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Preface to the Third Edition

This new edition of this book has been driven by the numerous recent developments
of the research in the field, which it was necessary to recall in the text; the work of
this new version allowed the revision of the writing with the correction of many
misprints occurred during the proofreading of the previous edition.

The new edition also has offered the opportunity to include, scattered in the
various chapters, many refinements and improvements of the discussed topics,
some of them here listed as follows: the collapse induced by the crushing of
masonry in elements that cannot get deformed through mechanisms, as for instance
in the platband arch; the mechanics of collapse of masonry structures with
elasto-perfectly plastic reinforcements; dome statics, particularly examined in depth
regarding the dome of Brunelleschi in Florence.

Furthermore, the last chapter—the 11th—regarding the behavior of masonry
buildings under seismic actions, has been completely modified and integrated. The
starting point of this chapter has been the consideration that masonry constructions
behave very differently from ductile structures.

There is no dissipation of energy during their deformation, even if accompanied
by cracks. If properly reinforced, to avoid early local failures, masonry construc-
tions have the sole resource to escape the seismic action exhibiting rocking without
failure, under alternate seismic action.

In this context, on the wake of the more recent research on the matter, the
rocking of pier walls, which are the main resistant components of the masonry
structure, has been thoroughly examined. It has been defined the dynamical over-
turning failure acceleration, larger than the acceleration producing the statical
collapse, that is the incipient rocking. A new and proper definition of the so-called
reduced strength factor q, well known in earthquake engineering, has been thus
given in this chapter. This ratio, here defined as the acceleration ratio, rather low in
value, is more appropriate to characterize masonry structures behavior, than those
inherent to other formulations, which improperly go back to criteria concerning
ductility of reinforced concrete or steel constructions.
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Due to the actual low values of this reduced strength factor q, the seismic
protection of historic masonry constructions requires design criteria where strength,
and not ductility, has to be dominant. A focal point is thus the analysis of the chain
of transmission of the seismic forces along the resistant structure of masonry
buildings, together with the out of plane and in-plane strength evaluation of
masonry walls, developed here with new elaborations and inclusions.

As for the previous editions of this book, all the above developments have been
obtained with the cooperation of the precious teamwork with Simona Coccia and
Fabio Di Carlo of the Department of Civil Engineering and Computer Science
of the University of Tor Vergata in Rome. To them, I address my grateful thanks.

Reflections and ideas on the topic also triggered from the fruitful discussions that
I had with the students that I have met during some doctorate courses held by
myself at various Departments of Civil Engineering, as those of the University of
Brescia, of the University of Parma and Naples. Also to all these students, my
thanks are directed.

Rome, Italy Mario Como
December 2016
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Preface to the Second Edition

The interest accomplished in the first edition together with the need to improve the
text with new developments, widening, and revisions, due to the recent research
achievements on the subject matter, is the motivation of this second edition of this
book.

A new section has been added to the first chapter, analyzing new test results for
masonry strength under inclined compression with respect to the joint direction; this
is a subject of great importance for the evaluation of the seismic strength for
masonry walls. Within the second chapter, dedicated to the Fundamentals of Statics
of Masonry Structures, a new Limit Analysis of elastic no-tension one-dimensional
systems has been included; this is a very useful tool, for instance, in the strength
analysis of masonry walls reinforced with steel ties. The third, the fourth, the fifth,
and the eighth chapters are substantially unchanged, except for some additions
concerning the construction of the Brunelleschi dome in Florence and the inclusion
of a new section dealing with the thrust evaluation of round cross vaults, then
applied to the vaults of the Diocletian Baths in Rome. In the sixth chapter, the study
of the effect of the inclined cracking on the buttresses and leaning towers static
behaviors has been included. This study has been very useful for the analysis
concerning the strength assessment of Gothic cathedrals under side wind, a topic
which has been revised and developed within the seventh chapter. The ninth
chapter, dealing with the seismic analysis of masonry buildings—a topic in which
the current research has produced new remarkable results—has received the most
important revisions and widening.

All these developments have been obtained thanks to the precious teamwork
with Simona Coccia and Fabio Di Carlo of the Department of Civil Engineering
and Computer Science at the University of Tor Vergata in Rome. To them, I
address my grateful thanks.
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Reflections and ideas on the topic also triggered from the fruitful discussions that
I had with the students of the doctorate course in “Restoration of Historic and
Contemporary Buildings,” held at the D.I.C.A.T.A. of the University of Brescia.
Also to all these students, my thanks are directed.

Rome Mario Como
July 2015
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Preface to the First Edition

Masonry constructions are the great majority of the buildings in Europe’s historic
centers and the most important monuments in its architectural heritage. Given the
age of much of these constructions, the demand for safety assessments and
restoration projects is pressing and constant. Nevertheless, there is a lack of a
widely accepted approach to studying the statics of masonry structures. Simple
linear elastic models, which form the foundation of common structural analyses,
cannot in fact be applied to masonry because of its inherent, widely differing
response to tension and compression.

The ingenious Heyman no-tension model well interprets the masonry behavior
and is widely used and fruitfully applied in analyzing the statics of systems of
arches. However, completely different assumptions are commonly used for other
types of masonry structures in other contexts, for example, strength evaluations of
masonry buildings under seismic forces, which are rather perplexing, given that a
masonry arch, a vault and a building wall are all still made of the same material.
Moreover, most masonry studies approach strength evaluations of structures
through Limit Analysis, forgoing any study of the construction’s actual state.

This book aims to help fill these gaps in the study of masonry structures by
formulating a new comprehensive, unified theory of statics of masonry construc-
tions extending the Heyman model to the analysis of the masonry continuum. This
book features complete mathematical derivation of all the given results and, through
an interdisciplinary approach combining engineering, architecture, and a bit of
history, advances from the simple to the complex, while striving, above all, for
clarity.

This book is the result of thirty years of research and professional experience. It
is divided into nine chapters, each of which begins with historical notes and an
Introduction highlighting the main aspects of the topics covered.

The strength and deformability of masonry materials are addressed in the first
chapter. The second chapter deals with the deformation and equilibrium of masonry
solids. The kinematics of strains and crackings, as well as internal stress states, is
analyzed. The fundamental concepts of admissible equilibrium and the parameters
governing collapse strength are examined in detail to highlight the strict relation
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between structural geometry and strength. The notion of minimum thrust is then
introduced—an aspect of masonry structural behavior that extends the field of
application of Limit Analysis to include study of the actual stress states of masonry
constructions. The third and fourth chapters examine the static behavior of the main
basic masonry structures, such as arches and vaults.

By way of example, static analysis is conducted of a number of renowned
examples from the world’s architecture heritage, such as ancient Mycenaean domes,
the Rome Pantheon, the large cross vaults of the Baths of Diocletian, and the domes
of Santa Maria del Fiore in Florence and Saint Peter’s in Rome. The fifth chapter
turns to a detailed analysis of the statics of the Rome Colosseum and examines the
reasons for its actual state of damage. The sixth chapter describes and analyzes the
statics of cantilevered stairways, a typical element whose structural behavior is still
somewhat unknown. Chapter seven then takes up the structural analysis of walls,
piers, and towers under vertical loads. The stability of such structures is heavily
affected by the nonlinear interactions between the destabilizing effects of the axial
loads and masonry’s no-tension response. The instability of towers, leaning towers
in particular, is addressed in a specific section of the chapter. In this regard, a
detailed stability analysis is conducted of the famous Leaning Tower of Pisa, which
has recently undergone a successful restoration work. The eighth chapter then
analyzes the statics of Gothic cathedrals, with particular reference to analysis
of their resistance to wind actions. The 1294 collapse of the Beauvais cathedral is
also examined in depth. The last chapter deals with the seismic behavior of historic
masonry buildings and crucial issues regarding their conservation. The latter part
of the chapter regards, in particular, the analysis of the transmission of seismic
forces between the various constituents of a building, together with the out of plane
and in-plane strengths evaluations of multistory walls with openings.

This book is addressed especially to researchers, engineers, and architects
operating in the field of masonry structures and of their consolidation and
restoration, as well as to students of civil engineering and architecture. It is, for the
most part, an English translation of a recent Italian book of mine “Statica delle
Costruzioni Storiche in muratura.” The English edition has, however, been
revamped to address some new questions and, hopefully, improve on the original.

Many thanks go to colleagues Michel Frémond and Franco Maceri for their
precious encouragement to prepare this book. Many thanks go also to Anthony
Cafazzo, English Lecturer at the University of Pisa, who insightfully and patiently
assisted me in revising the text.

I would also like to thank all the graduate and postdoctoral students, researchers,
visiting scholars, external collaborators and students, who attended my courses at
the Faculty of Engineering of the University of Rome Tor Vergata—all of whose
contributions have been duly noted—for their invaluable assistance in the various
research studies without which this book would not have been possible.

Rome Mario Como
January 2012
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Chapter 1
Masonry Strength and Deformability

Abstract This chapter deals with the strength and the deformability of masonry
materials, composing the structure of the so called masonry historic constructions.
After some historical introductory notes, special attention has been given to the
analysis of various strength features of these materials and of their components, as
bricks, stone blocks, and mortars. The common peculiarity of all the stone mate-
rials, a strength in tension much lower than in compression, is analyzed in detail
and a suitable tri-axial failure criterion is thoroughly discussed. These results are
then applied to the strength evaluation of uniaxial compression strength of the
masonry, composed by regular patterns of blocks and mortar courses, as function of
the geometry and strength properties of its components. After the study of the
masonry skew compression and shear strengths, the analysis of deformations, both
instantaneous as delayed, ends the chapter.

1.1 Brief Notes on the History of Masonry Constructions

Masonry constructions, whose oldest examples date back to about eight thousand
years ago, developed during the beginnings of the earliest urban civilizations, when
more ancient techniques employing building materials such as wood, straw and
hides were gradually replaced by more advanced technologies, enabling the con-
struction of stronger, longer-lasting structures.

Initially, masonry walls were built by setting large rough-hewn stones one on the
other, dry, without mortar, to form so-called Cyclopean masonry. During the
Classic Age regularly shaped stone blocks with smooth outer faces were used to
build walls or piers, still without the use of mortar. This technique was utilized in
the construction of many of the temples of the Athens Acropolis and later of the
Roman Colosseum. Because of the scarcity of suitably hard rocks in the
Mesopotamian area, the societies there developed techniques to produce artificial
building blocks. Initially, bricks were sun-baked, friable and unreliable over time.
The use of kilns to harden the clay developed later. This allowed producing more
resistant elements—fired bricks—a technique still in widespread use today.

© Springer International Publishing AG 2017
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The use of binders, substances that set and harden, in masonry construction is
also an ancient technique. Over the course of history, various materials have been
used as binders. The first mortars were made by mixing mud and clay. Then, the
ancient Egyptians added gypsum as binder, while the ancient Persians used bitu-
men. The discovery of lime by the Etruscans was the last fundamental turning point
in the evolution of masonry. It was discovered that limestone, when burnt and
combined with water, produced the lime that would harden with age. The mixture
of lime with pozzolana, a volcanic ash that reacts with calcium hydroxide in the
presence of water, improved the quality of mortars, which would set under water.
Historically, constructions with pozzolanic mortar first appeared in Greece, though
it was the Romans (Choisy 1873; Giuliani 1995) who developed this technique to
its full potential. Over time, they defined a number of different types of opus
(literally ‘work’) used at different times in different structures. These opera were
remarkable for the construction procedures used and the different geometries of the
masonry patterns achievable:

• opus caementicium: a construction technique using aggregates, water and a
binding agent. The aggregate, rubble of broken fragments of uncut stones or
fist-sized tuff blocks (caementa), was mixed to lime and pozzolana mortar
(Choisy 1873; Adam 1988);

• opus incertum, a crude masonry made up of irregularly shaped, uncut (or ‘un-
dressed’) stones randomly inserted into a core of opus caementicium;

• opus quadratum, facings built with cut stone blocks laid in regular horizontal
courses;

• opus testaceum, or latericium, brick-faced masonry with kiln-backed bricks,
which prevailed throughout the Imperial Age;

• opus reticulatum, a Roman decorative design using small square slabs of stone
or small bricks embedded into a regular, tightly knit diamond pattern;

• opus mixtum, masonry of reticulated material reinforced and/or intersected by
brick bands or interlocked with bricks;

• opus vittatum, oblong (occasionally square) tuff blocks intersected by one or
more brick bands at more or less regular intervals.

Typical Roman masonry walls were usually quite thick and made up of an inner
rubble core of opus caementicium and two outer facings. In particular, a wall, or
pier, made with opus quadratum had facings of large bricks placed along horizontal
courses. In the Imperial Age, brick facings were built using square-shaped bricks
(opus testaceum), as in the Baths of Diocletian. Wall facings were otherwise built
using opus reticulatum, opus vittatum or opus testaceum (Fig. 1.1).

Dead loads tend to pull the walls horizontally apart, causing vertical cracking.
Roman masons deviced a method to connect the facings and the inner rubble core.
They sawed square bricks diagonally and laid these triangular half-bricks in the
core with their hypotenuses outward to create a toothed bonding surface to the
facings. Figure 1.1 illustrates this technique, showing the structure of a wall built
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with opus testaceum. Although a large variety of bricks were produced, they came
in three main sizes:

• bessales, 8 in. (19.7 cm) square;
• sesquipedales, 1.5 ft (44.4 cm) square;
• bipedales, 2 ft (59.2 cm) square.

Constructing a wall able to sustain loads and eventual settling of the foundation
without severe damage was a difficult task. Greek architects first recognized the
benefits of laying blocks with staggered vertical joints to achieve more compact
walls (Fig. 1.2) (Giuffrè 1990).

This technique also defined the positioning of the bricks within the wall’s
thickness.

Initially, in walls laid according to Etruscan methods, some discontinuities
occurred along the courses and some blocks had to be shaped differently from the
others, as can be seen in some examples of walls built in ancient Etruscan towns
and later in Rome (underground reservoirs, terracing walls, and temple podiums)
(Fig. 1.3a, c). The Greeks later solved this problem (Sparacio 1999) by laying
blocks in alternating longitudinal and transverse rows (Fig. 1.3b). Finally, the
Roman fashion, shown in Fig. 1.3d, enjoyed widespread application.

The disastrous economical conditions ensuing in Europe after the fall of the
Roman Empire made it necessary for Romanesque builders to reduce transport
costs and thus to use materials that were easily available locally, such as the marl
from nearby quarries. Moreover, using small elements simplified loading and
unloading and, at the same time, reduced the amount of mortar needed. It thus

Fig. 1.1 An opus testaceum
masonry wall (from Choisy
1873)

Fig. 1.2 Isodomic pattern of
a masonry facing
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became very common to build walls with small-sized blocks of tuff or bricks and
mortar. Such simple building procedures continued throughout the Middle Ages
and into the Renaissance.

1.2 Masonries of Historic Buildings

A wide variety of types of masonry are present in historic buildings. Except for
low-cost housing, whose walls were usually built with stone rubble, historic
masonry is composed of mortar-cemented parallelepiped-shaped elements, usually
bricks, whose standard size is 5.5 cm � 12 cm � 25 cm, though other types of
elements are also common. Thus, according to the elements used, masonry can be
subdivided in:

• regular brickwork: constructed with brick elements laid with mortar in hori-
zontal courses with staggered vertical joints (Fig. 1.4).

Fig. 1.3 First Greek and
Romans patterns of the
masonry texture: a isodomic
Greek system; c archaic
Roman system; b Greek
system with alternating
stretchers and headers;
d Roman system with courses
of stretchers and headers

Fig. 1.4 Regular brickwork
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In this arrangement the bricks are named according to their placement in the
wall. A stretcher is a brick laid horizontally flat, with its long side exposed on the
outer face of the wall. A header is a brick laid flat across the wall’s width with its
short end exposed. Bricks may be laid in a variety of patterns, or bonds, of alter-
nating headers and stretchers. Thinner walls are made using a stretcher bond, also
known as a running bond, with stretchers forming the entire thickness of the wall,
i.e., 5.5 cm (excluding the plaster or stucco facing). Others walls are constructed
with a single row of stretchers, so that the wall is as thick as the brick head, 12 cm.
There are many other types of bonds that use two or three headers in different
alternating configurations with stretchers.

• regular brickwork with squared stone blocks: built with tuff blocks bound by
horizontal mortar and vertically staggered joints, as in regular brickwork
(Fig. 1.5). Thick walls may present an inner and outer tuff facing over an
internal rubble core.

• brickwork with mixed stone and brick: come in two different types. In the first,
called edged masonry, the bricks are arranged in horizontal courses along the
entire thickness of the wall at varying distances (80–160 cm) between the stone
masonry. In the second, mixed masonry with bricks, single bricks are laid in
various places to level the stone planes (Fig. 1.6).

• ordinary brickwork with huddled stones: obtained by mortaring irregularly
shaped elements, such as chunks of bricks or stones, along roughly horizontal
planes in such a way as to reduce the spaces between them (Fig. 1.7). Such
masonry, used frequently to build homes in small historical communities in
southern Italy, are particular vulnerable to earthquakes.

The Italian Department of Civil Defense (GNDT 2002) has issued its own
classification of masonry, according to which there are five classes, each with a
number of subclasses:

Fig. 1.5 Masonry built with
tuff blocks
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(a1) rounded stone masonry: built with small- or medium-sized cobblestones laid
randomly or in ordered patterns (i.e., bonds):

• with neither courses nor regular bonding pattern;
• without courses, but presenting an orderly bonding pattern;
• stones with brick courses;

(a2) rough stone masonry: generally built with irregularly-shaped, undressed
elements of varying sizes, such as chunks of brick or stone:

• with neither stone courses nor regular bonding pattern;
• without stone courses, but with an orderly bonding pattern;
• coursed with flat interlocking tiles and stones;
• with brick courses;

Fig. 1.6 Two examples of masonry with a mix of stones and bricks. a edged masonry; b mixed
masonry with bricks

Fig. 1.7 Masonry built with
huddled stones and mortar
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(b1) masonry with ribbon-like stones: built with rocks that tend to split along
horizontal planes:

• without courses;
• with courses;

(b2) semi-regular masonries: built with semi-finished medium-sized elements:

• semi-finished limestone in courses;
• semi-finished limestone without courses;

(c1) squared stone masonry: made of “dressed” or worked stones, also called
ashlars.

• tuff ashlars without courses;
• tuff ashlars with courses.

1.3 Compression Strengths of Bricks and Stone Elements

1.3.1 Bricks

Bricks, or masonry units, are made of clay, shale, soft slate, and calcium silicate.
Bricks are generally manufactured by extrusion. Masonry units come in standard
sizes of: 5.5 cm � 12 cm � 25 cm. The compression strength of fired bricks is
about 200–250 kg/cm2. However, when poorly fired, bricks may exhibit severely
reduced compression strength, as low as 50 kg/cm2. Standard compression tests are
performed by cutting a brick in half and then gluing the two parts together with
cement paste. These glued interfaces reproduce the effects of the mortar joints
present in masonry. Four wet and four dry samples are then placed under platens of
a so-called ‘universal testing machine’, which applies a compression load at a preset
rate. The standard compression strength of a unit is obtained via the relation (NTC
2009)

fb ¼ fbm 1�1:64 dð Þ ð1:1Þ

where fbm is the mean strength of the three most consistent results, and d = s/fbm is
the variation factor, with s the root-mean-square deviation. The tensile strength is
assumed to be equal to about 1/10 the compression strength. Another compression
test is performed by placing a single prism-shaped brick specimen directly between
the platens of the universal testing machine and evaluating the corresponding
compression strength. The failure pattern in this case is the so-called hourglass
mode, typical of the failure of concrete specimens. Alternatively, before the test, the
platens of the machine are treated with wax or stearic acid. In this case, the
specimen, which can freely expand laterally during the test, breaks through vertical
cracking under lower compression stresses.
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1.3.2 Stone Blocks

As discussed above, squared elements, hewn from stone quarried in many different
sites, have been used in masonry constructions for centuries. The mechanical fea-
tures of these stone elements thus depend heavily on the source of the rock.

1.3.2.1 Strength of Stone Materials

Table 1.1 shows a classification of stones into five types according to the com-
pression strength of undamaged rock samples. Few rocks belong to class A, the
most notable examples being quartzite and basalt. Class B includes most magmatic
rocks, the more resistant metamorphic rocks and few sedimentary rocks, as well as
most lime stones and dolomites.

Class C comprises many argillites, marls and metamorphic rocks, such as shale.
Classes D and E include many porous rocks, such as brittle sandstones, tuff, halite,
etc. Another, simpler classification subdivides rocks into soft, medium hard and
hard. Tuff, of both volcanic and sedimentary origins, are soft rocks. Sandstone,
limestone, travertine are medium-hard rocks. Dolostone, trachyte, porphyry, gneiss,
granite, basalt are classified as hard.

Table 1.2 gives the corresponding values of the uniaxial compression strengths
fc and the elastic modulus Ee, this latter measured as the tangent modulus on the
r – e diagram at 50% compression strength. Rocks used in constructions are mainly
those designated as B, C, D, E. For instance, travertine was used to build the piers
and perimeter arcades of the Rome Coliseum. The Milan cathedral was instead built
of hewn marble blocks from quarries near Lake Maggiore in northern Italy. Hard
sandstone was the main building material used for many Gothic cathedrals, and tuff
is widespread in many types of historic architecture.

1.3.2.2 Tuff Blocks

The term tuff derives from the Latin name, tuphos, which was originally used to
indicate both a pyroclastic rock formed by slow consolidation of volcanic materials,
such as lapillus, ash and sand, as well as sedimentary rocks, such as Apulia tuff.
Actually, tuff properly refers only to the volcanic rock types, while the term tufa
should be reserved for the sedimentary type. Both are considered soft rocks and

Table 1.1 Classification of
stones according to
compression strength fc

Class Strength fc (MPa)

A Very high >225

B High 225 � 112

C Mean 112 � 56

D Low 56 � 28

E Very low <28
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were used without distinction in historic buildings. Tuff is frequently used in
constructions because it is light and soft, and therefore easily worked. It is also quite
porous, and thus its density is low compared to other rock materials, such as
limestones, shales and so forth, though it nonetheless offers fairly high compression
strength. Standard tuff block dimensions are 30 cm � 40 cm � 13 cm. Thus,
building with tuff blocks yields wall thicknesses ranging from 30 cm to 40 cm, or
multiples thereof. Tuff blocks can also be laid together with bricks because their
bases are about the same size (13 cm). Some mechanical parameters of tuff:

• Poisson’s ratio: v = 0.15;
• Elastic modulus: 30,000–150,000 kg/cm2;
• Unit weight: (volcanic tuff) 1,100–1,700 kg/m3;
• Compression strength: *40–50 kg/cm2.
• Tensile strength: *1/15 of compression strength.

1.4 Mortars

Mortar is a workable paste used to bind masonry blocks together and fill the gaps
between them. Mortar becomes hard when it sets, resulting in a rigid aggregate
structure. Modern mortars are typically made from a mixture of sand, a binder such
as cement or lime, and water.

Table 1.2 Density, elastic modulus and compression strength of some rocks

Density
(g/cm3)

Compression strength
(kg/cm2)

Elastic modulus
(kg/cm2 � 105)

Igneous rocks

Granite, syenite 2.6–2.8 1600–2400 5–6

Diorite,
gabbroid

2.8–3.0 1700–3000 8–10

Porphyry, quartz 2.6–2.8 1800–3000 5–7

Basalt 2.9–3.0 2000–4000 9–12

Pumice 0.5–1.1 50–200 1–3

Sedimentary rocks

Soft limestone 1.7–0.6 200–900 3–6

Compact
limestone

2.7–2.9 800–1900 4–7

Dolomite 2.3–2.8 200–600 2–5

Metamorphic rocks

Gneiss 2.6–3.0 1600–2800 3–4

Shale 2.7–2.8 900–1000 2–6

Marble 2.7–2.8 1000–1800 4–7

Quartzite 2.6–2.7 1500–3000 5–7
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1.4.1 Binders

Binders used in mortar preparation are:

• gypsum;
• lime;
• hydraulic lime;
• cement.

Gypsum, the oldest binder, was used in the first Egyptian pyramids. It is present
in alabaster, a decorative stone used in Ancient Egypt. It is obtained by baking the
gypsum stone, made up of calcium sulfate, at a temperature of 110–200 °C, after
which the stone turns to powder. Mixed with water, the powder hardens rapidly,
though it has very low strength. Calcium oxide is the main component of lime. Lime
is produced through a two-step process: firing and slaking. First the limestone is
burnt at a temperature of 850–900 °C, to produce so-called quicklime, which is able
to absorb large quantities of water. The quicklime is then combined with water and
crushed into powder, giving rise to slaked lime or calcium hydroxide. The slaked
lime is then used to produce either simple lime mortar, by mixing it with sand and
more water, or hydraulic mortar, by mixing it with pozzolana. Simple lime will only
set in contact with the air. Hydraulic limes, which will instead even set in water, are
made from marly limestone or mixtures of limestone and clayey materials.

Cement is made by grinding together its main raw materials, which are
(a) argillaceous, such as clay and shale, and (b) calcareous, such as limestone, chalk
and marls. The mixture is then burnt in rotary kilns at temperatures between 1400
and 1500 °C to form clinkers. These are ground to a powder and mixed with
gypsum to create the gray flour-like substance known as cement. When water is
added to cement, a chemical process occurs as it hydrates, allowing it to harden
anywhere, even under water. Cement, patented in 1824 by Joseph Aspdin in the
UK, was called Portland because this artificial stone resembled the Portland stone.
As cement began to be used only towards the end of the 19th century, cement
mortars are generally not found in the masonry of historic buildings.

1.4.2 Aggregates

Aggregates are classed as fine or coarse. Sands are used as fine aggregates, while
gravel or crushed rocks represent coarse aggregates. Sand, whose grain dimensions
range from 0.5 to 1 mm, is generally used to prepare masonry mortars. Sand is the
mineral skeleton of the mortar: it increases the volume of the paste and facilitates
penetration of carbon dioxide within the mixture to improve setting. Moreover,
sand reduces shrinkage and the consequent cracking that may occur during setting
and hardening of the paste. Romans used Caementa, irregular pieces of stone or
brick, as aggregate in preparing opus caementicium masonry.
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1.4.3 Mortars of Lime

Mixtures of lime, water and sand form the mortar paste, which sets and hardens.

1.4.3.1 Roman Mortars

Roman mortar contained pozzolana, a volcanic ash that added a useful property
lacking in the simple lime mortars used by the Greeks: hydraulicity, that is, the
ability to set underwater. The material was called pulvis puteolanus, discovered in
ancient times in the Bay of Naples.

Pozzolana was also produced in the volcanic districts to the south of Rome,
where it was termed harena fossicia, a volcanic sand with similar water-setting
features to pulvis puteolanus, though it was less effective in practice than this latter.
Table 1.3 gives the compositions of some Roman mortars quoted in Vitruvius’
treatise De Architectura (Trans. Galiani 1832). Table 1.3 also gives the proportions
for producing cocciopesto, or opus signinum, a mortar made with crushed terra-
cotta. Cocciopesto is the material most commonly used to line cisterns and to
protect the extrados of vaults exposed to the elements.

1.4.3.2 Mortars of Historic Masonries

The mortars present in the masonry of historic buildings are as a rule composed of
simple or hydraulic limes. They can be subdivided in:

• simple mortars;
• hydraulic mortars;
• composite mortars.

Italian building codes provide for dividing mortars into the types: cementitious,
classified as M1 and M2, according to the cement content; composite, indicated as
M3, containing both lime and cement; and hydraulic or pozzolanic, indicated as M4,
containing only hydraulic lime or lime and pozzolana. For instance, a mix desig-
nated as M1 has 3 parts sand by volume and 1 part cement, while an M4 mix has 3
parts sand by volume and 1 part hydraulic lime (Table 1.4).

Table 1.3 Roman mortars (Adam 1988)

Binder Aggregates Water (%)

1 part lime 3 parts harena fossicia (Vitruvius, II, V, 5) 15–20

1 part lime 2 parts river sand (Vitruvius, II, 5, 6) 15–20

1 part lime 1 part terra cotta (Vitruvius, II, V, 7) 15–20

1 part lime 2 parts pulvis puteolanus (Vitruvius, V, XII, 8–9, sea works) 15–20
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Simple limes were in widespread use in the past because of the efficiency and
easy workability of quicklime. They harden slowly and weaken in the air. Their
compression strength is very low, about 5 kg/cm2.

Hydraulic mortars are prepared with mixtures of hydraulic limes, water and
sand. The standard composition of a hydraulic mortar is given in Table 1.4: three
parts sand and 1 part hydraulic lime by volume. The compression strength of
hydraulic mortar is about 20 kg/cm2, lower than that of composite mortars (about
50 kg/cm2), and much lower than that of cementitious mortars (at least
120 kg/cm2). As a rule, the strength of mortar is less than that of concrete.

1.5 Tests on Rock and Mortar Specimens

The most common experiments carried out on specimens of rocks or mortars, are:

(a) uniaxial tension and compression tests
(b) multi-axial tests
(c) torsion tests;
(d) flexural tests.

1.5.1 Tests on Rock Specimens

Cylindrical specimens are used. In multi-axial testing, three stresses (r1, r2, r3) and
three strains (e1, e2, e3) are measured. Usually, r1 is the major principal stress,
generally vertical, and r2 = r3 the intermediate lateral stresses (Fig. 1.8).

In a uniaxial tension test, a tensile stress r1 is applied by means of pincers or a
metal plate glued to the specimen. There are also indirect splitting tests, such as the
so-called Brazilian and Flexural tests. In a standard uniaxial compression test a load
is applied to a cylindrical specimen by means of steel loading platens. The friction
strength between the rigid platens of the testing machine and the specimen heads
prevents lateral expansion of the specimen. Shears (Fig. 1.9) are thus superimposed

Table 1.4 Composition of mortars according to Italian building codes

Class Mortar Cement Simple lime Hydraulic lime Sand Pozzolana

M4 Hydraulic – – 1 3 –

M4 Pozzolanic – 1 – – 3

M4 Composite 1 – 2 9 –

M3 Composite 1 – 1 5 –

M2 Cementitious 1 – 0.5 4 –

M1 Cementitious 1 – – 3 –
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on the vertical compression causing a three-dimensional stress state leading to
cracks splitting the specimen diagonally).

Figure 1.10 shows the typical hourglass failure mode of a concrete specimen
obtained through a standard compression test. Mortar specimens exhibit the same
behavior.

Figure 1.11 presents the results obtained by Brown (1974) testing marble prisms
under biaxial compression at a constant ratio r2/r1. The strengths in the diagram are
presented as ratios r2/rc and r1/rc, where rc is the corresponding uniaxial com-
pression strength. The presence of the lateral compression r2 yields an increase in
strength of no greater than 15%.

Fig. 1.8 Triaxial tests: a, b uniaxial test

Fig. 1.9 Shear friction
stresses

Fig. 1.10 Hourglass failure
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The effects of the loading conditions are significant. Figure 1.12 shows the
biaxial failure domain of concrete according to the test results obtained by Kupfer
and Gerstle (1973). These results show that the behavior of concrete is similar to the
marble specimen tested by Brown. These results will be reconsidered in the fol-
lowing sections.

1.5.2 Uniaxial Compression Tests on Mortar Specimens

Italian regulations call for measuring compression strength by testing three pris-
matic specimens of dimensions 40 � 40 � 160 mm. The three mortar specimens
are first cast in metal molds from which they are removed after 24 h and cured in a
humid environment at a constant temperature of 20 °C. A specimen is then placed
on side supports and loaded with a central point load until bending failure is
reached. The bending failure stress is evaluated simply as

fmf ¼ 3
2
PL
b3

ð1:2Þ

where P is the applied collapse load, L = 100 mm the distance between the sup-
ports and b the length of the side of the specimen’s square cross section. Six simple
compression tests are then performed on the remaining half prisms and the average
compression strength fm = Q/b2 is obtained from the failure force Q.

Fig. 1.11 Biaxial
compression tests on marble
prisms (Brown 1974)
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The compression strength of mortar is quite low: M1 cement mortar has a
strength of about 120 kg/cm2; while the strength of M4 lime mortar does not exceed
20 kg/cm2. The strength of the different types of mortars used in historic masonries
can be considered similar to that of M4 type mortar, or lower.

1.5.3 Stress Strain Diagrams of Stone and Mortar Materials

Many rocks, when loaded in uniaxial compression, exhibit the typical load—de-
formation response plotted in Fig. 1.13.

An ascending branch is followed by a softening one. The peak represents the
compression strength of the rock. The initial segment of the ascending branch is
more or less straight up to a stress level equal to about 60% peak stress. The slope

Fig. 1.12 The biaxial failure domain of concrete (Kupfer and Gerstle 1973)
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of the diagram at the origin measures the rock’s Young’s modulus. A stiff testing
machine is necessary to trace the full extent of the descending branch of the
stress-strain curve.

Stress-strain diagrams are heavily influenced by the test conditions (Fig. 1.14).
In triaxial tests three conditions are of paramount importance:

(a) the cell pressure value;
(b) the temperature;
(c) the load application velocity.

Figure 1.14 shows the influence of the cell pressure r2 = r3 on the stress-strain
diagram of a rock specimen (Brady and Brown 2004).

Increasing the cell pressure increases both the compression strength and ductility
of the material.

1.6 A Triaxial Failure Criterion for Stone Materials

1.6.1 Preliminary Considerations

There are many failure criteria for stone materials (Bazant and Jirasek 2002). These
criteria, generally, adapt the Plasticity theory to fit, more or less, the properties of
the experimentally determined failure surfaces, without to get the heart of the
problem. Some adjust conditions concerning the behavior of other materials using
the Coulomb criterion (Leon 1935, Hoek and Brown 1980), others directly adapt
the failure contours to test results (Kupfer and Gerstle 1973; Ottosen 1977;
Menetrey and Willam 1995). In the next pages, on the contrary, we will present a
simple criterion, (Como and Luciano 2006, 2007), initially founded for the con-
crete, that with very different assumptions describes the basic physical aspects of
the question. Stone, together with brick, is the basic material of masonry

Fig. 1.13 A typical
compression stress-strain
diagram for rock material
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constructions. Knowing the strength behavior of stone materials is thus essential to
understanding the statics of masonry structures.

The strength of stone materials exhibits peculiar aspects, very different from
those characterizing the strength of metal materials, whose behavior is ductile and is
controlled by shear stresses. Consequently, the tensile and compression strengths of
steel are equal.

Stone materials, on the contrary, exhibit brittle behavior and very different
compression and tensile strengths. Figure 1.15 shows the fracture lines that occur in
three different compressed specimens: brick, concrete and tuff. The specimens
heads were treated with stearic acid, that is, more or less common wax, to eliminate
friction with the platens of the test machine. Specimens are thus free to expand
laterally during the test. Vertical cracks mark the onset of the collapse of all three
specimens—a failure mode quite different from the hourglass mode, shown in
Fig. 1.10, that occurs in standard compression tests.

What is the cause of these vertical cracks in the crushing failure of stone
material?

This question is not a trivial one, because under vertical compression, the stress
acting along the vertical planes of the specimen is zero.

Fig. 1.14 r – e diagrams of a limestone in triaxial tests with various cell pressures (Brady and
Brown 2004)
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1.6.2 Porosity Effects. Micro-macro Stress States

A physical explanation for this apparent paradox can be given by considering the
effects of the natural porosity of all stone materials, following the approach of
Como–Luciano (2006, 2007) in researching a failure criterion for concrete. Small
cavities, ranging 0.1–10 lm in size, are in fact present in all natural or artificial rock
materials, as well as in hardened concrete and mortar. By way of illustration,
Fig. 1.16 shows the porous structure of tuff.

Let us consider a specimen loaded by an uniaxial state of stress rz, for instance, a
uniform compression or tensile stress applied by the test machine to the heads of the
specimen, suitably treated to avoid friction.

Let us now consider a generic small cavity in the material, represented to a first
approximation by an ideal spherical ball: the applied stress rz will act at a large
distance from the cavity and can be considered an asymptotic stress rz1 for the
microscopic local stress state occurring around the cavity (Fig. 1.17).

Fig. 1.15 Compression failures of brick, concrete and tuff specimens free to expand laterally

Fig. 1.16 The porous
structure of tuff
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The local stress state around the small spherical cavity can be easily evaluated
(McClintock and Argon 1966). By assuming positive tensile stresses, we obtain:

• at the pole Pz:

rPz
RR ¼ 0 rPz

## ¼ rPz
uu ¼ AðmÞ � rz1 ð1:3Þ

• along the equatorial circle Ez:

rEz
RR ¼ 0; rEz

uu ¼ BðmÞ � rz1; rEz
## ¼ CðmÞ � rz1 ð1:30Þ

where the quantities A(v), B(v), C(v), depend on the Poisson’s ratio of the material
and are given by

AðmÞ ¼ � 3þ 15m
2ð7� 5mÞ ; BðmÞ ¼

27� 15m
2ð7� 5mÞ ; CðmÞ ¼

15m� 3
2ð7� 5mÞ ð1:4Þ

The values of these coefficients, for v respectively equal to 0.20, 0.25, 0.30, are:

Aðm ¼ 0:20Þ ¼ �0:500; Bðm ¼ 0:20Þ ¼ 2:022; Cðm ¼ 0:20Þ ¼ 0

Aðm ¼ 0:25Þ ¼ �0:587; Bðm ¼ 0:25Þ ¼ 2:022; Cðm ¼ 0:25Þ ¼ 0:065

Aðm ¼ 0:30Þ ¼ �0:682; Bðm ¼ 0:30Þ ¼ 2:045; Cðm ¼ 0:30Þ ¼ 0:136

Pores, on the other hand, have irregular shapes. The assumed spherical form of
the pore cannot fully describe the strong stress concentration occurring around the

Fig. 1.17 Spherical cavity.
Local stresses under the
asymptotic stress rz
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cavity due to stress rz1 applied at a large distance from it. To take into account the
effects of these irregularities it is useful to compare the local stresses occurring
around a small circular or elliptical hole in a panel stretched by an uniform tensile
stress, sy, orthogonal to the major axis of the ellipse. Stress sy can be considered
asymptotic with respect to the local stress field around the small cavity.

If we compare the stress fields around the two different holes, the stress com-
ponents, rx, at the top of the cavities will be the same. On the contrary, the stress
component acting around the elliptical hole in the same direction as the applied
stress, sy, increases greatly in the neighborhood of the intersection of the ellipse
with its major axis, where it becomes kB ry, with kB � 1, where ry is the stress
component occurring at the same point but around the circular hole. Factor kB is an
amplification factor that depends on the ratio between the lengths of the ellipse axes
(Fig. 1.18).

These results suggest an approximate approach to describing the local stress
states occurring around any of the small irregular cavities scattered throughout the
specimen. Any generic stress state applied to a porous specimen has components sx,
sy, sz, These stresses, acting at a large distance from the cavity, are asymptotic for
the local stress field around the cavity and can be indicated as rx1, ry1, rz1.

The corresponding local stress state can be obtained by summing up the effects
of the three asymptotic stresses rz1 ¼ sz. ry1 ¼ sy, rx1 ¼ sx. Thus, in order to
account for the effects of the geometrical irregularities, we can suitably modify the
expressions for the stress components around the spherical cavity in light of the
foregoing comparison of the stress fields around the circular and elliptical holes.

To this end, we can assume, by way of approximation, that only the local stress
components acting along the same direction as each of the applied asymptotic
stresses rx1, ry1, rz1 will be amplified by the amplification factor kB with respect
to the stress components occurring around the spherical cavity. Therefore, for
instance, the asymptotic stress rx1 acting along the x axis will produce stress
amplification of the local component directed along the same direction x. Likewise,
the asymptotic stresses ry1 acting along y will in turn produce stress amplification
of the local stress component along the axis y. Consequently, by taking expressions

Fig. 1.18 Stress
concentration around a
circular and elliptical hole
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(1.3) and (1.3′) into account, the local stress state occurring at the poles of an
irregular pseudo-spherical cavity can be taken as:

rPz
// ¼ AðmÞrz1 þ kBBðmÞry1 þCðmÞrx1

rPz
hh ¼ AðmÞrz1 þCðmÞry1 þ kBBðmÞrx1

rPy

// ¼ kBBðmÞrz1 þAðmÞry1 þCðmÞrx1
rPy

hh ¼ CðmÞrz1 þAðmÞry1 þ kBBðmÞrx1
rPx
// ¼ kBBðmÞrz1 þCðmÞry1 þAðmÞrx1

rPx
hh ¼ CðmÞrz1 þ kBBðmÞry1 þAðmÞrx1

ð1:5Þ

1.6.3 Micro-macro Failure Condition. Reasons
of the Different Tensile and Compression Strengths

We assume that local failure occurs when, according to the Rankine criterion, the
maximum tensile stress around the cavity reaches the local tensile strength frt;loc of
the material. Thus, if r indicates the local stress state around the cavity, we have:

max
tensile

r ¼ frt;loc ð1:6Þ

Condition (1.6) is reached simultaneously around all the small cavities scattered
throughout the material, so that material failure arises at the macroscopic level.

Let us now assume that the specimen is uniformly loaded by a tensile stress
sz = tz (Fig. 1.19). Consequently, the stress component

rz1 ¼ tz ð1:7Þ

will act asymptotically at a large distance from the small cavities.
Thus from Eq. (1.5) the following stress state occurs around the pores:

rPz
// ¼ AðmÞtz; rPz

hh ¼ AðmÞtz
rPy

// ¼ kBBðmÞtz; rPy

hh ¼ CðmÞtz
rPx
// ¼ kBBðmÞtz; rPx

hh ¼ CðmÞtz
ð1:8Þ

where the coefficients A(v), B(v), C(v) are given by (1.4). The maximum tensile
stresses occur at poles Px and Py and, in brief, around the equatorial circle Ez, taking
into account the axial symmetry around the axis z. Cracks occur orthogonally to the
directions of rEz

uu, that is, in the direction orthogonal to the tensile stress applied to
the specimen. Thus, from (1.6) the failure condition yields
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frt;loc ¼ rEz
uu ¼ rPxuu ¼ rPyuu ¼ kBBðmÞfrt ð1:9Þ

At material failure, in fact, tz = frt, where frt indicates the macroscopic tensile
strength of the material.

Let us now consider the case of an applied macroscopic uniform compression
(Fig. 1.20). This state of stress can be effectively applied to a specimen by treating
its faces in contact with the testing machine platens with a frictionless substance.
Thus, we now have

rz ¼ � cz ð1:10Þ

with cz [ 0. The local stress state at the poles of the cavity is now:

rPz
// ¼ �AðmÞcz; rPz

hh ¼ �AðmÞcz
rPy

// ¼ �kBBðmÞcz; rPy

hh ¼ �CðmÞcz
rPx
// ¼ �kBBðmÞcz; rPx

hh ¼ �CðmÞcz
ð1:11Þ

The coefficient A(v) is negative and the stress components rPz
## ¼ rPz

uu produce
tension at pole Pz. On the other hand, compressions are acting around the equatorial
circle Ez. Material collapse is thus produced by the tensile stresses rPz

hh ¼ �AðmÞcz at
the pole Pz of the cavity, and cracks develop in the same direction as the applied
compression. Upon compression failure the asymptotic stress cz equals the material
macroscopic compression strength frc. Thus,
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Fig. 1.19 Local stresses
around a spherical pore in a
rock specimen under uniaxial
tensile stress
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cz ¼ frc ð1:12Þ

when the local tensile strength is reached around the pores, and we have

frt;loc ¼ �AðmÞ � frc ð1:13Þ

where frc, is the material’s free-expansion macroscopic compression strength.
Taking into account the values attained by coefficient A(v), it can be seen that the

local tensile strength frt,loc of the stone material, equal to only about half its
macroscopic compression strength frc, is much higher than its macroscopic tensile
strength frt. Figure 1.21 shows the different crack geometries predicted in com-
pression and tensile failures.

Note that under equal intensities of the applied stress, the maximum local tensile
stress occurring around the pores is much lower when the specimen is uniformly
compressed rather than stretched. It follows that the intensity of the applied stress
producing compression collapse of the specimen has to be much higher than the
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Fig. 1.20 Local stresses
around a spherical pore in a
rock specimen under uniaxial
compressive stress

Fig. 1.21 Crack patterns in
uniformly compressed or
stretched specimens
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tensile stress required to produce tensile failure. Moreover, cracking will run parallel
to the applied compression, while it will be orthogonal to the applied tensile forces.
This situation effectively occurs during specimen collapse, as illustrated in Fig. 1.15.

1.6.4 Pores Shape Irregularity Factor

A material’s local tensile strength will be the same regardless of whether the
specimen is under a compression or a tensile test. Thus, by comparing (1.13) and
(1.9), the following consistency condition must hold

�AðmÞfrc ¼ kBBðmÞfrt ð1:14Þ

from which we obtain the pore shape irregularity factor

kB ¼ �AðmÞ
BðmÞ

frc
frt

ð1:15Þ

The compression strength with free lateral expansion can be expressed as

frc ¼ cRrc ð1:16Þ

where Rrc indicates the standard compression strength, obtained without reducing
the friction at the faces of the specimen. The compression strength of the material
obtained in the compression test with free side expansion is less than Rrc. Thus, we
can assume c � 0.90 � 0.85. Moreover, if b is the ratio between the tensile and
standard compression strengths, we have

frt ¼ bRrc ð1:17Þ

where b � 1/15, and

frt ¼
b
c
frc ð1:18Þ

and frc/frt � 16 � 17.5. Simple calculations show that by assuming a value,
v = 0.25, for the local Poisson’s ratio, and using the foregoing values of coefficients
b and c, Eq. (1.15) yields an irregularity factor kB of about 4.5–5.0.

1.6.5 Failure Interaction Domains

The interaction domains of stone material failure under biaxial or triaxial stress
states can be obtained by applying the failure condition (1.6), obtained by Como
and Luciano (2006, 2007) for concrete.
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1.6.5.1 Biaxial Domains

Compression—Compression

With refence to Fig. 1.22 the asymptotic stresses are

ry1 ¼ �cy rz1 ¼ �cz ð1:19Þ

and the corresponding local stresses, according to (1.5), are (Fig. 1.23)

rPz
hh ¼ �AðmÞcz � CðmÞcy rPz

// ¼ �AðmÞcz � kBBðmÞcy
rPy

// ¼ �kBBðmÞcz � AðmÞcy rPy

hh ¼ �CðmÞcz � AðmÞcy ð1:50Þ

The two compressions cy and cz produce contraction actions around the cavity.

The most intense local tensile stresses are the rPz
hh and rPy

hh. The failure condition is
thus reached when

frt;loc ¼ �AðmÞcz � CðmÞcy ð1:20Þ

cy

cz

Fig. 1.22 The specimen of
stone material under biaxial
compression

P
φφσ

P
θθσ

E
φφσ

E
θθσ

Fig. 1.23 Local stresses in
the specimen under biaxial
compression
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or

cz ¼ frc � CðmÞ
AðmÞ cy ð1:200Þ

In particular, if the two compressions are equal to c, the corresponding biaxial
strength is taking into account the (1.13),

frc;b ¼ frc

1þ CðmÞ
AðmÞ

ð1:21Þ

The biaxial strength of the stone material is thus greater than the uniaxial
compression strength.

Evaluation of the Local Poisson Ratio

According to (1.21) the ratio between the uniaxial and the biaxial compression
strength of a stone material is

frc
frc;b

¼ CðmÞ
AðmÞ þ 1 ð1:22Þ

The biaxial compression strength for a stone material, according to the numerous
test results at disposal, can be obtained with good approximation as

frc;b ’ 1:2frc ð1:23Þ

Consequently, from the (1.22) we can evaluate the corresponding value of the
local Poisson ratio to satisfy (1.23). We obtain

m ’ 0:28 ð1:24Þ

The irregularity shape factor kB, defined by the consistency condition (1.14), by
taking the values of b and c defined by (1.16) and (1.17) is about equal to 5.

Compression—Traction

In this case (Fig. 1.24) the asymptotic stresses are

ry1 ¼ ty rz1 ¼ �cz ð1:25Þ

Likewise to the previous case the local stress component rPz
// decides the failure

by means of

rPz
// ¼ �AðmÞcz þ kBBðmÞty ¼ frt;loc ð1:26Þ
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from which we obtain the compression—traction failure condition

ty ¼ frt � frt
frc

cz ð1:27Þ

Traction—Traction

In the biaxial traction (Fig. 1.25) the high tensile stress occurring around the
equatorial circle around the cavity, due to the traction tz, is only barely weakened by
the compression produced by the traction ty. Thus the failure condition is

rEz
uu ¼ AðmÞty þ kBBðmÞtz ¼ frt;cp ð1:28Þ

and we obtain the interaction failure equation

tz ¼ frt þ frt
frt
ty ð1:29Þ

Particularly, if ty = tz, we have the following expression of the biaxial traction
strength

trt:b ¼ frt
1� frt

frc

ð1:30Þ

The biaxial tensile strength is a bit larger than the uniaxial tensile strength.

ty

Fig. 1.24 The specimen of
stone material under
compression—traction

C

Fig. 1.25 The specimen of
stone material under biaxial
traction
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Biaxial Interaction Domain

Figure 1.26 shows the biaxial interaction domain in the plane ry, rz: its axis of
symmetry is the bisector of the first and second quadrants, frt.

The coordinates of point C define the material strength under uniform biaxial
tension frt;b.

1.6.5.2 Triaxial Domains

To obtain the entire triaxial domain, we must take into account all six of the
equations,

rPz
// ¼ AðmÞrz1 þ kBBðmÞry1 þCðmÞrx1 ¼ frt;loc

rPz
hh ¼ AðmÞrz1 þCðmÞry1 þ kBBðmÞrx1 ¼ frt;loc

rPy

// ¼ kBBðmÞrz1 þAðmÞry1 þCðmÞrx1 ¼ frt;loc

rPy

hh ¼ CðmÞrz1 þAðmÞry1 þ kBBðmÞrx1 ¼ frt;loc

rPx
// ¼ kBBðmÞrz1 þCðmÞry1 þAðmÞrx1 ¼ frt;loc

rPx
hh ¼ CðmÞrz1 þ kBBðmÞry1 þAðmÞrx1 ¼ frt;loc

ð1:31Þ

It can be obtained by equating each of the local stress components to the local
material tensile strength frt,loc. Each of these equations represents the failure plane
that separates the half-spaces of admissible stresses states from non-admissible ones

yσ

zσ
rcf

A’ 

B’ 

rcf

,rc bf

,rt bf

rtf

A

B 

D 

C 

Fig. 1.26 The interaction biaxial failure domain (Como and Luciano 2006, 2007)
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in the space rx, ry, rz. The envelope of these planes defines a cone whose axis is
concurrent with the hydrostatic axis and the vertex V with coordinates

Vðfrt; triax; frt; triax; frt; triaxÞ ð1:32Þ

where

frt; triax ¼ frt
1� frt

frc;biax

� frt: ð1:33Þ

The triaxial uniform tensile strength is only slightly larger than the uniaxial
tensile strength. Figure 1.27 shows a view of the limit cone, while Fig. 1.28 shows
the irregular hexagon formed by the intersection of the cone with the plane
orthogonal to the hydrostatic axis.

The two significant triaxial stress states for the stone materials are:

• the compression stress cz, accompanied by two equal lateral compressions c
• the compression stress cz, accompanied by two equal lateral tensile stresses t.

Fig. 1.27 A view of the limit
cone (Como and Luciano
2006, 2007)

Fig. 1.28 The irregular
hexagon: intersection of the
limit surface with the plane
orthogonal to the hydrostatic
axis (Como and Luciano
2006)
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The failure conditions corresponding to these stress states, which relate the axial
compression cz to the lateral compression c, or the lateral tensile stress t (Fig. 1.29)
are given by (Como–Luciano 2006, 2007):

cz ¼ frc þð1� frc
frc;biax

þ frc
frt
Þc � frc þ frc

frt
c ð1:34Þ

cz ¼ frc � ð1� frc
frc;biax

þ frc
frt
Þt � frc � frc

frt
t ð1:35Þ

In the following section, we will apply Eqs. (1.34) and (1.35) to evaluate
masonry compression strength.

1.7 Masonry Compression Strength

1.7.1 Features of Compression Failure

Masonry, with its regular patterns of blocks and mortar courses, is a complex
structure whose compression strength depends on the interplay among its brick and
mortar components. Tests reveal that splitting cracks in the blocks anticipate the
brittle failure of uniaxially compressed masonry, which is characterized by the
expulsion of brick fragments (Fig. 1.30).

1.7.2 Valuation of Masonry Compression Strength

According to test results, masonry strength takes values that are intermediate
between the brick and mortar strengths (Fig. 1.31). This is due to stresses occurring
between bricks and mortar. Figure 1.32 shows a rough qualitative illustration of the
shear stresses occurring between the mortar beds and bricks in masonry.

cz 

t

t
cz 

cz 

c

c
cz 

Fig. 1.29 Axial compression
accompanied by side
compressions or tractions
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Let us first recall the equations of elasticity:

ex ¼ 1
E
½rx � mðry þ rzÞ� ey ¼ 1

E
½ry � mðrz þ rxÞ� ez ¼ 1

E
½rz � mðrx þ ryÞ� ð1:36Þ

which describe the deformation of both bricks and mortar.
The sequence of bricks and mortar beds exhibit double symmetry, so using the

reference axes from Fig. 1.33 for the stresses and strains of the bricks and mortar,
we have,

Fig. 1.30 Compression failure of a masonry pier. Specimen M0-1 (Facconi et al. 2014)

bricks

mortar

masonry

σ

ε

brc

frc

mrc

Fig. 1.31 r – e diagram for bricks, mortar and masonry under monoaxial compression
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rx ¼ ry ¼ rl ð1:37Þ

ex ¼ ey ¼ el ð1:38Þ

where index l indicates lateral stresses and deformations. Vertical and horizontal
stresses and deformations of bricks and mortar have the components rv, rl, ev, el,
hence, Eq. (1.36) become

el ¼ 1
E
½rlð1� mÞ � mrvÞ� ev ¼ 1

E
ðrv � 2mrlÞ ð1:39Þ

The mortar and brick components can be distinguished, so we have

eml ¼ 1
Em

½rml ð1� mmÞ � mmr
m
v Þ� emv ¼ 1

Em
ðrmv � 2mmrml Þ ð1:40Þ

ebl ¼
1
Eb

½rbl ð1� mbÞ � mbr
b
vÞ� ebv ¼

1
Eb

ðrbv � 2mbrbl Þ ð1:41Þ

The bricks and mortar beds are piled up along the vertical. The compressive
stress on the bricks and mortar beds are equal to the applied vertical compression
ry. Thus, we can also write

rbz ¼ rmz ¼ rv ð1:42Þ

Fig. 1.32 Shear stresses
between brick and joint
mortar due to different lateral
expansions

Fig. 1.33 The reference axes
in compressed masonry
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Now, assuming that compression is positive, by virtue of position (1.42),
Eqs. (1.40) and (1.41) become

eml ¼ 1
Em

½rml ð1� mmÞ � mmrvÞ� emv ¼ 1
Em

ðrv � 2mmrml Þ ð1:400Þ

ebl ¼
1
Eb

½rbl ð1� mbÞ � mbrvÞ� ebv ¼
1
Eb

ðrv � 2mbrbl Þ ð1:410Þ

No sliding occurs between the mortar beds and bricks and, consequently, the
corresponding lateral strains will be the same, that is,

ebl ¼ eml : ð1:43Þ

Taking (1.40′) and (1.41′) into account yields

1
Em

½rml ð1� mmÞ � mmrvÞ� ¼ 1
Eb

½rbl ð1� mbÞ � mbrvÞ� ð1:44Þ

The thickness of the bricks and mortar beds is respectively hb and hm. Thus,
equilibrium of any vertical section of the masonry pier along the horizontal
direction gives

rbl hb ¼ �rml hm ð1:45Þ

The ratio between the thicknesses of the mortar joints and bricks is represented
by the geometric factor b

b ¼ hm
hb

ð1:46Þ

Thus, from (1.45) we obtain

rbl ¼ �brml ð1:47Þ

Substitution of (1.47) into (1.44) gives

1
Em

½rml ð1� mmÞ � mmrvÞ� ¼ 1
Eb

½�brml ð1� mbÞ � mbrvÞ� ð1:48Þ

or

rml ½
Eb

Em
ð1� mmÞþ bð1� mbÞ� ¼ rvðmm Eb

Em
� mbÞ ð1:380Þ
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We now introduce the ratio between the brick and mortar moduli

/ ¼ Eb

Em
ð1:49Þ

and the brick and mortar lateral stress components become

rml ¼ rv
ðmm/� mbÞ

½/ð1� mmÞþ bð1� mbÞ� r
b
l ¼ �brv

ðmm/� mbÞ
½/ð1� mmÞþ bð1� mbÞ� ð1:50Þ

With the further position

v ¼ mm/� mb
/ð1� mmÞþ bð1� mbÞ ; ð1:51Þ

we finally obtain (Haller 1947; Francis et al. 1971; Lenczner 1972):

rml ¼ vrv rbl ¼ �bvrv: ð1:52Þ

Mortar is thus compressed along the two horizontal directions x and y, while
bricks are stretched horizontally. We now define rmzo and rbzo as the vertical com-
pressions producing failure in the mortar and the bricks, respectively. Mortar col-
lapse is reached when the applied vertical compression rmzo and the corresponding
lateral stress rml satisfy the failure condition (1.34). Hence, we have

rmzo ¼ mrc þ mrc

mrt
rml ð1:53Þ

where mrc and mrt indicate the mortar uniaxial compression and tensile strengths.
Hildsdorf (1965) assumed an empirical relation to describe the failure of the bricks
to evaluate the compression masonry strength. Conversely we assume that failure of
the bricks will be reached when the vertical compression rbzo and the lateral tensile
stresses rbl satisfy previous failure condition (1.35), so we have

rbzo ¼ brc � brc
brt

rbl ð1:54Þ

where brc and brt indicate the brick uniaxial compression and tensile strengths.
By substituting the mortar and brick lateral stresses (1.42) into the failure

Eqs. (1.43) and (1.44), we obtain the values of the vertical compressions producing
mortar and brick failure, respectively

rmzo ¼
mrc

1� mrc
mrt

v
rbzo ¼

brc
1þ brc

brt
bv

ð1:55Þ
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Because mrc/mrt � 1, the denominator of rmzo is certainly negative. The mortar
can thus collapse only if the masonry is stretched instead of compressed. On the
contrary, the denominator of rbzo is >1, so rbzo thus represents the effective masonry
compression strength. Masonry failure therefore occurs through collapse of the
bricks under vertical compression and lateral stretching. The compression strength
of the masonry is thus

frc ¼ brc
1þ brc

brt
bv

ð1:56Þ

which is lower than the brick compression strength.
Masonry compression strength thus depends on both the masonry geometry,

defined by the ratio b, as well as the mechanical deformability and strength of its
components, defined by the ratios / and v. If the masonry is made up of standard
size bricks (5.5 cm thick), the thickness of the mortar bed, hm, will be the main
factor determining masonry strength (Lenczner 1972; Francis et al. 1971). The
larger ratio b is, that is, the thicker the mortar beds are, the lower the masonry
compression strength will be. Equation (1.56) gives compression failure stresses
similar to the Hilsdorf (1965) result. Table 1.5, drawn from the Italian Building
Codes (D.M. 1987 and N.T.C. 2009), provide indicative values for masonry
strengths as functions of the compression strengths of the stone elements and mortar
types (classified as M1, M2, M3 and M4; strength is expressed in Mpa). Although
the strength values indicated are well-grounded, they neglect the effects of the
mortar bed thickness.

1.8 Masonry Tensile Strength

Masonry tensile strength frt is generally very low—nearly negligible in comparison
to its compression strength. Cracks that occur when masonry is stretched arise in the
contact area between the mortar and blocks. These detachments take place due to
the loss of adhesion between the mortar and blocks rather than to mortar tensile

Table 1.5 Masonry
compression strengths versus
block strength and mortar
type

frc M1 M2 M3 M4

1.5 1.0 1.0 1.0 1.0

3.0 2.2 2.2 2.2 2.0

5.0 3.5 3.4 3.3 3.0

7.5 5.0 4.5 4.1 3.5

10.0 6.2 5.3 4.7 4.1

15.0 8.2 6.7 6.0 5.1

20.0 9.7 8.0 7.0 6.1
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failure, as Fig. 1.34 clearly illustrates. This aspect sharply distinguishes the tensile
behavior of masonry from that of concrete.

In the concrete’s interior, however, the cracks are extremely small and their
edges very jagged in comparison to their appearance on the surface. Thus, friction
and consequent jamming between the rough crack surfaces transmit some tension,
especially for crack widths of less than about 0.05 mm, and deformations con-
centrate across the cracks. Therefore, it is the average crack width wc, more than the
strain, that determines the degree of stretching of the concrete. Generally, Foote’s
law (1986) describes the relation between tension and crack opening width

r
frt

¼ ð1� w
wc

Þn ð1:57Þ

Various softening laws can be obtained from Eq. (1.57) by assuming different
values of exponent n. The case n = 0 corresponds to the complete absence of
softening, i.e., perfectly plastic behavior. On the contrary, the case n ¼ 1 refers to
perfectly brittle behavior. The behavior of masonry in tension corresponds to this
latter case and the tensile force-extension relation takes the form illustrated in
Fig. 1.35, where frt indicates the strength of the adhesion between brick and mortar.

Fig. 1.34 Detachment of
brick and mortar joints in a
section of a masonry arch

σ

w

f

Fig. 1.35 The stress–
extension law of the mortar
joint
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1.9 Masonry Shear Strength

A shear action acting along the direction of the courses of masonry, made up of
bricks or regular stones with mortar joints, can produce sliding of the courses and
consequent disruption of the masonry.

Shear tests are used to check masonry’s capacity to transmit shear. In such tests
simple masonry panels of different shapes and mortar bed strengths are subjected to
a compression force diagonal to the brick courses, as shown in Fig. 1.36. Angled
metal platens positioned at the panel corners enable application of these diagonal
forces. With such an experimental set-up, the height-to-width ratio of the panel also
establishes the ratio between the axial and shear force components. However, using
other equipment it is also possible to apply axial and shear forces at different ratios
to same shaped panels.

(a) Tests show that a diagonally advancing crack causes the panel to fail by
splitting the masonry into fragments of varying size. Generally, an entire half of
the panel overturns with respect to the other half, as shown in Fig. 1.37. In the
vertical bands of masonry walls under inplane horizontal loading, this type of
failure comes early the collapse by overturning.

Fo/ 2

Fo o/ 2

F

F

Fig. 1.36 Diagonal
compression test

Fig. 1.37 Failure by
diagonal cracking and
overturning of one half of the
panel (Carbone et al. 2001)
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(b) In other cases, shear failure comes about by sliding of the brick courses, as
shown in Fig. 1.38. This type of failure can occur—even under low axial force
values relative to the shear—when poor quality mortar has been used in the
masonry.

(c) another type of failure, which exhibits features of both the previous failure
modes, is shown in Fig. 1.39. Collapse occurs by the shear sliding of some
courses accompanied by detachment and overturning of other masonry frag-
ments. Such failure occurs under relatively high axial loads in the presence of
poor mortar.

Masonry shear strength is a matter of widespread discussion and even debate.
The true problem is to evaluate the masonry compression strength in presence of
shear. We will return to a consideration of the issues involved in the sections
dealing with analysis of the lateral strength of masonry panels and seismic analysis
of multi-plane walls. Useful information on the matter can be also obtained in the
next section.

Fig. 1.38 Failure by
predominant shear sliding of
courses (Borri et al. (2011)

Fig. 1.39 Combined failure
by sliding courses and
overturning panel fragments
(Carbone et al. 2001)
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1.10 Masonry Compression Strength in Presence of Skew
Course Beds

Evaluating the strength of masonry under biaxial stress whose direction of action is
inclined with respect to the joints (Fig. 1.40) is a complex problem yet to be
completely solved The experimental results obtained by Samarasinghe (1980)
furnish useful insight into the topic. Similar results have been obtained by Page
(1981, 1983). A vertical compression r, accompanied by a horizontal tensile stress
ft, is applied to a masonry cell made with bricks courses and mortar beds laid at an
angle h with respect to the axes of the applied stresses.

Figure 1.41 gives the failure interaction curves for different values of the
inclination h. These curves connect the experimental points whose coordinates are
the measured failure compression r and the corresponding lateral tensile stress ft.

σ

θ

ft 

Fig. 1.40 Biaxial stresses applied to a masonry cell with inclined joints

Fig. 1.41 Samarasinghe and Hendry (1980) test results
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The plots in Fig. 1.41 reveal a number of interesting characteristics of masonry
behavior that are useful to bear in mind in a wide range of applications.

Let us firstly analyze the case of h = 0 by examining the first curve in Fig. 1.41.
Except for a short segment near the ft axis, the diagram shows the linearly
decreasing vertical failure compression with increasing horizontal tensile stress ft
result in agreement with the general behaviour of stone materials under a biaxial
stress state of compression—tension, shown in Fig. 1.26. On the contrary, when the
vertical compression is small, the Samarasinghe diagram shows an opposite trend:
the failure tension decreases with decreasing vertical compression. This effect can
be explained by taking into account the friction strength between the horizontal
joints, which decreases with decreasing vertical compression r, or, on the contrary,
increases with increasing compression r. This last aspect will be taken up again in
the study of the statics of domes.

Further, by increasing the angle h the uniaxial compression strength reduces
strongly. For h = 22.5° and h = 45° the compression strength becomes only about
the 60% or the 30 of the strength corresponding to h = 0. This result is very
important because, in short, signifies the influence of the shear on the compression
strength of regular brickwork or, in a similar way, the effect of the inclination of the
compression with respect to the mortars beds. Doubtful is, on the contrary the
monotonic strength reduction with the increasing the angle h, as far as to h = 90°.

Tests performed at the university of Brescia confirm partially these results
(Facconi et al. 2014). Five masonry specimens, with dimensions 50 cm � 71
cm � 23 cm with different joints inclination have been tested under vertical
compression. The specimens are indicated as M01 and M02 (h = 0°); M22
(h = 22.5°); M45 (h = 45°); M90 (h = 90°). The angle h is the inclination of mortar
beds with horizontal, as shown in the same Fig. 1.44.

Figure 1.42 shows some of the failed specimens under vertical compression. The
detected compression strengths are:

M01 (h = 0°): r	o ¼ 7 MPa; M02 (h = 0°); r	o ¼ 6:1 MPa, with a mean strength a
r	o ¼ 6:55 MPa.
M22 (h = 22.5°) r	o ¼ 4 MPa; M45 (h = 45°); r	o ¼ 2:6 MPa
M90 (h = 90°); r	o ¼ 5:7 MPa.

The detected strength reductions corresponding to the inclination angle
h = 22.5° and h = 45° are in full agreement with the above Samarasinghe results.
On the contrary, when the inclination angle reaches the value h = 90° the com-
pression strength increases compared to the values corresponding to the less
inclined joints.

Figure 1.43 shows the changes in strength by varying h. The maximum strength
reduction occurs with h = 45°. In the following the compression strength inclined
with the joint inclination will be denoted
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frc\h ð1:58Þ

A simple description of the dependence of the masonry strength r with the
inclination angle a compression/joints direction, qualitatively according to the test
results shown in Fig. 1.44 is the following

rðaÞ ¼ ro þ 8
p2

ðro þ rop=2 � 2rop=4Þa2 þ 4
p
ð2rop=4 �

rop=2
2

� 3
2
roÞa ð1:59Þ

In the particular case of rop=4 ¼ ro=2; rop=2 ¼ 3 ro=4 the previous Eq. (1.59)
becomes

Fig. 1.42 Specimens M22 (h = 22.5°) and M45 (h = 45°) at failure (Facconi et al. 2014)

Fig. 1.43 Compression
strengths (Mpa) by varying
the joint inclination (From
Facconi et al. 2014)
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rðaÞ ¼ ro þ 8
p2

ðro þ rop=2 � 2rop=4Þa2 þ 4
p
ð2rop=4 � rop=2=2� 3ro=2Þa

Equation (1.59) can be very useful in applications.

1.11 Masonry Deformations

1.11.1 Masonry Elastic Modulus

Figure 1.45 shows a typical r – e diagram for compressed regular masonry. The
diagram refers to a test lasting only a few minutes in order to avoid long-term
effects (which will be addressed later). The corresponding instantaneous elastic
modulus can be determined as the tangent to the r – e curve at the origin. A variety
of empirical formulas can yield information about the order of magnitude of the
elastic modulus,: the following relation being a typical example:

E	 ¼ 1000fk ð1:60Þ

where fk is the characteristic masonry compression strength. The corresponding
elastic shear modulus G can be evaluated by assuming a value v = 0.25 for
Poisson’s coefficient, whence we get Gm = 0.4Em.

π/4 π/2 

α

σ(α)

σπ/2 

σπ/4 

Fig. 1.44 The diagram of the
function assumed to describe
the variation of strength with
the inclination angle
compression/joint direction

Fig. 1.45 Typical r – e.
Diagram of compressed
regular masonry
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However, there is a simple theoretical procedure for evaluating the instantaneous
elastic modulus of regular brickwork (i.e., composed of brick or regular blocks and
mortar joints, as shown in Fig. 1.46.

Deformations of the masonry along the vertical direction are due to deformation
of both the blocks and the mortar beds. The effects of vertical joints deformations
are instead insignificant. Let us refer to the simplified scheme of a single masonry
cell shown in Fig. 1.47. The cell is composed of a single brick with two horizontal
mortar semi-joints, with hm and hb respectively the joint and brick thickness. The
vertical compression r on the bricks is the same as on the joints. Recalling the
expressions of the mortar and brick vertical strains emv and ebv , according to (1.40′)
and (1.41′), we have

emv ¼ 1
Em

ðrv � 2mmrml Þ ebv ¼
1
Eb

ðrv � 2mbrbl Þ ð1:61Þ

where Em and Eb are the brick and mortar elastic moduli, respectively. Further,
taking into account the (1.52)

emv ¼ rv
Em

ð1� 2mmvÞ ebv ¼
rv
Eb

ð1þ 2mbbvÞ ð1:610Þ

Consequently, the overall shortening of the single masonry cell is

D ¼ ebvhb þ emv hm ¼ rv
Eb

hb½ð1þ 2mbbvÞþ/bð1� 2mmvÞ� ð1:62Þ

And the overall masonry strain is

Fig. 1.46 Brickwork
deformation under vertical
compression

Fig. 1.47 Deformation of the
masonry cell
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e	 ¼ D
hb þ hm

¼ rv
Eb

1
1þ b

½1þ/bþ 2vbðmb � mmÞ� ð1:63Þ

Consequently, the corresponding masonry elasticity modulus, defined as

E	 ¼ r
e	
; ð1:64Þ

takes the form

E	 ¼ Eb
1þ b

1þ b½/þ 2vðmb � mmÞ� ð1:65Þ

or, taking into account that the quantity 2v(vb – vb) is negligible with respect to /,

E	 ¼ Eb
1þ b

1þ b � / ð1:650Þ

in full agreement with a well known formula of the International Railways Union
(U.I.C. Code 2009). As can be seen from Eq. (1.65′), the masonry elastic modulus
depends not only on the brick and mortar elastic moduli Eb, Em but also on the ratio
hm/hb between the joint and brick thicknesses. Mortars are more deformable than
bricks or other stone blocks and / > 1, Hence

E	 
Eb

If the ratio b is negligible, from (1.65′) we have E* � Eb. The thickness of mortar
beds, by means the ratio b, has thus a relevant role in defining the overall masonry
elasticity modulus.

1.11.2 Masonry Deformation at the Onset of Blocks Failure

Let us evaluate the overall masonry deformation e	o at the onset of the failure of
blocks when it has been just reached the compression stress r	o. At this stage
vertical cracks crossing the blocks take place and the shear interaction between
mortar beds and blocks begins to loosen: strains increase but masonry is incapable
to increase its strength.

To evaluate the strain e	o, let assume in (1.63) that presence of the compression
strength frc given by (1.64). We have

e	o ¼
frc
E	 ð1:66Þ

where the modulus E* is given by (1.65′).
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1.11.3 Stress—Strain Diagram of the Compressed Masonry

Figure 1.48 shows the stress—strain diagram for the regular brickwork considered
by many A., for instance Kaushik et al. (2007). This diagram confirms the quasi
brittle behaviour of the compressed masonry.

Once that the peak strength has been reached, there is only a small strain
increment along which masonry maintains its strength. The strain e0m, corresponding
to the peak strength, is equal to 0.0015 while the ultimate strain, where the stress is
just vanished, equals 0.003. Further, the strain to which strength begins to drop
rapidly, is denoted with e0m90%, to point out that the 90% of the peak strength
corresponds to this strains. We have about e0m90% ¼ 0:0025. Further, from the
above, we know also that the strain where the failure strength is just reached, is
about equal to 0.1%: it can be considered as the first yielding deformation of the
masonry.

With these result it is thus possible to trace a simplified stress—strain diagram
for the compressed masonry that takes into account the main features of the overall
masonry behaviour.

The first segment OA of the diagram of Fig. 1.49 describes the linear elastic
relation between the applied compression r	o and the corresponding masonry strain
e	o. The end A of the linear segment is reached when the applied compression r*

reaches the masonry strength r	o. At this point the cracking of bricks begins to
occur, and the overall strain is e	o ¼ 0:1%, i.e., equal to about the 2/3 of the peak
strain e0m ¼ 0:15%, above determined. The corresponding overall elasticity modulus
E* is expressed by (1.65) and corresponds to the tg c of Fig. 1.49.

The ultimate strain e	u: is obtained by test results and, with the above consider-
ations, can be taken equal to e0m90% ¼ 0:25%. The short segment AB at constant
strength is included between the strains e	o and e	u:: its length is thus equal to 0.15%.

Fig. 1.48 Stress-strain
diagram of regular brick
masonry compressed
orthogonally to mortar beds
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1.11.4 Mortar Creep

Mortar is subject to significant creep deformation that stron1gly influences
long-term masonry deformations (Lenczner 1970, 1981; Shrive and England 1981;
Warren and Lenczner 1981).

To understand the features of creep deformation it is useful to recall some
aspects of viscous deformations by considering an ideal mortar specimen initially
stressed by a compression r. This stress, which we assume to be much lower than
the masonry compression strength, is maintained on the specimen for a given period
of time and subsequently removed. Upon application of the compression r, an
instantaneous deformation e (0) will occur, then, as consequence of mortar creep,
this strain will slowly increase under the constant action of r. When the specimen is
unloaded, it will immediately recover its initial elastic deformation, but will retain a
certain residual strain that will then, in turn, be recovered partially. Figure 1.50
provides a schematic illustration of this behavior.

The mortar strain occurring under the constant compression r is thus composed
of an elastic part, r/Em, and a viscous part ev(t), the latter of which is slowly
increasing over time,

σ∗

ε*

o
ε*

u

γ

A B

O

ε*

rcf

Fig. 1.49 Overall simplified
diagram r – e of compressed
brickwork

t 

Instantaneous strain recovery

Instantaneous elastic 
strain 

Creep strain 
Delayed recovery 

Constant stress σ
Stress  removal 

Permanent strain 

σ, ε 

Fig. 1.50 Creep behaviour of mortar
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eðtÞ ¼ r
Em

þ evðtÞ ð1:67Þ

1.11.4.1 The Concept of Memory in Constitutive Creep Models

Creep deformation evðtÞ at time t can be considered as the memory, at the current
time t of all the stress events rðsÞ having occurred in the past time s. This ‘memory’
can be considered proportional to the magnitude of the stress r applied to the
material in time s. Generally, creep deformation ev(t), will depend on both the
current and past times, t and s, as well as on the duration of action of the past stress
r(s). Thus, we can write

evðt; sÞ ¼ Uðt; sÞ
Em

ð1:68Þ

where the U(t, s) is a function suitably defined so as to represent the memory at
current time t of a unit stress r(s) = 1 applied during a unit time interval Ds = 1 at
past time s. Thus, the expression

devðtÞ ¼ Uðt; sÞ rðsÞ
Em

ds ð1:69Þ

represents the differential of the viscous strain. The viscous deformation ev(t) is the
sum of the memories at time t of all stresses rðsÞ applied in the past. Thus, we
obtain

evðtÞ ¼
Z t

ti

Uðt; sÞ rðsÞ
Em

ds ð1:70Þ

where ti indicates the start time of the initial loading. In general, the memory
function depends on both the current and the past times, t and s. More precisely, it
depends on the difference

ðt � sÞ: ð1:71Þ

In fact, the memory of stress r(s) = 1 applied at time s during the unit interval
Ds ¼ 1 may fade with the passing of time and the function U(t, s) is thus decreasing
with increasing (t – s). However, tests have revealed that mortar, like concrete, has
almost permanent memory, in the sense that the effects of a unitary stress event
rðsÞ ¼ 1 that occurred at past time s fade to a minimal degree over time. We can
therefore assume with good approximation that
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Uðt; sÞ � UðsÞ: ð1:72Þ

However, the degree of memory at current time t of an event r(s) = 1 will also
depend on whether the mortar is ‘young’ or ‘old’ at time t, that is, whether t follows
closely or long after the mortar’s time of curing to. According to Krall (1947), we
can assume

Uðt; sÞ ¼ abe�bðs�toÞ; ð1:73Þ

where a is a factor, ranging from 1 to 4, representing the magnitude of the creep,
b = 1 year−1 is a scale factor and to the mortar curing time. Consequently, if the
mortar is stressed under constant compression r applied at initial time ti [ t0, the
total strain (the sum of elastic and viscous parts) will be

eðtÞ ¼ eeðtÞþ evðtÞ ¼ r
Em

þ ab
r
Em

Z t

ti

e�bðs�toÞds ð1:74Þ

By integrating (1.60), we get

eðtÞ ¼ eeðtÞþ evðtÞ ¼ r
Em

� r
Em

a e�bðs�toÞ�� ��t
ti
¼

¼ r
Em

1� a½e�bðt�toÞ � e�bðti�toÞ�
n o ð1:75Þ

In this simplified model the residual creep strain is permanent, as shown in
Fig. 1.51. Other formulations can more accurately describe the fading of memory
over time, particularly for concrete (Chiorino 2005). On the other hand, such for-
mulations are more complex and in practice the simplifying assumption (1.73) can be
considered acceptable. If we first consider the simpler case, with ti = to = 0 we get

eðtÞ ¼ r
Em

½1þ að1� e�btÞ� ð1:76Þ

t t 

ε ε 

εe εe

t1 

ε (t1)

Fig. 1.51 Simplified creep behavior of a viscous material under constant compression (left) and
after the stress removal (right)
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and the long-term strain, for t ! 1, is

e1 ¼ r
Em

ð1þ aÞ ð1:77Þ

The ratio between the long-term and the initial strain ee defines the long-term
deformation factor, expressed by

u1 ¼ e1
ee

¼ 1þ a ð1:770Þ

If, on the contrary, the initial loading time ti is not simultaneous with the curing
time to, i.e., ti 6¼ to, in place of (1.77′), we have

u1 ¼ e1
ee

¼ ð1þ ae�bðti�toÞÞ: ð1:7700Þ

This formulation can be applied to study the long-term behavior of masonry
walls. In this context, the use of the delayed elastic masonry modulus can be very
useful, as will be shown in later chapters.

1.11.5 Mortar Shrinkage

A mortar specimen in the open air undergoes a contraction of its volume that
gradually ceases over time. This contraction is independent of stress. If the mortar
specimen is a long prism, the prevailing deformation is shortening strain, which is
defined through the uniaxial shrinkage strain function represented by the expression

esðtÞ ¼ eSð1� e�bðt�toÞÞ; ð1:78Þ

where eS is the long-term shrinkage strain, equal to about 0.3–0.35 � 10−3 (Brooks
and Abu Bakar 2004). Mortar shrinkage of the horizontal joints of a masonry wall
causes only a small reduction in the joint thickness and, consequently, leads to only
a slight overall shortening of the wall. A brick wall undergoes long-term shortening
of the order of magnitude of 0.1–0.2 mm per meter of height.
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Chapter 2
Fundamentals of Statics

Abstract Basics of Statics of masonry solids and structures are the subject of the
chapter. Masonry behavior is strongly influenced by the dramatically lower strength
in tension than in compression. Masonry structures can thus suffer cracks gener-
ating displacement fields, called mechanisms, which develop without any internal
opposition of the material. Collapse can occur without any material failure. The
Heyman masonry model, the idealized rigid in compression no tension material, is
fruitfully assumed as basis of the approach followed in the chapter. The extension
of this model to the masonry continuum is then developed. Strains and detachments
occurring in a no tension masonry solid can thus obtain a suitable mathematical
formulation together with the admissible equilibrium. A proper virtual work
equation, that considers the boundary of the body including the crack surfaces, as a
condition only on the loads, both necessary and sufficient to the existence of the
masonry equilibrium, can be formulated. This last condition governs the collapse
strength of masonry structures. The notion of the minimum thrust, from both static
and kinematical approaches, is then introduced, widening the field of application of
the Limit Analysis also to the study of the actual stress states. In this context, it
follows that weight and geometry represent the essential elements in the strength of
masonry structures. Further, it will be also proven that, if a structure under its own
weight is stable, the k times magnified copy of the same structure will also be stable.
This result, thoroughly discussed in the chapter, matches the so called theory of
Proportions that has constantly ruled the Design in the history of Architecture.
A critical analysis of the recent failure of the cathedral of Noto, in Sicily (Italy),
useful to a better understanding of the above discussed mechanical concepts, ends
the chapter.

2.1 Introduction

Under a given loading path, a masonry structure can reach a collapse condition
solely due to loss of equilibrium, that is to say, in the absence of any material
failure. Such a condition can therefore arise even in masonry with infinite

© Springer International Publishing AG 2017
M. Como, Statics of Historic Masonry Constructions, Springer Series in Solid
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compression strength. As discussed in the previous chapter, the tensile strength of
masonry is, in fact, very low, frequently near zero. Consequently, masonry struc-
tures can suffer cracks or detachments that may in turn generate displacement fields,
often called mechanisms, which develop without any internal opposition from the
material.

As soon as the pushing loads begin to exceed the action of the resistant loads
along one of these mechanisms, the structure fails. It is thus easy to understand how
the presence of negligible tensile strength can disrupt the behavior of structures as
compared to the common elastic ones.

Clearly, other failure modes can occur, such as those depending on the com-
pression strength of the material, described in Chap. 1, or those involving the
destabilizing effects of axial loads, covered in Chap. 4. However, this first collapse
mode affects a wide variety of structures and is, in practice, the most relevant. It
stems from the essential aspects of the behavior of masonry structures, aspects
which were fully understood by ancient builders and which have therefore shaped
the course of architecture since the origins up to the 19th century.

The aim of this chapter is to analyze these issues involved in such failure
mechanisms. The choice of the most convenient model to use for masonry materials
will be addressed first. Any model for describing masonry behavior must be as
simple as possible, but at the same time able to represent its most salient aspects. In
this regard, the ingenious Heyman model of masonry as a no-tension material that is
rigid under compression (1966) is the most satisfactory for our purposes and will be
discussed in the following and constantly referred to throughout this book.

There are sound reasons for adopting the assumption of no tensile strength in
masonry. First of all, as evidenced in the previous chapter, most masonry materials
exhibit very low tensile strength. This is due, rather than to the mortar’s low tensile
strength, to the very low adhesion between mortar and bricks, which thus represents
the weakest link. Moreover, the mortar in historic constructions may be very poor.
Masonry may, in some exceptional cases, exhibit non-negligible tensile strength
and its behavior could, at first sight, be modeled as a traditional elastic material.
However, random dynamic actions, which can produce cracks in the masonry mass,
will eventually cause the material to revert to no-tension behavior. The effects of
subsequent slow penetration of humidity into the cracks can then make things even
worse. In such cases, it is possible that a masonry structure which in its pristine state
is able to sustain the action of given loads by virtue of its initial non-negligible
tensile strength, will not be able to sustain the same loads later, when this strength is
fading. In such cases the long-term behavior of masonry can be conservatively
assumed to follow the no-tension model.

Very seldom shear failures occur. Further, in masonry constructions compres-
sion stresses are, as a rule, very low if compared to the masonry crushing strength
so that in the majority of cases compression failures are not relevant.

To sum up then, it is clear that the no-tension rigid in compression model is
well-grounded. Indeed, it is widely adopted in nearly all the mechanical models
proposed for historic masonry structures. The following Heyman model condenses
in the simplest way the behavior of masonry material.
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2.2 Heyman’s Assumptions

The constitutive assumptions formulated by Heyman (1966) are as follows:

(i) masonry is incapable of withstanding tensions;
(ii) masonry has infinite compressive strength;
(iii) elastic strains are negligible;
(iv) slidings cannot occur because masonry has infinite shear strength.

The corresponding uniaxial stress–strain relation is shown in Fig. 2.1.
The first two of Heyman’s assumptions above involve stresses; the latter two,

strains. We will comment further these assumptions. In the next section we will first
discuss the Heyman assumption (iii).

2.2.1 Neglecting Elastic Strains

From Theory of Plasticity we know that neglecting the elastic compression strains
has no influence on evaluation of the limit loads. This question has been thoroughly
studied in the general analysis of elastic-plastic bodies. Indeed, from the perspective
of Limit Analysis, the presence of elastic strains has no effect on the collapse load,
except in the event that the changes in geometry become relevant. During the onset
of the failure mechanism all stresses remain constant and new elastic strains do not
develop (Prager 1959). The same occurs for both elastic and rigid no-tension
structures, as will be shown in the following (Fig. 2.2).

σ

ε

Fig. 2.1 Uniaxial stress–
strain relation of rigid
no-tension masonry material

gP
Fig. 2.2 Collapse of the arch
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Some appropriate programs can provide information on the effects of the elastic
compressive strains within masonry model of structures by assuming a small finite
tensile strength.

The problem seems different if we want to check the actual equilibrium state. At a
first sight the problem can be, in fact, solved by assuming the elastic in compression
no tension model that permits to obtain the lacking equations: they express the
compatibility of the deformation of the structure with its external environment. On
the contrary, the research of equilibrium configuration of the rigid no tension
masonry structures under a given load distribution becomes statically undetermined.

Let us consider, on the other hand, that the external constraints, representing the
structure environment, will suffer a certain amount of deformation, that we will call
settlement. These deformations can be represented by the settlement of the soil, as
in the example of the arch of Fig. 2.3, or by the same deformation of supporting
substructures: for instance the deformation of the drum sustaining a dome.

The elastic no tension solution is dependent, on the other hand, on the magnitude
of settlement only if this displacement is very small because rapidly it matches the
solution corresponding to the rigid no tension model.

These considerations can be illustrated by the following example regarding the
behavior of an arch, studied by assuming the elastic in compression no tension
model. The example was studied by Zani (2011) of the university of Florence. The
arch, loaded by its own weight, suffers an horizontal settlement at its springing. It is
required to evaluate the variation of the thrust of the arch with the magnitude of the
imposed settlement. Figure 2.4 gives the plot of the thrust of the arch versus the
magnitude of the imposed settlement. Starting from the fixed springings condition,
the thrust of the arch drops immediately as soon as the settlement occurs and
approaches the value of the minimum thrust, about equal to 874 kg, corresponding
to the reaching of the mechanism state.

Further, Fig. 2.5 shows the pressure lines developing in the arch respectively at
the initial state, with fixed springings, and just after the thrust drop. The assuming the
rigid in compression no tension model prevents to describe, during the loading
progress, the gradual development of cracking in the structure before the reaching
the settlement mechanism state. But this phase of working of masonry structures
should be meaningless, owing to the strong sensitivity of masonry structures to the
magnitude of the settlement, as shown by the arch behavior of the previous Fig. 2.4.

After the settling displacements have reached a certain level, the structure
effectively becomes a mechanism and can adjust by maintaining its internal stresses

Fig. 2.3 Settlement
deformation of the masonry
arch
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constant. With reference to the example masonry arch in Fig. 2.3, which has
undergone a slight increase in span due to settling of its springers, according to
Heyman (1995), it can be seen that the arch is able to adapt itself to the settlement
by maintaining the stresses constant regardless of the degree of settling.

Further, the no-tension elastic model can give unusual predictions regarding
displacement evaluations. One example in this regard is the masonry panel sub-
jected to bending and axial loads illustrated in Fig. 2.6.

The panel, of thickness s, is loaded at its top and base by the pressure p which
remains constant along the band a and then varies linearly from p to zero on the
remaining band of width b. The borders of the panel are free to deform. The band of

Fig. 2.4 Plot of the thrust of the elastic no tension arch versus the horizontal settlement (private
communication by N. Zani, Department of Constructions, Univ. of Florence, Italy, July 2011)

Fig. 2.5 Pressure lines in the elastic no tension arch at its initial state, with fixed springings, and
near the mechanism state, just after the thrust drop (private communication by N. Zani,
Department of Constructions, Univ. of Florence, Italy, July Zani 2011)
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width a, under uniform compression p, shortens with respect to the horizontal axis
of symmetry, c–c. The top sections of the panel band, of width a, move vertically
by the amount

D ¼ pas
Eas

L
2
¼ p

E
L
2

ð2:1Þ

The side band of width b is axially loaded eccentrically. The left-hand corner of
the top section of this band moves vertically and remains in contact with the
right-hand corner of the top section of the band of width a. The right-hand band is
loaded by the axial load, N, and bending moment, M

N ¼ pbs
2

M ¼ pb2s
12

ð2:2Þ

The top section of this band sinks under the action of N and rotates counter
clockwise under the bending moment M. The total vertical displacement of
left-hand corner of this section is

D ¼ pbs
2

L
2Ebs

þM
12L
2Esb3

b
2
¼ p

E
L
4
þ pb2s

12
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2Esb3
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2
¼ p

E
L
4
þ p

E
L
4
¼ p

E
L
2

ð2:3Þ

which is equal to displacement (2.1). Cracks arise along the vertical line of con-
nection between the two bands. The maximum width D0 of these discontinuities or
detachments is

D0 ¼ M
12

2Esb3
ðL
2
Þ2 ¼ pL

8E
L
b

ð2:4Þ

L/2

L/2

a b

Δ'
c c

Fig. 2.6 The behavior of an elastic no-tension panel under variable compressions applied at its
base and top sections
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Now, as the width b of the band becomes smaller and smaller, at the limit b ! 0,
we have

limD0¼1
b!0 ð2:5Þ

In particular, if only one band of the panel is uniformly compressed, while the
other band is unloaded, the stress state is defined unequivocally. The loaded side is
uniformly compressed and the side band remains unloaded. Strains, on the contrary,
behave in a singular way. The unloaded side of the panel detaches from the loaded
one and tends towards infinity because a no-tension elastic material is unable to
accept the presence of shear strains along the contact zone between the loaded and
unloaded sides. None of the linear segments, all contained within the unloaded
masonry solid, can in fact be shortened during deformation. This result emphasizes
the singular behavior of the elastic no tension models of masonry structures par-
tially loaded over their boundaries. By using the rigid in compression no-tension
model, which neglects the elastic strains, the solution is simpler. In this case, in
place of the diverging solution, the unloaded part of the panel can detach from the
loaded part by an arbitrary, but finite quantity (Fig. 2.7). In conclusion, studying the
real equilibrium states of masonry structures, equivalent results can be obtained by
applying the rigid no-tension model. The minimum thrust states can provide the
additional equations needed to solve the problem.

Figure 2.9 shows the case of the panel that suffers continuous extension strains
producing an inner crack.

As an example, Fig. 2.8 shows the four hinge deformation of a rigid in com-
pression no tension arch.

Fig. 2.7 The rigid no-tension
panel partially compressed at
its base and top sections

Fig. 2.8 Mechanism induced
by rigid rotations of parts of
the arch
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2.3 The Resistant Masonry Cell

The foregoing assumptions outlined at Sect. 2.2 turn out to be very clear if we refer
to the elementary resistant cell of the masonry structure, represented by two ide-
alized rigid masonry bricks compressed one against the other by a more or less
eccentric axial load and possibly loaded by a shear force (Fig. 2.10).

The two rigid bricks of the unit resistant cell, of height h, cannot deform
internally, but they can detach from each other (Fig. 2.11). A crack occurs in the
cell.

The overall stress state is determined by an axial force N applied at the section’s
centre, a moment M and a shear force T. Thus, the stress state acting on the unit cell
can be represented by the vector

R ¼
M
N
T

2
4

3
5 ð2:6Þ

According to assumption (i), only compressive stresses are consistent. Thus, the
eccentricity of the axial load N

e ¼ M=N ð2:7Þ

Fig. 2.9 Mechanism induced
by extension strains
distributed over the upper
zone of a panel

Fig. 2.10 The unit resistant
masonry cell

Fig. 2.11 Admissible
displacements of the unit cell
blocks
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must satisfy the inequalities

�h=2 � e � h=2 ð2:8Þ

Assumption (iv) prohibits sliding. Consequently, the shear force T will not be
bound by any restrictions. Using the reference system N, M, T, any point in this
space thus defines a possible loading condition. Since shear T is uninvolved in
defining the limit equilibrium between the two ideal bricks, we can consider the
projection R0 of R on the coordinate plane N, M, as shown in Fig. 2.12.

According to (2.8), the eccentric axial loading state, defined by the values of the
axial force N and moment M (and which we will continue to indicate as R for the
sake of simplicity), cannot extend beyond the two limit lines represented in the
plane (N, M) by the two straight lines OA and OB in Fig. 2.12

M ¼ N
h
2

M ¼ �N
h
2

ð2:9Þ

The set of all consistent stress states in the space M, N and T is thus the region
between the two p planes orthogonal to plane T = 0 having intersections with the
two limit lines M = Nh/2 and M = –Nh/2. In particular, the region Y of the con-
sistent stress states R is the region in plane M, N delimited by angle OAB.
Specifically, a vector R placed along either line OA or line OB, represents an axial
force with eccentricity respectively equal to h/2 or −h/2, as shown in Fig. 2.13a, b.
These peculiar stress states are denoted as Rþ

o and R�
o , and are expressed as

Rþ
o ¼

Nh=2
N
T

2
4

3
5 R�

o ¼
�Nh=2

N
T

2
4

3
5 ð2:10Þ

Any deformation of the unit resistant cell will be either zero or a detachment
strain and will be represented by the strain vector

N ∑

AM 

O

B

Y 

Fig. 2.12 The region Y of the
admissible stresses
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E ¼
/
D
0

2
4

3
5 ð2:11Þ

where the third strain component is zero because, according to assumption iv, non
sliding can occur. The components /, D, 0, are the elementary strains along which
the force components M, N and T respectively do work.

No strains can occur until the eccentric axial force reaches the upper or the lower
edge of the brick cell section (Fig. 2.13a or Fig. 2.13b).

In the case of Fig. 2.13a, the stress is Rþ
o , and the corresponding detachment

strain, the vector E+, is produced by the opening of the hinge situated at the upper
edge of the section; in the case of Fig. 2.13b, the strain E� corresponds to the stress
R�
o : These strains are thus defined as

Eþ ¼
/

�/h=2
0

2
4

3
5 E� ¼

�/
�/h=2

0

2
4

3
5: ð2:12Þ

Strains (2.12) are kinematically consistent. The detachment −/h/2 occurring at
the centre of the cell when its edges rotate of the angle / among them can be called
the dilatancy that accompanies the hinge opening, according to a notation used in
Plasticity of soils. Stresses at the limit state (+), represented by the vector Rþ

o , do
not perform work on the corresponding detachment strain E+. Likewise, at the limit
state (a) R�

o does no work on the strain E� (Fig. 2.14).

Limit state Limit state

o
+ o

−

∑
∑

(a) (b)Fig. 2.13 Limit stress states

o
+

o
−

+E ΔE

0=

−E

∑ ∑ ∑ ∑(a) (b) (c)

Fig. 2.14 Stress states not producing or producing detachment strains in the cell
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In fact

Rþ
o � Eþ ¼ Nh=2 N T½ �

/

�/h=2

0

2
64

3
75 ¼ 0

R�
o � E� ¼ �Nh=2 N T½ �

�/

�/h=2

0

2
64

3
75 ¼ 0

ð2:13Þ

The detachment strain E+ is thus orthogonal to the limit line M = Nh/2, while
vector E� is orthogonal to the other limit line M ¼ �Nh=2, as shown in Fig. 2.15.

2.3.1 Principle of Maximum Detachment Work

Let us now consider a generic consistent state of stress R, that is, within the angular
region Y: the resistant cell cannot thus be opened, so the stress R cannot do any
positive work on any detachment strain E (Fig. 2.16a). Thus the following
inequality holds

R � E� 0; 8R 2 Y, ð2:14Þ

Y

Y∂

Y∂
o
−

o
+ −

M

N
O

B

+E

o
− −

−E

o
+∑

∑ ∑

∑∑
∑

∑

Fig. 2.15 Admissible stress
states and detachment strains

o
+

+E
+E

∑

∑(a) (b)Fig. 2.16 The non-positive
work of stresses on the cell
strains
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where

R � E ¼ 0; ð2:15Þ

iff R ¼ Rþ
o and E ¼ Eþ , or R ¼ R�

o and E ¼ E�, (Fig. 2.16b). In short, we have

R�
o � E� ¼ 0 ð2:16Þ

This last inequality represents the normality rule connecting the limit stress with
the associated strain vectors. Taking both conditions (2.14) and (2.16) into account,
we also have

ðR�
o � RÞ � E� � 0; 8R 2 Y ð2:17Þ

which shows that the vector

ðR�
o � RÞ

is directed outside the region Y, as shown in Fig. 2.13. Inequality (2.17) means that
the angle between vectors ðR�

o � RÞ and E� cannot be larger than p/2.
It is worthwhile examining the case in which all the stresses acting on the cell are

equal to zero. In this case, the cell can deform with all its degrees of freedom, as
shown in Fig. 2.17. Any consistent deformation of the cell, that we indicate with
ER=0, can be expressed by a linear combination of the basic strain components
shown in the previous Fig. 2.15: the two strains E+ and E� and the uniaxial
extension ED. Vector E

+, originating at the vertex O of the angular region Y in
Fig. 2.18, is orthogonal to the limit line R ¼ Rþ

o ; likewise vector E� is orthogonal
to the limit line R ¼ R�

o .
Finally, the uniaxial detachment strain, ED, is represented by a vector originating

at the vertex O and acting along the positive direction of the axis N(D) in Fig. 2.16.
The overall strain, obtained by the linear combination of all the three basic vectors
E

þ
, E

�
, and ED, lies within the angular region OAB having its vertex at the origin

+E ΔE −E

∑ = 0∑ = 0∑ = 0Fig. 2.17 Possible basic
strains occurring on the
unloaded cell
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O and bounded by the lines OA and OB, respectively orthogonal to the limit lines
R ¼ R�

o . Thus, by applying condition (2.17) to the case of zero limit stress 0 we
have

ð0� RÞ � ER¼0 � 0; 8R 2 Y ð2:170Þ

Conditions (2.17) and (2.17′) have an important meaning. From (2.17) we can
write

Ro � EDetach: �R � EDetach:; 8R 2 Y ð2:18Þ

or, taking into account that Ro � EDetach: ¼ 0,

R � EDetach: � 0 8R 2 Y ð2:19Þ

where

EDetach: ¼
Eþ for Ro ¼ Rþ

o
E�for Ro ¼ R�

o
ER¼0for Ro ¼ 0

2
4

3
5 ð2:20Þ

According to (2.18) or (2.19), the work done by the limit stress Ro for the
corresponding detachment strain is never lower than the work done by the generic
admissible stress R for the same strain. This statement, that expresses the principle
of the maximum detachment work, reflects the principle of the maximum plastic
work of the Theory of Plasticity (Prager 1959). This property of the unit resistant
masonry cell will maintain its validity in the more general case of the masonry
continuum.

Fig. 2.18 Overall strain of
the unloaded cell as the sum
of all the basic strains Eþ , E�

and ED of the cell
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2.3.2 Features of the Resistant Masonry Cell

2.3.2.1 Stability

Let us imagine that a consistent stress state RA is applied to the cell by the agent
(A) and that another agent, defined as (B), applies additional stresses RB to the cell
so that the overall stress reaches the limit state R�

o and the detachment strain E�

occurs. The additional stress state RB applied by agent (B) can be expressed as
(Fig. 2.19)

RB ¼ R�
o � RA ð2:21Þ

When the E� occurs, agent (B) does the work ðR�
o � RAÞ � E� (Fig. 2.17),

which, according to (2.17), cannot be negative.
The unit masonry cell thus requires that agent (B) expends energy to produce

detachment strains. According to Drucker (1959), given the assumed constitutive
equation, the masonry material may be defined stable. It is worth to point out that
the behavior of the material would be quite different if, on the contrary, its con-
stitutive equations were based on friction.

2.3.2.2 Reversibility

Despite the foregoing results, the difference between masonry behavior and plastic
behavior is significant. Even according to the rigid in compression no-tension
model, masonry exhibits a behavior that, due to the lack of internal dissipation, can
be considered nonlinear elastic. To illustrate, let us examine the unit resistant cell in
Fig. 2.18 under a constant axial load N applied by agent (A) and a sequence of
loading–unloading cycles of the additional moment M produced by agent (B).

During the first additional loading, due to an increase in moment M, the
eccentricity of the axial load N increases gradually and the moment reaches the limit
momentMo, at which point a small detachment strain increment, D/, ensues. Agent
(B) expends energy to produce this strain D/. Then, in the return cycle, the

A
B o A

+= −

+E

o
+∑ ∑ ∑ ∑ ∑

Fig. 2.19 Stresses applied by agent (A) and subsequent agent (B) to reach the limit state
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expended energy is once again restored to agent (B) and the diagram of moment M
—rotation D/ takes the form illustrated in Fig. 2.20.

Though in many aspects similar to plastic deformations, the occurrence of
detachment strains does not involve energy expense. This result highlights a dif-
ference between the response of classical elastic-plastic, or rigid-plastic materials,
and masonry materials. This question will be taken up again in Chap. 11 by
examining some aspects of the dynamic behavior of some elementary masonry
structures.

2.4 The Masonry Continuum

It can seem strange to use the model of “continuum” to describe the mechanical
behavior of a material having a discrete structure, composed by bricks or stones and
eventually by mortar beds. This is indeed possible because essentials of the
masonry behavior don’t require to specify the internal composition of the material
but only its unilateral response, so conditioned by the dramatically lower strength in
tension than in compression. At the same time, the use of the continuous medium
immediately makes the powerful methods of calculus able to describe the discon-
tinuous mechanism displacements, due to cracks formation.

2.4.1 Extension to Continuum of Heyman Assumptions

The application of the above Heyman assumptions to the masonry continuum
imposes particular conditions on the displacement fields that we are now looking
for. As far as the first assumption is concerned, the masonry body can be considered
an assemblage of particles held together by the compressive stresses produced by

N
MM

M

N

Mo 

Δ
φ

(1) 

(2) 
Mo 

(3) 

(4) 

(5) 

(6) 

M

Δ
φ

-Mo 

(7) 

Fig. 2.20 Loading and unloading cycles
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loads. The small size of the stones compared to the dimensions of the body enables
it to be considered a continuous body instead of a discrete system of many indi-
vidual particles. When the compression stresses that held stones together cancel out
in some regions of the masonry body, it can get deformed. Only compression
stresses can take place in the masonry mass.

Assumption (ii) reflects the low level of the intensity of compression stresses
detected in the majority of the masonry constructions and will be again discussed,
in the next chapters of the book. Assumption (iii) has been already thoroughly
examined at Sect. 2.2. On the other hand both the assumptions (ii) and (iii) imply
the impenetrability condition between the rigid stones. In the continuum context
this condition requires that any contraction cannot occur between points connected
by segments entirely contained within the body. Thus, if (P1, P2) is such a pair of
points in X, and (Q1, Q2) is the corresponding pair after the transformation,

dðQ1;Q2Þ� dðP1;P2Þ ð2:23Þ

where d(Q1, Q2) denotes the distance of the segment connecting the points (Como
1992).

Accordingly no internal sliding can occur. Consequently during the develop-
ment of body deformation, cracks or detachments, representing point discontinuities
of the displacement function u(P), must represent openings. In short, masonry
material can only expand or be opened.

The last assumption (iv), that excludes sliding, is therefore in a certain sense
already contained in the first three Heyman assumptions. From another point of
view it is possible to recognize that assumption (iv), is a direct consequence of the
assumption (i). The argument is the following.

If shear failures could occur, they will be ruled by the Coulomb criterion (1773).
Thus, with reference for sake of simplicity to a plane stress state, the shear strength
along the plane where the compressive stress r is acting, is given by (Fig. 2.19)

s ¼ cþ r � tg/ ð2:24Þ

where / is the angle of the internal friction. According to the Coulomb criterion the
ratio between the uniaxial compressive and tensile strengths takes the form

rrc
rrt

¼ 1þ sin/
1� sin/

ð2:25Þ

Thus, as soon as we take into account the vanishing of the tensile strength and
gradually reduce the ratio rrt=rrc, at the limit we obtain

rrc
rrt

! 1 ) 1þ sin/
1� sin/

! 1 ) / ! p
2
: ð2:26Þ
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The two limit lines of the Coulomb criterion, which form angle / with the
horizontal axis, become vertical when / ! p=2 and the Coulomb criterion overlaps
the criterion of maximum tensile stress (Fig. 2.21). The internal friction strength
becomes unbounded. This result confirms the validity of assumption (iv) as direct
consequence of assumption (i) (Como and Grimaldi 1985).

The no sliding assumption endures significant consequences on the crack
geometry.

2.4.2 The Crack Opening

Cracks represent discontinuities or detachments of the displacement fields
describing the deformation of the body. This deformation is defined by the dis-
placement field

uðPÞ; P 2 X ð2:22Þ

called mechanisms, with P is any point of the region X occupied by the body,
whose boundary @X is sufficiently regular. A rigid no tension body is defined
deformable or undeformable if, according to its boundary conditions, admits, or
not, displacement fields (2.22).

The displacement functions (2.22) must satisfy suitable kinematic compatibility
conditions, which we shall now examine.

Cracks can only be opened normally to the direction of the fracture. Thus, to
define a crack in the no tension body, we consider the two edges f� and f + of the
crack (Fig. 2.22). We choose points P− and P + so that P− is on the edge f − and P +,
taken along the normal to f −at P−, is on the opposite edge f + of the fracture. Let n�

be the unit vector located along this outward normal to f� and passing through P�.
Cracks open in the body and we define the crack opening vector, or the detachment
vector, as follows (Como 1992):

Fig. 2.21 The Coulomb failure criterion, which for / ! p=2 overlaps the failure criterion of zero
maximum tensile stress
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Dðn�ÞuðP�Þ ¼ ½uðPþ Þ � uðP�Þ�n� ð2:27Þ

where uðPþ Þ and uðP�Þ are the scalar values of uðPþ Þ and uðP�Þ at points P− and
P+. Consequently, the scalar crack opening can be defined by means of the positive
quantity

Dðn�ÞuðP�Þ ¼ uðPþ Þ � uðP�Þ[ 0 ð2:28Þ

Let @Xr be the part of the surface of the body where restraints are applied and
n be the outward normal at the any given point P of @Xr. During deformation parts
of the body’s boundary can detach from the surface @Xr, initially in contact with
the body. Thus, if n is the outward normal to @Xr the following condition will hold
(Figs. 2.23 and 2.24)

uðPÞ � n� 0; 8P 2 @Xr: ð2:29Þ

2.4.3 Compatibility Conditions on the Loads

Let us consider a masonry body occupying the region X, whose boundary is
denoted as @X, which we assume to be sufficiently regular (Fig. 2.24). The body is
loaded by mass and surface loadings q(X) and p. The loaded part of the body
surface @X is @Xp. The surface region @Xr is subjected to appropriate boundary
conditions. Furthermore, the line f indicates a crack.

Fig. 2.22 The crack opening

n 

u Fig. 2.23 Unilateral
boundary constraint of the
masonry body
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Unlike linear elastic bodies, for masonry structures external loads and internal
stresses must necessarily satisfy some compatibility conditions, which are what we
are now seeking to define. For example, tensile forces cannot be applied on the
boundary of a no-tension masonry body. Indeed, the surface loads p must be
exerted on the surface @Xp, so that at any point on surface @Xp the following
condition holds

pðPÞ � n� 0; 8P 2 @Xp ð2:30Þ

where n is the unit vector of the outward normal to @Xp at point P.
Reactions rðPÞ that take place along the boundary @Xr will act on @Xr and we

thus have

rðPÞ � n� 0; P 2 @Xr: ð2:31Þ

Inequalities (2.29) and (2.30) represent the compatibility conditions on the
surface loads p and reactions r. As consequence of condition (2.29), self-equili-
brated load distributions cannot be applied to the masonry body.

2.4.4 The Boundary and the Inside of the Cracked Body

Equilibrium analysis of bodies made of masonry-like material is a wide subject and
in the last decades many contributions were given by many scholars using func-
tional spaces of BV displacement fields of various kinds (Baratta and Toscano
1982; Anzelotti 1985; Giaquinta and Giusti 1985; Del Piero 1989; Luccchesi et al.
2003, 2008; Trovalusci and Masiani 2005; Angelillo et al. 2010; Bacigalupo et al.

p∂Ω

r∂Ω

Ω 

f 

p 

ρρρρ 

Fig. 2.24 The masonry body
occupying the region X with
boundary @X
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2011; Silhavy’ 2014). In these researches the simplifying adoption of smeared
cracks is a customary frequent technique to describe the presence of localized
fractures in the body. Masonry cracking, on the other hand, localizes in few cracks
that, at failure, transform the body into a mechanism. Discontinuous displacement
fields can also be accompanied by diffused compressive elastic and fracture
stretching strains.

To avoid difficulties to manage discontinuous strain fields and to move in a
framework nearer to the physics of the problem, starting point of the paper is the
definition of the new boundary of the body. It includes the fractures associated to
the given displacement field, according to an ingenuous idea of Volpert and
Hujiadev (1985) in treating problems that involve BV functions. Applying this
approach to the stress analysis of the masonry-like body, the inside of the cracked
solid becomes a region free of fractures where strains are easily defined.

Cracks open during the development of u(P) and CðuÞ is the region of the
cracks’ boundaries. Following the approach established by Volpert and Hujiadev
(1985) we can define the new boundary of the cracked body that includes the
fractures associated to the given displacement field u(P) as

@XðuÞ ¼ @X[CðuÞ ð2:32Þ

where CðuÞ is composed by the edges f1, f2 of all the fractures (Fig. 2.25).
Meanwhile, we can define the region XðuÞ as the lacking cracks region, associated
to mechanism u(P),

XðuÞ ¼ X=CðuÞ ð2:320Þ

This region for the rigid in compression no tension body is, as a rule, simply
connected.

Some basic definitions and assumptions, necessary to the following analysis,
whose some of them go back to (Como 1992), are now recalled and arranged in the
context of the new region XðuÞ of definition of the displacement fields u(P).

Fig. 2.25 The boundary of the masonry body and the new boundary of the cracked body
corresponding to mechanism u
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2.4.5 Compatibility Conditions on Strains and Stresses

Strains, expressed by derivatives of the function u(P),

eijðPÞ ¼ 1
2
ðui;j þ uj;iÞ P 2 XðuÞ ð2:33Þ

are defined within the region XðuÞ where the displacement function u(P) is regular.
Strains (2.33) are fracture stretching that will thus satisfy the condition

eðPÞ� 0 P 2 XðuÞ ð2:34Þ

that simply signifies that the smallest of the principal strains cannot be negative.
Tensile stresses can never develop inside the masonry mass. Hence at any point

P of the body the equivalent conditions hold (Di Pasquale 1984, 1996)

rðPÞ� 0 P 2 XðuÞ tðnÞðPÞ � nðPÞ� 0; P 2 CðuÞ ð2:35Þ

The first of (2.35) simply signifies that the largest of the principal stresses cannot
be positive; the second of (2.35) says that the tension vector tðnÞðPÞ will transmit
compression across the oriented surface element dS, placed at the generic point
P and having the unit vector n(P) on the outward normal originating at
P (Fig. 2.26).

Stresses that permit the occurrence of fracture strains are denoted with roðPÞ.
Fracture strains can take place only if permitted by the acting stresses roðPÞ, so that

roðPÞ � eðPÞ ¼ 0 P 2 XðuÞ ð2:36Þ

while, for any admissible stress and admissible fracture strain, we have

rðPÞ � eðPÞ� 0; P 2 XðuÞ; ð2:37Þ

that reduces to (2.36) when e(P) is just the fracture strain corresponding to the
acting stress roðPÞ. Consequently, taking into account of (2.36) and (2.37) we have
(Fig. 2.27)

P 

n

( )nt

n

r∂Ω
r

Fig. 2.26 Admissible stress tensors and vectors; admissible reaction r of the constraint
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roðPÞ � eðPÞ� rðPÞ � eðPÞ; r 2 Y ; P 2 XðuÞ; ð2:38Þ

At the same time, the generic stress vector acting on the side f+ of the crack and
the generic admissible detachment Dðn�ÞuðP�Þ of u(P) at P are coupled together by
means of (2.27) and of the second of (2.35) (Fig. 2.28), so that

tðn
þ ÞðPþ Þ � Dðn�ÞðP�Þu� 0; 8u 2 M; Pþ 2 f þ � CðuÞ ð2:39Þ

Particularly, if tðn
þ Þ

o ðPþ Þ is the actual stress vector acting at Pþ where the
detachment Dðn�ÞðP�Þu opens, we get

tðn
þ Þ

o ðPþ Þ � Dðn�ÞðP�Þu ¼ 0; Pþ 2 f þ � CðuÞ ð2:40Þ

and, namely, when the crack begins to open and Dðn�Þu 6¼ 0, the stress interaction

vector tðn
þ Þ

o ðPþ Þ at P vanishes. So that, likewise to (2.38)

t
ðnþ Þ
o ðPþ Þ � Dðn�ÞðP�Þu� tðn

þ ÞðPþ Þ � Dðn�ÞðP�Þu; Pþ 2 f þ � CðuÞ ð2:41Þ

Likewise, on the constrained part @Xrof the boundary @X the reaction r will be
directed towards the body because it pushes against the boundary @Xr: thus, if n is
the outward normal to @Xr

σ1 

ε2 

ε1 

σ2 

σ1 

σ2 

Fig. 2.27 Admissible stresses and strains in masonry material

Fig. 2.28 Admissible stress
vectors and crack openings
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rðPÞ � nðPÞ� 0 ð2:42Þ

with

roðPÞ � uðPÞ ¼ 0 P 2 @Xr ð2:43Þ

iff u(P) is the real detachment occurring at P, so that

roðPÞ � uðPÞ� rðPÞ � uðPÞ; 8u 2 M P 2 @Xr ð2:44Þ

Inequalities (2.38), (2.41) and (2.44) express in local form the principle of the
maximum detachment wok that we have already met in the study of the unit resistant
masonry cell. Inequalities (2.38), (2.41) and (2.44) integrated in the corresponding
definition regions XðuÞ, CðuÞ and @Xr give

r; eðuÞh i � 0 ftðnþ Þ;Dðn�Þug � 0 r; uh i � 0 ð2:45Þ

that, with the simplifying position

½r	; e	� ¼ r; eðuÞh i � ftðnþ Þ;Dðn�Þug � r; uh i ð2:46Þ

½r	
o; e

	� ¼ ro; eðuÞh i � ftðnþ Þ
o ;Dðn�Þug � ro; uh i ð2:460Þ

condense in the more compact form

0 ¼ ½r	o; e	� � ½r	; e	� ð2:47Þ

Condition (2.47) expresses in more general form the principle of the maximum
detachment work discussed at Sect. 2.2.2. Inequality (2.47) is a direct consequence
of the dilating character of the deformation of the masonry body and plays a
fundamental role in establishing the basic principles of the Limit Analysis applied
to masonry structures.

2.4.6 Lacking of Load Diffusion

The main consequences of the assumption that masonry materials cannot withstand
any tension at all are:

(1) Masonry is incompatible with load scattering
(2) The internal resistant structures arising in the body depends on the geometry of

the applied loads
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Let us consider a masonry wall loaded only on its inner band, as illustrated in
Fig. 2.29. It is immediately evident that no load diffusion takes place inside the wall
(Di Pasquale 1984). Let us section the wall along the line a–a and consider the
equilibrium of the corresponding side band of the wall bounded by the line a–a and
the corresponding external edge. By considering the vector stress tn

a�aðPÞ and its
component along the normal na–a to line a–a at each point on line a–a, we get

Z
a�a

tn
a�aðPÞ � na�adS ¼ 0 : ð2:48Þ

On the other hand, by accounting for the fact that along line a–a, the stress
vectors tn

a�aðPÞ must satisfy the last of conditions (2.35), from condition (2.48) we
obtain

tðn
a�aÞðPÞ � n̂a�aðPÞ ¼ 0; ð2:48Þ

whence, if

tðn
a�aÞðPÞ 6¼ 0; ð2:49Þ

at each point P on the line a–a, a distribution of shear stresses could develop along
the edge a–a. This is however inadmissible, because a positive principal stress
could occur along the line a–a, which contrasts with the first of (2.35).
Consequently, the stress states along a–a is null, that is

tðn
a�aÞðPÞ ¼ 0: ð2:4800Þ

This also occurs along any section b–b transverse to the considered band, as well
as along any inclined section c–c in Fig. 2.29. The side bands of the considered
masonry are thus unloaded.

a

a

b b 

c

c

Fig. 2.29 Resistant masonry band without load scattering
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In the Chap. 6 it will be shown that the lack of loads diffusion actually occurs in
masonry walls. This result does not imply that there cannot exist stress distributions
radiating from a point of a solid, related to the peculiar load distribution on the
surface of the body. The rightmost scheme in Fig. 2.29 shows such a case.
Consequently masonry channels the applied loads within its interior to its bound-
aries along well-defined compression bands determined by the loads’ geometry.

The loads determine the resistant masonry structure within the actual masonry
body: If the loads change, the resistant masonry structure will consequently
change.

Viollet–Le Duc (1858–68) clearly grasped this peculiar behavior of masonry
constructions. The behavior of linear elastic bodies, on the contrary, is completely
different because they spread out the action of point loads and, according to the
so-called St. Venant principle, extinguish the actions of self-equilibrated load
distributions.

2.4.7 Specifications to One-Dimensional Systems

The previous general definitions can be specified to the simple case of
one-dimensional structures, as, for instance, a masonry arch.

Let us consider, for instance, the arch illustrated in Fig. 2.30, whose pressure
line, wholly within the arch, skims the arch extrados at points A and C and its
intrados at B and D. Hinges are thus formed at A, B, C and D. A mechanism
displacement ensues. The corresponding vertical displacements of the arch are
shown in Fig. 2.30. The mechanism is kinematically compatible. In fact, the
counter clockwise rotation at hinge A of segment AB detaches section A from the
left springing of the arch; likewise, the rotation of CD at D, also counter clockwise,
detaches section D from the right springing. Relative rotations at B and C occur
with the formation of opening hinges at B and C.

Figure 2.31 shows a symmetric mechanism composed of the four rigid segments
AB, BC, CD and DE connected by the five hinges A, B, C, D and E. The relative
rotations occurring between contiguous rigid segments give rise to compatible
deformations.

A 
B 

C 

D 

Fig. 2.30 The
unsymmetrical four-hinge
mechanism of the arch
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Lastly, Fig. 2.32 shows two mechanisms, the left compatible, the right
incompatible.

2.4.8 Indeformable Masonry Structures

Due to their peculiar geometries and constraints, some masonry structures cannot be
deformed to give rise to mechanisms: interpenetration of the material arises for any
hinge position. Examples of structures of this type are the flying buttress or the
platbands inserted between fixed springers (Fig. 2.33, left and middle). For such
structural systems, in short, we have

M ¼ ;: ð2:50Þ

This condition is a consequence of the assumption of the compressionally rigid
material. Another example is the stair ramp shown at the right of Fig. 2.33.

A

B 

C 

D 
E 

A

Fig. 2.31 The symmetrical five-hinge mechanism in an arch

Compatible mechanism Incompatible mechanism

Fig. 2.32 Compatible mechanism Incompatible mechanism
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2.5 Equilibrium and Compatibility

2.5.1 Principle of Virtual Displacements

Let us consider a masonry body under the action of the loads p at an admissible
equilibrium state. Let du(P) 2 M be a mechanism field, representing a kinemati-
cally admissible virtual displacement of the body. Cracks will arise during the
development of the virtual mechanism du(P) and CðduÞ will be the region repre-
senting the cracks’ boundaries. Consequently,

XðduÞ ¼ X=CðduÞ ð2:51Þ

is the corresponding region occupied by the crack-free body. Following the
approach of Volpert and Hujiadev (1985), the new boundary of the body associated
to the virtual displacement du is then obtained by adding to the initial boundary @X
the crack boundaries, that is,

@XðduÞ ¼ @X[CðduÞ: ð2:52Þ

The virtual displacement du satisfies the above kinematic compatibility condi-
tions along the discontinuities’ surfaces CðduÞ and we thus have

Dðn�ÞduðPÞ ¼ duðPþ Þ � duðP�Þ[ 0 P 2 CðduÞ: ð2:53Þ

Moreover, in the inner crack-free region XðduÞ, the corresponding strains, in
conformity with (2.34), will satisfy the following inequality

deðPÞ� 0; de ¼ DduðPÞ; P 2 XðduÞ; ð2:54Þ

where D is the known operator that associates the strains de to the displacement
du in XðduÞ. Finally, according to conditions (2.29), on the boundary @Xr we have

duðPÞ � n� 0; P 2 @Xr: ð2:55Þ

Fig. 2.33 Examples of masonry structures that don’t admit mechanisms
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The virtual mechanism du will satisfy the kinematic compatibility conditions
(2.49), (2.50) and (2.51). Likewise, we can define the static compatibility conditions
for the admissible stresses in equilibrium with loads p. Thus, from (2.44) we have

rðPÞ � deðPÞ� 0; deðPÞ ¼ DduðPÞ; P 2 XðduÞ; du 2 M: ð2:56Þ

At the same time, considering the two points P� and Pþ located along the
direction of the outward normal to a virtual crack, where the jump Dðn�ÞuðP�Þ of du
(P) occurs, from (2.27) and (2.35) we have

tðn
þ ÞðPþ Þ � Dðn�ÞðP�Þdu� 0; du 2 M; P 2 f þ : ð2:57Þ

Lastly, the reaction r, acting along @Xr will satisfy the condition

rðPÞ � duðPÞ� 0; P 2 @Xr: ð2:58Þ

Inequalities (2.56), (2.57) and (2.58) are the coupled compatibility conditions
associated to the virtual mechanism du(P). These conditions, together with the
internal equilibrium equations, define the admissible equilibrium state of the
masonry solid, which, for the sake of simplicity, we will indicate as AE.

The equilibrium of the body is governed by the principle of the so called virtual
works or of the virtual displacements. This principle will take a particular form that
is representative of the compressionally rigid no-tension bodies that will be ana-
lyzed along the lines previously set forth by Como (1992, 2012). At any point
P within the region XðduÞ, the stress field r will satisfy inequality (2.56) together
with the following internal equilibrium equation

rij;j þ qi ¼ 0: ð2:59Þ

Now let dV be a generic volume element around P in XðduÞ. The virtual work
done to displace this element is

ðrij;j þ qiÞduidV : ð2:60Þ

According to the equilibrium Eq. (2.59), this work vanishes. Integration of
(2.60) over the volume XðduÞ thus yields

Z

XðduÞ

ðrij;j þ qiÞduidV ¼ 0: ð2:61Þ

From (2.61), the Gauss–Green theorem, together with some tensor calculations
and previous specifications, enables us to obtain
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Z

XðduÞ

rij;jdeijdV ¼
Z

@XðduÞ

tðnÞi duidS þ
Z

XðduÞ

qiduidV ; ð2:62Þ

where n is the unit vector along the outward normal to the crack surface.
Figure 2.34a shows a masonry arch in an admissible equilibrium state under the

action of loads p and internal stress r. Figure 2.34b also shows the displacement
field du with hinges A, B, C and D, together with the corresponding internal cracks
BB′ and CC′. Figure 2.34a, b also show:

• the cracks’ boundaries CðduÞ;
• the region XðduÞ ¼ X=CðduÞ lacking cracks;
• the overall boundary of the body, including the crack boundaries

@XðduÞ ¼ @X[CðduÞ.
The entire boundary can also be specified by the union of the boundaries

CðduÞ,@Xr and @Xp

@XðduÞ ¼ CðduÞ [ @Xr [ @Xp: ð2:63Þ

The internal work (2.62) can now be written in a more explicit form. In fact,
according to (2.63), we have

Z

XðduÞ

rij;jdeijdV ¼
Z

CðduÞ

tðnÞi duidS þ
Z

@Xr

rðnÞi duidS þ
Z

@Xp

pðnÞi duidS þ
Z

XðduÞ

qiduidV :

ð2:64Þ

To work out the first integral in the second member of (2.60), by moving around

the whole contour of the body, the virtual work of the interactions tðnÞi can be
evaluated along each of the two edges of the cracks (Fig. 2.32b). For the sake of
simplicity, we can refer to a single crack alone and write

Fig. 2.34 The boundary of the crack-free arch and the new boundary including the cracks
associated to virtual mechanism du
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CðduÞ ¼ C1ðduÞ [C2ðduÞ; ð2:65Þ

where C1ðduÞ and C2ðduÞ are the two equal surfaces representing the two edges of
the crack. Evaluating the first integral in the second member of (2.64) thus gives

Z

CðduÞ

tðnÞi duidS ¼
Z

C1ðduÞ

tðn
�Þ

i duiðP�ÞdS þ
Z

C2ðduÞ

tðn
þ Þ

i duiðPþ ÞdS: ð2:66Þ

On the other hand, using expression (2.28) for the crack opening Dðn�ÞuðPÞ, we
have

duiðP�Þ ¼ duiðPþ Þ � Dðn�ÞduiðPÞ; ð2:280Þ

Substituting (2.28′) into (2.66) gives

Z

CðduÞ

tðnÞi duidS ¼
Z

C1ðduÞ

tðn
�Þ

i duiðPþ ÞdS

�
Z

C1ðduÞ

tðn
�Þ

i Dðn�ÞduiðPÞdSþ
Z

C2ðduÞ

tðn
þ Þ

i duiðPþ ÞdS: ð2:660Þ

Furthermore, by taking into account that

tðn
�Þ

i ¼ � tðn
þ Þ

i ð2:67Þ

we get

Z

CðduÞ

tðnÞi duidS ¼ �
Z

C1ðduÞ

tðn
þ Þ

i duiðPþ ÞdS

�
Z

C2ðduÞ

tðn
�Þ

i Dðn�ÞduiðPÞdSþ
Z

C2ðduÞ

tðn
þ Þ

i duiðPþ ÞdS: ð2:6600Þ

On the other hand,

Z

C1ðduÞ

tðn
þ Þ

i duiðPþ ÞdS ¼
Z

C2ðduÞ

tðn
þ Þ

i duiðPþ ÞdS: ð2:68Þ

In fact, the integral is evaluated on the same surface because C1ðduÞ and C2ðduÞ
are equal, hence
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Z

CðduÞ

tðnÞi duidS ¼ �
Z

C2ðduÞ

tðn
�Þ

i Dðn�Þdui ð2:69Þ

or

Z

CðduÞ

tðnÞi duidS ¼
Z

C1ðduÞ

tðn
þ Þ

i Dðn�ÞduidS ð2:690Þ

Finally, summing up the work along all the crack surfaces, we get

Z

XðduÞ

rij;jdeijdV ¼
X
k

Z

C1
k ðduÞ

tðn
þ Þ

i Dðn�ÞduidSþ
Z

@Xr

rðnÞi duidSþ
Z

@Xp

pðnÞi duidSþ
Z

XðduÞ

qiduidV :

ð2:70Þ

With the following definitions

ftðnþ Þ;Dðn�Þdug ¼
X
k

Z

C1
k ðduÞ

tðn
þ Þ

i Dðn�ÞduidS; r; duh i ¼
Z

@Xr

rðnÞi duidS; ð2:71Þ

p; duh i ¼
Z

@Xp

pðnÞi duidSþ
Z

XðduÞ

qiduidV ; r; deh i ¼
Z

XðduÞ

rij;jdeijdV ð2:710Þ

condition (2.70) turns into

r; eðduÞh i ¼ ftðnþ Þ;Dðn�Þdugþ r; duh iþ p; duh i 8du 2 M ð2:72Þ

that, with the position

½r	; de	�¼ r; eðduÞh i � ftðnþ Þ;Dðn�Þdug � r; duh i ð2:73Þ

more simply becomes

½r	; de	� ¼ p; duh i 8du 2 M ð2:74Þ

Moreover, recalling position (2.73), inequalities (2.56), (2.57) and (2.58) can be
reduced to

½r	; de	� � 0 8du 2 M ð2:75Þ

Vice versa, working back step by step from Eq. (2.74), we arrive at Eq. (2.59),
of course, in obedience of all compatibility conditions.
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Thus, conditions (2.74) and (2.75) are necessary and sufficient for the admissible
equilibrium and provide a suitable representation for the principle of virtual work
for rigid no-tension masonry bodies (Como 1992). Comparing the current formu-
lation of the same principle for linear elastic solids with this one concerning
no-tension bodies, the difference is that here the work of the tension vectors of the
virtual detachments Ddu must be added, as must also the associated compatibility
conditions (2.75). Figure 2.35 shows the two systems, of forces and deformations,
respectively statically and kinematically compatible, connected together by con-
dition (2.75), representing the principle of virtual displacements. Condition (2.74) is
in agreement with the formulation of the principle in presence of discontinuity
surfaces, given by Malvern (1969). A generalization of condition (2.74) to the
elastic no tension bodies is given in Como (2017).

2.5.2 Existence of Admissible Equilibrium States

A correctly constrained linear elastic structure is always able to reach a consistent,
equilibrated configuration. In brief, the problem of the linear elastic equilibrium
admits a solution for any loads distribution. However, for no-tension masonry
structures this no longer holds true. Masonry structures can, on the contrary, col-
lapse under loading p. It is therefore useful to seek conditions, involving only
known quantities, that enable predicting whether any given body made of a rigid
no-tension material can withstand the action of the assigned loads. Although
conditions (2.74) and (2.75) are necessary and sufficient to guarantee the existence
of admissible equilibrium, they must be satisfied by both loads and internal stresses.
However, these latter may be a priori unknown.

In this section we shall prove that the variational inequality on loads p alone

p; duh i � 0; 8du 2 M ð2:76Þ

is necessary and sufficient to guarantee the existence of the AE state.
It should be noted that the mechanisms du represent the various deformation

modes of the body. Inequality (2.76) thus simply means that the body is in an AE

ΔΔΔΔ(n)δu δu

δεεεε
σσσσ 

p 
ρρρρ

t(n) 

Fig. 2.35 The two systems, forces and deformations, respectively statically and kinematically
compatible, connected by the virtual work equation
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state under loads p iff the work of these loads p is not positive along any possible
deformation of the body.

Necessity follows immediately from (2.74) and (2.75). In the context of elastic
no-tension models, algebraic proofs of the sufficiency of condition (2.76) have been
furnished by Romano and Romano (1985) and Romano and Sacco (1986). Another
simple proof, in the framework of the rigid no-tension model, has been given by
Como (1992). The main lines of this latter proof are the following.

If the variational inequality (2.76) was only necessary, but insufficient, it could
be also satisfied by loads p unsustainable by the body in the AE state. Such a
situation is however impossible. It will in fact be shown that any load p that is
unsustainable by the body in an AE state and that consequently sets the body in
motion (Fig. 2.36), does positive work on displacement v along which the body
begins to move. This contradiction with the assumption proves the statement.

Let us therefore assume, ad absurdum, that, in spite of condition (2.76), the body
is not in an AE state under loads p, and consider the motion defined by the velocity
field v(P, t) initiated just after application of the loads. A simple example is rep-
resented by the collapse of an arch loaded by its weight and a central point load, as
in Fig. 2.34.

The body will begin to move. By applying the virtual work equation in which we
take, as virtual displacement du, the actual displacement occurring during move-
ment of the body over time interval dt, we have

du ¼ vðP; tÞdt: ð2:77Þ

Thus, taking into account the inertial forces produced in the body due to
acceleration _v, we have

½r	; eðvÞ� ¼ p; vh i � q _v; vh i ð2:78Þ

where, according to position (2.73)

½r	; eðvÞ�¼ r; eðvÞh i � ftðnþ Þ;Dðn�Þvg � r; vh i ð2:79Þ

Fig. 2.36 The masonry arch
at incipient failure
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During the motion we have on the other hand, with the previous notation,

½r	; eðvÞ�¼ 0: ð2:80Þ

because, at any instant during the motion, the stress field r will satisfy the internal
constraints, i.e., the normality rule (2.36): at the same time, according to (2.40),
when cracks begin to open, the stress interaction tðn

þ Þ vanishes since Dðn�Þv 6¼ 0
along them. Likewise, with the (2.43), if, during the motion, the body displaces
away from the constraint boundary @Xr, there v 6¼ 0 and consequently r = 0, also
the last term included into (2.79), vanishes. Thus, condition (2.78) becomes

p; vh i � q _v; vh i ¼ 0; t[ 0: ð2:81Þ

The kinetic energy of the body is

T ¼ 1=2 qv; vh i ð2:82Þ

and its rate of change is

dT
dt

¼ q _v; vh i: ð2:83Þ

Equation (2.81) thus becomes

p; vh i ¼ dT
dt

; t[ 0: ð2:84Þ

However, when the body begins to move the derivative dT/dt of the kinetic
energy can only be positive. Thus, if loads p are applied and cannot be sustained,
the body begins to move and the work done by loads p along the displacement of
this motion is positive. Such a result contradicts assumption (2.76), whence we can
conclude that if p; duh i � 0; 8du 2 M, the body is in an AE state.

Figure 2.37 shows two examples of structures that for the assigned load distri-
bution satisfy the condition (2.76).

2.5.3 No-Existence of Self-equilibrated Stresses
in Deformable Structures

Within the framework of no-tension models, another typical aspect of the behavior
of masonry bodies that can be deformed with mechanisms, is their inability to
sustain self-equilibrated stresses. Likewise, the reactions of constraints vanish in the
absence of external loads.

The proof of this property, given by Como (2016b) for the elastic no tension
structures, follows immediately from application of the principle of virtual work
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(2.74), together with compatibility conditions (2.75). In fact, with vanishing loads,
the following conditions hold

½r	; eðduÞ� ¼ 0 8du 2 M; ð2:85Þ

½r	; ðduÞ� � 0 8du 2 M ð2:850Þ

Both conditions (2.85) and (2.85′) have to be satisfied 8du 2 M, only if

r; deh i¼0 ftðnþ Þ;Dðn�Þdug ¼ 0 r; duh i¼0: ð2:86Þ

taking into account of (2.73). We can now assume that any straight segment
S leaving from any point of the constrained boundary @Xr intersects the opposite
side of the body only at points of its free boundary, as certainly it turns out for all
the structures rising from the ground (Fig. 2.38). Extensions can thus develop along
the segments S.

For any point P along S it will be thus possible to choose a mechanism du such
that in a neighborhood I(P) of P the strains e(du) along S will be positive.
Consequently, by virtue of (2.86), r 
 0 in I(P). We can repeat the argument for
any other point on S so that r 
 0 along all the segment S. All the points in the
body can be intercepted by segments S and r 
 0 in the whole body. The same
results is obtained considering the occurrence of detachments.

In conclusion, taking into account that conditions (2.86) must be satisfied for
each mechanism du, we get

Fig. 2.37 Examples of structures and load distribution satisfying the condition
p; duh i � 0 for any mechanism

P 
r r 

Fig. 2.38 Deformable
systems: no existence of
self-equilibrated stresses and
constraint reactions
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r 
 0; tðnÞ 
 0; r 
 0: ð2:87Þ

in the unloaded masonry structure. Thus, self-stresses and reactions vanish in all
unloaded common masonry structures, i.e. t in all the unloaded structures that rise
from the ground.

We know that if an admissible solution exists for a elastic no tension body under
the action of an assigned distribution of loads, this solution is unique. The proof of
this statement follows the same argument used in the case of elastic-perfectly plastic
solids (Koiter 1950; Como 2016a). On the contrary, there is no uniqueness for the
rigid in compression no tension body. We know, for instance, that if an arch,
composed by rigid voussoirs, is able to sustain a given distribution of loads, infinite
pressure lines, funicular of the loads, can be traced within the arch.

This lacking of uniqueness for the rigid no tension bodies does not hold, on the
other hand, in the case of the free body. In this case, starting from the elastic no
tension solution, we can gradually increase the elastic moduli of the material and
obtain a sequence of unique elastic solutions converging to that of the rigid no
tension solid. The condition of free body, i.e. the absence of constraints, permits in
fact the occurrence of gradual changes of the geometry of the body boundary and
saves the uniqueness of the solution.

Masonry structures can thus be considered externally statically determinate
systems in the sense that internal stresses are known iff all the loads acting on the
structure are known.

In a masonry wall loaded at its head section by an inclined force R whose axis
remains always contained within the wall, we can determine the internal stresses in
terms of the resultant N, M and T (Fig. 2.39).

The case of the masonry arch loaded by own weight g, satisfying inequality
(2.76), is different. We can obtain the pressure line as funicular of the applied loads
g only if the reactions R′ of the base sections of the arch are known (Fig. 2.39). On
the contrary, the sole knowledge the external loss g does not allow to evaluate the
reactions of the end sections with the corresponding pressure line. In this case we
can say that the masonry arch, with the assumed rigid in compression no tension
masonry model, is statically indetermined.

R

R R’ 

co

Fig. 2.39 The statically
determined masonry wall and
the statically indetermined
masonry arch
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2.5.4 Indeformable Structures: Statically Indeterminate
Behaviour

For indeformable masonry systems the set M of the kinematically admissible
mechanisms is empty. Self-equilibrated stresses do exist in indeformable masonry
systems. In such cases, conditions (2.80) are in fact satisfied by

de 
 0 Dðn�Þdu 
 0 du 
 0; ð2:88Þ

which, by virtue of (2.86), yields

r 6¼ 0 tðnÞ 6¼ 0 r 6¼ 0: ð2:89Þ

Figure 2.38 shows some examples of self-stresses acting in indeformable
masonry systems. Note that such a state requires the presence of fixed constraints.

The existence of constraint reactions in absence of external loads allows to better
define the indeformable structures. For these systems it is in fact possible, starting
from a point of the laterally constrained sections, to trace at least one straight line
wholly contained within the structure (Fig. 2.40). The flying buttress, sketched in
left of the previous Fig. 2.38, is one example of such an indeformable system.

2.5.5 Admissible Equilibrium in One-Dimensional Systems

All the foregoing conditions governing the admissible equilibrium of masonry
bodies take simpler forms when referred to a one-dimensional structure.

Let us consider the masonry arch shown in Fig. 2.41. It is in an AE state under
the action of loads p. Figure 2.41 shows the pressure line in the arch as the curve
joining all points traversed at each section by the resultant of all the forces pre-
ceding or following the section. The internal stresses, r are all compressive in each
section of the arch. In one-dimensional systems potential stretching strains of the
voussoirs lead to displacements negligible with respect to those produced by the
relative rotations at the hinges. In defining the corresponding mechanisms, it is thus
possible to consider only detachments Dðn�Þu arising in the voussoirs, where hinges

Fig. 2.40 Indeformable systems: existence of self-equilibrated stresses and reactions
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develop, and consequently neglect any strains, e, that may spread into the voussoirs,
occupying the region, XðuÞ, defined above.

We can also assume that the external constraints are fixed. Hence, neither the
work of reactions, r, nor the work of stresses, r on the strains, e, will appear in the
virtual work equation. With these restrictions, this equation takes the simpler form

ftðnþ Þ;Dðn�Þdugþ p; duh i ¼ 0 8du 2 M; ð2:7200Þ

associated to the admissibility condition

ftðnþ Þ;Dðn�Þdug� 0: ð2:7500Þ

Recalling previous definitions, note that the symbol in parentheses is the sum of
the product of the stress vectors by the corresponding virtual detachments.

The forces acting on the side sections of a small voussoir of the arch are equal
and opposite to the resultant of the stress vectors, tðn

þ Þ and tðn
�Þ, acting on the

sections of the arch facing the side sections of the voussoir.
They can be expressed in terms of the components N, M and T of the resultant

vector, R (Fig. 2.42). Consequently, if, according to (2.75″), the work of tðn
þ ÞðPþ Þ

on the detachment Dðn�Þdu is non-negative, the work of the equal and opposite
actions on the detachments themselves will be non-positive (Fig. 2.43).

σσσσ 

Fig. 2.41 The arch in a
statically admissible
equilibrium state: the pressure
line is wholly contained
within the arch

Fig. 2.42 Internal actions
and reactions inside the
masonry arch

ΣΣΣΣ
( )+nt

δδδδΕΕΕΕ
( )δ−Δ n u

Fig. 2.43 The opposite in
sign works of stresses r and
of the stress vectors t(n+)
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The resultant of forces tðn
þ Þ or tðn

�Þ acting on the transverse sections delimiting
the crack, where a hinge is formed, can be decomposed into the components of the
axial force, N, the bending moment, M, and the shear, T, of the resultant vector R,
as defined by (2.6). At the same time, the detachments, Dðn�Þdu, can, in turn, be
expressed in terms of the virtual deformation vector, d E, whose components are the
axial displacement, dD, and the relative rotation, d /Z, defined according to (2.11).
In brief, for the sake of simplicity, we can write

ftðnþ Þ;Dðn�Þdug ¼ � R; dEh i; ð2:90Þ

and the equation of virtual work (2.72) becomes

p; duh i ¼ R; dEh i 8du 2 M; ð2:7200Þ

and the admissibility condition on the stresses, that finds (2.14), is

R; dEh i � 0: ð2:140Þ

The virtual work Eq. (2.72″) thus takes the typical form expressing the equality
between internal and external virtual work (Fig. 2.44).

2.5.6 Admissible Equilibrium of Elastic no Tension
One-Dimensional Systems

Condition (2.72″), with its associated compatibility conditions, can be generalized
to the case of structures with elastic ashlars free to detach each other (Fig. 2.45).

The virtual strain field can be decomposed into the compressive elastic and the
extensive anelastic shares

δδδδΕΕΕΕ

δδδδu
A

B D 

E 

C
p

p 

ΣΣΣΣ

Fig. 2.44 a System of external and internal forces. b System of virtual displacements and strains
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EðduÞ ¼ EeðduÞþEf ðduÞ 8du 2 M ð2:91Þ

where,

EeðduÞ � 0; Ef ðduÞ � 0 8du 2 M ð2:92Þ

to express that elastic strains will be contractions and fracture strains expansions.
Condition (2.72″) thus becomes

p; duh i ¼ R;Ef ðduÞ
� �þ R;EeðduÞh i 8du 2 M ð2:93Þ

with

R;EeðduÞh i � 0 R;Ef ðduÞ
� � � 0 8du 2 M ð2:94Þ

At least one of the two strain vectors Ee(du) and Ef (du) has to be zero at the
same section. Thus

Ef ðduðPÞÞ � EeðduðPÞÞ ¼ 0 8du 2 M ð2:95Þ

Wet also to point out that self stresses cannot develop in the elastic no tension
systems, as for the rigid no tension ones.

2.5.7 Weight and Live Loads

Loads acting on a structure can be subdivided into two broad categories having
different characteristics. On the one hand, there are the so-called dead loads or
weight loads g, which are permanent and generally quite large, and on the other,
live loads, p, which can be considered to be determined by the loading parameter k.
Thus, we can write

p ¼ gþ kq: ð2:96Þ

admissible ΣΣΣΣ     admissible ΕΕΕΕe admissible ΕΕΕΕf

(a) (b) (c)

Fig. 2.45 a admissible R, b admissible Ee, c admissible Ef
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As a rule, the weight, g, represents the resistant load for a masonry structure.
Consequently, recalling condition (2.76), the structure will certainly be safe under
the action of its own weight g, and the following condition will be satisfied

g; vh i\ 0; 8v 2 M; ð2:960Þ

or

g; vh i\ � k, k [ 0, 8v 2 M: ð2:9600Þ

The weight will always oppose any deformation of the masonry structure. For
instance, with reference to Fig. 2.41, conditions (2.96′) or (2.96″) imply that the
pressure line, corresponding to the weight g, will always be contained within the
arch. In particular, condition (2.96″) dictates that the pressure curve can never touch
the arch extrados or intrados, at any section, as shown in Fig. 2.46.

In the case of the arch illustrated in Fig. 2.46, the weight g, evaluated per unit
length on the horizontal projection, is symmetrical and increases from the key to the
springers. All kinematically admissible mechanisms develop vertical displacements
in which lifting is dominant. It is thereby clear why arch equilibrium is as a rule
strictly admissible under their own weight alone, unless, of course, the arch is too
slender. Live loads, q, can exert a pushing action along mechanisms. Thus, for any
assigned distribution of live loads q, it is admissible that at least one mechanism
exist along which load q will do positive work.

The contribution to resistance of the weight g comes out by virtue of the
structure’s geometry. Masonry structures must be designed so that the mechanisms
produce vertical displacements in which lifting is always dominant, thereby satis-
fying condition (2.96″) for any mechanism. The geometry alone can ensure that the
structure’s weight counters the emergence of any mechanisms.

2.6 Mechanism State

Figure 2.46 shows the sketch of a masonry arch in equilibrium under loads p and
having its pressure line wholly contained within its thickness. In this state internal
stresses oppose any deformation of the arch.

σσσσ 

g 
Fig. 2.46 Pressure line
strictly contained within the
arch
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It is however possible that a structure, in admissible equilibrium under loads p,
be freely deformed by a given mechanism displacement um, defined by an arbitrary
constant. At such a state the internal stresses and the constraint reactions do not
counter the emergence of the mechanism, and the structure is said to be at a
mechanism state defined by the displacement um. This mechanism, which implies
the occurrence of a small movement of the structure while the admissible equi-
librium is maintained, has arbitrary magnitude. More precisely, the mechanism
state, defined by the displacement field um, is considered to be effectively activated
in any body, at admissible equilibrium under the loads p, when the following
conditions are simultaneously satisfied (Como 1992):

• equilibrium between loads p and internal stresses r

½r	; de	� ¼ p; duh i 8du 2 M; ð2:97Þ

• admissibility of the internal stress state

½r	; de� � 0; ð2:98Þ

• lack of opposition by the internal stresses to activation of the mechanism dis-
placement um

½r	; e	ðumÞ� ¼ 0 ð2:99Þ

Conditions (2.97), (2.98) and (2.99) are not altered if the mechanism displace-
ment um is affected by a constant factor: the displacement um, which is small with
respect to the structure’s dimensions, thus has indefinite amplitude. One conse-
quence of conditions (2.99) is that the external loads p also offer no opposition to
the development of the mechanism displacement um. In fact, setting du ¼ um,
conditions (2.99) and (2.97) yield

p; umh i¼ 0 ð2:100Þ

A mechanism state occurs in masonry structures under various peculiar equi-
librium conditions, for example, just at the limit equilibrium attained upon collapse,
or due to settling, as shown schematically in the two sketches in Figs. 2.45 and
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2.46. Figure 2.47 shows the state of a masonry pier loaded by a central vertical
force N and a horizontal one,

S ¼ NB=2H: ð2:101Þ

The value of S has been chosen so that the resultant of N and S passes precisely
through the toe O. The internal forces are due to the action of the axial force N and
the shear S. The mechanism vm is represented by the counterclockwise rotation of
the pier around the hinge at O. No detachment strain occurs at any section of the
panel except at its base.. The mechanism condition (2.99) is thus satisfied. The pier
is at a mechanism state under loads N and S and can rotate in the counterclockwise
direction around hinge O.

The case shown in Fig. 2.48 shows another example of a mechanism state
differing from the previous condition of limit equilibrium. A slight increase in the
span of an arch has been caused by settling of its foundation.

The arch, now free at its springings, is loaded by the forces g and the thrust l
r. The pressure line of the arch, without ever leaving the interior of the arch
thickness, passes through the hinges indicated in the figure. The arch is thus in a
mechanism state. The extension of the span of the arch can increase arbitrarily
under the action of the constant loads q and the constant thrust l r.

θ

S
N

H

B

O

Fig. 2.47 Pier failure under
force S

Fig. 2.48 The settled arch
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2.7 Collapse State

2.7.1 Definitions

Let us now consider a masonry structure under a loading path p(k), with k the
loading parameter. According to (2.96), we assume that the loads p(k) are made up
of the resistant component g, i.e. the dead loads, and the pushing forces kq. We
moreover assume that by increasing k, the structure, initially at a safe AE state, will
pass through a sequence of safe admissible equilibrium states, in the sense that
condition (2.76) will always be satisfied in the strict form:

gþ kq; duh i\ 0; k[ 0; 8du 2 M: ð2:102Þ

Lastly, we assume that at some point during the loading process, when k attains
a critical value kc, the structure will reach a mechanism state defined by the
mechanism uc. It is moreover admissible for the live loads, q, to push along uc, or in
other terms that

q; uch i[ 0: ð2:103Þ

Consequently, at k ¼ kc, condition (2.102) continues to be satisfied along all
mechanisms other than uc, so that

gþ kcq; duh i \0; kc [ 0; 8du 6¼ uc 2 M; ð2:104Þ

while, on the contrary, the work done by the forces p ¼ gþ kcq vanishes along the
mechanism uc, which is to say

gþ kcq; uch i ¼ 0; kc [ 0; uc 2 M: ð2:105Þ

Thus, as soon as the loading parameter k is further increased beyond kc, by
accounting for (2.95), we have

ð d
dk

pðkÞ;uch iÞkc ¼ q; uch i[ 0 ð2:106Þ

Accordingly, condition (2.76), necessary and sufficient for the existence of an
admissible equilibrium state, is violated and the structure collapses. At this collapse
state an exchange occurs from conditions of existence to those of non-existence of
an admissible equilibrium state. Condition (2.103) shows the presence of a pushing
action by live loads, q along displacement uc, the failure mechanism.

The development of this displacement can be represented by a sequence kuc of
mechanisms of increasing amplitude. Collapse thus occurs under constant loads,
because by gradually increasing the constant k > 0, we consistently have
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g; kuch iþ kc q; kuch i ¼ 0; kuc 2 M; k[ 0 ð2:1050Þ

for any amplitude of mechanism kuc. Constant loads also imply constant stresses.
The failure mechanism thus develops under frozen loads and stresses. There is no
energy dissipation at collapse. Nevertheless, the masonry structure is able to
maintain its limit strength during the development of the failure mechanism, as
occurs for a steel bar upon yielding.

Despite the lack of dissipation, the behavior at collapse of masonry structures is
similar to that of ductile steel structures, as predicted by Limit Analysis.

The possibility of reaching collapse during a loading process represents the most
relevant aspect of the behavior of masonry structures: for such structures, weight
and geometry are the only strength resources countering failure.

Summing up all the foregoing general assumptions, it can be stated that a
collapse state under loads g + kcq, is attained when the following four conditions
are satisfied simultaneously:

(1) equilibrium under loads g + kcq and stresses rc.
Consequently, with reference to (2.74), the virtual work equation holds

½r	c ; de	� ¼ g; duh iþ kc q; duh i 8du 2 M; ð2:107Þ

where, according to position (2.73)

½r	c ; de	� ¼ rc; eðduÞh i � ftðnþ Þ
c ;Dðn�Þdug � rc; duh i ð2:108Þ

(2) compatibility of internal stresses r*c

½r	c ; de� � 0; 8du 2 M ð2:109Þ

(3) existence of a mechanism state uc under loadings g + kcq:

½r	c ; eðucÞ� ¼ 0 ð2:110Þ

(4) positive work performed by live loads q along mechanism uc:

q; uch i [ 0: ð2:111Þ

In the following, we will prove the static and the kinematic theorems of Limit
Analysis in their specific form for masonry structures. The earliest proofs of the
validity of Limit Analysis to masonry structures dates back to Kooharian (1952),
Prager (1959) and Heyman (1966).
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The proofs described in the next sections follow the lines of reasoning formu-
lated by Como (1992, 1996b). A number of different checks of the theorems have
been provided within the no-tension framework by others, such as for example,
Como and Grimaldi (1985), Briccoli et al. (1988), Sinopoli et al. (1998).

2.7.2 The Static Theorem

Let us consider a masonry structure loaded by fixed dead loads g and the additional
live load k�q, with k� the multiplier of loads q. A given known stress distribution
r	� is in an admissible equilibrium with the assigned loads. The statement of the
theorem is thus the following:

The loads g + k�q are not greater that the collapse loads if admissible equi-
librium exists between the loads gþ k�q and the internal stresses r	�. The load
multiplier k� is defined as a statically admissible multiplier of loads q.

The assumptions underlying the theorem are:

• equilibrium between g + k�q and r	
�ðPÞ:

½r	�; de� ¼ g; duh iþ k� q; duh i 8du 2 M ð2:112Þ

• static compatibility of stresses r	�:

½r	�; eðduÞ� � 0; 8du 2 M: ð2:113Þ

Together, assumptions (2.103) and (2.104) yield:

k� � kc: ð2:114Þ

The proof of the theorem starts by considering that at collapse, under loads

gþ kcq;

the following equilibrium condition will be satisfied

½r	c ; eðucÞ� ¼ g; uch iþ kc q; uch i ð2:115Þ

Such condition is obtained by applying the virtual work equation to the collapse
state with du ¼ uc. At collapse, however, the mechanism condition (2.110) also
holds, because the internal stresses r	c do not oppose the development of the
mechanism uc. Consequently, from (2.115) we get
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0 ¼ g; uch iþ kc q; uch i: ð2:1150Þ

Furthermore, taking into account the assumed existence of admissible equilib-
rium between the loads gþ k�q and the internal stresses r*-, from (2.112) with
du ¼ uc, we obtain

½r	�; eðucÞ� ¼ g; uch iþ k� q; uch i ð2:116Þ

By subtracting the previous equality (2.115′) from this, we get

½r	�; eðucÞ� ¼ ðk� � kcÞ q; uch i: ð2:117Þ

On the other hand, the static compatibility of stresses r�ðPÞ, expressed by
inequality (2.113) with du ¼ uc, gives

½r	�ðPÞ; eðucÞ� � 0 ð2:118Þ

whence, from (2.117)

ðk� � kcÞ q; uch i � 0: ð2:119Þ

At collapse, according to (2.111), the work of the live loads q along the failure
mechanism uc is positive; thus, from (2.119) we have ðk� � kcÞ� 0, or

k� � kc: ð2:120Þ

The static multiplier k− is thus not greater than the collapse multiplier kc. (Como
1992). We notice that the collapse multiplier kc is also a static multiplier because
the loads g + kcq are in equilibrium with the statically admissible stresses r*c.

The static theorem is one of most important theorems in Structural Engineering.
Frequently, when checking the behavior of complex structures under the action of
given load distributions, we make conjectures about different internal resistant
systems, many of which are unable to sustain the loads (with the exception of at
least one).

The static theorem, perhaps surprisingly, tells us that the structure will not fail;
that it is certainly able to produce at least one resistant system able to support the
loads (though not necessarily the one identified).

The search for states of admissible equilibrium by applying the static theorem
begins with construction of a preliminary equilibrium configuration of the structure,
for instance, by using funicular polygons, and then verifying its static admissibility.
For example, in the case of an arch under given loads, a funicular curve of the load
distribution is first drawn and then checked to see whether it is wholly contained
within the arch. If it is, the loads are not greater than the collapse ones and the
structure is in equilibrium.
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2.7.3 The Kinematic Theorem

Assume that a structure is in a non-statically admissible mechanism state under
the loads gþ kþ q and the stresses r*+ along the given mechanism u+, in the sense
that the stresses r*+, even if violate the condition (2.75), don't oppose the occur-
rence of the mechanism u+. Thus

0 ¼ g; uþh i þ kþ q; uþh i ð2:121Þ

and the kinematic multiplier kþ , satisfying (2.121), is thus defined as

kþ ¼ � g; uþh i
q; uþh i : ð2:122Þ

The multiplier kþ is defined as a kinematically admissible multiplier of loads q.
Condition (2.121) implies equilibrium along the mechanism uþ between the

pushing load kþ q and the resistant weights g. We also assume that the loads q push
along uþ , hence

q; uþh i[ 0: ð2:123Þ

Under such conditions, the theorem states that the kinematic multiplier kþ

cannot be lower than the collapse multiplier kc, that is,

kþ � kc: ð2:124Þ

Once again the proof depends on conditions defining the collapse state, partic-
ularly the condition of limit equilibrium. Thus, from condition (2.107) with
du ¼ uþ , we obtain

½r	c ; eðuþ Þ� ¼ g; uþh iþ kc q; uþh i ð990Þ

which by subtracting equality (2.112) yields

½r	cðPÞ; eðuþ Þ� ¼ ðkc � kþ Þ q; uþh i: ð2:1070Þ

On the other hand, simply because an admissible equilibrium still exists at
collapse, from (2.109), with du ¼ uþ , we have

½r	cðPÞ; eðuþ Þ� � 0; ð2:1090Þ

and from (2.107′) we obtain

ðkc � kþ Þ q; uþh i � 0: ð2:10700Þ
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Hence (Como 1992), taking into account our initial assumptions (2.123)

kþ � kc: ð2:125Þ

Multiplier kþ , i.e., the kinematically admissible multiplier of loads q, represents
the upper bound of the collapse multiplier kc. We notice that the collapse multiplier
kc is also a kinematic multiplier because the structure is at a mechanism state uc
under loadings g + kcq and the loads q make positive work along uc.

2.7.4 Uniqueness of the Collapse Multiplier

According to the previous definitions, the collapse multiplier kc is both a statically
admissible as a kinematically admissible multiplier of the loads q.

Let us assume, ad absurdum, that two different values kc1 and kc2 of the collapse
load multiplier exist. Let us now assume, for instance, that

kc1 � kc2: ð2:126Þ

However, the failure multiplier kc2 is also a statically admissible multiplier, since
it satisfies the equilibrium conditions with the corresponding internal compatible
stresses rc1. Thus, if kc1 is a collapse multiplier, from (2.120) we also have

kc2 � kc1: ð2:127Þ

Comparison of (2.126) with (2.127) yields

kc1 � kc2: ð2:128Þ

The result should be the same if, on the contrary, it were assumed that kc2 � kc1.
The collapse multiplier is thus unique, though, in general, the failure mechanism is
not.

The two theorems, static and kinematic, set a bounding interval for the collapse
multiplier, because

k� � kc � kþ : ð2:129Þ

We notice that the collapse load does not depend on the material properties, but
only on the geometry of the structure and the magnitude of the dead loads.
Subsequent chapters will provide in-depth examples of the numerous applications
of the theorems presented here.
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2.7.5 Indeformable Systems. Lack of Collapse

Under the action of external loads an indeformable system endeavours to become
deformed, resulting in dilatation and cracking. On the other hand the interpene-
tration strength of the material, together with the presence of fixed constraints,
prevents any deformation. Thus, only compressions can take place within the body.
The indeformable structure will be thus always able to sustain the applied loads.
Collapse mechanisms cannot therefore exist and such systems never fail, unless the
material undergoes crushing or the constraints are displaced through settling.

The same conclusion can be reached from another perspective. As noted pre-
viously, self-equilibrated stresses do exist in these systems. An arbitrary
self-equilibrated stress distribution can be added to any stress field in equilibrium
with the loads in such a way that the overall stress state turns out to be solely
compressive. Referring to any of the three illustrations in Fig. 2.49, once a funicular
polygon of the applied loads is traced, for instance, passing through the intrados at
the springers and the extrados at the key section, we can apply two equal and
opposite forces able to modify the polygon so that it remains entirely contained
within the structure. These self-equilibrated stresses are produced by the same
external loads that tend to deform the structure and force the external constraints.
Such structures are able to sustain any load.

The real problem, on the other hand, is evaluating the most probable thrust
transmitted by the structure at its supports. The indeterminacy of the static solutions
can be overcome by seeking solutions within the framework of the principles of
minimum thrust. As shown in the next Sections, a thrust that deforms the supports
activates minimum thrust states.

It should lastly be noted that for such systems the usual assumption of infinitely
strong masonry can be opportunely removed in order to obtain more realistic
evaluations of a structure’s maximum capacity, as we will show in the next chapter.

2.7.6 Collapse State for the Elastic no Tension Systems

The definition of collapse state given at Sect. 2.7.1 for the rigid in compression no
tension bodies holds also for the elastic no tension systems (Como 2016a). With

Fig. 2.49 Lack of collapse for indeformable systems
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this last expression we include masonry structural systems constrained by
elasto-plastic reinforcements, as for instance, steel ties. The corresponding response
of the structure to mechanisms is elasto-perfectly plastic. Also in this case, on the
other hand, the structure deforms at the failure under constant loads g + kcq along
the mechanism uc and, consequently, under constant stresses. Thus no elastic strain
increments Dr in the reinforcements take place at the collapse. To prove this
statement, let us admit, by contradiction, that the failure displacement is composed
both by cracking and elastic strain increments Def (uc) and Dee (uc).

Thus, if the stress increment Dr takes place, the equilibrium condition under
constant loads and along the failure displacement increment Duc gives

Dr; eðDucÞh iþ fDr; eeðDucÞg ¼ fDtðnþ Þ;Dðn�ÞDucgþ Dr;Duch i ð2:130Þ

distinguishing the work Dr; eðDucÞh i of stresses in the structure from the elastic
work fDr; eeðDucÞg in the reinforcements.

During the development of the mechanism uc

Dr; eðDucÞh i ¼ 0 fDtðnþ Þ;Dðn�ÞDucg ¼ 0 Dr;Duch i ¼ 0 ð2:131Þ

because the stress increments Dr cannot oppose the opening deformations of the
structure. Hence, condition (2.121′) becomes

fDr; eeðDucÞg ¼ 0 ð2:132Þ

But when elastic strains take place, the work fDr; eeðDucÞg ¼ 0 represents a
positive elastic strain energy. Thus

Dr ¼ 0 ð2:133Þ

and consequently

r ¼ ro ¼ const ð2:134Þ

where ro is the yield stress of the steel reinforcements.
The failure of the elastic no tension systems thus occurs with a mechanism

displacement, i.e. in absence of elastic strain. Internal stresses maintain frozen
during the collapse.

This result is useful for a better understanding of the behaviour at the collapse of
masonry structures reinforced by elasto-plastic systems, as for instance, steel ties
(Fig. 2.50). At the collapse these devices, at the plastic state, follow at constant
stress the occurrence of the failure mechanism.
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2.7.7 A First Application of Limit Analysis. Lateral Strength
of the Masonry Panel

A masonry panel is the simplest resistant model for representing the behavior of a
masonry building. The essential features of such a panel’s behavior are the same as
the walls of a masonry building. The strengths of a masonry panel or a masonry
building are thereby due essentially to their weight and geometry, both connected in
the interplay between the pushing work of the horizontal forces and the resistant
work required to raise their weights during a failure mechanism. The weight is thus
of essence in such structures’ resistance to lateral forces. Consequently, we assume
that the compression stresses involved will prevail over masonry’s tensile strength,
as discussed in Chap. 1.

A panel, with geometry shown in Fig. 2.51, of height H, width B and unit
thickness s, is loaded at its head section by the central weight G and the horizontal
thrust kS, where k is the load factor.

In the framework of the rigid in compression, no-tension masonry model,
Fig. 2.52 shows the failure mechanism of the panel that, cracking at its base, rotates
around its toe and opposes, by its raising, the overturning thrust.

As a rule, cracks would radiate upward, delimiting an inert masonry zone of
roughly triangular shape. These mechanisms are not too relevant if the dominant
vertical force is represented by the weight G applied at the head of the panel.

We may begin evaluating the collapse multiplier by applying the kinematic
theorem. Thus, with reference to Fig. 2.53, the mechanism uþ is represented by the
displacement field induced by rotation of the panel around the toe O. The resistant
work g; uþh i is produced by the lifting of the central weight G located at the head
of the panel. Thus

Fig. 2.50 Failure of a
masonry wall reinforced by
steel ties. During the
mechanism, plartuc stretching
occurs in the steel ties

104 2 Fundamentals of Statics



Fig. 2.52 Overturning mechanisms of the panel

Fig. 2.53 The pressure line
of the panel at the collapse

Fig. 2.51 The masonry panel
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g; uþh i ¼ �GhB=2: ð2:135Þ

The pushing work is then

kþ q; uþh i ¼ kþ SHh ð2:136Þ

and an upper bound of the collapse thrust is

kþ S ¼ G
B
2H

ð2:137Þ

The search for admissible stresses in equilibrium with the loads via the static
theorem enables determining a lower bound k–S of the collapse multiplier.

This solution reflects the actual resisting lower zone of the panel, which reduces
to a wedge. In fact, at the limit equilibrium state, the panel is loaded at its head by a
force R, the resultant of the weight G and the thrust, k−S, passing through the panel
toe O and inclined by angle a with respect to the vertical, so that

tga ¼ B
2H

: ð2:138Þ

The horizontal and vertical components of R are thus k−S and G. Operating in
terms of stress resultants, the kinematically admissible thrust (3) will also be
statically admissible.

The search for statically admissible states is more complex in terms of stress
components. In this case, we cannot refer to the usual stress fields corresponding to
beam sections loaded by an eccentric axial force and shear. Admissible compres-
sion stresses in equilibrium with the loads can, on the contrary, be obtained using
the stress distributions occurring inside a wedge loaded at its vertex and along its
axis, as shown in Fig. 2.54 (Como and Grimaldi 1985).

The resultant R of the weight G and the limit horizontal force GB/2H passes
along the wedge axis a–a (Fig. 2.54). The stress state in the portion ABO of the
panel, of unit thickness, is described by the radial stress field

sr# ¼ r# ¼ 0 rr ¼ �kR
cos#
r

ð2:139Þ

by assuming negative the compressions (Timoshenko 1955). The constant k in the
expression of the radial stress rr is obtained imposing equilibrium with the force
R applied at the toe O.

Now, by evaluating along any cylindrical surface, the resultant of the radial
compressions rr along the direction of the axis of R, we get:
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�2
Z a

0

kR cos2 #
r

rd# ¼ �kRðaþ 1=2 sin 2aÞ ¼ �R; ð2:140Þ

whence

k ¼ 1
rðaþ 1=2 sin 2aÞ : ð2:1400Þ

The radial compression state acting in the portion ABO is thus represented by
the stress components

rr# ¼ r# ¼ 0 rr ¼ �R
cos#

rðaþ 1=2 sin 2aÞ : ð2:141Þ

This compression stress state is in equilibrium with the external loads, repre-
sented by the two forces R and −R, inclined by a from the vertical and respectively
applied at the toe O and head of the panel. The stress field (2.141) is thus statically
admissible and the thrust (2.137), both statically and kinematically admissible,
represents the collapse load So of the panel, i.e. its lateral strength, where

So ¼ koS ¼ G
B
2H

: ð2:142Þ

These results can be generalized also to take into account the presence of an
eccentricity e of the axial load at the head of the panel, We immediately have

So ¼ G
B
2H

ð1� 2e
B
Þ: ð2:1420Þ

Fig. 2.54 Statically
admissible equilibrium states
in a panel wedge
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Safety checks of the panel under the action of a horizontal force S thus requires

S� So: ð2:143Þ

2.7.7.1 Other Failure Mechanisms

Other different failure mechanisms are now taken into account: the so called partial
mechanisms that consider the overturning of only some parts of the panel. In the
first scheme of Fig. 2.55 a triangular band of the panel, having the same height H of
the panel, fails for overturning; in the second scheme a triangular part of the panel,
having height smaller than H, fails.

The head of the panel is loaded by vertical compressions g and horizontal
shearing actions s. With reference to Fig. 2.55, the limit equilibrium conditions of
the failed panel band thus are

gx � x
2
¼ sox � H gx � x

2
¼ s

0
ox � y ð2:144Þ

where so and s′o are the limit shear in the two different considered cases.
In the first case we have

so ¼ g � x
2H

ð2:145Þ

and in the second

s
0
o ¼ g � x

2y
ð2:1450Þ

Hence, with y < H we have so < s′o and the partial failure of the panel, if can
occur, engages the triangular half, having the same height of the panel. The whole
width of the head of the panel is involved.

Fig. 2.55 Partial
mechanisms of the panel of
triangular fragments of
various height
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Let us consider now the panel failure involving fragments of the same height but
with different widths x (Fig. 2.56). As above we get

gB � B
2
¼ soB � H gx � x

2
¼ s

0
ox � H ð2:146Þ

and

so ¼ g � B
2H

s
0
o ¼ g � x

2H
ð2:147Þ

When x < B we get so > s′o. In this case the panel fails splitting up into
fragments.

Actually, panels want represent the piers of masonry walls (Fig. 2.57). These
piers are, as a rule connected at floor levels by steel ties, ring beams or other
connection systems. The partial failure corresponding to the second scheme of the
previous Fig. 2.56 thus can be excluded. At the same time panel that are tested in

Fig. 2.56 Partial failures of
panel fragments of the same
height but different widths

Fig. 2.57 Typical failure
side mechanisms of a
masonry wall of a building
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laboratories have their head connected by testing equipment and also in these cases
partial splitting of the panel head cannot occur.

The limit thrust given by (2.142) or (2.142′) is based on the assumption of
infinite compression strength, as per the no-tension masonry model. We will
evaluate now the horizontal strength of the panel taking into account the effects of
finite masonry compression strength.

As discussed in Chap. 1, the thrust under which the stresses reach the masonry
tensile strength along the diagonal panel section is sometimes deemed to represent
the panel’s lateral strength. Note that diagonal cracking occurs before collapse of
the panel by overturning. Another interpretation of the panel failure is frequently
given within the framework of the Coulomb criterion (Benedetti and Casella 1980;
Binda et al. 1982; Binda 1983).

Note that the essential features of the lateral strength of a panel are very different
from those corresponding to reaching the masonry tensile strength along the
diagonal or to shear failure with internal friction. Indeed, even assuming zero
masonry tensile strength, the panel possess lateral strength, which for the most part
depends on the panel geometry alone. However, we can express the limit thrust
(2.8′) by means of a fictitious limit shear stress ratio, so/rm, as

so
rm

¼ B
2H

ð1� 2e
B
Þ ð2:148Þ

where rm is the average compression stress acting on the entire panel section.
Equation (2.10) indicates the geometrical and mechanical factors characterizing the
panel lateral strength. Comparisons of the results predicted by Eq. (2.147) with
numerous experimental results, including those of Yokel and Fattal (1976), and
Murthy and Hendry (1966), have shown quite good agreement.

2.7.7.2 Panel Side Strength via Plastic Analysis

The research of the side strength of the panel can be also pursued in the framework
of the theory of Plasticity, although with the restrictions considered at Chap. 1. The
limit state of the panel is shown in Fig. 2.58. The panel has height H and width B
and is composed by regular masonry, with bricks and horizontal mortar beds.

The resultant of the vertical dead load G and of the limit thrust So acts along the
line CK joining the centre C of the head section of the panel with the point K, the
centre of the segment BD, orthogonal to CK, along which the limit stresses ro< are
distributed. The limit compression stress acting at the toe of the panel is, in fact, the
inclined compression strength ro<, analyzed at Sect. 1.11, because the mortar beds
are horizontally directed. The rectangular triangle OBD is the compressed corner of
the panel. The horizontal segment OB, aligned along the panel base, is inclined of
the angle a with BD and has the right end concurrent with the toe O.
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The rotational equilibrium of the panel around the centre K gives, taking into
account of the geometry of the compressed corner of the panel

So ¼ GB
2H

ð1� b
B
cos2aÞ ð2:149Þ

On the hand, taking into account of the equilibrium of the panel along the
vertical direction we have

ðro\b0sÞ cos a ¼ G ð2:150Þ

Likewise, considering the vertical equilibrium condition at the panel head

rmBs ¼ G ð2:151Þ

where rm is the uniform vertical compression at the panel head. Equality between
(2.150) and (2.151) gives

ðro\b0sÞ cos a ¼ rmBs ð2:152Þ

Hence

b0

B
¼¼ rm

ro\ cos a
ð2:153Þ

But

b0 ¼ b � cos a ð2:154Þ

Fig. 2.58 Masonry plastic
state at the toe of the panel
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and

b
B
¼¼ rm

ro\ cos2 a
ð2:155Þ

Substituting (2.155) into (2.149) gives

So ¼ G
B
2H

ð1� rm
ro\

Þ ð2:156Þ

Equation (2.156) gives the failure thrust of the panel taking into account the
reduced masonry strength at the corner of the panel due to the inclined compres-
sions with the joints mortar. In this last aspect lies the effect of the shear on the limit
strength of the panel. When the ratio

rm=ro\ ð2:157Þ

is negligible with respect to the unity, i.e. when

rm=ro\ ! 0;

Equation (2.156) finds again the previous limit thrust assessed according to the
rigid compression assumption

So ¼ G
B
2H

On the contrary, when the ratio (2.157) cannot be neglected, in the assessment of
the limit thrust we have to take into account that the limit strength depends on the
ratio So/G. The limit thrust So can be thus obtained by using a trial and error
procedure. In this case very useful can be the dependance (2.59) of ro< as an
appropriate function on the inclination angle a, (see Sect. 1.10). The factor

ð1� rm
ro\

Þ ð2:158Þ

will be frequently used in the next as a rough estimate of the influence of the limit
compression strength in the evaluations of limit loads (Como 2016b).

2.7.7.3 Comparisons with Test Results

Many experimental tests have been conducted to achieve information about the
lateral strength of masonry panels (Binda 1983). It should be borne in mind,
however, that the aim of such tests is to arrive at a good approximation of the actual
behavior of the masonry wall of buildings.

The problem, in brief, is that the order of magnitude of the compression stresses
at the base of masonry walls or piers is far greater than the adhesion strength
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between mortar and bricks or stones, or the mortar tensile strength itself. Such
conditions have to be fulfilled by the test, otherwise the test results will represent
only the strength of the tested panel. Only within this framework the no-tension
assumption or any panel strength evaluations according to (2.142), (2.142′) and
(2.156) can be considered satisfactory. Figure 2.52 describes this type of failure.

We can define a proper factor able to establish whether or not the geometry and
loading conditions of the panel satisfy these conditions. As previously highlighted,
the no-tension assumption signifies that the compression stresses binding stones
together will be much greater than the masonry tensile strength. It is thus important
that the following condition hold for a test panel:

v ¼ N
rctA

� 1; ð2:159Þ

where:

N is the axial load applied at the panel head;
rct the adhesion strength between mortar and bricks;
A the area of the panel base section.

Parameter v is defined as the similarity factor with actual masonry walls.
Condition (2.159) defines the category of test panels able to accurately represent the
behavior of the walls or piers of masonry buildings. For example, any test panels
for which

N ¼ 50 t; rct ¼ 1 kg=cm2; A ¼ 2m � 0:5m ¼ 1 m2

or

N ¼ 100 t; rct ¼ 0:5 kg=cm2; A ¼ 4m � 0:5m ¼ 2m2;

and with adequate heights, can effectively represent the actual conditions of the
masonry walls of a building. In the first case the similarity factor is v = 5 and in the
second v = 10. On the contrary, for a panel with N = 200 kg, rct = 10 kg/cm2;
A = 100 � 10 = 1000 cm2, we have v = 0.02, and such panels could not thus be
deemed representative of the behavior of masonry walls of buildings.

2.8 Incipient Settlement State

2.8.1 Definitions

Let us consider a masonry structure at a safe admissible equilibrium state at con-
figuration Ci under the actions of loads g and the corresponding internal stresses ri.
For deformable systems inequality (2.76) holds, so we have
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g; duh i\ 0; 8du 2 M: ð2:160Þ

Evidently, the assumption of a safe admissible equilibrium state at the initial
configuration Ci under the loads g is still valid even if the structure, due its initial
constraint conditions, is indeformable. Recall that the equilibrium at Ci is safe
because no mechanism exists along which the work of loads g is positive or
vanishes. Let us now assume that the body becomes slightly deformed as a con-
sequence of a small settlement occurring at one of its external constraints. By way
of example, consider the arch in Fig. 2.59, which undergoes a slight increase in
span due to settling of its springings.

A settlement mechanism, vs describes the displacement that moves the body
from Ci to Cs, very near to Ci, where Cs is the configuration taken on by the
structure once the settlement has occurred.

As the settlement occurs, the structure’s internal equilibrium shifts from initial
configuration Ci to Cs.

Changes in the internal stresses and constraint reactions will occur. Stresses and
reactions at the initial state r	i that, according to (2.160), are admissible and in
equilibrium with the loads g, are altered and become the new settled stress state r	s .
By assuming that Cs is very near Ci, we can still refer to the geometry of the initial
configuration Ci when expressing the equilibrium equations. Thus, in spite of the
occurred settling, the work of the loads along any mechanism du is still the same as
the work evaluated at the initial configuration Ci. Thus, if at the initial state Ci the
admissibility condition g; duh i\0; 8du 2 M is satisfied, the same condition will
still be satisfied at the new configuration Cs. In this regard, recall Heyman’s
statement (1966): “if the foundations of a stone structure are liable to small
movements, such movements will never, of themselves, promote the collapse of the
structure”.

In brief, during the development of the settlement mechanism vs, the body
remains at a state of admissible equilibrium while stresses change. Let @X00

r the
settling part of the constraint boundaries @Xr. Thus

@Xr ¼ @X00
r [ @X00

r ð2:161Þ

where @X0
r is the unsettled boundary (Fig. 2.60).

Fig. 2.59 Arch with
increased span due to settling
at its springers

114 2 Fundamentals of Statics



We can release the body removing the settled constraint @X00
r by applying to it

the corresponding reaction lsr of the canceled constraint. The set of all mechanisms
of the released body is denoted by �M. The new stress state, which accounts for
settlement vs satisfies the compatibility inequality

½r	s ; e	ðduÞ� � 0 ð2:162Þ

i.e.

rs; deh i � 0 ftðnþ Þ
s ;Dðn�Þdug � 0 � r0s; du

� � � 0 ð2:1620Þ

because, according to the simplifying notation (2.73),

½r	s ; e	ðduÞ� ¼ rs; deh i � ftðnþ Þ
s ;Dðn�Þdug � r0s; du

� � ð2:163Þ

if r0s is the reaction of the unsettled constraint acting along the boundary @X0
r

(Fig. 2.60).
We notice that the last of conditions (2.162′) takes into account that the

mechanism du can entails the detachment of the body from the boundary @X0
r.

In the case of the masonry arch that has undergone a slight increase in span, its
pressure line shifts from pi to ps, this last passing through the hinges of the
mechanism vs. Consequently, no work will be done by the internal stresses on the
deformations corresponding to vs. The same occurs for any body whose a constraint
settles that, slightly deforming with a mechanism, adapts itself to settlement and we
have

½r	s ; e	ðvvÞ� ¼ 0 ð2:164Þ

with the previous notation (2.73). The constraint surface @X00
r , which initially

produced the reaction lir, after the settling produces the new reaction

lsr ð2:165Þ

if r is the reaction of the settled constraint @X00
r corresponding to the unitary value of

the multiplier ls (Fig. 2.60).

Fig. 2.60 The settled body
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At the settled state in the released structure the applied loads are represented by
both the weights g and the reactions lsr. Thus, the equilibrium condition at the
settled state by using the virtual work Eq. (2.74), gives

½r	s; de	�¼ls r; duh iþ g; duh i 8du 2 M ð2:166Þ

that, with du ¼ vs and taking into account of (2.164), becomes

g; vsh iþ ls r; vsh i ¼ 0: ð2:1660Þ

Loads g perform positive work along the mechanism displacements vs, while the
reaction lsr of the released constraint opposes settling, so that

g; vsh i[ 0 ð2:167Þ

and

ls r; vsh i\ 0: ð2:168Þ

An admissible settlement equilibrium state is therefore defined once the mech-
anism settlement vs has taken place. Conditions (2.162)–(2.168) define the ad-
missible settlement equilibrium state.

2.8.2 Features of the Incipient Settled State

Moreover, if settlement vs increases and becomes

kvs; k[ 1; ð2:169Þ

the static arrangement of the structure will not change, and the internal stresses will
remain fixed at r*s. Indeed, as the stresses r*s are forced to satisfy condition
(2.164), they will continue to satisfy the same condition when the structure deforms
along displacements k times larger than the prior ones. Thus, if the pressure curve
skims the extrados and the intrados of the arch at the hinges corresponding to
mechanism vs and condition (2.164) is consequently satisfied, the same condition
(2.164) will continue to be satisfied by assuming the mechanisms kvs, k > 1.
Consequently the work of the same stresses, r	s on the deformations associated to
displacements kvs continues to be zero. Likewise, the thrust lsr, which according to
(2.166′), satisfies the equilibrium with the loads g along the displacements vs, will
continue to satisfy the same equilibrium condition (2.166′) along the displacement
field kvs, k > 1.
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Immateriality of the magnitude of the settlement is a crucial point in this anal-
ysis. When, in fact, the geometry alteration induced by the settlement is no more
negligible, the response of the settled structure can change dramatically and col-
lapse can occur too (Ochsendorf 2006; Coccia et al. 2015).

In the majority of cases the geometry alteration is small and the occurrence of the
settlement can be detected only by cracks, not by large geometrical distortions. In
this context we can affirm that the settled structure freely follows any increase in the
settlement, maintaining its configuration in admissible equilibrium: settling devel-
ops with frozen internal stresses rs and constraint reactions lsr.

The actual degree of the slight settling is difficult to quantify. Despite this
uncertainty, the internal stress state of the structure is, to the contrary, well-defined.
No equilibrium loss will occur during the settling.

How do we evaluate this stress state and the corresponding reaction of the
settled restraint? Answer to this question will be provided in the following sections.

2.8.3 Statically Admissible Thrusts. The Static
Theorem of the Minimum Thrust

Let us now look at the static equilibrium of a structure that has previously
undergone settling. Two relevant examples are considered: a masonry arch whose
span is lengthened by the occurrence of settling at springings and a masonry bridge
whose central pier has suffered a vertical settlement.

Let us assume that the settled structure is certainly at AE equilibrium under the
loads g and internal stresses r*, where with r* we intend, according to (2.73), the
set of stresses and reactions of the unsettled boundary @X0

r.
We know, a priori, nothing about the internal stresses r* occurring in the settled

state, except that they are statically admissible. Let S be the set of all statically
admissible internal stresses r*, with r	 2 S	. We choose any one such distribution
of statically admissible stresses r*.

A thrust lr of the released constraint will correspond unequivocally to this
distribution, hence let

lðr	Þr; ðr	 2 S	Þ ð2:170Þ

be the reaction of the settled constraint associated to the statically admissible
stresses r. For any r	 2 S	, we can associate the reaction lrðr	 2 SÞ, which defines
the thrust of the settled constraint. According to our assumptions, at the released
structure the following equation between loads g, internal stresses r* and the
corresponding thrust lðr	Þr; ðr	 2 S	Þ, holds
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½r	ðlÞ; de� ¼ lðr	Þ r; duh iþ g; duh i 8du 2 �M ð2:171Þ

where, according to (2.162)

½r	ðlÞ; e	ðduÞ� � 0 8du 2 �M ð2:172Þ

and

½r	ðlÞ; e	ðvsÞ� � 0 ð2:173Þ

The thrust lrðr	 2 S	Þ, in equilibrium with loads g and internal stresses r*, that
is to say, satisfying condition (2.171), represents any state of statically admissible
thrust. Now, of all the statically admissible thrusts, which one does correspond to
the settled state?

We know that the actual thrust in the settled state corresponds to an admissible
internal stress state that does no work on the deformations occurring during the
settlement mechanism, that is, it satisfies (2.164). If we define vs as the effective
settlement mechanism, we specify condition (2.171) using du ¼ vs to obtain

g; vsh iþ lðr	Þ r; vsh i ¼ r	ðlÞ; eðvsÞh i r 2 S: ð2:174Þ

We now subtract equality (2.166′) regarding the actual settlement state, from
equality (2.174) to obtain

ðlðr	Þ � lsÞ r; vsh i ¼ r	ðlÞ; eðvsÞh i r	 2 S:	 ð2:175Þ

By taking (2.172) into account, from (2.175), we get

ðlðr	Þ � lsÞ r; vsh i � 0 r	 2 S	; ð2:176Þ

and by virtue of (2.168), we obtain

ls � lðr	Þ r	 2 S	 ð2:177Þ

The multiplier, ls, of the settled thrust r is thus lower than all the statically
admissible multipliers l. The thrust in the settled state is consequently the lowest of
all the statically admissible thrusts. This finding (Como 1996, 1998) extends a
previously described, well-known property of the masonry arch that undergoes an
increase in span due to settling at the springings: such an arch is in the state of
minimum thrust because its pressure line corresponds to the minimum span and the
maximum sag, as shown by Heyman (1966).

118 2 Fundamentals of Statics



2.8.4 Kinematically Admissible Thrusts. The Kinematic
Theorem of the Minimum Thrust

Le us now examine the settlement equilibrium state from a kinematic point of view.
The actual settlement mechanism v is unknown: for instance, for the case of the
arch, we cannot know the position of the internal hinge. We only know that, during
the development of the mechanism v, loads g will do positive work, while the work
of the reaction of the settled constraint is, to the contrary, negative.

Let �M be the set of all kinematically admissible settlement mechanisms of the
released structure: they do not allow for any internal interpenetration of masonry
and respect all the restrictions for the other unsettled constraints. Let us consider a
settlement mechanism

v 2 �M ð2:178Þ

of the released structure. The loads g will push along v and consequently

g; vh i[ 0: ð2:179Þ

We define the kinematic multiplier k of the reaction r of the settled constraint as
that multiplier able to ensure equilibrium of the structure along the assumed set-
tlement mechanism v, or, in other terms, able to satisfy the following condition

g; vh iþ k r; vh i ¼ 0: ð2:180Þ

Reaction kr(v) opposes the development of settling, v, given that, by taking
(2.179) into account, we get

k r; vh i\0: ð2:181Þ

where r is any scale resistant reaction of the settled constraint. The kinematic
multiplier kðvÞ of reaction r is thus defined as

kðvÞ ¼ � g; vh i
r; vh i ; v 2 �M: ð2:182Þ

Let us now search for the conditions under which kinematic reaction krðvÞ may
represent the actual settled state. This latter is represented by the reaction, lsr, that
satisfies the foregoing settlement conditions (2.162), (2.166)–(2.168). Thus, let us
assume du ¼ v in (2.141) to get

g; vh iþ ls r; vh i ¼ r	s; eðvÞh i; v 2 �M; ð2:183Þ

where, according to (2.162)
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r	s; eðvÞh i � 0 v 2 �M: ð2:184Þ

Now, subtracting (2.166′) from equality (2.183) yields

ðls � kðvÞÞ r; vh i ¼ r	s; eðvÞh i v 2 �M: ð2:185Þ

Moreover, from (2.184), with du ¼ v, we get ðls � kðvÞÞ r; vh i � 0 and, con-
sequently, from (2.181) (Como 1996, 1998)

ls � kðvÞ v 2 �M: ð2:186Þ

For any settlement mechanism, v 2 �M, the corresponding kinematic multiplier,
kðv 2 �MÞ, can never be greater than the actual settlement multiplier, ls. Thus ls is
the maximum of all kinematic multipliers, kðv 2 �MÞ, for varying v in the set of all
settlement mechanisms �M, or in other terms

ls ¼ MAXð� g; vh i
r; vh iÞ v 2 �M: ð2:187Þ

2.8.5 Uniqueness of the Settlement Multiplier

The proof of the uniqueness of the settlement multiplier follows the same path as
that for the collapse multiplier.

2.8.6 The Class of Statical and Kinematical Settlement
Multipliers

kðv 2 �MÞ is any admissible kinematic multiplier, defined according to (2.182). The
corresponding thrust kðv 2 �MÞ r is not, as a rule, statically admissible. Since

kðv 2 �MÞ�MAXkðv 2 �MÞ ¼ ls; ð2:188Þ

the thrust kðv 2 �MÞ r is weaker than the minimum thrust lsr. Moreover, lðr 2 SÞ
is any statically admissible multiplier that, according to previous definitions, is not
kinematically admissible, in the sense that the internal stresses are not generally
associated to a mechanism. In the case of an arch, for instance, the pressure line
corresponding to the stress distribution, r 2 S, does not skim the extrados and
intrados of the arch to form hinges in a number sufficient to produce a kinematically
admissible mechanism. The thrust lðr	Þr is greater than the minimum lsr and
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ls ¼ MIN
r

lðr	Þ� lðr	Þ: ð2:189Þ

In conclusion, we obtain

kðvÞ�MAXkðvÞ ¼ ls ¼ MINlðr	Þ� lðr	Þ: ð2:190Þ

The actual settlement mechanism, vs, together with the reaction of the settled constraint,
may be determined via (2.186). These results will be applied in the following to
analyze the statics of a number of masonry structures.

2.8.7 Minimum Thrust in the Rounded Arch

The problem of the evaluation of the minimum thrust for the rounded arch was
analyzed by Coulomb (1773). Coulomb guessed that such a state was reached by
the settled arch that endured a light widening at its springers. The pressure line
touches the intrados and the extrados of the arch to form the hinges of the settlement
mechanism. Figure 2.61 shows the rounded arch with the three hinges symmetri-
cally placed. The position of the hinge C, having distance d from the horizontal
straight line passing through the key hinge A, is defined by the angle b. Figure 2.61
shows the force V, resultant of the weights of the segment AC of the arch.

Position of V is given by its distance LA from the internal hinge C. Coulomb,
examining the equilibrium of the segment AC of the arch for a given position of the
hinge C, i.e. for a given b, evaluated the thrust of the arch as

HðbÞ ¼ VLA
d

ð2:191Þ

Fig. 2.61 The research of the
minimum thrust of the arch
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Thus thrust H depends on the angle b. Coulomb noticed, as pointed out by
Ochsendorf (2006), that the minimum thrust of the arch was attained by the max-
imum of thrust (2.191) by varying the angle b, as shown in Fig. 2.61.

This statement can be explained taking into account that the thrust (2.191) is just
the kinematical thrust corresponding to definition (2.182). According to the kine-
matical theorem the minimum thrust has to be searched as the maximum of the
kinematical ones

HMin ¼Max
b H ¼Max

b
g; vh i
D

ð2:192Þ

On the other hand,

g; vh i
D

¼ HðbÞ ð2:193Þ

In fact the work of the weight g(x) of the arch along the vertical displacements v
(x) produced by the settlement mechanism is

g; vh i ¼ h
Z

AC

gðxÞ � x � dx ð2:194Þ

The force V is on the other hand defined as

V ¼
Z

AC

gðxÞ � dx ð2:195Þ

The distance LA

V � LA ¼
Z

AC

gðxÞ � x � dx ð2:196Þ

gives the position of the force V. Consequently we get, with (2.192)
or

H ¼

R
AC

gðxÞ � xh � dx
d � # ð2:197Þ

Finally, taking into account that v = xh, D = d h (Fig. 2.61) we can write

H ¼ V � LA
d

¼ g; vh i
D

ð2:198Þ
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The thrust (2.198) is properly the kinematical thrust defined by (2.191). On the
other hand the minimum thrust of the arch is the maximum of all the kinematical
thrusts H by varying the angle b, i.e. the position of the internal hinges C. Thus we
have

HMin ¼ Max
b

H ¼ Max
b

g; vh i
D

ð2:199Þ

The kinematical thrust of the rounded arch of minimum thickness, i.e. with
t/R = 0.1075, attains its maximum at the angle b = 54.5° (Ochsendorf 2006).

2.8.8 An Application of the Kinematic Approach.
A Minimum Thrust Assessment

Let us consider the masonry bridge sketched out in Fig. 2.62. The bridge’s central
pier has undergone vertical settling. The settlement mechanism is traced out in the
figure, where lsr indicates the vertical reaction of the central pier.

The figure also shows the critical sections where hinges are located: they are the
two points O at the base corners of the right and left abutments, point A at the
connection section between the abutments and girder and point B at an intermediate
section along the girder extrados.

The distance between hinge B and the absolute rotation centre C is denoted by x.
The vertical settlement of the central pier defines the position of hinges O and A of

g g 2g 2g 

a a a 4a 4a 

a 

a

srμ
a x 3a -x

θ

Fig. 2.62 A masonry bridge whose central pier has settled vertically
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the abutments, which will rotate outwardly. Hinges B, whose positions are instead
unknown, are each at a distance a + x from the internal edge of the abutments. The
same figure shows the deformation of the bridge corresponding to the assumed
mechanism.

Our aim is to evaluate the reaction Rc of the central pier. Let us consider any
settlement mechanism, v, and the corresponding kinematic reaction of the pier,
denoted by lr defined by the equilibrium equation along v

g; vh iþ l r; vh i ¼ 0: ðaÞ

The corresponding kinematic multiplier, which depends on the position of hinge
B, is thus given by

lðxÞ ¼ � g; vh i
r; vh i : ðbÞ

The actual pier reaction Rc can thus be obtained as the maximum of all kinematic
reactions (b) by varying v in the set of settlement mechanisms. We now evaluate the
work, g; vh i and r; vh i. The work of weight g along the mechanism is given by

g; vh i ¼ 2½�2g
a2h
2

� g
a2h
2

þ g
x2h
2

þ gð3a� xÞxhþ 2g
axh
2
�

¼ gð�3a2 � x2 þ 8axÞh ðcÞ

while the work r; vh i of the pier’s reaction is �xh. According to (b), the kinematic
reaction is thus given by

lrðxÞ ¼ gð�3a2 � x2 þ 8axÞ
x

0� x� 3a; ðdÞ

depending on the position x of hinge B, which lies in the range 0� x� 3a. When
x ! 0; lr ! �1, and for x ¼ 3a, lr ¼ 4ga (Fig. 2.63).

The function l(x) effectively reaches a maximum for 0� x� 3a. The value �x at
which lrðxÞ attains its maximum is thus obtained by solving the equation

3a x

μ

3a

μr
ma

Fig. 2.63 Finding the
maximum of function lr(x)
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dðlrÞ
dx

¼ gð3a
2

x2
� 1Þ ¼ 0; ðeÞ

which yields

x ¼ �x ¼ a
ffiffiffi
3

p
 1:73a: ðfÞ

The reaction of the central pier is evaluated by substituting (f) into (d), which
yields

Rc ¼ lrmax ¼ lrðx ¼ a
ffiffiffi
3

p
Þ ¼ 2gað4�

ffiffiffi
3

p
Þ  4:54ga: ðgÞ

We will now show that the internal stress field corresponding to the evaluated
reaction is statically admissible. Figure 2.64 illustrates the equilibrium of the central
part of the bridge, including the girder segments from hinges B to the pier.

The pressure line passes through hinge B and has a horizontal tangent at B. With
the aim of evaluating the thrust, S, shown in the figure, let us examine the equi-
librium of the portion of the girder between B and the abutment, as shown in
Fig. 2.54. The length of this portion is aþ�x ¼ að1þ ffiffiffi

3
p Þ (Fig. 2.65). The shear

force V transmitted to the abutment can be obtained via the equilibrium equation
along the vertical direction

V ¼ gað
ffiffiffi
3

p
þ 1Þ:

We can also evaluate the thrust S. At y ¼ aþ�x ¼ að1þ ffiffiffi
3

p Þ, we have Sa�
gðaþ�xÞ2=2 ¼ 0 and

S ¼ ga
2
ð

ffiffiffi
3

p
þ 1Þ2 ¼ gað2þ

ffiffiffi
3

p
Þ:

S 

a 3a x−

a

a

B B 

S 

3a x−

Fig. 2.64 Stress state around the central pier
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To obtain the corresponding pressure line, we can evaluate the moment acting at
the section center located at distance y from B, which gives us

MðyÞ ¼ S
a
2
� g

y2

2
¼ g

a2

2
ð2þ

ffiffiffi
3

p
Þ � g

y2

2
:

The axial force N equals the thrust S, while the eccentricity of N is M(y)/S.
Moreover, from the equilibrium along the vertical direction of the abutment, we get
(Fig. 2.66)

Rl ¼ 2gaþV ¼ 2gaþ gað
ffiffiffi
3

p
þ 1Þ ¼ ga

ffiffiffi
3

p
ð1þ

ffiffiffi
3

p
Þ:

Figure 2.67 shows the overall pressure line on the entire structure of the bridge.
The abutment is loaded by a central axial force, N, from the head to midway

along its height. Beneath this section the axial load varies and becomes
ga

ffiffiffi
3

p ð2þ ffiffiffi
3

p Þ, and its eccentricity ranges from 0 to a=2.
It can thus be concluded that the structure of the bridge, whose central pier has

settled by
ffiffiffi
3

p
ah and is subject to the assumed loads and reaction lrð�xÞ at the base

of the central pier, is in admissible equilibrium.

S 

V 
S

Rl a

S 

(1 3)a x a+ = +

y 

B 

V 

a/2 

g 

S 

a/2 

Fig. 2.65 Stresses in the span

S 

V 
S

Rl a

Fig. 2.66 Stresses in the
abutments
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The minimum thrust can also be obtained by searching among the admissible
funicular curves of the loads: the curve exhibiting the minimum slope at the sec-
tions where the girders join the central pier corresponds to this minimum.

2.8.9 Masonry Structures at Their Actual State

Limit Analysis, whose bases have been discussed above, offers the possibility of
performing useful checks of the bearing capacity of masonry structures within the
framework of the rigid no-tension model. However, Limit Analysis alone does not
provide the means to analyze the actual equilibrium state of a masonry structure.
The admissible equilibrium equations alone are not enough to evaluate the internal
stresses, as such problem is statically indeterminate.

To this end, other additional equations are required: the compatibility equations,
as in the case of elastic structures. However, according to the rigid no-tension
model, masonry structures cannot be deformed unless a mechanism is activated.
Consequently, these supplementary equations cannot be formulated. Heyman
(1995) however found that useful information can instead be obtained in the same
context of the simple rigid no-tension model, that is, providing that the deforma-
bility of the constraints connecting the structure to the surrounding environment are
taken into account. In brief, the assumption that settling of some constraints will
inevitably occur may provide the required supplementary equations. Such an
assumption generally reflects the real behavior of masonry structures, which fre-
quently push against their supports that are in turn deformed by these thrusting
actions. An arch or a dome, for instance, is inserted into a more complex structural
system that must sustain their thrusts. These auxiliary structures undergo lateral
deformations and can displace the springings of the arch or dome to follow their
deformation. A minimal thrust state takes place in the arch or dome. The same
occurs, for example, in the settling of the foundation of a masonry bridge pier. In
many cases even a very thin crack can signal the occurrence of deformation.

The degree of settling can be predicted only with difficulty. Thankfully, the
compatibility equations expressing the occurrence of settling do not require

S 

Rl 

Fig. 2.67 The pressure line
in the bridge
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defining the magnitude of the settlement, but only indication of the constraints to
the settled state. In more complex structures, as for instance a multi-span bridge or a
masonry wall with openings, inspection of cracking patterns can provide useful
information regarding the settlement mechanism effectively produced. According to
this approach, determination of the actual stress state in masonry structures
becomes statically determinate and Limit Analysis can once again be fruitfully
applied, as will be shown. A number of useful applications of this approach will be
described in later chapters.

2.9 Geometry and Strength: The Theory of Proportions
of the Past Architecture

Masonry constructions have a long history. They have been built, studied, tested for
about seven thousand years but throughout all this time the material masonry, in
spite of the large variety of its typologies, has maintained the same mechanical
features. It is an unilateral material which can resist compression, but not tension.

This aspect has influenced the history of constructions and has marked out a
forced path in the long research of the various structural solutions.

Construction experiences condensed during the time in the form of structural
rules. The essence of these rules is that proportion controls the overall form of the
structure of the building. A Theory of Proportions developed slowly since Vitruvius
up to Leon Battista Alberti and Palladio.

According to this theory Statics of masonry structures has to be ruled solely by
geometry. Knowledge of the most suitable proportions amongst the various com-
ponents of a structure and of their basic measure, the modulus, irrespective of its
absolute magnitude, represented the essence of the art of past constructions. Since
antiquity master builders have always used simple geometrical rules for designing
arches or buttresses for a cross vault (Benvenuto 1991; Di Pasquale 1996; Huerta
2001).

An ‘ideal city’ was conceived according these rules, as shown by the famous
painting of an unknown artist of the fifteenth century (Fig. 2.68). Then, later, in the
nineteenth century, masonry architecture felt into decay due the appearance of new
materials and new structural forms.

Fig. 2.68 The ideal city conceived according to the “proportionality theory”
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Galileo confuted the rules of proportional design in his Discorsi e Dimostrazioni
(1638) (Fig. 2.69). Galileo observed that, given any structure which supports its
own weight, if we multiply its size by a certain factor k maintaining its geometrical
form, it becomes weaker.

The weights of the two beams are g and G = k2g. Let us compare the maximum
bending moments occurring at the built in sections with the corresponding bending
strengths, taking into account that the material of which the beams are composed
has the limit stress ro. The maximum bending moments are m = gl2/2 and M =
GL2/2 = k4m while the bending strengths of the end beam sections are respectively
(Fig. 2.70)

mo ¼ ro
bh2

4
; Mo ¼ ro

BH2

4
¼ k3mo ð2:200Þ

The ratios between the bending strengths and the corresponding maximum
bending moments give a measure of the safety factors w and W of the beams. We
have

w ¼ mo

m
; W ¼ Mo

M
¼ w

k
ð2:201Þ

As a consequence, the beam A, as it grows in size, becomes weaker than the
beam a. If we want maintain the same strength, the cross sections of the beam

Fig. 2.70 The two beams of
Galileo: the second is a copy,
k times magnified of the first

Fig. 2.69 The Galileo
example of beam
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A must become thicker, as shown in the classical sketch of Fig. 2.71, taken from
Galileo Dialogues.

Some scholars, as Parson (1976), Benvenuto (1981), Mark (1990), identified in
the Galileo judgement the irrefutable proof of the error rooted in the theory of
proportions. On the contrary, for other scholars, as Dorn (1970), Heyman (1995),
Baratta (1999) and Huerta (2006), the Galileo conclusion was not applicable to
masonry constructions because for them the material strength plays no role.

We will show now, by means a direct proof and in the strict context of the no
tension masonry model, that the Theory of Proportions is correct (Como 2014).

In previous sections we have seen that weight and geometry represent the
essential elements in the strength of masonry structures. More precisely, it is the
proportions among a structure’s various constituent parts that define a its geometry,
irrespective of the actual absolute dimensions.

To illustrate this by way of example, let us examine the two similar arches a and
A in Fig. 2.72. Arch A, on the right, is k times larger than the arch a, on the left, or
in other words, arch A is a k times magnified copy of arch a. In the transverse

(a) (b)

Fig. 2.72 Geometries of two similar arches and two corresponding mechanisms governed by
dimension ratio k

Fig. 2.71 Larger thickness of
the great bone in order to have
the same strength of the small
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direction, i.e. in the direction orthogonal to their plane, the structures have the same
width s. Each segment in structure A is thus k times longer than the corresponding
segment in structure a.

We can moreover consider other similar structures, such as s and S shown in
Fig. 2.73, and refer to the same system of coordinate axes with origin O defined at
the same position. By definition, two points pi and Pi, having respective coordinates
(xi, yi) and (Xi, Yi), are conjugated if

Xi ¼ kxi Yi ¼ kyi: ð2:202Þ

So, the two arches a and A, for instance, are subdivided into an equal number of
conjugated voussoirs vi and Vi (1, 2, …., i, …, N), i.e. having centres with
coordinates

ðbx i; by iÞ ðBx i;By iÞ ð2:203Þ

with

Bx i ¼ kbx i Byi ¼ kbyi: ð2:2030Þ

At the same time the dimensions of the voussoirs ci of arch a are length di and
height hi, while those of voussoirs Ci of arch A are Di and Hi (i = 1, 2, …, N), with
Di = k di and Hi = khi. Consequently, if gi and Gi are the weights of the voussoirs,
we have

Gi ¼ k2gi: ð2:204Þ

(a)     (b)

Yi

Xi

P
i

yi

xi

p

i

Fig. 2.73 Another example of two similar structures, s and S, in which the latter is the k times
magnification of the former
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Let us now consider the conjugated mechanisms m and M, respectively for
structures s and S: the latter is the k magnification of the former. The two mech-
anisms present the same rotation parameter h and their hinge points ci and Ci are
conjugated. Hence, if lJ is the distance of the hinges of the mechanism of the arch
a from the left springing, the corresponding distance of the hinges of arch A will be
klj. Meantime the lines connecting the two corresponding hinges are parallel to each
other, as shown in Fig. 2.74. The centre, bi, of voussoir i of the arch a, being at
distance xi from the corresponding point of rotation, moves vertically by vi.

Likewise,

Vi ¼ kvi ð2:205Þ

and kxi are the vertical displacement and analogous distance of centre Bi of the
corresponding voussoir i of arch A. Let us now assume that structure a is stable
under its own weight g, as defined according to (2.160),

g; vh i ¼
XN
1

givi\0 ð2:206Þ

for any mechanism v. The work 〈g, v〉 is evaluated considering the work of the
weight forces gi on the corresponding vertical displacements vi of the mechanism.

We will now show that the k magnified structure A is thus also stable under its
own weight, in the sense that, analogously for any mechanism V, we will have

G;Vh i ¼
XN
1

GiVi\0: ð2:2060Þ

Yi= kyi

Xi= kxi

P

o

Gi

yi

xi

p

gi

o

(a) (b)

Fig. 2.74 The k similar structures loaded by increasing weights along their spans
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In fact, according to the foregoing assumptions and definitions, due to the
similarity between s and S and associated mechanisms m and M from (2.204) and
(2.205)

G;Vh i ¼
XN
1

GiVi ¼ k3
XN
1

givi\0: ð2:207Þ

Thus, to conclude, if a structure under its own weight is stable, a k times
magnified copy will also be stable (Como 2014). The same outcome holds in a
more general sense. Let us consider the two similar structure s and S of Fig. 2.66
where now only the weights, ga and Ga, of their central spans increase with the
loading parameters k and K. According to the kinematic approach, the maximum
load koga that structure s can sustain can be obtained as

ko ¼ Minð� g; vh i
ga; vh iÞ¼Minð�

P
giviP
ga ivi

Þ v 2 M ð2:208Þ

where g is the pier weight and gai and gi the corresponding weights of the voussoirs
into which the structure has been divided. Likewise, the maximum load KoG that
the k magnified structure S can sustain is

Ko ¼ Minð� G;Vh i
Ga;Vh iÞ ¼ Minð�

P
GiViP
ga iVi

Þ V 2 M: ð2:209Þ

However, according to previous assumptions

Gi ¼ k2gi Gai ¼ k2gai Vi ¼ kvi; ð2:210Þ

and the two structures s and S exhibit the same strength under loads kg and KG. In
fact, we have

Ko ¼ Minð� k3
P

givi
k3

P
ga ivi

Þ¼ko: ð2:211Þ

This result holds even if we consider that, instead of vertical loads kg, there are
horizontal forces kg, still proportional to weight g, acting on the structure. Such a
loading condition is frequently considered representative of seismic actions. The
two similar structures s and S in Fig. 2.75 thus exhibit the same horizontal strength
under the action of horizontal forces kg and KG (Como 2014).

These results, here directly proved, were well known to architects of the past and
formed the basis for their fundamental rules of construction. As set down in the
theory of proportions by Andrea Palladio and Leo Battista Alberti, the statics of
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masonry structures is governed solely by their geometry and, consequently, by their
basic measurement, the modulus, irrespective of their absolute measurements.

Knowledge of the most suitable proportions amongst the various components of
a masonry structure (knowledge often jealously guarded by past masters) repre-
sented the essence of the art of construction.

As discussed throughout this book, these results, arrived at through centuries’
long experience, is a direct consequence of the unique, fundamental behavior of
masonry. By way of example, Iori (2009) has recalled two Romans dome con-
structions: the Pantheon and the Temple of Romulus, similar but different in scale
(Fig. 2.76). Both the constructions have the maximum height equal to the dome
diameter and a drum thickness equal to 0.3 of the radius.

Yi

Xi

P

o

Gi

Gi

yi xi

p

o

gi

gi

o

Fig. 2.75 Similar structures under horizontal load kg and kG

Fig. 2.76 The Pantheon in
Rome and the Temple of
Romulus (Iori 2009)
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Appendix

Lessons from the Failure of Cathedral of Noto

The Church

In order to better illustrate the foregoing basic assumptions regarding the behavior
of masonry structures, it is useful to analyze the causes of the 1996 collapse of the
Cathedral of Noto (Sicily). The Noto cathedral has two side aisles and a central
nave. The beautiful 40 m-wide, 32 m-high baroque facade is flanked by two bell
towers, as shown in Fig. 2.77.

The bases of the towers and facade are 3.40 m below the level of the Church
floor (assumed to be at 0.00 m). The tower’s foundations are partially exposed near
the side streets due to some excavation work done in the late 19th century. The
lateral walls of the Church are faced with regular blocks and mortar beds, while
rubble masonry with poor mortar makes up the walls’ inner cores. The five piers
that run alongside the central nave, are similar in structure to the lateral walls:
facings made of regular square blocks of local travertine with inner rubble masonry
(Fig. 2.78). Only their bases were built with the more substantial Noto limestone.

The piers have a roughly rectangular cross section, 3.25 m � 1.60 m, with their
main lengths laid along the church’s longitudinal direction. The piers sustaining the
dome at the transept are larger in cross section: 6.50 m � 1.65 m.

The side aisles are roofed by small domes set on small drums, in turn, sustained
by the side walls and longitudinal and transverse arches spanning from walls to
piers (Figs. 2.78 and 2.79). All the domes and arches of the aisles have a thick inner
rubble structure and regular facings with squared stone blocks.

A long wall running along the top of the interior piers sustains a reinforced
concrete floor that was built to replace the original wooden roof during past
restructuring work. Fortunately, the operations spared the high transverse masonry

Fig. 2.77 Cathedral façade
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arches spanning the nave. The spherical dome, with an inner diameter of 11.20 m
was built using strong blocks of Modica limestone on top of a drum containing
several large windows. The dome and drum were 1.30 m thick. The foundations of
the church’s lateral walls are made up of continuous masonry walls set on a thick
formation of sandstone and clays. The more superficial foundations of the piers rest
on an arenaceous formation 1 m beneath the level of the church floor. Construction
of the Cathedral was begun in 1753 and completed in 1769. The dome has col-
lapsed a number of times: first during its construction, a second time during an 1848
earthquake, after which it was rebuilt for the third time between 1860 and 1862 and

Fig. 2.78 The plan of the Cathedral

Fig. 2.79 Cross section of the church at the nave and transept
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remained up to the most recent collapse in 1996. It has since been reconstructed. In
1990 an earthquake measuring 4.7 on the Richter scale struck the entire region of
Syracuse and seriously damaged many structures of the church. In the area of Noto
the damage was rated at level VI on the Modified Mercalli Intensity scale (MMI).
The Church was seriously damaged in the earthquake: the transverse arches toge-
ther with the aisle roofs suffered deep cracking, particularly on the right aisle.
Afterwards, some damaged piers were buttressed with simple scaffolding and the
church remained open while its condition continued to worsen, until its near
complete collapse in 1996.

The 1996 Collapse

The failure occurred suddenly, without any storm or earthquake, and affected the
entire interior of the church. All the piers and coverings of the right nave collapsed
together with the dome. Only the beautiful façade was spared. Figure 2.80a, b show
the interior of the cathedral with the remnants of the dome after the collapse.
Figs. 2.81 and 2.82 show some pieces of the collapsed piers.

Fig. 2.80 a The interior of the church after collapse; b the collapsed dome
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Investigations of the Causes of the Failure

A committee appointed in the year 1998 by the Court of Syracuse, composed of M.
Como, G. Croci, M.T. Lo Balbo, A. Migliacci, and F. Selleri, carried out a survey to
ascertain the cause of the collapse (Como et al. 2001). Compression strengths of the
various stones: local travertine: rrm = 61 kg/cm2; Noto limestone, rrm = 195
kg/cm2; giuggiulena stone, rrm = 95 kg/cm2; Modica limestone, rrm = 220 kg/cm2.

After all the various investigations, geotechnical drillings, material testing and
ground-penetrating radar explorations, it became possible to examine the bases of
the failed piers as soon as the rubble was completely cleared.

Fig. 2.81 Upper fragment of
pier 4

Fig. 2.82 The base of pier 4,
weakened by the passageway
to the pulpit
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The Structural Failure. How Can We Explain the Failure?

Despite the presence of many cavities in the soil beneath the church floor, accurate
numerical and geotechnical investigations excluded the possibility that settling of
the foundation had occurred, a conclusion that was also confirmed by visual
inspection of the pier bases. The elements that were fundamental to enabling def-
inition of the failure kinematics were the counter rotation of the upper parts of the
failed piers near the transept and the sequence of cracks that signalled failure of the
upper reinforced concrete ring beam. Figure 2.83 shows the strong wrenching
action exerted on the reinforced concrete ring beam running along the top of the
upper wall lining the nave, revealing the point where the collapse started—precisely
at the position of pier no. 4. This pier was weaker than the others due to the
presence of an old interior passageway providing access to the pulpit, as shown in
the previous Fig. 2.82. The presence of the overhead transverse arches at the level
of the roof over the nave determined a two-hinge mechanism, one at the pier base
and the other high up at the springing of the transverse arch. This mechanism
caused counter-rotation of the upper part of the piers, which was in effect confirmed
by examination of the position of the parts of the failed piers (Fig. 2.81). The
structure of the cathedral was thick and resistant. In particular, the transverse arches,
drums and small domes roofing the aisles, constructed with heavy concrete
(Fig. 2.84), give the impression of a solid monolithic structure. The roofs also gave
the appearance of behaving as a single unified mass, able to transmit only axial
loads to their supports.

However, contrary to appearances, these thick roofing structures were actually
particularly vulnerable. The concrete had very little tensile strength, so these
structures were able to sustain their own weight and transmit it to the underlying

Fig. 2.83 Cracking of the
ring beam showing the strong
pulling action due to the
collapse of the underlying pier
4
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piers only as long as the concrete was intact. However, if its strength were to decay,
for instance due to damage from sudden seismic actions or slow masonry decay by
the action of rainwater seeping into the masonry, the behavior of the structure
would change drastically.

In fact, the 1990 earthquake caused extensive damage to many of the cathedral’s
structures. Alarming cracks appeared in its support structures, especially on the
right side. When the thick structures covering the right aisle cracked, their mono-
lithic behavior was lost and strong thrusts were activated. Static checks of the piers
lining the nave revealed that the compression stresses acting upon them were
admissible only for the heavy vertical loads acting alone; if instead the action of the
thrusts of the domes and arches were taken into account, the check showed that the
piers were at the very limit for failure. Figures 2.85 and 2.86 show the collapse
mechanism and the distribution of thrusts and internal stresses of pier no. 4 as
shown in Fig. 2.84.

Lesson to Be Learned from the Failure

The lesson imparted by the failure of the Noto Cathedral serves as confirmation
that, in the interplay between weight and geometry, only the no-tension model can
provide reliable indications as to the true strength of masonry structures. Thus,
although a certain amount of tensile strength may be allowed for, in the end, it is the
no-tension model that best predicts the true behavior of masonry structures.

We must therefore distinguish between structures that are intrinsically stable—
that is, those that, given their geometry and load distribution, can sustain the loads
within the assumptions of no-tension behavior—and those that are instead intrin-
sically unstable—unable to sustain such thrusts under the no-tension model. In this
sense, the structure of the cathedral was intrinsically unstable. Unfortunately, the
apparent solidity of the vaulted concrete systems was misleading. In fact, once the

Fig. 2.84 The massively
thick concrete of the arches
and of the small domes over
the right aisle
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Fig. 2.85 The failure
mechanism

Fig. 2.86 The limit
equilibrium of the pier
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thrusts of the arches and domes covering the right aisle were activated by the
cracking, the piers were unable to sustain these thrusts and consequently collapsed.

The failure load of the piers was influenced by the low compression masonry
strength. The assumption of infinite compression strength has to be checked.

The church’s collapse could have been avoided by simply fixing chains under
the transverse arches and right aisle domes just after the damage caused by the 1990
earthquake. The cathedral of Noto has since been rebuilt and still represents one of
the most extraordinary examples of baroque architecture in Italy, particularly in its
magnificent façade.
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Chapter 3
Masonry Arches

Abstract Aim of this chapter is studying Statics of the masonry arch. Limit
Analysis of the arch, under vertical and horizontal forces, together with the research
of its minimum thrust, is pursued by direct application of the general theory pre-
sented in the foregoing chapter. The minimum thrust is determined for the round
and for the depressed arch, examining the strict connection existing between the
geometry of the pressure line and the hinge position of the corresponding settlement
mechanisms. Other special cases, as in particular the collapse induced by crushing
of masonry in elements that cannot get deformed through mechanisms, as for
instance in the plat-band arch, are studied. The chapter ends by examining and
discussing the tests performed in laboratories to study the masonry arch behavior.

3.1 Definitions and History

A masonry arch is a curved structural element that spans an opening. It is able to
sustain loads solely by virtue of compressions. It is a structure whose geometry,
perhaps better than any other epitomizes the ingenuity of masonry constructions.

In order to erect an arch with bricks or stone voussoirs, the individual masonry
elements must be placed with radial joints to prevent shear slippage. Before
achieving the skill necessary to construct true stone arches, with radial joints,
ancient builders first learned to erect so-called false arches. These are the corbelled
structures formed by offsetting successive stone courses so that they project towards
the archway’s center from each supporting side (Fig. 3.1).

Ancient examples of these constructions are the walls built above the Lion Gate
at Mycenae (Fig. 3.2) and other Minoan structures.

The safety of a false arch depends on positioning the vertical joints in such a way
as to prevent the overturning of any of the blocks, which are set and therefore act in
groups (Fig. 3.3).
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In the false arch the horizontal stones at the key section are unable to transfer
thrust. In fact, only friction opposes their sliding, which is difficult to exploit at the
top of the arch, as there is no vertical compression. Each of the two halves of the
arch must therefore be freestanding, that is, able to remain upright on its own.

These more rudimentary constructions are conceptually very different from true
arches. In fact, true arches were developed much later, though some ancient

Fig. 3.1 False arch

Fig. 3.2 Lion Gate at
Mycenae

Fig. 3.3 False arch safety—
preventing the overturning of
various block groups
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Sumerian buildings contain examples of simple small arches built with bricks
joined through radial joints. It was however the Etruscans who finally made sys-
tematic use of true masonry arches.

One outstanding example is the arch of the Volterra gateway (Fig. 3.4) from the
4th century BCE., in which the radial arrangement of the joints between the stone
voussoirs are clearly visible.

Another example is the round arch over the so-called Porta Rosa (Pink Gate,
Fig. 3.5) of the city wall of Velia, the ancient Greek settlement of Elea, also built in
the 4th century BCE. It is a rare example of Greek arch construction in Magna
Græcia. As can be seen in the photo, the voussoirs are wedge-shaped, a geometry
that increased the masonry’s strength and enabled reducing the thickness of the
joints.

The Romans later made widespread use of the arch, particularly the round arch,
in the construction of aqueducts, bridges, etc. Figure 3.6 shows a view of the bridge
of Fabricius, Rome’s best-preserved Roman bridge, from the 1st century BCE.
Figure 3.7, from a drawing by the architect Andrea Palladio, shows an example of a
typical Roman bridge, with its round arches and constant thickness.

One beautiful example of a more modern masonry bridge is the Turin ‘Mosca’
bridge erected in 1827 to span the Dora Riparia River. Each arch is made up of 93
granite voussoirs: it has a span of 45 m, a rise at the intrados of 5.5 m and a
thickness varying from 2 m at the springers to 1.5 m at the keystone (Fig. 3.8).

Fig. 3.4 An Etruscan arch at
Volterra
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Fig. 3.5 The double-arched Porta Rosa at Velia

Fig. 3.6 The Fabricius bridge in Rome

Fig. 3.7 A Roman bridge as drawn by Palladio (from D’Agostino and Bellomo 2001)
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Mortar was used to cement only the first 11 joints at the springers and the 22
joints near the key. The bridge was studied by Castigliano in 1879 to verify the
advantages of using mortar joints on the pressure line, a question which will be
taken up again later.

Nowadays most bridges are constructed of reinforced concrete and steel. The last
large masonry bridges were built in Europe and the USA with spans ranging
between 80–100 m. The Plauen bridge (1903–1906) with a span length of 90 m
(Fig. 3.9) is a good example of these longer masonry bridges.

Though new ones are rarely constructed, still today there are myriad stone
bridges in service along European motor and railway networks. For small-span
bridges, from 3 to 6 m in length, the arch thickness is generally kept constant
roughly according to the formula

s ¼ að1þ
ffiffiffi
L

p
Þ; ð3:1Þ

Fig. 3.8 The Mosca bridge in Turin (from an 1879 drawing by Castigliano)

Fig. 3.9 The Plauen bridge (1903–1905) with 90 m span (from D’Agostino and Bellomo 2001)
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where a varies between 0.15–0.18 for roadway bridges and s and L are expressed in
m. For larger spans, the thickness at the key is generally equal to

sc ¼ 0:10þ 0:20
ffiffiffi
L

p
; ð3:10Þ

while at the springers it is 1.1 � 1.6 times the thickness at the key (D’Agostino and
Bellomo 2001). The variation in the cross sections’ moment of inertia for arches of
variable thickness is frequently taken to be

I ¼ Ic
cos a

I ¼ Ic
cos3 a

; ð3:2Þ

where Ic is the key section moment of inertia and a is the angle between the tangent
to the arch axis and the horizontal. The left-hand formula furnishes the variation law
from springers to key of the moment of inertia of arches having transverse sections
with constant height and linearly increasing width, while the right-hand expression
is for arches with constant width and linearly increasing section height.

3.2 Birth of Statics of the Arch

The first mechanical definition of the arch (Fig. 3.10) was formulated by Leonardo
Da Vinci (1451–1519).

According to his definition, reported by Marcolongo (1937): “[… arch is no
more than a strength caused by two weaknesses, in that in its construction the arch
is composed of two quarter circles, each of which, being in and of itself very weak,
tends to fall, but as each opposes this tendency in the other, the two weaknesses are
transformed into one strength]”.

Leonardo not only gave us this insightful interpretation of the arch, but he also
designed equipment to measure arch thrusts, as shown in the lower sketch in
Fig. 3.10, taken from the Forster Codex and reported by Benvenuto (1991).

Fig. 3.10 The first definition of the arch, by Leonardo da Vinci, with the equipment designed to
measure thrust
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The research conducted by Robert Hooke (1675) at Cambridge led to formu-
lation of the resistant model of the arch, using the funicular curve of the loads. The
arch, whose axis is upside down with respect to a hanging chain (catenary), can
sustain the same loads determining the equilibrium curve of the chain.

In 1675 Hooke realized the importance of studying upside down, or inverted,
systems to analyze the equilibrium of masonry arches. He announced his discovery
in a now famous Latin anagram to secure his authorship: “…ut pendet continuum
flexile, sic stabit contiguum rigidum inversum,…”, meaning “.. as hangs a flexible
cable so, inverted, stands the rigid arch..” (Fig. 3.11). His finding marked the
beginning of the discipline of Statics of masonry arches, thanks to which the study
of the behavior of masonry arches made great progress by using the concept of the
inverted funicular curve.

The configuration assumed by a heavy chain suspended between two fixed
points, B and C, is represented by the catenary, also called the “chainette”. Leibniz,
Huygens and Johann Bernoulli, together with his brother, Jakob, discovered this
curve (Timoshenko 1953).

An important property of the catenary is that, at any point G along the curve, the
resultant of all forces applied to the chain to the left of point G—that is, the
resultant of the weight of the catenary segment between B and G, together with the
reaction of the suspension point B—passes precisely through G and is tangent to it.
It is worthwhile deriving the equation of the catenary, also known as Hooke’s
curve, BAC, as illustrated in Figs. 3.11 and 3.12. Figure 3.13 shows an element ds
of the chain in equilibrium under its own weight and the axial tensile forces acting
along the tangents to the end sections of the element.

Fig. 3.11 Hooke’s Law
(Heyman 1997)
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Statics of the masonry arch is thus strictly connected to Statics of the suspended
chain. For this reason particularly attention is here given to the study of the equi-
librium curve of a uniform inextensible cable, or chain, that hangs between two
fixed points that are at the same level.

3.2.1 The Suspended Chain

The problem is to determine the equilibrium curve z = z(x) of the chain, where x is
the horizontal abscissa. The difficulty of the problem met by the first research
workers was due that the curve is not algebraic but hyperbolic. Many attempts to
describe this curve were first done by Galileo, Jungius and then by Huygens, finally
by Leibniz and the Bernoulli brothers, James and John, that applied the calculus, the
extraordinary new invention of that time, as reported by Truesdell (1960).

The reference system is Oxz, as shown in Fig. 3.12, with the origin O taken at
the middle point of the chain, suspended at A and B. The profile of the suspended
chain, a uniform inextensible cable, perfectly flexible, that can sustain only tensile
forces, is defined by the curve

z ¼ zðxÞ; 0� x� L=2 ð3:3Þ

that is symmetric with respect to the axis z.
The sag of the chain is f and Lo and L/2 are the semi-lengths of the curve and of

its horizontal projection respectively. The abscissa x, the horizontal projection of
the segment s(x) of the curve included between the point O and P of Fig. 3.12,
varies between the values x = 0 and x = L/2. It has been moreover assumed that
z = 0 at x = 0.

Let g be the weight per unit length of the chain with constant cross section. Each
segment ds weights gds. The horizontal component of the tensile force N in the
chain is constant, while the variation along x of its vertical component equals the
weight of the element ds of the chain. Thus, we have

d
dx

ðN cos hÞ ¼ 0
d
dx

ðN sin hÞdx� gds ¼ 0; ð3:4Þ

Fig. 3.12 The suspended
chain and the reference
system Oxz
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where h indicates the angle between the tangent to the catenary and the horizontal
axis x (Fig. 3.13). The horizontal component of the pull N in the chain is denoted by
H and is given by

H ¼ N cos h ¼ cost: ð3:5Þ

Therefore, taking the first of conditions (3.3) into account, from the second we
obtain

H
d
dx

ðtghÞ¼g
ds
dx

ð3:6Þ

and, because

ds cos h ¼ dx ð3:7Þ

we also have

H
d
dh

ðtghÞ dh
dx

¼ g
cos h

ð3:8Þ

and

H
1

cos h
dh
dx

¼g: ð3:80Þ

Splitting the variables and integrating gives

Zh

0

dh
cos h

¼ g
H

Zx

0

dx: ð3:9Þ

Fig. 3.13 Internal
equilibrium of a heavy chain
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Under the assumption that, by symmetry, the origin x = 0 is found at the middle
of the chain, so that for x = 0, we have h = 0, integration of (3.9) gives

ln tgðp
4
þ h

2
Þ¼ g

H
x; tgðp

4
þ h

2
Þ = e

g
Hx: ð3:10Þ

However,

tgðp
4
þ h

2
Þ - ctgðp

4
þ h

2
Þ = 2tgh ð3:11Þ

and

tgh ¼ 1
2
ðe g

Hx � e�
g
HxÞ: ð3:12Þ

By virtue of (3.3), we also have

dz
dx

¼ 1
2
ðe� g

Hx � e
g
HxÞ ð3:13Þ

and we get

zðxÞ ¼ 1
2
H
g
ðe g

Hx + e�
g
HxÞþ cost: ð3:14Þ

Using the hyperbolic function coshx and taking into account that z = 0 at x = 0,
we finally obtain

zðxÞ ¼ H
g
ðcosh g

H
x� 1Þ ð3:15Þ

The length of the segment of chain as a function of its horizontal projection can
be obtained taking into account that the length s(x) of the chain segment included
between the abscissa x = 0 and x = x, is given by

sðxÞ ¼
Z x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdz

dx
Þ2

r
dx ¼

Z x

0
cosh

g
H
xdx ¼ H

g
sinh

g
H
x ð3:16Þ

The semi-length Lo of the chain, computed from x = 0 to x = L/2 thus is

Lo ¼ H
g
sinh

gL
2H

ð3:17Þ
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With the position

v ¼ Lo
L=2

ð3:18Þ

where v > 1, we obtain the pull H of the chain, loaded by its unit weight g, as
solution of the equation

vðgL
2H

Þ ¼ sinhðgL
2H

Þ ð3:19Þ

function of Lo and L/2. The tension at any point of the cable is

NðxÞ ¼ H
cos h

¼ H cosh
gx
H

ð3:20Þ

Further, according to (3.15) and (3.20) we can evaluate also the expression of the
sag f. We have in fact

f ¼ zðL=2Þ ¼ H
g
ðcosh gL

2H
� 1Þ ð3:21Þ

When the curve z = z(x) flattens gds/dx, the intensity of the load for unit span,
changes barely along x and, according to (3.6)

H
d2z
dx2

� const ð3:22Þ

and the resulting profile is parabolic.
In this case, from the equilibrium of the flattened semi-cable of Fig. 3.14, we

have

H � gL2

8f
ð3:23Þ

that gives the pull corresponding to the parabolic profile.

Fig. 3.14 Equilibrium of the
flattened semi-chain
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3.2.2 The Progress of Statics of the Arch

De la Hire (1712) continued the studies of Hooke and pointed out that the arch
could be able to sustain a given sequence of loads if its pressure curve, the funicular
of all loads applied at the centers of the various voussoirs, was contained entirely
within the arch’s thickness (Fig. 3.15).

Considering in fact the case of the chain with suspension points A and F, loaded
by a sequence of point loads F12, F23, the equilibrium configuration of the chain is
thus defined by the polygon ABCDEF drawn in Fig. 3.16. This polygon can be
obtained by using the so-called funicular polygons.

The definition of a funicular polygon is the same as that of the catenary. The
resultant of the forces acting to the left, for instance, at each node A, B, … is
directed along the stretched sides AB, BC, etc. of the polygon. The same inverted
catenary, or inverted polygon, will define the funicular polygon with compressed
sides (Fig. 3.17).

Belidor (1729), in his book La Science des Ingénieurs, applied the procedure
proposed by Hooke to the problem of dimensioning the arches, in particular, their
abutments. The consequences were enormous. Using this approach Poleni (1748),
as it will be shown in the next chapter, was able to check the stability of the dome of

Fig. 3.15 Masonry arch in
admissible equilibrium: the
funicular of the loads is
wholly contained within the
arch

Fig. 3.16 Equilibrium
polygonal of the chain loaded
by vertical point forces

Fig. 3.17 The inverted
equilibrium polygon
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St. Peter’s Basilica in Rome, which at the time aroused serious concerns about its
cracking.

We point out that, according to this approach, we can obtain an infinite number
of pressure lines all contained within the arch. The definition of the real pressure
line required further research and only after about 250 years the answer to the
problem was given.

Statics of arches continued to develop gradually throughout the 18th and part of
the 19th century. Important contributions to the advancement of the statics of arches
came from French engineers during the planning and construction of French road
networks, for which many masonry bridge were built. A particularly significant
contribution was made by Coulomb (1773) in his famous essay, Sur une
Application des Régles de maximis et minimis ……, presented to the French
Academy of Sciences and brilliantly commented on two centuries later by Heyman
(1972).

In his work Coulomb showed some results he obtained while working as a
military engineer in Martinique directing the reinforcement operations on walls and
bastions. His milestone essay also established modern soil mechanics and addressed
many other problems, such as the bending of beams, column fracture and the statics
of abutments under the action of the thrust of masonry arches.

Coulomb thoroughly examined the problem of arch safety by considering both
shear and axial failures. He observed that the presence of a pressure curve entirely
contained within the arch did not actually furnish any indication about the level of
arch collapse safety. Coulomb analyzed a symmetrical arch loaded symmetrically as
in Fig. 3.18, which shows half of the arch between the key and springer sections.
Only the thrust H acts on the middle section, AB. The shear T(a), acting on any
given section, defined by the angle a shown in Fig. 3.18, is

TðaÞ ¼ QðaÞ cos a� H sin a

and is opposed by the friction strength, which is in turn proportional to the com-
pressive force N(a), which is given by

NðaÞ ¼ QðaÞ sin aþH cos a:

m

nH

Q(α)

α

A

B

h1(α)
h(α)

a(α)

a1(α)Fig. 3.18 The search for
critical arch sections
according to Coulomb (1773)
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In his analysis, Coulomb evaluates the smallest value of thrust able to oppose
sliding of the arch segment, AB mn, on the plane mn by writing

QðaÞ cos a� H sin a ¼ l½QðaÞ sin aþH cos a�; ð3:24Þ

where l is the coefficient of friction. Actually, besides friction strength, Coulomb
added another term, independent of the compression force and equal to sA, where
A is the area of the section mn. Thus, in place of (3.24), we have

QðaÞ cos a� H sin a ¼ l½QðaÞ sin aþH cos a� þ sA; ð3:240Þ

whence Coulomb obtained

HðaÞ ¼ QðaÞðcos a� l sin aÞ � sA
sin aþ l cos a

: ð3:25Þ

It is now necessary to identify the smallest value of thrust H able to oppose
slipping between all arch sections by varying angle a. Alternatively, the same result
can be achieved by determining the position of the critical section with regards to
slippage in the opposite direction. Coulomb also analyzed the possibility of hinge
formation at the arch extrados or intrados and defined the two other conditions

H0hðaÞ ¼ QðaÞaðaÞ H00h1ðaÞ ¼ QðaÞa1ðaÞ ð3:26Þ

which depend on the position, a, of the critical section. Two limit values, H’ and
H”, bound the arch thrust able to avoid such hinge formation. They can be
determined by means of suitable conditions of maximum and minimum of appro-
priate functions of a. Numerical applications have shown that hinging conditions
are more critical than those of shear slipping. Coulomb’s static analysis showed for
the first time the need to verify masonry arches with regard to both slipping and
hinging. His findings were not well understood by engineers of the time because
finding the maximum and minimum of the functions was a demanding task that
only few scientists were able to manage. However, in the 19th century, thanks to the
work of Poncelet (1852), which lead to the development of Graphic Statics, the
Coulomb approach was rediscovered and applied anew. Foce (2002) has published
a thorough commentary on Coulomb’s research. The most hotly debated problems,
however, remained the determination of the thrust and tracing of the pressure line.
The English engineer Moseley (1843), in his book, The Mechanical Principles of
Engineering and Architecture, introduced French methods of static analysis of
constructions into English schools. In his paper, On the Theory of the ArchMoseley
(1839), had once again taken up the problem of finding the pressure line of an arch
by searching for the optimal position of this curve via the so-called principle of
minimum pressure. His results are closely related to the considerations that origi-
nally gave rise to the concept of minimum thrust and will be addressed further on.
Moseley also defined the so-called strength curve, represented by the polygon
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connecting all the intersection points of the funicular polygon with the sections
between the arch voussoirs.

Moseley’s admissibility condition was based on the strength curve: the presence
of a strength curve completely contained within the arch ensured the static
admissibility of the arch. It can easily be appreciated that the strength curve does
not coincide with the funicular polygon corresponding to the assigned load distri-
bution, even though, as the voussoirs become thinner and thinner, the strength
curve tends to overlap the pressure curve.

The paper, Sur l’équilibre des voutes en berceau, by Mery (1840), then set forth
a new practical procedure for evaluating the pressure curve of arches and estab-
lished that the pressure curve should be contained within the core sections of the
arch so that all arch sections are entirely compressed. Mery did not however clarify
whether the true pressure line of the arch should actually correspond to the pro-
posed curve. Since the Mery procedure used a simple graphical construction, it
spread rapidly throughout Europe.

Meanwhile, in the latter half of the 19th century, with the development of steel
and, later, reinforced concrete constructions, the new theory of elasticity received
great impetus. The study of arches was absorbed into the field of elastic structures.
Bresse (1859) determined the expression for the thrust of elastic arches with dif-
ferent profiles under various loading conditions. Castigliano (1879), working on
some technical problems involving the Turin Mosca bridge, defined masonry arches
as imperfect arches, given their susceptibility to cracking.

The introduction of the elasticity solved, at least apparently, the difficulties
involved in the search for the pressure line. The elastic arch cannot crack and is
incapable to describe the behavior of masonry arches. Nevertheless Winkler (1858)
studied the flexural energy of an elastic arch

V ¼ 1
2

ZL

0

M2ðsÞ
EI

ds; ð3:27Þ

where M indicates the bending moment in the arch and s is the curvilinear abscissa
along the arch axis. Let us now consider the funicular of the loads, which represents
the pressure line of the arch. Figure 3.19 shows half a masonry arch: the axis of the
arch and the pressure line are represented by a dotted and solid line, respectively.

zH
Fig. 3.19 The moment
acting on the arch sections
according to Winkler
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Only thrust, H, acts at the key section. If z is the vertical distance of any given point
on the pressure line from the arch’s curved axis, according to Winkler the bending
moment M(s) can be expressed as

MðsÞ ¼ H � z: ð3:28Þ

In the late 19th century the principle of minimum strain energy was first set forth
by Menabrea (1858) and subsequently proved by Castigliano (1879).

According to this principle, in a statically undetermined structure the actual
reactions of the redundant constraints make their strain energy a minimum. By
applying this principle to the elastic arch, Winkler was able to establish the position
of the pressure line.

Of all the possible funicular curves of the loads that can be traced within the
arch, Winkler showed that the actual pressure line is that curve that deviates as little
as possible from the arch axis. By substituting (3.28) into (3.27), the actual pressure
line turns out to be the line that minimizes the integral

V ¼ 1
2

ZL

0

H2z2

EI
ds: ð3:29Þ

For an arch under solely vertical loads, the thrust H is constant along the arch’s
length, and the condition of minimum becomes

ZL

0

z2ds ð3:30Þ

The search for the actual pressure line of the arch thus hinges on finding the
minimum of integral (3.30). Clearly, the minimum is attained when this integral is
zero, i.e., when the pressure line coincides with the arch axis. This explains why
many late 19th-century road and railway bridges were designed with their axes
coinciding with the funicular curve of the dead loads.

Winkler’s solution, however, seemed inappropriate for masonry arches, which
do not exhibit linear elastic behavior, so research aimed at defining the most
appropriate profile for bridge axes thus continued to represent an ongoing issue in
bridge design. In addition to the weight of the arch, there are also the weights of the
filling material, the spandrels, the roadbed and any ballast, which as dead loads
should be taken into account in the arch design. This problem was studied by Inglis
(1863) and later by Irvine (1981).

According to Inglis’ formulation (Fig. 3.20), the axis of the arch, defined as the
equation of the funicular curve of the loads, is given by
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H
d2z
dx

¼� c f þ c� zðxÞ½ �; ð3:31Þ

where c is the mean specific weight of the masonry and superstructure, f the rise of
the arch, and c the height of the filling at the key of the arch. Integration of (3.31)
thus gives

z ¼ f þ c 1� cosh ð1� 2x
L
Þ cosh�1ðcþ f

c
Þ

� �� �
: ð3:32Þ

However, this equation was seldom applied in the construction of road and
railway bridges during the 19th century. Instead, many arch bridges were built with
an elliptical profile.

Figure 3.21 shows a photograph of an elliptical profile bridge that spans the
River Calore in Benevento, in the south of Italy. A thorough research study on
construction of bridges of this type in southern Italy was conducted by Belli (2008).

Note that the problem of finding the most suitable arch profile becomes much
simpler if the weight of the deck is much larger than that of the arch itself: the
weight of the deck can thus be considered uniformly distributed (Fig. 3.22).

The equation of the axis curve of the arch, a funicular of the uniform load q, with
H the thrust of the arch, takes the form

L

z(x)

x

f + c

c

Fig. 3.20 The arch with its superstructure

Fig. 3.21 An elliptical profile bridge on the River Calore in Benevento
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H
d2z
dx2

¼ �q ð3:33Þ

The solution to this equation, satisfying the boundary conditions z = 0 at x = 0
and at x = L, is

z ¼ q
2H

xðL� xÞ; ð3:34Þ

and the corresponding thrust of the arch is thus

H ¼ qL2

8f
; ð3:35Þ

where f denotes the rise of the arch. This simple solution for calculating the thrust of
a parabolic arch was actually already known well before Inglis’ time. The Russian
engineer Fuss, Euler’s son-in-law, had already evaluated it in 1794 when designing
a bridge spanning the Neva River in St Petersburg (Timoshenko 1953).

On the other hand, the ability to define the failure loads for an arch, involving the
emergence of mechanisms, was not achieved until well after Winkler and Inglis’
times. Indeed, it was only in the late 20th century that it was discovered that Limit
Analysis, initially formulated for steel structures, was valid for masonry arches as
well (Kooharian 1952; Prager 1959).

This discovery, which inextricably linked the statics and kinematics of arches,
also led to a revival of earlier, 18th-century studies and the consequent development
of a new line of research on the statics of masonry structures, in which Heyman
(1966, 1982a, b, 1997) figured prominently (Kurrer 2008).

In this context, the old Mery (1840) procedure, so widespread among engineers,
received a valid mechanical interpretation: the arch pressure line sustaining a given
load distribution and plotted using Mery’s procedure represents a statically
admissible stress state. Thus, according to the static theorem, the loads acting on the
arch cannot be greater than the loads producing arch collapse.

The history of the masonry arch shows that the efforts of ancient builders were
concentrated above all on building arches able to sustain their own weight, with
their axis near to the funicular of the load distribution. To this end, their aim was to
erect arches that satisfied the condition

Fig. 3.22 Arch with
predominating deck weight
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\g; dv[\0; 8dv 2 M; ð3:36Þ

which has been covered in depth in Chap. 2. The arch geometry determines
whether or not the weight of the arch will consistently counter the development of
any mechanism.

Figure 3.23 shows a generic mechanism displacement, v, satisfying condition
(3.36), which must hold for any and all mechanisms belonging to the set M of
kinematically admissible arch mechanisms.

The action of loads having distributions different from that of the weight, for
instance, a point load at any position along its length, modifies the initial profile of
the pressure line and can lead to arch failure. Figure 3.24a, b show the failure
mechanisms of an arch under its own weight and a point load applied at any given
section along its length and its middle section, respectively. In the first case, the
collapse mechanism is asymmetrical, in the second case symmetrical.

At the limit equilibrium state, the pressure line of the arch passes through the
hinges of the corresponding mechanism. The point load applied on the arch has thus
modified the initial pressure line, forcing it to pass precisely through the afore-
mentioned hinges.

δv

g

Fig. 3.23 A generic mechanism of the arch opposed by weight g

C2,3

C1,2

C1

F

C4

C3,4

C2

C1,2

C1

C3

C2,3

F(a) (b)

Fig. 3.24 Asymmetrical and symmetrical failure mechanisms of an arch loaded by its own weight
and a point load
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Such behavior can explain the difficulties often encountered in building masonry
bridges spanning rivers or streams. The centering structures required to build an
arch could only be kept in place for short times, when the river was dry. As a rule,
only the stone arch was built on the centering: completion of the bridge was instead
left until later, by working on the already erected arch without the support of the
centering. This was the most hazardous stage of construction, because the pro-
gressive addition of the deck could seriously alter the arch pressure line and shift it
near a mechanism state. Construction of the bridge deck had to proceed with great
care by placing successive loads in a symmetrical arrangement. Many bridges were
completed only after much trial and error.

Frequently, for structural reasons, the axis curve of the arch shifted from the
funicular curve of its own weight, something which occurred most commonly in
circular arches. For these arches under their own weights the pressure line cannot
coincide with the circular axis: the pressure line threads through the arch, just barely
within its thickness. Thus, arches whose thickness is less than a certain minimum
cannot completely contain the pressure line and consequently cannot sustain their
own weight.

It was Couplet (1731), who, following Belidor, first managed to approximate the
minimum admissible thickness of a circular arch with given thickness t. For a round
arch the ratio t/ri between t and its internal radius ri, cannot be less than

ðt=riÞmin ¼ 0:108: ð3:37Þ

This value (3.37) was evaluated by Heyman (1966) and later checked by
Ochsendorf (2006). When the arch has the bare minimum thickness, the pressure
line takes on the course shown in Fig. 3.25: in this state the arch will attain a
mechanism condition.

Fig. 3.25 Minimum
thickness of a round arch with
the corresponding pressure
line (a) and hinge position
(b). (Heyman 1997)
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For a masonry arch bridge it is clearly important to know the minimum thickness
taking into account the weight not only of the arch itself, but its accessory structures
as well (i.e., deck, filling, etc.).

Table 3.1 gives the values of the critical ratio t/R between thickness t and radius
R for a round arch sustaining its own weight and the weight of the deck. Table 3.1
also includes the values of the angle h, measured from the springing line, defining
the position of the corresponding internal hinges, as determined by Irvine (1981)
under conditions of minimum thickness.

As can be seen from the values, the presence of filling only at the haunches, that
is when c = 0, has a stabilizing effect. Instead, when the filling is also laid midway
along the arch, it has the opposite effect: the filling destabilizes the structure.

3.3 Internal Equilibrium

It is useful to examine the internal equilibrium of the arch in terms of the axial force
N, the shear T and the bending moment M. In the following analysis it will be
assumed that the joints between the voussoirs are orthogonal to the tangent of the
arch axis. Along this curved axis, where we define the curvilinear abscissa s, both
the tangent pt(s) and normal loads pn(s) are applied and act within the plane of the

Table 3.1 Values of the minimum ratio t/R and the angle h defining the position of internal
hinges for various values of the ratio c/R between the height c of the filling at the arch key and
radius R for round masonry arches

c/R h t/R c/R h t/R c/R h t/R

0.00 21.6° 0.047 0.2 32.0° 0.094 2.0 36.8° 0.133

0.001 21.7° 0.047 0.4 33.6° 0.104 4.0 35.1° 0.138

0,005 22.3° 0.049 0.6 34.2° 0.117 6.0 35.2° 0.140

0.01 22.0° 0.051 0.8 34.5° 0.122 10.0 35.2° 0.141

0.5 26.0° 0.063 1.0 34.7° 0.125 1000 35.3° 0.144

0.1 29.5° 0.078 1.5 34.9° 0.130 1 35.3° 0.144

N+dN

T+dT

M+dMT

N

M

pn ds

pt ds ds

dφ

φ
pt ds

ds

dφ
gds

φ

pn ds

ρ

Fig. 3.26 Free-body diagrams for the arch element
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arch (Fig. 3.26). These loads are, as a rule, components of the vertical weight g
(s) per unit length of arch. The equations for the translational equilibrium of a unit
element ds of the arch are

Nþ dN � N cos d/þ T sin d/þ ptds ¼ 0 ð3:38Þ

T þ dT � T cos d/� N sin d/þ pnds ¼ 0; ð3:39Þ

which give

dN
ds

þ T
q
þ pt ¼ 0 ð3:380Þ

and

dT
ds

� N
q
þ pn ¼ 0: ð3:390Þ

The rotational equilibrium equation around the centroid of the section at the
abscissa s + ds is expressed as

Mþ dM �M � Tds ¼ 0 ð3:40Þ

which yields

T ¼ dM
ds

; ð3:400Þ

Equations (3.38′), (3.39′) and (3.40′) define the equilibrium equations of recti-
linear beams for q ! 1.

3.3.1 Shear in the Arch

The shear acting in the arch is influenced by its curvature. The bending moment
M can be evaluated as the product of the axial force N by its eccentricity e with
respect to the section’s center. Thus, with position

M ¼ Ne; ð3:41Þ

from (3.40′) and using (3.41), we get

T ¼
de
ds N � pte

1þ e=q
: ð3:42Þ

Under symmetrical loading conditions, such as those holding in a symmetrical
arch under its own weight, at the middle section defined by / = 0, we have T = 0.
In this case, in fact, pt = 0 and de/ds = 0.
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The springing section is a critical point for the shear in a round arch of radius
R under vertical loads, where pt = 0, and hence the shear is

T ¼
de
ds N

1þ e=R
: ð3:420Þ

The shear is non-zero at the internal hinge sections, where the pressure line runs
tangentially to the arch intrados or extrados. In these sections we have e = t/2,
where t is the thickness and

de
ds

¼ 0: ð3:43Þ

The shear in these sections is

Tinth ¼ � ptt
2ð1þ t=2qÞ : ð3:44Þ

When only the weight g acts on the arch, the tangent and the normal components
of these loads are

pt ¼ g sinu pn ¼ g cosu; ð3:45Þ

in which case the shear at the internal hinge, defined by angle /, is

Tinth ¼ � gt
2ð1þ t=2qÞ sin/: ð3:440Þ

Taking into account that t=2q � 1; we have Tinth � ðgt sin/Þ=2:
Note that this evaluation of the shear refers to the direction orthogonal to the

arch axis. Thus, when the joints of voussoirs are arranged precisely along the
direction orthogonal to the arch axis, the evaluated shear must be compared to the
shear strength at the voussoirs. The radial disposition of the voussoirs in a semi-
circular arch, for instance, conforms to this hypothesis. Safety against slipping
requires that for each section of the arch

T � fN; ð3:46Þ

where f is the friction coefficient between mortar and brick or stone. According to
(3.42), we thus have

de
ds N � pte

1þ e=q
� fN ð3:460Þ
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3.4 Limit Analysis

Figure 3.27 is taken from the paper, Limit Analysis of Voussoir (Segmental) and
Concrete Arches, published in the ACI Journal (Dec. 1952, Proc. V, 49, p. 317) by
A. Kooharian, a PhD. student at Brown University, where he prepared his thesis
under the guidance of D.C. Drucker.

Kooharian discovered that Limit Analysis, initially formulated for ductile steel
structures, could also be applied to structures composed of concrete voussoirs.
Heyman would later recognize that this result was also valid for masonry structures
satisfying the no-tension assumptions previously discussed in Sect. 3 of Chap. 2.
Application of Limit Analysis to masonry arches provides a great deal of useful
information.

The failure mechanisms of an arch, as seen earlier, may be symmetrical or
asymmetrical. Figure 3.28, for instance, shows a symmetrical mechanism.
Figure 3.29 refers to the case of the arch loaded by both its own weight g and the
point load P having increasing magnitude and variable position.

Fig. 3.27 The arch with
concrete voussoirs studied by
Kooharian (1952)

s L
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C34
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Fig. 3.28 A symmetrical
arch mechanism
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The plot on the right of Fig. 3.29 shows how the value of the failure load
P varies with its position x between the key (x = 0) and the springer section.

The plot has been obtained with reference to a depressed masonry arch with a
depression angle of 10°; the arch has a span length of 1.50 m, thickness t of 0.35 m
and a width B of 0.35 m.

This simple example clearly reveals how the resistance of an arch to point loads
is greatly reduced when the load is applied at the haunches.

3.5 Minimum and Maximum Thrust

Let us consider an arch in an admissible equilibrium state. Thus, at least one
pressure line will exist that is a funicular of the applied loads contained within the
arch’s thickness. This holds, for example, for a round arch whose thickness is
greater than the minimum (3.37) under its own weight. An unique thrust will
correspond to each pressure line in the arch and an unique pressure line, funicular of
the applied loads, will pass through three different generic points, hence, there are
13 possible pressure lines. Of all these curves, one curve will exist that corre-
sponds to the minimum thrust and another one to the maximum. Figure 3.30 shows
an example of such pressure lines: one corresponding to the minimum thrust and
the other to the maximum. (Heyman 1982a, b, 1997), (Ochsendorf 2006).The
dotted line in Fig. 3.30 is the curve furnishing the minimum thrust, the continuous
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Fig. 3.29 The arch at collapse under its own weight and a generic point load. The diagram at the
right shows the variation of the limit point load Fo versus its position along the span

Fig. 3.30 Maximum and
minimum pressure lines in an
arch
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line, the maximum. The curve corresponding to the minimum thrust traces the line
of the arch with the minimum span and the highest rise, while the other curve,
corresponding to the maximum thrust, instead has the maximum span and shortest
rise. An extension of this result, from the arch to any masonry structure, has been
given by Como (1996, 1998).

3.5.1 Effects of Elastic Deformations on the Thrust
of the Arch

Knowing the evolution of the stresses within an arch during the various stages of
construction can be useful for identifying the various factors that influence the
thrust in a masonry arch.

Arch construction begins on some centering structures. During the initial stages
of construction, the arch is unloaded because all its weight is sustained by the
centering. However, after stripping, that is, removal of the centering structures, the
arch sustains its own weight and pushes against the springers.

Let us assume that the axis of the arch is a funicular of the loads acting after
dismantling of the centering. Such assumption is generally made in the design of
large-span arches. Immediately after stripping, the arch, with fixed springers, is
subjected to a uniform compression and the corresponding thrust can be evaluated
quite simply. In fact, if L is the arch span, f its rise, both measured along its axis,
and

Mc ð3:47Þ

denotes the bending moment at the midsection of the equivalent beam with the
same span and loads supported at its ends, the thrust of the arch is

H ¼ Mc

f
: ð3:48Þ

More specifically, if the load p is constant and the arch is parabolic, we have

H ¼ pL2

8f
: ð3:480Þ

α
dx

dsds

dsFig. 3.31 Elastic shortening
of symmetrical voussoirs
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Elastic shortening of all voussoirs will take place due to the uniform com-
pression acting on the arch. An instantaneous thrust drop DH thus occurs upon
stripping, and the pressure line rises at the key section. The thrust drop DH can be
determined by accounting for the fact that it will produce a detachment between the
springers that is equal and opposite to that determined by the elastic shortening
(Fig. 3.31).

Let ds be the length of a single voussoir and Dds the shortening of the voussoir
due to elastic deformation. The shortening between the springers produced by the
elastic deformation of a single symmetrical pair of voussoirs, is

2Dds � cos a ¼ 2
Nds
EA

cos a ¼ 2
H cos a
EA cos a

ds ¼ 2
H
EA

ds: ð3:49Þ

The total shortening DL at the springers consequent to elastic shortening of all
the voussoirs is thus

DL ¼ 2H
Z L=2

0

ds
EA

¼ H
Z L

0

ds
EA

: ð3:490Þ

This shortening is however incompatible with the constraints at the springers.
With firm springers the thrust DH will thus produce an extension equal and opposite
to (3.49′). In order to evaluate this extension, we can refer to the scheme of an arch
with hinges at its ends, as shown in Fig. 3.32.

Let D′ be the displacement at the springers produced by two equal and opposite
unit forces applied to the arch, as in Fig. 3.32. Thus, we have

DH � D0 ¼ �DL; ð3:4900Þ

From (41″) we can obtain the thrust drop for any specific case. For instance, with
the two-hinge, parabolic profile arch under constant load p (Fig. 3.33), with a
variable section corresponding to the variation in inertial moment given by the first
equation in (2), the thrust drop DH is (Santarella 1974)

DH ¼ H
m

1þ m
; ð3:50Þ

where H is the thrust given by (3.48′), that is, the thrust corresponding to an axially
indeformable arch. The thrust, H′, actually acting at the springers, is then

ΔH ΔH

Fig. 3.32 Extension of the
springers due to the thrust
drop ΔH
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H0 ¼ pL2

8f
1

1þ m
; ð3:500Þ

where the quantity m is defined by

m ¼ 15
8

Jc
Acf 2

; ð3:5000Þ

Due to creep deformation, the vertical mortar joints can produce further short-
ening of the arch axis.

The presence of mortar joints thus increases the thrust drop and leads to lower
thrust at the arch springers. Such effects were probably taken into account by
Castigliano in his 1879 study of the statics of the Mosca bridge in Turin.

3.5.2 Cracking

The presence of cracks near the intrados of the midsection of masonry arches is
very common. Attentive inspection may sometimes reveal the presence of similar
cracking even at the extrados, near the haunches. The origin of these cracks might
be traced back to the thrust drop occurring upon stripping. However, attributing the
emergence of cracks wholly to the thrust drop seems dubious, considering the
limited magnitude of this drop. By way of illustration, considering a parabolic arch
with unit width, a span L = 40 m, a rise f = 4.5 m, and a key section height
h = 1.20 m, under uniform loads of 4 t/m2, and assuming the following parameter
values, Jc/Ac = h2/12 = 0.12 m2, m = 0.011, pL2/8f = 177.8 t, the thrust drop DH
would be only 1.95 t. The effective thrust H′ equals 175.8 t/m, and the bending
moment at the key section is Mc = 8.7 tm/m. Thus, the eccentricity e of the axial
load at the key section is only about 5 cm, and the key section remains completely
compressed. Even if we add the effects of creeping of the mortar joints, which is
about the same order of magnitude as the elastic deformation, the eccentricity e of

Fig. 3.33 The arch with variable sections
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the axial load would be about 15 cm, and cracking would still not take place.
Analogous results can be obtained for other types of arches. Thus, if the arch profile
is designed as a funicular of the dead loads present at stripping, the pressure line of
the arch will not deviate much from its axis. Even if the dead loads change during
completion of the arch, any further deviations of the pressure line will still be quite
small.

All things considered, if the arch profile has been designed to match the arch
axis, upon its completion, the pressure line will substantially match this axis. Under
such conditions, the occurrence of cracking can be excluded.

The frequent presence of cracking in masonry arches, particularly at the intrados
of the key section, can in many cases be explained by settling at the springers. In
other cases, specifically when the masonry arch is embedded between piers or side
walls, slight lateral rotation of the supporting structures can lead to an increase in
the arch span and consequent cracking. Thus, all told, the occurrence of cracking at
the intrados of the key section of an historic arch can generally be attributed to
deformation of its supporting structures.

3.5.3 Minimum Thrust State

An arch that has settled through a mechanism deformation adapts itself to the slight
increase in span. Hinges form at the extrados near the key and at the intrados of the
haunches. The initial pressure line of the arch changes its configuration and will
now pass through the hinges of the settlement mechanism (Fig. 3.34).

This pressure line will be neither that calculated by Mery (1840), wholly con-
tained within the thickness of the arch sections, nor that determined by Winkler’s

Fig. 3.34 The settlement mechanism producing arch span widening
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minimum deviation principle. Instead, it follows the hinge distribution of the set-
tlement mechanism and matches the line obtained by applying the Moseley prin-
ciple (1839) of minimum pressure.

The minimum thrust state attained in the arch can be determined by applying the
static or kinematic approach discussed in Chap. 2 (Como 1988). The value of the
minimum thrust is thus obtained graphically by tracing the funicular loads curve
that is completely contained within the arch thickness and has the greatest vertical
inclination at the springers. The pressure line will pass through the extrados of the
key section and will skim the intrados at the haunches.

The kinematic procedure is used to determine the location of the hinges in the
minimum thrust mechanism by looking for the settlement mechanism for which the
kinematic multiplier is at a maximum. For the parabolic arch shown in the
previous Fig. 3.33, the settlement mechanism has lower hinges located at the
intrados of the haunches sections. The minimum thrust is Hmin = pL2/8f, where L is
the span along the intrados profile, and the rise, f, measures the distance between the
key hinge and the horizontal axis passing through these lower hinges. For a
semicircular arch, instead, the pressure line corresponding to the minimum thrust
exhibits various geometries depending on the geometry of the arch, a result which is
the topic of the next sections.

3.5.4 Minimum Thrust in the Round Arch

Figure 3.35 shows the pressure line for a round arch in the minimum thrust state
under its own weight: the dotted line indicates the intrados circle.

The pressure line is traced in the right half of the arch. The angle �a marks the
position of the inner hinge of the settlement mechanism. The mean radius of the
arch and the radius of the intrados circle are respectively denoted by r and ri, and
t is the thickness.

A generic mechanism corresponding to horizontal settling d at the arch springers
is shown in Fig. 3.34. In this mechanism the position of the inner hinge is
unknown. According to the kinematic approach, the minimum thrust can be
determined through condition (2.163) in Chap. 2, as

α

Fig. 3.35 The pressure line
for a round arch at the
minimum thrust state with the
location of the inner hinge
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l ¼ Max
�M

ð� \g,v [
\S; d[

Þ ð3:51Þ

where:

• v is a generic settlement mechanism corresponding to an assigned position of
the inner hinge;

• �M is the set of all settlement mechanisms considering all possible inner hinge
positions;

• \g,v [ is the work of the weight g on the vertical displacements induced by
mechanism v;

• \S; d[ is the work of the thrust S on the horizontal displacement d of the
springers induced by mechanism v.

The problem of finding the maximum, (3.51), has only one unknown: the
position �a of the hinge at the arch intrados (Fig. 3.35). This position has been
determined (Fabiani 2007) via a suitable parametric search by varying the ratio t/ri
between the arch thickness t and the radius ri of the intrados circle. The results
reveal that angle �a; defining the position of the inner hinge, decreases gradually as
the thickness of the arch increases. The position of the inner hinge reaches its
lowest point in the arch, defined by the angle �a0; for the limit value of the ratio t/r,
denoted by ðt=riÞ	. Thus, with any further increases in t/r, angle �a remains fixed at
the value �a0: The limit value of t/r turns out to be

ðt=riÞ	 ¼ 0:534 ð3:52Þ

The minimum thrust can thus be expressed as (Fabiani 2007)

ðlSÞmin ¼ cbr2i �f ðkÞ; ð3:53Þ

where c is the specific weight of the masonry, b the transverse width of the arch and
�f ðkÞ a suitable function of the ratio k = t/ri. Consequently, the search for the
minimum thrust is conducted for 0:108� t=ri � 0:534; where the value of
t/ri = 0.108 corresponds to the minimum admissible arch thickness. Table 3.2
shows the values of �a and �f ðkÞ with varying values of ratio k.

Table 3.2 Position �a of the
inner hinge and the function
�f ðkÞ of k = t/ri

k = t/ri �a(rad.) �f ðkÞ
0.108 0.619 0.075

0.15 0.574 0.092

0.20 0.530 0.112

0.25 0.499 0.129

0.30 0.478 0.143

0.35 0.462 0.155

0.40 0.452 0.165

0.45 0.466 0.172

0.534 0.442 0.181
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By way of example, for a round arch made of stone voussoirs, with c = 2.6 t/mc,
a mean radius r = 6.5 m, thickness t = 1.00 m and consequently an intrados circle
of radius ri = 6.0 m and transverse width b = 1.00 m, we obtain t/ri = 0.167.
Interpolating the values in Table 3.2 yields �a = 0.559 rad and �f ðkÞ = 0.099. The
minimum thrust is thus

ðlSÞmin ¼ cbr2i �f ðkÞ ¼ 2:6 � 1:0 � 6:02 � 0:099 ¼ 9:26 t

3.5.5 Minimum Thrust in the Depressed Arch

Determining the settlement mechanism for a depressed round arch is rather more
complicated. Figure 3.36 illustrates the arrangement of such an arch with springer
angle h. In this case, we must consider both angles h and �a; which defines the
position of the inner hinge for the round arch.

Two different situations can occur, depending on whether the springer angle h is
smaller or larger than �a (Fig. 3.36a, b). Let us indicate with S’ the thrust of the
corresponding round arch. When the springer angle h of a depressed arch is the less
than �a; as in Fig. 3.36a, the pressure line touches the arch intrados at the same

(a) (b)

θ α θ α

Fig. 3.36 Depressed round arches with: a h\�a or b h[ �a

θ

xG
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S

S

G
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Wre

β β
Gd

x

Fig. 3.37 Equilibrium of the depressed arch with h[ �a
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position as the round arch: the thrust is S’. If, on the contrary, h > �a; the pressure
line passes through the intrados of the arch springer.

The minimum thrust, denoted by S, is less than S′. The minimum thrust S for a
depressed arch with h > �a is evaluated by considering the equilibrium of one half
the arch.

Referring now to Fig. 3.37, if G indicates the position of the center of the
half-arch, dG the radial distance of G from O, and xG the distance of this center
G from the vertical axis y, we have

S � z�Wðri cos h� xGÞ ¼ 0; ð3:54Þ

where

z ¼ ðre � ri cos 2bÞ; ð3:55Þ

in which z denotes the distance of the springer section intrados from the top of the
midsection, and ri and re the radii of the arch intrados and extrados circles,
respectively. The weight W of the half-arch is

W ¼ cbA ¼ cb
ZZ

A
dA ¼ cb

Z 2b

0
dh

Z re

ri

qdq ¼ cbbðr2e � r2i Þ; ð3:56Þ

where A is the area of the half-arch, c the specific weight of the masonry, b the
transverse width of the arch and q the radial distance of any given point within the
arch from the origin O.

The distance xG of the center G of the half-arch from axis y is linked to the radial
distance dG of G from point O through the relation

xG ¼ dG sin b; ð3:57Þ

where 2b is the amplitude of the arch. Given the position

dGA ¼ MO; ð3:570Þ

we thus have

A ¼ bðr2e � r2i Þ; MO ¼
ZZ

A
qdA ¼

Z 2b

0
dh

Z re

ri

q2dq ¼ 2
3
bðr3e � r3i Þ ð3:58Þ

and the radial distance dG is

dG ¼ MO

A
¼ 2ðr3e � r3i Þ

3ðr2e � r2i Þ
ð3:59Þ
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Finally, from (46), the minimum thrust S of a depressed arch (Fabiani 2007) is
thus given by

S ¼ cbb
ðr2e � r2i Þ

ðre � ri cos 2bÞ ½ri cos h�
2ðr3e � r3i Þ
3ðr2e � r2i Þ

sin b�: ð3:60Þ

An analogous procedure can be followed for pointed arches.

3.6 Systems of Arches of Different Spans

An interesting case for analysis is the behavior of a number of arches with different
spans connected in series, for instance, the system of coupled arches illustrated in
Fig. 3.38. The arches are loaded by their own weight and the weight of the filling.
The two external arches are the same, but their spans are greater than the central
arch. These two can be considered to be in a minimum thrust state because their
lateral abutments are not constrained.

The inner piers, not constrained by buttresses, can only sustain vertical forces, so
the thrusts transmitted to their heads by the lateral and central arches balance out.
The thrust of the external arches will thus be equal and opposite to that transmitted
by the shorter-span central arch. The middle arch will thus be in an intermediate
state, between minimum and maximum thrust.

Starting with such considerations, the analysis of coupled arch systems involves
the following steps:

• evaluation of the vertical loads on the various voussoirs, taking into account the
weight of both the stone and the section’s share of filling;

• tracing the funicular curve of the loads on the external arches in the minimum
thrust state and estimating the corresponding thrust;

• tracing the pressure line of the central arch, so that it transmits, at its springers, a
thrust equal and opposite to that of the external arches.

Figure 3.38 shows the plots of the various pressure lines for the three arches. In
many other arch systems, assuming the existence of minimum thrust states can help
obtain a description of their stress states.

Fig. 3.38 System of arches of different spans
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3.7 Masonry Arches Loaded by In-plane
Horizontal Forces

A particularly interesting, and important, case is that of an arch subjected to hor-
izontal forces (Fig. 3.39). The assumed loading condition is that the weight of the
arch remains constant while the horizontal forces increase according to the loading
parameter k.

The failure mechanism involves the formation of four hinges and the develop-
ment of vertical and horizontal displacements, as shown in Fig. 3.40. The failure
multiplier can be determined through the following steps (Abruzzese et al. 1985;
Como and Lanni 1988).

(a) finding the location of the four hinges compatible with an admissible failure
mechanism u′, as shown in Fig. 3.38. The horizontal distances of the hinges (1),
(1, 2), (2, 3) and (3) from the intrados of the left springer are respectively
denoted by x1, x2, x3 and x4;

(b) evaluating the kinematic multiplier k(u′);
(c) tracing the funicular polygon corresponding to both the assumed hinge posi-

tions and the resulting horizontal loads, multiplied by the factor k(u′);
(d) checking whether the funicular polygon is wholly contained within the arch. If

it is, the kinematical multiplier can also be assumed to be statically admissible,
as can the sought-for failure multiplier; if not, the procedure must be repeated.

The following details a practical method for simple evaluation of the failure
multiplier. Firstly, let us define:

• yi(x)—intrados profile of the arch
• ye(x)—extrados profile of the arch;
• Mv(x)—moment at section x of the entire vertical load distribution p(x) situated

to the left of section x;
• Moi—moment of all the horizontal loads p(x) situated to the left of section x with

respect to the intrados of section x;
• Moe—moment of all the horizontal loads p(x) situated to the left of section

x with respect to the extrados of section x;
• RV and RH—the vertical and horizontal reactions of hinge (1).

q
λq

Fig. 3.39 The arch under constant weight and increasing horizontal forces
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Numerical trials have enabled establishing that at arch failure:

• hinge (1) is near the intrados of the left springer section
• hinge (3) is located at the extrados of the right springer section
• the distance between hinges (1, 2) and (2, 3) is approximately equal to L/2,

where L is the internal span of the arch.

These results allowing reducing the four unknowns, x1, x2, x3 and x4, to only
two: x1 and x2. Therefore, for any choice of x1 and x2, the corresponding mechanism
is defined. The corresponding kinematic multiplier k(u′) will depend on the chosen
values of x1 and x2. The failure mechanism will be obtained by finding the mini-
mum value of the kinematic multiplier from amongst all possibilities by varying the
positions of hinges (1) and (1, 2), that is, by varying the abscissas x1 and x2.
Function k(x1, x2) can be easily defined by rewriting the following equilibrium
equations in the unknowns k, RV and RH (Fig. 3.41). We can now analyze the
equilibrium of the arch along the assumed mechanism by imposing the vanishing of
the moment of all forces around the corresponding hinges. Thus, with some small
approximations and assuming positive moment in the counter clockwise direction,
we have

(a) equilibrium around hinge (1, 2)

�RVx2 þRH ½yeðx2Þ � yiðx1Þ�þMV ðx2Þþ kMoeðx2Þ ¼ 0; ð3:61Þ

(b) equilibrium around hinge (2, 3), where x3 = x2 + L/2

�RV ðx2 þ L=2ÞþRH ½yiðx2 þ L=2Þ � yiðx1Þ� þMVðx2 þ L=2Þþ kMoiðx2 þ L=2Þ
¼ 0;

ð3:62Þ

(1)

(1,2)

(2,3)

(3)

2x 3x

Fig. 3.40 Vertical and horizontal displacements of the failure mechanism for an arch under
horizontal forces
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(c) equilibrium around hinge (3)

�RVLþRH ½yeðLÞ � yiðx1Þ�þMV ðLÞþ kMoeðLÞ ¼ 0: ð3:63Þ

The solution to Eqs. (3.61), (3.62) and (3.63) furnishes the value of the kine-
matic multiplier, k(x1, x2), together with the values of the reactions RV and RH for
the assigned values of the abscissas, x1 and x2. Finding the minimum of function
k(x1, x2) is thus easily pursued by suitably varying x1 and x2.

A numerical example

Consider the round arch illustrated in Fig. 3.42 and defined by:

• span length, L = 15 m;
• thickness, s = 1.20 m;
• transversal width, B = 4 m;
• tuff block and mortar masonry: c = 1600 kg/mc.

(1)

(1,2)

(2,3)

(3)
RH

λp(x)

L

L/2

x2

p(x)

Fig. 3.41 Valuation of the function kc(x1, x2) by imposing zero moment at hinges (1, 2), (2, 3)
and (3)

Fig. 3.42 .
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Accordingly, simple calculations furnish the radii of the intrados ri, extrados re,
and mean rg circles (Fig. 3.42): ri = 7.50 m; re = 8.70 m; rg = 8.10 m. The cor-
responding equations for the intrados and extrados profiles are (Fig. 3.43):

yiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i � ðx� riÞ2

q
yeðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e � ðx� riÞ2

q
:

The positions of the hinges are defined as in Fig. 3.44. The arch has been
subdivided into 11 equal voussoirs of amplitude Da = 15°;

Given the assumed hinge distribution, a first segment of the arch remains fixed
(Fig. 3.43). The area of the outer face of the single voussoir measures 07854 m2.
The weight Pi of the single voussoir, accounting for a transverse width of 4.00 m,
is, Pi = 0.7854 
 4.00 
 1600 = 5027 kg.

The reference system has its origin O at the intrados of the springer section.
Accordingly, the coordinates of the voussoirs’ centers are given in Table 3.3.

Fig. 3.43 The arch subdivided into 11 equal voussoirs with the vertical and horizontal load
distributions and hinge positions at the first step

Fig. 3.44 Position of the hinges for the collapse mechanism
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Numerical calculation of the kinematic multipliers k is performed by varying the
hinge coordinates, x1 and x2. From these calculations the smallest value of k, which
represents the failure multiplier of the horizontal load distributions is

kc ¼ 0:1417 RH ¼ 25810 kg RV ¼ 65750 kg:

Figure 3.44 shows the corresponding hinge positions of the collapse mechanism,
with the following hinges coordinates:

(1) x1 = 0.75 m, y1 = 3.07 m;
(2) x2 = 5.81 m, y1 = 8.53 m;
(3) x3 = 13.31 m, y3 = 4.74 m;
(4) x4 = 16.20 m, y4 = 0.00 m.

3.8 The Platband. Failure Due to Masonry Crushing

Platbands are frequently placed above the openings of masonry buildings and are
inserted in the side walls. With its ends fixed the platband cannot get deformed with
mechanisms: they result kinematically incompatible for any hinge position
(Fig. 3.45).

The existence of straight lines starting from the spring sections all contained
within the platband confirms this absence of mechanisms: self equilibrated stress
states, adjusting tractions produced by the loads, do exist, as discussed at
Sect. 2.5.4.

Failure of the platband thus occurs with masonry crushing. The loading capacity
of the platband is thus dependent on the masonry compression strength and a plastic
compression behaviour of the masonry is assumed to evaluate the loading capacity
of the platband.

Table 3.3 Coordinates of the voussoirs centres of the arch

xgi ygi
0.017 3.10

1.074 4.931

2.569 6.426

4.40 7.483

6.443 8.031

8.557 8.031

10.60 7.483

12.431 6.426

13.926 4.931

14.983 3.10

15.53 1.057
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With fixed springings admissible equilibrium in the platband is always possible,
for any intensity and distribution of the external loads as far as the plastic collapse
is not attained.

With reference to the case shown in Fig. 3.46, the various voussoirs push one
against the other under the action of the force F and a thrush H takes place. The
platband behaves as an arch. Assuming the positioning of reactions at springings,
as shown in Fig. 3.45, the thrust H is

Hmin ¼ FL
4h

ð3:64Þ

where h and L are respectively the height and the span length of the platband.
In the assumption of a sufficient masonry plastic behaviour, the limit state at the

platband failure is shown in Fig. 3.47, where rco is the masonry finite compression
strength and Fo is the limit value of the applied force. The compression strength rco
can be assumed equal to the frc<, as discussed at Sect. 1.10.

The rotation equilibrium condition of half platband gives

rcotxðh� xÞ ¼ Fo

2
L
2

ð3:65Þ

where t is the thickness of the cross sections and x is the width of the compression
zone.

Fig. 3.46 The state of
minimum thrust in the
platband

Fig. 3.45 Kinematically incompatible mischanisms
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At the failure, the plastic sections, located at the ends and at the centre, rotate of
a small angle h while the mid section goes down. The horizontal displacements of
the points in the compressed plastic zone are (Fig. 3.48)

vðnÞ ¼ hn; 0� n� x ð3:66Þ

and the corresponding plastic dissipation at the plastic hinges in the plastic four
sections is

Dp ¼ 4
Z x

o
rcotvðnÞdn ð3:67Þ

The balance at the failure between the work of the external force Fo with the
plastic dissipation occurring at the springers and at the mid section gives (Fig. 3.49)

Fo
L
2
h ¼ 4

Z x

0
rcotvðnÞdn ð3:68Þ

or

FoL ¼ 4rcotx2 ð3:69Þ

Fig. 3.47 Limit equilibrium
in the semi-arch

Fig. 3.48 The plastic work at
the left spring
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Substitution of (3.69) into (3.65) gives the heigth of the compressed zones

x ¼ h
2

ð3:70Þ

The limit force that can be sustained by the platband thus is, substituting (3.70)
into (3.69),

Fo ¼ Nco
h
L

ð3:71Þ

where

Nco ¼ rcoth ð3:72Þ

At the limit state the thrust acting the platband is (Fig. 3.50)

Ho ¼ rcot
h
2
¼ Nco

2
ð3:73Þ

Likewise, if an unifom distribution of loads p is applied on the platband, as
shown in Fig. 3.51, in place of (3.65) we have

rcotxðh� xÞ ¼ poL
2

L
4

ð3:74Þ

and the corresponding balance equation gives

Fig. 3.49 The plastic
mechanism

Fig. 3.50 The arch at the
limit plastic state of the
platband
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po
L2

8
h ¼ 4

Z x

0
rcotdnvðnÞ ¼ 2hrcotx2 ð3:75Þ

and we have (Fig. 3.51)

x ¼ h
3

ð3:76Þ

and the limit load po is

po ¼ 16Nco

9h
h2

L2
ð3:77Þ

and the corresponding limit thrust equals the 2/3 of (3.77). (Fig. 3.52).
As an example, let us consider the platband with length L = 6.00 m, with height

section h = 0.50 m, thickness t = 0.40 m and with a masonry compression strength
rco = 30 kg/cmq, under the uniform load p. Taking into account that
Nco = 30 
 50 
 40 = 60.0 t, we have

po ¼ 16 
 120
9

0; 52

6; 02
¼ 1; 48 t=ml

The corresponding limit thrust is Ho ¼ 300 
 0; 40 
 0; 5 
 0; 33 ¼ 20; 0t:

Fig. 3.51 The platband
under the uniform load p

Fig. 3.52 The limit
equilibrium in the semi-arch
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3.9 Commenting Some Failure Tests of Masonry Arches

3.9.1 Test Description

We shall now look at some of the experimental results obtained at the Laboratory of
the Department of Civil Engineering of the University of Tor Vergata in Rome
(Caratelli et al. 2009).

Although the trials involved unreinforced masonry arches only marginally, the
results are nonetheless of interest to the current topic. The tests refer to two round
masonry arches made of bricks 5 cm 
 11 cm 
 24 cm in size and cement mortar
(Fig. 3.53). The characteristic compression strength of the bricks and mortar, tested
28 days after casting, were 250 kg/cm2 and equal to or greater than 35 kg/cm2,
respectively. The round arches have an internal radius of 130 cm and a thickness of
24 cm. The bricks were laid radially with the support of a suitable metallic scaf-
folding and the thickness of the joints varied from 0.8 to 1.9 cm. Table 3.4 shows
the compression strengths of the mortar, bricks and overall masonry, while
Table 3.5 reports the tensile and compression strengths of the mortar.

Fig. 3.53 The masonry arch
during a test
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The testing equipment, represented mainly by a hydraulic jack, applied a point
load to the key section of the arch extrados. The head of the jack was forced
vertically downwards at a constant speed of 0.3 mm/sec, and the value of the acting
load for each value of the displacement was measured by a pressure cell. The arch
was loaded by its own weight and the point load applied by the test equipment. The

0
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3,5

4

–2 0 2 4 6 8 10 12

mm

Fig. 3.54 Point load versus vertical displacement at the key section of the arch during testing

Fig. 3.55 Asymmetrical arch
collapse mechanism with four
hinges

Table 3.4 Strengths of the
various materials

Materials Mortar (sika) Bricks (rdb) Masonry

Rbk (kg/cm
2) 35 250 65
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recorded value of the ultimate failure point load was about 390 kg, much larger
than the 100 kg estimated via Limit Analysis.

Upon reaching the maximum load of 390 kg, the arch begun to crack and deform
considerably, after which any further displacement caused an initial rapid drop in the
resistant force of the arch, followed by a stage of very slow decline (Fig. 3.54).

Under the maximum load, the vertical displacement of the arch key section was
measured to be about 0.4 mm. Collapse turned out to be largely asymmetrical,
through the development of four hinges. Figure 3.55 shows the arch at collapse.
The instant the resistance dropped suddenly, cracks opened on the extrados of the
haunches, as well as on the intrados at both the key and right springer, as can been
seen in the figure. As the deformation of the arch increased, the cracks gradually
enlarged to the point of forming hinges. As is evident from Fig. 3.56, the cracks

Crack at the right haunch Crack at the left haunch

Hinge at the key Hinge at the right springer

Fig. 3.56 Crack position at the failure of the tested arch

Table 3.5 Tensile and compression strengths of mortar specimens

Specimens Tension (kg/cm3) Compression (kg/cm3)

1 3.4 38

2 3.6 38

3 3.5 41

Mean v. (kg/cm3) 3.5 39
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opened at the interface between the mortar joint and the bricks, indicating that the
strength of the mortar-to-brick adhesion was lower than the tensile strength of the
mortar itself. Such tests thus demonstrate that:

• arch strength is significantly greater than that predicted by Limit Analysis;
• arch strength falls sharply upon the formation of cracks;
• arch strength approaches the Limit Analysis value after cracking (Fig. 3.54).

3.9.2 Comments on Test Results

The considerable overstrength of the arch revealed by the tests is due to the high
adhesion strength at the interface between the mortar and bricks. The arch initially
presents brittle behavior and then, as it transforms into a mechanism, fully develops
strongly ductile behavior upon hinge formation.

Regarding the test results, it is foremost worth underscoring that the behavior of
actual historic arches is quite different from the behavior of arches built in labo-
ratories using cement mortars. The mortar-to-stone or mortar-to-brick adhesion
strength of historic masonry is considerably lower than that of laboratory-built
masonry.

An even more relevant point regards a further difference between actual historic
arches and the arches tested in the trials described. This refers to the fact that
historic arches were often used to support masonry bridges or walls built over them.
For such structures, the dead loads acting on the arch are far greater than the loads
due only to the arch self-weight. The compression forces acting between the stones,
which hold the stones or bricks together, are thus more efficient than the weak
tensile strengths at the joints. Such effects can explain the generally large dis-
crepancies found between actual strength and the results of Limit Analysis.

One condition that can be used checks the import of the compressive forces
maintaining the voussoirs firmly fixed one to the other, relative to the adhesion road
between mortar and stone, is the following

v ¼ gL
roadA

L
8f

� 1: ð3:78Þ

Only if such condition is verified will the weight g have the predominating effect
on arch strength. The ratio between the mean compression acting at the arch key
section, which represents on average the forces holding the voussoirs together, and
the adhesion strength between mortar and brick, may represent the term of com-
parison between the actual arch and the model.
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In brief, arch models formulated from laboratory tests can describe the behavior
of actual arches only for large values of parameter v. For instance, with reference to
an actual masonry arch, defined by the following parameters:

• arch + filling weights: g = 5 t/m;
• mortar-brick adhesion strength: ro = 0.5 kg/cm2;
• arch span = 10 m;
• arch rise = 4 m;
• arch cross-sectional area: A = 0.8 
 0.4 = 0.32 m2;

The resulting value of the v ratio is v � 10:
If instead we make reference to a laboratory model of arch, with:

• arch weight: g � 50 kg/m2;
• mortar brick adhesion strength: road = 3.5 kg/cm2;
• arch span = 2.0 m;
• arch rise = 0.5 m
• arch cross-sectional area: A = 10 
 5 = 50 cm2

we obtain

v ¼ gL
roadA

L
8f

¼ 50 � 2:0
3:5 � 50

2:0
8 � 0:5 ¼ 0:286:

and the similitude condition (3.78) is not verified.
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Chapter 4
Domes

Abstract Beautiful domes have been built firstly by Mycenaeans and later by
Romans and Byzantines; domes were practically neglected in the Middle Ages,
later rediscovered by the Renaissance and Baroque architecture. Following the
approach outlined in the previous section, this chapter firstly deals with the analysis
of membrane stresses occurring in rotational shells that describe, with sufficient
accuracy, the initial un-cracked stress state of the masonry dome. Later, the
masonry dome probably cracks when the tension stresses in the hoop rings near the
springing will reach the masonry’s weak tensile strength, usually fading in the
course of time. The initial membrane equilibrium is thereby lost and meridian
cracks will arise and spread along the dome. The emergence of thrust is the main
consequence of cracking of the hemispherical domes. The occurrence of this thrust
yields a subsequent deformation of the supporting structures and the dome, as a
rule, activates its minimum thrust state. The research of the dome thrust is the main
subject of the chapter and it will be searched both by static and kinematic
approaches: in this last case as maximum thrust among all the kinematical ones. In
addition to the hemispherical dome with constant thickness, four outstanding
examples of actual masonry domes are then analyzed in detail: the ancient
Mycenaean tholoi, the Pantheon, the dome of St. Maria del Fiore in Florence and
the St. Peter dome in Vatican.

4.1 Brief Historical Notes

Historically, a vault, rather than an arch, was probably the first curved structure
built to cover an underlying space. The first traces of these curved structures are
ruins of small barrel vaults with inclined courses discovered in the Mesopotamian
region and lower Egypt, which date back to between the 4th and 5th millennium
BCE. A thick backing wall was built first, and then inclined brick courses were
erected leaning against it, thereby avoiding the need for centering structures. This
construction technique allowed for covering long expanses, though the spans
possible were rather limited (Fig. 4.1a).
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Domed structures also have ancient origins, as far back as the 4th millennium
BCE. The ruins of a number of primitive dwellings were topped by clay domes
resting on circular walls made of rubble and clay, such as the houses of Khirokitia
in Cyprus. The first domes built with proper stone masonry date back to the late
Bronze Age, about 1500 BCE. These were the so-called tholoi, tombs built by
corbelling circular courses of stones, a technique developed by the Mycenaean
civilization. The Treasure of Atreus and the Tomb of Clytemnestra in Mycenae are
the best conserved examples of tholoi (Fig. 4.1b).

Domes covering large areas were built by the Ancient Romans using the tech-
nique called opus caementicium. One of the earliest existing examples is the vault
of the temple of Jupiter Anxur in Terracina, built in the early 1st century BCE. The
technique of opus caementicium attained it most widespread use during the Age of
the Roman Empire, the Pantheon being its uncontested highest expression.

Roman builders often inserted brick ‘ribs’ in the concrete mass. The concrete
was then fractioned and cast between the ribs. The static requirement of building
vaults as light as possible led to the use of opus caementicium, with the caementa
(or cement) growing gradually lighter from the springings towards the center, for
example by laying in sequence first travertine blocks, then bricks, tuff, pumice and
lastly slag. Later, vaults were also built by inserting “olle”, that is amphorae, at the
haunches or above the openings of the dome, where stresses are particularly low,
one example being the temple of Minerva Medica in Rome from the 4th century.

Later, more sophisticated techniques were used to lighten the masonry mass,
such as the insertion of “tubi fittili”—hollow terracotta tubes placed vertically, one
beside the other, in concentric circles into the concrete, as in the dome of San Vitale
in Ravenna from the 5th century.

In the Byzantine era hemispherical vaults evolved further: they were sustained
by piers through the insertion of pendentives in place of the drum. This enabled

Fig. 4.1 a Mesopotamian vault, b Mycenaean tholos
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covering much wider areas. Moreover, the vaults were constructed of brickwork
rather than concrete. An extraordinary example of these techniques is the dome of
the Constantinople Cathedral, Hagia Sophia, from the 6th century (Fig. 4.2).

The large central dome of the cathedral is sustained by two smaller semi-domes,
in turn supported by arches, piers and walls. The central dome has an inner diameter
of 32 m and is connected to two semi-cupolas on its eastern and western sides and
two large arches on the south and north. The striking view from the interior of the
church is shown in Fig. 4.3.

The earliest church on the site of the current Cathedral was built by order of
Emperor Constantine and consecrated in the year 360 CE. The original church was

Fig. 4.2 Plan and section of the Hagia Sophia Cathedral
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however destroyed by fire and rebuilt in 415, only to be destroyed once again in
532. Finally, the emperor Justinian commissioned Anthemius of Tralles and Isidore
of Miletus to rebuild the church for the third time, resulting in the church we can
still admire today, though over the centuries it has suffered many accidents and
consequently undergone many changes.

Despite its complexity and size—60 m high with each side over 70 m wide—
Hagia Sophia was built in a short time and completed by 537. The church plan is
that of a traditional basilica with three aisles reached through two narthexes. The
interior of the church is a wide expanse with a central plan. The vastness of the
central nave, spanning over 30 m, is emphasized by the dome, with the two lateral
semi-cupolas leaning on the four piers through pendentives. The presence of forty
ribs in the dome enabled forty windows to be opened around its base, whence light
filters with a striking effect.

During its construction the foundations settled, causing many structural changes.
The dome failed in 558 and was rebuilt, higher by several meters, in 562, with a
consequent reduction in the thrust. The tangent line to the dome’s meridian section
at its base makes an angle of about 20° with the vertical. Thrust was thus acting,
even in the original stress state, primarily on the dome, before any cracking
emerged. Thus, while thrust would be activated on the hemispherical domes only

Fig. 4.3 Interior of the
Hagia Sophia Cathedral
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later, when meridian cracks had already appeared, the dome of Hagia Sophia, on the
contrary, began to push immediately, as soon as the centering was dismantled.

In spite of its static problems and its bold design, Hagia Sophia, was to have a
great influence on all subsequent Byzantine and Ottoman architecture. Indeed, even
the 15th-century architect Sinan, who was responsible for many of Turkey’s most
magnificent mosques, took inspiration from the innovative architecture of Hagia
Sophia.

In the Middle Ages financial constraints compelled builders to construct lighter,
less expensive vaults, leading to the use of smaller bricks or stone ashlars. Thus, the
vaults built at the time did not follow the solid, heavy Roman design, with thick,
rigid foundations, but were instead overall much lighter, with flexible foundations
able to adapt to frequent soil settlements.

Cross vaults, also known as a double barrel or groin vaults, are typical of the
Middle Ages, though some the most magnificent examples date back to Roman
times. During the Middle Ages, however, the cross vault, with pointed arch and
cross ribs, developed into an architectonic element of imposing aesthetic quality.
The great vaults covering cathedral naves were linked externally by sequences of
flying buttresses, which conveyed the thrusts to the large external counterforts.

Then, in the 15th century Roman architecture was rediscovered. Domes,
pavilions, as well as segmental and ribbed vaults, which had long been abandoned,
were built once again in both religious and civil structures. The construction
techniques used, however, were quite different from the Romans’: the vaults were
made with brickwork. They were also lightened by replacing the heavy filling of
crushed stone or gravel with a sequence of ribs and lunettes, the latter built on the
vault haunches to provide much improved interior lightening. The dome was thus to
become the most important architectural element in nearly all places of worship. In
this regard, an exceptional example is the renowned ogival dome engineered by
Brunelleschi on the Florence Cathedral of Santa Maria del Fiore.

Michelangelo carried on and further developed this tradition with the dome of St.
Peter’s Basilica in Rome, with its circular profile and double ribbed cupola. Later,
in the Baroque era, domes with elliptic plans and elaborate lanterns were also built.
Guarini’s vaults with crossed arches, the London Cathedral of St. Paul’s, with its
double-capped dome designed by Wren, the triple cap on Soufflot’s dome of
Sainte-Geneviève in Paris, and finally the daring vaults by Antonelli represent some
of the latest, most spectacular achievements in the construction of masonry domes,
which subsequently came to an end with the advent of the new materials steel and
reinforced concrete.

Of the most recent achievements in masonry vault construction, the work of the
Valencian engineer Guastavino deserves special mention. Towards the end of the
19th century, Guastavino, working in the U.S., studied, developed and eventually
patented techniques based on age-old Catalan methods for designing and building
vaults. He termed his system “Cohesive Construction”.

The system enabled constructing robust, self-supporting arches and vaults using
interlocking terracotta tiles and layers of mortar to form a thin skin, whose strength
depends upon the strong cohesion between its small components. The technique is
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known as timbrel vaulting because of its likeness to the skin of a timbrel or a
tambourine. Tiles are usually set in three herringbone-pattern courses with a
sandwich of thin layers of Portland cement. Unlike heavier stone constructions,
these tile vaults could be built without centering. Each tile was in fact cantilevered
out over the open space.

By virtue of its lightness and high tensile strength, this tile system provided
solutions that were impossible with traditional masonry arches and vaults. The
static behavior of this system is mainly elastic and so the no-tension model is not
applicable to studying the statics of this class of vaults, which though limited in
extension, offer some extraordinary features (Ochsendorf 2009). Unfortunately, at
the time, the ever-worsening lack of skilled craftsmen and easy availability of
inexpensive steel made Guastavino’s work too cost-inefficient, two factors that
combined to make also the architecturally extraordinary and efficient system of
‘Guastavino tiles’ a thing of the past.

4.2 The Implemented Static Approach

Masonry vaults present different static behavior depending on their geometry, the
strength of the masonry, the techniques used in their constructional and so forth.
A broad class of masonry vaults, which has been built since ancient times, is one
whose stability depends upon the elements being held together by gravity and
friction. Most vaults belonging to the world’s historic architectural heritage fall into
this category. For such vaults the constituent elements, either bricks or stone blocks,
are held together by compressive stresses: as in nearly all traditional masonry
constructions, the influence of masonry’s weak tensile strength on their statics is
negligible. Cracks mainly determine the deformation of these vaults. Thus, analysis
of their cracking deserves further attention, because cracking, if it occurs, is gen-
erally delayed, particularly in domes.

In a masonry arch cracks occur as soon as stresses exceed the weak adhesion
strength between the stones and the mortar. Compressive forces and shears continue
to spread across the hinges that have formed and friction does not oppose the
formation of cracks. Instead, in masonry vaults the friction increases their tensile
strength.

In a dome of revolution when the hoop stresses reach the masonry tensile
strength, cracks develop and run along the meridians. Upon cracking the dome
widens and the circular courses slip one over the other (Fig. 4.4). The friction
strength produced by meridian compression opposes this slipping. Thus, the
masonry’s tensile strength is actually increased by the meridian compression.
Humidity, which generally penetrates slowly into masonry, weakens the mortar and
reduces this friction strength. Other causes, such as the dynamic actions due to an
earthquake or settling of the foundation, can hasten cracking. These considerations
explain why cracks generally occur only many years after a vault’s construction,
particularly in domes. The history of cracking of many famous vaults and domes
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bears this out. For example, both the domes of St. Peter’s in Rome and Santa Maria
del Fiore in Florence, began to crack 50 years or more after their completion. This
delay in cracking implies that in the early stages of their lifetime vaults behaves as
solid structures able to sustain tensile stresses. The so-called membrane solution can
provide reasonably accurate descriptions of the stress states involved.

The stress state of a vault may remain constant over time if its structure is very
light and the masonry offers sufficient tensile resistance. This is true of Guastavino
vaults, but not of most masonry vaults. For these latter, cracking generally occurs.
Once a dome has cracked, a completely different stress state ensues. Upon cracking,
tensile hoop stresses in the lower rings of the dome disappear and meridian cracks
lengthen upwards, towards the center, until a new internal equilibrium, if any, is
reached. If such equilibrium configuration does indeed exist, it will be considerably
different from the original one. This new stress state, which can be reasonably
modeled within the framework of no-tension masonry materials, represents the
actual or final stress state occurring in the vault.

Cracking brings about a new resisting system in the vault. Now the question
must be asked: how do we find this new resisting structure? It can be identified by
determining the new system of force transmission that develops inside the vault
when the primary tensile forces have been canceled out. In such determination, the
influence of the elastic compressive stresses can be neglected and the behavior of a
cracked vault can be explained via the no-tension, rigid in compression masonry
model, described previously in detail. According to Heyman (1966), after cracking,
the resisting vault can be defined as a so-called sliced vault.

The internal forces in the early stage of a vault’s life, which we will call the
initial stresses, can be represented with relatively good approximation by mem-
brane stresses.

According to the membrane solution, initially no thrust acts at the springing of
an hemispherical dome. Instead, thrust does generally arise when cracking begins.
The vault support structures will thus settle and become deformed under the action
of this thrust and further deformation of the dome will occur. The response of the
cracked vault to such deformation can be evaluated using the sliced vault model.
Within this framework, recalling the considerations put forth in Chap. 2, the
cracked vault can be said to adapt to the settling of its supporting structures through
a mechanism that activates the minimum thrust on its supports.

The main lines of the approach followed can be outlined as follows. The initial
stresses are first determined via membrane stress analysis. Then, by examining
where the tensile forces act, it is possible to obtain a sketch of the cracking pattern

Fig. 4.4 Meridian
compression opposes
cracking through friction
between courses
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occurring in the vault. The cracking pattern is very useful in formulating simple no-
tension models that can describe the real behavior of vaults governed by the van-
ishing tensile strength.

4.3 Basic Equations of the Membrane Equilibrium
of Rotational Shells

The primary stresses that are activated when a masonry vault is first loaded (and
cracking has not arisen) can be represented quite realistically by membrane solu-
tions. As discussed before, studying this state, through determination of the tensile
stress field, can be very useful to formulate a model for the cracked vault.

The aim of this section is to recall the features of dome membrane stresses
(Fl€ugge 1962). In doing so, we will refer to shells with a positive double Gaussian
curvature: they have the shape of a so-called dome of revolution. The shell will
possess a high degree of both stiffness and strength, that is, the so-called shape
strength, if the constituent material of the shell has tensile strength. The rotational
shell can, in fact, be represented as a sequence of slices connected by circular elastic
rings. These rings develop hoop stresses that strongly counter any widening or
constricting of the dome. These rings stretch or shrink uniformly and, consequently,
attain their full stiffness and strength. Any bending of the meridian bands is
restrained by deformation of the rings under the action of axial symmetric loads.
Meridian bending is consequently very limited and the dominating stresses can be
considered constant throughout the shell’s thickness.

The following recalls the most relevant aspects of this particular stress state and
refers to the rotational shell whose middle surface is sketched as in Fig. 4.5. The
surface element is bounded by curved meridians and parallel lines. The position of
any given point P on this surface is defined by two spherical coordinates, h and /.
The angle h is the longitude: it measures the angular distance between the reference
meridian and the meridian passing through P. The angle /, between the normal to
the spherical surface at P and the axis of rotation, is the complement of the latitude,
the so-called co-latitude.

Q
Fig. 4.5 Dome composed of
meridian and ring bands
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At each point P on the shell’s middle surface we can identify the meridian plane,
passing through the axis of the shell, and the corresponding orthogonal plane
passing through the normal to the surface at P: these are the planes of the principal
curvatures (Fig. 4.6), whose radii are denoted by

r1; r2 ð4:1Þ

where r1 is the radius of curvature of the meridian at P and r2 the radius of curvature
of the curve on the surface obtained by its intersection with the plane orthogonal to
the meridian plane. The radii (4.1) are the minimum and maximum of all the
curvature radii of curves obtained by sectioning the middle surface with the planes
of the bundle whose axis is the normal to the surface at P. The radius r2 is the length
of the segment OP connecting the point P with the point O, the intersection of the
normal to the surface in P with axis of revolution.

With regard to Fig. 4.6, which shows a small arc of a meridian of the dome, let
r1 be the radius of curvature of the meridian at P. For the line element ds of his
meridian, we thus have

ds ¼ r1 d/ ð4:2Þ

Moreover, let r be the distance of point P from the axis of rotation: it is the
radius of the parallel obtained by sectioning the dome with a plane orthogonal to its
axis passing through P. Thus, from Fig. 4.6, we have

r ¼ r2 sin/ ð4:3Þ

which represent, for a line of unit length, the resultant along the thickness of the
stresses r/ and rh acting along the coordinate lines / and h (Fig. 4.7).

Likewise, the small surface element dA, with side lengths r1 d/ and rdh,
respectively, has the area

dA ¼ r1r d/ dh ð4:20Þ

dφ
1r

2r

P

φ

O

ds
r

Fig. 4.6 Sections of the
principal curvatures
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The stress state acting on the middle surface of the vault, loaded
axial-symmetrically, is defined by the components

N/; Nh: ð4:4Þ

Owing to the axial symmetry, forces N/ and Nh, vary only with the co-latitude /.
The unknown internal forces and the available equilibrium equations are both two
in number. The stress state in the axial-symmetric shell is thus statically determi-
nate. The upper side of the element dA, running along the parallel circle, has length
r(/)dh; while the lower has length

rð/þ d/Þ ¼ rð/Þþ dr
d/

d/:

Figure 4.8 shows a sketch of the projection of the surface element on the vertical
and horizontal planes, together with the corresponding forces. Those acting on the
sides of the element lying along the parallel circles are respectively

dθ
N rdφ ϑ

..N rdφ ϑ + φ
1r

dφ

1N r dθ φ

1dW srd r dγ θ φ=

Z

1 ...N r dθ φ +

Y

2r

Fig. 4.7 Membrane stresses
in the rotational shell under
axial symmetrical loading

Fig. 4.8 Forces acting on the unit element of the revolution shell
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N/rdh ðN/ þ dN/

d/
d/Þ ðrþ dr

d/
d/Þ dh

and are directed along the tangent to the meridian at the coordinates / and / + d/.
These two forces act in opposite directions and include the angle d/. Consequently,
they produce the resultant along the normal Z

N/ r d# d/

Likewise, the two hoop forces

Nh r1 d/

on either side of the element, lie in the plane of a parallel circle and include the
angle dh. They produce the resultant force situated in the same horizontal plane,

Nh r1 d/ dh

pointing outside the shell element, as sketched out in Fig. 4.8. We assume the shell
has constant thickness s, unit weight g, and that only the dead load acts on it. Thus,
the weight of element dA is

dW ¼ gdA ¼ grr1 dh du:

The equilibrium condition of the element dA along the normal Z is thus

N/r dh d/þNh r1 dh d/ sin/� gr1r dh d/ cos/ ¼ 0; ð4:5Þ

or, by simple manipulations,

N/

r1
þ Nh

r2
� g cos/ ¼ 0; ð4:6Þ

Likewise, the other equilibrium equation along the tangential direction Y is

d
d/

ðN/rÞ dh d/þNh r1 d/ dh cos/þ gr1r dh d/ sin/ ¼ 0 ð4:7Þ

or

d
d/

ðN/rÞþNhr1 cos/þ gr1r sin/ ¼ 0: ð4:8Þ
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The unknowns N/, Nh are obtained by solving the two Eqs. (4.6) and (4.8). It is
however simpler to obtain the forces N/, that directly solve the equilibrium
equation along the vertical direction of the generic cap, as sketched out in Fig. 4.9.

The vertical force Q(/), representing the resultant of all forces acting on the cap
defined by angle /, is sustained by the vertical components of the meridian forces
N/ uniformly distributed along the parallel circle at the co-latitude /: hence we
have

Qð/Þ � N/ 2pr sin/ ¼ 0 ð4:9Þ

and

N/ ¼ Qð/Þ
2pr sin/

: ð4:10Þ

Force Nh can thus be obtained from Eq. (4.6) by using expression (4.10) for N/.
The case of the hemispherical shell is quite meaningful. Both principal curvature
radii are equal to the radius R of the middle spherical surface and Eq. (4.6) can be
simplified to

N/ þNh � gR cos/ ¼ 0: ð4:11Þ

The spherical cap lies between the co-latitude values a ¼ 0 and a ¼ /. The
weight Qð/Þ of the cap, with constant thickness, is

Qð/Þ ¼ 2pgR2
Z /

0
sin ada ¼2pgR2 ð1� cos/Þ: ð4:12Þ

Substitution of (4.12) into (4.10) gives

N/ ¼ g
R

1þ cos/
; ð4:13Þ

and evaluation of forces Nh follows immediately from Eq. (4.11), whence we get

Q(φ)

Nφ

α

Fig. 4.9 Equilibrium along
the vertical direction of a
spherical cap
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Nh ¼ gR ðcos/� 1
1þ cos/

Þ: ð4:14Þ

At the top of the hemispherical shell, that is at / = 0, we have ðNhÞ/¼0 ¼ csR=2,
while, at the springing, at / ¼ p=2; ðNhÞ/¼p=2 ¼ �csR. The distribution of the
forces along the parallel circles has the contour shown in Fig. 4.10. Forces Nh exert
compression on the upper shell and tension further down.

A graphical procedure can be applied to evaluate the membrane stresses. This
approach is particularly useful in cases of domes with more complex profiles and
varying thickness.

A slice of the dome (Fig. 4.11) is subdivided into N voussoirs, each of whose
weight and centre position are to be determined. The weight forces are applied at
the voussoirs centers and the procedure starts from the first voussoir, at the crown.
The ring sections at the top of the slice transmit a compressive force.

According to the membrane stress state, the magnitude of the resultant S1 of
these compressive forces is such that, when summed with the vertical weight W1 of
the first voussoir, the direction of the resultant vector N1 coincides with the

Fig. 4.10 Variation of
stresses Nh along the meridian
section (Heyman 1995)

Fig. 4.11 The slice of the
dome
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direction of the line connecting the centres of the first and second voussoirs. The
axial action N1 transmitted by the first voussoir can thus be determined.

Beginning with the second voussoir, we consider the resultant R2 of axial force
N1 with the weight W2 of the second voussoir. We then evaluate the resultant S2 of
the compressive forces transmitted by the second ring, so that, summing this
resultant S2 with the previous force R2, the line of action of resultant vector N2

coincides with the line connecting the center of the second voussoir with the center
of the third (Fig. 4.12). The procedure is then applied iteratively.

The rings in the upper part of the dome are compressed. However, descending
along the meridian, the horizontal force S transmitted by the rings could change
sign, i.e. become a tensile force, to ensure that compressive force N is directed
along the center line of the slice. This change in sign requires that the rings at that
height be stretched, which is however impossible given masonry’s inability to
withstand tensile stresses. Thus, in searching for an admissible equilibrium, axial
force N acting along the meridian will diverge from the curved shell axis and be
displaced to the slice’s interior, even in the upper sections where the sign inversion
of the ring stress was not occurred.

4.4 From the Membrane to the Cracked State. Emergence
of the Thrust

The dome will crack when the tension stress in the hoop rings near the springing
reach masonry’s weak tensile strength. The initial membrane equilibrium is thereby
lost and meridian cracks will arise and spread along a band on the dome much
higher than that subjected to the tensile stresses in the membrane equilibrium
(Fig. 4.13). Although the number of these meridians cracks is indeterminate, only a
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Fig. 4.12 Membrane stresses
obtained by evaluating
successive resultants
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capillary width is sufficient to disrupt the hoop actions of the rings. By way of
example, only four major cracks have been be detected on the intrados of the
Brunelleschi dome in Florence, while fourteen are present in the Pantheon dome
and about the same number of meridian cracks were detected in the dome of St.
Peter’s before the restoration works performed by Poleni and Vanvitelli.

The cracked dome tends to open wide along a large band and break up into slices
that behave as independent pairs of semi-arches leaning on each other.

Predictably, cracking brings about a profound change in the dome’s statics. The
forces, Nh, in the cracked zone vanish and the forces N/, if acting along the slices
centerline, are no longer able to ensure equilibrium. The pressure curve thus tilts
towards the horizontal and deviates away from the central surface of the dome.
A small cap at the top of each slice will be subjected to the thrusting action
transmitted by the other slices, which will be transmitted all the way to the
springings. Figure 4.14 shows a rough sketch of the pressure curve of a cracked
hemi-spherical dome. The dotted line shows the position of this curve, which
inclines towards the horizontal at the springing. The horizontal component of the
reaction of the supports represents the thrust S per unit length of the dome’s base
circumference.

The emergence of thrust in the dome represents the most consequential outcome
of meridian cracking in typical masonry round domes. Loaded by the dome’s thrust,
the sustaining structures (e.g., the drum and underlying piers) deform and splay.
The slices, no longer restrained from deforming by the rings, bend under the loads

Fig. 4.13 Typical meridian
cracks in a masonry dome
(Heyman 1995)

Fig. 4.14 Rising thrust due
to meridian cracking
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and can form mechanisms. The weight of a particularly heavy lantern, for example,
could even cause the dome to fail on cracking.

Figure 4.15 shows two different collapse mechanisms of the sliced dome: the
first involves uniform lowering of the central zone of the dome, while the second is
subject to rotation, as well as a lowering of the central portion of the slices. These
mechanisms entail the presence of both full-thickness meridian cracks, as well as
two ring cracks due to the presence of two circular hinges: one high up on the
extrados, and the other further down at the intrados. Generally, cracks on the
extrados are not detectable because dome extradoses are usually covered, for
instance, by sheets of lead. The circumferential cracks at the intrados sometimes
develop very high, near the connection of the dome with the lantern locking ring.

Figure 4.16 shows a settlement mechanism by which the dome adapts itself to a
small widening of its springings. Such a mechanism, however, may also describe
dome collapse involving deformation of the drum as well.

Analyzing the cracking pattern in a dome can provide useful information
regarding its safety. In the presence of thin, nearly hairline cracks, elastic unloading
of the lower rings due to meridian cracking offsets the widening of the rings due to
cracking. More specifically, from Eq. (4.14), the tension force Nh near the
springings equals c sR and the corresponding tensile stress rh is cR. Therefore, for
instance, with R = 15 m, c = 1.6 t/m3, we have rh = 2.4 kg/cm2. Upon the
unloading of rh, the contraction strain eh = rh/Em occurs, where Em is the masonry

Fig. 4.15 Symmetric collapse mechanism in a dome

Fig. 4.16 Symmetrical
mechanism involving
widening of the dome
springing
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elastic modulus. By assuming Em = 50,000 kg/cm2, eh = 2.4/50,000, which is
about 0.5 � 10−4. The circumference of the dome at the springing shrinks by
0.5 � 10−4 � 2p � 15 m = 4.7 mm. If four meridian cracks arise, the width of
each is thus equal to 4.7/4 = 1.1 mm.

When cracks are barely perceptible, only elastic unloading of the dome rings has
occurred. In the presence of numerous broader cracks, on the other hand, the
widening of the drum will be the main factor responsible for the dome’s defor-
mation. Knowing the dome thrust and, consequently, the safety level afforded by
the stresses present in its retaining structures, allows for verifying whether the dome
arrangement is sufficiently stable.

4.5 Safety Check of Domes: Static and Kinematic
Approaches

Dome failure occurs when the pushing work due to the lowering of the dead loads
distributed around the dome’s centre equals the resisting work of the vertical loads
near the springing. A safety check can be carried out, for instance, by evaluating the
lantern weight that would cause the dome to collapse. If the mechanism involves
the drum, the work done by the weight of the drum slice will also be included in the
resisting work.

Figure 4.17 shows a failure mechanism of this kind. In this case the quantity QL

is the share of the weight of the lantern corresponding to the slice considered. The
analysis can be conducted by applying the static or kinematic theorem of Limit
Analysis. The safety check considers all possible failure mechanisms, such as those
including or excluding drum deformation, as sketched out in Fig. 4.17 and in the
foregoing Fig. 4.15.

If the dome is safe it could be useful to check the safety level of its supporting
structures. The widening of the drum at its top is due to thrust activation in the
dome. Consequently, the dome deforms according to a settlement mechanism. As
discussed in Chap. 2, the thrust of the settled dome is the minimum SMin from
among all the thrusts S transmitted by statically admissible pressure curves.

The minimum thrust SMin can be obtained via the static, as well as the kinematic
approach. The static approach calls for tracing the statically admissible funicular
curves of the loads. In this case we can neglect the small hooped cap situated at the
top, near the dome zenith. Any pair of facing slices of the settled dome behaves like
an arch that has undergone a small increase in span. The arch deforms through a
mechanism and thereby adapts to the sideways settlement. A sliced dome behaves
in the same manner. In the settled state the pressure curve passes through the
extrados at the key section of the slices and then runs within their interior, skimming
over the intrados of the dome. Domes with lanterns have a top ring to sustain it.
Thus, instead of a single hinge, two symmetric hinges will form at the extrados of
the section connecting the slice with the top ring. The thrust S of the settled dome is
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transmitted along the pressure curve passing through these hinges and corresponds
to the minimum SMin of all thrusts of statically admissible pressure lines wholly
contained within the slice. Thus, following the static approach, we must identify,
from among all the statically admissible pressure lines, the one that releases the
minimum thrust at the dome springing.

The kinematic approach is dual with respect to the static one. Let us consider any
kinematically admissible settlement mechanism, v, describing the adjustment of the
dome to the side deformation of its sustaining structures and define the kinematic
thrust multiplier k(v) as

kðvÞ ¼ � g; vh i
r; vh i : ð4:15Þ

In (4.15) 〈g, v〉 represents the work, undoubtedly positive, of the dead loads on
the vertical displacements of mechanism v, and 〈r, v〉 the work, undoubtedly
negative, performed by the thrust on the corresponding horizontal displacement.
The kinematic thrust k(v)r can be directly expressed as

kðvÞr ¼ Skin; ð4:16Þ

Fig. 4.17 Failure mechanism
of the dome involving the
drum
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where, according to definition (4.15),

SkinðvÞ ¼ � g; vh i
DðvÞ ; ð4:160Þ

where D(v) is the radial widening of the dome at its base due to settlement
mechanism v. According to this approach the minimum thrust can be evaluated as
the maximum of all kinematic thrusts Skin(v) (Como 1996, 1998)

SMin ¼ Max SkinðvÞ ¼ Max
g; vh i
DðvÞ ð4:17Þ

by varying v in the set of all kinematically admissible settlement mechanisms.
Figure 4.18 shows a generic dome mechanism produced by base widening. In

this mechanism the position of the internal hinge K is unknown. The set of all these
kinematically admissible mechanisms is described by varying the position of the
hinge K between the springing and the key section of the slice. Identifying the
maximum of function kðvÞ by varying the position of hinge K enables us to obtain
the sought-for thrust. Many applications of this approach will be described in the
following.

4.6 Minimum Thrust of the Hemispherical Dome
with Constant Thickness

4.6.1 Research of the Unknown Pressure Surface

For some simple dome arrangements, it is a relatively simple matter to obtain the
analytical expression for the minimum thrust. By way of illustration, we will now
analyze the case of a hemispherical dome with constant thickness without lantern.
The following formulation is based on the analysis performed by Bossut (1778), as
reported by Benvenuto (1991). It has been modified here in order to search for the
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Fig. 4.18 The settlement
mechanism of the slice
following widening of the
drum top
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minimum thrust of the dome according to a recent work of Coccia et al. (2015). An
interesting historical note is that Bossut originally applied this analysis to check the
stability of the dome of Sainte Geneviève in Paris, which was engineered by
Soufflot and in 1791 was declared a secular shrine under the name of the Pantheon.

Bossut’s approach starts out by considering the equilibrium of a small element of
the unknown pressure surface to be determined. This surface has a regular rotational
shape and runs continuously between the dome extrados and intrados. We define
the unit load g per mean surface of the dome; approximately the same load g will
act on the unknown surface. Figure 4.19 shows an element, dA, of this pressure
surface: the forces N/ are the only ones applied on this element. Equilibrium of the
element along the Y direction gives

N/rdh� ðN/ þ dN/

d/
d/Þðrþ dr

d/
d/Þdhþ gr1rd/dh sin/ ¼ 0; ð4:18Þ

where all the quantities, including the ring radius r and the curvature radius r1 of the
meridian, refer to the unknown pressure surface. From Eq. (4.18) we get

d
d/

ðN/rÞ ¼ grr1 sin/ ð4:180Þ

Equilibrium of the element along the Z direction, normal to the pressure surface,
is instead expressed by

�N/r dh d/þ grr1 dh d/ cos/ ¼ 0 ð4:19Þ

and we have

N/ ¼ gr1 cos/: ð4:20Þ
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Fig. 4.19 Equilibrium of a
small element of the unknown
pressure surface
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Substituting (4.20) into (4.18′) thus gives

� d
d/

ðgrr1 cos/Þþ grr1 sin/ ¼ 0: ð4:21Þ

Moreover,

d
d/

ðrr1 cos2 /Þ ¼ � cos/½� d
d/

ðrr1 cos/Þþ rr1 sin/�; ð4:22Þ

which, accounting for (4.21) yields

rr1 cos2 / ¼ C ¼ cost: ð4:23Þ

By looking at the equilibrium condition along the horizontal projection of a slice
element of magnitude dh, we can explain the significance of condition (4.23)
(Fig. 4.20). We have

N/r dh cos/� ðN/ þ dN/

d/
d/Þðrþ dr

d/
d/Þ dh cosð/þ d/Þ ¼ 0 ð4:24Þ

or

� cos/
d
d/

ðN/rÞþN/r sin/ ¼ � d
d/

ðN/r cos/Þ ¼ 0; ð4:25Þ

whence we obtain

d
d/

ðN/r cos/Þ d/ dh ¼ 0 ð4:26Þ

φdφ

Z

N rdφ θ

( ..)( ..)N r dφ θ+ +

grd Rdθ φ

Fig. 4.20 Projection on the
meridian plane of the forces
acting on the surface element
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and taking Eq. (4.20) into account

d
d/

ðgrr1 cos2 /Þ dh ¼ 0: ð4:27Þ

Thus, we derive condition (4.23) on the slice of unit magnitude h = 1 rad
(Fig. 4.21),

grr1 cos2 / ¼ Cg ¼ H ¼ cost: ð4:28Þ

From Eq. (4.25) we can write

grr1 cos2 / ¼ gr
ds
d/

ðdrÞ2
ðdsÞ2 ¼ Cg ¼ H; ð4:29Þ

where H is the thrust acting on the slice of unit width angle h = 1. From (4.29) we
also have

rdr ¼ C
ds
dr

d/ ð4:30Þ

and, by integrating,

r2

2
¼ C ln

1þ sin/
cos/

þC1; ð4:31Þ
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Fig. 4.21 Coordinates r, z

216 4 Domes



that is,

ð r
2

2C
� C1

C
Þ ¼ ln

1þ sin/
cos/

: ð4:32Þ

For the sake of simplicity, we can set

n ¼ r2

2C
� C1

C
ð4:33Þ

and, by virtue of (4.32)

n ¼ ln
1þ sin/
cos/

; ð4:34Þ

hence,

en ¼ 1þ sin/
cos/

; e�n ¼ cos/
1þ sin/

: ð4:35Þ

Now by taking into account the definition of sinhn,

sinh n ¼ 1
2
ðen � e�nÞ ¼ 1

2
ð1þ sin/

cos/
� cos/
1þ sin/

Þ = tg/; ð4:36Þ

From (4.28) we get

dz
dr

¼ tg/ ¼ sinh ð r
2

2C
� C1

C
Þ ð4:37Þ

By integrating (4.37) we arrive at the equation for the sought-after pressure
surface in terms of the coordinates r, z

zðrÞ ¼
Z r

0
sinhð x

2

2C
� C1

C
ÞdxþA: ð4:38Þ

The pressure surface is symmetrical and the symmetry condition at the zenith
requires

ðdz
dr
Þr¼0 ¼ 0 ð4:39Þ
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Consequently, taking in account of (4.38) we obtain

sinh ðC1

C
Þ ¼ 0 ð4:390Þ

Hence

C1 ¼ 0 ð4:40Þ

Further, by using the variable change

x2

2C
¼ y2 ð4:41Þ

we have

zðrÞ ¼
ffiffiffiffiffiffi
2C

p Z r=
ffiffiffiffiffi
2C

p

0
sinh y2dyþA ð4:42Þ

Equation (4.42) defines a family of pressure surfaces, each one corresponding to
a particular choice of the constant C. Among these we have to choose that corre-
sponding to the minimum thrust.

4.6.2 The Minimum Thrust Pressure Surface

At the meridian cracking of the hemispherical dome, thrust takes place. The sup-
porting structures, as the drum, will thus deform and a small widening of the dome
springing occur. The dome adapts itself to the settlement and a minimum thrust
state develops in it. This state is so characterized:

(a) the thrust surface is all contained inside the dome
(b) the extrados and the intrados of the dome will be touched by the thrust surface

along two circles corresponding to the two internal hingings of the settlement
mechanism.

Compared with the arch with constant width, in the dome slices narrow towards
the crown. This fact highly influences the geometry of the pressure surface that
remains almost horizontal in the neighbourhood of the zenith. Thus, to maintain the
pressure surface within the slice, the settlement mechanism cannot admit an hinge
at the dome zenith. Here we have

zð0Þ ¼ A ð4:43Þ
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where, if s denotes the dome thickness,

0\A� s ð4:44Þ

The constant A, that dimensionally is a length, defines the position of the
pressure curve at the zenith. Going down along the meridian, slices gradually
expand and the pressure curve bends down. The two hinges of the mechanism form
at points M and N of Fig. 4.22. Suitable conditions will define the position of the
pressure curve in the slice. The pressure curve will be tangent at the points M and
N, respectively at the extrados and at the intrados of the slice. We have (Fig. 4.22)

ðdz
dr
Þr1 ¼ sinh

r21
2C

¼ tg/1 ðdz
dr
Þr2 ¼ sinh

r22
2C

¼ tg/2 ð4:45Þ

where, if R is the mean radius of the dome and s its thickness

r1 ¼ ðRþ s
2
Þ sin/1 r2 ¼ ðR� s

2
Þ sin/2 ð4:46Þ

Thus conditions (4.45) become

tg/1 ¼ sinh ðRþ s
2
Þ2 sin

2 /1

2C
tg/2 ¼ sinh ðR� s

2
Þ2 sin

2 /2

2C
ð4:450Þ
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Fig. 4.22 The pressure line in a slice at minimum thrust state
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or

ðRþ s
2
Þ2 sin

2 /1

2C
¼ sinh�1ðtg/1Þ ðRþ s

2
Þ2 sin

2 /1

2C
¼ sinh�1ðtg/1Þ ð4:4500Þ

Taking into account that

sinh�1 tg/1 ¼ lnðtg/1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg2/1 þ 1

p
Þ; sinh�1 tg/2 ¼ lnðtg/2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg2/2 þ 1

p
Þ;

ð4:47Þ

finally we obtain the following expressions of r1 and r2

r21
2C

¼ f ð/1Þ
r22
2C

¼ f ð/2Þ ð4:48Þ

where

f ð/1Þ ¼ lnðtg/1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg2/1 þ 1

p
Þ f ð/2Þ ¼ lnðtg/2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg2/2 þ 1

p
Þ ð4:49Þ

The same constant 2C. is contained in the two conditions (4.47). Hence

2C ¼ R2 ð1þ vÞ2 sin2 /1

f ð/1Þ
¼ R2 ð1� vÞ2 sin2 /2

f ð/2Þ
ð4:50Þ

where

v ¼ s
2R

ð4:51Þ

Condition (4.50) is one of the two equations required to obtain the angles /1 and
/2.

We consider now the other two conditions, those prescribing the passage of the
pressure curve through the points M and N. We have

zðr1Þ ¼ R ð1þ vÞð1� cosu1Þ zðr2Þ ¼ R ð1þ vÞð1� cosu2Þ ð4:52Þ

or, in a more explicit form by using (4.40),

Z r1

0
sinh

x2

2C
dxþA ¼ ðRþ s

2
Þð1� cosu1Þ;Z r2

0
sinh

x2

2C
dxþA ¼ ðR� s

2
Þð1� cosu2Þ

ð4:53Þ
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These last conditions, with the change of variable (4.41), give

ffiffiffiffiffiffi
2C

p Z r1ffiffiffi
2C

p

0
sinh y2dyþA ¼ R ð1þ vÞð1� cosu1Þ ð4:54Þ

ffiffiffiffiffiffi
2C

p Z r2ffiffiffi
2C

p

0
sinh y2 dyþA ¼ R ð1� vÞð1� cosu2Þ; ð4:55Þ

The same constant A is contained in the two last conditions. Thus

A ¼ R ð1þ vÞð1� cosu1Þ �
ffiffiffiffiffiffi
2C

p Z r1ffiffiffi
2C

p

0
sinh y2 dy

¼ R ðð1þ vÞ � ð1� vÞ cosu2Þ �
ffiffiffiffiffiffi
2C

p Z r2ffiffiffi
2C

p

0
sinh y2 dy

ð4:56Þ

that, together with (4.50), is the other equation required to obtain the two unknowns
/1 and /2. Solving the two Eqs. (4.50) and (4.56) gives the angles /1 and /2

defining the positions of the internal hinges of the slices at their minimum thrust
state. Figure 4.23 gives the plot of the solution angles /1 and /2 versus the factor v,
the ratio thickness/mean diameter of the dome.

With the increasing of the ratio v. The hinge at the intrados, defined by the angle
/2, moves towards the springing while the estrados hinge, defined by the angle /1,

moves towards the crown.
The solution angles /1 and /2, represent the real positions of the internal hinges

of the pressure curve at its state of minimum thrust, provided the compatibility
conditions at zenith and at springings are satisfied

0\A� s ð4:57Þ

R ð1� vÞ� z�1 R ð1þ vÞ½ � �R ð1þ vÞ ð4:58Þ

Fig. 4.23 The solution
angles /1 dan /2 versus the
ratio v (Coccia et al. 2015)
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The minimum thrust is thus given by

hmin ¼ Hmin

gR2 ¼ ð1þ vÞ2 sin2 /1

2f ð/1Þ
¼ ð1þ vÞ2 sin2 /2

2f ð/2Þ
ð4:59Þ

Figure 4.24 gives the plot of the non dimensional ratio hmin = Hmin/gR
2 versus

the ratio v = s/2R.
The following expression obtained by interpolation the curve of Fig. 4.24 is

(Coccia et al. 2015).

hmin ¼ �2:99ð s
2R

Þ3 þ 2:65ð s
2R

Þ2 � 1:15ð s
2R

Þþ 0:269 ð4:60Þ

The minimum thrust given by (4.60) is in good agreement with the curve
obtained by Lau (2006) analysing the dome model without the presence of hoop
stresses.

4.6.3 Hemispherical Dome of Minimum Thickness

Let us consider the equation of the pressure surface in which its dependance on the
angles /1 and /2 is expressed in a more explicit form. Thus, according (4.42) with
(4.50) and (4.56) we can write:

zðrÞ
R

¼ ð1þ vÞ sin/1ffiffiffiffiffiffiffiffiffiffiffi
f ð/1Þ

p ½
Z r

ffiffiffiffiffiffi
f ð/1Þ

p
Rð1þ vÞ sin/1

0
sinh y2dy�

Z ffiffiffiffiffiffiffiffi
f ð/1Þ

p

0
sinh y2dy� þ ð1þ vÞð1

� cos/1Þ
ð4:61Þ

Likewise to the case of the arch, let us start to assume that the pressure surface
touches at the base the extrados of the dome, i.e. let us admit the condition

Fig. 4.24 The plot
hmin = Hmin/gR

2 versus the
ratio v = s/2R
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z½Rð1þ vminÞ� ¼ Rð1þ vminÞ ð4:62Þ

from which we can evaluate the corresponding vmin. The solution of Eq. (4.62)
gives:

vmin ¼ 0:0215 ð4:63Þ

But, according to this value of vmin the compatibility inequality (4.58) is not
satisfied. By means (4.62) in fact we have (Fig. 4.25)

zð0Þ
R

¼ 0:046[ 2vmin ¼ 0:043 ð4:64Þ

Searching for the minimum thickness of the dome, the thickness can be reduced
as far as the pressure surface, that goes up from the springing and passes through
the above defined points M and N, touches the intrados at the zenith. The minimum
thickness ratio can be thus obtained under the condition that at the zenith we have
(Fig. 4.25):

zð0Þ ¼ tmin ¼ 2vminR ð4:65Þ

and, according to (4.62), we have

vmin ¼ 0:0226 ð4:66Þ

and the minimum thickness ratio t/R should be equal to 0.0452, i.e. a bit larger than
the value 0.042 given by Heyman (1977). Only if the ratio t/R is not lower than
0.0452, the compatibility conditions (4.44) and (4.45) are fulfilled everywhere.

Fig. 4.25 Statical inadmissibility at the crown: when reducing the thickness, the pressure surface
touches the dome extrados at the springer
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Figure 4.26 shows the pressure curve in the minimum thickness dome, i.e. with
the ratio v given by (4.66). We can notice that at the spingings the pressure curve
passes barely within the dome. Any further thickness reduction pushes the pressure
curve downwards, outside the crown. The ratio t/R = 0.0452 thus represents the
minimum thickness of the dome. It is worth to point out that, in spite of the
presence of a sufficient number of hinges, the mechanism cannot develop because
not kinematically admissible: it yields ring contraction towards the crown.

Actually, real domes are generally much more complex than the simplified case
analyzed here, so that graphical or numerical approaches are frequently adopted as
useful aids.

4.7 Domes of More Complex Shape. The Kinematic
Approach

It is a relatively simple matter to apply the kinematic approach to evaluate the
minimum thrust of masonry domes. The settlement mechanisms are obtained
releasing the slices by positioning hinges to allow horizontal sliding of the dome at
its springings. The hinges must thus be positioned:

• at the extrados, on the section linking the central closing ring with the slice;

at the intrados, at the haunches, as shown in Fig. 4.27. The position of this hinge
is unknown and is indicated by r in the figure.

• Thus, the minimum thrust lminS is evaluated by seeking the maximum of the
function

Fig. 4.26 The pressure surface in the state of minimum thickness. The surface touches the
intrados of the crown, then skims the extrados and then the intrados at the haunches and is only
barely inside the dome at the springings (Coccia et al. 2015)
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lminS ¼ Max
g; vðrÞh i
dðrÞ ð4:67Þ

by varying angle r along the intrados and where

dðrÞ ¼ ðh� R sin rÞh ð4:68Þ

is the horizontal displacement of the slice at springing. The search for the minimum
thrust thus translates into searching for the maximum of the function

lminS ¼ Max
g; vðrÞh i

ðh� R sin rÞh : ð4:69Þ

4.8 Mycenaean Tholos

4.8.1 Description and Historical Notes

The Mycenaean domed tomb, usually called tholos, is an admirable architectural
achievement of late Bronze Age civilizations. The first tholoi discovered were in
Messenia, in the Peloponnesian region of Greece, and date back to 1500 BCE.
Later, the construction of tholos also spread to other regions of Greece, reaching its
maximum expression in the so-called Tomb of Clytemnestra, the Orchomenos
tholos and the Treasure of Atreus, in around 1300 BCE. Tholoi are usually set in
hills: a chamber is built with horizontal pavement by excavating the slope. A first
portion of the chamber’s perimeter—from the base to about the level of the
admittance architrave—is built against the rock, while the remaining part rises from
the contour of the slope. The top is covered with a mound of earth, the so-called
tumulus (Fig. 4.28). The entrance to the chamber, called the dromos, is a long
passage cut into the slope of the hill and tumulus and delimited by masonry walls of
gradually raising height.

Fig. 4.27 Finding the
minimum thrust via the
kinematic approach
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The doorway opening, called the stomion, is found at the intersection of the
dromos with the chamber perimeter, and therefore interrupts the continuity of the
masonry wall built around the chamber.

The stomion is flanked by piers supporting the stone architrave. The masonry
blocks forming the masonry structure of the round wall are placed in successively
smaller concentric rings to project progressively inwards and upwards to close the
interior space from above (Fig. 4.29a). The intrados of the dome covering the
chamber is ogival in profile (Fig. 4.29b). The lower part of the dome, built into the
rock and in close contact with it, is inserted into the burial pit and becomes
increasingly thick up to the height of the architrave over the doorway as shown in the
foregoing Fig. 4.28. A filling of stones and compacted clay is frequently found in the
joints on the external surface of the masonry to embed it within the surrounding rock.

The Treasury of Atreus provides a splendid illustration of the architectural
arrangement: the dome is 14.50 m in diameter at its base. As can be seen in
Fig. 4.30, which shows its last course, trapezoid shaped stone blocks are arranged

Fig. 4.29 a Tomb of Clytemnestra. The masonry; b Internal contour (Mylonas 1966)

Fig. 4.28 Longitudinal section of a Mycenaean tholos

226 4 Domes



in horizontal course (Blouet 1833). The dome structure is moreover solidified by
smaller stones and clay forcibly inserted between the blocks. Such details reveal the
great care taken by the ancient builders to impart radial compression strength to the
horizontal rings.

The masonry vault arrangement, with progressively inward projecting horizontal
courses, is usually defined a false dome. By this definition, each one of the meridian
slices into which the dome is ideally subdivided is statically independent from the
others: only vertical actions are transmitted across them. Such behavior would be
the same as in false arches, a prime example of which is the Lion Gate at Mycenae.
However, thanks to the shrewd construction devices adopted by the ancient
Mycenaean builders, tholoi exhibit the efficient static behavior of a true dome, as
will be demonstrated in the next sections.

4.8.2 Statics of the Mycenaean Tholos

Let us consider, for instance, the tholos of the Treasury of Atreus, also known as the
Tomb of Agamemnon. Recent research (Como 2006, 2007) has shown that the
behavior of this typical tholos structure cannot be realistically described as that of a
false dome (Cavanagh–Laxton 1981; Benvenuto–Corradi 1990). The following is
based on the results of this research.

Figure 4.31 shows a meridian section of the tholos. Let us first consider the part
of the slice emerging from the rock. The slice is formed by the superposition of
concentric angular portions of courses progressively projecting inward. Each of the
blocks making up the slice is loaded by its own weight and the weight of the
overlying portion of the tumulus. According to the false dome model, each slice
should be able to sustain itself, as it is statically independent of the others.

Fig. 4.30 Treasury of
Atreus. Last stone course of
the dome (Blouet 1833)
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With reference to figure let us first consider the part of the slice emerging from
the rock. The slice is formed by the superposition of concentric angular portions of
courses progressively projecting inward. Each of the blocks making up the slice is
loaded by its own weight and the weight of the overlying portion of the tumulus.

According to the false dome model, each slice should be able to sustain itself, as
it is statically independent of the others. Let us look at a portion of the slice made up
of all the rings overlying a generic horizontal plane a–a (Fig. 4.32). This portion
can rotate around the toe O, representing the edge of the underlying course.

Each portion of the slice is subjected to both overturning and stabilizing couples,
respectively represented by the moments of all the weights acting on the right and
left of vertical line b–b. The portion of the slice will naturally be in equilibrium as
long as the corresponding stabilizing moment is larger than the overturning

Oa a

b

b

Fig. 4.32 Part of the slice
made up of all the rings
overlying horizontal
plane a–a

Fig. 4.31 A meridian slice loaded by the weights of the blocks and overlying tumulus
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moment. It has been shown that, due to the geometry of the rising rings, the slice is
not at all self-sustaining (Como M.T. 2006, 2007). The slice is in equilibrium due
to the horizontal resultant of the forces transmitted to the slice by the compressed
rings: these compressive forces produce horizontal forces that stabilize it.

Figure 4.33 shows the top voussoir of the slice: the compressive forces Fh1

acting on the sides of the voussoir produce the horizontal stabilizing force S1. Not
only vertical forces act on the slice, there are also the horizontal stabilizing forces
transmitted by the compressed rings. The careful arrangement of the horizontal
courses, with the insertion between the joints of small stones and clay acting as
wedges locking the stone rings (Fig. 4.30), enable them to sustain radial
compressions.

Near the base of the dome the situation is reversed. Whereas the slices tend to
shrink and the upper rings are consequently compressed, the lower rings tend to
widen and push against the rock, so as to activate the reaction of the rock backing
and thereby ensure membrane equilibrium. The lower rings are thus unloaded
(Fig. 4.34). Such a result is all the more remarkable in light of the fact that these
stone constructions were built more than three thousand years ago, that is, about
1400 years before the construction of the Rome Pantheon.

On the other hand, the horizontal arrangement of the courses represents the
tholos’ greatest weakness. The shear action of the horizontal component of forces
N/ can produce outward horizontal sliding of the courses, which is opposed by the
friction between the blocks. If we denote / as the angle between the meridian force
Nu and the horizontal, sliding does not occur if (Fig. 4.35)

N/ cos/� f � N/ sin/ ð4:70Þ

Fθ1

Fθ1

S1 V1

Fig. 4.33 Compressive
forces Fh1 acting on the top
ring to produce force S1

Fθ

Fθ

V Sθ V

Fig. 4.34 Tensile forces in the lower rings, required to maintain the membrane stresses in the
slice, are replaced by the reaction of the rock backing the chamber wall
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or

tg/� 1
f
: ð4:700Þ

We can thus evaluate the values of the critical slope of the tholos contour as a
function of the assigned values of the friction factor f. On average, we can assume
f = 1.125 and obtain the / � 41.5°.

Figure 4.29b shows the upper portion of the inner, bottle-neck shaped contour of
the Tomb of Clytemnestra: at the inflexion point, the slope / is over 45°. This
contour geometry is another ingenious device of the old Mycenaean builders.

Humidity greatly reduces the friction between the courses and the tholos
becomes more vulnerable. Only a radial arrangement of the blocks along a curved
line following the meridian contour of the dome could avoid the risk of sliding.
However, at the time such an arrangement was not yet technically feasible.
Nonetheless, even today many tholoi are still in remarkably good static conditions.

4.9 Roman Concrete Vaults: Do They Push on Their
Supports?

The ancient Romans built many different types of vaults, such as barrel, hemi-
spherical, cross vaults, etc., both in Rome and throughout other regions of the
Empire. Most of them were built of opus caementicium cast over wooden scaf-
folding or initial brick centering vaults (Adam 1984; Giuliani 1995; Lugli 1934).
The use of this material conferred advantages in terms of both economy and speed
of execution. On the other hand, it also suffered from the distinct disadvantage of
producing considerably heavy vaults due to both the thickness of the masonry and
the weight of the concrete, Their construction thus involved complex centering and
the activation of large thrusts.

Nowadays, even a naked-hands test of a piece of a Roman masonry immediately
reveals the substantial effort required to separate the caementa from the mortar—so
strong is the adherence between them. Such behavior is quite different from that of
brick masonry, whose tensile strength is due solely to the relatively weak adhesion
between brick and mortar, as discussed in Chap. 1. A natural question to pose is
therefore: do Roman vaults push on their supporting structures?

Nφ
Nφ sinφ

Nφ cosφ
φ

Fig. 4.35 Sliding force
between the blocks
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In the presence of non-negligible tensile strength, a vault behaves as a solid, and
the membrane solution can roughly represent the stress state in the vault under its
own weight. In this case, hemispherical vaults do not push on their springing.
However it is unlikely that the full internal cohesion of the material be reached by
the time the centering was removed (Giovannoni 1925). Thus, the seeming solidity
of vaulted concrete structures is often deceptive. The vault thrust will be activated
upon stripping. Thrusts can also be activated by the cracking produced by an
earthquake or differential foundation settlements. The slow penetration of water and
humidity inside the cracked masonry mass gradually aggravates the situation. The
presence of cracks on a vault’s intrados is a certain sign of thrust activation. The
presence of such cracking has been detected on the intrados of the ambulatory
vaults of the Rome Colosseum and of the dome of the Pantheon, the subject of the
next section.

4.10 The Pantheon

4.10.1 Introductive Notes

The Pantheon, whose structure has, by good fortune, been preserved unaltered up to
today, was built in a site sacred to the god Mars on the remains of two earlier
temples. The first, built by Marcus Agrippa, was destroyed by a fire. The second,
built by Domitian on the ruins of the earlier one, was shattered by lightning.

In the year 120 CE, Emperor Hadrian ordered another temple built on the same
site—the structure we see today. By Hadrian’s order the name of the first builder
was inscribed on the bronze pediment to commemorate the first structure. Hadrian’s
rebuilding however modified the original orientation of the temple: its main axis is
in fact along the east–west direction, towards the point where the planet Venus rises
on April 1, a day sacred to Venus, the goddess whence Gens Julia (the house of
Julius Caesar) descended (Lucchini 1996).

The building complex was originally composed of the forecourt, with its sur-
rounding porticos, the pronaos, the vestibule and the Rotunda, the large domed
circular chamber, all erected at the same time as a single unified whole or “unicum”.
The concept of the new temple was different from traditional ones because it
presents an inner space accessible to worshippers. In earlier temples, people were
instead forced to gather outside.

Stamps on the bricks have enable the temple to be dated precisely: it was built in
120–128 CE. Although not known with certainty, it was clearly a great artificer,
perhaps Apollodorus of Damascus or the Emperor Hadrian himself, who designed
and accomplished this extraordinary monument, considered one of Rome’s most
important buildings. The use of various materials and the adoption of differing
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methods of construction lend the building the character of a transition period work.
Indeed, the temple’s main component, the Rotunda with its cupola, is made of
concrete, heralding future technical advances, while the trabeated pronaos, which
nearly conceals the Rotunda completely, follows an architectural tradition that goes
back to classical Greece (Fine Licht (de) 1968).

4.10.2 Structural Aspects of the Temple

The radius of the inner dome is precisely equal to its height, so it could hold a
perfect hemisphere. The great dome, with an internal diameter of about 43.30 m
and height of 21.65 m, rests on a masonry cylinder of the same height, so that the
total interior height of the building is 43.30 m (Fig. 4.36).

These measurements have been a matter of some debate and will be discussed
hereinafter. The massive circular wall, about 6.50 m thick, did not allow for win-
dows to be opened, so a hole 9.0 m in diameter was left in the roof in the center of
the dome, the oculus, which provides the only source of light.

Fig. 4.36 Transverse section of the Rotunda (de Fine Licht 1968)
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The pronaos, larger than that of the Athens Parthenon, consists of an entablature
and roof sustained by 16 monolithic corinthian columns, each of them weighing
about 50 t. The columns’ shafts are about 1.50 m in diameter and 12 m in height,
equal to eight times its diameter, each with an entasis. The columns’ total height,
including the corinthian capital, reaches about 14 m. The corner columns, in
conformity with the architectural principles laid down by Vitruvius, have shafts
with slightly larger diameters than the others.

Of all the structural components of the temple, the Rotunda, is clearly the most
prominent, important and extraordinary. The Rotunda is made up of the drum, in
turn constituted by a cylindrical wall, and the dome. The drum wall is not a solid
structure, but contains cavities and chambers and is open towards the interior with
large niches and exedrae. Similar cavities are also presents at the base of the dome
situated in correspondence to the exedrae and chambers of the drum.

The interior of the dome presents the simple geometry of a hemisphere: we
recognize the symbolic mark of Archimedes of a sphere inscribed in a cylinder.

The actual diameter of the drum, which is the same as the dome’s at its
springing, as before mentioned, has been a matter of some debate. The convexity of
the floor, the internal niches, the columns ringing the inner edge of the wall, all
combine to produce uncertainties in evaluating the true internal radius of the sphere.
The measurements given in Fig. 4.36, from de Fine Licht, are not universally
accepted. Another researcher, Wilson Jones (2000), identified the basic geometrical
conception of the dome. The square inscribed at the base of the dome, along the

Fig. 4.37 Plan/section of the Pantheon with its geometrical modulus (Wilson Jones 2000)
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axes of the internal columns, has sides whose lengths equal the width of the
monument’s front portico, measured between the axes of the outermost columns
(Fig. 4.37).

The diagonal of this square matches the diameter of the circle. The side length of
the square measures 31.50 m and its diagonal 31.50 � 1.4142 = 44.55 m. The
diameter of the sphere thus equals the length of this diagonal, that is, 44.55 m, i.e.
150 Roman feet, because 150 � 0.297 = 44.55. The length of 44.55 m may thus be
considered an exact measure of the dome’s diameter along the axes of the internal
columns. The length of the internal diameter of about 43.30 m, given in Fig. 4.37 is
thus only a bit shorter than the previous measure, taking into account the mean
value of the internal columns diameter, about equal to 1.0 m.

The cylindrical drum continues for a distance of about 8.20 m above the dome’s
springer; the weight of this extra masonry serves to oppose the thrust of the dome.
In this ingenious way, the builder was able to provide a counter-weight to
strengthen the dome in its lowest portion. The total height of the drum is 30.50 m.
From the outside the dome seems to rise above the last cornice and looks like a
shallow cupola with a saw-toothed profile created by seven steps rising from its
base. The crown is topped by the oculus, the opening in the middle of the cupola,
surrounded by a ring of bricks.

The dome’s thickness falls from about 5.90 m at the base to nearly 1.50 m at the
top, where the dome is topped with a compressed ring surrounding the oculus. The
ring is about 1.60 m high and is made up of vertical tile-like bricks, called bipe-
dales set radially in three circles one over the other. The extrados of the dome is
covered by half-bricks, or semilateres, placed in a herringbone pattern and an upper
impervious layer of opus signinum on which gilded bronze tiles were laid, though
nowadays these have been substituted with a lead covering. A number of large
relieving arches are incorporated into the wall masonry and can be seen in the brick
façade as a frieze of alternating large and small arches Rotunda (Lancaster 2007)
(Fig. 4.38).

The eight larger arches, arranged along the Rotunda’s main and diagonal axes,
lie above the vaults and the exedrae of the middle area. These arches are made up of
two concentric courses of bipedales inserted about 2.0 m into the masonry to
reinforce the concrete and direct stresses down towards the side piers. Studies
carried out between 1829 and 1934 revealed that the dome did not present ribs,
contradicting a famous etching by Piranesi. The dome intrados is divided into five
orders of 28 hollow coffers set in the concrete. Apart from embellishing the vault,
these also served to reduce its weight. The choice of 28 coffers was not by chance:
Euclid considered it a perfect number, because it equals the sum of its divisors. It is
moreover strictly linked to the lunar calendar. At the time, partitioning a circle into
28 equal parts was a complex geometry problem related to the problem of subdi-
viding a circle into 7 parts, which had been studied by Archimedes (Martines 1989).

The wall of the Rotunda, sustaining the dome, stands on a massive foundation
ring of concrete made of travertine fragments poured layer by layer into lime and
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pozzolana mortar, which over time has become hard as rock. The foundation ring,
similar to the Colosseum’s, ha s a rectangular section 7.50 m wide and 4.50 m high
and a cladding of semilateres, tightly bound to the concrete.

The cylindrical wall, from the foundation up to the first cornice is made of
poured concrete and is about 12.50 m in height. Alternating layers of travertine and
lumps of tuff were used as caementa in a lime and pozzolana mortar. This core is
faced with about 60 cm thick bricks. The bricklaying shows fine horizontal joints
about 1.5 cm wide and narrower vertical joints. Horizontal leveling courses of
bipedales are distributed at intervals of about 1–1.5 m.

From the first cornice up to the dome springing, for a height of about 9.50 m, the
masonry composition is similar to the lower part, except for the core, for which
brick and tuff fragments were used as caementa. Further up, there is yet another
distinct, 8 m-high zone that comprises the top part of the dome and is made of
alternating layers of light tuff blocks (tufo giallo) and volcanic slag or scoria
(Fig. 4.39). The arrangement and distribution of the cladding materials along the
dome’s height reflects a clear design principle: the heavier brick and travertine were

Fig. 4.38 The relieving arches in the Rotunda (Lancaster 2007)
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used for the lower band of the drum, then the travertine was replaced by the lighter
tuff. The same sort of materials arrangement is found within the dome. Bricks and
then tuff are placed at the dome springer, then filling layers of decreasing weight
follow in sequence: capellaccio, tufo giallo, pumice and volcanic slag (Lugli 1934).

Fig. 4.39 The various materials of the dome masonry (Lancaster 2007)
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During restorations performed in the years 1881–82, significant cracks were
discovered throughout the Rotunda’s facade. Then in 1936, in-depth analyzes
detailed the cracking patterns in the Pantheon’s various types of masonry. Over the
centuries many attempts have been made to repair the cracks, the oldest of which
probably appeared just after the temple’s completion. In fact, a number of age-old
foundation reinforcement operations have been clearly documented. Indeed, the
inscription “vetustate corruptum” over the architrave of the pronaos testifies to one
of these early reinforcement operations carried out in about 202. The walls and the
arches were also repaired using bricks stamped with dates corresponding to the rule
of Septimius Severus (193–211). Figure 4.40 provides an illustration of the
meridian cracks around the intrados of the entire dome (Terenzio in 1934).

4.10.3 Thrust of the Dome

Let us now look at the thrust of the dome under the usual assumption of no-tensile
strength concrete. The above mentioned cracking pattern attests to the activation of
thrusts within the dome. We can also assume that slight widening of the drum at the
dome springing has occurred, so as to activate the minimum thrust. Within this
basic framework, we will follow the approach followed in Como (2010) to evaluate
the dome thrust by taking a slice of 45° magnitude.

The slice is subdivided into 38 ashlars and the corresponding weights and
centers evaluated, as indicated in the Table 4.1 and in the Fig. 4.41. The sum total
of all weights is 2377.73 t, so the weight of the whole dome is about
W = 2377.73 � 8 = 19.022 t. The weight of the slice is concentrated particularly
on the springing, thereby considerably reducing the thrust.

Fig. 4.40 Cracks detected by Terenzio on the dome intrados (de Fine Licht 1968)
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Fig. 4.41 Weight distribution of various ashlars in the slice

Table 4.1 Weights of the 38 voussoirs composing the Dome slice

Voussoirs Weights (t) Voussoirs Weights (t)

1 13.09 20 39.50

2 11.15 21 41.80

3 12.60 22 47.70

4 14.66 23 74.20

5 16.83 24 82.10

6 19.17 25 91.40

7 21.65 26 116.10

8 21.05 27 116.10

9 18.12 28 116.20

10 28.94 29 105.70

11 27.39 30 103.20

12 23.18 31 127.87

13 28.10 32 127.87

14 35.00 33 80.80

15 27.00 34 80.80

16 30.80 35 143.58

17 26.00 36 143.58

18 34.00 37 143.58

19 45.40 38 143.58
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Fig. 4.42 Pressure curves C1, C2, C3

Fig. 4.43 Pressure curve D4, D5, D6
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The static approach is now applied to search for the minimum thrust.
Figures 4.42 and 4.43 describe the pressure lines corresponding to various locations
of the points of the curves at the springing and key of the slice. Only below the
springing do the pressure lines intersect the weight forces of the more external
ashlars. In these sections the weight of the high cylindrical wall above the springing
further deviates the pressure line.

The minimum thrust, Smin, of all statically admissible ones, corresponds to the
curve C3 passing through the point located at the connection of the dome extrados
with the upper central ring around the oculus. Curve C3 is thus tangent to both the
intrados, at the haunches, and the extrados, at the connection point of the dome to
the upper ring. Such a pressure line allows a mechanism displacement to develop
and produce a slight widening of the dome at the springing, due to the deformation
of the drum. The estimated minimum thrust value of the splice considered, which is
1/8 of the entire dome, turns out to be 186.22 t. This value has also been checked
via the kinematic approach, as it can also be determined as the maximum among all
the kinematic values.

The drum’s average radius, along half its thickness, is about
Rm = 22.27 + 3.25 = 25.52 m and the thrust So per unit length of the average
circumference at the dome springing equals 186:22� 8=ðp � 225:52Þ ¼ 9:29 t=ml.
The thrust is about three times lower than the thrust of St. Peter’s dome, which as
will be shown later, is about to 30 t/ml. The ratio v between the thrust and the
weight of a single slice represents the efficiency ratio of a dome. In the case of the
Pantheon we thus have

v ¼ 186:22
2377:73

¼ 0:078

value of this ratio, particularly low in comparison to other important domes, is
indicative of the static efficiency of the Rotunda. This resulting value is a conse-
quence of both the design geometry and the materials distribution of the dome. In
this respect, the most significant of the geometrical features are the extension of the
drum beyond the level of the dome springing, the gradual reduction in thickness of
the vault towards the center and the widespread presence of coffers. The extension of
the drum beyond the level of the dome springing strongly deviates the thrust of the
dome towards the vertical. The weight of the high drum reduces the eccentricity of
the resultant of the forces acting at the base of the foundation structures (Fig. 4.44).
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Fig. 4.44 Subsequent resultants of the forces acting on a slice of Rotunda
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4.11 Brunelleschi’s Dome in Florence

4.11.1 A Brief Account of the Cathedral’s Design
and Construction

The dome of Santa Maria del Fiore in Florence is one of the greatest achievements
of early Renaissance architecture.

The original designer of the cathedral was Arnolfo di Cambio, the builder of
Palazzo Vecchio in Florence, that was charged by “The Opera del Duomo” to
design the new cathedral of Florence, in place of the old church of S. Reparata.

The foundations had been already laid in 1296. Upon Arnolfo’s death, the work
stopped and recommenced only with Giotto, the new master builder, that in 1334
was commissioned to build the bell tower. After the death of Giotto in 1337, work
on the church continued, with some breaks and changes. The Opera del Duomo”
decided to broaden greatly the initial plan of the cathedral. The new design project
is ascribed to Francesco Talenti (Cricco and Di Teodoro 2010). Figure 4.45 shows
the three plans of

• the old church of S. Reparata
• the design of Arnolfo di Cambio
• the new design of Francesco Talenti, corresponding to the actual plan of the

cathedral.

The succession of the construction of the cathedral is very long (King 2001;
Fanelli and Fanelli 2004). After Francesco Talenti, new masters, as Giovanni di
Lapo di Ghini and Neri di Fioravanti, were charged to direct the construction.

In the 1367 the design of Francesco Talenti was adopted and set the basic form
for the dome of S. Maria del Fiore. The present plan of the cathedral is conform to
the plan of Francesco Talenti. Unlike most previous cupolas, including the
Pantheon, that of S. Maria del Fiore was pointed rather than hemispherical in
profile. The dome was to be an octagonal cloister vault.

Fig. 4.45 The plans of the
old church of S. Reparata and
the design projects of Arnolfo
di Cambo and Francesco
Talenti
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As late as 1355, nothing existed of the cathedral except for the façade and the
walls of the nave. By the 1366 the nave and the aisles had been vaulted and the east
end of the church almost completed. Later, between the 1380–1390, the central
pillars were built and the octagonal tambour was in construction.

The un-built dome of S. Maria del Fiore had become the greatest architectural
problem of the age. The construction of this vault would call for new ingenious
solutions. Only on August 19th, 1418 was a special contest announced:

Whoever desires to make any model or design for the vaulting of the main Dome of the
Cathedral under construction for the Opera del Duomo—for armature, scaffold or other
thing, or any lifting device pertaining to the construction and perfection of said cupola or
vault—shall do so before the end of the month of September. If the model be used be shall
be entitled to a payment of 200 gold Florins. (translated by S. King, 2000).

The contest specified that the dome, to be built on the already finished octagonal
drum, had to have an external diameter of about 54 m and a height of more than
105 m from ground level. The outer shell shielded the inner on from the elements.
With this design the dome would not only be the widest vault ever built: it would be
also the highest.

Two hundred florins was a good deal of money and so the competition attracted
the attention of carpenters and masons from all across Tuscany. In the final stages
of the contest, the projects of both Ghiberti and Brunelleschi were chosen for
consideration, though in the end, it was Brunelleschi’s unprecedented plan, which
called for building the dome without the use of centering, won. Construction of the
dome was begun in 1420 under the direction of Brunelleschi himself and was
concluded in 1434. The lantern was then added in 1461, after Brunelleschi’s death
in 1446.

4.11.2 The Supporting Pillars

The dome is sustained by four large pillars: two apsidal and two flanking the nave.
Their heads reach the height of 28.00 m from floor level, assumed to be at 0.00 m.
The two apsidal pillars, from the floor up to 20 m height, have hollow cross sections
in the shape of an isosceles trapezium (Figs. 4.46, 4.47 and 4.48) (Sgrilli 1733).

A schematic drawing of their cross section is shown in Fig. 4.49. The cross
sections of the other two pillars flanking the nave are divided into two parts to
create a wide passage between the aisles and transept. Beyond 20 m height, the
sections of all four pillars become solid and are firmly connected to the drum. The
masonry of the pillars is made up of thick stone facings tightly bound to an internal
rubble and mortar core. Their foundations are made by huge and massive concrete
deep about 6 m and rest on solid gravel banks of the Arno river.
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Fig. 4.46 Plan of the cathedral of Santa Maria del Fiore (Sgrilli 1733). The longitudinal axis is
oriented from East (the abside) to West (the façade)

Fig. 4.47 Longitudinal section (Sgrilli 1733)
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4.11.3 The Drum

The drum is octagonal in shape, resembling a crown. Its eight sides are supported
by the four pillars with four pointed arches spanning them.

The drum can be divided into an upper part, from 39 m height up to the
springing of the dome at 52 m, and a lower mixtilinear portion where it joins the
piers (Fig. 4.50).

The dome intrados, sectioned by vertical planes passing through opposite cor-
ners, is a circular arch. Each of these eight arches is called a “pointed fifth” and

Fig. 4.48 Transverse section
(Sgrilli 1733)

Fig. 4.49 A schematic
drawing of the apsidal pier
section
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inscribes an angle of about 60° with the center of the circle (from the parchment of
Giovanni di Gherardo da Prato of the year 1426 (Ippolito Peroni 1997), shown in
Fig. 4.51).

The radius of a pointed fifth is equal to 4/5 of the distance spanning the internal
corners of the octagonal annulus, i.e. it equals 4=5 � 44:97m ¼ 4=5 � 77 arms
(1 arm = 0.584 m). These eight arches, converging upwards in the centre, form the
groin ribs of the dome’s intrados.

The following basic measurements of the drum are taken from the parchment of
Giovanni di Gherardo da Prato of the year 1426 shown in Fig. 4.51.

(1) distance Dic spanning two opposite corners of the inner octagon, which is 77
arms, as indicated in a parchment by Gherardo di Riccardo di Prato where 1
arm = 0.584 m, (King 2001), and D ¼ 2 � OZ ¼ 77� 0:584 m ¼ 44:97 m:

(2) distance Dec between two opposite corners of the external octagon, which is
92.5 arms, as pointed in the parchment, and Dec ¼ 2 � OH ¼ 92:5�
0:584 ¼ 54:02 m:

13 m
11 m 28 m

52 m

39 m

Fig. 4.50 The drum
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The drum is lightened by eight oculi crossing the sides of the octagonal crown.
The average diameter of the oculus measures about 5.80 m (Ippolito and Peroni
1997).

From these two basic measures we can calculate all the other quantities that
define the geometry of the drum (Fig. 4.52). Four circles are distinguished:

• the circle Cico passing through the internal corners of the octagon with radius

Rico ¼ OZ ¼ 44:97� 0:5 ¼ 22:48 m

• the circle Ceco passing through the external corners of the octagon with radius

Reco ¼ OH ¼ 54:02� 0:5 ¼ 27:01 m

• the circle Ctiso tangent to the internal sides of the octagon with radius

Rtiso ¼ OK ¼ OZ � cos22:5� m ¼ 20:77 m

• the circle Cteso tangent to the external sides of the octagon with radius

Rteso ¼ OW ¼ OH � cos22:5� m ¼ 24:95 m

Fig. 4.51 Geometry of the
pointed fifth (From the
parchment of Giovanni di
Gherardo da Prato of the year
1426, Ippolito Peroni 1997)
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• Side length of the external octagon

L ¼ 2 � OH � sin22:5�¼ 2 � 27:01 � 0:3827 ¼ 20:67m

• Side length of the internal octagon

Li ¼ 2 � OZ � sin22:5�¼ 2 � 22:48 � 0:3827 ¼ 17:21m

Thickness scc of the circular crown inscribed in the octagonal annulus

scc ¼ Rteso � Rico ¼ 24:95m� 22:48m ¼ 2:47m

Thickness of the drum at the corners of the octagonal annulus

sdc ¼ ZH ¼ OH�OZ ¼ 27:01m� 22:48m ¼ 4:53m

Thickness of the drum

sd ¼ KW ¼ sdc � cos22:5� m ¼ 4:18 m

Fig. 4.52 Horizontal section
of the drum
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that equals the thickness of the dome base at the midpoint of the drum side:

sdbmds ¼ KW ¼ ZH � cos22:5� ¼ 4:53 � cos22:5� ¼ 4:18m

Height of the upper band of the drum

Hubd ¼ 13:00m

4.11.3.1 The Masterly Geometry of the Supporting Structures
designed by Arnolfo di Cambio and His Succeeding Masters

As shown in Fig. 4.46 the shape of the pillar sections are designed so as the drum
rests on their internal sides. Consequently all the weight of the dome and of the
drum counters the dome thrust. This result, of extreme importance, is thoroughly
examined at Sect. 4.11.6. Only the clear perception of the effects of the thrust of the
dome can explain this extraordinary design as of the drum as the sections the
underlying large pillars perhaps already conceived by Arnolfo di Cambio and
clearly designed by Francesco Talenti.

4.11.4 The Dome

Unlike most cupolas, which like the Pantheon are hemispherical in profile, the vault
of Santa Maria del Fiore is a pointed dome (Fig. 4.53).

The dome is an octagonal cloister-vault made up of four interpenetrating barrel
vaults. There are eight webs and their surface is produced by horizontal straight
lines extending from the octagon sides. Each of the eight webs spans two adjacent
corners, or groin ribs, the “speroni d’angolo” (Fig. 4.54).

Each web is composed of two shells stiffened by two median ribs, called
“speroni mediani”, connected to the groin ribs by nine horizontal arches. The width
of the internal shell diminishes with height and varies from 7 ft (2.13 m) at the base
to 5 ft (1.52 m) at the top. The external shell is much thinner and a varies slightly
over 2 ft its base to one just over a foot at the top.

A stiffening system connects the external and the internal shells tightly together,
so that the composite vault behaves like a single solid dome. As forward shown, the
internal masonry pattern differs from the external shape of the dome and, surpris-
ingly, presents the structure of a so-called dome of rotation.

The dome can be divided into three sectors delimited by four galleries (“cam-
minamenti” in Fig. 4.55), running horizontally into the masonry to provide access
to interior walkways.

Above the first sector, the dome, composed by lighter masonry, made of bricks
or tufa blocks and mortar, divides into two shells connected by ribs. The masonry
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Fig. 4.53 The dome of Santa
Maria del Fiore (model at the
“Opera del Duomo”,
Gizdulich (from Ippolito and
Peroni 1997)

Fig. 4.54 A web with
meridian groin ribs, two
median ribs and nine
horizontal arches connecting
the median to the corner ribs
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texture in these sections reveals the ingenious strategies devised by Brunelleschi:
the spinapesce (herringbone), the corda blanda (slack-line), the connection hori-
zontal arches, the stone and wood chains.

4.11.4.1 Dome Constructional Devices of Brunelleschi

The Herringbone
With the curving of the dome, the flat bricks gradually begin to take on an

inclined position in the meridian planes. Long bricks, placed vertically and con-
verging in the center, wedge the increasingly inclined flat bricks in between, pre-
venting them from sliding off while the mortar is still wet (Fig. 4.56).

As the masonry was raised, the vertical bricks had to be put in place one adjacent
to the other. The diagonal and jagged lines of the vertical bricks form the so-called
herringbone pattern.

Fig. 4.55 Transverse section of the dome with the two shells (Ippolito and Peroni 1997)
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The Slack Lines (corda blanda)
Brunelleschi’s second device concerns the positioning of the bricks rows around

the dome: they do not follow the rectilinear alignment of the octagon sides and so
do not intersect at the groin ribs, but run on conical beds along continuous curves
with circular projections.

These curves, called slack lines, are intersections of the dome with ideal cones
with downward directed vertices. Each of these ideal cones shares a common
vertical axis, which coincides with the dome’s central vertical axis (Figs. 4.57 and
4.58).

A cone-shaped slack line is produced where each ideal cone intersects the
octagonal shape of the rising vault. The presence of these slack lines was predicted
by Mainstone (1977). Di Pasquale (2002) discovered these curved brick beds in
1977, through measurements made over external areas of the outer dome stripped of
its tiles (Fig. 4.59). Through this strategy Brunelleschi avoided discontinuities in
the brick rows at the corners It seems natural to assume that Brunelleschi was
seeking to build a rotational dome, despite the octagonal external form.
The Connection Horizontal Arches

The third constructional device conceived by Brunelleschi concerns the con-
struction of the horizontal arches connecting each corner rib with the two adjacent
median ribs, as shown in Fig. 4.60. This device was conceived directly by
Brunelleschi in the year 1326 during the construction of the dome, with a change of
the program of works (Mainstone 1977; Como M.T. 2012). The construction of the
dome went on with continuity circle by circle creating a kind of circular skeleton
over which the external octagonal structure of the dome took shape.

Fig. 4.56 The herringbone
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The purpose of Brunelleschi was to build the dome so that it contained within its
thickness of its two shells continuous circular rings. This was possible without
difficulty in the inner shell, whose thickness was included between 7 and 5 ft. The
outer shell was, on the contrary, thinner: its thickness varied from 2 ft at its base
narrowing to just 1 ft at the summit.

Inscribing a circular dome within its thickness was not possible. Brunelleschi
bypassed this difficulty. Connection arches were built on the inside of the dome’s
outer shell.

As shown in Fig. 4.60 the horizontal arches connecting the corner ribs with the
two adjacent median ribs ensued the existence of continuous circular rings also in
the outer shell.

Fig. 4.57 Intersections of the
webs with the cones’ surfaces

Fig. 4.58 Rows of bricks in
the slack-line arrangement
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Nine horizontal arches were built at 8 ft interval. These arches served a vital
function in building the cupola because, creating a sequence of continuous masonry
horizontal rings, prevented the inwards failure during the construction when the
shell, curving inwards, had passed a critical angle of overturning of webs, as it will
shown at the next section.

Fig. 4.59 Discovery of the conical brick beds beneath the horizontal rows of tiles (Di Pasquale
2002)

Fig. 4.60 Horizontal section of the outer shell. Left figure the horizontal arches connecting the
corner ribs with the adjacent median ribs. Right figure the same horizontal section but without the
horizontal arches (Mainstone 1977; King 2001; Como 2012)
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Fig. 4.61 The stone belt
(King 2001)

Chains of Stone (catene di macigno) and Wood
According to the previous prescriptions of the Neri di Fioravnti design,

Brunelleschi inserted in the dome three girdling belts of macigno, a strong sand-
stone, inserted at the level of the first, second and third galleries, cramped by iron
brackets. The chains were composed by two horizontal octagonal rings of stone
concentrically placed. These two rings were connected with transverse connecting
stone beams, attached with iron clamps and dovetailed into the rings.

The first sandstone belt crosses the whole base of the dome and consists of two
concentric rings of sandstone (pietra di macigno) laid horizontally around the
octagonal section of the dome. They were composed by long lintels 7 1/2 ft
(2.28 m) long and 17 in. (43.2 cm) in section, connected by iron clamps, glazed
with lead, to prevent the iron from rusting. These long lintels were interlocked with
shorter beams laid transversally at interval of every 3 ft (King 2001).

The other two stone chains, placed at higher height in the dome, have more
complex geometry because they were inclined rather than laid horizontally
(Fig. 4.61).

The wood chain is made of 24 wood lintels connected by iron clamps in circling
the dome 25 ft (7.60 m) above the first stone chain. The presence of one iron placed
above the first gallery is doubtful. All these chains are very deformable and support
only negligible shares of the dome thrust.

4.11.4.2 Equilibrium of the Dome During Construction

The dome was built without centering, circular layer by circular layer, so its internal
stress state changed continuously during construction.
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The segment of each web is self-supporting, as long as their height sufficiently
small, when the resultant of the weights falls within the footprint of the base of the
web. As construction proceeds, this resultant will become ever more eccentric, up to
the point that it reaches the boundary of the base section, when the web would tend
to tip over (Fig. 4.62). Upon further load increments, the rings, and particularly the
top ring of the webs, will become compressed and will produce a balancing force,
F, over each web or dome slice that counters their inside failure (Fig. 4.63). The
overturning of the built webs tends to occur when the height of these webs reaches
the height of about 26 m above the dome springing. At this height the rings will be
thus fully engaged securing the equilibrium of the dome.

The construction of the dome circle after circle, both in the inner and in the outer
shell, positioning the brick rows along continuous curves on conical beds, allowed
the engagement of these rings This choice to build the cupola probably was suggested
to Brunelleschi during a stay in Rome observing the Pantheon, with its open oculus.

Fig. 4.62 Equilibrium of a
slice at critical height (Como
2010)

G

F

–G
–F

F

Fig. 4.63 Equilibrium of the slice beyond the critical height
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Stability of the single outer shell during the construction has been studied by
Mainstone (1977) and then by Como M.T. (2012). These studies showed the
importance of the horizontal rings connecting the median to the corner ribs able to
ensure the presence of a resistant ring also inside the thin outer shell.

4.11.4.3 Crack Patterns

Documentation of the first cracks detected on the dome intrados date back to the
year 1639, when meridian cracks on the intrados of the internal shell were first
noticed. They crossed the fresco by Zuccari and followed a jagged line along the
herringbone brick pattern (Blasi and Ceccotti 1984; Ottoni et al. 2010; Ottoni 2012;
Bartoli et al. 2015) (Fig. 4.64). Figures 4.65 and 4.66 show the cracks detected at
the end of the seventeenth century by Nelli and by Viviani: these draft show that the
cracks cut across the whole drum (Sgrilli 1733; Ottoni 2012). An history of the
gradual damage detected in the dome has been reported by Bartoli et al. (2015).

An increasing trend of the damage has been recognized with the average
increasing of the major crack width equal about to 3 mm per century. The crack
width increasing occurred with jumps, due to the various earthquakes that hit the
city of Florence. Actually the damage in the dome seems to be stabilized at least in
the last 80 years.

The largest cracks on the dome intrados were surveyed by Blasi and Ceccotti
(1984) (Fig. 4.67). Major passing cracks, on both the shells are present along the
meridians of the webs placed over the pillars. The largest cracks, averaging 5–6 cm
in width, run on the north-western and south-eastern webs. No cracking has been
substantially detected in the dome along the groin ribs (Fig. 4.67).

The absence of meridian cracks in the webs over the pillars pointed arches can
be explained taking into account the arching effect occurring, in the web above the

Fig. 4.64 Cracks running
across the fresco of Zuccari
(Ottoni 2012)
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oculi of the drum, in the zones of the webs located over the pointed arches. The
presence of the oculi arch deviates the stress flow towards the web sides and gives
rise to a ring compressions opposing the cracking (Fig. 4.68). An accurate survey of
all the damage detected in the dome and of the past controls is given by Bartoli
et al. (2015).

No cracks have been detected at the intrados of the pointed great arches
underlying the drum.

Fig. 4.65 Old survey of a
meridian fracture detected by
Giovanni Nelli, 1690

Fig. 4.66 Draft of Vincenzo
Viviani (1695) of two cracked
webs (Ottoni 2012)
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Fig. 4.67 The crack pattern according to Blasi and Ceccotti (1984)

Fig. 4.68 Different behavior of webs sustained by pillars or by arches
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4.11.4.4 Thrust of the Dome

The occurrence of thrust is due to the presence of meridian cracks in the webs. The
thrust (Fig. 4.69) distorts the initial membrane stress flow in the structure and
deform.

Due to the octagonal horizontal section, the meridian dome sections vary with
the position of the vertical sectioning planes and the thrust, corresponding to the
various slices, changes along the drum.

The thrust per unit length of the average circle at the dome springing will thus
exhibit the undulating pattern sketched out in Fig. 4.70, where the middle sections
of the webs correspond to the dotted lines. The outer and the inner shells forming
the dome are strictly connected by ribs and the horizontal arches, so the vault can
be accurately described as behaving like a single solid structure despite its
complexity.

Fig. 4.69 Thrust due to the
presence of meridian cracking

Fig. 4.70 Variation of the
thrust along the sections:
dotted lines indicate the web
centres
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A small deformation of the drum, produced by the thrusting action, yields a
slight increasing in the dome span. The webs follow this deformation and, as
described earlier, develop thrust that is the minimum among the all statically
admissible ones.

In this framework, the thrust has been valuated by considering a dome slice
equal to 1/8 of the entire dome, corresponding to the single web supported directly
by the underlying pier. The slice is sectioned into 31 voussoirs: the first corresponds
to the voussoir at the crown.

Table 4.2, lists the volume, weight, and position of the center of the various
voussoirs. The average unit weight of the dome masonry has been assumed to be
c = 1.85 t/m3. The distance y measures the height of the voussoir centre with the
height 0.00 of the dome springing. The distance x gives the horizontal distance of
the voussoir centre respect to a generic vertical axis. Also the share of the weight of
the lanten, equal to 750/8 t, has been taken into account, as shown in Fig. 4.71. The
voussoir 31 is the first, starting from the base of the dome.

The construction of the pressure curve, valuated along the groin rib, has been
continued also inside the upper part of the drum as far as to the height of 39.0 m

Fig. 4.71 Graphical valuation of the thrust of the dome slice (1/8 of the dome)
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from floor level, taking into account of the corresponding weights. The thrust
estimate has been performed in Como (2010).

The pressure line corresponding to the minimum thrust is plotted in Fig. 4.71.
The curve passes through the extrados of the slice at the crown and is tangent to the
intrados of the web near the haunches. The pressure line intercepts the center of the
internal side of the section of the pier head. The vertical load transmitted by the
single slice to the pier head is about 3,800 t, including the share of the weight of the
lantern, equal to 750 t/8. The total weight of the dome is Gcup = 3,800 � 8 =
30,400 t, quite close to the value reported by other scholars.

Table 4.2 Volume, weight,
and positions of the center of
the various voussoirs

Voussoir Vol. (m3) Weight (t) XG (m) YG (m)

1 16.64 30.79 357.41 35.51

2 21.57 39.84 356.30 35.47

3 24.72 45.74 355.21 34.59

4 28.67 53.03 354.08 33.68

5 37.13 68.68 352.94 32.86

6 37.22 68.86 351.91 31.81

7 44.46 82.26 350.81 30.85

8 47.21 87.34 349.87 29.85

9 48.79 90.26 348.92 28.76

10 58.48 108.19 347.92 27.76

11 55.60 102.85 347.11 26.57

12 61.66 114.07 346.21 25.45

13 65.66 121.47 345.42 24.34

14 64.48 119.28 344.69 23.10

15 74.32 137.49 343.87 21.93

16 69.88 129.09 343.28 20.67

17 72.52 134.15 342.63 19.42

18 81.11 150.05 341.97 18.22

19 75.78 140.20 341.49 16.88

20 82.51 152.64 340.90 15.58

21 82.51 152.64 340.46 14.31

22 80.52 148.95 340.07 12.95

23 90.51 166.66 339.58 11.63

24 82.92 153.41 339.34 10.27

25 83.90 155.21 339.04 8.92

26 84.74 156.77 338.78 7.56

27 85.45 158.08 338.57 6.19

28 86.02 159.14 338.39 4.82

29 86.46 159.94 338.27 3.45

30 86.76 160.51 338.18 2.07

31 86.93 160.82 338.14 0.69
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Performing the necessary calculations gives us a horizontal thrust of 400 t
transmitted by the slice (Fig. 4.71). Now, assuming a circumference at the dome
springing equal to p � 0:5� 27:08� 2þ 20:77� 2ð Þ ¼ 150:32m, averaging the
lengths of the crown boundaries in which the drum is inscribed, the length of the
base slice is 150.32/8 = 18.79 m and the unit thrust per single meter of dome at its
springing is 400/18.79 = 21.3 t/ml.

We recognize that the stone or the wood chains are totally inadequate to sustain
the thrust of the dome. The meridian cracks that cut the webs reveal the failure of
chains. Their strength was absolutely negligible compared to the whole dome thrust
is conveyed to the drum that, cracked, in turn, transfer it to the underlying systems
of pillars.

4.11.5 Loads Conveyed to the Pillar

Vertical Loads on the Pillar Section

• At the height of 52.00 m.
The vertical load V52 is due to the weight of the web directly above the pillar and
the weight of the lantern slice Thus
V52 = 3,800 t.

• At the height of 39.00 m.
The following loads have to be added to V52:

• the weight of the upper segment of the drum directly overlying the pillar

• the weights of the two halves of the two adjacent webs overlying the pointed
arches. These weights are conveyed at this level to the pillar due to the presence
of the oculi in the drum (Fig. 4.72).

Evaluation of the weight Gdsupb of the slice upper band of the drum.
According to the previous lengths evaluations (Fig. 4.51) the weight of the

segment of the upper band of the drum is

Gsd upb ¼ ½1=2ðL � Rteso � Li � RtisoÞHdub � pR2
oc � sd� � c

¼ ½0:5ð20:67 � 24:95� 17:21 � 20:77Þ � 13� p2:92 � 4:18� � 2:2 ¼ 2020:22:t

where the unit weight of the masonry (pietra forte) has been assumed equal to 2.2
t/mc.

The weight as of the two halves of the two adjacent webs is equal to 3800 t.
Summing up all the various contributions we get

V39 ¼ V52 þ 2020 þ 3800 ¼ 9620t
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• At the height of 28.00 m.
The following loads have to be added to V39:

• the weights the two halves of the adjacent segments of the upper drum, in all
equal to 2020 t

• the weight Va of the two halves of the two adjacent arches

The weight Va of all the masonry composing the pointed arch can be evaluated
making reference to Fig. 4.73 that shows a simplified scheme of the geometry of the
arch. Average span length of the pointed arch:

La ¼ 0:5ð20:67þ 17:21Þ ¼ 18:94m

Fig. 4.72 A web overlying a pillar and two half-webs above the adjacent arches
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The second sketch of Fig. 4.73 shows the simplified scheme of the half of the
pointed arch obtained straightening to curved intrados. With reference to Fig. 4.73
the various loads components the arch thus are:

V1 ¼ 9:47 � 3:67 � 4:18 � 2:2 ¼ 320 t

V2 ¼ 0:5 � 9:47 � 7:33 � 4:18 � 2:2 ¼ 319 t

The total weight of the half of the arch is

1=2Va ¼ 320 tþ 319 t ¼ 639 t

The weight of the overlying half of the segment of drum is

V3 ¼ ð9:47� 2:90Þ � 13:0 � 4:18 � 2:2 ¼ 785 t

The total weight conveyed by the two adjacent halves of pointed arches to the
pillar is:

V ¼ 2 639 tþ 785 tð Þ ¼ 2948 t

Summing up all the various contributions we get

V28 ¼ V39 þ 2020þ 2948 ¼ 9620 tþ 4968 ¼ 14;588 t

Horizontal Forces

Fig. 4.73 The simplified geometry of the pointed arch used in its weight evaluation
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The total thrust acting on the single pillar is obtained by summing (Fig. 4.74):

• the thrust S transmitted at the height of 39.00 m by the web directly above the
pillar: S = 400 t.

• the vector sum Sl of the thrusts acting at the height of 39.00 m of the two
adjacent half-webs. The contribution Sl, is

• the vector sum S′a of the thrusts Sa transmitted at the height of 28.00 m to the
pillar by the two adjacent pointed arches.

Sl ¼ S=
ffiffiffi
2

p
¼ 283 t

In order to obtain this last term, S′a, we estimate the thrust Sa.
We point out that the pointed arches of the adjacent segments of the underlying

drum band are built in between the four large pillars supporting the dome.
According to the various measurements done, the pillars have maintained their
vertical position. At the same time, no cracks have been detected at the intrados of
the arches. The mass of masonry constituting the whole lower band of the drum,
with its curved intrados, is compressed and pushes against the side large pillars.

S

S/2

S/2

S/2

S/2

Sa

Sa

Si

S’a

Fig. 4.74 Composition of thrusts acting on the single pillar
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The assessment of the thrust of the pointed arches is difficult to evaluate. The
presence of a minimum thrust state in the pointed arch has to be excluded: the thrust
will be included between its minimum and maximum values.

Thankfully, this uncertainty of knowledge of the actual value of the thrust of the
arches is little relevant as far as the assessment of the bending moment on the pillar
is concerned. The major bending effect is due to the thrust of the dome.

A rough estimate of the thrust of the pointed arches can be made with reference
to the second sketch of Fig. 4.73. The rotational equilibrium of the half of the arch
gives

Sa � h	 ¼ V1 � L4 þV2 � L6 þV3
1
2
ðL
2
� RaÞ

¼ 320 � 4:73þ 319 � 3:15þ 639 � 2:90 ¼ 4371 tm

A reasonable assumption of an internal arm h* is:
h* = H/2, i.e. taking h* equal to the half of the height of the arch.
With H = 11 m, we have h* = 5.5 m. Thus

Sa ¼ 4371=5; 5 ¼ 795 t

The value of the minimum trust is: Samin = 4371/11 = 397 t.
In conclusion at the height of 28.0 m the two adjacent pointed arches transmit to

the pillar the thrust

S
0
a ¼

ffiffiffi
2

p
Sa ¼ 1124 t:

Anyway, we will show that the change of this value of the thrust brings about
only small variations of the state of stress at the base section of the pillar.

4.11.6 Stresses at the Pillar Base

The analysis concerns the two apsidal piers but analogous results can be obtained
for the other two piers flanking the nave.

At the pillar head (h = 28.0).

N28 ¼ 14588 t

The load N28 is directed along the vertical axis passing through the centre of the
trapezium section of the single segment of the octagonal crown. This last section,
part of the whole section of the pillar and in direct contact with the drum, will
sustain the load N28, irrespective of the dimensions of the total head pier section.
The area of this section equals about ½(20.67 + 17.21)4.25 = 80.5 m2 and the
corresponding compression stress is 14,588/80.5 = 18.1 kg/cm2.
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At the pillar base
Load conveyed by the drum
An axial load N = 14588 t is transmitted to the pier head only by the drum.
Pillar weight
Section of the pillar: The pillar cross section is hollow in the centre up to the

height of 20.0 m, while it is solid from the height of 20.00 m up to 28.00 m.
The masonry structure of the pillar is made up of about 2.0 m thick stone

facings, tightly bound to a rubble and mortar core.
All the various dimensions of the section have been taken by documents and

drawings and processed via computer. The hollow section is shown in Fig. 4.75.
The area of the base section with the distances of the centre from its external

sides (Fig. 4.75) are
Area: A = 2,264.890 cm2; Ygs = 609.5 cm; Ygi = 957.3 cm
The moment of inertia of the section with respect to the central axis x, orthogonal

to its axis of symmetry y, is:

Jx ¼ 3:98 � 1011 cm4:

The position of the core section points with respect to the section centre can be
obtained as

dsup ¼ Wi

A
¼ Jx

A � Ygi ¼ 183:56 cm dinf ¼ Ws

A
¼ Jx

A � Ygs ¼ 288 cm[ e	 ¼ 20 cm

The pillar weight
Calculating the pillar weight from height 0.00 m up to 20.00 m:
Area of the hollow section: A = 226.5 m2

Weight of the length of this segment of pier: 226.5 � 20.00 � 2.2 = 9966 t.

Fig. 4.75 Position of the pillar hollow section centre
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From the height of 20.00 m up to 28.00 m, the pillar cross section A′ is solid.
Area of the solid cross section: A′ = 226.5 m2 + 90 = 316 m2.

Weight of the other segment of pier: 316 � 8.00 � 2.2 = 5562 t.
Total pillar weight: Gpill = 9966 t + 5562 t = 15528 t.
Stresses at the pillar base section.
Axial Load
The axial load at the pillar base is obtained by summing the various vertical

forces transmitted to the pillar:

N00 ¼ 14;588þ 15;528 ¼ 30;116 t

Eccentricities of the various vertical loads conveyed to the pillar with respect to
the centre of its base section.

The force of 14,588 t is conveyed through the segment of the octagonal drum
section, at a distance of ½ 4.18 m = 2.09 m from the internal boundary of the
crown.

With reference to Fig. 4.75 the corresponding eccentricity e′ of the force 14,588
t is: e′ = Ygs − 2.09 = 6.09 − 2.09 = 4.00 m.

The force of 15,528 passes through the centre of the hollow section. Thus the
following equation gives the eccentricity e of the resultant force N00:

14;588 � 4:00 ¼ 30;116 � e and e ¼ 1:88m. Hence the load N00 = 30,116 t is
acting at the inside at a distance e = 1.88 m from the centre of the pillar base
section.

Bending moments
The radial thrust Sþ Sl ¼ Sð1þ 1=

ffiffiffi
2

p Þ ¼ 400 � 1:70 ¼ 683 t transmitted in all
by the dome webs acts at a height of 39 m from the pillar base, while the thrust S
′a = 1124 t, transmitted by the adjacent pointed arches, acts at a height of 28 m. The
bending moment at the pillar base is thus:

Moo = 683 � 39 + 1124 � 28 = 58,109 tm and is directed outside the pier. The
composition of the bending moment Moo with the eccentric load N00 yields a
resultant eccentric load N00 having a total eccentricity e* = 1.88 − 58,109/30,116 =
1.88 − 1.93 = −0.05 m towards outside.

The section is wholly compressed. The maximum and minimum compression
stresses are:

rint ¼ N
A

þ M
Jx

Ygi ¼ 30:116000
2:264890

� 30:116000 � 5
3:98 � 1011 957:3 ¼ 13:23� 0:36

¼ 12:9 kg/cm2

rext ¼ N
A
�M

Jx
Ygs ¼ 30:116000

2:264890
þ 30:116000 � 5

3:98 � 1011 609:5 ¼ 13:23þ 0:23

¼ 13:46 kg/cm2
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Considering a variation of the 
30% of the thrust of the arches, endures only
very small variations of stresses. In fact:

• with an increasing of the 30% the thrust conveyed by the arches becomes

S01 ¼ 1124þ 30% 1124 ¼ 1461 t

The bending moment at the pillar base is thus:

Moo1 ¼ 683� 39þ 1461� 28 ¼ 67;545 tm

The resultant eccentric load N00 has a total eccentricity e*1 = 1.88 –

67,545/30,116 = 1.88 – 2.24 = −0.36 m towards outside.
The corresponding stresses at the base section are

rint1 ¼ 13:23 � 30116000 � 36
3:98 � 1011 957:3 ¼ 13:23� 2:6 ¼ 10:6 kg/cmq

rext2 ¼ 13:23þ 30116000 � 36
3:98 � 1011 609:5 ¼ 13:23þ 1:6 ¼ 14:9 kg/cmq

• with a reduction of the 30% the thrust conveyed by the arches becomes

S02 ¼ 1124� 30%1124 ¼ 787 t

The bending moment at the pillar base is thus:

Moo2 ¼ 683� 39þ 787� 28 ¼ 48;673 tm

The resultant eccentric load N00 has a total eccentricity e*2 = 1.88 –

48,673/30,116 = 1.88 – 1.62 = 0.26 m towards inside.
The corresponding stresses at the base section are

rint2 ¼ 13:23 þ 30116000 � 26
3:98 � 1011 957:3 ¼ 13:23þ 1:9 ¼ 15:2 kg/cmq

rext2 ¼ 13:23 � 30116000 � 26
3:98 � 1011 609:5 ¼ 13:23� 1:2 ¼ 12:0 kg/cmq

In any case the estimated maximum compression stresses are only a small
fraction of the high compression strength of the pillar masonry, which is con-
structed of regular sandstone (pietraforte) blocks and good mortar.
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4.11.7 Verticality Check of Pillars

The verticality of pillars has been controlled many times in the past. Accurate
measurements were conducted by Chiarugi et al. (1996) since the end of last
century. A precision topographic levelling was carried out by the Military
Geographic Institute (IGM) of Florence (Bartoli et al. 2015). This test campaign
lasted from 1988 to 2007. By means the installation of plumb lines in the corner of
the octagon, the full verticality of pillars has been ascertained, except periodical
variations due temperature effects.

4.11.8 Conclusions

The whole base section of the large pillars sustaining the dome remains all com-
pressed in spite of the thrusting actions conveyed by the dome and the pointed
arches of the drum. This result, in full agreement by the recent verticality measures
shown by Bartoli et al. (2015), is due to the favourable positioning of the drum justy
over the internal sides of the pillars section in order to counter the dome thrust.

The crack patterns reveal an hidden and safer rotational behaviour of the dome,
due to the wily constructional devices of Brunelleschi, in spite of the external
appearance of the dome, that is of a segmental cloister vault.

The dome cracking according to the considerations developed at Sect. 4.2, has a
physiological feature, as ordinary consequence of the masonry uncapacity to sustain
the hoop tensile stresses. Cracking, that invested also the drum, occurred in spite of
the presence of the too deformable stone chains.

At the emerging of the thrust, occurred at the dome cracking, the deformation of
the drum has compliantly accompanied the widening of the dome springing and has
allowed the insurgence of the state of minimum thrust in the dome.

The smart design of the drum and of its supporting pillars, are due to Arnolfo di
Cambio and to the succeeding Masters as Talenti, Lapo di Ghini and Neri di
Fioravanti. Over the centuries the dome has substantially maintained a stable
configuration and is one of the extraordinary examples of soundness and beauty of
Renaissance Architecture.

4.12 St. Peter’s Basilica Dome by Michelangelo. The Static
Restoration by Poleni and Vanvitelli

4.12.1 Dome Geometry

The story of the dome engineered by Michelangelo for St. Peter’s Basilica in Rome
is well-known to all, though the restoration works carried out in the early 18th are
perhaps less so (Mainstone 1999; Benvenuto 1990; Di Stefano 1980).
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Although the dome’s construction was planned by Michelangelo, it was not to be
completed until 1592, well after his death in 1564, under the supervision of Della
Porta. Construction of the drum and sustaining pillars started much earlier and went
on for many years. The four large pillars sustaining the drum and connected to each
other by large arches at their heads were in fact built between 1506 and 1512 under
the direction of Bramante.

The cross section of the four large piers can be inscribed into a square of about
19 m on a side. The span between them measures 22.60 m. The extrados at the
crown of the four arches connecting the pillars reaches a height of about 50 m from
their base. The two eastern piers rest on solid marl and clay formations, but the
other two overlie the remains of earlier Roman constructions. This nonuniformity in
the foundations could be responsible for the differential settling that already began
during their construction.

Some cracking in the arches were detected between 1514 and 1534, and called
for some restoration and refurbishment operations before construction could be
begun on the drum. Michelangelo himself ordered the pillars strengthened by
eliminating the large niches and interior spiral staircase planned for in Bramante’s
original design. Unfortunately, Michelangelo never lived to see construction of the
dome begin.

The large dome’s structure is similar to Brunelleschi’s in Florence. It is in fact
made up of two interconnected shells, stiffened by 16 ribs. Figure 4.76 shows the
dome in section as sketched by Vanvitelli and reported by Poleni (1748).

The main measurements defining the geometry of the dome and supporting drum
have been obtained directly from Vanvitelli’s drawings (Figs. 4.76 and 4.77). Other
measurements, made by Fontana (1694) and Beltrami (1929), differ somewhat from
the reported values, though such differences have a negligible effect on the static
analysis (Como 2010).

The thickness of the internal and external shells are respectively 2.00 m and
1.00 m, while the total thickness dome varies from 3.00 m at the springing to about
5.00 m at the crown. The overall arrangement of the entire dome is that of an ogival
spherical vault. The internal diameter of the dome at its base measures 42.70 m.
The drum is composed of a 3.00 m thick cylindrical wall with an internal radius of
21.35 m. It is stiffened by 16 radial buttresses that arise from the drum for a length
of about 4.50 m, are 3.00 m thick and reach a height of 14.50 m.

The elevation of the dome is reported relative to the height of the access gallery,
that is, to the height of the floor of the passageway through the buttresses in
Fig. 4.76 and shown as the passage T in Fig. 4.77. (called F in Fig. 4.78).

The drum and buttresses are equal in height: 14.50 m. The attico, a circular
vertical wall which extends the drum, rises from the top buttress up to the springing
of the dome for a total height of 3.50 m. The drum and the attic, both of which are
3.0 m thick, thus reach a combined height of 18 m. Consequently, the dome
springing is found at a height of 18.00 m from the level of the access gallery (T, in
Fig. 4.77). To sum up, some of the structures’ fundamental measurements are:
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• Distance B between the vertical edge of the lantern and the inner edge of the
drum: B = 21.35 – 3.5 = 17.85 m;

• Internal diameter of the lantern: DL = 7.0 m;
• Distance between the base and the extrados of the dome at the crown:

H = 28.20 m;
• Ratio H/B = 28.20/17.85 = 1.58;
• Dome thickness at crown: 5.0 m;
• Distance between the base of the dome and the center of the dome section at the

insertion with the lantern: H′ = 28.20 − 2.50 = 25.70 m;
• Internal diameter of the drum and attic: 42.70 m;
• Thickness of the drum and attic: 3.0 m;
• Internal diameter of the drum/attic: 42.70 m;
• Height of the drum from the access gallery floor, F: 14.50 m.
• Distance between the interior edge of the drum and the inner edge of the dome

section at the attachment of the lantern: l7.85 m.

Fig. 4.76 Dome longitudinal
section (L. Vanvitelli, in Di
Stefano 1980)
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In fact, calculating we get, DE = 42.70/2 – 3.50 = 21.75 – 3.50 = 17.85 m.
It is interesting to point out that the so-called Rules of Fontana (1694), followed

in late 17th century Roman construction, would have called for the drum to be
thicker than the actual 3.00 m. However, the rules refer to unbuttressed domes. The
masonry used for the dome is made up of bricks, travertine blocks and mortar beds,
and it was laid with the support of wood scaffolds and centering.

The two shells were built up between the ribs. Two iron ties encircling the dome
were placed by Della Porta (Di Stefano 1980).

Fig. 4.77 Cracking detected by L. Vanvitelli (from Poleni 1748)
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4.12.2 Damage to the Dome and the Early Safety
Assessments

Many years after the dome’s completion cracks began to develop and grow grad-
ually over time. The first signs of damage were detected as far back as 1631 and
more and more cracks appeared over the following years. In the mid-18th century,
about 150 years after its completion, the dome exhibited widespread, serious
damage and word spread throughout the scientific community.

Various descriptions and experts judgments were forthcoming, amongst which
the dire account of Saverio Brunetti (Book II of his Memorie, Stato dei difetti…,
Poleni 1748):

… the entire wall of the drum and the attic, together with the columns and buttresses, have
rotated outwards, dilating the dome and lowering the lantern, …..

This description corresponds to the cracking pattern detected by L. Vanvitelli
between 1742 and 1743 in an exquisite set of drawings published by Poleni in his
“Stato dei difetti.” (e.g., Plate XV, shown in Fig. 4.77). In this figure long meridian
cracks are clearly visible running along the dome intrados. They arise from the
drum nearly up to the height of the ring connecting the crown to the lantern.

The sixteen buttresses were hard-pressed to contrast the thrusting action of the
attic and drum: the strain is evidenced by large, diffuse sloping cracks across them.
At the time, sheets of lead covered the exterior of the outer shell and the cracks
could therefore visible on the dome’s extrados.

The cracking pattern is similar to that of the failure mechanism shown in the
foregoing Fig. 4.15, produced by excess weight at the center and low resistance of
the dome at the springing. On the other hand, circular cracks accompanying the
meridian fractures are not clearly visible in Vanvitelli’s drawings.

A membrane stress state, with hoop tensile stresses acting along the lower rings,
occurred first in the original undamaged dome. But the friction strength between the
bricks rings, compressed along the meridians, slowly faded, probably because of
humidity penetrating into the masonry mass. The behavior of the dome gradually
shifted from that of a rigid shell, stiffened by hoop stresses, towards that of a
pushing dome, partitioned by long meridian cracks.

It was in this latter state that Vanvitelli found the dome, a century and an half
after its construction. Christianity’s most revered place of worship seemed in
serious trouble indeed.

Alarm grew in Europe and in 1742 Pope Benedict XIV appointed a committee of
scientists, known as “The Three Mathematicians”, composed of T. Le Seur, F.
Jacquier, and R.G. Boscovich, to report on the condition of the dome. These
scientists were well-known in the scientific community because they had previously
published a commentary on Principia, Newton’s revolutionary work which had
appeared in a limited number of copies in 1697 and were published again in 1713.
The Three Mathematicians (1742) initial assessment, published as the “Parere”
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(i.e., opinion) was that the dome was seriously damaged and that its reparation
would required extensive reinforcement operations.

A later report by the same authors, the so-called “Riflessioni”, confirmed their
initial estimation. However, other scholars who collaborated in the analysis dis-
sented from their opinion. To settle this dispute, Benedict XIV decided to seek the
advice of a brilliant Italian scholar, Giovanni Poleni. Poleni, who was born in
Venice in 1683, began to study the new disciplines of Cartesian mathematics and
experimental Physics at an early age. A member of the Royal Society since 1710,
Poleni attained the chair in Experimental Philosophy at the University of Padua,
where he also directed a new materials testing laboratory. In 1743, at Pope
Benedict’s behest, Poleni analyzed the dome and came to the conclusion that its
state was not nearly as dire as the Three Mathematicians had made out.

In 1743 Poleni prepared a first manuscript to explain his convictions regarding
the origins of the damage and made a number of suggestions for improving the
dome’s safety. In this 1748 (Poleni 1748) manuscript, published as the “Memoirs”,
he also reported on the results of a static analysis of the dome performed by himself
in his laboratory in Padua. This analysis was conducted in the wake of some recent
results on the statics of masonry arches obtained by R. Hooke at Cambridge,
recalled in Sect. 3.2. Poleni presented his proposal for restoration.

The Memoirs were received favorably by the pope, who then entrusted Poleni
with carrying out the dome restoration in collaboration with L. Vanvitelli, the
architect of the “Opera di San Pietro”.

4.12.3 The Three Mathematicians’ and Poleni’s Differing
Opinions

According to historical accounts, the two discordant opinions regarding the dome’s
state and safety were heatedly debated (Mainstone 2003; Benvenuto 1990; Como
1997, 2008) was based on their interpretation of the cracking pattern, which they,
using a simple mechanical model, viewed as the start of a collapse mechanism. This
model, drawn from a plate of their Parere, is sketched out in Fig. 4.78 and con-
siders the combination of the dome with the attic and drum, together with the
adjacent buttress. They reduced the complex dome—attic/drum—buttress system to
the simple mechanism illustrated in Fig. 4.79.

The system was modeled as an inclined beam, HT, whose top T was free to
move along the vertical and whose base H could move along the horizontal, as
sketched to the right in Figs. 4.78 and 4.79.

The horizontal segment AD of the left-hand scheme in Fig. 4.79 represents the
drum base and adjacent buttress, and the segment AF the external edge of the
vertical buttress. The buttress and the drum/attic were bound together only very
weakly, so the Three Mathematicians reasonably considered the buttress to have
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been detached from the drum wall. Such a mechanism describes the deformation of
the damaged dome, with the drum and the attic rotating externally and the dome
slices counter-rotated inward, with lowering of the lantern and dilatation of the
dome. According to this mechanism, the whole dome slice HMNI rotates inward

Fig. 4.78 A. Vanvitelli’s drawing and the simple mechanism of the “Three Mathematicians”
(1742)
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around the hinge H and produces counter-rotation of the drum/attic/ buttress around
A and C (Fig. 4.79).

By applying kinematics to this scheme, the Three Mathematicians also evaluated
the thrust of the dome. The principle of virtual work, first formulated in 1717 by
Giovanni Bernoulli in a letter addressed to Varignon, was published in 1725. The
Three Mathematicians were thus certainly aware of the principle and probably
referred to it in evaluating the pushing work and the resisting forces along the
assumed failure mechanism. The restoration operations proposed by the Three
Mathematicians were quite extensive: in addition to encircling the dome with new
iron ties, they also wanted to thicken the buttresses and place new heavy statues on
the top of them.

Poleni, on the contrary, did not accept the conclusions of the Three
Mathematicians: he saw no correlation between the cracking of the dome and that
of the attic and drum. He instead attributed the damage solely to defects in con-
struction and the use of poor masonry. Even the finding of a broken old iron ring in
the masonry was not ascribed to the dome’s cracking, but instead to temperature
changes or the effects of earthquakes. Poleni’s firm conviction stemmed from the
results of a static analysis that he himself developed and performed. This analysis,
though incomplete, proved to him that the dome was still safe, despite its defects.
Poleni’s analytical procedure was inspired by Hooke’s theorem of the inverted
chain examined in Chap. 2. Accordingly, Poleni divided the dome into fifty slices,
each subdivided into thirty-two “wedges”, whose position and weight he then
evaluated.

He then constructed a precise scale model of a dome slice in his Padua laboratory.
He knew, in fact, the proportionality rule, that we have discussed at Sect. 2.8.

Poleni considered two thin chains: one of equal small-sized rings (an ideal
catenary), and another composed of thirty-two small lead balls, whose weights
modeled the weights of the thirty-two wedges constituting a single dome slice,
including the top wedge’s share of the weight of the lantern atop the dome. The
length of the chains was fixed so that their end sections could pass through the

Fig. 4.79 The Three Mathematicians’ model and the corresponding failure mechanism
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centers of the sections at the springing and the crown of the slice. The first step in
the procedure was to determinate the equilibrium curve of the chains. Then by
inverting these curves and marking them on the slice model, Poleni was able to
verify their positions with respect to the curve of the wedges’ centers. Figure 4.80
shows three curves in the slice: the first is the wedge centres curve, the second the
inverted catenary and the third the inverted funicolary of the wedges weights. This
last curve runs over the inverted catenary but at the haunches, together with the
catenary, runs near the intrados of the slice.

The position of the curve of the homogeneous catenary differed considerably
from the curve of the wedge centers: it effectively exited the slice section, though it
could be made to fit within the masonry through some slight adjustments. The chain
of lead balls, on the other hand, was contained within the slice and maintained a
position quite close to the curve of the centers. Poleni wrote:

Fig. 4.80 Poleni’s static check (from Poleni 1748)
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“Wedges as far as N tend to push themselves out and the upper ones are somewhat low,…..
and the form of the dome is not free from imperfections… these are of minor importance
because our entire catenary is situated at the solid inside of the vault….” Poleni thus
concluded that the equilibrium within the slice was certainly admissible, because com-
pression stresses alone should be able to sustain the loads: “in short, the shape of the great
vault was not bad at all”.

Figure 4.80 shows the by now famous Poleni model with a sketch of his
determination of the funicular curves with the vectors R tangent to the funicular at
the springing. The horizontal component of R gives the pull of the chain and,
consequently, according to the inverted chain model, the thrust in the dome. It is
clear that Poleni’s attention was focused exclusively on the equilibrium of the
dome. In this way, Poleni was able to verify that the geometry of the meridian curve
of the dome was actually admissible. On the other hand, he also discovered that,
although the pressure line passed through the centers of the corresponding slice
sections at the crown and springing, it drifted away from its axis. Thus, the shape of
the meridian section of the dome was not the optimal one for the actual loads
distribution: the dome would probably have been more stable had it had a more
ogival shape. Notwithstanding, Poleni believed that the dome of St. Peter’s was not
at risk of failure and that the model proposed by the Three Mathematicians had to be
flawed. The damage to the dome was due solely to defects in construction.

Poleni recommended two types of modifications, both of which had also been
advised by the Three Mathematicians. He deemed both the insertion of four iron
rings around the dome and the repairs to the cracks appropriate, but considered it
unnecessary to thicken the buttresses, place statues at their top, or fill in the spiral
staircase inside the pillars. The insertion of the iron rings around the extrados of the
dome was not a direct consequence of the statical analysis of Poleni but suggested
as a suitable operation to reinforce the dome probably when an old iron ring placed
by Della Porta during the brickworks turned out to be broken.

4.12.4 Further Considerations on the Heated Debate

The heated debate among scholars of the time and their contrasting opinions
deserve further consideration. The next sections will therefore delve into the dif-
ferent studies performed by the Three Mathematicians and Poleni. Surprisingly, it
will be shown that, in contrast to conventional opinion, the Three Mathematicians
were actually less wrong than Poleni believed.

4.12.4.1 Remarks on the Poleni Judgement

As intimated earlier, Poleni’s static analysis was in fact incomplete. He failed to
take into account the presence of the attic and the drum, stiffened by buttresses.
However, extending Poleni’s approach to the complex system composed of the
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dome/attic/drum/buttresses would have required a knowledge of mechanics that had
not been attained at the time. Indeed, Hooke’s theorem of the inverted chain was
insufficient to solve the problem: it would be necessary to resort to the general
theorem of Limit Analysis of masonry structures, which were not formulated until
two hundred years later. Essentially, Poleni omitted to control statics of the
underlying supporting structures of the dome, as the attic and the drum and the
cside counterforts. The more accurate analysis of the problem, which will be
covered in the following, will bring us to the conclusion that the evaluation of the
Poleni thrust evaluation was correct but that the true state of the dome was not far
from that estimated by the Three Mathematicians. Fortunately, the six iron hoops
placed by Poleni proved fundamental to saving the dome.

4.12.4.2 Remarks on the Three Mathematicians’ Model

As discussed in the foregoing, the Three Mathematicians sensed the dramatic static
trim of the dome and analysed its hazardous limit equilibrium with the contribution
of the cracked buttresses. They formulated the simplified model illustrated in
Figs. 4.79 and 4.81, whence they estimated the thrust in the dome.

From equilibrium of the rigid beam around the toe H, we have in fact the
equation

SH ¼ GslðDL � DslÞþGLDL ð4:71Þ

whence the thrust S can be obtained immediately. Clearly, the model seems too
simple: the entire slice of dome is assumed to rotate as a single rigid beam, without
any internal hinging, when the buttress and drum/attic slice move outward. Surely,
other mechanisms, with internal hinges, might be at work and need to be taken into

Fig. 4.81 The Three
Mathematicians’ evaluation
of the thrust
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account in the equilibrium of the slice. The Three Mathematicians evaluated in fact
the dome thrust assuming only one particular mechanism, without assessing the
static compatibility of stresses in the slice. Poleni obtained another estimate of the
thrust. But what is the actual thrust of the dome? Only by knowing this thrust can
we estimate the true safety conditions of the dome and verify whose opinion—
Poleni’s or the Three Mathematicians’—was really correct.

According to the cracking pattern detected by Vanvitelli, a spreading of the drum
had occurred. The cracked dome, deforming through a mechanism, adjusted itself
to the slightly increased diameter of its springing. Under such conditions the actual
thrust of the dome is the minimum of all the statically admissible ones. The thrust
obtained by the Three Mathematicians, which we will recalculate in the following,
turns out to be lower than the actual thrust in the dome.

4.12.5 Actual Thrust in the Dome

It is convenient to follow Poleni’s partitioning and corresponding weight evalua-
tions of the thirty-two wedges of the slice. In doing so, we shall refer to Fig. 4.82
from Poleni’s Memoirs (1748), where the various wedges are denoted as A, B, C,
etc. The corresponding wedge weights are first evaluated using the same unit of
weight as Poleni, the pound, lb, which corresponds to about 0.372 kg. The slice to
be considered is 1/50 of the entire dome.

The weight of the lantern slice GslL.
According to Poleni, weight GslL, corresponding to 1/50 of the round angle, is:

81.6 � 103 lb, corresponding to 30.35 t. The weight GL of the entire lantern thus
equals 50 � GspL = 50 � 81.6 � 103 lb = 4,080 � 103 lb = 1517.74 t.

The weight of the dome slice, Gsl:
The weight Gsl includes a share of the weight of the rib and the corresponding

band of the outer and inner shells.
According to Fig. 4.82, we have the following series of weights for the various

wedges.

Wedge A 89 � 103 lb

Wedge B 88 � 103 lb

Wedge C 87 � 103 lb

Wedge D 85 � 103 lb

Wedge E 82 � 103 lb

Wedge F 79 � 103 lb

Wedge G 75 � 103 lb

Wedge H 71 � 103 lb

wedge K 66 � 103 lb

Wedge L 60 � 103 lb

Wedge M 54 � 103 lb
(continued)
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(continued)

Wedge N 48 � 103 lb

Wedge P 41 � 103 lb

Wedge Q 34 � 103 lb

Wedge R 27 � 103 lb

Wedge S 18 � 103 lb

Summing up all the weights of the wedges, the weight Gsl of the slice is 373.4 t.
The weight GslL of the slice including the weight of the lantern slice is 403.84 t.
The horizontal axis passing through V indicates the head of the drum/attic, i.e.

the level of the dome base. The alignment T, passing through point T in Fig. 4.82,
is the vertical line passing through the center of the section joining the dome with
the lantern, along which the load GslL is conveyed.

The following distances are considered:

• distance DL between the vertical line passing through the drum’s internal edge
(V in Fig. 4.84) and alignment T;

• distance Dsl between the slice’s center and alignment T;
• distance DslL between the slice’s center, including its share of the lantern weight,

and alignment T;
• distance DDslL between the drum’s internal edge and the slice’s center, through

which the weight GslL passes;
• height H, with respect to the dome’s base, of the extrados of the section joining

the dome with the lantern.

Fig. 4.82 The wedge weights and centre positions (Poleni 1748) (s = 1 cm = 4.75 m)
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According to the measures previously reported, it follows that H = 28.20 m. The
same value is obtained by measuring this distance in Fig. 4.82, which is 5.94 cm,
and calculating 5.94 � 4.754 = 28.20 m.

Likewise, in Fig. 5.80, distance DL = 17.85 m measures 3.76 cm, whence using
s = 1 cm = 4.75 m, we have: 3.76 � 4.75 = 17.85 m.

Position of the slice’s centre.
Moments of the wedges’ weights around point T in Fig. 4.82 (placed at the

intrados of the dome-to-lantern connection section):

Wedge A 89 � 103 lb � 4.15 = 369.35 � 103 lb � s

Wedge B 88 � 103 lb � 4.14 = 364.32 � 103 lb � s

Wedge C 87 � 103 lb � 4.05 = 374.10 � 103 lb � s

Wedge D 85 � 103 lb � 3.95 = 335.75 � 103 lb � s

Wedge E 82 � 103 lb � 3.85 = 315.70 � 103 lb � s

Wedge F 79 � 103 lb � 3.65 = 288.35 � 103 lb � s

Wedge G 75 � 103 lb � 3.45 = 262.50 � 103 lb � s

Wedge H 71 � 103 lb � 3.20 = 227.20 � 103 lb � s

Wedge K 66 � 103 lb � 2.95 = 194.70 � 103 lb � s

Wedge L 60 � 103 lb � 2.65 = 159.00 � 103 lb � s

Wedge M 54 � 103 lb � 2.30 = 124.20 � 103 lb � s

Wedge N 48 � 103 lb � 1.95 = 93.60 � 103 lb � s

Wedge P 41 � 103 lb � 1.60 = 65.60 � 103 lb � s

Wedge Q 34 � 103 lb � 1.15 = 39.10 � 103 lb � s

Wedge R 27 � 103 lb � 0.75 = 20.25 � 103 lb � s

Wedge S 18 � 103 lb � 0.15 = 2.70 � 103 lb � s

Lantern slice 81.6 � 103 lb � 0.0 = 0.00

The total moment is thus

M ¼ 3210:92� 103 lb� 4:75 ¼ 5673:69 t � m:

Distance Dsl of the slice center from alignment T:

Gsl ¼ 373:4 t;

Dsl ¼ 5673:69=373:4 ¼ 15:19 m

Distance DslL of the slice center, including its share of the lantern weight, from
alignment T:

GslL ¼ 403:84 t

DslL ¼ 5673:69=403:84 ¼ 14:05 m:
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Distance DDslL of the slice center, including its share of the lantern weight, from
the internal edge of the drum:

DDslL ¼ 17:85�14:05 ¼ 3:80m

H ¼ 28:20 m

Summing up the Geometry of Weights
According to the foregoing calculations, the total weight GslL of the slice of the

dome, including its share of the lantern, evaluated up to the height of the extrados of
the drum/attic, equals 403.84 t and acts at a distance, DDslL = 3.80 m from the
drum’s inner edge.

Figure 4.83a sketches the outline of a generic mechanism v of a dome slice
whose base undergoes a slight broadening. The point O indicates the position of the
internal hinge. When point O falls on the intrados of the dome springing section,
this mechanism corresponds to that envisioned by the “Three Mathematicians”.

Figure 4.83b shows all the quantities involved. The mechanism is represented by
the outwards horizontal settling D(v), along which the unknown thrust Skin(v) does
work depending on the chosen mechanism v. The kinematic thrust corresponding to
mechanism v is thus given by

ScinðvÞ ¼ g; vh i
DðvÞ : ð4:72Þ

where g is the load distribution, i.e. the sequence of forces Gi representing the
weights of Poleni’s wedges (Fig. 4.83a, b).

The minimum thrust of the dome will now be evaluated by applying the kine-
matic procedure set forth in Chap. 2. The unknown thrust, that is, the minimum of
all statically admissible thrusts, can be obtained as the maximum of all the kine-
matically admissible ones (Como 1996, 1998)

SMin ¼ Max ScinðvÞ ¼ Max
g; vh i
DðvÞ ð4:73Þ

The work done by loads g is given by

g; vh i ¼ h
X
i

GiðD	 � xiÞ ð4:74Þ

where D* indicates the horizontal distance of the hinge O from alignment T, and xi
the distance of the single force Gi from the same alignment, as in Fig. 4.83. Finally,
we have

DðvÞ ¼ hH	: ð4:75Þ

where H* is the vertical distance between the internal hinge O and the extrados of
the section where the dome joins the lantern.
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The vertical displacements vi of the application points of loads Gi, representing
the weights of the various wedges, are then given by

vi ¼ D	�xið Þq ð4:76Þ

Thus, we have

ScinðvÞ ¼
P

i GiðD	 � xiÞ
H	 : ð4:720Þ

The maximum kinematic thrust Skin(v) is found by varying the position of the
internal hinge O along the intrados curve of the slice. In the following, five different
mechanisms, numbered from (0) to (4), are considered and the corresponding
kinematic thrust Skin(v) evaluated for each. The highest value among the
Skin(v) turns out to be for mechanism (4).

Mechanism(0)—The Mechanism of the Three Mathematicians
Position of the internal hinge O: point V in Fig. 4.82, on the intrados of the

dome springing, at the height of the top of the attic/drum.
The work of the loads includes the weights Gi running from wedge A to S, in

addition to the corresponding share of the lantern weight.
Horizontal distance D* of the hinge O from alignment T: D* = DL = 17.85 m
Vertical distance H* of hinge O from the extrados of the section where the dome

joins the lantern: H* = H = 28.20 m.

Fig. 4.83a, b The minimum thrust evaluated via the kinematic procedure
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Total work Ltot of loads Gi, including the work of the lantern slice, on the
assumed mechanism: Ltot = 1615.67 t � m � h.

Work performed by the thrust: Skin � H � h = Skin 28.20 h t � m.
From Eq. (4.72′): Skin � 28. 20 h = 1615.67 t � m � h
Kinematic thrust: Skin = 57.29 t.
In this case, the entire slice moves as a single rigid body, as assumed by the

Three Mathematicians. Thus, D* = DL and we get

g; vh i ¼ h
X
i

GiðDL � xiÞþGLDh ¼ h½GspðDL � DspÞþGLDL�

where, according to the definition of the centre

DL � Dsp ¼
P

i GiðDL � xiÞ
Gsp

:

Consequently, Eq. (4.72′) becomes

fSkinH � ½GslðDL � DslÞþGLDL�gh ¼ 0

and we return to (4.71), whence to the thrust value S = 57.29 t determined by the
Three Mathematicians.

Mechanism (1)
Position of the internal hinge O: point X in Fig. 4.82. According to this

mechanism, the weight of wedges A, B and C do no work at all.
Horizontal distance D* of the hinge (1) from alignment T: D* = 17.56 m.
Vertical distance H* of the hinge (1) from the extrados of the attachment section

of the dome to the lantern: H* = 22.325 m.
Total work of loads Gi, including the work of the lantern slice, along the

assumed mechanism: Ltot = 1579.556 � h tm.
Work performed by the thrust: Skin � H* � h = Skin � 22.325 m � h and

Skin = 70.75 t.
Mechanism (2)
Position of the internal hinge O: between wedges H and K in Fig. 4.82.

According to this mechanism the weights of wedges from H to A do no work at all.
Distance D* of the hinge (2) from the alignment T: D* = 13.53 m.
Distance H* of the hinge (2) from the extrados of the attachment section of the

dome to the lantern: T: H* = 13.3 m.

Skin ¼ 78:51 t

Mechanism (3)
Position of the internal hinge O: between wedges E and F in Fig. 4.82.
According to this mechanism the weights of wedges E to A do no work.
Distance D* of the hinge (3) from the alignment T: D* = 16.62 m.
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Distance H* of the hinge (3) from the extrados of the attachment section of the
dome to the lantern: H* = 18.52 m.

Skin � 18.52 h = 1444.78 h
Skin = 78 t
Mechanism (4)
Position of internal hinge O: between wedges D and E in Fig. 4.82.
According to this mechanism the weights of wedges D to A do no work.
Distance D* of the hinge (4) from the alignment T: D* = 17.81 m.
Distance H* of the hinge (4) from the extrados of the attachment section of the

dome to the lantern: H* = 20.42 m.
Total work of the weights of the wedge and the lantern slice:
Ltot = 1715.40 � h
Work performed by the thrust Skin: Skin � H* � h = Skin � 20.42 � h
Equation (4.72′) gives: Skin 20.425 � h = 1715.40 h and Skin = 84 t.
Other mechanisms, with internal hinges positioned elsewhere on the slice

intrados, do not furnish larger thrust values than mechanism (4).
The maximum kinematic thrust value thus corresponds to mechanism (4) and the

minimum thrust of all statically admissible states therefore corresponds to the
kinematic thrust that results by positioning hinge O between wedges D and E,
namely 225.77 � 103 lb = 84t. This thrust is transmitted by a slice having a width
equal to 1/50 of the dome’s round angle. Given an average drum diameter of
45.70 m, and average circumference of 45.70 m � p = 143.57 m, the length of the
arch corresponding to the assumed slice is 143.57/50 = 2.87 m. The thrust of 83.98
t is thus transmitted along a length of 2.87 m, and the thrust per unit length of the
drum equals 83.98 t/2.87 = 29.26 t/ml. The vertical load transmitted by the slice
equals the total weight of the slice, or V = 108.6 � 103 lb = 403.84 t. The position
of this vertical force V at the base of the slice can be obtained by considering the
equilibrium of the slice. Let x be the distance of force V from alignment T
(Fig. 4.84). The condition of zero moment of all the forces around the point of
intersection of the dome extrados with the section of the dome’s connection with
the lantern gives

V � x� Gsl � Dsl � S � H ¼ 0

or

403:84x�373:4� 15:19�84� 28:20 ¼ 0

whence we obtain x = 19.9 m.
Thus, the distance of force V from the inner edge of the drum is

c ¼ 19:85� 17:85 ¼ 2:0 m
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and the thrust ratio, i.e., the ratio between thrust and vertical reaction, is

v ¼ S
V
¼ 83:98

403:84
¼ 0:207

This value is larger than the value v = 0.106 for the dome of SantaMaria del Fiore,
and by far much larger than the value, v = 0.078 calculated for the Pantheon dome.

Let us now compare the value of the minimum thrust with the value of the thrust
obtained by Poleni using the pressure line determined via his ingenious approach of
the inverted chain in Fig. 4.80. Figure 4.85 shows the vector, R, having the same
direction as the tangent line to the inverted chain at the dome springer section. The
vectors V and SPoleni balance the force R.

The horizontal component of force R, i.e., Poleni’s thrust, can be obtained
directly from Fig. 4.80. The ratio SPoleni/V is about 7.5/32 = 0.234, and we get
SPoleni = 0.234 � 1004 � 103 lb = 235 � 103 lb = 87.4 t, only about 1% more
than the 84 t minimum thrust evaluated in the foregoing.

The value SPoleni turns out to be slightly larger than the minimum thrust eval-
uated using modern methods. The thrust SPoleni corresponds to an admissible
pressure line wholly contained between the slice’s extrados and intrados, but near to
skim at the haunches the intrados of the slice. even though touching them, i.e.
without producing a mechanism and, specifically, the mechanism (4).

Comparing the various thrusts and making reference to (2.190) we have

STreMat ¼ 57:29t � MAXlðvÞ ¼ 84 t ¼ MINlðrÞ� SPoleni ¼ 87:4 t

Fig. 4.84 Equilibrium of the
slice
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The mechanism assumed by the Three Mathematician was very far from the
mechanism corresponding to the settlement state that requires a circumferential
hinge at the intrados in the haunches of the dome.

The thrust valuated by Poleni is, on the contrary, only a bit larger than the
minimum. Poleni, on the other hand, neglected to consider the effects of the thrust
on supporting structures as the drum and the sixteen buttersses.

4.12.6 Comparisons. Low Static Efficacy of the St. Peter’s
Dome

It is interesting to compare the weight and corresponding thrust of St. Peter’s dome
with others of about the same diameter, such as the domes of the Pantheon and
Santa Maria del Fiore. What emerges from such comparison is the relatively low
static efficiency of the dome of St. Peter’s.

The total weight of the St. Peter dome equals 403.84 � 50 = 20,192 t and
transmits a thrust of 29.3 t/ml. The Pantheon dome weights about 19,000 t and
experiences a thrust of 10.30 t/ml, while the dome of Santa Maria del Fiore weights
about 30,000 t and has a thrust of 21.3 t/ml.

4.12.7 Checking Safety of the Drum/Attic/Buttresses System

The attic is a round vertical wall overlying a series of large windows at the level of
the buttresses. On its interior, the masonry bears a sequence of internal arches, just
above the attic, that transfer the load over the underlying openings. As the drum is
damaged by vertical cracks, as in Fig. 4.86, we assume that it works along vertical
strips.

Let us now consider a strip of the drum 1/50 of the round angle together with its
overlying attic, for a total height of 18.00 m. Figure 4.87 shows this drum strip
together with the corresponding forces.

V R

SPoleni
Fig. 4.85 The thrust
corresponding to Poleni’s
inverted chain
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By way of definition, the quantities shown in the figure are:

• SdomT—thrust transmitted directly by the dome slice, acting at a height of about
18.00 m from the drum base;

• V—vertical load due to the weight of the dome slice alone;
• C3—weight of the slice of the attic/drum of thickness equal to the dome base;
• C—distance of the vertical force V from the drum’s internal edge, as previously

evaluated, c = 2.0 m;
• h1—height of the strip of the attic/drum, equal to 18.00 m.

The dotted arrow in Fig. 4.87 represents the counter-thrust of the buttress, which
was not considered in the foregoing analysis. Previous calculations gave us

SdomT ¼ 84 t;V ¼ 403:84 t :

The total weight of the drum and the attic, according to Poleni, is 17.861 t, and
the corresponding weight of the slice, i.e., the force C3 in Fig. 4.84 is:
C3 = 17.861.1/50 = 357.2 t.

Let us consider the base section of this slice drum/attic, which is 1/50 of the
round angle: this base is found at the height of the floor of passageway F through
the buttress, as shown in Fig. 4.78. The total moment of all the vertical forces
acting on the center of this base section, of thickness 3.00 m, is

Mtot ¼ 84� 18:0þ 403:84� 0:55 ¼ 1734:1 tm:

It should be recalled that in the first analysis the possible counter-thrust of the
buttress was not taken into account. The section, having a width of 2.87 m, equal to
the arch length of the slice, bears the axial load

N ¼ 403:84þ 357:2 ¼ 761:04 t

Fig. 4.86 The drum/attic band
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with an eccentricity

e ¼ 1738:15=761 ¼ 2:28 m [B/2 = 1:50 m:

The resultant of the axial force N and the bending moment M thus turns out to be
outside the base section of the slice. The effects of the buttress counter-thrust must
therefore be taken into account. Indeed it is the composite system drum/attic,
coupled with the buttresses, of height h2, that represents the structure resisting the
dome thrust (Fig. 4.88). Failure of this system could occur via the mechanism
foreseen by the Three Mathematicians, through equal rotations of the sliced
drum/attic and buttresses, as in Fig. 4.79. Instead, we now consider thrust SdomT
influenced by factor k, as shown in Fig. 4.88.

Given that the buttresses around the drum are sixteen in number, we must take
1/16 of the round angle as the width of the drum/attic slice associated to a single
buttress (Fig. 4.89). The values of the corresponding weight and thrust considered
above must now be multiplied by the factor 50/16 = 3.125. These values of the

weight and thrust will be respectively indicated as cC3 and bSdomT to distinguish them
from the other values corresponding to 1/50 of the round angle. The weight of the
buttress, indicated as C4 in Fig. 4.90, is very difficult to evaluate because of its
complex geometry. As a rough estimate, averaging its transverse section, we have
C4 = 2.3 � 14.50 � 3.60 � 5.60 = 672 t, to account for the greater weight from
the marble elements, the presence of large cornices, and so forth (Fig. 4.89). The
thrust load multiplier k is thus obtained by equating the resistant and pushing work
done by the various forces along the mechanism, by which we have

½bC3
Btamb

2
þC4

Bcontr

2
þ bV ðBtamb � cÞ�h ¼ khbScupTh1;

Fig. 4.87 Check of the
vertical strip of the drum
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whence we obtain

k ¼ C
_

3
Btamb
2 þC4

Bcontr
2 þV

_ðBtamb � cÞ
S
_

cupTh1

and

k ¼ 3:125½357:2� 1:5þ 403:84� ð3:0� 2:06Þ� þ 672� 2:8
3:125� 84� 18:0

� 1:00

Another simplified analysis, performed by Como (1997), yielded a safety factor
k of 1.06, only slightly higher than the just determined value of 1.02.

Note that we have assumed the drum to be cracked along its entire height. Such
an assumption leads to a picture of the dome’s static condition that is considerably
more pessimistic than its actual condition. In any event, the cracking pattern
detected by Vanvitelli included severe diagonal cracks in the buttresses, as above
shown in Fig. 4.77.

The resisting buttresses were seriously stressed by the dome and the equilibrium
was extremely precarious. The particular geometry of the buttresses, with their
external columns practically detached from the masonry wall, indicates that they
were not originally designed as resistant elements to the dome’s thrust. Despite the
imprecision of the rough estimate performed, it can nonetheless be concluded that
the static conditions of the dome were actually quite critical, even close to failure.

V

)

3C

)

a

h1

c

4Ch2

BdrumBcontr

ˆ
domTSλ

a

Fig. 4.88 Check of the drum
strip including the buttress
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4.12.8 Poleni and Vanvitelli’s Restoration Works

The dome was repaired and reinforced according to Poleni’s recommendations and
under the technical supervision of L. Vanvitelli. The cracks in the dome were
patched through the procedure know as “scuci e cuci” (literally, “unstitch and
stitch”), which is still commonly used today. However, the most important measure
was encircling the dome.

4.12.8.1 Insertion of Iron Hoops

The most crucial reinforcing operation performed on the dome was undoubtedly
encircling it with six iron hoops, as illustrated in Fig. 4.90 and using the connection
device shown at Fig. 4.91.

The chains (Fig. 4.90) are positioned at:

• the buttress bases (A);
• the top of entablature of the main order of the drum (B);
• the dome springing (C);
• the dome’s mid-height (D);
• the lantern springing (E);
• halfway between hoops C and D (Z).

Fig. 4.89 Horizontal section of the drum
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Hoop Z was the sixth and last ring installed, when during the restoration in 1748
it was discovered that the old rectangular lower iron hoop (lines n–n and u–u in
Fig. 4.90), emplaced during the dome’s construction, had broken. During instal-
lation, the new hoops were heated and emplaced hot, so they could be tensed after
cooling. The strength of the encircled dome has been greatly increased by the
positioning of the hoops, which, when stretched during the displacement mecha-
nism, perform plastic dissipation work.

Let Rc be the radius of the iron ring and wr the radial displacement of the centers
of the hoop sections consequent to the mechanism. The dilatation e/ occurring
during hoop stretching, is thus

ef ¼ wr=Rc: ð4:77Þ

Let ro be the yield stress of the iron of the hoop, and Ac the area of the circle’s
cross section. The plastic dissipation Dpl is

Fig. 4.90 The six new iron
hoops (A, B, C, D, E, Z)
installed by Poleni and
Vanvitelli and the original
ones (u, n) (Poleni 1748)
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Dpl ¼ roAcRc

Z 2p

0
e/d/ ¼ 2proAcwr ð4:78Þ

According to Poleni, the area of the rectangular cross section of the iron hoop (in
the old unit of oncia) was “once 3 per once 5”, which is about 51.9 cm2. The failure
strength rR of the iron of the hoop, according to Poleni’s evaluations, is about
4,000 kg/cm2 and the corresponding yield stress ro can be assumed equal to rR/1.5
and therefore 2,667 kg/cm2. We can thus estimate the increase in dome strength
gained by inserting a single hoop, for example, near the base of the dome
(Fig. 4.92).

For instance, by considering mechanism (4) considered above, we get, referring
to Fig. 4.82, wc = H * h, where according to previous calculations, H* = 21.60 m.
The plastic work corresponding to the stretching of this iron hoop is thus

Dpl ¼ 2� 2667� 51:9� p� 2160� h kg � cm = 18:786� h t �m:

The resisting work due to raising all the weights of the dome is Ltot = 86,673 �
h t � m. The presence of the considered single hoop therefore increases the resistant
work by about 20% of the resistant work done by raising the weight of the entire
dome during the mechanism development. The efficiency of the presence of the iron
oopos depends on their position on the dome. In any case the installation of the six
iron hoops has no doubt strongly increased the strength of the dome.

4.12.9 Conclusions

To sum up then, the attic/drum and buttresses were too weak to support the dome,
given the nearly semicircular profile of its meridian section and the heavy lantern
above. In particular, the rather frail geometry of the buttresses contributed little to
its static stability, something probably overlooked by Michelangelo.

The Three Mathematicians realized the static inadequacy of the drum, albeit
through too simplified a kinematic model. However, the repair and restoration work
they proposed were too invasive and would have modified the monument’s

Fig. 4.91 The hoop
connecting and tensing device
(Poleni 1748)
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architecture. Poleni, on the other hand, never understood the actual static precari-
ousness of the dome’s state. However, although his static analysis was flawed, he,
with the invaluable help of L. Vanvitelli, had six iron hoops installed to encircle the
dome, which, in the end, were able to counterbalance the static deficiency of both
the drum and buttresses. In brief, Poleni and Vanvitelli’s restoration, carried out in
full respect of the monument’s architecture, turned out to be a great success indeed.
To this day, not only is the wondrous Vatican dome still standing, but it has retained
its original architecture.
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Chapter 5
Barrel Vaults

Abstract This chapter deals with Statics of the masonry barrel vault, the simplest
form of a curved roof covering spaces with a rectangular plan. They have an ancient
origin but began to be extensively built in the Roman and Romanesque architecture.
Barrel vaults are generally thin cylindrical solids of a given profile, supported at
their boundaries. Unlike spherical shells, masonry cylindrical shells, with their zero
Gaussian curvature, do not benefit from shape strength. Consequently, they are
more prone to deformation and consequently to cracking. At cracking the vault
reduces to a series of side-by-side arches. Lastly the cylindrical masonry barrel
vault with semicircular profile and sustained by side walls is thoroughly studied
under various conditions involving both vertical and horizontal loads.

5.1 Introduction

The barrel vault, which belongs to the family of cylindrical shells, is the simplest
form of a curved roof covering spaces with a rectangular plan. Many examples of
barrel vaults are found in the world’s architectural heritage, some, such as the
renowned roof of the Sistine Chapel, are famous all over the world. Barrel vaults
were used extensively in Roman architecture (Lancaster 2007). Figure 5.1 shows
the barrel vault of the Basilica of St. Sernin, one of the most beautiful examples of
Romanesque architecture in France. In this case the vault is supported by arches
erected transverse to the barrel. These arches can be built first and then used as the
formwork for constructing the barrel, which can be completed bay-by-bay using a
movable scaffold.

Barrel vaults are generally thin cylindrical solids of a given profile, supported at
their boundaries, and thereby exhibit three-dimensional behavior. On the other
hand, it seems evident that the static behavior of the barrel vault can be viewed as
that of a series of side-by-side arches.

The capacity (or incapacity) of a vault’s constituent materials to sustain tensile
stresses is the decisive factor in its behavior. In the presence of tensile strength, the
stress state in a vault can be simply analyzed by means of shell membrane solutions,
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which can provide a good approximation of the stresses occurring in the vault
before cracking. On the contrary, when cracking occurs, the behavior of the vault
will actually correspond to that of a series of side-by-side arches, as will be shown
in the following sections.

5.2 Membrane Stresses in Cylindrical Vaults

Unlike spherical shells, cylindrical shells, with their zero Gaussian curvature, do not
benefit from shape strength. Consequently, they are more prone to deformation and,
if made of no-tension material, cracking. Nonetheless, describing the uncracked
state of the barrel vault, which is well-represented by membrane stresses, is useful
not only for a better understanding of the transition from the uncracked to the
cracked state, but also to validate the assumed simple model of side-by-side arches.

A cylinder is a geometric solid generated by moving a straight line along a curve
while maintaining it parallel to its original direction. From this definition it follows
that through any point on the cylinder a straight line may pass which lies entirely on
its surface. Each of these lines is called a generatrix. For convenience, we shall

Fig. 5.1 Barrel vault of the
Basilica of St. Sernin in
Toulouse
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assume that the generatrices are horizontal. All planes normal to the generatrices
intersect the cylinder in identical curves which are called profiles.

Generatrices and profiles represent a natural net of coordinates lines. We can
choose an arbitrary profile as the datum line and measure coordinate x along the
generatrices from this line, positive in one direction and negative in the other.

A local reference system Pxyz is defined at each point P on the surface with the
x axis directed along the generatrices, that is, along the axis of the cylinder; the
y axis along the tangent to the profile passing through P; and axis z having the
direction of the outward normal to the surface.

If r is the profile’s radius of curvature at P, the element of the arc ds can be
expressed as ds = r d/, where /, in the plane of the profile, is the angle between the
normal to the profile at P and the vertical axis (Fig. 5.2).

Let us consider a shell whose middle surface is a cylinder. We cut from it an
element bounded by two adjacent generatrices / and / + d/ and by two adjacent
profiles x and x + dx (Fig. 5.3). The membrane forces acting on the four edges must
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Fig. 5.3 Membrane forces acting on the element of a cylindrical shell
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all lie in tangential planes to the middle surface and may be resolved into normal
and shear components as shown. The forces per unit length of section are Nx, N/,

the normal forces, and Nx/ = N/x the shearing forces. The load per unit area of the
shell element is the weight g. The element of surface has area dxds and the total
load acting on the element is gdxds.

Figure 5.3 shows the components of the membrane forces acting on the element
of the middle cylindrical surface of the vault. The equilibrium in the three directions
x, y, z yields the equations (Flugge 1962; Belluzzi 1955; Heyman 1977):

@Nx

@x
þ @N/x

@s
¼ 0

@N/

@s
þ @Nx/

@x
þ g sin/ ¼ 0 N/ ¼ �gr cos/: ð5:1Þ

The force N/ is independent of x. Moreover, the internal equilibrium directly
determines force N/, which cannot therefore depend on the boundary conditions of
the vault. Owing to the profile curvature, force N/ balances the load component in
the direction normal to the vault surface. When this normal becomes horizontal,
N/ = 0. From the second of Eq. (5.1), we have

Nx/ ¼ �ðg sin/þ 1
r
@N/

@/
ÞxþAð/Þ ¼ �Kð/ÞxþAð/Þ ð5:2Þ

with the position

K ¼ ðg sin/þ 1
r
@N/

@/
Þ: ð5:20Þ

By integration thus we have

Nx/ ¼ �KxþAð/Þ; N/ ¼ �gr cos/; Nx ¼ x2

2
1
r
@K
@/

� x
1
r
@Að/Þ
@/

þBð/Þ:
ð5:3Þ

Force Nx/ varies linearly with distance x, while force Nx varies with the square of
distance x. This follows from the fact that the membrane solution must also be able
to represent the beam behavior along direction x. Since the total applied load is
constant, the shear force and bending moment will respectively vary linearly or with
the square of distance x.

Equations (5.2) and (5.3), which hold for the generic cylindrical shell, take on
specific forms for the three profile cases considered. The profile equation can be
expressed in terms of the change in its radius of curvature r with angle /. Thus, we
can write

r ¼ ro cosn /; ð5:4Þ
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where ro is the radius of curvature of the profile at the crown. When n = 0, Eq. (5.4)
represents an arc of the circle; when n = 1, an arc of a cycloid; when n = −3 an arc
of a parabola; and when n = −2, an arc of catenary.

Catenary profile
In this case the profile equation is

r ¼ ro cos�2 /: ð5:5Þ

Thus, from the second equation in (5.2), we have

N/ ¼ �gro cos�1 / ð5:6Þ

and consequently

K ¼ g sin/� cos2 /
ro

@

@/
ðgro cos�1 /Þ ¼ g sin/� g sin/ ¼ 0: ð5:7Þ

The barrel vault is uniformly supported on its lateral walls, as shown in Fig. 5.4.
The central section, defined by x = 0, belongs to a plane of symmetry and therefore
there Nx/ = 0. Consequently, the first of Eq. (5.2) yields A(/) = 0 and the shear
force Nx/ in the vault cancels perfectly.

Transverse walls are present at the vault’s end section, where, because these
walls are unable to sustain loads directed orthogonally to their plane, the condition
Nx = 0 holds. Consequently, from the third equation in (5.2), we get B(/) = 0 and
once again in this case we have Nx = 0. The force N/, which is the only force
different from zero, is given by (5.6).

The barrel vault transmits its weight uniformly to the side walls by means of the
forces N/. The model of side-by-side arches fits the membrane behavior of the vault
very well. Such result was in any event to be expected because the catenary is the
funicular curve of the loads distribution acting along the profile.

Fig. 5.4 Scheme of a barrel
vault
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Circular profile
In this case we have:

r ¼ R ð5:8Þ

All three force components Nx, N/ ed Nx/ are now acting in the vault. However,
according to previous considerations, we still have A(/) = B(/) = 0 and

N/ ¼ �gR cos/: ð5:60Þ

Furthermore,

K ¼ ðg sin/þ 1
R
@N/

@/
Þ ¼ 2g sin/

@K
@/

¼ 2g cos/; ð5:9Þ

and the other two force components are

Nx ¼ �ðL2 � x2Þ g
R
cos/ Nx/ ¼ �2xg sin/ ð5:10Þ

If the profile is a semicircle, at / = p/2 we have N/ = 0. The vault’s weight
cannot therefore be supported by the lateral walls. Only shear forces Nx/ = −2gx
act on these walls and increase linearly along the generatrices up to the value
Nx/ = −2gL at the transverse end walls (Fig. 5.5). The forces Nx vary with the
square of x along the generatrices and vanish at the end sections. The forces Nx/

transmit the vertical shear, represented by the weight, to the transverse end walls.
The presence of these end walls ensures equilibrium of the vault.

The forces Nx and N/ are always compressive at each point of the vault and
vanish at the straight edges, in the neighborhood of the side walls. In a complete
cylindrical vault he straight edges of the vault are thus subjected to pure shear
which produces tensile stresses along these edges in the diagonal direction
(Fig. 5.6).

Fig. 5.5 Membrane stresses
along the longitudinal and
transverse edges
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While reinforced concrete barrel vaults are fitted at their edges with suitable steel
tie rods, masonry circular barrel vaults, lacking these, are prone to cracking along
the longitudinal edges.

5.3 Transition from Uncracked to Cracked States. The
No-Tension Model of the Barrel Vault

Let us now refer to a common barrel vault with semicircular profile to analyze the
transition from the uncracked to the cracked state.

We have seen that in the uncracked state the vault behaves like a longitudinal
beam supported at its ends by transverse walls. Internal stresses are transmitted
directly to masonry material along the straight edges and transverse walls. Cracks
occur along the vault edges and the membrane stresses become inconsistent: both
forces Nx and Nx/ must cancel out. Only forces N/ do not, and the second equation
in (5.1) cannot be satisfied by membrane forces. A bending moment takes place in
the plane of the profile leading to a shear force T/. Owing to the moment M/, axial
forces N/ deviate from the midline of the vault section, the middle semicircle, and
winding within the thickness of the vault, take on the profile of a catenary and load
the side walls. The emergence of the thrust is the main consequence of the cracking
of the vault: the side walls must be able to sustain this thrust (Fig. 5.7). This occurs
at each transverse section of the vault. Upon cracking, the vault subdivides into a
series of independent side-by-side arches. Frequently a sequenced of cracks that
follow the circular profile of the vault can be detected.

In order to avoid failure, the pressure line must be completely contained within
the thickness of the vault. The thickness of a semicircular profile barrel vault must
be thus greater than 1/10 its radius, at least, to be stable.

In the end, masonry barrel vaults behave as a series of side-by-side arches
supported by lateral walls, which must be quite thick and cannot present wide
openings. The static analysis of a masonry barrel vault is thus reduced to that of a
masonry arch with equal profile and thickness.

Fig. 5.6 Membrane stresses
in the neighborhood of the
end walls
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5.4 Vaults-Walls Systems

Composite structural systems can be found in various forms in architecture.
Figure 5.8 shows some common systems constituted by barrel vaults with side
walls in various arrangements starting with the first, simplest scheme 1.1. In
schemes 1.2 and 1.3 the side walls are lightened by means a series of small chapels
covered by barrel vaults, an arrangement commonly found in churches. A series of

Fig. 5.7 Stress transmission
from the barrel vault to
supporting walls

Fig. 5.8 Systems of barrel vaults and side walls (from Como and Lanni 1988)
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wide piers runs along the nave flanked by the small vaults of the side chapels. These
vaults also carry out the function of bearing the thrust of the main vault.
Schemes 1.4 and 1.5 instead have two lateral aisles flanking the nave and the lateral
vaults transmit the thrust of the central one. Case 1.6 illustrates the Gothic solution,
in which the thrust is transferred by flying buttresses. The sequence of these various
systems represents the evolution of church construction from the Romanesque to
the Gothic style.

5.4.1 The Barrel Vault with Side Walls

Vertical loads
Scheme 1.1 in Fig. 5.8 is the simplest system of a barrel vault with side walls. Such
a system can easily fail if the walls are too slender, so throughout history numerous
empirical rules have been formulated to establish safe dimensioning. At first, only
vertical loads will be taken into account.

Figure 5.9 defines the system’s various geometric parameters, considering unit
width in the direction orthogonal to the plane of the figure. The weights applied to
the side walls are constant, while those on the vault increase proportionally
according to the loading parameter k. The failure mechanism may or may not be
symmetrical. A symmetrical mechanism is illustrated in Fig. 5.10. Failure occurs
when, despite the weight of the side walls, the axial load, because of the thrust of
the vault, becomes so eccentric to reach the toe of the piers’ base.

Precise analysis has shown that the failure mechanism is indeed symmetrical
(Fig. 5.10). The collapse load multiplier koV of the vertical loads acting on the vault
alone can be expressed as (Abruzzese et al. 1995):

koV ¼ Qp

�Qa

qb
kV

; ð5:11Þ

Fig. 5.9 Geometry of the
barrel vault supported by side
walls
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where, with reference to Fig. 5.9, Qp is the weight of a single wall, �Qa the weight of
the whole vault, qB the distance of the wall centre Gp from the external toe, and kV
is a parameter representative of the geometry of the system:

kV ¼ 0:3
hþ 0:6
sþ 0:4

½bþ 0:55� ðhþ sþ 1Þ bþ 0:2
hþ 0:6

� � 0:2ðbþ 0:02Þ; ð5:12Þ

where

h ¼ H
R

b ¼ B
R

s ¼ S
R
: ð5:13Þ

The collapse load multiplier koV of the vertical loads acting on the vault,
expressed by (5.11), depends upon the ratios between the various parameters
representative of the geometry of the vaulted system but not upon their absolute
measures. This result is in agreement with the general statement proved at Sect. 2.7
about the theory of proportions of the past architecture.

An example.
A round barrel vault with internal radius R = 4.0 m and thickness S = 0.45 m and
unit masonry weight c = 1.6 t/m3 is supported by two side walls of width
B = 1.50 m and height H = 3.50 m. Only the weight Qa of the vault increases
according to loading parameter k. By applying (5.13) we evaluate the dimension-
less geometric quantities s, b and h and get s = 0.1125; b = 0.375; h = 0.875. From
(5.12), the quantity kV = 0.0507.

Now, �Qa ¼ 0:5 � pð4:452 � 4002Þ � 1:6 ¼ 9:557 t, Qp ¼ 1:5 � 3:50 � 1:6 � 1:0 ¼
8:40 t; q = 0.50, and we have k0V = 3.25. The vault/walls system will thus fail
when the weight of the vault is increased more than three times of its initial value.

Horizontal loads
Let us now consider the vault in the presence of horizontal forces, which can be
used to represent the action of an earthquake. Figure 5.11 shows the geometry of
the system under the action of both vertical and horizontal loads, these latter acting
from left to right. The weights are maintained constant, while the horizontal forces

Fig. 5.10 Symmetrical
failure of a composite
vault/wall or arch/pier
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increase according to parameter k, for which it is assumed that a value of k = 1
corresponds to horizontal actions equal to the vault weight.

Depending on the system’s geometry and mass distribution, three different
failure mechanisms can arise: local, semi-global or global.

A local mechanism develops wholly within the vault, the semi-global involves
both the vault and right wall, while global failure affects the vault together with both
walls. This last type, which is quite uncommon and occurs in light vaults with
slender walls, will not be considered in the following discussion, which will be
limited to the first two mechanisms as they occur frequently in the common types of
vault/walls systems. The semi-global mechanism occurs quite frequently because
the horizontal forces act from left to right, so the vault thrust and the horizontal
forces act concomitantly on the right side, while the opposite occurs on the other
wall (i.e. the thrust opposes the horizontal actions).

Figures 5.12 and 5.13 respectively illustrate the local and semi-global mecha-
nisms, showing the hinge positions (Como and Lanni 1988). Now let

u0 u00 ð5:14Þ

indicate two generic mechanisms, the first representing local deformation of the
vault alone and the second the semi-global deformation involving both the vault
and one wall.

H

h

s

B B

G
λG

p(x)

λp(x)

L

Fig. 5.11 A barrel vault
supported by side walls under
vertical and horizontal loads

(1)

(2)

(3)
(4)

Fig. 5.12 Hinges at the local
failure of the vault
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Let also

M0 M00 ð5:15Þ

be the sets of all local and semi-global mechanisms. The failure horizontal load
multiplier is determined by means of the kinematic theorem. We can consider

kc ¼ Min k0cðuÞ
M

; ð5:16Þ

where k′c(u) is the generic load multiplier corresponding to mechanism u, andM the
set of all local and semi-global mechanisms

M ¼ M0 [M00: ð5:17Þ

The horizontal collapse multiplier is thus obtained as

kc ¼ Minðk0o; k00oÞ ð5:18Þ

where k′o and k′′o are the collapse multipliers restricted to the sets M′ and M′′ of the
local and semi-global mechanisms.

Finding k′o in the set of local mechanisms
The analysis follows the procedure set forth in Sect. 4.7 of the previous chapter

—specifically, steps (a), (b), (c) and (d)—for a masonry arch subjected to horizontal
forces (Fig. 5.14).

(1)

(2)

(3)

(4) 

Fig. 5.13 Hinges at the
semiglobal failure of the vault

(1) 

(2) 

(3) 

(4) 

RV

RH

Fig. 5.14 Evaluating kc by
imposing zero moment at
hinges 2, 3 and 4
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As for the arch, we recall that hinge (4) is located at the extrados of the right
springer section and the distance between hinges (2) and (3) is approximately equal
to L/2, where L is the internal span of the arch. These results allowing reducing the
four unknowns to only two: x1 and x2, that define the positions of hinges (1) and
(2) from the left springing (in this case of the vault). Function kc(x1, x2) is defined
by writing the equilibrium equations involving the unknowns kc, RV, RH. We will
account for the fact that hinge (1) is very near the left springer. The multiplier k′o is
obtained by numerically evaluating distances x′1 and x′2 when function kc(x1, x2)
reaches a minimum. Let us now examine the case of the semi-global failure
mechanism.

Finding k′′o in the set of semi-global mechanisms
Once multiplier k′o has been obtained, we must verify whether this multiplier is

also statically admissible with regard to the stresses inside the right wall. Let R′V,
R′H. and M′, respectively, be the three actions—vertical, horizontal and moment—
that the vault, in the previously determined state of local failure, transmits to the
right wall at the intrados of its springer section. We can now determine the value of
multiplier kop of the horizontal forces that leads to failure of the wall according to
the scheme in Fig. 5.15. The limit equilibrium of the wall yields the equation

�M0 þR0
VB� R0

HHþ GB
2

� kopGH ¼ 0: ð5:19Þ

Thus if

kop � k0o; ð5:20Þ

the collapse of the system occurs through the development a local failure mecha-
nism. On the other hand, if

kop\k0o; ð5:21Þ

G

λopG 

'
VR

'
HR

'M

Fig. 5.15 The limit state for
overturning of the right wall
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collapse involves both the vault and the right wall according to a semi-global
mechanism u′′, which is yet to be determined. Let us consider a generic semi-global
mechanism, as sketched out in Fig. 5.16.

The evaluation of kinematic multiplier kc(u′′) is pursued by solving the equi-
librium equations of zero moment at the mechanism hinges. Equation (3.56) in
Sect. 3 regarding arches, must now be reformulated to yield the new equation for
zero moment at the right toe of the right wall (Fig. 5.16), as follows:

�RVðLþBÞ � RHHþMV ðLÞþRpB� kcMoiðLÞ � kcRpHþG
B
2
� kcGH ¼ 0;

ð5:22Þ

where Rp is the resultant of load p, and kcRp the resultant of load kcp.
Performing the numerical calculations reveals some regularities in the locations

of hinges in the semi-global collapse mechanism. In fact, the same regularities
found in the positions of hinges 2, 3 and 4 in local failure still hold. Consequently,
in evaluating k′′o, the only unknowns are the distances x1 and x2 of hinges 1 and 2
from the left vault springing (Fig. 5.16). The search for the collapse multiplier is
thus reduced to the two-variable minimum problem

ko ¼ k00o ¼ Min kcðu00Þ ¼ Min kcðx1; x2Þ: ð5:23Þ

Now, if x001 ; x
00
2 represent the values of variables x1 and x2, where the multiplier kc

is at a minimum (5.23), the following simplifying condition holds

x001>x01x
00
2>x02; ð5:24Þ

where x01 and x02 are the values of x1 and x2 corresponding to the local failure.
Hinges 1, 2 and 3 move rightwards due to failure of the right wall.
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(4) 
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Fig. 5.16 Evaluating kc by
imposing zero moment at
hinges 2, 3 and 4
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A simple expression for the failure multiplier of the horizontal force for round
vaults supported by side walls has been obtained by Abruzzese et al. (1995), as
follows:

koH ¼ ðqb
dh

� Qak1
Qpdh

Þð1þ Qak2
Qpdh

Þ�1: ð5:25Þ

where, by using the same notation as above, and with reference to Fig. 5.9, Qp is
the weight of a single wall, Qa the weight of the whole vault, qB the distance of the
wall centre Gp from the external toe, d h the height of the center of the wall,

k1 ¼ bþ 0:2
C � 1:8

ð0:61� 0:47CÞ � 0:2ðbþ 0:02Þ; k2

¼ bþ 0:2
C � 1:8

½0:58� ð0:62þ 0:3sÞC� þ 0:2ðhþ 0:3Þ

C ¼ ½hþ 0:6
bþ 0:2

ð2þ bÞ � h�ð1þ sþ hþ 0:6
bþ 0:2

Þ�1 ð5:250Þ

Also in this case the strength of the system depends only on the ratios between
the parameters defining the geometry of the system but not on their absolute values,
confirming the result given at Sect. 2.7.

By way of example, let us consider the same vault/wall system described above.
The dimensionless quantities s, b and h take the same values, namely, s = 0.1125;
b = 0.375; h = 0.875; d = 0.5. According to (5.25), parameters C, k1 and k2 are
C = 1.4186; k1 = 0.0066; k2 = 0.7587. Thus,

koH ¼ ðqb
dh

� Qak1
Qpdh

Þð1þ Qak2
Qpdh

Þ�1 ¼ ð0:4286� 0:0169Þð2:973Þ�1 ¼ 0:1885

The system thus fails when the horizontal forces reach a value equal to about the
19% of its weight.

5.4.2 Vault-Wall Reinforced with Tie Rod

Frequently vault/walls systems are reinforced with iron or steel tie rods. Figure 5.17
shows an example of a barrel vault reinforced by a tie rod with end plates. The
increase in strength obtainable by fitting such a tie rod can be easily analyzed.

Let us first consider only the presence of vertical loads. The local mechanism,
involving only the presence of hinges in the vault, will not be considered here.
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Referring to the mechanism shown Fig. 5.10, when both masonry walls rotate
outwards by angle h, the resisting work due only to the wall weight is QpqBh,
where q indicates the eccentricity of the wall weight with respect to the external toe.
In presence of tie rods, the mechanism can take place only if the yield stress of the
chain is attained. Thus, to the balance between the resisting and pushing work, we
must add the work due to the plastic dissipation occurring in the tie rod. Referring
now to half the system, we must add ToHh, where To is the yield strength of the tie
rod.

We can consider a fictitious work of raising the wall weight that also includes the
effects of the plastic dissipation. We can write

Lres; lat ¼ QpqBhþ ToHh ¼ QpqBð1þ ToH
QpqB

Þh ¼ Qpq � B: ð5:26Þ

and

q� ¼ qð1þ ToH
QpB

Þ: ð5:27Þ

The collapse multiplier can be thus be obtained by using (5.25) and (5.25′),
except that the fictitious eccentricity q * B of the pier weight Qp, where q* is given
by (5.27), is considered instead of qB (Abruzzese et al. 1995).

With reference to the vault/walls example considered above, let us consider the
presence of a tie rod made of Fe 360 steel of circular section / = 20. The yield
strength of the tie rod is thus 3.14 � 2400 = 7.54 t. From Eq. (5.27) we have (ToH)/
QpB) = (7.54 � 3.40)/(8.40 � 1.50) = 2.035, and the value of q* = 1.5175. From
(5.27), by inserting the aforementioned tie rod and fixing it firmly to the side walls
with suitable steel end plates, we get q*/q = 3.03.

In order to further counter the vault thrust, it is also possible to place a reverse tie
rod at the vault extrados, though suitable supplementary reinforcements are natu-
rally required. The idea is to transfer the thrust of the vault from its springing to the
extrados. Figure 5.18 shows the solution to this problem: a vertical anchor rod
ensures transmission of the vault thrust—a useful system for reinforcing vaults first
suggested by Giuriani (1995).

Fig. 5.17 The vault and side
walls reinforced with tie rods
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All the previous analysis on the strength evaluation of the barrel vault with side
walls could be improved to take into account of the strength reduction due to the
inclined fractures occurring at the base of the walls, as it will be discussed at the
next Sect. 9.4.
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Chapter 6
Cross and Cloister Vaults

Abstract The aim of this section is the study of Statics of cross and cloister vaults:
they are related together in various respects, since from the point of view of their
geometric generation. A brief introduction gives information about the historical
development of these vaults: there are magnificent examples already in the Roman
architecture. Membrane stresses in cross and cloister vaults are firstly thoroughly
studied. The existence of tensile stresses is a necessary condition for the membrane
equilibrium and cracking is thus nearly inevitable. A study of sliced models of both
the vaults is thus pursued. In the sliced model of the cross vault, firstly proposed by
Heyman, webs transmit vertical and horizontal loads to diagonal ribs or to groins
that, in turn, convey these loads to piers and flying buttresses. A dual model for the
cloister vault, that cracks along the diagonals and transmits loads on the side walls,
is firstly proposed. A detailed analysis of the cracks patterns is conducted for both
the vaults at their minimum thrust states. The chapter ends with the study of statics
of some important examples of these vaults, as, in particular, the large cross vaults
of the Diocletian Baths in Rome.

6.1 Brief Historical Notes

The cross vault is highly efficient, both functionally and statically. In contrast to
barrel vaults, wide windows can be opened in the side walls. Frequently, con-
spicuous diagonal ribs emerge from the intrados of the webs, while in other cases,
internal ribs run along the groins within the masonry and are barely visible at the
intrados as a crease along the diagonals.

Cross vaults begun to develop since in the Roman architecture (Adam 1984).
Roman cross vaults, usually made of concrete, generally present rounded lateral
arches and internal diagonal brickwork ribs. Centering was used to build both the
lateral and diagonal arches, as well as to subsequently cast the concrete for the
construction of webs. The concrete was laid in separate layers of caementa and
mortar. The vaults were very heavy and transmitted large thrusts to their supporting
structures. Some magnificent examples of cross vaults remain in Roman

© Springer International Publishing AG 2017
M. Como, Statics of Historic Masonry Constructions, Springer Series in Solid
and Structural Mechanics 9, DOI 10.1007/978-3-319-54738-1_6

319



architecture: each bay of the cross vaults of the Diocletian Baths or the Basilica of
Massentius in Rome span over 25.0 m. A thorough description of Roman vault
construction techniques has been provided by Lancaster (2007).

Later Romanesque cross vaults were much smaller. They had pointed side arches
and rounded diagonals. Like their earlier Roman counterparts, Romanesque cross
vaults do not present outer ribs. The diagonal groins were built first, and only
afterwards the web was added to the interior. Structurally, the Romanesque cross
vault can be considered a single unitary system, with no differences between the
webs and the ribs (Morabito 2004).

A significant change came during the Gothic period, whose builders diversified
the ribs’ functions from the webs’, thus giving rise to the so-called rib vaults. The
webs, which were much thinner and supported by ribs composed by ogival arches,
emerged at the extrados of the vault. The vault’s webs were fashioned to fit the
boundary arches along both the groins and the four edges of the bay (Masson 1935).

The extraordinary thirteenth century Gothic cross vaults, spanning as much as
10–15 m, are only about 20 cm thick, thereby producing limited amounts of thrust.

Some Gothic cross vaults had extremely bold structural designs. For instance,
the cross vaults of the Amiens Cathedral (Fig. 6.1) were built to a height of 42 m
and those of Saint-Pierre in Beauvais to a height of 48 m. Figures 6.2a and b show
sketches of quadripartite and sexpartite cross vaults.

In Gothic cross vaults the webs are sustained by diagonals ribs, which are in turn
supported by corner pillars and a suitable system of buttresses. Thrusts are con-
veyed from the ribs to the flying buttresses, which, in turn, transmit them to the
external buttresses. In such vaults the pressure curve is depressed and a special filler
is usually added in such a way as to reinforce the masonry near the springings
(Heyman 1995).

One special type of cross vault is the so-called star vault, typical of Apulian
architecture. These vaults are characterized by an incomplete intersection between
the two orthogonal barrels generating the vault and present a central star-shaped
band.

The cloister vault has been very commonly used to roof a variety of buildings. In
fact, such vaults are closed, that is supported by four lateral walls topped by four
cylindrical webs. They were built with the aid of wood centering by adding suc-
cessive courses of masonry in directions parallel to the lateral walls.

The earliest examples of cloister vaults date back to the first century BCE, some
notable example being the roofs of the Tabularium, built in Rome in 78 BCE,
Hadrian’s Villa at Tivoli and those covering the octagonal rooms of the Baths of
Antoninus (145–160 CE) in Carthage. The similarly octagonal room of Domus
Aurea has a roof that begins as a cloister vault then gradually transforms into a
hemispherical vault. Later examples are the roof of the Palatine Chapel in Aachen
(13th–14th century CE) (Lancaster 2007).

With advances in construction techniques, cloister vaults even came to be used
to roof the halls and rooms of aristocratic buildings. They are thoroughly analyzed
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in Palladio’s Four Books of Architecture (1601) and in the treatise, Universal
Architecture, by Scamozzi (1615). Castigliano’s book for engineers (1879) is also a
valuable source of information and practical guidelines for their construction.

Fig. 6.1 Cross vaults of the cathedral of Amiens
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6.2 Geometric Generation of Cross and Cloister Vaults

Cross and cloister vaults are related in various respects, particularly from the points
of view of their geometric generation. Let us consider two equal,
semicircular-profile barrel vaults on a square plan, and let us section each one with
two diagonal vertical planes, as shown in Fig. 6.3. Such sectioning produces two
different pairs of cylindrical webs. The pair of opposing webs A and the pair of
opposing webs B have respectively the same profile and the same edges as the
initial barrel vaults.

We can generate both the cross vault and the cloister vault by joining the four A
webs or the four B webs, as shown in Figs. 6.4 and 6.5.

The cross vault is supported on its four corners, while the cloister vault rests on
its four edge walls. The intersection of two equal, though not necessarily semi-
circular, barrel vaults yields the simplest cross vault with a square in plan. More in
particular, if the intersecting barrel vaults are semicircular in profile, the resulting
cross vault will have rounded lateral arches and semi-elliptical diagonals.

Fig. 6.2 a Quadripartite cross vault, b sexpartite cross vault (from Heyman 1995)

B A A 

Fig. 6.3 Two semi-cylindrical barrel vaults with square plan and their diagonal sections
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The intersection of two barrel vaults having circular profiles, but different radii,
yields a rectangular-plan cross vault. The geometry of the vault is thus modified: if
the arch of the smaller span vault is round, the arch of the longer span vault must
necessarily be depressed. In the case of a rectangular plan, the intersection of the
webs is a space curve (Fig. 6.6). The consequent cross or cloister vaults will present
curvilinear groins in plan. The mismatch between the exact intersection curve and
the approximate linear intersection is negligible, except when dealing with very
elongated rectangular vaults. In this last case these space curved ribs can be made
into an architectonic decoration.

Cross vaults with rectangular plans and space curved ribs are uncommon.
Figure 6.7 shows an unusual example of a cross vault with sinusoidal ribs in plan:
the cross vault of the Carthusian monastery of San Martino in Naples.

Fig. 6.4 Generation of a
cross vault

Fig. 6.5 Generation of a
cloister vault

Fig. 6.6 Horizontal
projection of intersection
curves among the various
webs composing the groin
vault with rectangular plan
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6.3 Surface Areas and Weights of Webs and Lunes

Cylindrical Webs with Semicircular Directrix
Figure 6.8 shows the cylindrical surface with semicircular directrix of diameter

2R with square plant generating both as the web as the lune according to the above
discussion. The radius R is the inner radius of the cylinder. The thickness of the web
is denoted with t, a small quantity compared to R.

We consider the generic web segment defined by its distance x of its end section
from the axis y passing through the vertex O. Making reference to the half of the
web segment the surface element is

dA ¼ s xð Þdy ¼ s xð Þdx ðaÞ

where, due to the assumed square plan, dx = dy. From Fig. 6.8 we have

ds cos/ ¼ dx x ¼ R sin/ ðbÞ

whence

Fig. 6.7 Groin vault of the San Martino Carthusian Monastery in Naples
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Fig. 6.8 Valuation of the current area A(x)
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ds
dx

¼ 1
cos/

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 /

p ¼¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p ðcÞ

The differential of the arch length is

ds ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p dx ðdÞ

and length of the arch s(x) is given by

sðxÞ ¼ R
Z x

0

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p ¼ R arcsin
x
R

ðeÞ

We can valuate now the current area A(x) of the surface of the half web as

AðxÞ ¼
Z x

0
sðnÞdn ¼ R

Z x

0
arcsin

n
R
dn ¼ R2 x

R
arcsin

x
R
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=R2

p� �
ðfÞ

so that the current area of the whole web segment of width x is

UðxÞ ¼ 2AðxÞ ¼ 2R2 x
R
arcsin

x
R
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=R2

p� �
ðgÞ

or, considering the dependance on the angle /

Uð/Þ ¼ 2Að/Þ ¼ 2R2ð/ sin/� 1þ cos/Þ ðg0Þ

For x = R we obtain the surface area of the complete web. We have

Uc ¼ UðRÞ ¼ 2AðRÞ ¼ R2ðp� 2Þ ðhÞ

Then, if the weight g for unit surface area of the web is g = ct, where c the unit
weight of the masonry, the weight of the web segment of length x, is

GwðxÞ ¼ gUðxÞ ¼ 2gAðxÞ ¼ 2gR2 x
R
arcsin

x
R
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=R2

p� �
ðiÞ

In particular, the weight of the whole web Gweb is

GW ¼ Gwðx ¼ RÞ ¼ gðp� 2ÞR2 � 1:142gR2 ðjÞ

Cylindrical Lune with Semicircular Directrix
We consider the dual case of the cloister vault with directrix of diameter 2R,

constant thickness t and square plant. With reference to Fig. 6.9, the directrix of
radius R, is defined by the function
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zðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

p
0� y�R ðkÞ

and the arch element is given by

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy2 þ dz2

p
¼ RðR2 � y2Þ�1=2dy ðlÞ

The length of the arch s(y) of the directrix, valuated as from the crown, can be
immediately obtained as

sðyÞ ¼
Z y

0

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

p dy ¼ R sin�1 y
R

ðmÞ

We can now obtain the surface area F(y) of the segment of the lune. With
reference to Fig. 6.9, the element of area is

dA ¼ 2xds ¼ 2yds ðl0Þ

The surface area F(y) of the segment of the lune is

FðyÞ ¼
Z y

0
2n

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

p dn ¼ 2R2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=R2

p
Þ ðnÞ

and the corresponding weight is

GlðxÞ ¼ 2gR2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=R2

p
Þ ¼ 2gR2ð1� cos/Þ ðoÞ

In particular, for y = R we have the surface area of the complete lune

FL ¼ Fðy ¼ RÞ ¼ 2R2 ðpÞ

with the corresponding weight

Fig. 6.9 Valuation of the
surface area of the single lune
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GL ¼ 2gR2 ðqÞ

To check, summing up the weight of the two web and of two lunes, we get

2GW þ 2GL ¼ 2gðp� 2ÞR2 þ 4gR2 ¼ 2gpR2 ðrÞ

that is the weight of the barrel vault from which we obtained the two webs and the
two lunes, as shown in Fig. 6.3. Comparing (s) and (l) we get that the weight of the
cloister vault is about 7/4 larger than the weight of the cross vault.

6.4 Statics of Cross Vaults

6.4.1 Initial Membrane Stresses

The study of the square in plan round cross vault of Fig. 6.10 provides sufficient
information on the features of the membrane stress states occurring in cross vaults
under their dead loads.

For sake of simplicity we will make reference to the cross vault with square plan
having semicircular directrix of radius R. The vault is composed by four cylindrical
webs intersecting each other along the diagonal groins.

Each of the four webs is connected along the external side to a circular arch,
called formeret and, along the diagonals, to the other webs. The webs are eventually
sustained by diagonals ribs, which are in turn supported by corner pillars and a
suitable system of buttresses.

The local reference coordinates, defined at each point of the web, are the abscissa
x, having the direction of the generatrices, and the straight line y, tangent to the
semicircular directrix. The axis web axis is also x. The edges of the single web are
(Fig. 6.11):

• the semicircular boundary DBC, in contact with the formeret round arch
• the vertex O, the centre of the cross vault
• the two diagonal groins OC e OD, in contact with the two contiguous webs.

Now, consider this small element as contained within the web shown in
Figs. 6.11 and 6.12. In the above chapter we have seen that the internal equilibrium
of an element of a cylindrical shell directly determines the force N/, therefore
independent on the boundary conditions of the vault.

D C

O
Fig. 6.10 Square in plan
cross vault with semicircular
directrix
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Force N/ balances the load component in the direction z, normal to the vault
surface, and is

N/ ¼ �gR cos/ ð6:1Þ

The other forces Nx and Nx/ will obey the following equations that define the
equilibrium of the small cylindrical element of vault along the direction x and
y (Flügge 1962).

@Nx

@x
þ @N/x

@s
¼ 0

@N/

@s
þ @Nx/

@x
þ g sin/ ¼ 0: ð6:2Þ

Integration of Eq. (6.2), gives

Nx/ ¼ �KxþAð/Þ Nx ¼ x2

2
1
R
@K
@/

� x
1
R
@Að/Þ
@/

þBð/Þ; ð6:3Þ

where

K ¼ ðg sin/þ 1
R
@N/

@/
Þ: ð6:4Þ

Fig. 6.11 A single web of
the cross vault and the
coordinates r and /

Nxφ
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Fig. 6.12 Membrane forces
on a cylindrical element
inside the web
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With the reference axes coordinates Fig. 6.11, x is an axis of symmetry.
Consequently, the shear forces Nx/ cancel at x = 0 and from the first of Eq. (6.3),
we have

Að/Þ ¼ 0: ð6:5Þ

Taking (6.1) into account together with (6.4) we get

K ¼ 2g sin/ ð6:40Þ

and the shear forces Nx/ become

Nx/ ¼ �2gx sin/: ð6:6Þ

From (6.3) and (6.4′), the axial forces Nx along the generatrices will be

Nx ¼ x2

R
g cos/þBð/Þ: ð6:7Þ

The side arches cannot sustain forces orthogonal to their planes. Thus, taking
The side arches are unable to sustain the forces Nx orthogonal to their plane so that
for x = R, Nx = 0 and

Bð/Þ ¼ �Rg cos/ ð6:8Þ

Whence we lastly obtain

Nx ¼ ðx2 � R2Þ g
R
cos/: ð6:9Þ

Equations (6.1), (6.7) and (6.9) define the membrane forces acting within the
webs of the considered cross vault (Fig. 6.13). The interplay among the actions
transmitted by the webs to the diagonals ribs define the global equilibrium of the
cross vault.

R 

y

x 

O 

Fig. 6.13 Membrane stresses
in the vault’s web
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Figure 6.14 shows all the forces acting on a half groin vault. The weight of the
vault is conveyed to the formeret arches that, in turn, transfer it to the vertical corner
supports. No thrust is acting against the supports. The compressive forces N/

distributed along the web mid-sections equilibrate the horizontal components of the
shearing forces Nx/ acting on the sides y ¼ �R. These shearing forces carry on a
strong hooping action on the webs. The side arches, the formeret, behave as curved
tie rods hooping the vault: they are subjected to tensile stresses (Fig. 6.15).

Thus, as shown for domes and barrel vaults, the existence of tensile forces is a
necessary condition for the membrane state of stress in the vault. Cracking or
detachments are thus inevitable and the masonry vault must reach a new internal
equilibrium.

6.4.2 Uncracked-Cracked Transition

The formeret masonry arches cannot carry out the hooping action necessary for the
membrane equilibrium. At cracking the shear forces Nx/ producing tension in these
lateral arches will thus start to vanish in the neighborhood of the vault’s edges and
then vanish along the whole web. As forces Nx/ go to zero, from the first of
Eq. (6.2) also the forces Nx will vanish. Thus the second equilibrium equation in
(6.2) becomes

BA

Nxφ Nxφ

Nφ

F

Nxφ

Fig. 6.14 Membrane forces
acting in a groin vault. The
lateral arches transmit the
force distribution to the
vault’s side edges

Nxφ
Fig. 6.15 Formeret arches
hooping the sides of the vault
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1
R
@N/

@/
þ g sin/ ¼ 0; ð6:10Þ

which cannot be satisfied with N/ = −gR cos /. The membrane equilibrium along
the direction y is thus lost and a variable bending moment M/ must necessarily
ensure, accompanied by a shear, T/, to replace the term @Nx/=@/ in Eq. (6.10).

With the vanishing of forces Nx/ and Nx, a new web equilibrium develops solely
along the direction /. Webs subdivide into slices and their load is conveyed along
u to the diagonal ribs that, in turn, transfer it to the corner piers and fliers.

Moment M/ causes the compressive force N/ within the web thickness to be
eccentric. Forces N/ makes the web slices exert a thrusting action on the diagonal
ribs. In turn, the diagonals activate a thrust S (Fig. 6.16) towards the corners:
suitable structures such as flying buttresses are required to convey this thrust to the
outer buttresses. Thrust S thus replaces the effects of the distribution of shear Nx/

along the edge arches in the membrane equilibrium.
The webs split into a series of parallel arches supported by compressed diago-

nals. The cross vault’s transition from the uncracked to the cracked state is similar
to the transition state occurring in masonry domes or barrel vaults. The resisting
structure of the cracked cross vault is that described by the model of the sliced vault
given by Heyman (1966, 1977), by which the webs are separated, or ‘sliced’, into a
series of arches of variable span sustained by the diagonal ribs.

The emergence of thrust causes a subsequent deformation of the vault’s support
structures, with a slight broadening of its span and probable increased cracking.
Intuiting the diagonal ribs together with all the arch bands constituting the sliced
vault follow without any opposition the slight settlement of the vault. The response
of the sliced vault to this settlement brings about a state of minimum thrust (Heyman
1966, 1977; Como 1996, 1998). This model of the cross vault will be examined in
the following. Particular attention will be devoted to determining the mechanisms
able to describe the cracking patterns typically found on these vaults.

Fig. 6.16 Slicing of the webs
and the source of thrust upon
vault cracking
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6.4.3 The Sliced no Tension Model

6.4.3.1 Force Transmission

As explained in the foregoing, the behavior of each web in a cross vault conforms
closely to that of a barrel vault as described by the no-tension model, that is, like a
series of independent parallel arches of different span supported by longitudinal
walls (Heyman 1995). In the sliced webs of a cross vault the arch bands are
sustained by the diagonals. Figure 6.17 shows the square plan ABCD of a simple
cross vault. The sides AB, BC, CD and DA are the plane projections of the edge
arches, called “formeret”. They may be of various shapes, such as in rounded or
pointed profiles.

The ribs’ resisting section, together with a portion of a web band, may be
indeterminate, an issue of no particular import, given the low intensity of the
stresses involved.

Regarding the function of the ribs, it is interesting to take up the old, often
hotly-debated question of the actual their static function when emerging from the
intrados of cross vaults. In this debate, scrupulously reconstructed by Di Pasquale
(1996), some scholars, such as Viollet le Duc (1854–1858) and Masson (1935),
attributed a primary static function to the ribs, while others, such as Abraham
(1934), on the contrary, believed that the ribs served a purely ornamental function.

In any event, as it will be seen later, in both the uncracked and cracked state,
cross vaults concentrate forces along the diagonals. This stress concentration may
be sustained by ribs emerging from the intrados of webs, as in Gothic rib vaults, or
along the creases in the neighbourhood of the groins, within the thickness of the
vault, as in the case of thick Roman vaults. Stress flow takes place in the direction /
along which the individual web slices transmit their loads in the vertical plane.

At the springings of each slice the actions transferred to the supporting diagonals
interact with the actions transmitted by the slice of the adjacent web. These combine
to produce a resultant force with vertical and horizontal components. The horizontal
components produce a resultant force acting along the ribs in the diagonal plane and

Fig. 6.17 Webs of a groin
vault sliced into a series of
arching bands of varying span
supported by the diagonals
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each rib is loaded by both vertical and horizontal forces (Fig. 6.18). The groins, in
turn, will transmit vertical and horizontal forces to their retaining structures
(Fig. 6.19). The structures retaining the thrust accordingly undergo settling, which
as a rule leads to slight widening of both the rib and web spans. A state of minimum
thrust thus ensues in the vault.

6.4.3.2 Minimum Thrust via Kinematical Approach

The thrust of the cross vault will be the minimum among all the statically admis-
sible ones.

The research of the thrust will be thus implemented by means the kinematical
approach applied to the cross vaults (Fabiani 2009), following strictly the formu-
lation given by Coccia and Como (2015).

Load Function

Let us consider, for sake of simplicity, a square-plan ribbed cross vault with
semicircular profile. Ribs have an external portion emerging from the vault intra-
dos: conversely, ideal ribs can be considered present along the diagonals. Therefore,
in any case, these ideal diagonal arch bands will be called ribs (Fig. 6.20).

Fig. 6.18 Forces transmitted
to the ribs by web arch bands

Fig. 6.19 Forces
transmission in the cross vault
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Let L be the length of the side of the square plan of the vault and t the thickness
of the webs, eventually including, in presence of a ribbed vault, also the ribs
thickness. Let Re and Ri indicate the radii of the external and internal round internal
profile of the web; thus we have

Re ¼ L
2

Ri ¼ L
2
� t: ð6:11Þ

Figure 6.20 shows the plan of the rounded cross vault. The profile of the
diagonal intrados of the vault is the ellipse of Fig. 6.20.

Axes Onη define the reference system of coordinates with the origin O placed at
the central point of the alignment AB passing through the springings A and B.

The equation of the ellipse

n2

a2r
þ g2

b2r
¼ 1 ð6:12Þ

defines the contour of the diagonal intrados of the vault with respect to the reference
axes Onη of Fig. 6.21. The lengths of the ellipse’s semi-axes, ar and br, in
Eq. (6.12) are

ar ¼
ffiffiffi
2

p

2
L� t br ¼ L

2
� t ð6:13Þ

The weight of the web slices is defined by the function (Fig. 6.22)

gðxÞ ¼ c½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
e � x2

q
Þ � Ri sinðar cos x

Ri
Þ� ð6:14Þ

L

Re 

L/2 L/2 

Fig. 6.20 The plan of the
square cross vault with its
external profile
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Square—Cross Vault Undergoing Diagonal Settlement

The simpler case of the square round cross vault that settles diagonally will be
analyzed firstly, for a better understanding of the used approach (Fig. 6.23). Due to
the settlement, the cross vault, with its sliced bands, deforms with a mechanism. We
will analyze now separately the mechanism displacements occurring in the ribs and
in the various sliced bands.

Settlement Mechanism in the Ribs
The cross vault, square in plan, settles diagonally of a slight quantity d (Fig. 6.23).
The corresponding mechanism of the diagonal rib is sketched in Fig. 6.24. The
mechanism is symmetric and the extrados hinge is located at the key section K.

Fig. 6.21 The ellipse describing the intrados profile of the rib of the square in plan rounded cross
vault

Fig. 6.22 The weight
function g(x) on the web
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Symmetrical hinges E and G, necessarily at the intrados of the diagonal rib,
cannot be located at springings to avoid the escape of the pressure line outside the
rib. Hinges E and G are therefore placed arbitrarily near the haunches, between the
springing A (or C) and the key section K. Their position, defined by the distance n
from the key section K, is a priori unknown. This quantity will be obtained
imposing the condition of minimum thrust. All the sections of the diagonal segment
included between the springing A (or C) and the hinge E (or G) is subject to a
constant horizontal displacement, equal to d. Conversely the central rib portion
EKG, of length 2n in plan, produces vertical and horizontal displacements, linearly
increasing respectively with the horizontal distance from the hinge E and with the
vertical distance from the key section K.

Fig. 6.23 The sliced square round vault that diagonally settles

Fig. 6.24 Settlement mechanism of the diagonal rib
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The internal segment EK (or GK) of the rib rotates of the angle h in the vertical
plane around the centre V (or Z), so that the vertical displacement of the key K is

f ¼ nh ð6:15Þ

The end sides of the rib, going from E to A or from G to C, move only
horizontally along the diagonal direction by the constant quantity (Fig. 6.24)

d ¼ hyðnÞ: ð6:16Þ

Consequently, taking into account Eq. (6.12) and that

yðnÞ ¼ L
2
� gðnÞ ð6:17Þ

the horizontal settlement d of the rib along the diagonal direction, depending on the
position n of the Sabouret crack, can be expressed in function of the rotation h as

dðnÞ ¼ h
L
2
� br

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

a2r

s0
@

1
A: ð6:18Þ

Settlement Mechanism in the Webs
The webs are placed over the diagonal ribs and their mechanism deformation

depends on the mechanism of the ribs. Thus a particular crack pattern in the webs
results when the ribs have a section emerging from the vault intrados.

The hinges located on the rib intrados, at sections E and G near the haunches
(Fig. 6.24), form cracks that completely separate the overlying webs. More in detail,
the separation D starts at sections E and G, (and by analogy at the corresponding
sections of the other rib) at the rib extrados and splits the overhanging webs
(Fig. 6.25). These cracks, sketched with red lines in the Fig. 6.26, traverse the
entire thickness of those webs. Such cracks are known as Sabouret cracks. They are
generally wide enough that light can be seen filtering through them.

Fig. 6.25 Generation of
Sabouret cracks
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In Fig. 6.26 the red lines point out the Sabouret cracks in the webs and mark the
subdivision of the webs into two different regions, the outer and the inner,
respectively bearing the arch bands a and b.

We specify the corresponding mechanism displacements of arch bands a and b.
Arch Bands a (Fig. 6.27)
Arches a are located in the outer zone of the webs (Fig. 6.26). These arch bands

follow the displacements of the ribs, their mechanism being defined by the position
of internal hinge P on the arch intrados. The position of this hinge, in turn, depends
on the ratio of thickness to intrados radius, t/r1. Figures 6.26 and 6.27 illustrate the
outcome of a particular position of P, placed in prosecution of the Sabouret fracture
lines EH and FG.

For the sake of simplicity, in the following analysis we will assume this position
of internal hinge P, in continuity with the Sabouret lines EF and HG. Now, the

Fig. 6.26 The different
regions in the webs marked
by the Sabouret frame (in red)

Fig. 6.27 The mechanism of
the arch bands a
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horizontal distance of hinge P from the centre M is n=
ffiffiffi
2

p
. The vertical distance of P

from the horizontal plane passing through the top K is the same as distance y of
hinge E from the top hinge K in the rib.

The arch bands a, drawn along by the deformation of the rib, exhibit only
horizontal displacements at their springing, all equal to (Fig. 6.27)

d0 ¼ d
ffiffiffi
2

p
ð6:19Þ

Internal hinge P (or the opposite Q) is always located along the alignment HE (or
GF) in Fig. 6.27 and its horizontal displacement at the springing is

d0 ¼ ay: ð6:20Þ

where a indicates the rotation of the segment PM and y the vertical distance (6.17)
of P from M. Whence

a ¼ h=
ffiffiffi
2

p
ð6:21Þ

Condition (6.21) correlates the mechanism displacement of the rib with that of
the bands a. Equation (6.21), albeit approximate due to the simplifying assumption
regarding the position of internal hinge P, thus links the mechanism of arch band
a with that of the ribs through a very simple relation and moreover provides a rough
description of the web deformation.

Let us now consider the arch band a with semicircular profile. The vertical
displacement vM of the central point M of this arch band is thus given by

vM ¼ a
nffiffiffi
2

p ¼ h
2
n ¼ f

2
ð6:22Þ

and equals half the vertical displacement of the centre of the cross vault.
At conclusion, the segments of the arch bands a, all having length ðL=2�

n=
ffiffiffi
2

p Þ deform according the displacement section

vðxÞ ¼ hffiffiffi
2

p ð nffiffiffi
2

p � xÞ per 0� x� n=
ffiffiffi
2

p
ð6:23Þ

The corresponding work done by the weights on the vertical displacement of all
the arch bands a is:

Lg ¼ 8h L=2� n=
ffiffiffi
2

p� �Z n=
ffiffi
2

p

0

gðxÞffiffiffi
2

p ð nffiffiffi
2

p � xÞdx ð6:24Þ

Arch Bands b (Fig. 6.28)
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The arch bands b belong to the internal zone of the web: they are sustained at
their springings P and Q by the two ribs. These springings undergo both vertical
and horizontal displacements.

Figure 6.28 shows point P’s location in the section where the arch band b joins
the rib: the diagonal distance of P from the top section M is f (Fig. 6.28).
Consequently, the distance of P along the side direction is f=

ffiffiffi
2

p
, as shown in

Fig. 6.28. The vertical displacement vP of springing P of arch band b is thus
(Fig. 6.24)

vP ¼ ðn� fÞh: ð6:25Þ

Displacement vP varies amongst arch bands b because f gradually decreases
from P to K. The outer horizontal displacement dP of P along the diagonal direction
is (Fig. 6.24)

dP ¼ y0h: ð6:26Þ

Thus, the horizontal displacement d’P of the springing of arch band b along the
direction of the groin vault edge is

d0P ¼ dP=
ffiffiffi
2

p
: ð6:27Þ

However, referring to the same Fig. 6.19, we also have

d0P ¼ by0; ð6:270Þ

where b is the rotation angle of the segment PM of the arch band. Consequently, the
compatibility condition

dP=
ffiffiffi
2

p
¼ by0 ð6:2700Þ

Fig. 6.28 The mechanism of
the inner arch band b
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holds, and

b ¼ hffiffiffi
2

p : ð6:28Þ

Equation (6.28) links the deformation of arch bands b to the deformation of the
ribs. The total vertical displacement of the centre M of arch band b, including the
vertical settlement of its springings as well, is

vM ¼ ðn� fÞhþ hffiffiffi
2

p fffiffiffi
2

p ¼ hðn� f
2
Þ: ð6:29Þ

When point M approaches the groin vault centre, K, a progressive reduction in
the span of arch bands b occurs and, at the limit, for f ! 0,

vM ! hn ¼ f : ð6:30Þ

Thus, for f ! 0, the vertical displacement of arch band b equals the vertical
displacement of the rib key section. When, on the contrary, arch band b approaches
the Sabouret line, HG, we have

f ¼ n ð6:31Þ

and the central vertical displacement of arch band b becomes

vM;Sabouret ! hn=2 ¼ f =2; ð6:32Þ

which equals the vertical displacement of arch bands a. Thus concluding, the arch
bands b of length 2f=

ffiffiffi
2

p
, varying between 0 and 2 n=

ffiffiffi
2

p
, displace according the

function

vðxÞ ¼ hðn� fÞþ h
ffiffiffi
2

p
ð fffiffiffi

2
p � xÞ ð6:33Þ

The work of the dead load g(x) (or g(y)) is the same for all the arch bands
b parallel to x or to y Thus we have the corresponding work

Lg nð Þ ¼ 8h
Z n=

ffiffi
2

p

0

Z g=
ffiffi
2

p

0
gðxÞ½ðn� fÞþ

ffiffiffi
2

p
ð fffiffiffi

2
p � xÞ�dx

 !
df ð6:34Þ
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The total work of the loads g is:

Lg ¼ 8h½ L=2� n=
ffiffiffi
2

p� �Z n=
ffiffi
2

p

0

gðxÞffiffiffi
2

p ð nffiffiffi
2

p � xÞdx

þ
Z n=

ffiffi
2

p

0

Z f=
ffiffi
2

p

0
gðxÞ½ðn� fÞþ

ffiffiffi
2

p
ð fffiffiffi

2
p � xÞ�dx

 !
df�

ð6:35Þ

By using the virtual work Eq. (2.163) we obtain the following equation giving
the kinematical thrust

lr nð Þ ¼ 1

L
2 � bc

ffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

a2c

q 2½ L=2� n=
ffiffiffi
2

p� �Z n=
ffiffi
2

p

0

gðxÞffiffiffi
2

p ð nffiffiffi
2

p � xÞdx

þ
Z n=

ffiffi
2

p

0

Z f=
ffiffi
2

p

0
gðxÞ½ðn� fÞþ

ffiffiffi
2

p
ð fffiffiffi

2
p � xÞ�dx

 !
df�

ð6:36Þ

The maximum of this function, by varying the distance n, gives the minimum
thrust of the settled cross vault. In the next sections numerical investigations will
give the values of the minimum thrust for various geometries of cross vaults.

The corresponding crack patterns, frequently very thin and scarcely noticeable at
the intrados and at the extrados of the vault, are shown in Fig. 6.29. The central
square frame represents the Sabouret cracks.

Square-Cross Vault Undergoing Edge Settlement

This situation occurs frequently in the cross vaults overlying the nave of a cathedral
that usually settle sideways, orthogonally to the nave axis.

Settlement Mechanism in the Ribs

Two opposite edges of the cross vault, square in plan, settle outside of a slight
quantity d in direction parallel to the edges AB and CD so that the springings of the
diagonal ribs move outside horizontally along their alignment of d

ffiffiffi
2

p
. The corre-

sponding settlement mechanism of the diagonal rib is sketched in Fig. 6.30.

Fig. 6.29 Crack pattern at
the intrados and at the
extrados in presence of
diagonal settlement
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On the contrary, according to Fig. 6.30, that describes the settlement mechanism
of By inspection of the plan of the vault sketched in Fig. 6.23, at first sight we could
think that the diagonal rib, after the settlement, could take takes position A’KC’. In
this way all the rib sections will undergo horizontal displacements linearly
increasing with their distance from the centre K.

The rib, all the sections of the arch, positioned between the internal hinge E as
far as to the rib end, displace horizontally of a constant quantity. The rib will thus
take in plan the broken configuration A’E’KG’C’ (Fig. 6.31) thereby the contact
between the sections of the internal hinges E and G will occur only at the lower
corner of the section. The rib also deforms also out of its plane to follow the
settlement displacement d in the x direction.

The segment EK (or GK) of the rib rotates of the angle h in the vertical plane
around the centre V (or Z), so that the vertical displacement of the rib key K is

f ¼ nh ð6:37Þ

Fig. 6.30 Settlement mechanism of a diagonal rib

Fig. 6.31 Square-plan groin
vault undergoing horizontal
settlement parallel to its edge
(direction x)
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The end sides of the rib going from E to A, or from G to C, move only
horizontally along the diagonal direction by a constant quantity given by (Fig. 6.30)

d=
ffiffiffi
2

p
¼ hy: ð6:38Þ

Consequently, taking into account Eq. (6.12), the horizontal settlement d of the
rib along the diagonal direction, depending on the position n of the Sabouret crack,
is given by

dðnÞffiffiffi
2

p ¼ h
L
2
� br

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

a2r

s0
@

1
A: ð6:39Þ

Settlement Mechanism in the Webs.

A particular crack pattern in the webs results when the ribs have a section emerging
from the vault intrados. The hinges located on the rib intrados, at sections E and G
near the haunches (Fig. 6.24), form cracks, the Sabouret ones, that completely
separate the overlying webs having axis parallel to the direction of the settlement.
The separation D occurs in the direction of the settlement and starting at sections E
and G of the rib extrados, (and by analogy at sections H and F) and splits the
overhanging webs. These cracks, sketched with red lines in the Fig. 6.32, traverse
the entire thickness of those webs having axis orthogonal to the direction of the
settlement and run along the lines EH and FG. Unlike the case of the vault settling
diagonally, in this case the Sabouret cracks run in the webs only in parallel to the
edges orthogonal to the direction of the settlement. In Fig. 6.32 the red curved lines

Fig. 6.32 The square cross
vault undergoing horizontal
settlement parallel to an edge
with the different arch bands
that develop in the webs. The
Sabouret cracks are marked in
red
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mark the Sabouret crack in the webs. The other two lines EF and GH show the
subdivision of the webs into two different regions, the outer and the inner,
respectively bearing the arch bands a and b.

Figure 6.33, taken from Heyman’s book “The Stone Skeleton” (1977), shows a
typical cracking pattern of ribbed cross vaults. The drawing, from a study by
Abraham (1934), clearly shows the Sabouret cracks running parallel to the edges of
the vault orthogonal to the settlement.

The mechanism of the arch bands a spanning along the direction of the settle-
ment d, is defined by the position of internal hinge P on the arch intrados
(Fig. 6.28).

Also in this case we assume that the intrados hinge P (or Q) of the arch bands a,
represented by the dotted line EP in Fig. 6.32, is in prosecution of the horizontal
line passing through the hinge E (or G) of the rib. Thus the horizontal distance of
the hinge P from the centre M is n=

ffiffiffi
2

p
and the vertical distance of P from the

horizontal plane passing through the top K is the same as the distance y(n) of the
hinge E from the top hinge K in the rib, this last shown in Fig. 6.30.

We can now specify the mechanism displacements of arch bands a and b cor-
responding to the settlement mechanism of the rib.

Arch Bands a (Fig. 6.34)

The segment EK of the rib rotates of h in the vertical plane around the absolute
centre V, (Fig. 6.30) while all its end side moves horizontally in the diagonal
direction of the quantity d=

ffiffiffi
2

p ¼ hy according to (6.38).
The horizontal displacement at the springing of the band arch equals the side

settlement d of the vault, as shown in Fig. 6.34, and is given by

Fig. 6.33 Cracks on vault
intrados with the Sabouret
cracks occurring in direction
orthogonal to the side
settlement (from Heyman
1995)
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d ¼ ay ð6:40Þ

Thus, equating the displacement d given by (6.40) to the displacement (6.38)
gives

ffiffiffi
2

p
yh ¼ ay ð6:41Þ

and

a ¼
ffiffiffi
2

p
h ð6:42Þ

Condition (6.42) connects the mechanism displacement of the bands a rib with
the mechanism of the ribs. The vertical displacement at the centre M of the arch
bands a, taking into account of (6.37), is (Fig. 6.34)

vM ¼ a
nffiffiffi
2

p ¼ nh ð6:43Þ

i.e. the same of the rib mid section. The length of deformed segment of the arch
bands a is 2n=

ffiffiffi
2

p
and present the following displacement function (Fig. 6.34)

vðxÞ ¼ h
ffiffiffi
2

p
ð nffiffiffi

2
p � xÞ per 0� x� n=

ffiffiffi
2

p
ð6:44Þ

Arch Bands b (Fig. 6.34)

The horizontal component along the diagonal of the displacement d’ (Fig. 6.34) of
the springing P of the arch bands b equals the horizontal displacement y’h of the
same point P belonging to the rib extrados

dP=
ffiffiffi
2

p
¼ by0=

ffiffiffi
2

p
¼ y0h ð6:45Þ

Fig. 6.34 Web arch bands a and web arch bands b
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Hence

b ¼
ffiffiffi
2

p
h ð6:46Þ

Condition (6.46) thus correlates the mechanism displacement of the rib with that
of the bands b.

The vertical displacements of all the points P (or Q) located at the extrados of the
central portion of the rib (or the diagonal arch band) (Fig. 6.30) are

vP ¼ ðn� fÞh ð6:47Þ

where f indicates the horizontal distance of P from the vertex K. Displacements
(6.47) are the same of the displacements of the springs of the arch bands
b. Particularly, from (6.47), when the point P on the rib extrados is located along the
vertical passing through the hinge E, we have f = f and vP(f = f) = 0.

The central displacement of any arch band b is obtained summing the vertical
displacement vQ of the springing with that due to the mechanism deformation of the
band b. Thus

vM ¼ ðn� fÞhþ fb ¼ ðn� fÞhþ fffiffiffi
2

p ffiffiffi
2

p
h ¼ nh ð6:48Þ

likewise to the displacement of the mid section of the rib.

Arch Bands a′ (Fig. 6.32)

The arch bands a′, having direction orthogonal to the settlement d, behave differ-
ently from the arch bands a. These a′, supported by the end sides of the rib, don’t
get down. No extension between springings of these arch bands occur that move
rigidly, detaching each other.

Arch Bands b′ (Fig. 6.32)

The inner arch bands b′, orthogonal to the direction of the settlement d, are sup-
ported on the inner part of the rib and move vertically. No extension between the
springings of these arch bands b′ will occur. These bands translate only vertically
due to the lowering dP′

dP0 ¼ ðn� fÞh ð6:49Þ

At the centre dP′(f = 0) = n h while along the alignment defined by f = f,
corresponding to the Sabouret crack, we have dP′ = 0.

Crack Patterns

Crack pattern in the vaults reflects the geometry of the settlement mechanism
examined. Sabouret cracks define the frame separating the band arches a and
b. Outer arch bands a parallel to the x axis, follow the settlement and deform with
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the same mechanism of ribs with the presence of two inner hinges located sym-
metrically at the intrados and a central hinge at the extrados. Outer arches a′,
orthogonal to the settlement direction, dragged by rib deformation don’t deform and
detach each other moving outside. A consequent sequence of diffused thin cracks
passing through the web, marks these detachments.

At the intrados of the vault a long transversal crack having direction orthogonal
to the settlement together will be also visible (Fig. 6.35). This long central crack at
the intrados is the typical crack of the large cross vaults spanning on the nave of a
cathedral. In this case the vault, rectangular in plan, settles in the transversal
direction. At the extrados the crack pattern will be similar except that there are no
transversal cracks and will be visible diagonal and longitudinal cracks respectively
at the central and in the outer zone of the vault (Fig. 6.35).

Minimum Thrust

The evaluation of the minimum thrust will be performed by the kinematical
approach. The minimum thrust lrmin of the vault can be thus obtained as the
maximum of all the kinematical thrusts lr defined by application of virtual work
equation:

4lr � dðvÞ ¼ g; vh i ð6:50Þ

expressing the balance between the active work g; vh i of the dead loads g with the
resisting work 4lr � dðvÞ of the thrusts lr for any admissible displacement v set-
tlement mechanism of the vault undergoing an horizontal settlement parallel to its
edge (Fig. 6.36) (Coccia and Como 2015; Como 2010). Thus we get

lrmin ¼ maxlrðvÞ ¼ g; vh i
4lr � dðvÞ v 2 M ð6:51Þ
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Fig. 6.35 Crack patterns at the intrados and at the extrados
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where M is the set of all the displacement mechanisms that admit settlement of the
vault supports. The kinematical thrust lr is obtained by application of virtual work
Eq. (6.50). The work of the weights acting on the webs can be obtained for the
various considered arch bands.

The arch bands a, that are parallel to the settlement d, behave equally and
develop along a band of width ðL=2�n=

ffiffiffi
2

p Þ and all present the same following
displacement function

vðxÞ ¼ h
ffiffiffi
2

p
ð nffiffiffi

2
p � xÞ per 0 � x � n=

ffiffiffi
2

p
ð6:52Þ

The corresponding work done by the weights is:

Lg ¼ 4h L=2� n=
ffiffiffi
2

p� �Z n=
ffiffi
2

p

0
gðxÞ

ffiffiffi
2

p
ð nffiffiffi

2
p � xÞdx ð6:53Þ

The arch bands b, parallel to the settlement d, have length 2g=
ffiffiffi
2

p
, variable

between 0 and 2 n=
ffiffiffi
2

p
, and the displacement function

vðxÞ ¼ hðn� gÞþ h
ffiffiffi
2

p
ð gffiffiffi

2
p � xÞ ð6:54Þ

The corresponding work of the weights is

Lg nð Þ ¼ 4h
Z n=

ffiffi
2

p

0

Z g=
ffiffi
2

p

0
gðx; yÞ½ðn� gÞþ

ffiffiffi
2

p
ð gffiffiffi

2
p � xÞ�dx

 !
dg ð6:55Þ

There is no work of the weight for the arch bands a′, orthogonal to the settlement
that don’t get deformed. The arch bands b′, having length 2g=

ffiffiffi
2

p
and displacement

function

μr μr 

μr μr 

Fig. 6.36 The thrust lr
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vðxÞ ¼ hðn� gÞþ h
ffiffiffi
2

p
ð gffiffiffi

2
p � xÞ ð6:56Þ

The corresponding work is

Lg nð Þ ¼ 4h
Z n=

ffiffi
2

p

0
ðn� gÞð

Z g=
ffiffi
2

p

0
gðxÞdxÞdg ð6:57Þ

Summing up all the various shares we have the total work of the weights g

LgTOT nð Þ ¼ 4hðL=2� n=
ffiffiffi
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p
Þ
Z n=
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0
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ð nffiffiffi

2
p � xÞdx

þ 8h
Z n=

ffiffi
2

p

0
ðn� gÞð

Z g=
ffiffi
2

p

0
gðxÞdxÞdgþ þ 4h

Z n=
ffiffi
2

p

0
½
Z g=
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p
ð gffiffiffi

2
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ð6:58Þ

The displacement d can be expressed in function of the rotation parameter h
according to (6.39). We can obtain the thrust function depending on the position n
of the internal hinge of the rib

lr nð Þ ¼ 1
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2 � bc
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ð6:59Þ

The maximum of this function, by varying the distance n, gives the minimum
thrust of the settled cross vault.

The same approach can be developed in the more general case of cross vault
with rectangular plan. Numerical investigations will give in the next sections the
values of the minimum thrust for various geometries of the cross vaults.

6.4.3.3 Minimum Thrust via Statical Approach

Evaluating the minimum thrust of the groin vault via the static approach involves
the following steps:

• subdividing the webs into various orders of arch bands, splitting them into a
series of voussoirs, and determining their weights and center positions;

• tracing the funicular of the loads acting on the voussoirs of the various arch
bands at minimum thrust via trial and error. This evaluation must account that:
for more depressed arches, the funicular curve passes through the top of the key
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section and on the intrados of the springings for more external arch bands, the
funicular curve is tangent to the arch intrados towards the haunches, as shown in
Fig. 6.37 (Como 2010).

• calculating the vertical and horizontal actions transmitted by the arch bands to
the ribs and, if these actions emerge from the web intrados, adding the rib
weight, and lastly tracing the minimum thrust funicular curve.

The above procedure has been defined under the assumption of diagonal set-
tlement of the vault.

The loads acting on the arch diagonal, consisting of vertical and horizontal
forces, involve the presence of a variable thrust along the rib. The thrust at the key
is lower than at the springings, though it is generally non-negligible.

Fig. 6.37 Static evaluation of the minimum thrust for a rib (indicated as costola). The above
funicular curve refers to the arch band designated as arch 17

6.4 Statics of Cross Vaults 351



6.4.4 Numerical Calculations

Lateral Settlement Assumption

The minimum thrusts of rounded cross vaults have been obtained by numerical
investigations centred in the search of the minimum of the kinematical multipliers
given by (6.36) and (6.59). The research has been extended also to the case of the
rounded cross vaults with rectangular plan with the assumption of lateral settle-
ments. In this case the side arches of shorter span are rounded and the other
depressed.

Geometrical parameters are:

• the lengths a and b of the sides of the rectangular plan, with con a > b,
• the radii R1i and R2i of the intradoses, with b = 2 R1i,
• the thickness t.

The outcomes of the numerical investigation have been the construction of two
abacuses whose the first gives the ratio thrust/weight S/W as function of the ratio a/b
and for different values of the thickness t. The ratio a/b varies between 1 and 2.5.
All the curves of this abacus have been obtained by assuming the value of the radius
of the rounded arch of minor span equal to R1i = 1.00 m, with
b = 2 � R1i = 2.0 m.

The single curve of the abacus has been traced with the assumed value of the
thickness t. The ratio S/W takes a different value for a vault that has radius R1i

	

different from R1i and then same thickness t. It is possible to show that different
vaults having the same t/R1i, present the same ratio S/W.

In order to prove this statement let us firstly a rounded masonry arch.
The weightW of the arch is proportional to the specific weight of the masonry, to

the thickness t, to the radius al Ri of the intrados and to the width b. We can thus
write

W ¼ v � c � b � t � ri ð6:60Þ

where v is a proportionality factor. The minimum thrust of a rounded arch can on
the other hand given by (Como 2010; Coccia and Como 2015)

S ¼ c � b � r2i �f ð
t
ri
Þ ð6:61Þ

where the quantity �f ðt=RiÞ is a suitable function of the ratio t/Ri. The ratio
thrust/weight of the arch is thus given by

S
W

¼ 1
v
ri
t
c � �f ð t

ri
Þ ð6:62Þ

352 6 Cross and Cloister Vaults



Thus, given two different arches respectively with radius and (ri . t) and ðr	i ; t	Þ
such that

ri
t
¼ r	i

t	
ð6:63Þ

we have also

S
W

¼ 1
v
ri
t
c � �f ð t

ri
Þ ¼ 1

v
r	i
t	
c � �f ðt

	

r	i
Þ ¼ S	

W	 ð6:64Þ

Consequently, two rounded arches having equal ratios t/Ri have also same ratios
S/W. The same rule holds also for depressed arches, as can be easily proven, and for
two cross vaults at minimum thrust state because in this condition the vaults slices
into a sequence of arch bands. Conversely, if a given cross vault has radius R	

1i and
thickness t	, we obtain from (6.63) the equivalent thickness

teq ¼ t	R1i=R
	
1i ð6:65Þ

of the rounded vault with the assumed radius R1i = 1.0 m that has the same ratio
S/W for any value of the ratio a/b. The various curves of the abaqus of Fig. 6.38 that
give the value S/W as function of the ratio a/b, correspond to different values of the
equivalent thickness teq given by (6.65) (Coccia and Como 2015).

Fig. 6.38 Abacus giving the ratio S/W by varying t and ratio a/b for rectangular cross rounded
vaults enduring parallel settlement
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In conclusion, given a rounded cross vault with rectangular plan a	 � b	 with
the round side arch of minor span of length b	, with b	 = 2 R1i

	 and with the ratio
(a	/b	), by means (6.65) we can obtain the equivalent thickness t of the similar vault
with R1i = 1.0 m that has the same ratio S/W.

The same result holds in term of the ratio V/(a	b	t) if V is the volume occupied
by the vault so that if two cross vaults have equal ratios t/R1i they have also equal
ratios V/(a	b	t). In brief

Ri

t
¼ R	

i

t	
) V

abt
¼ V	

a	b	t	

The second abacus that gives the values of ratio V/(a	b	t) as function of the ratio
t/R1i is given in Fig. 6.39.

The following example explains the proposed approach.
Evaluating the weight and the minimum thrust of the rounded cross vault, square

nin plan, the following dimensions are
a	 = 10.00 m; b	 = 10.00 m; t	 = 1.0 m.
Thus Eq. (6.65) gives the equivalent thickness t of the vault having radius

R1i = 1.0 m that has the same ratio S/W of the assigned vault. Taking into account
that R	

1i ¼ 5:00m, we get

Fig. 6.39 The ratio V/(a	b	t) for different thicknesses t versus the ratio a/b for rectangular cross
rounded vaults
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t¼ 1:00
1:00
5:00

¼ 0:20m

We determine the curve of S/W in the abacus of Fig. 6.38 corresponding to the
equivalent thickness teq = 0.20 m. From this curve, to the assigned value of
a	/b	 = 1 corresponds the value S	/W	 = 0.096.

By using the abacus of Fig. 6.39 we evaluate the value of the ratio
V/(a	b	t) = 1.73 corresponding to the curve of the equivalent thickness t = 0.2 and
to the abscissa a	/b	 = 1.

The volume (a	b	t) is given by 10.0 � 10.00 � 1.0 = 100 mc so that
V	 = 1.73 � 100 = 173 mc. By assuming a specific weight of c = 1.7 t/mc, the
weight of the assigned cross vault is 173 � 1.7 = 294.17 t so that the minimum
thrust S of the vault is 0.096 � 294.17 t = 28.24 t = 282.24 kN.

By using directly the Eq. (6.59) we can also obtain directly the minimum thrust
by means the function of the kinematical thrust lr(n), as function of the distance n
of the internal hinge of the rib from the key section, by using the program MAT.
We obtain the value lrðnsoluzÞ ¼ 269:39 kN that we can check with the previous
value of 282.23 kN evaluated by means the abacuses of figures Figs. 6.38 and 6.39;
with a gap of the 5%.

Diagonal Settlement Assumption

The case of the diagonal settlement has been considered in the numerical investi-
gation only for the case of the round cross vault with square plan. The outcome of
the analysis is the abacus of Fig. 6.40.

Fig. 6.40 Abacus giving the ratio S/W by varying t for the square cross rounded vaults enduring
diagonal settlement
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We compare the values of the minimum thrusts for the cross vault under side or
diagonal settlement. Inspection of the above diagrams shows that the diagonal
settlement yields a thrust about 30% larger than the corresponding thrust of the
vault suffering sideway settling. In brief, if SL and SD are respectively the thrust
corresponding to the lateral and diagonal settlement, we can write

SL ¼ 0:7SD ð6:66Þ

6.4.5 The Cross Vaults of the Diocletian Baths in Rome

6.4.5.1 Vaults Description

Originally, the Baths of Diocletian extended over an area of more than 135,000 m2

with a rectangular plan of 376 m � 361 m (Fig. 6.41).
The main rooms—the calidarium, the tepidarium and the frigidarium—served

the three main functions of the baths and were arranged along the building’s minor
axis. The dressing rooms, gymnasium, concert halls and libraries were located at the
sides.

The vast rectangular hall, which today forms the transept of the church of S.
Mary of Angels, was originally the center of the Baths, set along its minor axis
between the tepidarium and frigidarium. The hall extends over a surface of 27 m by
90 m and is covered by three large groin vaults sustained by eight monolithic
columns to reach a height of 28 m.

Figure 6.42 shows an axonometric drawing of the building. Cross vaults were
probably chosen in order to be able to arrange windows high up on the outer walls.
An arching gridwork of brick ribs, as shown in Fig. 6.43, was erected before the
concrete was cast facilitate thrust transmission, are present in the Baths, as is clear

Fig. 6.41 Plant of the Baths
of Diocletian
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from Fig. 6.42 (Crema 1942). Different caementa were used in the construction of
the various parts of the webs: tuff was placed near the springings, while lighter
material, such as black pumice, were used near the crown. Various systems of
buttresses, which anticipate the strategies of Gothic architecture and facilitate thrust
transmission, are present in the Bath, as it is clear from Fig. 6.42.

Fig. 6.42 Axonometric view of the covered frigidarium and tepidarium

Fig. 6.43 Internal ribs and
concrete webs of the groin
vault of the Baths of
Diocletian (from Crema 1942)

6.4 Statics of Cross Vaults 357



6.4.5.2 Thrust Evaluation via Statical Approach

Figure 6.44 shows the cross groin vault together with its dimensions. The thrusts
and the vertical forces transmitted by the different web arch bands combine with the
weights of the various rib voussoirs (Fig. 6.45).

A diagonal settlement mechanism has thus been assumed. According to the
results shown in Fig. 6.46, obtained by Ciciotti (2006–2007), the minimum thrust
of the rib equals 193 t. Figure 6.46 shows the pressure line in the rib: the hinge
positions are identified by the tangent points of the funicular curve with the rib
extrados and intrados shown in Fig. 6.47.

Fig. 6.44 The main groin vault with the diagonal rib
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Fig. 6.45 Splitting of the web into 12 slices and evaluation of their minimum thrusts
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6.4.5.3 Checking the Thrust Evaluation via the Kinematic Approach

The kinematic approach has been applied to check the results obtained via the static
theorem. A first evaluation of the minimum thrust is performed by applying formula
(6.59), assuming the mechanism defined by the hinge positions in Figs. 6.47 and
6.48. The corresponding value of the thrust is lr = 1447.5 tm/7.50 m = 193 t,
equal to the value obtained via the static theorem (Fig. 6.46). A second value of the
kinematic thrust has also been evaluated by assuming the mechanism defined by the
hinge positions shown in Fig. 6.48.

The work of the weights acting on the rib and the work of thrust lr have been
estimated for this latter mechanism: condition (6.50) gives lr = 1035.98
tm/6.04 m = 171.5 t, lower than the thrust corresponding to the mechanism
assumed in Fig. 6.49. In this regard, it should be recalled that the minimum thrust
corresponds to the maximum of all kinematic thrust multipliers.

The obtained values of the minimum thrust have been compared with the cor-
responding values given by the previous abacuses. The comparison can verify only
the order of magnitude of the thrust because the geometry of the vaults of
Diocletian Baths is non-exactly that of a rounded rectangular vault.

Fig. 6.46 Minimum thrust evaluation for a diagonal rib

Fig. 6.47 Pressure line in a
rib obtained via the static
approach
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To use the abacuses of Figs. 6.38 and 6.39 we have to consider the occurrence of
the lateral settlement. We will thus scale, according to (6.66), the valuated value of
the thrust to obtain the thrust corresponding to the occurrence of the diagonal
settling.

Fig. 6.49 Kinematic evaluation of the thrust with the different hinge positions given in Fig. 6.48

Fig. 6.48 Rib settlement displacements corresponding to the mechanism with hinge positions
defined by the static approach in Fig. 6.47
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The vault can be assumed to be a rounded rectangular vault with a constant
thickness t	 = 1.8 m and having an internal plan with the side lengths a	 and b	. To
obtain the lengths of the internal sides a	 and b	 with reference to Fig. 6.44.

a	 = 22.17 – (30.67 – 28.90) = 20.40 m; b	 = 21.18 – (30.67 – 28.90) =
19.41 m and a	/b	 = 1.05. Further Ri = b	/2 = 9.70 m and application of (6.65)
gives teq = (1.5 m) (1.0 m)/9.70 = 0.185 m.

From the above abacuses, the values are obtained as S	/W	 = 0.12 and
V/a	b	t	 = 1.685 corresponding to the ratio a	/b	 = 1.05 and to the equivalent
thickness teq = 0.185 m. Then, with c = 0.95 t/m3, these values are achieved:

V	 = 1.55 � a	 � b	 � t	 = 1.685 � 19.40 � 20.40 � 1.80 = 1201 m3.
Weight = W = V	 � c = 1201 � 0.95 ton = 1141 t; and Thrust S = W	

0.12 = 0.12 � 1141 = 137 t.
The minimum thrust, obtained with the exact geometry of the vault and by

application of the static theorem, evaluated in the direction of the side settlement is
Eq. (6.66): Thruststatic theorem 0.70 = 193 � 0.70 = 135.1 ton, near to the value of
137 ton obtained by using the previous abacuses. This result shows the utility of the
proposed abacuses to calculate the value of the minimum thrust of rounded cross
vaults.

6.5 Statics of Cloister Vaults

6.5.1 Initial Membrane Stresses

The primary stresses occurring in a cloister vault prior to cracking is represented by
the membrane solution (Fig. 6.50). As discussed above, determining the membrane
stresses is useful in order to be able to formulate a model of the vault after cracking,
i.e. the final resistant vault model. The stresses in the vault webs depend on their
boundary conditions, which involve the interactions transmitted by the groins. Let
us return to the equilibrium equations of cylindrical shells examined above and
recalled here for convenience (Flügge 1962):

@Nx

@x
þ @N/x

@s
¼ 0

@N/

@s
þ @Nx/

@x
þ g sin/ ¼ 0 N/ ¼ �gR cos/: ð6:67Þ

By accounting for the expression for N/ the second of these equations becomes

@Nx/

@x
¼ �2g sin/; ð6:68Þ
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which when integrated yields

Nx/ ¼ �2gx sin/þC1ð/Þ; ð6:69Þ

and consequently, due to the symmetry,

C1ð/Þ ¼ 0: ð6:70Þ

Shear forces Nx/ are thus

Nx/ ¼ �2gx sin/: ð6:71Þ

The shearing forces Nx/ are directed towards the centre of the lune. Figure 6.51
shows, on the horizontal plane, the distribution of forces Nx/ acting along a gen-
eratrix line.

Shear forces near the corners, where intersect two adjacent lunes, produce a
diagonal resultant Nd that will be further determined (Fig. 6.52).

To complete the description of the membrane stresses it is necessary to evaluate
the forces Nx that, as it will be shown, play a relevant role on the cracking of the
vault. Let us therefore substitute the expression for Nx/ from the first equilibrium
equation:

Nφx

Nφ x

Fig. 6.51 The distribution of
forces Nx/ acting along a
generatrix line

NN

N

x

y

N

Fig. 6.50 Membrane stresses
in webs of a cloister vault
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@Nx

@x
¼ � 1

R
@

@/
ð�2gx sin/Þ ¼ 1

R
2gx cos/; ð6:72Þ

whence, by integration, we get

Nx ¼ 1
R
gx2 cos/þC2ð/Þ: ð6:73Þ

Thus, in order to valuate forces Nx, we must valuate the function C2(/). As we
will show in the following, C2(/) is obtained by determining the web interactions
across the diagonals. It is thus necessary to valuate the force Nd.

With reference to Figs. 6.53 and 6.54, the relation linking angles w and u must
be determined. To this end, we consider a unit segment 1 along the diagonal. This
segment projects onto the vertical and horizontal directions to produce the segments
a and b′, thereby defining the triangle 1ab′ in plane d (Fig. 6.53).

The projection of the triangle 1ab′ onto the vertical plane t is the triangle 1′ab
(Fig. 6.54). Thus, we have (Flügge 1962)

a ¼ btg/ ¼ b0tgw: ð6:74Þ

Furthermore, the vault has a square plan and segments b and b′ form an angle of
p/4 on the horizontal plane, whence we get

b ¼ b0=
ffiffiffi
2

p
: ð6:75Þ

Substituting (6.75) into (6.74) gives

b0
1ffiffiffi
2

p tg/ ¼ b0gw; ð6:76Þ

whence

tgw ¼ 1ffiffiffi
2

p tg/: ð6:77Þ

Fig. 6.52 Equilibrium at
corners in the diagonal
direction generates the
diagonal force Nd
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The diagonal forces Nd can be determined accounting for the global equilibrium
of the vault cup, with sides of length x, along the vertical direction. We have

4Nd sinwþ 4N/2x sin/þG ¼ 0; ð6:78Þ

a 

1

1’

ψ

π/2

b’ b’ 

b 

υ
δ

ϕ

Fig. 6.54 Tangent to
diagonal and circle arc in the
vertical plane orthogonal to X

Fig. 6.53 Vertical equilibrium of the vault cap
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Equation (g) at Sect. 4.4.2 gives the weight Gl of the single lune segment as

GlðxÞ ¼ 2gR2ð1� cos/Þ

Further, taking into account that x = R sin/, from (6.78) we get

Nd ¼ � 2gR2

sinw
½cos/ð1þ sin2 /Þ � 1�: ð6:79Þ

On the other hand,

sinw ¼ sin/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sin2 /

p ð6:80Þ

and we finally obtain the expression for the compressive force along the vault
diagonal

Nd ¼ 2gR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sin2 /

p
sin/

½cos/ð1þ sin2 /Þ � 1�; ð6:81Þ

whence it is moreover clear that

lim
/!0

Nd ¼ 0 lim
/!p=2

Nd ¼ �2gR2 ð6:82Þ

Figure 6.55 plots force Nd, as expressed by Eq. (6.81): tensions result at the top
and compressions in the lower zone of the vault. At the base, as forces N/ vanish,
the entire weight of the vault is sustained by the diagonals.

Now, in order to determine function C2(u), and hence define forces Nx, it is
convenient to analyze the equilibrium of a corner band of the vault with the two
sides on the cylindrical surfaces belonging to two adjacent webs. The width of the
sides of this band is Rd/. The sides of this corner band straddle the corner and run
from the middle of the webs as far as the corner. In this way, the contributions of

0 0.5 1 1.5

2−

1−

1/ gR
d

N

φ

Fig. 6.55 Plot of Nd with varying u
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forces Nxu acting on sides ds cancel due to symmetry. We now formulate the
equilibrium condition of this corner band along the diagonal direction. The con-
tributions of the various forces are considered separately in the following
(Fig. 6.56).

• Forces Nx

The two forces Nxds, at x = 0, acting on the middle of the webs, yield the
component acting internally along the diagonal and are consequently negative. By
taking into account the expression for forces Nx evaluated at x = 0, we obtain the
resultant diagonal force

�
ffiffiffi
2

p
C2ð/ÞRd/: ð6:83Þ

• Forces Nu

Here we evaluate the resultant of all forces Nu acting along the edges of the
corner band. They are constant along the edge.

Firstly, along each side of the band we have both forces Nu and the corre-
sponding values due to the augmented coordinate u. Accounting for the first side of
the band, parallel to y, forces Nu, acting along the side’s two edges, yield a force
acting along x on the horizontal plane

Fig. 6.56 Forces acting on the corner band
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�N/y cos/þ ½N/y cos/þ @

@/
ðN/y cos/Þd/� ¼ @

@/
ðN/y cos/Þd/: ð6:84Þ

Likewise for the other side of the band, parallel to x, we obtain the horizontal
force acting along y

�N/x cos/þ ½N/x cos/þ @

@/
ðN/x cos/Þd/� ¼ @

@/
ðN/x cos/Þd/: ð6:85Þ

By summing the two forces vectorially, by accounting for y = x we get the
diagonal resultant acting outwardly

ffiffiffi
2

p @

@/
ðN/y cos/Þd/: ð6:86Þ

Thus, taking into account the expression for forces Nu obtained above, and that
x = y = Rsin/, we get the diagonal resultant

ffiffiffi
2

p
gR2 cos/ð3 sin2 /� 1Þd/: ð6:87Þ

• Forces Nxu

The resultant of all the forces produced by Nxu acting along the sides of the band
parallel to y or x are evaluated as follows. Along each side of the band we have both
forces Nxu and the values corresponding to the augmented coordinate u.
Concerning the first side of the band, the one parallel to x, the resultant of forces
Nxu, acting along the two edges of the band, yield a force along x

�
Zx
0

N/xdxþ
Zx
0

N/xdxþ @

@/
ð
Zx
0

N/xdxÞd/ ¼ @

@/
ð
Zx
0

N/xdxÞd/: ð6:88Þ

Likewise, considering the other side of the band, parallel to y, we obtain the
horizontal force

@

@/
ð
Zy
0

N/xdyÞd/: ð6:89Þ

Summing up these two forces vectorially, taking into account that y = x, we
obtain a diagonal force acting outwardly
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ffiffiffi
2

p @

@/
ð
Zx
0

N/xdxÞd/ ð6:90Þ

However, N/x ¼ �2gx sin/, so

ffiffiffi
2

p @

@/
ð
Zx
0

N/xdxÞd/ ¼
ffiffiffi
2

p @

@/
½ð�2g sin/Þ x

2

2
�d/ ð6:900Þ

Whence, with x = Rsin/.
We have

ffiffiffi
2

p @

@/

ffiffiffi
2

p @

@/
ð
Zx
0

N/xdxÞd/ ¼ �
ffiffiffi
2

p
gR2 @

@/
ðsin3 /Þd/

¼ �3
ffiffiffi
2

p
gR2 sin2 / cos/d/: ð6:91Þ

• Forces Nd

We now address the contribution of the diagonal forces Nd. The horizontal
component of Nd is Nd cosw. The rate of change along w of this force is thus given
by

�Nd coswþNd coswþ d
dw

ðNd coswÞdw ¼ d
dw

ðNd coswÞdw ¼ d
d/

ðNd coswÞd/:
ð6:92Þ

However,

cosw ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tg2w

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=2tg2/

p ¼
ffiffiffi
2

p
cos/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos2 /
p ð6:93Þ

whence, taking into account the expression for Nd

d
d/

ðNd coswÞd/ ¼ 2gR2 d
d/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sin2 /

p
sin/

½cos/ð1þ sin2 /Þ � 1�
ffiffiffi
2

p
cos/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos2 /
p

( )
d/:

ð6:94Þ
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Summing up all the contributions of the forces considered, we arrive at

� ffiffiffi
2

p
C2ð/ÞRd/ þ ffiffiffi

2
p

gR2 cos/ð3 sin2 /� 1Þd/� 3
ffiffiffi
2

p
gR2 sin2 / cos/d/

þ 2gR2 d
d/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�sin2 /

p
sin/ ½cos/ð1þ sin2 /Þ � 1�

ffiffi
2

p
cos/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos2 /
p

� �
d/ ¼ 0:

ð6:95Þ

The derivative of the function in parenthesis in (6.95) with respect to the variable
u has been evaluated by Ciampa (2007–2008) using the program Mathcad. This
enables evaluating the constant

C2ð/Þ ¼ gR cos/½3 cosð2/Þ � 2� � Nd
sinw

R sin2 /
; ð6:96Þ

thereby yielding the same expression obtained by Tomasoni (2008) via a different
approach. Equation (6.76) enables calculating forces Nx. Thus we have

Nxð/Þ ¼ gR½x
2

R2 þ 3 cosð2/Þ � 2� cos/� Nd
sinw

R sin2 /
: ð6:97Þ

or, taking into account that sinw ¼ sin/=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sin2 /

p

Nxð/Þ ¼ gR½x
2

R2 þ 3 cosð2/Þ � 2� cos/� Nd

R
1

sin/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sin2 /

p ð6:970Þ

Function C2(/) represents the force Nx evaluated on the midline axis of the
webs, that is at x = 0 (Fig. 6.57). At the base of the cloister vault we have tractions
constantly

y

x

trac

compr

Fig. 6.57 Variation of forces
Nx along the mid section of
lunes
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Nxðx;/ ¼ p=2Þ ¼ 2gR � R� x�R ð6:98Þ

Figure 6.57 shows the distribution of the forces Nx at mid section of the lunes.

6.5.2 Cracking

The membrane description of the stresses in the vault indicates a strong hooping
action produced by forces Nx. A strong pull action is produced at the vault corners
and cracking of the masonry occurs first along the diagonals of the vault. Other
cracks may then follow along lines parallel to the edges. Ultimately, diagonal
cracks occur systematically along the groins of cloister vaults (Fig. 6.58).

Consequent to the diagonal cracking, forces Nx vanish, as do Nx/, by virtue of
the first of the equilibrium Eq. (6.67). Without forces Nx and Nx/ the compressive
diagonal forces Nd also disappear at the corners, leaving only forces N/. These will
necessarily incline towards the horizontal, withdraw from the vault’s middle sur-
face, and produce a shear component T/ able to ensure equilibrium. Thus, the third
equation in (40) no longer holds.

The web slices and resistant bands of the vault run along the coordinates lines /
as far as the perimeter walls. Forces N/ transmit both the weight of the vault and the
thrust onto these walls. The definitive resistant structure of the cloister vault is thus

Fig. 6.58 Typical cracking pattern at the corners of a cloister vault; Palazzo Martinengo delle
Palle in Brescia (Tomasoni 2008)
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determined upon its cracking. The next section will take up the search for this new
resistant system of the vault within the framework of the no-tension model of
masonry material.

6.5.3 The Sliced no Tension Model

Square Plan Vault

The definitive resistant model of cloister vaults can be immediately defined taking
into account that the cylindrical bands of the webs at cracking transmit both weights
and thrusts onto the perimeter walls. The cloister vault thus slices into two orders of
arches supported by the edge walls. This model has been developed with Ciampa
(2007–2008).

For the sake of simplicity, we will first consider the case of a cloister vault with
square plan and circular profile. We divide the vault webs into cylindrical slices of a
specific width, as shown in Fig. 6.59.

A grid defines the curved axes of these two orders of slices and we can consider
the loads represented by a series of vertical forces applied at the grid nodes. The
intensity of each of these forces corresponds to the weight of the influence area of
the node, represented by the gray square in Fig. 6.60. The loads W, corresponding
to the various influence areas, have different intensities for the different areas of the
vault surface involved. Each node is designated by two coordinates (i, j) respec-
tively representing the position at which the two parallel axes of the grid edges
intersect at the node. The problem is to determine the distribution of load Wij

between the two arches i and j intersecting at node (i, j).
Two different arches cross at each node of the grid. In particularly, two circular

arches pass through the vault center. These arches have the same axis and the same
span. Load W applied at the center of the vault divides into equal parts.

Fig. 6.59 Resistant system
of the sliced cloister vault
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Moving away from the center, different arches intersect at various nodes. For
instance, one node may lie where a full arch intersects with another one with a flat
central platband, as illustrated in Fig. 6.61. The two ideal arches are in equilibrium
configuration and their pressure curves will always remain within the two arches.
Specifically, the pressure line in the flat stretch of the arch will be represented by a
very flat curve, hence the load acting on this stretch will be negligible.

All pairs of arches intersecting at each of the nodes belonging to the vault axes of
symmetry, that is, the central and diagonal arches, are equal. The loads applied to
these nodes are thus split equally into 50% shares of the total. The location of these
points on the axes of symmetry are indicated with small circles in Fig. 6.62.
A circular arch segment will intersect with a flat arch segment in all the other nodes.
At these nodes, the entire load Qij is transmitted only onto the curved stretch, or in
other words, the load acting on any flat, or nearly flat segment, is zero.

An Example

The cylindrical cloister vault is question is subdivided into 9 � 9 arch bands, as
shown in Fig. 6.63. The external and internal radii are Re = 7.50 m; Ri = 6.50 m;
the thickness of the vault is therefore s = 1.0 m. The distance between adjacent arch
bands is thus i = 1.44 m,

Figure 6.63 shows the various arches. The division of the loads is therefore
immediate, vas shown in the figure. Table 6.1 gives the distribution of the loads
amongst the various arch bands. Each arch has been divided into six voussoirs
whose weights are given in Table 6.2. The pressure lines within the various arch

Fig. 6.60 Grid formed by the
axes of the two orders of
sliced arches constituting the
vault and the corresponding
loads

Fig. 6.61 Two different types of arches in the sliced cloister vault
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bands are shown in Fig. 6.64. It is a simple matter to determine the distribution of
the thrusts along the perimeter walls (Table 6.3). The precision of the results can be
improved by narrowing the grid in Fig. 6.62.

Rectangular-Plan Vault

The same principle of simplified load distribution also applies in the case of vaults
with a rectangular plan, such as that illustrated in Fig. 6.65.

0.5/0.5
0X/1Y

1X/0Y

x

Fig. 6.62 Distribution of the vertical loads applied at the grid nodes

Fig. 6.63 Slicing the square cloister vault into in 9 � 9 arch bands
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In brief, the principles of distribution of the loads amongst the arch bands are:

• no load can be sustained by flat arch segments;
• in nodes where curved and flat arch segments intersect, the entire load Q is

sustained by the curved arch, even if this curved arch becomes flat immediately
after the node;

• in nodes where equal arches intersect, the load is allocated equally, i.e. 50%
each.

5 4 3 2 1
Thrust=3.5347

Arch A

0.20
0.47 0.73 1

5 4 3 2 1

Arch B

123
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5
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4

5

0.06 0.29 0.53 0.73 0.73
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δ A=0.7199

δ B=0.8468

5 4 3 2 1

Arch C
1 2

4

5

3

0.07 0.27 0.47 0.47 0.47

Thrust=1.4241δ C=0.7247

Fig. 6.64 Pressure curves and minimum thrusts on the arch bands
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Table 6.1 Distribution of the
vertical loads amongst the
various arch bands

% E D C B A

5 50 100 100 100 100

50 0 0 0 0

4 0 50 100 100 100

100 50 0 0 0

3 0 0 50 100 100

100 100 50 0 0

2 0 0 0 50 100

100 100 100 50 0

1 0 0 0 0 50

100 100 100 100 50

Table 6.2 Weights voussoirs Arch A Arch B Arch C

P1 1.447 1.716 1.587

P2 1.479 1.732 1.587

P3 1.592 1.592 1.610

P4 1.860 1.860 1.610

P5 2.801 2.801 2.801

P6 2.530 2.530 2.530

Table 6.3 Thrusts
transmitted by the various
arch bands

Arch A B C D E

Thrust (t) 3.53 2.53 1.42 0.70 0.23

Fig. 6.65 Cloister vault with rectangular plan sliced into arch bands
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An Example

The defining vault parameters are: Ri = 4.5 m; s = 0.70 m; distance between bands
i = 1.0 m; c = 1 t/mc.

The cylindrical cloister vault under consideration is subdivided into 9 � 9 arch
bands, as shown in Fig. 6.63. Table 6.4 reports the distribution of the loads
amongst the various arch bands. The upper number in each box indicates the
percentage load assigned to the arch denoted by a letter, the lower number in the
box is the load percentage assigned to the arch denoted by a number.

Once the loads have been allocated, the pressure lines of the various arches can
be determined according to the minimum thrust assumption and the various thrusts
evaluated.

Tables 6.5 and 6.6 report the thrusts transmitted to the perimeter walls by the
various arch bands. The total thrust on the longer abutment walls, whose overall
length is 13.00 m, equals 13.87 t, with an average value of 1.067 t/ml. The total
thrust on the shorter abutment walls, 9.00 m in length, equals 6.62 t, with an
average value of 0.74 t/ml. The considerable difference between the central and
lateral thrusts is due to the tendency of the vault to ‘work’ along the shorter span
arches.

The calculations on the cloister vault presented here have been drawn from
Ciampa (2007–2008).

Table 6.4 Load distribution
amongst the various arch
bands

% G F E D C B A

5 50 100 100 100 100 100 100

50 0 0 0 0 0 0

4 0 50 100 100 100 100 100

100 50 0 0 0 0 0

3 0 0 50 100 100 100 100

100 100 50 0 0 0 0

2 0 0 0 50 100 100 100

100 100 100 50 0 0 0

1 0 0 0 0 50 100 100

100 100 100 100 50 0 0

Table 6.5 Thrust on the long
abutment wall

Arch A B C D E F G

Thrust (t) 1.93 1.93 1.71 1.20 0.69 0.33 0.11

Table 6.6 Thrust on the
short abutment wall

Arch 1 2 3 4 5

Thrust (t) 1.96 1.20 0.69 0.33 0.11
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Chapter 7
The Colosseum

Abstract This chapter concerns with the static behavior of the Colosseum, one of
the most important monuments of the Roman architecture. After a description of the
structure of the monument, the following topics are carried out:

(a) static analysis of the original configuration
(b) description of the damage heaped by the monument during its whole life and of

the past restoration works
(c) analysis of the two conjectures concerning if the past earthquakes or the past

dismantlement works were responsible for the damage.

The study is developed according to the above common static approach, based on
the limit analysis and, in some cases, with the use of suitable non linear programs.
The static analysis of the original configuration of the monument shows that the
lack of radial constraints on the ring walls, partially reduces the static safety of these
walls also under vertical loads. The damage occurred in the course of time weak-
ened seriously the monument. This weakness was removed by the 19th century
restoration works. The monument suffers little from the seismic action. The huge
mass of the vast building, together with the presence of underlying soft soils,
produces a strong mitigation of the intensity of the seismic waves that propagate
from the bedrock up to the surface. At the same time the monument has a seismic
strength far in excess of the possible maximum seismic forces that reached the
monument throughout the whole of its history. The second conjecture, that of the
dismantlement, is also taken into account in the chapter and it is shown that the
demolition of at least two adjacent outside piers can produce collapse of an entire
vertical strip of the outer wall.

7.1 The Original Colosseum

The Colosseum, Rome’s greatest amphitheater (Cozzo 1928a, b, 1971), was
commissioned by the Emperor Vespasian in 72 CE. It was built on the marshy site
of an artificial lake on the grounds of Nero’s palace, the Domus Aurea, in the valley
between the Palatine, Esquiline and Caelian Hills.
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The soil on which the Colosseum is built is made up mostly of stiff marine clays,
gravels and tuffs, with a cover of soft alluvial sediments of a former tributary of the
River Tiber (Jappelli 2000, Sciotti 2004).

Prior to the construction of the amphitheater, a preliminary hydraulic assessment
of the area was required to drain the waters that Nero had channeled into the valley
to form the artificial lake. After the lake was drained, a huge concrete elliptical ring
was erected as an ordinary masonry wall, constructed of opus caementicium—a
mixture of rubble and pozzolanic mortar. Its transverse section was about 50 m
wide and 13 m high (Fig. 7.1). Later, with subsequent fillings, this heavy ring
became the foundation, on which the external structure of the Colosseum was built.

The monument has an elliptical plan, similar to the foundation ring, with
external diameters of 188 and 155 m (Rea 1996) (Fig. 7.2). At its interior lies the
arena, where the various events took place.

Fig. 7.1 Illustration of the Colosseum’s foundation (Moccheggiani Carpano 1977)
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The plan of the arena is also elliptical in shape, its major and minor axes
measuring 75 m � 44 m, respectively. The podium, constructed of opus latericium
and faced in marble, surrounded the arena.

The emperor’s seat was set at the center of the podium, called the suggestum,
while members of the senate and court occupied the rest of the podium. The arena
had a wood pavement covered with yellow sand; the term arena, in fact, derives
from the Latin word for the sand covering the grounds (La Regina 2001).

Beneath the arena, in the area known as the hypogeum (literally, the under-
ground), were rooms that served various purposes related to the events. The rooms
were divided by tuff and brick walls and were arranged in four symmetrical
quadrants connected by two corridors at right angles to each other, running along
the ellipse axes and two corridors parallel to the podium wall. Each quadrant had
three straight corridors parallel to the main axis and a room whose plan formed a
segment of the ellipse (Rea et al. 2002a, b; Luciani 1993) (Fig. 7.3). The large,
75 m-long and 4.30 m-wide central corridor was paved in opus spicatum with
yellow and reddish brick. Not only did the corridor walls support the wood
pavement of the arena, but they also served as the foundation structures for the
hoists used during events.

Fig. 7.2 Original Colosseum plan (Rea et al. 2002a, b)
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Below the amphitheater’s main gateways were four cryptoportici, built into the
foundations to extend the area surrounding the building and connect the under-
ground rooms with the area outside. The cryptoporticus below the southeastern
entrance reached the Ludus Magnus, the large barracks housing the gladiators,
while the cryptoporticus at the opposite side extended to the area of the Temple of
Venus, where the backdrops were made. The external sides of the two cryptoportici
contained the maneuvering rooms, whose walls were made mainly out of large
undressed travertine blocks.

The main part of the Colosseum’s external structure consists of the cavea (the
seating area) and three ring walls with a total of 240 piers for each floor, connected
at various levels by arches supporting the perimeter arcades. The piers were made
of travertine voussoirs laid without the use of mortar. The façade is made up of
three superimposed regular arcades of fornices; these were structural elements
composed of a pier plus an arch with three column orders: Tuscan, Ionic and
Corinthian (Rea et al. 2002a, b; Coarelli et al. 1999) (Fig. 7.4). The arches typically
consist of an odd number of travertine voussoirs, so that each side of the arch would
have been built up on its own and then closed with a key stone at the top (Conforto
1988, 1993).

The facade has an upper cornice, known as the atticus, capped by an entablature
consisting of an architrave, frieze and cornice. Sturdy corbels in the frieze support
the cornices. The Colosseum is 48.5 m high on the exterior, with four floors: the
first three floors have round arches, while the attic bears forty rectangular windows.

The Colosseum was usually uncovered, though in the event of rain it could be
enclosed by an enormous awning, called the velarium, which was maneuvered and
fixed in place by two squads of sailors from the fleets of Ravenna and Cape
Misenum (La Regina 2001). To this end, the attic was fitted with a series of
brackets, three for each span between the piers, for a total of two hundred and forty.
Each bracket had a support to hold up an equal number of vertical struts that
sustained the velarium above. The struts were passed through holes bored in the
cornice and inserted into the bracket supports (Fig. 7.4).

Fig. 7.3 The arena and its underground sections (Luciani 1993)
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The upper cornice was constructed with travertine blocks plastered on the inner
side with a thick concrete cover (Fig. 7.5).

The cavea was formed by radial walls covered with concrete barrel vaults over
which rows of stone seats were built. It was divided into five seating sections, each
connected to one of five entrance ways corresponding to the external architectural
orders. Stone was the main material employed to build the radial walls, which were
made up of two outer layers of coursed ashlars, with an inner rubble and mortar fill.
The height of the radial walls varied from a maximum of 23 m near the innermost
perimeter ring wall, to a minimum of 14 m towards the internal edge of the cavea.

Originally, the Colosseum had a greater number and variety of vaults (Lancaster
1998). Barrel vaulting was used for the perimeter arcade on both the first and
second stories. This was possible thanks to the substantial heights involved and the
presence of two more stories above, which applied high enough dead loads to
counteract the outward thrusts. More stable cross, or groin, vaulting was used on the
third story and the inner gallery of the second because of the lower vault heights
involved. Judging from the traces that still remain on the inner part of the wall, the

Fig. 7.4 Reconstruction of
the original façade (La Regina
2001)

Roman Concrete Travertine
Fig. 7.5 The upper cornice
built with travertine blocks
and concrete cover
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uppermost vault, which formed the attic floor, was unquestionably a groin vault.
Stretches of the vault were interrupted by stairs providing access to the uppermost
floor, the maenianum summum ligneis. All the circumferential arcades encircling
the cavea between the ring walls (Fig. 7.6) are about 0.80 m thick at the keystone.

In constructing the vaults, Roman masons placed mortar and tuff rubble in
horizontal layers on timber centering, beginning at the springers and gradually
filling in the arch up to the keystone. There are some brick-faced concrete vaults
which may have acted as provisional centering.

The construction of the foundation ring reveals that at the time concrete was
being used in quantities that were unprecedented in the history of Roman
architecture.

The design of the building must have been extremely precise, which in turn
required exacting attention to detail during its construction (Conforto 1986; Rea
et al. 2002a, b). To build the piers, the travertine blocks were carefully prepared and
worked at the building site itself. To ensure a more efficient use of stone and save
time, blocks of different sizes were used, making it necessary to lay down courses
of different heights. The construction of the piers was carefully controlled and the
blocks laid in an organized pattern, necessary to reach the pre-established springer
heights of the circumferential arches. Bricks were also used extensively to erect the
walls of the podium, the radial walls of the hypogeum, and the intradoses of the
circumferential arcades, as well as to finish the lateral walls of the imperial gateway,
where the intrados of the arch is made of bipedale bricks and decorated with stucco.
Moreover, from the second order upwards, brick walls also connect the external
travertine support piers, ensuring that the entire structure becomes gradually lighter
towards the upper portions (Fig. 7.7).

The building site of the amphitheater required provisional timber scaffolding,
which was carefully prepared during the planning stages: raising incredibly heavy
travertine blocks several tens of meters off the ground was not an operation that
could be left to chance. Roman carpenters built normal scaffolding on the overlying

Fig. 7.6 The first-story
circumferential arcade
(Luciani 1993)
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levels, where the roof vaults of the second order and the cavea had not yet been
built, and overhanging scaffolds where the cavea interrupted the walkway at ground
level. This procedure was clearly unnecessary for the external facade, where the
scaffolding could be added freely. The passageway of the third level, still bears a
series of brackets protruding about 30 cm from the inner façade of the piers: these
were used to support the overhanging scaffolding. When the building was finished,
the brackets were left, as was normal practice in many Roman buildings.

7.1.1 Static Analysis of the Colosseum’s Original
Configuration

7.1.1.1 Stresses in the Piers

The first three elliptical rows of travertine piers, the passageway vaults and the attic
constitute the most structurally problematic parts of the Colosseum. It has been
discovered that the circumferential arcades were constructed at several different
sites, in separate parts which were joined only subsequently and the centering
dismantled at different times. This suggests that these vaults behave like a series of
radial arches placed on the walls, joined together to form a single unit (Fig. 7.8).

Fig. 7.7 Radial section of the
cavea with the various
materials used (Rea et al.
2002a, b)
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Along the arcades intrados, where the heavy plaster is lacking, circumferential
cracks are visible around the keystone area (Fig. 7.9). This proves that the vaults
work radially and that they are in a state of minimum thrust. Indeed, the walls, and
in particular the outer ring wall, which receives the thrusts of the external arcade,
undergo small rotations and lateral deformations.

The values of these minimum thrusts can be evaluated by means of the funicular
polygon of the forces for each perimeter arcade. The line of pressure is positioned
so that the vaults are in a condition of minimum thrust. As described above, the
vaults are not all the same type throughout the building.

By way of example, in the following we calculate the thrusts in the first-order
barrel vaults in corridor I (Fig. 7.10), whose characteristics are as follows:

Span (L) = 5.15 m
Thickness at the keystone (s) = 0.8 m
Length (H) = 6.5 m

The system of forces is obtained by dividing the element into blocks, to each of
whose center of gravity is applied the value of the weight via a downwards vertical
force. The funicular polygon is constructed by imposing the conditions of

Fig. 7.8 The resistant system
of the radial arch vaults

Fig. 7.9 Cracks visible at the
key of the circumferential
vaults
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symmetry and minimum thrust. At the keystone, the pressure line is considered to
be 15 cm from the vault extrados in order to take the floor thickness into account.

The piers of the outer wall are therefore exposed not only to the vertical and
horizontal radial actions of the circumferential arcade, but to the imperfectly aligned
thrusts of the circumferential arches, as well. The specific weights of the various
materials used to evaluate the weights can be summarized as follows:

travertine (piers and attic): c = 2400 kg/m3

tuff (vaults): c = 1800 kg/m3

concrete conglomerate (vaults): c = 1800 kg/m3

bricks (vaults and radial walls) c = 1800 kg/m3

wood (roofing): c = 600 kg/m3

The following calculations have been carried out previously (Lauri Lauri 1998–
1999):

– the loads acting on the facade
– the thrusts in the plan
– the actions exerted by the circumferential arcades.

The weight of the outer wall is calculated by considering the weight of the attic,
piers and parts of the circumferential arches. The calculations refer to the piers near
the main axes, where the thrusting forces are greatest. The radius of curvature of the
outer wall in this area is Rmin = 69 m.

The opposing thrusts of two adjacent circumferential arches do not completely
cancel one another out and thereby cause a radial action Sr which still tends to bend
the external wall outwards. If the thrust of the circumferential arch is indicated by Sc
and the in-plan curvature by q (q = 1/R), then (Fig. 7.11),

Sr ¼ Sc � q � i; ð7:1Þ

Fig. 7.10 Funicular polygon and radial pressure line for the circumferential arcades
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with i the distance between the piers. The equivalent load, radially distributed on
the external wall, is given by the equation:

qr ¼ Sc � q: ð7:2Þ

In its original configuration the Colosseum had no tie-beams or radial chains: the
thrusts Sr or, equivalently, the radial loads qr, were exerted on the piers, in par-
ticular, those of the outer wall.

The ring walls can be represented by a series of single cells made up of a pier,
together with the adjacent circumferential arcades, the architraves and the arches
below, all taken along the piers’ half-spans (Fig. 7.12). The following calculations
refer to this structural cell.

Our attention shall be focused on the pier of the single cell, in particular on the
pier of the outer wall (Fig. 7.13). Here the distributed loads (A1) represent the
vertical and radial loads transmitted by the arcades onto the architrave; thrust (B1),
acting within the circumferential arch, is due to the vertical load produced by the
vault; thrust (C1) is caused by the weight of the architrave and the arch itself; (D1) is
the radial component of thrust (B1); (E1) is the radial component of thrust (C1); (F1)
is the axial load transmitted through the pier from the higher orders.

The thrusting actions on the pier, directed radially outwards, and produced by
the circumferential arches alone, are given in Table 5.1 (Lauri acad. y. 1988–1989;
Fanelli acad. y 2000–2001; Leli acad. y. 2000–2001) (Table 7.1).

Fig. 7.11 Radial thrusts Sr

Fig. 7.12 Structural cell
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The greatest thrust corresponds to the third order of the external wall. This is due
to the enormous weight of the attic, which produces a considerable thrust on the
underlying arches and therefore a large component Sr. The additional radial forces
exerted by the circumferential arcades have been calculated in a similar manner.

Although the intensity of these additional forces is moderate compared to those
due to the circumferential arches, they have been added in order to evaluate the
resulting actions on the piers. Figure 7.14 shows the set of all vertical forces acting
on a pier of the external wall. It can be seen that at various stories the presence of
offsets on the external side of the wall produce moments contrasting the action of
the radial thrusts.

Table 7.2 summarizes the values of the axial load, the bending moment and
shear acting at the base of the pier, where the thrusting forces are largest.

The internal pier undergoes very low stresses, because it is subjected to a cen-
tered axial load. The base section of the intermediate wall is also completely
reactive. The external pier base section, on the contrary, is only partially reactive.
To properly evaluate the stresses in the external pier, we should account for the fact
that the pier is composed of large blocks set in a rather haphazard pattern.
Nevertheless, in a first analysis which adopted a continuous no-tension model for
the pier, it was found that only a portion of the geometrical section at the base of the
half column-pier is compressed and that the maximum compression is about
96 kg/cm2 (Fig. 7.15). This value is however considerably below the crushing
strength of travertine, on the order of at least 300 kg/cm2. It should be noted that
this regards only the piers along the main axis.

Fig. 7.13 The forces acting
on a pier of the single cell

Table 7.1 Thrusting actions
produced by the
circumferential arches

Radial
thrust

External
wall

Middle
wall

Internal
wall

Sr1 2.84 t 1.41 t 1.00 t

Sr2 2.60 t 1.27 t 2.57 t

Sr3 6.70 t 1.68 t –
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In any event, the results reveal a certain weakness in the original resistant
structure of the Colosseum. By contrast, the Roman amphitheater of Nimes, France,
built in the 1st century CE, is smaller than the Colosseum, but its arches were

Fig. 7.14 Actions on the
outer pier
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constructed with transverse marble tie rods to oppose the outward bulging of the
outer wall, as shown in Fig. 7.16.

7.1.1.2 Limit Analysis

Preliminary Remarks

The following section will examine the behavior of the Colosseum’s structures
from the standpoint of limit analysis, adopting the no-tension assumption according
to the Heyman model. In this framework, the possible mechanisms by which the
Colosseum’s structures may be deformed should be kinematically compatible and
should therefore not allow any sliding or material interpenetration.

The finite crushing strength of travertine has instead been taken into account
only at the toe of the outer piers. The analysis (Coccia et al. 2000, Como et al.

Table 7.2 Actions at the
outer pier base

External pier Intermed. pier Internal pier

N (t) 1543.5 952 488

M (t � m) 1350.7 47.6 –

T (t) 73.1 1.7 –

Fig. 7.15 Stresses at the base
section of the external wall

Fig. 7.16 The transverse
marble tie rods of the
amphitheater of Nimes
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2001) firstly addresses the possibility of local failure, characterized by some piers
being pushed outwards (Fig. 7.17). It is a simple matter to show that any local
mechanism which allows for rotation of only some of the piers is incompatible
(Fig. 7.18). A kinematically compatible mechanism um (similar to the failure
mechanism in domes with excess weight at the centre) instead involves outwards
rotation of all eighty piers along the three ring walls.

The circumferential arches of the wall open in cracks. They are thereby split into
blocks in the horizontal plane and follow the mechanism, continuing to transmit the
thrust due to the vertical loads (Fig. 7.19). The required condition (2.99), that the
internal stresses offer no resistance to activation of the mechanism, is thus satisfied.

Hinges will develop in the arcades to allow it to follow the outward rotation of
the external wall. With the circumferential vault straight in plan, a plane mechanism
results, as shown in Fig. 7.20. For in-plan curvature of the vault, instead, hinges A,
B, C are not cylindrical, but will follow a broken line and be accompanied by radial
cracks (Fig. 7.21). Two possible failure mechanisms can ensue:

(A) involving rotation of the external wall alone (Fig. 7.22);
(B) involving rotation of both the external and central walls as a whole (Fig. 7.23).

Fig. 7.17 An incompatible
mechanism

Fig. 7.18 Static scheme of a local mechanism involving 5 piers and 4 circumferential arches
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Actually another, third mechanism, involving rotation of the internal wall as well
is also possible, though it is however not considered herein. In fact, the resisting
work done during development of this mechanism includes the extra resisting work
from the lifting of the internal wall, which is not included in mechanism (b).

Thus, in the following the two possible mechanisms (a) and (b) will be analyzed.
All calculations refer to the structural cell illustrated in Fig. 7.12.

Fig. 7.19 Compatible
mechanism involving the
entire annular wall

Fig. 7.20 Radial
displacements in the
circumferential vault

Fig. 7.21 Compatible
mechanism of the
circumferential vault
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Mechanism type (A)

This type of mechanism regards only the outer wall and the circumferential vault.
The external wall rotates outwards, while the internal and central walls do not
move.

The external circumferential vault between the central and outer walls cracks and
three transverse hinges will thus form: two at the intrados of the abutments and one
at the extrados near the crown. Figure 7.22 shows a possible mechanism that also
involves crushing of the outer wall toe. The same figure illustrates the vertical and
horizontal components of the displacement field. The mostly downward displace-
ment of the circumferential arcades as the mechanism develops highlights the

θ

θ

f(d)

x

y

(a) (b) (c)

Fig. 7.22 a vertical and horizontal displacements; b radial section of the mechanism; c centers of
rotation and displacement field for the first-level inner vault

C1 C2 C12

 I

 II

C13

C23

 III

 IV

 V

 VI

Fig. 7.23 Alignment of the centers of rotation to transform the structure into a mechanism
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destabilizing effect of the loads acting on these vaults (Figure 7.22c). All the dis-
placements can be linked to parameter h, that is, the rotation of the external wall.
The relation between the displacements and rotation h can be inferred from
Fig. 7.22c, which shows the hinge positions, the vertical displacements of the vault
at the first level, and the horizontal displacements of the external wall. In the figure,
f(d), at the base of the outer wall, is the distance of the hinge on the base of the
external wall from its external edge; it has been assumed to be non-zero to account
for masonry’s finite compression strength.

Mechanism type (B)

All the circumferential vaults and both the external and the central walls are
involved in this mechanism. The arrangement of the hinges in the inner vaults,
which are located between the internal and middle walls, is similar to that in the
external vault in mechanism type (a). Thus, three hinges will form on each vault:
two at the intrados near the abutments and one at the extrados near the crown. With
regard to the external vault, it is possible to distinguish two different hinge
arrangements, which characterize distinct subtypes of this mechanism, denoted as
(B1) and (B2), and are addressed separately in the following.

Mechanism type (B1)

One first possible mechanism is defined by considering each external vault as
behaving like a rigid strut (Coccia et al. acad. y. 2000–2001). In this case, the two
hinges in the vaults must be positioned so that the directions of the struts formed
will intersect at the same point along the straight line passing through the hinges at
the base of the walls (Fig. 7.23). Thus, only one hinge position in one of the
external circumferential vaults can be chosen arbitrarily.

The displacements corresponding to the mechanism deformation of the two
walls and vaults are shown in Fig. 7.24.

Fig. 7.24 a vertical and
horizontal displacements;
b radial section of the
mechanism
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Mechanism type (B2)

Another possible, alternative mechanism for the external vaults considers only a
single vault behaving like a rigid strut: the other vaults will behave like those in the
internal span. The problem is defining the level of the external span at which this
strut vault is located. It can however be shown that the position of the strut vault
that minimizes the collapse load is at the first level, as shown in Fig. 7.25. In this
case, all displacements are expressed as functions of rotation h of the central
column.

The Collapse Load

The force system

The force system acting on the structure is made up of the following components:

• weight W of the walls;

• dead load p acting on the circumferential vaults;

• live load kq acting on the circumferential vaults;

• thrust Sc, which depends on the dead and live loads.

Evaluation of the collapse load
By applying the kinematic theorem, the function kq is given by:

k q ¼ Ldead
Llive

: ð7:3Þ

The different quantities of work are evaluated with reference to the structural cell
shown in Fig. 7.12. Work Ldead is given by:

Ldead ¼ Lp þ LW þ LSrðpÞ; ð7:4Þ

where each term is defined as follows. The first term in (7.4) is given by the
following expression:

Lp ¼
Xn
i¼1

Lpi ; ð7:5Þ

where Lpi represents the work done by the dead load applied to each circumferential
vault on the relative vertical displacements, which are illustrated in Figs. 7.22, 7.24
and 7.25, respectively for mechanisms (A), (B1) and (B2). The sum is extended to n,
which represents the number of vaults involved in the mechanism, hence n = 4 in
the case of mechanism (A) and n = 8 for mechanisms (B).
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The second term in (7.4) is:

LW ¼
Xm
j¼1

LWj ; ð7:6Þ

with LWj the work done by the weight Wj of the central and external walls on the
vertical displacements, which are illustrated in Figs. 7.22, 7.24 and 7.25, respec-
tively for mechanisms (A), (B1), (B2). The sum is extended to m, which represents
the number of the columns in the mechanism, hence m = 1 in the case of mecha-
nism (A), where only the external column rotates, and m = 2 for the mechanisms
(B), where both the central and external columns rotate.

The last term in (7.4) is the work done by the radial components Sr(p) of the
thrusts Sc(p) transmitted by the arches loaded by dead loads:

LSrðpÞ ¼
X3
k¼1

LcSrkðpÞ þ
X6
h¼1

LeSrhðpÞ: ð7:7Þ

The first sum is related to the thrusts acting on the central vaults and is zero in
the case of mechanism (A), while the second refers to the thrusts acting on the outer
vaults.

Fig. 7.25 Mechanism type
(B2): The position on the first
level of the external vault that
behaves as a simple strut
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The work Llive of (7.3) is given by:

Llive ¼ Lq þ LSrðqÞ: ð7:8Þ

The first term in (7.8) is given by the following expression:

Lq ¼
Xn
i¼1

Lqi ; ð7:9Þ

where Lqi represents the work done by the live load applied to each circumferential
vault on the relative vertical displacements, which are illustrated in Figs. 7.22, 7.24
and 7.25 respectively for the mechanism type (A), (B1), (B2).

The last term of (7.8) is the work done by the radial components Sr(q) of thrusts
Sc(q) transmitted by the arches loaded by the live loads:

LSrðqÞ ¼
X3
k¼1

LcSrkðqÞ þ
X6
h¼1

LeSrhðqÞ: ð7:10Þ

The first sum is related to the thrusts acting on the central vaults and is equal to
zero in the case of mechanism (A), while the second sum refers to the thrusts acting
on the external vaults.

The expression for kq clearly depends on the position of the hinges defining the
mechanism. Thus, kq = kq(d, d1, xi; i = 1…N), where xi represents the abscissa of
the i-hinge, and N is the number of hinges required to define the mechanism. The
minimum of function kq(d, d1, xi; i = 1…N) yields the collapse load kcq related to
the set of the mechanisms analyzed, and is calculated under the constraint
expressing the wall equilibrium in the vertical direction at a fixed value of masonry
compression strength.

With reference to the vertical loading conditions analyzed here, the resulting
values of the collapse loads kcq calculated via Eq. (7.3) (Coccia acad. y. 2000–
2001) for mechanisms (A) and (B) are:

mechanism (A): kcq = 11.47 kN/m2;
mechanism (B1): kcq = 29.45 kN/m2;
mechanism (B2): kcq = 16.56 kN/m2.

These collapse load values seem rather low, a result that confirms the suspicion
that the original external ring wall had a tendency to rotate outside because the vault
thrusts tended to bend the wall outwards, despite the presence of the offsets on the
external side of the ring wall.

The lack of radial constraints on the ring walls of the Colosseum in its original
form compromised its static safety under live vertical loads. Other Roman
amphitheaters were instead equipped with such constraints, for instance, the stone
lintels on the Nimes amphitheater.
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The high upper cornice coursing around the Colosseum, whose tensile strength
has been neglected in the analysis, could actually exert a strong binding action and
increase the monument’s strength. On the other hand, as for the ring vaults, different
parts of the upper cornice were probably constructed separately at several different
sites and joined together only later at different times. The presence in the cornice of
radial sections weakened by joints cannot thus be neglected. The no-tension
assumption, at first sight conservative, thus appears quite realistic and enables
obtaining a safe lower bound of the monument’s effective strength.

7.2 Damage and Subsequent Repairs

The damaged state in which the Colosseum had been reduced by the 18th century—
nearly 17 centuries after its construction—was the result of alternating periods of
use, disuse and abuse, during which many exceptional events, such as fires,
earthquakes and stone pilfering, probably led to partial collapses and contributed to
its steady decay. ‘Work’ was done on the Colosseum at various times, though not
always with the aim of repairing it, so overall, a great deal of material has been
definitively lost. Figure 7.26 shows the plan of the amphitheater first level in its
current state. Comparing it to Fig. 7.1, it is immediately evident that the entire
southern section of the monument—both the outer and middle walls with their piers
—has been destroyed. The area just outside the arena is still well preserved around
three quarters of its circumference, while 50% of the outer wall is missing on the

Fig. 7.26 Plan of the first level of the monument in its current state (Rea et al. 2002a, b)
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southern side and part of the interior wall has been rebuilt. Figure 7.27 shows a
drawing by Gaspar Van Wittel, who portrayed the Colosseum as it appeared in the
mid-18th century. It is unclear how the damage to the Colosseum progressed over
time or how it reached the state shown in Fig. 7.27.

The most serious damage began when the circumferential arches were inter-
rupted and the outer ring wall on the southern side began to break up. Whether this
was the result of the earthquakes that struck Rome from the 4th to the 16th cen-
turies, as suggested by various authors (Croci and Viskovic 1993; Funiciello et al.
1995; Cerone et al. 2000), or whether it was caused by its being dismantled and
stripped of its precious building materials (Conforto and Rea 1993) is not yet clear.

The historical accounts of the events that affected the monument and available
documentation regarding the activities carried out within it has provided some
relevant, though incomplete information (Conforto 1986; Croci 1990; Cerone et al.
2000). In particular, from the 3rd century onwards, the historical sources indicate a
series of events that caused damage to the building’s structure, some of it quite
extensive.

The earliest significant event to be documented is a serious fire that broke out in
217 CE. The first important restoration operations were carried out soon after—
perhaps following the earthquakes in 217 and 233—under Emperor Alexander
Severus (Lancaster 1998). Serious damage to the monument were later caused by
the 5th-century earthquakes, particularly in the years 443 and 508. An inscription
engraved in a stone near the main entrance commemorates the restoration decreed
by the prefect Decio Mario Venanzio Basilio to repair the damage caused by an
abominendi terrae motus, i.e., the earthquake of 508. It was in this phase of the
building’s existence that, after a long period of inactivity, the last games were held

Fig. 7.27 Drawing by Gaspar Van Wittel showing the state of the Colosseum in the mid-18th
century
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in the Colosseum (519 and 523). It is thus likely that from this time on not all the
‘work’ done on the monument was aimed at restoring it, since its original function
had ceased (Rea 1996).

The progressive decline of Rome’s population in the early 6th century reduced
the number of seats needed in the amphitheater, and the first systematic work of
dismantling began on the building’s southern side. An epigraph documenting this
activity is situated atop a pier on the second level between arches XIII and XV. One
interpretation of this epigraph is that the senator Gerontius, by concession of the
sovereign, was entitled to make use of that side of the monument as a stone quarry.
Dated to the time of Theodoricus, the epigraph is situated in such a way that it could
not have been visible from below unless the two perimeter porticoes had already
been removed by then. It therefore seems reasonable to infer that the Colosseum
was already being systematically dismantled and cannibalized for materials on its
southeastern side (Rea et al. 2002a, b).

In the following centuries, historical sources and numerous archaeological finds
point to a new phase in the building’s use. On the one hand, it was in part utilized
once again, though for activities quite different from beforehand. On the other,
demolition continued and the monument was stripped of its precious building
materials, travertine and marble in particular.

Written evidence from the late 10th century strongly suggests that several
arcades and spaces under the steps were occupied by lime workers, who were
attracted by the abundance of marble and travertine, which when burnt provide a
rich source of lime. Thus, extensive fires were likely used to break up some piers
and thus cause partial structural collapse.

A strong earthquake with epicenter in the Apennine mountains took place in
1349, as testified to by Petrarch: “cecidit aedificiorum veterum neglecta civibus,
stupenda peregrines moles”. According to several historical sources, arcades of the
southern external ring collapsed. In the late Middle Ages, the monument was
inhabited and during the 13th century, Palazzo Frangipane, amongst other build-
ings, was built in the southeastern sector, while a hospital was opened in 1381.
Until the end of the 17th century the building complex was used for a wide range of
work activities, either in succession or at times even co-existing, such as a manure
depot or saltpetre production for a nearby gunpowder factory. No work was done
until Pope Pius VII (1800–1823), and later Leo XII (1823–1829), Gregory XVI
(1831–1846) and Pius IX (1846–1878) presided over a lengthy process of
restoration of the entire amphitheater.

The stability of the external wall was cause for concern, since only the 39 arches
overlooking the Esquiline hill were still left standing and the balance of thrusts and
counterthrusts in the circumferential direction had been interrupted. Stern, Palazzi
and Camporesi constructed the southern buttress, which was completed in 1807
(Fig. 7.28), while Valadier added the buttress on the opposite side (Fig. 7.29).
Despite the reinforcement work, carried out by Stern in the years 1806–1820
and by Valadier in the years 1823–1826, the external wall continued to rotated
outwards.
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Therefore later, in 1850, Canina installed a series of three chains in corre-
spondence to the thirteen central arcades (Fig. 7.30). In order to anchor the radial
chains in the uppermost part of the external wall, 13 piers of the third level were
reconstructed and 13 pairs of chains were installed on the upper floor of the second
level. Once anchoring the wall structure had been completed, the chains were
positioned in pairs on the same level as the vaults. The chains placed on the
third-level floor were about 16 m in length and made of two pieces joined by hooks.
These were linked together by passing horizontal iron bars through the chain links
and then linking the bars themselves with a single piece of chain 9 m long linked by
means of a vertical bar.

Fig. 7.28 The stern buttress

Fig. 7.29 The Valadier
buttress
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A similar system of iron supports were used to create anchorage on both the
external facade and the intermediate pier using iron wedges and buffers. Canina’s
work of fitting the Colosseum with chains effectively completed the consolidation
measures. The entire central area of the northeast wall was stabilized for the first
time and the efficacy of these measures can still be appreciated today, 150 years
after they were carried out.

While the buttresses built by Stern and Valadier restore the balance of the thrusts
of the circumferential arches, the chains installed restrain the external wall of the
amphitheater in the radial direction. With these measures, the restored Colosseum,
despite the damage it had suffered, was probably safer than it had ever been.

7.3 Possible Causes of the Damage

The causes of the damage suffered by the Colosseum over the centuries are still a
matter for conjecture. As there in no proof of differential subsidence of the foun-
dations, the evidence points to either past earthquakes (Croci and Viscovitch 1993;
Cerone et al. 2000) or the systematic dismantling of the structure in the past
(Conforto and Rea 1993; Coccia et al. 2005; Como et al. 2006).

Fig. 7.30 The chains fitted by Canina at various levels together with new piers
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7.3.1 Seismic Excitability of the Monument: Soil-Structure
Interactions

The seismicity of Rome is quite moderate. Nevertheless, during its over 2,500 years
of history, the city has been struck by a sizeable number of earthquakes, many of
which caused quite severe damage to its artistic patrimony. According to the Italian
earthquake catalog, spanning more than two thousand years, the major effects are
exclusively due to Apennine seismicity, which in some cases generated in Rome
intensities of up to VII–VIII on the Mercalli intensity scale (MCS) (Guidoboni
1994; Molin and Guidoboni 1989). Local geological conditions, however, played a
major role in transmitting the actions that caused the damage: buildings located
over sedimentary fillings of the River Tiber are particularly subject to damage. As
actually observed, during earthquakes, the surface ground motion in sediment-filled
valleys may be significantly amplified and prolonged (Moczo et al. 1995).

The soils underneath the Colosseum, even if not completely known. are com-
posed by soft alluvial deposits. Only on the North side there are stiffer Pleistocene
soils. This non uniform soil condition could have further amplified the ground
motion (Moccheggiani Carpano 1977; Bozzano 1995; Funiciello et al. 1995, 2002;
Sciotti 2004). It is thus reasonable to attribute to the foundation soil of the
Colosseum the same maximum intensity level of the seismic motion recorded in
Rome. The VII–VIII MCS degree corresponds to a range of horizontal seismic
ground acceleration of 500–1000 mm/s2. The maximum level of the ground
acceleration that we can assume, on the safe side, is thus of the order of 1 m/s2, i.e.
equal to 0.1 g. This value can be reasonably considered in examining the effects of
earthquakes on the Colosseum’s structure.

One further important aspect must however be taken into account in examining
the monument’s seismic behavior: the soil—structure interaction (Fig. 7.31).

The huge mass of the vast building, together with the presence of soft terrain,
produces in fact significant and complex interactions between the soil and the
structure. This aspect of the problem has been not yet considered in literature and
deserves consideration.

A simple model of the structure, together with the assumed elastic connections to
the underlying soil, is sketched out in Fig. 7.32. A rigid large block, representing
the monument, of mass m and moment of inertia Io about the horizontal transverse
axis passing through its center of gravity G, can be displaced horizontally and rotate
with respect to the rigid frame Oxy, considered to be integral with the soil. With
respect to the soil the system has two degrees of freedom,

uðtÞ; /ðtÞ; ð7:11Þ

the horizontal displacement and the rocking rotation. The monument cannot be
considered rigidly attached to the soil, but connected elastically by translational and
rotational elastic springs of stiffness,
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kx; k/: ð7:12Þ

The effect of the seismic action on the soil under the foundation—to which the
block is connected elastically—is to impart the horizontal motion:

sðtÞ: ð7:13Þ

Inertial forces arise and at each instant t, the dynamic equilibrium of the block is
governed by the following equations:

�mð€sþ €u� h€/Þ � kxu ¼ 0 ð7:14Þ

mð€sþ €u� h€/Þh� k//� Io€/ ¼ 0; ð7:15Þ

which can also be written in matrix form

M �DþKD ¼ M€s; ð7:16Þ

where

D ¼ u
/

� �
; M ¼ m

�mh

� �
; M ¼ m �mh

�mh mh2 þ Io

� �
; K ¼ kx 0

0 k/

� �
ð7:17Þ

are respectively the displacement and mass vectors and the mass and the stiffness
matrix of the system. The circular frequencies xI and xII of the free oscillations of
the system are solutions to the algebraic equation

G 
h 

kx

kφ

φ(t) 

x 

s(t)

O 

u(t)y 
Fig. 7.32 Simple model of
the interaction
terrain-structure

Fig. 7.31 The soil-structure interaction
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x4 Iom
kxk/

� x2 m
kx

1þ kxh2

k/
þ Iokx

mk/

� �
þ 1 ¼ 0 ð7:18Þ

The corresponding two eigenvectors are

ZðIÞ ¼ 1
mx2

I�kx
mhx2

I

� �
ZðIIÞ ¼ 1

mx2
II�kx

mhx2
II

� �
: ð7:19Þ

The first components of these vectors define translational displacements, while
the second refer to rotations. Under the action of the seismic waves passing through
the soil the overlying monument absorbs various amounts of energy depending on
its oscillation periods. The values taken by the participation factors G1 and GII, i.e.,
components of the inertia vector G of the dragging motion produced by the seismic
action (Como and Lanni 1979), are

G1 ¼ 1
l1

ZðIÞ
1 M1 þ ZðIÞ

2 M2

� �
G2 ¼ 1

l2
ZðIIÞ
1 M1 þ ZðIIÞ

2 M2

� �
: ð7:20Þ

Factors GI and GII are the components along the vectors ZðIÞ and ZðIIÞ of the
inertia vector G, representative of the dragging motion of the monument induced by

seismic action s(t), while ZðIÞ
1 , ZðIÞ

2 , ZðIIÞ
1 , ZðIIÞ

2 are the translational and rotational
components of the two eigenvectors ZðIÞ and ZðIIÞ. The constants M1 and MII are the
components of the mass vector M, defined in (7.17), and l1 and l2, the generalized
masses

li ¼ ZðiÞTMZðiÞ: ð7:21Þ

It is now necessary to calculate all the various geometric, inertial and geotech-
nical quantities involved, as follows.

Foundation weight. Area of the elliptical base annulus: 20,295.0 m2; height of
the foundation: 12.40 m; Foundation weight: Wf = 46,000.0 t; Distance between
the center of gravity of the foundation annulus and the foundation plane:
df = 6.20 m.

Weight of all the radial walls: Ws = 48,240.0 t; ds = 20.60 m; Weight of the two
podium walls: Wmp1 = 11,374.0 t; Wmp2 = 4,664 t; dmp1 = 15.60 m.; dmp1 =
13.90 m; Weight of the staircase terraces: Wg = 63,848.0 t; dg = 24.00 m.

Weight of the circumferential vaults and walls: Wp = 718,200.0 t; distance
dp = 25.00 m.
Total weight of the monument: WT = 1,313,326.0 t.
Distance between the center of gravity and the foundation plane: d = 18.00 m.
Total mass of the monument: m = 133,876t � s2 � m−1.
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Moment of inertia Io = 10,724,606t � m � s2.
Elastic constraints between soil and foundation.

The soil is mostly composed of soft alluvial deposits: the corresponding value of
the modulus of elasticity, E, ranges between = 1000 and 2000 t/m2. Consequently,
the shear modulus G ranges between 500 and 1000 t/m2.

The elliptical foundation annulus can be approximately represented by a circular
annulus with external and internal radii equal to Rme = 171.5 m and Rmi = 59.5 m.
The elastic sliding and rocking stiffnesses of a rigid annulus resting on the surface
of an elastic half-space can be evaluated approximately by extending to this case the
expressions obtained for a rigid circular footing (Hall 1967). We thus have

kx ¼ 32ð1� mÞ
7� 8m

¼ G Rme � Rmið Þ k/ ¼ 8
3ð1� mÞG R3

me � R3
mi

� 	 ð7:22Þ

With the value of modulus G = 455 t/m2, which results from assuming
E = 1000 t/m2 and m = 0.1, we get kx = 236,709 t/m; k/ = 6,516,349,570 tm. By
doubling the value of G, we double the values of constants kx and k/. and can now
evaluate the periods of the two free oscillation modes of the monument. From
Eq. (7.18), we obtain x2

I ¼ 1:747 r/s; x2
II ¼ 614:686 r/s, hence, the corresponding

periods of free vibration are TI = 4.75 and TII = 0.253 s.
It should be noted that doubling the assumed values of the shear modulus G,

yields periods TI = 3.35 and TII = 0.29 s. The oscillations modes, according to
Eq. (7.19) and the first choice of G, are

ZðIÞ ¼ 1
�0:000659

� �
ZðIIÞ ¼ 1

0:0554

� �
ð7:23Þ

The first, very high-period mode is practically purely translational. The second
mode, lower in period, is quasi-translational. The generalized mass factors, given
by (7.21), are lI = 137,061t � m � s2 and lII = 32.917t � m � s2.

The seismic input is a dragging horizontal motion that nearly exclusively acti-
vates the first oscillation mode. The participation factors G1 and GII, evaluated
according to Eq. (7.20), are in fact: GI = 0.988; GII = 0.012. By using the common
spectrum response equation defined by Italian seismic codes as

RðTÞ ¼ 0:862=T2=3 ð7:24Þ

we obtain R(4 s) = 0.34. Thus, while the maximum possible ground acceleration is
of the order of 0.1 g, the maximum acceleration that can effectively reach the
monument is only about 1 m/s2 � 0.34 = 0.34 m/s2. With the value of the period
T of 4 s, that is out of scale, by extrapolation, we can obtain similar valuations by
the actual response spectrum given by the Italian Code (NTC 2009).

Because of the uncertainties in the geotechnical definition of the foundation soil,
the period TI of the horizontal oscillation mode has also been evaluated assuming
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larger values of the soil’s elasticity modulus. By choosing the value E = 8000 t/m2,
eight times larger than that previously assumed, we get TI = 1.7 s. and the response
factor becomes R(1.7) = 0.7, still below unity. As a consequence of the monu-
ment’s large mass, even in the case of stiffer soil the spectral acceleration remains
below the maximum possible ground acceleration and turns out to be
0.7 � 1 m/s2 = 0.7 m/s2.

Now, regarding the vertical seismic motion, the possible vertical ground
acceleration due to an earthquake amounts to only small shares of g, thereby
corresponding to vertical forces that would produce negligible effects.

Concluding, the intensity of the seismic shear waves, that propagate from the
bedrock up to the surface, grow gradually as they traverse softer soils, but their
action on the mass of the monument is mitigated due to the soil-structure interac-
tion. The fundamental frequency of the monument is in fact much lower than the
predominant frequency of the ground motion, in consequence of the large mass of
the monument and of the underlying layer of soft soil which interacts elastically
with the structure.

The first dynamic mode of the monument thus involves only rigid translational
oscillation. The higher modes, which can produce deformation to the monument,
are orthogonal to the first mode and consequently also to the ground motion. These
higher modes do not participate in the motion, so that the high energy contained in
the ground motion is only weakly transmitted to the monument.

7.3.2 Seismic Strength of the Monument

The seismic strength of the Colosseum’s structure can be evaluated roughly a via
push-over analysis. The predominance of the translational mode suggests that the
horizontal accelerations can be assumed constant across the various masses of the
monument. A gradually increasing distribution of horizontal loads, linearly pro-
portional to the masses, will thus represent the push—over loading condition quite
closely.

Figure 7.33 shows the plan of the monument under the action of horizontal
seismic forces. These forces act normally to the northeastern and southwestern
façades. The southwestern half of the entire ring vault, which the horizontal seismic
action pulls and forces to expand outward, detaches from other half, which, being
an arched dam, is instead compressed by horizontal pushing loads. Only one half of
the monument would thus fail under the action of an earthquake.

By considering the half of the whole ring vault pulled by the seismic loads, at
first sight, we might come to the conclusion that collapse of this vault could
effectively occur through the four-hinge mechanism illustrated in Fig. 7.34.
However, deformation of the vault must be consistent with the assumptions of no
sliding and no masonry interpenetration. When other parts of the building are
considered, on the other hand, some difficulties arise. The ring vault is underlain by
the piers and circumferential arches. As can be seen from Fig. 7.34, each pier must
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undergo movements in plan in the two orthogonal directions to rigidly follow the
displacements of the circumferential vaults. Plane translation of the head of a pier
corresponds to its being lifted.

Consequently, the rise experienced by the various piers would not always be the
same, so the vaults must distort, with likely masonry interpenetration. Within the
framework of the simple model of rigid in compression no-tension materials,
compatible displacement mechanisms of the ring walls could thus not exist and the
collapse load cannot be obtained by means of simple limit analysis.

Evaluation of the horizontal seismic strength of the monument has required the
use of special nonlinear programs, in particular, DIANA (2000–2009)—a
finite-element structural analysis program that enables solving a wide range of
nonlinear problems, and which is particularly useful in the presence of materials
exhibiting different behavior under tension and compression.

As for as the input data, we assume for the material a uniaxial r−e diagram, with
a low tensile strength (Fig. 7.35). The crushing strength of both travertine and
concrete has been assumed to be 2,500 N/cm2. In brief, with reference to Fig. 7.35,
the assumed material parameters are:

Fig. 7.33 Plan of the
Colosseum and direction of
seismic actions

Fig. 7.34 Possible collapse
under seismic loads of the
southwestern ring vault
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ft = 0.3 N/cm2; Gt = 0.00045 Ncm/cm2; fc = 2,500 N/cm2; Gc = 400 Ncm/cm2;
E = 2 � 106 N/cm2; m = 0.2, where ft and Gt are respectively the tensile strength
and the fracture energy. Likewise, fc and Gc are the corresponding values for the
compression.

While the vertical dead load is kept constant, the horizontal push-over loads are
gradually increased until failure is reached. At each loading step the corresponding
horizontal displacement at the top of the monument has been evaluated; the
resulting force—displacement diagram is plotted in Fig. 7.36, which enables esti-
mating the collapse load, as it occurs at the horizontal tangent point. The loading
parameter k—the ratio between the horizontal force and the weight—reaches the
value ko = 0.122. Figure 7.37 shows the broadening of the wall at collapse
(Marasca acad. y. 2004–2005; Como et al. 2006).

The value ko = 0.122 of the collapse multiplier of the horizontal loads repre-
sentative of the seismic action, is the average collapse acceleration of the monu-
ment, equal to 0.122 g. On the contrary, the average expected acceleration that can
strike the monument, according the previous considerations, results to be, at the

Fig. 7.35 Assumed uniaxial
r–e diagram

Fig. 7.36 Force—displacement diagram
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most, of the order of 0.7 m/s2., i.e. equal to 0.07 g, i.e. at least about 1,7 times
greater than the acceleration that could cause the collapse.

The horizontal strength of the monument is thus noticeably in excess of the
possible maximum seismic forces that could have reached the monument
throughout the whole of its history.

The situation would be substantially different if the monument were already
damaged, which may explain the partial failures occurred during the past
earthquakes.

7.3.3 The Dismantling Hypothesis

Demolishing large parts of the Colosseum was certainly not an easy operation. It
was probably carried out by provoking intentional failures, such as by burning the
interiors of some of the travertine piers. The documented activities inside the
monument of lime workers, who burnt marble and travertine to obtain lime, points
to the use of fire to produce breakage of some piers and consequent partial failures
of the monument. The demolition of one or two piers has been simulated via the
program DIANA. The elements’ weights are gradually applied to the structure
deprived of the (demolished) piers on the first level.

According to the simulation, the destruction of one single pier does not lead to
collapse—the monument would still remain standing after its demolition.
Figure 7.38 shows the stress field in the monument after the razing of a single pier.

Fig. 7.37 Broadening of the outer wall at collapse (Como et al. 2006)
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The demolition of two piers, on the contrary, would bring about collapse of the
entire section of the outer ring wall overlying the two piers involved. Figure 7.39
shows the failure configuration of the monument after two lower-level piers of the

Fig. 7.38 Equilibrium configuration of the Colosseum structure after demolition of only one pier
of the outer wall (Como et al. 2006)

Fig. 7.39 Partial failure of the outer wall due to demolition of two piers (Como et al. 2006)

412 7 The Colosseum



outer ring wall have been demolished. Figure 7.40 instead shows the load–top
vertical displacement diagram obtained by step-by-step calculations as the monu-
ment’s initially very low weight is gradually increased.

Dismantling the monument by razing individual piers would therefore have
required the simultaneous demolition of at least two piers. This could have been
accomplished by boring holes in some nearby piers, inserting colophony in the
holes and igniting it. Historical documents indicate that dismantling operations
were performed on the Colosseum as early as 6th century (Rea et al. 2002a, b).

7.3.4 Conclusions

The local site effects, due to the presence of alluvial deposits in the soil underlying
the monument, produce great amplification of the seismic input that can reach the
foundation soils of the Colosseum. Nevertheless the intensity of the seismic action
that can really strike the monument is greatly mitigated by the soil—interaction
effect.

The enormous mass of the Colosseum endures always high values of the fun-
damental period of oscillation, quasi purely translational, that become, at any rate,
larger than 3–4 sec, varying the values of the deformability moduli of the soil in a
wide interval. Consequently, only the terminal side of the response spectra becomes
interested by the monument oscillation.

On the other hand the valuation of the lateral horizontal strength of the monu-
ment, in its original configuration, gives a collapse average acceleration that results
to be at least the double, if not greater, of the expected seismic input. The
Colosseum, in its original configuration, is thus not very vulnerable to seismic
actions.

Fig. 7.40 Load—top vertical displacement diagram with gradually increasing monument weight
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In this framework the conjecture of the systematic dismantling of the monument,
confirmed by the evidence of lime workers inside the monument as early as 6th
century, becomes much realistic. The damage that the monument suffered over
nearly 17 centuries of its existence cannot be attributed solely, or even mostly, to
earthquakes. Instead much of the severe damage wreaked on the Colosseum has
come from the intentional demolition of many of its structures in order to reutilize
its precious constituent materials. As soon as the continuity of the ring wall was
broken, the external wall bulged outwards and, the consequent lack of connections
between the radial and circumferential walls immediately led to an intrinsic
weakness in the entire structure. Once cut off from the inner radial wall, the external
circumferential wall became extremely vulnerable, and in such a seriously com-
promised state an earthquake would have produced devastating effects.

Concluding, the gradual weakening of the monument due to the forced demo-
litions, accompanied by the recurrent earthquakes, can be both considered the real
causes of the serious damage suffered by the monument.
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Chapter 8
Cantilevered Stairways

Abstract Statics of cantilevered masonry stairs, the so-called “scale alla romana”,
is the subject of this chapter. The flights of these stairs are cantilevered from a wall
and connected by small vaults constituting the landings. The flight is composed of a
long masonry vault having a depressed transverse sectional profile. For this type of
structure the existence of an admissible equilibrium may appear paradoxical. A new
resistant model of these stairs is proposed in the no tension context. The model is
validated by numerical investigations and comparisons with tests.

8.1 Geometry of Cantilevered Stairways

There are many different types of masonry stairways. One very common type in
Italy is the so-called “scale alla romana” (Roman stairs), whose flights are can-
tilevered from walls and connected by small vaults constituting the landings. In the
following sections such an arrangement will be referred to as “cantilevered
stairways”.

Figure 8.1 shows the plan of this type of stairs. Usually there are three straight
flights winding around an open well, four intermediate landings and a long
floor-level landing, or stairhead, that provides access to the different quarters on
each story (Franco 1997; Di Luggo 2008; Galiani 2001). Figure 8.2 shows a view
of the corner where the flight meets the landing composed of a quarter cloister
vault.

The structure of the flights is composed of a long masonry vault having a
depressed transverse sectional profile. They are built with bricks or stones laid in
different arrangements (Fig. 8.3).

A thick layer of rubble and mortar is cast over the vaults, and the steps built on
top of these bases (Figs. 8.3 and 8.4).

© Springer International Publishing AG 2017
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Fig. 8.1 Cantilevered stairway with open well and landings made up of quarter cloister vaults

Fig. 8.2 Stair corner at the flight-to-landing intersection

Fig. 8.3 Typical section of a cantilevered flight
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8.2 Brick Layout

Figure 8.5 shows the typical brick pattern of a cantilevered stair with three flights
and a long main landing. The stair angles around in the clockwise direction. Blocks
—either stones or bricks—are laid along the axes of three-dimensional curves. The
geometrical layout reveals the aim of the builder to keep the brick courses tight on
the centering during construction.

Construction of a flight progresses bottom-up. The first course blocks are
positioned parallel to the borders of the lower landing. Subsequent courses are then
laid along arches in a gradual curve towards the well-hole, i.e. towards the flight’s
inner sides. As the construction progresses, these arches are made longer and
longer. The positioning of the blocks is maintained up to reaching the stairwell
edge.

The lowest, skewed band of a flight is built first. Then the central band follows,
built with bricks laid following the curve of the last course of the lowest band. The
addition of the upper band concludes construction of the flight.

Fig. 8.4 Centering and
scaffolding used to build
cantilevered stairs (Giovanetti
1997)
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8.3 Other Types of Stairs

In some cases, the length of the stairhead does not allow for an open well. In such
cases piers are constructed at the corners of the stairwell (Fig. 8.6). In the case of
stairways with a central spine wall, the flights are composed of long barrel vaults
(Fig. 8.7).

Fig. 8.5 Brick layout of a typical cantilevered stairway (Formenti 1893)
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8.4 Paradoxical Static Behavior of Cantilevered Masonry
Stairs

To anyone used to working in the framework of reinforced concrete structures,
cantilevered masonry stairways must give the impression of extreme static insta-
bility. In such a perspective, the existence of an admissible equilibrium under loads
may appear paradoxical. A widespread opinion holds that these structures are
unsafe (D.M. 1986).

There are undoubtedly difficulties in formulating a consistent static model for
these stairs taking into account the substantial incapacity of masonry to sustain
tensile stresses. Their behavior has in fact long been the subject of study. Figure 8.8
shows a photograph of a gypsum model of a cantilevered stairway under loading
tests (Lenza 1983). By increasing the loads, the first cracks occur transversely, at
the middle of the free edge. Actually, it was expected that cracks would appear at
the extrados, parallel to the axis of the flight, near the wall. No such cracks were
however detected and the outcome has been a matter of debate (Baratta 2007).

Fig. 8.6 Stairway with well on piers

Fig. 8.7 Stair with spine wall
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8.5 Numerical Investigations on Statics of a Single
Cantilevered Masonry Flight

Various working hypotheses can be formulated. In place of the cantilever model, in
which loads transmission occurs through bending and shear in the transverse
direction, we could instead imagine longitudinal loads transmission, able to
mobilize longitudinal resistant arches. However, as can be easily appreciated, even
if such systems could actually be achieved, they would transmit very high thrusts,
generally incompatible with ordinary staircase geometries.

The weight of the flight must be sustained by the wall in which it is embedded.
The longitudinal contribution made by the intermediate landings, made up of thin
cloister vaults, is in fact negligible with respect to that offered by the wall. So we
can assume that the weight of the flight is conveyed wholly to the wall. By this
simplifying assumption, the long vault is also subjected to torsional actions and the
problem thus becomes understanding how transmission of such torsional loads can
occur in the framework of no-tension behavior.

In this regard, one numerical investigation has been conducted (Soccolini 2008–
2009) using the nonlinear program ATENA (Cervenka 2002), which can take into
account both the presence of very weak tensile strength as well as the occurrence of
cracks. The numerical analyses were conducted first considering a long horizontal
vault cantilevered from a side wall. The vault section was a quarter circle with end

Fig. 8.8 Cracking pattern
detected in the middle section
of a gypsum model of a flight
of stairs (Lenza 1983)
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constraints unable to sustain vertical loads. Figure 8.9 shows a section of the vault
inserted into the wall.

The vault is 12 cm thick, with internal radius R = 1 m. The length of the hor-
izontal vault is 3 m. The loads per unit vault length, constant for the entire section,
are:

masonry weight gp = 350 kg/m,
rubble weight gr = 860 kg/m,
live load: q = 400 kg/m.

The r-e equation is linear, with a tensile strength of 1 kg/cm2 and a compression
strength of 200 kg/cm2.

The loads are applied gradually through 31 successive steps. Figures 8.10 and
8.11 show the resulting cracking patterns at the extrados and intrados of the vault,
respectively. The cracks are very thin and for the most part indicate the direction of
the compressions. Figures 8.12 and 8.13 show the principal directions of stress
respectively on the extrados and intrados.

The resulting transverse cracks, vertically cutting the external longitudinal edge
of the vault (Figs. 8.11 and 8.12), match the cracks detected by Lenza (1983) in the
previously mentioned tests on a gypsum model of a flight of stairs (Fig. 8.8). The
same analysis was then conducted on an inclined flight. The trials regarded a
vertical stairway height of 1.70 m and a linear flight length of 30 m. Figure 8.14
shows the resulting cracking pattern on the extrados. Comparing this figure with the

a 

a 

Fig. 8.9 Transverse vault
section assumed in the first
numerical study

Fig. 8.10 Cracks at the
extrados
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Fig. 8.11 Cracks at the intrados

Fig. 8.12 Principal stress directions on the extrados

Fig. 8.13 Principal stress directions on the intrados
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analogous Fig. 8.11 for the horizontal vault shows that the crack patterns are
substantially similar, even if the influence of the inclination is noticeable. The
results for the intrados cracking are the same.

Figures 8.13, 8.14 and 8.15 clearly reveal the occurrence of a longitudinal
arching effect, with springings at the connection of the external vault edge with the
landings. Thus, the loads are conveyed transversely to the wall along vertical
half-arches compressed by the pushing action exerted by longitudinal arches.

The cracking pattern confirms the occurrence of such longitudinal and horizontal
arching. The resulting cracking patterns are similar to those occurring on the
intrados near the key section of a masonry arch under vertical loads. Comparing the
cracking pattern on the intrados and the extrados in Figs. 8.11 and 8.12 shows that
the longitudinal flat arching arises mainly towards the vault extrados.

8.6 Resistant Model of the Horizontal Stair Flight

For the sake of simplicity, let us first examine the case of a vault with an horizontal
axis. Any section of the long vault is subjected to a distributed torsional load

mT ¼
X

i

gixi ð8:1Þ

as shown in Fig. 8.15. The problem is the evaluation of an internal distribution of
compressions able to oppose the torque (1).

No mechanism can be mobilized by the vault, rigidly fixed in the side wall and at
the end landings. Thus the vault will certainly activate a resistant compression

High side Side towards the wall

Fig. 8.14 The inclined flight. Cracks at the extrados
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system inside. According to the results of the previous numerical investigations, we
assume that the vault mobilizes a resistant system composed of (Fig. 8.16):

(a) a series of longitudinal flat arches Ai, contained within the vault along hori-
zontal planes pi, included in the thickness of the side landings, which transmit
their thrusts to the intersection of the flight’s edge with the landings;

(b) a series of transverse vertical half-arches conveying the vertical loads to the
longitudinal side wall.

In such a conception, the resistant system is able to sustain the torsion due to the
misalignment between the resultant load g and the vertical wall reaction, assumed to
pass through the point O, the toe of the flight section.

The key point is the compression development within these transverse
half-arches, compression that enables them to transmit the vertical loads to the side
wall. This compression is produced by the horizontal loads pi conveyed by the
longitudinal flat arches according to the scheme shown in Figs. 8.16 and 8.17.

Fig. 8.16 Generation of the
resistant system of a flight of
stairs

gi 

O

y

x

xi 
Fig. 8.15 Generation of the
torsional load in the
transversal vault sections
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To each uniform load pi there is one corresponding longitudinal arch of the
series.

Each of these longitudinal arches, denoted with Ai, is contained within an hor-
izontal plane pi, horizontally crossing the profile of the flight section (Fig. 8.18).

The system, constituted by a single cantilevered flight with the two side landings
fixed at rigid boundary walls, cannot become deformed by mechanisms. Masonry
interpenetration takes place as soon as the loads are applied, so that only com-
pression stresses can develop.

For the sake of simplicity, we assume that each of these arches Ai is parabolic in
profile, so that the horizontal load pi acting on the single arch is constant along the
flight. The abscissa xi of Fig. 8.18 defines the horizontal distance from the vertical
plane passing through the toe O of the point of interception of the plane pi with the
vertical direction of the corresponding weight gi, considered in sequence as from
the external edge.

O

Og

pi 

pi 

Ni 

Ni 

Fig. 8.17 Part of a flight subdivided into voussoirs, with the acting horizontal forces transmitted
by the longitudinal arches, and the corresponding pressure line

a

y

x

yi 

xi 

gi 

pi 

g

xG O

D

a

Fig. 8.18 The torsional equilibrium of the transversal vault sections
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We can subdivide the section profile into a given number of voussoirs and then
evaluate the corresponding weights gi. The outer voussoir will be excluded because
flat horizontal arches cannot form in the more external band.

It will be useful to trace the horizontal line a–a from the external corner of the
intrados of the flight section: this line borders the lower plane of the part of the
section where the lowermost horizontal arch takes place. Horizontal segments are
then traced above this line to indicate other planes where horizontal arches form.

The load pi can be obtained by trial procedures so that the funicular curve of the
loads pi and of the weights gi, passing through O, is wholly contained within the
transversal arch. The stresses are only compressions, i.e. statically admissible.

A small settlement will occur due to a small widening of the wall cage under the
action of the thrust of the flights. The research of the loads pi will be thus conducted
minimizing the thrust carried by transversal arches to the side wall. Through trial
and error, the horizontal forces pi can be found minimizing the resultant of the loads
pi. The loads pi will be located mainly in the upper part of the profile, as sketched
out in Fig. 8.18.

A pressure line can be traced to remain as high as possible within the section and
pass through point O. Forces pi in the lower part of the section can generally be
neglected and an iterative procedure can be applied.

Following up the previous considerations, we can affirm that for any distribution
of weights gi it will be possible to specify a distribution of constant horizontal
forces

pi ð8:2Þ

which, together with the weights gi, give rise to a transverse pressure line wholly
contained within the section of the flight and passing through the toe O. The sag fi
of each flat arch is

fi ¼ D� xi ð8:3Þ

and the corresponding thrust conveyed at the springers is

Si ¼ piL2

8fi
ð8:4Þ

The overall thrust thus is

S ¼
X

Si ¼ L2

8

X pi
D� xi

: ð8:5Þ
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According to Fig. 8.18, we have

X

i

gixi ¼
X

i

piyi ð8:6Þ

The resultant g of the loads gi

g ¼
X

i

gi ð8:7Þ

has distance xG from the toe O

xG ¼
P

gixi
g

ð8:8Þ

Figure 8.19 show the plan of the transversal vault with the assumed parabolic
horizontal arches Ai conveying the load pi to the transversal arches.

Summing up all the loads pi acting on the voussoirs constituting the vault, we
obtain the horizontal load po representing the pushing load per unit length, con-
veyed by the vault to the side wall

po ¼
X

i

pi ð8:9Þ

The uniform load po, distributed along the length L of the vault, is equilibrated
by the two total shears T, the total transverse components of the action transmitted
by the vault to the side landings (Fig. 8.20)

poL ¼ 2T ð8:10Þ

The two resultant shears T oppose the pushing load po transmitted by the lon-
gitudinal wall to the vault. We can thereby obtain the arm h* of the resisting global
torque gLd (Fig. 8.20).

pi 

S
T

S
T

Fig. 8.19 Horizontal flat arches, interaction load pi, total thrust and shear S, T
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For the global torsional equilibrium we thus obtain, with reference to (8.1)

mTL ¼ L
X

i

gixi ¼ LxGg ¼ 2Th� ð8:11Þ

and

h� ¼ gLxG
2T

: ð8:12Þ

The resulting internal stresses is both admissible and in equilibrium with the
loads.

8.7 Inclined Stair Flight

Let us now consider the case of a flight of stairs whose axis is inclined by an angle
/ with respect to the horizontal (Fig. 8.21). The section of the flight is the same as
in the previous case of a horizontal axis, as are the reference axes in the section.

In the figure the upper line represents the external edge of the flight while the
dotted line the internal edge, in contact with the wall. The overall torque is now
expressed by

MT ¼ g cos / � L � xG ð8:13Þ

S T

TS

L

po 

g

O

O
’

h*

xG 

Fig. 8.20 The vault in its condition of global equilibrium

430 8 Cantilevered Stairways



Shears T, misaligned with the pushing load po, balance the torque (8.13)
according to the relation

2Th� cos / ¼ g cos / � L � xG: ð8:14Þ

Compared with the previous case of the horizontal flight, if the torque now
decreases, so does the arm of the resistant torque and

2Th� ¼ gLxG: ð8:15Þ

Both the pushing loads and the thrust transmitted by the series of horizontal
arches to the side landings will have the same expressions (8.9) and (8.12) obtained
for the horizontal flight.

8.8 Cantilevered Stairways as Systems of Flights
and Landings

By using the model of the single flight with the two landings it is now possible to
formulate the resistant model for the entire stairway. The play between the longi-
tudinal flat arches and the transverse half-arches along two adjacent flights is shown
in Figs. 8.22 and 8.23. It should first be noted that the vertical components of the
thrusts of a pair of adjacent flights mutually cancel.

Figure 8.23 shows the connection between two adjacent flights and the inner
landing. Dotted lines indicate the edges of the flights and the landing with the walls.
In figure b is the angle formed by the inclined flight with respect to the horizontal,
and subscripts u and l indicate quantities of the upper and lower flights,

φ 

g 

gcosφ

gsinφ

h*
h* cosφ

L 

Fig. 8.21 Torsional load on an inclined flight
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Fig. 8.22 Interplay between longitudinal and transverse half-arches of adjacent flights

F

Sl

Su 

(u)

(l)

Tl

Tu 

β 

β 

Fig. 8.23 Canceling of the vertical components of the actions conveyed by two adjacent flights
(s) and (i). Indicated thrusts and shears are transmitted by landings
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respectively. The actions conveyed to the horizontal edge of the landing, obtained
by summing the thrust and the shear on the horizontal plane, are

ðSl cos b� TuÞ ðSu cos b� TlÞ ð8:16Þ

When the flights are equal, we have

Su ¼ Sl ¼ S; Tu ¼ Tl ¼ T : ð8:17Þ

In this case, the forces acting on each of the two edges of the landing are
(Fig. 8.24)

ðS cos b� TÞ: ð8:18Þ

Figure 8.25 shows the plan of a staircase made up of four flights and four
landings. For the sake of simplicity, the long stairhead has been omitted. The same
figure shows the shear T and thrusts S acting at the foci of the stairs.

By considering the complex of the four flights, it can be seen that at each corner
the sum of the shears T and of the thrusts S yields a resultant acting along the
horizontal diagonal of the landing constituted by one quarter of a thin cloister vault.
The overall compression force acting on the vertex of the diagonal is thus

T
diagF

Scosβ
T 

Fig. 8.24 Interactions between flights and actions on the external cage walls
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Fdiag ¼
ffiffiffi
2

p
ðS cos b� TÞ; ð8:19Þ

which, in turn, is conveyed to the corner of the staircase walls. This thrust is
relatively moderate due to the contrasting effects of the thrust component, S cosb,
and the shear, T. Figure 8.25 shows an example evaluation of the actions on the
cage walls by the flights of a typical staircase. We understand the importance of a
solid stair cage, with walls of suitable thickness.
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Chapter 9
Piers, Walls, Buttresses and Towers

Abstract This chapter is addressed to the structural analysis under vertical loads of
walls, piers, buttresses and towers. For them, the non-linear interaction between the
destabilizing effects of the axial loads and the masonry no-tension response can be
very strong. Instability analysis of the masonry pier under an eccentric axial load is
firstly studied in the wake of a significant study of Yokel. The strong sensitivity of
the pier strength to the eccentricity of the load is pointed out and comparisons are
made with the case of reinforced concrete columns. Statics of buttresses as of
retaining walls is also developed in the chapter. For these structural systems the
occurrence of inclined lines of cracks has a not negligible influence on their
strength. Static analysis of building masonry walls is then examined. For them the
presence of offsets of the wall thickness at the various stories plays a relevant role.
Instability of towers whose behavior can be strongly influenced by foundation
deformability, is analyzed at the end of the section. Special attention has been given
to the stability analysis of the Pisa Tower, which recently underwent an outstanding
restoration work.

9.1 Introduction

Topic of this chapter is the study of statics of piers, walls, buttresses and towers
under vertical dead loads. Particularly, owing to their geometry, the behavior of
piers, walls and towers under vertical loads presents specific aspects whose analysis
requires assumptions and approaches different from those considered so far. In fact,
elastic masonry deformation, which is generally disregarded in arches and vaults
because it yields negligible effects on their statics, in masonry piers and walls has
instead important consequences.

Main aspect of the problem is the nonlinear interaction occurring between
changes in geometry and the no-tension response of the masonry: such interactions
lead to high susceptibility of piers and walls to axial load eccentricities—far greater
than that of reinforced concrete piers or steel columns to similar actions.

© Springer International Publishing AG 2017
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Furthermore, building walls under vertical loads exhibit complex behavior,
which is moreover strongly dependent on their state of conservation. The con-
nections between walls and floors may in fact degrade over time, in which case,
slow lateral deformation of the walls can significantly increase the axial load
eccentricities and, consequently, their destabilizing effects. The cracking patterns in
walls can furnish useful information for deciding on the most suitable repair and
reinforcement operations to adopt. Similarly, nonlinear stability analysis is also
required to study the equilibrium of a tower. Such analyzes, aimed at evaluating any
tilting, can in many cases be performed taking into account the deformability of the
foundation alone. The basic problem of evaluating the strength of eccentrically
loaded piers and walls will be analyzed first in the next sections. Subsequently,
many particular aspects of the statics of masonry piers, walls and towers will be
examined and exemplified through some important case studies. The study of
statics of buttresses and retaining walls, not influenced by elastic deformations but
from the occurrence of inclined cracks, is also included in the chapter.

9.2 Piers

9.2.1 Masonry Piers Under Eccentric Axial Loads:
Mechanical Aspects of the Problem

Eccentrically loaded masonry piers behave very differently from reinforced con-
crete columns. A regular series of cracks occurs in reinforced concrete piers, and the
concrete between adjacent cracks bears the tensile stresses: this effect, usually
called tension stiffening, attenuates the nonlinear response of the column.

In masonry piers, on the contrary, cracking spreads diffusely throughout wide
areas of the structure, and the nonlinear effects are much more severe: they strongly
reduce the pier’s strength. Even small eccentricities of the axial loads can produce
serious reductions in strength.

In the stability analysis of masonry piers it is usually assumed that the elastic
strains vary linearly with distance from the neutral axis across the sections of the
piers, if eccentrically loaded. The eccentricity e of the axial load P measures the
distance of the point load, i.e. point C of application of load P, from the center of
the section. The distance of point load C from the compressed edge of the section is
indicated by u. For the sake of simplicity, we shall refer to rectangular pier cross
sections. The section is wholly compressed (Fig. 9.1) only when the point load is
included within the core of the section, i.e. when the eccentricity e of P falls within
the interval

�t=6� e� t=6: ð9:1Þ

This is the case of low eccentricities. In Fig. 9.1 the point load C is located at the
edge of the core, i.e. e = t/6. In this case the neutral axis skirts the lower edge of the
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section: the stresses exhibit the triangular distribution shown in the figure. For the
rectangular section we know that the core width equals t/3. Thus, with t the height
of the section, the above-defined distance u is equal to t/3.

Elastic flexural deformations must be taken into account in the analysis of an
eccentrically loaded pier. Such deformations increase the axial load eccentricity and
narrow the resistant areas of the pier sections. With gradually increasing axial load
intensity, this effect becomes more and more relevant and the pier may collapse.
Figure 9.2 shows the dramatic effect of the flexural deformation and the crack

Fig. 9.1 Rectangular section with the positions of its core edge. The stress distribution
corresponds to an eccentricity equal to half the core width

P 

P

u1 

u

3u

P 

P 

u

y

x

y
O

Fig. 9.2 Dramatic narrowing
effect of the pier resistant
zone due to flexural
deformations
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distribution in a masonry pier of height h, with transverse rectangular sections of
dimensions b � t, eccentrically loaded at its end sections.

The hatched area in Fig. 9.2 indicates the resisting region of the pier and
highlights the effect of the elastic bending deformations. Note that the extension of
the cracked region would result to be greatly reduced if these bending deformations
were neglected.

9.2.2 Inflexion of an Eccentrically Loaded Cracked Pier

The inflexed masonry pier eccentrically loaded is shown in Fig. 9.2: a red curved
line marks its compressed edge. The axial load P is applied at the pier end sections
with eccentricity e falling within the interval t/2 > e � t/6, where t is the section
width. Let us proceed now to evaluate the strength of the pier taking into account its
flexural deformation interacting with the no tension response of the masonry, Such
an evaluation was first performed by Yokel (1971).

The end sections of the pier are assumed to be hinged. The constraining effects
of floors present at the head and base of piers or building walls, as well as the
presence of flying buttresses and buttresses in cathedrals piers, justify this
assumption.

The analysis refers to the pier’s compressed edge. It is in fact simpler to refer to
this edge, rather than to the pier central axis, which continuously changes position
inside the resistant sections during loading. The reference parameter is the distance
u between the compressed edge and the axis of the load P: owing to the lateral
inflexion, this distance varies along the height of the pier.

In Fig. 9.2 u1 and uo are these distances at the end and at the mid-section of the
pier, respectively. We thus have u1 = t/2 − e. As shown in the figure, distance
u gradually decreases from the top, or from the bottom, to the mid-section: the
maximum distance u1 is reached at the end sections and the minimum u0 at the
mid-section. This strong eccentricity condition at the pier end sections corresponds
to positions of the point load of P included between the edges of the section and its
core. The axial load gradually narrows all the resistant sections of the pier. (The
case of low eccentricities, i.e. corresponding to eccentricities e included within the
section core, with t/6 � e � 0, will be considered later).

The straight line defining the direction of load P, represented by a dotted line in
Fig. 9.2, passes at any section at distance u from the compressed edge. Stresses
have a triangular distribution at each transverse section of the pier: compression
vanishes at the crack tip. Along the compressed edge, the stress is

roðuÞ ¼ 2P
3bu

ð9:2Þ

where r0(u) is the local maximum stress in the section whose compressed edge is at
distance u from the P axis.
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The maximum compression stress of all the local maximum stresses r0(u),
indicated by rmax, occurs at the pier mid-section, at distance h/2 from the end
sections and equals:

rmax ¼ 2P
3bu0

: ð9:3Þ

Figure 9.3, shows the deformation of the pier’s compressed edge: the origin of
the reference axes is at the mid-section. Axis x is parallel to the direction of P and
tangential to the deformed compressed edge at the origin O. Now let y be the
distance between the line of the pier’s compressed edges from axis x. Thus, at each
section of the pier, we have

y ¼ u�u0 ð9:4Þ

and, for x = h/2, y = u1 − uo. Figure 9.4 shows a small element of the resistant
zone of the pier with its bounding cross sections. The resistant element is included
between the external edge and the boundary of the cracked zone. The distance
between the unloaded and the compressed edges of the element equals 3u. The
length of the element, from the unloaded side, is dl, whereas the length of the
compressed edge is dl − e dl, with e the strain in the external compressed edge.
A relative rotation d/ occurs between the side sections of this element, as shown in
Fig. 9.3.

Fig. 9.3 Inflexion curve of
the compressed edge with
reference axes xy

Fig. 9.4 Curvature of the
compressed edge
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This rotation d/ can be obtained as

d/ ¼ e � dl
3u

: ð9:5Þ

The strain e in the external compressed edge, on the other hand, can be evaluated
according to (9.2), as

e ¼ ro
E

¼ 2P
3bu

1
E
; ð9:6Þ

where E is the elastic modulus of the masonry. Thus, taking (9.6) into account, the
relative rotation d/ becomes

du ¼ e � dl
3u

¼ 2P
9Eb

dl
u2

: ð9:7Þ

The length of the compressed side of the element, equal to dl(1 − e), can be
expressed in terms of the radius of curvature q of the curved compressed edge as

q � du ¼ dl � ð1� eÞ ð9:8Þ

Strains e are small quantities (e < 0.005) so that we can write

q � du � dl ð9:9Þ

With the reference system Oxy shown in Figs. 9.2 and 9.3 the compressed edge
is defined as

y ¼ yðxÞ ¼ uðxÞ � uo � h=2� x� h=2 ð9:10Þ

The curvature of the compressed edge, neglecting very small quantities, is

d2y
dx2

¼ 1
q
¼ d/

dl
¼ 2P

9Eb
� 1
u2

: ð9:11Þ

The factor 2P/(9Eb) is constant along x, so we can write

k1 ¼ 2P
9Eb

: ð9:12Þ

On the other hand, according to (7.10), we have

u ¼ u0 þ y ð9:13Þ

and the differential equation for the flexure of the eccentrically loaded cracked pier
becomes
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d2y
dx2

¼ k1
uo þ yð Þ2 ð9:14Þ

The following boundary conditions are associated to Eq. (9.15):

� at x ¼ h=2; i:e: at the pier head; y ¼ u1�uo; ð9:15Þ

� at x ¼ 0; i:e: at themid� section; y ¼ 0: ð9:16Þ

Integration of (9.14), satisfying the above boundary conditions (see Appendix),
yields

P ¼ 9Ebu31
h2

� a �
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
þ a ln

ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r
þ

ffiffiffi
1
a

r !" #2
; ð9:17Þ

where

a ¼ u0=u1: ð9:18Þ

Note that the eccentricity e is given by

e ¼ t
2
� u1: ð9:19Þ

Equation (9.17) expresses the relation between the flexure factor a and the
eccentric axial load P.

9.2.3 Collapse Load

Let us now define a reference critical load

Peq ¼ p2EIe
h2

; ð9:20Þ

which is evaluated by means of the moment of inertia Ie of the resistant section at
the pier head; this section has height 3u1. The moment of inertia Ie is thus given by

Ie ¼ 27bu31
12

: ð9:21Þ
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In particular, when the point load at the head section is located at the edge of the
core section, i.e. with 3u1 = t, the entire section is resistant and load Peq matches the
Euler load PE. In fact, we obtain

Peq 3u1 ¼ tð Þ ¼ p2E
h2

27
bu31
12

� �
u1¼t=3

¼ p2EI
h2

¼ PE; ð9:22Þ

where

I ¼ bt3

12
: ð9:23Þ

Taking (9.20) and (9.21) into account, Eq. (9.17) becomes:

P
Peq

¼ 4
p2

� a½
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
þ a lnð

ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r
þ

ffiffiffiffiffi
1
a
Þ

r
�2: ð9:24Þ

Equation (9.24) holds for t/2 > e � t/6, where e is the load eccentricity at the
end pier sections. Condition (9.24), first determined by Yokel (1971), expresses the
dependence of the applied eccentric axial load P on the pier inflexion at its
mid-section. The derivative of the function P/Peq with respect to variable a is
sketched out in Fig. 9.5. This derivative vanishes for

a ¼ a ¼ �a ¼ 0:6116: ð9:25Þ

Function P/Peq attains a maximum for a ¼ �a ¼ 0:6116: (Fig. 9.6). The flexure
parameter a thus equals unity when the pier is not inflexed, i.e. for P = 0. With
increasing P, the pier starts to bend and parameter uo decreases, as does factor a.
Figure 9.6 gives a dimensionless representation of function (9.24) by assuming
eccentricity e = t/6.

Fig. 9.5 The derivative of
the function P/Peq with
respect to the variable a
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The point with coordinates ða ¼ uo=u1 ¼ 1;P=Peq ¼ 0 represents the rectilinear
configuration of the pier when the axial load is zero. On the contrary, the point with
coordinates ða ¼ uo=u1 ¼ 1;P=Peq ¼ 0 corresponds to a state of cracking so
widespread as to produce an internal hinge in the pier and, consequently, vanishing
of the axial load intensity strength, as shown in Fig. 9.7. In this case, equilibrium in
the pier under zero axial load can be maintained only with uo/u1 = 0.

Using (9.19) we can trace the entire pier equilibrium path with gradually
increasing P and the given eccentricity defined by parameter u1. The equilibrium
path runs from right to left along the diagram in Fig. 9.6. Initially, starting at P = 0,
load P increases, while bending factor a = uo/u1 decreases.

The first branch of the equilibrium states describes this behavior for a varying
from a ¼ 1 to a ¼ 0:6115, just where P attains its maximum. All the points
belonging to this branch represent stable equilibrium states. At the point defined by
a ¼ 0:6115, the axial load equals P/Peq = 0.285, which is the maximum load that
the pier can sustain: any further increment of P will now lead to collapse of the pier
by loss of equilibrium.

In the end, collapse of the pier loaded axially with high eccentricity e, i.e. with
t/2 > e � t/6, will come about under the axial load

Pcr ¼ 0:285
Ie
I
PE; ð9:26Þ

where, according to (9.21), the eccentricity e is present in the expression for Ie, the
moment of inertia of the resistant section at the pier head. Alternatively, high-
lighting the dependence of the critical load on the eccentricity e at the end sections
of the pier, from (9.26) we have

P/Pe

α

Fig. 9.6 Equilibrium states of the masonry pier loaded with eccentricity: e = t/6
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Pcr

PE
¼ 0:285ð3

2
� 3e

t
Þ3 t=2[ e � t=6: ð9:260Þ

In particular, from (9.26′), when the eccentricity e equals t/6, i.e. when the load
is applied at the core edge of the end sections, we obtain Pcr/PE = 0.285. For larger
eccentricities the reduction in the critical load with respect to the Euler load is
greater. For e = t/2 the critical load vanishes altogether.

The values of P/Peq corresponding to the descending branch of the curve in
Fig. 9.6, i.e. to values of a within the interval 0:625[ a[ ¼ 0, have limited
physical significance: they correspond to the pier inflexion that can be maintained
with a load below the critical one. They are all unstable equilibrium states.

9.2.4 Pier Strength Versus Load Eccentricity

The foregoing results have been generalized by Frisch–Fay (1975) and De Falco
and Lucchesi (2000, 2003) to consider the entire variability range of eccentricity.
Figure 9.8 shows the collapse load of the pier versus the ratio eL/d, in dimensionless
form, where eL is the eccentricity and d = t the section height, considering both
weak and strong eccentricities. When the eccentricity vanishes, that is, when the
ratio eL/d is nearly 1/1000, the collapse load matches the Euler load PE given by
(9.22). As the eccentricity increases, the pier compression strength decreases: for
eL/d = 1/10 the pier strength is about 70% of the Euler load, while the pier strength
equals the above-cited strength of 0.285PE when eL/d reaches the value 1/6.

Fig. 9.7 The pier at the state
P = 0, uo = 0
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9.2.5 Influence of the Pier Weight

The pier weight is represented by a series of uniformly distributed loads, w,
equivalent, overall, to the total weightW, assumed to be non-negligible with respect
to P. The combined action of load P, applied at the pier head, and distributed loads
w is a significant and likely loading condition, frequent, for instance in the high
piers of a cathedral.

Figure 9.9 shows a pier of height 2L, hinged at its end sections, loaded by the
force P at its head and by the distributed weight w. This case is also equivalent to
that of a cantilever pier of height L under equal loads.

Figure 9.10 shows the results obtained by La Mendola and Papia (1993). The
ordinates represent the dimensionless values of the maximum head load that the
pier can sustain with the assumed ratio W/P and eccentricity ratio e/H, where
H indicates the pier section height. Inspection of the diagrams in Fig. 9.10 reveals
that the addition of weight W, if relevant with respect to P, in the presence of large
eccentricities, increases the load P that the pier can sustain. In this case, we say that
the weight W has a stabilizing effect. To the contrary, in the presence of small
eccentricities, the effect of the weight has, as a rule, a destabilizing effect. Other
load combinations have been considered, in particular, the case of a concurrent
shear force together with an axial load applied at the pier head (Como and
Ianniruberto 1995).

Fig. 9.8 Dimensionless strength Pcr/PE of a masonry pier loaded eccentrically by varying the
eccentricity factor eL/d (De Falco and Lucchesi 2003)
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9.2.6 Stability Analysis of Piers via Nonlinear Programs

The use of nonlinear programs, such as ATENA (Cervenka 2002) or DIANA (De
Witte and Kikstra 2000–2010), able to account for both material and geometrical
nonlinearities, can be very useful for analyzing the static behavior of masonry piers
with more complex geometry and load distributions. Both these programs assume
low tensile strength, as in the r − e diagram shown in Fig. 9.11 where tga gives the
corresponding elastic traction modulus of concrete.

2L

w

Fig. 9.9 Pier loaded both by
an eccentric force at its head
and its own weight distributed
along its length

Fig. 9.10 Stabilizing or
destabilizing effects of weight
W on the magnitude of the
head load P that a pier can
sustain (La Mendola and
Papia 1993)

Fig. 9.11 Tensile r� e
diagram assumed in the
nonlinear programs
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The first example presented in the following can highlight the ability of these
programs to accurately describe the behavior of masonry piers under eccentric
loads. The example considers a pier of constant section loaded at its head by an
eccentric load.

The numerical results can thus be compared with those from Eq. (9.24). The pier
has a square section with side length L = 1 m and height H = 10 m. The
stress-strain diagram is of the type shown in Fig. 9.11, and discussed in Chap. 1.
The program considers non-zero tensile strength that can be suitably reduced in the
calculations. The assumed elastic constants for the masonry are: elastic modulus,
3.032 E + 04 MPa; Poisson coefficient, mm = 0; tensile strength, 5 E – 03 MPa;
and compression strength, 2.5 E + 05 MPa. The example addresses two different
eccentricities: e1 = L/6 = 16.7 cm, and e3 ¼ 30 cm. The value of the head axial
load, assumed initially P = 3 	 10−1 MN, increases gradually. Collapse comes
about when the tangent becomes horizontal on the axial load—lateral displacement
diagram, as shown in Figs. 9.12 and 9.13. The corresponding collapse loads turn
out to be only slightly higher than the collapse loads resulting from application of
Eq. (9.24).
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Fig. 9.12 Axial load-lateral displacement diagrams for eccentricity e = L/6 = 16.7 cm
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9.2.7 Influence of Mortar Creep on the Behavior
of the Eccentrically Loaded Pier

9.2.7.1 Simplified Model of t Visco-Elastic no-Tension Pier

The creep of mortars (Shrive and England 1981), examined in Chap. 1, can sig-
nificantly, albeit slowly, increase the destabilizing effects of axial load on masonry
piers or walls. Thorough study of the problem can be performed by modifying the
previously examined Yokel formulation in order to account for the creep defor-
mation of mortar, examined in Sect. 1.13.2.1. Such an approach is however very
complex and only some simplified solutions to the problem can be obtained in
practice. One simplified creep model of an eccentrically loaded, elastic no-tension
pier considers the presence of a single central viscous, no-tension voussoir, as
shown in Fig. 9.14. A load P is applied with eccentricity e with respect to the center
G of the section at height h from its base of width L (Fig. 9.15). The pier rotates by
a small angle h under the action of the eccentric axial load P. Owing to pier rotation
h, the eccentricity of P becomes (e + hh). The distance u of the axis of P from the
external edge of the base section is thus

u ¼ ðL=2�e�hhÞ: ð9:27Þ

We can assume that only the central voussoir exhibits elastic no-tension
behavior. Thus, the equilibrium equation of the inclined pier, in the case of small
eccentricity, i.e. with (e + hh) < L/6, is

p ¼ 9
2
ðc� hÞ2h; ð9:28Þ

p

p

crp

θ

p
Fig. 9.14 Simplified creep
model of an elastic no-tension
pier
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where

p ¼ P
Eh2

c ¼ L
2h

� e
h
: ð9:29Þ

The critical state is thus reached when

dp
dh

¼ � 9
2
2ðc� hÞhþ 9

2
ðc� hÞ2 ¼ 0; ð9:30Þ

i.e. when the critical rotation

hcr ¼ c
3

ð9:31Þ

is attained. The dimensionless elastic critical load is therefore

pcr ¼ 2
3
c3: ð9:32Þ

Creep deformation of the central voussoir gradually increases the rotation of the
pier. By using the memory function considered in Sect. 1.13.2.1, in place of (9.30),
we obtain the following equation governing the evolution of the pier equilibrium
state over time:

3uðtÞhðtÞ ¼ ketotðtÞ ¼ k½ 2P
3bEuðtÞ þ ab

Z t

t1

e�bðs�toÞ 2P
3bEuðsÞds�: ð9:33Þ

u
3u

L/2
L/2

P

w

θ

e
G

Fig. 9.15 Definition of the
central viscous no-tension
voussoir
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Substituting the expression for distance, u(t), into Eq. (9.33) gives the relation
between the rotation h(t) and the dimensionless eccentric load p

n ¼ 1� 9
2
1
ap

½c2ðh� hoÞ � 3=2cðh2 � h2oÞþ 2=3ðh3 � h3oÞ� �
1
a
ln

ðc� hÞ
ðc� h0Þ ;

ð9:34Þ

where the variable n is

n ¼ e�bt; ð9:35Þ

and where for the sake of simplicity we have assumed to = t1 = 0. In Eq. (9.34), ho
and h(t) respectively indicate the initial and generic rotations, i.e., the rotations
occurring at the initial time t = 0 and at time t. The asymptotic pier rotation, for
t! 1, i.e. when n ! 0, is indicated by h1, hence, from Eq. (9.34), with n = 0 we
obtain

0 ¼ 1� 1
a
9
2p

½c2ðh1 � hoÞ � 3=2cðh21 � h2oÞþ 2=3ðh31 � h3oÞ� �
1
a
ln
ðc� h1Þ
ðc� h0Þ :

ð9:340Þ

Thus, Eq. (9.34′) furnishes the asymptotic rotation h1 produced by load P.

9.2.7.2 Critical State: The Delayed Modulus Approach

The critical state of the pier is reached when

dn
dh

¼ 0 ð9:36Þ

Condition (9.36) defines the presence of simultaneous equilibrium states at the
same time t. From (9.36) and by using (9.34), we obtain

�2h3cr þ 5ch2cr � 4c2hcr þðc3 � 2
9
pcrÞ ¼ 0: ð9:37Þ

The critical state is attained at t ! 1 if both the rotation h = hcr ∞ and load pcr ∞
satisfy the equation

�2h3cr;1 þ 5ch2cr;1 � 4c2hcr;1 þ ðc3 � 2
9
pcr;1Þ ¼ 0 ð9:370Þ
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as well as Eq. (9.34′), i.e.,

0 ¼ 1� 1
a

9
2pcr;1

½c2ðhcr;1 � hoÞ � 3=2cðh2cr;1 � h2oÞþ 2=3ðh3cr;1 � h3oÞ�

� 1
a
ln
ðc� hcr;1Þ
ðc� h0Þ : ð9:3400Þ

The quantities hcr ∞ and pcr in Eq. (9.37′) are unknowns, while the unknowns in
Eq. (9.34″) are hcr ∞,ho and pcr ∞. The last equation required for the solution is
obtained from Eq. (9.30), which gives the rotation ho at initial time t = 0 under load
pcr ∞, which yields

2
9
pcr;1 ¼ ðc� hoÞ2ho: ð9:300Þ

Substitution of (9.30′) into (9.37′) and (9.34″) yields

xð1� 3=2xþ 2=3x2Þ � xoð1� 3=2xo þ 2=3x2oÞ ¼ xoð1� xoÞ2½aþ ln
ð1� x0Þ
ð1� xÞ �

ð9:38Þ

ð1� xoÞ2xo ¼ �2x3 þ 5x2 � 4xþ 1; ð9:39Þ

where

xo ¼ ho=c x ¼ hcr;1=c: ð9:40Þ

Solution of Eqs. (9.38) and (9.39) for assigned values of the creep factor a
furnishes the values hcr ∞ and ho. The asymptotic critical load pcr ∞ is thus obtained
by substituting the expression for ho into (9.30′).

Table 9.1 reports the values of x and xo obtained by solution of Eqs. (9.38) and
(9.39) for the assumed values of creep factor. Table 9.2 shows the values of the
asymptotic rotation hcr ∞ and the initial rotation ho, together with the dimensionless
asymptotic critical load and pcr ∞ associated with the above solutions for x and xo.

The asymptotic critical loads and pcr, ∞ del have also been obtained by direct
substitution of the delayed elastic modulus

Table 9.1 Solutions of
Eqs. (7.38) and (7.39)
according to the assumed
values of creep factor a

a = 0 xo = 1/3 x = 1/3

a = 1 xo = 0.102 x = 0.390

a = 2 xo = 0.067 x = 0.415

a = 3 xo = 0.050 x = 0.430

a = 4 xo = 0.040 x = 0.441
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E1 ¼ E
1þ a

ð9:41Þ

into the elastic no-tension solution (9.30).
The critical loads have thus been obtained as

pcr ¼ 1
1þ a

2
3
c3: ð9:42Þ

These values are also reported in the last column of Table 9.2. The elastic
modulus (9.41) defines the ratio

E1 ¼ r
etot;1

ð9:43Þ

between the acting stress, which is constant over time, and the asymptotic total
strain etot;1 ¼ eel þ evisc1, which is the sum of the elastic and asymptotic viscous
strain.

The delayed critical asymptotic loads pcr, ∞ del are approximate solutions of the
critical load evaluation problem of the no-tension creep model of the pier. Although
these approximate values pcr, ∞ del are lower than the corresponding exact values
pcr,∞, they also approximate them quite closely, as is evident in the last two
columns of Table 9.2. This outcome highlights that, despite the complexity of the
problem, the simplified critical loads obtained using the delayed elastic modulus
can represent the actual critical loads with sufficient approximation. The collapse of
the Beauvais cathedral in 1294 will be taken up in the next chapter as an example
application of the delayed modulus approach to creep buckling.

9.3 Building Walls

9.3.1 Introductory Remarks

Figure 9.16 shows the plan of a masonry building with different arrays of longi-
tudinal and transverse walls. Figure 9.17 shows a section of another common
historic building, from foundation to roof. The walls present offsets along the
vertical due to the varying wall thickness along the height—an arrangement which

Table 9.2 Asymptotic critical loads according to the assumed values of creep factor a

a = 1 hcr;1 ¼ 0:390c ho ¼ 0:102c pcr;1 ¼ 0:370c3 pcr;1;del ¼ 0:335 c3

a = 2 hcr;1 ¼ 0:415c ho ¼ 0:067c pcr;1 ¼ 0:262c3 pcr;1;del ¼ 0:222 c3

a = 3 hcr;1 ¼ 0:430c ho ¼ 0:050c pcr;1 ¼ 0:203c3 pcr;1;del ¼ 0:167 c3

a = 4 hcr;1 ¼ 0:441c ho ¼ 0:040c pcr;1 ¼ 0:166c3 pcr;1;del ¼ 0:133 c3
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is justified by the considerably greater axial loads on the floor levels (Figs. 9.18 and
9.19). While the offsets on the internal walls are symmetrical, those on the external
walls were generally made only on the inner side, in order to give buildings smooth
vertical facades (Giuffrè 1990). Offsets were moreover frequently used as supports
for floors.

In modern masonry buildings, ring beams running atop the walls at each floor
efficiently oppose the transverse flexure of the facade walls and represent stiff
transverse constraints on the walls. Historic and older buildings, to the contrary,
lack such ring beams.

Fig. 9.16 Plan of an historic
masonry building

Fig. 9.17 Section of an
historic masonry building
(Giuffrè 1990)
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Only a weak connection is offered at the floor levels by the friction between the
floor’s steel or wooden beams in contact with the walls at their supports. The
connections between the different walls may thus be quite precarious. Particularly at
corners, the connections between the stones or bricks may be degraded and even
lacking, despite interpenetration between them at the wall intersections. The walls
of old buildings are often visibly damaged, and studying the cracking patterns can
furnish useful information about the causes of such damage.

9.3.2 Crack Under Vertical Loads

Vertical loads clearly represent the most significant and long-lasting actions on
historic buildings: the weight acts constantly and is responsible for most of the
damage occurring in such buildings. Due to their varying thickness along the
height, the external walls are subjected to eccentric axial forces and present a latent
tendency to bulge outwards (Figs. 9.20 and 9.21).

Fig. 9.18 Sections of inner
(left) walls with symmetrical
and asymmetrical offsets due
to varying thickness along the
height

Fig. 9.19 Sections of outer
(right) walls with symmetrical
and asymmetrical offsets due
to varying thickness along the
height
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In historic buildings this tendency is opposed only by the connections between
the different constituent walls, which may be more or less efficient. Moreover, these
connections may be weakened by the presence of openings near the wall inter-
sections or by cracking. Sometimes, chains were used to firmly connect the different
arrays of walls (Fig. 9.22).

Cracks develop on the band of masonry overlying an opening and course ver-
tically upward, increasing in width as they spread. Such cracks are due to the
horizontal tensile stresses occurring in this band due to the outwards rotation of the
wall.

In some cases horizontal cracks may also appear in the floors near their con-
nections to the façade wall. Figure 9.23 shows the cracking pattern in the transverse
wall from subsidence of the facade. Typically, such cracks are inclined by about 45°
from the vertical and are caused by subsidence of the façade wall, which produces
shear stresses on the masonry band overlying the opening in the transverse wall
(Fig. 9.24).

Fig. 9.20 Facade walls.
Opposing actions of floor
loads, wall weights and vault
thrusts

Fig. 9.21 Facade walls.
concurring actions of floor
loads, wall weights and vault
thrusts
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Fig. 9.22 Detachment cracks due to rotation (left) of a facade wall

Fig. 9.23 Detachment cracks due to subsidence (right) of a facade wall

Fig. 9.24 Wall cracks above an opening due to subsidence of the facade wall

458 9 Piers, Walls, Buttresses and Towers



Figures 9.25 and 9.26 show analogous situations in the façades of buildings
whose interior transverse walls wall have subsided. When the connection is
weakened or lost, the external walls can undergo outward flexions and strong
out-of-plumb rotations. The main aim of any restoration work is to re-establish firm
connections between the disjointed walls.

9.3.3 Stresses Under Vertical Loads

9.3.3.1 Weak Diffusion of Point Loads

Only two bricks of the lowermost course are engaged—numbers 8 and 9-, as
illustrated in Fig. 9.27.

Any lower course would again exhibit only two blocks engaged, and so on.
A necessary preliminary operation for checking the safety of a building is to per-
form an evaluation of the compression stresses acting on the walls.

Fig. 9.25 Facade wall cracks
due to subsidence of
transverse walls

Fig. 9.26 Facade wall cracks
due to subsidence of
transverse walls

Fig. 9.27 Transmission of
vertical load P across various
courses of a wall
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The bases of bricks 2 and 3 (in the second course from the top) are only partially
compressed, but they, in turn, engage the underlying three bricks very differently.
The two outer blocks, 4 and 6, are in fact subjected to strong eccentric compression.

The weak load diffusion described in Chap. 2 within the no-tension framework
is thus also confirmed by regarding the wall as composed of bricks and weak mortar
beds (Fig. 9.28). Consequently, evaluating the stresses due to vertical loading calls
for working in terms of vertical bands.

9.3.3.2 Static Schemes for Vertical Wall Bands

Evaluating the stress along vertical wall bands of masonry buildings is a complex
problem with various levels of uncertainties particularly dependent on the state of
the connections between the walls making up the overall building structure.

In old buildings, these connections may be very weak and the walls, particularly
of façades, behave much like vertical cantilever beams. In such cases, façade walls
can frequently wind up out of plumb. Modern masonry buildings instead apply
advanced systems for firmly connecting walls together. At each floor level rein-
forced concrete ring beams encircle the walls and are connected by slabs to the floor
structure. This interconnected system of walls and slab floors produces a stiff
three-dimensional cell structure. In some cases, historic buildings, if suitably
stiffened, may also present such firmly connected structures.

The floor offsets, produced by the varying wall thickness along the height,
activates the floor couples due to the axial load misalignments, as shown in
Figs. 9.29a and 9.30a shows a vertical beam, representing a wall band of the façade
wall, connected at the floor levels to horizontal constraints, which act to oppose
bending of the wall band. Due to the different heights of each story and the different
thicknesses of the walls between floors, the corresponding continuous beam will
have varying spans and sections. In the event that an efficient connection system has
been fitted to a building, the static behavior of the vertical wall bands can generally

Fig. 9.28 Weak dispersion
of a point load
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be represented by the scheme of a continuous vertical beam with horizontal con-
straints at the floor level, as illustrated in Fig. 9.29b.

Figure 9.29b shows a possible diagram of the bending moment along the wall.
Note the possible sign inversion in the bending moment diagram at the floor levels.

Within this framework, it is useful to cite the simplified approach provided for
by the Italian Building Code (N.N.T.C. 2008–2009) for evaluating stresses in
vertical wall bands. This approach assumes that the wall is hinged at the wall base
of each floor, as shown in Fig. 9.29c. Such an assumption can be justified by
considering that, in modern masonry buildings, the presence of the ring beams at
each floor interrupts the continuity of the wall, and thereby hinges the wall seg-
ments at their base on each floor. At level i, the axial load Ni transmitted by the
upper wall is centered (Fig. 9.30). The horizontal forces transmitted to the floors are
shown in Fig. 9.31. Evaluation of the eccentricity at the head of each wall segment,
that is, between levels i and i − 1, will consider, together with the centered axial

Fig. 9.29 Vertical wall bands with floor couples due to axis misalignments Bending moment
diagrams for actual (a) and Building Code schemes (b), (c)

Fig. 9.30 Misalignments
between wall axes along the
height
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load Ni transmitted by the overlying wall, all other forces transmitted to level i by
the beam floors in their actual positions, as shown in Fig. 9.31.

Thus, the eccentricity e of the axial load at the head of the wall segment between
levels i and i − 1 can be obtained as (Fig. 9.32)

e ¼ Nidi�1 þðPViÞdvi
Ni þ

P
Vi

: ð9:44Þ

The presence of eccentricities in the axial load on the vertical wall bands may
induce non-negligible destabilizing effects that must be adequately accounted for.
A simplifying procedure for this purpose is presented in the next section.

9.3.3.3 Simplified Stress Analysis to Account for the Destabilizing
Effects of Axial Loads

The Italian Building Code (N.N.T.C. 2008–2009) furnishes a useful simplifying
approach to account for the destabilizing effects of axial loads on walls and piers.
This procedure, which is a modified form of the common x approach to buckling
checks of steel columns, adequately accounts not only for the slenderness ratio k of
the wall, but also for the eccentricity e of the axial load. According to this approach,

Fig. 9.31 Evaluation of
horizontal floor constraints

Fig. 9.32 Bending moment
valuation at the head of the
wall between floors (i − 1)
and (i)
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the mean compression stress in the wall section must be lower than an admissible
reference stress �rm, that is,

r ¼ N
UA

� �rm; ð9:45Þ

where N is the working axial load acting on the considered wall section, A the
geometrical area of the wall section and U a suitable strength reduction coefficient
that depends on the eccentricity ratio

m ¼ 6e=t ð9:46Þ

and the wall slenderness k = ho/t, where ho is the inflexion length of the wall, which
is in turn given by

ho ¼ qh; ð9:47Þ

with h the distance between stories, and q the side constraint factor. As per Code
provisions, this last is taken to be

q ¼ 3=2� h=a 0; 5� h=a� 1; 0; q ¼ 1=½1þðh=aÞ2� 1[ h=a ð9:48Þ

where a indicates the distance between the constraining transverse walls.
Table 9.3 provides the eccentricity ratio factor U for various values of wall

slenderness and load eccentricity. These values have been obtained through pre-
vious analyzes on the destabilizing effects of axial load eccentricities in masonry
piers and walls. According to Italian Building Codes, the admissible mean reference
stress �rm can be obtained via the characteristic masonry compression strength fk as

�rm ¼ fk=5: ð9:49Þ

Masonry compression strength, fk , can also be evaluated by considering the
strengths of the individual constituent stones or brick elements and mortar, as
discussed in Chap. 1.

Table 9.3 Values of
eccentricity ratio U. They
reduce the resistant area of the
of the compressed wall
section as a function of the
wall slenderness and
eccentricity factor m

ho/t m = 0 m = 0.5 m = 1 m = 1.5 m = 2

0 1.00 0.74 0.59 0.44 0.33

5 0.97 0.71 0.55 0.39 0.27

10 0.86 0.61 0.45 0.27 0.15

15 0.69 0.48 0.32 0.17

20 0.53 0.36 0.23
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9.3.3.4 Composite Sections

Composite sections, in which a brick or stone facing covers an inner core of rubble
and mortar, are very common in piers and masonry walls. Evaluation of the stresses
in such composites must account for the different deformation capacities of the
facing and core. Figure 9.33 shows a rectangular composite pier section, for which

Ep; En ð9:50Þ

are the elasticity moduli of the different masonries in the pier facing and core,
respectively. Let N be the axial load acting on the entire section, directed along the
pier axis.

The mean compressive stresses, rp and rn, respectively acting on the facing and
internal core are unknown. A first relation linking rp and rn is the following
equilibrium equation

N ¼ rpAp þ rnAn; ð9:51Þ

where Ap and An are the areas of the facing and core, respectively. The second
relation is the compatibility equation equating the facing and core strains:

ep ¼ en ¼ e ð9:52Þ

This condition depends on the bond between the bricks and the core, as well as
on the connections potentially existing between the facing and the core. By sub-
stituting Eq. (9.52) into Eq. (9.51), and accounting for the elasticity relations

rp ¼ Epep rn ¼ Enen; ð9:53Þ

we obtain the following expressions for the stresses in the facing and the core:

rp ¼ N
Ap þ nn;pAn

rn ¼ nn;p
N

Ap þ nn;pAn
; ð9:54Þ

with

nn;p ¼ En

Ep
: ð9:55Þ

Fig. 9.33 Pier section
composed of brick facing and
inner rubble core
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Note that the destabilizing effects of axial load eccentricities, particularly when
dealing with slender piers or walls, are adequately accounted for.

An example
Let us consider the composite section with the following characteristics:

b ¼ 1:50m; d ¼ 3:00m; s ¼ 0:30m;

Ep ¼ 5000MPa; En ¼ 1500MPa;

N ¼ 500 t:

Thus, we have nn, p = 0.30 and

rp ¼ 500
2:34þ 0:30 � 2:16 16:73 kg/cm

2 rn ¼ 5:0 kg/cm2:

Mortar Creep Effects

Creep deformations of mortars influence the stress distribution in the facing and
core of a composite pier. In evaluating this influence we can assume that creep
effects will be greater in the core than in the masonry facing. Thus, considering both
creep and shrinkage of the core, recalling the formulation given by Krall (1947) and
described in Chap. 1, the compression stresses in the core and facing

rnðtÞ; rpðtÞ ð9:56Þ

are both functions of time t. The compatibility condition is now reformulated as

eepðtÞ ¼ eenðtÞþ evnðtÞþ ersðtÞ; ð9:57Þ

where eenðtÞ; evnðtÞe esnðtÞ are respectively the elastic, viscous and shrinkage strains
of the core, and eepðtÞ the elastic strain of the facing. The elasticity conditions can
now be expressed as

rpðtÞ ¼ EpeepðtÞ; rnðtÞ ¼ EneenðtÞ: ð9:58Þ

Considering the creep deformation of the core, Eq. (9.57) becomes

rpðtÞ
Ep

¼ rnðtÞ
En

þ ab
En

Z t

ti

e�bðs�toÞrnðsÞdsþ esnðtÞ ð9:59Þ

where, t is the current time and s any given past time. The equilibrium equation at
any time t yields
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N ¼ rpðtÞAp þ rnðtÞAn: ð9:60Þ

Derivation of condition (9.59) with respect to time t gives

drp
dt

¼ Ep

En

drn
dt

þ abe�bðt�toÞrnðtÞþEp
desn
dt

; ð9:61Þ

where, recalling Eq. (1.4) in Sect. 1.11.4,

dern
dt

¼ eRbe
�bðt�toÞ: ð9:62Þ

The derivative of condition (9.62) with respect to time t can also be written

drp
dt

¼ �An

Ap

drn
dt

ð9:620Þ

Thus, the following equation in the unknown rn(t) is obtained simply by sub-
stituting (9.62′) and (9.62) into (9.61):

ðAn

Ap
þ Ep

En
Þ drn
dt

þ abe�bðt�toÞrnðtÞþEpeRbe
�bðt�toÞ ¼ 0: ð9:63Þ

With the position

n ¼ e�bðt�toÞ ð9:64Þ

and accounting for

dn
dt

¼ �bn; ð9:640Þ

Equation (9.63) becomes

�p
drn
dn

þ arnðnÞ þ EpeR ¼ 0; ð9:6400Þ

where

p ¼ ðAn

Ap
þ Ep

En
Þ: ð9:65Þ
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The solution to (9.64″) is the function

rnðnÞ ¼ Ae
a
pn � Ep

eR
a
: ð9:66Þ

At the initial time t = ti, that is, at n ¼ ni ¼ e�bðti�toÞ, we have

rnðniÞ ¼ Ae
a
pni � Ep

eR
a
¼ rno; ð9:67Þ

where rno is the purely elastic solution, given by (9.56). Thus, we obtain

rnðnÞ ¼ ðrno þ eR
a
Þea

pðn�niÞ � Ep
eR
a
; ð9:68Þ

or more directly

rnðtÞ ¼ ðrno þE
eR
a
Þea

p½e�bðt�toÞ�e�bðt�tiÞ� � Ep
eR
a
: ð9:69Þ

Similarly, Eq. (9.60) gives the compression stress in the facing:

rpðtÞ ¼ N
Ap

� rnðtÞAn

Ap
: ð9:70Þ

At the limit, for t ! 1, the stresses in the core and facing reach their asymptotic
values:

rn1 ¼ ðrno þEp
eR
a
Þe�a

pe
�bðti�toÞ � Ep

eR
a
; rp1 ¼ N

Ap
� rn1

An

Ap
: ð9:71Þ

If load N is applied to the pier at the same time ti it takes the mortar to cure, we
have ti = to and obtain

rn1 ¼ ðrno þEp
eR
a
Þe�a

p � Ep
eR
a
; rp1 ¼ N

Ap
� rn1

An

Ap
: ð9:72Þ

We can now re-evaluate the previous example considering the effects of creep
and shrinkage of the core mortar. In this case, quantity p, defined by (9.65), is

p ¼ ð2; 16
2:34

þ 5
1:5

Þ ¼ 4:256:

By assuming a = 3, we obtain a/p = 0.705. Considering now that load N = 500 t
will act on the pier one year after the mortar has cured, we have e−1 = 0.368, and
hence
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e�
a
pe

�bðti�toÞ ¼ e�0:705�e�1 ¼ e�0:705�0:368 ¼ e�0:259 ¼ 0:771:

The asymptotic compression stress in the core is thus

rn1 ¼ ðrno þEp
eR
a
Þe�a

pe
�bðti�toÞ � Ep

eR
a

¼ ð5:02þ 50000 	 0:3 	 10�3

3
Þ0:771� 50000 	 0:3 	 10�3

3
¼ 7:725�5 ¼ 2:7 kg=cm2:

The compression in the facing, on the contrary, is greater than the value resulting
from ignoring creep effects:

rp1 ¼ 500
10 � 2:34� 2:725

2; 16
2:34

¼ 21:37� 2:51 ¼ 18:85 kg/cm2

This result, compared with the elastic solution, reveals the appreciable effect of
mortar creep.

9.4 Buttresses

Figure 9.34 shows a masonry buttress under the vertical load Q and the thrust S to it
conveyed by a vault or a flyer. The buttress has generally a stocky shape because
with its weight has to balance the action of the thrust S. In the next the limit thrust
producing the overturning of the buttress will be obtained.

The activation of the overturning mechanism will be accompanied by the for-
mation of a detachment fissure staring from the base of the buttress. Only a part of
the weight of the buttress e mobilized in the opposition to the collapse.

A preliminary analysis is thus required to determine the actual geometry of the
detachment crack.

S

QFig. 9.34 Scheme of the
buttress under the loads
conveyed by a vault
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9.4.1 Inclined Detachement Crack at the Overturning

The buttress has height h and constant rectangular section of width B. The weight of
the buttress is g for unit surface in the plane of the figure.

At the overturning state the pressure line, indicated as the curve a–a of Fig. 9.35,
passes through the left toe O of the buttress and at the section m–n, distant n from
the top, intercepts the core point P the section, distant B/3 from the compressed
edge Or. Starting from the section m–n and proceeding downward, the sections of
the buttress gradually cracks and larger parts of the sections will be ineffective.

The curve b–b of Fig. 9.36 is the locus of points that trace the passage from the
ineffective to the effective parts of the sections. At the failure, the part rsnO that
overturns, will detach from the wedge npO that remains on the ground.

Fig. 9.35 Equilibrium in the cracked sections

Fig. 9.36 Equilibrium in the
cracked buttress at the limit
overturning state
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The element ABCD, shown at the right of the figure, defines a small segment of
thickness dy of the effective band of the buttress. Equilibrium of the element ABCD
gives

W
x
3
þ x

2
dW �W

x
3
� dðW x

3
Þ � Sdy ¼ 0 ð9:73Þ

Taking into account that the weight dW of the element ABCD is

dW ¼ gxdy ð9:74Þ

condition (9.73) gives

W ¼ ðg x
2

2
� 3SÞ dy

dx
ð9:75Þ

Derivating this last (9.75) with respect to the variable x gives

dW
dx

¼ gx
dy
dx

þðg x
2

2
� 3SÞ d

2y
dx2

ð9:750Þ

On the other hand, from (9.74)

dW
dx

¼ gx
dy
dx

ð9:7500Þ

and the (7.75) gives

ðg x
2

2
� 3kHÞ d

2y
dx2

¼ 0 ð9:76Þ

Condition (9.76) has to be satisfied for any value of the x included between 0 and
h − n. Hence

d2y
dx2

¼ 0 ð9:760Þ

Consequently

dy
dx

¼ const: 8 x : 0� x�B ð9:7600Þ

The detachment opening is thus rectlinear (Ochsendorf 2004).
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9.4.2 Buttress Side Strength

Once obtained this result we can proceed to obtain the explicit value So of the
collapse thrust. With reference to Fig. 9.36, at the failure the part OCBAO of the
buttress that overturns around the toe O, subdivides into two fractions: the lower
triangular portion OEC and the upper rectangular region ABCE.

The line EC separates these two zones: the upper has all the sections effective
while the lower has sections that become gradually more and more ineffective. In
this last zone the stress distribution is outlined by the sequence of triangles shown
in Fig. 9.36. The section EC thus defines the passage from the cracked and the
uncracked sections. The resultant of all the loads acting over the section EC will
pass through the core point P of the section EC Equilibrium around the point P of
the upper region ABCE of the buttress, shown in the second sketch of Fig. 9.36,
gives

Son� Q
2B
3

� g
B2

6
n ¼ 0 ð9:77Þ

while from equiibrium of the whole portion OCBAO around the toe O we have

QBþ gn
B2

2
þ 1

2
gBðh� nÞB

3
� Soh ¼ 0 ð9:78Þ

Solution of (9.77) and (9.78) gives the height n and the limit thrust So at the limit
equilibrium of the buttress. With the positions

G ¼ gBh ð9:79Þ

and

b ¼ B
h

X ¼ n
h

To¼ So
G

Z ¼ Q
G

ð9:80Þ

the non dimensional height of the buttress upper uncracked region is

X ¼ 4Zb
6kTo�b

ð9:81Þ

that depends on the non dimensional limit thrust To. The rotational equilibrium
condion (9.78) of the active part of the buttress, in non dimensional form, becomes

6Zbþ 2Xbþ b� 6To¼ 0 ð9:82Þ

The collapse thrust Ro is thus obtained by substituting (9.81) into (9.82) and
taking into account of (9.79). We get the algebraic equation of second degree in To
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36T2
o � To�12bð1þ 3ZÞ � b2ð2Z � 1Þ ¼ 0 ð9:83Þ

that solved gives

To¼ b
ð1þ 3ZÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ 3ZÞ2 þð2Z � 1Þ�

q
6

ð9:84Þ

Particular cases.

We consider first the case Q = 0, i.e. Z = 0 (Fig. 9.37). From (9.84) and (9.81) we
have

So ¼ bG
6

X ¼ 0 ð9:85Þ

Let us consider now the case G = 0 (Fig. 9.38). We have, at the limit,

Fig. 9.37 The case Q = 0

Fig. 9.38 The case G = 0
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lim
G!0

So ¼ lim
G!0

b
ðGþ 3QÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2½ð1þ 3Q=GÞ2 þG2ð2Q=G� 1Þ�

q
6

¼ bQ ð9:86Þ

Further, from (9.81)

lim
G!0

X ¼ lim
G!0

4Qb
6So � bG

¼ 4Qb
6Qb

¼ 2
3

ð9:87Þ

In this case the active part of the buttress has the contour ABKO of Fig. 9.38.
The triangular ineffective part is the region KLO. From Fig. 9.38 we have

HK ¼ B
h
HO ¼ B

h
h
3
¼ B

3
ð9:88Þ

The resultant of Q and S0 passes throught the core point H, having distance B/3
from the edge AO.

9.5 Retaining Walls

Let us consider a masonry retaining wall that counters with its own weight the
action of the lateral earth pressure. For sake of simplicity it is assumed that the wall
has a rectangular section with height h and constant thickness B and unit weight cm.

The wall, loaded by the vertical distribution of weight forces and by the lateral
earth pressure, is at the limit equilibrium state, on the verge of overturning, as shown
in Fig. 9.39. The figure gives the scheme of the wall under the vertical distribution
of loads g, representative of the weight, and the lateral earth pressure p(x).

Fig. 9.39 The cracked wall
at the limit overturning
equilibrium
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This pressure, varying linearly with the depth x, according to Rankine theory
(Terzaghi 1943; Terzaghi and Peck 1967) is given by

kpðxÞ ¼ kocsKAx ð9:89Þ

where ko is the lateral pressure multiplier, cs the unit weight of the soil and KA the
active pressure coefficient

KA ¼ 1� sin/
1þ sin/

ð9:90Þ

with / the internal friction angle. We also recall that if a uniformly distributed
surcharge pressure of q for unit area acts over the entire surface of the soil mass, the
lateral earth pressure will be increased of the constant quantity qKA. Further, in
presence of water, the distribution of the earth pressure p(x) will be expressed in
terms of the effective weight c’ of the soil and the effective stress parameter /’. If,
particularly, the water table is on the surface, the lateral pressure on the wall will be
given by

pðxÞ ¼ c0K 0
Axþ cwx ð9:91Þ

The overturning failure of the wall occurs with the development of the inclined
detachment at its base (Fig. 9.34) making ineffective the weight of the wedge abc.

Let us determine the distance n from the top of the section where the crack ac
begins to form. With reference to the Fig. 9.40 this height n is obtained solving the
equation, similar to (9.77),

cmBn
B
6
� 1
2
kcsKA

n3

3
¼ 0 ð9:92Þ

Solution of (9.92) gives the height of the uncracked upper region of the wall

n ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cm

kocsKA

r
ð9:93Þ

that depends on ko. The second equation required to obtain both n and ko defines
the limit rotational equilibrium of the wall without to take into account of the
weight of the ineffective wedge abc. This last equation can be obtained very simply
and with good approximation assuming a constant inclination of the crack. The
limit equilibrium of the wall is thus

gBn
B
2
þ 1

2
gBðh� nÞB

3
� 1
2
kocKAh

2 � h
3
¼ 0 ð9:94Þ
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Substitution of the expression (9.93) into the limit equilibrium Eq. (9.94) gives
the cubic algebraic equation in ko

k3o � w3K3
Aa

6 � 2k2o � w2K2
Aa

4 þ ko � wKAa
2 ¼ 4 ð9:95Þ

where the non dimensional factors w and a respectively are

w ¼ cs
cm

a¼ h
B

ð9:96Þ

Once that the multiplier ko has been obtained, the depth n of the upper uncracked
region of the wall is obtained by (9.93).
An example.

We have: KA = 0.33. h = 4 m; B = 2 m; a = 2;
cs = 1.6 t/mc; cm = 1.6 t/mq; w = 1; Thus Eq. (7.95) becomes

k3o � 0:333 � 24 � 2k2o � 0:33222 þ ko � 0:33 ¼ 1

that, solved, gives ko = 1.75. Thus from (9.93)

n ¼ 2:0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1:75 � 0:33

r
¼ 2:63m

Height of the ineffective wedg: 4.00 − 2.63 == 1.37 m.

9.6 Towers

9.6.1 Introductory Remarks

One particular class of masonry buildings, whose height predominates over their
widths, are towers in all their forms, including bell-towers, minarets, and so forth.
Menhir, sacred monuments built with gigantic stones, are the most ancient tower-like
structures. Of the few livable menhirs, the tower in the Wall of Jericho is the most
ancient, having been built about 9000 years ago; it is circular in section with a
diameter of 8.0 m. Thousands of years later the Sumerians developed constructions
called ziggurats—terraced temples with square plans. Only a few traces of these
remain today,mainly as the ruins of their foundations. In Italy theNuraghi, built about
3000 years ago, are the most ancient surviving examples of tower constructions.
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Towers have often dotted the landscape of many towns, marking their entrance
gates or serving the function of watchtowers or lighthouses. They were also used as
symbols of family power, as in San Gimignano, or as church bell towers and
mosque minarets. Their height is clearly the characterizing feature of towers, the
Lighthouse of Alexandria being one of the highest masonry towers ever built: it was
reportedly 120–140 m in height. Built by Greeks in about 305 B.C.E., it collapsed
in 1326, though nowadays some traces remain in the Castle of Qaitbay in Egypt.

9.6.2 Crack Patterns in Masonry Towers

Tower structures have to withstand winds and earthquakes. The action of the wind
is probably the most critical because, due to their height, towers have high periods
of oscillation and can thereby absorb seismic actions. In general, high compression
stresses must be borne by tower masonry walls, particularly at the lower levels.
Such stresses can cause the expulsion of stones and local failures in any irregular
masonry. The presence of out-of-plumb walls makes matters worse, because it
produces actions orthogonal to the wall plane.

The vertical walls of towers vary considerably in thickness: the tower shaft tends
to open and the walls bulge outwards. Thus, vertical cracks frequently occur along
the perimeter walls, particularly near window openings and in the upper part of the
tower. Figure 9.40 (Como 2000). shows a typical cracking pattern in an old,
damaged tower, together with a sketch showing the dislodged masonry. Figure 9.41
gives a photomontage of the failure of the Campanile di Venezia occurred in 1902
(De Fez 1992). Surveying cracking patterns can be a difficult task because of
towers’ heights. Nowadays, thanks to so-called dynamical structural identification
techniques, tower frequencies and oscillation modes can be measured and different
measurements compared over time, thereby enabling continuous monitoring of the
evolution of any damage. One further hazard to towers is lightening.

Humidity can collect in cracks, which makes the structure a good conductor of
electricity. Thus, if the tower is struck by lightening, the instantaneous increase in
temperature of the humid air present in the cracks gives rise to an actual explosion
within the masonry. This explains why old steeples and towers are frequently
heavily damaged by lightening bolts. A clear lesson to be learned from this is that
tower masonry must always be maintained in good condition.

In bell towers, the vibrations set up by the bells themselves may be a source of
damage, hence checks of the vibrations induced by the motion of bells is frequently
performed on such structures. Typical restoration works include masonry refur-
bishment and ringing with steel ties at various levels to restore the connections
between the walls.
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Fig. 9.41 Failure of the Bell
Tower of St. Mark’s in
Venice in 1902, from a
photomontage by L.H.N.
Dufour, (De Fez 1992)

(a) (b)

Fig. 9.40 a Typical cracking pattern in a masonry tower: the tower of San Niccolò in Florence
(Como M.T. 2000). b Dislodged masonry
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Serious static problems frequently depend on towers’ foundations, which produce
stress on narrower soil areas in comparison to ordinary buildings. Differential settling
frequently occurs with consequent appreciable inclination and rotation of the tower.
So-called leaning stability analysis is a problem particular to the statics of towers
resting on deformable soils (Hambly 1985; Como 1993). The research on deter-
mining a suitable foundation model for towers is addressed in the following sections.

9.6.3 Plastic Foundation Model

There are a number of different models for foundations that seek to describe their
static response. These include both linear and nonlinear elastic approaches (see for
instance, Hambly 1985; Napoli 1992), though plastic or visco-plastic models may be
more appropriate. A tower involves the presence of high stresses in the foundation.
Tilting of the tower, occurred during its construction, thereby confirming the strong
stresses at their bases, moreover suggests that the underlying soil is at the plastic state.

Simple plastic and visco-plastic foundation models, following the basic
approach of Meyerhof (1951), will thus be covered in detail in the next sections.
Now let us consider a foundation plinth resting on the soil (Fig. 9.42) under the
action of a centered axial load N and moment M, such that their resultant remains
applied internally to the plinth. By gradually assigning increments to N and M, at a
given point in the loading path, the plinth undergoes significant subsidence due to
the plastic deformations occurred in the underlying soil.

By assuming different ratios between M and N (i.e., different eccentricities of
N with respect to the center of the base section of the plinth), we can apply different
loading paths and trace the locus Y of the points (M, N) in the plane M, N defining
the reaching of the plastic state, also called the limit state. A typical interaction
locus Y between the vertical load N and moment M, is drawn in Fig. 9.42, which
outlines the various soil limit states.

For the sake of simplicity, let us assume that the foundation is rectangular with
width a and transverse length b, and, according to Meyerhof (1951), let us also
assume that in the plastic state a constant pressure po pushes on the compressed soil.

No 

M

Fig. 9.42 Yield locus of a
foundation eccentrically
loaded and supported by
non-cohesive soil
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In particular, if the foundation is centrally loaded, the limit loadNo = poab represents
the ultimate centered vertical load, that is to say, the ultimate bearing capacity of the
foundation under a centered vertical load. We can moreover assume (Fig. 9.43) that
the supporting soil section of the plinth, eccentrically loaded, is subjected to a
constant distribution of limit pressure po and engages only a band of limited width,
equal to (a/2 − x). Thus, the plinth equilibrium in the vertical direction yields

ða
2
� xÞ ¼ Na

No
: ð9:98Þ

At the same time, rotational equilibrium yields

M ¼ Na
2

ð1� N
No

Þ: ð9:99Þ

Equation (9.99) describes the plastic state in terms of N and M and indicates the
interaction locus in the plane M, N, as sketched out in Fig. 9.42. Generally, the
interaction locus is represented by an equation of the type

f ðM;N;NoÞ ¼ 0: ð9:100Þ

Thus, for a rectangular foundation, taking (9.99) into account, we have

f ðM;NÞ ¼ M � Na
2

ð1� N
No

Þ ¼ 0: ð9:101Þ

The stress vector representing the loads acting on the foundation can be
expressed by a two-component vector

r ¼ M
N

� �
; ð9:102Þ

(1 )
2 o

Na N
M

N
= − . 

p
o

a
xo

Fig. 9.43 Plastic model of an
eccentrically loaded
foundation
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disregarding the negligible shear. We can now evaluate the response of the foun-
dation to an increase in stress. The corresponding plastic deformation increment is
given by the two-component vector

de ¼ dh
dv

� �
; ð9:103Þ

where dh is the plastic rotation and dv the increase in the plastic settlement. When
the loading path reaches a point P on locus Y, a plastic strain increment de of the
plinth occurs and has both components dh and dv. These plastic strain increments
develop both when the loading point P remains fixed on the locus as well as when P
moves along it. To define the strain increment, we can thus move the loading point
P along Y by applying a small increment dr tangent to Y. The plastic strain
increment de will occur without any work by dr, in compliance with the basic
principles of the Theory of Plasticity (Prager 1959) (Fig. 9.44).

If we move along the yield locus, the plastic deformation occurs without energy
expense, hence

dr � de ¼ 0: ð9:104Þ

Condition (9.103) indicates the orthogonality of de to the boundary of locus
Y (Fig. 9.44). The plastic strain increment de is thus given by

de ¼ k
@f
@r

k[ 0 se df [ 0; k¼ 0 se df � 0 ð9:105Þ

where f ðrÞ is given by Eq. (9.105) and df is its differential.

M 

NO

Y

No

σ

dε

dσ

α

P 

dε

Fig. 9.44 Normality rule for the plastic strain increment
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At the centered axial loading point (N = No, M = 0) the interaction locus pre-
sents a vertex, and the corresponding strain rate de is a vector having any direction
within the angle a and will include both plastic settlement and rotation, as shown in
Fig. 9.44. This result explains the possible occurrence of a sudden tilting of the
tower during its construction, when its weight, centrally applied on the foundation,
reaches the limit value No. In particular, from (9.105), for a rectangular foundation
we have

@f
@M

¼ 1
@f
@N

¼ aðN
No

� 1
2
Þ ð9:106Þ

and

dh ¼ k dv ¼ ð�xÞk¼� x dh : ð9:107Þ

According to (9.107), the plastic strain increment is thus produced by a rotation
dh of the foundation base section around the neutral axis corresponding to the
current loading condition. This property holds for any type of foundation
(Fig. 9.45).

9.6.3.1 Subsequent Yield Loci of Plastic Hardening Soils

Loose or weakly consolidated soils actually become stronger as loading progresses.
The behavior of the foundation soil of tilting towers can often be explained by the
presence of such soils. Soil strain hardening occurs as the soil deformations increase
and a sequence of subsequent yield loci develops, as shown in Fig. 9.46.

po 

dθ

xxa/2a/2

Fig. 9.45 Rotation of the
foundation around the neutral
axis

M

O

YR

N
Yo

Yoo

NoNo NR

Fig. 9.46 Subsequent yield
loci for a strain hardening
foundation
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The first plastic state is represented by the first locus Yoo, while the final collapse
state of the soil corresponds to the final locus YR. The plastic strain rate can thus be
expressed via the following associated flow rule

de ¼ 1
v
@f
@r

df if df [ 0 and de ¼ 0 if df � 0; ð9:108Þ

where v(r) indicates the strain hardening function of the soil. This function will be
determined for a tower foundation in the next section.

9.6.3.2 The Moment–Plastic Rotation Equation for the Tower
Foundation

With reference to the case of a tower foundation, it should be noted that increasing
the tower’s tilt (Fig. 9.47) causes an increase in moment M, while the axial load
N remains practically constant. A shear force acting on the foundation also occurs,
though it is so small as to be negligible.

The strain hardening function v(r) can be considered to depend solely on the
moment M via the function

vðMÞ ð9:109Þ

This function represents softening behavior, that is, a gradual reduction in its
tangent modulus as the rotation increases. It will also be able to describe failure of
the foundation under the ultimate value of moment MR, that is, the occurrence of

a a 

H
G

G 

po 

Fig. 9.47 A tilting tower
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unbounded values of plastic rotations under the failure moment MR. To construct
this function, note that with N = cost, we have

df ¼ dM; ð9:110Þ

and the corresponding rotation increment, with the assumption of a rectangular base
foundation, in particular, for a rectangular plinth (Fig. 9.48)

dh ¼ 1
vðMÞ dM; ð9:111Þ

and the strain hardening function is given by

vðMÞ ¼ dM
dh

: ð9:112Þ

This strain hardening function, v(M), defines the rotational tangent modulus and
can be expressed as

vðMÞ ¼ Kho
MR �M

MR
; ð9:113Þ

where Kho is the initial tangent modulus, that is, the derivative dM/dh at M = 0.
With this position we thus get

dh ¼ coR
dM

MR �M
; ð9:114Þ

where

coR ¼ MR

Kho
ð9:115Þ

The quantity coR can be defined as the foundation deformability factor. From
(9.114) it can be seen that when the acting moment approaches the failure moment
MR, the rotation increment rises without limit. Integration of Eq. (9.114) gives
(Como 1993)

MðhÞ ¼ MRð1� e�
h

coRÞ: ð9:116Þ

O

M

θ

Fig. 9.48 Moment–rotation
diagram
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Equation (7.116) describes the moment—rotation law of a rigid foundation
resting on strain hardening soil. Upon unloading, permanent rotations occur, as
shown in Fig. 9.48.

9.6.4 Stability of Leaning Towers

We assume that sudden, nonuniform soil settlement has taken place, with a con-
sequent initial rotation hoi of the tower.

The tower will consequently undergo an additional instantaneous rotation h due
to the supervening eccentric position of weight G. The foundation base is thus
loaded by the stress components (Fig. 9.49):

N ¼ G cosðhoi þ hÞ M ¼ GHG sinðhoi þ hÞ T ¼ G sinðhoi þ hÞ: ð9:117Þ

We also assume that in the past the tower has never undergone tilting rotations
larger than the current one. During the loading history, the actual yield locus Y will
thus never be contained within larger loci. The loading point P(M, N), with com-
ponents N and M given by (7.117), is thus located over the yield function
Y (Fig. 9.50). Rotational equilibrium of the tower gives

GHG sinðhoi þ hÞ �MRðGÞð1� e�
h

coRðGÞÞ¼ 0: ð9:118Þ

Equation (9.93) equalizes the overturning moment given by the second of (9.92)
to the resisting moment (9.91). Equation (9.93) can be symbolically expressed as

g½GðhÞ; h� ¼ 0 ð9:119Þ

and shows the dependence of weight G on the rotation h.

a 

HG

G

po

a 
a a 

θoi + θFig. 9.49 Equilibrium of a
leaning tower after the initial
rotation hoi of the foundation
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By differentiating this condition, we get

@g
@G

dG
dh

þ @g
@h

¼ 0 ð9:120Þ

and then obtain

dG
dh

¼ � @g
@h

=
@g
@G

: ð9:121Þ

The denominator term in (9.121) does not vanish. The equilibrium of the tower
becomes critical if

dG=dh ¼ 0: ð9:122Þ

In the critical state, increments in the tower’s rotation occur, in fact, without any
further increments in the weight G. Specifically, Eq. (9.122) gives

dG
dh

¼ @g
@h

¼ GHG cosðhoi þ hÞ � Khoe
�h=coR ¼ 0: ð9:123Þ

The rotational equilibrium is preserved in the critical state as well. Condition
(98) will thus be associated with rotational equilibrium condition (9.93). From these
equations, the two unknowns—the critical weightG*cr and the critical rotation h* of the
tower—can be determined. Equations (9.118) and (9.123) yield the following condition

tgðhoi þ h
Þ¼coRðeh

=coR � 1Þ; ð9:124Þ

which, for small values of (hoi þ h
), gives

h
 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2coRhoi

p
: ð9:125Þ

The critical weight of the tower G

crðhoiÞ can be obtained from Eq. (9.125) and

(9.123). We thus have

G

crHG

Kho
¼ e�h
=coR

cosðhoi þ h
Þ ð9:126Þ
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P(M, N)
 YR 

Fig. 9.50 Loading state of a
tilted tower foundation
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As hoi becomes smaller and smaller, h* also vanishes and the critical weight
becomes

lim G

cr¼Gcro

hoi!0 ; ð9:127Þ

Where

Gcro ¼ Kho

HG
: ð9:128Þ

The critical weight Gcro represents the critical weight of the initially vertical
tower. Substitution of (9.128) into (9.126) gives the explicit expression for the
critical weight of a leaning tower (Como 1993):Various systems can be used to

G

cr

Gcro
¼ e�h
=coR

cosðhoi þ h
Þ : ð9:129Þ

The critical tower weight has also been evaluated by Nova and Montrasio
(1995).

Equation (7.129) shows that even a small initial rotation hoi of the tower can
produce a large reduction in the critical weight G


cr with respect to the value Gcro of
the critical weight of a vertical tower (Fig. 9.51). Such a critical condition is
unstable.

We can define a factor, s, that expresses the safety of a tower in its rotated
configuration. This safety factor is given by

s ¼ G

cr

G
; ð9:130Þ

where G

cr is the critical weight of the tower that has undergone an initial subsidence

rotation hoi. As long as coefficient s is not too small, the leaning tower will remain
in its tilted position in a stable state, as has occurred, for instance, for the Garisenda
tower in Bologna. To the contrary, if s is near unity, the tower equilibrium is quite
uncertain. In such cases, small changes in the loads or in environmental conditions
can lead to failure of the tower. Furthermore, creep deformations of the soil may
lead to slowly increasing tilting of the tower.

θ∗

G*cr1

G*cr2

θoi1

θoi2

Fig. 9.51 Variation of the
tower critical weight G


cr with
initial rotation hoi
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Various systems can be used to improve the safety of towers. Some aim to
reduce their inclination. The following sections will address these issues, with a
particular focus on stability analysis of the renowned Leaning Tower of Pisa and the
work carried out to stabilize it.

9.6.5 Counter-Weights to Stabilize Leaning

Given the attempts made to stabilize a number of leaning towers in this fashion, it is
interesting to evaluate the response of such structures to the application of counter
weights. To this end, let us consider the scheme in Fig. 9.52, where an additional
weight DP has been placed on the base of a leaning tower on the side opposite its
inclination.

Fig. 9.52 Application of a
counter weight on a leaning
tower
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The plastic response of the foundation is different from the elastic case.
According to the elastic foundation model, application of load DP on the side
opposite the tilt would certainly reduce the tower’s inclination. The stress acting on
the foundation, before application of the additional load DP, is localized at point
A of the interaction domain Y, corresponding to an assigned level of hardening No.
The coordinates of this point, A, in the plane M, N are

N � G M ¼ GHG sinðhoi þ hÞ ð9:131Þ

According to the elastic model, the foundation response is represented by an
increase in subsidence, together with a negative increment, dh, that is, counter
rotation of the tower. According to the plastic model, instead, the foundation strain
rate will, by the normality rule, be directed along the external normal at A to the
interaction locus Y. Consequently, if df > 0, the rotation rate dh will be positive and
a further increase in the tower’s inclination will occur (Fig. 9.53). The differential
df of the yielding function f at A is, on the other hand, given by

df ¼ ð @f
@M

ÞAdMþð @f
@N

ÞAdN; ð9:132Þ

which, in the simple case of rectangular foundations, by accounting for (9.106),
yields (Fig. 9.53)

df ¼ �DNeþDNð� 1
2
þ N

No
Þ ¼ ð�e� a

2
þ Na

No
ÞDN: ð9:133Þ

Let

eL ð9:134Þ

be the limit eccentricity value, which corresponds to a zero increment in plastic
rotation of the foundation, that is, when df = 0. Hence, we get

M 
Y 

No 

O 

dε

G 

dσ ΔM

ΔN 

A 

N

Fig. 9.53 The response de of
a plastic foundation to
the stress increment dr
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eL ¼ aðN
No

� 1
2
Þ: ð9:135Þ

Moreover, accounting for (9.135) and that

2HGðhoi þ hÞ ¼ xþ a
2
; ð9:136Þ

the limit eccentricity becomes

eL ¼ a½1
2
� 2HG

a
ðhoi þ hÞ�: ð9:1350Þ

Consequently, we can write

df ¼ ðeL � eÞDN; ð9:13500Þ

and we can thus conclude that only when

e[ eL ð9:137Þ

will df < 0 (Fig. 9.54). For instance, in the case of a rectangular foundation of
width a, with 2Hg/a = 2.5, hoi þ h, it can be seen that an eccentricity value e = a/4
is insufficient to ensure e > eL-.

9.6.6 Evolution of Tower Tiling

9.6.6.1 Soil Creep Effects

Leaning towers frequently attain a tilting configuration that remains unchanging
over time. In such cases, the foregoing analysis can be deemed suitable for checking
their stability. In other cases, however, such as for instance, the leaning Tower of
Pisa, a structure may undergo slow but progressive increases in tilting. The equi-
librium state of the tower evolves over time and can either stabilize asymptotically
or deteriorate until it reaches failure. The evolution of a tower’s rotation depends on
the behavior of the foundation soil, whose response changes over time. There are
various reasons for this behavior: periodic variations in the height of the water table
linked to particular soil features, as creep of the solid particles of the soil itself,
amongst others. Moreover, the interactions occurring between the time-dependent
foundation soil response and the tower’s tilting are extremely important. A small,
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uneven settling of the foundation causes an increase in rotation that, in turn, leads to
greater axial load eccentricity on the foundation and consequently slow further
tilting of the structure, and so on. A simple visco-plastic foundation model can
describe this behavior. To this end, accurate geotechnical techniques are available
to define the visco-plastic soil parameters involved in the various cases.

9.6.6.2 Visco-Plastic Model of the Foundation

A visco-plastic model of the foundation can explain variations in a tower’s incli-
nation over time. A simple visco-plastic model considers the strain rate _e expressed
as the sum of the plastic and viscous shares

_e ¼ _ep þ _ev; ð9:138Þ

where the plastic strain rate _ep is given by (9.105) and the viscous rate _ev, according
to a common rheological equation, is given by

r ¼ Kv _e
v ð9:139Þ

The stress vector, r, of components M and N is given by (9.102), where Kv is the
foundation viscous stiffness matrix:

Kv ¼ 1
a
ebðt�toÞ khh 0

0 kvv

� �
: ð9:140Þ

In expression (7.140), to indicates the initial time, corresponding to completion
of the tower, when it is assumed that the load began to act. The constant a is a factor
expressing the intensity of the viscous deformation of the foundation, b a scale
factor assumed equal to 1 century.−1, and khh, kvv are positive quantities defining the
viscous behavior of the foundation. The assumed viscous constitutive equation
conforms to the formulation of creep deformation discussed in Chap. 1.
Equation (9.139) can be written in the more explicit form:

MðtÞ
NðtÞ
� �

¼ 1
a
ebðt�toÞ khh 0

0 kvv

� �
_hv
_vv

� �
: ð9:1400Þ

Hence, we get

MðtÞ ¼ 1
a
ebðt�toÞkhh _hv NðtÞ ¼ 1

a
ebðt�toÞkvv _vv ð9:141Þ
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or

_hv ¼ a
khh

e�bðt�toÞMðtÞ _vv ¼ a
kvv

e�bðt�toÞNðtÞ: ð9:1410Þ

For a better understanding of the mechanical significance of the various
parameters involved according to the proposed visco-plastic model, as a first step let
us analyze the slow subsidence of a foundation under constant loads, G or M,
resting on a purely viscous soil, whose behavior is defined by Eq. (9.140′). Thus,
from Eq. (9.140′), we get

_hv ¼ a
khh

e�bðt�toÞM _vv ¼ a
kvv

e�bðt�toÞN: ð9:14100Þ

Integration of (9.141″) gives (Fig. 9.54)

hvðtÞ ¼ a
bkhh

M½1� e�bðt�toÞ� vvðtÞ ¼ a
bkvv

G½1� e�bðt�toÞ�: ð9:142Þ

The asymptotic values of the foundation rotation and settlement are thus

hv1 ¼ a
bkhh

M vv1 ¼ a
bkvv

G: ð9:143Þ

The quantities

bkhh
a

bkvv
a

ð9:144Þ

represent the rotational and vertical asymptotic viscous stiffness of the foundation
(Fig. 9.55).

( )vv t

t

( )v tθ

t

Fig. 9.54 Evolution laws of the subsidence and rotation of a purely viscous foundation under
constant centered vertical load and constant couple
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9.6.6.3 Slow Tilting of Towers Resting on Visco-Plastic Foundation

Let us now consider a tower on visco-plastic soil, defined by the model discussed
above. The tower undergoes an initial tilt hoi due to differential subsidence of the
foundation at the onset of its construction. The initial equilibrium configuration of
the tower is thus rotated: this initial inclination causes load G to become eccentric
and slowly, over time, produces visco-plastic strains and further tilting. The slow
displacement of the tower will be characterized by a predominating rotational
component h(t), which occurs under nearly constant axial load. Here, h(t) now
represents the entire rotation of the tower at time t, including the initial tilt as well
as the visco-plastic share.

In light of previous results, we can disregard the contribution to the displacement
of the small changes in the axial load during progressive tilting.

The rotation rate at time t is due to the strong interactions between the two
plastic and viscous portions:

_hðtÞ ¼ _hpðtÞþ _hvðtÞ: ð9:145Þ

Creep rotation in fact produces rotation increments and, consequently, increases
in the moment M(t) acting on the foundation. This monotonically increasing
moment, in turn, produces further increments in the plastic rotation and so on. The
hardening of the soil, which slowly reduces the magnitude of the viscous rotation
rates, conflicts with the increasing moment M(t), whence new, additional rotation
arises. Once this process has been initiated, either the tower’s movement will
slowly stabilize or it will progress fatally towards failure. In this context, from
Eq. (9.145), and by accounting for (9.114) and the first of Eq. (9.142), we get

_h ¼ MR

Kho

_M
MR �MðtÞ þ

MðtÞ
kvhh

ae�bðt�toÞ: ð9:146Þ

The moment M(t) acting on the foundation is given by

MðtÞ ¼ GHG sin hðtÞ: ð9:147Þ

t

θ

θcr

tcr

Fig. 9.55 The critical state
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Thus, taking into account that

_MðtÞ ¼ GHG
_h cos hðtÞ; ð9:148Þ

from Eq. (9.146), we have

_h ¼ MR

Kho

_h cos hðtÞ
lR � sin hðtÞ þ

a
kvhh

e�bðt�toÞGHG sin hðtÞ; ð9:149Þ

where

lR ¼ MR

GHG
: ð9:150Þ

With the position

/ðtÞ ¼ lR � sin hðtÞ ð9:151Þ

and taking into account that

_/ ¼ � _h cos hðtÞ; ð9:1510Þ

Equation (9.149) gives

�MR

Kho

_/
/

þ lRa
vvhh

e�bðt�toÞ� a/
vvhh

e�bðt�toÞ¼ �
_/

cos h
; ð9:152Þ

The factor

vvhh ¼
kvhh
GHG

ð9:153Þ

represents the dimensionless rotational viscous stiffness of the foundation. With the
change in variable

n ¼ e�bðt�toÞ; ð9:154Þ

and accounting for

/ ¼ /½nðtÞ� _/ ¼ �/
0
bn ð Þ0 ¼ dð Þ

dn
; ð9:155Þ
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we get

MR

Kho
b
/0

/
þ lRa

vvhh
� a
vvhh

/ ¼ b
/0

cos h
: ð9:156Þ

Thus, by taking position (9.151) into account, after some manipulations we
obtain

bvvhh
a

ð 1
cos h � coR

lR�sin hÞ
sin h

ð� cos hdhÞ ¼ dn ð9:157Þ

Separation of variables gives

n ¼ � bvvhh
a

Z 1� coR cos h
lR�sin h

sin h
dhþ k ð9:158Þ

and by integrating we get

n ¼ 1þ bvvhh
a

½lnðtg h
2
Þ � coR

lR
lnð sin h

lR � sin hÞ� þ k: ð9:159Þ

Let assume, for the sake of simplicity, that

to ¼ 0: ð9:160Þ

Then n(to = 0) = 1, and the initial conditions are

h ¼ hi at n ¼ 1: ð9:161Þ

Thus, we obtain the explicit formulation of function n = (h):

n ¼ 1þ bvvhh
a

fln½tgðhi=2Þ
tgðh=2Þ Þ �

coR
lR

lnðlR � sin hi
lR � sin h

sin h
sin hi

Þ�: ð9:162Þ

that describes the evolution of the leaning of the tower over time (Como 1993).

9.6.6.4 Critical State. Critical Time

Different, but simultaneous, equilibrium configurations occur at the critical state.
Thus, in the critical state

dt
dh

¼0; ð9:163Þ
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or, taking (9.154) into account,

dn
dh

¼0: ð9:164Þ

However, from (9.162) and (9.163), the critical condition becomes

1
cosh

� coR
lR � sin h

¼0; ð9:165Þ

which gives the equation for the critical rotation

coRcoshcr þ sin hcr¼lR; ð9:166Þ

which, in turn, furnishes hcr with the assigned values of lR and coR. Substituting this
value of hcr into Eq. (9.162) yields the critical time.

The condition,

nct 2 ½0; 1�; ð9:167Þ

indicates whether or not the critical state can be actually be attained.
Figure 9.56 shows the plot h(t) of the tower rotation versus time. At the critical

state, defined by the coordinates, critical time tcrit, and critical rotation hcrit, the
tangent to the curve h(t), according to (9.163), becomes vertical. The impending
critical state is signaled by the change in sign of the derivative dh=dt, from negative
to positive values, implying acceleration of the motion. We have applied the

Fig. 9.56 Plot of the rotation versus time (in centuries) of a leaning tower with an initial tilt,
resting on a visco-plastic foundation for different values of the dimensionless asymptotic viscous
stiffness (Como 1993)
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proposed visco-plastic model to analyzing the slow rotation of a leaning tower by
assuming the values of MR and of Kho considered in the next section.

Figure 9.56 shows the plot of the tower inclination versus time, expressed in
centuries, for various values of the dimensionless foundation asymptotic viscosity
stiffness. All possible behaviors of such a tower can be described by varying the
different quantities involved. Small values of the dimensionless foundation viscous
stiffness, which also signify high, heavy towers, led to leaning failure.

9.6.7 The Leaning Tower of Pisa and the Recent
Sub-Excavation Works

The Tower of Pisa (Fig. 9.57) was designed as a cylindrical belfry that would stand
about 56 m high. The width of its walls varies from 4.09 m at its base to 2.48 m at
the top. The Tower is a hollow cylindrical shaft with eight stories, including the bell
chamber. The external and internal diameters at the base are about 15.5 m and
7.4 m, respectively. The bottom story is made up of 15 marble arcades, while each
of the next six stories contains 30 arcades surrounding the inner cylinder of the
tower. The top story is the bell chamber itself, with 16 arcades. The inner and outer
surfaces are faced with marble and the annulus between these facings is filled with
rubble and mortar within which extensive voids have been found.

Construction of the Tower, the Cathedral’s bell tower, had a troubled history.
Construction was begun in 1173, probably under the supervision of Bonanno
Pisano. However, the Tower already began to sink after construction had pro-
gressed to the second floor in 1178. This was due to a mere 3 m-deep foundation,
set in weak, deformable subsoil. The work was suspended after this first foundation
subsidence. During this period, the Republic of Pisa was almost continually
engaged in battles with Genoa, Lucca and Florence, which allowed time for the
underlying soil to settle.

About a century later, in 1272, construction was resumed under Giovanni di
Simone and got as far as the as the sixth story. In an effort to compensate for the
incline, the added floors were built out-plumb, by building one side higher than the
other. However, construction was halted once again in 1284, when the Pisans were
defeated by the Genoans in the battle of Meloria. The 7th floor with the upper bell
chamber was finally completed in 1319 by Tommaso, son of Andrea Pisano.

The ground underlying the Tower consists of three distinct layers. The first layer,
called horizon A, is about 10 m thick and consists primarily of soft estuarine
deposits of sandy and clayey silts laid down under tidal conditions. The second
layer, called horizon B, consists of soft, normally consolidated marine clay, known
as Pancone clay, which extends to a depth of about 40 m.

This material is very sensitive and loses much of its strength if disturbed. The
surface of the Pancone clay is dished beneath the Tower, revealing that the average

496 9 Piers, Walls, Buttresses and Towers



subsidence is between 2.5 and 3.0 m. The third layer, called horizon B, is dense
sand which extends to considerable depth.

The water table lies between 1 and 2 m below the ground surface in horizon A.
The continuous long-term tilting of the Tower could be explained by continuous
variation of the water-table level that produced, by racketing, incremental plastic
deformation of the solid structure of the soil.

The soil subsided considerably and the high deformability of the Tower foun-
dation may, on the contrary, be mainly due to the high compressibility of the
Pancone Clay (Burland 1998; Burland et al. 1999).

By 1992 the tower was leaning by an angle of about 5.5° towards the south.
Precise measurements (begun in 1911) showed that during the 20th century the
inclination of the Tower was increasing inexorably each year and the rate of tilting
had doubled since the mid-1930s.

Fig. 9.57 The Leaning Tower of Pisa (Wikipedia, 2009)
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In 1990 the tilting rate was about 6 arc-seconds per year, equivalent to a hori-
zontal movement of about 1.5 mm per year at the top.

The diagram in Fig. 9.58 shows the history of the tower’s rotation according to
Burland (1998).

The acceleration in the tilting from the year 1272–1360 has been attributed to
soil consolidation during the first suspension of its construction. Another consid-
erable increase in rotation occurred in 1838, when A. Della Gherardesca excavated
a walkway around the foundations, the so-called “catino”, to facilitate access to the
tower. This work resulted in an inrush of water on the south side, since the exca-
vation here reached below the water table, and eventually in a increase in the
tower’s inclination of more than half a degree.

Crucial operations to stabilize the tower through sub-excavations were per-
formed in the years 2000–2001, as shown in Fig. 9.59 (Jamalkowski et al. 2003).

The sub-excavation technique involved gradual removal of small quantities of
soil from the side opposite the incline. This technique, engineered by Terracina
(1962), had first been applied successfully to stabilize the cathedral of Mexico City
(Tamez et al. 1997). A large number of corkscrew drills were inserted at a shallow
angle into the earth beneath the tower to remove soil from beneath the raised side of

Fig. 9.58 Tower rotation in time (Burland 1998)

Fig. 9.59 Inclined drill for
soil extraction (Burland 1998)
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the tower. The progressive rotation was arrested, and the tower was straightened by
45 cm to about four meters off-center—returning it to its position in 1838.

Experimental research carried out at the Imperial College of London (Edmunds
1993) has shown that the sub-excavation technique is strongly influenced by the
extension and localization of the region of sub-excavated soil. It is interesting to
point out that this study envisaged the existence of a critical depth in the region
sub-excavated even if situated on the side opposite to that more settled. The incline
of the tower would actually worsen if the soil extraction were to continue beyond
this depth, though the reasons for this seem to be not yet clarified (Como et al.
2001).

Some technical data on the Tower of Pisa

Weight (Lancellotta 1993; Desideri et al. 1997): G = 14450 t.
Tilt of the tower prior to the stabilization operations, h = 5°, 40′. Height of the

tower center of mass with reference to the foundation: HG = 22,515 m.
Initial tower inclination upon its completion: h0i = 0° 40′ = 0.667° =

0.0116 rad. This value has been determined by evaluating the axis corrections
attempted during the last stage of its construction. The tower, in fact, has a slightly
curved ‘banana’ shape due to the addition of the last stories out-plumb, but at an
angle to the lower stories, in an attempt to correct the tilting caused by settling of
the foundation soil.

The ultimate resistant moment of the foundation and the initial rotational stiff-
ness, according to Lancellotta (1993): MR = 60,000 tm; Kh0 = 550,000 tm/rad.

Critical weight evaluation according to (9.104).

We shall now apply the foregoing formulations of the foundation resistant moment
and the initial rotational stiffness, as drawn from Lancellotta (1993), to evaluate the
critical weight of the tower.

Using the given values of khh and MR, we calculate the factor coR., which from
(90), gives us: coR = 0.109. The critical weight of the tower, corresponding to the
its initial vertical position, from (9.130), is: Gcr.o = 24,428 t.

We shall consider an initial inclination due to subsidence (according to
Lancellotta) of hoi = 0°40′ = 0.0116 rad, and from Eq. (9.125), the subsequent
inclination due to foundation deformation is about h* = 0.050 rad = 2°, 882′.

Thus, from Eq. (9.104), the critical weight of the tower turns out to be
G*cr = 15472 t. The corresponding critical rotation of the tower would be
hoi þ h
 ¼ 2�; 8820 ¼ 3�; 550, less than the 5.5° measured before the recent stabi-
lization work.

Let us now assume the following values for the ultimate moment and the initial
foundation stiffness: MR = 90,000 tm; K0 = 500,000 tm/rad, together with a
somewhat larger value of the initial inclination: hoi = 0°50′ = 0°, 83′ = 0.015 rad.

From (9.115), we get coR = 0.180 and from (9.128), Gcr.o = 22,207 t. By
applying Eq. (9.125), the tilting of the tower after the initial settlement turns out to
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be h* = 0.073 rad = 4°, 21′. The corresponding critical weight is lower, that is,
G*cr = 14,863t, only slightly lager than the tower’s actual weight. The total
inclination of the tower becomes 4°, 21′ + 0°, 83′ = 5°, 04′, not too different from
the rotation detected before its stabilization. Finally, the safety factor, evaluated in
terms of the ratio between the critical and the actual weight of the tower, is very
low, only about 14863/14450 = 1.03. Further studies could take into account the
creep deformations of the soil. We have seen that, taking into account the creep
effect of the soil, near the reaching of the critical state a change of sign of the
rotation velocity occurs. The tower begins to accelerate. Such a state is warning
sign of the collapse of the leaning towers. These evaluations, albeit approximate,
reveal the precariousness of the Pisa Tower’s state back in 1990 and moreover
highlights the relevance of the stabilization works carried out.

9.6.8 Stability of the Ghirlandina Leaning Tower

The previous visco-plastic approach has been applied by. Lancellotta (2013) in the
study of the asymptotic stability of the Ghirlandina Tower of the Dome of Modena
(Fig. 9.60). Actually the tower is leaned in the direction South—West of 1° 14′ 16″.
The studies have shown that the Tower is stable.

Fig. 9.60 The Ghirlandina
tower of the Dome of Modena
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9.6.9 Cracking of Leaning Towers. Collapse Analysis
(Heyman 1992).

In presence of sufficient tilting, an inclined fissure (Fig. 9.61) starting from the base
can occur in a leaning tower and its equilibrium can be compromised in advance to
reach the leaning instability state.

Likewise to the case of buttress, the lower wedge of the cracked inclined shaft
becomes ineffective because its weight cannot any more explicate the stabilizing
action to oppose the overturning. For buttresses the fissure has a constant inclina-
tion: in the case of an inclined tower the fissure profile is curve, as it will be shown.

The first problem to solve is thus the determination of the fracture profile; the
maximum inclination of the tower under which the equilibrium becomes unstable
will be then determined.

As in the cases, above studied, of the buttress and of the retaining wall, pro-
ceeding downward from the top, the weight of the upper part of the tower shaft
becomes more and more eccentric. so that, at a defined distance a from the top, the
eccentricity reaches the end E of the section core. This section defines the starting
point of the detachment fissure running as far as the base of the tower (Fig. 9.61).
With the assumption of rectangular cross sections, the scheme at the right of
Fig. 9.61 shows the upper uncracked part of the shaft of the tower rotated of the
angle /.

The end section of this part, far of a from its head, has the left hand corner K free
of stresses. These are linearly varying along the section that is therefore compressed

Fig. 9.61 Curved fissure
detaching a masonry volume
from the shaft of the
tower (Heyman 1992).
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by a vertical force w(a) = cBa, eccentric of B/6 respect to the centre of the section.
The height a of this upper part of the tower is connected to the width B and to the
rotation / by means the equation

tg/¼B
6
2
a
¼ B

3a
; ð9:168Þ

Consider now a cracked section of the lower shaft of the tower and let y the
width of its compressed part. Examine the downward evolution of the cracking
starting from x = a.

A first unknown of the problem is thus the dependance of this width y of the
compressed part of the section from its distance x from the head of the tower
(Fig. 9.61). A second unknown is then the dependance on the distance x of the
weight W of the shaft of the tower that loads the considered section.

With the reference system of axes shown in Fig. 9.61, at the section passing
through the point K of the cracked shaft we have y = B. Assuming an unitary
weight of the masonry and a constant thickness of the tower shaft in the direction
orthogonal to the plan of the figure, the weight that loads the section x = a is w
(a) = Ba and has eccentricity B/6.

Figure 9.62 shows an element of length dy of the cracked shaft of the tower.
In the lower cracked region the width y of the effective section is connected to

the rate of change of the weight w(x) according to the equation

y ¼ dw
dx

; ð9:169Þ

With reference to Fig. 9.62, the rotational equilibrium around the vertex A of the
segment of length dx of the cracked shaft gives

dw
y
2
cos/þw

y
3
cos/� wdx sin/� w

y
3
cos/� w

dy
3
cos/� y

3
dw cos/ ¼ 0

ð9:170Þ

Fig. 9.62 Equilibrium of the
cracked segment ydx of the of
the tower shaft
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from which, dividing for dx cos/, we get

y
6
dw
dx

� wtg/ ¼ w
3
dy
dx

ð9:171Þ

On the other hand, taking into account of (9.169), we have

dy
dx

¼ dy
dw

dw
dx

¼y
dy
dw

ð9:172Þ

and the (9.171) gives

y2

6
� w � tg/ ¼ w

3
y
dy
dw

ð9:173Þ

Let us consider now the non dimensional quantities

X ¼ x
a

Y ¼ y
B

W =
w
aB

ð9:174Þ

so that the (9.173), taking also account of (9.168), becomes

Y2 � 2W ¼ W � 2Y dY
dW

ð9:175Þ

This last equation, by making the substitution

z ¼ Y2 ð9:176Þ

with

dz
dW

¼ 2Y
dY
dW

ð9:1760Þ

becomes

z� 2W ¼ W
dz
dW

ð9:1750Þ

and may be simplified in

dz
dW

¼ z
W

� 2 ð9:177Þ

Equation (9.177) has solution

z ¼ WðC � 2 lnWÞ ð9:178Þ
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or, taking into account of (9.176),

Y2 ¼ WðC � 2 lnWÞ ð9:179Þ

where C is a constant of integration. From Fig. 9.61 it may be noted that the fissure
starts at the point K of coordinates y = B, x = a. To these determinations of x and
y correspond the values X = 1, Y = 1 and W = 1, because with x = B, y = a
w = Ba. But, with Y = 1 and W = 1, (9.179) requires that C = 1 and Eq. (9.179)
becomes

Y2 ¼ Wð1� 2 lnWÞ ð9:1790Þ

Thus, from this Eq. (9.179′) and the (9.169), i.e. with Y ¼ dW=dX, we have

dW
dX

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð1� 2 lnWÞ

p
ð9:180Þ

or

X ¼
Z W

1

dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð1� 2 lnWÞp þA ð9:181Þ

where A is the second constant of integration. This last has to be equal to 1 because
X = 1 when W = 1. Thus we get

X ¼ 1þ
Z W

1

dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð1� 2 lnWÞp ð9:1810Þ

Equation (9.181′) can be integrated with the change of variable

4t2 ¼ 1� 2 lnW ð9:182Þ

or with

W ¼ e1=2e�2t2 ð9:1820Þ

In fact, coming back to (9.179′), with (9.182) we have at first

Y2 ¼ 4Wt2 ð9:17900Þ

and

Y ¼ 2te1=4e�t2 ð9:179′″Þ
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At the limit, when the width of the compressed zone vanishes, i.e. when Y ! 0,
from (9.179′″) we have t = 0. On the contrary, when the considered section is at
X = 1, i.e. the section where cracking starts, there is W = 1 and Y = 1.
Consequently, from (9.179′″) we have t = ½.

The cracked segment of the tower, with the change of variable (9.182) is thus
defined for 0� t� 1=2. Thus, from (9.182) we can write equivalently

W ¼ e1=2e�2t2 ; 0� t� 1=2 ð9:183Þ

and we obtain a first result: the non dimensional weight of only the cracked shaft, at
the limit of equilibrium, when its base is reduced to zero, is

WðY ¼ 0Þ ¼ Wðt ¼ 0Þ ¼ e1=2 ð9:1830Þ

while the non dimensional total weight of the whole shaft is

WTot ¼ 1þ e1=2 ð9:18300Þ

From (9.183) we have also

dW ¼ �4te1=2�2t2dt ð9:184Þ

and taking into account of (9.182) and (9.182′) Eq. (9.181′) can be written as

X ¼ 1þ 2e1=4
Z 1=2

t
e�t2dt ð9:18000Þ

or

X ¼ 1þ ffiffiffi
p

p
e1=4½erf ð1=2Þ � erf ðtÞ� ð9:185Þ

where erf(t) is the error function (Spiegel 1968, 1981)

erf ðtÞ ¼ 2ffiffiffi
p

p
Z t

0
e�u2du ð9:186Þ

Concluding, the cracked shaft of the leaning tower is so defined from the base as
far as to the first uncracked section, i.e. for 0� t� 1=2 (Heyman 1992)

W ¼ e1=2�2t2 Y ¼ 2te1=4e�t2 ; X ¼ 1þ ffiffiffi
p

p
e1=4½erf ð1=2Þ � erf ðtÞ� ð9:187Þ
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Figure 9.63, taken from Heyman (2002), gives the shape of the curved cracking
of the tilted tower. The maximum non dimensional height of the tower, i.e. the
critical height hcrit of the tilted tower, for a given rotation /, can be obtained taking
into account that in this case

Y ¼ 0: ð9:188Þ

From the third of (9.187), with x = hcrit, i.e. with Xcrit = Hcrit = hcrit/a

Hcrit ¼ hcrit=a ¼ ½X�t¼0 ¼ 1þ ffiffiffi
p

p
e1=4erf ð1=2Þ ð9:189Þ

But erf ð1=2Þ ¼ 0; 5205 and

Hcrit ¼ 1þ 1; 1846 ¼ 2; 1846 ð9:190Þ

The critical height of the tower is hcrit = Hcrit a. Thus with (9.168) we get

Hcrit=h ¼ 1=acrit ¼ B=aB ¼ 3ðtg/Þcrit=B ð9:191Þ

and the critical rotation of the tower at the limit of equilibrium is

ðtg/Þlim ¼ 0; 7282
ðh=BÞ ð9:192Þ

Fig. 9.63 The curved fissure
as farv as to the hinge at the
toe of the tilted tower
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For instance, with a ratio h/B = 5, we have (/)lim = 8.3°.
The rotation of the tower is frequently valuated by means the out–of–plumbness

of the top of the tower with respect to its base. The limit out–of–plumbness Fp Lim is
thus given by

FpLim ¼ Hcrit sin/ � Hcrit tg/ ¼ 0; 728B ð9:193Þ

that can be compared with respect to the critical out–of–plumbness corresponding to
the case of the tower considered as a rigid uncracked block. Figure 9.64 gives the
increasing of the cracked zone for h/B = 5 as far as the overturning state for a tower
with rectangular section and with a ratio h/B = 5. The case of an hollow square
section is considered in Fig. 9.65.

A leaning tower with an hollow section is less dependant on the cracking than a
tower with a solid section. The core of the hollow section is in fact much wider and
the eccentricities required to activate the cracking are only a bit less than the double
of B/6.

The tubular section of the shaft of the Tower of Pisa can be considered alike to
an uniform square thin walled section. Taking in account the obtained results, we
can say that for the Pisa Tower the cracking instability is not cause for concern:
stability of the Tower depends only on the elasto-plastic—viscous response of its
foundation.

Fig. 9.64 Changes of the
cracked zone at the base of
the tower with increasing
tilting /, valuated at the ratio
h/B = 5 (Heyman 1992)

Fig. 9.65 The case of a
tower with an hollow square
section
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Appendix

Integration of the Yokel differential equation

By means of Eq. (9.15), we obtain

d
dx

ðdy
dx
Þ2 ¼ 2dy

dx
� d

2y
dx2

¼ 2k1
u0 þ yð Þ2 �

dy
dx

and

ðdy
dx
Þ2 ¼ 2k1

Z
dy

ðu0 þ yÞ2 ¼ �2k1
1

u0 þ y
þ c1:

For y ! 0;we have dy=dx ! 0 and consequently c1 ¼ 2k1=u0;

and

ðdy
dx
Þ2 ¼ 2k1ð 1u0 �

1
u0 þ y

Þ ¼ 2k1
u0

� y
u0 þ y

;

hence

dy
dx

¼ �
ffiffiffiffiffiffiffi
2k1
u0

r
� ð y
u0 þ y

Þ1=2: ð9:194Þ

With the position

k2 ¼
ffiffiffiffiffiffiffi
2k1
u0

r
¼ 2

3

ffiffiffiffiffiffiffiffiffiffi
P

Ebu0

r
; ð9:195Þ

Equation (9.194) becomes:

dy
dx

¼ �k2ð y
u0 þ y

Þ1=2

or

dx ¼ � 1
k2

ðu0 þ y
y

Þ1=2 � dy:

Integration yields

x ¼ � 1
k2

Z
ðu0 þ y

y
Þ1=2dy
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and, consequently

Z
ðu0 þ y

y
Þ
1=2

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y u0 þ yð Þ

p
þ u0

2

Z
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y u0 þ yð Þp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y u0 þ yð Þ

p
þ u0 lnð ffiffiffi

y
p þ ffiffiffiffiffiffiffiffiffiffiffiffi

u0 þ y
p Þ;

hence

x ¼ � 1
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y u0 þ yð Þ

p
þ u0 ln

ffiffiffi
y

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
u0 þ y

p� �h i
þ c2:

By accounting that at x = 0, y = 0, we get:

c2 ¼ � u0
k2

ln
ffiffiffiffiffi
u0

p

and

x ¼ � 1
k2

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y u0 þ yð Þ

p
þ u0 ln

ffiffiffi
y

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
u0 þ y

p
ffiffiffiffiffi
u0

p �: ð9:196Þ

Substituting (9.196) into (9.195) of k2 furnishes:

x ¼ � 3
2

ffiffiffiffiffiffiffiffiffiffi
Ebu0
P

r
� ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y u0 þ yð Þ

p
þ u0 ln

ffiffiffi
y

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
u0 þ y

p
ffiffiffiffiffi
u0

p �:

By considering that for x = h/2, y = u1 − u0, the solution is expressed in terms
of u1:

h
2
¼ � 3

2

ffiffiffiffiffiffiffiffiffiffi
Ebu0
P

r
� ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 u1 � u0ð Þ

p
þ u0 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 � u0

u0

r
þ

ffiffiffiffiffi
u1
u0

r
�;

and hence

P ¼ 9Ebu0
h2

� ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 u1 � u0ð Þ

p
þ u0 lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 � u0

u0

r
þ

ffiffiffiffiffi
u1
u0

r
Þ�2:

With the position

a ¼ u0=u1; ð9:197Þ

we finally arrive at

P ¼ 9Ebu31
h2

� a � ½
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
þ a lnð

ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r
þ

ffiffiffi
1
a

r
Þ�2: ð9:198Þ
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Chapter 10
Gothic Cathedrals

Abstract Aim of this chapter is the study of Statics of Gothic cathedrals, splendid
achievements of engineering and architecture of the Middle Age. Some brief notes
give information about times and places of their construction and about the
structural elements constituting their stone skeleton. Two main static problems are
then discussed: valuation of the wind strength of the whole cathedral structure and
analysis of the slender piers instability. The critical wind velocity for a model
similar to the cathedral Amiens is determined by direct application of the Limit
Analysis, via the kinematical approach. The collapse occurred at the cathedral of
Beauvais in the past 1284 is studied in the second part of the chapter. This failure is
generally attributed to the effects of foundations settlements. The chapter, con-
versely, inquires on the possibility that the collapse could be due to piers instability,
on account of their exceptional height and slenderness. The question is examined
considering the effects of the mortar creep. It is shown that the instability of the
slender masonry piers, taking into account the eccentricities of the axial loads and
the mortars creep, could be really considered responsible of the 1284 failure.

10.1 Some Historical Notes

During the transition from the Romanesque to the Gothic period, many radical
architectural changes came about, especially in the construction of churches.

Gothic cathedrals best highlight the structural originality of the architecture of
the time. Large masonry masses were the hallmark of Romanesque constructions
and only small windows opened in the perimeter walls of Romanesque churches. In
contrast, the construction of a structural skeleton, unrelated to the masonry masses,
was the first innovation. Large openings could thus be built into the walls and
would eventually give rise to the stained glass and rose windows so typical of
Gothic churches.

© Springer International Publishing AG 2017
M. Como, Statics of Historic Masonry Constructions, Springer Series in Solid
and Structural Mechanics 9, DOI 10.1007/978-3-319-54738-1_10
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The main architectural elements of Gothic structures are pointed arches, ribbed
cross vaults, flying buttresses and slender piers, some of which had already been
used in Romanesque and, even earlier, in Roman architecture. Simultaneous
application of all these elements to form a harmonious, unified whole was first
achieved by French architects of Ile de France, who redefined the concept of
cathedral. A prelude to Gothic architecture can be discerned in the
mid-12th-century rebuilding of the apse of the Basilica of Saint-Denis, where
French kings were once entombed, under the supervision of Pierre de Montereau
and Suger: the broad windows under the arcades of the ogival vaults, supported by

Fig. 10.1 A illustration from the notebook of Villard de Honnecourt (Heyman 1995)
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slender columns, herald the typical vast interior space of later Gothic cathedrals.
Gothic architecture is typified by the cathedrals of Noyon (1160), Notre Dame in
Paris (1163), Laon (1170), Saint Remy at Reims (1162 and 1181) and Soissons
(1190). Somewhat later, ribs surrounding the piers, starting at their bases and rising
to join the vault ribs, were used in the construction of the cathedrals of Chartres
(1195–1260) and Amiens (1220–1269). They gave rise to the Gothic rayonnant,
which the pioneering naves of Saint Denis had or Gradually, Gothic architecture
spread throughout Europe and over subsequent centuries cathedrals were built in
this magnificent style in nearly every major city (Viollet le Duc 1858–1868; Choisy
1899; Frankl 1962; Heyman 1995, 2016).

The “golden age” of cathedral construction began with the inception of the choir
of the Basilica of Saint-Denis, in about 1140, and continued up to 1284, the year
when the Beauvais Cathedral collapsed while still undergoing construction. With
the Beauvais design, daring Gothic architecture had reached the extreme limit of
static stability.

The principles of mechanics applied by cathedral builders were centered on the
use of levers and the composition of forces. Mason lodges jealously treasured their
knowledge of these principles, which were passed on during long years of training
in workshops and at building sites.

The designers of Gothic cathedrals were at once architects and engineers. The
thirty-three tables, in architect Villard de Honnecourt’s notebook, drawn up in
about the year 1235, document the techniques used in building sites and for the
construction of Gothic cathedrals (Fig. 10.1). Geometry was the sole basis of
design: the construction codes, in fact, set out strict rules for proper geometrical
proportions (Heyman 2016).

10.2 Brief Indications on the Construction Techniques

The stones used by cathedrals builders originated in nearby, frequently marl,
quarries. However, marl does not offer high compression strength, so the stones had
to be cut precisely to present perfectly flat surfaces and thereby improve contact
with the mortar beds. Lime mortars were used. A wall consisted of two, 20–30 cm
thick, outer layers or facings made of high-quality coursed ashlars, and a rubble and
mortar inner filling. The two outer layers were connected by larger
through-the-thickness stones in order to connect the two facings at regular intervals.

As a rule, foundations were rather undersized: patrons did not enjoy seeing their
money ‘wasted’ on underground structures that no one would ever see. Thus, nearly
all the cathedrals built during the period suffered from differential subsidence, but
were generally able to freely follow the settling and maintain an admissible equi-
librium. Gothic cathedrals piers are very slender (Fig. 10.2), though they are well
connected to flying buttresses and vaults and, as a rule, well braced. Instability is
the most common hazard. The aisles of Gothic cathedrals are covered by stone
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vaults, which are, in turn, covered by wooden trusses (Morabito 2004). The
masonry vaults served to protect the interiors from fire. Figure 10.3 shows the
progressive evolution of the transverse sections of three cathedrals built between the
years 1190 and 1220: the cathedrals of Soissons, Chartres and Amiens.

Fig. 10.2 Interior of the Cathedral Saint-Étienne in Bourges
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The heights of the extrados of the nave vault increased gradually with
improvements in constructional techniques—from 30 m of the Soissons cathedral
and 34 m at Chartres, up to 42 m in the Cathedral of Amiens.

The challenge facing Gothic builders was to attain a nave vault height equal to
the 48 m of the Beauvais Cathedral, the last cathedral to be built during France’s
golden age of Gothic architecture.

Pointed or ogival, arches were the most commonly used. Pointed arches mark
the evolution of vaults spans. Ogival arches offer the advantage of reaching the
same height despite the different spans (Fig. 10.4). A typical cathedral section is
illustrated in Fig. 10.5, where the flying and the external buttress are indicated with
their French terms.

Fig. 10.3 Transverse sections of cathedrals built in successive times: Soissons, Chartres and
Amiens
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The thrust of the nave vault of a major cathedral with lateral aisles is transmitted
from above the aisle roofs by the flying buttresses to the external buttresses and
thence to the ground. In such cases the flying buttresses work as simple props. The
weight of the flying buttress yields a curved pressure line and the profile of the
flying buttress must thus be that of a flat arch. With its ends fixed it is indeformable
and the degree of the bearable thrust is limited only by the masonry crushing
strength.

Major cathedrals possess a double prop system and so only the lower flying
buttresses convey the thrust of the vault. When the cathedral is exposed to the
actions of the wind, the upper flyers, which are situated on the windward side,
sustain the roof trusses and therefore work just as the lower flyers. The vertical
buttresses at the outer end of the flyers were often capped with pinnacles that
provide additional vertical loading to help resist the lateral thrust transmitted by the
flyer. In the absence of wind, the thrust on the upper flying buttresses is near
minimum. Figure 10.6 shows a detail of a flying buttress on the cathedral of
Amiens.

Fig. 10.4 Ogival arches of the same height but different spans. Comparison with rounded arches
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10.3 Relevant Static Problems

Two main problems inherent to Statics of Gothic Cathedrals are talked in the
chapter: analysis of the wind strength of their transversal structure and stability of
the high piers flanking the nave.

The landscape of the plains of France is dotted with the distant profiles of
cathedrals rising above the more common buildings of many cities and towns. It
does not take much imagination to picture the force of the winds blowing through
these plains to impinge on the cathedrals’ façades and upper structures. Nor is it
difficult to understand the challenges facing architects of the time in building
masonry structures able to oppose the actions of the fierce winds and to prevent the
instability of such high piers. This analysis another time again will prove the high
strength of the stone skeleton of the cathedrals and the skill of the past engineers
and architects.

The study of the behavior of the slender Gothic piers is then developed exam-
ining the old failure of the Beauvais Cathedral occurred in the far 1284.

Fig. 10.5 The function of the flying buttress (arc boutant)
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10.4 Transverse Wind Strength

10.4.1 Wind Action on a Typical Segment of the Cathedral

The analysis, that resumes some results given by Coccia et al. (2015), considers a
transverse segment of the cathedral having length equal to the longitudinal span of
the piers flanking the nave. A wide cross vault, sustained by upper windowed walls,
spans the central nave. These walls, in turn, are sustained by longitudinal arches
spanning between piers bordering the nave.

The study is conducted on a model similar to the Cathedral of Amiens whose
plan and transversal section is shown in Figs. 10.7 and 10.8.

The heads of the piers and the springings of the central vault are both connected
to large external buttresses through two orders of flyings. The lateral aisle vaults are
sustained by piers and by external side walls. Figure 10.9 shows the geometry of
the considered sectional modulus with the corresponding measure lengths.

Cathedral structures are rigid in both the longitudinal and the transverse direc-
tions. Wind action is essentially static and can be represented by a suitable distri-
bution of horizontal forces Fig. 10.10 shows the typical distributions of wind
velocity and pressure acting on the vertical projection of a transverse section of a
cathedral. Wind pressure is proportional to the square of the velocity, thus
explaining why, while wind velocity increases less than linearly with height,
pressure instead increases as a nearly linear function of height. Air velocity reduces
on the windward face, speeds up on the lateral sides and generates eddies on the
leeward side. Wind pressure is thus positive on the windward side, while it is
negative on the leeward side, due to the suction produced by the airflow separation.

Fig. 10.6 Flying buttresses of the Cathedral of Notre Dame at Amiens
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Fig. 10.7 Plan of the Amiens Cathedral

Fig. 10.8 Front view of the Amiens Cathedral
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The reference velocity Vref is generally measured at a height of 10 m from the
ground, given that at ground level the velocity falls to near zero. A simple formula,
drawn from Sachs (1978), expresses the variation in wind velocity V(z) with height
z, relative to the reference velocity Vref:

Fig. 10.9 The considered geometry of the cathedral model
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VwindðzmÞ ¼ Vref
z
zref

� �a

; ð10:1Þ

where, in urban areas, a = 0.35–0.40. For instance, a wind stream that at a height of
10 m from the ground, has a velocity Vref of 50 km/h, or 13.9 m/s, at 40 m height
has a velocity (4)0.35 = 1.62 times larger than Vref, that is, about 24.2 m/s.

According to the Italian code, the wind pressure on a unit surface orthogonal to
the wind direction can be calculated as

pv ¼ qbcecp; ð10:2Þ

Fig. 10.10 Wind velocity and pressure distributions acting on the transverse section of a cathedral
(Wikipedia 2009)
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where

qb ¼ 1=2qV2
b ; ð10:3Þ

and:

q standard air density taken to be 1,297 kg/m3;
Vb wind velocity in m/s;
ce exposure factor, varying with height; this variation can be evaluated via

Eq. (10.1);
cp aerodynamic factor, which can be assumed equal to 0.8 on the windward side

and to 0.4 on the leeward side.

By way of example, the wind pressure of an air stream with an average velocity
of 50 km/h acting over an orthogonal surface on the windward side at a height of
10 m from the ground is

pv:10m ¼ 0:5 � 1:297
9:81

s2

m
kgf
m3 � 13:92

m2

s2
� ce � 0:8 ¼ 10:2

kgf
m2

On the leeward side the wind pressure is instead negative and equal to

p0v;40m ¼ �5:1
kgf
m2 :

Wind pressure increases greatly with increasing wind velocity: for instance, a
100 km/h wind at 40 m from the ground produces a pressure on the windward side
of

pv;40m ¼ 0:5 � 1:297
9:81

s2

m
kgf
m3 ð27:77 � 1:62Þ

2 m2

s2
� 0:8 ¼ 107

kgf
m2 ;

while on the leeward side it is

p0v;40m ¼ �53:5
kgf
m2 :

Wind produces significant actions on cathedral structures, particularly on piers
and buttresses. However, cathedral geometries generally provide adequate strength
even for exceptionally strong winds, as it will be shown in the following.

Figure 10.11 shows the assumed distribution of the wind pressure acting on the
transverse section of the cathedral: k is the load multiplier. We have assumed the
approximate wind pressure distribution on the cathedral walls, increasing linearly
with the height. The collapse wind pressures kcrp and kcrp′ will be obtained via
determination of the failure multiplier kcr by application of Limit Analysis.
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Four main groups of actions can be identified, as indicated in Fig. 10.11:

• actions 1 and 6 are referred to the wind pressure acting on the roof truss,
inclined of an angle of about 64.5° to the horizontal axis;

• actions 2 and 7 are referred to the wind pressure acting on the pinnacles;
• actions 3 and 8 are referred to the wind pressure acting on the upper internal

walls;
• actions 4 and 9 are referred to the wind pressure acting on the aisle roof,

inclined of an angle of 45° to the horizontal axis;
• actions 5 and 10 are referred to the wind pressure acting on the outward walls

from the ground to the intrados of the aisle roof.

10.4.2 Dead Loads: Vertical Forces and Horizontal Vault
Thrusts

10.4.2.1 The Assumed Masonry Unit Weights

The masonry pier has a regular brickwork with stone blocks bounded by horizontal
mortar beds and vertical staggered joints. On the average the unit weight cp is
assumed equal to 20 kN/m3.

Fig. 10.11 Wind pressure distribution on the transverse section of a cathedral
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The walls and the outside buttresses are composed by two outer skins of good
coursed ashlar and a solid rubble fill. On the average the assumed unit weight cb is
19 kN/m3.

The masonry of arches and vaults is a regular brickwork with stone elements. On
the average the assumed unit weight cv is 21 kN/m3.

An average weight equal to 3 kN/m2 on the inclined surface, including tiles, lead
sheets, underlying wooden structures and trusses, has been assumed for the
cumulative weight of the roof above the main vault. A reduced weight of 2 kN/m2

has been assumed for the roof above the lateral aisles. An average weight of 1
kN/m2 has been assumed for the two service wooden floors underlying the roofs.

10.4.2.2 The System of Vertical Dead Loads

The loading pattern relative to the dead loads is shown in Fig. 10.12. For sake of
simplicity, the loads are shown only on the right half section.

Fig. 10.12 Cross section of
the Cathedral showing the
considered dead loads
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The system of dead loads consists of the following actions:

• Gp, weight of the central pier and the upper wall aligned to it, lying in the width
of the modulus;

• Gpi, weight of the pinnacle;
• Gb, weight of the lateral buttress;
• Gw, weight of the outward wall;
• Gcr, weight of half central truss;
• Glr, weight of the lateral truss;
• Gcv, weight of half vault of the central nave;
• Scv, resulting thrust of the vault of the central nave;
• Glv, weight of half vault of the lateral aisle;
• Slv, resulting thrust of the vault of the lateral aisle.

The internal pier is 43 m high and it is composed of two segments: the first
segment rises from the ground to a height of 33 m up to the springer of the central
vault. It has a circular cross section with diameter Bp = 2 m. The second segment
rises from the height of 33 m and reaches the base of the roof trusses. Its length is
equal to 10 m and its section has a smaller diameter bp = 1.5 m.

The weight of the pier is:

Gpier ¼ p
B2
p

4

 !
Hcvcp þ p

b2p
4

 !
Hp � Hcv
� �

cp ¼ 2:427 � 103 kN ð10:4Þ

where, as shown in Fig. 10.9:

• Hp is the total height of the pier, equal to 43 m;
• Hcv is the height of the lower segment of the central pier.

The weight of the wall aligned to the pier is given by:

Gaw ¼ ðHp � HlvÞ � sw � i� Bp
� � � wgl � cb ¼ 1:212 � 103 kN ð10:5Þ

in which:

• Hlv is the height of the springing of the vaults of the lateral aisles, equal to 14 m;
• sw is the thickness of the wall, assumed equal to 0.8 m;
• i is the longitudinal span between the piers, equal to 7.5 m;
• wgl is a corrective factor which takes into account the percentage of windowed

surface, taken equal to 0.5.

The overall weight of the pier is:

Gp ¼ Gpier þGaw ¼ 3:639 � 103 kN ð10:6Þ
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The weight of the side buttress is:

Gb ¼ sb � Hb � Bb � cb ¼ 7:6 � 103 kN ð10:7Þ

in which:

• sb is the thickness of the buttress in the longitudinal direction, assumed equal to
2 m;

• Bb is the thickness of the buttress in the transversal direction, equal to 5 m;
• Hb is the height of the buttress, assumed equal to 40 m.

The weight of the pinnacle is:

Gpi ¼ sb � Hpin � Bpin � cb ¼ 320 kN

where the height Hpin and the width Bpin of the pinnacle are equal to 4 and 2 m,
respectively.

The weight of the outward wall is:

Gw ¼ sw � Helv � i� sbð Þ � wgl � cb ¼ 836 kN ð10:8Þ

where:

• sw is the thickness of the wall, assumed to be 0.8 m;
• i� sbð Þ is the length of the wall in the longitudinal direction, equal to 5.5 m;
• Helv is the height of the wall from the ground to the top, taken to be 20 m.

Assuming that the trusses of the nave have an angle of about 64.5° to the
horizontal axis, the half weight of the roof can be so evaluated:

Gcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ltr
2

� �2

þH2
tr

s0
@

1
Ai � qr þ Ltr

2
� i � qsr � 400 kN ð10:9Þ

where:

• qr is an uniformly distributed load, perpendicular to the roof, having magnitude
equal to 3 kN/m2.

• qsr is the weight of the service wooden roof equal to 1 kN/m2.
• Ltr is the distance between the center of gravity of the two piers of the nave,

equal to Ln + sw = 13.4 m.
• Htr is the height of the trusses, equal to H − Hp = 14 m.

The trusses of the lateral aisles have the shape of an isosceles rectangular tri-
angle, so that the dead load conveyed by the roofing is:
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Glr ¼
ffiffiffi
2

p
La � i � qrl þ La � i � qsr ¼ 215:35 kN ð10:10Þ

where La is the net width of the aisle, taken equal to 7.5 m and qrl is an uniformly
distributed load, perpendicular to the roof, having magnitude equal to 2 kN/m2.

10.4.2.3 Thrust of the Main Cross Vault

The thrust of the main vault plays a fundamental role on the wind strength of the
cathedral because of its possible concurring pushing action with the wind. The vault
is laterally closed by two side upper walls and by the overlying roof. The thrust of
the vault is thus due only to the dead loads.

The thrust of the vault has been evaluated as the minimum among all the
statically admissible ones (Como 1996, 1998). The structures supporting the thrust
of the vault, i.e. the flying and the side buttresses, in fact settle lightly sideways in
the plane of the doubleau arches. The vault adapts itself to the settlement through a
compatible three-dimensional mechanism and a state of minimum thrust takes place
in it.

The behaviour of the vault is studied in line with the so called sliced model,
firstly introduced by Heyman (1966): after cracking the webs are divided into a
sequence of separate arches, each one characterized by a different span length,
which convey the loads on the diagonal ribs (Fig. 10.13).

The valuation of the minimum thrust of the main pointed cross vault has been
performed according to the kinematic theorem of the Limit Analysis.

The minimum thrust is the maximum of all the kinematic multipliers, kðv 2 MÞ,
varying v in M, the set of all the admissible displacement mechanisms of the vault
related to the settlement (Como 1996, 1998) along the direction perpendicular to the
main nave.

In the considered case study the vault of the main nave has a rectangular plan
12.6 m long and 7.5 m wide. The thickness of the emerging ribs is equal to 0.5 m
whereas the webs are 0.3 m thick. The obtained horizontal thrust F and the vertical
action transmitted to the piers by each one of the two ribs converging to the point A
or B are equal to 134 and 270 kN respectively.

A B

CD

δ

K

Fig. 10.13 The settled vault
roofing the nave
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The horizontal resulting thrust Scv acting on the single pier can be obtained
through a vector addition of the two components F: these last are inclined of an
angle of about 31° with respect to the transverse axis, getting:

Scv ¼ 2 � 134 � cos 31� � 230 kN ð10:11Þ

As shown in Fig. 10.14, the thrust of the vault and the wind action are con-
curring or contrasting respectively on the leeward and windward sides.

The overall vertical load conveyed to the pier by the two adjacent ribs is:

Gcv ¼ 2 � 270 kN ¼ 540 kN ð10:12Þ

These results are in good agreement with the values of thrust and weight tab-
ulated by Ungewitter (1901), for quadripartite vaults, varying the length and width
of the vault, its rise from springing to crown, the thickness and materials of vault
webs.

10.4.2.4 Thrust of Isle Cross Vault

The smaller pointed cross vault spanning the aisle has a square plan with side
7.5 m. The thickness of the ribs is equal to 0.5 m whereas the webs are 0.3 m thick.
The thrust is evaluated with the same kinematic approach and it is equal to 73.5 kN.
The vertical action transmitted to the piers by each one of the ribs converging to the
point A and B is 148 kN. Once again, two adjacent ribs convey their loads on the
pier and on the lateral buttress. The horizontal resulting thrust on the single pier can
be obtained through a vector addition of the two components, which present an
angle of 45° to the transversal axis:

Svl ¼ 2 � 73:5 � cos 45� � 104 kN ð10:13Þ

The overall vertical load conveyed to the pier and to the lateral buttress by the
two neighbouring ribs is:

Gvl ¼ 2 � 148 ¼ 296 kN ð10:14Þ

FF

F F

A B 

Scv Scv

A B 
(a) (b) 

3

Fig. 10.14 The forces F conveyed by diagonal ribs and the resulting horizontal thrust S
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Similarly, to the previous case, assuming a rise of 5.3 m, the height to span ratio
is equal to 0.7. The unit weight and thrust are estimated using the tabulated 2:3
ratio, so that Vo = 13 kN/m2 and Ho = 4–4.3 kN/m2.

According to this approach, the weight Gvl and the thrust Svl are respectively:

V ¼ 1
2
L � B � Vo � creal

crubble
¼ 1

2
7:5 � 7:5 � 13 � 21

24
� 320 kN ð10:15Þ

H ¼ 1
2
L � B � Ho � creal

crubble
¼ 1

2
7:5 � 7:5 � 4�4:3ð Þ � 21

24
� 99�106 kN ð10:16Þ

10.4.2.5 Thrusts of Flying Buttresses

The cathedral has a double prop system. The lower flying buttresses constrain the
springings of the vault of the main nave and transmit its thrust to the outer but-
tresses. The upper flying buttresses sustain the high trusses struck by wind and
those situated on the leeward side work just as the lower flyers conveying the wind
actions from roof trusses to the side buttress as shown in the previous Fig. 10.12. In
this force transmission the weight of the flying buttress is neglected because small
respect to other loads.

10.4.3 Side Wind Strength of the Cathedral: The Assumed
Mechanisms

The kinematic approach is used in the following analysis and it is referred to a plane
problem, considering a transverse segment of the Cathedral, characterized by a
width equal to the longitudinal distance i between the piers of the central nave
(Fig. 10.9).

Various failure mechanisms are possible. Specifically, three different groups of
failure mechanisms have been taken into account. The first group considers the
failure of the single roof truss, the failure of the windward pinnacle or the shear
failure of the top wedge of the side buttresses. All the other failure mechanisms
affect different structural components but always engage at least one of the two side
buttresses.

The second group thus considers the failures involving the leeward side of the
Cathedral, pressed by the concurrent action of the thrust of the main vault and the
wind pressure.

The third group considers the global failure of all the structural components of
the cathedral, belonging both to the windward and the leeward sides. In this last
case, the thrust of the vault isn’t worth of interest because during the mechanism the
central nave undergoes only a rigid translation, without any change of its span
length.
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A load multiplier k affects the conventional unit wind pressure po acting at the
top of the Cathedral. The minimum value ko among all the multipliers k, corre-
sponding to the various mechanisms, represents the wind strength of the Cathedral.

The lateral buttress is the main resistant element of the cathedral. It is composed
by a series of stones placed roughly along horizontal courses. In the overturning
failure, a lower region of the buttress fractures and becomes ineffective, thereby
reducing the side strength of the element. According to the middle third rule,
Ochsendorf et al. (2004) proved that the fracture line is straight for buttresses
characterized by a rectangular cross section and subjected to their weight and an
inclined force at their top section, as shown in Fig. 10.15. This effect cannot be
neglected when the weight of the buttress is dominant with respect to the other
involved vertical loads. On the contrary, this issue has not been taken into account
for the piers and the walls because having a non-dominant dead weight with respect
to other acting vertical loads. The piers and the buttresses are connected through the
flying buttresses and the cross vaults of the aisles. For sake of simplicity, in the
considered mechanism the two lateral vaults are removed from the structure and are
replaced by the actions that they transmit to piers and buttresses.

10.4.3.1 Local Failure Mechanisms of Main Trusses

The local failure of the trusses placed on the top of the main nave can occur or with
an upturn mechanism, named A1 (Fig. 10.16), or with a sliding mechanism, called
A2 (Fig. 10.17). The total weight of the truss of the roof, Gtr, is equal to:

Gtr ¼ 2Gcr � 800 kN ð10:17Þ

The overall horizontal wind force, considering the effects of the pressure on both
the windward and the leeward sides of the roof, is:

Sw ¼ k � 3po � Htr � i ð10:18Þ

The upturn failure equation, in which kA1. is the failure multiplier relative to the
mechanism A1, gives the condition:

Fig. 10.15 The lateral
buttress with its typical
inclined fracture line
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Sw ¼ kA1 � 3po � Htr � i ¼ Gtr
0:5 Ln þ swð Þ

0:5Htr
ð10:19Þ

that yields to kA1 ¼ 2:43.
Introducing the failure multiplier kA2 relative to the mechanism A2, the sliding

equilibrium equation can be written as (Fig. 10.17):

Sw � f � Gtr ¼ kA2 � 3po � Htr � i� f � Gtr ¼ 0 ð10:20Þ

in which f represents the kinetic friction factor (wood over stone), taken equal to
0.4. The obtained value of the failure multiplier is equal to kA2 ¼ 1:015.

10.4.3.2 Leeward Side Failures of the Cathedral

The concurrent actions of the thrust of the main vault and of the wind load can
produce a mechanism concerning the failure of the leeward side of the Cathedral.

Two different failure mechanisms, named B and C, have been chosen to describe
this type of failure (Fig. 10.18). In both the two mechanisms the truss of the roof is
pulled out by the overturning of the piers and of the walls. Consequently the
windward support of the truss slides over the head of the pier. The resistant work
includes both the plastic dissipation, due to sliding of the windward support of the

Fig. 10.16 The upturn failure mechanism of the truss of the roof, A1 in which po is the
conventional unit wind pressure, assumed equal to 1 kN/m2

Fig. 10.17 The sliding failure mechanism of the truss of the roof, A2
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truss, and the works due to the uplift of the various involved weights. The upper
internal wall and a portion of the lower outward wall, belonging to the leeward side
of the Cathedral, are affected by the wind pressure.

The Mechanism B

Geometry of the Mechanism

The mechanism B considers that only the upper segment of the pier fails over-
turning around a hinge placed at the extrados of the lateral vault. The side buttress
overturns with a diagonal crack that reaches the springing of the vault of the aisle.
The lower triangular wedge of the buttress, the lower outward wall and the lower
segment of the pier, are ineffective.

In the considered mechanism, the leeward side of the sectional modulus of the
Cathedral moves to the right. A suitable number of hinges splits the sectional
modulus into four segments, indicated in Fig. 10.19a as I, II, III and IV.
Figure 10.19b shows the absolute centres of rotation of the pier and of the buttress,
named C1 and C2 respectively, and the relative centres of rotation, called C13, C23,
C14, C24, where the two numbers identify the two connected segments.
A mechanism set is defined imposing the positions of these internal hinges. Each
mechanism of the set is completely defined when the absolute centres of rotation of
all the segments are determined.

Their positions are located taking into account the conditions of alignment
between the various triplets of the absolute and relative centres of rotation: the
position of the absolute centre C3 is obtained through the condition of intersection
between the straight lines joining the two triplets C1, C13, C3 and C2, C23, C3

Fig. 10.18 The considered semi-global failure mechanisms involving the leeward side
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(Fig. 10.19c); the position of the relative centre C12 is found through the condition
of intersection between the straight lines joining the two triplets C12, C13, C23 and
C1, C12, C2 (Fig. 10.19d); the position of the relative centre C24 is gotten through
the condition of alignment between C14, C24 and C12, together with the condition
that C24 is constrained to lie on the intrados curve of the flying buttress
(Fig. 10.19e); the position of the absolute centre C4 is obtained through the con-
dition of intersection between the straight lines joining the two triplets C1, C14, C4
and C2, C24, C4 (Fig. 10.19f).

Fig. 10.19 Absolute and relative centres of rotation with the alignment conditions
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The positions of the centres C13, C23 and C14 are independent variables. Once
that all the positions of the centres of rotation have been obtained, the resulting
deformation is defined by the rotation hp of the pier around its absolute centre C1.

The angle of inclination of the straight line joining the centres C13 and C23 to
the horizontal axis is named ar. Each choice of the position of the two previous
hinges defines this angle (Fig. 10.20).

For the chosen geometry of the flying buttress, in order to obtain a kinematically
admissible mechanism the value of the angle ar cannot be less than 36°.

The relative centre C12 is defined for each position of the centres C13 and C23
and consequently, the centres C14 and C24 can be found as shown in Fig. 10.19e.
The mechanism is then identified by only one independent variable, the angle ar.

Figure 10.21 shows the horizontal displacements of the various structural
components occurring in the mechanism. Despite the buttress rotates clockwise of
an angle hb smaller than the one of the pier, named hp, detachments occur in the
contact sections between the flying buttresses and the pier or the side buttress,
respectively. This condition ensures that the mechanism B is kinematically
admissible.

The Works in the Mechanism

The leeward wind loads, due to the suction effect, pull on the upper internal wall
and the portion of the lower outward wall, while both the windward and leeward
wind loads, acting on the roof, together with the main vault thrust, push on the
whole leeward side. The weights of the various structural elements involved in the
mechanism, together with the friction forces due to the sliding of the truss supports
over the top section of the piers, produce the resistant work. While the leeward
upper segment of the pier overturns in the mechanism, the roof trusses over the

C13

C23

α
r 36°

Fig. 10.20 Limitations on
the angle ar
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nave, pushed by the wind action, move to the right and their windward supports
skid of D(hp) on the head of the upper wall. Figure 10.22 shows the double rising of
the right truss support occurring during the pier overturning.

The sliding force is fVleft where f is the friction kinetic factor and Vleft is the
vertical reaction of the windward truss support. Thus the energy dissipation
occurring during the mechanism is

Dslid ¼ f � Vleft � D hp
� � ð10:21Þ

Fig. 10.21 The horizontal displacements occurring in the mechanism B

Fig. 10.22 The double rising of the right truss support
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The equilibrium condition allows to calculate the kinematic multiplier k of the
wind pressure that causes the collapse:

Dslid þ g; vh iþ k pw; vh i ¼ 0 ð10:22Þ

where the work of the vault thrust, depending only on the weight, has been included
in the work g; vh i of the loads g.

We consider now the various loads involved in the mechanism.
The weight of the segment of the pier that moves upwards during the mechanism

B is:

Gpier ¼ p
B2
p

4

 !
Hcv � Helvð Þcp þ p

b2p
4

 !
Hp � Hcv
� �

cp ¼ 1:17 � 103 kN

ð10:23Þ

and the weight of the wall aligned to the pier is (Fig. 10.9):

Gaw ¼ ðHp � HelvÞ � sw � i� Bp
� � � wgl � cb ¼ 961:4 kN ð10:24Þ

Then:

Gp ¼ Gpier þGaw ¼ 2:132 � 103 kN ð10:25Þ

The buttress, due to the occurrence of the inclined crack, separates into two parts
whose weights are (Fig. 10.23):

Fig. 10.23 The weights of
the two fractions
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Gb1 ¼ sb � Hb � Hlvð Þ � Bb � cb ¼ 4:94 � 103 kN ð10:26Þ

Gb2 ¼ 1
2
sb � Hlv � Bb � cb ¼ 1:33 � 103 kN ð10:27Þ

The weight of the portion of the outward wall that works in the mechanism is:

Gsw ¼ sw � Helv � Hlvð Þ � i� sbð Þ � wgl � cb ¼ 250:8 kN ð10:28Þ

The vertical reaction VB of trusses at the right support B (Fig. 10.24) is equal to:

VB kð Þ ¼ VB�Gcr þDVB kð Þ ð10:29Þ

where VB-Gr depends on its weight 2Gcr and is equal to:

VB�Gcr ¼
2Gcr

Ln þ sw
2

Lr
ð10:30Þ

The increment of the vertical reaction of the leeward truss support DVB due to
the wind pressure is equal to:

DVB kð Þ ¼ 3
2
kpo

H2
tr

Lr
� i ð10:31Þ

With these assumptions, the works in Eq. (10.25) become:

g; vh i ¼ � Gp

2
þVB�Gcr þGcv

� �
Bp � Scv Hcv � Helvð Þ

� �
hp

þ Gb1

2
þ Gb2

3
þ Glr

2
þGlv

� �
Bb þGsw Bb � sw

2

� �
� SlvHlv þGpi

Bpin

2

� �
hb

ð10:32Þ

Fig. 10.24 The roof truss
reaction at its left support
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k pw; vh i ¼ k
ZHp

Helv

po
H

h2i
� �

dhþ
ZH
Hp

3po
H

hiHp

� �
dh

2
64

3
75hp � DVB kð ÞBphp

þ k
ZHelv

Hlv

po
H

h2i
� �

dhþ
ZHb þHpin

Hb

po
H

h2sb
� �

dh

2
64

3
75hb

ð10:33Þ

The works of the thrusts Scv and Slv. are included in the term g; vh i.
The energy dissipation Dslid in Eq. (10.25), due to the sliding of the left truss

support is:

Dslid kð Þ ¼ �f � VA � D: ð10:34Þ

if D is the horizontal displacement of the truss involved in the mechanism and VA

the vertical reaction of the windward truss support (Fig. 10.24), equal to:

VA kð Þ ¼ VA�Gcr �
3
2
kpo

H2
tr

Lr
� i ¼ 2Gcr

Ln� Bp�swð Þ
2

Lr
� 3
2
kpo

H2
tr

Lr
� i ð10:35Þ

where:

VA�Gcr ¼
2Gcr

Ln� Bp�swð Þ
2

Lr
ð10:36Þ

is the reaction of the left support A due to the weight 2Gcr. The dissipation of
energy is then:

Dslid kð Þ ¼ �f � VA kð Þ � D ¼ �f Gcr � 3
2
kpo

H2
tr

Ln
� i

� �
ðHp � HelvÞhp ð10:37Þ

where the kinetic friction factor f has been assumed equal to 0.4.
The relationship between the virtual rotation hp and hb of the pier and the

buttress respectively depends on the assumed value of the angle a.
By varying the values of the inclination angle a we obtain the corresponding

values of the kinematical multiplier k. The minimum value of k(a) is attained for
a = 36° and is equal to:

kB ¼ 0:969 ð10:38Þ

When the angle ar reaches the value of 36°, the straight line connecting the
centres C13 and C23 becomes tangent to the intrados of the flying buttress
(Fig. 10.20). This situation is explained taking into account that the minimum value
of the kinematical multiplier kB is also statically admissible. The condition a = 36°,
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due to the chosen geometry of the flying buttress, assures that the two conditions of
kinematic and static compatibility are both satisfied.

This minimum value corresponds to a value of the rotation hb equal to:

hb ¼ 0:67hp ð10:39Þ

The corresponding collapse wind pressure acting on the leeward side is:

pcollBl ¼ 0:969
kN
m2 ð10:40Þ

and the corresponding collapse wind pressure acting on the windward side is

pcollBw ¼ 1:937
kN
m2 ð10:41Þ

10.4.3.3 The Mechanism C

The mechanism C assumes that both the leeward pier and the adjacent wall are
involved along all their length in the overturning, in spite of the wind pushes only
on the upper wall. The weight of the elements subjected to the uplift during the
mechanism C is evaluated according to Eq. (10.6) and is equal to:

Gp ¼ Gpier þGaw ¼ 3:639 � 103 kN ð10:42Þ

The dissipation of energy (Eq. 10.37) has been valuated taking into account that
the rotation of the pier occurs at its base, and thus becomes:

Dslid kð Þ ¼ �f � VA kð Þ � D ¼ �f Gcr � 3
2
kpo

H2
tr

Ln
� i

� �
Hphp ð10:43Þ

With these assumptions, the work of the dead load is:

g; vh i ¼ � Gp

2
þVB�Gcr þGcv

� �
Bp � ScvHcv þ SlvHlv

� �
hp þ

� Gb1

2
þ Gb2

3
þ Grl

2
þGlv

� �
Bb þGsw Bb � sw

2

� �
� SlvHlv þGpi

Bpin

2

� �
hb

ð10:44Þ

By varying the angle ar the search of the minimum value of k gives the collapse
load multiplier:
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kC ¼ 1:501 ð10:45Þ

that is attained again for a = 36°.
The corresponding collapse wind pressure acting on the leeward side of the

Cathedral is:

pcollCl ¼ 1:501
kN
m2 ð10:46Þ

and the corresponding collapse wind pressure acting on the windward side is

pcollCw ¼ 3:002
kN
m2 ð10:47Þ

The minimum value of the load multiplier corresponds to a value of the rotation
hb equal to:

hb ¼ 1:252hp ð10:48Þ

10.4.3.4 The Global Failure

In these failure mechanisms, the piers and the upper walls flanking the main vault
move together, without any variation of their distance since they are connected by
the overlying roof trusses. The collapse of the piers is achieved with the formation
of two hinges at their base. The two analyzed mechanisms are shown in Fig. 10.25.

Fig. 10.25 The global collapse mechanisms D and E
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The Mechanism d)

For this mechanism, the works in Eq. (10.25) are:

g; vh i ¼ � 2Gp

2
þVB�Gcr þ
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2
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� �
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2
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� �
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2

� �
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2

� �
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ð10:49Þ
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H
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� �

dh

0
B@

1
CAhb

ð10:50Þ

Imposing a vanishing energy dissipation in Eq. (10.50), the obtained collapse
load multiplier is:

kD ¼ 1:467 ð10:51Þ

The corresponding collapse wind pressure acting on the windward side is:

pcollDw ¼ 2:935
kN
m2 ð10:52Þ

and the corresponding collapse wind pressure acting on the leeward side is:

pcollDl ¼ 1:461
kN
m2 ð10:53Þ

The Mechanism e)

In this mechanism, the resisting and the pushing works are:
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in which the weights of the two parts of the left buttress, identified by the inclined
crack, are equal to:

Gb1l ¼ sb � Hb � Helvð Þ � Bb � cb ¼ 3:8 � 103 kN ð10:56Þ

Gb2l ¼ 1
2
sb � Helv � Bb � cb ¼ 1:9 � 103 kN ð10:57Þ

The relationship between the rotation of the windward pier and of the windward
buttress is:

hbl ¼ hp ð10:59Þ

The collapse load multiplier obtained for this mechanism is:

kE ¼ 1:71 ð10:60Þ

The corresponding collapse wind pressure acting on the windward side of the
Cathedral is:

pcollEw ¼ 3:42
kN
m2 ð10:61Þ
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and the corresponding collapse wind pressure acting on the leeward side is:

pcollEl ¼ 1:71
kN
m2 ð10:62Þ

10.4.3.5 Pinnacle Local Failure

The local failure of the pinnacle placed on the top of the buttress can occur with an
upturn mechanism. Calculations show that the load multiplier is very high.

10.4.3.6 Failure Wind Speeds

For the considered case study, the smallest critical multiplier is attained in the
mechanism B:

kcr ¼ kB ¼ 0:969 ð10:63Þ

The corresponding windward pressure at the height H of the top of the trusses
spanning the nave is then:

pcr;cl ¼ 2kcrpo ¼ pcollBw ¼ 1:937
kN
m2 ð10:64Þ

A simple estimate of the corresponding critical wind velocity is:

VcrðH ¼ 57mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1:937 � 9:81

1:25

r
¼ 55:675

m
s

ð10:65Þ

This velocity is attained at the height of 57 m above terrain. The corresponding
velocity at the standard height of 10 m can be evaluated taking into account that:

Vð57mÞ ¼ Vð10mÞ 57
10

� �0:35

¼ Vð10mÞ � 1:84 ð10:66Þ

and it reaches a value equal to:

Vcr�ð10mÞ ¼ 55:675
1:84

¼ 30:277
m
s

� 109
km
h

ð10:67Þ

Concluding, the transverse failure of the studied model, similar to the Cathedral
of Notre-Dame in Amiens, is reached through a semi-global mechanism when the
wind action reaches a velocity at the height of 10 m above terrain equal to
109 km/h.
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10.4.4 Conclusion

The map of strong winds in Europe gives the reference mean wind velocities at a
height of 10 m above the terrain (with a roughness length zo = 0.05), having an
annual exceedance probability equal to 2%, which corresponds to a return period of
50 years. Different values of the reference wind velocities are suggested by various
Codes. Among these, the value of 26 m/s is one of the strongest and most frequent.
Thus, summing up all the obtained results, we can conclude that the winds that can
be sustained by ancient gothic cathedrals correspond to the reference wind inten-
sities considered by actual Codes in Europe.

10.5 The Failure at Beauvais at the 1284

10.5.1 Introductory Notes

In many respects, the Cathédrale Saint-Pierre de Beauvais may be considered the
most daring achievement of Gothic architecture; it is made up solely of a transept
and choir apse with seven apse-chapels. The vaulting in the interior exceeds 48 m.
in height, to make it the tallest cathedral in Europe.

Construction of the choir and apse was begun in 1247 and finished in 1272.
(Figure 10.26). The work was interrupted in 1284 by the collapse of the choir
vaulting. The work of reconstructing it spanned the following 50 years and
included the addition of extra piers between the original ones of the choir, so that
the bays were halved from about 9–4.5 m in breadth (Fig. 10.27). It was in fact

Fig. 10.26 Original plan of the choir and apse
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thought that the original pier spacing of the failed choir was too large. The choir
was completely rebuilt by about 1337, but the work was interrupted for the next
150 years due to the Hundred Years War. It was not until 1500 that work on the
transept was taken up again and brought to completion in 1548. In 1573 the
collapse of the extremely high central tower halted the work once again. Various
attempts were made to complete the cathedral, but by 1605 the decision was taken
to consolidate the existing structure and abandon the enterprise, leaving it incom-
plete. Beauvais became what it is today, a choir and transept without a nave.
A detailed history of the building has been provided by Branner (1962).

The 1284 failure was quite inexplicable: the cathedral had stood in good con-
dition for twelve years and there are no historical accounts of earthquakes or wind
storms occurring before the collapse. Figure 10.28 shows Benouville (1891–1892)

Fig. 10.27 Plan with transept of the rebuilt choir

Fig. 10.28 Benouville’s
reconstruction
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reconstruction of the state of Beauvais in the years 1272–1284. Figure 10.29 shows
the details of the piers at the chevet, as illustrated by Viollet le Duc. The cause of
the 1284 collapse has long been a matter of a great deal of speculation. Some slow
action seems to be the most likely cause.

Two different conjectures on the identity of these slow-moving actions have
been advanced: creep of the pier mortar and uneven foundation subsidence.

According to Viollet-le-Duc (1858–1868), the mortar creep triggered the transfer
of loads from the masonry piers to the adjacent slender marble columns illustrated
in Fig. 10.29. As a consequence, the columns buckled, producing rotation of the
so-called tas de charge and consequent distortion of the adjacent flying buttresses
with failure of the central vaults and piers.

Heyman (1971), instead, considered it more likely that uneven subsidence of
piers foundations, due to soil consolidation, were responsible for the catastrophic
collapse. Wolfe and Mark (1976) challenged this conjecture. Firstly, they noticed
that there are no signs of any major differential subsidence in the existing building.
Moreover, the cathedral was probably built on the site of a pre-existing building,
near the walls of an old Roman precinct.

Determining for certain the cause of the fall of the original vaults of Beauvais
cathedral is naturally a difficult, if not impossible, task, especially given that any
and all documentary evidence on the failed construction has been long lost.

Fig. 10.29 Cross section at
the “chevet” (Viollet-le-Duc)
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Nevertheless, some insight into the issue can be gained (Como 2010) from the
following considerations.

First of all, it should be noted that, while the distance between the centers of the
main piers was 15 m—the same as many other cathedrals, such as Amiens,
Chartres, etc.—the Beauvais piers were considerably higher. Moreover, the piers’
cross sections were much smaller and the means by which they were stiffened,
represented by the adjacent slender marble columns, seems very doubtful.

It appears that no one ever performed a scientific analysis of the piers’ instability
under the loads of the original quadripartite vaults, except perhaps a rather sim-
plistic, conservative evaluation through application of Euler’s elastic theory, as
recently reported by Wolfe and Mark (1976). In this regard, however, in preceding
sections we have seen the dramatic effects of load eccentricities on the buckling
strength of masonry piers, (Yokel 1971) whose behavior is very different from
Eulerian columns.

Figures 10.28 and 10.29 show the complex geometry of the piers of the
Beauvais cathedral, with all their offsets and misalignments, which produce
eccentricities in the axial loads. In addition, we have also seen how mortar creep
slowly increases the destabilizing effects of eccentric axial loads.

Accordingly, it seems natural to harbor strong suspicions that the piers’ slen-
derness, combined with their geometrical irregularities and mortar creep, could
have been responsible for the failure.

The next sections will delve more thoroughly into this hypothesis. However, to
this end, it is first necessary to obtain a preliminary estimate of the order of mag-
nitude of all the forces acting on the cathedral piers.

10.5.2 Thrust of the Cross Vault Spanning the Choir

With the aim of evaluating the various actions transmitted by the vault to the piers,
the following provides a brief static analysis of both the cross vault spanning the
choir and transept and the two adjacent flying buttresses (Fig. 10.30).

The cross vault rib is loaded by its weight and the vertical and horizontal forces
conveyed by the sliced arches dividing the webs, each of which is assumed to have
a thickness of 25 cm and made of strong bricks. The small inflexions of the vertical
buttresses yield minimum thrust states in the sliced arches and cross ribs of the
vault. The thrust has been evaluated taken also in account the presence of filling
near the vault corners (Fig. 10.31).

The thrust of the cross vault ribs is transmitted to the flying buttress across the
tas de charge, the large marble block that joins the cross vault ribs and the lower
flying buttress, as shown in Figs. 10.31 and 10.32.

According to calculations, the vertical and horizontal components V and H of
force S transmitted by the vault to the pier are about 58 and 19 t, respectively. The
lower flying buttress intercepts this force S on the internal edge of the pier and
transfers it through an intermediate pier to the large vertical buttress. The lines of
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thrust of the lower and upper flying buttresses have been traced. The thrusts of the
higher and the lower fliers are respectively near the minimum and maximum thrust
values. The lower flier effectively acts as a compressed prop.

10.5.3 Loads on the Piers

The pier has a height of about 44.80 m, as measured from the foundation level to
the extrados of the tas de charge. The pier is fixed here because of the presence of
the flier, on the inner side, and the springing of the nave cross vault, on the other
(Fig. 10.33).

Above the tas de charge the pier extends for about another 7 m to become part
of the upper transverse walls. The total length of the pier is thus about

Fig. 10.30 The cross vault spanning the transept and the sliced web

Fig. 10.31 Minimum thrust conveyed by diagonal cross ribs on a pier
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44.80 + 7.00 = 51.80 m, of which 3.80 m run from the foundation to the floor
level.

The length of the pier under examination can be subdivided in two main parts
(Fig. 10.33). The lower, 25 m-long section, extends from the foundation level to
the extrados of the side vault, with its first 3.80 m built into the foundation; its
circular cross section is about 1.60 m in diameter. The second part, of 18 m length,
is misaligned with respect to the first and reaches the extrados of the tas de charge.
This section of the pier length, which is approximately circular in cross section with
a diameter of 1.25 m, is strengthened by four adjacent small, slender marble col-
umns with circular cross sections, each about 0.15 m in diameter. The center of
these four columns is at a distance of about 0.625 + 0.35/2 = 0.80 m from the axis
of the adjacent pier’s cross section (Fig. 10.34).

The lower flier takes the horizontal component of force S transmitted by the main
vault, so only vertical loads act on the pier. In particular, these latter forces acting
on the pier section located just at the vault springing are due to (Fig. 10.35):

Fig. 10.32 Lines of thrust of
the lower and upper flying
buttresses
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(1) weight of the roof and the wooden trusses:
Considering an average weight of 500 kg/m2 in plan, we have:
Wroof = 9.00 � 7.60 � 0.5 = 34.2 t, applied along the masonry pier axis, at a
distance of 1.25 m/2 = 0.625 m from its internal edge (i.e. the edge towards the
nave).

(2) weight of the transverse masonry walls:
Considering an average area of 8.50 � 9.00 m2, a thickness of 0.5 m, a reduction
factor of 0.65, to take into account the presence of the openings, a specific
gravity of 2 tons/m3, we have, including the pier weight:

Wsup:wall ¼ 9:00 � 8:50 � 0:5 � 0:65 � 2 ¼ 49:4 t

This force is also applied along the pier axis, i.e. at a distance of 0.625 m from
its internal edge. Summing up (1) and (2) we have 83.6 t.

(3) weight of the marble statue on the extrados of the tas de charge:

Fig. 10.33 Section of the Cathedral at the transept and of the pier (Lengths in m)
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We have approximately: Wstatue = 4 t, which force acts along the axis of the
four small circular columns cross sections at a distance
e = 0.625 + 0.35/2 = 0.80 m from the center of the pier cross section.

(4) weight of the solid masonry block at the top the marble columns, between the
external edge of the pier and the upper flying buttress:

W ¼ 0:80 � 1:05 � 1:80 � 2:2 ¼ 3:3 t

(5) weight of the pinnacle:

W ¼ p � 1:02=ð3 � 4Þ � 3:0 � 2:2 ¼ 1:7 t:

Both of these last forces act along the axis of the four marble columns, situated
at a distance of about d = 0.625 + 0.35/2 = 0.80 m from the center of the pier
section. Summing up (3), (4) and (5) we have 9 t.

(6) vertical actions conveyed by both the cross vault spanning the transept and the
lower flying buttress.

83.6t

9
t

58t

142.6t

19t

0.46
m

1,6
0m

1.25m

internal edge

8t

9t

Fig. 10.35 All the forces
transmitted across the tas de
charge

0.625 0.625 

1.60 0.175 

Internal edge C

0.46

Fig. 10.34 Section of the
upper pier with the four small
columns (Lengths in m)
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At the minimum thrust state the vault conveys a vertical force of 58 t, while the
vertical counterthrust of the lower flying buttress is 8 t. Consequently,

Wvault;fl:buttr ¼ 58�8 ¼ 50 t:

This force acts along the internal edge of the upper pier and thus at a distance
of—0.625 m from the center of the pier cross section.
The resultant:
Summing up all the above forces:

Wtot ¼ 83:6þ 4þ 3:3þ 1:7þ 50 ¼ 142:6 t:

By evaluating the moment of all these forces around the center of the pier
section, we obtain the eccentricity of the resultant force:

83:6 � 0þ 4 � 0:80þ 3:3 � 0:80þ 1:7 � 0:80�50 � 0:625 ¼ 142:6n;

whence n = –0.17 m.
The distance of Wtot from the internal edge of the pier at the extrados of the tas
de charge is e = 0.625 – 0.17 = 0.46 m

The centre of the composite section made up of the sections of the pier and four
columns is very near the center of the pier’s section itself. The core of this com-
posite section is about 15 cm in width. Consequently, the two external marble
columns, placed on the outer side, would have to be unloaded. The eccentric axial
load is for all intents and purposes sustained solely by the circular masonry cross
section of the pier head.

Finally, at its springing the side vault spanning the aisle transmits to the pier the
following vertical and horizontal actions:

V2 ¼ 21 t H2 ¼ 4:8 t:

These forces are applied at the external edge of the pier section at its intersection
with the side vault.

10.5.4 Creep Buckling of Piers

A stability analysis of the pier has been conducted by applying the delayed modulus
approach, according the results shown at Sect. 9.2.7 of the previous Chapter.

The complex geometry of the Beauvais piers (Fig. 10.36) has been input into the
program Athena (Cervenka 2002) in two-dimensional form (Di Carlo 2005–2006).
The uppermost length of the pier, the marble stone of the tas de charge, exhibits the
greatest strength, in both compression and tension.
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Because of the eccentricity of the axial load, the small slender marble columns
adjacent to the masonry pier have not been taken into account. The pier is loaded at
its top section by an axial load P = 142 t, with eccentricity e = 0.46 m, as well as
other loads applied along its length. The program automatically includes the weight
of the various pier lengths.

All the loads are corrected via the parameter k, which varies in the interval (0, 1),
so that all the loads are effective when k reaches unity. The horizontal displacement
D of the pier is evaluated at the level of the side vault extrados, where the pier
section changes dimensions.

The various axial load versus lateral displacement curves have been plotted by
gradually increasing k for different values of the delayed elastic modulus
(Fig. 10.36).

Due to the long-term creep effects in old mortars, (Jessop et al. 1978; Shrive and
England 1981) the delayed modulus can also be assumed to be four times lower
than the initial value of E. Taking into account the order of magnitude of the initial
pier masonry elastic modulus, whose value ranges from 10000 to 5000 Mpa, and
the corresponding decay due to creep effects, the pier clearly results to be quite
unstable.

It is in fact worth noting that when the modulus is near its initial value, the pier
exhibits rather good axial strength and would fail only under loads much larger than
the actual ones. For delayed modulus values that take into account the strong creep
effect, on the other hand, the pier is prone to delayed failure under its ordinary
loads. Figure 10.37 provides a representation of the different inflexions of the pier
under the action of the full loads by gradually reducing the values of the delayed
elastic masonry modulus.

E = 2100 MPa

E = 2200 MPaE = 2300 MPa

E = 2500 MPaE = 3000 MPa
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Fig. 10.36 Axial load—lateral displacement curves for different values of the delayed elastic
modulus for the Beauvais pier
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10.5.5 Conclusions

The structural failure that struck the Beauvais Cathedral in 1284 can in all likeli-
hood be attributed to the slenderness of its masonry piers, with their axis
misalignments and eccentric loading, compounded by the inevitable effects of
mortar creep. The loads on the lower length of the choir piers are highly eccentric
due to the section change occurring at the extrados of the side vaults.

The pier is subject to lateral inflexion, which is exacerbated by the destabilizing
effects of the axial loads due to their eccentricity and axis misalignments. The lower
part of the pier bends and moves slowly towards the nave. Such displacement
cannot be constrained by the side vault, which, as it bears a mechanism deformation
and is in a minimum thrust state, follows the lateral inflexion of the pier. The upper
part of the pier, fixed at the top by the presence of the fliers and the main cross
vault, undergoes strong counter-flexing.

Despite all these deformations and the destabilizing effect of the axial loads, the
pier equilibrium would turn out to be stable, if only its initial elastic no-tension
response were considered. However, creep deformations of the medieval mortars
has gradually aggravated both the pier inflexion and the destabilizing action of the
axial loads. Thus, the pier slowly moved through ever more precarious equilibrium
states up to the disastrous failure.

All told, these results allow for concluding that the 1284 collapse of the
Beauvais Cathedral could be relay due to delayed creep instability of the masonry
piers.

Fig. 10.37 At left pier deformations corresponding to modulus values of 10000, 7500, 5000,
3000, 2100 MPA—at right Cracks distribution by gradually increasing load parameter k in the
case of E = 2100 MPa
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Chapter 11
Masonry Buildings Under Seismic Actions

Abstract This last chapter deals with the study of the seismic behaviour of historic
masonry buildings. Starting point of the chapter is the remark that traditional
masonry buildings have not been built to offer any resistance to horizontal actions.
This is why most of the seismic damage occurs in old historic centres, as well as
why there is currently such a great demand to determine the most suitable means to
reinforce them. The first sections of the chapter are focused to point out that,
contrariwise to steel or reinforced concrete structures, that can oppose the seismic
action by using their ductility, masonry constructions don’t dissipate energy during
their deformation, even if accompanied by cracks. If properly reinforced, to avoid
early local failures, masonry constructions have the sole resource to escape the
seismic action exhibiting rocking without failure, under alternate seismic action.
A constant acceleration impulse, of a suitable duration, can represent the seismic
action. A masonry pier wall, the basic resistant element of a masonry building,
overturns under an acceleration impulse Ao of suitable duration to that turns out to
be quite larger than the limit acceleration AL producing the statical collapse. The
magnitude of the so-called reduced strength factor q = Ao/AL—the ratio between
the above accelerations—can measure the actual capacity of the construction to
follow the alternate seismic action exhibit rocking without overturning, over the
whole duration of the quake. Due to the actual quite low values of this so defined
reduced strength factor q, as shown in the chapter, the seismic protection of historic
masonry constructions requires design criteria where strength has to be dominant.
A first focal point is thus the analysis of the chain of transmission of the seismic
forces along the resistant structure of the construction. The weak rings of this chain
are thus pointed out: they are due to the natural lack of connection among the
various components of the building structure. Suitable primary reinforcements,
discussed in the chapter, have to be inserted in the structure to ensure that early
local failures cannot occur. The out-plane and the in-plane strength of masonry
walls is then evaluated, with new elaborations and inclusions. All the results pre-
sented have been obtained in the framework of the Limit Analysis of masonry
structures, according to the approach followed in the book. Numerical examples
and comparisons with Code prescriptions are given.
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11.1 Introduction

Traditional masonry buildings were simply not built to offer any resistance to
horizontal actions. The main function of their structures is to transmit vertical loads.
Earthquakes cause movements of the soil beneath constructions, thereby imparting
to it both horizontal and vertical accelerations. While the vertical components of
seismic accelerations generally produce only moderate variations in the vertical
loads to be borne by the structure, the horizontal accelerations bring about
unprovided for horizontal forces. Consequently, traditional buildings experience
earthquakes as exceptional events which they are ill-equipped to withstand. This is
why most of the damage occurs in old historic centers, as well as why there is
currently such a great demand to determine the most suitable means to reinforce
them.

The first such research in Italy was probably prompted by the earthquake that
ravaged its southern regions of Calabria and Sicily in 1783. Bourbon engineers
surveyed sites to document the damage and prepare the earliest guidelines for
repairing or rebuilding damaged structures. The importance of connections between
the walls was grasped immediately and the earliest types of wall reinforcements
were defined: inserting wooden frames into them (Ruggieri 2015). The first safety
standards for building heights were moreover established. After the great earth-
quake in Messina (Sicily) in 1908, detailed standards were laid out for rebuilding
the failed constructions (Ruffolo 1912).

In the early 20th century the field of Earthquake Engineering was aimed mostly
at reinforced concrete and steel constructions and modern anti-seismic methods
were developed for such structures in the USA (Housner 1959; Newmark and
Rosenblueth 1971), New Zealand (Park and Paulay 1975) and Japan (Aoyama
1981), while research on the seismic strength of masonry buildings faded. Only
after the quake of Skopje in 1976 was research in the field revived. The so-called
POR method was introduced (Tomazevic 1978) when the collapse mechanism of
masonry buildings was identified with the occurrence of shear failures of walls
arising with diagonal cracking. Strength evaluations were based on tests results on
small, two-story buildings, generally made of the rubble masonry so typical of the
region.

After the great earthquake that struck the Italian regions of Campania and
Basilicata in 1980, research turned to analyzing the seismic behavior of masonry
buildings with a larger number of stories and more complex plans. New approaches
were developed, such as the Porflex method (Braga and Dolce 1982) and the
method VEM (Fusier and Vignoli 1993), that added the so-called story-bands to
POR analyzes and proposed a new failure model for walls under eccentric axial
load. On a different front, in the wake of the Heyman model, Limit Analysis was
applied to the collapse of masonry walls with openings (Como and Grimaldi 1985,
etc.). Further developments followed with the introduction of the new concept of
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ductility and the introduction of new procedures, as Petrini et al. (2006), Priestley
et al. (2007) such as the SAM (Magenes and Della Fontana 1998), and the
TREMURI method (Galasco et al. 2002, 2006). Although continuing research
constantly furthers our knowledge of all the aspects involved in the seismic
behavior of masonry structures, a universally accepted approach does not yet exist.

Currently, simplified criteria are used to represent building structures as loaded
by dead loads and a gradually increasing distribution of horizontal forces, which are
proportional to the mass of the building—the so-called push-over action
(Chopra and Goel 2002). The seismic strength of the building is thus obtained by
evaluating the intensity of these gradually increasing horizontal loads that produce
failure of the building. The question is: for an assigned intensity level of a seismic
action, defined, for instance, by the maximum horizontal acceleration of the ground
motion (PGa), what seismic strength is required of a building in order for it to
survive the given action?

The answer to this question can require knowing the ductility of the structure,
that is, its capacity to maintain its strength during the development of a failure
mechanism, which, in brief, depends on the choice of the so-called strength
reduction factor, also known as structure factor q. It is, in fact, impossible for any
structure to sustain the actions of an intense earthquake without some structural
damage. These issues are currently still the subject of debate, and the as yet partial
answers furnished so far have come mainly from the study of the seismic behavior
of reinforced concrete structures, which clearly cannot be transferred wholesale to
masonry constructions that exhibit poor plastic behavior: on the contrary, as shown
forward, the study of their rocking motion can give useful information.

The aim of this chapter is to discuss the main aspects of such issues in the
context of historic masonry buildings while attempting to keep the analysis
well-grounded in current theory. The basic assumption underlying such theory is
once again the same considered in previous chapters of this book: the no-tension
response of masonry material. The problems will thus be analyzed within the
framework of the Limit Analysis of masonry structures.

After a preliminary analysis on the peculiar aspects of the seismic response of
masonries, some fundamental aspects of the problem will be discussed: seismic
force transmission in masonry building structures and evaluation of the involved
strengths, with regards to the various possible failure mechanisms. A primary
analysis will thus be developed to define the transmission chain that carries the
forces from the building’s mass, where they are generated, as far as the foundation.
Some preliminary reinforcing systems can be conceived to guarantee full capacity
of this transmission chain.

A masonry wall subjected to horizontal forces orthogonal to its plane is the most
vulnerable element in the structural makeup of such buildings and, as a rule,
requires suitable ‘hook’ reinforcements. The in-plane strength of masonry walls
with openings represent, on the other hand, the actual strength of the building,
provided that failure of the walls under actions orthogonal to their plane is avoided.
These questions will be thoroughly investigated within the framework of the
no-tension model of masonry materials.
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The following features of the problem will be here discussed:

1. The possible rocking motion of masonry structures

The strong intensities of the seismic actions, together with the problem to sustain
these actions in the elastic range, have forced the use of the dissipative capacity of
structures in plastic range. This point implied a consequent wide development to
research conditions able to give rise to ductile behaviors, specially in reinforced
concrete and steel structures (Park and Paulay 1975; Paulay and Priestly 1992).

Masonry behaves very differently from ductile materials. There is no dissipation
of energy during their deformation, even if accompanied by cracks. Neverthless
masonry structures, if properly reinforced to avoid in advance local failures, can
exhibit remarkable seismic strength due to their capacity to exhibit rocking under
alternate seismic actions (Housner 1963; Yim et al. 1980; Liberatore et al. 2002;
D’Ayala and Speranza 2003; Al Shawa et al. 2015; Di Carlo 2015; Coccia et al.
2016a, 2017).

The starting point of this statement is due to Housner (1963) when, examining
the damage occurred in cities hit by strong quakes, he discovered that a wide
number of slender structures survived the ground shaking whereas more stable
appearing structures were destroyed or seriously damaged.

The rocking motion of structures of inverted pendulum type explains this
behaviour. Regular masonry walls with openings, the main resistant components of
common masonry buildings, with their alternate oscillations, fall into this kind of
structures.

2. Force transmission in building structures and definition of the required essential
reinforcements

The transmission chain that carries the forces from the building’s masses, where
they are generated, as far as the foundation, will be firstly analyzed and will be
pointed out the weak points of this chain. Some essential and simple strengthening
systems, required to remove the chief seismic weakness of the constructions, will be
discussed.

3. Out of plane and in-plane strengths assessments of masonry walls via Limit
Analysis

A masonry wall subjected to horizontal forces orthogonal to its plane is the most
vulnerable element in the structure and, as a rule, requires suitable hooking rein-
forcements. Conversely, the in-plane masonry walls can develop the actual ultimate
strength of the building, provided that out of plane failures are avoided.

The out of plane strength of suitably reinforced walls will be firstly analyzed.
The in plane strength of regular walls with openings will be then thoroughly
considered.
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11.2 Some Recalls of Earthquake Engineering: The
Elastic and the Elasto-Plastic Oscillator

When a structure is subjected to ground motion in an earthquake and behaves
elastically, the maximum response acceleration will depend on the structure’s
natural period of vibration and the magnitude of the damping present. Dynamic
analyses of structures responding elastically to typical earthquakes records indicate
the order of response acceleration that the structures may experience.

Very useful in Earthquake Engineering are the elastic response spectra derived
by dynamic analyses of a large number of single-degree-of-freedom oscillators to
specified earthquake motions. The elastic oscillator, of stiffness k and mass m, with
period

T ¼ 2pðm=kÞ1=2 ð11:1Þ

is in fact the ideal model representing the behavior of elastic structures. The
maximum acceleration

SeðTÞ ð11:2Þ

is plotted as a function of the natural period T of vibration and the magnitude of
damping, expressed as a percentage of the critical viscous damping (Fig. 11.1).
This diagram represents the elastic response spectrum corresponding to a given
seismic event.

The value of response spectra lies in their condensation of the complex
time-dependent dynamic response to a single key parameter, the peak response.
This information can generally be treated in terms of equivalent static response,
simplifying design calculations (Housner 1959; Como and Lanni 1981).

Response spectra for a defined level of strong shaking are commonly used to
define peak structural response in terms of peak acceleration (PGA), directly usable

Fig. 11.1 The elastic
response spectrum
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in computing inertial forces. The Italian Building Code (DM 1996; NTC 2009)
furnishes the elastic spectrum Se(T) to represent the elastic response of the elastic
oscillator under a conventional seismic input.

The maximum horizontal force Fe that the elastic oscillator will absorb is mSe(T).
The corresponding maximum horizontal displacement is De, whence we have

Fe ¼ k � De: ð11:3Þ

It is generally uneconomic to design structures to respond to design-level
earthquake in the elastic range. In regions of high seismicity elastic response may
imply, in fact, lateral accelerations as high as 1.0 g.

If the strength of the lateral resisting structural system of the building has a level
less than that corresponding to the acting earthquake, inelastic deformations result,
involving, for instance in reinforced concrete structures, yielding of reinforcements
and possible crushings of concrete. Provided that the strength does not degrade as a
result of inelastic actions, an adequate response can be, on the other hand, obtained.
Displacements and damage must, however, be controlled at acceptable levels.

Equal seismic input can be sustained by the elasto-plastic oscillator, with the
same period as the elastic oscillator, and having the horizontal plastic limit strength
Fy, R times lower than Fe = mSe(T), provided that the oscillator is able to sustain the
plastic horizontal displacement Du, l times larger than the limit elastic
displacement:

Dy ¼ Fy=k: ð11:4Þ

The parameter

q ¼ R ¼ Fe=Fy ð11:5Þ

is the strength reduction factor R, frequently called also structure factor q. The
parameter

l ¼ Du=Dy ð11:6Þ

is the ductility factor of the oscillator: it controls the strength reduction factor R or
the structure factor q. Knowing the function

q ¼ qðl; TÞ ð11:7Þ

is crucial to defining the design seismic strength of a building. Systematic numerical
research studies on the behavior of elastic–plastic oscillators have defined the
function (11.7).
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A fundamental reference parameter is the period Tm, the period where the elastic
response attains its maximum (Fig. 11.1). According to the elasto-plastic response
(Faijfar 1999; Newmark and Hall 1982; Park and Paulay 1975; Paulay and Priestley
1992), it has been established, at a rough estimate, that:

• For structures with period T > Tm, the maximum displacement Du attainable by
the inelastic oscillator is near the maximum displacement of the elastic system
having the same initial period T as the inelastic system. Thus, in this case we
have

Du ¼ De; ð11:8Þ

whence we get

q ¼ R ¼ Fe

Fy
¼ De

Dy
¼ Du

Dy
¼ l ð11:9Þ

• For structures with period T < Tm, the criterion of energy balance holds and we
thus have

1
2
FeDe ¼ 1

2
FyDy þFyðDu � DyÞ ð11:10Þ

and

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l� 1

p
: ð11:11Þ

• for very small periods, (T < 0.1 s)

q ¼ 1: ð11:12Þ

Based on these criteria, Italian Building Codes furnish the values of the corre-
sponding strength reduction factor q (or the structure factor) for the various
structural types of structures, which exhibit different ductility factors l.

Figure 11.2 (Ghersi and Lenza 2016) shows various inelastic spectra corre-
sponding to different values of the structure coefficient q given by the Italian
seismic Code (NTC 2009). The diagram corresponding to q = 1, in particular, gives
the plot of the elastic spectrum. In brief and simplifying, the maximum intensity of
the force that has to be absorbed by the unelastic oscillator given by the Codes is

SDmax ¼ ag
Fo

q
ð11:13Þ
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where:

• ag is the maximum horizontal acceleration (PGa) depending upon the seismic
risk of the site,

• Fo the maximum spectral amplification on the reference site, to assume equal to
the factor 2.5,

• q the above defined structure factor. For masonry construction the Italian Code
(NTC 2009) gives for the strength reduction factor q = 2.

11.3 The Strength Reduction Factor q for Masonry
Structures

Masonry constructions behave very differently from ductile structures. There is no
dissipation of energy during deformation of masonry structures, even if accompa-
nied by crack development. Neverthless masonry structures, if properly reinforced
to avoid early local failures, can exhibit remarkable seismic strength due to their
capacity to exhibit rocking under alternate seismic actions.

The starting point of this assertion can be traced back to a study of Housner
(1963) that, examining the damage occurred in cities hit by strong quakes, noted
that a wide number of slender structures survived the ground shaking, whereas
more stable appearing structures were severally damaged.

To explain this behaviour, Housner analyzed the rocking of a solid column
resting on a rigid base hit by an impulse of horizontal acceleration. This Housner
study is a starting point to evaluate the strength reduction factor q of masonry
structures, composed by rigid blocks, analyzing their rocking motion, as proposed

Fig. 11.2 Inelastic response spectra corresponding to various q (Ghersi and Lenza 2016)
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by Liberatore et al. (2002), D’Ayala and Speranza (2003), Al Shawa et al. (2015),
Di Carlo (2015) and Coccia et al. (2016a, 2017).

For the Housner column there is a strong increasing of the Magnitude of the
overturning acceleration that turns out to be much higher than the acceleration
inducing incipient rocking.

The rocking motion of structures of inverted pendulum type can present this
behaviour and the inplane alternate oscillation of regular masonry pier walls falls
within this kind of structures.

11.3.1 The Solid Column Under an Impulse of Horizontal
Acceleration of Assigned Duration

11.3.1.1 Free Oscillation of the Solid Column

The column, represented by the rigid block shown in Fig. 11.3, rests on a rigid
base. It has a prismatic shape with height 2h and width 2b.

The centre of gravity C of the block is located at the distance h from the base and
at the horizontal distance b from the corners. The radial distance of C from the
centre of rotation O is thus

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ b2

p
ð11:14Þ

The line OR of figure A makes the angle a with the vertical. The angle a, that
defines the slenderness of the column, is given by

Fig. 11.3 Rocking of the
Housner column
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tga ¼ b=h ð11:15Þ

Housner assumed the presence of a sufficiently large friction between the block
and its base so that the block oscillates without sliding in the plane of the figure
about the two centres of rotation O and O′. The real conditions of the surface of the
supporting plane of the column over its base. This assumption has been thoroughly
discussed.

The tilting of the column is measured by the angle h. The weight of the block is
W and its moment of inertia Io about the centre O is

Io ¼ 1
3
W
g
4h2ð1þ tg2aÞ ð11:16Þ

The column, put to rocking, is released from the initial rest position inclined of
ho, with ho < a, to avoid overturning. When the block is rotated through the angle h,
the weight W exerts the restoring moment

WR sinða� hÞ ð11:17Þ

so that the equation of its motion is

Io
d2h
dt2

¼ Mo ¼ �WR sinða� hÞ ð11:18Þ

For small angles (a − h), as we have in the case of a slender column, Eq. (11.5)
can be written as

Io
d2h
dt2

¼ Mo ¼ �WRða� hÞ ð11:19Þ

With the position

p ¼
ffiffiffiffiffiffiffi
WR
Io

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g

4h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tg2a

p
s

ð11:20Þ

Equation (11.19) becomes

€h� p2h ¼ �p2a ð11:21Þ

Integral of (11.21) is the function

hðtÞ ¼ a� ða� hoÞ cosh pt ð11:22Þ
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that satisfies the initial conditions

_hð0Þ ¼ 0 ; hð0Þ¼ho; ho\a ð11:23Þ

The function (11.22) describes the evolution of the rotation of the block around
the point O as it fails back from h = ho into the vertical position h = 0.

We can valuate the time T/4 required by the block to reach, from h = ho, the
vertical position, just before the impact with its base. We have, from (11.22)

T
4
¼ 1

p
arccosh

a
a� ho

ð11:24Þ

or

T
4
¼ 2

ffiffiffiffiffi
h
3g

s ffiffiffi
4

p
1þ tg2a � cosh�1 1

1� ho=a
ð11:25Þ

From inspection of (11.25) we can thus notice that the time T/4 is strongly
dependent on the ratio ho/a and increases with ho.

At the impact. energy is lost and the block, rocking around the other corner O′,
reaches the new position h′o with h′o < ho. Then the block inverts its motion again,
returning faster to the vertical position. Let

_h1 _h2 ð11:26Þ

be the rotation velocities of the block just before and just after the impact. The
velocity _h1 can be valuated by application of the impulse theorem (Fig. 11.4).

The moment of momentum HO′ (T/4 − e) around the corner O′ immediately
before impact equals the moment of momentum HO′ (T/4 + e), just immediately

Fig. 11.4 The block just before and just after the impact
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after the impact, because the moment of the impulse Pdt around the same point O′
vanishes (Timoshenko and Young 1948). Thus we have, with the small quantity
e = dt/2

HO0 ðT=4þ dt=2Þ �HO0 ðT=4� dt=2Þ ¼ 0 ð11:27Þ

According to figure B, the moment of momentum around O′ just after the impact
is

HO0 ðT=4þ dt=2Þ ¼ Io _h
2
2 ð11:28Þ

On the other hand

HO0 ðT=4� dt=2Þ ¼ HOðT=4� dt=2Þ �MV12b sin a ¼ Io _h1 �MR _h12b sin a

ð11:29Þ

Thus the rotation velocity _h2 just after the impact is

_h2 ¼ _h1ð1� 2MR2 sin2 a
Io

Þ ð11:30Þ

No bouncing occurs at the impact that is unelastic. The rotation of the block
continues smoothly about the point O′ and the moment of momentum about O′ is
conserved. The reduction in kinetic energy during impact is

r ¼ 1=2Io _h
2
2

1=2Io _h
2
1

¼ ð1� 2MR2 sin2 a
Io

Þ2 ¼ 1� 3
2
sin2 a ð11:31Þ

The restitution factor corresponding to the rocking of the column without sliding
depends only the geometry of the column. For a very slender column r � 1, i.e. the
energy lost at the impact becomes negligible.

With this result the free oscillations of the block can be fully described by
applying iteratively Eq. (11.22). Figure 11.5 shows the variation of the rotation
function h(t) for a given geometry of the column (Di Carlo 2015).

Fig. 11.5 Free oscillation of the Housner column (Di Carlo 2015)
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11.3.1.2 The Solid Column Under a Constant Impulse of Horizontal
Acceleration of Given Duration

The column, resting on a base which is suddenly an horizontal constant acceleration
A lasting an assigned time t, can be put in motion and may also overturn, depending
on the magnitude of A and the duration of t (Fig. 11.6). This impulse of acceler-
ation, with a suitable choice of its duration, can be assumed as a standard input
describing straightforwardly the seismic action.

Incipient rocking acceleration
For small angles of oscillation the effect of the acceleration A is the same as a

forceWA/g acting horizontally through the centre of gravity C of the block. Thus, to
generate the motion, the acceleration A has to be larger than the static overturning
acceleration AL

AL ¼ g
b
h
¼ g � tga � ga ð11:32Þ

Overturning impulse acceleration of definite duration
We will thus assume that

A[AL ð11:33Þ

The equation of the motion of the block thus is

Io
d2h
dt2

¼ �WRða� hÞþ WA
g

R ð11:34Þ

that, taking into account that (ho – a) is a small angle, becomes

€h� p2h ¼ p2ðA
g
� aÞ ð11:340Þ

Fig. 11.6 The solid column hit by a horizontal acceleration impulse A of duration t
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Integral of this equation satisfying the condition that at t = 0 both velocity and
displacement are equal to zero, is the function

hðtÞ ¼ ðA
g
� aÞ ðcosh pt � 1Þ ð11:35Þ

Is the acceleration impulse A, of duration t, able to produce the overturning of
the block? We can answer the question taking into account, the Housner approach
(1963). Overturning occurs if the duration t of impulse is such that the work of the
inertial force WA/g during the motion of the column, from t = 0 to t equals the
difference in potential energy between positions h = a (where the overturning takes
place) and h = 0 (Fig. 11.7).

Ao denotes the acceleration that is able to overturn the block just at the end of the
critical time to: it can be determined thus considering the condition

Zto
0

W
g

Ao
ds
dt

dt ¼ W
g
AoR

Zto
0

_hðtÞ dt ¼ WRð1� cos aÞ ð11:36Þ

Taking into account of (11.35), condition (11.36) becomes

W
g
Ao

Zto
0

ds
dt

dt ¼ W
g
AoRðAo

g
� aÞ

Zto
0

sin hptdðptÞ ¼W
g
AoRðAo

g
� aÞ ðcosh pto � 1Þ

ð11:37Þ

For a slender column the angle a is small, so we can write

1� cos a ¼ a2=2 ð11:38Þ

Fig. 11.7 The overturning
position of the block under
the impulse of acceleration A

572 11 Masonry Buildings Under Seismic Actions



and condition (11.37) becomes

2Ao

g
ðAo

g
� aÞðcosh pto � 1Þ ¼ a2 ð11:39Þ

from which we obtain the requested condition relating the dynamical overturning
acceleration Ao and its duration to

to ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tg2a

p
3g

s
cosh�1ð1þ 1

2Ao
ga ðAo

ga � 1ÞÞ ð11:40Þ

From (11.40) yields

Ao

AL
¼ Ao

ga
! 1 to ! 1;

Ao

AL
¼ Ao

ga
! 1 to ! 0 ð11:41Þ

For instance, for a prismatic column with b = 0.3 m, h = 3.0 m, we have
b/h = 0.1 and AL = gtga = 0.98 m/s2. Let us consider the values Ao/AL = 3; 2; 1.5.
Consequently, the corresponding durations of the acceleration impulse causing the
overturning, according to (11.40) are: to = 0.26 s; to = 0.44 s: to = 0.70 s.

These results can explain the seismic behaviour of columns, surviving strong
quakes, as detected by Housner. Figure 11.8 gives a picture of the Traian column,
still standing upright in Rome after 1900 years.

Fig. 11.8 The Traian column
in Rome
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These results give suggestions to the analysis of the possible rocking of masonry
wall piers that, unlike the solid column, suffer cracking.

11.3.1.3 The Masonry Wall Pier: Rocking and Diagonal Cracking

The seismic strength of masonry constructions is, as a rule, due to the weight that
opposes the disrupting action of horizontal forces. Weights, in fact, rise during the
development of side mechanisms, induced by seismic loads. Rocking takes place
whenever the see-saw seismic motion occurs.

The wall pier is the vertical element of perforated masonry walls, the main
resistant structural components of masonry buildings. Structural systems of wall
piers and spandrels, created by large openings in the wall, sustain the in-plane
seismic actions acting on the wall (Fig. 11.9). The study of the wall pier under
alternate horizontal actions condenses this behavior and gives useful hints to the
general analysis of masonry constructions.

In line with the above analysis of the Housner solid column, let us examine now
the rocking motion of a wall hit by a short impulse of horizontal acceleration.
During the rocking the contact between piers and spandrels occurs within the
masonry, where the friction strength is very high. The rocking of the piers
undoubtedly will thus occur without sliding.

Figure 11.10 shows the wall pier in a generic cracked configuration, loaded by
its own weight and of the weight conveyed by spandrels at its head and by the
corresponding horizontal inertial forces.

The wall pier behaves quite differently from the solid column. This last can only
detach from its base while the masonry pier can also suffer diagonal cracks
(Fig. 11.10). As consequence of diagonal cracking, the lower detached triangular
region becomes ineffective and its weight cannot oppose the overturning. Only an
unlikely tensile masonry strength could avoid cracking. Just in this last case the
behaviours of the masonry wall pier and of the solid column are the same
(Fig. 11.11).

Fig. 11.9 Wall piers under
alternate horizontal actions
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11.3.1.4 Incipient Rocking Acceleration

Likewise to the solid column, the impulse of horizontal acceleration initiates the
rocking only if its magnitude A is larger than AL, the acceleration that leads the pier
to the limit equilibrium. At this state, in fact, the resultant of all vertical and
horizontal forces passes trough the toe O of the pier, as shown in Fig. 11.12. The
masonry pier reaches a limit equilibrium state: AL stands for the failure multiplier ko
of the horizontal inertial forces. The value of the limit acceleration AL can be thus
obtained by Limit Analysis.

To evaluate AL it is required to define the cracked configuration of the masonry
pier under the limit horizontal acceleration AL.

A fracture KO, that can be approximately assumed straight, initiates at the
section K–K distant n from the top and reaches the toe O of the pier. This fracture
halves the block into the compressed and the ineffective fractions. The compressed
region is composed by the upper uncracked rectangular parallelepiped, of weight
W1, and by the lower wedge, of weight W2. The other triangular lower region, at the
left, is ineffective (Fig. 11.12).

Fig. 11.10 The cracked wall
pier at the incipient rocking

Fig. 11.11 The unlikely
tensile strength that can
prevent the pier from cracking
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Let �W the weight of the whole pier. The loads applied at the head are the vertical
force v �W and the corresponding horizontal force v �W A/g, where A is the acceler-
ation that hits the wall (Fig. 11.12), with a given value of the factor v.

Magnitudes of the weights W1(n) and W2(n) depend upon the distance n. With
reference to Fig. 11.12 we have

W1 ¼ cBn W2 ¼ c
B
2
ðh� nÞ ð11:42Þ

The weight W(n) of all the moving masses is

WðnÞ ¼ W1ðnÞþW2ðnÞþ v �W ð11:43Þ

The gravity centre C of all the moving masses has distances x and y from the toe
O. The coordinates x and y of the centre C are

x ¼ W1
B
2 þW2

B
3 þ v �WB

W1 þW2 þ v �W
y =

W1ðh� n
2ÞþW2

2
3 ðh� nÞþ v �Wh

W1 þW2 þ v �W
ð11:44Þ

so that the radial distance R(n) of C from the toe O is

RðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð11:45Þ

The corresponding slenderness ratio is thus

tgaðnÞ ¼ W1ðnÞ B2 þW2ðnÞ B3 þ v �WB

W1ðnÞðh� n
2ÞþW2ðnÞ 23 ðh� nÞþ v �Wh

ð11:46Þ

Fig. 11.12 Forces acting
during the rocking of the
cracked wall pier
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The distance n and the limit acceleration AL can be obtained satisfying both the
following conditions

W1
AL

g
n
2
þ vWT

AL

g
n ¼ W1

B
6
þ v �W

2
3
B ð11:47Þ

W1ðnÞAL

g
ðh� n

2
ÞþW2ðnÞAL

g
2
3
ðh� nÞþ v �W

AL

g
h ¼ W1ðnÞB2 þW2ðnÞB3 þ v �WB

ð11:48Þ

respectively defining the incipient cracking occurring at section K–K and the
incipient pier failure. Solutions of the two Eqs. (11.47) and (11.48) define the
cracked configuration of the pier at the incipient overturning.

The rocking of the pier, hit by the impulse acceleration A, could actually start if

A[AL ð11:49Þ

In spite of condition (11.146), can we affirm that the rocking motion does really
take place?

11.3.1.5 Pier Rocking Capacity

Rocking of the cracked pier can effectively occur only if the inactive detached
wedge of the block, represented by the triangle of the dotted red contour in
Fig. 11.12, does not crumble under the impact with the compressed part.

Figure 11.13 shows the typical X cracking occurring in a vertical pier during the
in-plane rocking of the masonry wall. The analysis of the sequence of the cracking
geometries occurring during this shaking can explain the occurrence of these X
cracks (Fig. 11.14).

Fig. 11.13 A typical X
cracking occurring in a wall
pier
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The second scheme of this figure shows the detachment, occurred just after the
first cracking, of the right pier wedge from the other wedge that remains ineffective.

The third scheme of Fig. 11.13 shows the counter-clockwise rotation of the
compressed wedge that returns towards the vertical position. The fourth scheme
shows the subsequent impact between the two wedge. Immediately after this impact
in the fifth scheme of the figure the symmetric left wedge detaches from that right,
thereby producing the other diagonal fracture crossing with the first, producing the X
cracking. The destruction at the impact of the inactive wedge could not permit the
occurrence of rocking. The presence of the X cracking, shown in Fig. 11.12,
demonstrates that the inactive wedge sustains the impact with the other wedge.
Compression forces are conveyed as far as to the left corner at the pier base. Impact
occurs just at this corner, the new pivot of the subsequent rotation (Coccia et al. 2017).

11.3.1.6 Overturning Constant Impulse Acceleration of Definite
Duration

Likewise to the Housner column, let us evaluate the relation occurring between the
constant overturning acceleration Ao and the corresponding critical duration to.

The pier, hit by the acceleration impulse A, starts its motion in the cracked
configuration, defined by the distance n: this last, with the limit acceleration AL, is
obtained solving Eqs. (11.46) and (11.47). Let Jo be the moment of inertia of all the
masses involved in the motion around the toe O of the pier. Thus

Jo ¼ Io þðb2 þ h2Þ �W=g ð11:50Þ

We make reference to the motion of the centre C of all the masses engaged in the
rocking motion of the wall pier. The equation of this motion of is

JoðnÞ€h¼�WðnÞRðnÞ½aðnÞ � h� þ WðnÞ
g

ARðnÞ ð11:51Þ

Fig. 11.14 The sequence of configurations of the wall pier during the formation of the X cracks
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that, with the position

p2ðnÞ ¼ WðnÞRðnÞ
IoðnÞ ð11:52Þ

takes the form

€h � p2ðnÞh ¼ pðnÞ2ðA
g
� aÞ ð11:53Þ

and has solution

hðtÞ¼½A
g
� aðnÞ�½cosh pðnÞt � 1� ð11:54Þ

By analogy with (11.36), the magnitude of the acceleration Ao having duration to
that overturns the block is given by the condition,

WðnÞ
g

AO

ZtO
0

ds
dt

dt ¼ WðnÞ � RðnÞ � ½1� cos aðnÞ� ð11:55Þ

or, in a more explicit form

W
g
AO

ZtO
0

ds
dt

dt ¼ W
g
AORðAO

g
� aÞ

ZtO
0

sinh ptdðptÞ ¼W
g
AORðAO

g
� aÞ ðcosh ptO � 1Þ

ð11:56Þ

expressing equality between the work of the inertial force WA/g, done during the
motion of the cracked pier from t = 0 to t = to, and the difference of potential
energy between positions h = a and h = 0. Thus we obtain

tO ¼ 1
pðnÞ cosh

�1ð1þ 1
2AO
ALðnÞ ð

AO
ALðnÞ � 1ÞÞ ð11:57Þ

where, likewise to (11.41),

AO

ALðnÞ ! 1 tO ! 1 ;
AO

ALðnÞ ! 1 tO ! 0 ð11:58Þ

A numerical investigation has been developed considering the following
geometries of the wall pier: b = 90 cm; h = 300 cm; b = 120 cm; h = 300 cm;
b = 200 cm; h = 300 cm.
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Figure 11.15 plots the incipient rocking acceleration AL (m/s2) versus the ratio v,
i.e. the ratio between the load applied at the head and the pier whole weight, for the
three considered pier geometries (Coccia et al. 2017).

Figures 11.16, 11.17 and 11.18 give the diagrams of the function

to ¼ toðAo; vÞ ð11:59Þ

that defines the duration to of the overturning constant acceleration impulse of
magnitude Ao for the wall pier having mass �W=g and loaded at the head by the
mass v �W=g. The plot gives different curves representing the function (11.59)
corresponding to the values of the factor v = 0, 0.25; 0.50; 1.0; 2.0; 3.0 and 4.0.

The intercepts of the vertical asymptotes to the curves to = to(Ao, v) with the
horizontal axis give the corresponding magnitudes of the limit accelerations AL(v).

Fig. 11.15 The plot AL (m/s2) versus the factor v for three different piers: 200 cm � 300 cm;
120 cm � 300 cm; 90 cm � 300 cm

Fig. 11.16 (pier 90 cm � 300 cm) Plot of to(s) versus the overturning acceleration (m/s2) varying
the factor v (0; 0.25;…; 4)
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The case v = 0 corresponds to the pier without mass applied at the top. This case is
significant because can be put in direct correlation with the behavior of the Housner
solid column.

Compared with the solid column, cracking occurring in the masonry pier wall
implies a smaller duration to of the overturning acceleration Ao, or with the same
duration to, a smaller magnitude of the overturning acceleration Ao.

We notice that the increasing of v, i.e. of the magnitude of the mass applied at
the top pier corner, increases the duration of the impulse required to the over-
turning. Higher masses applied at the pier top have thus a stabilizing effect, in spite
of the corresponding increasing of the inertial horizontal force v �WAo=g.

Fig. 11.17 (pier 120 cm � 300 cm) Plot of to(s) versus the overturning acceleration (m/s2)
varying the factor v (0; 0.25;…; 4)

Fig. 11.18 (pier 200 cm � 300 cm) Plot of to(s) versus the overturning acceleration (m/s2)
varying the factor v (0; 0.25;…; 4)
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11.3.1.7 Strength Reduction Factor q via the Acceleration Ratio w

The wall pier, that has the incipient rocking acceleration AL, actually collapses
under the acceleration Ao of duration to, w times larger than AL. The acceleration
ratio

wðtoÞ ¼ AoðtoÞ
AL

; to given ð11:60Þ

can thus represent the strength reduction factor q, above defined. With this new
approach, for masonry structures we could thus assume

q ¼ w ð11:61Þ

A crucial point is the definition of the duration of the constant acceleration
impulse acting at the structure basis, that can be considered able to give a rea-
sonably simple representation of the seismic input. A rough value of 0.5–0.7 s,
could be reasonable. According to the magnitude of the ratio between the load at the
head and the pier weight, the ratio w ranges between 1.25 and 1.7, as we can obtain
by inspection from diagrams of Figs. 11.19, 11.20 and 11.21. On the average, for
masonry constructions we could take q = 1.5. Further research is required.

Anyway, due to low values of structure factor q, aseismic protection of historic
masonry constructions requires design criteria where strength is dominant.

Determination of the limit acceleration AL, that matches the limit value ko of the
distribution of the horizontal loads, typical of the seismic action, is thus central to
the seismic design of masonry structures.

Fig. 11.19 (wall pier 90 cm � 300 cm) Plots of to(s) versus the ratio A/AL for values of the factor
v: (0; 0.25;…; 4)
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11.4 Seismic Loads

During an earthquake the seismic motion of the underlying soil produces horizontal
forces that bear on a building and impart accelerations to its different masses. These
accelerations are due to the coupling of the free oscillations of the building with the
seismic motion at its base.

Figure 11.22 shows a scheme of a masonry building with the distribution of the
horizontal forces. These forces impact the masses of the masonry walls and floors
and tend to break up the connections between the various arrays of walls.

Fig. 11.20 (wall pier 120 cm � 300 cm) Plots of to(s) versus the ratio A/AL) for various values of
the factor v: (0; 0.25;…; 4)

Fig. 11.21 (wall pier 200 cm � 300 cm) Plots of to(s) versus the ratio A/AL) for various values of
the factor v: (0; 0.25;…; 4)
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11.4.1 Height Variation of Seismic Loads

Traditional masonry buildings generally have a limited number of stories: only in
large urban areas do ever reach five or six stories. Now to look into the response of
such structures to seismic actions, let Wk be the weight of the various masses of the
building lumped at story k and let zk be the height of the story with respect to level
zero of the building, corresponding to the extrados plane of the foundation walls.

The horizontal accelerations of the building masses excited by the seismic
motion increase with the height. Consequently, the inertial forces acting on the
building masses Wk/g, lumped at the various stories, will increase with the height as
well. A simple, rough estimate of this effect can be made by recourse to a story
distribution factor,

ck ¼ zk

P
WiP
Wizi

; ð11:62Þ

based on the assumption of horizontal acceleration increasing linearly with height.
The horizontal force acting at the Fk story of the building can be considered

uniformly increasing with the multiplier k so that

Fk ¼ kckWk ð11:63Þ

Fig. 11.22 Masonry building under seismic actions
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Thus, summing up the seismic forces on all the stories, for the entire structure we
obtain the total thrust

FTot ¼
X

Fk ¼ k
X

Wk: ð11:64Þ

because X
Wkck ¼

X
Wk ¼ WTot ð11:65Þ

The same description of seismic forces can be given to the forces acting on the
inactive walls. Let us first consider the masses involved in a span of the inactive
wall between two adjacent active walls and two adjacent stories. With reference to
Fig. 11.23 let:

• k be the number of the story;
• Pk, the weight of the span of inactive wall between stories (k + 1) and k and

between the two active walls;
• fk, the height of the midline of inter-story k, measured as the distance between

level 0 and the midline of inter-story k.

Let us now evaluate the distribution factors ck defined similarly to (11.62):

ck ¼ 1k

P
PiP
Pi1i

; ð11:66Þ

under the assumption, discussed above, of accelerations varying linearly with the
height.

The corresponding seismic forces Fk applied to the masses of inactive walls are
thus

Fk ¼ kckPk; ð11:67Þ

The multiplier k in Eq. (11.67) has been added in order to describe a uniformly
increasing distribution of seismic loads Fk.

Fig. 11.23 Mass distribution
of inactive walls at the
interstory midlines
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A sequence of uniformly distributed loads pk can replace the point loads applied at
the midline of the inter–story (Fig. 11.24). Thus, if hk is the interstory height, we have

pk ¼ k
ckPk

hk
: ð11:68Þ

The horizontal masonry bands running along the floor levels above the wall
openings are also subjected to horizontal forces due to the floor masses
(Fig. 11.25).

Figure 11.25 shows the assumed distribution of horizontal loads between the
two supporting masonry bands. The corresponding seismic forces can thus be
obtained as

Sk ¼ k�ckQk; ð11:69Þ

where:

• Qk is the weight of the half the mass of the corresponding floor;
• zk, the height of inter-story k, measured as the distance from level 0 to the floor

height of level k.
• �ck, the distribution factor, which, by analogy with (11.68) is

�ck ¼ zk

P
QiP
Qizi

ð11:70Þ

Fig. 11.24 Uniformly
distributed loads pk at the
inter-story of inactive walls

Fig. 11.25 Seismic actions
due to the floor masses acting
on the story bands
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11.4.2 Demand of Seismic Strength

If the building structure sustains the seismic action elastically, the seismic forces Fk

acting on the masses at various storys will thus be given by

FEk ¼ ck
Wk

g
SEðTÞ ð11:71Þ

where, as defined above, SE(T) is the acceleration elastic spectrum of the assigned
earthquakeH. These represent the maximum thrusts that the building structure must
be able to sustain elastically at the various stories. Equation (11.71) shows that
the seismic forces depend moreover on the building’s fundamental period T. The
Italian Building Code (NTC 2009) provides for obtaining a rough, but simple
estimate of the fundamental oscillation period of a building by applying the
following:

T ¼ C1H
3=4 ð11:72Þ

where H indicates the height of the building in meters, and C1 is a factor that can be
assumed equal to 0.05. In average, we have also

T � Np

10
ð11:720Þ

where Np is the number of stories. A common masonry building of two or three
floors has an oscillation period of 0.2–0.3 s.

Compared to the elastic case, the Code requires that the building structure has to
sustain a distribution of story forces obtained reducing the (11.71) by the structure
factor q

FDk ¼ ck�Wk � SDðTÞ ð11:73Þ

The quantity

SDðTÞ ¼ SEðTÞ
q

g ð11:74Þ

is the demand of the minimum horizontal average acceleration that the structure has
to be able to sustain to be correlated to the chosen ultimate state. Generally, the
reference ultimate state is the limit failure state. The Italian Code (NTC 2009)
specifies required limit strengths for different seismic areas and for different soil
types.

Thus, summing up the seismic forces on all the stories, we obtain the total thrust
that the Code requires to be absorbed by the construction
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FtotDNorm ¼
X

Fk ¼ SDðTÞ
X

Wk: ð11:75Þ

where

X
Wkck ¼

X
Wk ¼ WTot ð11:76Þ

is the total weight of the building. The quantity

SDðTÞ=g ð11:740Þ

is thus the demand of the minimum horizontal average acceleration that has to be
sustained by the construction. Limit Analysis will allow to obtain the distribution of
the corresponding resistant limit horizontal forces

FRk ¼ koWkck ð11:77Þ

so that the total limit resistance force of the building is

FR tot ¼ ko
X

Wk ¼ koWTot ð11:78Þ

The structure is characterized by the collapse multiplier ko that defines its re-
sistant capacity. In this framework the collapse multiplier thus will represent the
average resistant horizontal acceleration of the structure. The resistant total thrust
cannot be lower than the demand of strength, i.e.

FR tot �FtotDCode ð11:79Þ

11.5 Seismic Resistant Structure of Masonry Buildings:
Active and Inactive Walls

The layout of a traditional masonry building usually involves a grid of two arrays of
orthogonal walls (Fig. 11.26). Iron (steel) or wooden beams are the supporting
structure of floors and tiled layers, or wooden panels covered with a mixture of

Fig. 11.26 Typical layout of
a masonry building
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rubble and mortar, fill the spaces between the beams. No connecting action between
the walls can be carried out by these floors.

Seismic actions, which can be considered directed along one of the two axes of
the grid, determine two different roles for the walls: active and inactive walls,
depending on whether their planes are respectively parallel or orthogonal to the
seismic action (Abruzzese et al. 1986). The inactive walls, which are subjected to
actions orthogonal to their planes, represent the weakest components of masonry
buildings. Building Codes assign the intensities of the conventional seismic forces
that must be taken into account when checking the safety of a building structure.
For a modern steel or reinforced concrete building, modal analysis can be used to
obtain the maximum accelerations bearable by the building masses. Modal analysis
provides information about the oscillation modes and their corresponding periods
and thereby enables evaluating the maximum intensities of the horizontal forces that
a building can bear. However, the situation for masonry buildings is quite different.
Owing to an eventual random distribution of cracks and the uncertain state of the
connections between the walls, modal analysis becomes meaningless. In spite of the
complexity and uncertainties involved in the problem, some simple devices can, on
the other hand, be employed. The masses of the higher stories of a building are
undoubtedly subjected to greater horizontal accelerations than the lower stories.
A simplifying distribution of these horizontal forces along the height can thus be
defined according to (11.63). These forces can represent both the total seismic loads
impacting the overall building structure as well as the loads orthogonal to the plane
of a single vertical band of masonry wall.

11.6 Force Transmission. The Last Storey Vertical Thrust

The inactive walls of a building, subjected to actions orthogonal to their plane, must
present strengths no lower than the strengths of the active walls, otherwise partial
failures could occur before the collapse of the main resisting structures of the
building.

In order to evaluate the actual out-of-plane strength of walls it is necessary to
accurately determine the force transmission from the inactive walls to the active
ones and thereby define if essential reinforcements are called for.

To avoid that the last story wall works as a cantilever, the transmission of
horizontal forces striking inactive walls has to occur by means of vertical resistant
arch systems. These arches develop inside the continuous vertical masonry bands in
the walls, laterally to the openings (Fig. 11.27). In turn, the inter-story vertical
bands link up with continuous horizontal bands running at floor levels and that
are connected to the transverse lateral walls.

Efficiency of this transmission chain is fundamental to the lateral strength of the
wall. However, the thrusts transmitted by the vertical arches at the top story must be
adequately resisted. At intermediate stories thrusts balance each other. On the last
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story, this cannot occur. Only the weight of the roof sustainable by the wall con-
tributes to withstanding the thrust of the vertical arch. This contribution is quite
modest, so the walls of the last story are the most vulnerable to out-of-plane actions.

We can valuate the order of magnitude of this thrust. The seismic horizontal load
acting on the last story wall can be valuated as po = gclast SD(T) if g is the unit
weight of the wall, clast the distribution factor for the last story, given by (11.62),
Sd(T) the design spectrum factor, valuated at the fundamental oscillation period T of
the building. Assuming for SD(T) the maximum valuer given by the Italian Code,
i.e. SD(T) = 2.5ag/gq, if ag is the ground peak acceleration, g the gravity and q the
reduction or the structure factor, taken equal to 2. With a peak acceleration ratio ag/
g equal to 0.2, corresponding to a mean seismic intensity area and a structure factor
q = 2, we have SD(T) = 2.5 � 0.2/2 = 0.25 and the corresponding seismic hori-
zontal load acting on the last story wall is po = gclast Sd(T) = g � clast � 0.25.
Assuming a thickness of the wall of 0.4 m, an unit weight of the masonry of 1.6
t/mc, the unit weight is 0.64 t/mq. With a distribution factor clast = 2, the load po
equals 0.64 � 2 � 0.25 = 0.32 t/mq and the thrust, for unit length conveyed by the
last story arch systems is S = 0.32 � 3.02//8 � 0.4) = 0.9 t/m. The weight of r.c.
ring beam, equal to 0.4 � 0.3 � 2.5 � 1.0 = 0.3 t/m summed up with the weight
of the horizontal masonry band equal to 0.4 � 0.4 � 1.6 � 1.0 = 0.256 t/m give a
total weight of 0.556 t/m, scarcely larger than the half of the vertical thrust of the
arch.

Fig. 11.27 Resistant wall system and vertical arches
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11.7 Essential Reinforcements

Various reinforcement systems can be used to sustain, first of all, the last story
vertical thrust. A simple reinforced concrete ring beam, running along the top of the
whole building walls and fixed firmly to them, can ensure the necessary connection.
This case of the r.c. ring beam, with anchoring systems, is shown in Fig. 11.28.
This system will be thus efficient only if the anchors have sufficient length.

The realization in the masonry of the long vertical drillings, with the insertion of
the long steel bars and the injection of the connection mortar, is a complex oper-
ation and could be not convenient.

Alternatively, the reinforcement can be worked out wrapping vertical strips of
FRP both on the outside and the inside face of the wall (Fig. 11.29). The two FRP
strips have to be suitably connected together on the top of the wall or through the
wall thickness. The r.c. ring beam, connected to the wall by the vertical steel
sewings, can sustain both the vertical and the horizontal loads conveyed by the
vertical arches. With the use of vertical FRP strips, on the contrary, only the vertical
thrusting action can be opposed. In this last case other horizontal FRP strips will be

Fig. 11.28 Connection of the top ring beam to the wall through steel tie rods

Fig. 11.29 Vertical FRP strips wrapped on the two faces of the wall
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suitably arranged in order to sustain the horizontal load conveyed on the horizontal
top band.

Between each story the vertical arches, mobilized within the walls, link into the
horizontal bands at floor level. In modern masonry buildings the masonry walls at
the toe and head are connected to reinforced concrete ring beams running along the
walls at the floor levels. The reinforced concrete floors, whose slabs are connected
to the ring beams, effect an efficient connection and the inactive walls are securely
constrained to the transverse walls.

Traditional or historic masonry buildings lack these internal ring beams.
However, if suitable tie rods are fitted, the continuous horizontal masonry bands
running at floor levels could accomplish the required connection (Fig. 11.30).

11.8 Out of Plane Strength of Walls

Various and interesting attempts have made in the past to improve the out-of-plane
resistance of building walls to seismic actions (Di Pasquale 1982). Figure 11.31
shows a star plan of a building and the corresponding section of an aseismic
building from a 19th century design (Ruffolo 1912).

Note the design concept: concave facade walls are able to mobilize horizontal
resisting arches that convey the thrusts to robust terminal buttresses.

To oppose the out-of-plane failures first of all masonry has to present a compact
internal structure. The geometry of the internal structure of the wall itself plays a
fundamental role in its strength under out-of-plane actions. The transverse brick
pattern, with stretchers and headers, considered in Chap. 1 in fact imparts unity and
firmness to the wall (Giuffrè 1988). Headers, in particular, add strength to the wall.

The simplest scheme of an unreinforced wall under horizontal out-of-plane
forces is a cantilever wall. Such a wall fails by overturning.

Figure 11.32 shows the difference in the lateral strength of a wall with and
without headers. Headers ensure that the two faces of a wall behave as a tightly

Fig. 11.30 Simple scheme of
the steel ties fitted at floor
levels to constrain walls in a
traditional masonry building
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connected unit, so that the wall’s lateral resistance is that of a single full-width
mass.

The lateral strength of a single isolated masonry wall of height H and width
B can be easily calculated. Assuming a triangular distribution of horizontal forces,
the strength of the wall, given by the ratio between the thrust So and the weight
G and taking into account the influence of the limit masonry compression strength,
(See Sect. 2.6.7.2), is given by

So
G

¼ 3B
4H

ð1� rm
rk

Þ; ð11:80Þ

where So indicates the ultimate total thrust, equal to po H/2, and rm is the mean
compression at the base under the vertical load G (Fig. 11.33). The factor

(a) (b)

Fig. 11.31 Star plan and section of an aseismic masonry building, from a 19th-century design
(Ruffolo 1912)

Fig. 11.32 Different wall lateral strength without (left) and with (right) headers (from Giuffrè
1988)
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3B
4H

ð1� rm
rk

Þ ð11:81Þ

thus represents the mean limit acceleration of the wall.
For instance, with a height of 4.00 m and width B = 0.60 m, a wall made of

good consistency masonry, yields about So=G � 0:11, while for poor masonry we
obtain So=G � 0:08. Both these values are very low. In this regard, it should be
stressed that isolated walls or, equivalently, walls with poor transverse constraints,
are particularly vulnerable. The presence of strong transverse connections is
essential to impart strength to walls. It is thus easy to understand why it is so
important that compact grid masonry patterns be used for building walls in seismic
areas (Fig. 11.34).

11.8.1 Unreinforced Wall. First Mode Failures

The most frequent seismic failures occur in facade walls when they are subjected to
horizontal out-of-plane seismic actions. Figure 11.35 shows typical seismic damage
occurring at the corners of buildings. Figures 11.36 and 11.37 show the damage
suffered by facades walls. It is identifiable the onset of the overturning detachment
of the facades.

Figure 11.38 shows the collapse of the whole corner of a building while
Fig. 11.39 shows the breaching of the top wall of a facade wall. Further, Fig. 11.40
shows the out of plane onset of the breaching collapse of a facade that affect two
contiguous stories. We can therefore in this case underline the staving effect of the

Fig. 11.33 Lateral failure of
a simple wall under seismic
action
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intermediate floor. The above failures thus highlight the importance of studying the
seismic refitting of old buildings in historic city centres.

Figure 11.41 shows a horrifying view of a street in Messina after the earthquake
of 1908: all the building façade walls on the street failed, collapsed and dragged
down the overlying roofs.

Fig. 11.34 Corner brick toothing

Fig. 11.35 Corners damagements
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Fig. 11.36 Overturnig detachment of facades

Fig. 11.37 Overturnig detachment of facades
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Fig. 11.38 Corner faikure

Fig. 11.39 Breaking of the tip of as facade wall
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11.8.2 Out of Plane Strength of a Simple Model of Fastened
Wall

For the last story a reinforced concrete ring beam can be fitted at the top, along the
wall edge. The aim of these reinforcements is to prevent the top sections of the

Fig. 11.40 Breaking of a
facade involving two stories

Fig. 11.41 A street of
Messina destroyed by the
earthquake of 1908
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walls from moving out of plane. Evaluating the breaching strength of such a
reinforced wall is a complex problem, given the many geometric and mechanical
parameters involved. However, such study can be simplified by using a
one-dimensional wall model (Fig. 11.42). Study the failure of such models under
orthogonal horizontal loads can furnish valuable information on the breaching
strength of actual buildings walls fitted with the above defined essential
reinforcements.

The wall behaves as a vertical arch. The first scheme on the left of Fig. 11.42
shows the wall under the action of its own weight. This wall has unit transverse
width and its span corresponds to a generic inter-story length. We will focus our
attention on the uppermost story because it is here that the seismic forces are
strongest, the walls thinnest and it is more difficult to balance the thrust of the
vertical arch. The wall, of height H, is constrained at its head by a horizontal strut,
representing the ring beam fitted to prevent horizontal displacement of the wall’s
top section. In the left of Fig. 11.42 the wall is loaded only by vertical forces, i.e. by
its weight g, uniformly distributed along the height, and by a vertical point force QW

applied at the head. The right scheme instead shows, in addition to the vertical
loads, the horizontal forces kg applied to the wall, which increase through the load
multiplier k. These forces are composed of a point load, kQW, applied at the top of
the wall and a horizontal load distribution kg, representing the forces specified by
(11.68) for the last story. We must now evaluate of the failure multiplier, ko, of such
a load distribution.

Figure 11.43 shows a possible wall mechanism, CDB, composed of three hin-
ges: one at base C; another at intermediate position D on the opposite side of edge
CB at an unknown distance x from the base; and the last at B, at the head of the
wall, where the horizontal strut prevents horizontal displacements. At actual failure,
the position of the internal hinge will coincide with the position of the tangent point
of the pressure line with the wall edge, as shown in Fig. 11.36. The counter-rotation
angle a and the rotation angle h are linked by the following relation (Fig. 11.43)

Fig. 11.42 One-dimensional
model of the fastened
reinforced wall under vertical
and horizontal forces
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Hh ¼ ðH � xÞa; ð11:82Þ

enforcing that the horizontal displacement vanishes at the head of the wall.
Thus, we obtain

a ¼ H
ðH � xÞ h: ð11:83Þ

The weight of the wall segment between the base and hinge D is G1, while that
of the remaining part is G2, both proportional to the length of the corresponding
segments. The weight of the wall per unit length is

g ¼ G=H: ð11:84Þ

and the total weight G is,

G ¼ G1 þG2 ¼ gH: ð11:85Þ

By using the kinematic theorem of Limit Analysis, the work of the pushing loads
is

Lsp ¼ kþ g
1
2
Hxh; ð11:86Þ

Fig. 11.43 Out-of-plane mechanism of the wail reinforced by a top ring beam
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and the resistant work due to the raising of the weights is

Lres ¼ �QW
B
2
h� QW

B
2
a� G1

B
2
h� G2

B
2
h� G2

B
2
a ð11:87Þ

or

Lres ¼ �ðQW þG1 þG2ÞB2 h�
B
2
aðQW þG2Þ

¼ �B
2
h½ðQW þGÞþ H

H � x
QW þG� ð11:870Þ

At the same time we have to consider the work made by the unthreading strength
Qao of the vertical anchors placed at the head of the wall or, otherwise, the work
made by the wrench strength of the FRP strips (Fig. 11.44).

We can assimilate this last work to an equivalent raising work considering the
overall weight Q for unit wall length, applied at the wall head

Q ¼ QW þQovert ð11:88Þ

The vertical force Q is the force applied at the head of the wall in Figs. 11.36
and 11.37. Let

Ro ð11:89Þ

be the unthreading strength carried on by the single anchor or by the single FRP
strip. The overall strength Qoa for unit length, inclusive of all the strengths, can be
valuated considering the presence of N anchors or of N FRP strips, placed along the
horizontal band. Thus we have

Fig. 11.44 Opposition worked out by the anchors or by the FRP strips in the failure mechanism
of the wall
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NRo ¼ QovertL ð11:90Þ

and

Qovert ¼ NRo

L
ð11:91Þ

Figure 11.44 shows the opposition of the anchor or of the FRP strip in the out of
plane failure mechanism of the wall. Thus considering now the overall factitious
weight Q, that includes the effect of the reinforcements, according to the kinematic
theorem, we have

kþ g
1
2
Hxh ¼ B

2
h½ðQþGÞþ H

H � x
QþG�; ð11:92Þ

and the kinematic multiplier is given by

kþ g ¼ B
Hx

Q½ð1þ 2wÞþ H
H � x

�; ð11:93Þ

with position

w ¼ G=Q ð11:94Þ

equal to the ratio between weight Q, applied at the head of the wall, and the total
wall weight G. Multiplier kþ ðxÞ depends on the distance x of the internal hinge D
from the base of the wall. The collapse multiplier equals the minimum attained by
the function kþ ðxÞ as the position of the internal hinge D varies, with 0� x�H.
Function kþ ðxÞ becomes unbounded for x ! 0 and x ! H. The search for the
minimum of kþ ðxÞ can thus be pursued by determining the abscissa x ¼ �x at which
the derivative dkþ =dx vanishes. To this end, we have

dkg
dx

¼ � B
Hx2

Q½ð1þ 2wÞþ H
H � x

� þ B
Hx

Q
H

ðH � xÞ2 ¼ 0; ð11:95Þ

which yields the second degree algebraic equation

ð1þ 2wÞx2 � 4ð1þwÞHxþ 2ð1þwÞH2 ¼ 0; ð11:950Þ

whose roots are

x ¼ 4ð1þwÞH 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8H2ð1þwÞp

2ð1þ 2wÞ ð11:95”Þ
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The solution �x cannot be larger than H. The root �x is thus

�x ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þwÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þwÞp � 1
ð1þ 2wÞ ð11:96Þ

and the failure load multiplier is

�kog ¼ B
H�x

Q½ð1þ 2wÞþ H
H � �x

�: ð11:97Þ

The failure load multiplier is thus given

�ko ¼ B
H
KominðwÞ ð11:98Þ

with

KominðwÞ ¼ 1

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þwÞp ð1þ 2wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þwÞp � 1
½ð1þ 2wÞþ ð1þ 2wÞ

ð1þ 2wÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þwÞp ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þwÞp � 1��

ð11:99Þ

The function Komin(w) is plotted in Fig. 11.45. The weight Q acting at the head
of the wall is essential for the formation of the resistant vertical arch. In fact, when
Q ! 0; we have w ! 1 and UðwÞ ! 1. In this case, according to (11.28), �x ! H,
and the internal hinge D in Fig. 11.43 moves to the head of the wall. The mech-
anism matches the overturning mechanism, and the internal resistant arch, needed
to equilibrate load Q, vanishes suitable anchors or equivalent reinforcing systems
are thus required in the absence of an adequate load Q at the wall head.

The reaction RB of the horizontal support fitted at the head of the wall is the
transverse load acting on the ring beam and will be conveyed to the active walls.
This load, RB, is evaluated at failure by imposing that the resultant of all the forces
acting on segment DB will pass through hinge D (Fig. 11.43). We thus have

ðRB � �koQÞðH � �xÞ � QB=2� �koqðH � �xÞ2=2� gðH � �xÞB=2 ¼ 0 ð11:100Þ

Fig. 11.45 Plot of factor
Komin(w) versus ratio w
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and

RB ¼ Q
B

2ðH � xÞ þ
�ko½Qþ qðH � xÞ=2� þ gB=2: ð11:101Þ

This uniformly distributed horizontal force is the limit transversal load plim
acting along the top horizontal band that has to be conveyed to the active walls.

11.9 In-Plane Strength of Multi-storey Walls
with Openings

11.9.1 Different Wall Models

Multi-story masonry walls are the most important structural components of any
masonry building. A double array of multi-story walls with openings, for the most
part weakly connected to wooden or iron floors, is the main resistant structure of a
typical masonry building. Different systems of reinforcements can be fitted to
improve their strength and, above all, prevent out-of-plane collapse of the external
walls, as described in the previous sections.

Figure 11.46 shows a typical cracking pattern on the facade wall of a masonry
building struck by an earthquake. The damage is due to considerable seismic forces

Fig. 11.46 Damagement of a multi-storey wall under in-plane seismic actions
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acting in the plane of the wall. The X-shaped cracks points out the occurrence of
rocking.

Multi-story masonry walls come in various geometrical arrangements. Here we
will limit ourselves to considering only regular walls, with openings arranged in a
regular pattern, both vertically and horizontally. It is thus possible to distinguish
between vertical wall bands, termed “piers”, and horizontal bands, called “archi-
traves”. According to the height of the architraves is large or small with respect o
the height of the openings we can distinguish two different typologies of multistory
walls. We shall consider firstly the case of architraves of large height,—a very
common arrangement (Fig. 11.47). The other typology is frequently met in historic
centres of many towns of the South of Italy.

11.9.2 In-Plane Strength of Multi-storey High Spandrels
Walls

We consider the static behavior of the first typology of walls under the action of
horizontal loads. One example of these walls is shown in Fig. 11.48. Horizontal

Fig. 11.47 Two common types of multi-story walls with window openings

Fig. 11.48 The multi-storey masonry wall with openings and high spandrels with the typical
failure mechanism
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steel ties at floor levels run in the masonry. Their presence is required to avoid
partial detachment failure of single piers.

The study of horizontal strength of these walls has interested many researchers
as, for instance (Como and Grimaldi 1983, 1985; Calderoni et al. 2015). The lateral
strength of the wall will be here obtained by means the Limit Analysis approach.

The common collapse mechanism of the wall is sketched in the second scheme
of Fig. 11.48, distinguished by the simultaneous shear failure of the architraves and
the overturning of piers bands.

The shear failure of the architraves requires plastic stretching of ties. The col-
lapse mechanism will develop, in fact, under constant horizontal forces.

Suitable anchors are disposed at the ends of ties. Thus, in presence of too strong
ties, the plastic re-entry of the anchors can replace the plastic yielding of the steel.

Many anchors exhibit a ductile behavior as that shown in Fig. 11.49.
Other failure mechanisms could seem to be possible, in dependance of the

geometry of the wall and strength of the ties (Fig. 11.50). Some of them require
high shear strengths, difficult to obtain, otherwise they will be prone to early brittle
failures. These last mechanism must be thus excluded.

11.9.2.1 A Simple Wall Model

Consider firstly a wall with two piers and two architraves, shown in Fig. 11.51.
The assumed mechanism of the wall is shown in Fig. 11.52. The mechanism is

kinematically admissible: all hinges in fact open.
Cracks occurring between panels and piers are due to the presence of panels of

finite height. Consequently, different horizontal displacements will occur at the
floor levels.

Fig. 11.49 Ductlile
behaviour of the Bossong
anchor in a pull out test (D.I.
C.A.T.A., University of
Brescia) typical failure
mechanism
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In the mechanism of Fig. 11.52 the wall subdivides into five parts: the whole
right pier, that rotates around the hinge A of /1, the two panels and the two parts in
which the left pier is necessarily partitioned. The left pier, is partitioned into two
parts that rotate respectively around the hinges A and D of the angles /1 and /3.

The panels, in turn, rotate respectively with respect the piers of the angles a1 and a2.
The basic parameter of the mechanism is the rotation /1 of the lower part of the left
pier. With reference to Fig. 11.52 let us valuate the horizontal and vertical dis-
placements uC and vC of the point C, the right lower corner of the first panel,
considered solid with the left pier. These displacements have to be equal to the
corresponding displacements of the same point C considered solid with the right
pier. Thus we have the following equations

ðH1 � h1Þ/1 þ a1h1 ¼ ðH1 � h1Þ/2 ð11:102Þ

l/1 � la1 ¼ �b2/2 ð11:103Þ

that solved give

/2 ¼ K/1 ð11:104Þ

Fig. 11.50 Examples of other mechanisms
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with

K ¼ b2
b2ð1� q1Þ � q1

ð11:105Þ

Fig. 11.51 A simple
Masonry wall with Large
architraves

Fig. 11.52 The typical
mechanism of the wall
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and

b2 ¼
l
b2

q1 ¼
h1
H1

ð11:106Þ

Applying the same argument for the point E we get

ðH1 þH2 � h2Þ/1 þ/3ðH2 � h2Þþ a2h2 ¼ KðH1 þH2 � h2Þ/1 ð11:107Þ

l/1 þ l/3 � a2l ¼ �Kb2/1 ð11:108Þ

that give

/3 ¼ d/1 ð11:109Þ

where

d ¼ ½ðK � 1ÞH1

H2
þKð1� q2Þ � 1� q2

K
b2
� ð11:110Þ

with the position

q2 ¼
h2
H2

ð11:111Þ

The kinematically admissibility of the mechanism is assured by the positivity of
parameters K and d. Let us valuate the works of the various forces made during the
development of the mechanism.

• The resisting work of raising weights

LG ¼ �G11
b1
2
/1 � G12

b1
2
ð1þ dÞ/1 � G21

b2
2
K/1 � G22K

b2
2
/1 ð11:112Þ

or

LG ¼ � 1
2
fb1½G11 þð1þ dÞG12� þ b2KðG21 þG22Þg/1 ð11:113Þ

• The resisting work due to the plastic stretching of ties

Let To be the limit pull of the ties at the yielding. The plastic extensions D1 and
D2 of the first and second level ties are
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D1 ¼ KH1/1 � H1/1 ¼ H1ðK � 1Þ/1 ð11:114Þ

D2 ¼ KðH1 þH2Þ/1 � ðH1 þH2Þ/1 � H2d/1 ¼ ½ðH1 þH2ÞðK � 1Þ � dH2�/1

ð11:1140Þ

and the plastic work is

Lpl ¼ �To½2H1ðK � 1ÞþH2ðK � 1� dÞ�/1 ð11:115Þ

• The active work of the pushing horizontal loads

Lsp ¼ kþ ½H1ðG11 þKG21ÞþH2G12dþðH1 þH2ÞðG12 þKG22Þ�/1 ð11:116Þ

The condition

LG þ Lpl þ Lsp ¼ 0 ð11:117Þ

gives the kinematical multiplier of the pushing loads

kþ ¼ b1½G11 þG12ð1þ dÞ� þ b2KðG21 þG22Þþ 2To½2H1ðK � 1ÞþH2ðK � 1� dÞ�
2½H1ðG11 þKG21ÞþH2G12dþðH1 þH2ÞðG12 þKG22Þ�

ð11:118Þ

In the simpler case of equal weights G, heights H and h we have

kþ ¼ b
2H

2ð1þKÞþ dþ 2to½3ðK � 1Þ � d�
3ð1þKÞþ d

ð11:1180Þ

with the position

to ¼ ToH
Gb

ð11:119Þ

If, at the limit, the height of panel vanishes, we have

K ! 1 d ! 0 ð11:120Þ

and

kþ ! b
3H

ð11:121Þ
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The kinematical multiplier is the actual collapse multiplier is the stress state
present in the wall, under the horizontal forces affected of the kinematical multiplier
k+ is statically admissible.

11.9.2.2 Piers Interaction Forces

To check this admissibility we have to valuate the interactions R1 and R2 that the
piers transmit through the panels. as shown in Fig. 11.53. The problem is statically
determined because the pulls in the ties are known, equal to To.

We have the following rotational equilibrium equations of the two piers around
hinges D and A

�G12
b1
2

þðkG12 þ To � R2 cos c2ÞH2 ¼ 0 ð11:122Þ

�G11
b1
2
� G12

b1
2

þðkG11 þ To � R1 cos c1ÞH1 þðkG12 þ To

� R2 cos c2ÞðH1 þH2Þ
¼ 0 ð11:123Þ

Fig. 11.53 Internal equilibrium of piers
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with the positions

tgc1 ¼
h1
l

tgc2 ¼
h2
l

ð11:124Þ

The third equilibrium equation, that of the rotational equilibrium of the right pier
around the hinge B, is useless because the load multiplier is already known.

From (11.114) we have

R2 cos c2 ¼ ½�G12
b1
2H2

þðkG12 þ ToÞ� ð11:125Þ

Substitution of (11.127) into (11.123) gives

R1H1 cos c1 ¼ �G11
b1
2

þG12
b1
2
H1

H2
þðkG11 þ ToÞH1 ð11:126Þ

Particularly, in the simpler case of equal weights G, heights H and h we have

R2H cos c2 ¼ �G
b
2
þðkGþ ToÞH R1 cos c1 ¼ kGþ To ð11:127Þ

or, with the positions

r1 ¼ R1

G
r2 ¼ R2

G
ð11:128Þ

we have

r2 cos c2 ¼ � b
2H

þðkþ To
G
Þ r1 cos c1 ¼ kþ To

G
ð11:129Þ

11.9.2.3 Statical Admissibility at the Kinematical State

First admissibility condition in the panels
Efforts r1 and r2 have to determine compressions in the panels. Thus, from

(11.129) we have

r2 cos c2 � 0 ! To
G

� b
2H

� kþ ð11:130Þ

Admissibility conditions involving stresses in the right pier
The axial load acting at the line a–a, just over the level where the G21 is applied,

has to be contained inside the section. The moment Ma-a of all the forces placed
above the line a–a of all the forces placed above a–a valuated respect the centre of
the section, and the axial load Na-a are respectively
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Ma�a ¼ ðkG22 � ToÞH2 þR2ðH2 � h2Þ cos c2 � R2
b2
2
sin c2;Na�a

¼ G22 þR2 sin c2 ð11:131Þ

Hence, the eccentricity of Naa is

e0 ¼ ðkG22 � ToÞH2 þR2ðH2 � h2Þ cos c2 � R2
b2
2 sin c2

G22 þR2 sin c2
ð11:132Þ

It is thus required that

� b2
2

� e0 � b2
2

ð11:133Þ

Likewise, in the section just under the line a–a eccentricity of the axial load is

e00 ¼ ðkG22 � ToÞH2 þR2ðH2 � h2Þ cos c2 � R2
b2
2 sin c2

G22 þG21 þR2 sin c2
ð11:134Þ

and we have the third condition

� b2
2

� e00 � b2
2

ð11:135Þ

But e” < e′ and only condition la condizione (11.133) is effective.
Admissibility conditions in the left pier
Head section of the pier
It is required that

G12 � R2 sin c2 � 0 ð11:136Þ

or

R2 sin c2 �G12 ð11:1360Þ

The resultant of G12 and of R2sinc2 is placed at the left of the centre of the
section. The corresponding eccentricità is

e ¼ � b1
2

R2 sin c2
G12 � R2 sin c2

ð11:137Þ

Thus condition e < b1/2 gives G12 � R2 sin c2 [R2 sin c2 or

R2 sin c2\G12=2 ð11:138Þ

Section just over the line c–c
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The axial load is

Nc�c ¼ G12 � R2 sin c2 ð11:139Þ

Previous condition (11.138) assures that Nc-c is positive, i.e. a compression.
Further

Mc�c ¼ ðTo þ kG12 � R2 cos c2ÞH2 � R2
b1
2
sin c2 ð11:140Þ

and the eccentricità of Nc-c is

e0 ¼ ðTo þ kG12 � R2 cos c2ÞH2 � R2
b1
2 sin c2

G12 � R2 sin c2
ð11:141Þ

Comparing numerator of (11.141) with that of (11.132) we get e′ = b1/2 because
an hinge is located at D.

Likewise, just under the line c–c the axial load is

Nc�c ¼ G12 � R2 sin c2 þG11 � R1 sin c1 ð11:142Þ

while the moment around the centre takes the value

Mc�c ¼ ðTo þ kG12 � R2 cos c2ÞH2 � R2
b1
2
sin c2 � R1

b1
2
sin c1 ð11:143Þ

and the eccentricity e″ of Nc-c is

e00 ¼ ðTo þ kG12 � R2 cos c2ÞH2 � R2
b1
2 sin c2 � R1

b1
2 sin c1

G12 � R2 sin c2 þG11 � R1 sin c1
ð11:144Þ

and we have the condition

� b2
2

� e00 � b2
2

ð11:145Þ

The (11.145), and (11.138), (11.136′), (11.133) that enforce restrictions on the
magnitude of the limit force limite To, are the required admissibility conditions.

11.9.2.4 A Numerical Example

Let us consider the regular wall with two piers and two levels with
H2 = H1 = H = 4.00 m; h2 = h1 = h = 1.20 m; b2 = b1 = b = 2.00 m, l = 2.00 m
(Fig. 11.54). The thickness of the wall measures 0.80 m and the masonry has an
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unit weight c = 1.6 t/mc. Consequently tgc1 ¼ tgc2 ¼ 1:2=2 ¼ 0:60; c = c1 =
2 = 30.964°; sinc = 0.514; cosc = 0.857; q = h/H = 0.30; b1 = b2 = 1.

Kinematical quantities K and d defined by (11.107) e (11.112) take the values:
K = 2.50; d = 1.50. Hence G = 10.24 t. The yield stress of the steel of ties is
rs = 2400 kg/cmq. The kinematical multiplier, according to (11.120′) is

kþ ¼ 8:5þ 6to
48

¼ 0:177þ 0:125to ðaÞ

The corresponding interactions R1 and R2 between the piers, according to
(11.121) take the expressions

r2 ¼ � 0:08518þ 0:731to r1 ¼ 0:206þ 0:73to ða0Þ

We check the admissibility conditions to define the admissible strengths of the
ties. From (11.122) we have, taking into account of (a′) we have

to � 0:117 ðbÞ

Condition (11.137) requires

� b
2
� ðk� To=GÞHþ r2ðH � hÞ cos c� r2 b

2 sin c
1þ r2 sin c

� b
2

ðcÞ

i.e. with the previous calculations

Fig. 11.54 The examined
masonry wall
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�1� 0:547� 0:121to
0:956þ 0:376to

� 1 ðdÞ

that gives as to � � 5:91 as to � � 0:823 and therefore

to � � 0:823 ðeÞ

Condition (11.130) requires R2 sin c�G=2. Hence

to � 1:447 ðfÞ

while condition (11.137) finally gives

� 1
4
� ðto=2þ k� r2 cos cÞ � r2

1
4 sin c� r1 1

4 sin c
2� r2 sin c� r1 sin c

� 1
4

or

�1� 0:94� 0:756to
1:938� 0:752to

� 1 ðhÞ

i.e.

to � 1:91 ðiÞ

Concluding, taking into account of (b), (e), (f) ed (i) we have

0:117 � to � 1:447 ðlÞ

With position (11.111) the yield strength To of each tie has to satisfy the
condition

0:117 � 5:12� To � 1:447 � 5:12; i:e 0:60 t� To � 7:41 t

We choose for the ties steel bars with diameter / 12 in mild steel with yield
stress rso = 2400 kg/cmq. Hence To ¼ 1:13 � 2400 ¼ 2:71 t and, taking into
account of (11.121), we get to = 0.529. The collapse multiplier of the wall thus is,
according to (a)

ko ¼ 0:177þ 0:126 � 0:529 ¼ 0:243

From (a′) we obtain also: r2 ¼ � 0:0852þ 0:731 � 0:529 ¼ 0:302 and
R2 ¼ 3:09 t:

Further r1 ¼ 0:206þ 0:73 � 0:529 ¼ 0:592 and R1 ¼ 6:06 t:
We proceed now to evaluate the eccentricity at various sections in order to

determine the compressed zones in the piers.
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Left pier
Head section
Condition (11.130) requires

R2 sin c�G=2 ðmÞ

Considering the value just determined of R2, condition (11.140) requires:
3:09 � 0:514 ¼ 1:59\ 10:24=2, that is satisfied. The compression load acting at the
head section is N ¼ G� R2 sin c ¼ 10:24� 6:06 � 0:514 ¼ 7:12 t. This load acts at
the left side of the section and has eccentricity

e ¼ � b
2

R2 sin c
G� R2 sin c

¼ � 2; 0
2

3:09 � 0:514
10:24 � 3:09 � 0:514 ¼ � 1:588

8:652
¼ �0:183m ðnÞ

contained inside the core of the section.
Section just over line c–c

Nc�c ¼ G� R2 sin c ðoÞ

Thus the previous condition (m) assures that Nc-c is a compression load. Further

Mc�c ¼ ðTo þ kG� R2 cos cÞH � R2
b
2
sin c ðpÞ

and the eccentricità of Nc-c is

e0 ¼ ðTo þ kG12R2 cos cÞH � R2
b
2 sin c

G� R2 sin c
ðqÞ

Comparing the numerator of (q) we have e′ = b1/2 because an hinge of the
mechanisn is located at D.

Likewise, just under the line c–c the axial load is

Nc�c ¼ 2G� R2 sin c� R1 sin c ¼ 2 � 10:24� ð3:09þ 6:06Þ � 0:514 ¼ 15:78 t ðrÞ

and the moment around the section centre is

Mc�c ¼ ðTo þ kG� R2 cos cÞH � R2
b
2
sin c� R1

b
2
sin c

¼ 10:20� 1:588� 3:115 ¼ 5:497 tm
ðsÞ

The corresponding eccentricity e” gives

e00 ¼ 5:497
15:78

¼ 0:34m
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The axial load is applied just on the edge of the section core. The section can be
considered fully compressed.

Right pier
Head section
N = 10.24 t applied at the section centre.
Section just over the line b–b
N = 10.24 t
M = −2.714 � 1.20 + 0.243 � 10.24 � 1.20 = −0.271 tm
eccentricity
e = −0.271/10.24 = −0.026 m
The section is fully compressed.
Section just under the line b–b
N = 10.24 t + R2 sinc2 10.24 + 3.09 � 0.514 = 11.828 t
M = −2.714 � 1.20 + 0.243 � 10.24 � 1.20 – 3.09 � 0.514 � 1.0 = −1.86 tm
eccentricity
e = −1.86/11.83 = −0.157 m
The section is fully compressed.
Section just over the line a–a

Ma�a ¼ ðkG� ToÞHþR2ðH � hÞ cos c� R2
b
2
sin c; i:e:;

Ma�a ¼ ð0:244 � 10:24� 2:714Þ � 4:0þ 3:09 � ð4:0� 1:2Þ � 0:857� 3:09 � 1 � 0:514
¼ 4:964 tm

The axial load takes the value

Na�a ¼ 10:24þ 3:09 � 0:514 ¼ 11:828 t

and the eccentricity is

e0 ¼ 4:964
11:828

¼ 0:42m

The axial load is applied outside the core. The section is partially compressed.
Section just under the line a–a

e00 ¼ ðkG� ToÞHþR2ðH � hÞ cos c� R2
b
2 sin c

GþGþR2 sin c

Ma�a ¼ 4:964 tm

Na�a ¼ GþR2 sin cþG ¼ 2 � 10:24þ 3:09 � 0:514 ¼ 22:068 t

e = 4.964/22.068 = 0.22 m
The section is fully compressed.
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Section just over the lower corner of the first level panel
N = 22.068 t

M ¼ ð2:714þ 0:243 � 10:24Þ � ð4:0þ 1:2Þþ 3:09 � 0:857 � 4:0þ
ð�2:714þ 0:243 � 10:24Þ � 1:20 ¼ 9:274 tm

N ¼ 22:068 t

The eccentricity is e = 0.42 m.
The axil load is applied outside the core. The section is partially compressed.
Section just under the lower corner of the first level panel

M ¼ 9:274� 6:06 � 0:514 � 1:0 ¼ 6:16 tm

N ¼ 22:068þ 6:06 � 0:514 ¼ 25:18 t

e ¼ 0:244m

The section is fully compressed.
The distribution of the compressed zones in the piers and panels of the masonry

wall is traced in Fig. 11.55.

Fig. 11.55 The masonry wall at the collapse with the corresponding compressed regions
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11.9.2.5 The General Case

Figure 11.56 shows the failure mechanism of a more general typology of masonry
wall with openings and high architraves above the openings. The interfloor, and the
architraves heights are respectively denoted as H1, H2 …. h1, h2,.. and so on.

According to the chosen mechanism, the piers—except the last pier N that,
intact, rotates of the angle /N around its toe—are subdivided into a sequence of
vertical panels by the corresponding internal hinges. All the geometrical quantities
of the wall are indicated in figure, as the relative rotations / of the pier panels, as
the rotations a of the architraves.

Two indices affect the relative rotations / and a: the first indicates the reference
pier, the second the reference floor level. The contact joints pier/panel are denoted
as C, D, E, F.

Fig. 11.56 The failure mechanism of the general scheme of wall
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Weproceed now to formulate the kinematical compatibility equations determining
the connection among the various rotations with respect to the chosen basic one.

Only one parameter puts in connection all the rotation / and a together.
We equate the horizontal and the vertical displacements U and V of the joints C,

I, E, N, G, P,… shown in Fig. 11.56, considered once belonging to the left
architrave and the other belonging to the right side of the corresponding panel pier.

Equating horizontal and vertical displacements U and V at the joint C

ULeft;C ¼ /N�1;1ðH1 � h1Þþ aN�1;1h1 ¼ URight;C ¼ /N;1ðH1 � h1Þ
VLeft;C ¼ /N�1;1lN�1 � aN�1;1lN�1 ¼ VRight;C ¼ �/N;1bN

ð11:146Þ

Equating horizontal and vertical displacements U and V at the joint I

ULeft;I ¼ /N�2;1ðH1 � h1Þþ aN�2;1h1 ¼ URight;I ¼ /N�1;1ðH1 � h1Þ
VLeft;I ¼ /N�2;1lN�2 � aN�2;1lN�2 ¼ VRight;I ¼ �/N�1;1bN�1

ð11:147Þ

Equating horizontal and vertical displacements U and V at the joint E

ULeft;E ¼ /N�1;1ðH1 þH2 � h2Þþ/N�1;2ðH2 � h2Þþ aN�1;2h2 ¼ URight;E

¼ /N;1ðH1 þH2 � h2Þ
VLeft;E ¼ /N�1;1lN�1 þ/N�1;2lN�1 � aN�1;2lN�1 ¼ VRight;E ¼ �/N;1bN

ð11:148Þ

Equating horizontal and vertical displacements U and V at the joint N

ULeft;N ¼ /N�2;1ðH1 þH2 � h2Þþ/N�2;2ðH2 � h2Þþ aN�2;2h2

URight;N ¼ /N�1;1ðH1 þH2 � h2Þþ/N�1;2ðH2 � h2Þ
ð11:149Þ

Equating horizontal and vertical displacements U and V at the joint G

USin;G ¼ /N�1;1ðH1 þH2þH3 � h3Þþ/N�1;2ðH2 þH3 � h3Þþ/N�1;3ðH3 � h3Þ
þ aN�1;3h3 ¼ UDest;G ¼ /NðH1 þH2þH3 � h3Þ
/N�1;1lN�1þ/N�1;2lN�1 þ/N�1;3lN�1 � aN�1;3lN�1 ¼ �/NbN

ð11:150Þ

Equating horizontal and vertical displacements U and V at the joint P

ULeft;P ¼ /N�2;1ðH1 þH2 þH3 � h3Þþ/N�2;2ðH2 þH3 � h3Þ
þ/N�2;3ðH3 � h3Þþ aN�2;3h3 ¼ URight;P ¼ /N�1;1ðH1 þH2 þH3 � h3Þ
þ/N�1;2ðH2 þH3 � h3Þþ/N�1;3ðH3 � h3Þ

VLeft;P ¼ /N�2;1lN�2 þ/N�2;2lN�2 þ/N�2;3lN�2 � aN�2;3lN�2 ¼ VRight;P

¼ �/N�1;1bN�1 � /N�1;2bN�1 � /N�1;3bN�1

ð11:151Þ

11.9 In-Plane Strength of Multi-storey Walls with Openings 621



The wall shown in figure has three piers and three floors. The number equations
are in number of 12. The rotations / and a are in number of 13. The considered
equations are thus able to express all the rotations in dependance of the rotation
/N,1 occurring at the toe of the last pier.

We evaluate the plastic extension of the ties at various levels:

D1 ¼ /N;1H1 � /N�2;1H1 ð11:152Þ

D2 ¼ /N;1ðH1 þH2Þ � /N�2;1ðH1 þH2Þ � /N�2;2H2

D3 ¼ /N;1ðH1 þH2 þH3Þ � /N�2;1ðH1 þH2 þH3Þ � /N�2;2ðH2 þH3Þ � /N�2;3H3

According this approach is thus possible operate as in the simple example firstly
completely examined.

In this framework give a general picture of the in-plane strength of the
multi-storey masonry wall has been recently given by Coccia et al. (2016b).

11.9.3 In-Plane Strength of Multi-storey Flat Spandrels
Walls

11.9.3.1 Wall Geometry and Load Distribution

The perforated wall, composed by piers and flat panels, has a regular array of
openings, Ns stories and Np piers (Fig. 11.57). The wall has been reinforced by a
system of steel ties passing through the piers and running inside the floors with
anchor plates at their heads. These, or other equivalent, reinforcements, fitted to
increase the out-of-plane strength of the wall, establish longitudinal connections
between the piers to prevent their detaching.

In the framework of the rigid in compression, no-tension model, the masonry
architraves will prevent the occurrence of contractions along the horizontal lines at
the floor levels. Further reinforcement of the wall can be also be achieved by
inserting steel H beams above the openings and embedding them within the
masonry piers. The steel beams on the same floor level are all the same and their
strength is defined by a limit bending moment Mo.

The rigid in compression, no-tension assumption for masonry is the main
assumption used to formulate a simplified model for in-plane wall collapse.
Spandrels o architraves exhibit an unilatewral response according to they are
compressed or stretched. The mechanical model of the wall has been proposed by
Como et al. (1991) and Abruzzese et al. (1992).

In evaluating the limit deformation of the masonry wall, usually composed of
wide piers, the elastic strains produced in the piers under assigned horizontal forces
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can be considered negligible with respect to the detachments strains consequent to
cracking. Thus, under the action of seismic horizontal forces, the wall piers will
remain practically vertical as long as local overturning failure does not occur. The
horizontal displacements of the failed piers will therefore be due solely to their
rotations around their toes.

The presence of horizontal connections, such as architraves and tie rods, will
produce interactions between the piers up until a sideways mechanism affecting the
entire wall develops. In analyzing these interactions, it is assumed that the steel H
beams, lacking any anchoring, do not participate in these interactions and that the
architraves, in plain masonry, will be able to sustain only compressive forces. The
steel ties, on the other hand, can withstand only tractions. The horizontal connec-
tions will thus exhibit so-called unilateral elastic behavior. Both the architraves and
the ties will develop elastic strains whether they are in compression or in extension.
The wall is loaded by constant vertical loads and linearly increasing horizontal
forces. The problem thus becomes the evaluation of the in-plane strength of the wall
under such loading conditions.

To define the positions of the various loads, we can establish a reference grid
represented by the axes of the horizontal bands above the openings and by the
vertical piers’ axes. The piers’ widths may vary from story to story, and the grid
could thus exhibit some misalignments between the floor levels.

The intersections points between piers and architraves axes are the grid nodes.
Any given pier is denoted by the index i, while a generic story is identified by the
index j (Fig. 11.57), where 1� i�Np; 1� j�Ns. A node (i, j) is thus the inter-
section of the axis of the pier i with story level j. At any node we can define the
weight Gij representing of masses assigned to node (i, j) and that produce vertical
compressions along the pier.

Fig. 11.57 Multi-story wall with openings and horizontal connections
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To each node is also assigned horizontal seismic force, kFij, where k is the load
multiplier. These forces are due not only to the masses of the active wall connected
to node (i,j), but also to the masses of the inactive walls connected to the node itself.
Consequently, the thrusts kFij will be proportional to the force G′ij, which includes
the weights of both active and inactive walls bearing on node (i,j).

However, the assumption of forces increasing linearly with height requires
applying the distribution factor cij defined above. Thus, if zj is the height of level
j with respect to the wall base, the node thrusts can be thus expressed as

Fij ¼ kcijG
0
ij; ð11:153Þ

where cij is the previously specified distribution factor (11.62). With reference to
the generic regular plan of the building, two different choices are possible for
defining the piers’ sections. First, we can consider a reduced section, that is, only
the rectangular section of the active wall in its plane.

In this case, during development of the overturning collapse mechanism only the
weight of the piers in this section, together with the corresponding floor loads, take
part in the lifting work.

The first scheme in Fig. 11.58 shows the reduced section of the second and third
piers, together with the axis of rotation involved in the overturning mechanism,
represented by a dotted line.

This first scheme corresponds to the so called disconnectedness assumption
between the two wall arrays. Conversely, the second option considers the full
section of the piers obtained by joining the section of the adjacent inactive trans-
verse wall to the rectangular part previously taken into account. In this case, the
resistant lifting work performed during the overturning mechanism is generally
larger than the first, in which case suitable connections would guarantee the shear
capacity of the masonry in the contact area between the two section parts to transmit

Fig. 11.58 Pier sections
composed by active or by
inactive and active wall
portions
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the forces involved. The second scheme in Fig. 11.58 illustrates this second choice:
a bold line traces the contact area between the two parts of the section where shear
transmission occurs. This second case corresponds to the connection assumption
between the two arrays of walls.

11.9.3.2 Failure Mechanisms

The collapse state of the wall, attained somewhere during loading, is characterized
by a definite mechanism with horizontal displacements at the floor levels. There are
various possible collapse mechanisms, some of which are shown in Fig. 11.59. The
first can be called the overall overturning mechanism. Other mechanisms, by which
only the top or some intermediate story of the wall collapses, can also occur. When
a masonry wall has a regular distribution of openings and piers, the overall over-
turning mechanism, shown in the leftmost scheme in Fig. 11.59, is the most likely.
The limit bending strength of the steel beams inserted into the piers above the
openings also plays a relevant role in determining the failure mechanism. As will be
shown in the following, the overturning mechanism comes about when the steel
beams are sufficiently weak.

We will now assume that the wall actually fails according to the overall over-
turning mechanism (Fig. 11.60).

A check of the static admissibility of the wall stresses at collapse can demon-
strate whether the failure has actually has been attained. Figure 11.60 shows in
more detail the multi-story wall set in motion along the overall collapse mechanism
under the thrusts koFij, where ko is the failure multiplier.

Fig. 11.59 Various wall collapse mechanisms
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11.9.3.3 Kinematic Multiplier for the Overturning Mechanism

The collapse multiplier is obtained by applying the kinematic theorem, which
equalizes the resistant and pushing work along the mechanism. The work of the
pushing forces is

Lthr ¼ hk
XNp

i¼1

XNs

j¼1

Fijzj ¼ hk
XNs

j¼1

Ftotj zj ð11:154Þ

summing up the thrusts on the same story. We thus consider the overall thrust on
the given story:

Ftotj ¼
XNm

i¼1

Fij: ð11:155Þ

The first contribution to the resistant work is due to the raising of the weights
Gij, which is given by

Llift ¼ �h
XNm

i¼1

XNp

j¼1

Gijbij; ð11:156Þ

where the quantities bij represent the lift arms of weights Gij.
The second contribution is due to the plastic dissipation occurring in the steel

beams inserted between the piers over the wall openings.

Fig. 11.60 Overall overturning collapse mechanism of the wall
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The end sections of the steel beams must bend plastically when the piers begin to
rotate sideways. The plastic bending occurring at the end sections B and C of the
steel beam over the opening to the right of pier i (Figs. 11.61 and 11.62) is due to
rotation (h + ai), where

ai ¼ Biþ 1

Li
h; ð11:157Þ

and where Bi+1 is the width of pier i + 1 and Li the span of the opening subsequent
to pier i. All the steel beams of the same level present the same plastic limit bending
moment, which will be denoted by Moj. Figure 11.62 shows the limit plastic
bending moments occurring at the left and right of the end sections of the steel
beams. Taking (11.157) into account, the plastic work performed in the single steel
beam at story level j, corresponding to pier i, is

Dpi;i ¼ 2MojðBiþ 1

Li
þ 1Þh: ð11:158Þ

Fig. 11.61 Angular
distortions of the steel
platbands at their insertions
into the walls

Fig. 11.62 Positive and negative limit bending moments at the platband insertion sections
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Summing up, the plastic work occurring along all piers i at the same level j,we get

Dpl ¼ 2
XNs

j¼1

XNp�1

i¼1

MojðBiþ 1

Li
þ 1Þh ¼2h

XNs

j¼1

Moj

XNp�1

i¼1

ðBiþ 1

Li
þ 1Þ; ð11:159Þ

where the second sum is extended to all piers as far as the next to last. In fact, when
i = Np – 1, the plastic work occurs in the steel beams overlying the last opening at
level j. Figure 11.63 shows the evaluation scheme of the limit bending moment Mo

for a section of an H beam.
In this case we have Fo = 10 � 0.8 � 2400/1.15 kg; Mo = Fo � h*;

h* = 9.6 cm.
Evaluation of the kinematic multiplier k+ of the horizontal forces along the

assumed mechanism is thus performed by canceling the sum of all the resistant and
pushing work along the mechanism, as follows:

Dp þ Lrais þ Lthr ¼ 0 ð11:160Þ

�2
XNp

j¼1

Moj

XNm�1

i¼1

ðBiþ 1

Li
þ 1Þh� h

XNm

i¼1

XNp

j¼1

Gijbij þ hkþ XNm

i¼1

XNp

j¼1

Fijzj ¼ 0:

ð11:161Þ

The kinematic multiplier of thrusts k+ is thus given by

kþ ¼

PNm

i¼1

PNp

j¼1
Gijbij þ 2

PNp

j¼1
Moj

PNm�1

i¼1
ðBiþ 1

Li
þ 1Þh

PNp

j¼1
Ftotjzj

ð11:162Þ

and is independent of the elasticities of the horizontal constraints.

Fig. 11.63 Limit bending moment of the steel beam
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Multiplier k + will represent the actual limit lateral strength of the wall for all
possible mechanisms only if the stresses occurring in the wall under forces k+Fij are
statically admissible. Only in this case does multiplier k + define the collapse ko
multiplier of the thrusts. As can be seen from inspection of (11.162), depending on
the values of the lift arms bij, the kinematic multiplier varies according to the
direction of the thrusts, i.e. whether they act from left to right or vice versa. The
seismic lateral strength of the wall will be the minimum of these two values.

11.9.3.4 Stresses in the Horizontal Connections: Compatibility
Conditions

The multiplier kþ is the actual collapse multiplier ko only if it is the smallest of the
kinematic multipliers corresponding to all other possible mechanisms. On the other
hand, it is possible to verify that multiplier kþ is the actual failure multiplier ko by
checking the admissibility of the wall stresses.

This check calls for evaluating the stresses in the piers and the horizontal con-
straints of the wall under forces k+Fij. Steel ties cannot be compressed, masonry
architraves cannot be stretched and the pressure lines running along the piers must
never go beyond their edges. It is thus necessary to know the interactions between
the horizontal constraints in order to carry out the above mentioned check.

Figure 11.64 shows the interactions occurring between the horizontal con-
straints: the internal interactions—those acting from the second pier to the next to
last—have been distinguished from those acting on the first and last piers. The axial
loads Nij transmitted by the horizontal masonry platbands are located to the right of
pier i and are thus denoted by

N1;j; Ni;j ði ¼ 2; 3; . . .Nm � 1Þ; NNm�1 ð11:163Þ

Fig. 11.64 Forces acting on the piers
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Thus, axial load N1,j in the platband at level j is transmitted to the right of pier 1.
Similarly, we have Ni,j (i = 2,..Nm − 1) for the other axial loads acting in all the
platbands to right of pier i as far as pier (Nm − 1). The axial load NNm-1,j instead acts
to the left of the last pier Nm. Now, let us denote by

Moj ð11:164Þ

the limit bending moment at level j transmitted to the pier by the steel beam and

To1;j; Toi;jði ¼ 2; 3; . . .Nm � 1Þ; ToNm�1;j ð11:165Þ

respectively the shear forces transmitted by each of the steel beams succeeding pier
1 as far as pier i ði ¼ 2; 3; . . .Nm � 1Þ, where the last term denotes the shear pre-
ceding the last pier. In brief, the same notation used for the axial load has also been
adopted for the shears (Fig. 11.64). From the equilibrium of the steel beams we
have (Fig. 11.65)

Toi;j ¼ 2Moj

Li
: ð11:166Þ

Finally, tractions in the tie rods are denoted by

Tj ð11:167Þ

Concerning the piers, the admissibility of the stresses can be expressed by means
of the inequalities

�Bj=2� ejðzÞ�Bj=2; ð11:168Þ

where ejðzÞ is the eccentricity of the axial load on pier j at any given height z. In
addition, the admissibility conditions for the masonry platbands and tie rods are

Ni;j � 0; Ti � 0; ð11:169Þ

where both compression loads in the masonry platbands and tensile forces in the tie
rods have been assumed positive. Checking the compatibility conditions requires
preliminary evaluation of the stresses in the horizontal constraints at the limit
equilibrium state of the wall. To this end, it is useful to collect all the unknowns

Fig. 11.65 Limit shear force
in the platband
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regarding a given type of connection—tie rods or masonry platbands, etc., by
summing their moments at the toe of each pier. All the axial loads on the masonry
platbands and tie rods for a single pier are thus considered via the following positions

MN
i ¼

XNs

i¼1

Nijzj ð11:170Þ

MT ¼
XNs

i¼1

Tizi; ð11:171Þ

where:

• MN
i is the moment at the toe of pier i of the axial loads transmitted by the

masonry platbands concerning the span following pier i;
• MT is the moment at the pier toe of the tensions in the tie rods.

Likewise, with reference to Fig. 11.64, we write

MS
1 ¼

XNp

j¼1

G1jb1j þ
XNp

j¼1

Moj;M
S
i ¼

XNp

j¼1

Gijbij þ
XNp

j¼1

2Moj þ
XNp

j¼1

Toi�1;jBi;

MS
Nm

¼
XNp

j¼1

GNmjbNmj þ
XNp

j¼1

Moj þ
XNp

j¼1

ToNm�1;jBi; i ¼ 2; 3; . . .Nm � 1

ð11:172Þ

MR
i ¼

XNp

j¼1

Fijzj ð11:173Þ

where:

• MS
i is the stabilizing moment acting on pier i due to weights Gij and the actions

transmitted by the steel beams;
• MR

i is the overturning moment of the thrusts evaluated with k = 1.

By means of these positions, the equilibrium equations upon rotation at the toe
of the single piers at wall failure can be obtained simply and quickly as follows:

• for the first pier,

�MS
1 þ kþMR

1 � MN
1 þ MT¼ 0 ð11:174Þ
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• for pier i (i = 2, …, Nm –1),

�MS
i þ kþMR

i þMN
i�1 � MN

i ¼ 0 ð11:175Þ

• for the last pier,

�MS
Nm

þ kþMR
Nm

þMN
Nm�1 � MT¼ 0 ð11:176Þ

These conditions regulate the limit equilibrium state of single pier at wall failure.
Some piers will be sustained by the others and other piers by means of the axial
interactions of the platbands and tie rods.

Let us now define the partial lateral strength of the single pier i, by means of the
partial failure multiplier koj of the horizontal loads, which represents strength of the
pier in absence of axial interactions with the other piers:

�MS
i þ koiM

R
i ¼ 0 ðj ¼ 1; 2. . .;NmÞ: ð11:177Þ

The partial failure multiplier of a single pier is thus given by

koi ¼ MS
i

MR
i
: ð11:178Þ

The weakest pier is that corresponding to the smallest value among all the koi.
The overturning condition in the weakest pier is thus attained when multiplier k of
the horizontal loads reaches the value

k
o ¼ MinðkoiÞ: ð11:179Þ

Equations (11.174), (11.175) and (11.176) can now be rewritten more simply
using the definitions of the partial failure multipliers, as follows:

MN
1 �MT ¼ MR

1 ðkþ � ko1Þ ð11:1740Þ

MN
i �MN

i�1 ¼ MR
i ðkþ � koiÞ ð11:1750Þ

MT �MN
Nm�1 ¼ MR

Nm
ðkþ � koNmÞ: ð11:1760Þ

We can once again derive expression (11.162) for the kinematic multiplier of the
horizontal loads by using Eqs. (11.174′), (11.175′) and (11.176′). In fact, summing
up the Np equilibrium equations, the moments due to interactions cancel and we
have
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�
XNm

i¼1

MS
i þ kþ XNm

i¼1

MR
i ¼ 0:

The kinematic multiplier of the horizontal forces acting on the wall is thus:

kþ ¼
XNm

i¼1

MS
i =

XNm

i¼1

MR
i ;

and we obtain

XNm

i¼1

MS
i ¼ ð

XNm

i¼1

XNp

j¼1

GijbijÞþ
XNm�1

i¼1

XNp

j¼1

2Moj þ
XNm�1

i¼1

ð
XNp

j¼1

Toi;jBiþ 1Þ

¼ ð
XNm

i¼1

XNp

j¼1

GijbijÞþ
XNm�1

i¼1

XNp

j¼1

2Moj þ
XNm�1

i¼1

ð
XNp

j¼1

2Moj

Li
Biþ 1Þ

¼
XNm

i¼1

XNp

j¼1

Gijbij þ
XNm�1

i¼1

XNp

j¼1

2Mojð1þ Biþ 1

Li
Þ

Finally, taking into account expression (11.172) for MS
i , we obtain, as in

(11.162),

kþ ¼

PNm

i¼1

PNp

j¼1
Gijbij þ

PNm�1

i¼1

PNp

j¼1
2Mojð1þ Biþ 1

Li
Þ

PNp

j¼1
Fijzj

ð11:180Þ

It should be noted that we have assumed masonry with unlimited compression
strength. It is possible, on the other hand, to take the finite strength of masonry into
account by correcting, through a rough estimate, Eq. (11.180) via the factor

ð1� rm
ro\

Þ; ð11:181Þ

according to the previous specifications. Kinematic multiplier (11.180) thus
becomes

kþ ¼

PNm

i¼1

PNp

j¼1
Gijbij þ

PNm�1

i¼1

PNp

j¼1
2Mojð1þ Biþ 1

Li
Þ

PNp

j¼1
Fijzj

ð1� rm
rk

Þ: ð11:1800Þ
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11.9.3.5 Compatibility of the Limit Overturning State

The relevant equilibrium equations concern the vanishing of the overall moment at
the piers’ toes; there are thus Nm equations with the unknowns:

• the (Nm − 1) moments MN
j ðj = 1, 2,. . .Nm � 1Þ;

• the moment MT ;
• the multiplier kþ .

The unknowns are thus (Nm + 1), while the available equations are only Nm. We
are now looking for the missing last equation. The following extra conditions must
however be associated:

MN
i � 0 (for i ¼ 1; . . .:;Nm�1Þ; MT � 0: ð11:182Þ

These follow from the unilateral character of steel tie rods and masonry
architraves. Equations (11.174′), (11.175′) and (11.176′) have in fact been defined
for compressed masonry architraves and stretched the tie rods.

At the same time, the pressure line in the piers cannot be never located outside
the piers edges. It should now be noted that to solve Eqs. (11.174′), (11.175′) and
(11.176′) associated to the inequalities in (11.182), at least one of the unknownsMN

i

and MT must cancel out.
In fact, if the tie rods at wall failure are stretched, and consequently forces Tj do

not cancel out, it is not possible for all the horizontal architraves to be compressed.
The existence of compressions in all the masonry architraves would contradict the
existence of tensile stresses in the tie rods. Consequently, if the stresses in the tie rods
do not cancel, the axial loads acting on at least one span between the piers would
have to be equal to zero. Vice versa, if the masonry architraves are all compressed,
the tie rods will be unloaded. Thus, in any event, the additional condition

MN
1 �MN

2 � . . .. . .MN
Nm�1 �MT ¼ 0 ð11:183Þ

must hold. In short, at least one of the unknowns must equal zero. The number of
the actual unknowns becomes Nm and the problem has an univocal solution. This
result can be better illustrated by considering some examples.

The multi-story wall in Fig. 11.66 is loaded by horizontal forces acting from left
to right. The masonry architraves in the figure are drawn with light lines. The
weakest pier is the leftmost: under loading, it will be the first to rotate around its toe
and lean towards the second pier. This latter will also overturn, followed then by the
third, and all three will thus be sustained by the last pier. In this case, all the
masonry architraves will be compressed and the tie rods will be unloaded.

On the contrary, if the horizontal forces act from right to left, when the first pier
overturns, the tie rods will stretch and transmit to the last pier any excess thrust that
the first pier is unable to sustain. It is thus possible that, by increasing the thrusts,
the second pier will overturn, once again followed by third as well, with three
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transmitting onto the last pier the thrusts that they cannot sustain. When the last pier
also reaches overturning, all the tie rods will be stretched and all the masonry
architraves will be compressed, except those in the last span, between the next to
last and the last pier. Depending upon the overturning strengths (11.173) of the
single piers, it is thus possible to identify the unloaded constraints of the wall at
failure. An algebraic approach can be followed in searching for the zero unknowns,
taking into account the values of the partial multipliers (11.178) and directly using
the system of Eqs. (11.174′), (11.175′) and (11.176′), which we rewrite here for the
sake of convenience:

MN
1 �MT ¼ MR

1 ðkþ � ko1Þ
MN

i �MN
i�1 ¼ MR

i ðkþ � koiÞ
MT �MN

Nm�1 ¼ MR
Nm
ðkþ � koNmÞ

In fact, if the sign of the second member term in equation i is positive, unknown
MN

i cannot be zero, otherwise unknown MN
i�1 could be negative, contradicting

condition (11.183). By examining the sign of the known terms, we can thus exclude
at least one unknown. At this point it is worth remarking that the signs of the known
terms in the second member of Eqs. (11.174′), (11.175′) and (11.176′) cannot all be
the same, because if they were, then none of the unknowns could be equal to zero.
At least one of the signs of the known terms will be different from the others
because the collapse multiplier ko belongs to the set of partial multipliers koi. Once
the system of equations has been solved and the moments

MN
1 ;M

N
2 ; . . .. . .;M

N
Nm�1;M

T ð11:184Þ

have been determined, we can proceed to evaluating the forces in the tie rods and the
masonry architraves. We can assume that the these forces will vary linearly along the
height of the wall. Assuming all the tie rods in all the storys to be the same, we have

Tj ¼ Ti
zj
zi
: ð11:185Þ

Fig. 11.66 Wall horizontal constraints: tie rods and masonry architraves
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Thus, taking Eq. (11.171) into account, we get

Tj ¼ MT zjPNp

i¼1
z2i

: ð11:186Þ

Forces (11.186) represent the second portion of the total forces acting on the tie
rods in the active walls. The total force Tjtot at level j is given by adding to force
(11.186) the other force T 00

y , addressed in Sect. 11.6, due to the transmission of
seismic forces from the inactive to active walls along the horizontal arch with
reverse chains. Thus,

Tjtot ¼ koðV 00 þ S00
b
a
Þþ Tj: ð11:187Þ

Similar relations can be obtained for the axial forces in the masonry architraves
(Fig. 11.67).

11.9.3.6 Node’s Capacity to Transmit Shear

The participation of the inactive walls’ masses to the resisting work can be very
significant in defining the wall strength. It is thus important to check the actual
capacity of the connection between active/inactive walls to transmit shear.
Figure 11.67 shows a scheme of the active and inactive walls at a connection node
between the two arrays of walls.

The seismic action is indicated in the figure by a left-to-right arrow, and the
active and inactive walls are represented by the rectangular sections ABCD and
EFGH respectively. During the development of the overturning mechanism the pier
rotates at its toe, BC, along the rotation axis a–a.

Fig. 11.67 Participation of
the inactive wall masses to the
resisting work. Checking the
actual capacity of the
connection to transmit shear
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All the weights Gij of the active wall, with their lifting arms bij, aligned along the
nodes of pier i from the first story j as far as the last story j = Ns, will thus be raised as
the mechanism arises. On the other hand, given the participation of the inactive walls’
masses, the total weightsG′ij, with their lifting arms b′ij, including the masses of both
the inactive and active walls, must be taken into account in the lifting resistant work.

In brief, the entire weight of inactive wall EFGH, with the possible weights of
the floors sustained by this wall, has to be raised during the overturning mechanism.
The shear

Vi ¼
Xj¼Ns

j¼1

ðG0
ij � GijÞ ð11:188Þ

must thus be transmitted vertically along the contact section EF. If we indicate AS as
the total area of this vertical contact section, we can evaluate the average shear
stress

s ¼

Pj¼Ns

j¼1
ðG0

ij � GijÞ

AS
ð11:189Þ

to obtain an estimate of the order of magnitude of the shear action that occurs.
Analyzing the state of the connections between the two arrays of walls can

suggest whether reinforcing works are necessary, possibly by inserting special steel
ties. As a rule, the presence of uncracked masonry with regular blocks interpene-
trating along the vertical contact section suggests that reinforcements can be
avoided: an average limit shear value of 10 t/m2can usually be assumed.

11.9.3.7 Joint Steel Beam/Wall Capacity

The steel beams spanning the openings, with their ends fixed in the piers, produce
strong interactions with the masonry during the development of a sideways
mechanism (Fig. 11.68).

The masonry may fail by crushing around the steel beams’ heads and unloose
them, consequently reducing the wall strength. Checking the condition of the
connections of the steel-beam ends to the wall is thus crucial. Figure 11.69 shows a
length a of the steel beam built into the masonry, together with the internal equi-
librium at the limit state of the wall. The limit bending moment Mo occurs at the
insertion sections in the piers, and the shear

To ¼ 2Mo

L
ð11:190Þ
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is transmitted along the steel beam spanning the opening of width L. Figure 11.69
then shows the resultant stresses To and Mo acting at the beam section flush with the
pier.

The resultant reactions exerted by the masonry surrounding the length of beam
are defined by the axial force N, applied at the center of the built-in length, and the
moment M. The solid equilibrium of the built-in length of beam gives

M ¼ Toa=2þMo ð11:191Þ

and

N ¼ To: ð11:192Þ

We assume that the masonry, at its ultimate state, bears the limit stress distri-
bution around the built-in length of steel beam shown in Fig. 11.70, where roo
indicates the masonry crushing strength. This stress state is equivalent to the limit
state of an elastic-plastic section under the action of axial load N and bending
moment M. The interaction yield locus, drawn in Fig. 11.70, is thus given by the
equation

M ¼ Moo½1 - ð N
Noo

Þ2� ; ð11:193Þ

Fig. 11.68 Stress state in the steel beams at wall failure

Fig. 11.69 Equilibrium of a
steel beam end built into the
masonry
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where

Moo ¼ roo
ba2

4
Noo ¼ rooba ð11:194Þ

are respectively the limit moment and axial limit load, depending on the length b of
the flange and on the length a of the built in tips of the steel beam. The problem is
thus to obtain the required built-in length a for a given masonry crushing strength
roo and for a given value of the ratio

tgv ¼ M
N

ð11:195Þ

between the resultant moment M and the axial load N acting on length a.
Taking into account the expressions for M and N, from (11.191) and (11.192),

the ratio M/N becomes

tgv ¼ L
2
ð1þ a

L
Þ: ð11:196Þ

Ratio (11.195) defines the limit stress distribution around the built-in length a.
Thus, stress point r (Fig. 11.71) is located on the interaction locus, and taking
Eq. (11.193) into account, we get

L
2
ð1þ a

L
Þ ¼ M

N
¼ Mooð1N � N

N2
oo
Þ: ð11:197Þ

Fig. 11.70 Distribution of
limit compressions ro around
the beam end

Fig. 11.71 The yield locus
as a function of M and N
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However, the resultant axial load N equals the shear force To in the steel beam,
so condition (11.197) thus becomes

L
2
ð1þ a

L
Þ ¼ Mooð 1To �

To
N2
oo
Þ: ð11:198Þ

Taking into account expression (11.194) for the limit moment Moo and the axial
force Noo, we also obtain

L
2
ð1þ a

L
Þ ¼ rooba2

4To
ð1� T2

o

r2oob
2a2

Þ: ð11:199Þ

With the positions

x ¼ roobL2

2Mo
y ¼ a

L
; ð11:200Þ

representing the masonry strength and the built-in length ratios, we obtain the
equation linking factors x and y

2ð1þ yÞ ¼ xy2ð1� y2

4�Þ; ð11:201Þ

Taking into account that quantity y2/4 is negligible with respect to unity gives

2ð1þ yÞ ¼ xy2 ð11:202Þ

and

y ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x

p

x
: ð11:203Þ

11.9.3.8 A Numerical Example

Figure 11.72 shows the floor plan of a simple masonry building made up of two
longitudinal and four short transverse walls. As discussed in Sect. 11.9.3.1, two
different choices are available for defining the piers’ sections and therefore regards
the section of the adjacent inactive transverse wall as well. Two different values of
the weights will thus be evaluated: the first Gij, pertaining to the first choice; and G′ij
to the second. These values, with the corresponding values of the lifting arms, bij
and b′ij, are given in Tables 11.1, 11.2, 11.3, 11.4 and 11.5.
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Fig. 11.72 The example of a
simple masonry building

Table 11.1 Weights Gij in
tons

39.98 34.61 34.61 39.98

37.40 32.49 32.49 37.40

34.84 30.39 30.39 34.84

31.72 27.75 27.75 31.72

Table 11.2 Lifting arms bij
in meters

1.82 1.50 1.50 2.18

1.81 1.50 1.50 2.19

1.79 1.50 1.50 2.21

1.77 1.50 1.50 2.23

Table 11.3 Weights G′ij in
tons

56.78 51.41 51.41 56.78

53.17 48.26 48.26 53.17

49.43 44.98 48.26 49.43

44.99 41.02 41.02 44.99
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The distribution factors are:

c1 ¼ 0:42; c2 ¼ 0:83; c3 ¼ 1:25; c4 ¼ 1:66

Let us on now evaluate the partial strengths multipliers of the single piers
according to (11.176) under the assumption of disconnectedness between the two
arrays of walls. We obtain

ko1 ¼ 259:09
2683:1

¼ 0:0966 ko2 ¼ 187:86
2442:6

¼ 0:0769

ko3 ¼ 187:86
2442:6

¼ 0:0769 ko4 ¼ 316:68
2683:1

¼ 0:1180

According to (11.180), the corresponding strength multiplier of the wall is

kþ ¼ 259:09þ 187:87þ 187:87þ 316:68
2ð2683:1þ 2442:6Þ ¼ 0:0928

So far the presence of the steel beams over the wall openings and inserted into
the piers has not yet been taken in account. We now assume that two HEA 120
beams made of Fe 360 steel run over each of the openings. Let us calculate the
contribution of the steel beams to the kinematic multiplier for the overturning
mechanism of the wall.

Mechanical properties of the section HEA 120
Flange section: As = 12 cm � 0.8 = 9.6 cm2;
Distance between flange centers: h* = 9.8 cm + 0.8 cm = 10.6 cm
Yield strength of the Fe360 steel: rsy = 2400 kg/cm2

Ultimate bending moment
MtH = 2400 � 9.6 � 10.6 = 2442 kg m; 2 M02H = 4884 kg m
Let us now evaluate the kinematic multiplier under the disconnectedness

assumption

Table 11.4 Lifting arms b′ij
in meters

2.32 1.50 1.50 1.68

2.32 1.50 1.50 1.68

2.33 1.50 1.50 1.67

2.33 1.50 1.50 1.67

Table 11.5 Horizontal
forces at node kFij in tons

k � 23:85 k � 21:06 k � 21:59 k � 23:85
k � 44:13 k � 40:05 k � 40:05 k � 44:13
k � 61:79 k � 55:36 k � 55:36 k � 61:79
k � 74:68 k � 68:09 k � 68:09 k � 74:68
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kþ ¼ 266:09þ 187:76þ 187:87þ 302:36þ 364:8
2ð2682:9þ 2428:2Þ ¼ 0:128

Conversely, under the connection assumption, the partial failure multipliers are
first given by

ko1 ¼ 494:7
2683:1

¼ 0:1843 ko2 ¼ 395:74
2442:60

¼ 0:1620

ko3 ¼ 395:74
2442:60

¼ 0:1620 ko4 ¼ 466:4
2683:1

¼ 0:1738

and the corresponding strength multiplier of the wall is

kþ ¼ 494:38þ 38:9þ 395:74þ 395:74þ 466:4
2ð2683:1þ 2442:6Þ ¼ 0:1709

Note the gradual increase in the value of the kinematic multiplier when the
contributions of the inactive walls and then the steel beams are included.

Stresses in the horizontal connections
To evaluate these stresses we start by applying Eqs. (11.174′), (11.175′) and

(11.176’). The evaluation considers both the presence of the inactive walls,
according to the connection assumption, and the participation of the HEA 120 steel
beams inserted in the piers. By using expressions (11.178) for the partial failure
multipliers, we have

MN
1 �MT ¼ MR

1 ðkþ � k01Þ: ðaÞ

MN
2 �MN

1 ¼ MR
2 ðkþ � k02Þ ðbÞ

MN
3 �MN

2 ¼ MR
3 ðkþ � k03Þ ðcÞ

MT �MN
3 ¼ MR

4 ðkþ � k04Þ ðdÞ

where the overturning moments due to the horizontal forces evaluated according to
the values given in Table 11.5 are

MR
1 ¼ 2683:10 tm; MR

2 ¼ 2442:260 tm
MR

3 ¼ 2442:60 tm MR
4 ¼ 2683:10 tm

From (11.178), the partial failure multipliers of the single piers under the con-
nection assumption in the presence of HEA 120 steel beams inserted into the piers are

k01 ¼ 0:1843 k02 ¼ 0:1620 k03 ¼ 0:15620 k04 ¼ 0:1738
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while the corresponding overall kinematic multiplier is k+ = 0.169. We have

ðkþ � k01Þ\0 ðkþ�k02Þ[ 0 ðkþ�k03Þ[ 0 ðkþ�k04Þ[ 0 eð Þ

Thus, from Eqs. (a), (b), (c) and (d), we obtain

MN
1 �MT\0 MN

2 �MN
1 [ 0 MN

3 �MN
2 [ 0 MT �MN

3 \0:

All the unknowns MN
1 , M

N
2 , M

N
3 and MT cannot be negative and, at the same

time, have to satisfy the condition MN
1 �MN

2 �MN
3 �MT ¼ 0. Hence, at least one of

the unknowns has to cancel out. Thus, from the previous inequalities, it is a simple
matter to prove that each of the three possibilities

MN
2 ¼ 0 MN

3 ¼ 0 MT ¼ 0

is inconsistent, and that only the condition

MN
1 ¼ 0

is, on the contrary, compatible. This outcome can be explained simply by
mechanical considerations.

Under the seismic forces acting from left to right, piers 2 and 3, the weakest, are
the first to fail and are thus sustained by pier 4. Then when, as the thrusts increase,
pier 4 also fails, it pushes on pier 1 through the tie rods. In this state all the tie rods
are stretched and the architraves to the right of piers 2 and 3 are compressed. The
architrave located just after pier 1 is, on the contrary, unloaded. In short, at global
failure the masonry architrave after pier 1 will be unloaded and we have MN

1 ¼ 0.
Given this last result, the first and second equations, (a) and (b), become

MT ¼ MR
1 ðk01 � kþ ÞMN

2 ¼ MR
2 ðkþ � k02Þ

we can first calculate the values

MT ¼ MR1ðk01 � kþ Þ ¼ MR1 0:1843�0:1709ð Þ ¼ 35:76 tm

MN
2 ¼ MR2ðkþ�k02Þ ¼ MR2 0:1709�0:1620ð Þ ¼ 21:77 tm

Whence

MN
3 ¼ MR

3 ðkþ � k03ÞþMN
2 ¼ 2442:60ð0:1709� 0:1620Þ þ 21:77¼ 43:53 tm

MN
1 ¼ 0:

We can now go on to evaluate the actual stresses in the tie rods and compressed
architraves. Taking into account the values of the floor heights, we have
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z1 ¼ 4:50m z2 ¼ 9:00m z3 ¼ 13:50m z4 ¼ 18:00m

X4
i¼1

z2i ¼ 4:52 þ 9:02 þ 13:52 þ 18:02 ¼ 644:50 m2

Hence, from (11.186) the forces in tie rods are

T1 ¼ 0:265 t T2 ¼ 0:530 t T3 ¼ 0; 795 t T4 ¼ 1:059 t

Likewise, for the masonry architraves we get

Ni1 ¼ 0 i ¼ 1; 2; 3; 4ð Þ
N12 ¼ 0:161 t N22 ¼ 0:322 t N32 ¼ 0:4684 t N42 ¼ 0:645 t

N13 ¼ 0:322 t N23 ¼ 0:645 t N33 ¼ 0:967 t N43 ¼ 1:290 t

Knowing the stresses in the horizontal connections enables checking the static
admissibility of the limit state of the wall under the thrusts kþFij.

Checking the admissibility of the limit horizontal loads kþFij

Figures 11.73 and 11.74 show the piers’ walls under all the actions transmitted
to them by tie rods, masonry architraves and steel beams according to the results
above.

Fig. 11.73 Actions transmitted by the horizontal connections to pier 1 and 2
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Checking node capacity to transmit shear from inactive to active walls
By way of example of such a check, let us consider pier 2, for which we evaluate

the shear force V that must be transmitted through it. From Tables 03 and 01, we
have

V2 ¼
Xj¼Ns

j¼1

ðG0
2j � G2jÞ ¼ 60:43 t;

where evaluation of the shear resistant vertical section gives

At ¼ 4:50� 1:0þ 0:9þ 0:8þ 0:7ð Þ ¼ 15:3m2;

and the average shear is thus s = 60.43/15.3 = 3.9 t/m2.
This value is low considering uncracked masonry and the presence of inter-

penetrating blocks at the nodes. The check furnishes a positive result.
Checking the joint steel beam/wall
Two Fe 360 steel HEA 120 beams are inserted into the piers over each wall

opening, hence, M0 = 2 � M0tr = 2 � 2.28 tm = 4.56 tm; b = 2 � 12 cm = 24
cm; L = 150 cm. We assume roo ¼ 50 kg/cm2 Consequently, according to (11.200)
and (11.203) we get

Fig. 11.74 Actions transmitted by the horizontal connections to piers 3 and 4
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x ¼ 50 � 2 � 12 � 1502
2 � 488400 ¼ 27:641 y ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2 � 27:641p

27:641
¼ 0:308

y ¼ a
150

¼ 0:308 a ¼ 46 cm

In brief, two HEA 120 steel beams are to be fitted over each opening of span
1.50 with an insertion length of 46 cm. The masonry around the ends of the steel
beams must be firmly consolidated.

Concluding remarks
The lateral strength of such a building wall is equal to 0.169 of its weight.

Taking approximately into account the effect of the finite compression strength,
considering for the reduction factor (1 − rm/ro<), equal to about 0.85, the wall
lateral strength now becomes 0.169 � 0.85 = 0.14 of its weight. Figure 11.75
shows the effective resistant regions in the wall piers.

Fig. 11.75 Resistant bands in the piers (dark gray)
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