar parts, i.e. parts that can be
described in a plane and are loaded in this plane. For these structures only
a reduced set of equilibrium equations are needed. The basic form of these
conditions consists of the projection of the force equilibrium condition into
the plane, supplemented by the component of the moment equation along
a normal to the plane. This corresponds to a special case of the principle
of virtual work including only motion in the plane, e.g. in the form of two
translation components and one rotation component.

Fig. 1.14: In-plane equilibrium by a) 2 force components and moment about 1 point, b) 1
force component and moment about 2 points, c) moment about 3 points.

It is often useful to modify the initial formulation of the equilibrium equations
in terms of two projections and a moment equation by replacing one or both
projection equations with moment equations. This results in the following
three possibilities, illustrated in Fig. 1.14,

a) Two force projection equations and one moment equation, e.g. Px = 0,
Py = 0 and MA = 0.

b) One force projection equation and moment equations for two points, e.g.
Px = 0, MA = 0 and MB = 0. The line connecting A and B must not
be orthogonal to the line used in the force projection.

c) Moment equations for three points, MA = 0, MB = 0 and MC = 0. The
points A, B and C must not lie on a common line.
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The examples and exercises of this chapter illustrate the use of each of these
sets of equilibrium conditions for calculation of reactions: a) for a clamped
structure, b) for a structure with parallel reactions, and c) for structures with
non-parallel reactions.

1.3.3 Distributed load

Structures may be exposed to loads that are distributed over the length,
surface or volume of the structure. These distributed loads typically arise
from e.g. the weight of the structure itself, load from wind or fluid pressure,
or earth pressure on foundations. Distributed loads are characterized by their
intensity p, denoting the force per unit volume, surface area or per unit length.
In plane problems loads are distributed along e.g. the length of a beam, and
will have the unit N/m, Newton per meter.

Fig. 1.15: Distributed load p(x) and equivalent load P .

In the analysis of structures with distributed loads it is often convenient to
represent the load by an equivalent load in the form of one or more concen-
trated forces, or a concentrated force and a moment. In order to be equiva-
lent with the original distributed load the concentrated forces (and moments)
must have the same resulting force and resulting moment. The situation is
illustrated in Fig. 1.15, showing a load distributed along a line with intensity
p. The line is taken as x-axis with origin C, and the load extends from a to b.
The load is to be represented by an equivalent force P , acting at the distance
xc from C. The magnitude of the distributed load and its moment about C
are determined by the integrals

P =

∫ b

a

p(x) dx , MC =

∫ b

a

p(x)xdx . (1.19)

The force P is located at the distance xC from C that produces the same
moment MC as the distributed load, and thus

xc P = MC ⇒ xc =
MC

P
. (1.20)

The calculation is seen to be similar to that of calculating the location of the
‘center of gravity’ of the load distribution.
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Fig. 1.16: Distributed load and equivalent load.

The two most common load distributions are the constant intensity and a lin-
ear variation of the intensity, illustrated in Fig. 1.16. For the uniform intensity
load distributed over the interval [0, a] the force and the moment about the
left end point follow from the integrals (1.19) as

P =

∫ a

0

p dx = ap , M =

∫ a

0

p xdx = 1
2a

2p .

This gives the distance xc of the force from the left end as

xc =
M

P
=

1
2a

2p

ap
= 1

2a .

The result is illustrated in the left half of Fig. 1.16.

The linear load intensity variation can be represented via triangular distri-
butions as illustrated in the right side of Fig. 1.16. With origin C located
at the left end, the load distribution is px/a, where p is used to denote the
maximum intensity as shown in the figure. In this case the force and moment
integrals are

P =

∫ a

0

px/a dx = 1
2ap , M =

∫ a

0

(px/a)xdx = 1
3a

2p .

Thus, in this case the distance xc of the force from the left end is

xc =
M

P
=

1
3a

2p
1
2ap

= 2
3a .

This result is illustrated in the right half of Fig. 1.16.

A common load distribution is a linear variation between p1 at the left end
and p2 at the right end, illustrated in Fig. 1.17. In the representation of the
distributed load it is convenient to associate the load intensities p1 and p2
with each their triangular distributions. Each of these distributions are then
associated with a concentrated force at distance 1

3a from the corresponding
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Fig. 1.17: Distributed and equivalent load.

end of the load distribution. The equivalent load then consists of the two
concentrated forces 1

2ap1 and 1
2ap2, located as shown in the figure.

1.4 Support conditions

Structures are typically connected to the surroundings via local supports. A
simple example is shown in Fig. 1.18a, where the rotor of a wind turbine is
exposed to a distributed horizontal load from the wind. The wind turbine
is placed on a foundation that is sufficiently strong and large to secure the
wind turbine against motion. As discussed in the previous section equilib-
rium is associated with the balance of forces and moments. Thus, in plane
problems the reaction forces transmitted to the foundation, and from there
to the soil, can be represented by two orthogonal force components, typically
a horizontal and a vertical force, and a single moment. The wind turbine
must be secured against vertical motion due to its own weight, against hor-
izontal motion due to the wind loading P and against rotation in A due to
the overturning moment Ph. This requires a vertical reaction force RA, and
horizontal reaction force R′

A and a reaction moment MA, which are shown in
the so-called free body diagram in Fig. 1.18b, where the foundation and the
rotor have been replaced by the representative loading and reaction forces
acting on the main structure, which in this case is the wind turbine tower.

Fig. 1.18: Reaction forces and reaction moment on wind turbine structure.
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In the case of the wind turbine all three reactions are required. If for instance
the horizontal reaction is removed the structure is free to move in the hor-
izontal direction, thereby violating the concept of equilibrium. The number
of support conditions matches the number of reactions necessary for general
equilibrium, and the wind turbine structure is therefore statically determi-
nate. As demonstrated in the following this means that the unknown reactions
can be determined directly from the available equilibrium equations.

Figure 1.19a shows a frame structure placed on two small supporting foun-
dations in A and B. The load on the frame is transmitted to the surrounding
soil by the foundation, which is assumed sufficiently large to actually do this
for the reaction forces needed in the present problem. The frame structure is
supported at two separated points A and B. This separation secures the frame
structure against rotation and overturning. Thus, for the frame structure re-
action moments in A and B are not required, whereby the local foundations
are fairly small. The lack of significant local moment capacity implies that a
conservative supporting system only assumes vertical and horizontal reaction
forces, i.e. no reaction moments, as indicated by the free body diagram in
Fig. 1.19b. This leads to a frame structure with four reactions. As discussed in
connection with Fig. 1.14 equilibrium in the plane requires three equilibrium
conditions composed of forces and moments. In Fig. 1.19b it is shown that
the frame structure has four reactions, which is one more than the number of
available equilibrium equations in plane problems. Thus, the frame structure,
with the present support conditions, is statically indeterminate. This is also il-
lustrated by the fact that one reaction force can be removed without allowing
any rigid body motion or mechanisms. For instance, the horizontal reaction
R′

A can be removed, and the remaining horizontal reaction R′
B will still se-

cure the structure against horizontal motion. The analytical and numerical
analysis of statically indeterminate structures is presented in Chapters 6–7.

Fig. 1.19: Plane frame: a) Structure with supports, b) Free body diagram with reactions.

In the analysis of structures a number of specific symbols are commonly used
to indicate the various support conditions. For basic static analysis the most
important symbols are presented in Fig. 1.20, illustrated for a beam type
structure. In Fig. 1.20a the circle indicates a hinge that permits free rotation.
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Thus, a hinge has no moment capacity. This is also called a simple support,
and the reactions are the vertical reaction force R and the horizontal reaction
force R′. If supports are allowed to translate in a particular direction, this is
indicated by rollers. For the simple support this is shown in Figs. 1.20b,c for
unconstrained motion in the horizontal and vertical direction, respectively.
Note, that in these situations the support imposes no reaction force in the
specific direction of the roller, leaving only a reaction force in the orthogonal
direction.

Fig. 1.20: Symbols for various support conditions.

If the support is assumed to be rigidly fixed, it constrains all displacement and
rotation components. The symbol for the fixed support is shown in Fig. 1.20d,
where all three reaction components are in general non-vanishing. Thus, the
wind turbine in Fig. 1.18 has a fixed support. If the moment capacity of a
fixed support is removed, the simple support in Fig. 1.20a is recovered. If the
fixed support can translate this is indicated by rollers showing the direction
of translation as shown in Figs. 1.20e,f. The reaction force is normal to the
direction of translation. Most support conditions can be described by the
combination of a fixed support, a hinge and/or rollers. In the case of flexible
supports these may be represented via spring connections.

Fig. 1.21: Intermediate and internal support conditions.

Structures often have intermediate supports, such as pylons carrying cables
and bridge decks, or columns carrying roof structures. These intermediate
support conditions can often also be represented by the symbols presented
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above. Figure 1.21a shows a simple support with horizontal rollers supporting
a beam structure. In this case the only non-vanishing reaction force is the
vertical reaction R. It is important to note that the beam in Fig. 1.21a is rest-
ing on top of the intermediate simple support, whereby the internal moment
capacity of the beam is not changed by the support. Figure 1.21b shows a
hinge in the beam, whereby the structure is free to rotate at the hinge. This
implies that no internal moment can be transmitted through the hinge, and
thus M = 0 in the beam at the location of the hinge. This particular type
of internal support is common in structural engineering, because structural
parts are often connected by hinge type connections with negligible moment
capacity. The notion of internal section forces is considered in more detail in
Chapter 2 for trusses and in Chapter 3 for beams and frames.

1.5 Reactions by equilibrium equations

If the reactions of a structure can be determined by equilibrium conditions
alone, the structure is classified as statically determinate with respect to
reactions. A necessary condition for static determinacy of a rigidly connected
structure then is that the number of reaction components corresponds to the
number of equilibrium conditions. Thus, a rigid structure in space will have
six reaction components, while a rigid plane structure will have three reaction
components – relating to the plane.

Fig. 1.22: Inclined beam with concentrated load.

It is often convenient to organize the description of the structure and the
following analysis of the reactions in a systematic way. The procedure is
illustrated by the simple inclined beam shown in Fig. 1.22, and supplemented
by a number of examples on the reactions of beams and frames in the later
part of this section.

The first step in the analysis of the beam in Fig. 1.22 is to make a descrip-
tion of the structure, including support conditions and loading. This step is
illustrated in Fig. 1.23. It consists of making a representative sketch of the
static system including reactions and loads as follows:
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Fig. 1.23: Description of structure with system lines and supports.

a) Make a sketch of the static system with internal joints (as appropriate)
and supports. The structure is represented by its system lines, and suf-
ficient dimensions to define the geometry of the structure are included.

b) Indicate all possible reactions. It is important that all reactions, that can
be generated by the supports are included to ensure that the structure
has sufficient support to prevent motion. Compare the number of reaction
components with the available number of equilibrium conditions. In the
present case the reactions consist of the three components RA, RB and
R′

A shown in Fig. 1.23.

c) Introduce the loads. This is the last point, as many structures are an-
alyzed for several load cases, and the previous points are unaffected by
the specific load case to be analyzed.

Fig. 1.24: Sketches for static analysis with loads and reactions.

The second step consists in the calculation of the reaction components. It is
often preferable to compute each reaction component by a relation that only
involves this component, and this can often be accomplished by a suitable
choice of the equilibrium condition to be used.

a) There are two reaction components RA and R′
A at A. Thus RB can be

determined via moment about A. This equation is independent of the
components RA and R′

A,

�

A bRB − (a− c)P = 0 ⇒ RB =
a− c

b
P .
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b) The reactions R′
A and RB are both horizontal. Thus, RA can be deter-

mined independently by a vertical projection,

↑ RA − P = 0 ⇒ RA = P .

c) The line of action of the reaction components RA and RB intersect at a
point C, and R′

A is therefore determined by moment equilibrium about
this point.

�

C bR′
A − (a− c)P = 0 ⇒ R′

A =
a− c

b
P .

Note the notation, in which the symbol
�

A identifies the point as well as the
direction of positive moments, while arrow symbols ↑ and → are used for
vertical and horizontal projection, respectively.

1.5.1 Plane beams

The beam plays an important role in many structures. The beam is a struc-
tural element which is relatively long compared to a characteristic cross-
section. Typical examples are wooden or concrete beams with rectangular
cross-section and steel beams with I or H-section. Beams are often used in
contexts where the statics can be analyzed as one or more two-dimensional
problems. A typical first step in a static analysis is determination of the reac-
tions associated with a certain load on the structural element. In the following
a number of two-dimensional examples involving beams and frames are con-
sidered, and the reactions are determined. The flow of the load through beams
and frames is considered later in Chapter 3, and the ability of the beams to
withstand the effects of the load is discussed in Chapters 8–11.

Example 1.3. Simply supported beam. The horizontal beam shown in Fig. 1.25 is a
common structural element. The beam has a fixed simple support at the left end A and

a moving simple support with horizontal motion at the right end B. The beam carries a
vertical downward concentrated force P acting at the distance a from the left end A. Thus,

the support at A permits a vertical reaction RA and a horizontal reaction R′
A, while the

support at B permits a vertical reaction RB . The reactions are shown in the figure as they

would act on the beam, if positive. The supports and the associated reactions are precisely
sufficient to prevent motion of the beam, and thus the beam is statically determinate.

Fig. 1.25: Simply supported beam with concentrated force.



22 Equilibrium and Reactions

The three reactions are determined from the equilibrium conditions, expressed in the form

of one force projection equation and two moment equations as illustrated in Fig. 1.14b.
It is advantageous to use the equilibrium equations in a form, where each new condition

determines a new reaction. In the present case a simple straightforward procedure consists
in using a horizontal projection, followed by moment about A, and finally moment about B.

The only force with a horizontal component is the reaction R′
A, and thus horizontal force

equilibrium directly gives R′
A = 0. When taking moment about A the two reactions through

this point do not contribute, and the resulting clockwise moment about A then takes the

form
�

A aP − (a+ b)RB = 0 ⇒ RB =
a

a+ b
P .

Similarly the moment equation about B does not involve the reactions pointing through
B, and thus the counterclockwise moment equation is

�

B bP − (a+ b)RA = 0 ⇒ RA =
b

a+ b
P .

It is noted that each of the three reactions have been determined independently, i.e. without
using reactions already determined.

It is often desirable to carry out a simple check of the reactions. In the present case a
simple check is obtained by calculating the sum of the vertical reactions,

↑ RA + RB =
b

a+ b
P +

a

a+ b
P = P .

Thus, the sum of the vertical reactions is equal to the imposed load P . It is noted that the
force is distributed to the supports according to the ‘lever rule’ illustrated in Fig. 1.5. �

Example 1.4. Cantilever beam. A beam supported only at one end is called a cantilever.
An example is illustrated in Fig. 1.26. The cantilever is supported by a fixed rigid support at

A, while the other end B is free. The fixed rigid support prevents vertical and horizontal
motion via the reaction forces RA and R′

A, while rotation is prevented by the reaction

moment MA. The reactions and their positive directions are indicated in the figure.

Fig. 1.26: Cantilever beam with concentrated force.

Equilibrium of the horizontal projection of all loads and reactions directly determine the
horizontal reaction R′

A = 0. Similarly, the vertical projection of the load and the reactions

determine the vertical reaction,

↓ P − RA = 0 ⇒ RA = P .

It is seen that the reaction forces R′
A and RA, determined by projection, are independent

of the location of the force a.
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The reaction moment MA is determined by taking the clockwise moment about A,

�

A aP − MA = 0 ⇒ MA = aP .

The moment MA is seen to increase linearly with a, confirming the intuitive feeling that
it requires more to support a load at a large distance.

Note, that the load P and the vertical reaction RA constitute a force couple aP , balanced

by the reaction moment MA. �

Example 1.5. Beams with hinge. Figure 1.27 shows two beams AD and DB, joined at

D by a hinge. The French term ‘charnier’ for a hinge is often used in connection with
structures. The total system consisting of the two beams must be in equilibrium, thus

providing three equilibrium conditions. In addition, the moment at the hinge vanishes,
and thus the moment of all loads and reactions on each side of the hinge must vanish. The

hinge introduces an extra degree of freedom in the motion of the structure, and thereby
a need for an extra reaction, bringing the number of reactions of the present structure

to four. There are three simple supports, of which the support at C is fixed, while the
supports at A and B permit horizontal motion. Thus, there is one horizontal reaction R′

C
and three vertical reactions RA, RB and RC , as indicated in the figure. In the present
example the load consists of a concentrated force P acting at the center of the beam DB.

Fig. 1.27: Hinged beams with concentrated force.

When determining the reactions on structures with hinges, the forces transmitted through
the hinges are often included in the analysis. This is illustrated in Fig. 1.28, showing the

parts slightly separated to make room for the force components RD and R′
D acting on the

beam DB through the hinge.

Fig. 1.28: Reactions and hinge forces.

First the reactions on the beam DB are determined. It follows from horizontal force equilib-
rium that R′

D = 0. Thus, the hinge at D only transmits a vertical force RD . The beam DB

now appears as simply supported, carrying a concentrated force P at its center. Symmetry
implies that the two reactions RD and RB are equal, and it then follows from vertical

force projection that RD = RB = 1
2
P . These reactions could also have been determined

by moments about the end points of the beam as in Example 1.3.
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Fig. 1.29: Reactions on left beam.

Finally, the remaining reactions are determined by considering the beam AD as simply

supported and loaded by RD and R′
D as shown in Fig. 1.29. Horizontal force equilibrium

gives
→ R′

C + R′
D = 0 ⇒ R′

C = 0 .

Counterclockwise moment about A gives

�

A aRC − (a+ c) 1
2
P = 0 ⇒ RC =

a+ c

2a
P ,

while clockwise moment about C gives

�

C aRA + c 1
2
P = 0 ⇒ RA = − c

2a
P .

Note, that the beam AD carries half the load, and thus RA +RC = 1
2
P . However, as RA

is negative, the reaction RC is greater than the load RD = 1
2
P actually carried by this

part of the structure. �

1.5.2 Simple frames

Frames offer some additional features in the determination of reactions. The
following two examples illustrate how to deal with supports placed at different
heights and supports with rollers at inclined angles. As in the case of beams
the main point is to arrange the analysis in such a way that the individual
reaction components can be computed sequentially.

Example 1.6. Portal frame. This example deals with inclined load and a frame with

supports at different height. Figure 1.30a shows a rigid frame with a fixed simple support
at A and a simple support on horizontal rollers at B. The frame is loaded by a concentrated

force of magnitude
√
2P with inclination −45◦ at C.

The load, decomposed in horizontal and vertical components of magnitude P , is shown in
Fig. 1.30b together with the three reaction components R′

A, RA and RB .

The reactions are determined sequentially by the following procedure. First the component

R′
A is determined by horizontal projection of all load and reaction force components,

→ R′
A + P = 0 ⇒ R′

A = −P .

Counterclockwise moment about A then gives

�

A 2aRB − 2aP = 0 ⇒ RB = P .



Reactions by equilibrium equations 25

Fig. 1.30: Portal frame with inclined load.

The last reaction RA can be determined by moment about the support point B. However,

this would imply that both reaction components RA and R′
A would appear in the equation.

Although the horizontal component R′
A has already been determined it may be advanta-

geous to find an equilibrium condition in which only the unknown reaction component RA

appears together with the given loads. This condition is found by taking moment about
the point of intersection E of the two other reaction components R′

A and RB . At this point

these two reaction forces do not contribute to the moment. Clockwise moment about E
gives

�

E 2aRA + 2aP − 2aP = 0 ⇒ RA = 0 .

The results are controlled by translating the reactions R′
A and RB to the point of inter-

section E, and observing that they combine to a force along the diagonal EC. �

Example 1.7. Angle frame. The distribution of the load to the supports depends on the
support conditions as illustrated in this example. The issue is illustrated by comparing the
angle frame in Fig. 1.31a with vertical reaction at B with the similarly loaded frame in

Fig. 1.32a with a reaction at B inclined by 45◦. The example also illustrates the use of the
equivalent load in the form of an equivalent concentrated force in the calculation of the

reactions.

Fig. 1.31: Angle frame with distributed load.
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The distributed load with intensity p is equivalent to a concentrated force P = 2ap acting

at the center of the beam CB. This is independent of the support condition, and thus
applies to both cases as shown in Fig. 1.31b and Fig. 1.32b.

In the case of the frame with vertical reaction in B shown in Fig. 1.31 the calculation

proceeds in a manner quite similar to that of the simply supported beam in Example 1.3.
It follows immediately from horizontal projection that R′

A = 0, and the vertical reaction

components then follow from moment about B and A, respectively.

�

B 2aRA − a (2ap) = 0 ⇒ RA = ap ,

�

A 2aRB − a (2ap) = 0 ⇒ RB = ap .

Vertical equilibrium is verified by projection, giving the sum of the reactions RA +RB =

2ap, matching the vertical load.

In the case of the frame with inclined support at B the calculation of reactions is arranged
in a slightly different way. In this case there are no parallel reaction components, and

each reaction component can therefore be determined independently by taking moment
about the intersection point of the two other reaction components. By this procedure

the calculation of each reaction component is independent of the order in which they are
computed.

Fig. 1.32: Angle frame with inclined support.

First the horizontal reaction R′
A is calculated by taking moment about the point D defined

by the intersection of the lines of action of RA and RB . The point D is located vertically

above C at distance 2a. Thus, the moment equation is

�

D 3aR′
A − a (2ap) = 0 ⇒ R′

A = 2
3
ap .

The intersection E of the lines of action of R′
A and RB is located at the same height as A

at a distance 3a to the right. This gives the moment equation

�

E 3aRA − 2a (2ap) = 0 ⇒ RA = 4
3
ap .

The final equilibrium equation is a moment equation about A. The distance from the point

A to the line of action of RB is ( 3
2
a)
√
2, and thus the moment equation is

�

A 3
2

√
2aRB − a (2ap) = 0 ⇒ RB = 2

3

√
2ap .
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Alternatively, sliding the reaction RB along its line of action to the point E at the same

level as A and using its vertical component 1
2

√
2RB gives the same equation. Finally, a

check is obtained by horizontal and vertical projection of the reaction forces,

→ R′
A − 1

2

√
2RB = 0 , ↑ RA + 1

2

√
2RB = 2ap ,

corresponding to zero horizontal load and a vertical load of P = 2ap.

An alternative procedure consists in determining the inclined reaction RB first, and then
obtaining RA and R′

A by vertical and horizontal projection, respectively. However, in that

procedure the determination of the components are not independent. �

1.5.3 Three-hinge frame

A classic form of a statically determinate frame is the three-hinge frame,
sometimes called a three-charnier frame, shown in Fig. 1.33. The frame has
two fixed supports with hinges, and has a third hinge in the frame structure.
As a result of the hinge within the frame it now has two reaction components
at each of the supports. The shape of the frame and the location of the
internal hinge may vary without changing the basic principles of analysis of
the frame. The task here is to determine the reactions at A and B.

Fig. 1.33: Three-charnier frame.

The reactions may be determined by purely graphical means using boldface
notation for vectors, as illustrated in Fig. 1.34 for a concentrated force P
acting on the left part of the frame at the distance x ≤ a from the left side.
The reaction force RB at B is the only force to act on the right half of the
frame, apart from any force transmitted through the hinge at C. Therefore
its line of action must pass through C in order not to produce any mo-
ment about C. Thus, the line of action of RB goes through BC as shown
in Fig. 1.34. By extending the lines of action of the load P and the reaction
RB the intersection point is identified. When the load is translated to this
point, it can be resolved into a force −RB through the support point B and
another force −RA through the support point A by use of the force parallel-
ogram construction introduced in connection with Fig. 1.1 in Section 1.1.1.
This purely geometric construction gives the reaction forces RA and RB as
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Fig. 1.34: Force resolution for three-hinge frame.

vectors. While the graphic procedure establishes a direct relation between
the geometry of the frame and the resulting reactions, and thereby a good
intuitive understanding of the statics of the frame, it is less convenient for
numerical computations.

Fig. 1.35: Reactions of three-hinge frame.

A straightforward computation of the reactions can be performed by use of
the principles already used in the previous examples. First the reactions are
represented in terms of their vertical components RA, RB and their horizontal
components R′

A, R′
B , shown in Fig. 1.35. These components can then be

determined sequentially by moment and force projection equations as follows.

Example 1.8. Reactions of the three-hinge frame. First the vertical reaction RB is

determined by moment equilibrium of the total frame about A,
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�

A xP − 2aRB = 0 ⇒ RB =
x

2a
P .

In a similar way the vertical reaction RA is determined by moment equilibrium of the total

frame about B,

�

B (2a− x)P − 2aRA = 0 ⇒ RA =
2a− x

2a
P .

The hinge at C imposes a condition of zero moment of the forces on the right half of the

frame about C,

�

C hR′
B − aRB = 0 ⇒ R′

B =
x

2h
P .

By using the forces on the right half of the frame the moment relation only involves the two

reaction components RB and R′
B . If the left half were used, the moment equation would

involve the similar reaction components at A and in addition the contribution form the

load P . The determination of the reactions is completed by using a horizontal projection
of all forces acting on the frame,

→ R′
A = R′

B ⇒ R′
A =

x

2h
P .

It is noted that the vertical reactions are independent of the height h of the frame, while

the horizontal components are proportional to x/2h, (x < a). Thus, increasing the height
of the location of the central hinge will reduce the horizontal reactions correspondingly. �

1.5.4 Space structures

Although many structures can be represented via planar problems, some must
be analyzed in three dimensions. In three-dimensional space the number of
equilibrium equations increases to six, e.g. projection in three directions and
moment about three lines. The following example demonstrates the procedure
for a simple space frame.

Example 1.9. Reactions of simple crane. Figure 1.36a shows a space structure repre-
senting a simple crane, carrying a tip load P . The structure is simply supported in A,

B and C, permitting horizontal displacement in the x-direction in A and C and in the
y-direction in B. Thus, the structure is statically determinate. Figure 1.36b shows a top

view of the crane structure. The vertical forces are indicated by circles with a bullet or
a cross inside, indicating positive upward or downward direction, respectively. First the

horizontal reactions are determined. Equilibrium in the x-direction directly gives zero hor-
izontal reaction R′

B = 0 in B. Moment about the vertical line through B only receives a

contribution from the horizontal reaction in A, and thus R′
A = 0. The horizontal reaction

in C can be found by equilibrium in the y-direction, or by moment about the vertical line

through A, leading to R′
C = 0. Thus, all horizontal reactions vanish.

The vertical reaction in A is obtained directly by moment about BC:

�

BC aRA + aP = 0 ⇒ RA = −P .

Symmetry implies that RB = RC . This can also be verified by moment about the line DE,

where the only non-vanishing reactions are RB and RC . The magnitude of these identical
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Fig. 1.36: a) Crane carrying vertical tip load P . b) Top view with forces.

reactions can then be found by vertical equilibrium:

↓ P − RA − RB − RC = 0 ⇒ RB = RC = P .

This shows that the three reactions have the same magnitude, because the support at A
has the same distance from the central plane BCD as the load P . �

1.6 Reactions by virtual work

The determination of statically determinate reactions on a structure was dis-
cussed in Section 1.5 based on direct use of equilibrium conditions. While this
is always possible for statically determinate reactions, it is sometimes conve-
nient to use the principle of virtual work instead. The advantage of this is
partly the ability to concentrate the calculation on individual reaction com-
ponents, even for compound structures with internal hinges, and partly the
visual display of displacement mechanisms that determine the contributions
from loads applied anywhere on the structure.

Fig. 1.37: Angle frame with distributed load.

The basic idea is illustrated in Fig. 1.37 showing a simply supported angle
frame. The frame has a simple support permitting vertical motion of B.
Thus, there is one horizontal reaction component RB at the support B. The
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idea behind the use of the principle of virtual work for determination of
reactions is to release the support, and to impose a virtual displacement
δuB of the support. When the structure is statically determinate the release
of one support condition creates precisely one mechanism. The mechanism
created by releasing the horizontal support in B is a rotation about the fixed
support A, illustrated by the dashed line in the figure. The displacements
associated with the mechanism are considered infinitesimally small, and the
magnitudes of the displacements are then proportional to the imposed virtual
displacement δuB . For concentrated loads the corresponding virtual work
equation takes the form

δV = δuBRB +
∑
j

δuj Pj = 0 , (1.21)

with loads Pj and corresponding virtual displacements δuj , defined by the
mechanism corresponding to releasing the support with reaction RB . The par-
ticular mechanism shown in the figure corresponds to an infinitesimal counter
clockwise rotation of magnitude δuB/b, and thus the virtual displacements
of the force is δu1 = −(a/b)δuB . Hereby the equation of virtual work takes
the form

δV = δuBRB − a

b
δuB P1 = 0 ⇒ RB =

a

b
P1 . (1.22)

The displacement field from the virtual rotation about A is here proportional
to δuB. In some cases it appears more direct to represent the displacement
field in terms of a virtual rotation – in this case the rotation about A, given
by δθA = δuB/b.

Example 1.10. Simply supported beam. This example illustrates the use of the principle
of virtual work to determine the reactions of the simply supported beam AB of length �

with a concentrated force P located at the distance a from the left support A shown in
Fig. 1.38a. The reactions have already been determined by use of force projection and

moments in Example 1.3, and thus the present example mainly illustrates the idea of the
virtual work equation, that will find more general applications later.

Each of the three equilibrium equations for the beam are replaced by an equivalent virtual

motion of the beam, found by releasing a support component and imposing an infinitesimal
positive virtual displacement in its place. The three virtual motions are illustrated in

Fig. 1.38b. The first is a virtual horizontal translation δu′
A of the beam. The vertical force

P does not contribute to the virtual work produced by a horizontal motion, and thus the

corresponding virtual work equation is

δV = δu′
AR′

A = 0 ⇒ R′
A = 0 .

Clearly, this condition is equivalent to a horizontal force projection.

The second virtual motion consists in lifting the support at A by the virtual displacement
δuA, whereby the beam rotates about B. The corresponding virtual work equation is
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Fig. 1.38: a) Simply supported beam. b) Virtual displacements.

δV = δuA RA − b

�
δuA P = 0 ⇒ RA =

b

�
P ,

where b = � − a is the distance of the force from the right support B. It is seen that by
rotating the beam the contribution of the forces to the virtual work is proportional to

the distance from the center of rotation. This is quite analogous to the contributions in a
moment equation about the center of rotation.

Finally, the last reaction RB is found via the virtual work equation by lifting the support at

B by the virtual displacement δuB , whereby the beam rotates counter clockwise about B,

δV = δuB RB − a

�
δuB P = 0 ⇒ RB =

a

�
P .

This relation is equivalent to a moment equation about A. �

Example 1.11. Beam with distributed load. In the case of distributed loads the deter-

mination of reactions proceeds in the same way via mechanisms obtained by releasing one
support at a time. Figure 1.39 shows a uniformly loaded beam ABC with a fixed simple

support at A and a simple support permitting horizontal motion at B. After releasing the
horizontal support component a virtual horizontal translation immediately gives R′

A = 0.

Fig. 1.39: Simply supported beam with distributed load.

The reaction RA is determined via a vertical virtual displacement δuA of point A. This cor-

responds to a clockwise rotation of the beam with angle δuA/a about B. The corresponding
virtual work equation is determined by considering the load on AB as an equivalent force
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of magnitude ap acting at distance 1
2
a to the left of B, and similarly the load on BC

as an equivalent force of magnitude bp acting at the distance 1
2
b to the right of B. The

corresponding virtual work equation is

δV = δuA RA +
δuA

a

[
1
2
b(bp)− 1

2
a(ap)

]
= 0 ⇒ RA =

a2 − b2

2a
p .

The reaction RB is determined from the virtual displacement corresponding to lifting the

support B vertically by δuB = 1. Hereby the beam rotates the angle δuB/a about A, and
the virtual work equation becomes

δV = δuB RB − δuB

a
1
2
(a+ b)2p = 0 ⇒ RB =

(a+ b)2

2a
p .

The sum of the vertical reactions is RA +RB = (a+ b)p. It is observed that the procedure

is nearly identical to the use of the similar moment equations. However, this changes when
the principle of virtual work is applied to composite structures connected by hinges as

illustrated in the following example. �

Example 1.12. Beams with hinge. The problem of a composite structure was illustrated

in Fig. 1.27, showing two beams connected by a hinge. The reactions of the composite
structure were determined sequentially in Example 1.5 by use of the equilibrium conditions.

The principle of virtual work offers an alternative, in which each reaction component of
the composite structure can be determined independently of the others. The procedure is

illustrated by application to the vertical reaction RC at the support C. A mechanism is
created by releasing the support C and then imposing a virtual vertical displacement δuC

as shown in Fig. 1.40.

Fig. 1.40: Simply supported beam with distributed load.

There is no moment at the hinge at D, and therefore the different rotations at the two

sides of the hinge do not lead to any contribution to the virtual work. It is seen directly
from the figure that the vertical motion of D is δuD = δuC(a+ c)/a, and thus the virtual

work equation is

δV = RC δuC − 1
2
δuD P = 0 ⇒ RC =

a+ c

2a
P .

The other reactions can be determined similarly from mechanisms created by releasing that
particular support and imposing a virtual displacement in the direction of the reaction. �
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1.7 Exercises

Exercise 1.1. The figure shows two planar forces

P1 = [−1, 2] and P2 = [1, 2], both acting at the
point A = [3, 2].

a) Determine the moment around C for each of
the two forces P1 and P2 individually and for

the two forces combined.

Exercise 1.2. The figure shows a force Pα =
[2 cosα, 2 sinα], acting at the point A = [3, 2].

a) Determine the angle α such that the moment
about C vanishes.

b) Determine the angle α where the moment
about C attains its largest magnitude.

Exercise 1.3. The top figure shows two parallel
planar forces P1 = −P2 = [0, 2] acting at A1 =

[3, 2] and A2 = [−3, 2], respectively.

a) Determine the moment around C for the force

couple P1 and P2.

In the lower figure the forces are now inclined sim-

ilar to Exercise 1.1a such that P1 = [−1, 2] and
P2 = [−1,−2].

b) Determine the moment around C for the force
couple P1 and P2.

c) Locate the points where the moment vanishes.

Exercise 1.4. The figure shows a three-dimensional space with a force P = [−1, 2, 1]
acting at the point A = [3, 1, 2].

a) Sketch the projection on each of the coordi-
nate planes and calculate the moments Mx,

My and Mz as in Fig. 1.7.

b) Determine the moment vector [Mx,My ,Mz ]

about the origin of the coordinate system by
use of (1.10) and compare with a).

Exercise 1.5. Show that the ‘lever rule’ (1.4) for two parallel forces P1 and P2 implies

a1

P2
=

a2

P1
=

a

P

where a = a1 + a2 and P = P1 + P2.

Exercise 1.6. The figure shows a simply sup-

ported beam loaded by two concentrated forces.

a) Show all possible reaction components with in-

dication of the sign convention used.

b) Determine the magnitude of the reactions.
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Exercise 1.7. The figure shows a cantilevered simply supported beam loaded by two

concentrated forces.

a) Show all possible reaction components with in-
dication of the sign convention used.

b) Determine the magnitude of the reactions.

c) Interchange the two forces and determine the

magnitude of the reactions.

Exercise 1.8. The figure shows a cantilevered simply supported beam loaded by a moment

M at the free end.

a) Show all possible reaction components
with indication of the sign convention

used.

b) Determine the magnitude of the reactions.

Exercise 1.9. The figure shows a simply supported beam with a vertical distributed load

with intensity p acting only on part of the beam.

a) Show all possible reaction components with indication of the sign convention used.

b) Determine and show the location and
magnitude of the force P that is equiva-

lent to the distributed load p.

c) Determine the magnitude of the reactions.

Exercise 1.10. The figure shows a beam with a fixed simple support at the left end and a

simple support at the right end permitting motion at an angle of 45◦. The beam is loaded
by a uniform distributed load with intensity p.

a) Show all possible reaction components

with indication of the sign convention
used.

b) Determine and show the location and
magnitude of the force P that is equiva-

lent to the distributed load p.

c) Determine the magnitude of the reactions.

Exercise 1.11. The figure shows three differ-

ent load cases for a cantilever beam of length
a: i) linearly increasing load, ii) constant inten-

sity load, iii) linearly decreasing load. The fol-
lowing questions should be answered for each

of the three load cases.

a) Show all possible reaction components

with indication of the sign convention
used.

b) Determine and show the location and
magnitude of the force P that is equiva-

lent to the distributed load.

c) Determine the magnitude of the reactions.
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Exercise 1.12. The figure shows two simply supported beams connected by a hinge at C,

loaded by a uniformly distributed load with intensity p acting over the full length of the
two beams.

a) Show all possible reaction components and interaction force components at C with
indication of the sign convention used.

b) Determine and show the forces

P1 and P2 that are equivalent to
the distributed load p on the two

beams.

c) Determine the magnitude of the

reactions and the interaction
forces at C.

Exercise 1.13. The figure shows a three-hinge frame with the internal hinge located at

the center of the span. The frame is loaded by a uniformly distributed load with intensity
p along the top of the frame.

a) Show all possible reaction components and

interaction force components at E with in-
dication of the sign convention used.

b) Determine and show the forces P1 and P2

that are equivalent with the distributed
load p on BE and EC, respectively.

c) Determine the magnitude of the reactions
and the interaction forces.

Exercise 1.14. The figure shows a simply supported angle frame, with a uniformly dis-

tributed load along CB. The frame has a fixed simple support at B and a simple support
permitting motion at an angle of 45◦ at A.

a) Show all possible reaction components

with indication of the sign convention
used.

b) Determine and show the force P that is
equivalent to the distributed load p.

c) Determine the magnitude of the reac-

tions.

d) Use the force parallelogram rule to illus-

trate, how the load represented by the
equivalent force P is decomposed into

the reaction forces.
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Exercise 1.15. The figure shows a three-
hinge frame with the internal hinge at the top

point C of a straight inclined roof beam. The
roof is loaded by a vertical load of intensity p

per unit horizontal length.

a) Show all possible reaction components and

interaction force components at C with in-
dication of the sign convention used.

b) Determine and show the force P that is
equivalent to the distributed load p.

c) Determine the magnitude of the reactions
and the interaction forces at C.

Exercise 1.16. The figure shows an angle frame ABC located in the x, y-plane. The frame
has a fixed simple support in A, and simple supports permitting motion in the y-direction

and in both directions in C and B, respectively. The length of AB is a, while the length of
BC is B. At the center of BC a transverse force P is acting in the downward out-of-plane
direction.

a) Define the reaction forces in a figure, and

explain why the structure is statically de-
terminate.

b) Show that the three in-plane reaction
forces are zero.

c) Determine the remaining three out-of-
plane reaction forces.

Exercise 1.17. Three beams of equal length AD, BE and CF are placed in a horizontal

plane as shown in the figure. Each beam has a simple support at one end, while the other

end rests on the mid-point of one of the other

beams. The beam AD is loaded by a downward
force of magnitude 14N, located in the middle

between A and B.

a) Determine the vertical reaction forces at

the supports D, E and F as well as the
forces transferred between the beams at

A, B and C.

It is convenient to formulate the equilibrium

conditions for each individual beam.

Exercise 1.18. The figure shows a simply supported girder ABCD with a hinge at C.

The girder is loaded by a uniform distribu-
tion of vertical forces of intensity p, similar

to Exercise 1.12.

a) Determine all reaction components
RA, R′

A, RB and RD by use of the

principle of virtual work.
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Exercise 1.19. The girder ACEFDB is simply supported at A, B, C and D. The central

part is connected via hinges at E and F .
The vertical reactions at A, B, C and D
are to be determined by the principle of

virtual work for the following load cases:

a) Uniform vertical load p over the full
length AB.

b) Uniform vertical load p over the cen-
tral part EF .

c) Uniform vertical load p over ACEF .

Exercise 1.20. Determine the remaining reactions in Example 1.12 by the principle of
virtual work.



Truss Structures 2

Truss structures constitute a special class of structures in which individual
straight members are connected at joints. The members are assumed to be
connected to the joints in a manner that permit rotation, and thereby it fol-
lows from equilibrium considerations, to be detailed in the following, that the
individual structural members act as bars, i.e. structural members that can
only carry an axial force in either tension or compression. Often the joints do
not really permit free rotation, and the assumption of a truss structure then
is an approximation. Even if this is the case the layout of a truss structure
implies that it can carry its loads under the assumption that the individual
members act as bars supporting only an axial force. This greatly simplifies the
analysis of the forces in the structure by hand calculation and undoubtedly
contributed to their popularity e.g. for bridges, towers, pavilions etc. up to
the middle of the twentieth century. The layout of the structural members in
the form of a truss structure also finds use with rigid or semi-rigid joints, e.g.
space truss roofs, girders for suspension bridges, or steel offshore structures.
The rigid joints introduce bending effects in the structural members, but
these effects are easily included by use of numerically based computational
methods.

S. Krenk, J. Høgsberg, Statics and Mechanics of Structures,
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In a statically determinate truss all the bar forces can be determined by the
equilibrium equations, applied to the bars and joints of the truss. There are
several strategies for carrying out the corresponding calculations, and three
of these will be described in this chapter. The first and conceptually simplest
method consists in considering each joint as an isolated body, for which the
equilibrium equations must be satisfied. As there are no moment equations
due to the hinge property of the joint this gives two equilibrium equations
for a joint in a planar truss and three equilibrium equations for a joint in
a space truss. The calculation of the bar forces proceeds by considering the
individual joints sequentially as explained in Section 2.2. Alternatively, the
bar forces can be calculated by using sections to separate larger parts of the
structure and then applying suitable equilibrium equations for these larger
parts. This method is dealt with in Section 2.3.

It is characteristic of the classic methods of joints and of sections, that they
are arranged to determine the bar forces sequentially, and thus are convenient
for calculation of the bar forces or a subset of these by hand. However, in their
basic form these methods are limited to statically determinate trusses, and
even for this class of structures the calculations may become quite elaborate
for space trusses and larger planar trusses. Alternatively, a general system-
atic method can be developed for elastic trusses, irrespective of whether they
are statically determinate or indeterminate. The method consists of setting
up the equilibrium equations of all joints in a systematic way, using the
elastic property of the bars. This method is a special case of the Finite Ele-
ment Method, used in its general form for a wide range of problems within
structural mechanics, see e.g. Cook et al. (2002) and Zienkiewicz and Taylor
(2000). The formulation of the Finite Element Method takes on a particularly
systematic form, when using the principle of virtual work, already mentioned
for rigid bodies in Section 1.6. The extension of the principle of virtual work
to truss structures is described in Section 2.4.3, and is used to formulate the
Finite Element Method for elastic truss structures in Section 2.5.

Fig. 2.1: Plane truss with joints and bars.
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2.1 Basic principles

A truss structure consists of a number of joints, connected by bars. This
is illustrated in Fig. 2.1 showing a truss structure consisting of the joints
numbered as 1, 2, · · · , 7, connected by bars indicated by numbers in a circle.
The joints are assumed to act like hinges, permitting free rotation of the bars
around the joint. It is furthermore assumed that the truss structure is only
loaded by concentrated forces acting at the joints. As a consequence of the
assumption of hinges the bar elements can only support an axial force. This
is easily demonstrated by considering Fig. 2.2. Due to the hinge there can
be no moment at the ends of the bar element. Furthermore, if the force N
in the bar were not aligned along the direction of the bar, there would be
a non-zero moment about the hinge at the other end of the bar. Thus, the
bar can only support a force of magnitude N , aligned along the direction of
the bar. By convention the force in the bars of a truss structure are defined
as positive when corresponding to tension, and they are then negative when
representing compression.

Fig. 2.2: Force in a bar along the bar axis.

A basic principle in the analysis of structures is the section. A section is used
to represent a hypothetical separation of a part of the structure from the
rest. This hypothetical separation enables a concise discussion of the forces
exchanged between the parts on the two sides of the section. The situation
is illustrated in simple form in Fig. 2.1. The figure shows the hypothetical
situation in which the bar number 6 is separated from the structure by a
section right next to the joints at the ends of the bar. The bar will be acted
on by a force along the bar axis, and it follows from equilibrium, that the
force at the sections at the ends of the bar must be of equal magnitude but
opposite direction. The magnitude is denoted N6 and is shown in the figure
as positive corresponding to tension.

The figure also shows the effect of separating the joint 3 from the structure.
In order to maintain the same state as in the structure the joint is acted
upon by forces from each of the connected bars. The bar forces are defined as
positive in tension, and positive bar forces therefore appear as forces N2, N3,
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N5 and N6 pointing away from the joint. It is important to note that when
the bar 6 has a tension force N6, the bar is acted on by a force of magnitude
N6 pointing away from the bar towards the connecting joint. The connecting
joints will similarly be acted on by a force of magnitude N6 pointing away
from the node. By this sign convention positive forces will point away from
the member – joint or bar – on which they act. When making a sketch
of a structural part, i.e. a joint or a bar, the forces will always be shown
corresponding to their positive direction, i.e. as tension forces. If a bar force
is determined to be compressive, this corresponds to a negative value of the
magnitude N , and the sign of the arrow in the figure will be retained in the
direction corresponding to tension.

2.1.1 Building with triangles

The triangle plays an important role in the geometric layout of truss struc-
tures. The reason for this is illustrated by the three planar trusses shown in
Fig. 2.3. To be specific they can be envisaged to have a simple fixed support
at the left end, and a simple support permitting horizontal motion at the
right end. At first glance they may look as ‘plausible’ candidates for a truss,
but are they satisfactory structures?

The truss shown in Fig. 2.3a consists of two triangles, connected by a quadri-
lateral at the center. The original structure is shown in full line, while the
dotted line shows a possible deformation mechanism, by which the central
quadrilateral changes shape without need for changing the length of any of
the bars in the structure. Thus, even for perfectly rigid bar members the
structure has a deformation mechanism. The existence of one or more free
deformation mechanisms within a structure is termed kinematic indetermi-
nacy. In the present case the implication is that the structure can not be
used with the prescribed support conditions, but will need an extra support
preventing the mechanism.

Fig. 2.3: From kinematic to static indeterminacy.

The mechanism can be locked by introducing a diagonal bar in the center
quadrilateral as shown in Fig. 2.3b. It is seen that this prevents the free
deformation mode, and also leads to a structure formed by triangles. The
structure thereby becomes kinematically determinate. It is demonstrated be-
low that this structure with supports providing three reaction components
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permits determination of all bar forces by use of the equilibrium conditions
only. This property is termed static determinacy.

The equilibrium conditions imply that the force at the two ends of each bar
must be of identical magnitude but opposite direction. The remaining equi-
librium conditions then express force equilibrium at each joint, illustrated
e.g. as equilibrium of the four forces acting on the joint 3 of the truss in
Fig. 2.1. It follows from this principle that introduction of an extra bar in a
truss, as shown in Fig. 2.3c, will introduce a new undetermined force in this
bar. However, for a statically determinate truss the equilibrium equations are
precisely sufficient to determine the forces in all bars, and consequently the
introduction of an extra bar will leave the number of equilibrium conditions
one short. A truss structure, in which the number of equilibrium equations
is insufficient to determine all bar forces, is termed statically indeterminate.
In contrast to structures with deformation mechanisms, that are generally
unsuitable, statical indeterminacy does not constitute a limitation of the po-
tential usefulness of the structure. It just implies that the specific distribution
of the forces between the bars, or some of the bars, depends on the defor-
mation properties of these bars. In the present example the two crossing
diagonals in Fig. 2.3c share in preventing the deformation mechanism of the
quadrilateral of the original structure. However, due to the static indetermi-
nacy the precise ratio in which they share depends on their relative stiffness.
Thus, the analysis of statically indeterminate structures require additional in-
formation about the stiffness of the structural members. In this chapter hand
calculation type methods are developed for statically determinate trusses,
while statically indeterminate trusses are left as part of the Finite Element
formulation developed in Section 2.5.

2.1.2 Counting joints and bars

Some typical planar trusses are shown in Figure 2.4. It is seen that they are
formed by triangles, and this suggests that they are statically determinate,
when supported appropriately by three independent reaction components.
It is now demonstrated by a common method for planar trusses, that they
are indeed statically determinate. The method leads to a necessary relation
between the number of joints and the number of bars. However, and proba-
bly equally important, it identifies a rational way of thinking about a truss
structure, in which a process is constructed by which the structure is ex-
tended joint by joint, simulating an actual construction of the truss from bar
elements connected by joints.

For a planar truss the hypothetical construction process starts from a simple
triangle, and in order to be specific this triangle is supported by a fixed
and a movable support as shown in Fig. 2.5a. Equilibrium of the nodes can
be established by two projection equations for the unsupported node, and
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Fig. 2.4: a) V-truss, b) N-truss, c) Roof truss, d) K-truss.

a vertical projection equation of the forces on the node with the moveable
support. This gives three equations, corresponding to the three bar forces to
be determined. Thus, the initial triangle is statically determinate.

Fig. 2.5: Construction of plane truss girders by triangles.

The process is continued by attaching a new joint by two new bars as illus-
trated in Fig. 2.5. If the bars are not parallel, they will uniquely determine
the position of the new joint, and two projection equations for the forces on
the new joint will determine the bar forces. This step, in which a new joint is
added and fastened by two new bars, can be continued as illustrated in the
figure. The process defines a simple relation between the number of bars b
and the number of joints j in a statically determinate planar truss:

b = 2j − 3 . (2.1)

This relation is easily verified by observing that it is correct for the original
triangle with b = 3 and j = 3, and that inclusion of one new joint leads to two
additional bars. The relation between the number of bars and the number
of joints is necessary, but clearly not sufficient. This becomes obvious e.g.
by considering removing one of the diagonals and rejoining it as a diagonal
crossing the remaining diagonal. Hereby part of the truss becomes kinemat-
ically indeterminate, implying a mechanism, while the additional bar in the
remaining structure makes this part statically indeterminate. Thus, the pro-
cess, in which a gradual construction of the truss by statically determinate
steps is imagined, is probably more valuable than the formula, if left alone.
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Fig. 2.6: Change of supports after ‘constructing’ the truss.

At first sight it may appear that the process is dependent on the supports
being applied to the initial triangle. However, this is not the case. The result
is independent of the specific support conditions as long as they provide three
independent reaction components. After completing the truss structure, the
supports can be moved as illustrated in Fig. 2.6.

Fig. 2.7: Construction of space truss by addition of tetrahedra.

The results for planar trusses are easily extended to space trusses as illus-
trated in Fig. 2.7. The starting point is a tetrahedron (pyramid), formed by 4
joints and 6 connecting bars. The tetrahedron is supported by 6 independent
reaction components. This leaves 4 · 3 − 6 = 6 equilibrium conditions from
the 4 nodes for determination of the 6 bar forces. The process is continued
in steps consisting in the addition of 1 new joint connected by 3 new bars.
The three bars keep the joint fixed in space, and the three force projection
equations associated with equilibrium of the new joint determine the three
new bar forces. The figure shows the two first steps in this process leading to
a truss girder of a type typically used for building cranes. This leads to the
following relation between the number of bars b and the number of joints j
of a statically determinate space truss:

b = 3j − 6 . (2.2)

Also in this case the relation is necessary but not sufficient, and the imaginary
process of constructing the space truss constitutes an important part.

2.1.3 Qualitative tension-compression considerations

It is often possible to identify whether a bar member in a truss is loaded in
tension or compression by a simple qualitative argument involving an esti-
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mate of the actual deformation of the loaded truss, or by constructing the
mechanism that would result if the member were removed from the truss.
Figure 2.8a shows a simply supported N-truss girder consisting of the ‘head’,
the ‘foot’, the ‘verticals’ and the ‘diagonals’. It is observed, that with j = 10
joints and b = 17 bars the truss satisfies the condition (2.1) for a statically
determinate truss. Figure 2.8b shows a sketch of the deformed girder after
loading by distributed downward forces. It is clearly seen that the bars in
the foot are extended, indicating tension, while the bars in the head become
shorter, indicating compression. However, it is more difficult to identify elon-
gation or shortening of the verticals and the diagonals.

Fig. 2.8: Tension and compression members in truss girder.

A somewhat different and more precise way of estimating whether a bar is in
tension or compression consists in imagining that the bar were removed from
the truss. For a statically determinate structure this would create a mecha-
nism. Figure 2.9a illustrates the mechanism generated by removing the second
bar in the head, while Fig. 2.9b illustrates the mechanism associated with re-
moval of the third bar in the foot. The mechanisms are shown corresponding
to a downward load. It is clearly seen that the distance between the two joints
constituting the end points of the removed bar approach each other in the
case of the bar in the head, while they become further separated in the case
of the bar in the foot. Thus, the bar in the head will experience compression,
while the bar in the foot will experience tension, when the structure carries
a downward load.

Fig. 2.9: Mechanisms by removing a bar in the head or in the foot.

A similar geometric argument can be used to identify the sign of the force
in the diagonals and the verticals. Figure 2.10a illustrates the deformation
mechanism generated when removing the second diagonal from the left. It
is seen that diagonal would be extended by the illustrated mechanism. Thus
there will be tension in the diagonal when the loads perform positive work
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through the mechanism. this would be the case for a downward load at the
cental or right nodes of the head or the foot. However, a downward load in
the first set of node to the right of the left support would create negative
work and therefore contribute a compressive force. Figure 2.10b illustrates
the mechanism generated by removing the second vertical from the left. A
vertical downward load at any of the three inner nodes of the head would
lead to compression in this vertical.

Fig. 2.10: Mechanisms by removing a diagonal or a vertical bar.

The qualitative arguments used to explain the implication of the mechanisms
generated by removing a single bar from the truss can be made precise if the
geometry of the infinitesimal motion of the mechanism is described exactly
and used within the context of virtual work, described in Section 2.4.

2.2 Method of joints

The magnitude of the forces in the bars of a statically determinate truss
structure can be determined by the method of joints. The idea of the method
of joints is to consider each joint as separated from the rest of the truss
structure by the introduction of a virtual section. The parts on the two sides
of the section will exchange identical but opposite forces, and by introducing
the section and identifying these forces explicitly, they can be analyzed by
the equilibrium equations. The principle is illustrated in its simplest form in
Fig. 2.11. The left part of the figure shows a joint C in a planar truss loaded
by the vertical force P and connected to the rest of the truss by the two bars
AC and BC. A section is now introduced, separating the joint from the rest
of the structure. The forces NAC and NBC , by which the bars act on the
joint, are indicated as acting on the joint together with the load P . Thus, the
joint C is acted on by three forces. The forces in the bars are considered as
positive, when representing tension in the bar. Thus, the effect on the joint is
a force directed away from the joint. By the law of action and reaction equal
but opposite forces act on the bars. As seen, these forces represent tension in
the bars. It is noted that the forces NAC and NBC are uniquely defined as
being positive in tension. A representation in terms of vectors is less direct,
as it would require identification of the part on which the force acts.
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Fig. 2.11: Node C with load P and bar forces NAC and NBC .

Equilibrium of the joint C requires that two force projection equations are
satisfied. Vertical projection gives

↓ NBC sin 45◦ + P = 0 ⇒ NBC =
−P

sin 45◦
= −

√
2P .

By taking a vertical projection, the force NAC in the horizontal bar AC does
not contribute to the equilibrium equation.

The remaining bar force NAC can be determined by projection on the direc-
tion orthogonal to BC. The present case is simple due to the angle 45◦, and
gives NAC = P directly. In many cases it will be more convenient to use a
horizontal projection, whereby

← NAC + NBC cos 45◦ = 0 ⇒ NAC = −NBC cos 45◦ = P .

Thus, there is compression in the inclined bar BC, while the horizontal bar
AC is in tension to ensure horizontal equilibrium.

In this simple illustration there were only two bar forces, and thus they could
be determined directly by the two equilibrium equations available for the
planar joint C. Most joints in truss structures are connected by more bars
than there are equilibrium equations available for the particular joint. The
bar forces can therefore only be determined sequentially, if the joints are
considered in a certain order. This is illustrated in the following examples.

2.2.1 Planar truss structures

Many truss structures can conceptually be broken down into planar parts,
and this section illustrates the calculation of bar forces for some simple planar
trusses.

Example 2.1. Double triangle. Figure 2.12 shows a planar truss consisting of two tri-

angles. There are 4 joints, providing 4 × 2 = 8 equilibrium equations, that determine the
three reaction components RA, RD and R′

D, plus the forces in the five bars in the truss.

In principle the analysis could be carried out completely on a joint by joint basis, starting

from C and then proceeding through B, A and D. At each node there would be two
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Fig. 2.12: Double triangle truss with load P .

unknown forces, and at the end all bar forces and reactions will be determined. However,
for many truss structures it is not possible to start from a node with only two unknown

forces, unless appropriate reaction components are determined first. Therefore, the analysis
of a statically determinate truss usually starts with determination of the reactions, using

equilibrium of the full truss or parts of the truss as discussed in Section 1.5 on reactions. In
the present case the reaction components R′

D, RD and RA are determined by horizontal

projection and moment about A and D, respectively:

R′
D = 0 , RD = 2P , RA = −P .

Note the negative reaction in A, indicating downward direction of the force.

Fig. 2.13: Joints A, B and C of dounle triangle truss.

Figure 2.13 shows all the nodes with the forces indicated in their positive direction as

tension. If a compression force is found in the analysis, this shows up as a negative force.
The bar forces are determined from equilibrium of the forces acting on the individual nodes.

Thus, vertical and horizontal projection of the forces acting on joint C lead to

↓ NDC cos 60◦ + P = 0 ⇒ NDC = −2P .

← NBC +NDC cos 30◦ = 0 ⇒ NBC =
√
3P .

At joint A vertical projection gives

↑ NAB cos 60◦ +RA = 0 ⇒ NAB = 2P ,

while horizontal projection then leads to

→ NAD +NAB cos 30◦ = 0 ⇒ NAD = −
√
3P .

Finally, vertical projection of the forces acting on joint B gives

↓ NAB cos 60◦ +NBD = 0 ⇒ NBD = −P .
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This completes the calculation of the bar forces. There are still an unused projection

equation at joint B and two projection equations for joint D. This corresponds to the
three reaction components that were determined initially from total equilibrium. �

Example 2.2. V-truss by the method of joints. Figure 2.14 shows a simply supported
V-truss, loaded by a concentrated force at B. The support conditions permit the vertical

reaction components RA and RC plus the horizontal reaction R′
A. They are determined

from the equilibrium conditions for the total truss structures as discussed in detail in

Chapter 1. The reactions follow from horizontal projection, moment about C and moment
about A as

R′
A = 0 , RA = 1

2
P , RC = 1

2
P .

Control by vertical projection gives RA +RC = P , corresponding to the load P .

Fig. 2.14: Simply supported V-truss with load P .

The loading is symmetric, and because the horizontal reaction component R′
A vanishes,

so are the reactions. Thus, the structure and its bar forces are symmetric with respect to
a vertical line through B, and only the right half with the nodes B, C and D need to be

considered to determine all the bar forces. These nodes and the corresponding forces from
loads, reactions and bars are shown in Fig. 2.15.

It is seen from the figure that joint C only contains two unknown forces. Once they are de-

termined, the joint D only contains two unknown forces. These forces, and their symmetric
counterparts, determine equilibrium at joint B which can be used to check the previous

calculations.

Fig. 2.15: Joints B, C and D of V-truss.

Equilibrium of joint C determines the forces NDC and NBC by vertical and horizontal
projection, respectively:
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↑ NDC sin 45◦ + 1
2
P = 0 ⇒ NDC = − 1

2

√
2P .

With NDC known, horizontal projection then gives

← NBC +NDC cos 45◦ = 0 ⇒ NBC = 1
2
P .

At joint D vertical projection gives

↓ NBD sin 45◦ +NDC sin 45◦ = 0 ⇒ NBD = 1
2

√
2P .

The remaining bar force NED then follows from horizontal projection:

← NED +NBD cos 45◦ −NDC cos 45◦ = 0 ⇒ NED = −P .

This completes the calculation of bar forces, because the remaining bar forces now follow
from their symmetric counterparts, e.g. NEB = NBD and NAB = NBC . Using these forces

from the left side of the structure, the equilibrium conditions for joint B may be used as
control of the calculations, with vertical projection

↑ NEB sin 45◦ +NBD sin 45◦ − P = 0

and horizontal projection

← NAB −NBC + (NEB −NBD) cos 45◦ = 0 ,

demonstrating equilibrium. �

Example 2.3. Roof truss by method of joints. For some loads one or more of the bars

in a truss structure may have zero force, thus being essentially inactive in this load case.
The identification of these bars is illustrated in this example by considering the roof truss

in Fig. 2.16.

Fig. 2.16: Roof truss with load P at truss foot.

Bars with zero force may occur, when two bars at an unloaded joint are aligned. A trans-

verse projection of the forces at this node will then not contain these forces. Thus, if there
is only a single transverse bar, the force in this bar must vanish if there is no transverse

load. This applies to the joint B as shown in Fig. 2.17a. The two bars AB and BC are
horizontal, and thus only the force NBH in the vertical bar BH contributes to vertical

equilibrium. When there is no load at the node, this implies that NBH = 0. In plain
words, the argument is that when two bars share a common joint and follow the same

direction, then they can not support a transverse force.
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Fig. 2.17: Identification of zero force bars in roof truss.

This argument can be continued by now considering the joint H shown in Fig. 2.17b.
There are two bar forces NBH and NHC that potentially could contribute to the transverse

equilibrium of the joint H. However, as NBH = 0 according to the previous calculation,
the remaining transverse force must also vanish, whereby NCH = 0. It should be noted

that the argument does not depend on the angle between the two aligned bars and the
bar providing the transverse component, as the latter is the only bar contributing to the

transverse equilibrium. The presence of zero force bars simplify the computation of the
remaining bar forces as illustrated below.

Fig. 2.18: Joints D, E and F of roof truss.

The computation of the non-zero bar forces conveniently starts with determination of the

reactions from equilibrium of the complete truss structure as in the previous two examples.
Horizontal projection and moments about E and A give

R′
A = 0 , RA = 1

4
P , RE = 3

4
P .

The bar forces in the right half of the truss can then be calculated by considering equi-
librium of the joints E, D and F , as illustrated in Fig. 2.18. For the joint E vertical

equilibrium gives

↑ NEF cos 60◦ +RE = 0 ⇒ NEF = − 3
2
P ,

while horizontal equilibrium gives

← NDE +NEF cos 30◦ = 0 ⇒ NDE = 3
4

√
3P .

It is now advantageous to move on to joint D due to the particularly simple form of the
vertical and horizontal equilibrium conditions, each consisting of two opposing forces of

equal magnitude:

NDF = P , NCD = NDE = 3
4

√
3P .
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At node F projection on the direction orthogonal to the truss head gives

NCF cos 30◦ +NDF cos 30◦ = 0 ⇒ NCF = −NDF = −P ,

while NFG follows from horizontal projection with the common angle 30◦:

← NFG cos 30◦ +NCF cos 30◦ −NEF cos 30◦ = 0

⇒ NFG = NEF −NCF = − 1
2
P .

The remaining bar forces are left as Exercise 2.10. �

2.2.2 Space trusses

In the case of space trusses hand calculation methods typically make use of
special features of the truss geometry, and rapidly become fairly impractical
for larger structures. Most space structures are therefore analyzed by the
numerical Finite Element Method described in Section 2.5. A glimpse of the
hand calculation procedure is provided by the following example.

Example 2.4. Simple space truss. Figure 2.19 shows a simple cantilever space truss
carrying a tip load P . The dimensions of the structure are given in terms of a, b and h as

shown in the figure. The length of the inclined bars then is

� =
√

a2 + b2 + h2 .

The bar forces are determined by the method of joints, placing a section around the tip

D. The truss and the load are symmetric about a vertical plane through AD, and thus the
internal forces in the inclined bars are equal, NBD = NCD . Vertical projection for node

D then gives

↓ h

�
NBD +

h

�
NCD + P = 0 ⇒ NBD = NCD = − �

2h
P .

Fig. 2.19: Simple space truss carrying vertical tip load P .

The remaining bar force NAD is obtained by horizontal projection, in the direction of AD,

← 2NBD
a

�
+ NAD = 0 ⇒ NAD =

a

h
P .
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Note, that all bar forces increase for smaller depth h of the truss. Also observe that the

force NAD is independent of the width 2b of the truss, and therefore is the same if the
inclined bars were collapsed in the vertical plane containing the horizontal bar AD. �

2.3 Method of sections

The idea of introducing a section, whereby a structure is separated into two
parts dates several hundred years back. The method of joints is a special case,
in which the section is introduced in such a way that it separates precisely one
joint. Hereby, all forces identified via the section pass through the released
joint, and therefore are governed by force equilibrium of the joint. The idea
of a section to identify the interaction of two parts of a structure is much
more general and plays a central role in the theory of structures including
beams and frames, but also in the general theory of a continuous bodies as
discussed in Chapter 8.

Fig. 2.20: Truss divided by vertical section.

A first step in the generalization of the idea of the section is to introduce a
section that divides the truss structure into two parts. This is illustrated for
the case of a planar truss in Fig. 2.20a. A section is introduced that intersects
the bars BC, FC and FE and divides the structure into two parts shown
in Fig. 2.20b. The section identifies three bar forces, acting on each part of
the structure with different direction. Thus, three new forces NBC , NFC and
NFE have appeared. In the original structure three equilibrium equations
were available for determining the reactions as discussed in Chapter 1. After
separating the original structure into two parts, each part must satisfy three
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equilibrium equations, and thus three new equations are now available for
calculation of the bar forces NBC , NFC and NFE . In the truss illustrated
in Fig. 2.20 the three bar forces may be obtained from equilibrium of the
right part of the truss, and the three reactions may then be determined from
equilibrium of the left part.

2.3.1 Bar forces via the method of sections

The use of the method of sections to determine the bar forces in a planar
truss is first illustrated by a simple example, and then summarized in concise
form.

Example 2.5. V-truss by method of sections. Figure 2.21 shows a planar V-truss that

has already been analyzed by the method of joints in Example 2.2. It is here analyzed
by the method of sections to demonstrate the principles involved. First the reactions are

determined by equilibrium of the full truss:

R′
A = 0 , RA = 1

2
P , RC = 1

2
P .

Fig. 2.21: Simply supported V-truss with load P .

In the method of joints the analysis would start from a node with two unknown bar forces

– in the present case either of the joints A and C. This can also be used in the method
of sections by introducing a vertical section, isolating the supported node. However, the

method of sections also permits direct determination of the forces in the central bars. To
illustrate the general procedure in the method of sections, a vertical section is introduced

just to the right of the joint B as shown in the figure. This section intersects the bars
BC, BD and DE and is used for calculating the corresponding bar forces NBC , NBD and

NDE .

Equilibrium of either the left or the right part of the structure is now used to determine
the three bar forces NBC , NBD and NDE . Note, that in contrast to the case of a single

node the two parts have finite extent, and equilibrium therefore involves three equilibrium
equations, and not just the two force projection equations associated with a single node.

In the present problem equilibrium of the right part is the simpler, because it involves only
one reaction component and not the load. The right part is shown in Fig. 2.22 together

with all the forces acting on this part.
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Fig. 2.22: Equilibrium in section.

The calculation of the bar forces proceeds in a systematic fashion by the following steps.
First it is observed that two of the bar forces to be determined, namely NDE and NBC ,

are parallel. The remaining force NBD in the inclined diagonal can then be determined by
use of vertical equilibrium:

↓ NBD cos 45◦ −RC = 0 ⇒ NBD =
√
2RC = 1

2

√
2P .

This force intersects the two still unknown bar forces NBC and NDE in B and D, re-

spectively. Thus, a moment equation about any of these two points will involve only one
unknown bar force. The bar force NBC is determined by moment about D:

�

D aNBC − aRC = 0 ⇒ NBC = RC = 1
2
P .

Finally, the bar force NDE is determined by moment about B:

�

B aNDE + 2aRC = 0 ⇒ NDE = −2RC = −P .

It is seen that each of the three forces NBD, NBC and NDE has been calculated from an

equilibrium equation, that does not involve any of the other two forces. �

The method of sections for planar trusses can be formalized by the following
procedure.

i) Determine the reactions on the truss structure.

ii) Divide the truss structure into two parts by a section, intersecting two
or three bars.

iii) Consider each of the bar forces in turn and determine the bar force
by: moment about the point of intersection of the other two forces, or
projection on the transverse direction, if they are parallel.

It follows from the independence of the calculation of each bar force associ-
ated with a given section, that the order of the calculations can be changed,
and indeed any of the bar forces can be calculated without calculating the
others. As a consequence the method of sections can often be used to cal-
culate isolated bar forces of a truss structure, without need for calculating
the forces in adjoining bars. In addition to its computational simplicity, the
method of sections often provides direct insight into the systematic variation
of the forces in e.g. diagonals or verticals of regular truss structures.
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2.3.2 Special types of planar trusses

Planar trusses appear in many contexts and often in the form of truss girders
e.g. in bridges and cranes. Typical examples were illustrated in Fig. 2.4. The
following examples illustrate the analysis for four types of trusses – three
typical truss girders and a roof truss. The truss girder examples illustrate
the method of analysis by introducing a typical section and calculating the
bar forces associated with that section. The full analysis requires a sequence
of similar sections, and omitting the repetitions associated with the typical
section, the full results are summarized to illustrate how the girder layout
determines the distribution of bar forces in the girder. The roof girder is more
an individual type, where modification of the inner bars leads to modification
of the analysis.

Example 2.6. N-truss girder. N-truss girders have constant or moderately changing

height, filled with interchanging vertical and inclined bars. They find application in bridges,
both traditional steel truss bridges and more recently in girders carrying the load on sus-

pension bridges and cable stayed bridges. They also find use as supporting structure for
roofs in industrial buildings where an important load component is a distributed vertical

load. A simple illustration is shown as Fig. 2.23, where equal vertical forces P are applied
to the 7 joints in the foot of a simply supported N-girder. For simplicity of analysis the

horizontal spacing of the joints is taken equal to the height of the girder. While simplifying
the expressions appearing in the analysis this has no principal impact on the procedure.

The effect of the height of a regular truss girder under distributed load is discussed in the
following example.

Fig. 2.23: Simply supported N-truss with distributed loads P .

The reactions are determined by horizontal projection and moments about nodes I and A:

R′
A = 0 , RA = RI = 7

2
P .

The forces in the bars are then determined by introducing vertical and inclined sections as
illustrated in Fig. 2.24.

The vertical section shown in the figure intersects the diagonal SC and the corresponding

bars SQ and BC in the head and the foot, respectively. The bar forces in the head and
the foot are parallel, and the force NSC in the diagonal is therefore determined by vertical

projection of all forces on the left part of the truss girder:

↓ NSC cos 45◦ −RA + P = 0 ⇒ NSC = 5
2

√
2P .



58 Truss Structures

The force NBC then follows from moment about S:

�

S aNBC − aRA = 0 ⇒ NBC = RA = 7
2
P .

Finally, the force NSQ in the head follows via moment about C:

�

C aNSQ + 2aRA − aP = 0 ⇒ NSQ = −6P .

Fig. 2.24: Equilibrium at section.

The forces in the verticals are determined by use of inclined sections as shown in Fig. 2.24b.

Vertical equilibrium determines the force NBS in the vertical via

↑ NBS +RA − P = 0 ⇒ NBS = − 5
2
P .

The force NTS in the head can be determined via moment about B, while the force NBC

in the foot has already been determined above by the vertical section. The procedure used

for the four bar forces here is repeated along the left half of the girder, and the remaining
bar forces then follow by symmetry. The resulting bar forces are shown in Fig. 2.25.

Fig. 2.25: Bar forces in N-truss.

A clear pattern can be seen in the magnitude of the forces in the verticals and diagonals
of the truss. When starting at the left support A the vertical carries a compressive force
NAT = − 7

2
P . The force NBS in the next vertical is P less due to the load P acting at

B. This pattern continues towards the center, where the force in the vertical vanishes due
to symmetry. The forces in the diagonals are closely related to those in the corresponding

verticals. This is perhaps most easily seen by considering one of the unloaded joints in the
head, e.g. S. Vertical equilibrium of this joint requires NSC = −

√
2NBS , and thus the

pattern from the verticals is repeated in the diagonals, but with opposite sign. It is inter-
esting to observe, that if the diagonals were turned the other way, the forces would retain

their magnitude but become compression instead of tension. By the argument concerning
equilibrium of the joints in the head of the girder it follows that the forces in the verticals
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would then also change sign. The forces in head and foot increase towards the center. The

pattern of this variation will become clear in connection with the analysis of beams in
Chapter 3. �

Example 2.7. V-truss. In a V-truss the diagonals are inclined to the right and to the left
as illustrated in Fig. 2.26. The angle α with horizontal is given in terms of the truss height

h and the length a of the horizontal bars by

sinα =
2h√

4h2 + a2
.

The truss of the present example is simply supported at nodes A and G, and loaded by

vertical forces of magnitude P at all the nodes of the girder foot as shown in the figure.

Fig. 2.26: Simply supported V-truss girder with distributed loads P .

The section shown in the figure intersects the diagonal CL. The analysis considers equi-
librium of the left part of the structure as shown in Fig. 2.27a. The forces in the bars in

the head and the foot are parallel and horizontal. Thus, the force NCL in the diagonal is
determined by vertical projection:

↓ NCL sinα−RA + P = 0 ⇒ NCL =
3P

2 sinα
.

The force NBC in the foot is determined via moment about L:

�

L hNBC − 3
2
aRA + 1

2
aP = 0 ⇒ NBC =

13

4

a

h
P .

Finally, the force NKL in the head is found by moment about C:

�

C hNKL + 2aRA − aP = 0 ⇒ NKL = −4
a

h
P .

Fig. 2.27: Section equilibrium.
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The calculation proceeds along the girder by next considering the section that intersects

the diagonal CK as illustrated in Fig. 2.27b. The forces in the intersected bars now follow
from equilibrium of the left part. The diagonal force NCK is found by vertical projection:

↑ NCK sinα+RA − 2P = 0 ⇒ NCK = − P

2 sinα
.

The force NCD in the foot follows from moment about the node K in the head:

�

K hNCD − 5
2
aRA + 3

2
aP + 1

2
aP = 0 ⇒ NCD =

17

4

a

h
P .

Finally, the force NKL in the head follows from moment about the node C in the foot:

�

C hNKL + 2aRA − aP = 0 ⇒ NKL = −4
a

h
P .

It should be noted that this force has already been calculated by the previous section.

Fig. 2.28: Bar forces in V-truss girder.

By use of similar sections along the V-truss girder the member forces shown in Fig. 2.28

are found. It is noted that the forces in the diagonals are proportional with P/ sinα, while
the forces in the head and the foot are proportional with aP/h, i.e. smaller for larger girder

height. �

Example 2.8. K-truss. The so-called K-truss finds application e.g. in towers, masts, and

in the legs of offshore jackup platforms. In spite of the fact that the K-truss is typically
used in vertical orientation the following analysis will address the horizontal orientation

and use the names head and foot for the two sides of the truss. In a K-truss the connection
between head and foot is established by a combination of transverse and inclined bars,

meeting at the center of the transversal bars as shown in Fig. 2.29. The angle α between
the diagonals and direction of the truss girder is determined by

Fig. 2.29: Cantilever K-truss girder loaded by P at foot. ***
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sinα =
h√

h2 + 4a2
, tanα =

h

2a
,

where h is the transverse girder dimension and a is the length of a single K-section as

indicated in the figure.

Due to the double diagonals in the K-truss a general section will intersect four bars, and
thus the bar forces can not be computed by use of a single section as in the case of N-

trusses and V-trusses. However, this problem is easily overcome by considering equilibrium
of the inner nodes of the K-truss. A typical inner node is shown in Fig. 2.30. The node

is connected to two transverse bars with forces NLS and NLF , and to two diagonals with
forces NLR and NLE . Horizontal projection only involves the forces in the diagonals, and

thus
NLR cosα+NLE cosα = 0 ⇒ NLR = −NLE .

Thus, the resulting force from the two diagonals is a downward force of magnitude

2NLE sinα.

Fig. 2.30: Equilibrium of center node L.

The calculation now proceeds from a transverse section, here selected as shown in
Fig. 2.31b. The two diagonal forces combine to a vertical downward force of magnitude

2NLE sinα, and thus vertical equilibrium of the right part of the structure gives

↓ 2NLE sinα + P = 0 ⇒ NLR = −NLE =
P

2 sinα
.

Note, that this is tension in the upper diagonal and compression in the lower diagonal.

The force NEF in the foot is determined by moment about the node S in the head:

�

S hNEF + aP = 0 ⇒ NEF = − a

h
P .

This corresponds to compression in the foot. Finally, the force NSR follows from moment

about node F :

�

F hNSR − aP = 0 ⇒ NSR =
a

h
P .

corresponding to tension in the head.

The force in the transverse bars can be determined by equilibrium of the node in the foot
or head, once the corresponding diagonal bar force has been determined. Thus, as shown
in Fig. 2.31a, equilibrium of node E in the transverse direction gives

↑ NEK + NLE sinα = 0 ⇒ NEK = −NLE sinα = 1
2
P .

The similar argument for node R in the head gives

↓ NRK +NLR sinα = 0 ⇒ NRK = −NLR sinα = − 1
2
P .
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Fig. 2.31: Equilibrium of section.

The forces in the diagonals are found by projection, and in the present problem this involves
only the end load P . Thus, all upper diagonals have the same tension force 1

2
P/ sinα, while

all lower diagonals have the compression force − 1
2
P/ sinα. Similarly all upper transverse

bars have the compression force − 1
2
P , while the lower transverse bars have the tension

force 1
2
P .

Fig. 2.32: Bar forces in K-truss.

The forces in the girder head and foot are determined by moment equilibrium about a node
at distance h. The moment arm of the load increases by a when moving one step towards

the support. The bar forces in the full K-truss girder are shown in Fig. 2.32. They are seen
to follow a simple pattern with identical forces in similarly placed transverse and diagonal

bars, while the forces in head and foot increase towards the support. This corresponds
closely to the distribution of shear force and moment in a cantilever beam treated in the

following chapter. �

Example 2.9. Roof truss. Roofs of houses are often supported by truss structures, and
the particular W-type shown Fig. 2.33 is quite common. The geometry is determined by

the width 12a and the height 2h of the truss, together with the information that the inner
bars are connected to the mid-points of the head, and divides the foot into three equal

parts as shown in the figure. It follows from this definition of the geometry that all four
inner bars form the same angle β with horizontal. This can be seen by observing that

the longer internal bars have vertical projection 2h and horizontal projection 2a, while the
shorter internal bars have vertical projection h and horizontal projection a. The two angles

α and β are then defined from the dimensions a and h by

sinα =
h

√
h2 + (3a)2

, sinβ =
h√

h2 + a2
.

In the present case the load consists of a single vertical force P acting at node E. The
reactions are determined by horizontal projection, moment about D, and moment about A:

R′
A = 0 , RA = 1

4
P , RD = 3

4
P .
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Fig. 2.33: W roof truss.

First, a vertical section is made to the right of the top node F as shown in Fig. 2.33. The
right part of the structure and the exposed bar forces are shown in Fig. 2.34a. None of

the exposed bar forces are parallel, and thus they are determined by a sequence of three
independent moment equations. The first equation is moment about the supported node

D. The load P and the bar force NCF contribute to moment equilibrium. The contribution
from the inclined force NCF is most conveniently found by resolving it into a horizontal

and a vertical component through node C. Of these only the vertical component NCF sinβ
contributes to moment equilibrium, expressed by

�

D 4aNCF sinβ − 3aP = 0 ⇒ NCF =
3P

4 sinβ
.

Fig. 2.34: Section forces in W-truss.

The second equation is moment equilibrium about node C. The contribution from the

inclined force NEF is most conveniently found by sliding the force along its line of action
until it has origin in node D. It is then resolved into a horizontal component, and a vertical

component NEF sinα. Only the vertical component contributes to the moment equation,
which takes the form

�

C 4aNEF sinα− aP + 4aRD = 0 ⇒ NEF = − P

2 sinα
.

Node F is the intersection point of the two forces just determined, and thus moment about
node F gives

�

F 2hNBC + 3aP − 6aRD = 0 ⇒ NBC =
3a

4h
P .

This completes the computation of the three bar forces from the first section.
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The section is now moved to the left of node C, whereby the right part of the structure

is as shown in Fig. 2.34b. Two of the forces pass through node D, and thus only the load
and the bar force NCE contribute to moment equilibrium about D. By sliding the force

NCE along its line of action to node C, and then resolving it in a horizontal component
and the vertical component NCE sinβ, the following moment equation is obtained:

�

D 4aNCE sinβ + 3aP = 0 ⇒ NCE =
−3P

4 sinβ
.

Moment about node E determines the bar force NCD:

�

E hNCD − 3aRD = 0 ⇒ NCD =
9a

4h
P .

Finally, a vertical section through ED isolates the supported node D, and vertical equilib-
rium gives

↑ NDE sinα +RD = 0 ⇒ NDE = − 3P

4 sinα
.

This completes the analysis of the right half of the W-truss. With the present loading

equilibrium of nodes G and B leads to the conclusion that the forces in the inner bars GB
and BF of the left half of the truss vanish. Thus, the remaining forces are found by the
two projection equations for the supported corner node A. �

2.4 Stiffness and deformation of truss structures

In most structures strength and stiffness play important roles, even if it im-
plies just having ‘enough strength’ and ‘sufficient stiffness’. Basically the
concepts of strength and stiffness are material properties, and their effect in
a structure depends on how the materials are used to form the structure. The
concepts of strength and stiffness will be introduced gradually, when needed.
Thus, the present section is devoted to stiffness of bars – the so-called uni-
axial stiffness – while a general description of material stiffness and strength
is given in Chapter 8.

2.4.1 Axial stress and strain

The stiffness of a bar relates the elongation u to the axial force N in the bar.
The problem of relating these properties of the bar to material properties was
discussed by Galileo Galilei in 1638. The essential part of this discussion
is given here in a more modern form with reference to Fig. 2.35a. The figure
shows a homogeneous bar of length � and cross-section area A. The bar is
loaded by application of an axial force of magnitude N , which is considered
positive in tension. This force leads to an elongation of the bar of magnitude u.

Now, a thought experiment is conducted, in which the bar is split lengthwise
into two parts, each of area 1

2A as shown in Fig. 2.35b. Each of these parts
support half the load, while maintaining the original elongation. Therefore
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Fig. 2.35: Bar of length � and cross-section area A.

the elongation must depend on the force normalized by the cross-section area.
This normalized force is called the stress and is expressed as

σ =
N

A
=

Force

Area
,

[ N

m2

]
=
[
Pa
]
. (2.3)

In this formula the units are shown in square brackets. When the force is
expressed in Newton [N] and the area in square meters [m2] the resulting
unit for the stress is Pascal [Pa]. The stress is an expression of the magnitude
of the loading of the material.

Fig. 2.36: Axial stress σ and axial strain ε.

A suitable measure of deformation is identified by cutting the original bar
through the mid cross-section as shown in Fig. 2.35c. The length of each
part is 1

2�, and for a homogeneous bar each part contributes half of the
full elongation. Thus, the extension experienced at the material level is the
relative elongation. This is called the strain, defined by

ε =
u

�
=

Elongation

Length
,

[ m
m

]
=
[
-
]
. (2.4)

It follows from this definition of strain as the relative elongation that strain
is non-dimensional.
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The concept of stress and strain introduced here is just a special case, often
denoted as axial stress σ and axial strain ε, illustrated in Fig. 2.36. A general
discussion of stress and strain is given in Chapter 8. When considered as
part of a general state of stress and strain, the stress and strain defined here
are called normal stress and normal strain, because they act normal to the
surface area defined by the section.

2.4.2 Linear elastic bars

The operating stress level of a structure is normally considerably below the
stress level that would lead to irreversible processes and failure. For many
materials used in structures this implies that there is proportionality between
the stress σ and the strain ε in any part of the structure. This behavior is
called linear elasticity, and is described by the relation

σ = E ε , E
[
Pa
]
. (2.5)

This relation is often called Hooke’s law after Robert Hooke (1635–1703),
who proposed it in 1675 and demonstrated it experimentally for several me-
chanical systems in 1678. The parameter E is called the modulus of elasticity.
It is the factor of proportionality between the axial stress and axial strain
in an experiment, where the loading is purely axial. Generally such an ex-
periment leads to transverse contraction in addition to the axial elongation.
The transverse contraction is not central to the present use in connection
with trusses and will be dealt with in Chapter 8 in connection with the gen-
eral discussion of elastic materials. The value of the elastic modulus varies
between different materials as illustrated in Table 2.1 – from Gordon (2003).

Table 2.1: Typical elastic constants.

Material MPa

Rubber 7
Nylon 1400

Plywood 7000
Wood 14000

Concrete 30000
Aluminum 70000

Steel 210000

The elastic relation of a bar follows by multiplication of the stress-strain
relation with the cross-section area A of the bar, whereby

N = Aσ = AE ε , AE
[
N
]
. (2.6)
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It is seen that the elastic stiffness of the bar, AE, is the product of the
material parameter E and the area A of the structural member. Thus, there
are two contributing factors to the stiffness of a bar: its material stiffness,
represented by E, and a geometric parameter of the structural element, here
represented by the area A. This product form for the stiffness is general for
beams and frames and plays an important role e.g. in design against column
instability, discussed in Chapter 5.

2.4.3 Virtual work for truss structures

It was demonstrated in Section 1.3.1 that the force and moment equilibrium
equations of a rigid body can be expressed in terms of the so-called virtual
work. The idea of virtual work is that the structure in question is subjected
to an infinitesimally small virtual displacement. The name ‘virtual motion’
indicates that it is a motion associated with a thought experiment, and the
virtual motion need not be related to any real motion of the body. The prin-
ciple of virtual work was used in Section 1.6 to calculate the reactions of
statically determinate beam structures. A virtual motion was constructed
where the constraint corresponding to the reaction in question was released,
while all other support constraints were maintained. This produces a balance
equation between the virtual work of the reaction and the virtual work of
all external loads. The virtual displacement field was defined by letting the
structure – or its individual parts – move as rigid bodies. It is of great impor-
tance in modern structural engineering that this simple form of the principle
of virtual work can be extended to deformable bodies. The extension of the
principle of virtual work to deformable bodies will here be illustrated for the
fairly simple case of truss structures. It is demonstrated, how this principle
can be used to determine the displacement of individual nodes in an elastic
truss structure, and a general numerically oriented computational procedure
in terms of finite elements is developed for truss structures in Section 2.5.
The method of virtual work is extended to beam and frame structures in
Chapter 4, and is used to formulate the finite element method for beams and
frames in Chapter 7.

Vector algebra

The analysis of elastic truss structures and the stiffness relations for truss
elements with general orientation is conveniently performed by use of vector
analysis. Vectors will generally be described by boldface letters x, a etc. The
default Cartesian component representation has the individual components
arranged in column format. The following analysis requires that component
arrays can be written either in column format a or in row format indicated
by the transpose aT ,
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a =

⎡
⎣
ax
ay
az

⎤
⎦ , aT = [ ax, ay, az ] . (2.7)

The component arrays are considered as matrices. The scalar product of two
vectors a and b, previously denoted by a dot as a ·b, can then be written as
a matrix product,

a · b = aTb = [ ax, ay, az ]

⎡
⎣
bx
by
bz

⎤
⎦ = axbx + ayby + azbz . (2.8)

In the matrix product the components of the rows of the first factor are
multiplied by the components of the columns of the second factor, and the
terms are then added. In the present case of the scalar product this leads
to the indicated summation, of which the result is a scalar, i.e. a number. A
special case is the scalar product of a vector with itself,

|a|2 = aTa = [ ax, ay, az ]

⎡
⎣
ax
ay
az

⎤
⎦ = a2x + a2y + a2z . (2.9)

The result of this operation is the square of the length of the vector, indicated
as |a|.

In matrix products the order of the factors is typically important. Thus, aTa
is the scalar product, while aaT is the matrix

aaT =

⎡
⎣
ax
ay
az

⎤
⎦ [ ax, ay, az ] =

⎡
⎣
axax axay axaz
ayax ayay ayaz
azax azay azaz

⎤
⎦ , (2.10)

formed by products of the original vector components. Both the products aTa
and aaT find application in the following theory of the elastic bar element.

Virtual work for a bar

Figure 2.37 shows a bar with end points A and B. The bar is described by

the vector a =
−−→
AB with length a = |a|. The bar supports the internal force

N which is defined as positive for tension. Thus, the external forces fA and
fB at the nodes A and B of the bar are given by

fB = −fA =
1

a
aN . (2.11)

This form secures equilibrium of the bar.
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Fig. 2.37: Bar element with nodal loads.

Now, let the nodes A and B move by the virtual displacements δuA and δuB ,
respectively. The nodal forces then perform the external virtual work

δVex = δuT
A fA + δuT

B fB . (2.12)

Note, that the external virtual work is formed by the work of the external
forces by the virtual displacement of the bar. The idea now is to demonstrate
that this external virtual work can be reformulated to an internal virtual
work, expressed in terms of the internal force N and a virtual strain of the
bar. The key component in this reformulation is the equilibrium equation
(2.11). When substituting the nodal forces fA and fB from the equilibrium
equation the external virtual work takes the form

δVex = (δuT
B − δuT

A)(a/a)N . (2.13)

The task now is to show that the first factor can be expressed in the form of
the virtual strain δε, i.e. the strain that would arise in the bar, if the nodes
were given the virtual displacements δuA and δuB . First it is observed that
the length of the bar can be expressed by the reltion

a2 = |a |2 = aTa . (2.14)

Differentiation of this relation gives the incremental relation

2a δa = 2aT δa , (2.15)

where the factor 2 enters because both factors contribute to the differentia-
tion. From this relation the virtual elongation of the bar follows as

δa =
1

a
aT δa =

1

a
aT (δuB − δuA) . (2.16)

The order of the two factors in a scalar vector product can be interchanged,
and it is then seen that the factor to the internal force N in (2.13) is precisely
the elongation of the bar as given in (2.16). Thus, the internal virtual work
δVin can be defined by

δVin = δaN = a δεN . (2.17)
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The last form uses the definition of the virtual strain δε = δa/a corresponding
to the virtual elongation δa. This definition of the internal virtual work as
the work of the internal force N through the virtual strain δε then gives the
equality between external and internal virtual work,

δVex = δVin . (2.18)

The result, that the virtual work of the external loads is equal to the work
of the internal forces through the strain is of general validity in structural
mechanics. It is generalized to truss structures below, and to beams and
frames in Chapter 4.

Virtual work for a truss structure

The equality between external and internal virtual work for a bar only re-
quires equilibrium of the bar. It must therefore apply to all bars of a truss
structure, and therefore also to the sum of the contributions from each bar,

∑
bars

δVex =
∑
bars

δVin . (2.19)

The external virtual work is now rewritten in terms of the external loads on
the nodes. The basic principle is illustrated in Fig. 2.38 with reference to
a two-dimensional truss structure. However, the principles are general and
apply to three-dimensional trusses as well as to other structures.

Fig. 2.38: Bar forces fA∗ acting on node A.

Node A is acted on by all forces fAB , fAC , · · · from bars attached to this node.
Thus, by the principle of action and reaction the similar forces but in opposite
direction, −fAB ,−fAC , · · · , are the forces acting on the node. In addition to
these internal forces the node may also be acted on by an external force PA

corresponding to a load. Equilibrium of the node requires the vector sum
of all forces on the node to vanish. When arranging internal forces on the
left side of the equation and the external force on the right, the equilibrium
condition reads ∑

fA∗ = PA , (2.20)
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where fA∗ is the force in the bar A∗, with ∗ denoting an arbitrary node
connected to A by a bar – in the present example the nodes B, C, D, E.

This gives the virtual work equation for trusses in the form

∑
nodes

δuT
j Pj =

∑
bars

ai δεi Ni , (2.21)

where Pj are the actual external forces acting at the nodes j = 1, 2, · · · and
Ni are the actual internal forces in the bars i = 1, 2, · · · . In contrast, the
nodal displacements δuj are virtual and define the virtual strains δεi in the
bars. The virtual displacements can be selected in a special way that enables
explicit computation of the actual displacements of any node of an elastic
truss structure as discussed in the next section.

2.4.4 Displacements of elastic truss structures

The procedure for calculation of the displacement of a node of an elastic truss
structure is illustrated in Fig. 2.39. The top figure shows the structure with
the actual loads – here consisting of vertical concentrated forces of magnitude
P at all nodes in the girder foot. The bar forces corresponding to this load are
calculated and denoted N0

1 , · · · , N0
i , where the superscript 0 indicates that

these are the actual forces in the bars. The node displacements corresponding
to the actual load are similarly denoted u0

1, · · · ,u0
j .

Fig. 2.39: Truss girder: a) Actual load, b) Unit test force.

The lower figure shows the same truss, but now loaded with only a single
force P 1 = 1. This is an assumed load, used to determine the displacement
component corresponding to the force P 1. The assumed concentrated load
generates the bar forces N1

1 , · · · , N1
i .

If all bars in the truss are elastic the displacement component corresponding
to the assumed load P 1 can now be determined by the principle of virtual
work. The principle of virtual work is an equality between the external and in-
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ternal virtual work calculated as the work of a set of loads and corresponding
internal forces, when exposed to a virtual displacement field. In the present
case the roles are interchanged, such that the structure with the actual loads
in Fig. 2.39a provides the displacement field, while the static forces are taken
from the assumed load in Fig. 2.39b. The virtual equation (2.21) then takes
the form

u0P 1 =
∑
bars

ai ε
0
iN

1
i . (2.22)

Due to the assumed load consisting of a single force, the external work consists
of a single term u0P 1, where u0 is the displacement in the direction of the
assumed load P 1, when the structure is loaded by the actual load.

When the truss is elastic, the strains ε0i in the bars can be expressed in terms
of the corresponding bar forces N0

i according to the elastic relation (2.6),

ε0i =
N0

i

(EA)i
, (2.23)

where (EA)i is the elastic stiffness of bar i. Substitution of this into the
virtual work equation (2.22) together with the condition that the test load is
of unit magnitude, P 1 = 1, gives the final result in the form

u0 = u0 P 1 =
∑
bars

ai ε
0
iN

1
i =

∑
bars

ai
(EA)i

N0
i N

1
i . (2.24)

This is an explicit formula for the displacement u0 in the direction of a unit
test force in terms of a summation over all bars of the structure of the product
of the bar force for the actual and the test load, respectively. It is notable,
that the geometry of the truss does not appear directly in the formula. It has
already been accounted for in the calculation of the bar forces.

Example 2.10. Displacement of node in a truss. The calculation of node displacements
in elastic trusses is illustrated by considering the simple cantilever truss in Fig. 2.40a,

supporting a single vertical force P at node C. All bars are assumed to have identical
elastic stiffness parameter EA. In this example it is desired to calculate both the vertical

and the horizontal displacement components of node C. This is done by considering two
independent load cases shown in Fig. 2.40b: a vertical unit test force P 1 and a horizontal

unit test force P 2, both acting at node C.

The total computation consists of calculating three sets of bar forces: N0
i for the actual

load, and N1
i and N2

i for the two test load cases. It is convenient to collect the bar lengths

and forces in a table as illustrated by Table 2.2. The bar lengths are denoted by the symbol
� here, because a has been used for a specific dimension of the truss. If the bars had different

elastic stiffness, the values (EA)i should also be included in the table.

The vertical displacement of node C is found from (2.24) as

u1
C =

∑

i

�i

EA
N0

i N
1
i ,
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Fig. 2.40: Cantilever girder. a) actual load P , b) unit test loads P 1, P 2.

Table 2.2: Tabular calculation of virtual work.

� N0 N1 N2

AB a −2P −2 0

BC
√
2a −

√
2P −

√
2 0

BD a 0 0 0

CD a P 1 1

BE
√
2a

√
2P

√
2 0

DE a P 1 1

AE a 0 0 0

and substitution of the numerical values from the table gives

u1
C =

aP

EA
(4 + 2

√
2 + 1 + 2

√
2 + 1) = (6 + 4

√
2)

aP

EA
= 11.66

aP

EA
.

Similarly the horizontal displacement of node C is

u2
C =

∑

i

�i

EA
N0

i N
2
i =

aP

EA
(1 + 1) = 2

aP

EA
.

The vertical displacement associated with bending of the truss girder is much larger than

the axial displacement associated directly with the elongation of the bars ED and DC. This
behavior will also be seen in beams, where most of the displacement is usually associated

with bending. �

2.5 Finite element analysis of trusses

The analysis methods developed so far in this chapter for trusses have mainly
been based on statics, i.e. use of equilibrium conditions for the full truss
and the individual bars. This approach works well for smaller structures and
analysis carried out by hand. For larger truss structures and analysis carried
out by computer a systematic approach in which the individual bar elements
and nodes are treated in a repetitive way is desirable. In order to isolate
an individual bar element from the rest of the structure it is desirable to
consider the structure as flexible and to use the displacements of the nodes
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as the primary variables in the analysis. This represents a change in the
point of view relative to the previous methods of nodes and sections, where
the forces in the bars were the primary variables.

Fig. 2.41: Displacement of nodes A and B leads to elongation of the bar AB.

The basic idea of using the displacement of each of the nodes is illustrated in
Fig. 2.41. Consider a flexible bar AB connecting the nodes A and B. Loading
of the structure introduces a displacement uA of node A and uB of node B.
These displacements may introduce a change of length of the bar AB from a
to a+Δa. This change of length corresponds to a force NAB in the bar.

An efficient analysis method, particularly suited for computer implementa-
tion, can be developed by expressing all bar forces in terms of the displace-
ments uA,uB, · · · of the nodes, and then formulating and solving the equi-
librium conditions for all the nodes of the structure. This task requires:

i) A constitutive relation between the elongation of each bar and the de-
veloped bar force.

ii) A general formulation for the elongation of a bar with arbitrary orien-
tation in space, expressed in terms of the displacement of the two nodes
of the bar.

iii) A systematic formulation of the equilibrium conditions for each node in
terms of the relevant bar forces.

iv) Introduction of suitable support conditions.

These tasks are described in the following subsections, leading to the devel-
opment of a small computer program MiniTruss.

2.5.1 Elastic bar element

The derivation of the elastic bar element consists in first determining the
strain in the element in terms of the displacements of the element nodes, and
then expressing the forces in the nodes in terms of this strain.
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Strain in bar element

The properties of a bar element are conveniently formulated by use of vector
algebra as illustrated in Fig. 2.42.

Fig. 2.42: Bar element represented as vector a.

The bar element AB is described by the initial position of the nodes A and
B with Cartesian coordinates

xA = [xA, yA, zA ]T , xB = [xB , yB , zB ]T . (2.25)

The bar element is given by the vector a, represented in terms of the node
coordinates as

a = [xB − xA, yB − yA, zB − zA ]T . (2.26)

The length a of the bar element in its initial position is therefore given as
a2 = |a|2 = aTa.

Fig. 2.43: Elongation of bar element by projection of node displacements.

When the structure is loaded, the nodes A and B move as described by the
displacement vectors uA and uB, shown in Fig. 2.43. The nodes A and B are
then located at xA+uA and xB+uB , respectively. When the displacements of
the nodes are small, e.g. relative to the length of the element, the elongation
of the element Δa, and thereby the strain, can be calculated via projections
as indicated in Fig. 2.43b. The projection of the displacement is obtained by
scalar multiplication with the unit vector a−1a, and thus the elongation of
the bar element is approximated by

Δa 
 a−1aTuB − a−1aTuA . (2.27)

The strain then follows from division by the bar length a, whereby

ε =
1

a2
aT (uB − uA) . (2.28)
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Note, that while use of projections to evaluate the elongation generally in-
volves an approximation, the special case of a translation with identical dis-
placements of the two nodes uB = uA leads to zero strain, ε = 0.

Stiffness matrix of elastic bar element

Equilibrium of the bar element requires that the forces fA and fB at the
nodes of the bar element are equal in magnitude but in opposite directions.
The direction is described by the unit vector a−1a, and the magnitude of the
force is denoted N with tension as positive. The force vectors in A and B are
then similar to those previously given in (2.11),

fB = −fA =
1

a
aN . (2.29)

For an elastic bar with normal force N = AE ε the force vectors fA and fB can
then be expressed in terms of the displacements of the nodes via substitution
of the expression (2.28) for the strain, whereby

fB = −fA =
AE

a3
aaT (uB − uA) . (2.30)

Note the occurrence of the product aaT , forming the matrix shown in (2.10).

When assembling all the nodal forces of a truss structure into a model for
the full structure it is advantageous to combine the two vector equations
from (2.30) in an explicit block matrix format. For this purpose the forces
and displacements at the two element nodes A and B are arranged in an
expanded vector format of double size,

[ fTA , fTB ] = [ fA
x , fA

y , fA
z , fB

x , fB
y , fB

z ] , (2.31)

and in the same way for the displacements [uT
A,u

T
B ]. With this notation the

expressions (2.30) for the nodal forces can be expressed in the following block
matrix format: [

fA
fB

]
=

AE

a3

[
aaT −aaT

−aaT aaT

]

︸ ︷︷ ︸
Kbar

[
uA

uB

]
. (2.32)

The matrix Kbar in this relation is called the element stiffness matrix of the
bar. The derivations have been illustrated for the three-dimensional case,
where the individual vectors have 3 components, leading to a 6 by 6 element
stiffness matrix. In the case of a plane truss the vector dimension is 2, and
the element stiffness matrix has the dimension 4 by 4.

The forces acting on the bar element AB are conveniently expressed in the
generic block matrix format
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[
fA
fB

]
=

[
KAA KAB

KBA KBB

]

︸ ︷︷ ︸
Kbar

[
uA

uB

]
. (2.33)

In this format the block matrices KAA and KAB represent the force at node
A from the displacement uA of node A and the displacement uB of node B,
respectively.

2.5.2 Finite Element Method for trusses

The next step is to use the information about the individual bar elements to
set up conditions for all the nodes of the truss structure. The principle was
illustrated in Fig. 2.38, where it was demonstrated that equilibrium of a node
A requires the sum of the forces fA∗ from all connecting bars to balance the
external load f exA at node A,

∑
fA∗ = f exA . (2.34)

The forces in the individual bar elements are available from a element matrix
relation of the form (2.32), and a central point in the formulation of the finite
element method is the procedure used to assemble the contributions from the
individual elements into a model for the structure.

Assembling the global stiffness matrix

The structure of the element stiffness matrix (2.33), where the force contri-
bution at the element nodes is given in terms of the displacements of the
nodes via a block matrix, leads to the following simple procedure to create a
model of the complete truss structure.

i) Identify all nodes of the structure by numbers 1, · · · , n. Denote the cor-
responding coordinate set of the nodes by x1, · · · ,xn.

ii) Associate each bar element with two nodes, e.g. bar element AB with the
nodes i and j of the structure, as illustrated in Fig. 2.44. This association
between the element nodes A,B and the global structural nodes i, j is
called the topology of the model.

Fig. 2.44: Bar member AB as element ij in truss structure.
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iii) The contribution of the forces from the individual elements can now be
obtained by placing the submatrices from the element stiffness relation
(2.33) in the global format as shown here,

⎡
⎢⎢⎢⎢⎢⎣

...
fi
·
fj
...

⎤
⎥⎥⎥⎥⎥⎦
AB

=

⎡
⎢⎢⎢⎢⎢⎣

...
...

· · · KAA · KAB · · ·
· ·

· · · KBA · KBB · · ·
...

...

⎤
⎥⎥⎥⎥⎥⎦
AB

⎡
⎢⎢⎢⎢⎢⎣

...
ui

·
uj
...

⎤
⎥⎥⎥⎥⎥⎦

i

j

i j

. (2.35)

When placed in this global format the displacements ui and uj contribute
in the correct way to the internal forces fi and fj at nodes i and j. Adding
the contributions from all elements to form the global stiffness matrix of the
structure is seen to correspond to adding the internal forces at each of the
nodes as prescribed in (2.33).

Support conditions

The model must also include provisions for supports, typically in the form
of constraints on the displacements of certain nodes. Constraint of a node
can typically be introduced by imposing one or more relations between the
displacement components ui = [ux, uy, uz ]

T
i at the corresponding node. The

introduction of such a constraint reduces the number of unknown displace-
ment components in the model. Before presenting the implementation of gen-
eral constraints two simple alternative methods of implementing the support
conditions are discussed.

Fig. 2.45: Support springs attached to node i.

A simple method is to constrain the supported nodes by introducing stiff
springs as illustrated in Fig. 2.45. The springs connect the node to a rigid
support. They act essentially as bar elements, but because the ‘other end’
of the spring is fully constrained, the corresponding stiffness matrix to be
included in the model is just a block matrix Ks appearing in the diagonal
position corresponding to the supported node as illustrated by the corre-
sponding global force stiffness matrix contribution
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⎡
⎢⎣

·
fi
...

⎤
⎥⎦
s

=

⎡
⎢⎣

·
· Ks · · ·

...

⎤
⎥⎦
s

⎡
⎢⎣

·
ui
...

⎤
⎥⎦ i

i

. (2.36)

A support consisting of springs with stiffness constants kx, ky, kz in the co-
ordinate directions correspond to the diagonal block stiffness matrix

Ks =

⎡
⎣
kx

ky
kz

⎤
⎦ . (2.37)

This format permits some of the springs to have vanishing stiffness. The stiff-
ness of an inclined spring with spring constant kn along a direction described
by the unit vector n = [nx, ny, nz] follows from the bar element stiffness
matrix (2.32) as

Ks = kn nn
T = kn

⎡
⎣
nxnx nxny nxnz

nynx nyny nynz

nznx nzny nznz

⎤
⎦ . (2.38)

Several springs can be applied to a node, simply be adding their stiffness
contributions.

The use of stiff springs to represent constraints involves a compromise. Ideally
the springs should be infinitely stiff, relative to the stiffness components of
the structure itself. This would lead to ill-conditioning of the equations, and
numerical roundoff errors in the solution of the equation system sets a limit on
the magnitude of the spring constants that can be used without compromising
the accuracy of the solution procedure. A simple modification of the idea of
springs can be used when the involved degrees of freedom are constrained
to zero. In that case the rows and columns corresponding to the constrained
degrees of freedom can be set to zero, except for the diagonal element that is
retained. When removing any loads associated with these degrees of freedom,
the equations for the constrained degrees of freedom are uncoupled from the
unconstrained degrees of freedom, and the equations can be solved directly,
retaining the original size and organization of the matrix and displacement
components.

A third more general alternative exists, that has a particularly elegant imple-
mentation in Matlab. The first step is to separate the displacement vector
into two parts: a vector uc containing the constrained displacement compo-
nents, and a vector uu containing the remaining unconstrained displacement
components. Rearrangement of the equilibrium equations gives the block ma-
trix equation format
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[
Kuu Kuc

Kcu Kcc

][
uu

uc

]
=

[
fu

fc + r

]
. (2.39)

The stiffness sub-matrices follow from rearrangement of the original stiffness
matrix K. At the constrained degrees of freedom the total force consists
of any imposed load fc plus the reaction force components r produced by
the support. In this format uc represents imposed displacements, that may
be non-zero. The solution proceeds in two steps. First the unconstrained
displacements uu are obtained from the top part of the equations,

Kuuuu = fu − Kucuc , (2.40)

and then the reaction forces r follow from the lower part as

r = Kcuuu +Kccuc − fc . (2.41)

In classic programming this procedure would imply the formation of the cor-
responding sub-matrices. However, in high-level programming languages like
Matlab the operations can be implemented via the corresponding index sets
without rearranging the data as explained in connection with the MiniTruss

program in the next section.

2.5.3 The MiniTruss program

The principles described in the previous sections have been implemented in a
small Finite Element program MiniTruss using the high level programming
language Matlab. However, other high-level programming languages permit
similar implementations. The main structure of the program and its data
structure are explained in relation to the specific roof truss analysis described
in Example 2.9. Figure 2.46 shows the roof truss with the nodes numbered
from 1 to 7 and the bars from 1 to 11. The program receives information about
the nodes via their coordinates [x1, y1], · · · , [x7, y7], while the attachment of
the elements to the nodes is defined by a topology matrix T.

Fig. 2.46: Roof truss with concentrated vertical force at node 6.
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The program is built as a script file MiniTruss.m that serves as a driver that
reads a data file and activates subroutines that set up the model, form the
global stiffness matrix, introduce the support conditions, apply the load, and
finally solves for the displacement of all nodes and calculates the forces in all
bars. The data of the present example is contained in the data file W Truss.m.
The structure and content of this file is described in the following.

Node data. The W-truss is described in an xy-coordinate system with origo
at the center of the truss foot, and the y-axis vertical upwards. The width a
and height h of the truss are given in parametric form in terms of variables
a and h. The node coordinates are given in the form of an array X, with each
node corresponding to one row. The first part of the data file then is

% Width ’a’ and height ’h’ of truss

a = 12.0; h = 4.0;

% Coordinates of nodes X = [x y (z)],

X = [ -a/2 0.00

-a/6 0.00

a/6 0.00

a/2 0.00

-a/4 h/2

a/4 h/2

0.00 h ];

The node coordinates [x,y] are given in the order of the node number, starting
with node 1. Thus, the node number is not given explicitly, but implied by
the row number in the node coordinate matrix X.

The program identifies the truss structure as being 2 or 3-dimensional by
counting the number of columns in the node coordinate matrix X. If the truss
is 3-dimensional the displacement vector for a node has 3 components, while
a 2-dimensional structure has 2 displacement components per node.

Element data. The truss elements are defined in the topology matrix T. Each
row of this matrix defines an element, by listing its two nodes by their node
number, and by giving a third number identifying a set of element properties,
area A and elasticity modulus E, given in a material property matrix H.
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% Topology matrix T = [node1 node2 propno],

T = [ 1 2 1

2 3 1

3 4 1

1 5 2

5 7 2

6 7 2

4 6 2

2 5 3

2 7 3

3 7 3

3 6 3 ];

% Element property matrix H = [ A E ],

H = [ 1.0 100.0

1.0 100.0

0.8 100.0 ];

In this example there are three element types: type 1 for the foot, type 2 for
the head, and type 3 for the diagonals.

Loads. The loads are specified in the load matrix P. This matrix contains a
row for each loaded node. The data line specifies the node number and the
force components. In the present example node 6 is loaded by a force with
components [fx, fy] = [0.000,−1.000].

% Prescribed loads P = [node fx fy (fz)]

P = [ 6 0.000 -1.000 ];

Support conditions. The support conditions are given in the constraint matrix
C. The constraint matrix contains a row for each constrained displacement
component. In the present example there are 3 constrained displacement
components u1 and v1 at node 1 and v4 at node 4.

% Constraints C = [node ’dof’ (uc)]

C = [ 1 1

1 2

4 2 ];

The optional parameter uc indicates the magnitude of a prescribed displace-
ment component. If not included as a third column in C, constrained dis-
placement components are set to zero.

Graphics. The MiniTruss program produces two plots of the structure: a
plot of the initial undeformed geometry including node numbers, and an-
other plot of the deformed structure after application of the load. For most
real structures it is necessary to scale the displacements to be able to see
the deformation. The coordinate window used for the plots is controlled via
definition of the plot axes, specified in the array
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% Axes used for geometry plots [Xmin Xmax Ymin Ymax]

PlotAxes = [-0.55*a 0.55*a -0.5*h 1.2*h];

Fig. 2.47: Plots of initial and deformed geometry of W-truss.

The default in the program MiniTruss is to use the two top subplots in a
2×2 plot layout. For long trusses, as e.g. bridges etc., a 2×1 plot format can
be introduced by changing to subplot(2,1).

Analysis process. The first step in an analysis with the MiniTruss program
is to read the appropriate data file into memory. This is done either by writing
W Truss in the command window, or by uploading W Truss to the Matlab

editor and pressing the F5 key from the editor. The data is now available
in active memory and the analysis is carried out by activating the script file
MiniTruss.m, either by writing MiniTruss in the command window or by
pressing the F5 key with MiniTruss.m in the editor.

% Nodal loads into load vector

if exist(’P’,’var’)

f = loadnode(f,P,dof);

end

% Global stiffness matrix

K = kbar(K,T,X,H);

% Solve stiffness equation

[u,r,ic] = solveeq(K,f,C,dof);

% Nodal displacements

Un = reshape(u,dof,size(X,1))’;

% Calculate element forces and strains

[s,e] = Nbar(T,X,H,u);

The program activates the following processes. First the global load vector f
is formed. Then the global stiffness matrix of the structure K is formed by the
function kbar by collecting the stiffness contributions from all bar-elements.
The function solveeq then solves the constrained equations, accounting for
the support conditions. Finally the displacements are reshaped into vector
components for each node in the matrix Un, and the internal forces s and
strains e are obtained by post-processing.
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The solution of the constrained equations in solveeq is obtained by a re-
formulation of the block equations (2.39)–(2.41) in terms of index sets. The
structure in Fig. 2.46 has 7 nodes and thereby 14 degrees of freedom. Thus
the index set containing all degrees of freedom is ii = [1,2,· · · ,13,14]. At
node 1 both displacement components are constrained, and at node 4 the
second displacement component is constrained. Thus, the index set of the
constraints is ic = [1,2,8]. In Matlab the index set of the unconstrained
degrees of freedom iu can then be obtained by the function call

iu = setdiff(ii,ic) = [3,4,5,6,7,9,10,11,12,13,14] .

In Matlab the sub-matrices are obtained by using the full matrices with
the appropriate index set as index. Thus, K(iu,iu) extracts the sub-matrix
Kuu etc. The equation (2.40) for the unconstrained displacement components
then takes the form

K(iu,iu)*u(iu) = f(iu) - K(iu,ic)*u(ic)

and the reaction is found from the expression

r = K(ic,ii)*u(ii) - f(ic) .

In the Matlab syntax this gives the reactions r as a 3-component vector
corresponding to the global degrees of freedom ic = [1,2,8].

2.6 Exercises

Exercise 2.1. The figure shows a cantilever
N-truss supporting a vertical load P acting at

node F .

a) Determine the reaction forces.

b) Determine all bar forces by the method of
joints.

Exercise 2.2. The figure shows a symmetric
and simply supported truss girder with vertical

loads P acting at nodes B, C and D, respec-
tively.

a) Determine the reaction forces.

b) Determine all bar forces by the method of

joints.

Exercise 2.3. The figure shows a truss structure with fixed simple supports at nodes A,
B and C and a vertical load P at nodes D and E, respectively.
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a) Illustrate the direction of the resulting re-
action forces at the three supports.

b) Determine the reaction force in B by a sin-
gle equilibrium equation and subsequently

the bar force in BD.

c) Determine the all bar forces and the re-

maining reactions

Exercise 2.4. The behavior of structures of-
ten depends on the support conditions. The

two truss structures in the figure are identi-
cal, except that the supports with and without

rollers have been interchanged.

a) Determine the reactions and bar forces for

both structures.

Exercise 2.5. The figure shows a simply supported V-truss, loaded by two vertical forces
P1 and P2.

a) Determine the reactions and the bar
forces for P1 = P2 = P .

b) Explain the influence of the relative
height h/a of the truss girder on the

bar forces in head and foot, and in
the diagonals.

Exercise 2.6. Consider the simply supported V-truss from Exercise 2.5 with the load
P1 = P and P2 = 0.

a) Determine the reactions and the bar forces.

Exercise 2.7. The truss structure shown in the

figure has a fixed simple support at A and a simple
support permitting vertical motion at B. The truss

is loaded by the vertical forces P and 2P and by
the horizontal force P .

a) Determine the reaction forces.

b) Determine the bar forces.
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Exercise 2.8. The figure shows a truss structure
in which all bars have the length a. The structure

has a fixed simple support at A and a simple sup-
port permitting horizontal motion at B. The truss

is loaded by vertical forces of magnitude P and
2P .

a) Determine the reaction forces.

b) Determine the forces in all the bars connected

to node C.

Exercise 2.9. The figure shows a truss structure

similar to that in Exercise 2.8. In the present truss
the vertical middle bar has been removed, and the

support in B is fixed in both directions.

a) Determine the reaction forces.

b) Determine the forces in all the bars connected
to node C.

Exercise 2.10. Determine the remaining bar forces in the roof truss from Example 2.3,

and indicate all bar forces in a figure.

Exercise 2.11. The figure shows a simply
supported roof truss of length a and height

h with vertical loads P at nodes E, F and
G, respectively. The symmetric structure
of the interior bars is determined by the

angles α and β.

a) Determine the reaction forces.

b) Determine all bar forces by the method of joints.

Exercise 2.12. The figure

shows a typical V-truss A–B
from a building crane. In this

exercise the truss is consid-
ered as plane. The truss is

supported by a fixed hinge at
A and an inclined tension bar

DC, connected to the head of
the truss at C. It carries the

vertical load P at B.

a) Determine all reaction components at A and D.

b) Determine the force in the inclined bar DC supporting the truss.

c) Find the bar forces NEF , NCE and NCF .

Exercise 2.13. The figure shows a symmetric three-hinge frame formed by two identical
truss frames AC and BC that are connected by a hinge at node C. The truss frames are
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supported by fixed simple supports at A and B, respectively. The load consists of a single

vertical force P acting at E.

a) Determine all reaction compo-
nents at A and B.

b) Determine the forces in the bars
CD, CE, DE, DF and EF by the

method of sections.

c) Check the result by e.g. isolating

node D and verify that the node is
in equilibrium.

Exercise 2.14. A modified version of
the truss frame from Exercise 2.13 is

shown in the figure. A horizontal bar
DD′ is introduced to close the hinge

at C, and rollers are added to the sim-
ple support in B, permitting horizontal

motion and retaining the static deter-
minacy of the structure.

a) Repeat questions a) to c) of Ex-
ercise 2.13 for the modified truss

frame and determine also the force
in the new bar DD′.

Exercise 2.15. The figure shows an N-type cantilever truss, loaded by concentrated ver-

tical force of magnitude P at the tip joint D.

a) Find and show the reaction components

in a figure.

b) Determine all the bar forces.

c) Find both vertical and horizontal dis-

placement of the node D.

Exercise 2.16. The figure shows a simple cantilever truss, loaded by a concentrated force

P at the joint E.

a) Find and show the reaction compo-

nents in a figure.

b) Determine all the bar forces.

c) Find the vertical and horizontal dis-
placement of the nodes E and D.
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Exercise 2.17. The figure shows an N-truss girder, loaded by concentrated vertical forces

of magnitude 3P at the joints F and J , and of magnitude 6P at the joints G, H and I.
All bars are elastic with stiffness EA.

a) Find and show the reaction

components on a drawing.

b) Determine all the bar forces.

c) Find the vertical displacement

of the nodes F , G and H.

Exercise 2.18. The figure shows a V-truss girder with a vertical load in B. All bars are

elastic with stiffness EA.

a) Determine the reaction and bar forces.

b) Determine the vertical displacement of
nodes B and C.

c) Determine the horizontal displace-
ment of node D.

Exercise 2.19. Consider the W roof-truss shown in Fig. 2.46 and used in the description

of the MiniTruss program in Section 2.5.3. Let the dimensions be a = 12.0 and h = 4.0,
choose the properties so that EA = 1 and apply P = 1 at node 6.

a) Use the data file for the MiniTruss program and determine the reactions and bar
forces. Compare with the results from Example 2.9.

Exercise 2.20. Consider the W roof-truss used in the description of the MiniTruss pro-

gram in Section 2.5.3. Choose the dimensions and properties as in the Exercise 2.19, but
let the load be symmetric as in Exercise 2.11.

a) Introduce the modified load case in a new data file W Truss02.m.

b) Determine the reactions and bar forces by MiniTruss and compare with the results
obtained in Exercise 2.11.

Exercise 2.21. Consider the simple triangular cantilever truss in Exercise 2.16, and choose

a = 1, EA = 1 and P = 1.

a) Create a data file Canti Truss.m to be used in MiniTruss.

b) Determine the vertical displacement of nodes D and E and compare with Exercise 2.16.

c) Determine the horizontal displacement of nodes D and E and compare the magnitude

with the vertical displacements found in b).

d) Determine the reactions and bar forces and compare with the results obtained in
Exercise 2.16.

Exercise 2.22. The figure shows a V-truss girder, loaded by two concentrated vertical

forces P1 = P2.

a) Create a data file V Truss.m for the V-truss to be used in MiniTruss. Introduce a and

h as parameters in the data file. Choose the properties so that EA = 1 and let P = 1.
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b) Use the MiniTruss program to de-

termine the forces in the bars for
h =

√
3a, i) when all all bars have

the same length, and ii) for h = a,
respectively.

Exercise 2.23. Consider the simply supported N-truss girder in Example 2.6, where a = 1,

EA = 1 and P = 1.

a) Create a data file N Truss.m to be used in MiniTruss.

b) Determine the vertical displacement of node E.

c) Determine the bars with the largest tension and compression force, respectively.

d) Consider the load case where the only load is a vertical force of magnitude 7P acting

in node E. Create a new data file and repeat questions b) and c).



Statics of Beams and
Frames 3

In the case of trusses, discussed in the previous chapter, the statics of the
individual bars forming the truss was fairly simple, because a bar can only
carry a single force component – the axial force N – and furthermore this
force is constant throughout the bar, because of the simplifying assumption
that no loads are applied along the bar. The advantage of the truss structure
is the material efficiency arising from loading the individual bar members
only in tension-compression. However, a disadvantage of truss structures is
the need for a considerable depth of the truss to reduce the magnitude of the
forces.

An alternative way of carrying loads is by using frame structures, made up by
connecting beams. It is an important characteristic of beams, that they can
carry transverse loads by offering resistance to bending. The basic problem
is illustrated in Fig. 3.1, where a simply supported beam carries a uniformly
distributed transverse load. At the ends of the beam close to the supports
the main action on the beam is produced by the concentrated reactions. This
places the regions close to the supports in a state of shear. The state of shear
is illustrated in the figure by a slice of the beam acted on by a transverse force
of magnitude Q, called the shear force. Equilibrium of a thin slice indicates
that an upward force of magnitude Q on one side of the slice corresponds to a
downward force of magnitude approximately equal to Q on the other side of
the slice. This is indicated in the figure together with a small parallelepiped
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illustrating (in an exaggerated way) the deformation of the slice. Close to
the end the moments will be small in the present case, due to the hinged
supports. The shear force is the transverse component of an internal force
associated with a specific section in the beam.

Fig. 3.1: Bending of simply supported beam.

At the center of the beam there is no shear force – as can be seen from
the symmetry of beam and loading pattern. If dividing the beam into two
parts by an imaginary vertical cut through its center, it follows from the
equilibrium conditions studied in Chapter 1 that each part of the beam must
be supported by a bending moment M at the central section. The figure
shows these moments acting on the two sides of a thin slice at the center of
the beam. The figure also indicates (in exaggerated form) the deformation
of the central slice of the beam. The pattern of deformation is different from
that at the ends of the beam. At the center the thickness of the slice becomes
smaller at the top and larger at the bottom – indicating compression at the
top and tension at the bottom. The moment considered here is a component
of a general internal moment associated with a particular section of a beam.
The distributions of internal forces and moments are closely related, and
often the combined set of internal forces and internal moments are simply
called the internal forces.

The internal forces in beams and frames constitute an important aspect of
these structures, often called ‘statics of beams and frames’. For a given struc-
ture and load distribution the section force distribution enables calculation
of the deformed shape of the structure as well as the severity of the loading of
the individual sections and thereby assessment of the strength of the struc-
ture. The deformation properties of elastic beams are described in Chapter 4
for statically determinate structures, and extended to three general analysis
methods for statically indeterminate structures in Chapters 6–7. The strength
properties constitute a part of ‘Mechanics of Structures’, where the behavior
of the material in the individual sections is treated. This is dealt with in
Chapters 8–11.

The present chapter gives a precise definition of section forces and presents
analysis methods for the distribution of section forces in beams and frames.
The main emphasis is on plane beams and frames, because most analyzes
of the fully three-dimensional case is carried out by numerical methods, as
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presented in Chapter 7. First the concept of section forces (including section
moments) is defined in precise form in Section 3.1. The next two sections
describe the analysis of section forces in beams with concentrated and dis-
tributed load, respectively, and identify general relations between the distri-
bution of loads and the distribution of section forces. Combination of different
load cases is discussed in Section 3.4, and finally the results are extended to
frames in Section 3.5.

3.1 Internal forces and moments

The idea of a section and the associated section forces plays a central role in
the analysis of structures. The concept is first introduced for a plane beam
with loads acting in the plane of the beam, and then extended to a fully
three-dimensional setting.

Internal forces of planar beams

Figure 3.2 illustrates a plane beam with loads acting in the plane of the
beam. The support is just included to give a more specific association with
a beam. The beam is now separated into two parts by a hypothetical section
as illustrated in the top figure. In the real beam the two parts of the beam
exchange forces and moments – the left part of the beam acting on the right
part and conversely. By the rule of identical action and reaction the forces
and moments on the two sides of the section are equal in magnitude, but
opposite in sign. In a three-dimensional context a general force has three
components and similarly a general moment has three components. However,
in the special case of a plane system of forces and moments, there are only
three components in total: two force components and a single moment com-
ponent. These components are shown for both parts of the beam in the lower
part of Fig. 3.2.

Fig. 3.2: Sign convention for internal forces in a plane beam.

The normal force N , the shear force Q, and the moment M are collectively
called the section forces – or the internal forces – at the corresponding section.
It is important to note that the concept of section forces includes the pair of
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mutually opposite components, acting on each side of the section. Thus, it is
not relevant to discuss whether the section force Q points up or down, nor
similar orientations of the section force N and section moment M . Instead a
sign convention is needed that accounts for the orientation of the components
on both sides of the section.

A common sign convention for planar beams – used throughout this book –
is illustrated in Fig. 3.2. It is characterized by

– The normal force N is positive, when giving tension in the beam.

– The shear force Q is positive, when acing downward on the left part.

– The moment M is positive, when giving compression in the upper part.

These definitions make use of ‘left part’ and ‘upper part’. For horizontal
beams these concepts are evident, but for beams of general orientation the
lower side of the beam is identified – typically by use of a dashed line as shown
in the figure. Techniques for calculating the internal forces are discussed in
the following sections.

General definition of internal forces

In a three dimensional beam formulation the beam is conveniently located
in a three-dimensional xyz-coordinate system, typically defined with the x-
axis along the beam, and the y- and z-axes defining a cross-section plane, as
shown in Fig. 3.3. The six internal forces in 3D beam theory are the axial
force N , the shear forces Qy and Qz, the bending moments My and Mz and
the torsional moment Mx, respectively.

Fig. 3.3: Vector representation of section forces and section moments in a 3D beam.

The direction of the internal forces shown in Fig. 3.3 corresponds to force
components in the coordinate directions, while the bending moments are
chosen to recover the sign convention of planar beams in Section 3.1 when
considering this special case. Figure 3.4 shows the internal forces and mo-
ments associated with the two individual coordinate planes, and it is seen
that in both cases the sign convention agrees with the convention introduced
in Fig. 3.2 for the planar case. Thus, this representation leads to a consistent
sign convention in the individual xy and xz planes. However, the two planar
cases shown in Fig. 3.4 both contain the normal force N , while the torsion
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moment Mx does not appear. This reflects the fact that not all phenomena in
a 3D beam can be represented in terms of special planar cases, and in general
three-dimensional analysis of beams and frames, typically carried out numer-
ically, it is customary to let the section force components and the section
moment components follow the corresponding coordinate axis directions.

Fig. 3.4: Section forces in y- and z-plane.

3.2 Beams with concentrated loads

A statically determinate beam is a beam in which the internal forces – includ-
ing moments – can be determined by use of equilibrium considerations alone.
For a planar beam without hinges or other connections permitting some kind
of relative motion there are three independent equilibrium conditions as dis-
cussed in Chapter 1. If the beam is supported via three static reactions, these
can be determined by the equilibrium conditions. If the beam is then sepa-
rated into two parts by a section as discussed above, each part of the beam
provides three equilibrium equations for determination of the section forces
N , Q and M . The conceptually simplest analysis procedure consists in in-
troducing a section, the position of which is determined by a coordinate like
x, and then determining the corresponding section forces N(x), Q(x) and
M(x) for this particular value of x. In many cases this procedure determines
the section forces as function of the position x, at least for locations around
the original position. This direct procedure is illustrated in the following two
examples. Graphs of the internal forces give an impression of the statics of
the beam, and identifies the parts that contribute most to the deformation
of the beam, and the locations of concern with respect to the strength of the
beam – subjects treated in later chapters.

Example 3.1. Cantilever with tip load. Figure 3.5 shows a horizontal cantilever beam of

length �, with a fixed support at the left end, and loaded by a vertical force P at the right
end. The lower side of the beam is indicated by a dashed line, thereby identifying the sign

convention of the section forces, shown in the lower part of the figure at a section identified
by the distance x from the fixed end to the left.

In the present case it is convenient to determine the section forces N(x), Q(x) and M(x)

from equilibrium conditions for the right part of the beam. In principle, the section forces
could equally well be determined from equilibrium of the left part of the beam, but this

would involve prior determination and use of the three reaction components.
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Fig. 3.5: Cantilever with vertical tip load P .

The first step consists in making a drawing showing all forces and moments acting on the

part of the structure selected for the equilibrium calculation. This is shown in Fig. 3.6,
where the load P is clearly indicated as well as all the section forces N , Q and M , shown
in their positive direction. If any of the section forces turn out to have a different direction,

this will show up in the form of a negative sign on the magnitude. Thus, there is no need to
change the original figure, irrespective of the outcome of the calculation. Indeed, changes

of basic definitions such as the sign convention during the computation may contribute
uncertainty and lack of clarity to the computed results and should therefore be avoided.

Fig. 3.6: Equilibrium for right part of cantilever.

In the present case it is convenient to introduce a ‘conjugate’ coordinate x′ = � − x, that
measures the distance from the free end at the right. The use of two coordinates x and

x′ indicating distances from the left and the right, respectively, will be found to be useful
several times in the following.

The section forces on the selected part appears precisely as the reactions, that were deter-

mined in Chapter 1, and the same methods are used to determine them. First the normal
force N is determined by horizontal projection,

← N = 0 .

The shear force is determined similarly by vertical projection,

↓ −Q + P = 0 ⇒ Q = P .

Finally, the section moment M is found by moment equilibrium about the section,

� M + x′ P = 0 ⇒ M = −x′ P .

There is no restriction on the location of the section within the beam, and thus the results
express the section forces as function of the coordinate x, or its conjugate coordinate

x′ = �− x.
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Fig. 3.7: Section forces in cantilever with tip load.

A calculation of section forces typically ends with a graphical representation of the results

as shown in Fig. 3.7. Note, that reactions R′
A, RA and MA at the fixed support are

determined by the internal forces at x = 0 as R′
A = −N(0) = 0, RA = Q(0) = P , and

MA = −M(0) = �P . The reactions have already been determined in Example 1.4, with
the sign convention shown in Fig. 1.26. �

Example 3.2. Simply supported beam. A typical and important example is the internal
forces in a simply supported beam, loaded by a concentrated transverse force P as shown

in Fig. 3.8. The length of the beam is �, and the load is located at the distance a from the
left end, corresponding to the distance a′ = �− a from the right end.

Fig. 3.8: Simply supported beam with vertical force P at point C.

The reactions are determined by horizontal projection, moment about B, and moment

about A, respectively, as already demonstrated in Example 1.3. The results are

R′
A = 0 , RA =

a′

�
P , RB =

a

�
P .

The section forces may exhibit discontinuity at the concentrated load, and are therefore
determined in two steps: first by a section at distance x ≤ a to the left of the load, and

then by a section at distance x′ ≤ a′ to the right of the load.

Fig. 3.9: Equilibrium for left part of simply supported beam.

Figure 3.9 shows the left part of the beam from the support A to a section at distance x
from this support. The two reaction components R′

A and RA are indicated in the figure

together with the three section forces N , Q and M at x. The normal force N is determined
by horizontal projection,
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→ N = 0 .

The shear force is determined by vertical projection,

↓ Q − RA = 0 ⇒ Q = RA =
a′

l
P .

The section moment M is found by moment about the section,

� − M + xRA = 0 ⇒ M = xRA =
a′ x

l
P .

These expressions are valid, when the section is to the left of the load, i.e. for 0 ≤ x < a.

Fig. 3.10: Equilibrium for right part of simply supported beam.

The analysis of the section forces to the right of the load proceeds in a completely analogous

way when introducing the parameter a′ = � − a denoting the distance of the load from
the right end, and the coordinate x′ = �− x denoting the distance from the section to the

right end. The part of the beam to the right of this section is shown in Fig. 3.10 together
with the vertical reaction RB and the section forces N , Q and M . The normal force N is

determined by horizontal projection,

← N = 0 .

The shear force is determined by vertical projection,

↑ Q + RB = 0 ⇒ Q = −RB = − a

l
P .

The section moment M is found by moment about the section,

� M − x′ RB = 0 ⇒ M = x′ RB =
a x′

l
P .

These expressions are valid for a section to the right of the load defined by 0 ≤ x′ < a′,
corresponding to a < x ≤ �.

Fig. 3.11: Section forces in simply supported beam with concentrated force.
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The distribution of the section forces is illustrated in Fig. 3.11, showing the graphs both

to the left and to the right of the concentrated load. It is noted that at the location of the
force P the shear force distribution Q(x) exhibits a jump discontinuity of magnitude −P ,

while the moment distribution exhibits a discontinuity of the slope of magnitude −P . �

3.2.1 Variation of internal forces for concentrated loads

In Example 3.2 it was seen that the shear force distribution Q(x) exhibits
a jump discontinuity at the location of a concentrated transverse force, and
similarly the moment distribution M(x) exhibits a discontinuity in the slope.
This is a special case of a general behavior exhibited by shear force and
moment distributions for beams loaded by one or more concentrated forces.
These properties are here discussed with reference to Fig. 3.12 showing a part
of a beam around a concentrated transverse force P . The part of the beam
is defined by a section at the distance x′ to the left of the load, and a section
at the distance x to the right. The figure also shows the section forces Q−
and M− at the left end, and Q+ and M+ at the right end.

Fig. 3.12: Load P on beam with internal force.

It follows directly from projection of the forces on a transverse direction that

Q+ − Q− = −P . (3.1)

This demonstrates that the shear force distribution exhibits a jump discon-
tinuity of magnitude −P at the point of action of a downward load of mag-
nitude P . It is seen that this relation remains the same, if x′ or x is changed.
Thus, the shear force distribution is piecewise constant between transverse
loads. It should be noted that reactions often produce a transverse load, and
thus an internal support often leads to a discontinuity in the shear force
distribution as illustrated in the following two examples. The jump in shear
force Q(x) between constant values is illustrated in Fig. 3.13a. The normal
force exhibits a similar discontinuity at points of application of a concentrated
axial force.

The moment distribution around the point of application of a transverse force
P is determined by first considering moment equilibrium about the point of
application of the force,

M− − M+ + x′Q− + xQ+ = 0 . (3.2)
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Fig. 3.13: Change in shear force Q(x) and moment M(x) at load P .

The moment distribution is continuous, when no concentrated moment is
applied, and the moment at the point of application of the load is denoted
M0. The moment to the left of the load is then determined by setting x = 0
in this equation, whereby

M− = M0 − x′Q− ⇒ dM−
dx

= Q− . (3.3)

It is observed that M0 and Q− are constants, and thus the moment distri-
bution to the left of the load is linear with slope Q−. A similar argument is
used to determine the variation of the moment M+ to the right of the load
by using x′ = 0. Moment equilibrium then gives

M+ = M0 + xQ+ ⇒ dM+

dx
= Q+ . (3.4)

By use of the discontinuity equation (3.1) it then follows that the moment
distribution exhibits a slope discontinuity:

dM+

dx
− dM−

dx
= −P (3.5)

at the point of application of the load P . This slope discontinuity is illustrated
in Fig. 3.13b, where the moment curve is shown as a solid line.

The results can be summarized as follows. For a beam that is loaded only
by concentrated forces Pi the normal force distribution N(x) and the shear
force distribution Q(x) are constant between the applied forces, and exhibit
discontinuities that match the force with opposite sign at the point of the
forces. The moment distribution M(x) is continuous and linear between the
points of application of transverse forces, and exhibits discontinuities of slope
matching the transverse forces with opposite sign. These properties are im-
portant, as they permit construction of the complete section force curves
from the values of the section forces at points where the structure is acted
on by reactions or concentrated forces. The result that the derivative of the
moment equals the shear force, dM/dx = Q, can be used either in the con-
struction of the curves, or as a subsequent check of the correctness of these.
This technique is illustrated in the following examples and the special cases
shown in Table 3.1.
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Example 3.3. Cantilevered beam with simple supports. Figure 3.14 shows a beam AC

with a simple fixed support at the left end point A and a simple support with horizontal
motion at an intermediate point B. A vertical force P acts on the free end C. The length

of the simply supported part AB is a, and the length of the cantilever BC is b.

Fig. 3.14: Simply supported beam with cantilever and vertical tip force P .

The reactions are shown in Fig. 3.15. They are determined by horizontal equilibrium,
moment about B and moment about A, leading to

R′
A = 0 , RA = − b

a
P , RB =

a+ b

a
P .

Fig. 3.15: Reaction forces.

The section forces are now determined by using their properties described above: piece-
wise constant normal force N(x) and shear force Q(x), and continuous piecewise linear

moment M(x).

Fig. 3.16: Normal and shear force in AB and BC.

The piecewise constant property of N(x) and Q(x) implies that they can be determined
from an arbitrary section in AB and BC, respectively. Figure 3.16a shows the left part
of the beam when divided by a section in AB. Force projection in horizontal and vertical

direction gives

NAB = 0 , QAB = RA = − b

a
P .

Similarly, Fig. 3.16b shows the right part, when the section is introduced in BC. Projection

gives
NBC = 0 , QBC = P .

Hereby the determination of the distribution of the normal force and the shear force is
completed.
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Fig. 3.17: Moment at B by equilibrium of BC.

The moment M(x) is zero at the two ends of the beam, and the distribution is therefore

fully determined by the moment MB at B. Figure 3.17 shows the part BC of the beam,
when a section is placed just to the right of the support at B. Moment about the section

at B gives
MB = −b P .

The distribution of the section forces is shown in Fig. 3.18. It is seen that the change in

shear force at B corresponds to the reaction RB , while the moment distribution exhibits
a change in slope of magnitude RB at the support. �

Fig. 3.18: Distribution of section forces.

Example 3.4. Hinged beam. Figure 3.19 shows a two span simply supported beam with
a hinge in D. The load consists of a vertical force P acting at the center of DB, i.e. with

distance 1
2
b from the support at B.

Fig. 3.19: Hinged beams with concentrated force.

The reactions were determined in Example 1.5 by considering DB as a simply supported
beam, supported at B by the ordinary simple support, and at D which is fixed in space

by the remaining structure ACD,

RA = − c

2a
P , RB = 1

2
P , RC =

a+ c

2a
P , R′

C = 0 .
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The internal forces are determined by suitable sections in the beam. It is seen immediately,

that any section followed by horizontal projection of forces will give N = 0.

Fig. 3.20: Shear forces by section a) in AC, b) in CE, and c) in BE.

The shear force is constant between the location of transverse forces. Thus, the distribution

of the shear force is determined by QAC , QCE and QEB . Figure 3.20a shows the left part
after introducing a section in AC. The shear force QAC is determined by vertical force

equilibrium,

↓ QAC − RA = 0 ⇒ QAC = RA = − c

2a
P .

Figure 3.20b shows the right part of the structure after introducing a section between the
support C and the point of load application E. Note, that it is immaterial, whether this

section is to the left or to the right of the hinge at D, because the projection equation only
depends on the transverse forces. This determines the shear force QCE by vertical force

equilibrium,

↓ −QCE + P − RB = 0 ⇒ QCE = P − RB = 1
2
P .

Finally, the shear force QBE is determined by vertical force equilibrium of the right part

of the structure, after introducing a section in BE as shown in Fig. 3.20c,

↓ −QBE − RB = 0 ⇒ QBE = −RB = − 1
2
P .

This completes the determination of the shear force distribution.

Fig. 3.21: Moment equilibrium, a) about C, and b) about E.

The moment M is piecewise linear between the points of transverse forces, i.e. the points

A, C, E and B. The moment distribution is therefore determined from the moment at
these four points. The moment is zero at the end points A and B due to the support

conditions. Thus, the moment variation is fully determined from the two values MC and
ME . After introducing a section at C moment about C for the left part of the beam shown

in Fig. 3.21a gives

� − MC + aRA = 0 ⇒ MC = aRA = − 1
2
c P .
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Similarly, a section at E followed by moment about E for the right part shown in Fig. 3.21b

gives
� ME − 1

2
bRB = 0 ⇒ ME = 1

2
bRB = 1

4
b P .

Fig. 3.22: Distribution of section forces.

The distribution curves for the shear force and the moment are shown in Fig. 3.22. The

discontinuities should be checked against the load P and the reaction RC , and the slopes
of the moment curve against the corresponding value of the shear force Q. �

3.3 Beams with distributed load

Many beams are designed to carry distributed loads e.g. from their own
weight, loads from wind and snow. The analysis procedures from the previous
section for beams with concentrated loads must therefore be extended to cover
distributed loads. Like in the previous section this is done in two steps: first
by introduction of a generic section and direct computation of the internal
forces on this section, and then by deriving and using a set of differential
equations for the section forces in terms of the distributed load intensity.
The first two examples correspond directly to those analyzed by the direct
method for concentrated load in Examples 3.1 and 3.2. Then the differential
equations for section forces are derived in Section 3.3.1. The important issue
of the location and magnitude of the maximum internal moment is treated
in Section 3.3.2 and illustrated by examples. A number of specific cases are
summarized in Table 3.2.

Example 3.5. Cantilever with distributed load. Figure 3.23 shows a cantilever with a
vertical distributed load with constant intensity p. The internal forces are determined by

introducing a section at the distance x′ = �−x from the free end of the beam as indicated
in the figure.

It is convenient to determine the section forces N(x), Q(x) and M(x) by equilibrium of

the right part of the beam, as this dos not require prior determination of the reactions.
The right part with the load and all section forces indicated by their positive orientation

is shown in the lower part of the figure. Note, that the load is shown in the form of an
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equivalent concentrated force of magnitude px′, acting at the center of the distributed load.

The replacement of distributed loads by an equivalent concentrated load was discussed
extensively in Chapter 1 in connection with calculation of reactions.

Fig. 3.23: Cantilever with distributed load p.

When representing the distributed load in terms of its equivalent concentrated force, lo-
cated at the distance 1

2
x′ from the free end of the beam, the calculation proceeds as in

Example 3.1. Horizontal equilibrium gives the normal force

← N = 0 .

The shear force Q is determined similarly by vertical projection,

↓ −Q + p x′ = 0 ⇒ Q = p x′ = p (�− x) .

Finally, the section moment M is found by moment equilibrium about the section,

� M + (p x′) 1
2
x′ = 0 ⇒ M = − 1

2
p (x′)2 = − 1

2
p (l− x)2 .

Note, that the section forces are functions of the coordinate x. The shear force Q(x) is of
linear variation, while the moment M(x) exhibits quadratic variation.

Fig. 3.24: Distribution of section forces in cantilever.

The distributions of the section forces are shown in Fig. 3.24. It is found that the numeri-
cally largest section forces occur at the support, where x = 0:

Qmax = Q(0) = p � , Mmax = M(0) = − 1
2
p �2 .

The notation Mmax is used for the numerically largest moment. The section forces at x = 0

determine the reactions as R′
A = N(0), RA = Q(0), and MA = M(0), when using the sign

convention shown in Fig. 3.23 also for the reactions. �
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Example 3.6. Simply supported beam with distributed load. Figure 3.25 shows a

simply supported beam of length � with a vertical uniform distributed load with intensity
p. The section forces N , Q and M are determined by introducing a section at the distance

x from the left end of the beam, and considering equilibrium of the left part of the beam.
The left part including the distributed load, the reactions and the section forces is shown
in Fig. 3.25. The reactions R′

A, RA and RB are determined by horizontal force projection,

moment about B, and moment about A, respectively, resulting in

R′
A = 0 , RB = RA = 1

2
p � .

The reactions are seen to correspond to a total equivalent vertical force of magnitude p�,
carried equally by the vertical supports.

Fig. 3.25: Simply supported beam with distributed load p.

As shown in Fig. 3.25 the internal forces are determined by placing the section a distance

x from the left support. Horizontal equilibrium gives the normal force as

← N = 0 .

The shear force Q is determined from vertical force equilibrium,

↓ Q − RA + p x = 0 ⇒ Q = RA − p x = p ( 1
2
�− x) .

Finally, the moment M is determined from moment equilibrium about the section,

� −M − (p x) 1
2
x + RA x = 0 ⇒ M = 1

2
p x (�− x) .

As in the cantilever in Example 3.5 the shear force Q(x) depends linearly on x, while the

moment M(x) is quadratic.

Fig. 3.26: Section forces in simply supported beam with uniform load.
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The distribution of the section forces is shown in Fig. 3.26. It is noted that in this case

the internal moment M(x) is positive throughout the beam. It is found that the maximum
shear force occurs at the supports, while the maximum moment appears at the center of

the beam. The maximum values are

Qmax = 1
2
p � , Mmax = 1

8
p �2 .

It is seen that these maximum values are considerably smaller than those found for the

cantilever beam with uniformly distributed load. Therefore less strength is required of the
beam in the present case, corresponding to the fact that the load is carried most efficiently,

when supports are provided at both ends of the beam. �

3.3.1 Differential equations for internal forces

It was seen in the two last examples that for a constant load intensity p the
shear force distribution Q(x) is linear with slope equal to −p, while the mo-
ment distribution is quadratic with double derivative −p. As demonstrated
here, these results are special cases of the differential equations for the sec-
tion force distributions N(x), Q(x) and M(x) in terms of the applied load
intensities. The results for the normal force N(x) are similar to those of the
shear force Q(x), and the following presentation will therefore concentrate
on the differential equations for Q(x) and M(x).

Fig. 3.27: Equilibrium of beam with distributed load.

Figure 3.27 shows a beam carrying a distributed load with intensity p(x). A
thin slice of infinitesimal thickness dx is cut from the beam, and the figure
illustrates the section forces acting on the slice. For clarity of illustration the
normal force has been left out, as it can be treated separately by elementary
means. The left side of the slice corresponds to a section located at x, while
the right side of the slice corresponds to section located at x + dx. Thus,
the left side is acted on by the shear force Q and the moment M , while the
right side is acted on by the slightly different values Q + dQ and M + dM .
In addition to these forces and moments the slice is acted on by a transverse
load of magnitude p dx. Differential equations for the shear force distribution
Q(x) and the moment distribution M(x) are now obtained by considering
equilibrium of the slice of the beam.
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Vertical equilibrium of the slice of thickness dx corresponds to the force pro-
jection equation

(Q+ dQ) − Q + p dx = 0 . (3.6)

The terms Q and −Q cancel, leaving only the two differential terms dQ and
p dx. Division by the differential length dx then gives

dQ

dx
= − p(x) . (3.7)

This equation implies that the slope of the shear force curve is equal to the
intensity of the distributed load with opposite sign. This relation is illustrated
in Fig. 3.28b. The change in shear force over a finite length of the beam can
be found by integration of this relation as

QB − QA = −
∫ B

A

p(x) dx . (3.8)

This relation is illustrated in Fig. 3.28a. Both figures illustrate that Q(x)
decreases for positive load intensity p(x).

Fig. 3.28: Shear force distribution for a beam with distributed load.

Moment equilibrium about an internal point in the slice of thickness dx gives

(M + dM) − M − Qdx = 0 , (3.9)

where it has been used that the moment of the load p(x) is of order (dx)2,
and therefore vanishes from the equation in the limit of vanishing thickness
of the slice. The moments M and −M cancel, and division by dx yields

dM

dx
= Q(x) . (3.10)

The equation implies that the slope of the moment distribution is equal to
the value of the shear force at that location. This relation is illustrated in
Fig. 3.29b. The corresponding relation for a finite separation of the two sec-
tions is found by integration as

MB − MA =

∫ B

A

Q(x) dx . (3.11)
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This relation is illustrated in Fig. 3.29a, showing that the moment is increas-
ing by the area under the shear force curve between A and B.

Fig. 3.29: Distribution of moment for beam with distributed load.

By combining the two differential relations (3.7) and (3.10) it is found that
the second derivative of the moment is equal to the intensity of the distributed
load with opposites sign,

d2M

dx2
= − p(x) . (3.12)

Figure 3.30 illustrates that a positive load intensity p(x) leads to ‘downward’
curvature of the moment distribution M(x).

Fig. 3.30: Curvature of moment curve for beam with distributed load.

The differential relations for the shear force Q(x) and the moment M(x)
derived above assist in determining the overall shape of the section force
curves. Note, that the case of concentrated loads treated in the previous
section corresponds to p(x) identically equal to zero between the concentrated
loads, and thus to constant shear force and linear moment variation. Similarly,
the case of constant load intensity treated in the examples of this section
correspond to p = const, and thereby to linear variation of the shear force
and quadratic variation of the moment.

3.3.2 Maximum moment

The moment often constitutes the most important component in the loading
of the material of the beam. It is therefore often important to determine the
maximum value of the moment, Mmax, and the location xmax at which it oc-
curs. In the case of concentrated loads the moment variation is linear between
the loads, and thus the maximum moment must occur under concentrated
loads or at supports. In the case of a distributed load it follows from the
results of the previous section that the shear force Q(x) is an integral of the
load intensity −p(x), and the moment M(x) is an integral of the shear force
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Q(x). A condition for maximum – or minimum – moment within the span of
the beam therefore follows from the zero-derivative condition in the form

dM

dx
= Q = 0 ⇒ Mmax for Q(xmax) = 0 . (3.13)

Clearly, the moment can also take its maximum or minimum value at the
ends of the beam.

Fig. 3.31: Mmax at Q = 0. a) Concentrated load, b) distributed load.

In a strict sense the maximum moment condition Q(xmax) = 0 was derived
for a continuous shear force distribution, as illustrated in Fig. 3.31b. How-
ever, the shear force is the derivative of the moment, dM/dx = Q, and thus
a discontinuity in which the shear force changes sign implies a change of the
slope of the moment distribution from increasing to decreasing, or conversely.
This also corresponds to a maximum or minimum value of the moment, and
thus the condition Q(xmax) = 0 also covers the case of a combination of
distributed and concentrated transverse loads. The case of a downward con-
centrated force is illustrated in Fig. 3.31a. It is seen that when the shear
force Q(x) changes from a positive to a negative value under the force, the
moment exhibits a maximum. This illustrates that the present sign conven-
tion for moments shown in Fig. 3.2 makes a maximum moment under a force
correspond to a downward force, while a minimum moment under the force
corresponds to an upward force.

Fig. 3.32: Maximum moment in simply supported beam with distributed load.
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The differential relations between the bending moment M , the shear force
Q and the transverse load intensity p lead to a simple way of determining
the maximum moment in a beam. The problem is illustrated in Fig. 3.32,
showing the simply supported left end of a beam with distributed load of
intensity p(x). According to the condition (3.13) the maximum moment is
located at xmax, where the shear force vanishes. This in turn implies that
the equivalent concentrated force Peq is equal in magnitude but opposite
in direction to the transverse reaction component RA. Thus, the two forces
constitute a force couple with moment xeqRA, where xeq denotes the distance
of the equivalent load Peq from the support at A. The maximum moment is
therefore determined by

Q(xmax) = 0 ⇒ Peq = RA , Mmax = xeqRA . (3.14)

The distance xeq of the equivalent load Peq from the support depends on the
distribution of the load, as illustrated in the following two examples.

Example 3.7. Partial loading of beam. Figure 3.33 shows a simply supported beam of

length � with a uniformly distributed load of intensity p extending the distance a from
the left end A of the beam. The reactions are determined by horizontal force equilibrium,

moment about B and moment about A, respectively, whereby

R′
A = 0 , RA =

(
1− a

2l

)
ap , RB =

a

2l
ap .

Fig. 3.33: Distributed load p on part of simply supported beam.

Horizontal equilibrium gives N = 0 at any section of the beam. The shear force Q(x) for
x ≤ a is determined by considering vertical equilibrium of the part of the beam to the left

of a section at x, as shown in the figure,

Q = RA − p x , x ≤ a .

The moment M(x) attains its maximum, where the shear force vanishes, which occurs at

xmax =
RA

p
=
(
1− a

2l

)
a .
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It is seen that xmax < a, corresponding to location of the maximum moment within the

loaded part of the beam.

The condition that the shear force vanishes at the point of maximum moment leads to a
simple expression for the maximum moment Mmax. When the shear force vanishes, the

load on the part to the left of the section at xmax is equal to the reaction at A, and thus
RA = xmaxp. These two equal but opposite forces constitute a force couple. The forces

have the distance xeq = 1
2
xmax, and thus the maximum moment is

Mmax = 1
2
xmax RA =

R2
A

2p
.

This result follows directly from local considerations around the end of the beam with
constant load intensity, and thus remains valid even if other loads were present to the right

of the section at xmax.

The distribution of the shear force and moment is shown in Fig. 3.34. The shear force is
Q(0) = RA and decreases with slope −p, whereby Q(a) = RA − ap = RB .

Fig. 3.34: Distribution of section forces in partly loaded beam.

The distributions of the section forces N(x), Q(x) and M(x) are illustrated in Fig. 3.34

for a = 2
3
�. For this length of the loaded part of the beam the reactions are RA = 2

3
ap and

RB = 1
3
ap. The shear force is seen to decrease linearly from RA at the left end with slope

−p to the constant value −RB for the unloaded part of the beam. This gives the location
and magnitude of the maximum moment as

xmax = 2
3
a = 4

9
� , Mmax = 2

9
a2p = 8

81
�2p .

The moment curve is parabolic in the loaded part of the beam and linear in the unloaded

part. �

Example 3.8. Triangular load distribution. Figure 3.35a shows a simply supported

beam with a linearly distributed load with maximum intensity p at the right end. As
demonstrated in Section 1.3.3 and illustrated in Fig. 1.16 the equivalent load is P = 1

2
p�,

acting on the beam at 2
3
� from A. This is illustrated in Fig. 3.35b.

The reactions now follow from use of the equivalent load via horizontal force equilibrium,

moment about B, and moment about A, respectively, whereby

R′
A = 0 , RA = 1

6
�p , RB = 1

3
�p .
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Fig. 3.35: Linearly distributed load on simply supported beam.

Because the intensity of the distributed load is varying linearly the shear force is varying

quadratically, as illustrated in Fig. 3.36b.

Fig. 3.36: Vanishing shear force at xmax.

The maximum moment Mmax occurs where the shear force vanishes, i.e. at Q(xmax) = 0.
In Fig. 3.36a the section is placed at xmax, which is to be determined. The intensity of

the distributed load at the section is p xmax/�. Vertical equilibrium determines the shear
force, which must vanish at xmax,

Q(xmax) = RA − 1
2
xmax(p xmax/�) = 0 .

Substitution of the reaction RA yields

x2
max = 1

3
�2 ⇒ xmax = �/

√
3 = 0.577 � .

Fig. 3.37: Maximum moment by equilibrium and distribution of moment.

As illustrated in Fig. 3.37a Mmax is found by moment equilibrium about the section at

xmax. For the present triangular load intensity xeq = 2
3
xmax, and thus gives

Mmax = 2
3
xmaxRA =

p �2

9
√
3
,

where the latter expression is found by substitution of the expressions for RA and xmax,
obtained previously. �
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Table 3.1: Reactions and internal forces in beams with concentrated load.

RA = P , MA = − � P

Q1 = RA = P

Mmax = − � P

RA =
�− a

�
P , RB =

a

�
P

Q1 = RA , Q2 = −RB

Mmax = aRA =
�− a

�
aP

RA = P , RB = P

Q1 = P , Q2 = −P

Mmax = aRA = aP

Note: a ≤ 1
2
�

RA = −a

�
P , RB =

�+ a

�
P

Q1 = − a

�
P , Q2 = P

Mmax = − aP



Beams with distributed load 115

Table 3.2: Reactions and internal forces in beams with distributed load.

RA = p� , MA = − 1
2
p�2

Q1 = RA = p�

Mmax = − 1
2
p�2

RA = 1
2
p� , RB = 1

2
p�

Q1 = RA , Q2 = −RB

Mmax = 1
8
p �2

RA =
(
1 − a

2�

)
ap

RB =
a

2�
ap

Q1 = RA , Q2 = −RB

Mmax =
R2

A

2p
, xmax =

RA

p

RA =
�2 − a2

2�
p

RB =
(�+ a)2

2�
p

Q0 = RA , Q1 = ap

Q2 = − �2 + a2

2�
p

M1 = 1
2
R2

A/p , M2 = − 1
2
pa2
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3.4 Combined loads

Structures are often analyzed for several loads acting simultaneously. For
linear structures the combined effect of the individual loads can be obtained
by direct addition – the so-called superposition. In connection with hand
calculations it is often convenient to use a modified form of the superposition
principle, in which all loads are included simultaneously, but the internal
forces are computed in two steps as the sum of a ‘global’ and a ‘local’ part.
These two approaches are illustrated in the following.

3.4.1 Superposition of load cases

The direct superposition principle is illustrated in Fig. 3.38, showing a beam
with a combined load consisting of a uniform distributed load with intensity
p and a concentrated load P . When the structure is statically determinate
or linear elastic the total effect of the loads can be found by superposition,
i.e. as the sum of the effect of the individual loads. First, this implies that
the reactions can be found as the sum of the reactions of the individual load
cases, e.g. the vertical reaction at the support A,

RA = R
(1)
A + · · · + R

(n)
A . (3.15)

Similar relations apply for the other reaction components.

Fig. 3.38: Combining distributed and local load by superposition.

Internal forces are associated with any point of the structural members form-
ing the structure. Thus, the internal forces are of the form N(x), Q(x) and
M(x), where x is a coordinate identifying the point. A particularly simple
example is an individual beam as shown in Fig. 3.38, where x is simply the
distance from the left end of the beam. As all operations are linear, the inter-
nal forces at any given cross-section are found as the sum of the contribution
from each of the individual load cases, e.g. the moment
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M(x) = M (1)(x) + · · · + M (n)(x) , (3.16)

and similarly for the other internal forces. In the example in the figure the
effect on the shear force distributionQ(x) is to combine a linear variation from
the distributed load with a piecewise constant part between the concentrated
loads, while the total internal moment curve M(x) follows from combination
of the parabolic variation from the distributed load with the piecewise linear
variation from the concentrated loads.

If there are n individual load cases, the direct superposition method consist
in making n complete analyzes of the structure. The results, such as reactions
and internal forces, can then be found by simple addition. Structures are often
analyzed for several combinations of the same load cases, e.g. with different
scaling. In those cases it is convenient to carry out the full analysis of the
structure for the individual load cases. However, if a typical loading includes
several individual load components that act together in a fixed combination
it may be convenient to analyze this particular combination. Even in that
case the principle of superposition may be used to advantage by permitting a
‘global analysis’ providing the internal forces at characteristic cross-sections,
as if the load consisted only of concentrated parts, and then fill in the local
effect of the distributed load afterwards, as explained below.

3.4.2 Superimposing the distributed load

In the direct superposition method the structure is analyzed for each load
case separately, and the results are then added to form the final result of
simultaneous application of all the load cases. In relation to analysis by hand
another procedure is often used. The load may consist of different compo-
nents, but it is the joint action that is the goal of the analysis. It is then
convenient to organize the analysis as follows. First the reactions are de-
termined including all loads, and e.g. representing the effect of distributed
loads by their equivalent concentrated loads. The internal forces are then de-
termined at selected cross-sections. These include cross-sections at supports,
at joints and at locations of concentrated loads. Finally, the distribution of
the internal forces between the selected cross-sections is calculated by using
the local effect of the distributed load, known e.g. from the solution of the
equilibrium differential equations.

Fig. 3.39: Superimposing contribution to moment from distributed load.
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The principle of superimposing local contributions to the moment distribu-
tion is illustrated in Fig. 3.39, where a distributed load with intensity p acts on
the part AB of length a. The reaction forces of the structure are determined
based on the equivalent load ap, and the internal moment is determined at
key points on the structure, including MA and MB at the end points of the
distributed load, as shown in Fig. 3.39b. An intermediate moment distribu-
tion is obtained by connecting the key point values by straight lines. For the
parts of the structure without local distributed loading the piecewise linear
distribution is correct, while e.g. for the part AB with distributed load the
local parabolic effect must be superimposed and the linear curve is therefore
only indicated by a dashed line. As demonstrated in Fig. 3.26 in Example 3.6
the local contribution to the moment distribution from an uniformly dis-
tributed load with intensity p is a symmetric parabola with maximum value
1
8p�

2, where � is the length of the interval. This means that in the present case
in Fig. 3.39b the dashed line must be superimposed by a symmetric parabola
with zero value at the ends of the interval and the local peak value 1

8pa
2

at the center of the interval. The superimposed parabolic distribution is in
Fig. 3.39b indicated by the solid curve between A and B. Note that because
the symmetric parabola is superimposed on the (dashed) linear curve the
actual local maximum is in general not located at the center of the interval.
The resulting local maximum can be determined by inspection of the asso-
ciated shear force distribution as demonstrated previously in Section 3.3.2.
Alternatively, a parametric expression can be determined by superposition of
the linear and parabolic expressions,

MAB(x) = MA

(
1 − x

a

)
+ MB

x

a
+ 1

2pa
2 x

a

(
1 − x

a

)
, 0 ≤ x ≤ a .

The local maximum of the moment distribution is determined by dM/dx = 0
at x = xmax, whereby

xmax = 1
2a +

MB −MA

pa
.

The last term represents the offset of the location of the local moment
maximum due to the inclination of the linear (dashed) curve.

The principle of local member contributions to the internal forces from local
loads on the corresponding member is a standard procedure in connection
with finite element calculations as discussed in Chapter 7. The basic proce-
dure is illustrated for beams in the following two examples and is extended
to frames later.

Example 3.9. Simply supported beam with combined loads. Figure 3.40a shows a
beam ACB loaded by a combination of a concentrated force P at C and a distributed load

with intensity p on AC. The task is to find the distribution of the internal forces, and to
determine the location and magnitude of the largest moment M(xmax) in the beam.
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Fig. 3.40: Combined concentrated and distributed load.

For the purpose of determining the reactions, the distributed load is represented by an

equivalent concentrated force of magnitude ap acting at D as shown in Fig. 3.40b. It
follows immediately from horizontal projection that R′

A = 0. The reaction RA follows

from moment about B,

�

B 2aRA − 3
2
a(ap) − aP = 0 ⇒ RA = 1

2
P + 3

4
ap .

Similarly the reaction RB follows from moment about A,

�

A 2aRB − 1
2
a(ap) − aP = 0 ⇒ RB = 1

2
P + 1

4
ap .

The shear force can now be plotted directly from its value at the supports at A and B and
its discontinuity under the concentrated load at C,

QA = RA , QB = −RB , Q+
C −Q−

C = −P .

The resulting shear force distribution is illustrated in Fig. 3.41 with P = ap, showing a

linear decrease over AC and a discontinuous drop of magnitude P at C.

Fig. 3.41: Shear force and internal moment distribution.

The moment vanishes over the supports A and B, MA = MB = 0, and the moment MC

at mid-span follows from the reaction at B as

MC = aRB = 1
2
aP + 1

4
a2p .

The moment distribution on the part AC with the distributed load is found from the
linear interpolation between the moments MA and MC at the ends, plus a parabolic

distribution with maximum value 1
8
a2p at the center from the distributed load. This is

shown in Fig. 3.41 with the moment at D determined by

MD = 1
2
MC + 1

8
a2p = 1

4
aP + 1

4
a2p .
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It is seen in the figure that for P = ap the maximum moment is at the center of the beam

with MC = 1
2
aP + 1

4
a2p = 3

4
aP .

If the intensity p of the distributed load is increased sufficiently, the maximum mo-
ment occurs within the part AC of the beam. The condition for a maximum moment is

Q(xmax) = 0. It therefore follows from the shear force curve in Fig. 3.41 that the condition
Q(xmax) = 0 to the left of the center C requires RB > P , corresponding to ap > 2P . The

location and value of the maximum moment then follow from the results of Example 3.7
as

xmax =
RA

p
=

3ap+ 2P

4p
, Mmax = 1

2
x2
maxp ,

where the expression for Mmax is a convenient reformulation of the result from Example 3.7

for constant load intensity. �

Example 3.10. Cantilevered beam with concentrated and distributed loads. Fig-

ure 3.42a shows a cantilevered beam ABC loaded by a distributed load of intensity p on
AB and a concentrated force P at C. Like in the previous example the objective is to

analyze and illustrate the basic features of the distribution of the internal forces.

Fig. 3.42: Cantilever with combined concentrated and distributed load.

For the purpose of determining the reactions the distributed load is represented by an
equivalent concentrated force of magnitude ap acting at D as shown in Fig. 3.42b. It

follows immediately from horizontal projection that R′
A = 0, and the vertical reactions

RA and RB are computed from moment about B and A, respectively,

RA = 1
2
ap − b

a
P , RB = 1

2
ap +

a+ b

a
P .

The shear force is plotted directly from its values at A and C and the discontinuity under

the reaction at B,

QA = RA , QBC = P , Q+
B −Q−

B = RB .

The resulting shear force distribution is illustrated in Fig. 3.43 with P = 3
8
ap, showing a

linear decrease over AB and a discontinuous increase of magnitude RB at B.

The moment vanishes at the beam ends A and C, MA = MC = 0, and at the support B

the moment follows from the concentrated force P as MB = −bP . In the beam AB the
moment distribution also includes a parabolic contribution with maximum value 1

8
a2p at

the center D. Thus, the moment MD at the center of AB is

MD = 1
2
MB + 1

8
a2p = − 1

2
bP + 1

8
a2p .

The moment distribution along the beam AB is negative at B, and may contain a positive

part from A, depending on the relative magnitude of loads and dimensions. The clearest
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Fig. 3.43: Shear force and internal moment distribution.

way to illustrate the interplay of the parameters is to assume a local moment maximum

at xmax and to calculate the location from the condition Q(xmax) = 0, whereby

xmax =
RA

p
=

a2p− 2bP

2ap
, Mmax = 1

2
x2
maxp .

It is seen that 0 < xmax < a if RA > 0, i.e. if there is an upward reaction in A. If the
reaction can become negative, the beam should be constrained against uplift. �

3.5 Internal forces in frames

Frames consist of beams joined typically by rigid connections. However, they
may also contain joints permitting motion, e.g. rotation, between the parts.
Frames are typically used in buildings e.g. for housing, offices, storage etc.
In multi-story buildings the frame will contain columns, connected to a pri-
mary system of horizontal beams. The floors may either be plates connected
directly to the main beams, or supported by a system of secondary beams.
While frames are generally three-dimensional, many buildings are laid out
in the form of intersecting planes, and thus the conceptual analysis may be
carried out using the theory of plane frames. Frames also find extensive use
in engineering structures like bridges, cranes, towers, offshore structures etc.
The difference between a frame and a truss is that the frame makes use of
the bending resistance of the individual members, while trusses have a spatial
layout, that enables the members to act only in tension or compression. Often
the general layout of a frame borrows features from a similar truss structure,
e.g. in the form of diagonal braces to resist horizontal loads.

It is a central feature of a frame that the individual members act as beams,
and thus can support bending moments and shear forces in addition to the
normal force, encountered in trusses. Frames can therefore also carry loads
applied to the individual members. Conceptually this means that a loaded
member in a frame must be able to support loads transmitted from other
parts of the frame, the global action of the frame, as well as the effect of
loads acting locally on the member. This split into local and global effects is
similar to the superposition of the local effects of distributed loads on beams
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treated in Section 3.4.2, and is often used in hand calculation of internal
forces in frames as explained and illustrated in the following.

The present section is limited to plane frames. Many frame structures are
conceptually formed by intersecting planes, and thus an introductory analy-
sis of the general behavior can often be based on one or more plane frames.
A full analysis of three-dimensional frame structures will typically be carried
out by use of a numerical method like the Finite Element Method, and a
brief description of this is given in Chapter 7 together with a small com-
puter program MiniFrame for static analysis of frames. Here, some of the
basic properties of the internal forces are explained and illustrated by simple
examples.

Example 3.11. Angle frame. Figure 3.44 shows a simple angle frame ABC with a fixed

support in A. The frame consists of the vertical beam AB and the beam BC, which is
inclined by the angle α relative to horizontal. A vertical force P is acting at the tip C.

Fig. 3.44: Angle frame with fixed support at A and vertical tip load P .

The reactions are determined by horizontal and vertical force equilibrium, and moment

about A. This yields

R′
A = 0 , RA = P , MA = − aP .

The load is a concentrated force, and the normal force N and the shear force Q are

therefore piecewise constant, while the moment M is varying linearly over each member
of the frame. Thus, N and Q are determined by representative values for AB and BC,

respectively, while the moment M is determined by its values at A, B and C. In Fig. 3.45 a
section is introduced in B, and the internal force at the joint are determined by equilibrium

for each of the two beams.

Figure 3.45a shows the vertical part AB, where the internal forces at B are determined by
equilibrium as

N = −RA = −P , Q = −R′
A = 0 , M = MA = −aP .



Internal forces in frames 123

Fig. 3.45: Internal forces by section in B.

The normal and shear force in the inclined part BC, shown in Fig. 3.45b, are conveniently

determined by projection on to the directions of the internal forces,

N = −P sinα , Q = P cosα .

The moment is continuous at A, and MA = −aP has already been determined. The

distribution of the internal forces is shown in Fig. 3.46. �

Fig. 3.46: Distribution of internal force in angle frame.

Example 3.12. Mast for electric train cables. An alternative to the angle frame of the

previous example is shown in Fig. 3.47a. This type of mast is often used to carry cables
for electric trains. The vertical mast ABD supports bars BC and DC, connected at the

node C supporting the cable, here represented by a vertical force P .

The bar forces NBC and NDC are determined by introducing a vertical section to the left
of C as shown in Fig. 3.47b,

NDC = P/ sinα , NBC = NDC cosα = P a/c .

Note, that a small angle α corresponding to a small value of c/a leads to large forces in
the bars.
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Fig. 3.47: Cable mast, fixed in A with vertical load in C.

The section forces N , Q and M in the mast are determined as for a beam loaded by concen-
trated forces in B and D, as shown in Fig. 3.48. The reactions can be found independently

by equilibrium of the full structure as R′
A = 0, RA = P and MA = aP . They are seen to

correspond to the internal forces at the fixed support A. �

Fig. 3.48: Internal forces in cable mast.

3.5.1 Influence of load distribution

The calculation of internal forces by hand typically follows a standard proce-
dure, in which the reactions are determined first, then the section forces are
determined at supports, at joints and at concentrated loads, and finally the
local influence of distributed loads on the section forces within the members
is accounted for. An advantage of this procedure is that each of the three
steps deals with a limited and precise problem and leads to results that can
be checked for consistency and against static understanding of the structure.
The procedure is a systematic extension of the method used for beams with
combined concentrated and distributed components in Section 3.4.2.

The procedure is illustrated with reference to the simple angle frame shown
in Fig. 3.49. The following three examples analyze the internal force distri-
bution of this frame for three different loads: a concentrated vertical force, a
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distributed vertical force density, and finally a horizontal concentrated force.
The method of analysis is quite similar in the three examples, and the most
important point is to obtain familiarity with the main features of the results.

Example 3.13. Vertical concentrated load. Figure 3.49 shows a simply supported frame

ACDB of height a and width 2a. The simple support at A is fixed, leading to two reaction
components R′

A and RA, while the support at B has horizontal rollers, leaving only a

vertical reaction component RB .

Fig. 3.49: Angle frame with vertical load P at center span.

In the present example the load consists of a concentrated vertical force P acting at the

center D of the horizontal beam CDB. The reactions R′
A, RA and RB are determined by

horizontal equilibrium, moment about B and moment about A, respectively. This leads to

R′
A = 0 , RA = RB = 1

2
P .

It is observed that this is the same set of reactions that would have been obtained for a

horizontal beam CDB with a fixed simple support at C and a horizontal roller bearing at
B, see e.g. Example 3.2. The reason is, that the absence of a horizontal reaction component

at A transfers the vertical reaction force RA directly to C. This is an observation, helping
to ‘understand’ the structure, and should supplement and not replace rigorous analysis.

Fig. 3.50: Internal forces by sections at C and D, respectively.

The internal forces are constant or of linear variation between supports, joints and loads,
and can therefore be determined by considering sections at C and D as illustrated in
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Fig. 3.50. The internal forces N and Q in the vertical part and the moment M at the

corner C are determined from equilibrium of the vertical member shown in Fig. 3.50a,

N = −RA = − 1
2
P , Q = −R′

A = 0 , M = − aR′
A = 0 .

Fig. 3.51: Internal force distribution in angle frame.

In Fig. 3.50b the section is placed just to the right of D. Equilibrium gives

N = 0 , Q = −RB = − 1
2
P , M = aRB = 1

2
aP .

The local force P introduces a discontinuity of magnitude P in the shear force at D. Thus,

the distributions of the internal forces are fully determined, and they can be illustrated
as shown in Fig. 3.51. Note, that the horizontal beam CDB acts as a horizontal, simply

supported beam as discussed in connection with the reactions. �

Example 3.14. Vertical distributed load. Figure 3.52 shows the same frame as above,

but with distributed load p on the horizontal beam CB. The reactions were found in
Example 1.7, and can also be found by using the equivalent load P = 2ap in the results of

the previous example.

Fig. 3.52: Angle frame with distributed load.

The reactions determine the internal forces N , Q and M at the supports A and B, and at
the joint C. The full distribution of the internal forces are then obtained by the following
argument. There are no applied normal loads, and the normal force distribution is therefore

constant within each of the beams AC and CB as shown in Fig. 3.53a. The shear force Q
is constant in AC, as there is no transverse load on this part, and of linear variation over

CB due to the constant transverse load intensity. This gives the shear force distribution
shown in Fig. 3.53b. Finally, the moment distribution follows from the principle of adding
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Fig. 3.53: Distribution of internal forces in angle frame with distributed load.

the effect of the distributed load as discussed in Examples 3.9 and 3.10. In the present case
M = 0 at A, B and C, and thus the beam CB has a parabolic moment variation with

center value 1
8
p(2a)2 from the transverse load p distributed over the length 2a as shown in

Fig. 3.53c. It is seen that the effect of distributing the load uniformly over the beam CB

is a redistribution of the shear force Q and the moment M within the beam CB. �

Example 3.15. Horizontal concentrated load. Finally, the angle frame is analyzed for

a horizontal load consisting of a concentrated force acting at the joint C as shown in
Fig. 3.54a.

Fig. 3.54: Angle frame with horizontal load P at joint C.

The reactions are shown in Fig. 3.54b and determined by horizontal equilibrium, and

moment about D and A, respectively,

R′
A = −P , RA = −RB = − 1

2
P .

Note, that the load P and the horizontal reaction R′
A constitute a force couple, which is

counteracted by an opposite force couple formed by the vertical reactions RA and RB .

Fig. 3.55: Distribution of internal forces in angle frame with horizontal load.



128 Statics of Beams and Frames

As the load consists of a concentrated force at the joint C, the normal force N and the

shear force Q are constant within each of the beams AC and CB, while the moment is
continuous with linear variation over AC and CB. The resulting internal forces are shown

in Fig. 3.55. �

3.5.2 Influence of support conditions

The distribution of the internal forces in a frame may be strongly influenced
by the support conditions. By changing the supports the internal forces may
be redistributed in the frame. This is illustrated in the following two examples,
dealing with the same T-frame, but with two different sets of supports.

Example 3.16. T-frame with horizontal roller bearing. Figure 3.56 shows the T-frame
with a horizontal roller bearing in B together with the positive definition of the reaction

components RA, R′
A and RB .

Fig. 3.56: T-frame with horizontal roller and vertical tip load P .

Reactions are determined by horizontal projection, and moment about B and A, respec-

tively,
R′

A = 0 , RA = 3P , RB = − 2P .

The internal forces are determined by introducing a section in each of the members, joined
at C, as shown in Fig. 3.57. For each of these members, now separated by a section, the

section forces at C follow from equilibrium. The results are shown in Fig. 3.58.

Fig. 3.57: Internal forces by sections in C.
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Fig. 3.58: Internal forces in T-frame with horizontal roller bearing.

The internal forces exhibit discontinuities at the T-joint. When introducing a section there

is a set of internal force components acting on the beam, but also a set of components of
equal magnitude but opposite direction acting on the joint. The non-vanishing internal force

components acting on the joint C are shown in Fig. 3.59. It is seen that these components
satisfy the three equilibrium conditions for the joint C. �

Fig. 3.59: Equilibrium of the T-joint at C.

Example 3.17. T-frame with simple vertical roller bearing. The distribution of internal

forces change, when the support condition at B is changed to a vertical roller bearing as
shown in Fig. 3.60. Reactions are determined by vertical projection, and moment about C

and A, respectively,

RA = P , R′
A = 2P , R′

B = − 2P .

Fig. 3.60: T-frame with vertical roller and vertical tip load P .

The internal forces are determined by introducing a section in each of the beams joined at
C and imposing three equilibrium conditions on each of the beams. The result is shown

in Fig. 3.61. Note, that now there is bending and shear in AC and not in BC as in the
previous example. �
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Fig. 3.61: Internal forces in T-frame with vertical roller bearing.

The two examples clearly demonstrate that a change of the support condi-
tions may lead to a redistribution of the internal forces and the magnitude
and direction of the reactions. Naturally, it is of considerable interest to be
able to form a qualified opinion about the statics of a structure from basic
considerations regarding its layout and support conditions. In the present
case a good impression of the statics of the T-frame can be obtained by con-
structing the reactions geometrically, as illustrated for the three-hinge frame
in Section 1.5.3. The geometric construction of the reactions for the two sets
of support conditions is illustrated in Fig. 3.62.

Fig. 3.62: Reactions on T-frame for different support conditions.

Both frames have a fixed simple support at A and a simple support with
rollers at B. In the left figure the rollers at B permit horizontal motion, and
the reaction RB is therefore vertical. As the load is vertical, the reaction
at the fixed support A must also be vertical. Thus, in this case the reaction
forces can be found by resolving the load P into parallel forces RA and RB as
shown in Fig. 3.62a. As there is no horizontal reaction in A, the column AC
will have zero moment. In the right figure the line of action of the horizontal
reaction R′

B intersects the load P , and the reactions can therefore be found by
resolving the load P into components through the supports A and B as shown
in the figure. This leads to larger reactions, and it is now the beam BC that
does not have a transverse force, and therefore zero moment. Considerations
like these may be helpful in identifying the basic characteristics of the way
a frame carries the load, and may constitute a valuable supplement to the
mere analysis of an assumed configuration.
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3.5.3 Three-hinge frame

The three-hinge frame was introduced and discussed in connection with reac-
tions in Section 1.5.3. The following two examples demonstrate the analysis
of the internal forces for a concentrated and a uniformly distributed load,
respectively.

Example 3.18. Three-hinge frame with concentrated load. The three-hinge frame has

two fixed simple supports and an internal hinge, whereby the frame becomes statically
determinate. Figure 3.63 illustrates a three-hinge frame with a concentrated vertical force

P acting on the left roof beam DC at the horizontal distance x from the corner D, corre-
sponding to a horizontal distance x′ = a− x from the central hinge at C.

Fig. 3.63: Three-hinge frame with vertical load P .

The reactions have already been determined in Example 1.8. The vertical reactions follow

from moment of all forces acting on the structure about the support points B and A,
respectively,

RA =
2a− x

2a
P , RB =

x

2a
P .

The horizontal reaction components are equal and opposite, and R′
B is determined from

moment about C for the right unloaded part of the frame,

R′
A = R′

B =
a

h
RB =

x

2h
P .

Fig. 3.64: Internal moment by sections in D and at force P .
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It is noted that the vertical reaction components are independent of the height h of the

central hinge, while the horizontal reactions are inversely proportional to h.

The internal moment varies linearly between the supports, the corners and the point of
application of the load. The moment vanishes at the hinges, and thus the distribution is

determined by calculating the section moment in the corners D and E, and under the
force. The relevant parts of the frame are shown in Fig. 3.64. The moments at the corners

D and E are equal, because they are given by the moment of the corresponding horizontal
reaction components, R′

A = R′
B ,

MD = ME = −bR′
A = −x

2

b

h
P .

Note, that the corner moments MD and ME depend on the relative height b/h of the

corners.

Fig. 3.65: Distribution of moment in three-hinge frame.

Finally, the moment MP at the section of application of the force is found by considering
the upper part of the left half of the frame as shown in the center part of Fig. 3.64. Moment

about the point of application of the force gives

MP = x′ RB + x′ h− b

a
R′

B ⇒ MP =
(
1− b

2h

) xx′

a
P .

Note, that in the absence of the parenthesis the result would correspond completely to
a concentrated transverse force acting on a beam of length a, a problem treated in Ex-

ample 3.2. The moment MP attains its maximum value for x = x′ = 1
2
a, i.e. when the

force acts at the center of DC, and vanishes when the force acts at D or C. The moment

distribution is shown in Fig. 3.65. �

Example 3.19. Three-hinge frame with uniformly distributed load. Three-hinge frames

must often be analyzed for distributed roof load. The case of a uniformly distributed load
is illustrated in Fig. 3.66. The load covers the full width 2a of the frame and is normalized

as p per unit horizontal length. Thus, each half is acted on by a vertical force of magnitude
ap as indicated in the figure. The vertical reactions follow from moment about A and B,

respectively – or directly from symmetry – as

RA = RB = ap .

The horizontal reactions then follow from moment about the central hinge C for the ap-
propriate half of the frame,

R′
A = R′

B =
a2

2h
p .
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Note, how the reactions are expressed in simple form in terms of the load intensity p per

unit horizontal length and the vertical and horizontal frame dimensions a and h.

Fig. 3.66: Three-hinge frame with uniformly distributed load.

The moment at the corners D and E follow from the moment of the corresponding hori-

zontal reaction,

MD = ME = −bR′
A = − ba2

2h
p .

The moment in the roof beams DC and EC consist of a part with linear variation be-
tween the zero moment at C and the moment just determined at the corner. In addition

there is a parabolic contribution from the distributed load. This moment is determined
by its maximum value Mp. The maximum moment is determined by observing that the

length of the roof beams is a/ cosα, where α is the angle of the roof with horizontal. The
transverse load component is p cosα, and the intensity of the transverse load is therefore

(p cosα) cosα. As a result the maximum moment from the uniformly distributed load is

Mp = 1
8

( a

cosα

)2
(p cosα) cosα = 1

8
a2p .

The moment Mc at the center of the roof beams DC and EC is then found as the sum of
Mp and the center value of the linear contribution,

Mc = 1
2
MD + Mp =

(
1 − 2b

h

)
1
8
a2p .

If the parenthesis is set to unity, this result corresponds to the moment at the center of a
horizontal beam of length a, treated in Example 3.6. �

3.5.4 Principle of the arch

The discussion of beams and frames in the previous sections, and in particular
the three-hinge frame, has illustrated that the distribution of the internal
moment may be strongly influenced by the shape of the frame. This has
been known since antiquity, in fact long before the development of precise
theories for structures, and has inspired the use of arched structures, e.g. for
bridges, and vaults and cupolas to cover large rooms. The basic idea is that
a structural element carries the load most efficiently, if it acts in compression
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without appreciable moments. This is discussed in detail in Chapter 10. Here,
the simple principle of the arch as used e.g. in bridges is briefly outlined in
elementary form.

The idea of the arch is presented as a development from a simple beam. First
a simple straight beam carrying a concentrated load is considered as shown
in Fig. 3.67. The maximum moment at the center is Mmax = 1

2aP and the
shear forces Q = ±1

2P .

Fig. 3.67: Simply supported angle beam with central load.

To optimize the structure it is desirable to reduce the bending moment. A
first attempt may be to incline the two parts of the beam to the left and
to the right of the load by an angle α as illustrated in Fig. 3.68. It is seen
from the figure that when the support conditions of the simple beam are
retained, the reactions remain vertical, and the internal moment at the center
is therefore as before. On the other hand the shear force is reduced, and a
normal compression force is generated by the inclination of the to beams.

The key to reduction of the moment is the use of inclined members in con-
nection with introduction of fixed simple supports as shown in Fig. 3.69. The
structure is rendered statically determinate by a hinge at the center, and the
two members then act as bars, each supporting the normal force 1

2P/ sinα.
Note, that the shape of the moment-free structure follows the moment curve
of the original beam structure. The mechanism is that the moment is now
generated by a constant horizontal force acting via a moment arm, given by
the local height of the inclined struts.

Fig. 3.68: Simply supported angle beam with central load.
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Fig. 3.69: Simply supported bars with center load.

In the case of bridges the weight of the structure often constitutes an impor-
tant part of the total load, and the optimal shape is therefore suggested by
studying the case of a distributed load, e.g. in the form of a uniform load dis-
tribution shown in Fig. 3.70. In this case the moment distribution is parabolic
with maximum value Mmax = 1

2a
2p.

Fig. 3.70: Simply supported beam with uniformly distributed load.

The parabolic moment curve suggests a parabolic arc in connection with
change of the supports to provide the necessary horizontal reaction. A
parabolic arch with span 2a and height h supporting a uniformly distributed
load p is illustrated in Fig. 3.71. A hinge is introduced at the center to render
the arch statically determinate. The vertical reactions are determined from
moment for the full structure about B and A, respectively,

RA = RB = ap . (3.17)

The lower part of the figure shows the left half of the arch. It follows from
horizontal projection that the horizontal components are equal and opposite,
and the magnitude is determined by moment about B,

R′
B = R′

C =
a2

2h
p . (3.18)

A parabola has the property that when the tangent at an arbitrary point such
as B is extended backwards, it intersects a horizontal line through the apex
C at half the horizontal distance to B. This is the point where the equivalent
concentrated load ap acts, and thus the combined reaction in B follows the
direction of the tangent. This argument applies to any point on a uniformly
loaded parabola, and thus the load is carried by the parabolic arch solely by
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Fig. 3.71: Simply supported arch with uniformly distributed load.

a normal force N without any bending. The normal force has its minimum
value at C and its maximum value at the supports A and B,

Nmin = R′
C =

a2

2h
p , Nmax =

√
R2

B +R′2
B =

√
1 +
( a

2h

)2
ap . (3.19)

The variation of the normal force is indicated in the figure. Note, that the
normal force in the arch increases with decreasing relative height h/a. Thus,
shallow arches require strong horizontal supports. In practice the arch must
support loads that deviate somewhat from the uniform distribution used here
as illustration. This is typically accommodated by a shape where the height
of the cross-section increases towards the supports.

3.6 Exercises

Exercise 3.1. The figure shows a cantilever beam with a vertical force P located at dis-

tance a from the support.

a) Determine the reaction components.

b) Determine the distribution of internal forces
N , Q and M .

Exercise 3.2. The figure shows a simply supported beam with vertical forces 2P and P

located at a and 2a, respectively, from the left support.

a) Determine the reaction components.

b) Determine the distribution of internal forces

N , Q and M .
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Exercise 3.3. The figure shows an inclined simply
supported beam with vertical force P located at

horizontal distance c from the left support.

a) Determine the reaction components.

b) Determine the distribution of internal forces
N , Q and M .

Exercise 3.4. The figure shows a three span sim-

ply supported beam. The two outer spans both
have length a and are loaded by tip forces P . The

inner span has length 4a and a single force 2P is
acting on middle.

a) Determine the reaction components.

b) Determine the distribution of internal forces N , Q and M .

Exercise 3.5. The figure shows a two span sim-
ply supported beam, where the length of the inner

beam AB is 4a, while the length of the cantilever
beam BC is 2a. Vertical load 2P and P are acting
on the middle of the beams AB and BC, respec-

tively.

a) Determine the reaction components.

b) Determine the distribution of internal forces N , Q and M .

Exercise 3.6. The figure shows a simply sup-

ported beam with a cantilever. A moment M is
acting on the tip of the beam.

a) Determine the reaction components.

b) Determine the distribution of internal forces N , Q and M .

Exercise 3.7. The figure shows a two span simply
supported beam with an 45◦ inclined support at

the right end. A vertical force P is acting on the
middle of the left span.

a) Determine the reaction components.

b) Determine the distribution of internal forces N , Q and M .

Exercise 3.8. The figure shows a two span simply

supported beam similar to that in Exercise 3.3. A
vertical distributed load with intensity p acts on

both spans of the beam.
a) Determine the reaction components.

b) Determine the distribution of internal forces N , Q and M .
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Exercise 3.9. The figure shows a symmetric three
span beam similar to Exercise 3.5. In this case the

load equally distributed with intensity p.

a) Determine the reaction components.

b) Determine the distribution of internal forces N , Q and M .

Exercise 3.10. The figure shows a simply sup-

ported beam with a vertical distributed load with
intensity p acting over part of the beam. Structure

and load is similar to that in Exercise 1.9, where
the reactions have been determined.

a) Determine the reaction components.

b) Determine the distribution of internal forces N , Q and M .

Exercise 3.11. The figure shows a hinged beam similar to that in Example 3.4. Two load

cases are considered: i) distributed load p over the full length of the beam and ii) distributed
load p only on AB.

a) Determine the reaction components
for each of the two load cases.

b) Determine the distribution of internal
forces N , Q and M for each of the two

load cases.

c) Consider the sum of the two load cases
in the figure as a load combination.
This means that the intensity on AB

is 2p, while the intensity on BCD is
p. Determine the distribution of the

shear force Q and the maximum mo-
ment Mmax for this load combination.

Exercise 3.12. The figure shows a beam of length
2a, which is fixed in A and simply supported in C.

The beam is furthermore hinged at the center in B. A
vertical distributed load with intensity p is acting over

the full length of the beam.

a) Determine the reaction components.

b) Determine the distribution of internal forces N , Q and M .

Exercise 3.13. The figure shows the cantilever frame previously considered in connection

with Fig. 3.44. In this exercise the load is distributed on the inclined beam BC with inten-
sity p. In the first load case the distributed load acts vertically, for example representing

snow on the roof. In the second load case the distributed load acts normal to BC. This
type of loading could arise from wind pressure.
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a) Determine the reaction components
for both load cases.

b) For the first load case find the trans-

verse intensity per length of the beam.

c) Determine the distribution of the mo-

ment M for both load cases.

d) Find the maximum moment Mmax.

Exercise 3.14. The figure shows an angle frame with a fixed support at A. The height of

the frame is 3a, while the width is 2a. A hinge is placed in the joint C and a bar element

is connected to the two beam elements at B and D, re-

spectively. A distributed transverse load with intensity
p acts on the horizontal beam CE.

a) Determine the reaction components in A.

b) Determine the bar force NBD by placing a section

through C and BD.

c) Determine the distribution of the internal forces
N , Q and M .

d) Find the maximum moment Mmax.

Exercise 3.15. The figure shows an angle frame with a simple support in A and a simple
support in B permitting motion at an angle of 45◦. The width of the frame is 2a and the

height is a. A distributed load with intensity p acts vertically on the horizontal beam CB.

a) Determine the reactions. Note that the reac-
tion in B is conveniently represented by its

horizontal and vertical components R′
B = RB .

b) Determine the internal forces N , Q and M at

the sections A, B and C.

c) Determine the distribution of the internal

forces N , Q and M .

Exercise 3.16. The figure shows a T-frame with a simple sixed support in A and a simple

roller bearing at B, permitting motion at 45◦. A vertical force P is acting at the tip in D.

a) Determine the reaction components. Rep-
resent the inclined reaction in B by its hor-

izontal and vertical components.

b) Determine the distribution of internal
forces N , Q and M .

c) Isolate the joint C and verify force and
moment equilibrium.

Exercise 3.17. The figure shows a T-frame with width a+ 2a and height b. As in Exam-

ples 3.16 and 3.17, where b = a, two different support conditions in B are considered: hori-
zontal and vertical roller bearing, respectively. Find the reactions and determine the distri-
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bution of the internal forces for both T-frames. Isolate the joint C and verify force and

moment equilibrium.

Exercise 3.18. The figure shows a three-hinge frame with an internal hinge placed in E
at the center of the horizontal beam BC. The frame is loaded by a uniformly distributed
load with intensity p on BC.

a) Find the reaction components.

b) Determine the internal forces N , Q

and M at B.

c) Determine the distribution of the in-

ternal forces N , Q and M , and find
the maximum moment Mmax.

Exercise 3.19. The figure shows a three-hinge frame with an internal hinge placed in E
at the center of the horizontal beam BC. In this case the frame is loaded by two horizontal

forces P acting at the joints B and C.

a) Find the reaction components.

b) Determine the internal forces N , Q
and M at the joint B.

c) Determine the distribution of the in-
ternal forces N , Q and M .

Exercise 3.20. The figure shows a three-

hinge frame similar to that in Exer-
cises 4.18 and 4.19. Consider in this case

a load combination, consiting of the dis-
tributed load p from Exercise 3.18 and the

two horizontal forces P from Exercise 4.19.
Let P = ap. If Exercises 3.18 and 3.19 have

been solved prior to this exercise, the con-
cept of superimposing load cases, as de-

scribed in Section 3.4.2, can be used.

a) Determine the reaction components.

b) Determine the distribution of the internal forces N , Q and M in the frame.
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Exercise 3.21. The figure shows a three-hinge
frame with an internal hinge located at the top

of the inclined roof. The frame is loaded by a
uniformly distributed load with intensity p on the

left part DC of the inclined roof. The load is act-
ing in the vertical direction and the intensity p is

force per horizontal length.

a) Determine the reaction components.

b) Determine the moment M at the joints D
and E.

c) Determine the distribution of the internal mo-
ment M in the frame.

Exercise 3.22. The figure shows a three-hinge
frame with the internal hinge located at the top

of the inclined roof. The frame is loaded by a uni-
formly distributed load with intensity p on the left

part DC of the inclined roof. The distributed is
acting perpendicular on the beam DC and the in-

tensity p is therefore per inclined length.

a) Determine the reaction components.

b) Determine the moment M at the joints D
and E.

c) Determine the distribution of the internal mo-
ment M in the frame.



Deformation of Beams and
Frames 4

The internal forces in beams and frames lead to deformations, and meth-
ods for analysis of these deformations are the subject of the present chapter.
Typically the satisfactory performance of a structure will impose some lim-
itation on the displacements. However, the deformation of beams also plays
another important role, namely in the distribution of the internal forces in
statically indeterminate structures. A statically indeterminate structure per-
mits several ways of distributing the internal forces to carry a given load,
and the actual distribution depends on the relative stiffness of the individual
parts of the structure. These two roles of deformations and displacements are
illustrated in Fig. 4.1 showing a horizontal beam supporting a distributed
load. As discussed in the previous chapter the load creates a moment in the
beam, and this moment in turn leads to curvature of the beam, resulting in
transverse displacement. Satisfactory performance of the beam may impose
a limit on the transverse displacement w. It is seen from the figure that the
transverse displacements lead to rotation of the ends of the beam. If the beam
were part of a larger structure, the connection to this structure via the ends
of the beam would have to account for the rotation of the beam end. The
transverse displacements along the beam and the rotation of the beam ends
are parts of the same problem studied in this chapter. As indicated in the
figure the deformation depends on the load p, the stiffness represented by the
elastic modulus E, the beam length �, the cross-section represented by the
section height h, and possibly other parameters as well.
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Fig. 4.1: Transverse deformation of simply supported beam.

The main mechanism in the deformation of beams is curvature generated by a
bending moment M . The basic mechanism was identified and described quite
clearly by Robert Hooke (1678). A bending moment will compress one side
and extend the other as seen in the deformed beam in Fig. 4.1. For elastic
beams the extension and compression are governed by the elastic relation
between stress and strain from Section 2.4. A modern presentation of Hooke’s
theory of beam bending is presented in Section 4.1. In most cases of structural
analysis the displacements are quite small, and a linearized form of the theory
based on the undeformed geometry of the structure can then be used. The
linear form of the theory is developed in the form of differential equations in
Section 4.2.

In addition to bending, beams may also deform due to extension and shear,
generated by the normal force N and the shear force Q, respectively. The
extension due to a normal force has already been treated in Section 2.4 in
connection with truss structures. The effect of deformation due to a shear
force Q is treated in Section 4.3, where it is demonstrated, that this effect
will often be negligible for slender beams.

In principle, the displacements of elastic beam and frame structures can be
determined by solving the corresponding differential equations. However, for
frames this would involve special transition conditions at joints, and even
for beams the integration of the differential equations may be quite laborious
for non-trivial load distributions and non-homogeneous beams. Therefore the
principle of virtual work plays an indispensable role in the analysis of displace-
ments of structures. In Section 4.4 the principle of virtual work – encountered
in a limited form in connection with bars and trusses in Section 2.4.3 – is
extended to beams and frames.

4.1 Bending of elastic beams

The theory for bending of elastic beams is most easily developed by first
considering the case of homogeneous bending of a beam, i.e. the bending of
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a beam by applying moments of equal magnitude but opposite orientation at
the two ends of a homogeneous beam. This simple set-up serves to identify the
mechanism of bending in a precise way. The theory is then linearized corre-
sponding to ‘small displacements’ and extended to nonhomogeneous bending.

4.1.1 Homogeneous bending

Figure 4.2a illustrates a straight simply supported homogeneous beam with
a cross-section that is symmetric with respect to the plane of the figure. The
beam is loaded by moments of equal magnitude but opposite orientation at
the beam ends. The two moments are in equilibrium, and there is therefore no
reactions. The upper side of the beam is compressed and the lower extended,
and the beam therefore deforms as shown in Fig. 4.2b. Somewhere between
the upper and lower part of the beam there must be a plane where the beam
retains its original length. This is the so-called neutral plane. The axis of
the beam is taken as the intersection of the neutral plane and the plane of
symmetry, i.e. the plane of the figure, and s denotes the arc-length along this
axis. When introducing a section at an arbitrary point s, equilibrium implies
that the internal moment is equal to the imposed moment M , and thus

M(s) ≡ M (4.1)

for any value of s. All cross-sections have the same internal moment and
thereby the same state of deformation. Therefore the beam axis is bent into
a circle. The center C and the radius R of the circle are indicated in the
figure.

Fig. 4.2: Homogeneous bending of beam.

In connection with bending of beams it is convenient to describe the deforma-
tion by the curvature κ = 1/R, and in order to obtain a quantitative theory
the relation between the bending moment M and the curvature κ must be
established. Figure 4.3a shows a slice of the beam with initial length Δs. The
neutral axis retains its original length, and in the deformed state
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κ =
1

R
=

Δθ

Δs
, (4.2)

where Δθ is the angle between the two cross-sections. Now, consider a ‘fiber’
located at the distance z below the neutral axis. The initial length of this
fiber is Δs. After deformation it is bent into a circle with radius R + z
and corresponds to the center-angle Δθ. Thus the length of this fiber after
deformation is

Δs∗ = (R+ z)Δθ = (R+ z)κΔs , (4.3)

where the angle Δθ was substituted from (4.2). The elongation corresponds
to the normal strain

ε =
Δs∗ −Δs

Δs
= κ z . (4.4)

Thus, the normal strain is proportional to the curvature κ and to the distance
z from the neutral axis.

Fig. 4.3: Extension of fiber in beam bending.

If the material is linear elastic with modulus of elasticity E the normal stress
follows from the strain relation (4.4)

σ = E ε = E κz . (4.5)

The stress σ and the modulus of elasticity are expressions of force per unit
area, typically expressed in terms of Pascal, [Pa] = [N/m2]. This expression
for the normal stress leads to a condition that determines the location of
the neutral axis and an expression for the bending moment in terms of the
curvature κ.

In the present problem the loading is assumed to be pure bending. Thus,
there is no normal force in the beam, and it follows from the stress relation
(4.5) that this corresponds to
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N =

∫

A

σ dA = κ

∫

A

E z dA = 0 . (4.6)

If this condition is not satisfied the origin of the z-axis is not on the neutral
axis. If the section is symmetric about the plane of bending but does not
have up-down symmetry, the location of the neutral axis is easily determined
by introducing a preliminary transverse coordinate z′. The coordinate z, cen-
tered at the neutral axis is then determined from the condition (4.6), when
substituting z′ = z + z0 instead of z. A general analysis of non-symmetric
and inhomogeneous cross-sections is presented in Chapter 10.

The bending moment generated by the normal stress σ from (4.5) is de-
termined by adding the contributions from all infinitesimal areas dA. The
force on the infinitesimal area is σdA, and the corresponding moment then
is z(σdA), when z is the distance to the neutral axis. This gives the bending
moment as

M =

∫

A

z σ dA = κ

∫

A

z2 E dA . (4.7)

It is seen from this relation that the contribution from the area element dA is
weighted by the elastic stiffness modulus E. It is not a severe complication to
include variable elasticity modulus in the cross section integral, but in order
to illustrate the basic theory with minimal complication here, the modulus of
elasticity is here assumed constant over the cross-section, and the extension
to non-homogeneous material properties is postponed to the discussion of
general cross-section analysis in Chapter 10. Thus, for a constant modulus of
elasticity the elastic bending relation takes the form

M = E Iz κ . (4.8)

In this relation EIz is the bending stiffness of the beam. It consists of the
product of the modulus of elasticity E and the geometric quantity

Iz =

∫

A

z2 dA , (4.9)

constituting the moment of inertia about the neutral axis. The moment of
inertia of the cross-section depends on the shape as well as the size of the
cross-section as illustrated in the following example.

Example 4.1. Moment of inertia for rectangle and I-profile. Figure 4.4a shows the
distribution of the coordinate z over the cross-section of a rectangular beam of height h

and width b. The neutral axis is along the horizontal axis of symmetry, and the bending
moment of inertia of the rectangular cross-section then is

Iz =

∫

A

z2 dA = b

∫ h/2

−h/2

z2 dz = 1
12

h3b = 1
12

h2A .
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The rectangular beam has the largest bending stiffness, when oriented such that h ≥ b,

as normally seen in structures. The result for the rectangular cross section can be used to
determine the moment of inertia for various types of cross sections composed of rectangular

parts, as demonstrated in Exercise 4.1 for a thin-walled box section.

Fig. 4.4: Plane bending deformation: a) Rectangular beam, b) I-section beam.

Figure 4.4b shows an I-beam, consisting of two flanges connected by a web. The web is
usually thin and contributes only little to the area and bending moment of inertia. It is

therefore neglected in the derivations below. The neutral axis is the axis of symmetry, and
if the area is assumed to be mainly located in the two flanges of thickness t, the bending

moment of inertia is

Iz =

∫

A

z2 dA 
 2b

∫ (h+t)/2

(h−t)/2

z2 dz =
b

12

(
(h+ t)3 − (h− t)3

)

 1

2
h2tb = 1

4
h2A ,

where higher order terms in the thickness, i.e. terms containing the powers t2 or t3, are
omitted because t � h, b for thin-walled cross sections. It is seen that in the I-beam a

given area provides three times greater bending stiffness than in a rectangular section of
the same height. The stress distribution is also more favorable in the I-beam, which is

common in structures. �

4.1.2 Linear kinematic relations

For a general plane curve the curvature is defined as the rate of change of
the angle of the tangent with respect to a fixed direction, as illustrated in
Fig. 4.5. Thus, the curvature is defined by the limit

κ(s) =
1

R(s)
= lim

Δs→0

Δθ

Δs
=

dθ

ds
. (4.10)

In linear beam theory the displacements are considered ‘small’ with respect
to the dimensions of the structure. This implies that the change of angle is
small, and a linearized representation of the curvature can then be used.

Figure 4.6 illustrates the deformed state of an initially straight beam. The
x-axis defines the original beam axis, and the transverse displacement w(x) is
positive in the direction of the z-axis. The angle θ is defined via the relation

sin θ = − dw

ds
. (4.11)
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Fig. 4.5: Curvature as change in rotation.

Differentiation of this equation with respect to s gives the following expression
for the curvature

κ =
dθ

ds
= − 1

cos θ

d2w

ds2
. (4.12)

When the slope of the deformed beam is limited dx/ds = cos θ 
 1, and the
original x-coordinate can be used instead of the arc-length s. This leads to
the linearized expressions

θ 
 − dw(x)

dx
, κ 
 dθ(x)

dx

 − d2w(x)

dx2
. (4.13)

These expressions are used with equality sign in technical ‘small displacement’
beam theory.

Fig. 4.6: Sign convention of beam deformation.

The kinematic relations (4.13) give approximate definitions of the angle θ to
the tangent of the beam axis and the corresponding curvature κ. However,
the axial strain from beam bending is defined in terms of the relative rotation
of two neighboring cross-sections as illustrated for homogeneous bending in
Fig. 4.3. In the case of homogeneous bending the cross-sections remain or-
thogonal to the beam axis in the deformed state. Thus, the relative rotation of

Fig. 4.7: Cross-section perpendicular to deformed beam axis.
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neighboring cross-sections is determined by the rotation of the tangent to the
beam axis between two sections, as shown in Fig. 4.7. In non-homogeneous
bending the change of the moment along the beam generates a shear force,
which in turn leads to an inclination of the cross-sections. However, the effect
of the deviation of the cross-sections from the orthogonal position is often
small, and therefore normal cross-sections are often assumed in the devel-
opment of technical beam theories. This approach is taken in the following
section on the so-called Bernoulli beam theory, while the effect of shear flex-
ibility is addressed in Section 4.3.

Example 4.2. Linearization error for homogeneous bending. According to the exact
beam theory a beam with constant internal moment M bends into a circular shape with

radius

R =
1

κ
=

EI

M
,

as illustrated in Fig. 4.2. The angle θ between the cross-sections at the supports follows

from trigonometry as

sin( 1
2
θ) =

�

2R
= 1

2
κ� .

The angle θ may be expanded in a Taylor series as

1
2
θ = arcsin( 1

2
κ�) = ( 1

2
κ�) + 1

6
( 1
2
κ�)3 + · · · ,

showing that for small curvature θ 
 κ�.

The displacement w in the middle follows from the circular deformed shape as

w = R
[
1− cos( 1

2
θ)
]
= 1

2
R( 1

2
θ)2
[
1− 1

12
( 1
2
θ)2 + · · ·

]
,

where the Taylor expansion of the cosine function has been introduced. Substitution of the
expansion for 1

2
θ in terms of ( 1

2
κ�) gives

w = 1
8
κ�2
[
1 + 1

4
( 1
2
κ�)2 + · · ·

]
.

The first term is the result from a linearized analysis,

wlin = 1
8
κ�2 =

�2M

8EI
.

This is the result that would be obtained from the approximate theory based on the
linearized rotation and curvature relations (4.13).

Fig. 4.8: Bending of symmetric unit beam element.

The relative error is represented by the second term in the square brackets, 1
4
( 1
2
κ�)2. This

term can be related directly to the local deformation of the beam. The top of the beam
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is in compression and the bottom in tension as illustrated in Fig. 4.8. The curvature can

be expressed in terms of the beam height and the maximum strain by use of the relation
(4.4). The maximum strain εmax occurs at the distance 1

2
h from the beam axis, and thus

κ = 2εmax/h. The leading relative error term can then be expressed as

w − wlin

wlin


(
εmax

�

2h

)2

Thus, for a limited maximal strain in the material – e.g. εmax 
 0.002 – the error in the
linearized theory will only be important for very slender beams. �

4.2 Bernoulli beam theory

A full beam theory must deal with the statics and kinematics of the beam.
The statics deals with internal forces and their equilibrium with the imposed
loads. Kinematics is the description of displacements and the related mea-
sures of deformation such as the curvature. The deformation generated by
the internal forces depends on the mechanical behavior of the material of the
beam, e.g. linear elasticity. Finally, the beam must be adequately supported
to permit transfer of the loads to the supports. This section presents these
four aspects in the context of the so-called Bernoulli beam theory, which is a
technical theory of elastic beams in which shear deformations are neglected.
The extension to shear-flexible beams is discussed in Section 4.3. In the lin-
ear theory of beams the normal force and the associated axial deformation is
uncoupled from the transverse displacements generated by bending. The nor-
mal force and axial deformation has been dealt with in connection with bars,
and the presentation here is therefore limited to the beam bending problem
in terms of transverse displacements and bending moments and shear forces,
as illustrated in Fig. 4.9.

Fig. 4.9: Static and kinematic parameters in Bernoulli beam theory.

Statics

The statics of the Bernoulli beam theory consists of the equilibrium equa-
tions for the shear force Q(x) and the internal bending moment M(x). These
equilibrium equations were treated in detail in Section 3.3.1 and are just
summarized here. The shear force must secure vertical equilibrium, whereby
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dQ(x)

dx
= − p(x) . (4.14)

Similarly the moment must secure equilibrium for rotation of a slice of the
beam, leading to

dM(x)

dx
= Q(x) . (4.15)

Bernoulli beam theory is based on the simplifying assumption that the shear
force Q(x) does not contribute directly to the deformation of the beam. It
may therefore sometimes be of interest to eliminate the shear force from the
equilibrium equations to obtain a direct relation between the internal moment
and the external load,

d2M(x)

dx2
+ p(x) = 0 . (4.16)

For statically determinate beams the boundary conditions permit solution
of these differential equations for the statics without consideration of the
kinematic relations. However, in general a full description of the beam also
requires determination of the kinematic variables, i.e. displacement w(x),
rotation θ(x) and curvature κ(x).

Kinematics

In the Bernoulli beam theory the kinematics, i.e. the displacement and defor-
mation, of the beam is described completely by the transverse displacement
w(x). Within the approximation of the Bernoulli beam theory the rotation
of the cross section is equal to the rotation of the tangent of the beam axis,
given by the linearized expression

θ(x) = − dw(x)

dx
. (4.17)

The curvature is the rate of change of the rotation angle θ(x), and within the
linearized theory this is

κ(x) =
dθ(x)

dx
= − d2w(x)

dx2
. (4.18)

The angle θ may appear in the support conditions, and the curvature κ(x) is
related to the internal moment M(x).

Elasticity

In the Bernoulli beam theory the deformation from the shear force is ne-
glected, leaving only the curvature generated by the bending moment. For
linear material behavior, such as linear elasticity, this implies proportionality
between the curvature κ(x) and the bending moment M(x). It was demon-
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strated by the case of homogeneous bending in Section 4.1 that this relation
has the form

M(x) = EIz κ(x) = −EIz
d2w(x)

dx2
. (4.19)

Relations between the static quantities and the deformation measures are
often called constitutive relations. In this relation the bending stiffness EIz
consists of a material parameter, representing the elastic modulus E of the
beam material, and a geometric parameter Iz, which for a homogeneous ma-
terial distribution is the moment of inertia about the neutral axis. The more
general case of non-homogeneous material distribution over the beam cross-
section is treated in Chapter 10.

Support conditions

The beam must be supported by at least the number of constraints that
prevent free motion. However, many structures have more supports than
strictly needed to fix the structure in the plane or in space. Extra supports and
extra connections between structural elements typically increase the stiffness
of the structure, while rendering the structure statically indeterminate.

Fig. 4.10: Support conditions for Bernoulli beams.

Three typical support conditions are illustrated in Fig. 4.10 with reference to
the left end A of a beam. Additional supports have been discussed previously
in connection with Fig. 1.20. The first support condition in Fig. 4.10 is a free
end, at which the shear force and the moment vanish, Q = 0 and M = 0. In
the case of a statically determinate beam Q(x) and M(x) are the unknown
functions, and this support condition is expressed directly in terms of these
functions at the point A. For a statically indeterminate beam the problem is
formulated in terms of the transverse displacement w(x), and the boundary
conditions must therefore be expressed in terms of the transverse displace-
ment. The expression for the moment follows directly from the constitutive
relation (4.19) as

MA = −EIz
d2w

dx2

∣∣∣∣
A

. (4.20)
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The expression for the shear force follows from differentiation of the moment
equation according to (4.15),

QA = − d

dx

(
EIz

d2w

dx2

)
A
. (4.21)

For a concentrated load at A the moment and/or the shear force are simply
defined by the concentrated external load.

Figure 4.10 also illustrates the simple support, in which the transverse dis-
placement vanishes, wA = 0, together with the moment, MA = 0. For prob-
lems formulated in terms of the transverse displacement w(x), the moment
is expressed by (4.20). Finally, the figure also illustrates the fixed end, rep-
resenting constraint of the transverse displacement, wA = 0, and constraint
of the rotation, θA = 0.

Fig. 4.11: Fixed support with vertical rollers.

The supports in Fig. 4.10 can be combined, as demonstrated by the fixed
support with vertical rollers in Fig. 4.11. The vertical rollers represent the
unconstrained transverse displacement of the free end in Fig. 4.10a and the
constrained rotation of the fixed support in Fig. 4.10c.

4.2.1 Statically determinate beams

In a statically determinate beam the support conditions permit that the dis-
tribution of the internal forces Q(x) and M(x) can be determined without
reference to the kinematics of the beam. Thus, a statically determinate beam
is typically analyzed by first determining Q(x) and M(x) – either from the
differential relations (4.14)–(4.16) or by the direct equilibrium based methods
developed in Chapter 3. Once the statics part of the problem has been solved,
the displacement w(x) can be determined by integration of the moment re-
lation (4.19). The principle may be described as solution of the second order
static equation

d2M(x)

dx2
+ p(x) = 0 , (4.22)

followed by solution of the second order kinematic equation

d2w(x)

dx2
+

M(x)

EIz
= 0 , (4.23)
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although the static solution is often obtained by a static procedure based
on sections. In particular concentrated or discontinuous loads may introduce
complications for a purely mathematical integration. The analysis of stati-
cally determinate beams is illustrated by the following examples.

Example 4.3. Simply supported beam with end moment. Figure 4.12 shows a simply

supported beam of length � with a moment MB acting at the right support in B. There is
no load acting along the beam, and the moment distribution is therefore linear as shown

in Fig. 4.12. The expression for the moment is

M(x) = MB
x

�
.

Fig. 4.12: End moment on simply supported beam.

The curvature is given by the constitutive relation (4.23) as

d2w(x)

dx2
= − M(x)

EIz
= − MB

EIz

x

�
.

The displacement w(x) then follows by double integration as

w = − 1

6

MB�2

EIz

(
x

�

)3

+ C0 + C1x ,

where C0 and C1 are the two arbitrary constants of integration. It is seen that a linear

moment distribution implies a cubic solution for the displacement. The two constants are
determined by the two kinematic boundary conditions for the simple supports in A and

B,
w(0) = w(�) = 0 .

The first condition w(0) = 0 directly yields that C0 = 0. Hereafter, the second condition
w(�) = 0 gives

− 1

6

MB�2

EIz
+ C1� = 0 ⇒ C1 =

1

6

MB�

EIz
.

Now that the two arbitrary constants have been determined the final expression for the

displacement can be written as

w(x) =
1

6

MB�2

EIz

x

�

[
1−

(x
�

)2]
.

The first factor gives the magnitude of the displacement, while the second factor represents
the distribution. The rotation is obtained from the derivative of the displacement

θ(x) = − dw(x)

dx
= − 1

6

MB�

EIz

[
1 − 3

(x
�

)2 ]
.
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This gives the rotation at the beam ends as

θA = θ(0) = − 1

6

MB�

EIz
, θB = θ(�) =

1

3

MB�

EIz
.

It is noted that the magnitude of the rotation θB at the end with the applied moment is

the double of the rotation at the other end.

Fig. 4.13: Equivalent rotation spring with stiffness kθ.

The expression for the rotation θB can be written as MB = kθθB , where kθ is an equivalent

rotation spring stiffness parameter given by

kθ =
3EIz

�
,

as illustrated in Fig. 4.13. The rotational stiffness kθ has the dimension of a moment with
unit [Nm], and is seen to be inversely proportional to the beam length �.

The maximum displacement wmax occurs for θ(x) = 0. It then follows from the expressions

for θ(x) and w(x) that

xmax =
�√
3
, wmax = w(xmax) =

1

9
√
3

MB�2

EIz
.

A maximum permissible displacement wmax is hereby translated into a maximum permis-
sible moment. �

Example 4.4. Simply supported beam with distributed load. Figure 4.14 shows a
simply supported beam of length � with uniformly distributed load p. It has two static

boundary conditions MA = MB = 0 and the moment distribution can therefore be deter-
mined first, either by introducing a section and using equilibrium or by integration of the
moment differential equation (4.22),

d2M(x)

dx2
= −p .

The load intensity p is constant, and the moment distribution M(x) is therefore parabolic

with value zero at A and B due to the static boundary conditions. It is easily seen that
the moment distribution that satisfies these conditions has the form

M(x) = 1
2
p x(�− x) ,

as already determined directly from statics in Example 3.6.

The transverse displacement w(x) is found from the relation (4.23) between curvature and

moment,
d2w(x)

dx2
= − M(x)

EIz
= − 1

2

p�2

EIz

x

�

(
1 − x

�

)
.
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Fig. 4.14: Parabolic moment distribution for simply supported beam.

The displacement w(x) is obtained by double integration as

w(x) = − 1

2

p�4

EIz

[ 1

6

(x
�

)3
− 1

12

(x
�

)4 ]
+ C0 + C1x ,

with two arbitrary integration constants C0 and C1. The kinematic boundary conditions
for the simple supports are

w(0) = w(�) = 0 ,

where the first condition directly implies that C0 = 0. The second condition w(�) = 0
yields

− 1

24

p�4

EIz
+ C1� = 0 ⇒ C1 =

1

24

p�3

EIz
,

whereby the final expression for the transverse displacement becomes

w(x) =
1

24

p �4

EIz

x

�

[
1 − 2

(x
�

)2
+
(x
�

)3 ]
.

The displacement w(x) is symmetric with respect to the center of the beam, and the
maximum displacement therefore occurs at x = 1

2
�,

wmax =
5

384

p �4

EIz
.

The rotation follows from the derivative of the displacement w(x) as

θ(x) = − dw(x)

dx
= − 1

24

p �3

EIz

[
1 − 6

(x
�

)2
+ 4

(x
�

)3 ]
,

and the rotations at the supports are then found to be

θB = −θA =
1

24

p �3

EIz
.

Note, that symmetry implies same magnitude and opposite sign. �

So far the examples have not involved concentrated loads or load discontinu-
ities within the beam span. In the case of a concentrated load on the beam,
the moment distribution will be described by different analytical expressions
on the two sides of the beam. The solution must therefore be obtained by
integration in both intervals and combined by suitable continuity conditions.
The following example illustrates the procedure for the case of a concen-
trated transverse load. It is demonstrated that the discontinuities generated
by the concentrated load severely complicates the derivation of the solution.
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In practice, problems with concentrated loads are therefore most often solved
by using a method based on the principle of virtual work, presented in Sec-
tion 4.4.

Example 4.5. Simply supported beam with local force. The present example considers

a simply supported beam with a concentrated transverse force P acting at distance a from
the left support as shown in Fig. 4.15. It is convenient to introduce the notation a′ = �−a

for the distance of the load from the right support, and similarly letting x′ = �− x denote
the coordinate from the right support.

Fig. 4.15: Simply supported beam with concentrated load.

The beam is statically determinate and the moment distribution consists of two linear

parts connecting the supports with the maximum moment M(a) = (aa′/�)P at x = a. The
analytical expressions for the moment distribution are,

M(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x
a′

�
P , x ≤ a

x′ a

�
P , x ≥ a .

The curvature relation (4.23) can be expressed in either the variable x or x′,

d2w(x)

dx2
= − M(x)

EIz
,

d2w(x′)

dx′2 = − M(x′)

EIz
.

Substitution of the moment for the left and the right part of the beam followed by double

integration gives

w(x) =

⎧
⎪⎪⎨

⎪⎪⎩

− x3a′

6�

P

EIz
+ C0 + C1x , x ≤ a

− x′3a

6�

P

EIz
+ D0 + D1x′ , x ≥ a .

It is seen that the solution contains two arbitrary integration constants for each of the two

integration intervals, making a total of four. The boundary conditions w(x = 0) = 0 and
w(x = �) = w(x′ = 0) = 0 determine the constants C0 = D0 = 0.

The remaining two constants C1 and D1 are to be determined from the conditions that

w(x) and dw(x)/dx are continuous at x = a, corresponding to

w(a−) = w(a+) ,
dw

dx

∣
∣∣∣
a−

= − dw

dx′

∣
∣∣∣
a+

.
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The minus in the equation for the derivatives is due to the change of variable from x to x′.
The displacement continuity yields the equation

− a3a′

6�

P

EIz
+ C1 a = − a′3a

6�

P

EIz
+ D1 a

′ ,

while continuity of the derivatives leads to

− 3
a2a′

6�

P

EIz
+ C1 = 3

a′2a

6�

P

EIz
− D1 .

The constant D1 can be eliminated between the two equations by multiplying the second

equation by a′ and then taking the sum,

−(a2 + 3aa′)
aa′

6�

P

EIz
+ (a+ a′)C1 = 2a′2

a′a

6�

P

EIz
.

When introducing the identity a+ a′ = � it is found that

C1 = (a2 + 3aa′ + 2a′2)
a′a

6�2
P

EIz
.

This expression can be reduced further by introducing a = � − a′ in the parenthesis,
whereby

C1 = (�+ a′)
a′a

6�

P

EIz
= (�2 − a′2)

a′

6�

P

EIz
=
[
1−

(a′

�

)2]P � a′

6EIz
.

The formulation is symmetric, and the expression for D1 can therefore be found by inter-
changing a′ and a in the expression for C1,

D1 =
[
1−

(a
�

)2 ] P � a

6EIz
.

The final solution is obtained by substitution of the constants C1 and D1 into the expres-

sions for the left and right intervals, respectively,

w(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P�a′x

6EIz

[
1−

(a′

�

)2
−
(x
�

)2]
, x ≤ a

P�ax′

6EIz

[
1−

(a
�

)2
−
(x′

�

)2]
, x ≥ a .

The solution is seen to be in a fairly systematic form with full symmetry between marked

and unmarked variables. However, it is difficult to use this property to simplify the deriva-
tion further than shown here. �

4.2.2 Statically indeterminate beams

In the case of statically indeterminate beams there are more than two kine-
matic support conditions, and the problem must therefore be solved by use
of the kinematic variables. In practice this means formulating the problem in
terms of the transverse displacement w(x) right from the start. The transverse
displacement defines the moment via (4.23), and the moment must satisfy the
equilibrium equation (4.22). Combination of these two conditions gives the
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following fourth order differential equation for the transverse displacement
w(x),

d2

dx2

(
EIz

d2w(x)

dx2

)
− p(x) = 0 . (4.24)

Integration of this fourth order differential equation introduces four arbitrary
integration constants, that are determined from the four boundary condi-
tions representing the supports. Typical boundary conditions are illustrated
in Fig. 4.10. They consist of combinations of relations involving the transverse
displacement w and its derivative dw/dx, and the static conditions expressed
in terms of the moment and shear force as

M(x) = −EIz
d2w(x)

dx2
, Q(x) = − d

dx

(
EIz

d2w(x)

dx2

)
. (4.25)

The integration is illustrated in the following simple example of a beam with
a fixed and a simple support carrying a distributed load of constant intensity.
In the case of concentrated loads or non-constant bending stiffness EIz com-
plications similar to those illustrated in Example 4.5 will occur, and methods
presented in Section 4.4, based on the principle of virtual work, may be
preferable.

Example 4.6. Cantilever beam with extra end support. Figure 4.16 shows a homo-
geneous beam AB of length � with a fixed end at A and a simple support at B. There

are three reaction components MA, RA and RB associated with the beam bending prob-
lem, and the beam is therefore statically indeterminate. The displacement function w(x)

is obtained from the differential equation (4.24) with constant load intensity,

d4w(x)

dx4
=

p

EIz
.

The boundary conditions are

w(0) = 0 , dw(0)/dx = 0 , w(�) = 0 , d2w(�)/dx2 = 0 ,

where the last follows from the moment condition via (4.25a).

Fig. 4.16: Cantilever beam with uniform load and extra support.

When integrating the differential equation four times the result is the following fourth

degree polynomial,

w(x) = C0 + C1x + C2x
2 + C3x

3 +
1

24

p

EIz
x4 .
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The first four terms containing the integration constants C0, C1, C2 and C3 represent the

solution to the homogeneous equation, while the last term is a particular solution that
accounts for the distributed load.

It is convenient first to apply the two boundary conditions at x = 0, which immediately

give C0 = C1 = 0. Hereby the expression for the displacement is reduced to

w(x) = C2x
2 + C3x

3 +
1

24

p

EIz
x4 .

The third boundary condition w(�) = 0 gives the equation

C2 + C3� +
1

24

p

EIz
�2 = 0 .

The vanishing moment condition d2w(�)/dx2 = 0, gives the equation

C2 + 3C3� +
1

4

p

EIz
�2 = 0 .

The constant C2 is eliminated by forming the difference between the two equations,
whereby C3 is determined. Substitution of C3 into any of the original equations then

determines C2. This leads to

C2 =
3

48

p�2

EIz
, C3 = − 5

48

p�

EIz
.

The resulting solution for the displacement can then be expressed in normalized form as

w(x) =
1

48

p�4

EIz

(x
�

)2[
3 − 5

x

�
+ 2

(x
�

)2 ]
.

The moment is given via (4.25) as

M(x) = −EIz
d2w

dx2
= − p �2

8

[
1 − 5

x

�
+ 4

(x
�

)2 ]
,

and the moment at the fixed support at x = 0 is

MA = M(0) = − 1
8
p �2 .

The moment M(x) is illustrated in Fig. 4.17, normalized by the magnitude of the negative
moment M = MA at the fixed support.

Fig. 4.17: Moment and shear force distribution.
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The shear force is obtained as the derivative of the moment,

Q(x) =
dM(x)

dx
= − p �

8

[
− 5 + 8

(x
�

) ]
.

A local maximum moment occurs where Q(x) = 0. It is found that

xmax = 5
8
� , Mmax = M(xmax) = 9

128
p �2 .

Note, that the magnitude of the moment at the fixed end is larger, since |Mmax/MA| =
9
16

< 1. The shear force also determines the vertical reactions

RA = Q(0) = 5
8
p � , RB = −Q(�) = 3

8
p � .

It is observed that the sum of the vertical reactions is equal to the imposed load, RA+RB =
p �. It is also observed that the extra stiffness provided by the fixed support increases the

vertical reaction RA relative to the value 1
2
p � in a similar simply supported beam. �

4.3 Shear flexible beams

The basic assumption of the Bernoulli beam theory is that the only deforma-
tion mechanism is curvature. This mechanism was identified with reference
to constant bending moment, as illustrated in Fig. 4.3. In this particular case
the rotation of the cross-section is identical to the rotation of the tangent
of the beam axis, and thus sections initially orthogonal to the beam axis
will remain orthogonal to the beam axis in the deformed state. However, for
non-homogeneous bending this is an approximation, in which the effect of
deformation generated by the shear force is neglected. Shear deformation can
be illustrated by placing a paperback book on a desk and pushing the top
cover towards the front of the book. All pages retain their original size but
slide a little bit in the direction of the push. Thereby the originally vertical
lines along the sides of the book form an angle with vertical – the shear angle.
Figure 4.18 illustrates the bending and the shear deformation modes for a
beam.

Fig. 4.18: a) Bending and b) shear deformation mechanisms.
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Shear stresses and strains

Before addressing shear deformation of beams a few basic concepts in relation
to shear stress and shear strain are briefly introduced. The basic shear mech-
anism is illustrated in Fig. 4.19 for a cube of unit side length. The top and
bottom faces are loaded by forces of magnitude τ in their own plane towards
the right and the left, respectively. The forces are in-plane and normalized
per unit area, and therefore called shear stresses. Equilibrium requires that
the left and right faces are loaded with a downward and an upward shear
stress of the same magnitude to prevent rotation of the cube. This is the
basic shear load. The shear load will rotate the sides of the cube as shown
in the figure as γ1 and γ2. The change of the angle between the faces of the
cube is the shear strain

γ = γ1 + γ2 . (4.26)

The shear strain is a change of angle between the faces, and is independent
of any overall rotation of the cube.

Fig. 4.19: Unit cube with shear stress τ and shear strain γ.

In a linear elastic material the shear stress τ is proportional to the shear
strain γ,

τ = Gγ . (4.27)

The coefficient G is a material parameter, called the shear modulus. It is
similar to the modulus of elasticity and also has the dimension of force per
area. For an isotropic material – that is a material in which the properties are
independent of the direction in the material – there is a connection between
the modulus of elasticity E and the shear modulus G. The relation implies
that

1
3E < G < 1

2E . (4.28)

A typical value is G 
 0.4E. In composite materials the effective shear
modulus may be much lower, see e.g. Jones (1999). A more detailed discussion
of general states of stress and strain is given in Chapters 8–9.
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Equations of shear flexible beams

In a theory for beams with shear deformation it is important to make a
distinction between the rotation of the cross-section θ(x) and the rotation
of the tangent of the beam axis −dw(x)/dx. In bending, fibers parallel to
the beam axis change length due to a change of the cross-section rotation
θ(x) along the beam. The change of angle between neighboring cross-sections
is dθ = κ dx. Thus, the parameter κ associated with beam bending is the
change in cross-section rotation per unit length along the beam. The shear
mechanism accounts for the fact that a shear force Q in the beam will intro-
duce shear strains as illustrated in Fig. 4.19, and the ‘average’ shear strain
γ appears as an angle between the beam axis tangent and the cross-section
normal as shown in Fig. 4.18b. Thus, the kinematic relations for a beam the-
ory including shear deformations consist of a definition of κ in terms of the
angle θ and a definition of the angle θ in terms of the transverse displacement
w and the shear strain γ. The shear mechanism in Fig. 4.18b shows that the
rotation of a cross-section is −dw/dx due to rotation of the beam axis plus
an additional rotation γ due to shear straining,

θ(x) = − dw(x)

dx
+ γ(x) . (4.29)

It is seen that for γ ≡ 0 the cross-section rotation angle θ is defined solely by
the derivative of the beam axis dw/dx as in Bernoulli beam theory.

The theory of beams with shear flexibility – often called Timoshenko beam
theory – has the same basic ingredients as the Bernouilli theory for beams
without shear flexibility. There are two internal forces, the shear force Q(x)
and the internal moment M(x). They must satisfy transverse and rotation
equilibrium, whereby

dQ(x)

dx
= −p(x) ,

dM(x)

dx
= Q(x) . (4.30)

The kinematics of the beam introduces two measures of deformation, the
curvature κ(x) and the shear strain γ(x). They are defined in terms of the
transverse displacement w(x) and the cross-section rotation θ(x) as

κ(x) =
dθ(x)

dx
, γ(x) =

dw(x)

dx
+ θ(x) . (4.31)

The internal forces M and Q and the deformation measures κ and γ are
connected by the constitutive relations that describe the mechanical behavior
of the material of the beam.

In elastic beams the generalized strains κ and γ are proportional to the
moment M and the shear force Q, respectively, as expressed by the relations
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M(x) = EIz κ(x) , Q(x) = GAz γ(x) , (4.32)

where EIz and GAz are the bending and shear stiffness, respectively. The
bending stiffness is expressed in terms of the elastic modulus E and the
moment of inertia Iz of the cross-section about its neutral axis. The shear
stiffness is expressed in terms of the elastic shear modulus G and an equiv-
alent ‘shear area’ of the cross-section Az. Shear stresses are non-uniformly
distributed over the cross section, and this implies that the shear area Az

is smaller than the full cross-section area A. For a rectangular cross-section
Az = 5

6A, and for an I-section the shear area Az is approximately equal to
the area of the web. The analysis of the shear stress distribution and the
associated cross-section stiffness is treated in Chapter 11.

The boundary conditions of a beam are expressed in terms of the kinematic
parameters w and θ, or the internal forces Q and M . When shear flexibility
is included, it is often most convenient to integrate the basic equilibrium and
kinematic relations directly. This procedure is illustrated in the following two
examples.

Example 4.7. Shear flexible cantilever. The effect of shear flexibility is illustrated by
the cantilever beam loaded with a concentrated force P at the end as shown in Fig. 4.20.

The cantilever is statically determinate, and the internal moment and shear force,

M(x) = (x− �)P , Q(x) = P ,

are shown below the beam in the figure.

Fig. 4.20: Cantilever with shear flexibility.

The bending relation for the cross-sections rotation θ(x),

dθ

dx
=

M(x)

EIz
=

P

EIz
(x− �)

is integrated to give

θ =
P

EIz

(
1
2
x2 − x�

)
+ C1 .

The arbitrary constant C1 is the value of θ at the support, and thus C1 = 0.
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The transverse displacement w(x) is now determined by integrating the shear strain relation

dw

dx
= −θ + γ =

P

EIz

(
x�− 1

2
x2
)
+

P

GAz
,

where the shear strain γ has been expressed in terms of the shear force P . Integration gives

w =
P

EIz

(
1
2
x2�− 1

6
x3
)
+

P

GAz
x + C2 .

The arbitrary constant C2 is the displacement w at the support, whereby C2 = 0. Thus,
the displacement of a shear flexible cantilever is

w =
P�3

6EIz

(x
�

)2[
3− x

�

]
+

P�

GAz

x

�
.

It is seen that the rotation of the cross-sections θ(x) is independent of the shear flexibility,
while the displacement w(x) consists of two additive contributions, a contribution from

bending flexibility identical to that for Bernoulli beams, and a contribution from shear
deformation. This additive form of the displacement remains valid for other statically

determinate load cases. For most long and slender beams the displacement contribution
from shear flexibility is fairly small. This is discussed further in Section 4.4.2. �

In the deformation and finite element methods distributed loads are included
via their equivalent concentrated loads on the nodes. These concentrated
loads correspond to the reactions at the ends of a rigidly supported beam,
and it is therefore of particular interest to investigate the influence of shear
flexibility on the reactions of a rigidly supported beam.

Example 4.8. Shear flexible beam with fixed ends. Figure 4.21 shows a rigidly sup-

ported homogeneous beam with uniformly distributed load p. In this case it is convenient
to use a coordinate x with origin at the center of the beam. The solution is obtained by

sequential integration of the basic relations.

Fig. 4.21: Fixed beam with uniformly distributed load.

The shear force Q(x) is obtained by integration of the transverse equilibrium equation,

dQ

dx
= −p ⇒ Q(x) = −p x ,

where the symmetry condition Q(0) = 0 has been used to eliminate an arbitrary constant.

Integration of the moment relation then gives

dM

dx
= Q = −p x ⇒ M(x) = − 1

2
p x2 + M0 ,
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where the arbitrary constant M0 is the moment at the center of the beam. The bending

relation then gives

dθ

dx
=

M

EIz
=

1

EIz

(
− 1

2
p x2 +M0

)
⇒ θ(x) =

1

EIz

(
− 1

6
p x3 +M0x

)
,

where the symmetry condition θ(0) = 0 has been used to eliminate an arbitrary constant.

The momentM0 is determined by the boundary condition θ( 1
2
�) = 0, wherebyM0 = 1

24
p�2.

The center moment M0, and thereby the full distribution of internal forces, is seen to be

independent of shear flexibility. The internal moment distribution is illustrated in Fig. 4.22.
It is observed that the moment at the supports is MA,B = − 1

12
p�2, i.e. negative and of

double magnitude compared to that at the center.

Fig. 4.22: Moment and shear force distribution.

Finally, the displacement field follows from integration of the shear relation, with γ =

Q/GAz . This gives

dw

dx
= −θ + γ = − p

24EIz

(
x�2 − 4x3

)
− p x

GAz
,

from which

w(x) = − p

24EIz

(
1
2
x2�2 − x4

)
− p x2

2GAz
+ w0 .

The arbitrary constant w0, representing the displacement at the center, is determined from
the boundary condition w( 1

2
�) = 0,

w0 =
p �4

384EIz
+

p �2

8GAz
.

Substitution of this gives the displacement field

w(x) =
p �4

384EIz

[
1− 2

(2x
�

)2
+
(2x

�

)4 ]
+

p �2

8GAz

[
1−

(2x
�

)2 ]
.

Also in this case the displacement field is the sum of a bending and a shear deformation

contribution. At the center the relative magnitude of the shear contribution is wG/wE =
48EIz/(GAz�2), and thus the shear contribution to the deformation is determined by the

non-dimensional parameter EIz/(GAz�2). �

It is seen from these two examples that a full analysis of a beam with shear
flexibility becomes quite extensive, when applying a direct integration ap-
proach. It is demonstrated in the following section that the shear flexibility
effect can be included rather easily when using virtual work principles as
basis of the analysis. That approach is also used when developing a simple
beam element with shear flexibility in Chapter 7.
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4.4 Virtual work and displacements of beams

The equilibrium equations for beams and frames constitute conditions by
which each part of the beam is in local equilibrium. This equilibrium implies
that if the beam or frame is subjected to a hypothetical small displacement
the associated work must vanish. The principle of virtual work was derived
for truss structures in Section 2.4.3, and it was demonstrated that it could
be used to determine displacements of elastic truss structures from an ex-
pression of internal work. Here the same ideas are extended to beams and
frames. The derivations are described in detail for plane beams and frames,
but are easily generalized to three-dimensional beams and frames. First, the
equation of virtual work is derived for a beam. The virtual work equation is
an identity by which the external virtual work performed by the loads on the
beam is identical to the internal virtual work formed by the section forces
via the virtual deformation of the beam. For elastic beams this results in
an expression for local displacements in terms of internal work. This result
constitutes an important alternative to calculation of beam displacements by
direct integration of the differential equations. After presenting the results
for single beams a simple generalization to frames is presented.

4.4.1 Principle of virtual work

The principle of virtual work will be derived for plane beams and frames, and
in order to obtain full generality the formulation includes the normal force
N , the shear force Q and the bending moment M . The beams can then later
be joined to form frames.

Fig. 4.23: Equilibrium of beam with section forces N , Q and M .

Figure 4.23 shows a plane beam with normal force N(x), shear force Q(x) and
moment M(x). The beam is loaded by an axial load n(x), a transverse load
p(x) and a distributed moment load m(x). Typically, a distributed moment
m(x) will occur, if the axial load n(x) is not acting along the beam axis
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but at some transverse distance. The equilibrium equations are obtained by
considering a small slice of the beam of thickness dx as in Section 3.3.1. The
resulting three equilibrium equations are

dN

dx
+ n = 0 ,

dQ

dx
+ p = 0 ,

dM

dx
− Q + m = 0 . (4.33)

Section force distributions N(x), Q(x) and M(x) that satisfy the equilibrium
conditions and appropriate static boundary conditions are said to satisfy the
static conditions. The loads are here represented by continuous load densities.
Concentrated loads can be considered as local load densities of very high
intensity over a very short length of the beam.

The beam kinematics is expressed in terms of an axial displacement u(x), a
transverse displacement w(x), and the cross-section rotation θ(x). Together
the three functions are called the generalized displacements of the beam,
or simply the displacements. The displacements of a beam typically lead to
deformation, described in terms of the axial strain ε(x), the shear strain
γ(x), and the curvature κ(x). These kinematic quantities describing the de-
formation are called the generalized strains. As discussed previously they are
defined as

ε =
du

dx
, γ =

dw

dx
+ θ , κ =

dθ

dx
. (4.34)

These relations between the (generalized) displacements and the (generalized)
strains are called the kinematic conditions of the beam.

The idea of virtual work is to consider a beam in equilibrium, i.e. a beam
that satisfies the equilibrium equations (4.33). The beam is then subjected
to a hypothetical displacement described by the virtual displacements δu(x),
δw(x) and δθ(x). A small unbalance in the axial equilibrium condition would
lead to virtual work through the virtual axial displacement δu(x), and simi-
larly for virtual transverse motion and rotation. The total virtual work over
the whole beam is expressed by integration over the length of the beam. This
virtual work is expressed as

∫ �

0

{
δu
(dN
dx

+ n
)
+ δw

(dQ
dx

+ p
)
+ δθ

(dM
dx

−Q+m
)}

dx = 0 . (4.35)

For a beam in equilibrium each of the expressions within the parentheses
vanishes identically, and thus the integral must be equal to zero for any
choice of the virtual displacements.

Each of the parentheses contains a derivative of a generalized section force
and a term representing a load intensity. The products containing derivatives
of the generalized section forces can be reformulated by use of integration
by parts. This procedure generates terms at the interval end-points, and
derivatives of the virtual displacements. When arranged with the external
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load terms first, the result takes the form

∫ �

0

(
δu n + δw p + δθm

)
dx +

[
δuN + δwQ + δθM

]�
0

−
∫ �

0

(
d(δu)

dx
N +

(d(δw)
dx

+ δθ
)
Q +

d(δθ)

dx
M

)
dx = 0 .

(4.36)

In this formula the first integral represents the virtual work of the applied
load along the beam, and the terms in the square brackets represent the
virtual work of the forces and moments acting at the ends of the beam. This
is illustrated in Fig. 4.24.

Fig. 4.24: Components of external virtual work.

The kinematic quantities in the last integral are seen to correspond to the
virtual strains defined via the kinematic relations (4.34). When the notation
for the corresponding virtual strains is introduced the virtual work equation
takes the form

[
δuN + δwQ + δθM

]�
0

+

∫ �

0

(
δu n + δw p + δθm

)
dx

=

∫ �

0

(
δεN + δγ Q + δκM

)
dx .

(4.37)

In this equation the terms on the left side represent the external virtual work,
i.e. the virtual work of the loads acting on the beam,

δVex =
[
δuN + δwQ + δθM

]�
0

+

∫ �

0

(
δu n + δw p + δθm

)
dx .

(4.38)

The integral on the right side of the virtual work equation represents the
internal virtual work, i.e. the work of the internal forces through the virtual
strains.

δVin =

∫ �

0

(
δεN + δγ Q + δκM

)
dx . (4.39)
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The internal work of the beam is associated with three deformation mecha-
nisms – extension, shear and bending – illustrated in Fig. 4.25.

Fig. 4.25: Axial, shear and bending deformation of a beam.

With these definitions the virtual work equation (4.37) is an expression of
the identity of external and internal virtual work,

δVex = δVin . (4.40)

This virtual work equation serves several useful purposes. It is based on the
equilibrium equations (4.33) for the beam. By the reformulation via inte-
gration by parts it uniquely defines the virtual strains that correspond to
the internal forces. Thus, the kinematic relations (4.34) actually follow from
the assumption of the existence of a virtual work equation, and need not
be defined independently. By making suitable assumptions about material
behavior and deformation characteristics the virtual work equation serves to
determine deformation and stiffness properties of beams.

In particular, the virtual work equation for Bernoulli beams follows as a
special case of vanishing shear flexibility. In the case of Bernoulli beams the
shear strain vanishes identically, γ ≡ 0, and the shear force term disappears
from the internal work. This special formulation is often used in practice,
because the effect of shear flexibility deformation is insignificant in many
structures. However, as demonstrated in the following, it is often fairly simple
to include the shear flexibility effect in virtual work based calculations, if
needed.

4.4.2 Displacements in elastic beams

The virtual work equation is an identity of the internal work and the external
work for a combination of an actual static state with given loads and a virtual
displacement field. For an elastic beam it is of interest to reverse the roles
such that the virtual displacement field represents the actual displacement
field of interest. On the other hand, the static field is selected to serve a
specific diagnostic role, e.g. focusing on the force/displacement component
at a specific point. A special case of this has been considered in Section 2.4.3
for truss structures, in which bending and shear do not occur.

The general procedure is illustrated by a specific example in Fig. 4.26, show-
ing a simply supported elastic beam with a load distribution p(x). The cor-
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Fig. 4.26: Actual load P and unit test loads P 1 and M2.

responding displacements are u0(x), w0(x) and θ 0(x). The superscript 0 in-
dicates that these distributions correspond to the actual situation. These
displacements define a deformation field described by an axial strain ε0(x),
a shear strain γ0(x) and a curvature κ0(x), given via the kinematic relations
(4.34). The beam is now assumed to be linear elastic. This implies linear con-
stitutive relations between the internal forces and the strains for the three
deformation mechanisms illustrated in Fig. 4.25,

ε0 =
N0

EA
, γ0 =

Q0

GAz
, κ0 =

M0

EIz
. (4.41)

The extension stiffness EA combines the elastic modulus E with the area
of the beam, the shear stiffness GAz combines the shear modulus G with
a modified ‘shear area’ of the beam cross-section, and finally the bending
stiffness EIz combines the elastic modulus with the moment of inertia about
the neutral axis of the cross-section. The elastic relations (4.41) imply that
the actual beam kinematics can be characterized by the internal forces N0(x),
Q0(x) and M0(x) corresponding to the actual loads.

The static components of the virtual work equation are taken to represent a
suitable test case of particular interest. Two cases are illustrated in Fig. 4.26b:
a concentrated unit transverse force P 1 = 1 at the distance a from the left
end, and a concentrated unit counterclockwise moment M2 = 1 at the right
support, respectively.

The external work for test case 1 consists of the single term w0P 1 = w0,
corresponding to the actual displacement of the beam in the direction of the
test force. According to the virtual work equation (4.40) this is equal to the
internal virtual work, expressed as

w0 = w0 P 1 =

∫ �

0

(
ε0(x)N1(x) + γ0(x)Q1(x) + κ0(x)M1(x)

)
dx. (4.42)

When the actual strains are expressed via the elastic relations (4.41), the
virtual work equation takes the form
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w0 =

∫ �

0

(N0(x)N1(x)

EA
+

Q0(x)Q1(x)

GAz
+

M0(x)M1(x)

EIz

)
dx. (4.43)

This relation permits calculation of a displacement component w0 by intro-
ducing a unit test load P 1 = 1 at the point of the desired displacement
and then evaluating the appropriate integrals involving the distribution of
internal forces from the actual load, and from the test load.

The rotation of a cross-section in the beam can be determined by introducing
a unit test moment. Figure 4.26b illustrates the application of a unit test
momentM2 = 1 at the right support of the beam. The corresponding external
work is θ 0M2 = θ 0, and the equation of virtual work takes the form

θ 0 = θ 0 M2 =

∫ �

0

(
ε0(x)N2(x) + γ0(x)Q2(x) + κ0(x)M2(x)

)
dx. (4.44)

When the actual strains are represented in terms of the internal forces by use
of the elastic relations (4.41), the following expression for the cross-section
rotation is obtained,

θ 0 =

∫ �

0

(N0(x)N2(x)

EA
+

Q0(x)Q2(x)

GAz
+

M0(x)M2(x)

EIz

)
dx. (4.45)

It is observed that the only difference between the procedures for comput-
ing a displacement and a cross-section rotation is the choice of test load. A
displacement is determined from the internal forces generated by a unit test
force in the direction of the desired displacement, while a cross-section rota-
tion is determined from the internal forces generated by application of a unit
moment at the cross-section.

Calculation of a displacement component by the virtual work equation implies
three steps:

i) calculation of the internal forces N0(x), Q0(x) and M0(x) from the ac-
tual loads,

ii) calculation of the internal forces N j(x), Qj(x) and M j(x) from the unit
test load in case j,

iii) evaluation of the integrals defining the internal work.

The two first tasks have been dealt with in considerable detail in the previous
chapters. In particular it was found in Chapter 3 that distributed loads lead
to linear variation of N(x) and Q(x) while the internal moment M(x) has
parabolic variation. For these types of distributions of the internal forces the
integrals can be obtained in terms of the principal measures of the correspond-
ing internal force distributions. A collection of basic results are summarized
in Table 4.1. The use of the table is illustrated in the following examples.
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Table 4.1: Product integrals for simple shapes.

∫ �

0

f(x) g(x) dx f(x) g(x)

�

3
AB

�

6
AB

�

6

(
2AC + 2BD +AD +BC

)

�

3
A
(
B + C

)

�

12
A
(
3B + 5C

)

�

12
A
(
B + 3C

)

Example 4.9. Displacement of cantilever with tip load. Figure 4.27a shows a cantilever

with a transverse force P at the tip. The goal is to calculate the transverse displacement
w(x) as a function of x and to evaluate the influence of shear flexibility on the solution. The
similar problem was considered by integration of the differential equations in Example 4.7.

Fig. 4.27: Displacement of cantilever: Actual and test load distributions.

The normal force vanishes identically along the beam,N0 ≡ 0. The distribution of the shear

force Q0(s) and the moment M0(s) is shown in the lower part of Fig. 4.27a. A vertical test
load in the form of a transverse unit force P 1 = 1 at the distance x from the support is
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shown in Fig. 4.27b together with the corresponding shear force and moment distributions

Q1(s) and M1(s). The displacement w(x) under the test load is then determined by the
virtual work relation (4.43) in the form

w(x) =

∫ x

0

(M0(s)

EIz
M1(s) +

Q0(s)

GAz
Q1(s)

)
ds .

Note, that the integration interval only extends over the interval from the support to the

applied test load, as M1(s) = 0 and Q1(s) = 0 for s > x.

The integral is computed by the integral formulas in Table 4.1. The moment integral is
computed from the linear distributions in the third row, where it is indicated in the figure

that the actual moment at the location of the test force is M0(x) = P (� − x). The shear
forces are constant. Thus, the integral is

w(x) =
1

EIz

x

6

[
2P� x + P (�− x)x

]
+

1

GAz
xP .

After a slight rearrangement this takes the normalized form

w(x) =
1

6

P�3

EIz

(x
�

)2[
3 − x

�

]
+

P�

GAz

x

�
.

This result agrees with the result obtained by solving the differential equation in Exam-
ple 4.1. The rotation θ(x) can be determined similarly by applying a local moment M1 = 1

at x. This problem is considered in the exercises. �

The importance of including shear flexibility in the beam theory can be es-
timated by comparing bending and shear contributions, wE and wG, to the
displacement at the tip of the beam. As seen from the solution

wE =
P�3

3EIz
, wG =

P�

GAz
.

Thus, the relative importance of the shear contribution in the present case is
determined by the ratio

wG

wE
=

3EIz
GAz�2

∼ 3

10

E

G

h2

�2
, (4.46)

where the last expression is representative of a rectangular cross-section with
height h. For isotropic beamsG 
 0.4E, whereby the two first factors combine
to a number around 0.75, and thus the relative magnitude of the shear flex-
ibility contribution is approximately (h/�)2. For slender beams this is small
and the shear flexibility effect will be negligible. However, for short beams
and for composite beams where the shear stiffness may be much smaller than
the axial stiffness, G  E, the shear flexibility effect may be significant.

Example 4.10. Cantilever with discontinuous bending stiffness. The virtual work is

efficient when evaluating the influence of local changes in the stiffness of the structural
elements. Figure. 4.28 shows a cantilever of length � with a transverse force P acting at

the tip. The moment increases linearly towards the support, and a smaller cross-section on
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the exterior part of the beam may therefore be sufficient from a strength perspective. The

present example investigates the influence of reducing the bending stiffness from EIz to
1
2
EIz in the exterior half of the beam. The beam is considered as slender, and the effect

of shear deformation is therefore neglected.

Fig. 4.28: Tip displacement of cantilever: Actual and test load distributions.

The tip displacement wB is found by the virtual work equation (4.43), and the integral is

divided into two parts due to the change in bending stiffness,

wB =
1

EIz

∫ �/2

0

M0 M1 dx +
2

EIz

∫ �

�/2

M0 M1 dx.

The formula for integrating the product of two triangular densities is considerably simpler

than the general formula for densities with linear variation. It is therefore convenient to
absorb half of the last integral into the first by extending the interval of integration to the

full beam length,

wB =
1

EIz

∫ �

0

M0 M1 dx +
1

EIz

∫ �

�/2

M0 M1 dx.

Hereby both integrals relate to triangles with zero value at the right end. They are both
computed by the formula in the first row of Table 4.1,

wB =
�

3EIz
(−P�) (−�) +

1
2
�

3EIz
(− 1

2
P�) (− 1

2
�) = (1 + 1

8
)

P�3

3EIz
=

3

8

P�3

EIz
.

The additional displacement is given by the last term, giving a relative increase of 1
8
. The

reason for the rather modest increase is that the section was deliberately reduced in the
part of the beam that carries only a small moment. �

Example 4.11. Midpoint displacement of simply supported beam. The simply sup-
ported beam with uniform load shown in Fig. 4.29 is a common structural element. This

example investigates the displacement at the center and the contribution from shear flex-
ibility. The beam is statically determinate and the moment distribution, determined in
Example 3.6, is parabolic with a maximum of Mmax = 1

8
p�2, as shown in Fig. 4.29a. This

is the actual moment distribution, denoted by M0(x).

The transverse displacement at the middle of the beam is determined by the virtual work

equation (4.43). The test load consists of a transverse unit force P1 = 1, acting at the
center of the beam as shown in Fig. 4.29b. The center displacement is then expressed as
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Fig. 4.29: Displacement of midpoint: Actual and test load distributions.

wC =

∫ �

0

(M0(x)

EIz
M1(x) +

Q0(x)

GAz
Q1(x)

)
dx

= 2

∫ �/2

0

(M0(x)

EIz
M1(x) +

Q0(x)

GAz
Q1(x)

)
dx.

The moment and shear force distributions M0(x), M1(x) and Q0(x), Q1(x) are shown in
Fig. 4.29, and the integral can be computed by using the integral formulas in Table 4.1.

The moment integral is evaluated by the formula in the fifth row of Table 4.1 and the shear
force integral is evaluated as a simple mean value,

wC = 2
�

2

( 1

EIz

5

12

p�2

8

�

4
+

1

GAz

1

2

p�

2

1

2

)
=

5

384

p �4

EIz
+

1

8

p �2

GAz
.

The first term is the result obtained in Example 4.4 by integrating the differential equa-

tion for a beam without shear flexibility. Also in this case the relative magnitude of the
contribution from shear flexibility is given by the parameter EIz/(GAz�2) identified in Ex-

ample 4.9. The conclusion in this case is the same, namely that shear flexibility is mainly
important for rather short beams and beams with low shear modulus. �

Example 4.12. Support rotation of simply supported beam. In this example the task is
to determine the rotation at the support of the uniformly loaded beam shown in Fig. 4.30a.

The test load is a unit moment M1 = 1, applied at the support as shown in Fig. 4.30b.

The rotation follows from the virtual work relation (4.45). It is observed from the figure
that the actual shear force distribution Q0(x) is anti-symmetric, while the shear force dis-

tribution Q1(x) from the test load is symmetric. Thus, the corresponding integral vanishes
and there is no contribution from shear flexibility to the rotation at the support. The

expression for the rotation therefore takes the simplified form

θB =

∫ �

0

M0(x)

EIz
M1(x) dx .

The bending stiffness EIz is constant, and the result then follows from the product of a
parabolic and a triangular distribution, given in the fourth row in Table 4.1,

θB =
1

EIz

∫ �

0

M0(x)M1(x) dx =
1

EIz

2�

3

p �2

8

1

2
=

1

24

p �3

EIz
.



178 Deformation of Beams and Frames

Fig. 4.30: Rotation at support: Actual and test load distributions.

Note, that because the parabolic distribution is symmetric, only the symmetric part of the
triangular distribution contributes to the integral. The symmetric part of the triangle is a

constant intensity of 1/2, and thus the integral represents half the area of the parabolic
distribution. Symmetry arguments like this can often be used to reduce the computation

of the virtual work integral. �

Example 4.13. Deformation of beam with two load components. Structures are often
analyzed for a number of load combinations, and it may be advantageous to treat the

effect of simple load components individually, and then combine the results. The problem
is illustrated for a simply supported beam extending beyond one of the supports as shown in

Fig. 4.31. The load is a combination of a concentrated force P acting at C and a distributed
load with intensity p on AB. The present example determines the tip displacement by

superposition of the tip displacements for the individual load cases. The effect of shear
deformation is neglected.

Fig. 4.31: Beam with combined concentrated and distributed load.

The actual moment distribution M0 consists of the separate moment distributions M0
1 and

M0
2 for tip load P and for the distributed load p, respectively, as indicated in Fig. 4.31a.

The tip displacement for each of the two load cases is determined by the virtual work
equation (4.43) by using the moment distribution M1 from a unit test force P 1 = 1 acting

at C as illustrated in Fig. 4.31b. The moment curves for the individual load components
are seen to be simple shapes, easily integrated by use of the results in Table 4.1. The tip

displacement from the concentrated load is obtained from the moment distribution M0
1 (x)

as
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wC1 =

∫

ABC

M0
1 M1

EIz
ds =

(a+ b)

3EIz
(−bP ) (−b) =

1

3

Pb2(a+ b)

EIz
,

while the tip displacement from the distributed load is obtained from the moment distri-

bution M0
2 (x) as

wC2 =

∫

AB

M0
2 M1

EIz
ds =

a

3EIz

1

8
pa2 (−b) = − 1

24

pa3b

EIz
.

The total tip displacement for the load combination is found as the sum of the individual

contributions,

wC = wC1 + wC2 =
b

3EIz

(
Pb(a+ b) − 1

8
pa3
)
.

Zero tip displacement wC = 0 is obtained for

Pb(a+ b) − 1
8
pa3 = 0 ⇒ P =

1

8

pa3

b(a+ b)
.

For spans of same length zero tip displacement corresponds to a distributed load of mag-
nitude pa = 16P . �

4.4.3 Virtual work and displacements in frames

The virtual work equation (4.40) for beams can be extended to frame struc-
tures, formed by joining beams. The procedure is here illustrated for plane
frames, but applies also to three-dimensional frame structures. The frame
consists of a number of beams, that each have a set of internal forces that
satisfy equilibrium with the external load. The frame is now subjected to
a virtual displacement field, by which joints are moved and beams are de-
formed. In this process the principle of virtual work applies to each of the
individual beams, and therefore also to the sum of the external and internal
work contributions from all the beams,

∑
beams

δVex =
∑

beams

δVin . (4.47)

The internal virtual work δVin in each of the beams follows directly from its
definition (4.39) in terms of the internal forces and the generalized virtual
strains δε, δγ and δκ for a single beam.

Fig. 4.32: Balance between internal and external forces at joint.
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The external virtual work δVex relating to the beams consists of the virtual
work of the loads on the beams plus the external virtual work of the section
forces at the ends of the beams, illustrated in Fig. 4.24. The virtual work
of the loads inside the beams are retained as contributions relating to the
individual beam, but the end loads formed by the section forces at the beam
ends are reformulated. The principle is illustrated in Fig. 4.32 showing three
beams AB, AC and AD joined at A. Equilibrium of the joint implies that the
external load on the joint is balanced by the section forces from the beams
connected to the joint. The section forces act in the opposite direction of
those acting on the beams, and thus the equilibrium conditions for the joint
can be written as

PA −
∑

PA∗ = 0 , MA −
∑

MA∗ = 0 , (4.48)

where the subscript A∗ denotes any of the connected beams AB, AC, etc.
By these equilibrium conditions the sum of all contributions from the beams
connected to a joint is equal to the external load applied to the joint. Thus, the
contribution from all the forces and moments from beams connected to a joint
j can be replaced by δuT

j Pj and δθjMj . After replacing the contributions
from the beam end sections with the contribution from the corresponding
joints, the virtual work equation for frames takes the form

∑
joints

[
δuT

j Pj + δθj Mj

]
+
∑

beams

∫

�i

(
δuTp + δθm

)
ds

=
∑

beams

∫

�i

(
δεN + δγ Q + δκM

)
ds.

(4.49)

The virtual work equation for frames is a straightforward extension of the
similar result (4.37) for beams, and its use for calculation of displacements
in elastic frames is illustrated in the following examples.

Example 4.14. Displacements in simple frame. Figure 4.33 shows a simple angle frame

with a uniformly distributed vertical load with intensity p acting on the horizontal beam
CDB. The effect of extension/compression effects due to the normal force on the vertical

displacement at the center D is illustrated in the context of slender beams, where it was
demonstrated in Example 4.11 that the shear flexibility effect can be neglected.

The vertical displacement is determined by the virtual work equation (4.43) involving an

integral over the entire frame,

wD =

∫

ACB

(M0M1

EIz
+

N0N1

EA

)
ds.

The moment distributions are only present over CB and symmetric, while the normal force

only contributes over AC. Thus, the virtual work relation can be written as
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Fig. 4.33: Angle frame: Actual and test load distributions, M (–), N (- -).

wD =
2

EIz

∫

CD

M0M1 ds +
1

EA

∫

AC

N0N1 ds .

The first integral involves a half parabola and a triangle, given by the fifth row of Table
4.1, while the normal force distributions are piecewise constant as indicated in Fig. 4.33b

by the dashed lines. The integrals then give

wD =
2

EIz

5a

12

pa2

2

a

2
+

a

EA
pa

1

2
=

5

24

pa4

EIz
+

1

2

pa2

EA
.

The relative importance of the axial deformation is determined by the parameter combi-

nation
EIz

EA�2
∼ 1

12

h2

�2
.

where � = 2a, and the numerical factor corresponds to a rectangular cross-section. The
relative magnitude of the axial deformation is proportional to (h/�)2 as for the effect of

shear flexibility. Therefore the axial deformation is often neglected in hand-calculation
analysis of elastic frames. �

Example 4.15. Horizontal loading of simple frame. In the present example the loading
of the simple frame in the previous example is changed, so that a distributed load with

intensity p is acting in the horizontal direction on the vertical beam AC. The horizontal
displacement wC of the junction is determined by the virtual work equation. The reactions

can for instance be determined by horizontal projection, moment about B and moment
about A:

R′
A = ap , RA = − 1

4
ap , RB = 1

4
ap .

The moment is zero at the supports in A and B and varies linearly in BC and as a parabola

in AC. Thus, the full moment distribution is determined by the moment MC at the joint
C and the local maximum of the moment in AC. By section in BC at C it is found that

� MC − 2aRB = 0 ⇒ MC = 1
2
p a2 .
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Fig. 4.34: Frame with horizontal distributed load on vertical beam.

The local maximum of the moment in AC is found via the shear force Q. Due to the roller

support in B there is no normal force in CB, and thus the shear force in AC vanishes at
the joint C. This implies that the moment distribution in AC has the maximum value MC

and zero slope in C. Hereby, the moment distribution M0 is determined and it is shown
in Fig. 4.34b.

Fig. 4.35: Virtual moment distribution corresponding to the horizontal displacement of C.

The horizontal displacement of the joint C is determined from the extended form of the

virtual work relation (4.43) integrating the product of the actual curvature and the moment
from the test load in Fig. 4.35 over the whole frame,

wC =

∫

ACB

κ0 M2 ds =

∫

AC

M0 M2

EIz
ds +

∫

CB

M0 M2

EIz
ds .

The integral for AC is solved by the integral formula in the fifth row, while the integral
for CB is determined by the triangles in the first row of Table 4.1,

wC =
a

12EIz

pa2

2
5 a +

2a

3EIz

pa2

2
a =

13

24

pa4

EIz
.

This displacement is considerably larger than the vertical displacement found in the pre-
vious example. This is primarily due to the rolling support in B. �

Example 4.16. Displacement of a cable supported beam. The virtual work equation

is also a convenient tool for determining displacements in structures with different member
types. Figure 4.36 shows a cable supported beam as found e.g. in canopy roofs and simple

bridges. The beam ADC has a fixed simple support at A and is supported by the cable BD
at its center. The structure is statically determinate, and the internal hinge at D allows for
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four support reactions as shown in the figure. The length of the beam ADC is 8a, and the

height AB is 3a. These simple proportions give the cable length BD as 5a. The goal is to
calculate the vertical displacement of the beam, represented by the vertical displacement

of the tip wC . The calculation is based on the bending deformation of the beam ADC with
stiffness EIz and the extension of the cable BD with stiffness EA. The cable cross-section
is typically much smaller than the area of the beam cross-section, and the extension of the

cable can therefore provide a considerable contribution to the displacement wC .

Fig. 4.36: Beam with simple and cable supports.

The horizontal reaction components are of equal magnitude and determined by moment

about A or B,

R′
A = R′

B =
32

3
ap .

The vertical reaction component RB must lead to a total reaction at B in the direction
of the cable, whereby the reactions in B are the horizontal and vertical projections of the

bar force NBD, which implies the following equilibrium relations

RB = 3
4
R′

B = 8ap .

The reaction component RA is determined from moment equilibrium of the beam about
the center D, whereby RA = 0. The tension in the cable N0

BD follows e.g. from vertical

projection of node B,
N0

BD = 5
3
RB = 40

3
ap .

The moment curve for the beam ADC is zero at the ends where it has horizontal tangent
as the shear force vanishes. The maximum value occurs at the center D, where

MD = 2a (4ap) = 8a2p .

The moment distribution in the beam and the axial force in the cable are shown in the

top right part of Fig. 4.36.

The virtual system corresponding to the vertical displacement wC of the beam tip is shown
in the lower part of Fig. 4.36, indicating a vertical unit force P 1 = 1 acting in C. The

moment in the beam ADC is zero at the ends, and varies linearly to a moment M1
D = 4a
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at the center. The cable force is found e.g. by calculating the horizontal reaction in B by

moment for the full structure about A, and then obtaining the cable force via horizontal
projection of the forces acting on the node B. This determines the cable force N1

BD = 10
3
.

The vertical displacement wC is now determined from the virtual work equation including

the terms representing bending of the beam ADC and extension of the cable BD. This
can be formulated as

wC =

∫

ADC

M0(s)M1(s)

EIz
ds +

∫

BD

N0(s)N1(s)

EA
ds .

The moment integral is evaluated by splitting it into equal integrals over AD and DC

and then using the last row in Table 4.1. The normal forces are constant and this integral
therefore follows immediately from the length 5a of BD,

wC = 2
4a

EIz

1

4
(8a2p)(4a) +

5a

EA

40ap

3

10

3
= 64

a4p

EIz
+

200

9

a2p

EA
.

The first term is the contribution from beam bending while the second is the effect of

cable extension. It is seen that a small cable cross-section area A relative to the beam
cross-section may lead to a considerable contribution from extension of the cable.

It is worth noting that the effect of flexibility of e.g. the support B can easily be included

in the form of a local spring that would be loaded by the corresponding reaction at B. �

4.5 Exercises

Exercise 4.1. The figure shows a rectangular box section with height h, width b and wall

thickness t. As demonstrated in Example 4.1 the moment of inertia of a massive rectangular
cross section is Iz = 1

12
h3b. This result can be used to determine the moment of inertia

of the present box section. The cross section is assumed to be thin-walled, whereby t � h
and b. Note that dimensions h and b are with respect to the centerlines of the individual

flanges, which e.g. means that the total height of the box section is h+ t.

a) Determine the moment of inertia Ioutz for a massive rectangular

cross section with dimensions corresponding to the outer dimen-
sions of the box section.

b) Determine the moment of inertia Iinz for a massive rectangular
cross section with dimensions corresponding to the inner dimen-

sions of the box section.

c) Use the results in a) and b) to determine the moment of inertia

Iz of the box section.

Exercise 4.2. The figure shows a cantilever beam of length � with constant bending stiff-

ness EIz . A concentrated moment MB and a vertical force PB act at the tip of the beam
in B.

a) Find an expression for the moment M(x).

b) Determine the expression for w(x).

c) Find the displacement w(�) and rotation θ(�) at
the tip.
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Exercise 4.3. The figure shows a cantilever beam of length � with constant bending stiff-

ness EIz . The beam is loaded by a transverse uniformly distributed load with intensity p.

a) Find an expression for the moment M(x).

b) Determine the expression for w(x).

c) Find the displacement w(�) and rotation θ(�) at
the tip.

Exercise 4.4. Consider the cantilever beam in Fig. 4.27, but let the force P act at distance
a from the left support instead of at the tip. Determine an expression for the displacement

w(x) in the two intervals x < a and x > a, respectively.

Exercise 4.5. The figure shows a cantilever beam of length � with constant bending stiff-
ness EIz . The beam is loaded by a transverse distributed load with linearly increasing

intensity p(x) = px/�, whereby p is the tip intensity.

a) Solve the differential equation (4.16) to find the expression for the moment M(x).

b) Determine the expression for the displacement
w(x) and the rotation θ(x).

c) Find the displacement w(�) and rotation θ(�) at
the tip.

d) Find the magnitude of the reactions.

Exercise 4.6. The figure shows a beam of length � with constant bending stiffness EIz .
The beam is fixed in A and simply supported in B, which makes it statically indeterminate.

It is loaded by a transverse distributed load with linearly increasing intensity p(x) = px/�,
where p is the intensity at the simple support.

a) Setup the fourth order differential equation gov-

erning the transverse displacement w(x), and find
the solution containing four arbitrary constants.

b) Use the four boundary conditions to determine the

expression for the displacement w(x) and the ro-
tation θ(x).

c) Determine the expression for the moment M(x) and the shear force Q(x) and find the

magnitude of the reactions.

d) Determine the location xmax and the magnitude Mmax of the maximum moment.

Exercise 4.7. The figure shows a simply supported beam of length � and with constant

bending stiffness EIz . A concentrated vertical load P acts at distance a from the left
support. This problem is solved in Example 4.5 via the differential equation, whereby the

beam must be divided into two parts, which complicates the analysis. In this exercise
the problem is solved by the principle of virtual work, and hopefully it is observed how

comparatively easy the results are obtained.

a) Draw the actual moment distribution M0.

b) Use the virtual work equation to find the trans-
verse displacement wC at the location of the force.

c) Use the virtual work equation to find the rotations
at the supports.
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Exercise 4.8. The figure shows a beam of length a + b with a simple fixed support in A

and a simple support permitting horizontal motion in B. The beam is linear elastic with
constant bending stiffness EIz , and a vertical force P acts at the tip of the beam in C.

Solve the following problems by the principle of virtual work.

a) Determine the displacement wC at the tip of the
beam.

b) Determine the rotation θC at the tip of the beam.

c) Determine the rotation θA at the simple support

in A.

d) Determine the displacement wD at the center D of AB.

Exercise 4.9. The figure shows a two span simply supported beam similar to that in the

previous exercise. The beam is linear elastic with bending stiffness EIz , and a vertical
uniformly distributed load with intensity p acts on both spans of the beam. Solve the

following problems by the principle of virtual work.

a) Determine the displacement wC at the tip of the
beam.

b) Determine the rotation θA at the simple support
in A.

Exercise 4.10. The figure shows a three span simply supported beam with constant bend-

ing stiffness EIz . The two exterior spans AC and BE both have length a, while the inner
span ADB has length 4a. Vertical tip forces P act at C and E, while a force 2P acts at

the center of the beam in D. Solve the following problems by the principle of virtual work.

a) Determine the displacement wC of the tip.

b) Find the rotation θA at the left support.

c) Determine the transverse displacement wD at the

center of the beam.

Exercise 4.11. The figure shows a beam of length 2a which is fixed in A and simply

supported in B. The beam is furthermore hinged at the center C. The beam is linear
elastic with constant bending stiffness EIz , and it is loaded by a uniformly distributed

load with intensity p. Solve the following problems by the principle of virtual work.

a) Determine the displacement wC at the loca-

tion of the hinge.

b) Determine the rotation θB at the simple sup-

port.

Exercise 4.12. Consider the simple frame in Example 4.15. Determine the rotation θC of

the joint and sketch the deformation form of the frame.

Exercise 4.13. The figure shows a simple frame similar to that in Example 4.14, with
width 2a and height a. The supports are fixed simple in A and simple with a vertical roller

in B. All beams are linear elastic with constant bending stiffness EIz . The frame is loaded
by a uniformly distributed load with intensity p on the horizontal beam BC. Solve the

following problems by the principle of virtual work.
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a) Determine the vertical displacement wB at the

support in B.

b) Determine the rotation θC at the joint.

c) Determine the rotation θA at the fixed simple
support in A.

Exercise 4.14. The figure shows a T-frame with width a + 2a and height b. A vertical

force P is acting at the tip in D. The distribution of the internal forces has previously
been determined in Exercise 3.17. All beams in the frame are linear elastic with constant

bending stiffness EIz . Solve the following problems by the principle of virtual work.

a) Determine the vertical displacement wD at the
location of the force.

b) Determine the rotation θC at the joint.

c) Determine the vertical displacement wB at the
left support in B.

Exercise 4.15. The figure shows a T-frame similar to that in the previous exercise, with
width a+2a and height b. Note that the roller in B permits horizontal motion. A uniformly

distributed vertical load with intensity p acts on the cantilever part CD. All beams in the
frame are linear elastic with constant bending stiffness EIz . Solve the following problems

by the principle of virtual work.

a) Determine the vertical displacement wD at the

tip D.

b) Determine the rotation θC at the joint C.

c) Determine the horizontal displacement wB at
the left support in B.

Exercise 4.16. The figure shows a three-hinge frame with an internal hinge placed in E
at the center of the horizontal beam BC. The frame is loaded by a uniformly distributed

load with intensity p on BC. The distribution of the internal forces has previously been

determined in Exercise 3.18. All beams in the

frame are linear elastic with constant bending stiff-
ness EIz . Solve the following problems by the prin-

ciple of virtual work.

a) Determine the vertical displacement at the

hinge in E.

b) Determine the rotation θB at the left joint.

c) Determine the rotation θA at the left support.

Exercise 4.17. The figure shows a three-hinge frame with an internal hinge placed in E at

the center of the horizontal beam BC. The frame is similar to that in the previous exercise,
but is now exposed to horizontal forces P acting at the joints B and C, respectively. The

distribution of the internal forces has previously been determined in Exercise 3.19.
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a) Determine the sum of the horizontal
displacements in B and C, and use this

result to obtain the individual horizon-
tal displacements in B and C.

b) Determine the rotation θB at the left
corner B.

c) Determine the rotation θA at the left
support.



Column Stability 5

A central assumption of the theories for trusses, beams and frames devel-
oped in the previous chapters is that the equilibrium conditions have been
formulated with reference to the original geometry, i.e. neglecting the fact
that the structure via its deformation takes on a somewhat modified geomet-
ric configuration. The basic problem of a curve with elastic stiffness – the
so-called ‘elastica’ – loaded by a concentrated force at the end was treated
by Leonhard Euler (1707–1783), who gave a very extensive and general
analysis of this special problem. In many cases the effect of the normal force
on the stability of beam and frame structures can be analyzed by using a
somewhat simpler theory including small, but finite, displacements of the
original configuration.

In this chapter the theory is developed for a beam with a non-trivial normal
force. For simplicity – and because this is often the case – the normal force is
assumed to be given, or to be a parameter to be determined by the specific
problem in question. The key point of the theory is, that when the beam
is displaced w(x) in the transverse direction, the normal force acting in the
beam is also displaced. When the normal force has a sufficient magnitude, this
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effect becomes important, and in the case of a compressive force the effective
stiffness of the structure may be reduced, possibly leading to instability of
the structure. In many cases of practical interest the normal force may be
deduced from the load, and therefore considered as a known quantity. This
simplified stability problem is the subject of the present chapter.

The present chapter is devoted to the basic properties of the ‘linearized’ sta-
bility problem of a single member. First, the simple bending theory of beams
is extended to include the effect of a normal force in Section 5.1, and it is
demonstrated that a compressive normal force leads to reduced stiffness. For
a sufficiently large normal force there is no stiffness to resist bending and the
column becomes unstable and buckles. The magnitude of the load, at which
buckling occurs, is called the critical load, and Section 5.2 considers the sta-
bility problem and the associated critical load and buckling shape for ideal
columns. In practice, columns are not ideally straight and the load is not
only axial. Buckling of real columns is therefore a gradual process, in which
the displacements increase and eventually become virtually unbounded. The
magnitude of the displacements before reaching the critical load is determined
by imperfections in the initial geometry and by bending loads, causing initial
curvature. A column design procedure based on a combination of material
strength and the influence of initial imperfections is developed in Section 5.3.
In the specific column problems treated in this chapter the shear deforma-
tion is of minor importance, and the column theory is therefore developed
as a generalization of Bernoulli beam theory without including shear flexi-
bility. The effects of normal force and shear flexibility can be combined in a
convenient approximate way as discussed in Chapter 7.

The focus in this chapter is on the development of the basic principles in
the context of the single structural element – the column. Many structures
contain beams carrying a substantial normal force. These members are called
beam-columns, and they combine the properties of a beam with the particular
features of a column. In beam-columns the effect of the normal force is to
change the deformation stiffness. A convenient way of representing this effect,
suitable for numerical analysis of beams and frames, is presented in Chapter 7.

5.1 Beam with normal force

The basis for the theory of elastic beam-columns is the equilibrium equa-
tions, formulated for the deformed state of the beam. Figure 5.1 shows the
deformed state of a beam-column with distributed transverse load p(x). The
displacements, and in particular the rotations due to the displacement gradi-
ents, are assumed to be small, and thus no distinction will be made between
the length increment ds along the beam axis in the deformed state and its
projection dx on the line of the initial beam axis. The figure shows a slice
of thickness ds 
 dx, and the forces and moments acting on it. The internal
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force vector on a section of the beam has the components N and Q in the
axial and transverse directions, respectively. Note, that in the present for-
mulation of a linearized beam-column theory the normal force N is taken as
the component along the direction of the original beam axis, and the shear
force Q is in a direction normal to this. In the linearized theory the normal
force N is treated as prescribed or as an unknown parameter, and the axial
equilibrium and extension of the beam is therefore not treated separately.

Fig. 5.1: Equilibrium of beam-column in deformed state.

Equilibrium in the transverse direction requires that the projection of all
forces on this direction have the sum zero. With the present definition of shear
force and normal force, only the shear force Q contributes to the transverse
equilibrium, where the sum of internal and external contributions is

(Q+ dQ) − Q + p dx = 0 . (5.1)

The terms ±Q cancel, and division by dx leads to the differential equation

dQ

dx
= −p . (5.2)

The sum of moments must also vanish. In the present case the shear force
Q contributes as a force couple with distance dx, and the normal force N
contributes as a force couple with distance dw. This gives the moment equi-
librium equation

(M + dM) − M + N dw − Qdx = 0 . (5.3)

After cancelation of ±M , division by dx leads to the differential equation

dM

dx
+ N

dw

dx
= Q . (5.4)

The two first-order differential equations (5.2) and (5.4) must be satisfied
irrespective of the material properties of the beam. The shear force can be
eliminated, resulting in the second-order differential equation
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d2M

dx2
+

d

dx

(
N

dw

dx

)
+ p = 0 . (5.5)

This differential equation contains the moment M , the normal force N and
the displacement derivative dw/dx. The dependence on the displacement gra-
dient excludes the possibility of determining the internal forces from statics
alone, and it is therefore necessary to express the moment M in terms of the
deformation of the beam.

In the linear beam bending theory developed in Chapter 4 the cross-section
rotation θ and the curvature of the beam axis κ were introduced as

θ = − dw

dx
, κ =

dθ

dx
= − d2w

dx2
. (5.6)

The relation between the moment M and the curvature κ is not changed by
the presence of the normal force, and thus the moment is expressed in terms
of the bending stiffness EIz and the curvature by (4.18),

M = EIz κ = −EIz
d2w

dx2
. (5.7)

The difference between the bending theory and the present theory including
the displacement of the normal force is found in the relation for the shear
force Q. The shear force Q is determined from the equilibrium equation (5.4).
When the moment is expressed in terms of the constitutive relation (5.7), the
shear force equation takes the form

Q = − d

dx

(
EIz

d2w

dx2

)
+ N

dw

dx
. (5.8)

Note the occurrence of the normal force N in the expression for the shear
force.

The equilibrium equation follows from substitution of the shear force (5.8)
into the transverse equilibrium equation (5.2),

d2

dx2

(
EIz

d2w

dx2

)
− d

dx

(
N

dw

dx

)
− p = 0 . (5.9)

For a single beam or column this equation must be solved in connection with
two boundary conditions at each end. The kinematic boundary conditions
are expressed in terms of the displacement w and the rotation θ = −dw/dx,
while static boundary conditions are expressed in terms of the moment M
and the shear force Q as given by (5.7) and (5.8).
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5.1.1 Stiffness reduction from normal force

An important effect of a normal force in a beam is that it changes the effective
stiffness of the beam. This effect is here illustrated by a simple example but
is of general nature.

Fig. 5.2: Beam with distributed transverse load and normal force N .

Figure 5.2 shows a simply supported beam-column with normal force N ,
loaded by a distributed transverse load of intensity

p(x) = p0 sin
(
π
x

�

)
. (5.10)

The simple supports at the ends imply that w = 0 and d2w/dx2 = 0 at x = 0
and x = �. These boundary conditions are satisfied by the function

w(x) = wc sin
(
π
x

�

)
, (5.11)

and the displacement wc at the center is determined by substitution into the
differential equation (5.9),

EIz

(π
�

)4
wc + N

(π
�

)2
wc − p0 = 0 . (5.12)

This determines the center displacement as

wc =
p0

EIz

(π
�

)4
+ N

(π
�

)2 =
1

1 +
N

EIz

( �
π

)2
p0
EIz

( �
π

)4
. (5.13)

The last factors represent the displacement in the corresponding beam prob-
lem with N = 0,

w0
c =

p0
EIz

( �
π

)4
. (5.14)

The first factor is an amplification factor, containing the effect of the normal
force. It is seen that the amplification becomes infinite at a compressive force
N = −PE of magnitude

PE = EIz

(π
�

)2
. (5.15)

This particular load is called the Euler load, a reference to the original work of
Euler on columns. In column problems it is often convenient to consider com-
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pressive axial forces as positive. This is handled by introducing the notation
P = −N , whereby P denotes an axial force with positive values correspond-
ing to compression.

Fig. 5.3: Load-deflection curve for simply supported beam.

In terms of the two characteristic parameters w0
c and PE the center displace-

ment formula takes the form

wc =
w0

c

1 − P/PE
. (5.16)

This relation is shown graphically in Fig. 5.3. Although the solution is partic-
ularly simple in the present case due to the special choice of load distribution,
the amplification behavior illustrated in Fig. 5.3 applies to most beam-column
problems. It is seen that the application of axial compression (P > 0) leads to
an increase of the deformations, while axial tension (P < 0) reduces the de-
formations. The effect of axial compression is much more dramatic than axial
tension, and for P = PE the beam-column has lost its stiffness completely,
leading to column instability, discussed in the following section.

5.2 Stability of the ideal column

In the previous section it was found that for a sufficiently large compressive
axial force a simply supported beam could obtain arbitrarily large transverse
deformations, even for a very small transverse load. This axial load, often
called the Euler load, can be identified directly, without applying a transverse
load. The idea is to consider an ideally straight column as shown in Fig. 5.4a.
A compressive axial load P = −N > 0 is then applied, Fig. 5.4b. Hereby
the column becomes slightly shorter, but in most cases of practical interest,
this shortening is negligible. The main point is, that because the column is
ideally straight and there is no transverse load, it will remain straight under
a limited axial load. If the axial load is increased, a magnitude PE is reached,
at which two solutions exist: a straight configuration, and a buckled form as
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shown in Fig. 5.4c. This problem has the form of an eigenvalue problem, and
the associated critical load PE is found as an eigenvalue.

Fig. 5.4: Euler column.

Consider a column of length � and constant bending stiffness EIz. There is
no transverse load, and the differential equation (5.9) then takes the homo-
geneous form

d4w

dx4
+

P

EIz

d2w

dx2
= 0 . (5.17)

In this equation the axial force P only appears via the coefficient to the
second term. This coefficient has the dimension [ length−2], and it is there-
fore advantageous to introduce the parameter k with dimension [ length−1],
defined by

k2 =
P

EIz
. (5.18)

It is noted that the direct interpretation of k as real-valued assumes a com-
pression force, P ≥ 0. If the effect of a tension force on the beam bending
problem is to be investigated, a modified notation can be used, or the results
based on the present k-parameter can be translated into real-valued form.

The differential equation now takes the normalized form

d4w

dx4
+ k2

d2w

dx2
= 0 . (5.19)

The general solution to this homogeneous 4’th order differential equation is

w(x) = C1 + C2 kx + C3 cos(kx) + C4 sin(kx) . (5.20)

In this form the coordinate x only appears in the non-dimensional combina-
tion kx. The moment follows from (5.7) as

M(x)

EIz
= − d2w

dx2
= C3 k

2 cos(kx) + C4 k
2 sin(kx) , (5.21)
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and the shear force from (5.8),

Q(x)

EIz
= − d3w

dx3
− k2

dw

dx
= −C2 k

3 . (5.22)

These relations are used to formulate static boundary conditions. First the
general solution is obtained for the simply supported ideally straight column
– the so-called Euler column. This solution is used as a reference, and the
influence of alternative support conditions is illustrated by examples.

The Euler column

The boundary conditions of the Euler column shown in Fig. 5.4 are

w(0) = w(�) = 0 , M(0) = M(�) = 0 . (5.23)

Both the differential equation (5.19) and the boundary conditions (5.23) are
homogeneous. Thus, the solution will be w(x) ≡ 0, except for particular
values kn of the parameter k that permit a nontrivial solution. These values
kn are the eigenvalues, and to each eigenvalue corresponds an eigenfunction
wn(x). The eigenfunctions describe the buckled shape of the column and are
often called the buckling modes.

The boundary conditions at the end x = 0 give the equations

w(0) = C1 + C3 = 0 ,

w′′(0) = − k2 C3 = 0 ,
(5.24)

where the notation w′′ = d2w/dx2 has been used for the second derivative.
These equations determine the parameters C1 = C3 = 0. The boundary
conditions at x = � then give

w(�) = k�C2 + sin(k�)C4 = 0 ,

w′′(�) = − k2 sin(k�)C4 = 0 .
(5.25)

These equations imply that

k�C2 = 0 , k2 sin(k�)C4 = 0 . (5.26)

A nontrivial solution requires k� > 0, and thus the first equation gives C2 = 0.
This leaves the final equation (5.26b). Naturally this equation can be satisfied
by C4 = 0, but this would reduce the solution to w(x) ≡ 0.

A nontrivial solution with C4 �= 0 is found by selecting the parameter k such
that

sin(k�) = 0 . (5.27)
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This equation has the positive roots

k� = π, 2π, 3π, · · · or kn = n
π

�
, n = 1, 2, 3, · · · (5.28)

These roots correspond to the axial loads

Pn = EIz k
2
n = n2

(π
�

)2
EIz , n = 1, 2, 3, · · · (5.29)

The smallest of these loads is called the Euler load,

PE = EIz

(π
�

)2
. (5.30)

At this load the column can buckle into a non-straight mode of deformation,
given by the transverse displacement

wE(x) = C sin
(
π
x

�

)
, (5.31)

illustrated in Fig. 5.4c.

The transverse displacement of a beam-column with a transverse load will
grow towards infinity, as the axial compression force P approaches the Euler
load PE as demonstrated for a special case in Section 5.1.1. Thus, it appears
that a beam-column gradually looses its bending stiffness with increasing
normal compression.

Fig. 5.5: First three buckling forms of the Euler Column.

In general the buckling modes of the Euler column and the corresponding
buckling loads are given by

Pn = n2
(π
�

)2
EIz

wn(x) = Cn sin
(
nπ

x

�

)

⎫
⎪⎪⎬
⎪⎪⎭

n = 1, 2, 3, · · · (5.32)
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The first three buckling modes are shown in Fig. 5.5. In practice it will be
difficult to increase the load beyond the smallest buckling load PE , if the
column is only supported at the ends. However, the higher buckling modes
correspond to the buckling modes of columns with equally spaced intermedi-
ate supports.

The column theory expressed by the linear differential equation (5.9) is only
approximate. In its derivation it was assumed that the rotations are ‘small’,
and that the length along the deformed beam can be represented by its
projection, ds 
 dx. These approximations reduce the problem to the form
of a linear eigenvalue problem, but also limit the scope of the solution to the
onset of instability, where the deformation is small. Thus, the theory is useful
in establishing a reference value, such as PE , for the onset of instability,
while description of the development of the load and displacements after
the onset of instability requires a non-linear theory, see e.g. Dym (1974) or
Bažant and Cedolin (2010).

Example 5.1. Built-in column. Figure 5.6 shows a column of length � with one fixed end,
supporting an axial compression force P at the free end. The general solution is given by

(5.20), where the arbitrary constants and the parameter k are to be determined by the
boundary conditions as in the case of the simply supported column treated above.

Fig. 5.6: Buckling of built-in column.

In the present problem the boundary conditions at the fixed end are

w(0) = C1 + C3 = 0 ,

w′(0) = k C2 + k C4 = 0 .

These equations give C3 = −C1, C4 = −C2, and the solution (5.20) reduces to the form

w(x) = C1[ 1− cos(kx) ] + C2[ kx− sin(kx) ] .

The boundary conditions at the top of the column are M(�) = 0 and Q(�) = 0. By (5.22)

the condition Q(�) = 0 gives C2 = 0, and by (5.21) the condition M(�) = 0 then is

w′′(�) = k2 cos(k�)C1 = 0 .

From this equation the eigenvalues are determined as
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k� = 1
2
π, 3

2
π, 5

2
π, · · · or kn = n

( π

2�

)
, n = 1, 3, 5, · · ·

corresponding to the axial loads

Pn = EIz k
2
n = n2

( π

2�

)2
EIz , n = 1, 3, 5, · · ·

and the buckling modes

wn(x) = Cn[ 1− cos(knx) ] , kn = n
( π

2�

)
, n = 1, 3, 5, · · ·

Note, that these modes correspond to the symmetric buckling modes of a simply supported

Euler column of length 2�, obtained by extending the actual column symmetrically below
the fixed support. �

Example 5.2. Column combining a fixed and a simple support. In Fig. 5.7 a simple
support has been added to the column of Example 5.1. This does not change the solution

procedure, but the result can no longer be given explicitly. The general solution is given
by (5.20), and after imposing the boundary conditions at the fixed end as in Example 5.1

the solution takes the form

w(x) = C1[ 1− cos(kx) ] + C2[ kx− sin(kx) ] .

The boundary conditions at the top of the column are w(�) = 0 and M(�) = 0, whereby

w(�) = [ 1− cos(k�) ]C1 + [ k�− sin(k�) ]C2 = 0 ,

w′′(�) = k2 cos(k�)C1 + k2 sin(k�)C2 = 0 .

A nontrivial solution to this pair of equations can only be obtained, if the determinant of

the equation system vanishes, i.e. if

[ 1− cos(k�) ] sin(k�) − [ k�− sin(k�) ] cos(k�) = 0 .

This equation can be reformulated as

tan(k�) = k� .

This is a transcendental equation. The left and right hand sides are shown in Fig. 5.8.

Fig. 5.7: Column with fixed and simple supports.
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Fig. 5.8: Stability equation: tan(k�) (–) and k� (- -).

The roots of the transcendental stability equation are given by the abscissae k1�, k2�, · · ·
of the points of intersection. These abscissae can be found by iteration, starting from the
values at which tan(k�) has a vertical asymptote,

k
(0)
n � = (n+ 1

2
)π , n = 1, 2, 3, · · ·

Note, that the root k0� = 0, corresponding to k00 = 1
2
π is without interest. The iteration

procedure can be formulated as

k
(i+1)
n � = nπ + tan−1(kin�) .

The two first steps and the final value of the parameter kn� are given below.

n 1 2 3 4

k
(0)
n � 4.7124 7.8540 10.9956 14.1372

k
(1)
n � 4.5033 7.7273 10.9049 14.0665

kn � 4.4934 7.7253 10.9041 14.0662

Pn/PE 2.0457 6.0468 12.0471 20.0472

The table also gives the buckling loads, conveniently determined by

Pn

PE
=

�2

π2

Pn

EIz
=
(kn�

π

)2
.

The parenthesis is the ratio of the non-dimensional parameter kn� of the actual column to
its value π for the first buckling mode of the Euler column. This is a convenient form, as

kn� is the unknown iteration parameter.

The table illustrates that, apart from the first two roots, the remaining roots are given to

within 1 pct. by the formula kn� 
 (n + 1
2
), n = 3, 4, · · · , used as the start value in the

iteration. However, in a technical context it is often the first root that is of interest.

The buckling modes are determined by the values kn� that have just been determined. It

follows from the boundary condition w′′(�) = 0 that

C1 = − tan(k�)C2 = − k�C2 ,

where the last relation follows from the determinant equation. When this relation is used

to eliminate C1 the buckling modes can be written as
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Fig. 5.9: First and second buckling modes of fixed-simple support column.

wn(x) = Cn

[
kn�
(
cos(knx)− 1

)
+ knx − sin(knx)

]
,

where C2 is replaced by Cn, indicating that the solution contains a single unknown scaling
factor for each mode n. The first buckling mode corresponding to k1� = 4.49 is shown in

Fig. 5.9a. The displacement is zero at the supports, and the slope is zero at the fixed support
to the left in the figure. The maximum of the buckling mode occurs at xmax = 0.6 �. Figure

5.9b shows the second buckling mode, associated with k2� = 7.73. This mode satisfies the
same homogeneous boundary conditions and has an additional zero crossing. In practice

this buckling mode will only occur, if the column is supported at the point of the zero
crossing. However, an internal support in the neighborhood of this point will lead to a

slight modification of buckling load and buckling form. �

Example 5.3. Instability of column supported beam. Figure 5.10a shows a beam BCD
of length 3a with a uniformly distributed load of intensity p. The beam is simply supported

at B and supported at C by the column CA. The column is simply supported at A and is
connected to the beam through a hinge in C, whereby no moment is transferred between

beam and column.

Fig. 5.10: Beam with supporting column.

Moment about C for the column gives zero horizontal reaction in A, and horizontal projec-

tion then gives zero horizontal reaction in B. The vertical reactions in A and B are found
by moment for the entire structure about B and A, respectively,

RA = 9
2
ap , RB = − 3

2
ap .

This implies that the normal force in the column is

NAC = − 9
2
ap .

The minus shows that the column is in compression. The column AC is an Euler column
of length b, with zero moment at both ends. Thus the critical magnitude pc of the intensity

of the distributed load is reached, when the magnitude of the normal force is equal to the
Euler force, i.e. |NAC | = PE . This gives
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9
2
ap = EIz

(
π

b

)2

⇒ pc =
2π2EIz

9ab2
.

The buckling mode is a sine half-wave, as shown in Fig. 5.10b. �

Often a column will be rigidly connected to a support or structure in a
way that imposes an elastic partial constraint against rotation. The elastic
constraint gives a restraining moment to the column. This constraint will
increase the critical column load and form an intermediate state between the
free hinge and a full constraint. The general problem is dealt with in detail in
Chapter 7, while the simpler problem of a spring supported column is dealt
with in the following example.

Example 5.4. Simply supported column with rotation spring. Figure 5.11 shows a
column of length � with simple supports. At the support B the column is also supported

by a rotation spring with stiffness parameter kθ = MB/θB . The critical load Pc depends
on the spring stiffness, and by increasing the spring stiffness the critical load increases

from the Euler value PE to that of the column with one hinged and one fixed support, i.e.
approximately 2PE .

Fig. 5.11: Simply supported column with rotation spring.

The expression for the transverse displacement w(x) is given in (5.20),

w(x) = C1 + C2 kx + C3 cos(kx) + C4 sin(kx) .

The boundary conditions in x = 0 are w(0) = 0 and M(0) = 0, and imply that C1 = C3 =
0. The full solution can then be reduced to

w(x) = C2 kx + C4 sin(kx) .

The third boundary condition is w(�) = 0, which leads to

w(�) = C2 k� + C4 sin(k�) = 0 .

The final boundary condition represents the balance between the internal moment at the
right support and the moment introduced by the rotation spring, i.e. M(�) = −kθθ(�) =

kθw
′(�). When introducing the moment relation M(�) = −EIzw′′(�) this boundary condi-

tion can be written as

EIzw
′′(�) + kθw

′(�) =
(
EIzk

2 sin(k�) + kθk cos(k�)
)
C4 + kθkC2 = 0 .

The boundary conditions at x = � are conveniently written on matrix form

[
k� sin(k�)

α α cos(k�)− k� sin(k�)

][
C2

C4

]

=

[
0

0

]

,
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Fig. 5.12: Stability equation: tan(k�) (–) and k�/(1 + (k�)2/α) (- -).

where α = kθ�/EIz is a non-dimensional rotation spring stiffness. The matrix equation is

homogeneous and non-trivial solutions requires that the determinant of the matrix is zero.
This gives the characteristic equation

k�
(
α cos(k�)− k� sin(k�)

)
− α sin(k�) = 0 ,

which can be reduced to the following stability equation

tan(k�) =
k�

1 + (k�)2/α
.

For α → 0 the second term in the denominator tends to infinity and thus the right hand
side vanishes, whereby tan(k�) = 0 and k� = nπ. This corresponds to the solution for the
Euler column as expected. On the other hand α → ∞ implies that tan(k�) = k�, which

agrees with the stability equation found for the column in Example 5.2 with a fixed and a
simple support. The intermediate behavior of the stability equation can be illustrated by

plotting the two components of the equation. In Fig. 5.12 the solid curve is the tangent
function while the dashed curves are the right hand side of the stability equation for α = 1,

10 and 100, respectively. The solutions are represented by the intersections of the curves. �

5.2.1 Equivalent column length

The general solution to the homogeneous differential equation for a straight
column was given in (5.20) as

w(x) = C1 + C2 kx + C3 cos(kx) + C4 sin(kx) . (5.33)

This solution consists of a linear part, represented by the two first terms, and
a trigonometric part, represented by the two last terms. The critical load, at
which instability occurs, is determined by the curvature of the buckled shape.
The linear part of the solution does not contribute to the curvature, which is
determined by the parameter k2. In fact, it follows from the definition (5.18)
of the parameter k that the critical load is determined by

Pc = k2c EIz , (5.34)

where kc denotes the value associated with the critical load Pc, corresponding
to instability.
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The critical load of the Euler column, i.e. the lowest instability load for a
simply supported ideal column, was given by (5.30) as

PE =
(π
�

)2
EIz . (5.35)

This formula gives the critical load PE in terms of the bending stiffness EIz
and the length � between the supports of the column. The Euler column has
simple supports at both ends, and the column length � is therefore also the
length of a trigonometric half-wave, spanning between the supports. This
length is also characterized as the length between the inflection points of
the buckling form, where an inflection point is defined as a point where the
curvature changes sign. It is this property that leads to the role of � in the
Euler column formula (5.35).

For general support conditions the parameter kc is characterized by the length
between the inflection points – i.e. a trigonometric half-wave of the buckling
form. This length is called the effective column length and is denoted �e. It
follows from its definition as the half-wave length of the column solution that
it is related to the parameter kc as kc = π/�e, whereby the trigonometric
part of the solution is of the form sin(kcx) = sin(πx/�c). Hereby the general
critical load formula (5.34) takes the form

Pc =
( π
�e

)2
EIz . (5.36)

Thus, the concept of an equivalent column length �e translates the Euler
column formula into a general format.

The role of the effective column length can be further illustrated by combining
the general formula (5.36) for the critical load with the Euler formula (5.35),

Pc

PE
=
( �

�e

)2
. (5.37)

This formula illustrates the influence of the boundary conditions in changing
the critical load by changing the effective column length via the support
conditions.

The importance of the concept of the equivalent column length �e is two-
fold: it gives a compact form of the stability load by generalizing the Euler
formula, and it provides a visual interpretation of the column length for
columns with general support conditions. This latter property is illustrated
in Fig. 5.13 showing the lowest buckling mode for the support conditions
treated above. All columns are shown for the same actual length �. The
corresponding effective column length �e is indicated to the right in each of
the sub-figures. It is remarkable that even for the column combining a fixed
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Fig. 5.13: Buckling load and effective column length.

and a hinged support the effective length �e 
 0.7 can be estimated with fair
accuracy from visual inspection of a sketch of the buckled shape.

5.2.2 Buckling direction and intermediate supports

Columns may have cross-sections with different properties with regard to
bending and buckling in the transverse y- and z-direction. The problem is
illustrated in Fig. 5.14 for a rectangular cross-section with dimensions a× b
with a in the y-direction and b in the z-direction as shown.

Fig. 5.14: Buckling about the weakest axis.

The area of the cross-section is A = ab, and the moments of inertia follow
from Example 4.1 as

Iy =

∫
y2 dA = 1

12a
2A , Iz =

∫
z2 dA = 1

12b
2A . (5.38)
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The column is simply supported at both ends with respect to displacements
in both the y- and the z-direction. Thus, the two corresponding buckling
loads are

P y
E =

(π
�

)2
EIy =

π2

12

a2

�2
EA , P z

E =
(π
�

)2
EIz =

π2

12

b2

�2
EA . (5.39)

Clearly, for a > b the bending stiffness in the y-direction is larger, and accord-
ingly this buckling load is larger, P y

E > P z
E . The argument depends on the

relative magnitude of the moments of inertia Iy and Iz, and is not restricted
to rectangular sections, but merely assumes symmetry axes.

Fig. 5.15: Intermediate support in the z-direction.

Columns are often used as the vertical members of plane frames. This gives
the possibility of supporting the column at intermediate locations against
motion in the plane of the frame as illustrated in Fig. 5.15, showing an inter-
mediate support at the mid-point providing a constraint against transverse
motion in the z-direction. This support increases the buckling load P z

E asso-
ciated with buckling in the z-direction. A balanced design can be obtained
as illustrated in the following example.

Example 5.5. Column with intermediate support. Consider a column of length � with
simple supports in both transverse directions at both ends. The column forms part of

a plane frame and is supported against transverse displacement at its mid-point in the
z-direction as shown in Fig. 5.15. This support reduces the effective column length for
buckling in the z-direction to �e = 1

2
�. The cross-section is a rectangle with dimensions

a and b in the y- and the z-direction, respectively. The critical loads for buckling in the
two directions follow from (5.39), when accounting for the reduced effective column length

�e = 1
2
� for buckling in the z-direction,

P y
E =

(π
�

)2
EIy =

π2

12

a2

�2
EA , P z

E =
( π

�e

)2
EIz =

π2

3

b2

�2
EA .

The two buckling loads will be identical, P y
E = P z

E , provided the cross-section dimensions
satisfy a = 2b. This corresponds closely to building practice for simple wooden frames,

where the transverse cross-section dimension is often the double of the in-plane dimen-
sion. �
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Fig. 5.16: Conservative effective column length estimates.

The effective column length is reduced by the introduction of intermediate
supports. For the simply supported columns illustrated in Fig. 5.16 the ef-
fective column length is simply �e = �/n, when the column is divided into n
equal parts. If the parts are not of equal length the shorter parts constrain
the larger parts. A conservative estimate of the effective column length is
�e 
 �max, where �max is the longest distance between neighboring supports
or points of inflection.

5.3 Design of columns

The primary goal of column design is to provide sufficient resistance to with-
stand the load, here primarily in the form of a compressive axial load P .
While the previous sections have concentrated on determination of the crit-
ical load Pc for an ideal column under various support conditions, design of
columns must account for the effect of other factors such as the strength of
the material and typical imperfections in column shape. Two extreme cases
are illustrated in Fig. 5.17. The left figure shows buckling of a long slender
simply supported column at the critical load PE corresponding to elastic in-
stability. The right figure shows the opposite scenario, in which the capacity
of a short column is determined solely by the material strength represented
by the yield load Py.

Most real columns are in a parameter interval somewhere between the two
extreme cases shown in the figure, and it is important to develop a column
design procedure that provides a smooth transition between the two extremes
of ideal elastic buckling and pure material strength. This is done in the follow-
ing by combining three steps. The first, dealt with in Section 5.3.1, identifies
a suitable characterization of column length, whereby the capacity of ‘long’
columns is dominated by instability, while the capacity of ‘short’ columns is
dominated by material strength. The following Section 5.3.2 describes the ef-
fect of the fact that real columns are not ideally straight. The deviation from
ideal straightness is called the geometric imperfection of the column, and
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Fig. 5.17: Collapse mechanisms for long and short columns, respectively.

the imperfections lead to a change from buckling at a precise critical load,
e.g. PE , to a more gradual deformation of the column. During this process
stresses develop in the column cross-sections as described in Section 5.3.3.
Finally, these aspects are combined into a direct column design procedure in
Section 5.3.4.

5.3.1 Column length and slenderness

The purpose of classifying a column as ‘long’ or ‘short’ is to indicate whether
its capacity is primarily governed by stability or strength considerations.
Thus, it is clear that the length characterization of a column can not just be a
geometric measure, e.g. of actual length relative to a characteristic transverse
dimension of the cross-section, but must include some reference to stability
and strength parameters for the column.

Fig. 5.18: Homogeneous distribution of normal stress σ.

Figure 5.18 illustrates a uniform stress distribution over the cross-section
of a short column, acted on by a central compressive force P , as shown in
Fig. 5.17b. The stresses are uniformly distributed over the cross-section area
A, whereby the constant stress intensity σ is given as

σ = −P

A
. (5.40)

Note the sign convention with P positive in compression and σ positive in
tension.
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Fig. 5.19: Idealized uniaxial stress-strain curve.

The material can only withstand normal stresses up to a certain magnitude,
here denoted σY , where the subscript Y denotes the yield stress. The concept
of material yield refers to a behavior observed in most metals, particularly
steel. This behavior is illustrated for steel in Fig. 5.19 showing the relation
between the normal stress σ and the corresponding longitudinal strain ε in a
uniaxial tension or compression test. For limited strain, typically ε � 0.002,
the stress and strain are proportional, corresponding to the linear elastic
relation

σ = E ε . (5.41)

When the strain exceeds the elastic limit, the stress remains at the yield
stress, i.e. |σ| ≤ σY .

Fig. 5.20: Collapse curve for column.

The collapse of a short column is associated with yielding, and the maximum
axial load is determined by the material yield stress as

PY = σY A . (5.42)

This strength is independent of the equivalent column length �e, when this
length is sufficiently short. This is indicated by a horizontal line in Fig. 5.20,
which shows the critical load Pc as function of the equivalent column length
�e. On the other hand, the capacity of an ideal elastic column is given by the
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buckling formula in (5.36),

Pel =
( π
�e

)2
EIz . (5.43)

The subscript el refers to elastic column instability, as treated in Section 5.2.
For an Euler column �e = �, and Pel in (5.43) recovers the Euler load PE .
It follows from (5.43) that the stability load Pel decreases with �−2

e . This is
also indicated in Fig. 5.20. The two idealized criteria in terms of strength PY

and elastic instability Pel, respectively, define an intersection point, which is
used to define the transition from a short to a long column.

Column slenderness

In the further discussion of column capacity it is convenient to shift focus from
the axial force P to the normal stress σ. At this point there is no bending, and
thus the stress σ is simply a normalized form of the axial force as given by
(5.40). When introducing this normalization in the buckling formula (5.43),
the following expression is obtained for the mean compressive stress σel at
elastic column instability,

σel =
Pel

A
=

EIz
A

( π
�e

)2
. (5.44)

In this expression the influence of the cross-section is represented by the ratio
Iz/A. This ratio has the dimension [ length2 ] and defines a length rz, called
the radius of gyration, as

r2z =
Iz
A

. (5.45)

The radius of gyration is a characteristic distance from the neutral axis of
the cross-section. If the area A was split into two parts and these were con-
centrated at ±rz, this equivalent cross-section would have the same bending
stiffness as the original.

Example 5.6. Radius of gyration for rectangle and I-profile. The bending of a beam
with rectangular cross-section of height h and width b is illustrated in Fig. 4.4a. The

moment of inertia was calculated in Example 4.1 as Iz = 1
12

h2A. The corresponding
radius of gyration then follows from (5.45) as

rz =

√
Iz

A
=

h

2
√
3

 0.289h .

Similarly, the moment of inertia of an I-section of height h shown in Fig. 4.4b with flange

width b and flange thickness t was calculated in Example 4.1 as Iz = 1
4
h2A, when neglecting

the contribution from the web. For this cross-section the radius of gyration is

rz =

√
Iz

A
= 1

2
h ,
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corresponding to the fact that the flanges already have concentrated the cross-section area

at the distances ± 1
2
h from the neutral axis. �

The compression stress σel at elastic instability can now be expressed by
introducing the substitution Iz = r2zA into (5.44),

σel = E
(π rz

�e

)2
= E

(π
λ

)2
, (5.46)

where the non-dimensional slenderness parameter

λ =
�e
rz

(5.47)

has been introduced. The slenderness parameter λ is a purely geometric quan-
tity, expressing column length relative to the cross-section radius of gyra-
tion rz.

The formula gives the instability stress σel in terms of the elastic modulus E
and the slenderness parameter λ. It is often more convenient to express σel

relative to the yield stress σY . This ratio is given by

σel

σY
=

E

σY

(π
λ

)2
=

1

λ2
r

, (5.48)

where the last equality defines the relative slenderness as

λr =
λ

π

√
σY

E
=

�e
πrz

√
σY

E
. (5.49)

It follows from the equations in (5.48) that the intersection point between the
strength and the stability curves in Fig. 5.20 is characterized by σel = σY ,
corresponding to λr = 1.

Fig. 5.21: Critical stress as function of relative slenderness.
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Figure 5.21 shows the critical column stress in normalized form σc/σY plotted
against the relative slenderness λr. The figure also shows some experimental
results for steel columns from Dowling et al. (1988). It is seen that there is
a gradual transition from the material strength criterion σc 
 σY for λ  1
to the elastic stability criterion σc 
 σel for λ � 1. The graph illustrates
that the relative slenderness λr is an important parameter for characterizing
columns, and that a reduction of the idealized column capacity, as material
yield or instability occurs, must be developed for the transition range around
λr = 1. It follows from (5.49) that the transition occurs at the column length

�∗ = π rz
√
E/σY . (5.50)

This formula is convenient for checking, whether a column is ‘short’ or ‘long’.

Example 5.7. Transition length for steel columns. For a steel column the elastic mod-
ulus is typically E = 210GPa and for a yield stress σY = 0.3GPa this gives the transition

length
�∗ = 83.12 rz .

Consider a rectangular cross-section with height h and width b. It was found in Example 5.6

that buckling in the z-direction has a radius of gyration rz = h/(2
√
3). For an I-section

with height h and flange width b and thickness t the radius of gyration was found as
rz = 1

2
h, corresponding to all the material of the cross-section being concentrated at ± 1

2
h.

Substitution of rz into the expression for the transition length gives

�∗
h

=

{
24.0 , rectangle ,

41.6 , I-section .

This indicates that the transition from a short to a long column occurs for significantly
longer columns for the I-section than for the rectangular cross-section. �

5.3.2 Geometric imperfections

Real columns are not ideally straight, and as it turns out the effect of devi-
ations from the ideal straightness provides an explanation of the reduction
of column capacity for relative slenderness in the transition interval as illus-
trated by the data points in Fig. 5.21.

Figure 5.22a shows an imperfect simply supported column, where the (small)
deviation from a straight line in the unloaded state is described by the func-
tion w0(x). The length of the column is � and the constant bending stiffness is
EIz. When loaded by an axial compression force P , as shown in Fig. 5.22b, an
additional transverse displacement w(x) occurs. The moment is determined
by this additional displacement as

M = −EIz
d2w

dx2
. (5.51)
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The effect of the normal force on the equilibrium is through the total dis-
placement w(x) + w0(x), and thus the equilibrium equation takes the form

d2

dx2

(
EIz

d2w

dx2

)
− d

dx

(
N

dw + dw0

dx

)
= 0 . (5.52)

For constant axial force N = −P and bending stiffness EIz this equation can
be written in normalized form as

d4w

dx4
+ k2

d2w

dx2
= −k2

d2w0

dx2
, (5.53)

where the parameter k2 = P/EIz has been introduced in (5.18). The bound-
ary conditions for the simply supported column are w(0) = w(�) = 0 and
M(0) = M(�) = 0.

Fig. 5.22: Column with initial imperfection w0(x).

It is seen that the initial imperfection w0(x) introduces a non-homogeneous
term in the column equation, and thus the imperfect column problem is not
an eigenvalue problem. The complete solution to the non-homogeneous differ-
ential equation (5.53) is obtained by representing w(x) as a series expansion
in terms of the eigenfunctions of the corresponding homogeneous equation.
For the present problem the corresponding eigenvalue problem was solved in
Section 5.2 and the solution given in (5.32). The series representation of the
displacement w(x) then takes the form

w(x) =

∞∑
n=1

wn sin(knx) , kn = n
π

�
. (5.54)

Substitution of this expansion into the non-homogeneous equilibrium equa-
tion (5.53) gives

∞∑
n=1

(
k4n − k2k2n

)
wn sin(knx) = − k2

d2w0

dx2
. (5.55)
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The unknown displacement coefficients wn are determined by representing
the initial imperfection w0(x) as a series similar to the expansion (5.54) for
w(x),

w0(x) =

∞∑
n=1

w0
n sin(knx) , kn = n

π

�
. (5.56)

The coefficients w0
n in this expansion are determined by use of the orthogo-

nality relation for the sine function as

w0
n =

2

�

∫ �

0

w0(x) sin(knx) dx , n = 1, 2, · · · (5.57)

When the series expansion (5.56) for w0(x) is substituted into (5.55), the
displacement coefficients are found to be

wn =
w0

n

k2n/k
2 − 1

=
w0

n

Pn/P − 1
, n = 1, 2, · · · (5.58)

This result shows that for increasing tension, P → −∞, the column becomes
increasingly straight, wn → −wn

0 . Conversely, if an applied compression force
P > 0 approaches any of the buckling loads Pn the corresponding component
of the initial imperfection is amplified. In principle infinite amplification is
obtained for P = Pn.

The present analysis has been applied to the special case of a simply sup-
ported column. However, the method of expanding both the unknown dis-
placement function w(x) and the initial imperfection function w0(x) in terms
of the buckling modes of the corresponding homogeneous problem corre-
sponding to an ideal straight column is also valid for other boundary con-
ditions, and in each case the buckling modes also satisfy a suitable orthog-
onality relation. This leads to the general conclusion, that the application
of a central axial compression load P on an imperfect column will lead to
amplification of the contributions of the different buckling mode components
in the initial imperfection function w0(x). In practice the imperfection com-
ponent corresponding to the first buckling mode will most often dominate
the deformation.

Example 5.8. Column with initial curvature. Consider a special case of the imperfect

simply supported column shown in Fig. 5.22, in which the imperfection consists of a single
sine half-wave of amplitude w0

1 = e. It follows from (5.58) that an axial load P gives the

transverse displacement

w(x) =
e

PE/P − 1
sin
(
π
x

�

)
,

where the Euler load is given by (5.30) as PE = EIz(π/�)2. The total displacement for an
axial compression force P then is

w(x) + w0(x) =
( e

PE/P − 1
+ e

)
sin
(
π
x

�

)
=

w0(x)

1− P/PE
.
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This result shows that the initial displacement w0(x) is amplified by the same amplification

factor for all points on the column. The amplification of the displacements is illustrated in
Fig. 5.23 showing the increase of the center displacement for an initial center eccentricity e.

It is noted that the amplification factor here is the same as that determined in Section 5.1.1
for the amplification of the displacement from a transverse load.

Fig. 5.23: Displacement amplification from e/� = 0.001, 0.002, 0.003.

The moment can be found either by the second derivative from (5.51) or from equilibrium

of part of the column defined by a section at the position x,

M = (w + w0)P = =
w0(x)P

1− P/PE
.

Thus, the moment exhibits the same amplification as shown in Fig. 5.23. �

5.3.3 Stresses in column cross-sections

The strength of a column depends on the magnitude of the stresses that
develop in it. The individual cross-section supports a compressive force P
from the imposed axial load and a bending moment M from the transverse
displacement wtot = w + w0 of the beam cross-section. The corresponding
stress distribution is illustrated in Fig. 5.24. The normal force P produces a
uniformly distributed state of compressive stress given by (5.40),

σ = −P

A
. (5.59)

The bending moment M produces a stress distribution with linear variation
over the cross-section, found by combining the strain relation (4.5) with the
elastic curvature relation (4.8),

σ =
M

Iz
z . (5.60)

The total stress in the cross-section is obtained by addition of these two
contributions as illustrated in Fig. 5.24,

σ = −P

A
+

M

Iz
z . (5.61)
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It is seen that the combination of a compressive force and a moment leads to
a stress distribution with large compressive stresses at one side of the cross-
section and a moderate stress level in either compression or tension at the
other side.

Fig. 5.24: Combination of normal stress from normal force and moment.

In the present context the moment is caused by eccentricity of the axial
compressive force P , and it is of interest to investigate the influence of this
eccentricity on the stress distribution. If the force P acts close to the neutral
line it will generate compressive stresses over the full cross-section. However,
for larger eccentricity of the force tension stresses will occur at the side op-
posite to the eccentric force. The area, within which a normal compressive
force will not produce tension in the cross-section, is called the kernel of the
cross-section.

Fig. 5.25: Offset of force P by kernel radius kz .

The limiting case, where the axial stress vanish at the side of the cross-section,
is shown for a cross-section that is symmetric about the plane of the paper
in Fig. 5.25. The figure illustrates the case in which the eccentric force acting
at z = −kz gives zero axial stress at the opposite side of the cross-section,
defined by z = zmax. In this case the moment is M = kzP , and the stress
distribution formula (5.61) then gives the condition

0 = −P

A
+

kzP

Iz
zmax . (5.62)

This condition determines the so-called kernel radius,

kz =
Iz

Azmax
=

r2z
zmax

, (5.63)

in the symmetry plane of a cross-section.
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As demonstrated in Example 4.1 the moment of inertia is Iz = 1
4h

2A for an
idealized I-section of height h, in which the influence of the web is neglected.
This means that the kernel radius in the web-direction is

kz =
r2z

zmax

 h2

4

2

h
= 1

2h . (5.64)

Thus, the kernel of the I-section contains the full height h of the section.

Kernel area of a rectangle

The kernel of a cross-section is an area within the cross-section, here illus-
trated by the rectangle with height h and width b in Fig. 5.26. The planes of
symmetry contain the y- and z-axis. When the height of the section is along
the z-axis the kernel radius along the two axis are

ky =
r2y

ymax
=

b2

12

2

b
= 1

6b , kz =
r2z

zmax
=

h2

12

2

h
= 1

6h . (5.65)

Thus, for a rectangle the kernel extends along the central third of the cross-
section width along the axes as illustrated in Fig. 5.26.

Fig. 5.26: Kernel area for rectangular cross-section.

The shape of the kernel is determined by combining the effect of moments
about the y- and the z-axis of the cross-section. It follows from superposition
that the normal stress formula (5.61) generalizes to

σ = −P

A
+

My

Iy
y +

Mz

Iz
z . (5.66)

The moments are My = ±kyP and Mz = ±kzP , and the kernel condition
then generalizes to

0 = −P

A
± kyP

Iy
ymax ± kzP

Iz
zmax . (5.67)
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After division by P/A, this condition takes the form

± ymax

r2y
ky ± zmax

r2z
kz = 1 . (5.68)

This is a set of four equations for the lines interpolating the point (ky, kz) on
the kernel boundary between the four points on the axes, that have already
been determined. The result is the hatched area shown in Fig. 5.26.

5.3.4 Perry-Robertson’s column design criterion

The capacity of columns depends on several factors. The importance of ma-
terial strength σY and the bending stiffness EIz have been analyzed in Sec-
tion 5.3.1, but geometric imperfections, non-ideal material behavior and resid-
ual stresses left from the fabrication process are also important. Several of
these factors depend on the type of column and the fabrication process, e.g.
the residual stresses left by hot rolling as discussed in considerable detail
by Beedle and Tall (1960). The non-uniform axial stress distribution implies
that yield of the section occurs in a more gradual fashion than shown in the
idealized stress-strain relation in Fig. 5.19.

It turns out that it is possible to combine the influence of stiffness EIz,
strength σY and an imperfection parameter e to generate a family of curves
for capacity of columns that represent experimental results well over the
whole range of column slenderness. The central result is the Perry-Robertson
column capacity formula. The idea of the Perry-Robertson column capacity
formula is that the column has an initial deflection represented by the eccen-
tricity parameter e, and that the capacity of the column is exhausted when
the maximum stress in the most severely loaded cross-section reaches the ul-
timate stress represented by σY . A historical account of the Perry-Robertson
formula has been given by Heyman (1998).

The assumption is that the maximum compressive stress reaches σY . For a
column with positive transverse displacement this stress will occur at the
negative side of the section at z = −zmax. Thus, it follows from (5.61) that
the maximum compressive stress is given by

σY =
P

A
+

M

Iz
zmax . (5.69)

In this formula the following three substitutions are made:

a) The load is represented by the critical stress σc = P/A.

b) The factor zmax is expressed by the kernel radius kz = Iz/Azmax.

c) The moment is introduced via its amplified value M = eP/(1− P/Pel),
as determined in Example 5.8 (with PE replaced by Pel).
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With these substitutions the condition (5.69) takes the form

σY = σc +
e

kz

σc

1 − σc/σel
. (5.70)

Multiplication of this equation with the denominator gives the product format

(σY − σc)(σel − σc) =
e

kz
σel σc . (5.71)

In this format it is seen that, if there is no eccentricity, i.e. for e = 0, the
equation is simply a product of the strength and the elastic stability criteria,
while e > 0 leads to an interpolation between these two criteria. Figure 5.27
illustrates the influence of imperfections by showing the critical stress for
e/kz = 0.00 , 0.02 and 0.06.

Fig. 5.27: Critical stress for e/kz = 0.00 ( — ), 0.02 ( - - ) and 0.06 ( · · · ).

The explicit solution to the criterion (5.71) is found by expressing the mean
stress σel at elastic instability in terms of the relative slenderness, defined in
(5.48) by

σel

σY
=

1

λ2
r

. (5.72)

This is substituted into the Perry-Robertson equation (5.71), which then
takes the following form of a quadratic equation,

λ2
r

( σc

σY

)2
−
(
λ2
r + 1 +

e

kz

) σc

σY
+ 1 = 0 . (5.73)

The solution to this equation is conveniently expressed as

σc

σY
= β −

√
β2 − λ−2

r , (5.74)

where the non-dimensional parameter β has been defined as
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β =
1

2λ2
r

(
λ2
r + 1 +

e

kz

)
. (5.75)

These relations determine the critical stress σc in terms of the yield stress σY ,
the relative slenderness λr, and the relative imperfection e/kz. The relative
slenderness follows by (5.72) from the elastic instability stress σel and the
yield stress σY as

λr =
√

σY /σel , (5.76)

while the magnitude of the imperfection parameter depends on a number of
factors.

In practice, the imperfection depends on the length of the column, and struc-
tural codes often assume a direct relation between e/kz and the relative
slenderness λr. The simplest relation is linear proportionality,

e

kz
= αλr . (5.77)

The non-dimensional parameter α represents the total effect of imperfections,
residual stresses etc. According to the theory α is determined by

α =
e

kz

1

λr
= π

e

�e

rz
kz

√
E

σY
. (5.78)

If the material is linear up to the yield limit, the corresponding yield strain
is εY = σY /E. For steel the yield strain is around εY 
 0.002. A typical
imperfection of a steel column is e 
 0.001�, see e.g. Timoshenko and Gere
(2009). For steel columns a representative value of α is then of the order

α 
 π
0.001√
0.002

rz
kz

= 0.070
rz
kz

=

{
0.070 I-section

0.122 rectangle
, (5.79)

with the kernel radii from (5.63) and (5.65), and the gyration radii from
Example 5.6. It is seen that among the other factors the parameter α also

Fig. 5.28: Critical stress as function of relative slenderness.
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depends on the cross-section shape. Figure 5.28 shows the critical stress for
the imperfection e/kz given by (5.77) with α = 0.07, 0.122 and 0.21.

Simulated column capacity results, obtained by statistical combination of
material properties and imperfections, demonstrate that a curve through a
lower fractile – e.g. 5 pct. – is similar in shape to the curves generated by
the Perry-Robertson formula, see e.g. Chen and Han (1985). This supports a
design procedure in which the critical design stress is obtained by increasing
the parameter α beyond its representative mean value.

Example 5.9. Critical stress for column with tubular cross-section. This example

illustrates the design procedure for the simply supported column shown in Fig. 5.29. The
cross-section is tubular with radius a and wall thickness t, whereby A = 2πat and Iz =

πta3. The wall thickness is t = a/10, and the length is � = 100a. The imperfection e is
represented via (5.77) with α = 0.2. The material is steel with elastic modulus E = 210GPa

and yield stress σY = 300MPa.

Fig. 5.29: Euler column with tubular cross-section.

First the instability stress is calculated from (5.44),

σel = PE/A = 1
2
(πa/�)2E = 106.6MPa .

The relative slenderness then follows from (5.76),

λr =
√

σY /σel =
√

300/106.6 = 1.70 .

As λr > 1, this is a ‘long’ column. The parameter β is now calculated from (5.75) after
substituting e/kz from (5.77) with α = 0.2,

β =
1

2λ2
r

(
λ2
r + 1 + αλr

)
= 0.73 .

The relative magnitude of the critical stress is then found from (5.74)

σc

σY
= β −

√
β2 − λ−2

r = 0.296 ⇒ σc = 88.8MPa .

This is a substantial reduction relative to the yield stress because of the length of the

column. The magnitude of the critical stress relative to the instability stress is σc/σel =
0.86, where the reduction shows the effect of the imperfection. �



222 Column Stability

5.4 Exercises

Exercise 5.1. The figure shows a simply supported beam of length � with constant bending

stiffness EIz . It is loaded by a uniformly distributed transverse load with intensity p and
a horizontal compression force P at the right support, which produces a constant normal

force N = −P .

a) Set up the differential equation for the transverse
displacement w(x), and find the solution with four

arbitrary constants.

b) Use the four boundary conditions to determine the

expression for the displacement w(x).

c) Find an expression for the maximum displacement wmax = w( 1
2
�).

d) Find the critical load Pc corresponding to wmax → ∞.

Exercise 5.2. The figure shows a cantilever of length � with constant bending stiffness
EIz . It is loaded by a vertical force Pv and a horizontal force P at the tip. Note that the

latter produces a constant positive normal force N = P .

a) Set up the differential equation for the transverse displacement w(x), and show that

the solution can be written as

w(x) = C1 + C2kx + C3 cosh(kx) + C4 sinh(kx) .

b) Use the four boundary conditions to determine the
expression for the displacement w(x).

c) Find the transverse tip displacement wtip, and the
tip displacement w0

tip for P = 0.

d) Find the magnitude of the axial load P required to reduce the transverse tip deflection
to wtip = 1

2
w0

tip.

Exercise 5.3. The figure shows a cantilever of length � with constant bending stiffness

EIz . It is loaded by a uniformly distributed transverse load with intensity p and a horizontal
force P at the tip, which produces a constant normal force N = −P .

a) Set up the differential equation for the transverse

displacement w(x), and find the solution with four
arbitrary constants.

b) Use the four boundary conditions to determine the
expression for the displacement w(x).

c) Find an expression for the transverse tip displacement wtip and the moment at the
support Msup.

d) Determine the critical load Pc corresponding to wtip → ∞.

Exercise 5.4. The figure shows a simply supported beam of length � with constant bending
stiffness EIz . At the right support the beam is loaded by a local moment MB and a

horizontal force P . The latter produces the constant normal force N = −P .
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a) Set up the differential equation for the transverse
displacement w(x), and find the solution with four

arbitrary constants.

b) Use the four boundary conditions to determine the

expression for the displacement w(x).

c) Find the expression for the rotation θ(x), and use this expression to show that the
relation between the support rotation θB = θ(�) and the applied moment MB can be

written as

MB =
(k�)2

1− k� cot(k�)

EIz

�
θB .

d) The stiffness of the beam with respect to the rotation at the right support can be

expressed in non-dimensional form as MB�/(3EIzθB), which is unity for P = 0. Use
the solution in c) to find the expression for this rotational stiffness and explain what

happens when P → PE .

Exercise 5.5. The figure shows a column of length � with a
fixed support in A and a fixed support with horizontal rollers

at the top in B. The column is loaded by an axial compression
force P , producing the constant normal force N = −P .

a) Sketch the critical buckling form of the column and esti-
mate the equivalent column length �e and the critical load

ratio Pc/PE .

b) Use the general solution w(x) with four arbitrary con-
stants and the four boundary conditions to determine
Pc/PE and �e. Compare with the results in a).

Exercise 5.6. The figure shows a column of length � with a

simple support in A and a fixed support with horizontal rollers
at the top in B. The column is loaded by an axial compression

force P , producing the constant normal force N = −P .

a) Sketch the critical buckling form of the column and esti-

mate the equivalent column length �e and the critical load
ratio Pc/PE .

b) Use the general solution w(x) with four arbitrary constant
and the four boundary conditions to determine Pc/PE and

�e. Compare with the results in a).

Exercise 5.7. The figure shows ideal columns with intermediate supports. As discussed
in Section 5.2.2 an approximative result for the equivalent column length �e is the longest

distance between neighboring support or inflection points.

a) Sketch the buckling form for each of the
columns and estimate the equivalent column

length. Note that the inflection point for the
second column is located below the intermedi-

ate support.

b) Determine the critical buckling load ratio

Pc/PE associated with the estimated column
lengths. Compare with Pc/PE = 2.0 and 1.3,

respectively, obtained by numerical analysis.
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Exercise 5.8. The figure shows an elastic column of length � with rectangular cross-section

with dimensions a and b. The column is part of a wall structure containing horizontal
beams. This supports the motion in the plane of the wall, while motion is possible in the

out-of-plane direction. The cross-section area is A = ab. The moment of inertia in the
plane of the wall is Iy = 1

12
Aa2, while it is Iz = 1

12
Ab2 out of the plane. From a stability

point of view it is important that the column has larger stiffness out of the plane direction

than in the plane, which implies that b > a. The question is how much? The column is
assumed to be fully fixed at both ends in both directions.

a) Determine the effective column length �ye and

the critical load P y
c corresponding to buckling

in the plane of the wall.

b) Determine the effective column length �ze and
the critical load P z

c corresponding to buckling

out of the plane of the wall.

c) Determine the ratio b/a such that P y
c = P z

c .

Exercise 5.9. Consider a linear elastic column of length �, with simple supports at both
ends and in both directions. The cross-section of the column is an I-profile as shown in the

figure, with height h, width b and wall thickness t.

a) Determine the two moments of inertia Iy and Iz , ne-

glecting the contribution from the web.

b) Find the ratio h/b so that the Euler load PE is the

same with respect to buckling in the two directions.

Exercise 5.10. The figure shows an I-profile with height h, width b and wall thickness t.

The contribution of the web to the bending stiffness is omitted.

a) Make a sketch of the cross-section and indicate the
points that limit the kernel with respect to bending

in the two directions of symmetry.

b) Find the kernel area by superposition of the stress

distributions from bending in the two directions of
symmetry.

Exercise 5.11. Consider a simply supported column of length � = 4.00m, and with
quadratic cross-section of dimensions 50mm× 50mm. The material is steel with elastic

modulus E = 210GPa and yield stress σY = 250MPa.

a) Find the critical stress σel corresponding to elastic buckling.

b) Determine the slenderness λ and the relative slenderness λr .

c) Find the length of the column � = �∗, which corresponds to the limit between a short

and a long column.

Exercise 5.12. Consider a simply supported column of length � = 4.00m, and with

quadratic cross-section of dimensions 50mm× 50mm. The material is steel with elastic
modulus E = 210GPa and yield stress σY = 250MPa. The imperfection of the column is
represented by the parameter α = 0.22.

a) Determine the relative slenderness λr.
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b) Determine the ratio σc/σY by Perry-Robertson’s formula.

c) Determine the stress σel for the euler column and the ratio σc/σel. Comment on the
influence of the imperfection.

Exercise 5.13. The figure shows

an Euler column with a cruciform
cross-section with width a and wall

thickness t. The moment of iner-
tia is Iz = 1

12
a3t. The length of

the column is � = 25a. The ma-
terial is steel with elastic modulus

E = 210GPa for stresses below the
yield stress σY = 235MPa. The

imperfection is given by the param-
eter α = 0.1.

a) Determine the stress σel corresponding to the Euler load PE .

b) Find the relative slenderness λr and determine if the column is long or short.

c) Determine σc/σY by Perry-Robertson’s formula, and the ratio σc/σel.

Exercise 5.14. The figure shows a column ACB of length 2�. For deflection in the y-

direction the column has a simple support in A and simple supports with vertical rollers
in B and C. For deflection in the z-direction the column has a fixed support in A and a

simple support with vertical rollers in B. The column is loaded by an axial compression
force P in B, whereby the constant normal force is N = −P . As shown in the figure to the

right the cross section of the column is quadratic with height a and width a. The column
is elastic with elastic modulus E for stresses below the yield stress σY . It is assumed that

E/σY = 900.

a) Sketch the buckling form for deflections in the y- and z-direction, respectively. Deter-
mine the corresponding equivalent column lengths �ye and �ze .

b) Determine the critical load Pel for the elastic column.

c) Determine the relative slenderness λr with respect to the critical buckling form, and
find the value of �/a that corresponds to the transition between a short and a long

column.
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Statically determinate structures are characterized by having the minimum
number of supports and internal connections. While this permits direct ana-
lysis based on statics alone, it also entails some disadvantages such as vul-
nerability if any part of the structure is damaged. In addition statically de-
terminate frames are prone to rather large moments e.g. at mid-span and at
corners. This feature of the moment distribution typically leads to rather flex-
ible structures. Thus, there are several reasons why most current structures
are statically indeterminate. With proper care statically indeterminate struc-
tures can be designed such that the maximum section force is reduced, the
structures are less flexible, and vulnerability to failure of individual struc-
tural elements may be reduced. A simple but typical example of moment
redistribution and increased stiffness is a bridge with a main girder that is
continuous over the supports.

The analysis of statically indeterminate structures requires information of
the stiffness of the individual structural elements. There are two basically
different approaches to the analysis of statically indeterminate structures. In
the force method an equivalent statically determinate structure is introduced
e.g. by introducing hinges at selected points and removing supports. In the
name ‘force method’ the force refers to any component of the section forces
and thereby also includes moments. The analysis then consists in determining
the moment pairs necessary for restraining the relative rotation at the hinges
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and prevent the motion at the temporarily removed supports. This method
combines static analysis to determine the section forces in the equivalent
statically determinate structure and calculation of the elastic displacements
which must be compensated to reestablish the original structure. These sub-
jects have been treated in some detail in Chapters 3 and 4. Thus, the main
objective of the present chapter is to present and illustrate the systematic use
of these principles to the analysis of statically indeterminate beam and frame
structures. As the idea of the force method is to close the auxiliary kinematic
discontinuities it is sometimes called the ‘method of consistent deformations’.

The force method is rather straightforward to use in hand calculations of
small structures with a few degrees of static indeterminacy. However, each
step in the analysis involves determination of the internal forces in the full
equivalent statically determinate structure. This aspect of the force method
makes it less convenient for computer implementation. The stiffness method
is based on a different way of thinking. In the stiffness method the structure
is characterized by nodes, connected by structural elements. The properties
of the structure are related to the structural elements between the nodes,
and the unknown parameters of the analysis are the displacements of the
nodes. An example of this approach was presented for truss structures in
Section 2.5. The stiffness method for frames is presented in Chapter 7, first
as a hand calculation method and subsequently generalized to Finite Element
format.

6.1 Principle of the force method

The effect of making a structure statically indeterminate is here briefly indi-
cated by the two simply supported two-span beams shown in Fig. 6.1. The
beam in Fig. 6.1a has a hinge at the intermediate support. This permits a
rotation discontinuity ΔθC = θ+C − θ−C between the two beams at C, whereby
the bending moment in C vanishes. This provides an additional equilibrium
condition MC = 0 required to determine the four reaction forces by pure
statics, as discussed in Chapter 1. Thus, the beam structure in Fig. 6.1a is
statically determinate.

The beam shown in Fig. 6.1b is continuous at the support C thereby main-
taining continuity of the beam rotation at the support (ΔθC = 0). The
rotation continuity is the result of a non-vanishing moment at the support
(MC �= 0). As indicated in the figure this leads to a redistribution of the
bending moment in the beam, whereby both the maximum moments and
the deformations are reduced. However, equilibrium of the beam gives only
three equilibrium conditions, one short of the four reaction components, and
the moment MC can therefore not be determined by statics alone. Thus, the
beam structure in Fig. 6.1b is statically indeterminate.
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Fig. 6.1: Moment reduction in beam by additional rotation constraint in C.

Statically indeterminate two-span beam

The principle of the force method for solving statically indeterminate struc-
tures is demonstrated by the two-span beam shown in Fig. 6.2. The beam
structure has four reactions, where the horizontal reaction in A can be found
directly by horizontal equilibrium,

→ R′
A = 0 .

This leaves the three vertical reactions RA, RB and RC as unknown, and since
only two equilibrium equations remain the structure is one time statically
indeterminate, or it has a degree of indeterminacy equal to 1.

Fig. 6.2: Statically indeterminate two-span beam with distributed load.

The first step is to convert the structure to an equivalent statically deter-
minate structure. This can be done in several ways, as discussed in Section
6.2.1. In the present example the vertical reaction RC at the center of the
beam is considered as an external force acting on the structure. This initially
unknown force is denoted as X1 instead of RC . With X1 as an external load
the equivalent structure in Fig. 6.3 is statically determinate. The equivalent
structure is now analyzed for two load cases: the actual distributed load p,
and the new vertical force X1 acting in C. As the structure is elastic, the
principle of superposition applies: Thus the structure can be analyzed for
each individual load case, and the result is obtained by superposition of the
individual load cases, as explained previously in Section 3.4.1. The value of
the auxiliary force X1 is determined from a condition on the resulting dis-
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placement. In the present case this condition is that the structure has zero
vertical displacement at C. Thus, the unknown external force X1 must be
determined to satisfy this condition. It is therefore necessary to determine
the vertical displacement at C for both the two load cases. This is done by
use of the principle of virtually work, developed in detail in Chapter 4.

Fig. 6.3: Equivalent statically determinate structure with additional force X1.

The auxiliary force X1 represents the force needed to enforce the associated
kinematic constraint in the statically determinate structure. As demonstrated
in the following it is possible to have multiple auxiliary forces Xj ’s, and they
can represent both external forces and moments as well as internal force and
moment couples. The auxiliary forces Xj are denoted as redundant forces or
redundant components.

First, the equivalent structure is analyzed for the actual distributed load
without the redundant component, i.e. with X1 = 0. This load case is shown
in Fig. 6.4a. The reactions are

R0
A = R0

B = p� ,

and Fig. 6.4a shows the parabolic moment distribution M0. The index 0 is
used to refer to the load case with the actual external load, in the absence of
any redundant force components. The displacement of C from the distributed
load is determined by the virtual work equation described in Section 4.4
using the test load X1 = 1. This load case and the corresponding moment
distribution M1(x) are shown in Fig. 6.4b. The transverse displacement is
typically dominated by the contribution from beam bending, and only this
contribution is included in the following. The transverse displacement at C
from the distributed load then follows from the virtual work equation (4.43)
as

ξ10 =

∫ �

0

M1M0

EI
dx =

2

EI

�

12

(
1

2
p�2
)(

− 5

2
�

)
= − 5

24

p�4

EI
.

The displacement is denoted ξ10, where the first subscript indicates that this
displacement corresponds to the redundant forceX1 in location and direction,
while the second subscript 0 refers to the load as being the actual uniformly
distributed load. The integral is evaluated by using row five in Table 4.1.
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Fig. 6.4: Moment in statically determinate beam: a) Actual load, b) test load X1 = 1.

The second load case corresponds to a unit magnitude of the redundant force,
X1 = 1. This load case is shown in Fig. 6.4b with reactions

R1
A = R1

B = − 1
2

and moment distribution M1(x). The vertical displacement at C from this
unit load is determined by the virtual work equation (4.43) as

ξ11 =

∫ �

0

M1M1

EI
dx =

2

EI

�

3

(
1

2
�

)2

=
1

6

�3

EI
.

The first subscript in ξ11 refers to the resulting displacement component and
is therefore unchanged, while the second subscript is now 1, referring to the
load case X1 = 1. The index system is explained in greater detail in Section
6.2.3, where the general procedure for the force method is presented.

The total displacement ξ1 in C is determined by superposition of the displace-
ments from the two load cases, giving the condition of zero displacement at
C as

ξ1 = ξ10 + ξ11X1 = 0 .

The initially unknown redundant component X1 follows from this condi-
tion as

X1 = − ξ10
ξ11

= 5
4 p � .

Note, that X1 has the dimension of force. The absolute value EI of the beam
stiffness does not enter into the expression, while the fact that the two parts
of the beam has the same stiffness in this case has been accounted for in the
calculation of the displacement ξ10 and the coefficient ξ11.

It if often convenient to evaluate the reactions before proceeding to the cal-
culation of the internal forces. In this example X1 represents the vertical
reaction RC , which therefore is determined directly as
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RC = X1 = 5
4 p� .

The two remaining reactions are determined subsequently by equilibrium or
by superposition. The latter approach gives

RA = R0
A + R1

AX1 = p� + (−1
2 )

5
4 p� = 3

8 p� , RB = RA .

Vertical equilibrium confirms that RA +RB +RC = 2p�.

The moment distributions of the individual load cases are always available
from the analysis since they have been used in the virtual work equation to
determine the equation coefficients. Thus, the resulting moment distribution
can be determined by superposition. Alternatively, the moment distribution
can be found by a standard section analysis, as the reactions have just been
been obtained. In this example the moment distribution is determined by
both methods.

Fig. 6.5: Moment distribution.

The moment distributions M0 and M1 shown in Fig. 6.4 are parabolic and
piecewise linear, respectively. With the origin of the x-coordinate at A the
expressions in terms of x are

M0(x) = 1
2p x(2�− x) , M1(x) =

{
−1

2 x for x < � ,

−1
2 (2�− x) for x > � .

The expression for the resulting moment is then found by superposition as

M(x) = M0(x) + M1(x)X1 =

{
1
8p x(3�− 4x) for x < � ,

1
8p(2�− x)(4x− 5�) for x > � .

The total moment distribution is shown in Fig. 6.5. The numerically largest
moment Mmax = −M(�) = 1

8p� is located in C, while the moment at the

center of the two spans is M( 12�) =
1
16p�. The local maximum of the moment

in each of the spans occurs where the shear force is zero: For the left span
this gives
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Q(xmax) = RA − p xmax = 0 ⇒ xmax = 3
8� ,

with local maximum M(xmax) =
9

128p�
2 < Mmax.

Fig. 6.6: Moment equilibrium in C.

The moment at C can also be determined by section force analysis, as shown
in Fig. 6.6, where moment equilibrium for the section at C gives

�

C M(�) + 1
2� p� − �RA = 0 ⇒ M(�) = 3

8 p�
2 − 1

2 p�
2 = − 1

8 p� .

This corresponds to the previously found value and defines the dashed lines
in the moment distribution in Fig. 6.5. The final moment distribution is then
obtained by superimposing the parabola with maximum value 1

8p�
2, following

the procedure presented in Section 3.4.2.

6.2 The general force method

This section presents the general form and a step-by-step procedure of the
force method. First the construction of an equivalent statically determinate
structure is addressed, with emphasis on the relation between the released
kinematic constraints and the corresponding redundant components. The
principle of the method is then illustrated for a two times statically indeter-
minate structure, where coupling effects appear and the solution is obtained
by matrix calculus. Finally, the general procedure of the force method for an
n times statically indeterminate structure is summarized.

6.2.1 Released structure

For a structure that is n times statically indeterminate, the basis of the force
method is the release of n kinematic constraints, whereby the structure be-
comes statically determinate with n conjugate redundant static components,
generating n additional load cases. In the previous example a vertical re-
action force was replaced by a vertical force, but in general the kinematic
constraints can be of both external or internal type.
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External releases

The degree of statically indeterminacy is often found by simply counting un-
known reaction components and comparing this to the number of indepen-
dent equilibrium equations. Therefore, it is often straight forward to simply
replace the necessary number of reactions by redundant components Xj . Fig-
ure 6.7a shows a fixed support, which represents a reaction moment and two
reaction forces. Figures 6.7b-d show the three situations in which the rota-
tion, the vertical displacement and the horizontal displacement have been
released, whereby the reaction moment, the vertical reaction force and the
horizontal reaction force, respectively, are introduced as a redundant static
component Xj .

Fig. 6.7: Releasing support conditions.

Figure 6.8a shows a two-span beam with a fixed support in A and simple
supports with horizontal rollers in B and C. There are five reactions and
only three equilibrium equations, whereby the degree of indeterminacy is 2.
The horizontal reaction can be obtained directly from horizontal equilibrium
as R′

A = 0. Thus, the two redundant components can be chosen among the
remaining four reactions. The force method is based on the determination of
displacements (or rotations) by the virtual work equation, and therefore sim-
ple moment distributions are computationally advantageous. For the beam
in Fig. 6.8a this can be obtained by replacing the reactions in B and C
by redundant forces, whereby the structure is transformed into a cantilever
beam, or by replacing the reaction moment in A and the reaction force in C,
resulting in the simply supported beam shown in Fig. 6.8b.

Fig. 6.8: Two-span beam with reactions as redundant components X1 and X2.
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Internal releases

The equivalent statically determinate structure can also be constructed by
releasing internal kinematic constraints and thereby introducing conjugate
internal force or moment couples as redundant components. As illustrated
in Fig. 6.9a the bending moment, normal force and shear force are the three
available internal forces. Equilibrium in a section requires that internal forces
always appear in opposing pairs, and thus redundant components following
internal releases are introduced as moment and/or force couples. This is indi-
cated in Figs. 6.9b–d, where Xj represents the moment, the shear force and
the normal force, respectively.

Fig. 6.9: Internal forces as redundant components.

The force method relies on the determination of displacements (or rotations)
based on virtual work, where the influence of normal and shear forces is typ-
ically omitted. This implies that simple moment distributions often result in
a simple analysis, and as demonstrated in the examples of this chapter the
moment distributions can often be simplified by using internal moments as
redundant components. Hereby, the moment distributions are often localized
to limited regions with simple parabolic or linear shapes that are easily inte-
grated in connection with the virtual work equation. Removing the internal
bending moment capacity of the beam corresponds to introducing a hinge,
as shown in Fig. 6.10, where the redundant component Xj is then added as
a pair of opposing moments.

Fig. 6.10: Internal moment couple as redundant force.
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Figure 6.11a shows a two span beam with both fixed and simple supports.
Previously in Fig. 6.8 the equivalent statically determinant structure was
constructed by replacing the reaction moment in A and the reaction force in
C by redundant components X1 and X2. Instead of the reaction in C, the
bending moment in C can be used as redundant component as illustrated in
Fig. 6.11b. The hinge is placed in the beam in C and the redundant compo-
nent X2 is then introduced as a pair of opposing moments. It is important
to note that the pair of moments X2 cancel in the equilibrium of the full
structure. However, the internal moment in C is now MC = X2, and thus X2

contributes to the internal moment distribution.

Fig. 6.11: Two-span beam with internal moment in C as redundant force.

Kinematic determinacy of released structure

As discussed above the first step in the force method is to construct an
equivalent statically determinate structure and introduce the corresponding
conjugate forces/moments as redundant components. In particular, when re-
placing internal force couples by redundant components it is important that
the structure remains kinematically determinate in the sense that no mecha-
nisms are created. For the two-span beam in Fig. 6.11 the reaction moment
in A and the internal moment in C have been chosen as redundant compo-
nents. This structure is statically and kinematically determinate and thus
contain no kinematic mechanisms. Another hypothetical choice of the redun-
dant components is shown in Fig. 6.12, where X1 is the bending moment in
C and X2 is the reaction force in B. As indicated in the figure this choice
creates a mechanism and can therefore not be used for the static analysis.

Fig. 6.12: Unstable two-span beam with mechanism in C.
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6.2.2 The basic steps

The basic steps of the force method are illustrated here by the two-span
beam in Fig. 6.13. This beam is two times statically indeterminate, and thus
an equivalent statically determinate structure is obtained by releasing two
suitable kinematic constraints.

Fig. 6.13: Two-span beam with degree 2 of statically indeterminacy.

The steps of the force method for the two times statically indeterminate
two-span beam are as follows:

1) Construct an equivalent statically determinate and stable structure with
redundant static components X1 and X2.

2) Determine the displacements ξ10 and ξ20 in the equivalent structure from
the external load.

3) Determine the displacements ξ11 and ξ21 from the load X1 = 1, and
the displacements ξ12 and ξ22 from the load X2 = 1 on the equivalent
structure.

4) Form the kinematic constraint equations and determine the redundant
components X1 and X2.

5) Determine the reactions by superposition or by statics.

6) Determine the distribution of the internal forces by superposition or by
equilibrium conditions.

The individual steps of the force method are explained in the following with
emphasis on procedure and solution technique.

1) Statically determinate structure and redundant components. The kinematic
constraints against rotation in A and vertical displacement in C are released,
and the corresponding redundant components are X1 = MA and X2 = RC ,
as illustrated in Fig. 6.14.

Fig. 6.14: Statically determinate structure with redundant components.
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2) Displacements from external load. First the displacements of the equivalent
structure with the external loading, but without redundant forces, are de-
termined as illustrated in Fig. 6.15, showing the reactions R0

A and R0
B and

the internal moment M0(x). The figure also shows the rotation ξ10 and the
displacement ξ20 conjugate to the redundant static components X1 and X2.
X1 is a clockwise moment and thus ξ10 is positive as a clockwise rotation,
while X2 is an upward force, whereby ξ20 is positive if representing an upward
displacement.

Fig. 6.15: Moment distribution M0(x) for external load.

The rotation ξ10 in A and the displacement ξ20 in C are determined by the
virtual work equations (4.43) and (4.45), including only the bending moment
contribution,

ξ10 =

∫ �

0

M1M0

EI
dx , ξ20 =

∫ �

0

M2M0

EI
dx .

The corresponding two test load cases are X1 = 1 and X2 = 1 with moment
distributions M1(x) and M2(x), respectively, shown in Fig. 6.16.

Fig. 6.16: Moment distributions M1 and M2 for redundant load cases.

3) Displacements from redundant components. The two remaining load case
are for p = 0 and the combinations X1 = 1, X2 = 0 and X1 = 0, X2 = 1,
respectively. They correspond to the test loads shown in Fig. 6.16, where the
displacements and rotations ξ11, ξ12, ξ21 and ξ22 from the unit loads are also
indicated.
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In the load case X1 = 1 (with X2 = 0) shown in Fig. 6.16a the rotation
ξ11 in A and the displacement ξ21 in C are determined by the virtual work
equations as

ξ11 =

∫ �

0

M1M1

EI
dx , ξ21 =

∫ �

0

M2M1

EI
dx .

The first subscript denotes the number of the displacement/rotation, while
the second subscript refers to the index of the redundant static component
X1. In the remaining load case X2 = 1 the rotation ξ12 in A and the dis-
placement ξ22 in C are

ξ12 =

∫ �

0

M1M2

EI
dx = ξ21 , ξ22 =

∫ �

0

M2M2

EI
dx .

It is important to note that because all the loads Xj = 1 are normalized
to unity the dimensions of ξij do not correspond to actual displacements or
rotations. Instead they have dimensions of displacement or rotation per unit
force or moment, corresponding to flexibility (inverse of stiffness). Thus, ξij ’s
are referred to as flexibility coefficients, and the diagonal flexibility coefficients
ξjj are positive, because they are given as the integral of M jM j/EI ≥ 0.

4) Redundant components. The redundant components X1 and X2 can now
be determined by the kinematic constraints that have been released in the
original structure to obtain the equivalent statically determinate structure.
In the present case the rotation ξ1 in A and the transverse displacement ξ2
in C can be determined by superposition of the three load cases,

ξ1 = ξ10 + ξ11X1 + ξ12X2 ,

ξ2 = ξ20 + ξ21X1 + ξ22X2 ,

where the flexibility coefficients are multiplied by the respective redundant
components because they have been computed for unit loads. In the case of
multiple equations it is often convenient to express these in matrix form,

[
ξ11 ξ12

ξ21 ξ22

] [
X1

X2

]
=

[
ξ1

ξ2

]
−
[
ξ10

ξ20

]
,

where the flexibility coefficients are assembled in the flexibility matrix on the
left side. For fixed supports ξ1 = 0 and ξ2 = 0, and the redundant components
can be found by solving the matrix equation

[
X1

X2

]
= −

[
ξ11 ξ12

ξ21 ξ22

]−1 [
ξ10

ξ20

]
.
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For a 2× 2 matrix the inverse is given explicitly as

[
ξ11 ξ12

ξ21 ξ22

]−1

=
1

ξ11ξ22 − ξ21ξ12

[
ξ22 −ξ12

−ξ21 ξ11

]
,

and the two redundant forces are given by the expression

[
X1

X2

]
= − 1

ξ11ξ22 − ξ21ξ12

[
ξ22 −ξ12

−ξ21 ξ11

] [
ξ10

ξ20

]
.

For systems with more than two equations it might be necessary to solve
these numerically.

5) Reactions. In the present example the redundant components have replaced
the reaction moment in A and the vertical reaction force in C, which are
therefore directly given as

MA = X1 , RC = X2 .

As indicated in Figs. 6.15 and 6.16 it is convenient to determine the reactions
for each load case during the analysis. Thus, the remaining reactions at this
stage often can be found by superposition,

[
RA

RB

]
=

[
R0

A

R0
B

]
+

[
R1

A R2
A

R1
B R2

B

] [
X1

X2

]
.

Alternatively, since X1 and X2 are now known the remaining reactions can
also be found by statics. The choice of procedure depends on the specific type
of problem.

6) Internal forces. The moment distributions of the individual load cases have
already been determined and the resulting moment distribution can be found
by superposition as

M(x) = M0(x) + M1(x)X1 + M2(x)X2 ,

or by a standard static analysis once the reactions have been determined.
In the present case it might be easiest to use a direct static analysis, as the
moment distribution is fully determined, once the section moments have been
determined at C and at the two ends of the interval of the distributed load.
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6.2.3 Summary of the force method

The following summary of the force method represents the general case for
an n times statically indeterminate structure.

1) Statically determinate structure and redundant component(s). Release n kinematic
constraints to obtain a statically and kinematically determinate struc-
ture. Introduce n redundant components Xj as conjugate forces to the
released constraints ξj .

2) Displacements from external load. The displacements (or rotations) of the stat-
ically determinate structure at the released constraints from the external
load are found by the virtual work equation

ξj0 =

∫

L

M jM0

EI
ds , j = 1 . . . n ,

where M0 and M j are the moment distributions for the external load
and the test load Xj = 1, respectively.

3) Flexibility coefficients. For load case j the only load acting on the structure
is the unit redundant component Xj = 1. The displacements/rotations
at the released constraints are found for the individual load cases by the
virtual work equation

ξij =

∫

L

M iM j

EI
ds , i, j = 1 . . . n ,

where M i and M j are the moment distributions for the test loads Xi = 1
and Xj = 1, respectively. The virtual work integral implies symmetry

ξij = ξji ,

and thus only half of the coupling coefficients need to be computed di-
rectly. The displacements/rotations ξij are determined for unit loads and
thus represent flexibility coefficients.

4) Redundant components. The total displacements/rotations ξj can be found
by superposition of the individual load cases as

ξ1 = ξ10 + ξ11X1 + · · ·+ ξ1nXn ,

ξ2 = ξ20 + ξ21X1 + · · ·+ ξ2nXn ,
...

...
ξn = ξn0 + ξ11X1 + · · ·+ ξnnXn .

These n equations are solved with respect to the n redundant components
X1 . . . Xn. When releasing kinematic constraints, they are reimposed by
the conditions ξj = 0, while ξj �= 0 can be used to impose a finite
displacement/rotation.
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5) Reactions. Reactions that have been replaced by redundant forces are di-
rectly available, while the remaining reactions can be determined by
superposition,

RA = R0
A + R1

AX1 + . . . + Rn
AXn .

When X1 . . . Xn have been determined, the remaining reactions can also
be found by static equilibrium.

6) Internal forces. The internal forces can be found by superposition of the
individual load cases, e.g. the moment distribution

M = M0 + M1X1 + . . . + MnXn ,

and similarly for the normal force N and shear force Q. As the reactions
have been determined, the internal forces can also be determined by
static analysis as described in Chapter 3.

6.3 Application of the Force Method

In this section the procedure of the force method is illustrated by simple
examples involving statically indeterminate beam structures. The extension
to analysis of frame structures is considered in Section 6.4.

Example 6.1. Two-span beam – revisited. The two-span beam in Fig. 6.17 corresponds

to the introductory example in Section 6.1, and it is revisited here to illustrate the use of
an internal moment as redundant component.

Fig. 6.17: Statically indeterminate two-span beam with distributed load.

The beam is one time statically indeterminate, and the rotation continuity in C is released
by the introduction of an internal hinge as indicated in Fig. 6.18. The internal moment

at C is the conjugate force to the released rotation, and MC therefore acts as redundant
component X1. Note, that because the redundant component X1 represents the internal

moment it is introduced as a self-equilibrating moment pair in Fig. 6.18. The direction of
X1 is chosen in agreement with the sign convention for internal moments.

The actual load case with X1 = 0 is shown in Fig. 6.19a. The corresponding moment M0

vanishes in C due to the internal hinge, and the moment distribution is composed of two
separate parabolic distributions with local maximum 1

8
p�2. The rotation discontinuity ξ10

at C is determined by the virtual work equation, where the virtual moment distribution
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Fig. 6.18: Statically determinate beam with internal moment in C as redundant component.

M1(x) is obtained for X1 = 1 as shown in Fig. 6.19b. It is seen that both M0(x) and
M1(x) are symmetric with respect to the center of the beam, whereby

ξ10 = 2

∫ �

0

M1M0

EI
dx =

2

EI

�

3

(1
8
p�2
)

=
1

12

p�3

EI
.

The integral is evaluated by row four in Table 4.1, and the above expression is non-
dimensional, because ξ10 represents a rotation.

Fig. 6.19: Moment distribution.

The reactions are determined for each of the two load cases, and as shown in Fig. 6.20 the

reaction in A is found by moment equilibrium about the section in C. For the actual load
case p in Fig. 6.20a the moment in C vanishes due to the hinge, giving the reaction

�

C R0
A� − 1

2
� p� = 0 ⇒ R0

A = 1
2
p� .

For the load case X1 = 1 in Fig. 6.20b the internal moment in C is unity, which gives

�

C R1
A� − 1 = 0 ⇒ R1

A =
1

�
.

The reactions in B can be found by the similar method for the right half of the beam, and

the reactions in C are finally found by moment about A for the entire beam. This gives
the following reaction components for the two load cases:

R0
B = R0

A = 1
2
p� , R0

C = p� ,

R1
B = R1

A =
1

�
, R1

C = − 2

�
.

It is seen that vertical equilibrium is satisfied for both load cases: R0
A + R0

B + R0
C = 2p�

and R1
A +R1

B +R1
C = 0.
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Fig. 6.20: Moment about section in C.

The flexibility coefficient ξ11 is governed by the load case in Fig. 6.19b, which only contains

the unit load case X1 = 1. The flexibility coefficient is found by the virtual work equation

ξ11 = 2

∫ �

0

M1M1

EI
dx =

2

3

�

EI
.

It is seen that ξ11 > 0 and has dimensions [moment]−1, which corresponds to [rota-
tion/moment] and thereby rotation flexibility.

The resulting rotation discontinuity at C is found by superposition of the two load cases

considered above,
ξ1 = ξ10 + ξ11X1 .

The latter term is scaled by X1 because ξ11 represents the moment flexibility determined
for X1 = 1. Continuity of the rotation at C is imposed by the condition ξ1 = 0, and the

redundant component is then determined from the above expression as

X1 = − ξ10

ξ11
= − 1

8
p�2 .

This corresponds to the internal moment at C found previously in Fig. 6.5.

The reactions of the individual load cases are shown in Fig. 6.19, and superposition is
therefore conveniently used in this example. For the reaction in A this gives

RA = R0
A + R1

AX1 = 1
2
p� − 1

�
1
8
p�2 = 3

8
p� ,

while the remaining reactions are determined similarly as

RB = RA = 3
8
p� , RC = 5

4
p� .

It is seen that the reactions correspond to those obtained previously, satisfying vertical
equilibrium: RA +RB +RC = 2p�.

Finally, the section force distributions are determined, and the redundant component di-

rectly gives the internal moment MC = X1. Thus, the moment distribution is obtained
by superimposing the moment parabola with local maximum 1

8
p�2 to the linear curves

connecting the moments in A, B and C as shown in Fig. 6.21a. The shear forces in A and
B are in equilibrium with the corresponding reactions, giving

QA = RA = 3
8
p� , QB = −RB = − 3

8
p� .

The shear force at C is found by placing a section at C− immediately to the left of C, and

then taking vertical equilibrium as illustrated in Fig. 6.21b,
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Fig. 6.21: Moment and shear force distribution.

↓ QC− + p� − RA = 0 ⇒ QC− = − 5
8
p� .

Finally, the reaction RC produces a discontinuity of 5
4
p� in the shear force in C, and the

resulting distribution of the shear force can be determined as shown in Fig. 6.21. �

Example 6.2. Two-span beam with fixed support. Figure 6.22 shows a two-span beam
with a fixed support in A and simple supports in B and C. This structure was considered

previously in Section 6.2.2 in a general context, while in this example the beam is loaded
by a uniformly distributed load with intensity p.

Fig. 6.22: Two-span beam with fixed support at A.

The structure is two times statically indeterminate and an equivalent statically determinate

structure similar to that in Example 6.1 is obtained by releasing the rotation in A and
the rotation continuity in C. Hereby, X1 represents the reaction moment in A, while X2 is

the internal moment in C. Figure 6.23 shows the equivalent statically determinate beam
structure with the redundant components.

Fig. 6.23: Statically determinate structure and redundant components.
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In the first load case only the distributed load is taken into account, while X1 = X2 = 0.

Hereby, the system corresponds to the equivalent structure in Example 6.1, whereby
moment distribution M0(x) and reactions R0

A, R0
B and R0

C are directly available from

Fig. 6.19a. Furthermore, the moment distribution M2(x) for the load case only containing
X2 = 1 corresponds to the moment distribution M1 presented in Fig. 6.19b. This leaves
X1 = 1 as the only load case not already considered in Example 6.1. The moment distri-

bution M1 for the load case only containing X1 = 1 is shown in Fig. 6.24, where the two
remaining moment distributions M0(x) and M2(x) are also shown for convenience.

Fig. 6.24: Summary of moment distributions.

The rotation in A for the actual load case is found by the virtual work equation

ξ10 =

∫ �

0

M1M0

EI
dx =

�

3EI

(1
8
p�2
)

=
1

24

p�3

EI
,

where only the left part of the beam contributes to the integral because M1(x) ≡ 0 on the

right part. The integral is solved by using row four of Table 4.1, where a linear curve is
combined with a parabola. Similarly the change in rotation in C is found by virtual work,

where a triangle and a parabola are combined for both parts of the two-span beam,

ξ20 = 2 ξ10 =
1

12

p�3

EI
.

Figure 6.25 indicates the symmetric deformation form of the equivalent statically determi-

nate structure, where the magnitude of the three rotations are equal, i.e. ξ10 = ξ−20 = ξ+20.
This verifies the relation ξ20 = 2ξ10 used above.

Fig. 6.25: Deformation of statically determinate structure.

The flexibility coefficients ξ11, ξ21 and ξ12, ξ22, with ξ12 = ξ21, represent the rotations

in A and C for the two load cases X1 = 1 and X2 = 1, respectively. When combining
the moment distributions M1(x) and M2(x) in the virtual work equation, the flexibility

coefficients are determined as

ξ11 =
1

3

�

EI
, ξ22 = 2ξ11 =

2

3

�

EI
, ξ12 = ξ21 =

1

6

�

EI
.

The dimension is the reciprocal of a moment, and thereby rotation flexibility.
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Rotation at A and rotation discontinuity at C are constrained in the actual structure in

Fig. 6.22, implying that ξ1 = 0 and ξ2 = 0. This gives two equations for X1 and X2. In
matrix form these equations are

[
ξ11 ξ12

ξ21 ξ22

][
X1

X2

]

= −

[
ξ10

ξ20

]

,

and as demonstrated in Section 6.2.2 this determines the redundant components as

[
X1

X2

]

= − 1

ξ11ξ22 − ξ21ξ12

[
ξ22 −ξ12

−ξ21 ξ11

][
ξ10

ξ20

]

= −

[
2

3

]
p�2

28
.

It is seen that the magnitude of the moment is larger in C than in A, and that both

moments are negative. This is in agreement with the sign convention chosen in Fig. 6.23,
where X1 and X2 must be negative to prevent rotation in A and relative rotation at C.

The reactions are now determined, and horizontal equilibrium directly gives R′
A = 0.

Furthermore, the reaction moment in A is represented directly by the first redundant
component,

MA = X1 = − 1
14

p�2 .

This leaves the vertical reactions in A, B and C. In this example the reactions from the
individual load cases have not been determined, and the remaining reactions are therefore

found by static equilibrium.

Fig. 6.26: Reactions by moment equilibrium.

Figure 6.26 shows the left and right part of the beam when placing a section in C. The
purpose is to use moment equilibrium around C, and the shear forces at C± are therefore

not shown. For the left part AC moment about C gives the reaction in A,

�

C RA� + X1 − X2 − 1
2
� p� = 0 ⇒ RA = 13

28
p� .

Similarly, moment about C for the right part CB gives the reaction in B,

�

C RB� − X2 − 1
2
� p� = 0 ⇒ RB = 11

28
p� .

Finally, the vertical reaction in C is obtained by moment equilibrium for the entire structure
with respect to B,

�

B RC� + RA2� + X1 − 2p�2 = 0 ⇒ RC = 8
7
p� .

Note, that X2 represents a self-equilibrating internal moment pair without contribution to
global equilibrium of the structure.
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Fig. 6.27: Distribution of moment.

The moment distribution is governed by the internal moments MA = X1, MB = 0 and

MC = X2. These key values are plotted in the moment diagram in Fig. 6.27 and connected
by (dashed) lines. The final moment distribution is then obtained by superimposing the

parabolas from the distributed load. This example illustrates that the construction of the
moment distribution is often simplified when the redundant components are chosen as

suitable reaction moments and/or internal moments. �

Example 6.3. Two-span beam with local forces. Structures are often exposed to various

types of loading conditions, e.g. wind excitation or snow loading, and the computational
cost may be significantly reduced when results from previous static analyzes of the structure

are reused in the analysis of a new load case. With respect to the force method the present
example illustrates that only the displacements/rotations ξj0 need to be re-calculated when

changing the loading conditions, while the load-independent flexibility parameters ξij may
be carried on from a previous analysis.

Fig. 6.28: Statically indeterminate two-span beam with local forces P .

Reconsider the simply supported two-span beam with distributed load in Example 6.1.

Figure 6.28 shows the same beam structure, but loaded by two local forces P acting at
the center of the two spans. The reuse of the previous results from Example 6.1 requires

using the same equivalent statically determinate structure, and as shown in Fig. 6.29 the
redundant component X1 again represents the internal moment in C.

Figure 6.30 shows both the moment distribution M0(x) due to the actual forces P and the

moment distribution M1(x) for X1 = 1. Note, that M1(x) has previously been obtained
in Example 6.1 and is therefore taken directly from Fig. 6.19. The rotation discontinuity

at C is obtained by the virtual work equation,

ξ10 =

∫ B

A

M1M0

EI
dx =

�

3EI

(
1

4
P�

)
1

2
+

�

6EI

(
1

4
P�

)
2 =

1

8

P�2

EI
,
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Fig. 6.29: Statically determinate structure and redundant component.

while the flexibility coefficient ξ11 can be taken directly from Example 6.1,

ξ11 =
2

3

�

EI
.

In particular for structures that are several times statically indeterminate the reuse of the

flexibility coefficients might save a significant amount of computational effort because the
flexibility matrix need only be inverted once.

Fig. 6.30: Distribution of moment for external load and unit redundant moment.

In the original structure the rotation discontinuity at C is constrained, ξ1 = 0, and this

determines the redundant component

X1 = − ξ10

ξ11
= − 3

16
P� .

The reactions in Fig. 6.30a from the external loading are found as

R0
A = R0

B = 1
2
P , R0

C = P .

The reactions in Fig. 6.30b for the load case X1 = 1 are taken from Example 6.1,

R1
B = R1

A =
1

�
, R1

C = − 2

�
.

The resulting reactions can now be determined by superposition,

RB = RA = 5
16

P , RC = 11
8

P .

Note, that the reaction in C carries a larger part of the total vertical load compared to the
case with the distributed load in Example 6.1.
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Fig. 6.31: Moment distribution.

The redundant component X1 gives the internal moment in C directly, while the moment

vanishes at the hinges in A and B. Thus, the moment distribution is fully determined once
the moment MP at the location of P is obtained. Superposition of the values obtained

from Fig. 6.30 gives

MP = M( 1
2
�) = M0( 1

2
�) + M1( 1

2
�)X1 = 1

4
P� + 1

2
(− 3

16
P�) = 5

32
P� .

The final moment distribution is then determined by connecting the moment values at the
points with transverse forces by straight lines as shown in Fig. 6.31. It is seen that the

numerically largest moment Mmax = 6
32

P� occurs in C. �

6.4 The force method for frame structures

Modern plane frame structures are typically designed with some kind of static
indeterminacy arising from the use of more than the minimum three support
components. The additional reaction components are deliberately introduced
to obtain a stiffer structure, and to obtain some degree of balance between
positive and negative moments, whereby the necessary moment capacity of
the members of the frame is reduced. A simple illustration is provided by
the rectangular frame shown in Fig. 6.32. The horizontal beam CD carries

Fig. 6.32: Moment reduction in frame by additional support.
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a uniformly distributed vertical load with intensity p. The figure shows two
different sets of support conditions. In Fig. 6.32a the frame has a simple fixed
support at A and a simple support on horizontal rollers at B. The reactions
consist of two equal vertical forces at A and B, each carrying half of the
load, while the horizontal reaction component at A vanishes. The horizontal
beam CD curves upward, while the columns AC and BD remain straight.
As a result there is outward motion wB of the support B, and the moment
distribution along CD is parabolic with zero moment at the frame corners
C and D. Figure 6.32b shows a modified version of the frame, in which the
support at B is replaced by a fixed simple support. This introduces horizontal
reactions that prevent the outward motion of the supports and introduce a
negative moment at the frame corners C and D, whereby the maximum
moment in the horizontal beam CD is reduced. As a result this form of the
frame is stiffer, and has a smaller maximum moment.

6.4.1 Simply supported frames

Simply supported plane frames are often one time statically indeterminate.
It is possible to use one of the reactions as redundant component, but it may
be advantageous to choose the internal moment at a suitable joint in the
frame as X1. This often leads to simple moment curves and reaction forces.
Figure 6.33 shows some useful locations of X1 for typical frame structures.

Fig. 6.33: Simply supported frames with the redundant component at a joint.

Example 6.4. Angle frame with distributed load. This example considers the simply
supported angle frame ACB shown in Fig. 6.34a. A distributed vertical load with intensity

p acts on the horizontal beam CB. The frame is one time statically indeterminate and as
discussed above it is convenient to construct an equivalent statically determinate struc-

ture by releasing the rotation continuity at a suitable joint. Figure 6.34b shows a hinge
introduced at the corner C, whereby the redundant component X1 represents the internal

moment MC .

The moment distributions and the reactions are now determined for the actual load p
without X1, and for the unit load X1 = 1 without p. Figure 6.35 shows these two load

cases and the corresponding moment distributions. The rotation discontinuity at the joint
C is found by the virtual work equation,
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Fig. 6.34: Angle frame with distributed load.

ξ10 =

∫ B

A

M0M1

EI
ds =

b

3EI

(
1

8
pb2
)

=
1

24

pb3

EI
,

where only the horizontal beam CB contributes to the integral, because M0(s) ≡ 0 in the

vertical beam AC. The integral is evaluated by row four in Table 4.1. It is observed that
the rotation discontinuity ξ10 is positive, implying that the right angle of the joint in C
will ‘close’ slightly. The corresponding flexibility coefficient is found by the integral

ξ11 =

∫ B

A

M1M1

EI
ds =

(
a

3
+

b

3

)
1

EI
=

1

3

a+ b

EI
,

following from the first row in Table 4.1.

Fig. 6.35: Moment distribution and reactions for load cases.

In the actual frame structure the right angle of the corner at C is maintained during

deformation of the frame, whereby ξ1 = ξ10 + ξ11X1 = 0. This gives the redundant
component
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X1 = − ξ10

ξ11
= − 1

8

pb3

a+ b
,

representing the internal bending moment at C.

The reactions for the individual load cases are determined in accordance with the sign

convention in Fig. 6.35. The reactions for the actual load p are

R0
A = R0

B = 1
2
pb , R′0

A = R′0
B = 0 .

For the load case X1 = 1 the reactions are

R1
A = −R1

B = − 1

b
, R′1

A = R′1
B = − 1

a
,

and the final reactions can now be found by superposition of the individual load cases. For
the vertical reaction in A this gives

RA = R0
A + R1

AX1 =
pb

2
+
(
− 1

b

)(1
8

pb3

a+ b

)
=

pb

8

4a+ 5b

a+ b
.

The three remaining reaction forces can similarly be found by superposition as

RB =
pb

8

4a+ 3b

a+ b
, R′

A = R′
B =

1

8

pb3

a(a+ b)
.

It is seen that the horizontal and the vertical equilibrium are both satisfied.

Fig. 6.36: Moment distribution.

The moment distribution is determined via the internal moment at the joint C,

MC = X1 = − 1

8

pb3

a+ b
.

The moment distribution shown in Fig. 6.36 is linear in the vertical beam AC, while
it is parabolic in the horizontal beam. The parabolic part with local maximum 1

8
pb2 is

superimposed on the (dashed) linear curve connecting the moment values in C and B. �

Example 6.5. Simply supported frame with combined load. Figure 6.37 shows a simply
supported frame with distributed load p on CD and a vertical tip force P at E. The sign
convention of the internal forces is defined by the dashed line, indicating the lower side of

the individual beams. It is assumed that P = 1
2
pa, corresponding to half of the resultant

of the distributed load.
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Fig. 6.37: Simply supported frame with distributed load p and local tip force P .

The frame has four reaction force components, while only three independent equilibrium

equations are available. Thus, the frame structure is one time statically indeterminate.
When choosing the redundant component as an internal moment, special care should be
taken if placing a hinge in D, as the structure should remain kinematically determinate

without mechanisms. Three possible choices are presented in Fig. 6.38. It is seen that the
locations of the hinge in Figs. 6.38a,c imply that the horizontal reactions are zero in the

load case X1 = 0, whereby the corresponding moments in the vertical beams vanish. This
might simplify the analysis and in the present example the internal moment pair at the

joint C is chosen as the redundant component as shown in Fig. 6.39.

Fig. 6.38: Possible choices of the redundant component X1.

The external load case is composed of two individual loads: the distributed load p on CD

and the vertical tip force P at E. From a computational point of view it is convenient to
determine the separate contributions to the virtual work equation from the two individual

loads as shown in Fig. 6.40. The individual moment distributions for the two load compo-
nents are also shown in the figure. The moment distribution M0

a due to the distributed load

is parabolic on CD, while the moment distribution M0
b due to the tip force is piecewise

linear. The rotation discontinuity at C is found by the equation of virtual work, where the

contributions from the two load cases are added,

ξ10 =

∫
M0

aM
1

EI
ds +

∫
M0

bM
1

EI
ds .

The reactions for the load case X1 = 1 are determined as follows. The horizontal reactions
must be opposite and of equal magnitude to conserve horizontal equilibrium. Thus, they

do not contribute to the global moment equilibrium about C, which determines RB = 0.
Vertical force equilibrium then gives RA = 0. Finally, the horizontal component R′1

A is

determined by moment equilibrium about the hinge at C of the left part of the frame,

�

C R′1
Aa + 1 = 0 ⇒ R′1

A = − 1

a
.
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Fig. 6.39: Redundant component X1 as moment in C.

The horizontal reaction in B then follows from horizontal equilibrium as R′1
B = R′1

A =

−1/a. The moment distribution is linear over the individual beams and is determined
from sections just below C and D. The moment distribution M1(s) is shown in Fig. 6.41.

Fig. 6.40: Moment distributions from external load.

The two integrals in the virtual work equation are evaluated by the integral formulae in
Table 4.1,

ξ10 =
a

3EI

(
1
8
pa2
)
(1 + 1) +

1

EI
1
2
a(−Pa) =

1

12

a2

EI
(PA− 6p) .

When introducing the relation P = 1
2
pa the final expression becomes

ξ10 = − 1

6

pa3

EI
.
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It is seen that the major part of the rotation discontinuity in the equivalent structure is

due to the tip force P . The flexibility coefficient follows from the moment distribution in
Fig. 6.41 as

ξ11 =

∫ B

A

M1M1

EI
ds =

5

3

a

EI
,

and the redundant component is then obtained as

X1 = − ξ10

ξ11
= 1

10
pa2 ,

where the relation P = 1
2
pa has been introduced.

Fig. 6.41: Moment distributions from X1 = 1.

The reactions have been determined for the three individual load cases in Figs. 6.40 and
6.41, and the resulting reactions can thus be determined by superposition. For P = 1

2
pa

the vertical reaction forces are

RA = 1
2
pa − P = 0 , RB = 1

2
pa + 2P = 3

2
pa ,

while the horizontal reactions are

R′
A = R′

B =
(
− 1

a

)
X1 = − 1

10
pa2 .

It is found that both horizontal and vertical force equilibrium are satisfied.

Fig. 6.42: a) Moment distribution, b) Equilibrium in D.



The force method for frame structures 257

The moment distribution is obtained by determining the moment in C and D, whereafter

the parabolic distribution from the distributed load is superimposed on CD. The moment
at the left joint C is equal to the redundant component,

MC = X1 = 1
10

pa2 .

At the joint D three internal moments occur – one for each beam attached to D. These
moments are determined by superposition of the three load cases,

MDC = −Pa + X1 = − 2
5
pa2 ,

MDE = −Pa = − 1
2
pa2 ,

MDB = −X1 = − 1
10

pa2 ,

where P = 1
2
pa has again been introduced. The moment distribution is shown in Fig. 6.42a,

where it is seen that the largest moment occurs in the cantilever beam DE at D,

Mmax = −MDE = 1
2
pa2 .

In joints connecting more than two elements it is a good idea to check moment equilibrium.
In Fig. 6.42b the joint has been isolated and the three internal moments are applied. It is

found that moment equilibrium is satisfied,

�

C − 1
10

pa2 − 4
10

pa2 −
(
− 5

10
pa2
)
= 0 .

Similarly, horizontal and vertical force equilibrium could be checked at the joint. �

6.4.2 Frames with fixed supports

As demonstrated in the previous examples, simply supported frames are typ-
ically one time statically indeterminate and therefore conveniently analyzed
by the force method. However, for frames with fixed supports, such as in
Fig. 6.43, use of the force method requires three redundant components and
thereby solution of three coupled equations. This is typically very cumber-
some by analytical means, and some form of system reduction technique
would therefore be of interest.

Symmetry conditions

Plane frame structures are often symmetric. This property can sometimes
be used to separate the system into two parts, each with a reduced number
of redundant components. Figure 6.43 shows a symmetric frame structure
with a vertical force acting on the left inclined beam. Obviously the load is
non-symmetric with respect to the line of symmetry of the frame. However,
the load can be decomposed into a symmetric and an anti-symmetric part.
These corresponding load cases are illustrated in Fig. 6.43 and summarized
as follows:

– symmetric structure with symmetric load

– symmetric structure with anti-symmetric load
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Fig. 6.43: Separation into symmetric and anti-symmetric load cases.

The deformation forms of the frame structure for each of the generic load
cases are also indicated in Fig. 6.43. For the symmetric load the structure de-
forms symmetrically with respect to the line of symmetry. Thus, at the section
in D along the line of symmetry of the structure the force component along
the line of symmetry (in this case vertical) must vanish. The force component
R′

D perpendicular to the line of symmetry (in this case horizontal) restrains
D against motion in that direction, while the momentMD restrainsD against
rotation. Typically, these two components shown in Fig. 6.44a do not vanish.
For the ani-symmetric loading the frame deforms anti-symmetrically, and the
force component perpendicular to the line of symmetry (in this case horizon-
tal) and the moment therefore vanish. The remaining force component RD

along the line of symmetry (in this case vertical) restrains D against vertical
motion and therefore does not vanish. This case is shown in Fig. 6.44b. These
observations for symmetric plane frames can be generalized in the following
symmetry conditions.

In a section located on the line of symmetry of a symmetric plane structure:

– the resulting internal force parallel to the line of symmetry vanishes for
symmetric loading.

– the moment and the internal force perpendicular to the line of symmetry
vanish for anti-symmetric loading.

Fig. 6.44: Internal force components for symmetric and anti-symmetric loading.

It is observed that in Fig. 6.44 the moment MD corresponds to the internal
moment in D. However, due to the inclination of the beams CD and DE the
resulting section forces RD and R′

D are not equal to the shear force and the
normal force.
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When applying the symmetry conditions for the symmetric and the anti-
symmetric load cases the degree of statically indeterminacy can be reduced.
For the structure in Fig. 6.44 the left part of the symmetric load case con-
tains five unknown reactions, three at A and two at D, and this part is two
times statically indeterminant. For the anti-symmetric load case the degree
of indeterminacy is reduced to one, with three unknown reactions at A and
only a single unknown force component at D. Note, that similar symmetry
conditions are also available for anti-symmetric structures.

Example 6.6. Symmetric frame with anti-symmetric load. In this example the use of

symmetry conditions is illustrated for the symmetric rectangular frame shown in Fig. 6.45,
loaded by horizontal forces P at the joints C and D. Thus, the loading is anti-symmetric

with respect to the line of symmetry of the frame. The frame is symmetric and exposed to
an anti-symmetric load. Therefore, the section at E only transmits a force component along

the line of symmetry, and the left half of the frame is one time statically indeterminate. In
this example the vertical force component in E is used as the redundant component X1,

as shown in Fig. 6.45b.

Fig. 6.45: Rectangular frame with fixed supports and anti-symmetric loading.

Figure 6.46 shows the left half of the frame with the actual load case P , but without X1,

and the unit load case with X1 = 1 and without P . The figure also shows the corresponding
moment distributions. The displacement in E from the external load P is obtained by the

equation of virtual work as

ξ10 =

∫ C

A

M0M1

EI
ds =

M1

EI

∫ C

A

M0 ds =
−a

EI

1

2
a (−Pa) =

1

2

Pa3

EI
,

where only the vertical beam AC contributes because M0(s) ≡ 0 in the horizontal beam.

Because M1(s) is constant on AC it can be taken outside the integral, which then repre-
sents the area 1

2
a(−Pa) underneath the triangular M1-curve. The flexibility coefficient is

obtained by combining M1(s) with itself in the virtual work equation. This gives

ξ11 =

∫ E

A

M1M1

EI
ds =

(−a)2

EI
a +

a

3EI
(−a)2 =

4

3

a3

EI
.

The kinematic component ξ1 = ξ10 + ξ11X1 associated with the vertical redundant force
X1 represents a discontinuity in the transverse displacement at E. In the actual structure

in Fig. 6.45a the left and right part of the structure are rigidly joined at E, whereby the
displacement discontinuity ξ1 = 0. This gives a condition for determining the redundant
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Fig. 6.46: Left half of frame with shear force in E as redundant component.

component,

X1 = − ξ10

ξ11
= − 3

8
P .

The horizontal beam CED is perpendicular to the line of symmetry, and the redundant

component X1 therefore represents the shear force at E.

Fig. 6.47: Moment distribution for left half of frame.

The internal moment at A and C are obtained by superposition,

MA = −Pa + (−a)X1 = − 5
8
Pa , MC = (−a)X1 = 3

8
Pa .

Figure 6.47 shows the moment distribution, and it is seen that the maximum moment

Mmax = 5
8
Pa occurs at the fixed support at A – and because of symmetry also at B. �
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6.5 Exercises

Exercise 6.1. The figure shows a beam of length � with a fixed support in A and a simple

support in B. A vertical force P is acting at the center of the beam in C.

a) Determine the degree of statically indeterminacy.

b) Determine the reaction moment in A.

Hint: Choose this moment as X1.

c) Determine the moment distribution.

d) Determine the distribution of the shear force.

Exercise 6.2. The figure shows a beam of length � with a fixed support in A and a simple

support in B. The beam is loaded by a distributed load with constant intensity p. Note
that the structure is similar to that in the previous exercise. Furthermore, the solutions to

this problem can be found in Example 4.6, where the differential equation has been solved.

a) Use the force method to determine the reaction
moment in A.

b) Find the remaining reactions.

c) Determine the moment distribution.

d) Determine the distribution of the shear force.

Exercise 6.3. The figure shows a beam of length � with a fixed support in A and a simple
support in B. A vertical force P acts at the tip of the beam in C.

a) Use the force method to determine the reaction
moment in A.

b) Find the remaining reactions.

c) Determine the distribution of the moment M and

the shear force Q.

Exercise 6.4. The figure shows a two-span beam similar to that in Examples 6.1 and 6.3,

but in this case only with distributed load on the left span AC.

a) Use the force method to find the internal moment
in C.

b) Find the reactions.

c) Determine the distribution of the moment M and

the shear force Q.

Exercise 6.5. The figure shows a two-span beam loaded by a distributed load with con-

stant intensity p. The left span AB has the length � and bending stiffness EI. The right
span has the double length 2� and double bending stiffness 2EI.

a) Use the force method to determine the bend-

ing moment in B.

b) Find the reactions.

c) Determine the distribution of the moment M

and the shear force Q.
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Exercise 6.6. The figure shows a beam of length � with fixed supports in A and B. A

vertical force P acts at the center of the beam at C.

a) Apply symmetry conditions and determine the de-
gree of indeterminacy.

b) Use the force method to determine the reaction
moment in A.

c) Find the remaining reactions.

d) Determine the distribution of the moment M and the shear force Q.

e) Replace P by a distributed load with intensity p and repeat b)–d). Note that this
problem has been solved in Example 4.8.

Exercise 6.7. The figure shows a three-span

beam, where the length of each span is �. The
beam is loaded by a distributed load with inten-

sity p on a) the center span, and b) the right span,
respectively. Use the force method to analyze the

structure for each load case following the outline
presented below.

a) Determine internal moments at the two inter-
mediate supports.

b) Find the reactions.

c) Determine the distribution of the moment M .

Exercise 6.8. The figure shows a five-span beam loaded by a distributed load with con-

stant intensity p. The length of each span is �.

a) Determine the degree of indeterminacy be-

fore and after applying symmetry condi-
tions.

b) Use the force method to find the reactions
for the left half of the beam.

c) Determine the distribution of the moment M and the shear force Q in the left half of
the beam.

Exercise 6.9. The figure shows a simply supported rectangular frame with a distributed

load acting in the vertical direction on the horizontal beam
CD with constant intensity p.

a) Use the force method to determine the internal mo-
ment in the upper left joint C.

b) Determine the reactions.

c) Determine the moment distribution and the magni-

tude and location of the maximum moment.

d) Determine the distribution of the normal and shear
force.
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Exercise 6.10. Reconsider the simple frame with a distributed load of Exercise 6.9. In

this exercise a horizontal force P acts at the corner C in addition to the distributed load.
Structure and loading are shown in the figure below.

It can be assumed that P = 1
2
pa.

a) Determine the internal moment in the upper left

corner C.

b) Determine the reactions.

c) Determine the moment distribution and the mag-
nitude and location of the maximum moment.

d) Determine the distribution of the normal and
shear force.

Exercise 6.11. The figure shows a simply supported

rectangular frame with a distributed load p acting in
the horizontal direction on AC. The length of the left

vertical beam AC is 3a, while the length of the two
other beams CD and BD is 2a.

a) Use the force method to determine the internal
moment in the upper left joint C.

b) Determine the reactions.

c) Determine the moment distribution and the mag-

nitude and location of the maximum moment.

d) Determine the distribution of the normal and

shear force.

Exercise 6.12. The figure shows a rectangular frame with a cantilever, similar to the

frame structure in Example 6.5. In this exercise the loading of the example is replaced
by a distributed load with intensity p, acting in the vertical direction on the horizontal
cantilever DE. The dimensions of the frame are given in terms of a, as shown in the figure.

a) Use the force method to determine the internal
moment in the upper left joint C.

b) Determine the reactions.

c) Determine the moment distribution and the

magnitude and location of the maximum mo-
ment.

d) Determine the distribution of the normal and
shear force.

e) Check equilibrium in the joint D.

Exercise 6.13. The figure shows a T-frame with simple fixed supports in A and B. The
frame is loaded by a distributed load with intensity p, acting in the vertical direction on
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the horizontal cantilever CD. The dimensions of the frame are given in terms of a as shown

in the figure.

a) Find a statically determinate system with
redundant component X1.

b) Determine the reactions.

c) Determine the moment distribution and

the magnitude and location of the maxi-
mum moment.

d) Check moment equilibrium in the joint C.

Exercise 6.14. The figure shows a simply supported beam AB with an additional vertical
support in C by the bar element CD. The dimensions of the structure are given in terms

of a, as shown in the figure. The elastic modulus is E for both beam and bar, while the

moment of inertia for the beam is I and the

cross sectional area of the bar is A.

a) Use the force method to determine the bar
force NCD .

b) Determine the reactions.

c) Determine the moment distribution and

the magnitude and location of the maxi-
mum moment.

d) Include the contribution of the normal force of the bar element in the virtual work
equation. Redetermine the normal force NCD and compare with the result in a).

Assume that the cross sectional area A of the bar relates to the moment of inertia I
of the beam by A = 2000 I/a2.

Exercise 6.15. The figure shows a simply supported beam AB with an additional ver-

tical support in C by the inclined bar element CD. The dimensions of the structure are
given in terms of a, as shown in the figure. The bending stiffness of the beam is EI, and

contributions to the deformations from shear and normal forces are neglected.

a) Use the force method to determine the nor-
mal force NCD in the inclined bar CD.

b) Determine the reactions.

c) Determine the moment distribution and the

magnitude and location of the maximum
moment.

d) Determine the distribution of normal and

shear force.
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Exercise 6.16. The figure shows a typical geome-
try for frames used in barns and warehouses, with

simple fixed supports in A and B. The dimensions
of the frame are given in terms of a, as shown in

the figure. A distributed load is acting in the ver-
tical direction on CD.

a) Use the force method to determine the internal
moment in D.

b) Determine the reactions.

c) Determine the moment distribution and the
magnitude and location of the maximum mo-
ment.



Deformation and Element
Methods for Frames 7

In statically indeterminate structures the distribution of the internal forces
depends on the stiffness of the individual parts of the structure. There are
two basically different approaches to this problem. In the force method, de-
scribed in the previous chapter, a sufficient number of connections in the
structure are released and the corresponding local section forces necessary
for closing the connection are determined. This method works well for simple
structures, formed by linear elastic beams. However, the method requires the
determination of the distribution of the internal forces in the statically deter-
minate structure for each of the redundant components obtained by releasing
connections, and for large structures this constitutes a considerable task. An
alternative approach is to consider the structure as formed by individual
beams, connected at nodes. Initially all nodes are considered fixed, and they
are then released one at a time. The correct solution is obtained by finding
the combination of node displacements, that do not require any additional
constraining forces at the nodes. This approach has a number of advantages.
First, the release of a constraint only affects beams directly connected to
the constraint, and the equations of the method therefore only require a lo-
cal analysis. Furthermore, this local analysis only involves individual beams,
and it can therefore easily be given a general systematic form, suitable for
computer analysis. This so-called finite element formulation is quite general
and can be developed from the principle of virtual work for plates, shells and
solid bodies as well. Here, the main focus is on frame structures, and the
development will be based mainly on the equilibrium equations.

S. Krenk, J. Høgsberg, Statics and Mechanics of Structures,
DOI 10.1007/978-94-007-6113-1 7,
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The chapter covers the classic deformation method of frames, intended for
hand calculation, as well as the finite element method for frame structures.
The deformation method is developed in Sections 7.1 and 7.2 for simple plane
frames. The stiffness properties of a beam are developed by use of virtual
work in the form of a set of basic deformation cases, including the effect of
shear flexibility. These deformation cases are then used in the deformation
method to determine the effect of sequentially imposing displacements of the
constrained nodes. The procedure follows the classic deformation method, in
which a manageable size of the problem is obtained by neglecting the effect
of axial deformation of the individual beams.

The finite element formulation for elastic frames is obtained by rearranging
the procedure of the deformation method into a systematic matrix format.
The basic idea, already illustrated for truss structures in Section 2.5, is to
represent each beam as an element with a stiffness matrix, including all dis-
placement components at each of its nodes. These elements are then assem-
bled into a frame structure, and the nodal displacements are determined by
solution of the corresponding equation system. Two types of beam elements
are developed here: beam elements with shear flexibility in Section 7.3.1, and
beam-column elements in Section 7.3.2. The beam bending element is the
typical element for frame analysis, while the beam-column element enables
extension of the column analysis of Chapter 5 to a linearized stability analy-
sis of frames. The finite element formulation has been implemented for plane
frames in the Matlab code MiniFrame described in Section 7.4.

7.1 Stiffness of beams

The basic idea of the deformation method for frames is illustrated in Fig. 7.1.
Figure 7.1a shows a T-frame with a distributed load on the part BC. The
supports provide six reaction components. As only three reactions are needed
for a structure without hinges, this implies that the frame is three times stat-
ically indeterminate. Thus, use of the force method would imply the release
of three constraints and the introduction of three unknown force components.
In the deformation method the point of view is changed. When neglecting
axial deformation of the beams the joint B is fixed in space, but can rotate as
determined by the loading of the frame. The rotation is indicated by the angle

Fig. 7.1: T-frame, a) with distributed load, b) moment and rotation at joint.
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θ in Fig. 7.1b. The idea of the deformation method is to consider the origi-
nal problem as a superposition of two sub-problems. In the first sub-problem
the node is prevented from rotating by imposing a concentrated moment M0

at the node. Hereby the frame is converted to an assembly of independent
beams, all with simple ideal support conditions, either fully fixed or with a
simple support permitting rotation. When the moment distribution for the
individual beams are known, the magnitude of the moment M0 required to
constrain the rotation of the joint B can be determined. The second sub-
problem consists in imposing a unit rotation of the joint B. All three beams
joined at B are subjected to the same unit rotation, and the total moment
can therefore be obtained as the sum of the end-moments of the individual
beams, when subjected to a unit rotation of the end-sections. The real situ-
ation is represented by a superposition of these two sub-problems, where the
rotation of the node is determined to cancel the total external moment at the
joint B. Thus, a central part of the deformation method is the development
of a series of simple deformation load cases in which a unit deformation –
here in the form of a rotation – is imposed at one end of a beam. This issue
is addressed in the rest of this section, after which the deformation method
is developed in Section 7.2.

7.1.1 Symmetric and anti-symmetric bending

The stiffness of a beam is characterized by the deformation generated by
the application of end loads that are in equilibrium. For a plane beam there
are three equilibrium states: constant normal force, constant bending mo-
ment, and constant shear force. The latter is accompanied by a bending mo-
ment of linear variation. The beam stiffness used in the deformation method
for frames is due to bending and shear, while the effect of axial deforma-
tion and normal forces are typically neglected. Thus, the relevant stiffness
characteristics are described by only two states of deformation. These are
conveniently taken as symmetric bending, where there is no shear force, and
anti-symmetric bending with a constant shear force. The various special cases
needed for use in the deformation method or the finite element method for
frames can then subsequently be obtained by linear combination of these two
basic cases of deformation. An additional advantage of this simple approach
is that it is straight-forward to incorporate the shear flexibility effect without
introducing any additional complications in the derivation. However, it is im-
portant to note, that most frame structures consist of fairly slender elements
with fairly low shear flexibility. In most structures analyzed by the deforma-
tion method using hand calculations it is therefore justified to neglect the
effect of shear flexibility that will make the calculations more extensive. On
the other hand, the finite element formulation for frame structures makes use
of a beam element in which the inclusion of the shear flexibility simply con-
sists in a set of appropriate coefficients. Therefore, the shear effect is included
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in the derivation of the stiffness properties of beams in the present section,
as it serves as basis for both the deformation and the finite element methods.

Fig. 7.2: Symmetric bending of beam.

The case of symmetric bending is illustrated in Fig. 7.2. Opposing bending
moments of magnitude Ms are acting at the ends of the beam. The beam
is assumed to be symmetric, and the moments then generate opposite rota-
tions ±1

2θa at the two end cross-sections of the beam. It is noted that in the
present case there is no shear force, and thus the rotation of the cross-section
is equal to the slope of the beam axis at the ends. The theory is fairly easily
extended to non-symmetric beams, see e.g. Krenk (1994). The rotations are
normalized via the factor 1

2 in order for the external work to be represented as
1
2θsMs +

1
2θsMs = θsMs. When using the principle of virtual work discussed

in Section 4.4 with the static field corresponding to the moment distribu-
tion M(x) and the kinematic field consisting of the corresponding curvature
distribution κ(x) = M(x)/EI, the virtual work equation takes the form

θsMs =

∫

�

M(x)M(x)

EI
ds =

�

EI
M2

s . (7.1)

This corresponds to the stiffness relation

Ms =
EI

�
θs (7.2)

for symmetric bending of the beam.

The case of anti-symmetric bending is illustrated in Fig. 7.3. Here, identical
moments Ma are applied to the ends of the beam. This results in a total
external moment of 2Ma, that is counteracted by the shear force of magnitude
Q = 2Ma/�. The beam ends do not translate, and the external work is
therefore described entirely by the rotation of the to end moments as 1

2θaMa+
1
2θaMa = θaMa. In this case the internal work contains contributions from
the shear force Q(x) as well as from the moment M(x), whereby the equality
of external and internal work takes the form

θaMa =

∫

�

{M(x)M(x)

EI
+

Q(x)Q(x)

GAs

}
ds =

�

3EI
M2

a +
�

GAs
Q2, (7.3)
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Fig. 7.3: Anti-symmetric bending of beam.

where As is the equivalent shear area of the cross-section. Upon substitution
of the shear force Q in terms of the moment Ma this provides the anti-
symmetric flexibility relation

θa =
�

3EI
Ma +

4�

GAs�2
Ma =

�

3EI

(
1 +

12EI

GAs�2

)
Ma . (7.4)

The last term represents the additional flexibility introduced by the shear
deformation. This shear flexibility effect is conveniently characterized by the
shear flexibility parameter

Φ =
12EI

GAs�2
. (7.5)

When introducing this notation, the stiffness relation becomes

Ma =
3EI

(1 + Φ)�
θa (7.6)

for anti-symmetric bending of the beam. The corresponding shear force is

Q =
6EI

(1 + Φ)�2
θa. (7.7)

The subscript on the shear force is left out, as the symmetric part does not
contain a shear force.

7.1.2 Basic cases of imposed deformation

There are two types of basic load cases for a homogeneous beam AB, those in
which a unit rotation of an end cross-section is imposed shown in Figs. 7.4–
7.5, and those in which a relative transverse translation of unit magnitude is
imposed as shown in Figs. 7.6–7.7. These figures contain the reaction compo-
nents, including the effect of shear flexibility. This effect is often included in
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the formulation of beam elements. However, in the deformation method this
effect is often omitted, and the full set of results and their symmetric forms
without the shear flexibility effect is given in Table 7.1 for easy reference.

Fig. 7.4: End-section rotation for fixed support.

First the unit rotation load case of Fig. 7.4 is considered. With the sign
convention used in the figures, the end moments are

MA = −Ms +Ma , MB = Ms +Ma . (7.8)

The rotation of the end cross-sections are related to their symmetric and
anti-symmetric parts as

θA = −1
2θs +

1
2θa , θB = 1

2θs +
1
2θa = 0 . (7.9)

It follows from the sum and difference of these equations that the symmetric
and anti-symmetric rotations are

θa = −θs = θA = 1 . (7.10)

The end moments then follow by substitution of the symmetric and antisym-
metric moments (7.2) and (7.6), respectively, into (7.8),

MA =
EI

�
+

3EI

(1 + Φ)�
=

4 + Φ

1 + Φ

EI

�
,

MB = −EI

�
+

3EI

(1 + Φ)�
=

2− Φ

1 + Φ

EI

�
.

(7.11)

The shear force Q follows from (7.7) with θa = θA = 1,

Q =
6

1 + Φ

EI

�2
. (7.12)

These results are shown in Fig. 7.4. Note, that the shear force follows directly
from moment equilibrium as Q = (MA +MB)/�. The reactions of this load
case and its symmetric counterpart are given in the first row of Table 7.1.
The results of the symmetric load case follows from rotating the original load
case by 180◦ in the plane.
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Fig. 7.5: End-section rotation for simple support.

In the practical application of the deformation method it is convenient also
to have the corresponding load cases, in which a unit rotation is imposed at
the cross-section at one end of the beam, while the other end has a simple
support, permitting free rotation. This load cases is shown in Fig. 7.5. The
moment vanishes at B, and thus the moment superposition relations (7.8)
here take the form

MA = −Ms +Ma , MB = Ms +Ma = 0. (7.13)

Thus, the symmetric and anti-symmetric parts of the moment are given in
terms of MA as

2Ma = −2Ms = MA . (7.14)

The rotation θa is now expressed in terms of the moment MA by use of the
relations (7.2) and (7.6),

θA = −1
2θs +

1
2θa = − �

2EI
Ms +

(1 + Φ)�

6EI
Ma =

4 + Φ

12

�

EI
MA . (7.15)

The stiffness is the inverse relation with θA = 1,

MA =
12

4 + Φ

EI

�
, (7.16)

and the shear force follows from moment equilibrium as Q = MA/�, whereby

Q =
12

4 + Φ

EI

�2
. (7.17)

These results are shown in Fig. 7.5. The results are included together with
those of the symmetric load case in the second row in Table 7.1. The results
of the symmetric case again follow from those already derived by a 180◦

rotation of the beam and its loads in the plane.

The nodes of a frame may rotate and translate. The cases involving imposed
rotations have been covered in Figs. 7.4 and 7.5, and the similar cases involv-
ing an imposed translation of an end-section are now considered. The first
of these, shown in Fig. 7.6, involves a beam AB in which a unit transverse
translation is imposed on the cross-section at A. Within the degree of ap-
proximation involved in the theory of infinitesimal deformation, used here in



274 Deformation and Element Methods for Frames

Fig. 7.6: Transverse translation for fixed support.

describing beam deformation, this case corresponds to imposing a clock-wise
rotation of 1

2θa = 1/� about B of the case of anti-symmetric bending, solved
previously in connection with Fig. 7.3. The resulting end-moments and shear
force have already been derived, and are given explicitly in Fig. 7.6a. The
complementary case, in which the end-section at B is given a unit transla-
tion, follows from a simple change in sign and is included for the case without
shear flexibility as the third row of Table 7.1. These load cases play an im-
portant role in the swaying of frames with fixed supports.

Fig. 7.7: Transverse translation for simple support.

Figure 7.7 shows the similar case of imposed translation, but now on a beam
with a simple support at the other end. The results follow directly from those
in Fig. 7.5, when the geometry is rotated and the imposed angle scaled by
θ = ±1/�. These results are included without shear flexibility as the last row
of Table 7.1.

The load cases describing the internal forces generated by a unit displacement
serve to determine how a statically indeterminate frame distributes the load
to the supports. In most cases the shear flexibility effect, represented by Φ,
can be neglected, and the formulae can be used with Φ = 0. A simple example
of load distribution is given below.

Example 7.1. Load distribution in angle frame.

Figure 7.8 shows an angle frame ABC in which the individual beam members AB and BC
are of length a and with bending stiffness EI. The frame has a fixed support at A and a

simple support at C. The load consists of an external moment M0 applied at the corner
B, and the issue is, how the moment is distributed to the two supports. The effect of shear

deformation is neglected, corresponding to Φ = 0 in both beams.

The problem is solved by imposing a rotation of magnitude θ0 of the joint B, and determin-
ing the corresponding internal forces by use of the unit displacement load cases determined
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Table 7.1: Constraining forces on deformed beams.

above. Rotation of the joint B by θ0 corresponds to rotating one end cross-section of both
the beams AB and BC. The beam AB then corresponds to the load case in Fig. 7.4, while

the beam BC corresponds to the load case in Fig. 7.5. The moments and transverse forces
corresponding to these load cases are shown in Fig. 7.9.

Fig. 7.8: Angle frame with external corner moment M0.

The moment M0 imposed at the joint B corresponds to the sum of the moments transferred

to the two beams at B, and thus it follows from the figure that

M0 =
4EI

a
θ0 +

3EI

a
θ0 =

7EI

a
θ0 ,
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Fig. 7.9: Individual beams with common corner rotation θ0.

where the smaller moment comes from the beam BC with the more flexibile support. This

equation determines the rotation angle as

θ0 =
a

7EI
M0 .

With this value of the rotation the normalized internal force diagram in Fig. 7.9 can be
evaluated in terms of actual magnitudes, shown in Fig. 7.10a. The moments at B are

MBA =
4EI

a
θ0 = 4

7
M0 , MBC =

3EI

a
θ0 = 3

7
M0

where MBA is the moment at B in the beam BA, and MBC is the moment at B in the
beam BC.

Fig. 7.10: a) End loads on individual beams, b) Assembled frame with reactions.

The internal forces in Fig. 7.10a are taken directly from the basic unit deformation load

cases, and therefore do not contain normal forces components. The normal force in the
beam AB must provide the upward transverse force 3

7
M0/a, and thus must carry a com-

pressive force of this magnitude. Similarly, the normal force in BC must produce the trans-
verse force 6

7
M0/a in the vertical beam AB as indicated in the figure. After determination

of the normal forces the reactions on the assembled frame can be shown in Fig. 7.10b.

It is seen that the total loads on the frame, including reactions, consist of the external
moment M0, a reaction moment 2

7
M0, and two force couples of ± 6

7
M0/a and ± 3

7
M0/a,

respectively. A total moment balance gives

M0 +
2

7
M0 − 6

7

M0

a
a − 3

7

M0

a
a = 0,

thus demonstrating moment equilibrium.
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Fig. 7.11: Internal forces in angle frame.

Once the reactions have been determined, the internal force distributions can be generated

as shown in Fig. 7.11. The moment and shear force distributions also follow directly from
the diagram of the individual beams in Fig. 7.10a. It is seen that the larger part of the

corner moment M0 is taken in the beam AB with the fixed support. �

7.1.3 Loads on constrained beams

If all loads act directly on the nodes of the structure, the reactions and the
distribution of the internal forces can be determined solely by use of the
stiffness properties of the individual beam elements, derived above. However,
most frame structures carry loads acting on the individual structural mem-
bers, and therefore an additional step is needed, in which the local loads on
the beams are distributed to the nodes. This distribution of the loads is ac-
complished by first considering the loaded beam as fully constrained. This
requires suitable constraining forces and moments, that are later released in
the form of loads at the nodes of the frame structure. Thus, the magnitude of
the forces necessary to constrain the ends of a loaded beam must be known.

The constraining forces/moments are shown for several simple load cases in
Table 7.2. The fully constrained beams are shown in the left column with the
corresponding load cases for a beam with a simple support at the right end
of the beam are shown in the right column. It is seen, that when the right
support is changed from rigid to simple the moment and reaction force at
the left end are increased. Conversely, at the end of the beam permitted to
rotate, the reaction force is reduced.

The constraining forces shown in Table 7.2 have been calculated without
including the effect of shear flexibility. The fully symmetric cases a) and c)
are independent of the shear flexibility parameter Φ, and the other cases
only exhibit a small redistribution of the reactions, resulting from the lack of
symmetry. The approximate nature of the loads specified in most situations
hardly justifies the additional complications of including the dependence of
Φ in the following calculations.
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Table 7.2: Constraining forces on loaded beams.

7.2 Deformation method for frames

In this section the deformation method for beams and frames is developed in
a systematic way, first carefully considering two specific structures and then
summarizing the general procedure. The first structure is a two-span beam,
solved by introducing a single constraint. The second structure generalizes
the procedure by considering a frame with two constraints. These two cases
serve to introduce the procedure as well as the notation in a specific context,
and subsequently the general procedure and notation are summarized in a
concise form.

Two-span beam with a single constraint

The simplest case of the deformation method, in which only a single con-
straint is needed, is illustrated in Fig. 7.12 showing a homogeneous beam
with bending stiffness EI that is continuous over the two spans AB and BC,
each of length �. The beam is fixed at A and supported by simple supports on
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horizontal rollers at B and C. The load consists of a vertical load P applied
to the center of the span BC.

Fig. 7.12: Two-span beam with concentrated load.

The structure is twice statically indeterminate, and solution by the force
method would then require the release of two constraints, e.g. the vertical
reactions in B and C. In the deformation method the first step is to introduce
constraints to reduce the full structure to a number of beams with fixed or
simply supported ends. In the present case this is attained by constraining
the rotation of node B. The rotation at B is prevented by introducing a
constraining moment Z10 at B as illustrated in Fig. 7.13. Hereby the structure
is reduced to a beam AB fixed at both ends, and a beam BC with a transverse
force at the center, fixed at B and simply supported at C. The first subscript
on Z10 identifies the degree of freedom, while the second subscript 0 identifies
Z10 as the moment constraining the corresponding degree of freedom, when
the structure is acted upon by the external load.

Fig. 7.13: Constraining moment on two-span beam.

The constraining moment Z10 must have a magnitude corresponding to con-
straining both the beam AB and the beam BC. In the present case the beam
AB is unloaded, and thus requires no constraining moment, while the con-
straining moment of the beam BC follows from the figure to the right in the
first row of Table. 7.2,

Z10 = M0
BA +M0

BC = 0 + 3
16P� = 3

16P�.

In the present notation the superscript 0 on M0
BA indicates a constraining

moment, and the subscript BA identifies the location as node B of the beam
BA. The constraining moment Z10, as well as its contributing parts, are
considered positive when acting in the counter-clockwise direction.
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Fig. 7.14: Imposed unit rotation on two-span beam.

In the actual structure the node B can rotate, and this rotation is denoted
by ζ1. Figure 7.14 illustrates an imposed unit rotation ζ1 = 1 at node B and
the corresponding moment Z11. The first subscript 1 indicates that Z11 is a
moment contribution, while the second subscript defines this as a contribution
from a unit rotation associated with ζ1. The forces and moments in the beams
AB and BC associated with a unit rotation at node B have been derived as
deformation load cases in Section 7.1.2, and are listed to the right in the first
row and the to the left in the second row of Table 7.1. When using the results
for the end moments, the moment necessary to impose a unit rotation at B
is found as

Z11 = M1
BA +M1

BC = 4
EI

�
+ 3

EI

�
= 7

EI

�
.

In this relation the superscript is changed to 1 to indicate that this moment
is associated with a unit deformation of ζ1.

Fig. 7.15: Constraining forces and moments for imposed unit rotation ζ1 = 1.

In the actual structure there is no imposed external moment at B. This
provides the following equation,

Z1 = Z10 + Z11ζ1 = 0.

This is an equation for the initially unknown rotation ζ1 with the solution

ζ1 = −Z10

Z11
= − 3

112

P�2

EI
.

The rotation ζ1 of node B is negative, indicating a clockwise rotation.

Internal forces and reactions can now be evaluated by considering the full
solution as the superposition of the constrained case of Fig. 7.13 and the unit
rotation case from Fig. 7.15, multiplied by the parameter ζ1. In practice, it
is often most convenient to calculate the reactions from this superposition
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principle, and then to evaluate the section force distributions from an ordi-
nary static analysis, based directly on the loads and reactions. This is the
procedure shown here.

First, it follows directly from the considered load cases that the horizontal re-
action force at A vanishes, R′

A = 0. The vertical reaction forces are evaluated
by the superposition principle. For the vertical reaction in A

RA = R0
A +R1

Aζ1 = 0 + 6
EI

�2
ζ1 = − 9

56P,

where all components are positive in the upward direction. It is seen that the
reaction RA is negative, and thereby downward. It receives no contribution
from the constrained load case, because the beam AB carries no external
load. The vertical reaction at B is

RB = R0
B +R1

Bζ1 = 11
16P − 3

EI

�2
ζ1 = 43

56P.

Here the reaction R1
B corresponding to a unit rotation is a combination of

of a downward component from AB and an upward component from BC.
Finally, the reaction at C follows as

RC = R0
C +R1

Cζ1 = 5
16P − 3

EI

�2
ζ1 = 22

56P.

The reaction forces are shown in Fig. 7.16, where the arrows indicate the
corresponding positive direction.

Fig. 7.16: Load and reactions on two-span beam.

It is seen that the sum of the reactions give RA+RB +RC = P , correspond-
ing to vertical projection equilibrium. However, it follows from the expression
for the reactions in terms of ζ1 that the sum of the vertical reactions is inde-
pendent of the value of ζ1, and thus the check does not verify the correctness
of the solution, but merely constitutes a useful consistency check.

The reaction moment MA can now be determined, either by taking moment
equilibrium of the structure including load and reaction forces as shown in
Fig. 7.16, or by use of the superposition procedure. The latter gives
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MA = M0
A +M1

Aζ1 = 0 + 2
EI

�
ζ1 = − 3

56P�.

It is easily verified that this moment satisfies global moment equilibrium of
the structure.

Fig. 7.17: Shear force and moment distributions for on two-span beam.

The section forces follow directly from the structure with the load and re-
action components indicated in Fig. 7.16. When the reactions have been
determined, it is immaterial for this part of the analysis that the structure is
statically indeterminate. The moment and shear force distributions are shown
in Fig. 7.17. It is seen that the maximum moment Mmax = 11

56P� is found
under the load. This is a reduction relative to if the load had been carried
only by the beam BC with simple supports, in which case Mmax = 14

56P�.

Frame with two constraints

The procedure and notation of the deformation method is now extended to
structures with two constraints by considering the simple frame shown in
Fig. 7.18. The frame consists of a horizontal continuous beam ABC, sup-
ported by vertical beams BD and CE. For simplicity of the presentation the
bending stiffness of all members is EI and all lengths are a as indicated in the
figure, but these features are not important for the principles of the method.

Fig. 7.18: Frame with distributed load.
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First, the nodes that should be constrained against motion – rotation and
translation – are identified. In the present case the location of all nodes are
fixed in space, and only the rotation of the internal nodes B and C should be
constrained against rotation. Thus, the problem has two degrees of freedom,
and the rotations and constraining moments are identified by subscript(s)
j = 1, 2, where j = 1 refers to B, while j = 2 refers to C. External moments
Z10 and Z20 are then introduced to simultaneously constrain the rotation of
the nodes B and C, respectively, as shown in Fig. 7.19. The first subscript
identifies the node, at which the moment is acting, while the second subscript
indicates that the moments are constraining motion from external loads.

Fig. 7.19: Constraining moments on frame.

The magnitude of the constraining moments Z10 and Z20 are determined from
the second row in Table 7.2. For simplicity all external moments introduced
in the present analysis are considered positive, when acting in the counter-
clockwise direction. The beam AB is simply supported at A, and therefore
constraining rotation at B requires the moment M0

BA = −1
8pa

2, as shown in
the right figure of the second row in Table 7.2. The beam BC is constrained
against rotation at D, and thus constraining B in this beam requires the
moment M0

BC = 1
12pa

2, as shown in corresponding right figure in Table 7.2.
Note, that the moment M0

BA acts in the clockwise direction, and the moment
M0

BC in the counter-clockwise direction. The constraining moment Z10 is the
sum of these two moments,

Z10 = M0
BA +M0

BC = −1
8pa

2 + 1
12pa

2 = − 1
24pa

2.

The moment needed to prevent rotation at C is given at the right of the
second row in Table 7.2 asM0

CB = − 1
12pa

2, whereby the constraining moment
at C is

Z20 = M0
CB = − 1

12pa
2.

With these constraining moments all internal nodes are fixed against trans-
lation and rotation, and only nodes with simple support can rotate.

Next, the displacement components ζ1 and ζ2 associated with the constraints
Z10 and Z20 are given unit magnitude, one at a time. In the present case ζ1
is the rotation of node B, while ζ2 is the rotation of node C. Figure 7.20a
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Fig. 7.20: Imposed unit rotations on frame.

shows a unit rotation of node B corresponding to ζ1 = 1, while the other
nodes with the exception of simple supports are constrained. This requires
a moment Z11 at node B and a moment Z21 at node D. Similarly, a unit
rotation of node D corresponding to ζ2 = 1 with the other nodes constrained
requires a moment Z22 at node D and a moment Z21 at node C, as shown in
Fig. 7.20. The moments in the individual beams generated by these imposed
rotations are found from the basic cases of imposed deformation presented in
Table 7.1.

Fig. 7.21: Constraining forces and moments for imposed unit rotation ζ1 = 1.

The end-moments and transverse forces introduced in the individual beams
by an imposed unit rotation ζ1 = 1 are shown in Fig. 7.21. The beam AB
has an imposed rotation and a simply supported end corresponding to the
second row in Table 7.1, while both of the beams BC and BD have an
imposed rotation and a fully constrained end corresponding to the first row
in Table 7.1. The imposed moment Z11 is the sum of all end moments at
node B,

Z11 = M1
BA +M1

BC +M1
BD = 3

EI

a
+ 4

EI

a
+ 4

EI

a
= 11

EI

a
.

The superscript 1 indicates that the moments correspond to the imposed
deformation ζ1 = 1. Note, that in Z11 each of the contributing moments
is positive, as each beam produces resistance to the imposed rotation. The
constraining moment Z21 at node D comes from the beam BC,
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Z21 = M1
CB = 2

EI

a
.

The remaining end forces and moments are used to determine the reactions
and the distribution of internal forces, once ζ1 and ζ2 have been determined.

Fig. 7.22: Constraining forces and moments for imposed unit rotation ζ2 = 1.

Figure 7.22 shows the end moments and transverse forces introduced in the
individual beams by imposing the unit rotation ζ2 = 1 at node C. The
imposed moment Z22 is the sum of all end-moments of node C,

Z22 = M2
CB +M2

CE = 4
EI

a
+ 4

EI

a
= 8

EI

a
.

Finally, the constraining moment Z12 at node C comes from the beam BC,

Z12 = M2
BC = 2

EI

a
.

It is observed that Z12 = Z21, corresponding to a symmetric coefficient matrix
Zij . This is a general property, following from the principle of virtual work
as discussed later.

The initially unknown rotations ζ1 and ζ2 are now determined by considering
the actual deformation and internal forces as a superposition of the case of
constrained loads, shown in Fig. 7.19, and the cases of imposed rotations
ζ1 and ζ2, respectively, shown in Fig. 7.20. In the actual state of the frame
structure the constraining moments Z1 and Z2 at the nodes B and C vanish,
thus providing the equations

Z1 = Z10 + Z11ζ1 + Z12ζ2 = 0 ,

Z2 = Z20 + Z21ζ1 + Z22ζ2 = 0 .

This is an equation system of the form
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Z11ζ1 + Z12ζ2 = −Z10 ,

Z21ζ1 + Z22ζ2 = −Z20 ,

in which the coefficients Zij have jut been calculated. Thus, in the present
problem the equations are

EI

a

[
11 2
2 8

][
ζ1
ζ2

]
=

pa2

24

[
1
2

]
.

The solution is obtained by pre-multiplication with the inverse matrix,

[
ζ1
ζ2

]
=

pa3

24EI

1

84

[
8 −2

−2 11

][
1
2

]
=

1

504

pa3

EI

[
1
5

]
.

Thus, both nodes rotate counter-clockwise, and ζ2 = 5ζ1.

Fig. 7.23: Loads and reactions on frame.

Figure 7.23 shows the loads and reactions on the frame. The reactions are
determined as follows. First, the reaction moments are evaluated, as they
are determined directly by superposition of the corresponding load cases.
Reaction moments are positive in the counter-clockwise direction. At A there
is a simple support, whereby MA = 0. At D the reaction moment is

MD = M0
D +M1

Dζ1 +M2
Dζ2 = 0 + 2

EI

a
ζ1 + 0 = 1

252pa
2,

where the unit rotation moment M1
D is given in Fig. 7.21. Similarly, at the

support E

ME = M0
E +M1

Eζ1 +M2
Eζ2 = 0 + 0 + 2

EI

a
ζ2 = 5

252pa
2,

where the unit rotation moment M2
E is given in Fig. 7.22. Neither of the

reaction moments contain a contribution from the constrained frame with
external loads, as neither of the adjoining beams are loaded directly.
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The reaction force in the direction transverse to the beam also follows directly
from the reaction components of the load cases. Horizontal reactions are
positive towards the right, and vertical reactions are positive upwards. At
the simple support A the vertical component of the reaction force is

RA = R0
A +R1

Aζ1 +R2
Aζ2 = 3

8pa+ 3
EI

a2
ζ1 + 0 = 32

84pa.

The horizontal reaction atD is determined by the transverse force component
in the beam DB as

R′
D = R′0

D +R′1
Dζ1 +R′2

Dζ2 = 0 − 6
EI

a2
ζ1 + 0 = − 1

84pa.

This component is given entirely in terms of ζ1 and the transverse force com-
ponent for the corresponding unit deformation given in Fig. 7.21. Similarly,
the horizontal reaction component at E is given by the transverse force in
the beam EC as

R′
E = R′0

E +R′1
Eζ1 +R′2

Eζ2 = 0 + 0 − 6
EI

a2
ζ2 = − 5

84pa.

This component is given entirely in terms of ζ2 and the transverse force
component for the corresponding unit deformation given in Fig. 7.22.

The remaining reactions are normal forces in the corresponding beams and
they are therefore not represented explicitly by the load cases. The horizontal
reaction component in A is most easily found by horizontal equilibrium of
the full loaded frame,

R′
A = −R′

D −R′
E = 6

84pa.

The vertical reaction RD is determined from the transverse forces in ABC
at B,

RD = R0
D +R1

Dζ1 +R2
Dζ2 =

(
5
8 + 1

2

)
pa+

(
6− 3

)EI

a2
ζ1 + 6

EI

a2
ζ2 = 100

84 pa.

Similarly, the vertical reaction RE is determined from the transverse forces
in ABC at C,

RE = R0
E +R1

Eζ1 +R2
Eζ2 = 1

2pa− 6
EI

a2
ζ1 − 6

EI

a2
ζ2 = 36

84pa.

It is easily verified that the sum of the vertical reactions equal the load.

Once the reactions have been determined as illustrated in Fig. 7.23 it is a
standard procedure to calculate the associated internal force distributions.
The moment distribution in the frame is shown in Fig. 7.24. The basic be-
havior of the frame is illustrated by the moment distribution over the beam
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Fig. 7.24: Moment distribution in frame.

ABC. If the nodes B and C were fully constrained the moment curve over
BC would have been symmetric. However, while the node B has a much
smaller rotation than node C it appears as nearly fixed and thereby retains
the rather large moment, while node C appears as a flexible support and
thereby reduces the moment at C.

Fig. 7.25: (a) Shear and (b) normal force distribution in frame.

The shear force and and normal force distributions are shown in Fig. 7.25a
and b, respectively. The figures clearly illustrate that the two legs of the
frame primarily act as columns in compression.

General procedure of the deformation method

On the basis of the two examples the deformation method for analysis of
beam and frame structures can now be described in concise terms. A number
of points of the structure are designated as nodes. The initially unconstrained
degrees of freedom of these nodes are denoted ζ1, · · · , ζn. These degrees of
freedom may include displacements and rotations. The loading is now consid-
ered to be applied to a structure in which the motion of the nodes has been
constrained by imposing forces and moments Z10, · · · , Zn0 corresponding to
the degrees of freedom ζ1, · · · , ζn. The forces/moments Z10, · · · , Zn0 needed
to constrain the nodes are obtained by summation of the forces/moments
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needed to constrain the individual beams, joined at the corresponding node.
The constraining forces/moments in the loaded beams are typically obtained
from pre-calculated load cases, as e.g. those of Table 7.2.

The constraints are now released one at a time and given a unit displace-
ment/rotation, ζj = 1, while the other displacement components are still con-
strained, ζk = 0 for k �= j. This requires that concentrated loads Z1j , ·, Znj

are imposed, corresponding to the degrees of freedom ζ1, · · · , ζn. The concen-
trated loads corresponding to an imposed unit deformation ζj = 1, consists of
an imposed load Zjj , and a set of restraining loads Zjk, k �= j. The imposed
load Zjj is the sum of loads needed to enforce the unit displacement in all
connected beams, while the constraints Zjk are found directly from the beam
in question. Only nodes directly connected with the node with degree of free-
dom j need to be restrained, and thus the analysis has a local character, in
contrast to the force method. The coefficients Zij are formed from individual
beams with an imposed end displacement. The basic end displacement load
cases are given in Figs. 7.4 to 7.7. The reactions are given in a general form
including the dependence of shear flexibility. In many cases the shear flexi-
bility effect is modest, and the shear flexibility effect is omitted in most hand
calculations.

The total imposed loads Zi are found by superposition of the contribution
from the external load with constrained nodes plus a contribution from each
of the displacements ζ1, · · · , ζn,

Zi = Zi0 + Zi1ζ1 + · · ·+ Zinζn , i = 1, · · · , n. (7.18)

In the real structure there are no imposed loads, and thus the displacements
ζ1, · · · , ζn are determined by the condition that the sum of all imposed loads
vanish at each node,

Z1 = Z10 + Z11ζ1 + · · ·+ Z1nζn = 0
Z2 = Z20 + Z21ζ1 + · · ·+ Z2nζn = 0
...

...
...

Zn = Zn0 + Zn1ζ1 + · · ·+ Znnζn = 0.

(7.19)

This condition constitutes n equations for the initially unknown displacement
components ζ1, · · · , ζn.

When the displacement components ζ1, · · · , ζn have been determined, re-
actions and internal forces can be calculated. There are basically two ap-
proaches. In the first reactions and internal force distributions are determined
for the constrained loaded structure and for each imposed deformation case.
The result is then obtained by superposition. It is often simpler to use the
superposition approach only for the reactions, for example
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R = Ri0 +Ri1ζ1 + · · ·+Rinζn , i = 1, · · · , n, (7.20)

and then to determine the internal force distributions by a static analysis of
the structure with the full load and reactions. In this way superposition of
internal force distributions over the beams is avoided.

Although in practice the constraint loads Zi0 and Zij are often obtained from
a table of simple load cases for a single beam, it is instructive to review a
procedure for calculation of the coefficients Zij by use of the principle of
virtual work as described in Section 4.4.2. Consider the case with all nodes
constrained, except ζi = 1. The corresponding loads are Zi1, · · · , Zin and
the internal force distributions are Mi(s), Qi(s) and Ni(s). This combination
of loads and internal forces is now used as the static field in the principle of
virtual work together with the virtual displacement field corresponding to the
unit motion ζj = 1. The corresponding virtual strain field is κj = Mj(s)/EI,
γj = Qj(s)/GAs and εj = Nj(s)/EA. There are no distributed loads or
discontinuities in the virtual displacement field, and it therefore follows from
the principle of virtual work in the form (4.43) and (4.45) that the external
work Zijζj = Zij is given as

Zij =

∫ {Mi(s)Mj(s)

EI
+

Qi(s)Qj(s)

GAs
+

Ni(s)Nj(s)

EA

}
ds , (7.21)

where the internal force fields correspond to the imposed isolated unit dis-
placements ζi = 1 and ζj = 1, respectively. The integral relation (7.21)
implies, that the stiffness coefficients Zij satisfy the symmetry relations

Zji = Zij , i, j = 1, · · · , n. (7.22)

Thus, the equation system (7.19) of the deformation method is symmetric.
The contribution from the normal force is usually negligible, and is therefore
omitted. For slender beams of isotropic material the shear contribution can
also often be neglected, while it may be important for short beams and for
composite beams with stiff webs and a core of a more flexible material.

Example 7.2. Influence of relative stiffness in symmetric frame. Figure 7.26 shows a
symmetric frame ABCD with fixed supports at A and D. The frame supports a uniformly

distributed load of intensity p over BC. Both frame and load are symmetric, and thus the
deformation and the internal forces have symmetry properties. The columns AB and DC

have bending stiffness EI1, while the horizontal beam BC has bending stiffness EI2. The
reactions and internal force distribution are analyzed, using a slight modification of the

deformation method as described above, and the influence of the relative stiffness of the
frame members is illustrated.

The displacements are symmetric, and thus the displacement components to be constrained

are the rotation of the corner nodes B and C. Due to symmetry the constraining moments
are of equal magnitude but opposite orientation, and they can therefore both be represented

by the constraining moment Z10 as shown in Fig. 7.27. The magnitude of the constraining
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Fig. 7.26: Symmetric frame with column stiffness EI1 and beam stiffness EI2.

moments follow from Table 7.2 as

Z10 = 1
12

p(2a)2 = 1
3
pa2.

Fig. 7.27: Constraining moments Z10 at corners.

The rotation of the corners are of the same magnitude but opposite orientation, and the
unit deformation case is therefore defined as a deformation where both corners rotate

simultaneously as illustrated in Fig. 7.28. The magnitude of the rotation is denoted ζ1,
and the magnitude of the moments needed to produce a unit rotation is denoted Z11.

The moments and shear forces in the individual members of the frame corresponding to a
unit rotation are shown in Fig. 7.29. The moments and shear forces in the columns corre-

spond to the unit end-rotation case illustrated in Fig. 7.4, while the beam BC experiences
uniform bending as illustrated in Fig. 7.2. The moment Z11 to be applied at both the
corners follows from adding the contributions from the column and the beam,

Z11 =
4EI1

a
+

EI2

a
.

The corner rotation follows from the condition that the total moment applied to each
corner must vanish,

Fig. 7.28: Imposed unit rotation ζ1 = 1.
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Fig. 7.29: Beam moments and shear forces for ζ1 = 1.

Z1 = Z10 + Z11ζ1 = 0,

whereby

ζ1 = −Z10

Z11
= −

1
3
pa3

4EI1 + EI2
.

The transverse reaction forces and the reaction moments now follow from their normalized

values given in Fig. 7.29, when multiplied by ζ1. This product involves the relative stiffness
of the columns and the beam, conveniently expressed in terms of the parameter

α =
4EI1

4EI1 + EI2
.

It is seen that this parameter is the ratio of the moment rotating the top of one of

the columns, to the moment needed to rotate the frame corner. Clearly, this ratio has
a lower limit of zero for extremely flexible columns and increases towards unity for very

stiff columns. The reactions are given in terms of the parameter α in Fig. 7.30.

Fig. 7.30: Loads and reactions on frame.

With the load and the reactions given, the moment distribution follows from simple statics.
The support moments have the magnitude 1

6
αpa2, while the corner moments are − 1

3
αpa2.

The moment distribution and the transverse force in the two columns are proportional to
α, implying that moments in the columns decrease with decreasing relative stiffness of the
columns.

In the special case where the bending stiffness of the beam and the columns are identical
α = 4

5
. In this case the corner moments are − 4

15
pa2, while the moment at the center of

the beam is 7
30

pa2, i.e. roughly the same magnitude. �
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Fig. 7.31: Moment distribution in frame.

Example 7.3. Swaying of symmetric frame with anti-symmetric load. Figure 7.32
shows a symmetric frame ABCD loaded by a horizontal force 2P at the corner B. The

beam BC is considered inextensible, and thus the load can be considered as distributed
equally between the nodes B and C. All members have bending stiffness EI.

Fig. 7.32: Symmetric frame with horizontal force.

In the present case full constraint of the corner nodes B and C requires both a pair of

equal horizontal forces Z10 and a pair of moments Z20 as shown in Fig. 7.33. It is clear
from the figure, that if the horizontal constraining forces balance the external load, there

will be no need for constraining moments at the corners, and thus

Z10 = −P , Z20 = 0 .

Fig. 7.33: Constraining forces Z10 and moments Z20 at corners.

The deformation modes corresponding to the constraining forces Z10 and moments Z20

are represented by a horizontal translation ζ1 and a counter-clockwise rotation ζ2 of both

the corner nodes B and C as shown in Fig. 7.34.

The deformation modes are anti-symmetric, and therefore only the left half of the frame

need to be considered when calculating the stiffness coefficients Zij . The coefficients Z11

and Z21 corresponding ζ1 = 1 can be identified from Fig. 7.35a as the horizontal force
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and the moment at node B. The beam BC is not deformed in this case, and thus these

coefficients follow directly from the column AB as

Z11 = 12
EI

a3
, Z21 = 6

EI

a2
.

Similarly, the coefficients Z12 and Z22 corresponding ζ2 = 1 can be identified from

Fig. 7.35b as the horizontal force and the total moment at node B. Note, that the beam
BC is here deformed in anti-symmetric bending, corresponding to a hinge at its center on

the line of symmetry and no axial force.

Z12 = 6
EI

a2
, Z22 = 4

EI

a
+ 3

EI

a
= 7

EI

a
.

Note, that by symmetry Z12 = Z21.

Fig. 7.34: Imposed unit displacements. (a) corner translation ζ1, (b) corner rotation ζ2.

The total imposed horizontal force and moment at each of the corner nodes must vanish,
whereby

Z1 = Z10 + Z11ζ1 + Z12ζ2 = 0 ,

Z2 = Z20 + Z21ζ1 + Z22ζ2 = 0 .

When inserting the Zij coefficients just calculated the following equations are obtained,

EI

a3

[
12 6a

6a 7a2

][
ζ1
ζ2

]
=

[
P

0

]
.

The rotation ζ2 follows e.g. by subtracting 2/a times the second equation from the first,
and ζ1 then follows immediately in terms of ζ2 from the second equation. The result is

ζ1 =
7

48

Pa3

EI
, ζ2 = −1

8

Pa2

EI
.

Fig. 7.35: Beam forces and moments for unit displacements: a) ζ1 = 1, b) ζ2 = 1.
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The horizontal reactions R′
A = R′

D can be calculated from the transverse forces at A in

Fig. 7.35. When considered positive towards the left

← R′
A = R′

D = 12
EI

a3
ζ1 + 6

EI

a2
ζ2 = P .

Alternatively, this result could have been determined by horizontal projection of forces.

Now, this projection serves as a check. The reaction moments MA = MD, considered posi-
tive in the counter-clockwise direction, follow from weighted superposition of the moments

in Fig. 7.35 as

� MA = MD = 6
EI

a2
ζ1 + 6

EI

a
ζ2 = 1

8
Pa .

Fig. 7.36: a) Load and reactions, b) Moment distribution.

The vertical reactions RA = −RD can be determined from the transverse force at the
center of the beam BC,

↓ RA = −RD = −3
EI

a3
ζ2 = 3

8
P .

Alternatively, the vertical reactions can be determined from moment equilibrium of the

complete frame, including both the reaction moments MA = MD. The load and the re-
actions on the full frame are shown in Fig. 7.36a, and the corresponding moment distri-
bution in Fig. 7.36b. If the frame had fixed simple supports at A and D the horizontal

reactions would still be R′
A = R′

D = P , and the moment at the corners would then be
MB = −MC = Pa. The constraint of the supports is seen to reduce the corner moments

by 1
8
Pa. �

The examples have demonstrated, how the deformation method can be used
to determine the internal forces and the displacements in statically inde-
terminate beam and frame structures. The analysis is systematic and quite
straightforward in principle. However, once the constrained degrees of free-
dom have been found by solving an equation system, the remaining determi-
nation of the internal forces is complicated by the fact that axial deformation
has been omitted from the analysis, and therefore the normal forces must be
determined via a separate static analysis of the structure. In most cases the
influence of the axial deformation on the resulting distribution of the in-
ternal forces is small, and thus this approximation appears attractive, as it
reduces the number of degrees of freedom that needs to be constrained, and
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thereby reduces the size of the equation system. When solving the problem
numerically the balance changes, and it is advantageous to include the axial
deformation, as it leads to a more systematic method for determining the
internal forces and displacements of the structure. In that case it is advan-
tageous to formulate the problem within the format of the finite element
method, illustrated for truss structures in Section 2.5. The corresponding fi-
nite element formulation of frame structures is described in the following two
sections – first considering the individual beam element in Section 7.3, and
then assembling the elements into a model of a frame structure in Section 7.4.

7.3 Beam elements

The typical beam element treated here consists of a straight beam connecting
the two nodes A and B. The properties of the element are first expressed in a
local frame of reference {x′, y′} with the element placed along the x′-axis as
shown in Fig. 7.37. The two nodes have three generalized force components,

f′A = [ fA
x′ , fA

y′ ,mA ]T , f′B = [ fB
x′ , fB

y′ ,mB ]T , (7.23)

where fx′ is the axial force component, fy′ is the transverse force component,
and m is the moment in the counter-clockwise direction. The corresponding
generalized displacement components at A and B are shown in Fig. 7.37b,

u′
A = [uA

x′ , uA
y′ , θA ]T , u′

B = [uB
x′ , uB

y′ , θB ]T , (7.24)

where ux′ is the axial translation component, uy′ is the transverse translation
component, and θ is the counter-clockwise rotation.

Fig. 7.37: Two-dimensional beam element. a) node forces, b) node displacements.

Each of the generalized displacement components are associated with a dis-
placement mode as illustrated in Fig. 7.38, and the displacement of the beam
element is obtained by superposition of these displacement modes.

Traditionally, the nodal forces generated by the nodal displacements are ob-
tained by solving the differential equations for the displacements of the beam
for each of the six unit displacement cases shown Fig. 7.38. However, greater
generality as well as simplicity is gained by using the flexibility of the de-
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formation modes, illustrated for the two bending modes in Section 7.1.1.
When using the flexibility formulation, variation of cross-section properties
as well as curvature can be accounted for explicitly without obtaining the
displacement field, see e.g. Krenk (1994). Here, the presentation is limited
to two particular types of straight homogeneous beam elements: the bending
element with shear flexibility, and the beam-column element.

Fig. 7.38: Displacement modes of two-dimensional beam element.

7.3.1 Beam bending element

The beam bending element gives a relation between the generalized forces
and the generalized moments shown in Fig. 7.37. For the case of a straight
homogeneous beam the necessary expressions have already been obtained,
when neglecting a possible column effect from the normal force – the normal
force relation in connection with bars, and the unit displacement bending
cases in Section 7.1. The results are expressed in the form of a relation be-
tween the generalized forces of the element, contained in the six-component
vector

[ f ′TA , f ′TB ] = [ fA
x′ , fA

y′ ,mA, fB
x′ , fB

y′ ,mB ] , (7.25)

and the six-component generalized displacement vector

[u′T
A ,u′T

B ] = [uA
x′ , uA

y′ , θA, uB
x′ , uB

y′ , θB ]. (7.26)

The relation is linear and can be written in the generic block matrix format

[
f ′A
f ′B

]
=

[
K′

AA K′
AB

K′
BA K′

BB

]

︸ ︷︷ ︸
K′

beam

[
u′
A

u′
B

]
, (7.27)

where K′
beam is the stiffness matrix of the beam element, when located in

a local frame of reference along the x′-axis. In compact form the element
stiffness matrix relation is
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f ′e = K′
beamu

′
e (7.28)

where f ′
e = [f ′TA , f ′TB ]T and u ′

e = [u′T
A ,u′T

B ]T contain all generalized force and
displacement components of the element.

For unit displacements at node A the sub-matrix K′
AA represents the gener-

alized forces at node A, while the sub-matrix K′
BA represents the generalized

forces at node B. These are the generalized forces at A and B, respectively,
corresponding to the three unit deformation cases illustrated in the first col-
umn of Fig. 7.38. The first column in these matrices corresponds to the unit
deformation uA

x′ = 1, which generates a normal force of magnitude −EA/�.
The second column corresponds to the unit transverse displacement uA

y′ = 1.
This case corresponds to Fig. 7.6, where the end forces are indicated. Finally,
the generalized forces corresponding to a unit rotation θA = 1 follows from
Fig. 7.4. The sub-matrices K′

AB and K′
BB similarly represent the generalized

forces at A and B, respectively, from unit displacements at B. The stiff-
ness matrix K′

beam follows from collecting these generalized forces in matrix
format,

K′
beam =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA

�
0 0 −EA

�
0 0

0
12

1 + Φ

EI

�3
6

1 + Φ

EI

�2
0 − 12

1 + Φ

EI

�3
6

1 + Φ

EI

�2

0
6

1 + Φ

EI

�2
4 + Φ

1 + Φ

EI

�
0 − 6

1 + Φ

EI

�2
2− Φ

1 + Φ

EI

�

−EA

�
0 0

EA

�
0 0

0 − 12

1 + Φ

EI

�3
− 6

1 + Φ

EI

�2
0

12

1 + Φ

EI

�3
− 6

1 + Φ

EI

�2

0
6

1 + Φ

EI

�2
2− Φ

1 + Φ

EI

�
0 − 6

1 + Φ

EI

�2
4 + Φ

1 + Φ

EI

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.29)

The shear flexibility is represented via the non-dimensional parameter

Φ =
12EI

GAs�2
(7.30)

introduced in (7.5) in connection with the anti-symmetric bending problem
with constant shear force distribution. The classic result for the so-called
Euler beam without shear flexibility is obtained as the special case of Φ = 0,
corresponding to infinite shear stiffness. Clearly, in a computer program it is
advantageous to implement the full expression, and obtain the classic theory
as a special case.
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7.3.2 Beam-column element

For frames with slender members it is important to be able to include the ef-
fect of reduced flexibility due to normal compression forces. In slender beams
the shear flexibility effect is most often negligible, and the beam-column el-
ement is therefore derived for a beam without shear flexibility. The basic
equations were derived in Section 5.1, and only the main points needed for
development of the beam-column element are summarized here. The differ-
ential equation for the transverse displacement of a beam in the presence of
a normal tension force N was derived as (5.9). In the present formulation the
element is located along the x′-axis, and the transverse direction is y′ with
displacement uy′ . In this notation the bending of a beam without transverse
load is governed by the differential equation

d2

dx′2

(
EI

d2uy′

dx′2

)
− d

dx′

(
N

duy′

dx′

)
= 0 . (7.31)

The typical application involves a compressive normal force, denoted by P =
−N . For a homogeneous beam this equation can be expressed as

d4uy′

dx′4 + k2
d2uy′

dx′2 = 0 , (7.32)

where the parameter k has been introduced by the definition

k2 =
P

EI
. (7.33)

Real-valued parameters k correspond to compression, and the corresponding
expressions for a tension force can be obtained by using complex notation,
whereby trigonometric functions translate into their corresponding hyperbolic
counterpart. However, the linearized form of the present theory only contains
k2, and these results can therefore be expressed directly in terms of the normal
force N .

The general solution to the homogeneous 4’th order beam-column equation
(7.33) is

uy′(x′) = C1 + C2 kx
′ + C3 cos(kx′) + C4 sin(kx′) . (7.34)

In the present notation with transverse displacement uy′(x′) the moment
follows from (7.34) as

M(x′)

EI
=

d2uy′

dx′2 = −C3 k
2 cos(kx′) − C4 k

2 sin(kx′) . (7.35)

The shear force at the end sections will be determined directly from equilib-
rium of the element, when needed.
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Symmetric bending

As in the case of the beam bending element it is convenient to construct the
element stiffness matrix from the symmetric and anti-symmetric deformation
modes. The symmetric bending mode is shown in Fig. 7.39 with rotations
±1

2θs of the end sections.

Fig. 7.39: Symmetric bending with normal force.

The y′-axis of the coordinate system is placed in the central line of symmetry,
and thus the solution will be in the form of the symmetric part of (7.34),

us
y′(x′) = C1 + C3 cos(kx′) . (7.36)

The boundary conditions consist of vanishing displacement and prescribed
rotation at ±1

2�,

us
y′( 12�) = C1 + cos( 12k�)C3 = 0 ,

us′
y′( 12�) = − k sin(12k�)C3 = 1

2θs .
(7.37)

The constant C3 follows from the second equation as

C3 = −
1
2θs

k sin(12k�)
. (7.38)

The moment at the end-sections then follows from (7.35) in the form

Ms = ϕ
EI

�
θs (7.39)

with the stiffness coefficient for symmetric bending

ϕ(k�) = (12k�) cot(
1
2k�) . (7.40)

The case of zero normal force is represented by the limit k� = 0, for which
ϕ(0) = 1. This case recovers the previous result (7.2) for symmetric bending
without axial force. The variation of the stiffness coefficient ϕ is shown as
a function of the normal compressive force P in Fig. 7.40, normalized with
respect to the Euler load PE . It is seen that the bending stiffness decreases
with increasing compression, and turns negative when exceeding the Euler
load.
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Fig. 7.40: Beam-column bending coefficients.

The shear force in the beam is determined by equilibrium of the full element.
The normal forces are co-linear and therefore do not contribute to the moment
equilibrium. Thus the shear force vanishes in the case of symmetric bending,
Q = 0.

Anti-symmetric bending

The case of anti-symmetric bending in the presence of a normal force is shown
in Fig. 7.41 with rotation 1

2θa of both end sections.

Fig. 7.41: Anti-symmetric bending with normal force.

As in the case of symmetric bending the y′-axis of the coordinate system is
placed in the central line of symmetry, and thus the solution will be in the
form of the anti-symmetric part of (7.34),

ua
y′(x′) = C2 kx

′ + C4 sin(kx′) . (7.41)

Also in this case the boundary conditions consist of vanishing displacement
and prescribed rotation at ±1

2�,

ua
y′( 12�) =

1
2�C2 + sin( 12k�)C4 = 0 ,

ua′
y′( 12�) = k C2 − k sin( 12k�)C3 = 1

2θa .
(7.42)

The constant C4 follows from these equations as
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C3 = −
1
4�θa

sin(12k�)− ( 12k�) cos(
1
2k�)

. (7.43)

The moment at the end sections then follows from (7.35) in the form

Ma = ψ
3EI

�
θa (7.44)

with the stiffness coefficient for anti-symmetric bending

ψ(k�) =
1
12 (k�)

2

1− ( 12k�) cot(
1
2k�)

=
1
12 (k�)

2

1− ϕ
. (7.45)

The coefficient is normalized such that the limit of vanishing normal force
corresponds to ψ(0) = 1. This case recovers the previous result (7.6) for
anti-symmetric bending without axial force in the case of vanishing shear
flexibility, Φ = 0. The variation of the coefficient ψ is shown as a function of
the normal compressive force P in Fig. 7.40. Also in this case the bending
stiffness decreases with increasing compression. In this case the stiffness turns
negative when exceeding the load 4PE , corresponding to the stability load of
an Euler column with a node in the middle.

The shear force in the beam is determined by equilibrium of the full element.
Also in this case the normal forces are co-linear and therefore do not con-
tribute to the moment equilibrium. The shear force then is determined as,
Q = 2Ma/�.

Translation of end-section

The deformation mode for translation of one of the end-sections is illus-
trated in Fig. 7.42. The deformation mode is generated by equal moments
Mt, applied at both end-sections. This is similar to the antisymmetric bend-
ing shown in Fig. 7.41, but in the present case the normal force N and the
shear force Q are along a different set of axes. The displacements are as-
sumed ‘small’ and thus the effect of the normal force can be represented via
the parameter k2 = −N/EI, using the normal force N shown in Fig. 7.42.

Fig. 7.42: Translation of end section.
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The equivalent anti-symmetric rotation angle 1
2θa is identified by considering

a counter-clockwise rotation of magnitude 1/� = 1
2θa. Thus, the moment Mt

needed for the translation uA
y′ = 1 follows from (7.44) as

Mt = ψ
6EI

�2
. (7.46)

The normal force N is considered given, and the shear force Q then follows
from moment equilibrium of the element as

Q =
2

�
Mt +

1

�
N = 12ψ

EI

�3
+ k2

EI

�
=
(
12ψ − (k�)2

)EI

�3
. (7.47)

When substituting ψ from (7.45) the expression for the shear force takes the
compact form

Q = 12ϕψ
EI

�3
. (7.48)

Thus, the contribution of the normal force to the moment equilibrium intro-
duces an extra factor ϕ into the expression for the shear force.

Beam-column stiffness matrix

The 6 × 6 stiffness matrix contains the constraining forces/moments corre-
sponding to the six unit deformation cases shown in Fig. 7.38. Extension
generates a normal force of magnitude N = EA(uB

x′ − uA
x′), and the corre-

sponding nodal forces appear in the first and fourth column and row in the
stiffness matrix (7.49). The forces and moments corresponding to the case of
a unit translation of node A with the other degrees of freedom constrained
appear as the second column of the stiffness matrix. This case of deformation
was illustrated in Fig. 7.42, and the moment and transverse force given in
(7.46) and (7.48), respectively. The deformation in which node A is given a
unit rotation, θA = 1, while the other degrees of freedom are constrained, is
obtained by superimposing the symmetric and anti-symmetric cases of defor-
mation with θa = −θs = 1. The corresponding constraint forces and moments
appear as the third column in the stiffness matrix. The last two columns fol-
low from considering the symmetric load cases. In total these six cases of unit
deformation defines the stiffness matrix



304 Deformation and Element Methods for Frames

K′
beam =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA

�
0 0 −EA

�
0 0

0 12ϕψ
EI

�3
6ψ

EI

�2
0 −12ϕψ

EI

�3
6ψ

EI

�2

0 6ψ
EI

�2
(3ψ + ϕ)

EI

�
0 −6ψ

EI

�2
(3ψ − ϕ)

EI

�

−EA

�
0 0

EA

�
0 0

0 −12ϕψ
EI

�3
−6ψ

EI

�2
0 12ϕψ

EI

�3
−6ψ

EI

�2

0 6ψ
EI

�2
(3ψ − ϕ)

EI

�
0 −6ψ

EI

�2
(3ψ + ϕ)

EI

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.49)

In the stiffness matrix the entries corresponding to the various forms of bend-
ing include the coefficients φ and ψ that depend on the normal force N as
given by (7.40) and (7.45) and illustrated in Fig. 7.40. It is seen from the
figure that within the range |N | � PE , the coefficients ϕ and ψ are nearly
linear functions of the normal force. Thus, there is a substantial range of
normal forces, for which a linear approximation constitutes a fair representa-
tion of the effect of the normal force. If needed, the linearized approximation
can be improved by sub-dividing the elements, whereby the element length �
decreases. Hereby the linearized form becomes an attractive option for per-
forming a stability analysis as described in Section 7.4.2.

The linearized form of the stiffness matrix (7.49) is obtained by using a Taylor
series expansion of the two functions ϕ(k�) and ψ(k�). It follows directly from
the Taylor expansion of the cot-function that

ϕ(k�) = 1
2k� cot( 12k�) 
 1− 1

3 (
1
2k�)

2 − 1
45 (

1
2k�)

4 , (7.50)

and the ψ-function expansion then follows from the last expression in (7.45)
as

ψ(k�) =
1
3 (

1
2k�)

2

1− ϕ

 1− 1

15 (
1
2k�)

2 . (7.51)

In these relations (k�)2 = −N�2/EI, whereby the linearized expressions in
the normal force N take the form

ϕ 
 1 +
1

12

N�2

EI
, ψ 
 1 +

1

60

N�2

EI
. (7.52)

When using these linearized expressions, the stiffness matrix (7.49) can be
written as the sum of two matrices,

K′
beam 
 Kc′

beam +Kg′
beam , (7.53)

where Kc ′
beam is the constitutive stiffness matrix corresponding to ϕ = ψ = 1,
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Kc ′
beam =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA

�
0 0 −EA

�
0 0

0 12
EI

�3
6
EI

�2
0 −12

EI

�3
6
EI

�2

0 6
EI

�2
4
EI

�
0 −6

EI

�2
2
EI

�

−EA

�
0 0

EA

�
0 0

0 −12
EI

�3
−6

EI

�2
0 12

EI

�3
−6

EI

�2

0 6
EI

�2
2
EI

�
0 −6

EI

�2
4
EI

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.54)

and Kg ′
beam is the so-called geometric stiffness matrix, corresponding to the

linear terms in the normal force N ,

Kg ′
beam =

N

30�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 36 3� 0 −36 3�

0 3� 4�2 0 −3� −�2

0 0 0 0 0 0

0 −36 −3� 0 36 −3�

0 3� −�2 0 −3� 4�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.55)

It is observed that the constitutive stiffness matrix (7.54) is a special case of
the form (7.29) in which the shear flexibility has been omitted. In practice,
the geometric stiffness is less sensitive to the details of the shape functions
than the constitutive stiffness, as it depends on the first derivatives while the
latter depends on the second derivatives. Thus, a convenient option is to use
the form (7.29) including shear flexibility for the constitutive stiffness, while
retaining the simple form (7.55) for the geometric stiffness.

7.3.3 Transformation to global form

The beam elements treated above are located in a local frame of reference
{x′, y′} with the beam axis along the x′-axis. In order to use these elements in
a model of a structure the corresponding generalized displacement and force
components must be transformed into a common global frame of reference
{x, y} as illustrated in Fig. 7.43. The generalized displacement components
u′ = [ux′ , uy′ , θ]T in the local frame are related to the corresponding compo-
nents u = [ux, uy, θ]

T in the global frame by the transformation

u′ = Au , u = ATu′ , (7.56)

with the component transformation matrix for the generalized displacements
at a node given by
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A =

⎡
⎣

cosα sinα 0
− sinα cosα 0

0 0 1

⎤
⎦ . (7.57)

In this transformation the displacement components [ux, uy] transform as a
vector, while the rotation θ is the same in both frames of reference. The
transformation between local and global components is identical for the gen-
eralized forces.

Fig. 7.43: Beam element: a) Local components, b) Global components.

The beam element has two nodes, and the components at each of the nodes
must be transformed according to (7.56). It is convenient to combine the
transform matrix for the components at a single node into a diagonal block
matrix

Ae =

[
A 0
0 A

]
(7.58)

that transforms the components at all element nodes at the same time. In
terms of this element transformation matrix the six-components relations for
the generalized displacements are

u′
e = Aeue , ue = AT

e u
′
e . (7.59)

The local form of the element stiffness relation (7.28) is transformed into
global component form by pre-multiplication with AT

e , whereby

AT
e f

′
e = AT

e K
′
beamu

′
e = AT

e K
′
beamAeue . (7.60)

The left side is recognized as the global components of the generalized forces
via the transform (7.59), whereby the global form of the element stiffness
relation takes the form

fe = Kbeamue (7.61)

with the global element stiffness matrix given by

Kbeam = AT
e K′

beamAe . (7.62)

The global form of the stiffness matrix can be assembled into a stiffness
matrix for a frame structure as explained in the following section.
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7.4 Finite element method for frames

The finite element analysis of a frame structure is organized in a way similar
to that of a truss structure, described in Section 2.5. Therefore only the main
points are discussed here with reference to the frame shown in Fig. 7.44.
When using one beam element for each member of the frame, the structural
model has five nodes, here ordered sequentially as A,B,C,D,E. The frame
consists of the four elements AB, BC, BD and CE with global element
stiffness matrices KAB etc., obtained as described in the previous section.

Fig. 7.44: Frame with distributed load.

The stiffness matrix of the structure is formed by including the stiffness con-
tributions from each of the elements. In order to do this all element matrices
must first be transformed to a common global frame of reference, and the
parts of the stiffness matrix must be associated with the degrees of freedom
as organized for the total structure. This procedure, usually called assembling
the stiffness matrix, is illustrated in (7.63). Here K1 is the stiffness matrix
of element AB denoted as element No. 1. The stiffness matrix consists of
four sub-matrices KAA, KAB , KBA and KBB as indicated in (7.28). The
first subscript indicates the node of the resulting generalized force, when unit
displacements are imposed at the node indicated by the second subscript.
The corresponding sub-matrices of element No. 1 are located at the first and
second row and column, associated with the element nodes A and B. Element
No. 2 is associated with nodes B and C and the sub-matrices therefore enter
the rows and columns 2 and 3.

K1 =

⎡
⎢⎢⎣

KAA KAB − − −
KBA KBB − − −
− − − − −
− − − − −
− − − − −

⎤
⎥⎥⎦, K2 =

⎡
⎢⎢⎣

− − − − −
− KBB KBC − −
− KCB KCC − −
− − − − −
− − − − −

⎤
⎥⎥⎦,

K3 =

⎡
⎢⎢⎣

− − − − −
− KBB − KBD −
− − − − −
− KDB − KDD −
− − − − −

⎤
⎥⎥⎦, K4 =

⎡
⎢⎢⎣

− − − − −
− − − − −
− − KCC − KCE

− − − − −
− − KEC − KEE

⎤
⎥⎥⎦.

(7.63)
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Element No. 3 is the beam/column connecting nodes B and D, and in this
case the sub-matrices are therefore located in the rows and columns 2 and 4.
Similarly for element No. 4 connecting nodes C and E. The actual assembling
process starts with an empty structure stiffness matrixK, and then loops over
all beam elements, adding each of the four element sub-matrices directly into
its correct global position. There is no need to form the element matrices
explicitly in the global format. The association of the two nodes of a beam
element with global node numbers is described in the topology matrix T.

The resulting equilibrium equations are of the form

Ku = f , (7.64)

whereK is the global stiffness matrix, u is the global displacement vector, and
f is the global load vector. The loads can either be associated with a node or
an element. While nodal loads are entered directly into the global equations,
element based loads must be defined in connection with an element, and
then translated into equivalent nodal loads. This procedure makes use of the
constraint forces illustrated in Table 7.2. Later, when calculating the section
forces the contribution from element based loads also need representation of
the local variation corresponding to the load distribution within the element.

The support conditions, constraining the displacement at nodes, are imple-
mented as for the case of truss structures in Section 2.5. A simple, but ap-
proximate procedure, is to retain the full equation system and then introduce
a stiff spring as a diagonal term for each constrained degree of freedom. Alter-
natively, the constrained degrees of freedom can be eliminated by removing
the corresponding rows and columns from the equation system. The reactions
can then be recovered from the force components generated by the removed
rows of the stiffness matrix, as explained in detail in Section 2.5.2.

7.4.1 The MiniFrame program

The principles described in the previous sections have been implemented in
a small Finite Element program MiniFrame using the high level program-
ming languageMatlab. The structure of the program is similar to that of the
MiniTruss program described in Section 2.5.3, while element details, exter-
nal loads and internal forces are new here. The main features of the program
and its data structure are explained in relation to the specific frame shown
in Fig. 7.44 and already analyzed by the deformation method in Section 7.2.

The program is built as a script file MiniFrame.m that serves as a driver that
reads a data file and activates subroutines that set up the model, form the
global stiffness matrix, apply the load, and solve the constrained equations
for the displacement of all nodes of the supported structure. The structure
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Fig. 7.45: Frame geometry plots: a) Initial, b) Deformed.

and content of the data file corresponding to the frame in Figs. 7.44–7.46 are
described in the following.

Node data. The frame structure is described in an xy-coordinate system with
the horizontal x-axis through the column support points D and E and the
vertical y-axis vertical through the left support at A. For the purpose of
illustration the horizontal distances are given in terms of a, and the vertical
distances in terms of b. The node coordinates are given in the array X, with
each node corresponding to one row. The first part of the data file then is

% Width ’a’ and height ’b’ of truss

a = 4.0; b = 4.0;

% Coordinates of nodes X = [x y],

X = [ 0.0 b

a b

2*a b

a 0.0

2*a 0.0 ];

The node coordinates [x,y] are given in the order of the node number, starting
with node 1. Thus, the node number is not given explicitly, but implied by
the row number in the node coordinate matrix X.

Element data. The beam elements are defined in the topology matrix T. Each
row of this matrix defines an element, by listing its two nodes by their node
number, and by giving a third number identifying a set of element properties,
given as a row of parameter values in the element properties matrix H.

% Topology matrix T = [node1 node2 propno],

T = [ 1 2 1

2 3 1

2 4 2

3 5 2 ];
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% Element property matrix H = [ E A I G As ],

H = [ 2.1e11 1.00e-3 1.00e-6 8.1e10 0.80e-3

2.1e11 1.00e-3 1.00e-6 -1.00 -1.00 ];

The element properties consist of the elastic modulus E and the section area
A and moment of inertia I. If the element includes shear flexibility, the shear
modulus G and the shear area Asmust also be included in the element data. In
classic analysis the shear flexibility effect is often neglected. This corresponds
to the condition of infinitely large shear stiffness G*As. In the data file this
condition is identified by a non-positive shear parameter, i.e. by G ≤ 0 or
As ≤ 0 as illustrated for material No. 2 used for the columns in the sample
file. The shear flexibility parameter Φ is calculated in the function kebeam,
when forming the beam element stiffness matrix.

Loads. The loads can be given as concentrated loads at the nodes or as
distributed transverse loads with uniform distribution within the length of
a beam element. The concentrated loads are specified in the load matrix P.
This matrix contains a row for each loaded node. The data row specifies the
node number and the generalized force components. In the present example
there are no concentrated loads. Thus the following line of code describing a
concentrated downward vertical force at node No. 2 is just an illustration.

% Prescribed loads P = [ node Px Py M ]

P = [ 2 0.000 -1.00e4 0.000 ];

The elements can support a uniform transverse load specified by the load
intensity p. The transverse downward load on the frame in Fig. 7.44 is gen-
erated by the input array

% Prescribed loads p = [ elno p ]

p = [ 1 2.0e4

2 2.0e4 ];

The load data arrays are processed by the function febeam and the specific
load components are entered into the global load vector f. The program
MiniFrame accepts imposed nodal displacements as input, and thus it may
happen that there are no loads in the form of generalized forces. The code
therefore checks for the existence of data arrays P and p.

Support conditions. The support conditions are given in the constraint ma-
trix C. The constraint matrix contains a row for each constrained generalized
displacement component. In the present example there are 2 constrained dis-
placement components at node 1, and 3 generalized displacement constraints
at the nodes 4 and 5.
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% Constraints C = [ node ’dof’ (uc) ]

C = [ 1 1

1 2

4 1

4 2

4 3

5 1

5 2

5 3 ];

The last column is optional. In the case of an imposed displacement it contains
the magnitude of the constrained displacement uc.

Graphics. The MiniFrame program produces two plots of the structure: a
plot of the initial geometry without deformation including node numbers, and
another plot of the deformed structure after application of the load, Fig. 7.45.
The displacements are scaled to give a visual impression of the deformation,
that would typically not be directly visible. The coordinate window used for
the plots is controlled via definition of the plot axes, specified in the array

% Axes used for geometry plots [Xmin Xmax Ymin Ymax]

PlotAxes = [-0.40*a 2.50*a -0.25*a 1.40*a];

The deformed geometry is plotted using the computed nodal displacements,
accounting for the difference between cross-section and center line rotation
at the element ends by using the shear force and the equivalent shear strain.

Fig. 7.46: Internal force distributions: a) normal force, b) internal moment.

The MiniFrame program also provides plots of the internal force and mo-
ment distributions within the elements as shown in Fig. 7.46. The internal
forces at the ends of the element are calculated from the element stiffness
matrix, and the moment is corrected with a parabolic variation in the case
of a transverse load on the element.

Analysis process. The analysis procedure using the MiniFrame program is
quite similar to that of MiniTruss. The first step is to read the appropriate
data file into memory, either by writing the data file name DoubleFrame
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in the command window, or by uploading DoubleFrame.m to the Matlab

editor and pressing the F5 key from the editor. The data is now available
in active memory and the analysis is carried out by activating the script
file MiniFrame.m from the command window or by pressing the F5 key with
MiniFrame.m in the editor. A sample of the file MiniFrame.m is shown below.

% Nodal loads into load vector

if exist(’P’,’var’)

f = loadnode(f,P,dof);

end

% Element loads into load vector

if exist(’p’,’var’)

f = loadelem(f,p,T,X,dof);

end

% Global stiffness matrix

K = kbeam(T,X,H,dof);

% Solve stiffness equation

[u,r,ic] = solveeq(K,f,C,dof);

% Nodal displacements

Un = reshape(u,dof,size(X,1))’;

% Element section forces

Se = sbeam(T,X,H,Un,11);

if exist(’p’,’var’)

Se = sebeam(Se,p,T,X);

end

% Element displacements

Ue = ubeam(T,X,H,Un,Se,11);

if exist(’p’,’var’)

Ue = uebeam(Ue,p,T,X,H);

end

The program activates the following processes: i) builds up the full load vector
f from nodal loads P and transverse element loads p, ii) generates the struc-
ture stiffness matrix K, iii) solves the constrained equation system including
the support conditions, iv) presents the generalized node displacements, in
the column format u and in matrix format Un, and finally v) computes the
internal forces Se and the displacements Ue in the beam elements.

7.4.2 Stability analysis of frames

A compressive normal force in a beam reduces its stiffness as discussed in
Chapter 5 in connection with column stability. The same effect may be im-
portant in a frame structure, where the stiffness reduction in symmetric and
in anti-symmetric bending of an individual member are expressed in terms of
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the coefficients ϕ and ψ, illustrated in Fig. 7.40. A direct way to include this
stiffness reduction is to use the beam-column element stiffness matrix (7.49),
whereby the global equilibrium equations take the form

K(Ne)u = f , (7.65)

where the notation K(Ne) indicates that the stiffness matrix depends on the
normal forces in the individual elements. In a statically indeterminate struc-
ture the internal forces, including the normal force, depend on the stiffness of
the elements and thereby the equilibrium equation (7.65) becomes non-linear.

In practice, the problem is often solved without use of non-linear analysis by
introducing the linearized form (7.53), in which the stiffness matrix is repre-
sented as the sum of the constitutive stiffness matrix Kc and the geometric
stiffness matrix Kg. This gives the global equilibrium equations as

[Kc +Kg ]u = f . (7.66)

This set of equations is then solved approximately by assuming that the
redistribution of the normal forces within the structure is only moderate. The
load is then represented in the form αf0, where the scalar variable α acts as a
load factor. The analysis then proceeds in three steps. First the displacements
u0 are calculated without accounting for geometric stiffness effects by solving
the equilibrium equations when including only the constitutive stiffness,

Kc u0 = f0 . (7.67)

Then the normal forces in the elements are calculated from the constitutive
element stiffness matrices for the displacement field u0. Finally, the critical
value of the load factor α, at which the structure looses its stiffness and
buckles is obtained from the eigenvalue problem

[Kc + αKg ]u = 0 . (7.68)

The smallest eigenvalue α determines the lowest ideal stability load αf0
and the corresponding buckling mode u, when neglecting deformation be-
fore buckling. This is equivalent to the elastic stability load introduced in the
design procedure for columns in Section 5.3.

The linearized stability problem is implemented as an extension of the
MiniFrame program called MiniFrameS. This program first solves the
linear initial problem (7.67) with a reference load f0 using the procedure
described in connection with the MiniFrame program in the previous sec-
tion. This solution determines the normal force in each of the elements, and
these normal forces are used to form the global geometric stiffness matrix
Kg. The eigenvalue problem (7.68) is then solved for the load factor α, which
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appears as output together with a plot of the corresponding buckling mode.
The linearized stability analysis is illustrated in the following two examples.

Example 7.4. Number of elements in beam-columns. The linear eigenvalue problem

7.68 is based on a linearized form of the stiffness matrix. This introduces an approximation
regarding the shape of the buckling modes, and it is important to determine the appropriate

number of elements in a finite element model for a buckling problem. This is illustrated
with reference to a column with a fixed support at one and and a simple support at the

other. Shear flexibility is neglected in the present example. The solution of this problem
was treated in Example 5.2, where the buckling load was found by an iterative procedure
as Pc = 2.0457PE , with PE as the Euler buckling load for the similar simply supported

column.

Fig. 7.47: Ideal column with fixed/simple support: a) initial geometry, b) buckling mode.

The Finite Element model is illustrated in Figure 7.47 with nel = 4 elements, showing
graphs from MiniFrameS. The left end is fixed, while the right end has a simple support

permitting motion in the axial direction as well as rotation. It is seen that the shape of the
buckling mode has an inflexion point and this places extra demands on the shape functions

in the element model.
nel 1 2 3 4

P/Pc 1.486 1.026 1.006 1.002

�e/ael 0.574 1.381 2.091 2.794

The results are summarized in the table for nel = 1, 2, 3, 4 elements. The second row gives
the buckling load P obtained by the Finite Element model, normalized with the analytically

determined critical load Pc. The third row gives the ratio of the effective column length
�e to the element length ael. This number indicates the number of elements per effective

column length and thus has relevance for general frame structures, where the effective
column length of a member is simply the distance between inflexion points of the buckling

mode. The results indicate that use of a single element is clearly insufficient, providing
less than one element per effective column length and leading to an overestimation of the

critical load by about 50 pct. The results indicate that an accurate determination of the
buckling load requires 3 elements in the present case, corresponding to two or more elements

per effective column length. For a column with two fixed supports this corresponds to a
minimum of four elements. Thus, the simplicity of the linearized analysis is attained at the

cost of a more detailed element model. �

Example 7.5. Buckling of angle-frame. The finite element model of an angle frame with

fixed simple supports is shown in Fig. 7.48a. The horizontal and vertical dimension is a.
The load consists of a uniformly distributed downward load of intensity p on the horizontal

part of the frame, i.e. a total load of pa. The load is characterized by the non-dimensional
load factor α = 1

2
pa/PE , where PE is the Euler load of a simply supported column with

the same properties as the vertical part of the fame. Shear flexibility is neglected, and the
effect of axial strain is negligible. The results therefore only depend on the load factor α.
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Fig. 7.48: Angle frame with simple supports and uniformly distributed load.

The effect of the number of elements is illustrated via the buckling mode in Fig. 7.48b and

the buckling load shown in tabular form for nel = 1, 2, 3, 4 together with the buckling load
at convergence, obtained for nel ≥ 15. In principle only the vertical member needs to be

subdivided, as the horizontal member is nearly without normal load and the stiffness is
therefore correctly represented by the constitutive stiffness matrix.

nel 1 2 3 4 ≥ 15

P/PE 1.617 1.238 1.229 1.227 1.226

The first part of the analysis consists in determination of displacements and internal forces,
when neglecting the flexibility effect of the normal force. The moment distribution is shown

in Fig. 7.49a. It consists of a linear variation vanishing at the supports and with corner
value −M0, supplemented by a parabolic variation along the horizontal member. When

neglecting the effect of axial strain the corner moment is easily determined by the defor-
mation method as M0 = 1

16
pa2.

When increasing the load the vertical member becomes increasingly flexible, whereby the

magnitude of the corner moment decreases. The rotation of the corner node is constrained
by the horizontal member, and thus the vertical member can support more than the Euler

load PE . When passing PE the rotation stiffness becomes negative, and the corner moment
changes sign. Thus, the corner moment becomes positive before the buckling load pc is

reached. The development of the corner moment with the normalized load p/pc can be

Fig. 7.49: Normalized moment distribution: a) p/pc 
 0, b) p/pc = 0.8.
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calculated by using the full stiffness matrix Kc +αKg and is shown in the following table.

p/pc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M/M0 0.99 0.95 0.90 0.75 0.62 0.43 0.12 −0.52 −2.43

The gradual transition of the corner moment from a negative value, constraining the hori-

zontal beam, to a positive value, constraining the vertical column, is an example of redistri-
bution of the internal forces due to change in stiffness of the various parts of the structure

with increasing normal load. This is a non-linear effect, and a better representation can
be obtained by recalculating the normal force from the full stiffness matrix in an iterative
procedure. �

7.5 Exercises

Exercise 7.1. The figure shows a statically indeterminate frame structure.

a) Identify by how many components the structure is
statically indeterminate, and show a set of redundant

forces for use with the force method.

b) Show the kinematic degrees of freedom to be used with
the deformation method.

c) Is it advantageous to use the deformation method for
this frame?

d) Introduce an additional horizontal constraint at the
left support, and repeat a)–c).

Exercise 7.2. The figure shows four statically indeterminate beam and frame structures,

and the following questions are answered for each of the structures.

a) Identify by how many
components the structure

is statically indeterminate,
and show a possible set of

generalized forces for use
with the force method.

b) Show the kinematic de-
grees of freedom to be

used with the deformation
method.

c) Is it advantageous to use
the deformation method

for this frame.

Exercise 7.3. Consider the load case Fig. 7.5, in which the cross-section A of a beam AB
with a simple support at B is rotated θA = 1. Determine the rotation θB at the simple

support, including the effect of shear flexibility.

Exercise 7.4. The figure shows a continuous beam over two spans with a fixed support
in A and simple supports with horizontal rollers in B and C. The length of AB is �, while

the length of BC is α�. The beam is loaded by a uniformly distributed load with vertical
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intensity p. The bending stiffness for all beams is EI and the influence of shear flexibility

is neglected (Φ = 0).

a) Use the deformation method to determine the rotation at B.

b) Determine the reactions and the moment dis-

tribution in the frame for the special case
α = 1.

c) The rotation at B can be clockwise or counter-
clockwise, depending on the magnitude of α.

Determine the sign conditions.

Exercise 7.5. The figure shows a T-frame. The three beams of length a and bending
stiffness EI are joined rigidly at B and have simple supports at A, C and D, respectively.

The shear flexibility effect is neglected (Φ = 0).

a) Use the deformation method to determine the
rotation at B.

b) Determine all reactions on the frame.

c) Determine the distribution of moment, shear

force and normal force in the frame.

d) Replace the simple supports in A and D by
fixed supports and repeat the questions in a)–

c) for the modified structure.

Exercise 7.6. The figure shows an angle frame similar to that in Example 7.1, but now

loaded by a distributed load p on the horizontal beam BC. Both beams have length a and
bending stiffness EI.

a) Use the deformation method to determine the rotation

at B, when assuming Φ = 0.

b) Determine the reactions and the moment distribution
in the frame.

c) Include the effect of shear flexibility, Φ > 0, and repeat
the analysis in a) and b).

d) Replace the simple support in C by a fixed support
and repeat the analysis in a) and b).

Exercise 7.7. Change the load in the angle frame in Exercise 7.6 to a concentrated vertical

downward force P acting at the center of BC, and repeat the analysis in a) and b) without
the influence of shear flexibility.

Exercise 7.8. The figure shows an angle frame with a fixed support in A and a simple

support in C. Length and bending stiffness are 2a and EI for the vertical beam AB and
a and αEI for the horizontal beam BC. The frame is loaded by a distributed load with
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horizontal intensity p on the vertical beam AB. The influence of shear flexibility is neglected

in the analysis (Φ = 0).

a) Use the deformation method to determine the rotation
at B for α = 1

2
.

b) Determine the reactions and the moment distribution

in the frame.

c) Determine the distribution of the shear force and the

normal force in the frame.

d) Determine the rotation at B for α → 0, and comment

on the associated reduction in rotational stiffness.

Exercise 7.9. The figure shows a T-frame with a fixed support in A and simple supports
in D and E. The elements AB, BC, CD and CE all have length a and bending stiffness

EI. The frame is loaded by a vertical force P at B. The influence of shear flexibility is
neglected (Φ = 0).

a) Use the deformation method to determine
the rotation of the joint C.

b) Determine all reactions on the frame.

c) Determine the moment distribution.

d) Determine the distribution of the shear

and normal force.

Exercise 7.10. The figure shows a frame consisting of a column ABC supporting a hori-

zontal beam DB loaded by a uniformly distributed load with intensity p. The frame has a
fixed support in A and fixed simple support in D and a simple support with vertical rollers

in C. The beam elements have the lengths |AB| = |BC| = a and |DB| = 2a, and bending
stiffness EI. The influence of shear flexibility is neglected in the analysis.

a) Use the deformation method to determine the

rotation of the joint B.

b) Determine all reactions on the frame.

c) Determine the moment distribution in the

frame.

d) Determine the distribution of shear force and

normal force in the frame.

Exercise 7.11. The figure shows a beam structure with a fixed support in A, intermediate
transverse supports in B and C, and a free end in D with a transverse tip load P . The

length of each span is a and the bending stiffness is EI for the entire beam. The effect of
shear flexibility is neglected (Φ = 0).

a) Determine the moment MC at the intermediate support in C.

b) Use the deformation method to determine the
rotation at the intermediate support in B.

c) Determine the reactions.

d) Determine the moment and shear force distri-

bution in the beam.



Exercises 319

Exercise 7.12. The figure shows a beam structure with a fixed support in A and simple

supports with horizontal rollers in B, C and D. The beam is loaded by a uniformly dis-
tributed load p on the two outer spans BCD. The length of each span is a and the bending

stiffness is EI for the entire beam. The effect of shear flexibility is neglected (Φ = 0).

a) Use the deformation method to determine the

rotations at the intermediate supports in B
and C.

b) Determine the reactions and the moment dis-
tribution in the beam.

Exercise 7.13. The figure shows a T-frame similar to that in Exercise 7.5, where the left

simple support now permits horizontal motion.

a) Use the deformation method to determine the
rotation and horizontal displacement at B.

b) Determine all reactions on the frame.

c) Determine the moment distribution in the

frame.

Exercise 7.14. The figure shows a frame similar to
that in Exercise 7.10, where the rollers at the support

in D now permits horizontal motion of beam DB.

a) Use the deformation method to determine the ro-

tation and the horizontal displacement at B.

b) Determine all reactions on the frame.

c) Determine the moment distribution in the frame.

Exercise 7.15. Consider the angle frame in Example 7.1 with E = 210 · 109, A = 10−3,

I = 10−6, a = 10 and M0 = 103.

a) Create a data file AngleFrameM0.m to be used in MiniFrame.

b) Determine the rotation at the corner of the frame and compare with θ0 in Example 7.1.

c) Determine the reactions and the internal moments at the corner, and compare with
the results obtained in Example 7.1.

d) Plot the distribution of the internal forces M , Q and N and compare with the diagrams
in Fig. 7.11.

Exercise 7.16. Consider the angle frame with distributed load in Exercise 7.6. Use the

following parameters: E = 210 · 109, A = 10−3, I = 10−6, a = 10 and p = 100.

a) Create a data file AngleFramep.m to be used in MiniFrame.

b) Find the magnitude and location of the maximum transverse displacement and the

maximum moment.

c) Take the influence of shear flexibility into account with G = E/2.6 and As = 0.8A.

Compare with the results in b).

Exercise 7.17. Consider the frame in Exercise 7.10 and use the following parameters:
E = 210 · 109, A = 10−3, I = 10−6, a = 10 and p = 100.



320 Deformation and Element Methods for Frames

a) Create a data file FrameStorey.m to be used in MiniFrame.

b) Find the reactions on the frame.

c) Find the magnitude and location of the maximum transverse displacement and the

maximum moment.

d) Permit the simple support to move horizontally and compare with the results in Ex-
ercise 7.14 and in c).

Exercise 7.18. Consider the T-frame in Exercise 7.5 and use the following parameters:

E = 210 · 109, A = 10−3, I = 10−6, a = 10 and p = 100.

a) Create a data file TFrame.m to be used in MiniFrame.

b) Find the reactions on the frame.

c) Plot the distribution of the section forces and find the maximum moment.

Exercise 7.19. Consider the T-frame in Exercise 7.13 and use the following parameters:

E = 210 · 109, A = 10−3, I = 10−6, a = 10 and p = 100.

a) Create a data file TFrameSway.m to be used in MiniFrame.

b) Find the reactions on the frame.

c) Plot the distribution of the section forces and find the maximum moment.

d) Take the influence of shear flexibility into account with G = E/2.6 and As = 0.8A.
Compare with the results in b).



Stresses and Strains 8

In structural elements like beams and frames, statics and equilibrium are
formulated in terms of section forces and moments. The section forces and
moments represent the accumulated effect of local force distributions ex-
pressed in terms of so-called stresses. Similarly the deformation of structural
elements is expressed in terms of e.g. extension and curvature. These defor-
mations lead to deformation at the local level inside the structural element,
and these deformations are expressed in terms of strain. The mechanics of
deformable bodies is called continuum mechanics and is based on the notion
of a state of the material at each individual point of the body expressed in
terms of stresses and strains. Some simple states of stresses and strains have
been introduced for bars, beams and columns already. This chapter gives a
general presentation of stresses and strains within a material body. The re-
lation between the stresses and strains depends on the particular material
under consideration and is governed by the so-called constitutive relations of
the material, e.g. linear elasticity. While the present chapter lays the ground
by defining general properties of stresses and strains, the following chapter
gives a brief description of linear elastic material behavior, and presents some
commonly used criteria for material failure. The presentation is deliberately
kept at the level of a complement to the theory of structures. More detailed
accounts of continuum mechanics can be found e.g. in Mase and Mase (1999)
and Fung (1965).
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Section 8.1 gives a precise definition of stress, that is valid for general loading
conditions, and discusses the conditions on the stresses necessary for equilib-
rium of the body. Deformation and its precise description in terms of strains
is the subject of Section 8.2. Here it is also explained, how a general but small
displacement of a deformable body can be resolved as the sum of translation,
rotation and strain. The equilibrium equations constitute a set of balance
equations for the external load and the internal stresses. These equations can
be rewritten as a statement about balance of external and internal work by
multiplication with a displacement field. The resulting principle of virtual
work is derived in Section 8.3. The principle of virtual work plays a central
role in the formulation of numerical theories for analysis of continuous bodies,
such as the finite element method. Special states of stress and strain find wide
application in engineering practice. The states of plane stress and plane strain
are discussed in detail in Section 8.4, that also describes the representation
of a general state of stress or strain in terms of its principal components and
the associated graphical representation by the Mohr circle diagram.

8.1 Stress

The simple case of normal stress on a cross-section with area A of a ho-
mogeneous bar was discussed in Section 2.4.1. The idea was to consider a
subdivision in the form of parallel bars each carrying their part of the force
N , and this lead to the idea of a normal stress σ = N/A. This is a special
instance of the concept of stress, treated in detail in the following. The idea
of similarity, when joining similar bodies or changing their dimensions by
scaling was originally introduced by Galilei (1564–1642), while the intro-
duction of the general concept of stress is due to Cauchy (1789–1857), see
e.g. Timoshenko (1983).

8.1.1 The stress vector

Figure 8.1a shows a continuous body, here in the form of a beam, that is
subjected to external loads. In order to characterize the distribution of the
load through the body, the body is separated into two parts by a section as
indicated in the figure. Figure 8.1b shows one of the parts created by the
section. The figure shows a small area dA in the section together with the
force dT acting on this area. The stress vector at a point within this area of
the section is defined as the limit of the ratio of the force dT to the area dA
on which it acts,

t = lim
dA→0

dT

dA
=

Force

Area
,

[ N

m2

]
=
[
Pa
]
. (8.1)
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The units are shown in square brackets. When the magnitude of the force is
expressed in Newton [N] and the area in square meters [m2] the corresponding
unit for the magnitude of the stress is Pascal [Pa]. The force and stress vectors
have the same units as the corresponding magnitude of the vector.

Fig. 8.1: Stress vector t as normalized force per area.

By the rule of equality of action and reaction the two parts of the body must
act upon each other by force distributions over the section that are equal in
magnitude but opposite in direction. Thus, if the selected part of the body
is acted upon by a stress vector t at a point of the section, the other part of
the body must be acted upon by the stress vector −t. A particular instance
is the case where the section is part of the surface of the body, in which case
the stress vector t at a particular point of the surface has the character of an
external surface load, such as for example pressure created on a structure by
wind or water.

Fig. 8.2: Normal stress σ and shear stress vector τ .

In many problems the direction of the stress vector acting on a section is
of importance. Figure 8.2 shows a small part of a section with outward unit
normal vector n. The normal stress is defined as the projection of the stress
vector on the normal. Thus, the normal stress has the magnitude

σ = nT t . (8.2)

By the definition of the normal vector n as pointing outward it is seen that
positive normal stress corresponds to tension. The remaining part of the stress
vector, lying in the surface, is called the shear stress. This part is found by
subtracting the normal stress vector σn from the total stress vector t as
shown in the figure. Thus, the shear stress vector is
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τ = t − nσ . (8.3)

The resolution into normal and shear stress components depends on the ori-
entation of the section as illustrated in the following example.

Example 8.1. Stress on inclined section. Figure 8.3a shows a tension test specimen with
tension force P and cross-section area A. The figure shows a section inclined by the angle

θ, and thus the area of this section is Aθ = A/ cos θ.

Fig. 8.3: Stress vector on inclined section in tension bar.

Resolution of the force P in the normal and in-plane directions gives the force components

Pn = P cos θ , Ps = P sin θ

as shown in Fig. 8.3b. The normal and shear stresses are obtained by normalizing these

force components with respect to the area of the inclined section Aθ,

σ =
Pn

Aθ
=

P

A
cos2 θ , τ =

Ps

Aθ
=

P

A
cos θ sin θ .

Note, that the stress components σ and τ are not found by the ordinary rule of vector
projection, but include products of trigonometric functions. �

8.1.2 General stress components

The full three-dimensional state of stress at a point x = [x, y, z]T inside the
body is described in terms of components by considering a small cube with
sides dx = [dx, dy, dz]T as illustrated in Fig. 8.4. A complete description
of the state of stress at the point x requires the stress vectors on each of
the sides of the cube. In a homogeneous state of stress this amounts to the
stress vectors tx, ty and tz acting on the planes orthogonal to the coordinate
directions x, y and z through the point x. These three stress vectors are
shown on the corresponding ‘front’ faces of the cube in Fig. 8.5a.

Fig. 8.4: Infinitesimal cube dx located at x.
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Fig. 8.5: a) Stress vectors tx, ty , tz , b) Stress components σxx, σxx, · · · .

Each of the three stress vectors tx, ty and tz are represented by three com-
ponents as illustrated in Fig. 8.5b. Thus, for instance the components of the
stress vector tx are [σxx, σxy, σxz], where the first subscript refers to the coor-
dinate direction defining the section, while the second subscript indicates the
direction of the component. The components of the three stress vectors tx,
ty and tz are traditionally arranged as the rows of the 3×3 stress component
matrix

σ =

⎡
⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦ . (8.4)

It is seen from Fig. 2.5b that the diagonal elements σxx, σyy, σzz of the
stress component matrix (8.4) are the normal stresses on three coordinate
planes through the point x, while the off-diagonal stress components with
different subscripts are the shear stresses on these planes. The mean value of
the normal stresses is called the mean stress,

σm = 1
3 (σxx + σyy + σzz) . (8.5)

The mean stress is closely related to the concept of pressure as illustrated in
the following example.

Example 8.2. Static fluid pressure. In a fluid in static equilibrium under the action of
gravity there are no shear stress components, and the stress state is completely determined

by the hydrostatic pressure p, determined from the weight of the overlying fluid column.
The hydrostatic pressure increases with depth proportional to the specific gravity γ. If

z denotes a vertical coordinate with z = 0 at the surface of the fluid, the hydrostatic
pressure is

p = −γ z .

Fig. 8.6: Hydrostatic stress in fluid with specific gravity γ.
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The stress component matrix of this hydrodrostatic stress state corresponds to equal nor-

mal stress −p on all three coordinate surfaces, and vanishing shear stresses, whereby

σ =

⎡

⎣
−p 0 0
0 −p 0
0 0 −p

⎤

⎦ = −p

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

This stress state is fully characterized by the mean stress σm = −p. �

The stress component matrix is (8.4) symmetric. This follows from moment
equilibrium about each of the three lines parallel with with the axes through
the center of a small cube. The principle is illustrated for the stress compo-
nents σxz and σzx in Fig. 8.7. Moment equilibrium about the line through
the center of the cube parallel with the y-axis consists of two force couples
that must balance: a force couple of magnitude σzxdxdy acting with moment
arm dz, and a force couple of magnitude σxzdydz acting with moment arm
dx. Balance of the moments of these two force couples implies that

(σzx dx dy) dz = (σxz dy dz) dx . (8.6)

Fig. 8.7: Stress components for moment equilibrium about y-axis.

The factors representing the infinitesimal side lengths of the cube are identical
on both sides. From this equation σzx = σxz, and by interchange of indices it
follows that similar symmetry relations apply to the other off-diagonal stress
components, whereby

σ =

⎡
⎣
σxx σxy σxz

σyy σyz

Sym. σzz

⎤
⎦ . (8.7)

This implies that there are only 6, and not 9, independent stress components
at a point. A special notation for the stress components, generally used in
numerical computations such as the finite element method, using only the 6
independent components is discussed in Section 8.3.2.
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Stress on an arbitrary section

The individual components of the stress component matrix σ refer to stresses
on planes parallel to the coordinate planes of a particular {x, y, z} coordinate
system. In many cases it is of interest to express the stress vector on a section
defined by the normal unit vector n = [nx, ny, nz]

T in terms of the stress
components of the stress matrix σ with reference to the coordinate axes.
A special case was already considered in Example 8.1, and here the general
theory is presented. The original theory for the components of the stress
vector on an inclined section due to Cauchy (1789–1857) remains virtually
unchanged.

Fig. 8.8: a) Tetrahedron with normal n on inclined surface, b) Area Az in the xy-coordinate

plane by projection of the inclined surface area A.

Figure 8.8a shows a tetrahedron defined by the three coordinate planes and
a plane with normal unit vector n = [nx, ny, nz]

T . The area of the inclined
triangle, defined by the intersecting coordinate planes, is denoted A. The
triangular areas in the coordinate planes are denoted Ax, Ay and Az as
indicated in the figure. Figure 8.8b shows a section through the triangle A
containing the z-axis. The area Az follows by projection of the area A through
the angle θz as shown in the figure. The general result is

⎡
⎣
Ax

Ay

Az

⎤
⎦ =

⎡
⎣
A cos θx
A cos θy
A cos θz

⎤
⎦ = A

⎡
⎣
nx

ny

nz

⎤
⎦ , (8.8)

where the last relation follows from the fact that the components of the unit
vector are the direction cosines, n = [cos θx, cos θy, cos θz]

T .

The stress vector tn on the inclined plane with normal vector n is now found
by setting up the equilibrium equations for the tetrahedron. The stress vectors
on the triangles in the coordinate planes are −tx, −ty and −tz, respectively.
The minus sign is because the outward normal on each of these triangles is in
the negative coordinate direction. A force balance is set up by multiplication
of each of the stress vectors with the appropriate triangle area,

A tn = Axtx +Ayty +Aztz . (8.9)
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Fig. 8.9: Stress vectors tn, and −tx, −ty , −tz on sides of tetrahedron.

In this equation a volume force term has been omitted, because it is propor-
tional to the volume of the tetrahedron, and therefore is of higher order in the
limit of vanishing size of the tetrahedron. As shown in (8.4) the components
of the stress vectors are the rows of the stress component matrix σ, and the
projected areas are expressed in terms of the components of the normal vec-
tor n by (8.8). After division of the relation (8.9) by the area A it therefore
takes the compact form

tn = σTn = σ n , (8.10)

where the last relation follows from the symmetry of the stress component
matrix. The component form of this relation is

⎡
⎣
tnx
tny
tnz

⎤
⎦ =

⎡
⎣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦
⎡
⎣
nx

ny

nz

⎤
⎦ . (8.11)

This relation enables calculation of the stress vector components on inclined
sections, and thereby the normal and shear stresses as shown in Example 8.1.

The stress vector relation (8.11) can also be used to obtain the stress compo-
nent transformation rule between the original {xyz}-coordinate system and
a new {x′y′z′}-coordinate system, illustrated in Fig. 8.10. Let the direction
of the new x′-axis be defined by a unit vector nx′

with the components
[nx′

x , nx′

y , nx′

z ] in the original xyz-coordinate system. The stress vector on a
section defined by the y′z′-plane orthogonal to the x′-axis is therefore defined

Fig. 8.10: Transformation from xyz-coordinate system to new x′y′z′-coordinate system.
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by (8.10) as

tx
′
= σ nx′

. (8.12)

The y′- and z′-axis are defined by unit vectors ny′
= [ny′

x , ny′

y , ny′

z ]T and nz′
=

[nz′

x , nz′

y , nz′

z ]T , respectively. The stress vectors on the three new coordinate
planes are therefore given by an extension of (8.12) as

[ tx
′
, ty

′
, tz

′
] = σ [nx′

,ny′
,nz′

]. (8.13)

The transformation is described by the 3×3 matrix formed by the components
of the new unit base vectors as columns,

AT =

⎡
⎣
nx′

x ny′

x nz′

x

nx′

y ny′

y nz′

y

nx′

z ny′

z nz′

z

⎤
⎦ . (8.14)

By introducing this matrix as AT uniformity of notation is obtained with
component transformations used e.g. in (7.56) and (10.46). The new stress
components are formed by projection of the stress vectors on the new x′y′z′-
axes. These projections are obtained from the stress vector relation (8.13) by
pre-multiplication with A, whereby the stress transformation relation takes
the form

σ′ = AσAT . (8.15)

It is seen that this transformation involves pre- as well as post-multiplication
with the coordinate transformation matrixA. This implies that stress compo-
nents do not transform via simple products with trigonometric functions like
vectors, but via a transform involving products of trigonometric functions.
Coordinate transformations and special properties associated with particular
coordinate systems are discussed in Section 8.4.

8.1.3 Equilibrium

Figure 8.11 shows a continuous body with volume V and surface S. The
body is acted upon by distributed volume forces p(x) and surface forces
represented by the stress vector t(x). The inclusion of the argument x in
the volume and surface force distributions indicates that they may depend
on the location described by the coordinates [x, y, z]. The loads generate a
stress state σ(x) in the body. In order for the body to remain at rest, each
part of the body must be in equilibrium. This imposes a set of conditions on
the stress distribution in the body, the so-called equilibrium conditions. The
equilibrium conditions are independent of the particular material properties
of the body under consideration, and they are therefore often considered as
the most important conditions for the determination of the state of stress in a
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body at rest, while the material properties can be described in an approximate
way, if necessary.

Fig. 8.11: Continuous body with volume V and surface S.

A direct way to establish the equilibrium conditions at a point x = [x, y, z]T

of a continuous body is to consider a small cube with sides dx = [dx, dy, dz]T

as illustrated in Fig. 8.4. The sides of the cube are parallel with the coordi-
nate planes of the {xyz}-coordinate system, and a set of local axes through
the point x can then be introduced as shown in Fig. 8.5. The sides of the
cube coinciding with the local coordinate planes are acted upon by the stress
vectors −tx, −ty and −tz, respectively. The minus sign is due to the fact
that these ‘back’ surfaces have normals in the negative coordinate directions.
The similar ‘front’ surfaces have stresses that may be different from the back
surfaces. For a small cube the change in stress across the cube can be repre-
sented by a Taylor series expansion. Consider the stress vector tx on a surface
parallel to the yz-coordinate plane. A Taylor expansion around the point x is

tx(x+ dx) = tx(x) +
∂tx(x)

∂x
dx + · · · , (8.16)

where the dots represent higher order terms in the components of dx. At the
end of the argument a limit operation in which dx → 0 is considered, and
only the first derivatives give finite contributions. The higher order terms
can therefore be omitted already at this stage. Figure 8.12 shows the first
order Taylor representation of the stress vectors acting on the front surfaces
of the cube.

Fig. 8.12: Small cube with stress vectors tx, ty , tz on the sides.
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When adding the force contributions from opposing surfaces orthogonal to
the x-axis it is observed that the force −txdydz on the ‘back’ surface cancels
the force from the first Taylor term on the front surface, leaving the first
order contribution (∂tx/∂x)dxdydz. Adding the surface contributions from
the three opposing sets of sides and the volume force contribution p dxdydz
gives the equilibrium condition

(∂tx
∂x

dx
)
dydz +

(∂ty
∂y

dy
)
dzdx +

(∂tz
∂z

dz
)
dxdy + p dxdydz = 0 .

(8.17)

It is seen that all terms contain the common factor dV = dxdydz, which
can therefore be removed from the equation by division by dV , leaving the
equilibrium condition in the form

∂tx
∂x

+
∂ty
∂y

+
∂tz
∂z

+ p = 0 . (8.18)

The component form of this vector equation is obtained by using that the
components of the stress vectors are stored as the rows of the stress compo-
nent matrix, which by symmetry correspond to the columns. Thus, the first
column of the stress component matrix is differentiated with respect to x,
the second with respect to y, and the third with respect to z. This gives the
following three equilibrium equations in terms of the stress components,

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ px = 0 ,

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ py = 0 ,

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ pz = 0 .

(8.19)

These equations must be satisfied by any static stress field, irrespective of
the material behavior.

When using the three-dimensional equilibrium equations, e.g. to derive the
principle of virtual work or in connection with a finite element formulation
of numerical procedures, it is convenient to use a more compact notation.
The differential operators appear in a systematic way that can be captured
by introducing the gradient operator

∇ =
[ ∂

∂x
,
∂

∂y
,
∂

∂z

]
. (8.20)

The equilibrium equations (8.19) can then be expressed in the compact form

(∇σ)T + p = 0 . (8.21)
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In this formula the components are combined according to the normal rules
of matrix multiplication, whereby the differential operator acts on each of
the columns of the stress component matrix σ in turn. The transposition
is introduced to present the result in column format corresponding to the
component equations (8.19).

8.2 Deformation and strain

A solid body is typically deformed, when acted upon by loads. The motion
of the body is described in terms of the displacement field u(x), and it is
important to extract a precise measure of the deformation, e.g. in the form
of extension of bars and curvature of beams. For a deformable solid body the
description of deformation must apply to an arbitrarily small region around
each point of the body, and the local deformation is described in terms of
strains associated with each point of the body. In the following the theory
of strain is developed – first in general form, and then linearized correspond-
ing to small displacements. The general non-linear formulation is beyond the
scope of the present text, but is increasingly used in connection with finite el-
ement analysis of structures, see e.g. Zienkiewicz and Taylor (2000) or Krenk
(2009).

8.2.1 Strain

The theory of deformation of a continuous body is conveniently developed by
considering the relative elongation in a selected direction AB at a selected
point A. The problem is illustrated in Fig. 8.13, showing a continuous body
before and after deformation. A point initially located at x moves to its
current position x̄ = x+u. The problem is posed as follows. Find the relative
elongation of an infinitesimal line element dx of initial length ds. In the
displacement process the line increment dx changes into dx̄ = dx + du. It
is convenient to characterize the elongation of the line increment dx by the
so-called Green strain, defined as

Fig. 8.13: Continuous body before and after deformation.
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εG =
ds̄2 − ds2

2 ds2
=

ds̄+ ds

2 ds

ds̄− ds

ds
. (8.22)

The idea behind this strain definition is that it is formed by the squares of the
length of the line increments dx and dx̄, and this enables simple calculation
via the vector components, while at the same time corresponding closely
to the simple linear axial strain (2.4) for small displacements. This follows
from the last form in which the first factor is a normalized form of the mean
value of the initial length and the final length, and thus is close to unity for
the moderate elongations often encountered in engineering practice. Under
this condition the Green strain closely approximates the relative elongation,
represented by the second factor. The original definition in terms of the square
of the involved lengths, permits the Green strain to be expressed directly by
the scalar products of the vectors dx and dx̄,

εG =
dx̄T dx̄− dxT dx

2 ds2
=

(dx+ du)T (dx+ du)− dxT dx

2 ds2
. (8.23)

When the scalar products are carried out on the individual terms, the result-
ing expression is

εG =
dxT

ds

du

ds
+

1

2

duT

ds

du

ds

 dxT

ds

[ ∂u
∂x

]dx
ds

. (8.24)

The second term is quadratic in the displacement derivative, and has been
omitted as a higher order term. The linear first term has been reformulated to
a differentiation ‘through’ x by using the chain rule. In this formula dx/ds =
n is a unit vector in the direction AB. The term [∂u/∂x] is the displacement
gradient matrix

∂u

∂x
=

⎡
⎣
∂u/∂x ∂u/∂y ∂u/∂z
∂v/∂x ∂v/∂y ∂v/∂z
∂w/∂x ∂w/∂y ∂w/∂z

⎤
⎦ . (8.25)

In the approximate linear expression for the axial Green strain, the displace-
ment gradient matrix is pre- and post-multiplied by the components of the
unit vector dx/ds = n. Thus, only the symmetric part of the displacement
gradient matrix [∂u/∂x] contributes to the strain. This symmetric part is
defined as the linear strain matrix

ε =
1

2

([ ∂u
∂x

]
+
[ ∂u
∂x

]T)
. (8.26)

The linear strain components are arranged in the symmetric component ma-
trix

ε =

⎡
⎣
εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎤
⎦ , (8.27)

with components following from (8.25) and (8.26) in the form
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εxx =
∂u

∂x
, εyz = εzy =

1

2

(∂v
∂z

+
∂w

∂y

)
,

εyy =
∂v

∂y
, εzx = εxz =

1

2

(∂w
∂x

+
∂u

∂z

)
,

εzz =
∂w

∂z
, εxy = εyx =

1

2

(∂u
∂y

+
∂v

∂x

)
.

(8.28)

There are 9 strain components, of which only 6 are independent due to sym-
metry of the strain component matrix (8.27). This is similar to the 9 compo-
nents of the symmetric stress component matrix (8.4).

Each of the linearized strain components in the matrix ε can be given a
simple and direct physical interpretation. It follows from the linearized form
of (8.24) that the axial strain in a direction described by the unit vector n is
given by

εn = nT εn . (8.29)

In particular this implies, that the relative elongation in the direction of the
x-axis is given by

εxx = [1, 0, 0]

⎡
⎣
εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎤
⎦
⎡
⎣
1
0
0

⎤
⎦ =

∂u

∂x
. (8.30)

Similar relations hold for the other coordinate directions, and thus the state
of strain given by

ε =

⎡
⎣
εxx 0 0
0 εyy 0
0 0 εzz

⎤
⎦ . (8.31)

corresponds to relative extension of the axes by εxx, εyy and εzz, respectively.
This state of strain is illustrated in Fig. 8.14, showing a unit cube before and
after deformation. The strain components εxx, εyy and εzz are called normal
strains or axial strains.

Fig. 8.14: Unit square before and after axial straining εxx, εyy .

The initial volume of the unit cube shown in Fig. 8.14 is 1, while the volume
after deformation is found as the product of the side lengths (1+εxx), (1+εyy)
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and (1 + εzz). The relative change in volume is

V̄ − V

V
= (1 + εxx)(1 + εyy)(1 + εzz) − 1 (8.32)

= εxx + εyy + εzz + εyyεzz + εxxεzz + εxxεyy + εxxεyyεzz .

The last four terms are of higher order, and will be negligible for small strains.
Thus, the linearized volume strain is defined by

e = εxx + εyy + εzz . (8.33)

It can be shown that the volume strain e defined by the sum of the diagonal
components is independent of the particular coordinate system used. This
invariance is an important characteristic e.g. in connection with the develop-
ment of relations between stresses and strains, see Chapter 9 and a general
discussion e.g. by Mase and Mase (1999) and Ottosen and Ristinmaa (2005).

Fig. 8.15: Shear strain components and change of angle between axes.

The physical interpretation of the off-diagonal strain component εxy is illus-
trated in Fig. 8.15. The figure shows the gradients of the displacement com-
ponents u and v, changing the orientation of the y- and x-axis, respectively.
The two contributions diminish the angle between the x- and the y-axis by

γxy =
∂v

∂x
+

∂u

∂y
= 2εxy . (8.34)

The off-diagonal components of ε are called shear strains, while the change in
angles like γxy = 2εxy are called angle strain due to their direct interpretation
as a change of the angle between the axes.

Transformation of strain components

If the strain component matrix ε is known in a given {xyz}-coordinate sys-
tem, the strain components ε′ in another {x′y′z′}-coordinate system can be
found by a simple matrix transformation, similar to the stress component
transformation (8.15). The two coordinate systems are shown in Fig. 8.10,
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and the relation between the coordinates is then given by

x′ = Ax (8.35)

in terms of the matrix A, already introduced in (8.14). The matrix A is or-
thogonal, and thus its inverse is given by its transpose. The inverse coordinate
transformation therefore is

x = ATx′ . (8.36)

When the original coordinates x are considered as functions of the new co-
ordinates x′, differentiation of this relation gives

∂x

∂x′ = AT . (8.37)

The new displacement components u′ are given in terms of the original com-
ponents u by a relation similar to the coordinate relation (8.35),

u′ = Au . (8.38)

The strain component matrix ε′ in the new coordinate system is defined in
terms of the displacement gradient as

ε′ =
1

2

([ ∂u′

∂x′

]
+
[ ∂u′

∂x′

]T)
. (8.39)

The new displacement gradient is expressed in terms of the original by using
the displacement component transformation (8.38) and the chain rule for
differentiation ‘through’ the coordinates x,

∂u′

∂x′ = A
∂u

∂x

∂x

∂x′ = A
[ ∂u
∂x

]
AT . (8.40)

Substitution of this result into the strain definition (8.39) then gives

ε′ = A
1

2

([ ∂u
∂x

]
+
[ ∂u
∂x

]T)
AT , (8.41)

where the last term is obtained by matrix transposition. The central part of
this formula is recognized as the strain matrix ε in the original coordinate
system, whereby the transformation takes the form

ε′ = A εAT . (8.42)

This transformation is identical to the transformation rule (8.15) for the stress
component matrix.
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8.2.2 Rotation at a point

It was demonstrated in the previous section that within the small deformation
assumption only the six components in the symmetric part of the displace-
ment gradient matrix [∂u/∂x] contributes to the linear strain components ε.
The remaining three components describe a rotation of the material about the
point. This is seen from Fig. 8.15 by observing that the derivative ∂u/∂y de-
scribes a clockwise rotation of the y-axis about the z-axis, while the derivative
∂v/∂x similarly describes a counter-clockwise rotation of the x-axis. Thus,
the mean rotation of the x- and y-axis about the z-axis is given by

ωz =
1

2

(∂v
∂x

− ∂u

∂y

)
. (8.43)

Similar relations exist for the small rotation about the other two axes,

ωx =
1

2

(∂w
∂y

− ∂v

∂z

)
, ωy =

1

2

(∂u
∂z

− ∂w

∂x

)
. (8.44)

These components define the small rotation vector ω = [ωx, ωy, ωz]
T . The

components may also be arranged as the skew-symmetric part of the rotation
matrix

Ω =

⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ . (8.45)

This form is often used in continuum mechanics, as it permits writing the
small rotation of a vector a by the rotation vector ω in the form of a direct
matrix product, Ωa = ω × a, thus avoiding the use of the vector cross-
product.

8.2.3 Displacement decomposition

The previous two sections have described the deformation (strain) and rota-
tion, that can be associated with a given displacement field u(x) under the
‘small displacement’ assumption. This can be viewed as a decomposition of
the displacement field into the sum of a translation u, a rotation ω, and a
state of deformation (strain) ε, associated with the material at each point of
the body. The first observation is that the displacement gradient matrix is
the sum of the strain and rotation component matrices,

∂u

∂x
= ε + Ω . (8.46)

Thus, the displacement at a point defines the translation, while the displace-
ment gradient components define the state of deformation in a neighborhood
around the point in terms of a rotation and a local state of strain.
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Fig. 8.16: Decomposition of displacement field into translation, rotation, and deformation.

The general effect of a displacement field on a small cube located at a point
x is illustrated in Fig. 8.16. First the cube is subjected to a local rigid body
motion consisting of a translation by the vector u, followed by a rotation by
the rotation vector ω. The cube is then deformed, by stretching εxx, εyy, εzz
along the axes, and by changes 2εyz, 2εzx, 2εxy of the angles between the
axes.

8.3 Virtual work

The statics of a solid body is described by the distribution of stresses σ(x) and
the associated volume and surface forces p(x) and t(x), while the kinematics
is described by the displacement field u(x) and the associated strain field
ε(x). When considering a static (stress) field that satisfies the equilibrium
conditions and an independent kinematic (displacement) field the work of the
static field through the displacements of the kinematic field satisfy a virtual
work equation. This equation and the associated principle of virtual work
play an important role in the development of discretized formulations for
solid and structural mechanics problems, e.g. by the finite element method,
see e.g. Zienkiewicz and Taylor (2000) and Krenk (2009). Special cases of the
virtual work principle have been developed for bars an truss structures in
Section 2.4.3 and for beams and frames in Section 4.4. The present section
contains a derivation of the virtual work equation for a continuous body and
a discussion of the boldface matrix notation for stresses and strains often
used in computational methods, inspired by the virtual work equation.

8.3.1 Equation of virtual work

The stresses field σ(x) in a body in equilibrium must satisfy the equilibrium
equations in terms of the volume forces p(x) distributed within the body,
and generate a stress vector distribution t(x) on the surface of the body
matching any imposed surface forces. This is illustrated in Fig. 8.17. The
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Fig. 8.17: Equilibrium of stress σ, volume force p and surface traction t.

stress field σ(x) satisfies the equilibrium equations (8.19). These equations
express equilibrium of the stress and volume force components acting on a
unit cube. The virtual work of these components is obtained by multiplication
of each of the three equilibrium equations with the corresponding component
of a virtual displacement field δu(x). As previously, the notation δu is used
to indicate an infinitesimally small displacement field. The virtual work of a
body with volume V is then obtained by integration over the volume in the
form
∫

V

{(∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ px

)
δu +

(∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ py

)
δv

+
(∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ pz

)
δw

}
dV = 0 .

(8.47)

The equality with zero, irrespective of the virtual displacement field, follows
from the fact that the stress field satisfies the equilibrium equations.

This equation is now reformulated to a relation between internal virtual work
performed by the stresses σ(x) and the external work performed by the stress
vector distribution t(x) acting on the body surface S and the volume forces
p(x) distributed inside the body. In the case of bars and beams the body is
one-dimensional and the result was obtained via integration by parts. The
three-dimensional equivalent to this procedure is the use of the divergence
theorem. The divergence theorem states that the integral of the divergence
of a vector field f = [fx, fy, fz]

T over a volume V is equal to the flux of the
vector field through the surface S enclosing the volume. In precise terms this
amounts to the equality

∫

V

(∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

)
dV =

∫

S

(
fxnx + fyny + fznz

)
dS . (8.48)

The integrand on the left side is the divergence, while the integrand on the
right side is the projection of the vector field on the outward normal to the
surface, fTn.

In the virtual work integral (8.47) the stresses only appear via their deriva-
tives, while these are multiplied by the virtual work component. Application
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of the divergence theorem assumes that the individual terms of the inte-
grand are partial derivatives. Thus, the virtual displacement components are
placed within the differentiation, and the additional terms generated by this
are subtracted subsequently. This gives the following equation,

∫

V

{
∂(σxxδu)

∂x
+

∂(σyxδu)

∂y
+

∂(σzxδu)

∂z
+

∂(σxyδv)

∂x
+

∂(σyyδv)

∂y

+
∂(σzyδv)

∂z
+

∂(σxzδw)

∂x
+

∂(σyzδw)

∂y
+

∂(σzzδw)

∂z
−
(
σxx

∂δu

∂x

+σyx
∂δu

∂y
+ σzx

∂δu

∂z
+ σxy

∂δv

∂x
+ σyy

∂δv

∂y
+ σzy

∂δv

∂z
+ σxz

∂δw

∂x

+σyz
∂δw

∂y
+ σzz

∂δw

∂z

)
+ pxδu+ pyδv + pzδw

}
dV = 0 .

(8.49)

It is seen that the virtual displacement components appear within the paren-
theses defining the differentiation in the first nine terms, and that the addi-
tional terms containing derivatives of the virtual displacement components
are subtracted in the following nine terms. In the next step the first nine
terms are rearranged in divergence form, and the symmetry of the stress
components is used to regroup the following set of terms,

∫

V

{
∂

∂x

(
σxxδu+ σxyδv + σxzδw

)
+

∂

∂y

(
σyxδu+ σyyδv + σyzδw

)

+
∂

∂z

(
σzxδu+ σzyδv + σzzδw

)
−
(
σxx

∂δu

∂x
+ σyy

∂δv

∂y
+ σzz

∂δw

∂z

+σyz
1

2

(∂δw
∂y

+
∂δv

∂z

)
+ σzx

1

2

(∂δw
∂y

+
∂δv

∂z

)
+ σxy

1

2

(∂δw
∂y

+
∂δv

∂z

))

+ px δu+ py δv + pz δw

}
dV = 0 .

(8.50)

The first group of terms is seen to be of divergence form, and they are there-
fore equal to the surface integral of nT (σδu). When changing the order of
the factors and using the formula (8.10) to express the surface stress vector
t = σ n, the surface integrand takes the form δuT t. The kinematic factors in
the following six terms are recognized as virtual strains by use of (8.28). Thus,
regrouping of the integrals leads to the following final form of the equation
of virtual work,
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∫

V

(
δεxx σxx + δεyy σyy + δεzz σzz + 2δεyz σyz + 2δεzx σzx + 2δεxy σxy

)
dV

=

∫

S

(
δu tx + δv ty + δw tz

)
dS +

∫

V

(
δu px + δv py + δw pz

)
dV .

(8.51)

The volume integral on the left side is the internal work of the stresses through
the virtual strains, while the right side is the external work, consisting of
the virtual work of surface stresses and volume forces through the virtual
displacements.

8.3.2 Matrix and tensor notation

It was demonstrated in Sections 8.1.2 and 8.2.1 that the stress component
matrix σ and the strain component matrix ε are symmetric. Thus, they
only contain 6 independent components each, and not the 9 components
contained in the double indexed matrix format. While the double indexed
format accurately reflects the role of the components – e.g. in producing the
stress vector by a product with the components of the normal vector – it is
uneconomical in numerical computations. A simple alternative in the form
of a one-dimensional array is suggested by the principle of virtual work. It
is seen from the first integral in (8.51), that the internal virtual work can be
expressed in terms of six components, provided a factor 2 is included on the
shear components. It is customary to include this factor in the shear strains,
that thereby become the angle strains γyz, γzx and γxy already introduced in
(8.34). The stress and strain components are therefore often combined into
the six-component arrays

σ = [σxx, σyy, σzz, σyz, σzx, σxy ]
T (8.52)

and
ε = [ εxx, εyy, εzz, 2εyz, 2εzx, 2εxy ]

T

= [ εxx, εyy, εzz, γyz, γzx, γxy ]
T ,

(8.53)

where the same boldface symbols are used as for the corresponding compo-
nent matrices. With a bit of care the context defines the specific notation,
and use of the same boldface symbols adds an intuitive aspect to the formu-
lae. In the present context the internal work appears as a scalar product of
the virtual strain array and the stress array in the form

δεTσ = δεxx σxx + δεyy σyy + δεzz σzz

+ 2δεyz σyz + 2δεzx σzx + 2δεxy σxy .
(8.54)

In this notation the virtual work equation (8.51) takes the compact form
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∫

V

δεTσ dV =

∫

V

δuTp dV +

∫

S

δuT t dS . (8.55)

This is the form used in the finite element literature.

8.4 Special states of stress and strain

Special two-dimensional states of stress and strain play important roles in
practice. The special states of plane stress and plane strain are introduced in
Section 8.4.1, and the corresponding two-dimensional component transforma-
tions are treated in detail in Section 8.4.2. An important property of a state
of stress or strain is that a particular coordinate system can be found in which
all shear components vanish. This coordinate system is called the principal
coordinate system, and the normal stress/strain components in this coor-
dinate system are called the principal stresses/strains. The identification of
the principal coordinate system, and the corresponding principal stress/strain
components is treated for the two-dimensional case in Section 8.4.3, where
the graphical illustration of stress states by the Mohr circle construction is
presented. The theory is generalized to three dimensions in Section 8.4.4. The
principal stress and strain components play an important role in the descrip-
tion of material properties such as elastic deformation, yielding and failure,
dealt with in Chapter 9.

8.4.1 Plane stress and plane strain

Many engineering problems are solved as two-dimensional problems. Fig-
ure 8.18a shows a typical example in which a plate is loaded by forces in
the plane of the plate. The xy-plane is taken as the symmetry plane of the
plate. For thin plates the stress component σzz, referring to transverse normal
stress, is usually small and is therefore neglected. Similarly the average value
of the stress components σzx and σyz vanish, and the corresponding stress
components are therefore assumed negligible. This leads to the assumption

σzz = σzx = σxz = σyz = σzy = 0 (8.56)

for the so-called condition of plane stress. The only non-vanishing stress com-
ponents in plane stress are

σ =

[
σxx σxy

σyx σyy

]
. (8.57)

The assumption of plane stress implies that the stress distribution in thin
plates loaded in their own plane can be treated by only three stress compo-
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nents, σxx, σyy and σxy = σyx. This reduction simplifies the analysis consid-
erably, and the assumption of plane stress is often used in practice.

Fig. 8.18: a) Plane stress, b) plane strain.

Another important two-dimensional problem is illustrated in Fig. 8.18b,
showing a slice of a dam. The displacements are constrained such that there
is negligible displacements in the transverse direction, and thus w = 0. This
condition can also be expressed as εzz = ∂w/∂z = 0. In cases where the
slice represents a plane of symmetry the strain components εzx and εzy also
vanish. This leads to the conditions

εzz = εxz = εzx = εyz = εzy = 0 , (8.58)

defining the so-called state of plane strain. The non-vanishing strain compo-
nents in the state of plane strain are

ε =

[
εxx εxy

εyx εyy

]
. (8.59)

Due to symmetry there are only three independent strain components, giving
a reduction of the problem size comparable to that of the state of plane stress.

8.4.2 Stress and strain transformations

Coordinate axes are often selected with view to a simple representation of the
geometry of the problem at hand, and it is of interest to be able to calculate
the stress and strain components relative to a different set of coordinate axes.
The stress component transformation was briefly described in Section 8.1 and
is here covered in more detail for the two-dimensional case. It turns out that
the transformation of the strain components is the same as the transformation
for the stress components, and the following derivations are therefore limited
to the stress components, while the transformation for the strain components
is summarized subsequently.
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Transformation of plane stress components

Figure 8.19a shows the original set of axes {x, y}, and a new set of axes
{x′, y′}, obtained by rotating the original axes about the z-axis by the angle
θ. The new axes are described by the two unit vectors

nx′
= [cos θ, sin θ]T , ny′

= [− sin θ, cos θ]T . (8.60)

The stress components with respect to the original and the new axes are
illustrated in Fig. 8.19.

Fig. 8.19: ‘Old’ and ‘new’ stress components σ and σ′.

The stress vector acting on sections with nx′
and ny′

as normal vectors are
defined in terms of the original stress component matrix σ as

tx
′
= σ nx′

, ty
′
= σ ny′

. (8.61)

These relations are conveniently combined into a single relation,

[ tx
′
, ty

′
] = σ [nx′

,ny′
] . (8.62)

In this relation the left side is a 2 × 2 matrix containing the components of
the two stress vectors as columns, while the last factor on the right side is
the coordinate transformation matrix

AT = [nx′
,ny′

] =

[
cos θ − sin θ
sin θ cos θ

]
. (8.63)

The stress components σ′ in the new coordinate system are obtained by
projecting the stress vectors tx

′
and ty

′
on to the new axes,

σ′ = [nx′
,ny′

]T [ tx
′
, ty

′
]. (8.64)

The first factor is recognized as A, and when the stress vectors are substi-
tuted from (8.62) the following stress component transformation relation is
obtained,

σ′ = AσAT . (8.65)

This is the special two-dimensional case of the general stress component trans-
formation (8.15), here with the coordinate transformation matrix A given in
terms of the angle θ in (8.63).
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When introducing components in (8.65) the following component transfor-
mation relations are obtained

σx′x′ = σxx cos
2 θ + σyy sin

2 θ + 2σxy sin θ cos θ ,

σy′y′ = σxx sin
2 θ + σyy cos

2 θ − 2σxy sin θ cos θ ,

σx′y′ = σxy

(
cos2 θ − sin2 θ

)
+
(
σyy − σxx

)
sin θ cos θ .

(8.66)

The transformation of stress components involves products of the trigono-
metric functions cos θ and sin θ. These products are conveniently combined
by use of the formulae for trigonometric functions of double angle,

cos 2θ = cos2 θ − sin2 θ , sin 2θ = 2 sin θ cos θ . (8.67)

When these formulae are used to express the products in the component
transformation formula (8.66) the following stress component transformation
formulae in terms of the double angle are obtained,

σx′x′ = 1
2

(
σxx + σyy

)
+ 1

2

(
σxx − σyy

)
cos 2θ + σxy sin 2θ ,

σy′y′ = 1
2

(
σxx + σyy

)
− 1

2

(
σxx − σyy

)
cos 2θ − σxy sin 2θ ,

σx′y′ = − 1
2

(
σxx − σyy

)
sin 2θ + σxy cos 2θ .

(8.68)

It is readily confirmed that the transformation reduces to an identity for
θ = 0. For θ = 90◦ the transformation gives σx′x′ = σyy, σy′y′ = σxx and
σx′y′ = −σxy.

The form of the transformation formulae (8.68) suggests calculating the sum
and the difference of the normal stress components. This yields the following
form of the stress component transformation,

1
2

(
σx′x′ + σy′y′

)
= 1

2

(
σxx + σyy

)
,

1
2

(
σx′x′ − σy′y′

)
= 1

2

(
σxx − σyy

)
cos 2θ + σxy sin 2θ ,

σx′y′ = −1
2

(
σxx − σyy

)
sin 2θ + σxy cos 2θ .

(8.69)

It is seen that the mean stress σx′x′+σy′y′ remains the same as in the original
coordinate system, independent of the angle θ. It is therefore called invariant.
The two ‘components’ 1

2 (σxx−σyy) and σxy transform like a vector, but with
the double angle 2θ. This transformation rule is illustrated graphically by
Mohr’s circle in Section 8.4.3.

Example 8.3. Biaxial stress. A common condition in a test specimen consists of an axial

stress σxx in combination with a transverse stress σyy , a so-called biaxial state of stress.
This state of plane stress is illustrated in Fig. 8.20a. The transformation formula (8.69)
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enables direct determination of the stress components acting on a section inclined by the

angle θ as shown in Fig. 8.20b.

Fig. 8.20: Test specimen with normal stresses σxx and σyy .

Straightforward application of (8.69) gives the normal stress

σx′x′ = 1
2

(
σxx + σyy

)
+ 1

2

(
σxx − σyy

)
cos 2θ

and the shear stress
σx′y′ = − 1

2

(
σxx − σyy

)
sin 2θ .

This generalizes the result of Example 8.1 for uniaxial tension, σxx = T/A. Note, that if

the two original stress components are equal, σxx = σyy, there is no shear stress on any
section in the body. �

Example 8.4. Equal tension-compression. A special case of the biaxial stress state of
Example 8.3 is the combination of compression and tension of equal magnitude.

−σxx = σyy = σ , σxy = 0 .

This state of stress is illustrated in Fig. 8.21a. It is interesting to find the stress components
on axes rotated θ = 45◦ relative to the original axes. In this case cos 2θ = 0 and sin 2θ = 1.

The stress components on the rotated axes then follows from (8.69) as

σx′x′ = σy′y′ = 0 , σx′y′ = σ .

Thus, a combination of compression and tension of equal magnitude corresponds to a state
of shear stress on axes rotated 45◦ relative to the original axes. �

Fig. 8.21: Equal compression σxx = −σ and tension σyy = σ.
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Transformation of plane strain components

According to the general three-dimensional formula (8.42) the strain compo-
nents transform in the same way as the stress components. The special two-
dimensional transformation is therefore identical to that of stresses, whereby

εx′x′ = 1
2

(
εxx + εyy

)
+ 1

2

(
εxx − εyy

)
cos 2θ + εxy sin 2θ ,

εy′y′ = 1
2

(
εxx + εyy

)
− 1

2

(
εxx − εyy

)
cos 2θ − εxy sin 2θ ,

εx′y′ = − 1
2

(
εxx − εyy

)
sin 2θ + εxy cos 2θ .

(8.70)

The use of the strain transformation is illustrated by the following example.

Example 8.5. Strain gauge rosette. The strain components in the surface of a continuous
body can be measured by so-called strain gauges. A strain gauge is a small length of

conducting wire or foil with an electric resistance that depends on the elongation of the
wire. By measuring the resistance the axial strain in the direction of the wire can be

determined.

Fig. 8.22: Strain gauge delta rosette with equal angles 60◦.

Figure 8.22 shows a delta type strain gauge rosette consisting of three strain gauges forming
an isosceles triangle. The axial strains in the strain gauges are denoted εa, εb and εc, and a

coordinate system {x, y} is introduced as indicated. The strains εa, εb and εc in the strain
gauges can now be expressed in terms of the three strain components εxx, εyy and εxy by

use of (8.70a) with θ = 0◦, 120◦,−120◦, respectively. When using that

cos(±240◦) = − 1
2
, sin(±240◦) = ∓ 1

2

√
3 ,

the strain in the individual strain gauges are found to be

εa = εxx , εb = 1
4
εxx + 3

4
εyy − 1

2

√
3 εxy , εc = 1

4
εxx + 3

4
εyy + 1

2

√
3 εxy .

These relations are easily inverted to give the strain components εxx, εyy and εxy in terms
of the measured axial strains εa, εb and εc,

εxx = εa , εyy = 2
3

(
εc + εb − 1

2
εa
)
, εxy =

(
εc − εb

)
/
√
3.

The mean strain εxx + εyy in the plane takes a particularly simple form,

εxx + εyy = 2
3

(
εa + εb + εc

)
.
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It is seen that each of the strain gauges contribute equally to the mean strain. The factor
2
3

can be determined directly be considering a state of equal extension εxx = εyy in all

directions. In that case it follows immediately that εa = εb = εc = εxx = εyy . �

Direct stress transformation by equilibrium

When a stress component on an inclined section is needed, it is expedient
simply to set up the appropriate equilibrium equation. The method is illus-
trated with reference to Fig. 8.23, showing a section with normal inclined by
the angle θ to the x-axis.

Fig. 8.23: ‘New’ stress components σx′x′ and σx′y′ by equilibrium.

The stress components σx′x′ and σx′y′ acting on the inclined section are
determined by considering equilibrium of the triangle shown in Fig. 8.23b.
Let the length of the inclined side be unity, whereby the side along the x-
axis is sin θ and the length of the side along the y-axis is cos θ. The normal
stress σx′x′ then follows directly from force equilibrium in the direction of
the normal to the inclined section,

σx′x′ =
(
σxx cos θ + σxy sin θ

)
cos θ +

(
σyx cos θ + σyy sin θ

)
sin θ

= σxx cos
2 θ + σyy sin

2 θ + 2σxy sin θ cos θ .
(8.71)

Similarly, force equilibrium along the direction of the tangent of the inclined
section gives the shear stress component σx′y′ ,

σx′y′ = −
(
σxx cos θ + σxy sin θ

)
sin θ +

(
σyx cos θ + σyy sin θ

)
cos θ

= −
(
σxx − σyy

)
sin θ cos θ + σxy

(
cos2 θ − sin2 θ

)
.

(8.72)

Clearly, these results are identical to (8.66a) and (8.66c).

Example 8.6. Inclined shear by equilibrium. The problem of shear produced by equal
compression and tension considered in Example 8.4 has a very simple solution in terms
of equilibrium of an appropriate triangle as shown in Fig. 8.24. When the length of the

inclined section in Fig. 8.24b is taken as unity, force projection on the tangent gives

τ =
(
1
2

√
2σ + 1

2

√
2σ
)/√

2 = σ ,

where the factors inside the parenthesis represent the area of the sides with normal stress,
while the last factor represents the projection on the inclined direction.
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Fig. 8.24: Equilibrium for the shear problem, −σxx = σyy = σ.

It follows immediately from projection on the normal, that the normal stress on the inclined

section vanishes, thus establishing a state of pure shear in the rotated system. �

8.4.3 Principal stresses and strains in a plane

Transformation of stress components provides the answer to the following
important question. Is there for an arbitrary state of stress a particular co-
ordinate system, in which all the shear stress components vanish? If such a
system exists, the implication is that any stress state can be characterized by
three normal stress components, acting on opposite sides of a small cube ori-
ented appropriately in the body. It turns out that the answer is affirmative,
and these particular normal stress components are called principal stresses,
while the corresponding coordinate system is called the principal coordinate
system. The principal stresses play a central role in the development of theo-
ries for material behavior as discussed in Chapter 9. The concept of principal
stresses and the associated theory is first introduced for plane problems and
then generalized to three-dimensional problems.

Principal stresses in plane stress

The concept of principal stresses in a two-dimensional state of stress is illus-
trated in Fig. 8.25. A stress state is given in terms of its components σxx,
σyy and σxy in a coordinate system {x, y}. The problem is to determine if
there is a coordinate system {x′, y′} in which the shear stress component
σx′y′ vanishes. If this is the case, the small square shown in Fig. 8.25b will
only have normal stress components.

Fig. 8.25: Principal stresses σx, σy and rotation angle θ.
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The shear stress component σx′y′ in a coordinate system that is rotated by
the angle θ relative to the original system is given by (8.69c). The shear stress
will vanish for an angle θ, determined by

σx′y′ = − 1
2

(
σxx − σyy

)
sin 2θ + σxy cos 2θ = 0 . (8.73)

Thus, the angle defining the principal coordinate system is determined by

tan 2θ =
2σxy

σxx − σyy
. (8.74)

In the principal coordinate system there are only two stress components, and
they are therefore denoted by one subscript only, according to the definition

σx′x′ = σx , σy′y′ = σy , σx′y′ = 0 . (8.75)

The stress components σx and σy are the principal stresses.

In a rotated coordinate system the normal stress components are given by
(8.69a) and (8.69b). The principal stresses σx and σy can be determined by
combining these formulae with (8.74) for the angle θ. First it is observed that
by (8.69a) the sum of the normal stresses is independent of the angle θ,

1
2

(
σx + σy

)
= 1

2

(
σxx + σyy

)
. (8.76)

Similarly, the difference between the normal stresses follows as

1
2

(
σx − σy

)
= 1

2

(
σxx − σyy

)
cos 2θ + σxy sin 2θ . (8.77)

When adding the square of this equation to the square of the equation (8.73)
the angle θ is eliminated, leaving the equation

1
4

(
σx − σy

)2
= 1

4

(
σxx − σyy

)2
+ σ2

xy , (8.78)

from which
1
2

(
σx − σy

)
= ±

√
1
4

(
σxx − σyy

)2
+ σ2

xy . (8.79)

The principal stresses σx and σy are now obtained as the sum and difference
of (8.76) and (8.79),

σx

σy

}
=

σxx + σyy

2
±
√(σxx − σyy

2

)2
+ σ2

xy . (8.80)

This formula is illustrated in the so-called Mohr’s circle diagram after a brief
discussion of the corresponding result for strains.
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Example 8.7. Tension-torsion of thin-walled cylinder. Some tests are carried out by

subjecting a thin-walled cylinder to tension N and torsion M . This produces an axial
tension stress σ and a shear stress τ in the cylinder wall as illustrated in Fig. 8.26.

Fig. 8.26: Combined tension σ and shear τ stresses in thin-walled cylinder.

For a thin-walled cylinder the variation of the stresses over the wall thickness is negligible,
and the stress state is therefore described by the components

σxx = σ , σyy = 0 , σxy = τ .

In this state of stress the principal stress components are

σx

σy

}
= 1

2
σ ±

√
1
4
σ2 + τ2 ,

and the angle θ follows from (8.74) as

tan 2θ =
2τ

σ
.

If σ decreases, the principal stresses approach σ1 
 −σ2 
 τ , and the angle approaches
θ = 45◦. This state of stress corresponds to pure torsion with the principal stresses of equal

magnitude and opposite sign, inclined by 45◦ to the axis of the cylinder. �

Principal strains in plane strain

The principal coordinate system with respect to strains is defined by the
property that in this coordinate system the shear strain component(s) vanish.
This property is illustrated in Fig. 8.27. In plane strain a square with sides
parallel to the principal coordinate axes deforms into a rectangle, retaining
right angles at the corners. The corresponding strains are called the principal
strains.

Fig. 8.27: Principal strains εx, εy and angle θ.
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The angle θ defining the principal strain coordinate system is determined
from the shear strain formula (8.70c),

tan 2θ =
2εxy

εxx − εyy
. (8.81)

The corresponding principal strains ε1 and ε2 follow from (8.70a) and (8.70b)
in exactly the same way as for the corresponding principal stresses. Thus the
result is

εx

εy

}
=

εxx + εyy
2

±
√(εxx − εyy

2

)2
+ ε2xy . (8.82)

This formula can also be illustrated by Mohr’s circle diagram, shown for
stress components in the next section.

Mohr’s circle for plane stress

The stress state at a point can be illustrated by a geometrical diagram due
to Mohr (1835–1918). It is convenient to consider the principal coordinate
system as the starting point. In this coordinate system the stress state is given
by the principal stresses as σxx = σx, σyy = σy, σxy = 0. In the following the
principal axes are chosen such that σx ≥ σy. The stress state σx′x′ , σy′y′ , σx′y′

in a coordinate system rotated by the angle θ then follows from (8.68) as

σx′x′ =
σx + σy

2
+

σx − σy

2
cos 2θ ,

σy′y′ =
σx + σy

2
− σx − σy

2
cos 2θ ,

σx′y′ = − σx − σy

2
sin 2θ ,

(8.83)

where it has been used that the shear stress vanishes in the principal co-
ordinate system. The stress state σx′x′ , σy′y′ , σx′y′ can be illustrated in the

Fig. 8.28: Mohr’s circle for plane stress components σx′x′ , σy′y′ , σx′y′ .
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{σ, τ}-coordinate system shown in Fig. 8.28. In this coordinate system the
stresses [σx′x′ , σx′y′ ] and [σy′y′ ,−σx′y′ ] are located at diametrically opposite
points of a circle centered at

[
1
2 (σx + σy), 0

]
with radius 1

2 (σx − σy). The
rotated {x′y′}-coordinate system is shown to illustrate the angle θ. By a geo-
metric argument this angle appears at the point [σy′y′ ,−σx′y′ ] as a periphery
angle, and therefore appears with 2θ as center angle. With the center angle
2θ established the coordinates of the points [σx′x′ , σx′y′ ] and [σy′y′ ,−σx′y′ ]
are seen to reproduce the transformation formulae (8.83). As the angle θ
increases, the points move counter-clockwise around the circle.

The circle is characterized by the parameters

Center :
σx + σy

2
, Radius :

σx − σy

2
, τmax =

σx − σy

2
, (8.84)

where the last formula states that the maximal shear stress on any section is
given by the radius of the circle τmax. It also follows directly from the figure
that the maximum normal stress is the principal stress σx, and the minimum
normal stress is the principal stress σy.

Example 8.8. Mohr’s circle for tension-shear. The stress state in the wall of the thin-

walled cylinder in tension and torsion considered in Example 8.18 was

σxx = σ , σyy = 0 , σxy = τ .

Fig. 8.29: Mohr’s circle for combined tension and shear.

This stress state is shown in a Mohr’s circle diagram in Fig. 8.29. Note, that the angle θ is
negative in the diagram, because it denotes the angle from the principal axes to the axes

of the stress state under consideration. �

The transformation formulae (8.70) for the strain components are identical
to (8.68) for the stress components, and it is then clear that the Mohr’s circle
diagram can also be used to illustrate the strain components in a coordinate
system that is rotated θ relative to the principal strain coordinate system.
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8.4.4 Principal stresses in three dimensions

In three-dimensional problems the concept of principal stress is conveniently
defined in terms of vectors. Figure 8.30 illustrates that when n is a unit vector
in a principal direction, the corresponding stress vector is proportional to n,

tn = σ n , (8.85)

and σ is the magnitude of the corresponding principal stress. In two-
dimensional problems the direction is determined by a single angle θ, while
in three dimensions the direction involves all three components of the vec-
tor n. The technique for three-dimensional problems is therefore somewhat
different from the simple two-dimensional problem considered above.

Fig. 8.30: Principal stress normal to the surface.

Analytical determination from invariants

In order to identify the principal directions the defining vector relation (8.85)
is expressed by the stress component matrix σ as

σ n = σ n . (8.86)

When introducing the unit matrix I, this relation can be written as

[
σ − σ I

]
n = 0 . (8.87)

This is an eigenvalue problem consisting of a set of homogeneous equations
that will only have a non-trivial solution n = [nx, ny, nz]

T for particular
values of the parameter σ, the so-called eigenvalues. In component form the
eigenvalue problem is

⎡
⎣
σxx − σ σxy σxz

σyx σyy − σ σyz

σzx σzy σzz − σ

⎤
⎦
⎡
⎣
nx

ny

nz

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ . (8.88)

Non-trivial solutions to homogeneous equations can only be obtained, when
the determinant of the coefficient matrix vanishes. Thus, the condition for a
non-trivial solution is the determinant equation
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det
[
σ − σ I

]
=

∣∣∣∣∣∣
σxx − σ σxy σxz

σyx σyy − σ σyz

σzx σzy σzz − σ

∣∣∣∣∣∣
= 0 , (8.89)

with the initially unknown parameter σ.

The determinant can be expanded into a cubic polynomial, whereby the equa-
tion takes the form

σ3 − I1 σ
2 + I2 σ − I3 = 0 . (8.90)

The three roots of this cubic equation are the three principal stresses. The
value of the principal stresses are independent of the original coordinate sys-
tem, and the coefficients I1, I2 and I3 of the cubic equation must therefore
also be independent of the particular choice of the initial coordinate system.
The coefficients I1, I2 and I3 are therefore called the (stress) invariants. They
are evaluated by expanding the determinant, whereby

I1 = σxx + σyy + σzz ,

I2 =

∣∣∣∣
σyy σyz

σzy σzz

∣∣∣∣ +
∣∣∣∣
σzz σxz

σzx σxx

∣∣∣∣ +
∣∣∣∣
σxx σxy

σyx σyy

∣∣∣∣
= σyyσzz + σzzσxx + σxxσyy − σ2

yz − σ2
xz − σ2

xy ,

I3 =

∣∣∣∣∣∣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

∣∣∣∣∣∣
= σxx σyy σzz + 2σyz σxz σxy

− σxx σ
2
yz − σyy σ

2
xz − σzz σ

2
xy .

(8.91)

It is observed that the mean stress is 1
3I1, and thereby invariant. This was

already found for two-dimensional stress states in (8.69a).

Stress invariants are used to find the principal stresses by solving the cubic
equation (8.90). They are also useful in theories of material behavior. When
used in this connection they are often expressed in terms of the principal
stresses. These expressions are found by removing the shear components from
the general formulae (8.91), whereby

I1 = σx + σy + σz ,

I2 = σy σz + σx σz + σx σy ,

I3 = σx σy σz .

(8.92)

The transformation rules are identical for stress and strain components, and
the present theory of principal stresses in terms of stress invariants therefore
has an exact counterpart for principal strains in terms of strain invariants.
The use of invariants in models of material behavior is discussed in Chapter 9.
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Mohr’s circles for triaxial stress

There is also a Mohr’s circle diagram for a general three-dimensional stress
state. However, it is much more complex than the two-dimensional case,
and while the two-dimensional Mohr’s circle can often be used in practical
analysis of stress states, the three-dimensional Mohr’s circle mainly serves as
an illustration of the properties of a general state of stress.

Like in the two-dimensional case it is convenient to start in the principal
coordinate system, and to assume the principal stresses to be ordered with
respect to magnitude. Thus, in the principal coordinate system the stress
state is given by

σ =

⎡
⎣
σx

σy

σz

⎤
⎦ , σx ≥ σy ≥ σz . (8.93)

In this coordinate system the stresses on a section defined by the unit normal
vector n = [nx, ny, nz] is to be investigated. The stress vector on this section
follows from (8.10) as

tn =

⎡
⎣
σx

σy

σz

⎤
⎦
⎡
⎣
nx

ny

nz

⎤
⎦ =

⎡
⎣
σxnx

σyny

σznz

⎤
⎦ . (8.94)

The stress vector tn has a normal component σ in the direction of n and a
shear component τ in the section as illustrated in Fig. 8.2.

The objective now is to express the stress components σ and τ in terms of
the components [nx, ny, nz] of the unit normal. The first step is to form three
equations: one for the length of the normal vector, one for the length of the
normal component, and one for the length of the stress vector. These three
equations are

1 = |n|2 = n2
x + n2

y + n2
z ,

σ = nT tn = σx n
2
x + σy n

2
y + σz n

2
z ,

σ2 + τ2 = |tn|2 = σ2
x n

2
x + σ2

y n
2
y + σ2

z n
2
z .

(8.95)

These three equations can be solved for n2
x, n

2
y and n2

z. The solution is

n2
x =

τ2 + (σ − σy)(σ − σz)

(σx − σy)(σx − σz)
, n2

y = · · · , n2
z = · · · , (8.96)

where the expressions for n2
y and n2

z are found by cyclic permutation of the
subscripts.
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Fig. 8.31: Mohr’s circles for a triaxial stress state.

The expression for n2
x can be rewritten as a relation between the stress com-

ponents σ and τ in the form

(σ − σy)(σ − σz) + τ2 = n2
x (σx − σy)(σx − σz). (8.97)

By rearranging the terms it is seen that this is the equation for a circle in
the στ -plane,

(
σ − σy + σz

2

)2
+ τ2 =

(σy − σz

2

)2
+ n2

x (σx − σy)(σx − σz). (8.98)

This is the equation of a circle with center at
[
1
2 (σy + σz), 0

]
and radius Rx

determined by

R2
x =

(σy − σz

2

)2
+ n2

x (σx − σy)(σx − σz). (8.99)

The center is independent of the normal vector component nx, while the
radius attains a minimum for nx = 0 and a maximum for nx = ±1. It follows
from (8.99) that

(σy − σz

2

)2
≤ R2

x ≤
(σy + σz

2

)2
+ σ2

x − σx

(
σy + σz

)
. (8.100)

By grouping the terms of the upper limit as a square the following limits on
the radius are obtained,

1
2

(
σy + σz

)
− σz ≤ Rx ≤ σx − 1

2

(
σy + σz

)
. (8.101)

It is seen that with the center at [12 (σy + σz), 0] the largest circle with radius
R1 passes through the point [σx, 0], while the smallest circle with radius R2

passes through the point [σz, 0]. These circles are shown in Fig. 8.31.

On the basis of the above analysis it can be concluded that the equation
(8.96a) for the component nx imposes the restriction that the stress state
[σ, τ ] must lie in the domain between two circles with center at

[
1
2 (σy+σz), 0

]
,
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passing through all the three points [σx, 0], [σy, 0] and [σz, 0]. In a similar way
the equations (8.96b) and (8.96c) generate equations for circles in terms of
the components ny and nz. The stress state (σ, τ) must satisfy the conditions
imposed by all three equations, each defining a domain between two circles.
The common domain is shown as the hatched area in Fig. 8.31. It is seen
from the figure that the maximum shear stress is given by

τmax =
σx − σz

2
, (8.102)

while the maximum and minimum normal stress is σy and σz, respectively. A
more detailed understanding of the three-dimensional stress state at a point
can be obtained by rotating the axes associated with any of the planes defined
the principal directions, see e.g. Hibbeler (2005).

8.5 Exercises

Exercise 8.1. The figure shows a column loaded by a central compression force P . Four
different cross section are considered in this exercise, and the dimensions are shown in the

figure to the right, where the dimensions are h = 60mm, b = 75mm and t = 10mm.

a) Determine the mean axial stress σ in the section A for each of the four cross sections.

b) Determine the magnitude of P that corresponds to σ = 200MPa.

Exercise 8.2. The figure shows a pinned connection between two cylindrical bars. The

bars are loaded by a tension force P = 10 kN, which is transferred through the connection
by the cylindrical pin, indicated by the dashed line in the figure. The diameter of the

circular cross section of the left and right bar is al = 60mm and ar = 48mm, respectively,
while it is b = 30mm for the pin.

a) Determine the mean axial stress, σl and σr, in the bars.

b) Determine the mean shear stress τ in the pin.
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Exercise 8.3. The figure shows a test specimen loaded in ten-
sion by the force P . The cross section is rectangular with area

A. The figure shows a plane section inclined by θ relative to
the loading direction. At this section the stress distribution is

assumed to be homogeneous.

a) Determine the shear stress τ at the inclined section as

function of θ.

b) Find the angle θmax that corresponds to the maximum

shear stress.

c) Determine the maximum shear stress τmax.

Exercise 8.4. The figure shows a test specimen loaded in
compression by the force P = 1kN. The cross section is rect-

angular with width b = 100mm and thickness t = 50mm. The
figure shows a section inclined by θ = 30◦ relative to the cross

section. At this section the stress distribution is assumed to
be homogeneous.

a) Determine the axial stress σ on the inclined section.

b) Determine the shear stress τ on the inclined section.

Exercise 8.5. The figure shows the stress state in terms

of σ∗ in plane stress conditions.

a) Identify the stress components σxx, σyy and σxy .

b) Determine the principal stresses σx and σy , and the

orientation of the principal coordinate system.

c) Draw the Mohr’s circle diagram and indicate the stress

state of the figure in the diagram.

Exercise 8.6. The figure shows the plane stress state at a particular point in a structure.

a) Identify the stress components σxx, σyy and σxy .

b) Determine the stress components in a coordinate sys-

tem rotated by θ = 25◦.

c) Determine the principal stresses and the orientation
of the principal coordinate system with respect to the
{x, y} coordinate system.

d) Draw the Mohr’s circle diagram and indicate the stress state of the rotated components
in b) in the diagram. Also determine the maximum shear stress τmax.

Exercise 8.7. The figure shows an infinitely stiff beam

AB with a simple support in A. The beam is supported
by a wire CD at the center of the beam in D, and the

application of a transverse tip load leads to an inclination
of θ = 1◦ of the beam, as indicated in the figure.

a) Determine the horizontal displacement of D and the
elongation of the wire CD.

b) Determine the Green strain εG in (8.23).

c) Determine the linear strain ε in (8.30), and compare

to εG.
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Exercise 8.8. The figure shows a plate with dimensions a1 = 300mm and a2 = 250mm.

The deformation of the plate can be written in bi-linear form as

u(x, y) = A1 +B1x+ C1y +D1xy ,

v(x, y) = A2 +B2x+ C2y +D2xy

introducing eight constants Aj , Bj , Cj and Dj .

In the figure the deformation is indicated by the dashed line, where the corner displacement
in both cases is determined by d1 = 3mm and d2 = 2mm.

a) Find the expressions u(x, y) and v(x, y) for both deformation cases shown in the figure.

b) Determine an expression for the axial strains εxx and εyy and the shear strain εxy .

c) Find the value of the strains εxx, εyy and εxy at the center of the plate.

Exercise 8.9. The quadratic plate in the figure is fixed
along AB and the dimensions are given by a = 150mm.

The side CD is displaced d = 2mm to the right, as indi-
cated by the dashed line in the figure.

a) Determine the axial strain in the direction of AD.

b) Determine the axial strain in the direction of AC.

c) Determine the shear strain in the {xy}-coordinate sys-
tem.

Exercise 8.10. The figure shows a cylindrical compression tank with diameter D = 1.0m
and wall thickness t = 10mm. The tank is composed of steel plates welded together at

angle θ = 45◦ relative to longitudinal direction of the cylinder, as shown in the figure. The
overpressure in the tank is p = 10MPa.

a) Determine the stresses in the longitudinal σl and circumferential σr direction, respec-
tively.

b) Determine the axial and shear stress in the welding seam.

Exercise 8.11. At a point A in a compression tank the following strains have been mea-

sured:
εxx = 480 · 10−6 , εyy = 720 · 10−6 , εxy = 325 · 10−6 .

It is assumed that εzz = 0.

a) Determine the principal strains εx and εy in A.

b) Find the maximum angular strain γ in the {x, y} coordinate system.

c) Find the absolute maximum angular strain γ.
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Exercise 8.12. The figure shows a strain gauge rosette with angle θ = 60◦ mounted on a

plate. The strain gauge a is located along the x-axis and the individual strain readings of
the rosette are:

εa = 950 · 10−6 , εb = 380 · 10−6 , εc = −220 · 10−6 .

a) Determine the strain components in the x, y-plane.

b) Determine the magnitude and direction of the princi-

pal strains.

c) Draw Mohr’s circle for the strains.

d) Find the magnitude of the maximum shear strain.

Exercise 8.13. The figure shows a strain gauge rosette
with angle θ = 60◦ mounted on a plate. The strain gauge

b is located along the x-axis.

a) Express the strain components εa, εb and εc as func-

tion of εxx, εyy and εxy .

b) Invert the relations in a) to obtain the corresponding

expressions for εxx, εyy and εxy as function of the
measurements εa, εb and εc.

Exercise 8.14. Consider a thin-walled cylinder loaded by an axial force N and a torsion
moment M as shown in Fig. 8.26 in Example 8.7. Let the cylinder have radius r = 20t,

where t is the wall thickness. When the cylinder is thin-walled, higher order terms in t/r
can be neglected, and the normal stress σ and the shear stress τ can be assumed uniformly

distributed over the cross-section.

a) Express the normal stress σ in terms of N and t, and the shear stress τ in terms of M

and t.

b) Consider the case M = aN , and determine the principal stresses σx and σy , and their
angle θ with respect to the longitudinal axis of the cylinder.

c) Illustrate the stress state by a Mohr’s circle diagram, and identify the various stresses
and the angle 2θ in the diagram.

Exercise 8.15. The figure to the left shows a simple linear deformation field encountered

in finite element analysis of beams and plates using only the axial displacement

u(x, y) = c xy .

In the figure to the right a quadratic vertical displacement has been added to give the

displacement field
u(x, y) = c xy , v(x, y) = − 1

2
c x2

representative of bending of a beam.

a) Determine the axial strain εxx and the shear strain εxy = εyx for the linear deformation
field in the left figure.

b) Determine the axial strain εxx and the shear strain εxy = εyx for the quadratic
deformation field in the right figure.

c) Make a sketch that illustrates the two strain fields.
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The mechanical behavior of materials depends on the relation between
stresses and strains in the material. In the previous chapter stresses and
strains have been discussed independently, but in order to represent material
behavior, models that relate the stresses and strains must be established. The
problem is illustrated in Fig. 9.1, showing a typical tension test on a metal
bar. The test specimen is designed such that the load P leads to a uniformly
distributed uniaxial stress σx in the central part of the cylindrical test spec-
imen. This state of stress leads to an axial strain εx, but in most materials
also to transverse contraction described by the strain components εy = εz.
The typical behavior registered in the test is the development of strain(s),
when the load and thereby the axial stress σx is increased, as illustrated in
the right part of the figure. Typically, the first part of the stress-strain curve
is reversible, meaning that it is traced backward if the specimen is unloaded.
In many materials, like e.g. metals, additional irreversible strains develop,
when the load exceeds a certain level. In metals this phenomenon is called
yielding and is associated with movement of dislocations in the crystal struc-
ture of the material. However, also materials like concrete and soil exhibit
development of nonlinear irreversible strain at sufficiently high load levels,
but due to different mechanisms.

This chapter presents a brief introduction to two aspects of material behav-
ior: elastic behavior typical of working conditions in structures, and criteria
describing the states of stress limited by material failure. In both cases a cen-
tral point is the systematic generalization of the theories beyond the simple
uniaxial case illustrated in the figure. Section 9.1 gives a concise introduction
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Fig. 9.1: Tension test on metal with elastic elongation, yield and failure.

to the theory of linear elasticity for a three-dimensional continuum. Simple
special cases of this theory form an important tool in structural design, and
the general theory constitutes the basis of most Finite Element programs,
extensively used for analysis of structures, see e.g. Cook et al. (2002) and
Zienkiewicz and Taylor (2000). After a brief general introduction the presen-
tation is specialized to linear elasticity of isotropic materials, i.e. materials
with properties that do not depend on the orientation. Anisotropy plays an
important role in connection with composite materials. The basic theory has
been presented by Lekhnitskii (1963), while applications to composites are
dealt with e.g. by Jones (1999) and Reddy (2004).

Nonlinear models of material behavior play an increasing role in connection
with analysis of structures by numerical methods, and a broad survey of
the various models has been given e.g. by Lemaitre and Chaboche (1990)
and Ottosen and Ristinmaa (2005). Many of these models provide a gradual
nonlinear development of strains with increasing stress up to failure of the
material. A general presentation of such models is outside the scope of the
present book, but the more limited subject of typical conditions for yield
and failure of metals is discussed in Section 9.3. These conditions are closely
related to the theory of plasticity, which provides the transition from the
initial development of additional irreversible strain to failure of the material,
see e.g. Chakrabarty (2009) and Ottosen and Ristinmaa (2005). There is a
marked difference between the yield and failure of metals and the similar
characteristics in materials like concrete and soil. This is primarily due to
the fact that while the mean stress has no or at most moderate influence
on yield and failure of metals, an additional triaxial compression will lead
to a marked increase in the strength of materials like concrete and soil. A
simple explanation of this effect is given in Section 9.4, presenting the theory
of friction materials.

9.1 Elastic materials

The simplest material model consists of the assumption that there exists
a linear relation between the stress components and the strain components
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at any point of the body. As suggested by Fig. 9.1c this behavior is often
found for limited stresses and strains, and as these stress and strain levels are
often typical of the operating conditions of structures, the theory of linear
elasticity plays an important role in the design of structures. The present
section concentrates on the linear theory of elasticity for isotropic materials,
but in order to put the properties of this theory into perspective it is derived
from the internal energy of the material.

9.1.1 Internal elastic energy

An elastic material is characterized by the property that any deformation
imposed by the application of stresses vanish, if the stresses are removed,
whereby the elastic body returns to its original shape. This property applies
to any stage of the deformation process, and it is therefore reversible. This in
turn implies, that the work performed on any small volume of the material
by application of stresses will be stored in the form of internal energy in the
material. The work performed by the stresses σ on a small unit cube, when
it changes its state of strain by the incremental strains dε has already been
treated in connection with the virtual work equation in Section 8.3.2. The
internal work per unit volume is

dW = σxx dεxx + σyy dεyy + σzz dεzz

+ σyz dγyz + σzx dγzx + σxy dγxy = σT dε .
(9.1)

where the last expression appears as a scalar product, when using the six-
component vector notation of Section 8.3.2 for stresses and strains. The full
symmetric nine-component format can also be used, when respecting the
symmetry conditions.

Fig. 9.2: Elastic stress–strain curve with internal energy density U(ε).

In an elastic material there exists a specific internal energy density U(ε),
which represents the internal energy per unit volume, when the material is
in a state of deformation described by the strain components ε. The internal
energy density as a function of the state of strain is illustrated in Fig. 9.2.
When changing the state of strain in an elastic material the external work
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dW is equal to the change in internal energy,

dW = dU(ε) =
∂U

∂ε
dε . (9.2)

The strain increment dε is arbitrary, and comparison of the expressions (9.1)
and (9.2) for dW and dU then leads to the following relation between the
stress components and the partial derivatives of the internal energy function,

σT =
∂U

∂ε
=
[ ∂U

∂εxx
,
∂U

∂εyy
, · · · , ∂U

∂γxy

]
. (9.3)

It is noted, that by this relation symmetry of the stress components follows
from the symmetry of the strain components.

In an elastic material the stress and strain components are connected by the
relation (9.3). The relation between a small change in the six stress compo-
nents dσ and the corresponding change dε of the six independent strains can
then be found by differentiation,

dσ = d
(∂U
∂ε

)
=

∂2U

∂εT∂ε
dε . (9.4)

Note, that the components from the second differentiation are combined with
the increment components, while the first differentiation generates a column
array. This is a relation of the form

dσ = D dε , (9.5)

with a 6× 6 component elastic stiffness matrix

D =
∂2U

∂εT∂ε
=

⎡
⎢⎢⎢⎢⎣

D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66

⎤
⎥⎥⎥⎥⎦
. (9.6)

The origin of the matrix D via a double derivative of the internal energy
potential U(ε) implies symmetry,

DT = D . (9.7)

Thus, the stiffness is specified by 1
26(6 + 1) = 21 independent stiffness com-

ponents Dij(ε). However, in most cases considerable simplifications occur.

In a linear elastic material the stiffness coefficients Dij are constants, and
the stress-strain relation can therefore immediately be integrated from an
incremental relation to a relation between current stress and current strain,
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σ = D ε (9.8)

with the component form

⎡
⎢⎢⎢⎢⎣

σxx
σyy
σzz
σyz
σzx
σxy

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

εxx
εyy
εzz
γyz
γzx
γxy

⎤
⎥⎥⎥⎥⎦
. (9.9)

Note, that this relation is formulated using the 6-component format for
stresses and strains in terms of the angle strains γxy = 2εxy etc. This implies
that transformation to a different coordinate system requires reformulation
of the transformation relations derived in Chapter 8. This is an important
aspect of elasticity theory for anisotropic materials, such as laminated com-
posites, see e.g. Reddy (2004), but will not be treated in detail here. When
formulated carefully, the boldface notation for stresses and strains can set up
to cover both the component matrix and the single-array formats within the
same relations. This is often used in modern continuum mechanics and finite
element texts, see e.g. Zienkiewicz and Taylor (2000) and Krenk (2009).

9.1.2 Linear isotropic elasticity

For isotropic materials the material properties are independent of the partic-
ular orientation of the material relative to the load and deformation states.
This implies for example that tension will produce the same effect, irrespec-
tive of the direction of the tension. Isotropy is the ultimate condition of
material symmetry. A material that is not isotropic is called anisotropic.
Anisotropic materials are of increasing importance in connection with the
increased use of composites with properties specially designed for particu-
lar applications. An introduction to anisotropic elasticity has been given by
Lekhnitskii (1963). In this section it is demonstrated how various kinds of
material symmetry gradually reduce the number of independent elastic pa-
rameters, until reaching the isotropic elastic material, described by only two
independent elastic parameters.

Figure 9.3 shows a small cube of a material with symmetry about the three
coordinate planes. The cube is loaded by the normal stress components
σxx, σyy, σzz, but without shear stress components. The normal stress compo-
nents are therefore principal stresses, σx, σy, σz. When the material proper-
ties are symmetric about the coordinate planes the cube must deform without
shear strain components, γyz = γzx = γxy = 0, because shear strains would
break the symmetry. This is most easily seen by imagining a shear strain
component such as γxy �= 0. If the figure were seen from the back side of
the paper the stresses and the normal strains εxx, εyy, εzz would remain the
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same, while the shear strain γxy would have changed sign. This would break
the assumed material symmetry, and thus γxy = 0.

Fig. 9.3: a) Principal stresses, and b) principal strains.

In conclusion, if there is material symmetry about the coordinate planes,
a state of normal stress on the coordinate planes leads to a state of normal
strain on these coordinate planes. This requires that the lower left 3×3 block
of the elastic stiffness matrix D matrix vanishes, as otherwise the normal
strains would produce shear stresses. By symmetry of the D matrix this in
turn implies that the upper right 3×3 block vanishes. This leaves the following
elasticity relation for materials with symmetry about the coordinate planes

⎡
⎢⎢⎢⎢⎣

σxx
σyy
σzz
σyz
σzx
σxy

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

D11 D12 D13 0 0 0
D21 D22 D23 0 0 0

D31 D32 D33 0 0 0
0 0 0 D44 D45 D46

0 0 0 D54 D55 D56

0 0 0 D64 D65 D66

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

εxx
εyy
εzz
γyz
γzx
γxy

⎤
⎥⎥⎥⎥⎦
. (9.10)

It is seen that the block matrix format with vanishing of-diagonal blocks
implies that normal stresses couple with normal strains, and shear stresses
with shear strains, while there is no coupling between normal stresses and
shear strains or shear stresses and normal strains. For an isotropic material
any set of coordinate axes will have material symmetry, and thus the elasticity
relation will always be in the form (9.10).

Before proceeding with the reduction it is convenient to introduce the inverse
relation in terms of the elastic flexibility matrix C = D−1. In terms of the
elastic flexibility coefficients Cij the relation (9.10) is

⎡
⎢⎢⎢⎢⎣

εxx
εyy
εzz
γyz
γzx
γxy

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0

C31 C32 C33 0 0 0
0 0 0 C44 C45 C46

0 0 0 C54 C55 C56

0 0 0 C64 C65 C66

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

σxx
σyy
σzz
σyz
σzx
σxy

⎤
⎥⎥⎥⎥⎦
. (9.11)

The upper and lower blocks are now determined for isotropic materials by
considering uniaxial tension and shear, respectively.
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Fig. 9.4: Tension σx with elongation εx and transverse contraction νεx.

Figure 9.4 shows a state of uniaxial tension σx with σy = σz = 0. This state of
stress leads to principal strains εx, εy, εz. The magnitude of the axial strain εx
is described by the modulus of elasticity E, defined such that εx = σx/E. By
symmetry the two transverse directions are identical, and thus the transverse
strain may be described by a parameter ν as εy = εz = −νεx. The parameter
ν is called Poisson’s ratio. This state of stress and strain determines the first
column in the elasticity relation (9.11),

⎡
⎢⎢⎣
εx
εy
εz
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1/E

−ν/E

−ν/E

. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣
σx
0
0
...

⎤
⎥⎥⎦ . (9.12)

Similarly, uniaxial stress states along the other two axes determine the next
two columns. In an isotropic material the properties for the axes are identical,
and thus ⎡

⎢⎢⎣
εx
εy
εz
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1/E −ν/E −ν/E

−ν/E 1/E −ν/E

−ν/E −ν/E 1/E

. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣
σx
σy
σz
...

⎤
⎥⎥⎦ . (9.13)

This completes the determination of the upper 3 × 3 block of the elasticity
matrix in (9.11) in terms of the modulus of elasticity E and Poisson’s ratio
ν. These parameters have a direct physical interpretation in relation to a
uniaxial state of stress, often used in testing of materials.

Fig. 9.5: Shear deformation in the yz-plane by angle strain γyz .
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The lower 3 × 3 block of the elasticity matrix in (9.11) is determined by
considering a state of shear, shown in Fig. 9.5. The shear stresses σyz and
σzy are symmetric with respect to the yz-plane, and thus the deformation
must also be symmetric with respect to this plane. This excludes the shear
components γxy and γzx, leaving only a relation of the form γyz = σyz/G,
where G is the shear modulus. By considering shear in each of the coordinate
planes in turn, the lower block is determined as

⎡
⎢⎢⎢⎣

...

γyz
γzx
γxy

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

. . .

1/G

1/G

1/G

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

...

σyz

σzx

σxy

⎤
⎥⎥⎥⎦ . (9.14)

Thus, the lower block is diagonal, containing only a single parameter, the
shear modulus G.

The complete set of stress-strain relations for an isotropic linear elastic ma-
terial follows from combination of (9.13) and (9.14),

⎡
⎢⎢⎢⎢⎣

εxx
εyy
εzz
γyz
γzx
γxy

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1/E −ν/E −ν/E 0 0 0

−ν/E 1/E −ν/E 0 0 0

−ν/E −ν/E 1/E 0 0 0

0 0 0 1/G 0 0

0 0 0 0 1/G 0

0 0 0 0 0 1/G

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

σxx
σyy
σzz
σyz
σzx
σxy

⎤
⎥⎥⎥⎥⎦
. (9.15)

This relation is sometimes called the generalized Hooke’s law, in honor of
Robert Hooke (1635–1703), who considered one-dimensional extension
and identified the law of proportionality.

The generalized Hooke’s law (9.15) for isotropic linear elastic materials con-
tains three elastic parameters: the modulus of elasticity E, the shear modulus
G, and Poisson’s ratio ν. The modulus of elasticity and the shear modulus
have dimension of stress, i.e. [Force/Area] = [N/m2], while Poisson’s ratio
is non-dimensional. A closer analysis reveals that only two of the elasticity
parameters of linear isotropic elasticity are independent. The connection be-
tween the three original parameters E, G and ν is established by considering
a state of shear, generated by a combination of equal compression and tension
along two of the coordinate directions. This state of stress has already been
considered in Examples 8.17 and 8.19.

Figure 9.6 shows a state of shear established by combining equal compres-
sion and tension along two of the coordinate axes. The third principal stress
component is assumed to vanish. The first figure shows the state of opposite
principal stresses of equal magnitude, −σx = σy = σ. As illustrated in the
upper right figure this corresponds to a state of shear σx′y′ = σ on a set of
planes rotated by θ = 45◦ relative to the principal axes. The lower part of
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Fig. 9.6: State of shear established via equal compression and tension.

the figure shows the corresponding state of strain, calculated in the principal
axis system to the left and in the rotated system to the right. In the principal
axis system the strains follow from the first two rows of (9.15) as

− εx = εy =
1 + ν

E
σ . (9.16)

These strains are of opposite sign and equal magnitude, and therefore trans-
form in a similar way as the stresses to give a state of shear deformation on
axes rotated by θ = 45◦ with shear strain

εx′y′ =
1 + ν

E
σ . (9.17)

The shear strain in the rotated coordinate system could also have been de-
termined directly from the shear stress σx′y′ . In fact it follows directly from
the last row of (9.15), when applied in the rotated coordinate system, that

γx′y′ =
1

G
σx′y′ =

1

G
σ . (9.18)

When using that γx′y′ = 2εx′y′ it follows from comparison of (9.17) and (9.18)
that

G =
E

2(1 + ν)
. (9.19)

A common value of Poisson’s ratio for isotropic elastic materials is ν 
 0.25,
giving G 
 0.4E.
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Volume change and the bulk modulus

It was demonstrated in Section 8.2.1 that within a linear theory the relative
change of volume is given by the volume strain defined by (8.33),

e = εxx + εyy + εzz . (9.20)

For an isotropic linear elastic material the volume strain is expressed in
terms of the stresses by addition of the first three rows of the elasticity rela-
tion (9.15),

e =
1− 2ν

E
(σxx + σyy + σzz) . (9.21)

This is a relation between the volume strain e and the mean stress

σm = 1
3 (σxx + σyy + σzz) . (9.22)

The pressure is the negative of the mean stress, and the relation (9.21) there-
fore shows the stiffness with respect to volume changes. It is customary to
express this relation in the form

e =
σm

K
(9.23)

where the stiffness parameter K is the bulk modulus,

K =
1

3

E

1− 2ν
. (9.24)

The elastic modulus E, the shear modulus G and the bulk modulus K all
represent the stiffness in a simple experiment. If the material presents re-
sistance to deformation all these parameters must be positive. The relations
(9.19) and (9.24) then impose restrictions on permissible values of Poisson’s
ratio. In fact, it follows from these relations that

− 1 < ν ≤ 1
2 . (9.25)

In practice it is found that 0 < ν < 1
2 , where the upper limit corresponds to

an incompressible material.

The bulk modulus K and the shear modulus G are closely related to the
physical behavior of the material. The bulk modulus represents the resistance
to change of volume, as expressed by the relation between the mean stress
σm and the volume strain e. It was demonstrated in Section 8.4 that the
volume strain e and the mean stress σm can be expressed in terms of the
first invariant of the strain tensor and the stress tensor, respectively. Thus,
they do not depend on the orientation of the coordinate system selected
for the individual components. This confirms that the bulk modulus K is a
scalar invariant, independent of any particular coordinate system. The shear
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modulus describes the stiffness in a shear deformation in an arbitrary plane
in the material. Thus, the shear mechanism is oriented in space, but in an
isotropic material the shear stiffness is independent of this orientation. Thus,
the stiffness properties of an isotropic elastic material can be described by
two scalar parameters K and G, each representing a well defined physical
mechanism. The separation of deformation mechanisms into change of volume
and change of shape is discussed further in Section 9.2.

Tension with constrained transverse contraction

It was illustrated in Fig. 9.4 that the deformation associated with uniaxial
tension consists of an elongation, determined by the elastic modulus E, and
a transverse contraction, determined by Poisson’s ratio ν. In some cases the
transverse contraction is prevented by surrounding material. This is the case
e.g. for concrete used to fill the tubular members when strengthening off-shore
structures, or when pulling on a bar that is cast into another material. In these
cases the transverse contraction is reduced and a transverse stress appears.
The magnitude of this effect depends on the stiffness of the surrounding
material. The extreme case, in which transverse contraction is completely
prevented, is illustrated in Fig. 9.7.

Fig. 9.7: Uni-axial tension with prevented transverse contraction.

For uniaxial tension σx complete prevention of the transverse contraction
corresponds to εy = εz = 0. It follows from the symmetry of the problem
that the transverse stress components are equal, σy = σz. Their magnitude
is found by using the second equation in (9.15),

εy = − ν

E
σx +

1− ν

E
σy = 0 . (9.26)

It follows from this equation that the transverse stress is

σy = σz =
ν

1− ν
σx . (9.27)

Thus, axial tension σx leads to transverse tension with magnitude determined
by Poisson’s ratio. In the extreme case of an incompressible material ν = 1

2 ,
whereby σy = σz = σx. It is seen that for a large value of Poisson’s ratio
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(ν 
 0.45–0.50) the transverse stress components are of the same order as
the directly imposed axial stress. In most practical situations the effect is
somewhat smaller. The transverse stresses act to reduce the elongation, and
thus the material appears with a larger axial stiffness than in the uncon-
strained case. Substitution of the transverse stresses into the first equation
of (9.15) gives

εx =
1

E
σx − 2ν

E
σy =

(1 + ν)(1− 2ν)

1− ν

1

E
σx . (9.28)

For ν = 0.25 the relation becomes εx = 5
6σx/E, corresponding to 20% in-

crease of the axial stiffness. This is a fairly moderate effect. However, for
ν approaching the incompressible value 1

2 the stiffness increases to infinity.
Thus, it is important that a large value of Poisson’s value is estimated care-
fully before use, as it may have a large effect on the influence of constraints.

Example 9.1. Transverse beam deformation due to Poisson’s ratio. An example of the
effect of Poisson’s ratio is the bending of a homogeneous isotropic beam with rectangular

cross-section shown in Fig. 9.8a. For constant bending moment there are no shear stresses,
and the normal stresses are

σx = −E κy , σy = σz = 0 ,

where the elastic modulus E is included to give a convenient dimension, when κ is a
representative curvature. The corresponding strains follow from the generalized Hooke’s

law (9.15) as
εx = −κ y , εy = εz = κ ν y ,

while all shear strain components vanish.

Fig. 9.8: Bending of a beam with rectangular cross-section.

The displacement component u can be integrated directly from the strain definition

∂u

∂x
= εx = −κ y .

For symmetry about the yz-plane the solution is

u = −κxy .

For the displacement component w the normal and shear strain conditions εz = −νεx and
γzx = 0 are

∂w

∂z
= εz = κ ν y ,

∂w

∂x
= −∂u

∂z
= 0 .
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The corresponding integral is

w = ν κ yz + f(y)

where f(y) is an arbitrary function of y. It follows from symmetry of the problem about

the xy-plane that w = 0 for z = 0, and thus f(y) must vanish identically. This establishes
the displacement component

w = ν κ yz .

The final displacement component v is found by combining the normal strain condition

∂v

∂y
= εy = ν κ y

with the two shear strain conditions γxy = 0 and γyz = 0,

∂v

∂x
= −∂u

∂y
= κx ,

∂v

∂z
= −∂w

∂y
= −ν κ z .

An integral to these partial differential equations is

v = 1
2
κ
(
x2 + ν y2 − ν z2

)

where the arbitrary constant vanishes for v(0, 0, 0) = 0. It is seen that the parameter κ is

equal to the upward curvature of the x-axis.

The presence of Poisson’s ratio in the generalized Hooke’s law produces transverse contrac-
tion in the parts of the cross section with tension and transverse expansion in the parts with

compression. The transverse displacements of the section x = 0 are illustrated in Fig. 9.8b.
It is seen that the top and bottom planes of the beam become curved. For a homogeneous

beam the effect is purely kinematic and is usually neglected in design calculations. �

Plane stress

The concept of plane stress was introduced in Section 8.4.1. It is used as a
generally good approximation in problems involving in-plane forces in a plane
body with a transverse dimension that is small relative to the in-plane dimen-
sions. The assumption of plane stress implies that only the stress components
σxx, σxy and σxy are considered to be non-zero. For plane stress the in-plane
components of the generalized Hooke’s law follow directly from (9.15) in the
form

εxx =
1

E

(
σxx − ν σyy

)
,

εyy =
1

E

(
σyy − ν σxx

)
,

εxy =
1 + ν

E
σxy .

(9.29)

In plane stress the transverse strain component εzz does not generally vanish,
but is given by

εzz = − ν

E

(
σxx + σyy

)
= − ν

1− ν

(
εxx + εyy

)
. (9.30)
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Thus, in plane stress a body that is stretched (εxx+εyy > 0) becomes thinner
(εzz < 0). The magnitude of this effect depends on Poisson’s ratio.

Plane strain

In the case of plane strain, introduced in Section 8.4.1 for bodies with con-
strained deformation in the direction transverse to a plane, the only non-zero
strain components are εxx, εyy and εxy. The transverse displacement con-
straint leads to a transverse stress component σzz that must be accounted
for, when using the generalized Hooke’s law in the form (9.15). It follows di-
rectly from the condition εzz = 0 that in a state of plane strain the transverse
stress component is determined by

σzz = ν (σxx + σyy) . (9.31)

With this relation the stress component σzz can be eliminated from the rele-
vant part of the generalized Hooke’s law (9.15). In plane strain the in-plane
components then satisfy the relations

εxx =
1− ν2

E

(
σxx − ν

1− ν
σyy

)
,

εyy =
1− ν2

E

(
σyy −

ν

1− ν
σxx

)
,

εxy =
1 + ν

E
σxy .

(9.32)

It is seen that the shear relation is the same in plane stress and plane strain.
The relations for the normal stress and strain components are of the same
form, but in the plane strain problem the elastic modulus and Poisson’s ratio
are replaced by the equivalent parameters

E∗ =
E

1− ν2
, ν∗ =

ν

1− ν
. (9.33)

The shear modulus can be expressed in the usual way also in terms of these
parameters, G = E∗/2(1 + ν∗). It follows from this analogy that if a plane
stress problem has been solved, the corresponding plane strain solution can
be obtained by an appropriate change of the elastic parameters.

9.2 Mean and deviator components

While it is fairly straightforward to illustrate vectors and the interaction of
vectors graphically, it is much harder for e.g. stresses and strains with matrix
component structure. This section introduces two concepts that are useful in
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the development and understanding of models relating stresses and strains.
The first is to use principal components for development and description of
general properties. The second is to extract the mean value of the general
states of stress and strain at a point, and to work with these mean values plus
the remaining part of the stresses and strains. These concepts provide an ex-
planation of the simple properties of linear elasticity and give some necessary
background for the yield and failure conditions developed in Section 9.3.

Decomposition of stress

It was seen in Section 9.1.2 that in the linear theory of elasticity the change
of volume was a relation between the volume strain and the mean stress.
The linear volume strain e and the mean stress σm can be expressed by the
first invariant of the stress tensor and the strain tensor, respectively, and
thus represent an invariant scalar property. This suggests a decomposition
of the stress and strain representation into an invariant component, plus a
remainder called the deviator part. This representation is first discussed for
the stresses. The first step is to define the mean stress component

σm = 1
3

(
σxx + σyy + σzz

)
. (9.34)

The deviator stress components σ′ are then defined by subtraction of the
mean stress from the normal stress components,

σ′ =

⎡
⎣
σxx − σm σxy σxz

σyx σyy − σm σyz

σzx σzy σzz − σm

⎤
⎦ . (9.35)

This definition can also be written with the help of the unit matrix I as

σ′ = σ − σmI . (9.36)

Conversely, any stress state can be written as the sum of its deviator part
and its mean stress,

σ = σ′ + σmI . (9.37)

This decomposition into deviator and mean stress plays an important role
in many models of material behavior, because the mean stress is closely as-
sociated with change of volume, while the deviator stress is associated with
shear deformations.

The decomposition (9.37) of a general stress state into deviator stresses and
mean stress is illustrated in principal stress space in Fig. 9.9. The principal
stress state [σx, σy, σz] is shown as a vector with the principal stresses as
components. The figure also shows a plane with normal [1, 1, 1]. The plane is
constructed by intersecting the axes at equal distance from the origin. In the
principal stress space the deviator stresses are
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Fig. 9.9: Principal stress space with deviator plane.

⎡
⎣
σ′
x

σ′
y

σ′
z

⎤
⎦ =

1

3

⎡
⎣
2σx − σy − σz

2σy − σz − σx

2σz − σx − σy

⎤
⎦ . (9.38)

Multiplication of the deviator stress [σ′
x, σ

′
y, σ

′
z] with the normal vector [1, 1, 1]

gives the projection on the normal as the sum of the principal deviator
stresses,

σ′
x + σ′

y + σ′
z = 0 . (9.39)

Thus, the deviator part of the stress state lies in the plane in principal stress
space with normal [1, 1, 1], and the plane is therefore called the deviator plane.
Graphically the decomposition (9.37) of the stress state [σx, σy, σz] appears
as the sum of a component σm[1, 1, 1] normal to the deviator plane, and a
deviator part [σ′

x, σ
′
y, σ

′
z] lying in the deviator plane.

In the graphic representation the length of the deviator stress [σ′
x, σ

′
y, σ

′
z] is

found by scalar multiplication of the vector with itself,

(σ′
x)

2 + (σ′
y)

2 + (σ′
z)

2 = (σx− σm)2 + (σy− σm)2 + (σz− σm)2

= σ2
x + σ2

y + σ2
z − 3σ2

m .
(9.40)

The graphical interpretation of the decomposition into mean and deviator
stress is much used in the development of theories for material behavior.
However, also the theory of linear isotropic elasticity gains in clarity, when
illustrated in terms of mean and deviator parts as shown next.

Decomposition of strain

A general state of strain can also be represented as the sum of two parts, a
mean strain 1

3e =
1
3 (εxx + εyy + εzz) and the deviator strain components ε′.

The deviator strain components are defined in the same way as the deviator
stress components by subtraction of the mean strain. Thus, the deviator
strain components are

ε′ =

⎡
⎣
εxx − 1

3e εxy εxz
εyx εyy − 1

3e εyz
εzx εzy εzz − 1

3e

⎤
⎦ . (9.41)
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This definition can also be written as

ε′ = ε − 1
3e I . (9.42)

The reason for the factor 1
3 in the strain formulae is that this factor is not

included in the volume strain e = (εxx + εyy + εzz). An arbitrary state
of strain can then be represented as the sum of a volumetric strain and a
deviator strain,

ε = ε′ + 1
3e I . (9.43)

The relations of linear isotropic elasticity take a particularly simple form,
when both stresses and strains are represented as a sum of a mean value and
a deviator part.

Linear isotropic elasticity

The linear elastic relation between the volume strain e = εxx + εyy + εzz and
the mean stress σm = 1

3 (σxx + σyy + σzz) was found in (9.23) as

e =
σm

K
= 3

1− 2ν

E
σm . (9.44)

This is the volume relation between the two scalar components e and σm.

Fig. 9.10: Linear isotropic elasticity in (a) dilation and (b) generalized shear.

The elastic relation for the deviator normal strain components ε′xx follows
from the definition

ε′xx = εxx − 1
3 (εxx + εyy + εzz) = 2

3εxx − 1
3εyy −

1
3εzz (9.45)

by substitution of the strains from the elasticity relation (9.15),

ε′xx =
2

3

1 + ν

E
σxx − 1

3

1 + ν

E
σyy −

1

3

1 + ν

E
σzz . (9.46)

When collecting terms and using the definition of the deviator stress σ′
xx,

this expression becomes

ε′xx =
1 + ν

E

(
2
3σxx − 1

3σyy − 1
3σzz

)
=

1 + ν

E
σ′
xx . (9.47)
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Similar relations apply for the deviator normal components εyy and εzz. How-
ever, a closer look reveals that the relation applies to all deviator components.
This follows from the lower part of the elasticity relation (9.15) and the fact
that for the shear components σ′

ij = σij and ε′ij = εij when i �= j. The
isotropic elastic relation between the deviator strain and stress components
can therefore be written as

ε′ =
1 + ν

E
σ′ =

1

2G
σ′ . (9.48)

This relation implies that all linear elastic non-volumetric deformation pro-
cesses are associated with the shear modulus G, while the volumetric defor-
mation given by (9.44) is associated with the bulk modulus K. These two
mechanisms are illustrated in Fig. 9.10. A similar split in volume and shape
changing processes is found, when modeling yield and fracture of isotropic
materials, as illustrated in the following sections.

9.3 Yield conditions for metals

Experimental evidence shows that metals yield, when they are loaded beyond
a characteristic stress level. A simple example of this behavior is the uniaxial
tension test shown in Fig. 9.1. When the uniaxial stress σx reaches a level de-
noted by σY , the material develops additional deformation. This material be-
havior is called yielding , and the stress σY is called the yield stress. Typically,
yield would also occur at a uniaxial compressive stress of magnitude −σY .
This indicates that the condition of material yielding somehow bounds the
stress states corresponding to elastic behavior. A general state of stress may
also lead to material yielding, and it is important to have information of the
general condition of yielding of a material, as this condition limits the stresses
that can be sustained by the material. Two important yield conditions for
metals, those of von Mises and of Tresca, are described below. These yield
conditions form a part of the theory of plasticity, dealing with plastic defor-
mation materials, see e.g. Chakrabarty (2009) and Ottosen and Ristinmaa
(2005). While a presentation of this theory falls outside the present scope,
the yield condition often serves as a limit for operating states of stress in
structures, and thereby form a condition for the use of elastic analysis of
structures.

9.3.1 Von Mises’ yield condition

For metals it turns out that the occurrence of yielding is nearly independent
of the mean stress σm. For these materials the condition of yielding can
therefore be described solely in terms of the deviator stress components. For
an isotropic material the yield condition must furthermore be independent
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of the particular coordinate system used to define the stress components. A
simple yield condition that satisfies both of these conditions is described by
a circular contour in the deviator plane in the principal stress space shown
in Fig. 9.11. The defining equation of such a circle is

(σ′
x)

2 + (σ′
y)

2 + (σ′
z)

2 = const . (9.49)

This relation can be expressed in terms of the principal stresses [σx, σy, σz]
and the yield stress σY as

(σx − σy)
2 + (σx − σz)

2 + (σy − σz)
2 = 2σ2

Y . (9.50)

It is seen that a uniaxial state of stress [σx, 0, 0] will lead to yield for σx = ±σY

in accordance with the definition of the yield stress σY . This is the von Mises
yield condition. It leads naturally to the definition of the so-called equivalent
stress

σe =
1√
2

√
(σx − σy)2 + (σx − σz)2 + (σy − σz)2 . (9.51)

The von Mises yield condition can then be expressed in terms of the equivalent
stress as

σe = σY , (9.52)

where the yield stress σY is a material parameter, while the equivalent stress
σe describes the stress state.

Fig. 9.11: Von Mises stress cylinder in principal stress space.

It follows from the definition (9.51) of the equivalent stress in terms of the
principal stress components that it is an invariant. The yield criterion can
therefore be generalized to components in an arbitrary coordinate system by
expressing σ2

e in terms of the stress invariants I1 and I2. It follows from the
principal component formulae (8.92) of the invariants that

σ2
e = 1

2

(
(σx − σy)

2 + (σx − σz)
2 + (σy − σz)

2
)

= σ2
x + σ2

y + σ2
z − (σxσy + σzσx + σyσz) = I21 − 3I2 .

(9.53)
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Substitution of the general component expressions (8.91) for the invariants
then gives

σ2
e =

(
σxx + σyy + σzz

)2 − 3
(
σyyσzz +

+σzzσxx + σxxσyy − σ2
yz − σ2

xz − σ2
xy

)
.

(9.54)

When this expression is rearranged in terms of the normal stress differences,
the following general form of the equivalent stress is obtained,

σe =
1√
2

√
(σxx−σyy)2 + (σxx−σzz)2 + (σyy−σzz)2 + 6(σ2

yz + σ2
zx + σ2

xy).

(9.55)
With this definition of the equivalent stress σe the von Mises yield criterion
(9.50) has been extended to arbitrary stress components.

The equation (9.50) defines a circular cylinder in principal stress space. It has
generators in the direction [1, 1, 1] and intersects any deviator plane in a circle
as illustrated in Fig. 9.11. In particular, it intersects the principal stress axes
at ±σY . The cylinder is shown in three-dimensional principal stress space in
Fig. 9.11a, and the circular trace in the deviator plane is shown in Fig. 9.11b.
Stress states inside the cylinder correspond to elastic behavior, while stress
states on the cylinder correspond to yield. If the material is perfectly plastic,
yield will occur while the stress state remains on the yield surface, and thus
stress states outside the cylinder can not occur. The von Mises yield criterion
fits well with experimental data for metals, see e.g. Lemaitre and Chaboche
(1990).

Example 9.2. Tension with constrained transverse contraction. In some situations
secondary stresses, created by constraints from surrounding parts of a structure, may

contribute to prevent yielding. In the uniaxial tension test with σx > 0 the transverse
stress components σy and σz vanish, and yielding occurs at σx = σY . If the transverse

contraction of the test specimen is prevented, transverse tension stresses will occur. As
shown in Section 9.1.2 the transverse stresses in an isotropic linear elastic material in the

case of completely prevented transverse deformation are

σy = σz =
ν

1− ν
σx .

In this situation there is a positive mean stress of magnitude

σm = 1
3
(σx + σy + σz) =

1 + ν

1− ν

σx

3
.

This mean stress leads to an increase of the yield limit for completely constrained transverse
deformation.

The equivalent stress σe follows from (9.51) as

σe =
σx√
2

√(
1− ν

1− ν

)2
+
(
1− ν

1− ν

)2
=

1− 2ν

1− ν
σx .
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The yield criterion σe = σY then gives the yield limit for the fully constrained specimen

as

σx =
1− ν

1− 2ν
σY .

The constraint leads to an increase of the yield capacity. Theoretically, an incompressible
material with ν = 0.5 would have infinite yield limit for full transverse constraint. For steel

with ν = 0.3 the yield limit is σx = 1.75σY , corresponding to an increase of 75% in the
case of full transverse constraint. In practice the constraint may only be partial, leading

to a somewhat smaller increase of the yield limit. �

The condition of plane stress occurs often in practice. If the stresses act in
the xy-plane, plane stress implies σzz = σxz = σyz = 0. For this situation the
equivalent stress is

σe =
√
σ2
xx + σ2

yy − σxxσyy + 3σ2
xy . (9.56)

This form of the equivalent stress finds wide application in the design of steel
structures. In the principal stress space plane stress corresponds to stress
states in the σxσy-plane. Thus the plane stress yield condition is the intersec-
tion of the circular cylinder of Fig. 9.11a with the σxσy-plane. The analytical
expression follows from setting σxy = 0 in (9.56), whereby

σ2
x + σ2

y − σxσy = σ2
Y . (9.57)

This is the equation of an ellipse as shown in Fig. 9.12, with major axis on
the line σx = σy.

Fig. 9.12: Von Mises stress ellipse in plane stress.

Example 9.3. Von Mises biaxial stress. The von Mises ellipse for plane stress leads to

the following three observations. In uniaxial stress, e.g. σx �= 0 and σy = 0, yielding occurs
for σx = ±σY . If the two in-plane stresses are equal yielding occurs at σx = σy = ±σY .

If the two in-plane stress components are equal in magnitude but of opposite sign the
stress state corresponds to pure shear with τ = −σx = σy, see Example 8.4. Yielding then

occurs at
τ =

σY√
3
.

It is seen that principal stresses of the same sign leads to increased yield limit, while
principal stresses of opposite sign reduce the yield limit. �
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9.3.2 Tresca’s yield condition

An alternative yield criterion for metals was proposed by Tresca. It is based
on the assumption that yielding is initiated, when the largest shear stress
τmax exceeds a characteristic stress threshold. It was demonstrated in Sec-
tion 8.4.4 that the maximum shear stress τmax is the radius of the Mohr’s
circle determined by the difference between largest and the smallest principal
stress, see Fig. 8.31. Thus, the Tresca yield condition can be expressed as

2τmax = σmax − σmin = σY . (9.58)

It follows from the definition in terms of the difference between the maximum
and minimum principal stress, that according to the Tresca yield condition
yielding is independent of the mean stress. Thus, the Tresca yield condition
is also a cylindrical surface in principal stress space with generators in the
direction [1, 1, 1].

Fig. 9.13: Tresca stress polygon in plane stress.

Any of the three principal stresses σx, σy and σz may be the largest or the
smallest, and the Tresca yield surface is therefore generated by the intersec-
tion of six planes in principal stress space. The easiest way of identifying
these planes is probably by considering the trace of the yield surface in the
σxσy-plane corresponding to plane stress. In this state of plane stress with
σz = 0 there are three different situations to be considered. If σx and σy

are of opposite sign they will be the maximum and minimum principal stress
components, and the Tresca yield condition then is

2τmax = |σx − σy | = σY . (9.59)

This gives the inclined lines in the second and fourth quadrant of the σxσy-
plane shown in Fig. 9.13. If σx and σy are of the same sign, the numerically
largest define the shear stress in combination with σz = 0 according to

2τmax = |σx − 0 | = σY or 2τmax = |σy − 0 | = σY . (9.60)

These equations produce the vertical and horizontal lines in Fig. 9.13. In
combination the conditions produce the Tresca hexagon for plane stress. The
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points of intersection with the axes are the same as the von Mises ellipse,
shown by the dashed curve in the figure. In fact, the Tresca hexagon is in-
scribed in the von Mises ellipse. This implies that apart from stress states at
the apexes of the hexagon the Tresca yield condition will predict a lower yield
limit that the von Mises condition. However, in many cases the difference is
small, and the choice between the two criteria is then a matter of conve-
nience. The simple liner form of the Tresca condition, once the intermediate
principal stress has been identified, enables explicit solution of a number of
important problems with combined elastic-plastic material behavior, see e.g.
Chakrabarty (2009).

Fig. 9.14: Tresca stress surface in principal stress space.

The full Tresca yield surface in three-dimensional principal stress space fol-
lows by extending the plane stress hexagon of Fig. 9.13 along the generators
[1, 1, 1]. The result is a regular hexagonal cylinder shown in Fig. 9.14a. The
hexagon is inscribed in the von Mises circular cylinder, and the trace in the
deviator stress plane is shown in Fig. 9.14b.

9.4 Coulomb’s theory of friction materials

The Tresca yield condition (9.58) is based on the hypothesis that the maxi-
mum shear stress has a characteristic limit, independent of the mean stress.
While this is a fair approximation to the behavior of metals, many building
materials like concrete, brick and soil depend on the mechanism of friction.
This implies that the shear capacity increases with compression mean stress.
The Tresca yield condition may be seen as a special case of the more general
theory of friction materials, originally developed by Coulomb (1736–1806),
see e.g. Heyman (1997).

In Coulomb’s theory of friction materials it is assumed that failure does not
depend on the intermediate principal stress component, but only on the max-
imum and minimum component. Thus, the basis of the theory can be devel-
oped in a two-dimensional setting and then generalized to three-dimensional
stress states subsequently. The principal stresses are compressive and are de-
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noted σx and σz, with |σz| > |σx|. It is convenient to introduce the notation

σ = 1
2 (σz + σx) < 0 , τ = 1

2 (σz − σx) < 0 (9.61)

for the (two-dimensional) mean stress, and the maximum shear stress, re-
spectively.

Fig. 9.15: a) Homogeneous stress state and b) friction condition.

Figure 9.15a shows a two-dimensional body in a homogeneous state of stress
with principal stresses σx and σz. A plane section through the body is identi-
fied by the angle α shown in the figure. The stress vector acting on this plane
is given by its normal and shear components σn and σt. These components
are easily determined from equilibrium of a small triangle, whereby

σn = σ + τ cos 2α ,

σt = τ sin 2α
(9.62)

for any value of the angle α of the section.

9.4.1 Critical section and stress state

Friction failure on a critical section is assumed to occur, when two conditions
are met: the ratio of tangential to normal stress on the critical section equals
the coefficient of friction μ, and the ratio of tangential to normal stress is less
than μ on all other sections. A simple cohesion contribution is included in
the final theory later.

The coefficient of friction μ determines the inclination angle ϕ of the friction
force F corresponding to the relation μ = tanϕ, as shown in Fig. 9.15b. Thus,
for the critical section the ratio between the shear stress σt and the normal
stress σn on the cross section determines the friction angle, and the most
critical section is determined by

tanϕ = max
α

σt

σn
= max

α

τ sin 2α

σ + τ cos 2α
. (9.63)
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Differentiation with respect to the angle α gives the condition

cos 2α = − τ

σ
. (9.64)

When this expression is substituted into the friction equation (9.63) the fol-
lowing relation is obtained between the friction angle ϕ and the inclination
angle α,

tanϕ =
τ sin 2α

σ + τ cos 2α
= − cot 2α . (9.65)

By changing the argument the cot-function is transformed to a tan-function,
and the following relation is obtained

tanϕ = − tan( 12π − 2α) = tan(2α− 1
2π) . (9.66)

This equation determines the critical angle as

α = 1
4π + 1

2ϕ . (9.67)

Thus, it is seen that for |σz| > |σx| the angle of the critical section is always
in the interval 1

4π < α < 1
2π, corresponding to the section being steeper

than 45◦.

Fig. 9.16: Stress state at friction failure.

The stress state at friction failure is shown in a Mohr circle diagram in
Fig. 9.16. The diagram is fully defined from equation (9.67), by which
2α − ϕ = 1

2π, as shown in the figure. It is seen directly from the Mohr
circle that the failure condition can be expressed in either of the to forms

tanϕ =
σt

σn
or sinϕ =

τ

σ
, (9.68)

where it is noted that all the stress components are negative, and their ratios
therefore positive. The first equation is a direct expression of the friction
condition in terms of the stresses σn and σt on the critical section, while the
second is a relation between the prescribed stresses in terms of their sum σ
and difference τ .
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The friction failure stress state may also be represented directly in terms of
the principal stresses σx and σz. Substitution of the definition (9.61) into the
failure condition (9.68b) gives

(1 + sinϕ)σx − (1− sinϕ)σz = 0 , (9.69)

or the stress ratio

σz

σx
=

1 + sinϕ

1− sinϕ
= tan2 α > 1 , (9.70)

where the section angle α has been substituted from (9.67).

Example 9.4. Inclination of failure planes. The inclination of the failure planes and
the associated angle of the critical section can be illustrated with reference to an idealized

retaining wall, supporting an ideal friction material. The problem is illustrated in Fig. 9.17,
showing a vertical retaining wall in two situations.

Fig. 9.17: Retaining wall pressure: a) passive wall, b) active wall.

In Fig. 9.17a the stress |σx| represents the resistance capacity of the wall. The vertical
pressure |σz | on the upper horizontal soil surface is increased until the limit imposed by

the friction failure criterion. In this problem the vertical stress |σz | is imposed and increased
until failure |σz | > |σx|, and |σz | is called the active stress, while |σx| is the passive stress.

This corresponds to the roles of the stresses in the derivation of the theory and illustrated
in Fig. 9.15. In Fig. 9.17b the roles of the stress components are interchanged. Here, the

wall is pressed against the friction material until failure develops, and the material slides
upwards towards the right. Here the |σx| is the active stress component, and the resisting
stress |σz | is the passive component. �

9.4.2 Coulomb failure surface

It is important for a full understanding and general use of the Coulomb failure
criterion to obtain a representation in the three-dimensional principal stress
space. The Tresca stress surface shown in Fig. 9.14 is a regular hexagonal
cylinder with the mean stress σm along the axis. Similarly, the Coulomb fail-
ure criterion has a hexagonal trace in the deviator stress plane, but with a
size that increases linearly with compressive mean stress −σm. The Coulomb
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failure surface is characterized by two generators, each corresponding to a
state of stress, in which two of the principal components are equal. As above,
the stress σz is taken as the numerically largest, while σx is the numerically
smallest. This defines the two characteristic stress states as: triaxial compres-
sion in which σz < σy = σx, and triaxial tension where σz = σy < σx. These
two states can be considered as generated from an isostatic state of stress
σz = σy = σx – the first by adding compression in the z-direction, and the
second by adding tension in the x-direction.

For the state of triaxial compression, with σz < σy = σx, the mean stress is

σm = 1
3σz + 2

3σx , (9.71)

while the deviator stress components are

σ′
z = 2

3

(
σz − σx

)
, σ′

x = σ′
y = 1

3

(
σx − σz

)
. (9.72)

Inversion of these relations determines the principal stress components as

σz = σm + σ′
z , σx = σy = σm − 1

2σ
′
z . (9.73)

These expressions are now substituted into the friction failure criterion (9.69),
that then takes the form

(1 + sinϕ)(σm − 1
2σ

′
z) − (1− sinϕ)(σm + σ′

z) = 0 . (9.74)

This equation gives the deviator stress σ′
z in terms of the mean stress as

σ′
z =

4 sinϕ

3− sinϕ
σm . (9.75)

This is the stress component, representing the projection of the triaxial com-
pression stress state on the deviator plane. In this state of stress σx = σy,
and thus the projection lies on the z-axis in the projected deviator plane in
Fig. 9.18. The sign of σ′

z and σm are both negative, and thus the state of tri-
axial compression defines the top point of the stress contour in the deviator
plane shown in Fig. 9.18. Similar points along the y- and x-axis follow from
symmetry.

The state of triaxial tension, σz = σy < σx, can be analyzed in the same way.
In this case the mean stress is

σm = 2
3σz + 1

3σx , (9.76)

while the deviator stress components are

σ′
z = σ′

y = 1
3

(
σz − σx

)
, σ′

x = 2
3

(
σx − σz

)
. (9.77)
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Fig. 9.18: Hexagonal trace of the friction criterion in the deviator plane.

Inversion of these relations gives the principal stress components for triaxial
tension as

σz = σy = σm − 1
2σ

′
x , σx = σm + σ′

x . (9.78)

These representations are now substituted into the friction failure criterion
(9.69), whereby

(1 + sinϕ)(σm + σ′
x) − (1− sinϕ)(σm − 1

2σ
′
x) = 0 . (9.79)

This equation gives the deviator stress σ′
x in terms of the mean stress as

σ′
x = − 4 sinϕ

3 + sinϕ
σm . (9.80)

This is the stress component, representing the projection of the triaxial ten-
sion stress state on the deviator plane. In this stress state σ′

x is positive, when
σm is negative, and thus the state of triaxial tension represents the corner
along the ‘side’ of the contour shown in Fig. 9.18. Symmetry identifies similar
points along the other two ‘sides’.

The shape of the deviator contour depends on the angle of friction as charac-
terized by the ratio of the deviator components defining triaxial compression
and triaxial tension, respectively. It follows from (9.75) and (9.80) that this
ratio is ∣∣∣σ

′
com

σ′
ten

∣∣∣ = 3 + sinϕ

3− sinϕ
→
{

1 for ϕ → 0

2 for ϕ → 1
2π

(9.81)

Thus, the deviator contour approaches a regular hexagon, as in the Tresca
contour, for small values of the friction angle, while larger values of the friction
angle makes the contour more and more triangular. In this way a family of
Coulomb contours with increasing values of the friction angle can fill the
triangle formed by the stress coordinate planes. This behavior corresponds
closely to experimentally observed properties of soil, e.g. Lade and Duncan
(1973), and concrete, see e.g. Ottosen and Ristinmaa (2005). However, most
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materials – like e.g. concrete – have an additional contribution to the strength,
called cohesion. The effect of cohesion can be included in the theory of friction
materials by increasing the shear resistance with an extra contribution, that
does not depend on the mean stress. In essence, this amounts to a translation
of the failure surface in Fig. 9.18 along the isostatic axis. This effect can be
represented by replacing the mean stress by σm−σc, where σc represents the
effect of cohesion.

The hexagonal pyramid shape of the Coulomb failure surface follows from
the friction hypothesis, where any influence from the intermediate princi-
pal stress is omitted. Experimental evidence suggests more rounded shapes.
For isotropic materials, satisfying full symmetry between the three principal
stress components, yield and failure surfaces in the three-dimensional princi-
pal stress space can be represented in terms of the stress invariants introduced
in Section 8.4.4. For a given mean stress σm the shape of the contour is repre-
sented by the stress invariants I2 and I3 or their deviator stress counterparts,
see e.g. Ottosen and Ristinmaa (2005) and Krenk (2000). In the majority of
material models the stress invariants are also used to represent the deforma-
tion mechanisms that generate non-linear behavior.

9.5 Exercises

Exercise 9.1. The figure shows an elastic bar of length � = 200mm. The cross section

is circular with diameter D = 15mm. The material is a plastic compound with elastic
modulus E = 2.70GPa and Poisson’s ratio ν = 0.4. The bar is loaded by a tension force

P = 200N.

a) Calculate the elongation of the bar.

b) Determine the change in diameter of the cross section.

Exercise 9.2. The figure shows three (infinitely) stiff

plates connected by two elastic rubber blocks of height
h, thickness a and width b. The shear modulus of the elas-

tic rubber material is G. The outer plates are supported
and the central plate is loaded by a vertical force P .

a) Determine an expression for the vertical displacement
u of the central plate.

b) Find u when h = 60mm, a = 10mm, b = 20mm,
G = 0.20MPa and P = 50N.

Exercise 9.3. A spring device is composed of a cylindrical bar attached to an outer tube

by rubber ring of height h. The inner radius of the bar is ri, while the outer radius is ro.
The rubber material is elastic and the shear modulus is G. The central cylindrical bar is
loaded by a transverse force P .
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a) Determine the shear stress τ that acts in the rubber ring at a cylindrical section with
radius r.

b) The transverse displacement u(r) determines the angular strain γ by the relation:

γ = − du

dr
=

τ

G
.

Integrate this relation to obtain u(r) and find the transverse displacement u0 = u(0)
of the central cylindrical bar.

Exercise 9.4. The figure shows a vertical force P acting on a

plate AB. This plate is attached to the supported plates CD
and EF via two cubic blocks of rubber material with dimensions

a × a × a. The dimension a = 30mm and the force P = 50N.
The shear modulus of the rubber material is G = 0.20MPa. Any

deformations of the plates are neglected in the analysis.

a) Determine the magnitude of the shear stress τ in the rubber

blocks.

b) Determine the magnitude of the associated shear strains γ.

c) Determine the vertical displacement of the center plate AB.

Exercise 9.5. A cylindrical bar with diameter d = 30mm is placed inside centrally inside
a tube with inner diameter D = 32mm. The length of both inner bar and outer tube is

� = 50mm. The material of the inner bar is elastic with elastic modulus E = 5MPa and
Poisson’s ratio ν = 0.45. The end section of the inner bar is loaded by a constant pressure
p, as shown in the figure.

a) Determine the magnitude of the pressure p that exactly makes the inner bar touch the

inside of the outer tube.

b) Determine how much the inner bar is shortened.

Exercise 9.6. The figure shows a 45◦ strain gate rosette with strain readings εa, εb and
εc. The material is linear elastic and isotropic with elastic modulus E = 100MPa and

Poisson’s ratio ν = 0.40. A plane stress condition is assumed. The three strain gauge
readings are:
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εa = 600 · 10−6 , εb = −320 · 10−6 , εc = 450 · 10−6 .

a) Determine the strain components εxx, εyy and εxy .

b) Determine the out-of-plane strain εzz .

c) Determine the plane stress components σxx, σyy and

σxy, and find the mean stress.

Exercise 9.7. The figure shows a plate with uni-axial

yield stress σY = 250MPa. The plate is loaded in plane
stress conditions with principal stresses σx and σy = 1

2
σx,

as indicated in the figure.

a) Determine the magnitude of σx that corresponds to

yielding based on the von Mises criterion.

b) Determine the magnitude of σx that corresponds to

yielding based on the Tresca criterion.

c) Illustrate the results in a graph that shows the yield
surfaces in principal stresses.

Exercise 9.8. The figure shows a plate with uni-axial

yield stress σY = 250MPa. The plate is loaded in plane
stress conditions with principal stresses σx and σx =

− 1
2
σy , as indicated in the figure.

a) Determine the magnitude of σx that corresponds to

yielding based on the von Mises criterion.

b) Determine the magnitude of σx that corresponds to

yielding based on the Tresca criterion.

c) Illustrate the results in a graph that shows the yield
surfaces in principal stresses.

Exercise 9.9. The figure shows the stress components

in terms of σ∗ in a plane stress condition. The mate-
rial is linear elastic and isotropic with elastic modulus
E = 200MPa and Poisson’s ratio ν = 0.37. The yield

stress of the material is σY = 4.0MPa.

a) Determine the volume strain e for σ∗ = 0.5MPa.

b) Determine the magnitude of σ∗ that corresponds to

yielding based on the Tresca criterion.

c) Determine the magnitude of σ∗ that corresponds to yielding based on the von Mises
criterium.

Exercise 9.10. The figure shows the stress components
in terms of σ∗ = 10MPa in plane stress conditions. The

material is linear elastic and isotropic with elastic modulus
E = 70GPa and Poisson’s ratio ν = 0.37.

a) Determine the strains εxx, εyy , εxy and εzz .

b) Determine the principal strains εx and εy and the

orientation θ of the associated principal axes.

c) Determine the magnitude of the von Mises stress σe.
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Exercise 9.11. The figure shows the plane stress com-
ponents. Note, that the identical stress components on

the backside of the element are implied. The material
is high-strength steel with yields stress σY = 500MPa.

a) Determine the equivalent von Mises stress σe and
find the stress ratio σe/σY that represents the fail-

ure margin.

Exercise 9.12. Reconsider the plane stress state of the previous example. In this case the
failure margin is evaluated based on Tresca’s criterion.

a) Determine the principal stresses σx and σy .

b) Draw the Tresca yield surface in the principal stress plane with yield stress σY =
500MPa. Plot also the current stress state and determine if the failure criterium is

violated.

c) Discuss the possibility of a failure margin similar to the stress ratio σe/σY of the von

Mises criterion.

Exercise 9.13. The figure shows a thin-walled cylinder with radius r and wall thickness t.
The cylinder is loaded by a tension force N and a torsion moment M , resulting in a tension

stress σ and a shear stress τ , both assumed constant over the cross section. Failure of the
material is assumed to agree with the von Mises criterion with yield stress σY .

a) Determine an expression for the axial stress σ when M = 0, and find the tension force
NY that corresponds to failure.

b) Determine an expression for the shear stress τ when N = 0, and find the torsion
moment MY that corresponds to failure.

c) Demonstrate that tension force and torsion moment satisfy the combined failure cri-
terion (

N/NY

)2
+
(
M/MY

)2
= 1 ,

and illustrate this relation graphically.
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The theory of homogeneous bending of non-symmetric elastic beams with
constant cross-section forms a central part of the mechanics of structures.
The theory combines the possibility of general cross-section properties with
the simultaneous bending about two axes, and thus constitutes a natural ex-
tension of the simple plane bending treated in Chapters 3–4 and developed
into simple finite elements for analysis of plane frames in Chapter 7. The
general theory of beam bending has wide application, e.g. to beams in build-
ings, bridge decks in concrete, steel or composites, or in a very general form
to wind turbine blades with changing aerodynamic closed cross-section.

The basic problem is illustrated by the cantilever shown in Fig. 10.1. The load
consists of a force P = [Px, Py, Pz]

T applied to the tip of the cantilever. The
components are given with respect to a {x, y, z} coordinate system with axial
coordinate x and cross-section coordinates y and z as shown in the figure.
The load introduces tension N and bending moments My(x) and Mz(x) in
the beam, and this leads to extension and curvature. If the beam cross-section
is symmetric with respect to the y and the z-axis and the force is applied to
the intersection of the axes of symmetry, the problem is immediately resolved
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Fig. 10.1: Bending of cantilever.

into the three independent problems consisting of extension and bending in
the xy and xz-planes as illustrated in Fig. 10.2. It will be demonstrated that
this decomposition into extension and two plane bending problems can be
obtained for a homogeneous elastic beam of general cross-section, when the
axial force is applied to the elastic center, and the two planes of bending are
determined as the principal axes of the cross-section. The theory is developed
for beams with non-homogeneous distribution of elastic stiffness over the
cross-section.

Fig. 10.2: Extension and bending of cantilever beam.

The bending of an elastic beam of constant but general cross-section is treated
in Section 10.1. When bending a beam with symmetric cross-section in its
plane of symmetry, the strain is proportional to the distance from the neutral
axis. This concept is generalized by considering the strain distribution to be
a linear function of both the cross-section coordinates. The result is a system-
atic theory of bending, originally developed by Navier (1785–1836). The
theory relates the normal force N and the two bending moment components
My and Mz at a cross-section to the corresponding set of kinematic quanti-
ties: the axial strain ε0, and the two curvature components κy and κz. The
constitutive relations that relate the section force components N,My,Mz to
their kinematic counterparts ε0, κy, κz depend on the cross-section geometry
and the distribution of elastic stiffness over the cross-section. These proper-
ties are contained in a set of cross-section parameters like area, moment of
inertia etc. and Section 10.2 describes how the cross-section parameters are
obtained from the geometry and stiffness distribution in the cross-section.
This analysis identifies the elastic center where a normal force will only pro-
duce extension, and a set of principal axes that uncouples the two bending
problems. Even if not using these axes directly the fact that bending can be
uncoupled if choosing these axes constitutes an important characteristic of
beam bending, that is essential for the understanding of the associated mech-
anisms. The bending parameters relating to different axes are connected by
a transformation that is quite similar to that of the plane stress component
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transformation dealt with in Section 8.4. As a consequence the Mohr circle
construction also illustrates the relation of bending stiffness around different
axes, and concept of principal axes associated with minimum and maximum
bending stiffness. As discussed in Section 10.3, the linear distribution of the
axial strain over the cross-section in general bending leads to a simple ex-
plicit relation for the distribution of the axial stress component. The axial
stress constitutes an important design parameter. The axial stress distribu-
tion also serves as a step in the determination of the shear stress distribution
associated with non-homogeneous bending as discussed in Chapter 11.

10.1 Bending of non-symmetric beams

The theory of bending of beams with non-symmetric cross-section is based on
a simple extension of the corresponding theory for plane bending. The basic
assumption is that the beam is homogeneous and loaded by a combination
of a normal force and two bending moment components, that are constant
over the beam. This constitutes a logical generalization of the concept of
homogeneous bending and permits the development of a fairly simple and
rigorous theory of bending of homogeneous beams. Like in the case of plane
bending, the idea is to develop the deformation characteristics from the ideal
case of homogeneous bending, and then to assume its validity also in cases
with moment variation along the beam. The procedure is to first define the
kinematics and then to derive the associated stresses and section forces.

10.1.1 Kinematic formulation

When a beam is in a state of homogeneous bending and extension, symmetry
suggests that plane cross-sections remain plane under the deformation. This
implies that a cross-section that originally coincides with the yz-plane will
have an axial displacement u(y, z) in the form of a linear function of y and z
as illustrated in Fig. 10.3. The mathematical form is

u(y, z) = u0 + y ηy + z ηz , (10.1)

Fig. 10.3: Linear distribution of axial displacement u(y, z).
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Fig. 10.4: Linear variation of axial displacement in coordinate planes.

where u0 = u(0, 0) is the axial displacement of the origin of the coordinate
system. Furthermore, it is found by differentiation that ηy and ηz are the
inclinations of the cross-section in the y- and z-direction, respectively. The
variation of the axial deformation along the cross-section axes y and z is illus-
trated in Fig. 10.4, where u0 is shown as the axial displacement at the origin
of the coordinate system, and ηy and ηz are the inclinations of the axes after
deformation. Within a ‘small deformation’ theory a similar representation
applies to the other cross-sections, and thus the axial displacement u0 as well
as the inclinations ηy and ηz are functions of the axial coordinate x,

u0 = u0(x) , ηy = ηy(x) , ηz = ηz(x) . (10.2)

However, to keep the notation as compact as possible, the argument x is
implied and not written explicitly in the following derivations.

The axial strain is the derivative of the axial displacement u(x, y, z) with
respect to the longitudinal coordinate x,

ε(y, z) =
∂u

∂x
= ε0 + y κy + z κz , (10.3)

where ε0 is the axial strain at the origin, and κy and κz are defined by the
inclinations,

ε0 =
du0

dx
, κy =

dηy
dx

, κz =
dηz
dx

. (10.4)

Fig. 10.5: Plot of linear strain variations along the y and z axes.
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It follows from (10.3) that the distribution of the axial strain is linear over
the cross-section, conveniently illustrated by the linear variation of the strain
along the y- and z-axes, as shown in Fig. 10.5. The strain at the origin of the
yz-coordinate system is ε0, and the gradient of the normal strain is given by
the components κy and κz.

The section inclinations ηy and ηz – and thereby the parameters κy and
κz – are related to the transverse displacement of the beam. In the present
case of pure bending there is no twist of the beam, and thus the transverse
displacement is a translation, described by the motion of a single point, e.g.
the origin of the yz-coordinate system,

v(x, y, z) = v0(x) , w(x, y, z) = w0(x) . (10.5)

The two shear strain components associated with the x-component can now
be calculated based on the displacement representations (10.1) and (10.5),

γxy =
dv0
dx

+ ηy , γxz =
dw0

dx
+ ηz . (10.6)

These relations define the x-derivative of the transverse displacements as

dv0
dx

= −ηy + γxy ,
dw0

dx
= −ηz + γxz . (10.7)

These relations are the general form of the plane bending relation (4.29) of
Timoshenko beam theory.

The shear strains defined via (10.6) are constant over any cross-section, and
thus represent only an average value. A more detailed analysis of the shear
stress distribution over the cross-section is typically obtained directly from
a static analysis as discussed in Chapter 11. As demonstrated in Section 4.3
the contribution from the shear strains to the beam displacements is often
negligible, and this contribution is therefore often neglected in the kinematics
of the beam. The result is the Bernoulli beam theory, in which the inclinations
are given by

ηy = −dv0
dx

, ηz = −dw0

dx
. (10.8)

The parameters κy and κz are then given as the curvatures of the beam axis
by the relations

κy = −d2v0
dx2

, κz = −d2w0

dx2
. (10.9)

These relations generalize the kinematic relations (4.17) and (4.18) of plane
bending.
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10.1.2 Stresses and section forces

In Bernoulli beam theory it is assumed that the deformation is not con-
strained in the transverse direction. The axial stress is then obtained directly
from the axial strain (10.3) by multiplication with the elastic modulus E.
This gives the expression

σ(y, z) = E ε(y, z) = E
(
ε0 + y κy + z κz

)
, (10.10)

where the elastic modulus E = E(y, z) may vary over the cross-section. While
the strain distribution (10.3) is linear in the coordinates y and z a non-
homogeneous elastic stifness may lead to a more complicated stress variation.

Fig. 10.6: Contribution of a) normal stress in dA to b) section forces.

The three section forces associated with the homogeneous beam bending
problem are the normal force N and the two bending moments My and
Mz with respect to axes of the cross-section coordinate system. Figure 10.6
shows an arbitrary cross-section with normal stress distribution σ given by
the expression (10.10). Now, consider an infinitesimal part of the cross-section
with area dA. As indicated in Fig. 10.6a the contribution to the normal force
from this infinitesimal area is

dN = σ(y, z) dA . (10.11)

The normal force component dN also introduces bending moments with re-
spect to the reference coordinate system. In the present context it is con-
venient to introduce moment components such that My is formed via the
moment arm y and Mz is formed via the moment arm z, and thus

dMy = σ y dA , dMz = σ z dA . (10.12)

The corresponding moment vector components are shown in Fig. 10.6b. The
resulting section forces are obtained by integration over the cross-section area,

N =

∫

A

σ dA , My =

∫

A

σ y dA , Mz =

∫

A

σ z dA . (10.13)
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By substitution of the expression for the normal stress (10.10) into (10.13a)
the normal force is expressed as

N = ε0

∫

A

E dA + κy

∫

A

E y dA + κz

∫

A

E z dA (10.14)

in terms of the reference strain ε0 and the curvature components κy and κz.
Similar expressions for the bending moments can be found by substitution of
(10.10) into (10.13b,c), whereby

My = ε0

∫

A

Ey dA + κy

∫

A

Ey2 dA + κz

∫

A

Ezy dA ,

Mz = ε0

∫

A

Ez dA + κy

∫

A

Eyz dA + κz

∫

A

Ez2 dA .

(10.15)

The area integrals are cross-section parameters representative of axial, bend-
ing and coupling stiffness with respect to the yz-axes.

The integrals contain the elastic modulus E, that may depend on the loca-
tion in the cross-section. To keep full generality E is therefore kept inside
the integral. The beam stiffness parameters combine the elastic stiffness and
the geometry of the cross-section and in order to keep this format a refer-
ence elastic modulus E0 is introduced. The cross-section parameters can be
expressed in matrix format as

E0

⎡
⎢⎣
F Sy Sz

Sy Iyy Iyz

Sz Izy Izz

⎤
⎥⎦ =

∫

A

E

⎡
⎢⎣
1 y z

y y2 yz

z zy z2

⎤
⎥⎦ dA . (10.16)

Note, that the matrix is symmetric, thereby containing six cross-section pa-
rameters.

For homogeneous elastic stiffness with E = E0 the notation implies that the
cross-section parameters F, Sy, · · · represent geometric characteristics of the
cross-section like area, static moment etc. In the general format F is defined
by the weighted area integral

F =
1

E0

∫

A

E dA . (10.17)

For a homogeneous cross-section with constant elastic modulus E = E0 the
weighted area F recovers the geometric area A, defined by

A =

∫

A

dA . (10.18)

The parameters Sy and Sz are the weighted static moments,
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Sy =
1

E0

∫

A

E y dA , Sz =
1

E0

∫

A

E z dA . (10.19)

Finally, Iyy, Izz and Iyz = Izy are the weighted moments of inertia,

Iyy =
1

E0

∫

A

E y2 dA , Izz =
1

E0

∫

A

E z2 dA , Iyz =
1

E0

∫

A

E yz dA .

(10.20)
It is often convenient to choose E0 as the elastic modulus of the dominant
material in the cross-section. For instance, in the case of reinforced concrete
beams E0 is typically chosen as the elastic modulus of the concrete, whereby
E/E0 = 1 for the concrete part of the cross-section, while E/E0 is approx-
imately 15 for the small areas representing the steel reinforcement. This is
illustrated in Example 10.3.

When introducing the cross-section parameters defined in (10.16) into the
expressions (10.14) and (10.15) for the section forces, these can be combined
into matrix form as

⎡
⎢⎣

N

My

Mz

⎤
⎥⎦ = E0

⎡
⎢⎣
F Sy Sz

Sy Iyy Iyz

Sz Izy Izz

⎤
⎥⎦

⎡
⎢⎣
ε0

κy

κz

⎤
⎥⎦ . (10.21)

This matrix relation represents the general constitutive relation between the
section forces N , My and Mz and the associated generalized deformation
measures ε0, κy and κz. The normal force in (10.14) can be written directly
as

N = E0

(
Fε0 + Syκy + Szκz

)
, (10.22)

while the bending moments are

My = E0

(
Syε0 + Iyyκy + Iyzκz

)
,

Mz = E0

(
Szε0 + Iyzκy + Izzκz

)
.

(10.23)

It is observed that for an arbitrarily located cross-section coordinate system
all three deformation parameters ε0, κy and κz contribute to each of the
section forces N , My and Mz. However, a special coordinate system may be
determined in which there are three independent deformation mechanisms –
extension and two curvatures – each corresponding to a single section force
– the normal force and bending moments about two suitably defined axes.
This corresponds to the diagonal form of the matrix relation (10.21). The
determination of this so-called principal coordinate system is an important
part of the cross-section analysis, treated next.
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10.2 Cross-section analysis

In general, diagonalization of the bending stiffness matrix in (10.21) consists
of a translation of the cross-section coordinate system to the so-called elastic
center, followed by a rotation. The translation leads to uncoupling of the
normal force relation from the bending relations. Sometimes it is convenient
to use the intermediate coordinate system through the elastic center, in which
the normal force relation is uncoupled from the moment relations, while the
coupled form of the two-component bending problem is retained.

10.2.1 Elastic center

Initially, the coupling between extension and bending is eliminated by a
suitable translation of the coordinate system to a reference point [cy, cz],
as illustrated in Fig. 10.7. Hereby, new cross-section coordinates {ȳ, z̄} are
introduced via

y = ȳ + cy , z = z̄ + cz . (10.24)

Substitution of these relations into the kinematic expression for the axial
displacement in (10.1) gives the axial displacement with respect to the new
translated coordinate system,

u(ȳ, z̄) = u0 + (ȳ + cy)ηy + (z̄ + cz) ηz = uc + ȳ ηy + z̄ ηz . (10.25)

In this expression uc is the axial displacement at the origin of the translated
coordinate system,

uc = u0 + ηycy + ηzcz . (10.26)

It is seen from (10.25) that the inclinations in the new coordinate system
are still ηy and ηz. Thus, a translation of the coordinate system, as shown in
Fig. 10.7, has no influence on the cross-section inclinations.

The corresponding axial strain is obtained by differentiation of the axial
displacement in (10.25) with respect to the longitudinal coordinate x,

ε(ȳ, z̄) = εc + ȳ κy + z̄ κz , (10.27)

Fig. 10.7: Coordinate system centered at C.
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where εc = ∂uc/∂x is the axial strain at the reference point [cy, cz], while
κy = ∂ηy/∂x and κz = ∂ηz/∂x are the same curvatures as in the original
coordinate system, illustrated in Fig. 10.5. The axial stress is obtained by
multiplication of the strain ε by the elastic modulus E,

σ(ȳ, z̄) = E ε(ȳ, z̄) = E εc + E ȳ κy + E z̄ κz . (10.28)

The section forces in the new coordinate system are obtained by integration
over the cross-section area as

N =

∫

A

σ dA , Mȳ =

∫

A

σ ȳ dA , Mz̄ =

∫

A

σ z̄ dA . (10.29)

The bar on the moment subscripts indicate that the moments are with respect
to the translated coordinate system {ȳ, z̄}. Substitution of the axial stress
σ in (10.28) into the expression for the section forces in (10.29) gives the
constitutive relation with respect to the new translated coordinate system.
It is of similar form as the original formulation (10.21), and can be written
as ⎡

⎢⎣
N

Mȳ

Mz̄

⎤
⎥⎦ = E0

⎡
⎢⎣
F Sȳ Sȳ

Sȳ Iȳȳ Iȳz̄

Sz̄ Iȳz̄ Iz̄z̄

⎤
⎥⎦

⎡
⎢⎣
εc

κy

κz

⎤
⎥⎦ . (10.30)

The cross-section parameters in the above relations are defined and deter-
mined in the same way as in (10.16)–(10.20), but now with respect to the
new coordinates {ȳ, z̄}.

The location of the origin [cy, cz] of the new coordinate system is now chosen
such that axial extension creates no bending moments, or conversely that
axial loading only produces axial extension and no curvature. Figure 10.8
illustrates the separation of the general linear deformation into a) pure ex-
tension and b) pure rotation about C. In the constitutive relation (10.30)
the coupling parameters Sȳ and Sz̄ between bending and extension are now
eliminated by imposing the conditions

Fig. 10.8: Separation of axial displacement into a) pure extension, and b) pure bending.
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Sȳ =
1

E0

∫

A

Eȳ dA =
1

E0

∫

A

E(y − cy) dA = Sy − cyF = 0 ,

Sz̄ =
1

E0

∫

A

Ez̄ dA =
1

E0

∫

A

E(z − cz) dA = Sz − czF = 0 .

(10.31)

The last equalities determine the origin [cy, cz] of the new coordinate system
as

cy =
Sy

F
, cz =

Sz

F
. (10.32)

In the following, this point in the cross-section [cy, cz] is referred to as the
elastic center . For homogeneous cross-sections the elastic center coincides
with the geometric center, while for inhomogeneous cross-sections these two
centers are not equivalent. The elastic center is determined from the ratio
between the weighted static moments Sy and Sz in the original reference
coordinate system, and the weighted cross-section area F . Any cross-section
analysis starts with the location of the elastic center, and if possible it is
advantageous to choose the reference coordinate system {y, z} to coincide
with the elastic center or at least to facilitate evaluation of the integrals
defining the cross-section parameters.

Static moment of a flange

Many thin-walled cross-sections are composed of rectangular parts, and the
cross-section parameters are then conveniently determined by summation
of the contribution from the individual rectangular parts. The basis of the
procedure is be illustrated by a single rectangular flange, as shown in Fig. 10.9
together with the reference coordinate system {y, z}.

Fig. 10.9: Rectangular flange.

The weighted area of the flange is given by the area integral

F1 =
1

E0

∫

A1

Ey dA , (10.33)

where the subscript 1 refers to this particular flange. For cross-sections with
multiple flanges the subscripts indicate the results or parameters for the indi-
vidual flanges. Assume that the position of the center of the flange is known,
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and given by cy1 and cz1 with respect to the reference coordinate system
{y, z}. A change of coordinate system is introduced as in (10.24),

y = ȳ1 + cy1 , z = z̄1 + cz1 , (10.34)

where the local coordinate system {ȳ1, z̄1} for flange 1 is shown in Fig. 10.9b.
The static moments Sy and Sz are defined in (10.19), and substitution of the
coordinte representation (10.34) then gives

Sy =
1

E0

∫

A1

Ey dA =
1

E0

∫

A1

E(ȳ1 + cy1) dA = Sȳ1 + F1cy1 ,

Sz =
1

E0

∫

A1

Ez dA =
1

E0

∫

A1

E(z̄1 + cz1) dA = Sz̄1 + F1cz1 .

(10.35)

When the origin of the local coordinate system {ȳ1, z̄1} is located at the
center of the flange, the corresponding static moments vanish,

Sȳ1 = 0 , Sz̄1 = 0 . (10.36)

Thus, the static moments of the flange with respect to the reference coor-
dinate system {y, z} are given by the weighted area of the flange times the
distance to the center of the flange,

Sy = F1 cy1 , Sz = F1 cz1 . (10.37)

It is important to use the correct sign of the coordinates cy1 and cz1 of the
flange center. In Fig. 10.9 the center is located in the positive quadrant of
the {y, z} coordinate system, whereby both cy1 and cz1 are positive.

Fig. 10.10: Z-profile composed of flanges. Indication of non-zero distances to local centers.

Cross-sections are often composed of several flanges as illustrated in Fig. 10.10.
The location of the elastic center of the full cross-section then depends on
the resulting static moments, and thereby the sum of the contributions from
the individual flanges. Based on the above result (10.37) for the single flange,
the resulting static moments of a cross-section with n flanges are found by
summation as
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Sy =

n∑
j=1

Fj cyj , Sz =

n∑
j=1

Fj czj , (10.38)

where Fj is the area weighted by the elastic modulus for flange j with center
located in [cyj , czj ]. Thus, the determination of the static moments boils down
to the determination of the weighted area and the location of the center for
each individual flange.

If the elastic modulus is constant for each flange, E(y, z) = Ej , the expression
for the static moments can be written as

Sy =
n∑

j=1

Ej

E0
Aj cyj , Sz =

n∑
j=1

Ej

E0
Aj czj , (10.39)

where Aj is the geometric area and [cyj , czj ] the geometric center of flange j.

Fig. 10.11: Properties of different flange geometries.

Figure 10.11 shows the geometric area and the location of the center for an
skew flange and a triangle. The calculation of static moments and the location
of the elastic center is illustrated in the following by examples.

Example 10.1. Elastic center for angle profile. Figure 10.12 shows a cross-section with

two flanges connected at a right angle. The origin of the coordinate system {y, z} is placed
where the flanges join, and such that the axes coincide with the respective centerlines of

the flanges. Hereby, there is no contribution to the static moment Sz from the horizontal
flange (1), while Sy contains no contribution from the vertical flange (2). The length,

thickness and elastic modulus of the horizontal flange are a1, t1 and E1, and similarly
with subscript 2 for the vertical flange. The elastic modulus of the horizontal flange is

chosen as the reference value, i.e. E0 = E1. The cross-section is assumed to be thin-walled
with t1 � a1 and t2 � a2.

The effective area of the cross-section is defined in (10.17), and with E0 = E1

F =

2∑

j=1

Ej

E1
Aj = a1t1 + a2t2

E2

E1
.
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Fig. 10.12: Inhomogeneous thin-walled angle profile.

Note, that because the cross-section parameters are normalized with respect to the elastic
modulus of the horizontal flange, the second term contains a scaling by the ratio of the

elastic moduli. Following (10.39) the static moments are also determined by summation
over the flanges. In the y-direction this gives

Sy =

2∑

j=1

Ej

E1
Aj cyj = a1t1 (− 1

2
a1) = − 1

2
a21t1 ,

where the contribution from the vertical flange vanishes because the coordinate system is
located such that cy2 = 0. The center of the horizontal flange (1) is located in the negative

y-direction, giving a negative value of cy1 and Sy . The static moment in the z-direction is
obtained in the same way as

Sz =

2∑

j=1

Ej

E1
Aj czj =

E2

E1
a2t2

1
2
a2 = 1

2
a22t2

E2

E1
,

where the contribution from the horizontal flange vanishes because cz1 = 0.

Following (10.32) the coordinates of the elastic center are found by the ratio between the
weighted static moments and the weighted cross-section area. This gives the y-component

cy =
Sy

F
=

− 1
2
a21t1

a1t1 + a2t2
E2

E1

= − 1
2
a1

1

1 +
a2t2E2

a1t1E1

=
− 1

2
a1

1 +
A2E2

A1E1

,

and the z-component

Fig. 10.13: Symmetric thin-walled angle profile.
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cz =
Sz

F
= 1

2
a2

a2t2E2

a1t1E1

1 +
a2t2E2

a1t1E1

= 1
2
a2

A2E2

A1E1

1 +
A2E2

A1E1

=
1
2
a2

A1E1

A2E2
+ 1

.

For the symmetric case with a1 = a2 = a, t1 = t2 and E1 = E2, shown in Fig. 10.13, the

elastic center is located at the quarter point,

cy = − 1
4
a , cz = 1

4
a .

An important part of analytical cross-section analysis is the choice of reference coordinate

system. Exercise 10.1 considers the location of the elastic center of the angle section in this
example with respect to another reference system. �

Example 10.2. Inhomogeneous T-profile.

Figure 10.14 shows a thin-walled T-profile, where the length, thickness, elastic modulus

of the flange and the web are af , tf , Ef and aw, tw, Ew, respectively. The reference
coordinate system is located such that the y- and z-axis coincide with the centerlines of

the flange and web, respectively. The elastic modulus of the flange is chosen as the reference
value, E0 = Ef .

Fig. 10.14: Inhomogeneous T-profile.

The cross-section area is obtained by summation of the contributions from flange and web,

F =
1

Ef
(Ef af tf + Ew awtw) = af tf +

Ew

Ef
awtw = Af +

Ew

Ef
Aw

where Af = af tf and Aw = awtw are the geometric areas of flange and web, respectively.

The static moments are determined as

Sy = 0 , Sz = 1
2
aw Aw

Ew

Ef
= 1

2
a2wtw

Ew

Ef
.

Note, that Sy = 0 because of symmetry, and therefore it is usually advantageous to place

one of the axes in the line of symmetry. The coordinates of the elastic center are

cy =
Sy

F
= 0 , cz =

Sz

F
=

1
2
aw Aw

Ew

Ef

Af +
Ew

Ef
Aw

= 1
2
aw

EwAw

EfAf

1 +
EwAw

EfAf

=
1
2
aw

EfAf

EwAw
+ 1

.

A special case is af = aw = a, tf = tw and Ef = Ew, whereby cz = 1
4
a.
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The cross-section has a line of symmetry along the centerline of the web, and the elastic

center is located on this line of symmetry. In general cross-sections with a common line of
geometric and material symmetry will have the elastic center located on this line. �

Elastic center for symmetric cross-sections

For a cross-section with geometric and material double symmetry the location
of the elastic center is at the intersection of the axes of symmetry, illustrated
in Fig. 10.15a. However, also cross-sections formed by flanges or groups of
flanges with point symmetry about a common center will have the elastic
center at this point, as illustrated in Fig. 10.15b.

Fig. 10.15: Cross-sections with a) double symmetry, or b) point symmetry.

Example 10.3. Rectangular cross-section with reinforcement.

Figure 10.16 shows a rectangular cross-section in a concrete beam, with elastic modulus
Ec and dimensions a × 2a. Steel reinforcement is introduced at the bottom of the beam

to improve the strength in tension. The steel reinforcement is located at vertical distance
1
6
a from the bottom. The elastic modulus of steel is Es = 15Ec and the total area of

the reinforcement is As = 1
100

Ac = 1
50

a2. The cross-section is symmetric with respect to

the vertical centerline. The reference coordinate system is therefore located at the top of
the cross-section with the vertical z-axis coinciding with the line of symmetry. The elastic

modulus of concrete is chosen as the reference value: E0 = Ec.

Fig. 10.16: Rectangular cross-section of concrete beam with steel reinforcement.

The weighted area is determined as the sum of the contributions from concrete and steel,
and the concrete area is represented approximately by the full area of the cross-section,
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F =
1

Ec
(Ec 2a

2 + Es As) = a2
(
2 + 15

50

)
= 23

10
a2 .

The center of the concrete part is located at vertical distance z = a, while the center of
the steel reinforcement is located at z = 2a− 1

6
a. The static moment with respect to the

z-axis can therefore be determined as

Sz =
1

Ec

(
Ec 2a

2 a + Es As (2a− 1
6
a)
)
= 51

20
a2 .

The elastic center is therefore located at

cz =
Sz

F
= 51

46
a

which is slightly below the geometric center of the cross-section. �

10.2.2 Moments of inertia

By the translation of the coordinate system, whereby the origin of the coor-
dinate system is located at the elastic center [cy, cz], the extension and the
bending problems uncouple. Hereby, the constitutive relation in (10.30) can
be written as two separate relations,

N = E0F εc ,

[
Mȳ

Mz̄

]
= E0

[
Iȳȳ Iȳz̄

Iȳz̄ Iz̄z̄

][
κy

κz

]
. (10.40)

This leaves the determination of the moments of inertia Iȳȳ, Iz̄z̄ and Iȳz̄ with
respect to the translated coordinate system. In the new coordinate system
the moments of inertia are defined as

Iȳȳ =
1

E0

∫

A

Eȳ2 dA =
1

E0

∫

A

E(y − cy)
2 dA = Iyy + c2yF − 2cySy ,

Iz̄z̄ =
1

E0

∫

A

Ez̄2 dA =
1

E0

∫

A

E(z − cz)
2 dA = Izz + c2zF − 2czSz ,

Iȳz̄ =
1

E0

∫

A

Eȳz̄ dA =
1

E0

∫

A

E(y − cy)(z − cz) dA

= Iyz + cyczF − cySz − czSy .
(10.41)

The static moments Sy and Sz can be eliminated in terms of the coordinates
of the elastic center [cy, cz] by the relation (10.32). Hereby the expressions
for the moments of inertia reduce to

Iȳȳ = Iyy − c2yF , Iz̄z̄ = Izz − c2zF , Iȳz̄ = Iyz − cyczF . (10.42)

The separated format of the constitutive relations in (10.40) is quite suitable
for analytical solutions, as the inverse of a 2 × 2 matrix has a fairly simple
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explicit form. This is illustrated in Section 10.3, where the axial strain and
stress are determined.

Application of parallel axis theorem

The expression for the moments of inertia with respect to a translated coor-
dinate system is often called the parallel axis theorem. The terms in (10.42)
all involve integration over the cross-section area. As for the static moments
the moments of inertia in (10.42) are determined by summation of the con-
tribution to the moments of inertia from the individual flanges or parts of
the cross-section.

Fig. 10.17: Rectangular flange.

Figure 10.17 shows a simple rectangular flange with geometric area A1.
Assume that this flange is part of a larger cross-section, as indicated in
Fig. 10.10, and that the coordinate system {ȳ, z̄} is located at the elastic
center C of the full cross-section. A local coordinate system {¯̄y1, ¯̄z1} is placed
at the center of the local flange in Fig. 10.17 with axes parallel to those of the
{ȳ, z̄} coordinate system. The coordinates of the local center in the {ȳ, z̄} co-
ordinate system are cȳ1 and cz̄1 , as shown in Fig. 10.17. The relation between
the two coordinate systems can be written as

ȳ = ¯̄y1 + cȳ1 , z̄ = ¯̄z1 + cz̄1 . (10.43)

The contribution from the local flange to the moments of inertia with respect
to the {ȳ, z̄} coordinate system can be determined by the integrals given in
(10.41), where substitution of (10.43) gives

Iȳȳ =
1

E0

∫

A1

E(¯̄y1 + cȳ1)
2 dA = I¯̄y1 ¯̄y1

+ c2ȳ1
F1 ,

Iz̄z̄ =
1

E0

∫

A1

E(¯̄z1 + cz̄1)
2 dA = I¯̄z1 ¯̄z1 + c2z̄1F1 ,

Iȳz̄ =
1

E0

∫

A1

E(¯̄y1 + cȳ1)(¯̄z1 + cz̄1) dA = I¯̄y1 ¯̄z1 + cȳ1cz̄1F1 ,

(10.44)

where it is used that in the local {¯̄y1, ¯̄z1} coordinate system S¯̄y1
= S¯̄z1 = 0.
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For cross-sections composed of multiple flanges the summation of the contri-
butions from each individual flange gives the resulting moments of inertia as

Iȳȳ =

n∑
j=1

(
I¯̄yj ¯̄yj

+ c2ȳj
Fj

)
=

n∑
j=1

(
I¯̄yj ¯̄yj

+ c2ȳj
AjEj/E0

)
,

Iz̄z̄ =

n∑
j=1

(
I¯̄zj ¯̄zj + c2z̄jFj

)
=

n∑
j=1

(
I¯̄zj ¯̄zj + c2z̄jAjEj/E0

)
,

Iȳz̄ =

n∑
j=1

(
I¯̄yj ¯̄zj + cȳjcz̄jFj

)
=

n∑
j=1

(
I¯̄yj ¯̄zj + cȳjcz̄jAjEj/E0

)
,

(10.45)

where the last equalities apply to homogeneous flanges with area Aj . This is
the general form of the parallel axis theorem.

Example 10.4. Moments of inertia for rectangular cross-section. Figure 10.18 shows a
homogeneous rectangular cross-section with constant elastic modulus E, width b and height

h. In this case the origin of the reference coordinate system, shown in the figure, coincides
with the elastic center, whereby [ȳ, z̄] = [y, z]. The elastic modulus E is normalized by a

reference elastic modulus E0 to present the results in a general form.

Fig. 10.18: Rectangular homogeneous cross-section.

The definition of the moments of inertia with respect to the reference axes are given by

the integral in (10.16). This means that the moment of inertia in the z-direction is defined
as

Izz =
1

E0

∫

A

Ez2 dA

and because E is constant it can be taken outside the area integral, which can be repre-

sented by double integrals in the y- and z-coordinates,

Izz =
E

E0

∫ b
2

− b
2

∫ h
2

−h
2

z2 dz dy =
Eb

E0

∫ h
2

−h
2

z2 dz =
Eb

E0

[
1
3
z3
]h
2

−h
2

= 1
12

bh3 E/E0 .

In the case when E = E0, the moment of inertia is Izz = 1
12

bh3. The moment of inertia
with respect to the y-direction is determined similarly as

Iyy = 1
12

hb3 E/E0 .
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For the coupling moment of inertia the integral separates into

Iyz =
1

E0

∫

A

Eyz dA =
E

E0

(∫ b
2

− b
2

y dy

)(∫ h
2

−h
2

z dz

)
.

Because of symmetry both integrals vanish

∫ b
2

− b
2

y dy =
[
1
2
y2
] b
2

− b
2

= 0 ,

∫ h
2

−h
2

z dz =
[
1
2
z2
]h
2

−h
2

= 0 ,

whereby
Iyz = 0 .

Note, that only one of the integrals for Iyz have to vanish, and thus Iyz = 0 if at least one

of the two coordinate axes is a line of symmetry. �

Example 10.5. Moments of inertia for skew cross-section. Figure 10.19 shows a skew

homogeneous cross-section with elastic modulus E = E0, width b and height h. The origin
of the reference coordinate system in the figure coincides with the elastic center. The

inclination of the cross-section is represented by the angle θ, as shown in the figure. The
rectangular cross-section in Fig. 10.18 is recovered for θ = 0.

Fig. 10.19: Skew cross-section.

Consider a very thin strip of the cross-section, indicated by the hatched area in the figure.

The width is b and the incremental height is dz. The coordinates of the center of the strip
are [y, z], with y = z tan θ. The moments of inertia for the strip are then calculated as

dIyy = 1
12

b3 dz + b dz y2 = 1
12

b3 dz + bz2 tan2 θ dz ,

dIzz = 1
12

(dz)3b + b dz z2 = bz2dz ,

dIyz = b dz zy = bz2 tan θ dz .

As dz is infinitesimal, higher order terms in dz can be omitted. The moments of inertia are
now obtained by integration over the height of the cross-section in the z-direction, whereby

Iyy = 1
12

b3h + 1
12

h3b tan2 θ , Izz = 1
12

h3b , Iyz = 1
12

h3b tan θ .

It is seen that the results for the rectangular cross-section are recovered for θ = 0. �

Example 10.6. Moments of inertia for angle profile. Figure 10.20a shows a cross-section
with two thin-walled flanges connected at a right angle, similar to that in Example 10.1. In
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this case the cross-section is homogeneous with elastic modulus E = E0. The dimensions

of the horizontal and vertical flanges are 2a × t and a × 2t, respectively, as shown in the
figure. The reference coordinate system {y, z} is located as in Example 10.1, where the

position of the elastic center was found as

cy = − 1
2
a , cz = 1

4
a .

The elastic center and the new coordinate system {ȳ, z̄} are both indicated in Fig. 10.20b.

Fig. 10.20: Homogeneous thin-walled angle profile.

The centers of the two flanges are indicated in the figure as C1 and C2. The distance from

the local center to the elastic center C is also shown in the figure. The local moments
of inertia for the flanges are now determined. Both flanges are rectangular, whereby the

results in Example 10.4 can be applied. For the horizontal flange 1 the local moments of
inertia are:

I ¯̄y1 ¯̄y1 = 1
12

(2a)3t = 2
3
a3t , I¯̄z1 ¯̄z1 = 1

12
t3a 
 0 , I ¯̄y1 ¯̄z1 = 0 .

Since the flanges are thin-walled (t � a) any terms with higher powers of thickness are

omitted because these contributions are insignificant. This is the reason for setting I¯̄z1 ¯̄z1 =
0, while the coupling moment of inertia I ¯̄y1 ¯̄z1 vanishes due to symmetry. The local moments

of inertia for the vertical flange 2 are obtained similarly,

I ¯̄y2 ¯̄y2 = 1
12

(2t)3a 
 0 , I¯̄z2 ¯̄z2 = 1
12

(a)32t = 1
6
a3t , I ¯̄y2 ¯̄z2 = 0 .

The resulting moments of inertia are found by a transformation via the parallel axis the-
orem to the actual coordinate system {ȳ, z̄}, followed by summation of the contributions
from the two flanges. By using (10.45) for homogeneous flanges,

Iȳȳ =
(
2
3
a3 t + 2at( 1

2
a)2
)
+ (0 + 2at( 1

2
a)2
)
= 5

3
a3t ,

Iz̄z̄ =
(
0 + 2at( 1

4
a)2
)
+
(
1
6
a3t + 2at( 1

4
a)2
)
= 5

12
a3t ,

Iȳz̄ =
(
0 + 2at (− 1

2
a)(− 1

4
a)
)
+
(
0 + 2at ( 1

2
a)( 1

4
a)
)
= 1

2
a3t .

The first parenthesis represents the contribution from the horizontal flange, while the sec-

ond represents the vertical flange. For the coupling moment of inertia Iȳz̄ it is important to
use the correct sign for the position of the local center with regard to the actual coordinate

system. For the horizontal flange the local center C1 is placed in the negative quadrant of
the {ȳ, z̄} coordinate system, whereby both coordinates become negative. The contribution

to Iȳz̄ from the vertical flange 2 is also positive because the local center C2 is located in
the fully positive quadrant. �
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Example 10.7. Moments of inertia for T-profile.

Figure 10.21 shows the thin-walled T-profile from Example 10.2. In this example the di-

mensions are chosen as follows:

aw = af = a , Ew = Ef , tw = 1
2
tf = t .

By substitution of these relations into the expressions for the elastic center determined in
Example 10.2 it is found that

cy = 0 , cz = 3
16

a .

The coordinate system {ȳ, z̄} is placed with its origin in C, as shown in the figure.

Fig. 10.21: Homogeneous T-profile.

The moments of inertia can now be determined by summation over the number of flanges

following (10.45),

Iȳȳ =
(

1
12

a32t + 1
12

t3a
)
= 1

6
a3 t ,

Iz̄z̄ =
(

1
12

(2t)3a + 2at( 3
16

a)2
)
+
(

1
12

a3t + at ( 1
2
a− 3

16
a)2
)
= 193

768
a3 t 
 0.25 a3t ,

Iȳz̄ = 0 (symmetry) .

The cross-section is assumed to be thin-walled, which implies that terms containing higher
powers of thickness are omitted, whereby the only non-vanishing contribution to Iȳȳ given

above is from the horizontal flange. Note also that the coupling moment of inertia is zero
due to symmetry of the cross-section. �

Example 10.8. Moments of inertia for I-profile. Figure 10.22 shows an I-shaped cross-
section. The flanges have dimensions b × tf and elastic modulus Ef , while the web has

dimensions h × tw and elastic modulus Ew. Thus, the cross-section is inhomogeneous,
and the reference elastic modulus is chosen as the flange value: E0 = Ef . The particular

geometry and material distribution implies that the cross-section is double symmetric and
the elastic center is therefore located at the intersection of the lines of symmetry. In this

case the origin of the reference coordinate system {y, z} is therefore located directly at the
elastic center.

Following (10.45) the moments of inertia are determined as

Iyy =
1

Ef

(
Ew

1
12

t3wh + 2Ef
1
12

b3tf
)
= 1

6
b3tf ,
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Fig. 10.22: Inhomogeneous thin-walled I-profile.

Izz =
1

Ef

(
Ew

1
12

h3 tw + 2Ef

(
1
12

t3f b+ btf (
1
2
h)2
) )

= 1
12

h3tw
Ew

Ef
+ 1

2
h2btf ,

Iyz = 0 (symmetry) .

Again, terms containing higher powers of thickness are omitted, and the coupling moment
of inertia is zero due to symmetry.

The moment of inertia with respect to the z-coordinate contains contributions from both

web and flanges. In the simple case where Ew = Ef , h = b = a and tw = tf = t the two
contributions reduce to

1
12

h3tw
Ew

Ef
= 1

12
a3t , 1

2
h2btf = 1

2
a3t .

This indicates that the main contribution to the bending stiffness of an I-profile with respect
to the beam deformation in the z-direction comes from the flanges. Note furthermore that

the relative contribution from the flanges increase with increasing height h of the cross-
section. �

10.2.3 Principal coordinate system

By using a coordinate system with origin at the elastic center the problems
of extension and bending uncouple and the constitutive relations appear in
the separated form (10.40). The constitutive relations can be completely un-
coupled by rotating the coordinate system {ȳ, z̄} until the coupling moment
of inertia vanishes. The coordinate system in which the inertia matrix is di-
agonal is called the principal coordinate system, analogous to the use of the
term in the context principal stresses and strains discussed in Chapter 8.

In Fig. 10.23 the coordinate system {ȳ, z̄} is rotated by the angle θ. Hereby the
coordinates [y′, z′] in the rotated system are obtained from the corresponding
coordinates [ȳ, z̄] in the original coordinate system by the relation

[
y′

z′

]
=

[
cos θ sin θ

− sin θ cos θ

][
ȳ

z̄

]
, (10.46)

with the inverse relation
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Fig. 10.23: Rotation of coordinate system.

[
ȳ

z̄

]
=

[
cos θ − sin θ

sin θ cos θ

][
y′

z′

]
. (10.47)

Similar transform relations apply to other sets of vector components in the
two coordinate systems, such as the inclinations [ηy, ηz] with components
[ηy′ , ηz′ ] in the rotated coordinate system.

The axial displacement field is given by (10.26) in the translated {ȳ, z̄} coor-
dinate system, and when introducing the transforms (10.47) of both sets of
components the following form is obtained

u = uc + ȳ ηy + z̄ ηz = uc + y′ ηy′ + z′ ηz′ . (10.48)

The axial strain follows in a similar way from (10.27) as

ε = εc + ȳ κy + z̄ κz = εc + y′ κy′ + z′ κz′ , (10.49)

with the axial strain at the elastic center C and the two curvatures defined as

εc =
duc

dx
, κy′ =

dηy′

dx
, κz′ =

dηz′

dx
. (10.50)

In fact, the relation (10.48) follows directly from the fact that the scalar
product of two vectors is independent of the specific coordinate system used
for the components.

The axial stress is obtained by multiplication of the axial strain with the
elastic modulus, and the normal force is found by integration of the axial
stress over the cross-section area,

N =

∫

A

EεdA = E0Fεc + E0Sy′ κy′ + E0Sz′ κz′ . (10.51)

The static moments in the rotated coordinate system are obtained by sub-
stitution of (10.46) as

Sy′ =
1

E0

∫

A

E(ȳ cos θ + z̄ sin θ) dA = Sȳ cos θ + Sz̄ sin θ = 0 ,

Sz′ =
1

E0

∫

A

E(−ȳ sin θ + z̄ cos θ) dA = Sȳ cos θ + Sz̄ sin θ = 0 ,

(10.52)
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where the last equalities follow from the fact that static moments Sȳ = Sz̄ = 0
in a coordinate system with origo at the elastic center. Thus, the constitutive
relations in the rotated coordinate system have the form

N = E0F εc ,

[
My′

Mz′

]
= E0

[
Iy′y′ Iy′z′

Iy′z′ Iz′z′

] [
κy′

κz′

]
. (10.53)

The moments of inertia in the rotated coordinate system are given as

Iy′y′ =
1

E0

∫

A

Ey′y′ dA = Iȳȳ cos
2 θ + Iz̄z̄ sin

2 θ + 2Iȳz̄ cos θ sin θ ,

Iz′z′ =
1

E0

∫

A

Ez′z′ dA = Iȳȳ sin
2 θ + Iz̄z̄ cos

2 θ − 2Iȳz̄ cos θ sin θ ,

Iy′z′ =
1

E0

∫

A

Ey′z′ dA = (Iz̄z̄ − Iȳȳ) cos θ sin θ + Iȳz̄ (cos
2 θ − sin2 θ) ,

(10.54)
where the latter expressions are obtained by substitution of (10.46) followed
by evaluation of the area integrals. The expressions in (10.54) are conve-
niently formulated in terms of the double angle, similar to the approach for
stress components leading to the format in (8.68). Therefore, the following
trigonometric relations are introduced,

2 cos θ sin θ = sin 2θ , cos2 θ − sin2 θ = cos 2θ , (10.55)

from which it follows that

cos2 θ = 1
2

(
1 + cos 2θ

)
, sin2 θ = 1

2

(
1− cos 2θ

)
. (10.56)

Hereby, the expressions (10.54) for the moments of inertia in the rotated
coordinate system can be written as

Iy′y′ = 1
2

(
Iȳȳ + Iz̄z̄

)
+ 1

2

(
Iȳȳ − Iz̄z̄

)
cos 2θ + Iȳz̄ sin 2θ ,

Iz′z′ = 1
2

(
Iȳȳ + Iz̄z̄

)
− 1

2

(
Iȳȳ − Iz̄z̄

)
cos 2θ − Iȳz̄ sin 2θ ,

Iy′z′ = − 1
2

(
Iȳȳ − Iz̄z̄

)
sin 2θ + Iȳz̄ cos 2θ .

(10.57)

The polar moment of inertia Ip is defined with respect to the distance from

the elastic center, r2 = ȳ2 + z̄2 = y′
2
+ z′

2
, and thus

Ip = Iȳȳ + Iz̄z̄ = Iy′y′ + Iz′z′ . (10.58)

It is seen that Ip, and thereby the sum of the diagonal moments of inertia,
are invariant with respect to rotation of the coordinate system.
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The bending splits into two uncoupled problems when the matrix is diagonal,
and the new coordinate system is therefore rotated such that the coupling
moment of inertia is zero,

Iy′z′ = − 1
2

(
Iȳȳ − Iz̄z̄

)
sin 2θ + Iȳz̄ cos 2θ = 0 . (10.59)

This particular set of axes is called the principal axes of the cross-section.
The equation (10.59) corresponds to

tan 2θ =
2Iȳz̄

Iȳȳ − Iz̄z̄
. (10.60)

The angle can therefore be found as

θ = 1
2 arctan

(
2Iȳz̄

Iȳȳ − Iz̄z̄

)
+ 1

2 nπ , (10.61)

where the second term takes the periodicity of the tangent function into
account. If the angle θ0 is the principal solution (n = 0) to (10.61) in the
interval −1

2π ≤ θ0 ≤ 1
2π, a second solution (n = 1) is given as θ1 = θ0 +

1
2π

or θ1 = θ0+90◦. Figure 10.24 illustrates the two orientations of the principal
axes for an angle profile.

Fig. 10.24: Rotations of coordinate system.

In the coordinate system {y′, z′} the coupling moment of inertia vanishes,
leaving only the two diagonal moments of inertia Iy′y′ and Iz′z′ . The expres-
sion for these in terms of the original moments of inertia can be determined
by the procedure used for stress components in Section 8.4.3 or by using the
following relations for trigonometric functions of double angle,

cos 2θ =
±1√

1 + tan2 2θ
=

1
2 (Iȳȳ − Iz̄z̄)√

1
4 (Iȳȳ − Iz̄z̄)2 + I2ȳz̄

,

sin 2θ =
± tan 2θ√
1 + tan2 2θ

=
Iȳz̄√

1
4 (Iȳȳ − Iz̄z̄)2 + I2ȳz̄

.

(10.62)

By elimination of the trigonometric functions in (10.57) via the relations in
(10.62) the moments of inertia with respect to the principal axes appear as
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Iy′

Iz′

}
=

Iȳȳ + Iz̄z̄
2

±
√(Iȳȳ − Iz̄z̄

2

)2
+ I2ȳz̄ . (10.63)

The plus sign represents the largest moment of inertia and the minus the
smallest. The moments of inertia Iy′ and Iz′ with respect to the principal
axes are denoted by a single subscript only, indicating that the coupling
component is zero for this particular coordinate system orientation. Whether
Iy′ > Iz′ or Iz′ > Iy′ depends on the choice of axes orientation. Figure 10.24a
and b illustrate the rotation of the coordinate system by θ0 and θ1 = θ0+π/2,
respectively. In the first case with θ0 it is seen that Iy′ > Iz′ , whereby Iy′ is
found by the plus in (10.63) and Iz′ by the minus. Conversely for θ1, where
it is seen that Iz′ > Iy′ , corresponding to Iz′ representing the plus in (10.63)
and Iy′ the minus.

For cross-sections with symmetry with respect to one of the axes the coupling
moment of inertia is already zero, and the axes therefore directly represent
the principal coordinate system.

Principal values by eigenvalue problem

The principal moments of inertia of a cross-section can also be determined by
an alternative strictly algebraic approach, similar to that used in Section 8.4.4
for three-dimensional states of stress. The principal directions are character-
ized by defining planes in which bending is uncoupled to bending out of the
plane. Thus, if the components [κȳ, κz̄] define curvatures in a principal plane,
then the corresponding moment vector components [Mȳ,Mz̄] will lie in the
same plane. This property can be expressed by the relations

[
Mȳ

Mz̄

]
= E0

[
Iȳȳ Iȳz̄

Iz̄ȳ Iz̄z̄

][
κȳ

κz̄

]
= I E0

[
κȳ

κz̄

]
, (10.64)

where I is a proportionality factor representing the moment of inertia in the
principal direction. The latter equality constitutes an eigenvalue problem of
the form [

Iȳȳ − I Iȳz̄

Iz̄ȳ Iz̄z̄ − I

][
κȳ

κz̄

]
=

[
0

0

]
, (10.65)

where the moment of inertia I appears as the eigenvalue, while the eigenvec-
tor [κȳ, κz̄] defines the principal curvature direction. The equations (10.65)
are homogeneous and the existence of non-trivial solutions requires the de-
terminant of the matrix to vanish. This provides the characteristic equation

(Iȳȳ − I)(Iz̄z̄ − I) − I2ȳz̄ = 0 . (10.66)

This is a quadratic equation in the eigenvalue I,
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I2 − (Iȳȳ + Iz̄z̄) I + (IȳȳIz̄z̄ − I2ȳz̄) = 0 . (10.67)

The solutions to this equation are similar to the expressions for the principal
moments of inertia already derived by different means in (10.63),

Iy′

Iz′

}
=

Iȳȳ + Iz̄z̄
2

±
√(Iȳȳ − Iz̄z̄

2

)2
+ I2ȳz̄ . (10.68)

The eigenvalue formulation is well suited to numerical solution, providing the
principal moments of inertia as eigenvalues, and the principal directions via
the eigenvectors.

Example 10.9. Principal properties of angle profile. Figure 10.25 shows the angle
profile previously considered in Example 10.1, where the position of the elastic center was

determined, and Example 10.6, where the corresponding moments of inertia were obtained
as,

Iȳȳ = 5
3
a3t , Iz̄z̄ = 5

12
a3t , Iȳz̄ = 1

2
a3t .

Note that Iȳz̄ �= 0, and thus the {ȳ, z̄} axes are not the principal axes.

Fig. 10.25: Homogeneous thin-walled angle profile.

The counterclockwise angle of rotation of the principal coordinate system {y′, z′} relative
to the {ȳ, z̄} coordinate system is given by (10.60),

tan 2θ =
2Iȳz̄

Iȳȳ − Iz̄z̄
=

2 1
2
a3t

5
3
a3t − 5

12
a3t

= 4
5
.

Thus the angle is

θ0 = 19.3◦

where subscript 0 indicates that the result corresponds to the principal value of the tangent
function with n = 0 . The orientation of the principal axes {y′, z′} is shown in Fig. 10.25.

The principal moments of inertia are given by the expressions in (10.63),

Iy′

Iz′

}
=

(
25

24
±

√
41

8

)
a3t .

With respect to the definition of the {y′, z′} axes it is seen that Iy′ > Iz′ , which means that

Iy′ corresponds to the plus in the expression above, while Iz′ corresponds to the minus:

Iy′ = 1.84 a3t , Iz′ = 0.24 a3t .

In the case of θ = θ + 90◦ = 109.3◦ these values would be interchanged. �
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Example 10.10. Principal properties of Z-profile. Figure 10.26 shows a Z-profile with

constant thickness t, height 2a and width 2a. The specific dimensions are given in the
figure. The cross-section has point symmetry about C, which is therefore the elastic cen-

ter, as indicated in the figure. The coordinate axes {y, z} are parallel to the flanges and
web, respectively, and with origin at the elastic center. The cross-section is homogeneous,
whereby the elastic modulus cancels in the expression for the moments of inertia. The

cross-section is assumed to be thin-walled with t � a.

Fig. 10.26: Homogeneous Z-profile.

The moments of inertia with respect to the {y, z} axes are determined as

Iyy = 2
(

1
12

a3t + at( 1
2
a)2
)
= 2

3
a3t ,

Izz = 1
12

(2a)3t + 2ata2 = 8
3
a3t ,

Iyz = at a
(
− 1

2
a
)
+ at(−a) 1

2
a = −a3t ,

where terms containing higher powers in t are omitted. The coupling moment of inertia
Iyz �= 0 and thus {y, z} are not principal axes. The orientation of the principal axes {y′, z′}
is governed by the angle θ determined by (10.60) and (10.61),

tan(2θ) = 1 ⇒ θn = 22.5◦ + n 90◦ .

For n = 0 the angle is θ0 = 22.5◦, and the orientation of the principal axes for this angle
is shown in Fig. 10.26.

The principal moments of inertia are determined by the expressions in (10.63),

Iy′

Iz′

}

=
(

5
3

±
√
2
)
a3t .

From Fig. 10.26 it is seen that Iz′ > Iy′ , corresponding to

Iy′ =
(

5
3

−
√
2
)
a3t = 0.25 a3t , Iz′ =

(
5
3

+
√
2
)
a3t = 3.08 a3t .

The largest moment of inertia in the principal directions is larger than the moments of
inertia in the original {y, z} axes. Thus, for non-symmetric cross-sections the principal di-

rections indicate the optimal orientation of the cross-section with respect to unidirectional
transverse loading. This relates to the concept of Mohr’s circle, as discussed next. �
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Mohr’s circle for moments of inertia

The transformation relations for moments of inertia in a rotated coordinate
system (10.57) and the associated expression (10.63) for the principal mo-
ments of inertia are similar to the transformation relations (8.68) in plane
stress and the expression (8.80) for the associated principal stresses. This
indicates that the moments of inertia Iy′y′ , Iz′z′ and Iy′z′ can be illustrated
graphically by the Mohr’s circle construction in terms of the principal mo-
ments of inertia.

Fig. 10.27: Mohr’s circle in the (Iy′y′ , Iy′z′ )-plane with Iy′ > Iz′ .

Let {ȳ, z̄} take the role of the principal coordinate system with the principal
moments of inertia Iy′ and Iz′ . The moments of inertia in a coordinate system
{y′, z′}, obtained by a counter clockwise rotation θ, is then obtained from the
transformation relations (10.57) as

Iy′y′ = 1
2

(
Iy′ + Iz′

)
+ 1

2

(
Iy′ − Iz′

)
cos 2θ ,

Iz′z′ = 1
2

(
Iy′ + Iz′

)
− 1

2

(
Iy′ − Iz′

)
cos 2θ ,

Iy′z′ = − 1
2

(
Iy′ − Iz′

)
sin 2θ .

(10.69)

The moments of inertia Iy′y′ , Iz′z′ and Iy′z′ can now be illustrated graphically
as a function of the angle θ as shown in Fig. 10.27. Let Iy′y′ serve as horizontal
axis and Iy′z′ as vertical downward axis. The relations (10.69a) and (10.69c)
constitute a parameter representation by which the point [Iy′y′ , Iy′z′ ] moves
around in the counter clockwise direction as described by the center angle
2θ. The center of the circle is located at the horizontal axis,

C = [c, 0] , c = 1
2

(
Iy′ + Iz′

)
, (10.70)

and the radius is
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R = 1
2

∣∣Iy′ − Iz′
∣∣ . (10.71)

It follows from the relations (10.69b) and (10.69c) that [Iz′z′ ,−Iy′z′ ] is the
diametrically opposite point on the circle. It is clear from this construction
that the principal moments of inertia Iy′ and Iz′ constitute the maximum and
minimum values of Iy′y′ and Iz′z′ . These results correspond to those obtained
for the plane stress components in (8.84).

Example 10.11. Mohr’s circle for angle profile. Consider the angle profile in Fig. 10.25,
where the original axes are now denoted {y′, z′} to indicate a non-principal coordinate

system. The moments of inertia are

Iy′y′ = 5
3
a3t , Iz′z′ = 5

12
a3t , Iy′z′ = 1

2
a3t .

In Fig. 10.28 these values identify the two points [Iy′y′ , Iy′z′ ] and [Iz′z′ ,−Iy′z′ ], shown in

the figure normalized by 1
12

a3t. The two points identify the center c = 1
2
( 5
3
+ 5

12
)a3t =

25
24

a3t and thereby the radius. Alternatively, the circle may be constructed from the prin-

cipal values
Iy′ = 1.84 a3t , Iz′ = 0.24 a3t ,

obtained in Example 10.9. �

Fig. 10.28: Mohr’s circle in (Iy′y′ , Iy′z′ )-plane for angle profile.

10.3 Axial stresses and strains

In the general {y, z} coordinate system the axial strain ε is given by (10.3)
and the associated axial stress σ is found by multiplication with the elastic
modulus E, as shown in (10.10). Both the strain and the stress distributions
are functions of the deformation measures ε0, κy and κz, as shown in Fig. 10.5.
They are given in terms of the internal forces N , My and Mz with respect to
the {y, z} coordinate system by the general constitutive relation in (10.21).
This requires inversion of the 3 × 3 stiffness matrix in (10.21), whereby the
axial strain can be written as
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ε = [ 1 , y , z ]

⎡
⎢⎣
ε0

κy

κz

⎤
⎥⎦ =

1

E0
[ 1 , y , z ]

⎡
⎢⎣
F Sy Sz

Sy Iyy Iyz
Sz Iyz Izz

⎤
⎥⎦
−1⎡
⎢⎣

N

My

Mz

⎤
⎥⎦ . (10.72)

This procedure often requires numerical tools because of the inversion of the
general cross-section stiffness matrix. The stress distribution is then obtained
by multiplication with the elastic modulus,

σ = Eε . (10.73)

The kinematic formulation implies a linear strain distribution, as shown in
Fig. 10.3, and for homogeneous cross-sections the associated stress distribu-
tion is linear as well. However, for inhomogeneous cross-sections discontinu-
ities may occur in the stress distribution due to sudden changes in the elastic
modulus. Therefore, the basis of any stress analysis is the determination of
the associated continuous strain distribution.

Separation of extension and bending

For analytical calculations it is convenient to separate the extension and
bending problems by describing the axial strain and stress with respect to
the (translated) coordinate system {ȳ, z̄} with origin at the elastic center. In
that case the contributions to the axial deformation from pure extension and
bending are separated, as illustrated in Fig. 10.8. The constitutive relations
are given in (10.40) and the axial strain can be written as

ε(y, z) = εc + [ ȳ , z̄ ]

[
κy

κz

]
, (10.74)

where the extension and the bending problems are separated and appear in
an additive format. Elimination of the deformation measures εc, κy and κz by
the constitutive relations (10.40) gives the following expression for the axial
strain in terms of the internal forces with respect to the {ȳ, z̄} coordinate
system,

ε(y, z) =
1

E0

(
N

F
+ [ ȳ , z̄ ]

[
Iȳȳ Iȳz̄

Iȳz̄ Iz̄z̄

]−1[
Mȳ

Mz̄

])
. (10.75)

The inverse of the 2 × 2 bending stiffness matrix can be written in explicit
form as [

Iȳȳ Iȳz̄

Iȳz̄ Iz̄z̄

]−1

=
1

IȳȳIz̄z̄ − I2ȳz̄

[
Iz̄z̄ −Iȳz̄

−Iȳz̄ Iȳȳ

]
, (10.76)

where the denominator of the fraction is the determinant of the 2×2 bending
moment of inertia matrix. The stress distribution is found by multiplication
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Fig. 10.29: Plot of linear strain variation: a) extension, and b) bending.

with the elastic modulus, as in (10.73). The separation of the strain distribu-
tion into contributions from extension and bending is illustrated in Fig. 10.29,
where it is indicated that the strain contribution from bending, governed by
the second term in (10.75), vanishes at the elastic center. The resulting strain
distribution is the sum of the two contributions, as demonstrated by the ex-
pression in (10.75).

Example 10.12. Axial stress in cantilever with angle profile. Figure 10.30 shows a
cantilever of length � with tip loads P in the y direction and 1

2
P in the z direction. The

present example determines the axial stress at the fixed support, where the moments are:

My = −Pl , Mz = − 1
2
Pl .

Note, that the moments are negative following the sign convention introduced in Chapter 3.
The cross-section of the cantilever is the angle profile shown in Fig. 10.31. The location

of the elastic center has been determined in Example 10.1, and in the present case the
coordinate system {y, z} is located with origin at the elastic center. The precise location

of the transverse force in the cross-section plane that does not introduce torsion depends
on the shear stress distribution and is dealt with in Chapter 11.

Fig. 10.30: Cantilever with tip loads P and 1
2
P .

The axial strain is given by the relation in (10.75). This expression involves the inverse of

the bending stiffness matrix given in (10.76). For the angle profile the moments of inertia
have been found in Example 10.6,

Iyy = 5
3
a3t , Izz = 5

12
a3t , Iyz = 1

2
a3t ,

and the inverse matrix is

[
Iyy Iyz

Iyz Izz

]−1

=
3

16

[
5 −6

−6 20

]
1

a3t
.

The expression for the axial strain is given in (10.75). In the present example it leads to
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ε(y, z) = − 1

E0

3

16
[ y , z ]

[
5 −6

−6 20

][
1
1
2

]
P�

a3t
= − 3

8

P�

E0a3t
(y + 2z) ,

where the minus follows from the negative bending moments My and Mz .

Fig. 10.31: Homogeneous thin-walled angle profile.

The linear axial strain distribution is plotted along the coordinate axes in Fig. 10.32. Along

the y-axis, with z = 0, the strain variation is

ε(y, 0) = − 3

8
y

P�

E0a2t
,

and along the z-axis, with y = 0, it is

ε(0, z) = − 3

4
z

P�

E0a2t
.

These linear variations of the axial strain along the two coordinate axes is shown in

Fig. 10.32. The values given in the figure correspond to the normalized strain εE0 a2t/(P�).
The corresponding stress variations are found by multiplication with E = E0.

Fig. 10.32: Variation of normalized strain along coordinate axes.

The variations of the strain along the coordinate axes can be used to determine the strain
and stress at end and corner points of the cross-section, which are denoted as points A, B

and C in Fig. 10.32. The stress in A is found as

σA = E0 εA = −
( 3

16
+

9

16

) P�

a2t
= −3

4

P�

a2t
.

This result can be verified by substitution of y = 1
2
a and z = 3

4
a into the expression for

ε(y, z) given previously,
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σA = E0 ε
(
1
2
a, 3

4
a
)
= − 3

8

P�

E0a3t

(
1
2
a + 3

2
a
)
= −3

4

P�

a2t
.

Similarly, the stress in B and C can be determined by combination of the axis values
given in Fig. 10.32, or by substitution of the coordinates into the general expression for the

strain. It is often convenient to set up a table containing the strains and stresses at end
and corner points of the cross-section. In the present case the stress distribution is fully

determined by the values in A, B and C, which are given in Table 10.1.

Table 10.1: Axial stress in angle profile.

point y z σ
a2t

P �

A 1
2
a 3

4
a − 3

4

B 1
2
a − 1

4
a 0

C − 3
2
a − 1

4
a 3

4

The axial stress can also be plotted along the contour of the cross-section, as shown in

Fig. 10.33, using the linear variation along straight parts of the contour.

Fig. 10.33: Axial stress distribution along cross-section contour.

The particular loading of the cantilever yields zero stress at the corner B, while the max-

imum stresses are present at the end points A and B. Assume that σY is the yield stress
in the von Mises yield condition. The maximum force P associated with this yield stress

is then found as

Pmax = ± 4

3

a3t

�
σY .

Note, that because the shear stress is omitted here the Tresca failure condition gives the

same yield limit. �

Example 10.13. Stresses in simply supported beam with Z-profile. Figure 10.34a
shows a simply supported beam with distributed load in the z direction with constant
intensity p. The present example determines the axial strain and stress from bending at

the center of the span in C, where the moments are

MC
y = 0 , MC

z = 1
8
p�2 .

The beam is homogeneous with elastic modulus E = E0, and the cross-section is the
Z-profile shown in Fig. 10.34b. The moments of inertia of this cross-section have been
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Fig. 10.34: Simply supported beam with distributed load.

determined in Example 10.10,

Iyy = 2
3
a3t , Izz = 8

3
a3t , Iyz = −a3t .

The inverse of the bending stiffness matrix is

[
Iyy Iyz

Iyz Izz

]−1

=
3

7

[
8 3

3 2

]
1

a3t
,

and the strain distribution is then obtained by (10.75),

ε(y, z) =
1

E0

3

56
[ y , z ]

[
8 3

3 2

][
0

1

]
p�2

a3t
=

3

56

p�2

E0a3t
(3y + 2z) .

The strain distribution is shown in Fig. 10.35a with respect to the coordinate axes.

Fig. 10.35: a) Strain and b) stress distribution.

The stress distribution is obtained by multiplication with the elastic modulus, which is
constant E = E0 for the present homogeneous beam. The value of the axial stress is found

at the ends and corners A to D of the profile as shown in Fig. 10.35b. In A the axial stress
σA is found by superposition of the strain distribution in Fig. 10.35a,

σA = E0 εA =
( 9

56
− 6

56

) p�2

a2t
=

3

56

p�2

a2t
.
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Table 10.2: Axial stress in angle profile.

point y z σ
a2t

p�2

A a −a 3
56

B 0 −a − 6
56

C 0 a 6
56

D −a a − 3
56

Table 10.2 gives the axial stress at the four points on the cross-section. The full stress distri-
bution is obtained by linear interpolation between the four values, as shown in Fig. 10.35b.

The maximum axial stress occurs in points B and C, with σmax = ± 6
56

p�2/(a2t). �

Principal axes

In the principal coordinate system the coupling moment of inertia Iy′z′ = 0,
whereby the bending stiffness matrix becomes diagonal. The constitutive re-
lations are hereby given as

N = E0F εc , My′ = E0Iy′κy′ , Mz′ = E0Iz′κz′ . (10.77)

The axial strain in the principal coordinate system is defined in (10.48).
Elimination of axial strain and curvatures in terms of the section forces yields

ε =
1

E0

(
N

F
+

My′

Iy′
y′ +

Mz′

Iz′
z′
)
. (10.78)

The associated stress distribution is obtained by multiplication with the elas-
tic modulus

σ =
E

E0

(
N

F
+

My′

Iy′
y′ +

Mz′

Iz′
z′
)
. (10.79)

The stress distribution expressed via the linear kinematic formulation and in
terms of section forces is often referred to as the Navier stress distribution.

Example 10.14. Axial stresses in cantilever with I-profile. Figure 10.36a shows a can-
tilever loaded by a tip force P acting in the z direction. The beam is homogeneous with

elastic modulus E0 = E and length �. The distribution of strain and stress is determined
at the fixed support, where the bending moment attains its maximum,

Mz = −P� .

The cross-section is an I-profile with height and width a and thickness t, as shown in

Fig. 10.36b.
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Fig. 10.36: a) Cantilever with tip load P , and b) I-profile cross-section.

The cross-section has double symmetry with respect to the coordinate system shown in

the figure, which hereby is a principal coordinate system. Thus, the strain distribution is
determined by the simplified expression (10.78). Since N = 0 and My = 0 this expression

reduces to

ε =
1

E

Mz

Iz
z .

The moment of inertia with respect to the z-direction is

Iz = 1
12

a3t + 2at
(
1
2
a
)2

=
(

1
12

+ 1
2

)
a3t = 7

12
a3 t .

This agrees with the result obtained in Example 10.8 for the inhomogeneous I-profile. The

expression for the axial strain is now determined as

ε = − 1

E

12

7

P�

a3t
z .

The corresponding axial stress is found by multiplication of the strain with the constant

elastic modulus E, and thus the strain and stress distribution are similar in shape. Figure
10.37a shows the variation of the axial strain along the z-axis, whereas in Fig. 10.37b the

axial stress is plotted along the center lines of the thin-walled cross-section. The negative
strain and stress indicates that the bottom flange is in compression, in agreement with the

negative sign of the bending moment Mz . �

Fig. 10.37: Normalized distributions of axial strain and stress.

Example 10.15. Inhomogeneous I-profile. This example considers the inhomogeneous

I-profile cross-section shown in Fig. 10.38. As in the previous example the beam is loaded
by a transverse force P in the z-direction, producing the moment

Mz = −P� .
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The height and width of the cross-section is a, the thickness of the flanges is t, while the

thickness of the web is only 1
5
t. The elastic modulus of the flanges is Ef , while the web

has elastic modulus Ew = 5Ef . In the following the reference elastic modulus is chosen as

the flange value, E0 = Ef .

Fig. 10.38: Inhomogeneous I-profile cross-section.

The continuous strain distribution is determined by (10.78),

ε =
1

E0

Mz

Iz
z .

The moment of inertia in the z-direction is determined as

Iz =
Ew

Ef

1
12

a3 1
5
t + 2 at

(
1
2
a
)2

= 7
12

a3 t ,

which by design is equal to the moment of inertia for the homogeneous cross-section in the
previous example. Substitution into the strain expression gives

ε = − 1

Ef

12

7

P�

a3t
z .

The linear variation of the strain ε along the z-direction is shown in Fig. 10.39a. The stress

distribution is obtained by multiplication of the strain by the elastic modulus. Since the
cross-section is inhomogeneous with different elastic moduli, discontinuities in the stress

variation occur. Table 10.3 gives the strain and the associated stress values at the points
A and D located in the flanges, and B and C located at the top and bottom of the web,

as shown in Fig. 10.39. It is seen that the stresses in the web are significantly larger due
to the large elastic modulus. The stress distribution is also shown in Fig. 10.39b.

Assume that the yield stress of the flange material is σY = σf , while it is σY = 10σf

for the web material. In the present case the only stress component is the axial stress σ,

Fig. 10.39: Normalized distributions of axial strain and stress for inhomogeneous I-profile.
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Table 10.3: Axial stress in angle profile.

point y z εEf
a2t

P �
σ
a2t

P �

A − 1
2
a 0 6

7
6
7

B − 1
2
a 0 6

7
30
7

C 1
2
a 0 − 6

7
− 30

7

D 1
2
a 0 − 6

7
− 6

7

whereby the von Mises yield condition (9.57) gives σ = σY . For the flanges the maximum
stress is ± 6

7
P�/(a2t), which for σY = σf gives the yield load

P f
max =

7

6

a2t

�
σf .

Thus, failure occurs in the flanges when the load P reaches P f
max. The maximum stress in

the web is ± 30
7
P�/(a2t), and failure occurs when this value reaches 10σf . This gives

Pw
max =

7

3

a2t

�
σf > P f

max .

This shows that although the stresses in the web are larger than those in the flanges, the
significantly smaller yield stress of the flange material implies that it is in fact the flanges

that limit the maximum loading of the beam by Pmax = P f
max. �

10.3.1 Neutral axis and line of curvature

A number of materials, such as concrete, have significantly larger strength
in compression than in tension. For beams composed of this type of material
it is therefore of interest to determine the regions of the cross-section that
are in compression and tension, respectively. The linear form of the strain
distribution implies that the transition between the compression and tension
regions is described by a straight line, typically denoted as the neutral axis.
In the coordinate system with the elastic center as origin the axial strain is
given by (10.27). Thus, the neutral axis is given by the relation

εc + ȳ κy + z̄ κz = 0 , (10.80)

where the curvature is given in terms of the bending moments by the con-
stitutive relation (10.40b). The straight line representing the neutral axis is
fixed by two points. These are conveniently chosen as the intersections with
the y and z axes, respectively. It follows from (10.80) that

ȳn = − εc
κy

for z = 0 ,

z̄n = − εc
κz

for y = 0 ,
(10.81)
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where the subscript n indicates that these points define the intersections of
the coordinate axes with the neutral axis. For pure bending εc = 0, and the
neutral axis passes through the elastic center C.

Fig. 10.40: Neutral axis perpendicular to line of curvature.

The direction of the neutral axis in the cross-section plane is determined by
the two curvature terms in (10.80). When considering the coordinate incre-
ments [dȳ, dz̄] along the neutral axis, it follows from differentiation of (10.80)
that these satisfy the equation

[dȳ, dz̄]

[
κy

κz

]
= 0 . (10.82)

It follows from this relation that the direction of the neutral axis [dȳ, dz̄] is
perpendicular to the curvature vector [κy, κz]. In a coordinate system with
the elastic center as origin the curvature vector components are given in terms
of the moment vector components as

[
κy

κz

]
=

1

E0

[
Iȳȳ Iȳz̄

Iȳz̄ Iz̄z̄

]−1[
Mȳ

Mz̄

]
. (10.83)

The axial strain at the elastic center εc is simply an offset of the neutral axis
along the normal.

In Fig. 10.40 the curvature vector κ = [κy , κz ] determines the direction of
the line of curvature. Hence, the neutral axis is perpendicular to the line of
curvature and intersects the y and z axis at ȳn and z̄n, respectively. Along
the neutral axis ε = 0, and the direction of the curvature vector κ defines
the region of the cross-section with positive strain, as shown in Fig. 10.40.
The direction of the curvature vector is determined by for instance the angle
relative to the y-axis, which is given by the tangent relation

tan θκ =
κz

κy
. (10.84)
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The neutral axis is not only used to identify the regions of tension and com-
pression. In fact the neutral axis and the line of curvature constitute a local
basis, in which the strain distribution is described particularly simple. This
is demonstrated in the following.

Strain distribution

The neutral axis represents the line with vanishing axial strain, i.e. ε = 0.
Because of the linear strain distribution the strain increases linearly in the
direction perpendicular to the neutral axis along the line of maximum cur-
vature. Thus, along lines perpendicular to the neutral axis the strain varies
linearly and along lines parallel to the neutral axis the strain is constant.
This implies that the strain distribution is fully determined by a single lin-
ear variation along the line of curvature, as illustrated in Fig. 10.41. In the
expression for the axial strain (10.27) the slope of the linear strain distribu-
tion is given by the curvatures κy and κz, which are the components of the
curvature vector κ. The slope of the resulting strain distribution along the
line of curvature corresponds to the length of the curvature vector, which is

κ = |κ| =
√

κ2
y + κ2

z . (10.85)

The curvature vector is fully determined by the direction given in (10.84) and
the length given above in (10.85).

Fig. 10.41: Strain distribution with respect to neutral axis and line of curvature.

Example 10.16. Strain distribution for angle profile. Figure 10.42 shows the cantilever

from Example 10.12, with tip loads P and 1
2
P in the y and z direction, respectively. The

moments at the fixed support are

My = −P� , Mz = − 1
2
P� ,
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and the inverse of the bending stiffness matrix has been found in Example 10.12:

[
Iyy Iyz

Iyz Izz

]−1

=
3

16

[
5 −6

−6 20

]
1

a3t
.

The origin of the coordinate system {y, z} is located at the elastic center C, determined
in Example 10.1.

Fig. 10.42: Cantilever with angle profile and tip loads P and 1
2
P .

There is no axial loading of the beam, and thus

εc =
1

E0

N

F
= 0 .

The neutral axis therefore passes through the elastic center and thereby the origin of the
coordinate system. The direction of the neutral axis is determined via the curvature vector,

[
κy

κz

]
=

[
Iyy Iyz

Iyz Izz

]−1 [
My

Mz

]
= − 3

16

[
5 −6

−6 20

][
1
1
2

]
P�

E0a3t
= − 3

8

[
1

2

]
P�

E0a3t
.

The angle of the curvature vector relative to the y-axis is found by (10.84),

tan θκ =
κz

κy
= 2 ⇒ θκ = 63.4◦ .

The curvature vector and the line of maximum curvature are shown in Fig. 10.43, and the
neutral axis is shown as the line perpendicular to the line of maximum curvature. Both κy

and κz are negative, and thus the curvature vector points into the fully negative quadrant
of the coordinate system. This again implies that the region with tension (positive axial

strain) is above the neutral axis, while the compression zone is below. The slope of the
strain variation is obtained as the length of the curvature vector (10.85),

κ =
3

8

√
12 + 22

P�

E0a3t
=

3
√
5

8

P�

E0a3t
= 0.84

P�

E0a3t
.

It is seen in Fig. 10.43 that the neutral axis intersects the corner of the cross-section in B,
indicating that the axial strain is zero at this point. This agrees with the results obtained

in Example 10.12, and shown in Table 10.1. The strain increases linearly in the direction of
the line of curvature, and it is seen directly that the largest positive strain (tension) occurs

in point C, while the largest negative strain (compression) occurs at the other free end in
point A. The distance from the neutral axis to the point C is denoted as d in Fig. 10.43

and determined via the angle of the line of curvature:

cos θκ =
d

2a
⇒ d = 2a cos θκ = 2√

5
a .
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Fig. 10.43: Normalized strain distribution along line of curvature.

The strain at C is found as the distance d times the slope of the linear strain distribution

κ:

εC = κ d =
3
√
5

8

P�

E0a3t

2√
5
a =

3

4

P�

E0a2t
,

corresponding to the result obtained in Example 10.12. It turns out that the distance from

the neutral axis to point A is also d, whereby εA = −εC . �

Example 10.17. Strain distribution for Z-profile. Consider the simply supported beam

in Fig. 10.44 with a Z-profile as cross-section. The strain and stress distribution has been
determined in Example 10.13, and the present example determines the strain distribution

with respect to the neutral axis and the line of curvature. The loading of the beam implies
that the bending moments at the center section are

MC
y = 0 , MC

z = 1
8
p�2 .

The normal force is zero. The coordinate system {y, z} has its origin at the elastic center.

Fig. 10.44: Simply supported with with distributed load.

The moments of inertia with respect to the coordinate system, shown in Fig. 10.44b, have
been determined in Example 10.13, and the curvature vector can therefore been found as

[
κy

κz

]

=

[
Iyy Iyz

Iyz Izz

]−1 [
MC

y

MC
z

]
=

3

56

[
8 3

3 2

][
0

1

]
p�2

E0a3t
=

3

56

[
3

2

]
p�2

E0a3t
.



Axial stresses and strains 439

The direction of the curvature vector is defined by the tangent relation

tan θκ =
κz

κy
= 2

3
⇒ θκ = 33.7◦ .

The curvature vector κ and the associated line of curvature are shown in Fig. 10.45.
Because the components of the curvature vector are positive it is located in the positive

{y, z} quadrant. The associated neutral axis is perpendicular to the line of curvature, and
because N = 0 it contains the elastic center.

Fig. 10.45: Normalized strain distribution along line of curvature.

The linear strain variation along the line of maximum curvature is now determined. The

slope of the linear variation is determined as the length of the curvature vector:

κ =
3

56

√
32 + 22

p�2

E0a3t
=

3
√
13

56

p�2

E0a3t
= 0.193

p�2

E0a3t
.

The axial strain variation along the line of curvature is hereby determined as the slope
κ times the distance from the neutral axis. Consequently, the largest strains occur at the

points on the cross-section with greatest distance d to the neutral axis, which are the
corners A and B, as shown in Fig. 10.45. The distance d is determined by the geometric

relation:

sin θκ =
d

a
⇒ d = a sin θκ = 2√

13
a ,

whereby the strains at corners A and B are:

εA = −κ d = − 6

56

p�2

E0a2t
, εB = κ d =

6

56

p�2

E0a2t
.

The sign of the axial strain follows from the direction of the curvature vector, see Fig. 10.45.
The above values for the strain in A and B correspond to the results obtained in Exam-

ple 10.13, see Fig. 10.35b. �
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10.4 Exercises

Exercise 10.1. The figure shows the angle profile considered in Example 10.1. In this

exercise the reference coordinate system is shown in the figure with origin at the right end

of the horizontal flange. Assume that the cross-section

is homogeneous with E1 = E2 = E0, and t1 = t2 = t,
a1 = 2a and a2 = a. The cross-section can be consid-

ered as thin-walled with t � a.

a) Determine the static moments Sy and Sz with re-

spect to the reference axes.

b) Determine the location of the elastic center and
compare with the results of Example 10.1.

Exercise 10.2. The figure shows the T-profile considered in Example 10.2. In this exercise

the reference coordinate system is shown in the figure with origin at the right end of the
horizontal flange. Assume that the cross-section is homogeneous with Ef = Ew = E0, and

af = aw = a, tw = t and tf = 3t. The cross-section

can be considered as thin-walled with t � a.

a) Determine the static moments Sy and Sz with re-
spect to the reference axes.

b) Determine the location of the elastic center and
compare with the results of Example 10.2.

c) Locate the coordinate system {ȳ, z̄} with origin in
the elastic center, and determine the moments of

inertia Iȳȳ , Iz̄z̄ and Iȳz̄ .

Exercise 10.3. The figure shows a homogeneous C-profile with elastic modulus E = E0.

The height of the cross-section is h and the width is b. The thick-

ness of the web is t, while the flange thickness is 2t. The cross-
section can be considered as thin-walled with t � h, b.

a) Choose the coordinate system {y, z} shown in the figure and

determine the location of the elastic center [cy , cz ].

b) Locate the coordinate system {ȳ, z̄} with origin in the elastic

center, and determine the moments of inertia Iȳȳ , Iz̄z̄ and Iȳz̄
when h = b = a.

Exercise 10.4. The figure shows a homogeneous C-profile with elastic modulus E = E0.

The height of the cross-section is 3a, the width is 2a and the thickness is t, as shown in
the figure. The cross-section can be considered as thin-walled with t � a.

a) Choose a suitable coordinate system {y, z} and determine the

location of the elastic center [cy , cz ].

b) Locate the coordinate system {ȳ, z̄} with origin in the elastic
center, and determine the moments of inertia Iȳȳ , Iz̄z̄ and Iȳz̄ .

c) Consider the section forces: N = 0 and Mȳ = Mz̄ = M̄ , and
determine the axial strain distribution ε.

d) Determine the maximum axial stress σmax.

Exercise 10.5. The figure shows an inhomogeneous I-profile cross-section. The top flange
has dimensions 2a× t and elastic modulus Ef . The web has dimensions 2a× 1

5
t and elastic
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modulus 10Ef . And finally, the bottom flange has dimensions a× 1
5
t and elastic modulus

10Ef . The cross-section can be considered as thin-walled with t � a.

a) Choose a suitable coordinate system {y, z} and deter-

mine the location of the elastic center [cy, cz ].

b) Locate the coordinate system (ȳ, z̄) with origin in the

elastic center, and determine the moments of inertia
Iȳȳ , Iz̄z̄ and Iȳz̄ .

c) Assume the section forces: N = 0, Mȳ = 0 and Mz̄ =
M̄ , and determine the axial strain distribution ε.

d) Find the axial stress in the top flange and in the bot-

tom flange, respectively.

Exercise 10.6. The figure shows the rectangular cross-section made of concrete with steel
reinforcement. The elastic modulus of concrete is Ec, and the elastic modulus of the steel

reinforcement is Es = 15Ec. The total area of reinforce-
ment is As = a2/50. The location of the elastic center has

been determine in Example 10.3.

a) Locate the coordinate system {ȳ, z̄} with origin in the
elastic center, and determine the moments of inertia

Iȳȳ , Iz̄z̄ and Iȳz̄ .

b) Consider the section forces: N = 0, Mȳ = 0 and Mz̄ =

M̄ , and determine the axial strain distribution ε.

c) Determine both the maximum tension and compres-

sion stress in the concrete, and the maximum stress
in the steel reinforcement.

Exercise 10.7. Consider the T-profile in Example 10.7, that is shown in the figure below.

The moments of inertia with respect to the axes with origin at the elastic center is given in
Example 10.7. In the following the normal force N = 0.

a) Determine the distribution of axial strain ε and the

maximum axial stress σmax for the loading My = M̄
and Mz = 0.

b) Repeat a) for My = 0 and Mz = −2M̄ .

c) Use the results in a) and b) to determine the dis-
tribution of axial strain ε and the maximum axial

stress σmax for the combined load case My = M̄ and
Mz = −2M̄ .

Exercise 10.8. Consider the Z-profile in Example 10.10. Draw Mohr’s circle and determine

the principal moments of inertia Iy′ and Iz′ graphically. Compare with the result obtained
in the example.

Exercise 10.9. The figure shows a Z-profile with height 2a and width a, and thickness t.

The cross-section is homogeneous with elastic modulus E = E0. It is loaded by bending
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moments My = M̄ and Mz = 2M̄ . The cross-section can be considered as thin-walled with

t � a.

a) Determine the moments of inertia Iyy , Izz and Iyz .

b) Determine the principal moments of inertia Iy′ and Iz′ ,

and the orientation of the principal axes.

c) Draw Mohr’s circle.

d) Determine the curvatures κy and κz , and draw the line of
curvature and the neutral axis.

e) Determine the distribution of the axial strain ε and find

the maximum axial stress σmax.

Exercise 10.10. The figure shows a Z-profile similar to that in the previous exercise,
but with additional vertical flanges. The geometry is shown in the figure below and the

thickness is t. The cross-section is homogeneous with elastic modulus E = E0. It is loaded
by bending moments My = M̄ and Mz = 2M̄ . The cross-section can be considered as

thin-walled with tf � a.

a) Determine the moments of inertia Iyy , Izz and Iyz .

b) Determine the principal moments of inertia Iy′ and Iz′ ,

and the orientation of the principal axes.

c) Draw Mohr’s circle.

d) Determine the curvatures κy and κz , and draw the line of

curvature and the neutral axis.

e) Determine the distribution of the axial strain ε and find

the maximum axial stress σmax.



Flexure and Torsion of
Beams 11

In homogeneous bending a beam is exposed to a constant bending moment
along the beam. The constant bending moment does not generate any shear
force, and shear stresses play only a minor role in connection with non-
homogeneous cross-section properties. However, the bending theory is often
used in the somewhat more general context in which the bending moment
varies along the beam. In that case it follows from the equilibrium conditions
discussed in Chapter 3 that shear forces will occur, and these shear forces
in turn introduce shear stresses. The shear force is the total effect of the
corresponding shear stresses over the cross-section, and thus the shear stress
distribution determines the line of action of the shear force. The theory of
nonhomogeneous bending – or flexure – of a beam thereby corresponds to
a particular location of the transverse force with respect to the beam cross-
section. If the load is offset from this line, it also produces a torsion moment,
and the beam sections will rotate in twist. Modern structures often make use
of beams with non-symmetric cross-sections, and it is important to identify
possible contributions from a transverse load to torsion of the beam. The
present chapter deals with the properties of flexure and torsion of beams and
the proper separation of the two problems. A key point is the location of the
so-called shear center – the point of action of the shear forces associated with
beam flexure.
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A central aspect of beam flexure and torsion is the distribution of the as-
sociated shear stresses over the beam cross-section. The calculation of shear
stresses in flexure is discussed in Section 11.1. They can be determined ap-
proximately in terms of their resultant shear flow by the so-called Grashof
formula. For thin-walled cross-sections the relation between shear flow and lo-
cal stresses is rather accurate, and details of the shear stresses and the shear
center in thin-walled cross-sections are given in Section 11.2. The remain-
der of the chapter deals with the complementary problem of beam torsion.
First, the torsion problem is introduced in a simple setting in the form of
homogeneous torsion of solid and hollow circular cylinders in Section 11.3.
This setting is particularly simple, because the initially plane cross-sections
remain plane during twist. For non-circular cross-sections the initially plane
sections develop warping in connection with torsion, and the general theory
of homogeneous torsion is developed in Section 11.4. As for the flexure prob-
lem, particularly simple and rather robust results can also be developed for
homogeneous torsion of thin-walled beams as demonstrated in Section 11.5
for open as well as closed thin-walled cross-sections.

11.1 Shear stresses in beam flexure

Beam flexure is the static problem associated with beam bending under trans-
verse load. A beam in flexure develops shear forces and associated shear
stresses. The origin of these shear stresses is illustrated in Fig. 11.1 showing
flexure of a homogeneous cantilever beam loaded by a transverse tip force
P , acting in a plane of symmetry. The actual beam is shown in Fig. 11.1a
together with the normal stress distribution over the cross-section. Now, as-
sume that a longitudinal section is made in the beam, whereby the upper and
lower parts of the beam act as individual beams as illustrated in Fig.11.1b.
The transverse load is distributed between these two new beams according
to their bending stiffness, and thus they will exhibit the same transverse
displacement. The bending stiffness is represented by the moment of inertia
about a line through the elastic center, and thus the total bending stiffness is

Fig. 11.1: Deformation of (a) single and (b) double layer cantilever.
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reduced when splitting the original section into two separate parts, and the
tip displacement as well as the normal stresses in the beam increase.

Fig. 11.2: Longitudinal shear stress τ in beam.

The axial displacement is discontinuous across the horizontal section, with
extension in the lower beam and contraction in the upper beam. This relative
sliding across the horizontal section can be eliminated by applying a suitable
shear stress distribution ±τ(x, y), acting in the positive x-direction on the
upper part and in the negative direction on the lower part, as illustrated in
Fig. 11.2. An approximate theory for the shear stress distribution in a beam
in flexure can be obtained by using the normal stress distribution from the
homogeneous bending theory developed in Chapter 10, supplemented with
conditions of longitudinal equilibrium. This approach, due to Jourawski

(1821-1891) and often associated with Grashof (1826–1893), is developed
in the following section.

11.1.1 Shear flow – Grashof’s formula

Figure 11.3a shows a cantilever beam with cross-section shown in Fig. 11.3b.
The origin of the coordinate system {ȳ, z̄} is placed at the elastic center C,
and the coordinate axes are initially assumed be principal axes of the cross-
section. The beam is loaded in the z-direction, and thus My = 0. The axial
stress σ is given by the Navier’s stress distribution formula (10.79), which for
plane bending reduces to

σ =
E

E0

(N
F

+
Mz̄

Iz̄
z̄
)
. (11.1)

In this formula the vertical coordinate is denoted z̄ to indicate that the origin
of the coordinate system is at the elastic center. A thin segment of the beam
of width dx is shown in Fig. 11.3. Figure 11.3c shows this segment in detail,
with axial stress distribution σ on the left cross section and σ + dσ on the
right, with dσ representing the change in axial stress over the incremental
length dx.

The small segment is now divided into two parts by a introducing longitudinal
section, as shown by the dashed line in Fig. 11.3b. The area of the upper part
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Fig. 11.3: Force equilibrium between normal stress σ and shear flow q.

is A∗, and the length of the section is b∗. The forces acting on this small part
of the beam are shown in Fig. 11.3d. They consist of a normal force N∗
at the left cross-section, the force N∗ + dN∗ at the right cross-section, and
a distributed force of intensity q acting along the longitudinal section. The
distributed force with intensity q is called the shear flow. The normal force
N∗ is found by integrating the normal stresses over the area A∗,

N∗ =

∫

A∗

σ dA . (11.2)

Equilibrium in the longitudinal direction of the beam requires that

→ −N∗ + N∗ + dN∗ + q dx = 0 .

The first two terms cancel, and after division by dx the shear flow q is found as

q = − dN∗
dx

= −
∫

A∗

dσ

dx
dA , (11.3)

where the last expression follows from differentiation of (11.2). In the present
case of symmetric bending the longitudinal derivative of the axial stress is
found by differentiation of (11.1),

dσ

dx
=

E

E0

dMz̄

dx

z̄

Iz̄
=

E

E0

z̄

Iz̄
Qz̄ , (11.4)

where the shear force is the derivative of the corresponding moment, Qz̄ =
dMz̄/dx, as given in (3.10). Note, that a constant normal force N in the beam
does not contribute to the shear flow. When substituting the gradient (11.4)
back into (11.3), the shear flow is expressed as
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q = − 1

E0

(∫

A∗

E z̄ dA
) 1

Iz̄
Qz̄ . (11.5)

The integral represents the static moment of the part of the beam cross-
section with area A∗, and it is therefore convenient to introduce the notation

S∗
z̄ =

1

E0

∫

A∗

E z̄ dA . (11.6)

Hereby the final form of the shear flow in symmetric bending is obtained as

q = −S∗
z̄

Iz̄
Qz̄ . (11.7)

This result is often termed Grashof’s formula. When the shear flow is repre-
sented in terms of the mean value of the shear stress as q = b∗τ , the mean
shear stress over the section is determined as

τm =
q

b∗
= − S∗

z̄

b∗Iz̄
Qz̄ . (11.8)

The subscript on m on τm refers to the stress as a mean value over the section
b∗. The approximation by the average value is adequate as long as the shear
stresses are approximately constant along the section.

For simplicity the derivation of Grashof’s formula in the form (11.8) was based
on the case of symmetric bending. However, the argument is based on the
general relation (11.3) between shear flow q and the longitudinal derivative of
the normal stress σ. Thus, the general form of the Grashof formula is obtained
when the axial stress is obtained from the general strain distribution (10.75)
by multiplication with the local elastic modulus E,

σ =
E

E0

(
N

F
+ [ ȳ , z̄ ]

[
Iȳȳ Iȳz̄

Iȳz̄ Iz̄z̄

]−1 [
Mȳ

Mz̄

])
. (11.9)

Substitution of this expression for the axial stress into (11.3) gives

q = [S∗
ȳ , S

∗
z̄ ]

[
Iȳȳ Iȳz̄

Iȳz̄ Iz̄z̄

]−1 [
Qȳ

Qz̄

]
, (11.10)

extending Grashof’s formula to general bending about non-principal axes.

In the case of principal axes the inertia matrix – and thereby its inverse –
assume diagonal form, and the shear flow formula takes the somewhat simpler
form

q = −
S∗
ȳ

Iȳ
Qȳ − S∗

z̄

Iz̄
Qz̄ , (11.11)
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from which the mean stress follows by division with the length of the section,

τm =
q

b∗
= −

S∗
ȳ

b∗Iȳ
Qȳ − S∗

z̄

b∗Iz̄
Qz̄ . (11.12)

This formula is used to determine the interface stress in a composite beam
in the following example, before turning to its use in determining the distri-
bution of shear stresses over the beam cross-section.

Example 11.1. Shear stress in interface of composite beam. Figure 11.4a shows a
cantilever beam with a tip load P acting in the z-direction. The cross-section of the beam

is composed of a soft core material with elastic modulus Ec, and two stiff flanges with
elastic modulus Ef = 50Ec and thickness t = 1

25
h. The length of the beam is �, and the

reference elastic modulus is E0 = Ec. The tip load generates a shear force in the z-direction

Qz = P ,

that is positive and constant with respect to the longitudinal axis x.

Fig. 11.4: a) Cantilever with tip load P , and b) composite cross-section.

The flanges are glued to the core material, and it is of interest to determine the shear stress
between the core and flanges. The glue should be strong enough to withstand the shear

stresses due to the loading of the cantilever. In Fig. 11.5 a longitudinal section is placed in
the cantilever between the upper flange and the core material. Longitudinal shear stresses

τ act at the section, and the intensity is given by (11.8).

Fig. 11.5: Longitudinal shear stress τ at interface between top flange and core.

The cross-section is symmetric and the moment of inertia in the z-direction is a principal

moment of inertia,

Iz = 1
12

h3 b +
Ef

Ec
2bt
(
1
2
h
)2

= 13
12

h3b .

Note, that because of the fairly large elastic modulus of the flanges they constitute the
main part of the bending stiffness. The static moment of the top flange is
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S∗
z =

Ef

Ec
bt (− 1

2
h) = − bh2,

which is negative because the top flange is located with negative z-value. The shear flow

follows from Grashof’s formula (11.7) as

q = −S∗
z

Iz
Qz =

bh2

13
12

h3b
P =

12

13

P

h
.

Note, that the shear flow is positive because the analysis is conducted for the top flange.
As indicated in Fig. 11.5 the longitudinal shear stresses act in the negative x-direction on

the core. It is left as an exercise to show that Grashof’s formula actually leads to the same
result as above, but with opposite sign, for the part of the cross-section below the section.

The average shear stress is obtained by division of the shear flow with the length b∗ = b
of the section,

τm =
12

13

P

bh
.

Assume that the maximum allowable shear stress in the glue is τg . This leads to an estimate

of the corresponding maximum tip force as Pmax = 13
12

τghb. �

11.1.2 Shear stress on cross-section

It was demonstrated in Section 8.1.2 that the shear stress components are
symmetric, as illustrated in Fig. 8.7. This implies that the shear stresses on
two intersecting perpendicular planes are equal and either both point towards
the line of intersection or away from this line, as illustrated in Fig. 11.6. In
the present context this implies that the shear stress, initially determined on
a longitudinal section through the beam, also determines the shear stress in
the cross-section plane along the line of intersection.

Fig. 11.6: Shear stress components at line of intersecting orthogonal planes.

Figure 11.7 shows a segment of a beam of thickness dx. The longitudinal shear
flow q is determined from Grashof’s formula. The shear flow is represented
in terms of the mean shear stress τm as q = b∗τm, where b∗ is the length
of the section in the cross-section plane. It then follows from the equality of
the shear stress in the longitudinal plane and the intersecting cross-section
plane that τm, and thereby the shear flow q, have a component in the cross-
section plane that is equal to the longitudinal component. The shear stress
component in the cross-section plane is normal to the section used to de-
fine the partial area A∗ in Grashof’s formula. The direction is determined by
the associated direction of the longitudinal shear flow at the section – both
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Fig. 11.7: Relation between longitudinal and cross-sectional shear flow.

pointing towards or away from the line of intersection. In an actual anal-
ysis, the determination of the cross-section shear stress component is quite
straightforward, as demonstrated in the following examples.

Example 11.2. Shear stress in rectangular cross-section. Figure 11.8a shows a can-

tilever of length � and with elastic modulus E0. A tip force P is acting in the z-direction,
whereby the shear forces are

Qy = 0 , Qz = P .

The cross-section of the beam is rectangular as shown in Fig. 11.8b, with height h and

width b.

Fig. 11.8: a) Cantilever with tip load P , and b) rectangular cross-section.

A longitudinal section is introduced in the beam as shown in Fig. 11.9 at the distance d

from the top of the cross-section. The shear flow q at the section is found by Grashof’s
formula, where the simple form (11.7) can be used because Qy = 0,

q = −S∗
z

Iz
Qz .

Fig. 11.9: Section with shear flow q and average shear stress τm.



Shear stresses in beam flexure 451

In the present case Grashof’s formula is applied using the upper segment of the cross-

section. The longitudinal shear flow is positive in the x-direction. Thus, the shear flow on
the upper segment of the cross-section is positive in the downward z-direction, as shown

in Fig. 11.9b.

Fig. 11.10: Distribution of shear flow q∗.

The moment of inertia with respect to the z-direction of the full cross-section is

Iz = 1
12

h3b .

The static moment of the upper segment with respect to z is the area of the segment times

the distance to the center of the segment,

S∗
z = bd(− 1

2
h+ 1

2
d) = − 1

2
bd(h− d) .

Substitution into the expression for the shear flow gives

q =
1
2
bd(h− d)
1
12

h3b
P = 6

d

h

(
1− d

h

)P
h

.

This represents a parabolic variation of the shear flow q with the distance d from the

top of the cross-section, as illustrated in Fig. 11.10, where the parabolic curve gives the
magnitude, while small arrows indicate the direction of the shear flow. The average shear

stress over the width is then obtained by division with the length of the section b,

τm = 6
d

h

(
1− d

h

) P

hb
.

The maximum shear stress occurs at the center of the cross-section where d = 1
2
,

τmax
m =

3

2

P

hb
.

The shear flow in the y-direction due to the shear force Qz = P can be investigated by

placing a vertical section in the rectangular cross-section at distance d from the right side,

Fig. 11.11: Determination of shear flow in the horizontal direction.
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see Fig. 11.11. The shear flow q is determined by the expression (11.7), where the static

moment is
S∗
z = 0 .

This means that for the rectangular cross-section loaded in the z-direction, the shear flow
in the y-direction vanishes. Thus, the y-component of the average shear stress also vanishes.

However, the present method, based on Grashof’s formula, only determines average shear
stress, and this does not exclude variations in the local shear stress along the section line.

For simple cross-sections with homogeneous material properties analytical methods can
be used, while for more general cross-sections recourse is taken to analysis by the finite

element method for a detailed stress analysis. �

Properties of the shear flow

As shown in Fig. 11.10 the shear flow vanishes at the upper and the lower
boundary of the cross-section, because the static moment of the isolated seg-
ment vanishes with vanishing area. Thus, the shear flow component normal to
the cross-section boundary vanishes, in accordance with the implicit assump-
tion that no shear stresses act on the boundary of the beam. The approximate
shear stress distributions resulting from Grashof’s formula have some simple
properties, summarized in Table 11.1.

Table 11.1: Properties the approximate τm shear stress distribution.

1) The shear stress at the boundary of the cross-section is parallel to the

boundary.

2) For parts of a cross-section of constant width the shear stress τ varies

linearly over cross-section areas with constant axial stress σ.

3) For parts of a cross-section of constant width the stress τ has a parabolic

variation over cross section areas with linear variation of the axial stress σ.

4) The shear flow attains its maximum value at a section through the elastic

center.

Example 11.3. Shear stress in solid T-profile. Figure 11.8 shows a solid T-profile with
constant elastic modulus E0. The height of the profile is 5a and the width is 6a. The

T-profile represents the cross-section of a cantilever beam loaded by a tip force P in the
z-direction, see e.g. Fig. 11.8a. This implies that the shear forces are:

Qy = 0 , Qz = P .

The origin of the coordinate system {y, z} is placed in the elastic center, which is located

on the vertical line of symmetry and 1
2
a below the bottom side of the flange, as indicated

in Fig. 11.12.

The distribution of the shear flow over the cross-section is found by placing suitable sections

in the flange and web of the cross-section. First a vertical section is placed in the right part
of the flange, with distance d1 from the right end of the flange, as shown in Fig. 11.13.
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Fig. 11.12: Geometry and dimensions of massive T-profile.

The shear flow in the flange is given by Grashof’s formula (11.7),

q = −S∗
z

Iz
Qz .

The moment of inertia with respect to the z-direction is

Iz = 1
12

a36a + 6a2a2 + 1
12

(4a)3a + 4a2
(
3
2
a
)2

=
(
1
2
+ 6 + 16

3
+ 9
)
a4 = 125

6
a4 .

The static moment with respect to z for the segment in Fig. 11.13b is

S∗
z = ad1(−a) = −a2d1 .

Substitution into the expression for the shear flow gives

q1 =
a2d1
125
6

a4
P =

6

125

d1

a

P

a
,

where the subscript 1 indicates that this expression is for the right part of the flange with

local coordinate d1. The shear flow variation is linear with respect to the local coordinate
d1 in agreement with point 2 in Table 11.1, as the axial stress σ is constant in the horizontal

direction of the shear flow. Moreover, it is found that the shear flow vanishes at the right
end of the flange, i.e. for d1 = 0. This corresponds to point 1 in Table 11.1. At the joint of

the cross-section, corresponding to d1 = 5
2
, the shear flow in the right part of the flange is

q1
(
5
2
a
)
=

3

25

P

a
.

The same results can be obtained for the left part of the flange, where positive direction

is simply in the opposite direction, as shown in Fig. 11.14b.

Fig. 11.13: Shear flow in right part of horizontal flange.
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Fig. 11.14: Shear flow in flange and web.

In the vertical web the shear flow is determined by placing a horizontal section at distance

d3 from the bottom, see Fig. 11.14c. The static moment for this segment is

S∗
z = ad3

(
7
2
a− 1

2
d3
)
= 1

2
ad3 (7a− d3) .

The shear flow in the web is then given as

q3 = −
1
2
ad3(7a− d3)

125
6

a4
P =

3

125

d3

a

(d3
a

− 7
) P

a
.

At the bottom of the web, where d3 = 0, the shear flow is zero. At the joint of the cross-

section, which corresponds to d3 = 4a, the shear flow is

q3(4a) = − 36

125

P

a
.

The vertical shear flow continues into the horizontal flange. The direction and magnitude

of the shear flow is determined by placing a horizontal section in the flanges at distance
d4 from the top of the flange, as shown in Fig. 11.15. The shear flow is

q4 =
18

125

d4

a

(
3− d4

a

)P
a

.

At the top of the flange the shear flow vanishes, while at the bottom of the flange it is

q4(a) =
36

125

P

a
= −q3(4a) .

Thus, there is continuity in the shear flow.

Fig. 11.15: Vertical shear flow in flange.

The distribution along the flange and web is illustrated in Fig. 11.16, where it is seen that
the maximum shear flow occurs at z = 0, i.e. at the level of the elastic center. This can be
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Fig. 11.16: Normalized a) shear flow q, and b) shear stress τm in flange and web.

verified in terms of the gradient of q3,

d(q3)

d(d3)
=

3

125

(
2
d3

a
− 7
) P

a2
= 0 ⇒ dmax

3 = 7
2
a .

This value of d3 corresponds to the level of the elastic center at z = 0. The corresponding
maximum value of the shear flow is

qmax
3 = q3

(
7
2
a
)
= − 147

500

P

a
.

The mean shear stresses τm are obtained from (11.12) by division with b∗ = a. The

distribution of the mean shear stress is shown in Fig. 11.16b. It is seen that the vertical
component of the mean shear stress is very small in the horizontal flange because the

shear flow in this part is divided by b∗ = 6a. The shear on the lower side of the flange
vanishes, and thus the mean vertical shear stress over the flanges is not very representative

of the local stress distribution. However, the shear stresses are typically dominated by
the component in the direction of the individual flanges, and often only this component is

determined. This is the case in particular for thin-walled cross-sections, where the thickness
of the individual flanges is small compared to the overall dimensions of the cross-section. �

11.2 Thin-walled cross-sections in shear

Thin-walled cross-sections are composed of individual flanges with thickness
much smaller than the overall dimensions of the cross-section. The distribu-
tion of shear flow and shear stresses is simplified for this type of cross-section.
As demonstrated in the previous example the shear flow of interest is in the
direction of the individual flange. Furthermore, the shear flow fulfills a con-
tinuity condition at joints in the cross-section, as demonstrated next.

Continuity of shear flow at joints

Consider a typical joint in a thin-walled cross-section. Figure 11.17a shows a
beam section of length dx, with a cross-section that contains a joint connect-
ing three flanges. The shear flow in the three flanges at the joint are denoted
q1, q2 and q3, respectively. The positive direction of the shear flow on the
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Fig. 11.17: Shear flow at joint of thin-walled flanges.

flanges is in the direction of the longitudinal coordinate x. The shear flow
is the force per unit length on the sections, and the resulting force in the
longitudinal x-direction for each of the three sections is obtained as the shear
flow times the incremental length dx, giving q1dx, q2dx and q3dx. Each sec-
tion must be in equilibrium, which means that the three resulting forces are
transferred to the joint when changing the direction, as shown in Fig. 11.17a.
Longitudinal equilibrium of the joint then requires that

q1dx + q2dx + q3dx − dσ t2 = 0 ,

where dσ is the increment of the axial strain over the length dx. Division by
the increment dx gives

q1 + q2 + q3 = t2
dσ

dx
.

The gradient of the axial stress has been determined in (11.4). For thin-walled
cross-sections the area t2 is of higher order and is therefore omitted. If the
shear flows were determined via inclined sections, meeting at the intersection
of of the flange center-lines, the term would vanish exactly. Thus, longitudinal
equilibrium of the joint requires that the sum of the shear flows must vanish.
This can be generalized for a joint connecting n flanges,

n∑
j=1

qj = 0 . (11.13)

This result can be given a continuity argument, similar to a flow in a channel
with varying cross-section: What comes in balances what goes out. Let qin be
the total shear flow that runs into the joint, and let qout be the total shear
flow that runs out of the joint. Equilibrium then states that what runs in,
must run out:

qin = qout . (11.14)

This simple condition can be used to determine the shear flow at corners and
joints, and to verify results.
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Example 11.4. Shear stress in I-profile. Figure 11.18a shows a cantilever of length �

with tip force P in the z-direction. The shear forces are

Qy = 0 , Qz = P .

The cross-section of the beam is the I-profile shown in Fig. 11.18b. The height is a, the

width is a, the thickness of the flanges is 2t and the thickness of the web is t. The beam is
homogeneous with constant elastic modulus E0 = E. The cross-section is assumed to be

thin-walled, t � a.

Fig. 11.18: Cantilever with I-profile cross-section.

The moment of inertia of the entire cross-section is:

Iz = 2
(
2at( 1

2
a)2
)
+ 1

12
a3t = 13

12
a3t .

The shear flow in the flanges and the web are found by introducing sections in the individual
parts. First, a vertical section is introduced in the left part of the top flange at distance d1
from the left end of the flange, as shown in Fig. 11.19a. The static moment of the segment
with respect to the z-coordinate is

S∗
z = 2td1(− 1

2
a) = − at d1 ,

and the shear flow follows from (11.7) as

q1 = −S∗
z

Iz
Qz =

at d1
13
12

a3t
P =

12

13

d1

a

P

a
.

At the left end of the flange the shear flow is zero, while at the center it is

q1(
1
2
a) =

6

13

P

a
.

Fig. 11.19: Shear flow in top flange: a) section in left part, and b) double section.
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Because of symmetry the shear flow in the right part of the flange is similar to that

in the left part of the flange. In fact, because of symmetry, a double section could be
placed at distance d1 from both the left and the right end of the flange, as shown in

Fig. 11.19b. Hereby the magnitude of the static moment S∗
z doubles. However, as the

resulting shear flow is 2q1, the expression for q1 recovers the expression for the single
section given above. The introduction of a double section is particularly useful for closed

cross-section, as demonstrated in Example 11.5 for a single cell box section.

Fig. 11.20: Shear flow in web.

The shear flow in the web is determined by introducing a horizontal section in the web, at

distance d2 below the centerline of the top flange, as shown in Fig. 11.20. The shear flow
is positive in the downward direction, as indicated in the figure. The static moment of the

segment contains contributions from the top flange and part of the web,

S∗
z = 2at(− 1

2
a) + td2(− 1

2
a+ 1

2
d2) = 1

2
td2(d2 − a)− a2t .

The terms are grouped to illustrate the contribution −a2t from the upper flange, and the
contribution 1

2
td2(d2−a) from the web. The contribution from the web vanishes for d2 = 0

because no web area is included, and for d2 = a because the full web area is centered at
the elastic center. The expression for the shear flow in the web now is

q2 = −S∗
z

Iz
Qz =

12

13

(
1 − d2(a− d2)

2a2

)P
a

.

At the two joints the last term vanishes, leaving the contribution from the flange

q2(0) = q2(a) =
12

13

P

a
,

while the maximum occurs at the level of the elastic center:

qmax
2 = q2

(
1
2
a
)
=

27

26

P

a
.

Note, that qmax
2 
 1.1q2(0), indicating that the shear flow in the web is almost constant

with a modest parabolic variation.

Figure 11.21a shows the variation of the shear flow over the cross-section, normalized by

the factor 1
26

P/a. In the bottom flange the variation of the shear flow is similar to that
in the top flange, but because the static moments have opposite sign, the direction of

the shear flow in the bottom flange is opposite that in the top flange. The shear stress is
determined as the shear flow divided with the thickness of the individual flanges. Thus,

the shear flow is divided by 2t in the top and bottom flanges and by t in the web. The
distribution of shear stresses, normalized by 1

26
P/(at), is shown in Fig. 11.21b, illustrating

that the maximum shear stress occurs in the web, and that the double thickness of the
flanges reduces the stress in the flanges.
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Fig. 11.21: Distribution of a) shear flow q, and b) shear stress τm.

It is seen from Fig. 11.21 that the total shear flow running into the top joint comes from

the two parts of the flange:

qin = 2
6

13

P

a
,

while the resulting shear flow running out of the joint in the web is

qout =
12

26

P

a
.

Thus, the balance condition (11.14) is satisfied.

Fig. 11.22: Shear flow by sections at a) corner and b) elastic center.

With the knowledge of the general characteristics of the shear flow variation in thin-

walled cross-sections, the variation of the shear flow can be determined by using only the
two sections shown in Fig. 11.22. By the first section in the left flange at the joint, see
Fig. 11.22a, the shear flow is determined as

q =
6

13

P

a
.

Because of symmetry with respect to the z-axis the shear flow at the joint in the right part

of the top flange is the same. The only unknown shear flow at the joint now is the shear
flow in the web. The continuity condition (11.13) gives the shear flow in the web at the

upper joint as

q = − 2
6

13

P

a
= − 12

13

P

a
.

From the section in Fig. 11.22b the shear flow at the elastic center is
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q =
27

26

P

a
.

Because of symmetry with respect to the y-axis, the shear flow in the lower half of the cross-

section can be mirrored from the upper half. When the shear flow has been determined at
the critical points of the cross-section, the complete shear stress distribution is determined

by linear curves in the horizontal direction, where the axial stress is constant, and by a
parabolic curve with maximum at the elastic center in the vertical direction, where the

axial stress varies linearly. �

Example 11.5. Shear stress in box section. Figure 11.23a shows a cantilever of length

� with tip force P in the z-direction, whereby

Qy = 0 , Qz = P .

The cross-section of the beam is a box-profile, as shown in Fig. 11.23b. The height is 4a, the
width is 3a and the thickness is t in all flanges. The beam is homogeneous with constant

elastic modulus E0 = E. The cross-section is assumed to be thin-walled.

Fig. 11.23: Shear stresses in I-profile cross-section.

The beam is only loaded in the vertical z-direction and the variation of the axial stress is

therefore constant in the top and bottom flanges and of linear variation in the vertical webs.
The variation of the shear flow in the cross-section is fully determined by the two sections

shown in Fig. 11.24a,c. Because the box profile is a closed cross-section, a single segment
can not be isolated by a single section. Instead a double section is placed symmetrically in

the top flange, as shown in Fig. 11.24a.

Fig. 11.24: Shear flow in box-profile.

The variation of the shear flow in the top flange is linear, and thus the distribution in the

flange is fully determined when the shear flow is known at the corners. A double section
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can be applied because the shear flow q1 at the two sections is identical. The total shear

flow is then given as

2q1 = −S∗
z

Iz
Qz ,

where the moment of inertia for the full cross-section is

Iz = 104
3

a3 t .

The static moment of the segment in Fig. 11.24a is

S∗
z = 3at(−2a) = − 6a2t .

Hereby, the shear flow in the top flange at the corners, shown in Fig. 11.24a, is given as

q1 =
1

2

6a2t
104
3

a3 t
P =

9

104

P

a
.

By the continuity condition (11.14) the shear flow in the left web at the top corner is also

q1 as indicated in Fig. 11.24b. Finally, the maximum shear flow is found at z = 0 by the
double section along the y-axis shown in Fig. 11.24c. The static moment of this segment is

S∗
z = 3at(−2a) + 2(2at)(−a) = −10a2t ,

whereby the shear flow is determined as

q2 =
1

2

10a2t
104
3

a3 t
P =

15

104

P

a
.

Fig. 11.25: Distribution of shear flow q in box section.

Because of symmetry with respect to the y-axis the solution for the upper half of the
box-profile can be mirrored to the bottom half. The variation of the shear flow in the
box-section is shown in Fig. 11.25. Note, that the shear flow in the vertical webs is running

in the same direction as the shear force Qz = P , whereby continuity at the corners implies
that the shear flow in the top flange runs inside-out, while it runs outside-in in the bottom

flange. �
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11.2.1 Shear center

The shear force components Qy and Qz represent the accumulated effect of
the shear stresses distributed over the corresponding cross-section. As forces
in the cross-section plane they are represented by a magnitude and a line of
action. The magnitude of the shear forces follow from integrating the pro-
jection of the shear stresses on the y- and z-axis, respectively. Conversely, in
the Grashof procedure the shear flow, and thereby the corresponding shear
stresses, are determined from the magnitude and direction of the shear force.
However, it is remarkable that the Grashof procedure for the shear flow and
mean shear stresses does not depend on the line of action of the shear force,
but only its direction and magnitude. The Grashof procedure is based on
equilibrium and the resulting shear flow therefore represent the correspond-
ing shear force exactly. However, in order to determine the line of action the
shear stresses on the various parts of the section must be considered, and
the full shear stress of shear flow distribution must therefore be evaluated
in order to calculate the line of action. Before discussing this in detail the
following example briefly illustrates integration of the shear force from the
shear flow distribution.

Example 11.6. Shear force in I-profile. Figure 11.26a shows the shear flow distribution

over the I-profile considered in Example 11.4. The variation is linear in the flanges and
parabolic in the web. The resulting forces on the individual flanges are obtained by inte-

grating the individual distributions. Some simple area integrals are provided in Fig. 11.27.
The linear variations are all identical, and the horizontal force in one half flange denoted

Q1 and shown in Fig. 11.26b. The integral of the shear flow corresponds to the area under
the curve, and for the linear variation this gives:

Q1 =
1

2

a

2

( 6

13

P

a

)
=

3

26
P .

The positive direction of the resulting force Q1 corresponds to that of the shear flow. Force

equilibrium in the y-direction follows from the fact that the resulting forces in the two
halves of each flange are in opposite direction and of equal magnitude.

Fig. 11.26: Resulting shear forces on flanges of I-profile.
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Fig. 11.27: Simple area integrals.

Only the resulting force from the web contributes to the force in the z-direction. This re-

sulting force Q2 is obtained by the area under the parabolic distribution, which is separated
into the area of the constant part and the area of the pure parabola:

Q2 = a
(12
13

P

a

)
+

2

3
a
( 3

26

P

a

)
= P .

This corresponds to the magnitude and direction of the applied shear force Qz = P . �

In the beam flexure problem the shear stress distribution is determined from
a shear force, defined by its magnitude and direction. Once the shear stress
distribution has been determined, the line of action can be determined from
moment equilibrium. Assume that an imposed shear force Qy has a line of
action passing through the point [0, az], and similarly that the shear force
Qz has a line of action passing through the point [ay, 0]. It then follows
from the argument presented in Section 1.2.1 and illustrated in Fig. 1.7 that
the combined shear force [Qy, Qz] passes through the point [ay, az]. This is a
characteristic point of the cross-section, called the shear center. If a transverse
force is applied at a point not coinciding with the shear center, it can be
decomposed into a force of the same direction and magnitude through the
shear center plus a torsion moment about the x-direction, as demonstrated in
Section 1.2.3. Clearly, it is important to know, to what extent a transversely
loaded beam is exposed to torsion. In particular thin-walled beams with open
cross-section have very low torsion stiffness, and the determination of the
shear center therefore constitutes an important part of the analysis of thin-
walled beams.

The location of the shear center A = [ay, az] can be determined from the two
shear stress distributions associated with shear forces Qy and Qz along the
y- and the z-axis, respectively. The corresponding torsion moment is

Mx = ayQz − azQy . (11.15)

Let the shear stress distribution associated with a shear force Qz give a
torsion moment Mx about the longitudinal x-axis. The coordinate ay then
follows directly from (11.15) with Qy = 0. Similarly, the moment associated
with shear stresses generated by the shear force Qy determines the coordinate
az. The procedure is illustrated in the following example and in some of the
exercises.
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Example 11.7. Shear center of I-profile. Consider the I-profile of Example 11.4, shown

in Fig. 11.18. The distribution of the shear flow and the resulting forces on the flanges for
the load case Qy = 0 and Qz = P were determined in Example 11.4, and are shown in

Fig. 11.28a,b for Qz = 1. The results for the other load case Qy = 1 and Qz = 0 is also
presented in the figure, while the analysis is left as an exercise. Figure 11.28c shows the
shear flow distribution, while Fig. 11.28d gives the resulting flange forces.

Fig. 11.28: Shear flow distribution for normalized load cases: Qz = 1 and Qy = 1.

In the case Qz = 1 it is seen directly the resulting force in each of the flanges vanish,
leaving only the vertical force in the web. As this force passes through the origin of the

coordinate system Mx = 0. Thus, the coordinate follows from (11.15) as

Mx = 0 = ay 1 ⇒ ay = 0 .

For the load case Qy = 1 the moment equation is

Mx = 1
2
a 1

2
+ 1

2
a (− 1

2
) = 0 = −az 1 ⇒ az = 0 .

The results follow directly from the double symmetry of the cross-section, whereby Mx = 0
for both shear force components. �

The position of the shear center is given directly for some particular types of
cross-sections. As illustrated in Example 11.7 the shear center is located on
the line of symmetry. This implies that if the cross-section has a single line
of symmetry, e.g. the C-profile shown in Fig. 11.29a, the shear center A is
located on that line. Furthermore, for double symmetric cross-sections, such
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Fig. 11.29: Shear center A and elastic center A for some simple cross-sections.

as the I- and box-profiles considered in Examples 11.6 and 11.7, the shear
center is located at the intersection of the two lines of symmetry, whereby
it coincides with the elastic center, see Fig. 11.29b,c. In cross-sections com-
posed of straight flanges with only a single point of intersection, as shown in
Fig. 11.29d,e, the forces in the flanges intersect at the common intersection
point, which is thereby the shear center.

11.2.2 Shear flexibility

The possibility of including shear flexibility in a beam theory was discussed
in Section 4.3. The shear flexibility for deformation in the z-direction is ex-
pressed by the relation (4.32),

Qz = G0Az γ̄z , (11.16)

where Qz is the shear force and γ̄z is the corresponding beam shear strain.
In this relation the shear stiffness is represented as the product of a reference
shear modulus G0 and the representative shear area Az. For a homogeneous
cross-sectionG0 is simply the shear modulus, and the shear stiffness is thereby
represented via the shear area Az. The calculation of a representative shear
area Az requires knowledge of the shear stress distribution over the cross-
section, and was therefore not included in the formulation of the theory in
Section 4.3. The present theory can fairly easily be extended to include both
shear components and non-symmetric cross-sections. However, this is outside
the present scope.

As seen in Section 4.4 the principle of virtual work constitutes a basis for
the formulation of consistent beam theories, in which all or only some of the
deformation mechanisms are included. Therefore a consistent way of defining
and calculating the shear flexibility, and thereby the shear area Az, is to use
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the elastic energy of the corresponding deformation mechanism. The elastic
energy in a unit length of a beam associated with the shear deformation
mechanism can be expressed in terms of the shear force and the representative
beam shear strain as

1
2 γ̄zQz = 1

2G0Az γ̄
2
z =

1

2

Q2
z

G0Az
. (11.17)

An approximate shear stress distribution corresponding to the shear force Qz

has been obtained in the previous sections by use of Grashof’s formula. Thus,
the elastic energy of a unit length of the beam can be expressed as an integral
of the elastic energy per unit volume, integrated over the cross-section. By
equating this integral with the last expression in (11.17) in terms of the shear
force, the following equation is obtained

Q2
z

G0Az
=

∫

A

τ2

G
dA . (11.18)

In this equation G is the shear modulus at a particular point in the cross-
section, while G0 is a reference shear modulus. The particular value chosen
for G0 is not important, as it only appears in combination with the shear
area as the shear stiffness G0Az. The equation (11.18) defines the shear area
Az via the integral

1

Az
=

1

Q2
z

∫

A

G0

G
τ2 dA . (11.19)

For constant shear modulus it is natural to take G0 = G. The integral ac-
counts for the non-uniformity of the shear stress distribution. In the hypo-
thetical case of a completely uniform distribution of the shear stress, the shear
area Az would equal the cross-section area A. For any variation of the shear
stress over the cross-section Az < A. Some fairly general conclusions can be
drawn from the following simple examples for symmetric cross-sections.

Example 11.8. Shear area of rectangular cross-section. The shear stress distribution

over a rectangular cross-section with with dimensions b and h in flexure was determined
in Example 11.2 and illustrated in Fig. 11.10. The shear stress γ = γz has a parabolic

distribution given by

τ(z) =
3

2

Qz

A

[
1−

(2z
h

)2]

with maximum value τmax = 3
2
Qz/A for z = 0. The shear area Az is defined via the

integral (11.19),
1

Az
=

1

A2

(3
2

)2 ∫

A

[
1−

(2z
h

)2]2
dz .

Introduce the area A = bh and the non-dimensional coordinate ζ = 2z/h to get

1

Az
=

1

A

9

8

∫ 1

−1

(
1− ζ2

)2
dζ =

6

5

1

A
.

Hereby the shear area of a rectangle is determined as
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Az = 5
6
A .

This is slightly smaller than the geometric area, due to the non-uniform shear stress dis-
tribution. �

Example 11.9. Shear area of I-profile. Beams with I-profile cross-sections are commonly

used, and typically the flanges are thicker than the web. The shear stress distribution of
an I-profile of height and width a, web thickness t and flange thickness 2t was determined

in Example 11.4 and shown in Fig. 11.21b. The shear stress is given in the form

τ(s) =
1

26

Qz

at
f(s) ,

where the non-dimensional distribution f(s) is shown in Fig. 11.21b. It is noted that the
maximum value in the flanges is 6, which jumps to 24 in the web, because two parts of the

flange meet, and the web has only half the thickness of the flanges. Thus, the shear stress
is considerably larger in the web. The shear area Az is defined via the integral (11.19),

1

Az
=

1

262
1

a2t2

∫

A

f(s)2 dz =
1

262
1

a2t2

(
4
(
1
3
62
)
( 1
2
a)(2t) + t

∫ h/2

−h/2

f(z)2 dz
)
.

The first term is the contribution from the flanges, consisting of four pieces of length 1
2
a

with a squared triangular distribution, while the last integral is the contribution from the
web. Along the web the parabolic variation is

fweb(z) = 27− 3(2z/a)2 = 27− 3ζ2

in terms of the non-dimensional coordinate ζ = 2z/a. The integral over the web then is

1

a

∫ h/2

−h/2

f(z)2 dz =
1

2

∫ 1

−1

(
27− 3ζ2

)2
dζ =

9

5
376 .

Upon substitution of this result into the area expression above,

1

Az
=

1

at

6

5

151

132
=

1.072

at
.

This determines the shear area as

Az = 0.933 at .

As at is the area of the web, the result suggests that a fair approximation for the shear
area is the area of the web – an approximation often used in practice. �

11.3 Torsion of circular cylinders

Torsion of cylinders constitutes a particularly simple case that is treated first
as an illustration. The problem is illustrated for a full cylinder in Fig. 11.30.
The cylinder is loaded by opposing torsion moments ±Mx at the ends, gener-
ating a constant section momentMx in the beam – the so-called homogeneous
torsion problem. The constant section moment corresponds to a particular
distribution of the shear stresses over the cross-section, and the problem is
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formulated such that the distribution of the shear stresses is identical for all
cross-sections. In the present case the axial symmetry of the problem implies
that the shear stress distribution depends only on the radial distance r from
the axis of the cylinder, but not on the location in the circumferential di-
rection. Furthermore, the shear stress distribution only has a circumferential
component, here denoted τ(r). The identification of the stress distribution
τ(r) is a central part of the problem.

Fig. 11.30: Homogeneous torsion of circular cylinder.

Figure 11.30a shows the circular cylinder in its undeformed state before ap-
plication of the moments ±Mx. To illustrate the deformation imposed via
the torsion moment a grid consisting of lengthwise and circumferential lines
is drawn on the surface of the cylinder. Due to symmetry each point on a cir-
cumferential line will only move in the circumferential direction, and thus the
circle remains a circle in the cross-section plane. It might be imagined that
the cross-section develops an axisymmetric warping, but due to symmetry
there can be no preference for warping in the positive or the negative axial
direction, and thus the cross-sections must remain plane. This leads to the
deformation illustrated in Figure 11.30b, where each cross-section remains
plane but rotates about the longitudinal x-axis, thereby changing the lines
originally parallel to the axis into helices.

Fig. 11.31: Angle between circumferential trace and generator changes in torsion.

Torsion of the cylinder leads to a deformation field called twist, illustrated
in Fig. 11.31. The circumferential displacement component vθ at the radial
distance r from the cylinder axis is given in terms of the local angle of rotation
ϕ(x) as

vθ = r ϕ(x) . (11.20)

This is the only non-vanishing displacement component, and the shear strain
in the circumferential direction then follows by differentiation as
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γxθ =
dvθ
dx

= r
dϕ

dx
. (11.21)

Thus, according to the assumed displacement field (11.20) the only strain is
the circumferential shear strain component (11.21), increasing linearly with
the distance from the axis of the cylinder.

For an isotropic elastic cylinder the shear stress follows from Hooke’s law
(9.15) as

τxθ = Gγxθ , (11.22)

where G is the shear modulus, here assumed constant. The linear distribution
of the shear strain then implies a linear distribution of the shear stress, and
the relations (11.21) and (11.22) can be expressed in compact form in terms
of their maximum value, attained at the surface,

τxθ
τmax
xθ

=
γxθ
γmax
xθ

=
r

ro
, (11.23)

with ro = rmax as the radius of the cylinder. The shear stress distribution is
illustrated in Fig. 11.32. It is noted that τxθ is the only non-vanishing stress
component. This stress distribution leaves the cylinder surface stress free,
and thereby confirms that the assumed displacement field (11.20) is indeed
correct.

Fig. 11.32: Linear radial dependence of shear stress in cylinder.

The torsion moment Mx is determined by integration of the shear stress
distribution multiplied by the moment arm r. When using the linear variation
relations (11.23) the moment integral takes the form

Mx =

∫

A

τxθ r dA =
τmax
xθ

ro

∫

A

r2 dA =
τmax
xθ

ro
Ip , (11.24)

with Ip denoting the polar moment of inertia,

Ip =

∫

A

r2 dA . (11.25)

It follows from (11.24) that the maximum shear stress is given by
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τmax
xθ =

ro Mx

Ip
, (11.26)

and it furthermore follows from the linear variation of the shear stress that
the stress at radius r is

τxθ(r) =
rMx

Ip
. (11.27)

Fig. 11.33: Polar representation and integration.

The integral for the polar moment of inertia (11.25) is calculated by dividing
the circle into rings of width dr with area dA = 2πr dr as illustrated in
Fig. 11.33, whereby

Ip =

∫ ro

0

r2(2πr dr) = 2π

∫ ro

0

r3 dr =
π

2
r4o . (11.28)

This completes the determination of the stress distribution in a cylinder sub-
jected to homogeneous torsion by the moment Mx.

Torsion stiffness

The torsion stiffness of a beam relates the rate of twist ϕ′ = dϕ/dx to the
torsion moment Mx. It is evaluated by substituting the strain distribution
(11.21) into the stress integral (11.24) for the torsion moment Mx,

Mx =

∫

A

τxθ r dA =

∫

A

(Gγxθ) r dA = G
(∫

A

r2 dA
) dϕ

dx
. (11.29)

The integral is recognized as the polar moment of inertia Ip, whereby the
relation takes the form

Mx = GK
dϕ

dx
= GIp

dϕ

dx
. (11.30)

K is the torsion stiffness with the value K = Ip = 1
2πr

4
o for a homogeneous

isotropic elastic cylinder. It should be noted that for general cross-sections
the torsion stiffness K can not be expressed in simple terms via the polar
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moment of inertia, but requires an independent evaluation as discussed in
the following sections.

Hollow cylinder

The stress distribution in a cylinder in homogeneous torsion does not generate
stresses on the exterior surface of the cylinder. Similarly it does not generate
stresses on any smaller cylindrical surface. As a consequence, the stress state
in a hollow cylinder may be deduced directly from that of a similar full
cylinder with the same outer radius as illustrated in Fig. 11.34.

Fig. 11.34: Linear variation of stress τxθ and strain γxθ in a hollow cylinder.

The moment Mx can be expressed in terms of the stress integral (11.24) taken
over the area of the cross-section,

Mx =

∫

A

(Gγxθ) r dA = G
(∫

A

r2 dA
) dϕ

dx
= GIp

dϕ

dx
. (11.31)

Here Ip is now the polar moment of the hollow cylinder, given by

Ip =

∫ ro

ri

r2(2π r) dr = 2π

∫ ro

ri

r3 dr =
π

2

(
r4o − r4i

)
. (11.32)

Thus K = Ip, also for a hollow circular section.

An impression of the polar moment of inertia may be gained by writing it in
the form

Ip =
π

2

(
r4o − r4i

)
=

π

2

(
r2o + r2i

)(
r2o − r2i

)
= 1

2

(
r2o + r2i

)
A , (11.33)

where A is the cross-section area. In this formula it is seen that the polar
moment of inertia is expressed as the product of area and the square of a
characteristic radius – the radius of gyration. The square of the radius of
gyration is obtained by the mean value of the squares of the outer and the
inner radius.
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11.4 General homogeneous torsion of beams

In the homogeneous torsion problem for a cylinder the cross-sections remain
plane during deformation. This is a special case, and for beams with non-
cylindrical cross-section the cross-sections exhibit deformation in the axial
direction, the so-called warping. This effect determines the distribution of
stresses and strains over the cross-section, and therefore constitutes a central
part of the torsion problem.

Fig. 11.35: Torsion of beam with square cross-section.

The warping effect is illustrated in Fig. 11.35, showing homogeneous torsion
of a beam with square cross-section. The circumferential curves, originally
designating plane cross-sections, deform axially in warping, and the angle
between the axial and the circumferential lines in the deformed state de-
pends on the location on the cross-section contour. At the corners the shear
stress components vanish, and thus the two sets of curves remain orthogonal
here, while they develop an angle representing the shear strain with maxi-
mum at the center of the sides. The shear stress distribution is illustrated
in Fig. 11.36a, with maximum at the center of the sides and vanishing at
the corners. The corresponding warping of the cross-section is illustrated in
Fig. 11.36b, showing a characteristic S-shape of the originally straight sides
of the cross-section.

Fig. 11.36: a) Shear stress distribution and b) warping in a square cross-section in torsion.

The analysis of the shear stress and shear strain distribution over the cross-
section can take two different routes: either a kinematic analysis in which the
warping of the cross-section is determined first, or a static analysis in which
the shear stress distribution is determined via a potential function. The stress
potential formulation is often most convenient for hand calculation type anal-
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ysis, while the kinematic analysis is more easily adapted to numerical analysis
of general cross-sections. Here, the basic kinematic relations are derived, and
the stress potential method is then treated in detail in Section 11.4.1.

Kinematics of homogeneous torsion

The theory of the homogeneous torsion problem of homogeneous elastic
beams with arbitrary cross-section was initially formulated by Barré de

St. Venant in 1855, see e.g Timoshenko (1983). The basic idea is that there
exists a state of homogeneous torsion in which the distribution of stresses and
strains are identical for all cross-sections. It can furthermore be shown that
this homogeneous torsion problem does not involve deformation of the cross-
sections in their own plane, but only an in-plane rotation as a rigid body. In
addition each cross-section exhibits identical axial deformation, the so-called
warping. A displacement field with these properties can be described by an in-
plane displacement corresponding to a rotation ϕ of the cross-sections about
a point A with coordinates [ay, az], as illustrated in Fig. 11.37. This in-plane
displacement has the form

v = −(z − az)ϕ , w = (y − ay)ϕ , (11.34)

where ϕ(x) is the angle of rotation of the cross-section at the axial coordi-
nate x. A constant value of the rotation ϕ simply represents a rigid body
rotation about an axis through A. Twist is generated when the rotation an-
gle ϕ depends on x, and the axial displacement is proportional to the rate of
twist ϕ′ = dϕ/dx, as expressed by the relation

u = ω(y, z)ϕ′, (11.35)

where the function ω(y, z) describes the warping of the cross-section. In ho-
mogeneous torsion the rate of twist ϕ′ is constant and each cross-section
exhibits identical warping.

Fig. 11.37: Infinitesimal cross-section rotation about the point A.

The in-plane displacement field (11.34) corresponds to an infinitesimally small
rigid-body rotation, and thus the three in-plane strain components vanish,
εyy = εzz = εyz = 0. In homogeneous torsion the rate of twist ϕ′ is constant,
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and thus also the axial strain vanishes, εxx = 0. The only non-vanishing
strain components γxy and γxz can then be obtained from (8.34) in the form

γxy =
∂u

∂y
+

∂v

∂x
=
[∂ω
∂y

− (z − az)
]
ϕ′ ,

γxz =
∂u

∂z
+

∂w

∂x
=
[∂ω
∂z

+ (y − ay)
]
ϕ′ .

(11.36)

For constant rate of twist these strains are identical for all cross-sections of
the beam. The shear strain distribution is determined by the gradient of the
warping function ω(y, z) and the position [ay, az] of the axis of twist. The
warping function in turn is determined by local equilibrium.

Equilibrium in homogeneous torsion

It follows from the kinematics of homogeneous torsion presented above that
the only non-vanishing strain components are γxy and γxz. For an isotropic
elastic beam the corresponding shear stress components are

τxy = Gγxy , τxz = Gγxz, (11.37)

where G is the shear modulus. These stresses must satisfy the axial equilib-
rium equation (8.19a). In the present case the axial stress σxx vanishes, and
the equilibrium equation then takes the simple form

∂τxy
∂y

+
∂τxz
∂z

= 0 . (11.38)

This equilibrium equation is illustrated in Fig. 11.38, showing a prismatic
cut-out with side lengths dy and dz. The equilibrium equation (11.38) is
obtained by summation of the forces on the four sides and normalizing with
the area dA = dy dz.

Fig. 11.38: Equilibrium in the axial direction.

In addition to the equilibrium equation the stress distribution must also sat-
isfy the boundary condition of vanishing stress on the free surfaces. The
surface of the beam has the normal vector [ 0, ny, nz], and thus the axial
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component of the surface stress vector follows from (8.11a) as

τn = [ τxy, τxz]
[
ny

nz

]
= 0 . (11.39)

The combination of the internal axial equilibrium equation (11.38) and the
boundary condition (11.39) constitutes the static equations of the homoge-
neous torsion problem.

The equilibrium conditions involve the two stress components τxy and τxz.
When the stresses are represented in terms of the shear strains by (11.37),
and the strains are represented in terms of the warping function by (11.36),
the following partial differential equation is obtained for the warping function
of a beam with constant shear modulus G,

∂2ω

∂y2
+

∂2ω

∂z2
= 0 . (11.40)

This is the two-dimensional Laplace equation for which several solution meth-
ods exist. However, the boundary conditions obtained by introducing the
strain representation (11.36) into the boundary condition (11.39) depend on
the particular properties of the boundary contour in a non-standard way,
and direct analytical solution of torsion problems in terms of the warping
function ω(y, z) can be rather complicated. Analytical solutions to the tor-
sion problem are typically easier to obtain by introducing a stress potential
– the Prandtl stress function – as described in the following sections. How-
ever, the kinematic formulation in terms of the warping function is eminently
suitable in the context of numerical solution by the Finite Element Method
with appropriate boundary conditions.

11.4.1 The Prandtl stress function

While the problem of homogeneous torsion of elastic beams was originally
formulated together with selected analytical solutions by Barré de St.

Venant in 1855, the alternative formulation in terms of a stress potential
was developed later by L. Prandtl in 1903 – see e.g. Timoshenko (1983).
In the kinematic approach of St. Venant the key is the representation (11.36)
of the strain components in terms of the gradient of the warping function
plus some extra explicit terms. In Prandtl’s approach this is replaced by a
representation of the stress components as derivatives of a potential Φ(y, z)
in such a way that the equilibrium equation (11.38) is satisfied identically.
This leads to the potential representation

τxy = ϕ′ ∂Φ

∂z
, τxz = −ϕ′ ∂Φ

∂y
(11.41)
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in terms of the so-called Prandtl stress function Φ(y, z). The rate of twist ϕ′

appears as a scaling factor.

While the equilibrium equation has now been satisfied identically, it is nec-
essary to ensure that the corresponding stresses, and thereby strains, can be
derived from a suitably chosen displacement field. This is the compatibil-
ity condition. This condition follows from the kinematic relations (11.36) by
elimination of the warping function ω(y, z),

∂γxy
∂z

− ∂γxz
∂y

= − 2ϕ′. (11.42)

The strains are now expressed in terms of the corresponding stress compo-
nents via Hooke’s law in the form (11.37), and the stresses are expressed in
terms of the Prandtl stress function by (11.41). In the case of constant shear
modulus G the resulting equation for the Prandtl stress function is

∂2Φ

∂y2
+

∂2Φ

∂z2
= − 2G. (11.43)

This is the non-homogeneous equivalent of the Laplace equation, called the
Poisson equation. Like the Laplace equation this is one of the classic equa-
tions of mathematical physics, and several analytical and numerical solution
methods have been developed.

An important aspect of the stress function approach is the associated bound-
ary condition. The shear stress at the bounding surface was expressed by
(11.39). In this relation the stresses are expressed in terms of the stress
function, and the normal vector components are introduced in the form
[ny, nz] = [dz/ds,−dy/ds]. Hereby the boundary condition takes the form

τn = τxyny + τxznz = ϕ′
(∂Φ
∂z

dz

ds
+

∂Φ

∂y

dy

ds

)
= ϕ′ dΦ

ds
= 0. (11.44)

It follows from this equation that Φ = const on any connected part of the
bounding surface. For a single connected cross-section – i.e. a cross-section
without holes – the boundary condition can be introduced in the form Φ = 0.
For a multiply connected cross-section – i.e. a cross-section with one or more
holes – the stress function Φ takes a constant value on each of the closed
bounding contours, but the value may be different for the different contours,
and the determination of the individual values is part of the problem to be
solved, a problem discussed in more detail in Section 11.5.3 on multi-cell
cross-sections.
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Torsion stiffness

The torsion stiffness is determined by integrating the contributions from the
stresses to the moment Mx over the cross-section as illustrated in Fig. 11.39.
The stress vector [τy, τz] acts at the infinitesimal area dA = dy dz located at
[y, z]. The moment about the point [ay, az] then follows from integration over
the cross-section area as

Mx =

∫

A

(
τxz(y − ay) − τxy(z − az)

)
dA

= −ϕ′
∫

A

(
(y − ay)

∂Φ

∂y
+ (z − az)

∂Φ

∂z

)
dA

(11.45)

where the stress components have been represented via the Prandtl stress
function (11.41).

Fig. 11.39: Integration of stresses for torsion moment.

The subscript notation with α = 2, 3 and [y, z] = [x2, x3] is now introduced
in order to simplify the following use of the divergence theorem. First the
integrand is reformulated by a simple identity,

Mx = −ϕ′
∫

A

(
(xα − aα)

∂Φ

∂xα

)
dA

= ϕ′
∫

A

(
2Φ − ∂

∂xα

[
(xα − aα)Φ

])
dA ,

(11.46)

where terms containing repeated subscripts α are added with α = 2 and
α = 3. The second term in the integrand is identified as the divergence of
the product in the square brackets, and the divergence theorem is used to
transform this term into a flux through the boundary,

Mx = ϕ′
(
2

∫

A

ΦdA −
∫

C

Φ (xα − aα)nα ds
)
. (11.47)

The boundary conditions on on the potential function Φ are now introduced
by choosing Φ = 0 on the exterior boundary C0, and Φ = Φi on any internal
boundaries Ci. The contour integral can then be evaluated by use of the
divergence theorem on the areas Ai within the internal contours,
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∫

C

Φ (xα − aα)nα ds =
∑
i

Φi

∫

Ci

(xα − aα)nα ds

= −
∑
i

Φi

∫

Ai

∂(xα − aα)

∂xα
dA =

∑
i

2ΦiAi.

(11.48)

The last equality follows from the differentiation rule ∂xα/∂xα = ∂x2/∂x2 +
∂x3/∂x3 = 2, where the contributions from α = 2 and α = 3 are added,
because the subscript is repeated. The potential function Φ has the bound-
ary value Φi on the contour Ci surrounding the cut-out area Ai, and it may
therefore be extended to have this value within the area Ai. When substitut-
ing the last term in the torsion moment expression (11.47) from (11.48) the
result takes the simple form

Mx = 2ϕ′
∫

A0

Φ dA (11.49)

where the integral is over the total area A0 contained within the exterior
contour C0 of the cross-section. The corresponding torsion stiffness is

GK = 2

∫

A0

Φ dA . (11.50)

The form of this formula suggests that the torsion stiffness of a cross-section
can be increased by giving it a cellular shape with maximum enclosed area.
This effect is clearly illustrated by the torsion stiffness of a hollow cylinder
given by Ip in (11.33).

Example 11.10. Elliptic cross-section. Consider an elliptic cross-section with semi-axes

a and b. The elliptic contour is represented by the equation

y2

a2
+

z2

b2
= 1

and is illustrated in Fig. 11.40.

Fig. 11.40: Torsion of elliptic cross-section.

The Prandtl stress function satisfies the boundary condition Φ = 0 on the contour C0

and according to the Poisson equation (11.43) the sum of the second derivatives must be
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constant. These conditions are satisfied by the function

Φ = C
[
1 − y2

a2
− z2

b2

]
.

The boundary condition is seen to be satisfied and the differential equation gives

∂2Φ

∂y2
+

∂2Φ

∂z2
= − 2C

[ 1

a2
+

1

b2

]
= − 2G,

from which the constant C is determined as

C =
a2b2

a2 + b2
G .

The torsion stiffness then follows from evaluation of the area integral (11.50),

K =
2

G

∫

A

ΦdA =
2a2b2

a2 + b2

∫

A

[
1 − y2

a2
− z2

b2

]
dA =

2a2b2

a2 + b2
A
[
1 − 1

4
− 1

4

]
.

With the area of the ellipse A = πab this gives the torsion stiffness parameter

K =
πa3b3

a2 + b2
.

The special case of the circle a = b has already treated in Section 11.3 with K = 1
2
πa4.

The stress distribution follows from differentiation of the stress potential as

[τxy, τxz ] = ϕ′
[ ∂Φ

∂z
,−∂Φ

∂y

]
=

a2b2

a2 + b2

[ −2z

b2
,
2y

a2

]
Gϕ′ .

The stress components increase linearly with distance from the center of the cross-section,

as illustrated in Fig. 11.40. The maximum stress is located at the ends of the minor axis,
and with b < a the maximum shear stress is

τmax
xy =

2a2b

a2 + b2
Gϕ′ =

2

π

Mx

ab2
=

2

b

Mx

A
.

It follows from the last expression that the maximum stress increases with decreasing width
of the ellipse. �

Fig. 11.41: Maximum shear stress and torsion stiffness for three cross-sections.
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There are rather few cross-sections whose torsion stiffness and stress distribu-
tion can be determined by analytic means. Three examples are summarized
in Fig. 11.41: a rectangle, an equilateral triangle, and an ellipse. Details of the
analysis may be found in e.g. Timoshenko and Goodier (1970) or Boresi et al.
(2011).

11.5 Torsion of thin-walled beams

Beams with thin-walled cross-section find wide application in engineering
structures as they often exhibit efficient use of the material by placing the
material in its most useful location in the cross-section. In bending this typi-
cally implies the use of sections with well developed flanges connected by one
or more webs of more moderate dimension. Although torsion is often a sec-
ondary load it is important to ensure the necessary strength and stiffness also
for this load. The torsion problem for beams with thin-walled cross-section
is presented in three steps. First the case of an open cross-section such as
I-beams and typical cold-formed sections of e.g. C-shape is dealt with and
results for the stress distribution and stiffness are derived. If the walls of the
cross-section are joined to form closed cells torsion generates a stress flow
around these cells that contributes to a substantial increase of the torsion
stiffness and a corresponding reduction of the maximum stress. The simple
case of a single-cell cross-section is treated first, and then extended to the
general case of multi-cell cross-sections.

11.5.1 Open sections

The basic case of a thin-walled cross-section is shown in Fig. 11.42 in the
form of a rectangle of length � along the z-axis and width t along the y-axis
with t  �. The Prandtl stress function Φ is determined by the differential
equation

∂2Φ

∂y2
+

∂2Φ

∂z2
= − 2G. (11.51)

As illustrated in the figure, the curvature of the surface formed by the function
Φ(y, z) is much larger in the transverse direction, whereby

∂2Φ

∂z2
 ∂2Φ

∂y2
. (11.52)

When neglecting the contribution from the lengthwise curvature this gives
the approximate differential equation

∂2Φ

∂y2

 − 2G, (11.53)
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with the simple solution

Φ 
 G
(
1
4 t

2 − y2
)
. (11.54)

Clearly, this approximation loses its validity near the ends of the cross-section,
while it is fairly representative over the central part, forming most of the
section.

Fig. 11.42: Prandtl’s stress function for thin-walled rectangular cross-section.

The torsion stiffness follows from (11.50) as the integral of the stress function,
and substitution of the approximate expression (11.54) gives

GK = 2

∫

A

ΦdA 
 2�

∫ t/2

−t/2

G( 14 t
2 − y2) dy , (11.55)

whereby an approximate expression for the stiffness parameter is

K = 1
3� t

3. (11.56)

This formula also finds application to open thin-walled cross-sections of more
general shape such as e.g. I-, T, and C-shaped sections, where the different
parts may have different wall thickness as well as different shear modulus.
The general formula is

GK =
∑

1
3Gj�jt

3
j , (11.57)

with the subscript j indicating properties associated with the part j of the
cross-section. The shear modulus G is a selected reference value, only used
in the context GK. It follows from the formula (11.56) – and its generalized
form (11.57) – that the torsion stiffness parameter K for an open thin-walled
section is of the order � t3. In contrast, the polar moment of inertia Ip is of
order �3t, and thus K  Ip for thin-walled open cross-sections.

Fig. 11.43: Stress distribution in thin-walled rectangular cross-section.

An approximate representation of the stress distribution follows from the
Prandtl stress function (11.54) by differentiation,
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τxz = −ϕ′ ∂Φ

∂y

 2y Gϕ′ , τxy = ϕ′ ∂Φ

∂z
 τxz, (11.58)

where the last result follows from the smaller change of Φ in the lengthwise
direction. The maximum shear stress will occur at the center of the sides of
the section. At these points the approximation is rather accurate, giving the
maximum shear stress as

τmax
xz 
 tGϕ′ . (11.59)

This corresponds to the maximum stress in an elliptical cross-section in the
limiting case of a very slender section.

Fig. 11.44: Shear flow in thin-walled rectangular cross-section.

Additional qualitative information about the shear stress distribution can
be gained from a sketch of the contours Φ = const shown in Fig. 11.44. It
follows from the definition (11.41) of the stress function, that the shear stress
at any point is in the direction of the corresponding contour at that point.
The contours Φ = const are closed, and thus it is seen from Fig. 11.44 that
there will be transverse shear stresses near the ends of the section. These
stress components are neglected, when deriving the stress distribution from
the approximate stress function (11.54).

Fig. 11.45: Moment of primary shear stresses.

It is important to realize that the torsion stiffness is best evaluated directly
as the integral of the stress function Φ over the cross-section area, and not
by integration of the approximate stress field without the transverse stress
components. The approximate stress field (11.58) corresponds to a linear
variation of the shear stress over the thickness as illustrated in Fig. 11.45.
This stress distribution corresponds to resultants of the two triangular parts
of magnitude R = 1

4 tτmax, acting at a distance of 2
3 t. The moment from this

approximate stress distribution is

M∗
x = 1

6�t
2τmax = 1

6� t
3 Gϕ′ = 1

2GK ϕ′ (11.60)

where τmax has been substituted from (11.59) and K from (11.56). Thus,
the lengthwise stress components determined by (11.58) only account for
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half of the torsion stiffness. The other half is contributed by the transverse
components that, although relatively smaller, act at a greater distance.

Example 11.11. Thin-walled T-profile. Figure 11.46a shows a T-profile with height h and

width b. The thickness of the vertical web is tw, while the thickness of the flange is tf . The
cross-section is assumed thin-walled, so that tw, tf � h, b. The cross-section is loaded in

torsion by the moment Mx.

Fig. 11.46: Thin-walled T-section.

The torsion stiffness for cross-sections composed of thin-walled flanges with different thick-
ness is obtained by summation of the contribution from each individual flange,

GK = 1
3

∑
G�j t

3
j = 1

3
G
(
h t3w + b t3f

)
.

In each part of the cross-section the shear stress has a linear variation between ±τmax.

The maximum shear stress is determined by (11.58), using the local wall thickness. For
the flange this gives

τmax
f = tf Gϕ′ =

tf

K
Mx ,

while for the web

τmax
w = tw Gϕ′ =

tw

K
Mx .

The magnitude and direction of the shear stress is shown in Fig. 11.46b. Note, that in an
open thin-walled cross-section the largest stress occurs at the greatest wall thickness. �

Example 11.12. Thin-walled C-profile. Figure 11.47a shows a C-profile with height h and
width b. The thickness of the vertical web is tw = t, while the thickness of the horizontal

flanges is tf = 2t. The cross-section is assumed thin-walled, so that tw, tf � h, b.

Fig. 11.47: a) Thin-walled C-profile, b) normalized stress distribution: τat2/Mx.
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As in the previous example the torsion stiffness GK is found by summation of the contri-

bution from the two flanges and the web,

GK = 1
3

∑
G�j t

3
j = 1

3
G
(
4a t3 + 2(3a) (2t)3

)
= 52

3
Gat3 ,

where the main contribution comes from the two flanges with thickness 2t.

The maximum stress in the flange follows from (11.59) as

τmax
f = tf Gϕ′ =

tf

K
Mx =

3

26

Mx

at2
,

while for the web it is

τmax
w = tw Gϕ′ =

tw

K
Mx =

3

52

Mx

at2
.

The maximum shear stress ratio is identical to the ratio of the web thickness, and thus the
maximum shear stress of the present C-profile occurs in the flanges. �

11.5.2 Single-cell sections

Figure 11.48a shows a thin-walled beam with single-cell cross-section, loaded
by a torsion moment Mx. The shear stresses are dominated by the component
τ parallel to the wall. It turns out to be convenient to introduce the shear
flow q as the integral of this shear stress τ over the wall thickness,

q =

∫

t

τ dn = τm t (11.61)

where n is a coordinate normal to the wall, and τm the mean value of the
shear stress at the location.

Fig. 11.48: Thin-walled single-cell cross-section.

The shear flow has an important property, identified by considering equilib-
rium of a small part of the wall illustrated in Fig. 11.48b. This part is limited
by cross-sections at x and x + dx long the beam axis and contains the part
of the wall between the points A and B. It follows from symmetry of the
shear stress components that the component τxs acting on the cross-section
is equal to the component τsx acting on the axial section, e.g. at B. As there
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is no axial stress σxx the integral of the stresses over the wall thickness at A
and B must be of equal magnitude in order to uphold axial equilibrium of
the small part of the wall shown in Fig. 11.48b. Thus, the shear flow can be
evaluated either at A or at B as

q =

∫

A

τ dn =

∫

B

τ dn . (11.62)

As A and B represent arbitrary points along the cell wall, it follows that the
shear flow q is a constant.

Fig. 11.49: Shear flow integral as cell area.

The relation between the shear flow q and the torsion moment Mx is found
by integrating the contributions along the contour of the cell as illustrated in
Fig. 11.49. The force on an infinitesimal part of length ds along the contour
is dF = τm t ds = q ds. This infinitesimal force contributes to the moment
about a point O in the cross-section via the distance h of this point from the
line of action of the force as illustrated in Fig. 11.49a. The total moment is
found by integration along the cell contour,

Mx =

∮

C

h dF = q

∮

C

h ds = 2q Am (11.63)

where the last equality follows from the observation that 1
2h ds = dA is the

infinitesimal area spanned by the part ds along the cell contour as illustrated
in Fig. 11.49b. Am denotes a mean area of the cell, typically corresponding
to a center line of the cell wall.

When the torsion momentMx is given, the shear flow q follows from (11.63) as

q =
Mx

2Am
. (11.64)

The mean stress τm then follows from the definition of the shear flow as

τm =
Mx

2tAm
. (11.65)

It is seen that the mean shear stress τm is inversely proportional to the local
wall thickness t.
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Stress distribution over the wall thickness

The stress distribution over a cross-section from homogeneous torsion can
be expressed in terms of the Prandtl stress function Φ as discussed in Sec-
tion 11.4.1. It was demonstrated in (11.44) that the stress function Φ takes a
constant value along each individual contour of the cross-section. For single-
cell cross-sections this implies that the boundary values can be characterized
by Φ = 0 at the exterior boundary and Φ = Φ1 at the boundary within the
cell. Between these two boundaries the stress function Φ is determined by the
Poisson differential equation (11.43) from which it follows that the variation
of Φ over the cell wall is as illustrated in Fig. 11.50.

Fig. 11.50: Single-cell section with Prandtl stress function Φ.

The value Φ1 of the stress function within the cell can be expressed in terms
of the shear flow q via an integral over the wall thickness as

Φ1 = −
∫ t/2

−t/2

∂Φ

∂n
dn =

∫ t/2

−t/2

τxs
ϕ′ dn =

q

ϕ′ . (11.66)

When using the definition of the shear flow in terms of the mean stress this
corresponds to

τm =
Φ1

t
ϕ′. (11.67)

Fig. 11.51: Stress distribution over wall thickness of cell-section.

A constant stress of magnitude of τm corresponds to a linear variation of the
stress function Φ over the cell wall as illustrated in Fig. 11.50. In addition to
this stress there is a contribution corresponding the curvature of Φ. This cor-
responds to the stress distribution in a similar open cross-section as discussed
in Section 11.5.1, and given by
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τo = 2nGϕ′, (11.68)

where n is a coordinate along the normal to the cell wall, with origin at
the center of the wall. Thus, the total stress distribution in a single cell
cross-section consists of a uniformly distributed part of magnitude τm and
a part τo with linear variation over the wall thickness and zero mean value,
corresponding to torsion of a similar open section. These contributions are
illustrated in Fig. 11.51. For a typical thin-walled cell section the component
τo with linear variation is considerably smaller than the mean stress τm.

Torsion stiffness

The basic mechanism generating the shear flow is illustrated in Fig. 11.52
where the discontinuity that would occur in the section with a slit is counter-
acted by imposing a shear flow q of suitable magnitude along the slit. This
condition amounts to the condition that the axial displacement u must vary
continuously around the contour.

Fig. 11.52: a) Open single-cell beam, b) Closed by shear flow q.

The condition of continuity of the axial displacement is expressed via the
shear strain γxs along the center line of the cell wall. The displacement com-
ponents in the homogeneous torsion problem consist of an axial displacement
u and an in-plane displacement along the tangent of magnitude hϕ generated
by rotation about a point O as illustrated in Fig. 11.49a. The corresponding
shear strain along the center line of the wall is

γxs =
∂u

∂s
+

∂(hϕ)

∂x
=

∂u

∂s
+ hϕ′. (11.69)

The shear strain γxs at the center line of the wall is determined by the mean
shear stress shear τm, and γxs can therefore be expressed in terms of Φ1 by
(11.67), whereby

∂u

∂s
=
( Φ1

Gt
− h
)
ϕ′. (11.70)

For a cellular cross-section the axial displacement varies continuously around
each cell, and thus the integral of its derivative around a cell must vanish,
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∮
∂u

∂s
ds = ϕ′

∮ ( Φ1

Gt
− h
)
ds = 0. (11.71)

In the last integral Φ1 is a constant that can be moved outside the integral
sign, whereby the condition takes the form

Φ1

∮

C

ds

G t
−
∮

C

h ds = 0. (11.72)

The second integral is an expression of the double area enclosed within the
integration contour as illustrated in Fig. 11.49b, and thus the value Φ1 of the
stress function inside the cell is determined as

Φ1 =
2Am∮

C

ds

G t

. (11.73)

In this formula Am is the area within the center line contour.

By (11.49) the torsion moment is expressed by the integral of the stress
function Φ over the area enclosed by the exterior contour of the cross-section,
whereby

Mx = 2ϕ′
∫

Am

Φ dA 
 2ϕ′ Φ1Am, (11.74)

when the contribution from the local stress variation, represented by the
curvature of Φ over the wall thickness, is neglected. When substituting Φ1

from (11.73) the torsion moment is expressed in terms of the rate of twist
ϕ′ as

Mx =
4A2

m∮

C

ds

G t

ϕ′ . (11.75)

This determines the torsion stiffness of a thin-walled cross-section by the
so-called Bredt’s formula

GK =
4A2

m∮

C

ds

G t

. (11.76)

For cross-sections with varying shear modulus, G on the left hand side rep-
resents a selected reference value, while G−1 appearing in the integral is the
local value.

If one imagines a family of cross-sections with the same cell contour C, but
different values of the thickness t, it follows from Bredt’s formula that the
torsion stiffness scales like K ∝ �3t, where � is a characteristic length e.g.
the dimension across the cess-section. This is in marked contrast to an open
thin-walled section, where K ∝ �t3. The increased torsion stiffness is one of
the reasons, that modern bridge cross-sections often contain closed cells.
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Example 11.13. Thin-walled circular section. Figure 11.53 shows a thin-walled cylindri-

cal cross-section with radius r and wall thickness t � r. This example presents an analysis
of this important problem according to the thin-walled assumptions as presented above,

as well as a comparison with the results from the full analysis from Section 11.3.

Fig. 11.53: Thin-walled cylinder with radius r.

When r represents the radius of the center line of the circular cylinder the area enclosed

by the cross-section is
Am = πr2,

and the mean stress τm is determined from (11.65) as

τm =
Mx

2tAm
=

Mx

2πr2t
.

The full stress distribution also includes the linear variation over the wall thickness from
the open section solution. This stress distribution is given in terms of the rate of twist ϕ′,
and thus the torsion stiffness is needed to obtain a common expression for the detailed
stress distribution.

The torsion stiffness of the section follows from Bredt’s formula (11.76), by which

K =
4A2

m∮
C
ds/t

= 4(πr2)2
t

2πr
= 2πr3t.

The stress distribution over the wall thickness contains two contributions as illustrated in
Fig. 11.51: the mean value and a linear variation over the wall thickness. Thus the stress

distribution over the thickness is represented by a linear variation between the values

τ± =
Mx

2πr2t
± tGϕ′ =

( 1

2πr2t
± 1

2πr3

)
Mx =

(
1 ± (t/r)

) Mx

2πr2t
.

The contribution from the local stress distribution over the wall thickness is linear in t/r.

According to the full theory the torsion parameter is given as the polar moment of inertia

K = Ip. The expression given above is in fact the usual approximation of the polar moment
of inertia for thin walled cylinders. The ratio between the two results is

Kthin

Kfull
=

2πr3t

(r2o + r2i
)
πrt

=
2r2

r2o + r2i
=

r2

r2 + (t/2)2
.

Thus, in respect to the torsion stiffness the relative error involved in the thin-wall approx-

imation is of the order (t/2r)2. �
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Example 11.14. Thin-walled rectangular section. Figure 11.54 shows a thin-walled

rectangular cross-section with height h and width b, measured to the center lines of the
section walls. The corresponding flange thicknesses are th and tb, respectively as shown in

the figure.

Fig. 11.54: Thin-walled rectangular section.

The area of the rectangle is

Am = hb.

The mean stress τm is determined from (11.65) as

τm =
Mx

2tAm
=

Mx

2thb
,

with t = th in the vertical webs, and t = tb in the horizontal webs.

The torsion stiffness of the section follows from Bredt’s formula (11.76) with constant G,

K =
4A2

m∮
C

ds/t
= 4(hb)2

1

2
(
h/th + b/tb

) =
2h2b2

h/th + b/tb
.

For identical thickness t of all cell walls, this corresponds to

K =
2h2b2t

h+ b
.

As for other single-cell profiles the torsion stiffness is of the order K ∝ �3t, where �
represents h or b, e.g. in the form �2 = hb = Am. �

11.5.3 Multi-cell sections

In torsion of multi-cell cross-sections a shear flow is generated in each cell in
order to generate a continuous axial displacement. Within each cell the stress
function Φ takes a constant value Φj . In the exterior wall this corresponds to
the shear flow

qj = Φj ϕ
′, j = 1, · · · (11.77)

The shear flows are positive in the counter clockwise direction as shown in
Fig. 11.55. In the walls between cells there are two contributing shear flows.
This is illustrated in the figure, where the wall AD supports the shear flow
q1 from A to D, and the shear flow q2 in the opposite direction. The resulting
shear flow is

qAD = q1 − q2 = (Φ1 − Φ2)ϕ
′, (11.78)
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and thus the shear flow is simply given by the increase of the stress function
Φ over the wall thickness.

Fig. 11.55: Thin-walled three-cell section.

The shear strain along the center line of the walls is given by (11.69), and
continuity of the axial displacement around the center line contour Cj is
therefore expressed by the integral

∮

Cj

∂u

∂s
ds = ϕ′

∮

Cj

(Φj − Φk

Gt
− h
)
ds = 0, (11.79)

where Φk denotes the value of the stress function in the neighboring cell, and
Φ0 = 0 for the exterior contour. The integral of h is equal to 2Aj as illustrated
in Fig. 11.49, and thus the uniqueness condition of cell j takes the form

Φj

∮

Cj

ds

G t
−
∑
k �=j

Φk

∫

Cjk

ds

G t
= 2Aj . (11.80)

In this relation Cj denotes the full center line contour around cell j, while
Cjk is the part of this contour that borders the neighbor cell k.

There is an equation of the form (11.80) for each cell, and each cell is as-
sociated with the stress function value Φj within the cell. Thus, continuity
of the axial displacement around each cell provides the necessary number of
equations to determine these values of the stress function. It is convenient to
introduce the coefficients

Bjj =

∮

Cj

ds

G t
, Bjk = −

∫

Cjk

ds

G t
. (11.81)

The values Φj of the stress function within the cells are then determined from
the equations ∑

k

Bjk Φk = 2Aj , j = 1, · · · . (11.82)
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When the values Φj have been determined, the torsion stiffness follows from
the integral of the stress function as

GK = 2

∫

C0

Φ dA 
 2
∑
j

ΦjAj . (11.83)

If the shear modulus G changes over the cross-section, the local values are
used in the integrals (11.81) defining the equation coefficients. The torsion
stiffness GK is given by (11.83) and can be split into a representative value
of the shear modulus G and a corresponding torsion constant K. Finally, the
mean stress in the walls follows from the shear flows as

τjk =
1

t
(Φj − Φk)ϕ

′, (11.84)

where t is the local wall thickness.

Example 11.15. Three-cell box profile. The procedure is illustrated by application to

the three-cell box profile shown in Fig. 11.56. The cell size is defined by the length a, while
the web thickness is t and the flange thickness is 2t. The shear modulus is G in the full

section.

Fig. 11.56: Rectangular cross-section with three cells.

The coefficients for the individual cells follow from (11.81a) as

B11 = B22 = B33 =
2

G

( a

2t
+

a

t

)
=

3

G

a

t
,

while the coefficients for neighboring cells follow from (11.81b),

B12 = B21 = B23 = B32 = − 1

G

a

t
.

The cell areas are

A1 = A2 = A3 = a2,

whereby the equations (11.82) take the form

⎡

⎣
3 −1

−1 3 −1

−1 3

⎤

⎦

⎡

⎣
Φ1

Φ2

Φ3

⎤

⎦ = 2Gat

⎡

⎣
1
1

1

⎤

⎦ .

It follows from the symmetry of the cross-section that Φ3 = Φ1, and the solution then
follows immediately as
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Φ1 = Φ3 = 8
7
Gat , Φ2 = 10

7
Gat .

This gives the torsion stiffness

GK = 2a2(Φ1 + Φ2 + Φ3) = 52
7
Ga3t .

The mean stress in the exterior and interior webs follow from (11.84) as

τex =
Φ1

t
ϕ′ = 8

7
Gaϕ′ , τin =

Φ1 − Φ2

t
ϕ′ = − 2

7
Gaϕ′ .

The mean shear stress in the flanges follow in the same way, using the wall thickness 2t. �

11.6 Exercises

Exercise 11.1. Consider the cantilever beam with the composite cross-section in Exam-
ple 11.1.

a) Determine magnitude and direction of the longitudinal shear stress in the core material
at the upper interface.

b) Determine the distribution of the shear flow and the mean shear stress τm in the
cross-section.

Exercise 11.2. The figure shows a cantilever beam with an I-profile loaded by a tip force

in the y-direction. The beam is homogeneous with elastic modulus E0, and the dimensions
of the cross-section are given in terms of a and t, as shown in the figure. The cross-section

is thin-walled with t � a.

a) Determine the distribution of
the shear flow q, and compare

with Fig. 11.28c.

b) Find the magnitude and lo-

cation of the maximum shear
stress.

c) Assume the combined load case: Qy = P and Qz = P . Use the results in Example 11.4

to find the maximum shear stress corresponding to this load combination.

Exercise 11.3. The figure shows a simply supported beam of length �. A transverse force

P is acting on the mid section of the beam in the z-direction. The beam is homogeneous
with elastic modulus E0. The cross-section of the beam is rectangular with height h and

width b.

a) Determine the distribution of the mo-

ment Mz and the shear force Qz .

b) Identify the cross-section with maxi-
mum moment and shear force.

c) Find the maximum normal stress σmax

in the cross-section.

d) Determine the distribution of the shear flow and find the maximum shear stress τmax.

e) Find the ratio σmax/τmax for �/h = 15.
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Exercise 11.4. The figure shows a simply supported beam of length 3a. A transverse force

3P is acting in the z-direction at distance a from the left support. The beam is homogeneous
with elastic modulus E0. The cross-section of the beam is a U-profile with height h and

width h. The thickness of the horizontal upper flange is 2t, while the thickness of the two
vertical flanges is t, as shown in the figure. The cross-section is thin-walled with t � h.

a) Determine the location of

the elastic center.

b) Determine the relevant

cross-section moment(s) of
inertia.

c) Determine the distribution
of the shear flow and the

shear stress in the cross-
section.

d) Determine the shear flow in the x direction at the right corner of the cross-section.

Exercise 11.5. The figure shows an I-profile cross-section with wall thickness t and overall
dimensions given in terms of a. The cross-section is loaded by a shear force Qz = P .

a) Determine the relevant cross-section moment(s) of inertia.

b) Determine the distribution of the shear flow q and the

shear stress τ in the cross-section.

c) Determine the ratio between the maximum shear stress in

the flange τmax
f and in the web τmax

w .

Exercise 11.6. The figure shows a C-profile with height 2a, width a, thickness t and con-

stant elastic modulus E0. The cross-section is initially loaded by the shear force component
Qz = P .

a) Find the location of the elastic center C and determine

the relevant moment(s) of inertia.

b) Determine the distribution of the shear flow q and find
the magnitude and location of the maximum shear stress

τmax in the cross-section.

c) Determine the distribution of the shear flow for the load

case Qy = P and Qz = 0.

d) Find the maximum shear stress for the load case in c).

e) Find the location of the shear center A.

Exercise 11.7. The figure to the left shows a cantilever beam with a tip load P . The
length of the beam is 40a and the dimensions of the cross-section are given in terms of a,
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as shown in the figure to the right. The thickness of the horizontal upper flange is 5t, while

the thickness of the remaining flanges is t. The cross-section is thin-walled with t � a.

a) Determine the distribution of the mo-

ment Mz and the shear force Qz .

b) Determine the location of the elastic

center C in the cross-section.

c) Determine the moment of inertia Iz̄ .

d) Determine the distribution of the nor-
mal stress σ in the cross-section.

e) Determine the distribution of the shear stress τ in the cross-section.

Exercise 11.8. The figure shows a simply supported beam of length 10a, which is loaded
by a transverse force P at the center of the beam. The cross-section is a double symmetric

box profile with overall dimensions given in terms of a and wall thickness t. The profile is
homogeneous and thin-walled with t � a.

a) Find the distribution of the internal forces

and the moment Mz and shear force Qz

at the section indicated by the dashed line

immediately to the left of the force P .

b) Find the distribution of the normal stress

σ and shear stress τ in the cross-section.

c) Determine the largest principal stress component σ1 at point D in the cross-section,

and find the orientation of σ1 with respect to the longitudinal x axis.

d) Determine the von Mises stress at point D in the cross-section.

Exercise 11.9. The figure shows a cantilever beam of length 20a loaded by a tip force P in

B. The beam is homogeneous and the cross-section is a symmetric thin-walled profile with
overall dimensions given in terms of a, as shown in the figure to the right. The horizontal

flange thickness is 2t, while the thickness of the vertical flanges is 5t.

a) Determine the moment Mz and
shear force Qz at the support A.

b) Find the location of the elastic
center C and determine the cross-

section moment of inertia Iz̄ .

c) Find the distribution of the normal

stress σ and shear stress τ in the
cross-section.

d) Determine the maximum von Mises stress in the top flange, and compare with the von
Mises stress at the bottom of the vertical flanges.

Exercise 11.10. The figure shows a cantilever beam of length � with torsion stiffness GK

and a torsion moment M̄ applied at x = �.

a) Integrate the stiffness relation GKϕ′(x) =
Mx(x) to obtain an expression for ϕ(x).

b) Determine the arbitrary integration constant
in a) via the boundary condition in x = 0.

c) Find the expression for the angle of twist ϕ(�)
at the tip of the beam.
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Exercise 11.11. The figure shows two thin-walled circular cross-sections with radius a

and wall thickness t.

a) Determine the torsion stiffness parameter
Kclosed of the closed cross-section in Fig. a).

b) Determine the torsion stiffness parameter
Kopen of the open cross-section in Fig. b).

c) Determine and comment on the torsion stiff-
ness ratio Kopen/Kclosed.

Exercise 11.12. The figure shows two thin-walled single cell cross-sections with charac-
teristic dimension a and wall thickness t.

a) Determine and compare the shear flow q in the

two cross-sections when exposed to a torsion
moment Mx.

b) Determine and compare the torsion stiffness
parameter K of the cross-sections.

c) Determine and compare the stiffness to mate-
rial ratio K/A of the cross-sections.

Exercise 11.13. The figure shows two thin-walled box sections with overall dimensions

given in terms of a. The thickness of the vertical flanges is t, while the thickness of the top
and bottom flanges is 2t, and a = 12t. Both sections are loaded by a torsion moment Mx.

a) Determine the torsion stiffness parameter K

of the closed cross-section in Fig. a).

b) Determine the maximum shear stress τmax in

each of the flanges of the closed cross-section.

c) Repeat a)–b) for the open cross-section in

Fig. b) and compare the results.

Exercise 11.14. The figure shows the cross-section of a box girder with overall dimensions
given in terms of a in the figure. The thickness of the upper horizontal flange is 2t, while

the thickness of the remaining three flanges is t. The cross-section is loaded by a torsion
moment Mx. The material is linear elastic with shear modulus G. The cross-section is

thin-walled with t � a.

a) Determine the shear flow q in the cross-
section.

b) Determine the mean shear stress τm in each

of the flanges of the cross-section.

c) Determine the torsion stiffness GK.

Exercise 11.15. The figure shows a cantilever beam with a thin-walled box cross-section.

The beam is loaded by a downward tip force P with vertical line of action in y = −a. The
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dimensions of the cross-section are given in terms of a as shown in the figure and the wall

thickness is t for all flanges.

a) Find the distribution of the
shear force Qz and the tor-

sion moment Mx.

b) Determine the shear stress

distribution from the shear
force Qz .

c) Determine the shear stress
distribution from the torsion

moment Mx.

d) Determine the resulting shear stress distribution by combining the results in b) and
c), and find the maximum shear stress τmax.

Exercise 11.16. The figure shows a thin-walled C-shaped channel section loaded by a

downward force P with line of action coinciding with the web of the channel section. The
overall dimensions of the cross-section are given in terms of a as shown in the figure and

the wall thickness is t = a/10 for the web and 2t for the flanges. The shear center A of the
cross-section is located on the line of symmetry at distance e = 3

14
a behind the web.

a) Determine magnitude and direction of the shear force and
the torsion moment acting on the cross-section.

b) Determine the shear stress distribution from the shear
force.

c) Determine the shear stress distribution from the torsion

moment.

d) Determine the resulting shear stress distribution by com-

bining the results in b) and c), and find the maximum
shear stress τmax.

Exercise 11.17. The figure shows a cantilever beam loaded by a normal force N = P and
a torsion moment Mx = 0.4Pa. The thin-walled cross-section is a double symmetric box

profile with overall dimensions given in terms of a as shown in the figure. The thickness of
the top and bottom flanges is 2t, while the thickness of the side flanges is t. The material

is linear elastic with elastic modulus E and shear modulus G = E/2.6.

a) Determine the distribution

of the normal stress from N .

b) Determine the shear stress

distribution from Mx.

b) Find the largest principal

stress σ1 in each of the four
flanges.

d) Determine the angle between the largest principal stress component σ1 and the longi-

tudinal axis x, and show the orientation of the principal stresses in a figure.
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Index

Amplification

factor, 193

of initial imperfection, 214

Anisotropic elasticity, 367

Anisotropy, 364

Arch

internal forces, 133–136

reactions, 133–136

Axial displacement, 397

Axial stiffness

constrained, 374

Axial strain

beam bending, 400, 403, 425–439

Axial stress

beam bending, 400, 404, 425–439

Bar

elastic stiffness, 67

element, 75

linear elastic, 66

zero force, 51

Bar element, 74–77

stiffness matrix, 76

Beam

Bernoulli theory, 151–162

combined loads, 116–121

concentrated loads, 95–104

deformation, 143–171

deformation load case, 271–274

distributed loads, 104–113

elastic bending, 144–151

equilibrium conditions, 151, 169

generalized displacements, 169

homogeneous bending, 145–151

imposed deformation, 269–277

kinematics, 152, 164, 169, 397–399

reactions, 21–24

shear flexibility, 162–167, 175

small displacement theory, 149

statically determinate, 154–159

statically indeterminate, 159–162

statics, 151

stiffness, 268–277, 411, 419, 431

support conditions, 153

Timoshenko theory, 162–167

triangular load, 112–113

virtual work, 168–171

Beam bending, 144–151

anti-symmetric, 270–271

differential equation, 160

element, 268

line of curvature, 434–439

linearization error, 150

moment of inertia, 147–148, 411–417

neutral axis, 146, 434–439

neutral plane, 145

normal strain, 146

normal stress, 146

symmetric, 269–270

Beam displacements

by virtual work, 171–179

Beam element, 306

global form, 305–306

normal force, 299–305

shear flexibility, 268, 298

Beam elements, 296

Beam flexure, 444–465

shear flow, 445–449, 452

shear stress, 444–455

thin-walled section, 455–461

Beam torsion, 467–493

boundary condition, 476

boundary conditions, 475

cylinder, 467–471

general theory, 472–480

multi-cell section, 490–493

Prandtl stress function, 475–478

thin-walled section, 480–493

warping, 472

warping function, 473, 475

Beam-column, 190–194

equilibrium equation, 192
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number of elements, 314

Beam-column element, 268, 299–305

stiffness matrix, 303–305

Bending moment, 92

Bending stiffness, 147, 153, 172

Bernoulli beam theory, 151–162, 164, 399

virtual work equation, 171

Buckling, 313

MiniFrameS, 313

angle-frame, 314

load, 314

mode, 313–315

Buckling mode, 196, 198, 199

Bulk modulus, 372

Column

design, 207–221

elastic instability, 210

equivalent length, 203–207

imperfect, 212

imperfection, 212

length, 208–212

long/short, 212

slenderness, 208–212

stresses, 215–218

transition length, 212

Components

deviator, 376–380

mean, 376–380

Constitutive relations, 321

beam bending, 411, 419, 431

Constrained beam

load, 277–278

Constraining forces/moments, 277, 289

Constraints, 79

by index sets, 83

Continuum mechanics, 321

Coordinate system

principal, 417–425, 431–434

Coordinate transformation

matrix, 329

Coulomb friction material, 385–391

critical section, 386–388

failure surface, 388–391

hypothesis, 386

triaxial compression, 389

triaxial tension, 389

Critical load, 190, 195, 203

Critical stress state, 388

Cross-section

double symmetry, 410

elastic center, 396, 403–411

kernel, 216–218

moment of inertia, 411–417, 419–421

parameters, 401–402

polar moment of inertia, 419

principal axes, 396, 420

Curvature, 145–151, 169, 399

radius of, 145

Deformation, 332–338

load cases, 271

mechanism, 373

reversible, 365

Deformation load case, 271–274

Deformation mechanism

bending, 162, 171

extension, 65, 171

shear, 162, 171

Deformation method, 278–296

general procedure, 288–290

swaying frame, 293–295

symmetric frame, 290–292

two-span beam, 278–282

two-span frame, 282–288

Degree-of-freedom

constrained, 288

Design of columns, 207–221

Deviator plane, 378

Deviator strain, 378

Deviator stress, 377, 389

Displacement

decomposition, 337

field, 332, 337

generalized, 169

gradient, 333, 335

gradient matrix, 333

Displacement amplification, 194

displacement amplification, 214

Displacement field

virtual, 339

Displacements

by internal forces, 171–184

Divergence theorem, 339

Eccentricity parameter, 218

Effective stiffness, 193

Eigenvalue problem, 421–422

Elastic center, 396, 403–411

Elastic energy, 365–367

Elastic flexibility

coefficients, 368

matrix, 368–370

Elastic limit, 209

Elastic material, 364–376

internal energy, 365

Elastic modulus, 172, 369, 372

Elastic stiffness
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coefficients, 366

matrix, 366–368

symmetry, 366

Elastica, 189

Elasticity

anisotropic, 367

isotropic, 367–376

modulus of elasticity, 66, 163

of bar, 66

plane strain, 376

plane stress, 375

shear modulus, 163

Element

property matrix, 81

stiffness matrix, 76

Energy density, 365

Equilibrium, 10–14, 329

conditions, 10

equations, 329–332

in plane, 13

Equivalent column length, 203–207

Equivalent stress, 381

plane stress, 383

Euler beam, 298

Euler column, 196–199

Euler load, 193, 197, 204

Finite element analysis

frame structures, 307–316

linearized stability, 312–316

MiniFrame program, 308–316

MiniTruss program, 80–84

truss structures, 73–84

Finite element formulation

frame structures, 296

Finite element method, 322

Flexibility

coefficients, 239, 241

shear parameter, 271

Flexibility matrix

elastic, 368

Force, 2–5

components, 2, 5

couple, 9

equivalent, 25

line of action, 2, 4, 7, 27, 64

parallelogram, 2, 4, 27

point of action, 2, 4

Force method, 227–260

application, 242–250, 259–260

basic steps, 237–240

external releases, 234

flexibility coefficients, 239, 241

for frames, 250–260

general procedure, 233–242

internal releases, 235

kinematic determinacy, 236

principle, 228–233

redundant forces, 230, 239, 241

summary, 241

symmetry, 257–260

Forces

parallel, 4

Frame

load distribution, 124–128

reactions, 24–30

support conditions, 128–130

three-hinge, 27–29, 131–133

Frame displacements

by virtual work, 179–184

Frame of reference

global, 305

local, 296, 305

transformation, 306

Friction

angle, 386

coefficient, 386

material, 364, 385–391

Geometric imperfections, 212–215

Global stiffness matrix

assembly of, 77–78, 307–308

Gradient operator, 331

Grashof’s formula, 445–448

Hooke’s law, 66

generalized, 370, 375, 376

plane strain, 376

plane stress, 375

Hydrostatic pressure, 325

Ideal column

stability, 194–207

Imperfection

geometric, 218

initial, 213

parameter, 220

Inclinations, 397

Incompressible material, 372, 373, 383

Instability, 190

elastic stress, 211

Internal forces, 92

around concentrated loads, 99–100

beams, 93–113

cantilever, 95, 104

differential equations, 107–113

frames, 121–133

hinged beam, 102
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in arch, 133–136

sign conventions, 93–95

simply supported beam, 97, 106

simply supported cantilever, 101

Internal moments, 92

Invariant component, 377, 419

Invariants, 355

Irreversible strain, 364

Isotropic elasticity, 367–376

Kernel, 216–218

radius, 217, 218

Kinematic determinacy, 42, 236

Kinematic indeterminacy, 42

Kinematics, 13

of beams, 152, 397–399

solid body, 338

Lever rule, 5, 22

Linear elasticity

isotropic, 367–376, 379–380

Linear strain

components, 333–335

matrix, 333

Load

concentrated, 99–104

constrained beam, 277–278

critical, 190, 195

distributed, 14–16, 32, 104–113

element based, 308

equivalent, 14, 25, 105, 112

intensity, 14, 107

linear variation, 15, 112

superposition, 116–121, 178

Loads

constraining, 290

Material symmetry, 367

Matrix

notation, 341

Maximum moment, 109–113, 118

location, 111

Mean stress, 325, 372

MiniFrame program, 268, 308–316

MiniFrameS program, 313

stability analysis, 312–316

MiniTruss program, 80–84

Model topology, 77

Modulus of elasticity, 66, 369

Mohr’s circle, 387

moments of inertia, 424–425

plane strain, 353

plane stress, 352–353

triaxial stress, 356–358

Moment, 5–9

distribution, 100, 107–109

maximum, 109–113, 118

vector, 5, 8

Navier stress distribution, 431, 445

Neutral axis, 396, 434

Node, 288, 289

Node coordinate matrix, 81

Normal vector, 323

Parallel axis theorem, 412

Parallelepiped, 12

Perry-Robertson

critical stress, 220

design criterion, 218–221

Plane strain, 322, 342, 343, 376

component transformation, 347, 348

equivalent elastic parameters, 376

principal strains, 352

Plane strain component transformation,
347

Plane stress, 322, 342–346, 375

component transformation, 346

component transformation, 344–345

equivalent stress, 383

principal stresses, 350

Poisson’s ratio, 369, 372

Prandtl stress function, 476–478

boundary condition, 476

torsion stiffness, 478

Principal

coordinate system, 342, 349, 351,
417–425, 431–434

strain, 342

strains, 351

stress, 342

stresses, 349, 351, 354–355

Principal axes

cross-section, 396, 420

Principal stress space, 377, 385

Principle of virtual work, 12, 322

Radius of gyration, 210

Reaction, 16

force, 16

moment, 16

Reactions

by equilibrium equations, 19–30

by virtual work, 30–33

in arch, 133–136

Redundant forces, 230

Residual

stress, 218
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Retaining wall, 388

Reversible deformation, 365

Rotation

at point, 337

matrix, 337

of cross-section, 164

of tangent, 164

vector, 337

Scalar, 8

Scalar invariant, 372

Section force

distribution, 107, 169

Section forces

bending moment, 93, 400–401

normal force, 93, 400–401

shear force, 93, 400–401

sign conventions, 93–95

Shear area, 165, 172, 465–467

integral, 466

Shear center, 443, 463

Shear flexibility, 150, 162–167, 269, 289,
465–467

importance of, 175

parameter, 271, 298

Shear flow, 446

at joint, 456

beam flexure, 445–449, 452

multi-cell, 490

single-cell, 484

Shear force, 91

distribution, 99, 107–109

Shear modulus, 163, 172, 370–372

Shear stiffness, 172

of cross-section, 465–467

Shear strain, 163, 399

Shear stress, 163

beam flexure, 447–455

thin-walled section, 455–461, 480–493

Slenderness

parameter, 211

relative, 211

Stability, 190

ideal column, 194–207

iteration procedure, 200

Stability analysis

linearized, 268, 312–316

MiniFrameS program, 312–316

Statically determinate

beams, 95, 154–159

equivalent structure, 233–236

structures, 17

Statically indeterminate

beams, 159–162

structures, 17, 143

Statics, 10, 12

of beams, 151

solid body, 338

Stiffness

axial, 64

effective, 193

reduced, 190

reduction, 193

Stiffness coefficient

anti-symmetric bending, 302

symmetric bending, 300

Stiffness coefficients

symmetry, 290

Stiffness matrix

assembling, 307

bar element, 76

beam bending, 298, 305

beam-column element, 303–305

block matrix format, 76, 297, 307

constitutive, 305, 313

elastic, 366

geometric, 305, 313

Strain, 332–338

angle, 335, 341, 367

axial, 64–67, 169, 334

decomposition, 378

generalized, 169

Green, 332

invariants, 355

irreversible, 364

normal, 146, 334

shear, 163, 169, 335, 341, 399

volume, 335, 372, 379

Strain component

matrix, 341

transformation, 335–336, 347–348

Strain gauge, 347

Stress, 322–332

axial, 64–67, 374

biaxial, 345

components, 324–326

decomposition, 377

deviator, 377

equivalent, 381

hydrostatic, 326

invariants, 355

mean, 325, 372

normal, 146, 322, 323

residual, 218

shear, 163, 323

transverse, 374

vector, 322, 327–329, 356

yield, 209
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Stress component

matrix, 325, 341
symmetry, 326

transformation, 328–329, 343–346,
348–349

Superposition, 229, 231, 232, 237, 239, 240,

269, 280, 289
Support

intermediate, 205–207
Support conditions, 16–19, 78–80

by index sets, 79, 308
by springs, 79, 308

of beams, 153
Surface forces, 329, 338

Symmetry
coefficient matrix, 285

Taylor representation, 330
Tensor

notation, 341
Timoshenko beam theory, 162–167, 399

Topology matrix, 80, 81
Torsion, 351

Torsion stiffness
Bredt’s formula, 488

hollow cylinder, 471
multi-cell section, 490–493

Prandl stress function, 478
Prandtl stress function, 477–478

single-cell section, 487–488
solid cylinder, 470

thin-walled open section, 481
Transformation matrix

block matrix format, 306
Transverse contraction, 369

constrained, 373
Transverse deformation

constraint, 376

in beam, 374
Transverse tension, 373

Tresca yield condition, 384
Triaxial compression, 389

Triaxial tension, 389
Truss structures, 39–84

basic principles, 41–47
displacements, 71–73

finite element analysis, 73–84
K-truss, 60

method of joints, 47–54
method of sections, 54–56

N-truss, 57
roof truss, 51, 62, 80

special types, 57–64

stiffness and deformation, 64–73

V-truss, 50, 55, 59

virtual work, 67–73

W-truss, 62, 80

Twist, 468, 473

rate of, 473, 476

Uniaxial tension, 369

constrained transverse contraction, 373

Vector, 2

algebra, 67

scalar product, 11, 12, 68

triple product, 12

Vector product, 8

Virtual displacement, 169

field, 339

Virtual rotation, 11

Virtual strains, 170

Virtual translation, 11

Virtual work, 11, 12, 338–342

bar, 68–70

beam displacements, 171–179

beams, 168–171

equation, 170, 171, 230, 338–342

external, 170, 341

for displacements, 172

for rotations, 173

frame displacements, 179–184

internal, 170, 341

principle, 12, 168, 171, 338

rigid bodies, 11–13

truss structures, 67, 70–73

Virtual work equation

beams, 170

continuum, 338–342

frames, 180

Volume forces, 329, 338

Volume strain, 335, 372, 379

von Mises yield condition, 381

Yield

load, 429, 434

stress, 209, 429

Yield condition

metals, 380–385

Tresca, 384–385

von Mises, 380–383, 434

Yield stress, 380

Yielding, 380
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