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Abstract

Theoretical and experimental modal analysis, i.e., the computation of vibration modes

from a mathematical model and from experimental data, respectively, is quite sophisti-

cated and advanced in linear structural dynamics. However, nonlinearity is a frequent

occurrence in real-world engineering structures, and the existing linear methodologies fail

dramatically in the presence of nonlinear dynamical phenomena. Therefore, the present

thesis focuses on the development of a practical nonlinear analog of modal analysis for

properly accounting for nonlinearity in mechanical systems.

The concept of nonlinear normal mode (NNM) provides solid mathematical and theoret-

ical foundations for a rigorous, yet understandable by the practicing engineer, analysis of

nonlinear dynamical behaviors. In this context, a useful framework for nonlinear modal

analysis of vibrating structures, which includes the computation of NNMs from finite ele-

ment models and their identification from experimental data, is proposed in this disserta-

tion. In view of the still limited use of NNMs in structural dynamics, special attention is

devoted to progress toward a practical tool that has the potential to deal with large-scale,

real-world structures.

Targeting an effective and exact computation of NNMs, even in strongly nonlinear regimes

of motion, one original contribution of this work is to resort to numerical methods. An

algorithm combining a shooting procedure and the so-called pseudo-arclength continua-

tion method is developed. On the other hand, a nonlinear extension of phase resonance

testing (also known as force appropriation) is introduced for the experimental identifica-

tion of NNMs, which is another innovative aspect of the doctoral thesis. In particular,

the phase lag quadrature criterion, which is used for linear experimental modal analysis,

is generalized in the presence of nonlinear dynamical behavior.

Academic examples are first considered to illustrate, in a simple manner, that the proposed

methods form an effective and adequate framework for nonlinear modal analysis. Further-

more, more realistic structures, including a full-scale aircraft, are studied to demonstrate

the potential applicability of the approach to large-scale, real-life applications.
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Introduction

The concept of a normal mode is central in the theory of linear vibrating systems. Besides
their obvious physical interpretation, the linear normal modes (LNMs) have interesting
mathematical properties. They can be used to decouple the governing equations of motion;
i.e., a linear system vibrates as if it were made of independent oscillators governed by the
eigensolutions. Two important properties that directly result from this decoupling are:

1. Invariance: if the motion is initiated on one specific LNM, the remaining LNMs
remain quiescent for all time.

2. Modal superposition: free and forced oscillations can conveniently be expressed as
linear combinations of individual LNM motions.

The framework of LNMs lays down the foundations of the so-called modal analysis, which
refers to the analysis of the dynamics of a vibrating structure in terms of its modal pa-
rameters, namely the mode shapes, natural frequencies and damping ratios. These modal
parameters can be determined either from mathematical models (direct approach or the-
oretical modal analysis, TMA) or from experimental data (inverse approach or experi-
mental modal analysis, EMA). For linear systems, TMA is performed merely by solving
an eigenvalue problem. Alternatively, modal testing and EMA have been developed over
the past 40-50 years, and numerous techniques are available nowadays [38].

These two ways of performing modal analysis are extensively used for finite element
model updating and validation [41]. In addition, LNMs are relevant dynamical features
that can be exploited for various purposes including model reduction (e.g., substructuring
techniques [29]), damage detection and structural health monitoring [34].

Clearly, though, linearity is an idealization, an exception to the rule; nonlinearity is
a frequent occurrence in real-life engineering applications [64] and can drastically alter
their behavior. For instance, in an aircraft, besides nonlinear fluid-structure interaction,
typical nonlinearities include backlash and friction in control surfaces and joints, hardening
nonlinearities in engine-to-pylon connections, saturation effects in hydraulic actuators,
plus any underlying distributed nonlinearity in the structure [15]. Furthermore, the next
generations of aircraft are using materials such as glass-fiber or carbon-fiber composites to
a greater extent for structural weight reduction. These materials entail new challenges for
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Introduction 2

performance prediction, because they exhibit a structural behavior deviating significantly
from linearity. Their increased use also creates more interfaces between different materials,
which are further sources of nonlinear behavior. Satellites are other examples of aerospace
applications where nonlinearity may considerably impact the dynamic behavior [22, 98].

Any attempt to apply traditional linear analysis to nonlinear systems results, at best, in
suboptimal design. Thus, there is a need for efficient, analytically rigorous, broadly ap-
plicable analysis techniques for nonlinear structural dynamics. In this context, nonlinear
normal modes (NNMs) offer a solid theoretical and mathematical tool for interpreting a
wide class of nonlinear dynamical phenomena, yet they have a clear and simple concep-
tual relation to the LNMs, with which practicing structural engineers are familiar. Other
appealing features of the NNMs are that they are capable of handling strong structural
nonlinearity and that they have the potential to address the individualistic nature of
nonlinear systems.

Nonlinear Normal Modes: A Brief Historical Perspec-

tive and Current State-of-the-Art

The most straightforward definition of an NNM is a vibration in unison of the system
(i.e., a synchronous oscillation). NNMs were pioneered in the 1960s thanks to Rosenberg’s
seminal work [121–123]. They were further studied in the 1970s by Rand [115–117] and
Manevitch and Mikhlin [83]. They were regarded as a theoretical curiosity until the
beginning of the 1990s when they were given a new impetus through the efforts of Vakakis
et al. [25, 65, 146, 148, 149, 154] and Shaw and Pierre [127–130]. Since then, a large
body of literature has addressed, with notable success, the qualitative and quantitative
analysis of nonlinear phenomena using NNMs (see, e.g., [1, 13, 33, 44, 55, 62, 67, 68, 72,
76, 86, 88, 90, 97, 102, 114, 132, 135, 142, 161, 166, 167]). For a few typical applications
and comprehensive reviews, the reader can refer to [92, 112, 149, 154].

However, most structural engineers still view NNMs as a concept that is foreign to them,
and they do not yet consider NNMs as a useful concept for analyzing nonlinear structural
dynamics. There are several reasons supporting this statement:

1. Nonlinear systems can exhibit extremely complex behaviors which linear systems
cannot. These phenomena include jumps, bifurcations, saturation, subharmonic,
superharmonic and internal resonances, resonance captures, limit cycles, modal in-
teractions and chaos.

2. NNMs have two important limitations compared to their linear counterpart. First
and foremost, the principle of superposition, which is the cornerstone of linear the-
ory, does not apply to nonlinear systems. Second, the lack of orthogonality relations
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satisfied by the NNMs complicates their exploitation as bases for order reduction of
the nonlinear dynamics.

3. The vast majority of the NNM literature deals with low-order lumped-mass models
(systems with typically a few degrees of freedom - DOFs) or focuses on specific
resonances of distributed parameter systems.

4. Most existing constructive techniques for computing NNMs are based on asymptotic
approaches and rely on fairly involved mathematical developments.

Motivation

The objective of the present doctoral thesis is to progress toward a practical modal anal-
ysis of nonlinear vibrating structures using the concept of NNMs. According to the
complementary routes to modal analysis, the aim is therefore twofold, as illustrated in
Figure 1. First, TMA consists in computing the NNMs from a mathematical model of
the structure. Second, EMA targets the identification of NNMs from experimental data
of the structure. This doctoral dissertation focuses on the development of an adequate
framework for proposing a nonlinear analog of these two approaches for modal analysis.

In this context, because NNMs have not yet been applied to large-scale engineering struc-
tures with multiple components and strong nonlinearities, several key aspects that might
drive their development and exploitation for nonlinear modal analysis are highlighted
throughout the manuscript:

1. There have been very few attempts to compute NNMs using numerical methods [9,
19, 56, 72, 109, 133, 162]. Interestingly, algorithms for the continuation of periodic
solutions are really quite sophisticated and advanced (see, e.g., [35, 93, 126]), yet
they have not been fully exploited for the computation of nonlinear modes. We
support that these numerical algorithms pave the way for an effective and practical
computation of NNMs of complex (and possibly strongly) nonlinear structures.

2. Phase resonance testing, also known as force appropriation, is commonly used for
linear EMA, particularly in the aerospace industry (e.g., for ground vibration testing
of aircrafts [30] and modal survey of satellites [31, 32]). We show that this approach
can lay down the foundations for a rigorous experimental identification of NNMs.

3. Time-frequency analysis is a versatile tool for analyzing nonstationary signals; i.e.,
signals whose spectral contents vary with time. It has been successfully exploited
in structural dynamics, e.g., for linear and nonlinear system identification [7, 42,
136]. Unlike the Fourier transform, a method such as the wavelet transform models
the time evolution of the dominant frequency components of a signal. Because
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Figure 1: Theoretical and experimental nonlinear modal analysis.

this method can deal adequately with the frequency-energy dependence inherent to
nonlinear oscillations, we believe that it is the ideal companion to the NNMs.

4. An appropriate graphical depiction of the NNMs is key to their exploitation. In
this study, we show that the representation of NNMs in a frequency-energy plot is
particularly convenient. It facilitates the interpretation of the dynamics and clarifies
the bifurcations that connect, generate or eliminate the different NNM branches.

The parallel development of EMA and TMA in this manuscript leads to an overall method-
ology (see Figure 1) that could be exploited for model identification and updating of non-
linear systems. For instance, one specific application that could ultimately benefit from
the proposed advancements is aircraft ground vibration testing (GVT) [48, 106]. GVTs
are performed on aircraft prototypes before their first flight and provide critical data for
flutter analysis. Identification of an accurate model during GVTs could allow the effects
of nonlinearity on flutter to be explored by calculation prior to the flight test programme.
Such an improvement would increase the aeroelastic prediction capabilities.
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Outline of the Thesis

Chapter 1 focuses on the framework and relevance of NNMs in structural dynamics. The
definition of NNMs and their fundamental properties are described and illustrated with
several examples. Different analytical and numerical methods for computing NNMs are
briefly reviewed. The potential applications of NNMs in structural dynamics, especially
for modal analysis, are also discussed.

Chapter 2 deals with TMA. An efficient computational technique for calculating the
NNMs of structures discretized by the finite element method is developed. The procedure
is based on the numerical continuation of periodic solutions of nonlinear conservative
systems. To this end, the proposed algorithm is a combination of shooting and pseudo-
arclength continuation methods. A detailed description of these numerical techniques is
given, and special attention is devoted to the reduction of the computational burden. The
algorithm is demonstrated using a nonlinear 2DOF system.

In Chapter 3, the numerical computation of NNMs is addressed using structural systems
of increasing complexity. An essentially nonlinear system is first considered. Next, a
simplified discrete model of a nonlinear bladed disk assembly is investigated. As a final
application, the finite element model of a full-scale aircraft possessing softening nonlinear-
ities is studied. This is achieved to support that the proposed algorithm holds promise for
an effective and practical NNM computation tool that can deal with large-scale, real-world
structures.

Chapter 4 is concerned with EMA. A modal testing methodology in the presence of
nonlinear dynamic behavior is introduced by targeting the identification of NNMs from
experimental data. The methodology relies on a nonlinear extension of phase resonance
testing in order to isolate a single NNM during the experiments. To this end, the phase
lag quadrature criterion is generalized to nonlinear structures. Thanks to the invariance
principle, the NNM is identified from the resulting free decay response with the help of
time-frequency analysis. The methodology is illustrated using two numerical examples,
namely a 2DOF system and a nonlinear cantilever beam.

Chapter 5 is dedicated to the experimental demonstration of the proposed methodology
for NNM identification. An experimental set-up composed of a cantilever beam with
geometrical nonlinearity is considered, and the performance of the procedure is assessed
by extracting its first two NNMs.

Finally, conclusions regarding the completed research and the associated contributions to
the field of nonlinear modal analysis are drawn. A discussion of the ways in which this
research may be extended is also given.



Chapter 1

Nonlinear Normal Modes: A Useful

Framework in Structural Dynamics

Abstract

The concept of nonlinear normal modes (NNMs) is discussed in the present
chapter. Because there is virtually no application of NNMs to large-scale engi-
neering structures, this chapter is an attempt to highlight several features that
might drive their development in the future. Another objective of this chapter
is to describe, in simple terms, and to illustrate the fundamental properties of
NNMs. This is achieved to convince the structural dynamicist not necessar-
ily acquainted with them that they are a useful framework for the analysis of
nonlinear vibrating structures.

6



Chapter 1. NNMs: A Useful Framework in Structural Dynamics 7

1.1 Nonlinear Normal Modes: What Are They ?

The free response of discrete undamped mechanical systems is considered, assuming that
continuous systems have been spatially discretized using, e.g., the finite element method.
The equations of motion are

Mẍ(t) + Kx(t) + fnl {x(t)} = 0 (1.1)

where M is the mass matrix; K is the stiffness matrix; x and ẍ are the displacement
and acceleration vectors, respectively; fnl is the nonlinear restoring force vector, including
stiffness terms only.

To illustrate the different concepts, a two-degree-of-freedom (2DOF) system with a cubic
stiffness is chosen. The system is depicted in Figure 1.1, and its motion is governed by
the equations

ẍ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + (2x2 − x1) = 0 (1.2)

For comparison purposes, the underlying linear system

ẍ1 + (2x1 − x2) = 0

ẍ2 + (2x2 − x1) = 0 (1.3)

is also considered in this study. The time series corresponding to in-phase and out-of-
phase normal mode motions of the linear system (1.3) are depicted in Figure 1.2. Motion
in the configuration space (i.e., in the plane of the displacements x1(t) and x2(t)) is given
in Figure 1.3. Obviously, linear normal mode (LNM) motions correspond to straight lines
in this plane.

1.1.1 Definition of a Nonlinear Normal Mode

There exist two main definitions of nonlinear normal modes (NNMs) in the literature,
due to Rosenberg [121–123] and Shaw and Pierre [127–130]. There have been additional
definitions, which include a complex-valued invariant manifold formulation [94, 96] and
group theoretic definitions [154], but they are not described herein.

Historically, Lyapunov and Poincaré contributions served as the cornerstone of the NNM
development. For n-DOF conservative systems with no internal resonances, Lyapunov
showed that there exist at least n different families of periodic solutions around the stable
equilibrium point of the system [81]. At low energy, the periodic solutions of each family
are in the neighborhood of a LNM of the linearized system. These n families define n
NNMs that can be regarded as nonlinear extensions of the n LNMs of the underlying
linear system. Poincaré and Poincaré-Dulac theorems are fundamental for establishing
the theory of normal form, which was later exploited for NNM computation [55, 142].
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Figure 1.1: Schematic representation of the 2DOF system example.

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

0 2 4 6
−1

−0.5

0

0.5

1

Time (s) Time (s)

D
is

p
la

ce
m

en
t

(m
)

D
is

p
la

ce
m

en
t

(m
)

Figure 1.2: Time series of LNM motions of system (1.3) (——: x1(t); −−−: x2(t)). Left
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Rosenberg’s Definition

During the normal mode motion of a linear conservative system, each system component

moves with the same frequency and with a fixed ratio amongst the displacements of

the components. Targeting a straightforward nonlinear extension of the LNM concept,

Rosenberg defined an NNM as a vibration in unison of the system (i.e., a synchronous

periodic oscillation). This definition requires that all material points of the system reach

their extreme values and pass through zero simultaneously and allows all displacements

to be expressed in terms of a single reference displacement.

For illustration, the time series and the configuration space of in-phase and out-of-phase

NNM motions during the free response of system (1.2) are depicted in Figures 1.4 and

1.5, respectively. The modal lines of this nonlinear system are curves, resulting from the

nonlinear relationship between the coordinates during the periodic motion. These curved

NNMs, termed nonsimilar NNMs by Rosenberg, are generic in nonlinear systems, and

their existence certainly complicates the concept of orthogonality between modes [69, 70].

A particular feature of these NNMs is that their shape depends on the total energy present

in the system. When special spatial symmetries exist, the NNMs may degenerate into

(energy-invariant) straight modal lines, as in the linear case [25]. According to Rosenberg’s

terminology, these modes are referred to as similar NNMs.

The Invariant Manifold Approach

Shaw and Pierre proposed a generalization of Rosenberg’s definition that provides a direct

and elegant extension of the NNM concept to damped systems. Based on geometric

arguments and inspired by the center manifold technique [51], they defined an NNM as a

two-dimensional invariant manifold in phase space. Such a manifold is invariant under the

flow (i.e., orbits that start out in the manifold remain in it for all time), which extends the

invariance property of LNMs to nonlinear systems. In order to parameterize the manifold,

a single pair of state variables (i.e., both the displacement and the velocity) are chosen as

master coordinates, the remaining variables being functionally related to the chosen pair.

Therefore, the system behaves like a nonlinear single-DOF system on the manifold.

Geometrically, LNMs are represented by planes in phase space, and NNMs are two-

dimensional surfaces that are tangent to them at the equilibrium point. For illustration,

the manifolds corresponding to in-phase and out-of-phase NNMs of system (1.2) are given

in Figure 1.6.
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Figure 1.6: Two-dimensional invariant manifolds of system (1.2) with the corresponding
LNMs. Left plot: in-phase LNM and NNM; right plot: out-of-phase LNM and NNM.
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The Approach Followed in this Study

At first glance, Rosenberg’s definition may appear restrictive in two cases:

1. This definition, as such, cannot be easily extended to nonconservative systems.

2. In the presence of internal resonances (i.e., when two or more NNMs interact), some
coordinates may have a dominant frequency component different than that of the
other coordinates (e.g., some coordinates may vibrate faster than others). In this
case, the system no longer vibrates in unison. This is illustrated in Figure 1.7 for
an internally resonant NNM (3:1 internal resonance) of system (1.2).

However, these two limitations can be circumvented. Firstly, as shown in Section 1.3.2
and experimentally observed in Chapter 5, the damped dynamics can often be interpreted
based on the topological structure and bifurcations of the NNMs of the underlying un-
damped system [62, 72, 153]. We also note that, due to the lack of knowledge of damping
mechanisms, engineering design in industry is often based on the conservative system,
and this even for linear vibrating structures. Secondly, realizing that the motion is still
periodic in the presence of internal resonances, Rosenberg’s definition of an NNM can be
extended to a (non-necessarily synchronous) periodic motion of the conservative system
(1.1). This extended definition is particularly attractive when targeting a numerical com-
putation of the NNMs. As evidenced in Chapter 2, it enables the nonlinear modes to be
effectively computed using algorithms for the continuation of periodic solutions, which are
really quite sophisticated and advanced. This NNM definition is considered throughout
the present dissertation.
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Figure 1.7: Internally resonant NNM of system (1.2) (3:1 internal resonance;
[x1(0) x2(0) ẋ1(0) ẋ2(0)] = [8.476 54.263 0 0]). Left plot: time series (——: x1(t); −−−:
x2(t)); right plot: configuration space.
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1.1.2 Fundamental Properties

NNMs have intrinsic properties that are fundamentally different from those of LNMs.
They are reviewed and illustrated in what follows.

Frequency-Energy Dependence

One typical dynamical feature of nonlinear systems is the frequency-energy dependence
of their oscillations. One important consequence is that the frequency response functions
(FRFs) of nonlinear systems are no longer invariant. For illustration, the FRFs of system

ẍ1 + (0.02ẋ1 − 0.01ẋ2) + (2x1 − x2) + 0.5 x3
1 = F cos ωt

ẍ2 + (0.02ẋ2 − 0.01ẋ1) + (2x2 − x1) = 0 (1.4)

are depicted in Figures 1.8 and 1.9 for external excitation F varying between 0.002 N and
0.2 N.

The modal curves and frequencies of oscillation of NNMs also depend on the total energy
in the system. In contrast to linear theory, this energy dependence prevents the direct
separation of space and time in the governing equations of motion, which complicates the
analytical calculation of the NNMs.

Returning to the undamped system (1.2), Figure 1.10 shows the time series, the config-
uration space, the power spectral density (PSD) and two-dimensional projections of the
phase space of three in-phase NNM motions of increasing energies. The NNM motion
at low energy resembles that of the in-phase LNM of the underlying linear system (1.3).
The modal curve is a straight line, there is one main harmonic component in the system
response, and the motion in phase space is a circle. For the motion at moderate energy,
the NNM motion is now a curve, and the presence of two harmonic components can be
detected. A clear departure from the LNM (harmonic) motion is observed. At high en-
ergy, this is even more enhanced. For instance, the motion in phase space is a strongly
deformed ellipse. When moving from the low- to the high-energy NNM, the period of the
motion decreases from 6.28 s to 4.755 s. This is due to the hardening characteristic of the
cubic spring. Another noticeable characteristic of the NNMs is that the modes at higher
energies are not the geometric continuation of those at lower energies. For illustration,
Figure 1.11 superposes the three in-phase NNM motions in the configuration space.

To further illustrate the frequency-energy dependence of the NNMs, the harmonic balance
method can be applied to system (1.2). This approximate method expresses the periodic
motion of a system by means of a finite Fourier series [95]. For simplicity, a series with a
single harmonic component is considered

x1(t) = A cos ωt, x2(t) = B cos ωt (1.5)
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Figure 1.11: Superposition of low-, moderate- and high-energy NNM motions of system
(1.2) in the configuration space. The right plot is a close-up near the origin of the left
plot.

This ansatz is plugged into the equations of motion (1.2). Expanding cos3 ωt in terms of
cos ωt and cos 3ωt, and balancing all the coefficients of the cos ωt terms yields

− Aω2 + (2A − B) + 0.5
3A3

4
= 0

−Bω2 + (2B − A) = 0 (1.6)

Analytic approximate expressions for coefficients A and B are then readily obtained

A = ±
√

8(ω2 − 3)(ω2 − 1)

3(ω2 − 2)
(1.7)

B =
A

2 − ω2
(1.8)

The square root exists in the two frequency intervals

ω1 ∈ [1,
√

2[ and ω2 ∈ [
√

3, +∞[ (1.9)

noting that ω = 1 rad/s and ω =
√

3 rad/s are the two natural frequencies of the un-
derlying linear system (1.3). In the first (second) frequency interval, B has the same
(opposite) sign as A; an in-phase (out-of-phase) NNM motion is observed for initial con-
ditions [x1(0) x2(0) ẋ1(0) ẋ2(0)] = [A B 0 0].

The (conserved) total energy during the free response of system (1.2) is

Total Energy = Kinetic Energy + Potential Energy

=
A2

2
+

(B − A)2

2
+

B2

2
+ 0.5

A4

4
(1.10)
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which, according to Equations (1.7) and (1.8), demonstrates the frequency-energy depen-
dence of NNM motions.

An appropriate graphical depiction of the NNMs is key to their exploitation. The usual
representation in the literature is to plot the motion amplitude at a particular DOF
as a function of frequency. Due to the frequency-energy dependence, we believe that
the representation of NNMs in a frequency-energy plot (FEP) is particularly convenient
[62, 72]. An NNM motion is represented by a point in the FEP, which is drawn at a
frequency corresponding to the minimal period of the periodic motion and at an energy
equal to the conserved total energy during the motion. A branch, represented by a solid
line, is a family of NNM motions possessing the same qualitative features (e.g., the in-
phase NNM motions of a 2DOF system).

As a point of comparison, the FEP of the underlying linear system (1.3) is shown in
Figure 1.12. Because the natural frequencies do not depend on energy, this FEP comprises
two horizontal lines at the two resonant frequencies of the system. The LNM motions
represented in the configuration space are inset and are obviously unaltered by the energy
level.

The FEP of the nonlinear system (1.2) was computed using the method proposed in
Chapter 2 and is shown in Figure 1.13. The modal curves (i.e., the NNM motions in
the configuration space) are inset. The backbone of the plot is formed by two branches,
which represent in-phase (S11+) and out-of-phase (S11−) synchronous NNMs. These
fundamental NNMs are the direct nonlinear extension of the corresponding LNMs. The
letter S refers to symmetric periodic solutions for which the displacements and velocities
of the system at half period are equal but with an opposite sign to those at time t = 0.
As shown in the next section, unsymmetric periodic solutions may also be encountered
and are denoted by a letter U . The indices in the notations are used to mention that the
two masses vibrate with the same dominant frequency. The FEP clearly shows that the
nonlinear modal parameters have a strong dependence on the total energy in the system:

1. The frequency of both the in-phase and out-of-phase NNMs increases with the energy
level, which reveals the hardening characteristic of the system.

2. The modal curves change for increasing energies. The in-phase NNM tends to
localize to the second DOF (i.e., it resembles a vertical curve), whereas the out-of-
phase NNM localizes to the first DOF (i.e., it resembles an horizontal curve). This
localization property is a key feature of nonlinear systems. It is discussed extensively
in [154] and exploited for vibration mitigation in [62, 72, 73, 150].

The comparison between Figures 1.12 and 1.13 also reveals that NNMs have a clear and
simple conceptual relation to the LNMs.
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Modal Interactions — Internally Resonant Nonlinear Normal Modes

Another salient feature of nonlinear systems is that NNMs may interact during a general
motion of the system. Nonlinear modal interactions have been studied extensively in
the literature (see, e.g., the monograph [92]). A case of particular interest is when the
linear natural frequencies are commensurate or nearly commensurate [16, 57, 66, 70]. An
energy exchange between the different modes involved may therefore be observed during
the internal resonance. For instance, exciting a high-frequency mode may produce a large-
amplitude response in a low-frequency mode. Vibration absorbers exploiting these energy
transfers have been studied in [99].

Internally resonant NNMs, as opposed to fundamental NNMs, have no counterpart in
linear systems and are generated through bifurcations. Considering system (1.2) and
according to the discussion in the previous section, the FEP in Figure 1.13 does not seem
to feature internally resonant NNMs. However, when carrying out the NNM computation
at higher energy levels, Figure 1.14 shows that another branch of periodic solutions,
termed a tongue, emanates from the backbone branch S11+. On this tongue, denoted
S31, there is a 3:1 internal resonance between the in-phase and out-of-phase NNMs.

Surprisingly, the ratio of the linear natural frequencies of system (1.2) is
√

3. Due to
energy dependence, a 3:1 ratio between the two frequencies can still be realized, because
the frequency of the in-phase NNM increases less rapidly than that of the out-of-phase
NNM. This clearly shows that NNMs can be internally resonant without necessarily having
commensurate linear natural frequencies, a feature that is rarely discussed in the literature
[78, 79]. This also underlines that important nonlinear phenomena can be missed when
resorting to perturbation techniques, which are limited to small-amplitude motions.

To better illustrate the resonance mechanism, the branch S11− is represented in the FEP
of Figure 1.15 at the third of its frequency. This is relevant, because a periodic solution
of period T is also periodic with period 3T , and the resulting branch is therefore denoted
S33−. It turns out that a smooth transition from S11+ to S33− occurs on tongue S31.
This transition is also depicted in Figure 1.16 where the evolution of the configuration
space and of the Fourier coefficients is shown for several points on S31 or in its vicinity.
Starting from NNM (a), an in-phase motion characterized by two perceptible harmonic
components is observed. From (a) to (d), the relative importance of the third harmonics
grows, as clearly confirmed by the motion in the configuration space. Moving from (d) to
(e) corresponds to a drastic qualitative change in the dynamics. Firstly, the first harmonics
has completely disappeared for both oscillators. Secondly, the signs of the coefficients of
the third harmonics are opposite. Overall, this means that an out-of-phase motion with
a three times as large frequency is realized. Eventually, through a 3:1 internal resonance,
the motion ends up on S33− or, equivalently, on S11−. From (f) to (h), the relative
importance of the third harmonics diminishes, and a motion qualitatively similar to that
at (a) is observed. However, the configuration space of NNM (h) reveals the presence of
a fifth harmonics, which is a precursor to the gradual development of tongue S51.
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Figure 1.14: Frequency-energy plot of system (1.2) featuring a 3:1 internal resonance
between the in-phase and out-of-phase NNMs.
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Figure 1.17: Close-up of S11+ of system (1.2) at higher energy levels.

Figure 1.18: A few representative NNMs of system (1.2) in the configuration space (hor-
izontal axis: x1; vertical axis: x2).
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This indicates that other resonance scenarios exist in this seemingly simple system. The
frequency of the out-of-phase NNM motions on S11− steadily increases for increasing
energies, whereas the NNM motions on S11+ have their frequency asymptotically ap-
proaching a value close to

√
3 rad/s. Following this reasoning, we expect the existence

of a countable infinity of internal resonance cases (e.g., 2:1, 4:1, 5:1, etc.). To confirm
this conjecture, additional tongues have been computed numerically and are represented
in Figure 1.17. These tongues emanate from S11+ and coalesce into S11− following a
mechanism similar to that described above (Figure 1.16). To illustrate the rich dynamics,
a few representative NNMs of system (1.2) are depicted in Figure 1.18. Such a com-
plex dynamics was first observed in [72] for a system with an essential nonlinearity. It is
interesting that this can also be reproduced for more generic nonlinear systems.

Mode Bifurcations and Stability

A third fundamental property of NNMs is that their number may exceed the number of
DOFs of the system. Due to mode bifurcations, not all NNMs can be regarded as nonlinear
continuation of normal modes of linear systems [154, 156, 157]. Internally resonant NNMs
are one example. Another possible example corresponds to the NNM bifurcations of the
system

ẍ1 + x1 + x3
1 + K(x1 − x2)

3 = 0

ẍ2 + x2 + x3
2 + K(x2 − x1)

3 = 0 (1.11)

for variations of the coupling spring K [25]. This system possesses similar NNMs that
obey to the relation x2(t) = cx1(t). Eliminating x2 from Equations (1.11) yields

ẍ1 + x1 +
[

1 + K(1 − c)3
]

x3
1 = 0

ẍ1 + x1 −
1

c

[

K(1 − c)3 + c3
]

x3
1 = 0 (1.12)

Because both equations must lead to the same solution, it follows

K(1 + c)(c − 1)3 = c(1 − c2), c 6= 0 (1.13)

Equation (1.13) means that system (1.11) always possesses two modes characterized by
c = ±1 that are direct extension of the LNMs. However, this system can possess two
additional similar NNMs that cannot be captured using linearization procedures. At
K = 0.25, these NNMs bifurcate from the out-of-phase mode, as shown in Figure 1.19.

Another important characteristic of NNMs is that they can be stable or unstable, which
is in contrast to linear theory where all modes are neutrally stable. In this context,
instability means that small perturbations of the initial conditions that generate the NNM
motion lead to the elimination of the mode oscillation. Therefore, unstable NNMs are
not physically realizable. The NNM stability analysis can be performed numerically or
analytically. In Figure 1.20, stability is computed numerically through the eigenvalues of
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the monodromy matrix. In other studies, analytical results are obtained through Floquet
theory after adding small perturbations to the periodic solutions. For a detailed stability
analysis of the NNMs, the reader can refer to [25, 65, 103, 118, 154].

Bifurcations and stability are interrelated concepts, because a change in stability occurs
through a bifurcation. For instance, the bifurcation in system (1.11) generates a pair of
stable/unstable NNMs (Figure 1.19). Returning to system (1.2), another illustration of
NNM stability is shown in the FEP of Figure 1.20. When the tongue U21 bifurcates from
S11+, the NNMs on this latter branch lose stability. A detailed description of this tongue
and the related dynamical mechanisms (e.g., symmetry-breaking bifurcation) is beyond
the scope of this work. This figure also shows that stability can be lost when a turning
point is encountered.

1.2 Nonlinear Normal Modes: How to Compute Them ?

Different methods for computing NNMs of discrete and continuous systems are briefly
described in this section. They are classified in two categories, according to whether the
computation relies on analytical or numerical methods. This discussion is by no means
a comprehensive overview of the past and current approaches and focuses on the free
response of nonlinear vibrating systems. There is no attempt to summarize the methods
dealing with the forced response case.

1.2.1 Analytical Techniques

Rosenberg was the first to develop constructive techniques for computing NNMs of dis-
crete conservative oscillators. Rand obtained explicit approximate expressions for modal
curves in 2DOF systems by applying a perturbation method to a modal equation [115].
Manevitch and Mikhlin reduced the problem of computing nonsimilar NNMs to a set of
singular boundary value problems, which were then solved using power series expansions
[83] (see below). The book by Vakakis et al. [154] summarizes the developments until the
1990s.

The early 1990s witnessed a resurgence of interest in the NNMs with the works of Vakakis
[25, 65, 146, 148] and Shaw and Pierre [127–130]. Simple discrete systems were first stud-
ied [127, 129, 148], but the generalization to continuous systems [65, 130] soon followed.
For continuous systems, two main approaches exist in the literature. The first approach
is to study directly the original partial differential equations [65, 130]. An alternative
method is to discretize the governing nonlinear partial differential equations into an infi-
nite set of ordinary differential equations that is truncated to a finite number of equations
[128]. The two alternatives are compared in [17] using the invariant manifold approach.
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An Energy-Based Formulation

This formulation relies on Rosenberg’s work [123] and expresses an NNM as a modal
curve in the configuration space. It was further developed by Manevitch and Mikhlin for
discrete conservative oscillators [83] and exploited in a few other studies [148, 154]. To
illustrate the method, it is applied to system (1.2)

ẍ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + (2x2 − x1) = 0 (1.14)

When the system vibrates along an NNM, the displacement x2 is linked to x1 through
the expression of the modal curve x̂2

x2 = x̂2(x1) (1.15)

The objective of the method is to eliminate the time derivatives from the equations of
motion (1.14). To compute the second time derivative of x2, relation (1.15) is differentiated
twice using the chain rule

ẍ2 = x̂′′

2ẋ
2
1 + x̂′

2ẍ1 (1.16)

where prime denotes differentiation with respect to x1. This expression involves the second
time derivative of x1, which is readily obtained from the equations of motion

ẍ1 = −2x1 + x̂2 − 0.5x3
1 (1.17)

It then remains to compute the first time derivative of x1 appearing in Equation (1.16).
To this end, a first integral of motion expressing explicitly the conservation of energy
during the motion is written by multiplying Equation (1.17) by ẋ1 and integrating

ẋ2
1 = 2

∫ ẋ1

0

ẋ1 dẋ1 = −2

∫ x1

X1

[

2u − x̂2(u) + 0.5u3
]

du (1.18)

where X1 is the maximum amplitude attained by x1; i.e., when ẋ1 = 0. The derivatives
are substituted into the second of Equations (1.14), which yields the equation governing
the modal curve:

x̂′′

2

{

−2

∫ x1

X1

[

2u − x̂2(u) + 0.5u3
]

du

}

+ x̂′

2

[

−2x1 + x̂2 − 0.5x3
1

]

+ (2x̂2 − x1) = 0 (1.19)

Because the coefficient of the highest derivative vanishes when x1 = X1, this functional
equation is singular at the maximum equipotential surface. It must therefore be supple-
mented by a boundary condition

{

x̂′

2

[

−2x1 + x̂2 − 0.5x3
1

]

+ (2x̂2 − x1)
}

x1=X1
= 0 (1.20)

which expresses that the nonlinear mode intersects orthogonally the maximum equipo-
tential surface in the configuration space. Equation (1.19) does not depend on the time
variable, and its solution is amenable to a power series expansion:

x̂2(x1) = x̂
(0)
2 (x1) + ǫx̂

(1)
2 (x1) + ǫ2x̂

(2)
2 (x1) + O(ǫ3) (1.21)



Chapter 1. NNMs: A Useful Framework in Structural Dynamics 26

This formulation was extended to undamped continuous systems in [65]. The displacement
of any point of the system is expressed in terms of a single reference displacement x0(t) =
x(s0, t) by the functional relation

x(s, t) = X [s, x0(t)] (1.22)

where s is the spatial coordinate, and X is a modal function characterizing the considered
NNM. Then, an integral equation expressing the conservation of energy during the motion
is used in conjunction with Equation (1.22) to eliminate the time derivatives from the
equations of motion. Eventually, the equation governing the modal function X is obtained
and is solved using power series.

In the presence of internal resonances, the folding of the NNMs in the configuration space
may result in multivalued relationship among the various coordinates (see Figure 1.7).
This has been nicely addressed in [66] by considering NNMs in an appropriately defined
modal space.

The Invariant Manifold Approach

The invariant manifold approach [127–130] is similar in spirit to the energy-based formu-
lation. The difference with the previous approach is that a pair of state variables (i.e.,
both the displacement and the velocity) are chosen as master coordinates, the remaining
variables being functionally related to the chosen pair:

x(s, t) = X1 [s, x0(t), ẋ0(t)] and ẋ(s, t) = X2 [s, x0(t), ẋ0(t)] (1.23)

These relations define a two-dimensional invariant manifold in phase space. By taking
the time derivative of these constraint equations and using the chain rule differentiation,
the explicit time dependence from the equations of motion can be eliminated. Eventually,
this yields a set of partial differential equations governing the modal functions X1 and
X2. These equations are as difficult to solve as the original problem, but the solution can
be approximated using power series. In summary, this is a six-step procedure:

1. Choose master coordinates x0(t), ẋ0(t);

2. Express slaved coordinates as X1 [s, x0(t), ẋ0(t)] , X2 [s, x0(t), ẋ0(t)];

3. Use the invariant manifold technique to eliminate time dependence;

4. Approximate a local solution using polynomial expansion of X1 and X2 in terms of
x0(t) and ẋ0(t);

5. Substitute expansions into time-independent partial differential equations governing
the geometry of the manifold, and solve polynomial expansion of X1 and X2;
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6. Replace the slaved coordinates with their expansions, thus eliminating them from
the system.

For systems with internal resonances, a multi-mode invariant manifold is considered in
[16] to account for the influence of several modes. For instance, when two modes are
resonant, the master coordinates comprise two pairs of state variables, and the result-
ing invariant manifold is four-dimensional. The invariant manifold approach was also
reformulated using a complex framework [96], which was then extended to systems with
internal resonances [94].

The Multiple Scales Method

One perturbation method that has received considerable attention for NNM computation
is the method of multiple scales [44, 69, 70, 80, 85, 96, 162]. Governing partial differential
equations can be attacked directly (i.e., without spatial discretization) with this method.
The first step is to introduce a small nondimensional parameter ǫ to indicate the smallness
of the nonlinear terms. The solution is then sought in the form of an asymptotic expansion
[95].

The underlying idea of the multiple scales method is to consider expansions in terms of
multiple independent time scales, instead of a single independent variable t

x(s, t) = ǫx1(s, T0, T1, T2, ...) + ǫ2x2(s, T0, T1, T2, ...) + ... with Ti = ǫit (1.24)

where T0 is a time scale characterizing the fast motion of the system (i.e., the motion
occurring at the dominant frequency of the NNM). Because the generic motion of a non-
linear system is not harmonic, other time scales are necessary to describe the motion;
these are the slow time scales T1, T2, .... An increasingly accurate approximation is there-
fore obtained as additional time scales enter in the analysis. The approximating functions
xi(s, T0, T1, T2, ...) are then determined after integration of linear differential equations
for each order of ǫ, and imposition of solvability conditions, which correspond to the
elimination of secular terms.

Other Approaches

The method of normal forms was first employed by Lamarque and Jézéquel [55] and
Nayfeh [91] using a complex formulation. A real normal theory for NNM computation
was then proposed in [144, 145] for conservative systems and in [142] for nonconservative
systems. The philosophy of the method is to seek a nonlinear change of coordinates1 that
brings the equations of motion into the simplest possible form, termed the normal form

1To recover the linear results at small-amplitude motions, the applied coordinate transformations must
be near-identity. As a result, the method can only be used in the neighborhood of an equilibrium point.
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[51]. In other words, the objective of the method is to eliminate as many as possible of the
nonlinear terms from the governing equations, which is similar in spirit to the decoupling
of the equations of motion provided by the LNMs of a linear system. However, a complete
decoupling of the equations is generally not possible for nonlinear systems, and only the
invariance property can be enforced. Eventually, the computed normal form dictates the
dynamics of the system on the invariant manifold.

Another technique that assumes that the NNM motion is periodic in time and approxi-
mates it by means of a finite Fourier series is the harmonic balance method; e.g.,

x(s, t) =
N
∑

n=0

φn
1(s) cos nωt +

N
∑

n=0

φn
2 (s) sin nωt (1.25)

By substituting this relation into the governing equations of motion and ‘balancing the
harmonics’, the nonlinear modes can be computed by solving nonlinear boundary value
problems for the φn [14, 20, 28, 53, 77, 101, 108, 139, 140]. Because analytical solutions
are available in a limited number of cases (mostly when a single harmonic component is
considered; see Section 1.1.2), numerical methods are often used to solve the resulting
equations. The harmonic balance method can therefore be viewed as a semi-analytical
technique.

A method similar in spirit to the harmonic balance method and to the Galerkin-based
approach in [109] was introduced in [12, 13]. The most distinctive feature of this formula-
tion is that the modal vector and the corresponding frequency depend on the amplitude
but also on the total phase variable. The dynamics is defined by a differential equation,
governing the total phase motion, from which the period of the oscillations is deduced.
Moreover, complex nonlinear modes of nonconservative systems are calculated based on
a generalized Fourier series in [71].

1.2.2 Numerical Techniques

Most existing constructive techniques for computing NNMs are based on asymptotic ap-
proaches. Despite that robust algorithms for the computation of isolated periodic orbits
[59] and for the continuation of a family of orbits [35, 93, 126] have been developed, it
is somewhat surprising that there have been very few attempts to compute NNMs using
numerical methods [9, 19, 56, 72, 109, 133, 162].

One of the first approaches was proposed by Slater in [133]. Based on Rosenberg’s defini-
tion, the procedure integrates directly the governing equations of motion over one period
using numerical algorithms (e.g, Runge-Kutta and Newmark). It comprises two steps:

1. An isolated periodic solution corresponding to a specific energy level is computed
by modifying iteratively the initial conditions governing the free response of the sys-
tem. This is carried out using optimization algorithms that minimize a periodicity
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condition (i.e., a cost function representing the lack of periodicity of the current
iterate).

2. Low-energy modal curves and the corresponding periods of oscillation are first com-
puted, taking the normal modes and natural frequencies of the underlying linear
system as initial guesses. The energy is then gradually increased with the previ-
ously computed NNM as an initial guess for the next NNM.

This step-wise type of continuation of periodic solutions is called sequential continuation
[93]. Similarly, shooting algorithms coupled with sequential continuation were considered
in Lee et al. [61, 72] and Bajaj et al. [162, 163] to numerically solve the nonlinear
boundary value problem that defines a family of NNM motions.

A more sophisticated continuation method is the so-called asymptotic-numerical method
[27]. It is a semi-analytical technique that is based on a power series expansion of the
unknowns parameterized by a control parameter. It is utilized to follow the NNM branches
in conjunction with the harmonic balance method in [108] or with finite difference methods
in [8, 9]. Another well-established method used for instance in the AUTO software is the
pseudo-arclength continuation. It is the approach implemented for the NNM calculation
in Chapter 2.

Based on the invariant manifold approach, Pesheck et al. [109, 111] developed a mean-
ingful numerical extension of it. In the original formulation, the master variables are
the position and velocity in Cartesian coordinates, and the solution is sought using a
polynomial expansion. In the proposed Galerkin-based approach, an alternative set of
coordinates is defined (i.e., the amplitude and phase of the considered mode), and the
polynomial approach is replaced by a Galerkin method. Eventually, a set of nonlinear
algebraic equations is obtained and solved using local optimization algorithms.

Finally, we note that computer implementation of both the multiple scales and the in-
variant manifold approach have been carried out in [85, 134] and applied to finite element
models of planar frames and beams.

1.2.3 Assessment of the Different Methodologies

Analytical methodologies have the advantage that NNMs can be constructed symboli-
cally, which is certainly useful for gaining insight into the dynamics and for performing
parametric studies. Among other things, they clearly highlight the frequency-energy de-
pendence of NNMs. The fundamental drawbacks of these techniques is that (i) they are
quite analytically involved and require a careful treatment in the presence of internal res-
onances; (ii) the resultant dynamics are only accurate for small-amplitude motions; and
(iii) the upper bound for these motions is not known a priori.

The energy-based formulation is an elegant approach, but, because it is based on symmetry
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arguments, it requires that the nonlinearities be of odd order. It is also a priori limited to
undamped systems. The invariant manifold approach does not present these limitations.
However, though its basic definition allows for large-amplitude motions, the constructive
technique, which relies on power series expansions, is limited to small motions. Regarding
perturbation analysis (e.g., the multiple scales method), it can now be performed using
symbolic manipulation programs, but their application to nonlinear systems with more
than a few DOFs remains involved. Different analytical methods have been compared in
[91, 163], and the results obtained were consistent. In [91], the author reports that the
method of multiple scales is the simplest and involves the least algebra. Finally, we note
that the harmonic balance method yields solutions which are generally valid over a much
larger domain compared to the aforementioned methodologies. However, because analytic
expressions of the resulting equations are available only in a limited number of cases, it
should be regarded more as a numerical technique.

Analytical approaches may become inaccurate in the moderate to strongly nonlinear range
of motion and are limited to systems with low dimensionality. Their utility for real-world
structures is therefore questionable. In this context, numerical methods have certainly the
potential to ‘push the envelope’ and to make nonlinear modal analysis more accessible to
the practicing structural engineer. The key advantage of these methods is that they lend
themselves fairly easily to strongly nonlinear systems with large-amplitude motions, which
is nicely evidenced in [110, 111]. In addition, most of them provide an exact solution to the
NNM calculation. Their fundamental drawback is that they rely on extensive numerical
simulations and are still computationally intensive.

The Galerkin-based invariant manifold approach is one of the most effective techniques
for building reduced-order models of nonlinear vibrating systems. It is truly versatile and
can be applied to a large variety of nonlinear dynamic systems, including nonconserva-
tive, gyroscopic and piecewise-linear systems, with an accuracy controlled over the chosen
amplitude range. One possible limitation is that the interpretation of the NNMs is com-
plicated when multi-mode invariant manifolds, which are higher-dimensional surfaces, are
computed.

On the contrary, a particularly appealing feature of the continuation of periodic solutions
is that the resulting NNMs have a clear conceptual relation to the LNMs, with which
practicing structural engineers are familiar (see Section 1.1.2). As discussed in Section
1.3.2, this makes it a promising technique for developing a practical nonlinear analog
of modal analysis, which is well-established for linear systems. In this framework, the
implementation of sequential continuation techniques is truly straightforward, and the
calculations can be performed with limited user interaction. They represent the ideal
starting point for the dynamicist not necessarily acquainted with the numerical calculation
of the NNMs. However, their computational efficiency is limited, and they are likely to fail
when a turning point or a bifurcation is encountered. Effective alternatives are those based
on more sophisticated continuation techniques (e.g., the asymptotic-numerical method
and the pseudo-arclength continuation). One limitation of the continuation of periodic
solutions is that it is not clear how they can be extended to nonconservative systems.
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Nevertheless, as shown in Section 1.3.2, the damped dynamics can be interpreted based
on the topological structure and bifurcations of the NNMs of the underlying undamped
system.

1.3 Nonlinear Normal Modes: Why Are They Useful ?

The objective of this section is to describe several applications where NNMs represent a
useful framework for the structural dynamicist. Specifically, we highlight how useful the
NNMs are for modal analysis and system identification and how they may be exploited in
conjunction with time-frequency analysis in order to extend the existing linear method-
ologies [38]. Nonlinear model reduction and the study of localization phenomena are also
discussed.

1.3.1 ‘Linear’ Modal Analysis

Modal analysis and testing of linear mechanical structures have been developed over the
past 40-50 years, and the techniques available today are mature and advanced [38]. While
the common practice is to assume linear behavior, nonlinearity is a frequent occurrence
in engineering applications and can drastically alter their behavior. In the presence of
nonlinear phenomena, the structural dynamicist should therefore ask the question: can I
still use the linear modes ? Obviously, the answer depends on the type of the nonlinearity
and on the excitation level.

In this context, we believe that the computation of the NNMs and their representation in
a FEP is a robust and accurate tool to decide whether or not the linear framework is still
applicable. It can be used to determine which modes (and to what extent) are sensitive to
the nonlinearity. Going back to Figure 1.13, it is clear that, until an energy of 10−1, the
mode shapes and natural frequencies are unaffected by the nonlinearity and can safely be
used. Beyond this critical energy level, both the in-phase and out-of-phase modes show
a significant departure from the LNMs and become dependent on the total energy in the
system.

As another example, the FEP of system

ẍ1 + (2x1 − x2) = 0

ẍ2 + (2x2 − x1 − x3) + 0.5 x3
2 = 0 (1.26)

ẍ3 + (2x3 − x2) = 0

is depicted in Figure 1.21. The linear modal parameters remain unchanged until approx-
imately an energy of 10−1. Another interesting finding is that the nonlinearity has no
influence whatsoever either on the frequency or on the mode shape of the second mode.
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Figure 1.21: Frequency-energy plot of system (1.26). NNMs represented by bar graphs
are inset; they are given in terms of the initial displacements that realize the periodic
motion (with zero initial velocities assumed).

1.3.2 Nonlinear Modal Analysis

When it is certain that the system is excited in the nonlinear range, the linear frame-
work should be abandoned in favor of nonlinear modal analysis. Any attempt to apply
traditional linear analysis in this context results, at best, in a suboptimal design.

Considering again system (1.2) as a first example, its FEP in Figure 1.13 greatly helps to
understand how the modal curves deform under the action of the nonlinearity. The in-
phase NNM tends to localize to the second DOF, whereas the out-of-phase NNM localizes
to the first DOF. Regarding the corresponding frequency of oscillation, both modes are
characterized by a hardening behavior due to the presence of the cubic spring.

As a second example, a planar cantilever beam discretized by 20 finite elements and with
a cubic spring at the free end is now considered (see Table 1.1 for the geometrical and
mechanical properties). This models a real nonlinear beam that was used as a benchmark
for nonlinear system identification during the European action COST F3 [141]. This
structure is studied in detail in Chapters 4 and 5 where a more accurate modeling is
considered. The first two modes are plotted in the FEPs of Figures 1.22 and 1.23, respec-
tively. Considering the same energy level, the first modal shape seems somewhat more
affected by the nonlinearity compared to the second modal shape. Their frequencies of os-
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Length Width Thickness Young’s modulus Density Nonlinear coeff.
(m) (m) (m) (N/m2) (kg/m3) (N/m3)

0.7 0.014 0.014 2.05 × 1011 7800 6 × 109

Table 1.1: Geometrical and mechanical properties of the planar cantilever beam.
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Figure 1.22: Frequency-energy plot of the cantilever beam; close-up of the first NNM.
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Figure 1.23: Frequency-energy plot of the cantilever beam; close-up of the second NNM.
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cillation undergo a strong increase with increasing energy levels. The FEPs also highlight
the presence of two tongues, revealing the existence of internal resonances. The tongue in
Figure 1.22 corresponds to a 5:1 internal resonance between the first and second NNMs
of the beam. When the energy gradually increases along the tongue, a smooth transition
from the first mode to the second mode occurs following a dynamical mechanism similar
to that described in Section 1.1.2. Similarly, a 5:1 internal resonance between the second
and fourth modes is observed in Figure 1.23. These internal resonances occur despite that
the linear natural frequencies are not commensurate, as also discussed in Section 1.1.2.

These two examples demonstrate that such a nonlinear modal analysis is an important
tool for thoroughly understanding the system’s vibratory response in the nonlinear regime.
Clearly, this cannot be achieved using linearization procedures. However, because the
general motion of a nonlinear system cannot be expressed as a superposition of individual
NNM motions and because the modes in all these figures are computed based on the
underlying undamped system, the practical utility of the nonlinear modal analysis might
appear, at first, questionable.

A first motivation to compute and exploit the NNMs is that forced resonances in nonlinear
systems occur in their neighborhoods. The knowledge of the NNMs can therefore provide
valuable insight into the structure of the resonances, a feature of considerable engineering
importance [154]. For illustration, the forced response of the damped 2DOF system (1.4)
is considered. In Figures 1.24 and 1.25, the NNM backbone of the FEP of Figure 1.13 is
superposed to the nonlinear frequency response functions of Figure 1.8 and 1.9. It can be
observed that the NNMs of the underlying conservative system trace the locus of the forced
frequency response peaks for both the in-phase and out-of-phase modes. Furthermore,
Figure 1.26 compares the forced response of the system close to the first resonance (for
F = 0.1, see the square in Figure 1.24) to the NNM motion of the corresponding point of
the backbone. An excellent agreement is obtained between the two types of motion.

A second motivation is that the damped dynamics closely follows the NNMs of the un-
derlying undamped system. To demonstrate this, a time-frequency analysis method, the
continuous wavelet transform (CWT) [82], is used. In contrast to the Fourier trans-
form, which assumes signal stationarity, the CWT involves a windowing technique with
variable-sized regions. Small time intervals are considered for high-frequency components,
whereas the size of the interval is increased for lower-frequency components. The CWT
can therefore track the temporal evolution of the instantaneous frequencies, which makes
it an effective tool for analyzing nonlinear signals. The usual representation of the trans-
form is to plot its modulus as a function of time and frequency in a three-dimensional or
contour plot. To use the CWT in conjunction with the FEP, a different representation
is proposed herein. The CWT is represented in a FEP by substituting the instantaneous
energy in the system for time.

The free response of the damped 2DOF system

ẍ1 + 0.03ẋ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + 0.01ẋ2 + (2x2 − x1) = 0
(1.27)
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Figure 1.24: Nonlinear frequency response functions of system (1.4) close to the first
resonant frequency (5 different forcing amplitudes F : 0.002N, 0.01N, 0.05N, 0.1N, 0.2N).
The dashed line is the in-phase NNM backbone S11+ of the underlying conservative
system (1.2). Left plot: x1; right plot: x2.
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Figure 1.25: Nonlinear frequency response functions of system (1.4) close to the second
resonant frequency (5 different forcing amplitudes F : 0.002N, 0.01N, 0.05N, 0.1N, 0.2N).
The dashed line is the out-of-phase NNM backbone S11− of the underlying conservative
system (1.2). Left plot: x1; right plot: x2.
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Figure 1.26: Forced response of system (1.4) and NNM motion of the underlying conser-
vative system (1.2) in the configuration space. ——: forced response close to the first
resonance (F = 0.1); - - -: in-phase NNM motion corresponding to the same frequency.
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Figure 1.27: Frequency-energy plot of system (1.2). Left plot: theoretical FEP; right plot:
experimental FEP for an excitation of the in-phase NNM ([x1(0) x2(0) ẋ1(0) ẋ2(0)] =
[2.500 5.895 0 0]).
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Figure 1.28: Frequency-energy plot of system (1.2). Left plot: theoretical plot; right plot:
experimental plot for an excitation of the out-of-phase NNM ([x1(0) x2(0) ẋ1(0) ẋ2(0)] =
[−6.842 0.389 0 0]).
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Figure 1.29: Frequency-energy plot of the planar cantilever beam. Left plot: theoretical
plot; right plot: experimental plot for an excitation of the first mode.
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is depicted in Figures 1.27 and 1.28 for an excitation of the in-phase and out-of-phase
NNMs, respectively. The left plot is the theoretical FEP, that is the FEP of NNMs
computed from the equations of motion of the underlying undamped system (1.2). The
right plot is the ‘experimental’ FEP, calculated directly from the time series of the damped
system (1.27): (i) the backbone is provided by the CWT, and (ii) the modal curves are
obtained by representing the time series in the configuration space for one oscillation
around a specific energy level. For comparison, the theoretical backbone is represented
by a solid line in the experimental FEP. A perfect agreement is obtained between the two
FEPs, which shows that the undamped NNMs are attractors for the damped trajectories.
In the present case, the modal damping ratios are 1% and 0.6%, but we note that this
result holds for higher damping ratios.

Figure 1.29 displays the free response of the planar cantilever beam excited at its first
mode (with a damping matrix equal to the mass matrix, C = M). It shows that similar
conclusions can also be reached for more complex systems.

Even if a possible criticism of the proposed approach is that it defines an NNM as a
periodic solution of the underlying undamped system, these two examples support that
they still give a very accurate picture of the damped dynamics. These results also show
that the CWT is the ideal companion to the NNMs. We believe that the combined
use of the FEP and the CWT represents a suitable framework for developing a new
nonlinear system identification method, which could be viewed as a practical nonlinear
analog of experimental modal analysis. This is addressed in Chapter 4 which deals with
experimental identification of NNMs.

1.3.3 Reduced-Order Modeling

In a recent series of works [57, 109, 111, 142–144], it was shown that NNMs can provide
effective bases for constructing reduced-order models of the dynamics of discrete and
continuous nonlinear oscillators.

Specifically, Touzé et al. performed a comparative study of reduced-order models of large-
amplitude vibrations of shell structures of different configurations using either LNMs or
NNMs [143]. They showed that one or two NNMs were sufficient for accurately capturing
the shell dynamics, and even the bifurcation structure of the dynamics that resulted from
the nonlinear interaction of two shell modes in internal resonance. By contrast, multiple
linear modes were necessary to achieve the same accuracy. For illustration, a specific
application taken from [143] is shown in Figure 1.30. It depicts the frequency response
curve of the nondimensionalized amplitude of the transverse displacement of a hyperbolic
paraboloid panel under harmonic excitation. The harmonic excitation is applied at the
center of the panel, and its frequency is in the vicinity of the first eigenfrequency. Compar-
ing the reference (exact) computational solution to reduced-order models obtained using
the leading NNM and LNM, respectively, the accuracy of the NNM-based model and its
superiority over the LNM-based model are established. In this example, 15 LNMs were
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(b)

(a) (c)

Figure 1.30: Frequency response curve of an hyperbolic paraboloid panel: reference (ex-
act) computational solution compared to reduced-order models based on the leading LNM
and NNM for varying forcing amplitudes. (a) 2.84N; (b) 4.37N and (c) 6.66N. Taken from
Touzé et al. [143].
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required to obtain results of similar accuracy.

These results demonstrate that NNMs hold promise for low-order reduction of structural
models with many DOFs (e.g., finite element computational models). It is the application
which has received the most attention so far in the literature. The reader can refer
for instance to [5, 6, 21, 68, 76, 110, 112, 132, 135, 142, 143] and references therein
for further detail. Even though NNMs do not possess orthogonality properties (as do
the LNMs), the resulting models are still expected to be much more accurate compared
to their linear counterpart (especially for systems with strong or even nonlinearizable
nonlinearities). The reason for the enhanced accuracy of NNM-based reduced models lies
in their invariance property and in the fact that they represent exact solutions of the
free and forced nonlinear dynamics of the oscillators considered (i.e., oscillations in the
neighborhoods of structural resonances can be captured by either a single NNM or a small
set of NNMs when internal resonances occur).

1.3.4 Localization Phenomena

Localization and motion confinement are observed when vibrational energy tends to be
confined to one particular area of a structure. They have first been observed for periodic
linear structures presenting a structural irregularity (e.g., mistuned bladed disks [24]).
Nonlinear localization has been studied extensively by Vakakis and co-workers (see, e.g.,
[11, 151, 154, 155, 164]). One of its distinctive features is that it can occur in periodic
structures even in the absence of structural disorder.

Although the energy is shared between the two oscillators at low-energy, the NNMs of
system (1.2) localize to either DOF for increasing energies. As evidenced in Figure 1.13,
the in-phase NNM tends to localize to the second DOF, whereas the out-of-phase NNM
localizes to the first DOF. Clearly, this localization property is to be attributed to the
frequency-energy dependence of nonlinear oscillations.

The fact that some NNMs spatially confine vibrational energy can find applications in
vibration mitigation of mechanical systems. For instance, the nonlinear energy pumping
phenomenon directly exploits this property in order to transfer irreversibly vibrational
energy from a primary structure to a nonlinear vibration absorber (see, e.g., [62, 72,
73, 150, 153]). Some authors are also exploiting mode localization for the design of
microelectromechanical systems (MEMS) [33].

1.4 Concluding Remarks

Robust and accurate modeling of nonlinearity in realistic vibrating structures is one of the
greatest challenges in structural engineering. In this context, NNMs certainly represent a
useful framework for the dynamicist. They have a clear conceptual relation to the LNMs,
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yet they can highlight nonlinear phenomena that are unexpected (and unexplainable)
from a linear viewpoint.

In this chapter, the two main definitions, the fundamental properties and different ana-
lytical and numerical methods for computing NNMs were reviewed and illustrated with
numerical examples. We have also highlighted that even seemingly simple nonlinear sys-
tems can exhibit very complicated dynamics. The 2DOF system investigated herein is
characterized by an intricate NNM structure with (presumably) a countable infinity of
internal resonances and strong motion localization in either oscillators. One interesting
finding is that the internal resonances occur without necessarily having commensurate
linear natural frequencies. This is rarely discussed in the literature and is a consequence
of the frequency-energy dependence of the NNMs.

Because there is very little work that addresses the application of NNMs to real-word
structures, we have identified several aspects that might drive their development in the
future:

• Numerical algorithms for the continuation of periodic solutions provide a very ac-
curate computation of the NNMs of strongly nonlinear systems. Despite their com-
putational burden, they certainly pave the way for an effective and practical com-
putation of the nonlinear modes. They are described and discussed in more details
in Chapter 2 of this document.

• The wavelet transform is a versatile time-frequency analysis method that can track
the temporal evolution of the frequency of oscillation of NNMs.

• A frequency-energy plot is a suitable tool to represent the NNMs and to interpret
the dynamics of nonlinear systems.

Using the combination of these three tools, we can relate the damped dynamics to the
different branches of periodic solutions in the frequency-energy plot. These tools should
help to extend experimental modal analysis, which is well-established for linear systems,
to a practical nonlinear analog based on force appropriation. This is attempted in Chapter
4 where an experimental methodology is proposed for NNM identification.

One of the most limiting features of NNMs is that the general motion of a nonlinear
system cannot be expressed as a superposition of individual NNMs. Even if there is no
reason to believe that this limitation will be resolved soon, this chapter has shown that
NNMs still provide a valuable tool for understanding (and possibly exploiting) the effects
of structural nonlinearities on the dynamics.



Chapter 2

Practical Computation of Nonlinear

Normal Modes using Numerical

Continuation Techniques

Abstract

One reason of the still limited use of nonlinear normal modes (NNMs) in struc-
tural dynamics is that their computation is often regarded as impractical. How-
ever, when resorting to numerical algorithms, we show that the NNM compu-
tation is possible with limited implementation effort, which leads to a practical
method for determining the NNMs of nonlinear mechanical systems. The pro-
posed algorithm relies on two main techniques, namely a shooting procedure
and a method for the continuation of NNM motions. In addition, sensitivity
analysis is used, thereby resulting in a computationally efficient procedure. The
algorithm is demonstrated using a nonlinear 2DOF system.

41
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2.1 Introduction

As evidenced in Chapter 1, nonlinear normal modes (NNMs) offer a meaningful framework
for developing modal analysis of nonlinear structures. However, most structural engineers
still view NNMs as a concept that is foreign to them, and they do not yet consider these
nonlinear modes as a practical nonlinear analog of the linear normal modes (LNMs). One
reason supporting this statement is that most existing constructive techniques for comput-
ing NNMs are based on asymptotic approaches and rely on fairly involved mathematical
developments.

In this context, algorithms for the numerical continuation of periodic solutions are really
quite sophisticated and advanced (see, e.g., [35, 60, 93, 126], and the AUTO and MAT-
CONT software). These algorithms have been extensively used for computing the forced
response and limit cycles of nonlinear dynamical systems [50, 100, 120, 137, 142, 143].
Doedel and co-workers used them for the computation of periodic orbits during the free
response of conservative systems [36, 89].

Interestingly, there have been very few attempts to compute the periodic solutions of con-
servative mechanical structures (i.e., NNM motions) using numerical continuation tech-
niques. As reported in Chapter 1, one of the first approaches was proposed by Slater in
[133] who combined a shooting method with sequential continuation to solve the nonlinear
boundary value problem that defines a family of NNM motions. Similar approaches were
considered in Lee et al. [72] and Bajaj et al. [162]. A more sophisticated continuation
method is the so-called asymptotic-numerical method. It is a semi-analytical technique
that is based on a power series expansion of the unknowns parameterized by a control
parameter. It is utilized in [9] to follow the NNM branches in conjunction with finite
difference methods, following a framework similar to that of [89].

In the present chapter, a shooting procedure is combined with the pseudo-arclength con-
tinuation method for the computation of NNM motions. We show that the NNM compu-
tation is possible with limited implementation effort, which holds promise for a practical
and accurate method for determining the NNMs of nonlinear vibrating structures.

This chapter is organized as follows. In the next section, the computational framework
is briefly reviewed. In Section 2.3, the proposed algorithm for NNM computation is pre-
sented. Its theoretical background is first introduced, and the numerical implementation
is then described. Improvements are also presented for the reduction of the computational
burden. The algorithm is then demonstrated using a nonlinear 2DOF system.

2.2 Computational Framework

In the present study, an NNM motion is defined as a (non-necessarily synchronous) peri-
odic motion of the conservative structural system. The free response of discrete undamped
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mechanical systems with n DOFs is considered, assuming that continuous systems (e.g.,
beams, shells or plates) have been spatially discretized using the finite element method.
The general equations of motion are

Mẍ(t) + Kx(t) + fnl {x(t)} = 0 (2.1)

where M is the mass matrix; K is the stiffness matrix; x and ẍ are the displacement
and acceleration vectors, respectively; fnl is the nonlinear restoring force vector, including
stiffness terms only, assumed to be regular. In principle, systems with nonsmooth nonlin-
earities can be studied with the proposed method, but they require special treatment [74].

As briefly discussed in Chapter 1, NNM motions can be symmetric or unsymmetric. The
letter S refers to symmetric periodic solutions for which the displacements and velocities
of the system at half period are equal but with an opposite sign to those at time t = 0.
Unsymmetric periodic solutions can be also encountered and are denoted by a letter U .
For illustration, the time series and modal curves corresponding to different NNM motions
of 2DOF system (1.2) studied in Chapter 1 are represented in Figures 2.1 and 2.2. Figure
2.1 shows a fundamental NNM motion on the backbone S11+. Three internally resonant
NNM motions, namely a motion on S31 and two different motions on U21, are illustrated
in Figure 2.2. The difference between symmetric and unsymmetric NNM motions is
evident in this plot. It can also be observed that an NNM motion may take the form of
an open or a closed curve in the configuration space. Closed orbits imply phase differences
between the two oscillators of the system; i.e., their velocities do not vanish at the same
time instant. Interestingly, there exist two different tongues of 2:1 internal resonance
in this system, depending on whether the NNM motion is an open or closed orbit in
the configuration space. These properties of NNM motions can be exploited for their
computation as discussed in Section 2.3.3.

2.3 Numerical Computation of NNMs

The numerical method proposed here for NNM computation relies on two main techniques,
namely a shooting technique and the pseudo-arclength continuation method.

2.3.1 Shooting Method

The equations of motion of system (2.1) can be recast into state space form1

ż = g(z) (2.2)

1The equations of motion are rewritten as first-order differential equations for convenience only. The
numerical computation is performed by directly integrating the second-order equations (2.1) (see Section
2.3.3).
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Figure 2.1: Fundamental NNM motion on S11+ (Frequency=0.213 Hz; energy=102.33 J).
Left: time series (——: x1(t); − − −: x2(t)). Right: modal curve in the configuration
space.
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Figure 2.2: Internally resonant NNMs. From top to bottom: S31, open and closed U21
NNM motions. Left: time series (——: x1(t); − −−: x2(t)). Right: modal curve in the
configuration space.
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where z = [x∗ ẋ∗]∗ is the 2n-dimensional state vector, and star denotes the transpose
operation, and

g(z) =

(

ẋ

−M−1 [Kx + fnl(x)]

)

(2.3)

is the vector field. It is assumed that the mass matrix is invertible. The solution of this
dynamical system for initial conditions z(0) = z0 = [x∗

0 ẋ∗

0]
∗ is written as z(t) = z (t, z0)

in order to exhibit the dependence on the initial conditions, z (0, z0) = z0. A solution
zp(t, zp0) is a periodic solution of the autonomous system (2.2) if zp(t, zp0) = zp(t+T, zp0),
where T is the minimal period.

The NNM computation is carried out by finding the periodic solutions of the governing
nonlinear equations of motion (2.2). In this context, the shooting method is probably the
most popular numerical technique [60, 93, 105, 126]. It solves numerically the two-point
boundary-value problem defined by the periodicity condition

H(zp0, T ) ≡ zp(T, zp0) − zp0 = 0 (2.4)

H(z0, T ) = z(T, z0) − z0 is called the shooting function and represents the difference
between the initial conditions and the system response at time T . Unlike forced motion,
the period T of the free response is not known a priori.

The shooting method consists in finding, in an iterative way, the initial conditions zp0

and the period T inducing a periodic motion. To this end, the method relies on direct
numerical time integration and on the Newton-Raphson algorithm.

Starting from some assumed initial conditions z
(0)
p0 , the motion z

(0)
p (t, z

(0)
p0 ) at the assumed

period T (0) can be obtained by numerical time integration methods (e.g., Runge-Kutta or

Newmark schemes). In general, the initial guess (z
(0)
p0 , T (0)) does not satisfy the periodicity

condition (2.4). This is illustrated in Figure 2.3 for a Duffing oscillator

ẍ + x + 0.5x3 = 0 (2.5)

Two pairs of initial conditions, [x(0) ẋ(0)] = 0.9 × [4.9009 0] and [x(0) ẋ(0)] = 1.1 ×
[4.9009 0], are two approximations to the actual solution, [x(0) ẋ(0)] = [4.9009 0], for the
current period T = 2.0215 s. The former (latter) approximation yields a motion with a
too large (small) period.

A Newton-Raphson iteration scheme is therefore to be used to correct an initial guess
and to converge to the actual solution. The corrections ∆z

(0)
p0 and ∆T (0) are found by

expanding the nonlinear function

H
(

z
(0)
p0 + ∆z

(0)
p0 , T (0) + ∆T (0)

)

= 0 (2.6)

in Taylor series

H
(

z
(0)
p0 , T (0)

)

+
∂H

∂zp0

∣

∣

∣

∣

(z
(0)
p0 ,T (0))

∆z
(0)
p0 +

∂H

∂T

∣

∣

∣

∣

(z
(0)
p0 ,T (0))

∆T (0) + H.O.T. = 0 (2.7)
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Figure 2.3: Solutions of the Duffing oscillator for different initial conditions. Left plot:
time series; right plot: phase space. —— : periodic solution for [x(0) ẋ(0)] = [4.9009 0]
and T = 2.0215s; − − − : solution for [x(0) ẋ(0)] = 1.1 × [4.9009 0]; − · − · − :
solution for [x(0) ẋ(0)] = 0.9 × [4.9009 0]. Markers represent different initial conditions
of the periodic solution; ◦: [x ẋ] = [4.9009 0]; �: [x ẋ] = [−1.0313 − 12.9188]; ♦:
[x ẋ] = [−2.9259 11.8894].

and neglecting higher-order terms (H.O.T.).

The initial conditions zp0 and the period T characterizing the periodic solution are com-
puted through the iterative procedure

z
(k+1)
p0 = z

(k)
p0 + ∆z

(k)
p0 and T (k+1) = T (k) + ∆T (k) (2.8)

where the corrections are determined by solving the linearized equations

∂H

∂zp0

∣

∣

∣

∣

(z
(k)
p0 ,T (k))

∆z
(k)
p0 +

∂H

∂T

∣

∣

∣

∣

(z
(k)
p0 ,T (k))

∆T (k) = −H
(

z
(k)
p0 , T (k)

)

(2.9)

k is the shooting iteration index. Convergence is achieved when H(zp0, T ) ≈ 0 to the de-
sired accuracy. In the neighborhood of the solution, the convergence is fast (i.e., quadratic
convergence for an exact evaluation of the Jacobian matrix). However, it should be kept
in mind that the Newton-Raphson method is a local algorithm; the convergence is guar-
anteed only when the initial guess is sufficiently close to the solution.

Sensitivity Analysis

Each shooting iteration involves the time integration of the equations of motion to evaluate

the current shooting residue H
(

z
(k)
p0 , T (k)

)

= z
(k)
p (T (k), z

(k)
p0 ) − z

(k)
p0 . As evidenced by

Equation (2.9), the shooting method also requires the evaluation of the partial derivatives
of H(z0, T ) = z (T, z0) − z0.
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The 2n × 1 vector ∂H/∂T is directly given by

∂H

∂T
(z0, T ) =

∂z (t, z0)

∂t

∣

∣

∣

∣

t=T

= g (z (T, z0)) (2.10)

The 2n × 2n Jacobian matrix ∂H/∂z0 is provided by

∂H

∂z0
(z0, T ) =

∂z(t, z0)

∂z0

∣

∣

∣

∣

t=T

− I (2.11)

where I is the 2n × 2n identity matrix. There are basically two means of computing the
Jacobian matrix ∂z(t, z0)/∂z0.

1. This matrix represents the variation of the solution z(t, z0) at time t when the initial
conditions z0 are perturbed. It can therefore be evaluated through a classical finite-
difference analysis by perturbing successively each of the 2n initial conditions and
integrating the governing nonlinear equations of motion [93]. This approximate
procedure therefore relies on extensive numerical simulations.

2. Targeting a reduction of the computational cost, a significant improvement is to use
sensitivity analysis. This alternative computation is obtained by differentiating the
equations of motion (2.2) with respect to the initial conditions z0

∂

∂z0

[ż (t, z0)] =
∂

∂z0

[g (z (t, z0))] (2.12)

It follows
d

dt

[

∂z (t, z0)

∂z0

]

=
∂g(z)

∂z

∣

∣

∣

∣

z(t,z0)

[

∂z(t, z0)

∂z0

]

(2.13)

with
∂z(0, z0)

∂z0

= I (2.14)

since z(0, z0) = z0. Hence, the matrix ∂z(t, z0)/∂z0 at t = T can be obtained
by numerically integrating over T the initial-value problem defined by the linear
ordinary differential equations (ODEs) (2.13) with the initial conditions (2.14).

In addition to the integration of the current solution z(t,x0) of (2.2), these two methods
for computing ∂z(t, z0)/∂z0 require 2n numerical integrations of 2n-dimensional dynam-
ical systems, which may be computationally intensive for large systems. However, equa-
tions (2.13) are linear ODEs and their numerical integration is thus far less expensive.
As discussed in Section 2.3.3, the numerical cost can be further reduced if the solution
of sensitivity equations (2.13) is computed together with the solution of the nonlinear
equations of motion in a single simulation [18]. This reduction of the computational bur-
den is significant for large-scale finite element models. In addition, sensitivity analysis



Chapter 2. Practical Computation of NNMs using Numerical Continuation Techniques 48

provides an exact evaluation of the Jacobian matrix. Convergence troubles (i.e., slow
convergence or even no convergence) of the shooting procedure resulting from inaccurate
computation of a finite-difference method are then avoided. Hence, sensitivity analysis is
particularly attractive from a computational viewpoint. We note that a finite-difference
procedure is nevertheless required when g is nondifferentiable, i.e., when the nonlinearities
are nonsmooth [87, 93].

Phase Condition

In the present case, the phase of the periodic solutions is not fixed. If z(t) is a solution
of the autonomous system (2.2), then z(t + ∆t) is geometrically the same solution in
phase space for any ∆t. The initial conditions zp0 can be arbitrarily chosen anywhere
on the periodic solution. This is illustrated in Figure 2.3 for the Duffing oscillator (2.5)
where different initial conditions corresponding to the same periodic solution are shown.
Hence, an additional condition has to be specified in order to remove the arbitrariness
of the initial conditions. Mathematically, the system (2.9) of 2n equations with 2n + 1
unknowns needs a supplementary equation, termed the phase condition.

Different phase conditions have been proposed in the literature [93, 126]. For instance, the
simplest one consists in setting one component of the initial conditions vector to zero, as
in [9]. This is illustrated in Figure 2.3 where the depicted periodic solution of the Duffing
oscillator is characterized by a zero initial velocity. A phase condition particularly suitable
for NNM computation is utilized in the present study and is discussed in Section 2.3.3.

In summary, the NNM computation is carried out by solving the augmented two-point
boundary-value problem defined by

F(zp0, T ) ≡
{

H(zp0, T ) = 0
h(zp0) = 0

(2.15)

where h(zp0) = 0 is the phase condition.

Stability Analysis

As discussed in Chapter 1, an important characteristic of NNMs is that they can be stable
or unstable. Instability means that small perturbations of the initial conditions that
generate the NNM motion lead to the elimination of the mode oscillation. Nonetheless,
the unstable NNMs can be computed using the shooting procedure.

The stability analysis can be performed numerically when an NNM motion has been
computed by the shooting algorithm. The monodromy matrix ΦT of a periodic orbit
zp (t, zp0) of period T is defined by its 2n × 2n Jacobian matrix evaluated at t = T

ΦT (zp0) =
∂zp (t, zp0)

∂zp0

∣

∣

∣

∣

t=T

(2.16)
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Perturbing the initial conditions with the vector ∆z0 and expanding the perturbed solu-
tion z(T, zp0 + ∆z0) in Taylor series yields

∆z(T ) = ΦT (zp0)∆z0 + O(‖∆z0‖2) (2.17)

where ∆z(T ) = z(T, zp0 + ∆z0) − zp(T, zp0).

Equations (2.17) shows that the monodromy matrix provides the first-order variation of
the periodic solution after one period. After m periods, one obtains

∆z(mT ) = [ΦT (zp0)]
m ∆z0 + O(‖∆z0‖2) (2.18)

The linear stability of the periodic solution calculated by the shooting algorithm is studied
by computing the eigenvalues of its monodromy matrix ΦT , which is a by-product of
the procedure. The 2n eigenvalues, termed Floquet multipliers, provide the exponential
variations of the perturbations along the eigendirections of the monodromy matrix. If a
Floquet multiplier has a magnitude larger than one, then the periodic solution is unstable;
otherwise, it is stable in the linear sense.

2.3.2 Continuation of Periodic Solutions

As stated in Chapter 1, the conservative system (2.2) comprises at least n different families
of periodic orbits (i.e., NNMs), which can be regarded as nonlinear extensions of the
LNMs of the underlying linear system. Due to the frequency-energy dependence, the
modal parameters of an NNM vary with the total energy. An NNM family, governed
by Equations (2.15), therefore traces a curve, termed an NNM branch, in the (2n + 1)-
dimensional space of initial conditions and period (zp0, T ). In addition, there may also
exist additional NNMs (i.e., bifurcating NNMs) that are essentially nonlinear with no
linear counterparts.

In this study, the NNMs are determined using methods for the numerical continuation
of periodic motions (also called path-following methods) [4, 93, 126]. Starting from the
corresponding LNM at low energy, the computation is carried out by finding successive
points (zp0, T ) of the NNM branch. The space (zp0, T ) is termed the continuation space.

Different methods for numerical continuation have been proposed in the literature. The
so-called pseudo-arclength continuation method is used herein.

Sequential Continuation

The simplest and most intuitive continuation technique is the sequential continuation
method. This procedure is first explained due to its straightforward implementation.
Moreover, it provides the fundamental concepts of continuation methods.
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The sequential continuation of the periodic solutions governed by (2.15) is carried out in
three steps:

1. A periodic solution (zp0,(1), T(1)) at sufficiently low energy (i.e., in the neighborhood
of one LNM) is first computed using the shooting method. The period and initial
conditions of the selected LNM are chosen as an initial guess.

2. The period is incremented, T(j+1) = T(j) + ∆T .

3. From the current solution (zp0,(j), T(j)), the next solution (zp0,(j+1), T(j+1)) is deter-
mined by solving (2.15) using the shooting method with the period fixed:

z
(k+1)
p0,(j+1) = z

(k)
p0,(j+1) + ∆z

(k)
p0,(j+1) (2.19)

where
∂F

∂zp0

∣

∣

∣

∣

(z
(k)
p0,(j+1)

,T(j+1))

∆z
(k)
p0,(j+1) = −F(z

(k)
p0,(j+1), T(j+1)) (2.20)

The initial conditions of the previous periodic solution are used as a prediction
z

(0)
p0,(j+1) = zp0,(j). Superscript k is the iteration index of the shooting procedure,

whereas subscript j is the index along the NNM branch.

Eventually, one complete NNM branch is computed.

Pseudo-Arclength Continuation

The sequential continuation method parameterizes an NNM branch using the period T .
It has two main drawbacks:

1. Because the convergence of the Newton-Raphson procedure depends critically on
the closeness of the initial guess to the actual solution, the sequential continuation
requires fairly small increments ∆T .

2. Because the value of the period is fixed during the Newton-Raphson corrections, it
is unable as such to deal with turning points. This is illustrated in Figure 2.4 where
no solution exists for a period larger than the period at the turning point.

For better performance, a continuation algorithm uses a better prediction than the last
computed solution. In addition, corrections of the period are also considered during
the shooting process. The pseudo-arclength continuation method relies on these two
improvements in order to optimize the path following of the branch.

Starting from a known solution (zp0,(j), T(j)), the next periodic solution (zp0,(j+1), T(j+1))
on the branch is computed using a predictor step and a corrector step.
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p0) in the continuation space. Failure of the sequential

continuation for T ≥ T ⋆.

Predictor step

At step j, a prediction (z̃p0,(j+1), T̃(j+1)) of the next solution (zp0,(j+1), T(j+1)) is generated
along the tangent vector to the branch at the current point zp0,(j)

[

z̃p0,(j+1)

T̃(j+1)

]

=

[

zp0,(j)

T(j)

]

+ s(j)

[

pz,(j)

pT,(j)

]

(2.21)

where s(j) is the predictor stepsize. The tangent vector p(j) = [p∗

z,(j) pT,(j)]
∗ to the branch

defined by (2.15) is solution of the system
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0







[

pz,(j)

pT,(j)

]

=

[

0

0

]

(2.22)

with the condition
∥

∥p(j)

∥

∥ = 1. The star denotes the transpose operator. This normaliza-
tion can be taken into account by fixing one component of the tangent vector and solving
the resulting overdetermined system using the Moore-Penrose matrix inverse; the tangent
vector is then normalized to 1. For illustration, the predictor step is shown schematically
in Figure 2.5.

Corrector step

The prediction is corrected by a shooting procedure in order to solve (2.15) in which
the variations of the initial conditions and the period are forced to be orthogonal to the



Chapter 2. Practical Computation of NNMs using Numerical Continuation Techniques 52

T

[z
p
0
] i

zp0,(j)

p(j)
z̃p0,(j+1)

zp0,(j+1)

◦◦ z
(k)
p0,(j+1)

z̃p0,(j+2)

zp0,(j+2)

◦◦
◦

•

•

•
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predictor step.

predictor step. At iteration k, the corrections

z
(k+1)
p0,(j+1) = z

(k)
p0,(j+1) + ∆z

(k)
p0,(j+1)

T
(k+1)
(j+1) = T

(k)
(j+1) + ∆T

(k)
(j+1) (2.23)

are computed by solving the overdetermined linear system using the Moore-Penrose matrix
inverse
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(2.24)

where the prediction is used as initial guess, i.e, z
(0)
p0,(j+1) = z̃p0,(j+1) and T

(0)
(j+1) = T̃(j+1).

The last equation in (2.24) corresponds to the orthogonality condition for the corrector
step. We note that the partial derivatives in (2.24) are evaluated numerically, as explained
previously.

This iterative process is carried out until convergence is achieved. The convergence test
is based on the relative error of the periodicity condition:

‖H(zp0, T )‖
‖zp0‖

=
‖zp(T, zp0) − zp0‖

‖zp0‖
< ǫ (2.25)

where ǫ is the prescribed relative precision.

For illustration, the corrector step is shown schematically in Figure 2.5.
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2.3.3 An Integrated Approach for NNM Computation

Basic Algorithm

The algorithm proposed for the computation of NNM motions is a combination of shooting
and pseudo-arclength continuation methods, as summarized in Figure 2.6. Starting from
the LNM motion at low energy, there are two steps within the algorithm:

1. The predictor step is global and goes from one NNM motion at a specific energy
level to another NNM motion at a somewhat different energy level. For an efficient
and robust NNM continuation, the stepsize s(j) is to be carefully controlled. A
small stepsize leads to a small number of corrector iterations, but it requires a large
number of continuation steps to follow an NNM branch. For a large stepsize, the
number of corrector iterations is high, and the convergence is slow. The Newton-
Raphson procedure may even break down if the prediction is not close enough to
the actual solution. Continuation may therefore be computationally intensive in
both cases. The stepsize has to be adjusted, possibly in an automatic and flexible
manner. Various adaptive stepsize control procedures are discussed in [4, 126].

2. The corrector step is local and iteratively refines, using a shooting technique, the
prediction to obtain the actual solution at a specific energy level. The size of the
corrections during the corrector step is determined by the solutions of the overde-
termined system (2.24).

This algorithm is applied to the Duffing oscillator (2.5) in Figure 2.7. The phase con-
dition used in this example consists in enforcing the initial velocity ẋp0 to be zero. The
continuation space is therefore composed of the initial displacement xp0 and the period T .
The initial guess used to start the procedure is obtained at low energy where the system
responds practically as the underlying linear system, which has an eigenfrequency of 1
rad/s (i.e., a period of T = 6.28 s).

Step Control

Unlike sequential continuation, the evolution path of this predictor-corrector method is
parameterized by the distance s(j) along the tangent predictor, also referred to as arclength
continuation parameter in the literature. As mentioned previously, the stepsize has to be
carefully controlled for a robust and efficient NNM computation.

The stepsize control used herein relies on the evaluation of the convergence quality by the
number of iterations of the corrector step. The stepsize is controlled so that the corrector
step requires on average the desirable number of iterations N⋆. At each step, the stepsize
is updated according to the ratio between the desirable number N∗ and the previous
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Figure 2.6: Algorithm for NNM computation.
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number N(j−1) of iterations:

s(j) =

(

N∗

N(j−1)

)

s(j−1) (2.26)

In practice, the ratio r = N∗/N(j−1) is often bounded to make the adaptation stepsize
more robust and to prevent the continuation from jumping between different branches2.
The stepsize can also be bounded (s(j) < smax) to obtain enough discretized points on
the branch during the continuation. In case of no convergence (i.e., when the residue
increases or when the process requires more correction iterations than the prescribed
maximum Nmax), the stepsize is halved until convergence is achieved.

As a final remark, we note that the sign of the stepsize is chosen in order to follow the
branch in the same direction, i.e.,

[

s(j)p(j)

]

∗
[

s(j−1)p(j−1)

]

> 0 (2.27)

According to the previous predictor step and the current tangent vector, the sign of s(j)

is therefore given by
sign

(

s(j)

)

= sign
(

s(j−1)p
∗

(j)p(j−1)

)

(2.28)

2Another possibility to avoid branch jumping phenomena is to limit the angle between consecutive
predictor steps.
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Numerical Time Integration

A widely-used method for solving first-order differential equations such as (2.2) is the
Runge-Kutta scheme. In structural dynamics where second-order systems (2.1) are en-
countered, Newmark’s family of methods is probably the most widespread technique for
numerically integrating linear and nonlinear large-scale stiff mechanical systems [46]. The
governing equations of motion (2.1) are directly solved without transforming them into
first-order differential equations. This preserves the banded nature of the system of equa-
tions (typically resulting from finite element discretization), and the number of equations
is not doubled. Newmark’s time integration method is thereby a computationally more
efficient approach. It is considered here for numerical time integration required during
the shooting procedure. Newmark’s scheme is detailed in Appendix A.

Similarly, the philosophy of sensitivity analysis (see Section 2.3.1) is directly applied to
the second-order differential equations. The Jacobian matrix of the shooting procedure

∂z(t, z0)

∂z0

=

(

∂x(t,z0)
∂z0

∂ẋ(t,z0)
∂z0

)

is then obtained by integrating the following sensitivity equations

M
d2

dt2

[

∂x(t, z0)

∂z0

]

+ K

[

∂x(t, z0)

∂z0

]

+
∂fnl {x}

∂x

∣

∣

∣

∣

x(t,z0)

[

∂x(t, z0)

∂z0

]

= 0 (2.29)

resulting from the differentiation of the equations of motion (2.1) with respect to the
initial conditions.

Besides the integration of the original equations of motion, Newmark’s method is then
reused for solving these sensitivity equations. This is combined in a single global time
simulation. At each time step, the numerical integration of the current motion involves an
iterative process (Newton-Raphson procedure using iteration matrix defined in Appendix
A) since the equations (2.1) are nonlinear. At the end of the time step, the sensitivity
equations (2.29), that are linear, are then solved in one single iteration using the same
iteration matrix as for the original problem. Sensitivity analysis therefore requires only one
additional iteration to compute the required Jacobian matrix. As mentioned previously,
the impact on the overall computational cost of the algorithm turns out to be much
smaller compared to a finite-difference method based on repeated time simulations [18].

The precision of the integration scheme, which is chosen by the end-user, directly in-
fluences the accuracy of the NNM computation. In fact, the computed solution can be
regarded as an exact solution if the time step used to integrate the equations is sufficiently
low. This is practically the only approximation in the proposed algorithm.
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Reduction of the Computational Burden

As discussed in Chapter 1, a seemingly simple system such as system (1.2) can exhibit
complicated NNM motions. This 2DOF system possesses branches of fundamental NNM
motions, termed backbone branches, which are the nonlinear extension of the LNM mo-
tions. These branches coexist with a countable infinity of branches of internally resonant
NNMs, referred to as tongues, with no counterpart in linear theory. In view of the infi-
nite number of tongues and their sensitivity to small perturbations with increasing orders
of internal resonance, an extensive computation of the tongues is certainly debatable.
Although interesting, this discussion is beyond the scope of the present work.

The algorithm described so far may become computationally intensive when dealing with
large-scale systems (i.e., systems with many DOFs). Because a practical and computa-
tionally tractable calculation of the NNM motions is targeted, two properties of some
NNM families can be exploited to speed up the computation:

1. All symmetric NNM branches Snm (see, e.g., Figure 2.1 and the top plot in Fig-
ure 2.2) obey the symmetry condition

zp

(

T

2
, zp0

)

+ zp0 = 0 (2.30)

For these branches, the shooting procedure can be performed over the half period
T/2 by searching the initial conditions and the period T that solve this modified
periodicity condition. Because the time integrations represent the main computa-
tional cost of the algorithm, this modified periodicity condition reduces the overall
computational burden by a factor close to 2.

2. For branches of NNMs represented by an open loop in the configuration space (see,
e.g., the first two NNM motions in Figure 2.2), a suitable phase condition is to set
all the velocities to zero. The initial velocities are eliminated from the unknowns of
the linear systems to solve at each Newton-Raphson iteration. These systems have
therefore 2n + 1 equations with n + 1 unknowns xp0 and T .

One advantage is that these modifications can be very naturally integrated in the basic
algorithm in Figure 2.6.

In summary, two variants of the basic algorithm described in the previous section have
been developed:

1. The general strategy consists in (i) carrying out the shooting over the period T and
(ii) setting only one velocity to zero. This strategy can compute all possible NNM
motions.



Chapter 2. Practical Computation of NNMs using Numerical Continuation Techniques 58

2. The practical strategy exploits the modified periodicity and phase conditions. The
fundamental NNM motions of nonlinear structures often obey these conditions (e.g.,
the fundamental NNMs of nonlinear systems with odd nonlinearities are necessarily
symmetric, because the loss of symmetry requires the so-called symmetry-breaking
bifurcation).

Targeting a reduction of the computational burden, but without lack of generality, an ap-
proach that integrates the two variants is used. Starting from the LNMs, the fundamental
NNM motions are first computed using the practical strategy; a subset of tongues can
also be computed using this methodology. We note that the application of this strategy
should often suffice for most engineering structures.

When a detailed analysis of the unsymmetric NNMs and those represented by a closed
curve in the configuration space is required, the general strategy can then be utilized for
computing these NNMs.

NNM Representation

So far, the NNMs have been considered as branches in the continuation space (zp0, T ). As
explained in Section 1.1.2, an appropriate graphical depiction of the NNMs is to represent
them in a frequency-energy plot (FEP). This FEP can be computed in a straightforward
manner: (i) the conserved total energy is computed from the initial conditions realizing
the NNM motion; and (ii) the frequency of the NNM motion is calculated directly from
the period.

Numerical Implementation

The algorithm has been implemented in the MATLAB environment in combination with
a graphical user interface, which makes the NNM computation more user-friendly.

2.4 Numerical Example

In what follows, the proposed algorithm for NNM computation is demonstrated using the
nonlinear 2DOF system represented in Figure 1.1. Since the NNMs of this system have
already been discussed in detail in Chapter 1, the computational aspects are principally
investigated here.

The governing equations of motion of the system are

ẍ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + (2x2 − x1) = 0 (2.31)
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The two LNMs of the underlying linear system are in-phase and out-of-phase modes for
which the two DOFs vibrate with the same amplitude. The natural eigenfrequencies are
f1 = 1/2π ≃ 0.159 Hz and f2 =

√
3/2π ≃ 0.276 Hz.

The integrated approach described in Section 2.3.3 is applied to this system. The NNMs
are then computed in a fairly automatic manner.

Starting from the corresponding LNMs at low energy, the computation of the fundamental
NNMs is first performed using the modified phase and periodicity conditions. The in-
phase NNM backbone S11+ is depicted in Figure 2.8(a), whereas the out-of-phase NNM
backbone S11− is given in Figure 2.9. The computed points are represented by circles.
Though a large energy range is investigated, these figures show that the continuation
method discretizes the two branches using very few points. Large stepsizes are therefore
employed, and only a few seconds are required to compute each branch for 100 integration
time steps per half period using a 2GHz processor. This is an important feature when
targeting a computationally tractable calculation of the NNMs. The two backbones are
depicted together in the FEP of Figure 1.13. The family of computed in-phase NNM
motions is also represented in a three-dimensional projection of the phase space in Figure
2.8(b) and in the configuration space in Figure 2.8(c).

The NNM continuation can now be carried out at higher energy levels. The obtained
FEP for the in-phase mode is depicted in Figure 2.10. It can be observed that a recurrent
series of tongues, corresponding to internally resonant NNMs (i.e., S31, S51, S71, etc.),
continue the backbone branch S11+ through turning points (fold bifurcations). Due to
these turning points, smaller stepsizes are necessary, which renders the tongue calculation
computationally more demanding. By contrast, at higher energy on S11−, the 1:1 out-of-
phase motion persists, and S11− extends to infinity. The complete FEP calculated using
the practical strategy is shown in Figure 2.11.

We now move to the general strategy for the computation of unsymmetric NNMs and
NNMs represented by a closed curve in the configuration space. These NNMs are generally
generated through bifurcations (e.g., symmetry-breaking bifurcations for unsymmetrical
NNMs). Because the tangent is not uniquely defined at the bifurcation point, they require
a branching strategy to be effectively computed [126]. In this study, a perturbation
technique is used to carry out branch switching, once the bifurcation point is located
using the Floquet multipliers. The resulting FEP is displayed in Figure 1.17 and shows
two unsymmetrical tongues (U21 and U41).

NNM stability is also provided by the proposed algorithm. Because the monodromy ma-
trix is computed during the numerical procedure, its eigenvalues, the Floquet multipliers,
are obtained as a by-product. The stability of the fundamental in-phase and internally
resonant NNMs is presented in Figure 2.12. Clearly, the bifurcation points, which include
fold and symmetry-breaking bifurcations, are characterized by a change of stability. The
evolution of the Floquet multipliers along S31 is shown in the complex plane in Figure
2.13. This figure shows the mechanism of loss of stability; a pair of Floquet multipliers
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leaves the unit circle through 1.

This example illustrates the efficiency of the algorithm for NNM computation, even for
higher energy where the dynamics of this seemingly simple system becomes complicated,
with the presence of several internal resonances.

2.5 Concluding Remarks

In this chapter, a numerical method for the computation of NNMs of nonlinear vibrating
structures was introduced. The approach targets the computation of the NNMs of un-
damped mechanical structures discretized by finite elements and relies on the numerical
continuation of periodic solutions. To this end, the proposed algorithm combines shoot-
ing and pseudo-arclength continuation methods. This computational framework allows
to relax the assumption of small-amplitude motions of most existing techniques based
on asymptotic approaches. The NNMs are then obtained accurately, even in strongly
nonlinear regimes, and in a fairly automatic manner. The algorithm was illustrated using
a 2DOF system.

This method represents a first step toward an effective and practical NNM computation
with limited implementation effort. Through this numerical technique, nonlinear modal
analysis of more complex structural models, compared to low-dimensional (i.e., with a
few DOFs) and weakly nonlinear systems typically studied in the literature, is possible.
In this context, the next chapter deals with an essentially nonlinear system, a discrete
model of a nonlinear bladed disk and a finite element model of a full-scale aircraft. One
limitation of this approach is that it relies on extensive numerical simulations which may
be computationally intensive for large-scale finite element models.
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Numerical Applications of Nonlinear

Normal Mode Computation

Abstract

The objective of the present chapter is to compute, using the numerical algo-
rithm described in Chapter 2, the nonlinear normal modes (NNMs) of mechan-
ical systems of increasing complexity, namely an essentially nonlinear 2DOF
system, a discrete model of a bladed disk assembly and a finite element model
of a full-scale aircraft. This is achieved to demonstrate the ability of the pro-
posed method for NNM computation. Furthermore, the presence of compli-
cated NNM motions, including internal resonances and strong motion localiza-
tion, is discussed.
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3.1 Introduction

This chapter is dedicated to the exploitation of the numerical method, proposed in Chap-
ter 2, to compute the nonlinear normal modes (NNMs) of nonlinear vibrating structures.
To this end, theoretical modal analysis of different mechanical systems is carried out. In
addition to demonstrating the efficiency of the NNM computation, this chapter illustrates
several nonlinear phenomena such as complex modal interactions and mode localization.

To highlight the capabilities of the computational method, three distinct systems are
studied successively. First, an essentially nonlinear 2DOF system is briefly considered.
Unlike perturbation techniques, this example shows that the numerical procedure is not
limited to weakly nonlinear regimes, and can thereby deal with essentially nonlinear sys-
tems. Next, the NNM computation of more complex structures, in terms of number of
DOFs, is addressed. To this end, the study of a discrete model of a nonlinear bladed disk
assembly is carried out. Finally, a finite element model of a real-life aircraft with softening
nonlinearities is examined.

3.2 Essentially Nonlinear 2DOF System

The method described in the previous chapter can accurately compute the NNMs in
strongly nonlinear regimes of motion. For illustration, a 2DOF system with an essential
nonlinearity is considered. The system is depicted in Figure 3.1, and its motion is governed
by the equations

m1 ẍ1 + k1 x1 + knl1 x3
1 + knl2(x1 − x2)

3 = 0

m2 ẍ2 + knl2(x2 − x1)
3 = 0 (3.1)

with m1 = k1 = knl2 = 1, knl1 = 0.5 and m2 = 0.05.

In the context of vibration mitigation, the dynamics of such systems have been exten-
sively studied by Vakakis and co-workers [45, 62, 72, 152] using the NNM concept. The
motivation for using an essential nonlinearity is that the nonlinear attachment possesses
no preferential resonant frequency; it can therefore interact with a single-DOF structure
in a frequency-independent fashion or with virtually any mode of a multi-DOF structure.

Thanks to the proposed algorithm, system (3.1) has been successfully examined in re-
cent works [159, 160], dealing with the design of nonlinear vibration absorbers. As for
the 2DOF system in Chapter 1, a rich and complicated dynamics has been highlighted.
Its complete description is nevertheless beyond the scope of the present section. The
frequency-energy plot (FEP) of Figure 3.2 represents the computed NNM branches of
system (3.1), which include the in-phase mode S11+, the out-of-phase mode S11−, and
several internal resonances (S13, S31, S15, S17, S19). For clarity, stability is not indi-
cated in this plot. A particular characteristic of this system is that S11+ is not bounded
in frequency unlike the previous 2DOF system studied in Chapters 1 and 2.
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Figure 3.1: 2DOF system with an essential nonlinearity.
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Figure 3.3: One sector of the nonlinear bladed disk assembly. (a) Continuous structure;
(b) discrete model.

3.3 Nonlinear Bladed Disk

The NNMs of a more complex system consisting of a nonlinear periodic structure with
cyclic symmetry are now investigated. To this end, the modal shapes and frequencies
of oscillation of the different NNM branches are computed using the proposed numerical
algorithm.

The system considered here is a simplified mathematical model of a bladed disk assembly.
This model, though simplified, allows investigating interesting and complex dynamic phe-
nomena related to the presence of nonlinearity. The lumped parameter model admits a
single DOF for each blade and includes a similarly simplified representation of the flexible
disk. The bladed disk is composed of 30 sectors assembled with cyclic periodicity; a single
sector is represented in Figure 3.3. Each sector is modeled using disk (M) and blade (m)
lumped masses, coupled by linear (k) and cubic (knl) springs. The nonlinear springs can,
for instance, be representative of geometrically nonlinear effects in slender blades. The
disk masses are connected together by linear springs K. The equations of motion of this
60-DOF system are

m ẍi + k(xi − Xi) + knl(xi − Xi)
3 = 0

M Ẍi + K(Xi − Xi+1) + K(Xi − Xi−1) + k(Xi − xi) + knl(Xi − xi)
3 = 0

(3.2)

for i = 1, . . . , 30, where X31 = X1, X0 = X30 (conditions of cyclic periodicity). Xi and
xi are the displacements of the disk and blade masses of the ith sector, respectively. The
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values M = 1, m = 0.3, K = 1, k = 1, knl = 0.1 are used herein.

3.3.1 Modal Analysis of the Underlying Linear System

Before studying the NNMs of the nonlinear bladed disk assembly, the natural frequencies
and mode shapes of the underlying linear system are first discussed. All bladed assemblies
with circumferential symmetry exhibit single and double modes [37]:

• Double modes represent the majority. They have the same natural frequency and
similar mode shapes. In fact, no unique mode shapes can be specified for these
modes. Rather, it is sufficient to specify two suitably orthogonal shapes and to note
that, when vibrating freely at that natural frequency, the structure can assume any
form given by a linear combination of the two specified shapes. Further, at the
corresponding natural frequency, the assembly can vibrate in any combination of
cos nθ and sin nθ circumferential distributions of displacement around the assembly;
i.e., in a shape of the form cos nθ + φ. The mode shape is characterized by n nodal
diameters since the displacement is constrained to be zero along n-equally spaced
diametral lines. The mode shapes of a mode pair have mutually orthogonal nodal
diameters.

• Single modes correspond to motion with all the blades undergoing, either in-phase
(0 nodal diameter) or out-of-phase (N/2 nodal diameters) motion.

The natural frequencies of the underlying linear bladed assembly are listed in Table 3.1,
where the modes are denoted by the integer pair (n,p), which corresponds to the number
of nodal circles n and nodal diameters p for the considered mode. In the model (3.2), the
nodal circle parameter n can only take the values n = 0 or n = 1, according to whether
the blade and disk masses undergo in-phase or out-of-phase motion, respectively. One
observes the existence of 28 pairs of double modes and 4 single modes. Figure 3.4 depicts
four representative linear normal modes (LNMs) of the bladed assembly, namely mode
(0,15) and one mode of the mode pairs (0,1), (1,5) and (1,14).

3.3.2 Nonlinear Modal Analysis

Using the previously described algorithm, NNM branches are computed by starting from
the corresponding LNMs at low energy and gradually increasing the total energy in the
system. The computed backbone branches are represented in Figure 3.5 and form the
skeleton of the FEP. As we shall see, other NNM branches bifurcate from and coalesce
into these backbone branches.

The first noticeable feature in Figure 3.5 is the frequency-energy dependence of the NNMs.
The oscillation frequency of the modes with 1 nodal circle is strongly affected by the
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Mode Nodal Nodal Freq. Mode Nodal Nodal Freq.
circles diameters (rad/s) circles diameters (rad/s)

1 0 0 0.000 31 1 0 2.082
2,3 0 1 0.183 32,33 1 1 2.084
4,5 0 2 0.363 34,35 1 2 2.092
6,7 0 3 0.536 36,37 1 3 2.104
8,9 0 4 0.700 38,39 1 4 2.123

10,11 0 5 0.850 40,41 1 5 2.147
12,13 0 6 0.985 42,43 1 6 2.178
14,15 0 7 1.103 44,45 1 7 2.215
16,17 0 8 1.202 46,47 1 8 2.258
18,19 0 9 1.282 48,49 1 9 2.304
20,21 0 10 1.346 50,51 1 10 2.350
22,23 0 11 1.394 52,53 1 11 2.394
24,25 0 12 1.428 54,55 1 12 2.431
26,27 0 13 1.452 56,57 1 13 2.460
28,29 0 14 1.465 58,59 1 14 2.478
30 0 15 1.470 60 1 15 2.485

Table 3.1: Natural frequencies of the underlying linear bladed disk assembly.
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Figure 3.4: Representative LNMs of the bladed assembly; the blade and disk masses are
shown in black and grey, respectively. (a) Mode (0,15) and one mode of the mode pair
(b) (0,1); (c) (1,5) and (d) (1,14).
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Figure 3.5: FEP of NNMs of the bladed disk assembly. Solid lines: NNM with 0 nodal
circle; dashed lines: NNM with 1 nodal circle.

nonlinearities in the system. For these modes, the blade and disk masses vibrate in an
out-of-phase fashion, which enhances nonlinear effects. On the other hand, the oscillation
frequency of the modes with 0 nodal circle is much less affected. This is because the blade
and disk masses vibrate in an in-phase fashion for these modes.

Similar and Nonsimilar NNMs

In addition to the dependence of their oscillation frequency, the NNMs may also have their
modal shapes vary with the total energy in the system. As mentioned in Chapter 1, accord-
ing to Rosenberg’s terminology, a similar NNM corresponds to an (energy-independent)
straight modal line in the configuration space and occurs in systems presenting certain
spatial symmetries. A nonsimilar NNM corresponds to a curve in the configuration space,
the shape of which varies with the total energy. Due to its symmetry properties, the
system possesses both similar and nonsimilar NNMs. Two examples of similar NNMs in
the bladed disk are the nonlinear extension of the LNMs with 0 nodal diameters, namely
modes (0,0) and (1,0). Mode (0,0) is a rigid-body mode, which is obviously unaffected
by nonlinearity. The FEP of mode (1,0) in Figure 3.6 clearly depicts that, while the
NNM frequency is altered by the nonlinearities in the system, the modal shape remains
unchanged.
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Figure 3.6: FEP of mode (1,0). NNM shapes represented by bar graphs are inset; they
are given in terms of the initial displacements that realize the periodic motion (with
zero initial velocities assumed). The blade and disk masses are shown in black and grey,
respectively.

Nonsimilar NNMs resemble the corresponding LNMs at low energy. The structure (i.e.,
the number of nodal circles and diameters) is preserved, and, as for the modes of the
linear system, they mostly appear in pair. Nonsimilar NNMs in this system are either
weakly, moderately or strongly affected by nonlinearity for increasing energy levels:

• Figure 3.7 represents a mode of the mode pair (0,2), whose shape is almost energy-
independent.

• Figure 3.8 shows that the NNM motions of mode pair (0,14) have a marked energy
dependence.

• A remarkable property of the NNM motions of mode (1,14) is that the vibrational
energy localizes to a limited number of sectors (4 in this case), the remaining of the
system being virtually motionless (see Figure 3.9). The resulting spatial confine-
ment of the energy causes the responses of some blades to become dangerously high
and might lead to premature failure of the blades. For illustration, the time series
corresponding to such an NNM motion are displayed in Figure 3.10. This localiza-
tion phenomenon was also observed in linear mistuned bladed assemblies [24], but,
here, it occurs even in the absence of structural disorder and direct interblade cou-
pling. Localization is in fact the result of the frequency-energy dependence inherent
to nonlinear oscillations, as mentioned in Chapter 1 and discussed in reference [155].
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Figure 3.7: FEP of one mode of the mode pair (0,2). NNM shapes represented by bar
graphs are inset; they are given in terms of the initial displacements that realize the
periodic motion (with zero initial velocities assumed). The blade and disk masses are
shown in black and grey, respectively.
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Figure 3.8: FEP of one mode of the mode pair (0,14). NNM shapes represented by bar
graphs are inset; they are given in terms of the initial displacements that realize the
periodic motion (with zero initial velocities assumed). The blade and disk masses are
shown in black and grey, respectively.
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graphs are inset; they are given in terms of the initial displacements that realize the
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Figure 3.9).
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All these NNM motions correspond to standing-wave motions in the sense that the system
coordinates vibrate in a synchronous manner. They are represented by lines or curves in
the configuration space. The phase condition used for their computation assumes that all
initial velocities are zero (practical strategy, see Section 2.3.3). One therefore starts the
motion from a maximum of the potential energy (see, e.g., Figure 3.10).

Modal Interaction: Internally Resonant NNMs

A first example of modal interaction is the 1:1 internal resonance between the two modes
of a mode pair. This resonance scenario results in NNM motions which take the form
of traveling waves and which are represented by ellipses in the configuration space. A
detailed analytical study of these modes is given in reference [147]. Due to the existence
of a phase difference between the coordinates, a different phase condition is considered
for the NNM computation: only one initial velocity is set to zero (general strategy, see
Section 2.3.3), which is compatible with a traveling-wave motion. For instance, Figure
3.11 depicts the NNM corresponding to 1:1 internal resonance between the modes of mode
pair (1,3). The mode structure is preserved in the sense that this traveling-wave motion
also features one nodal circle and three nodal diameters. Representative time series are
shown in Figure 3.12 and clearly highlight that the motion is no longer synchronous. In
this particular case, the traveling wave is propagating in the anticlockwise direction, but
its companion propagating in the clockwise direction also exists. These modes have an
important practical significance, because they can be excited with an appropriate engine
order excitation.

Other resonance scenarios can be observed in this system through the occurrence of
tongues of internally resonant NNMs, following a mechanism similar to that described
in detail in Chapter 1. Unlike backbone branches, tongues are localized to a specific re-
gion of the FEP. They bifurcate from the backbone branch of a specific mode and coalesce
into the backbone branch of another mode, thereby realizing an internal resonance be-
tween the two modes. For instance, Figure 3.13 depicts a 3:1 internal resonance between
modes (0,6) and (1,12) in the FEP. To illustrate the resonance mechanism, the backbone
of mode (1,12) is represented at the third of its characteristic frequency (this is relevant,
because a periodic solution of period T is also periodic with period 3T ). This shows that
a smooth transition from mode (0,6) to mode (1,12) occurs on the tongue. A further
illustration is that modes M1 and M2, which are the modes right after and before the
coalescence of the two NNM branches, are almost identical.

During this 3:1 internal resonance, the system vibrates along a subharmonic NNM; i.e.,
an NNM motion characterized by more than one dominant frequency component. On the
branch of mode (0,6), the motion is characterized by one dominant frequency component,
say ω. As we move along the tongue from this branch, a third harmonic progressively
appears, and the system vibrates with two dominant frequency components ω and 3ω. As
we progress further on the tongue, the third harmonic tends to dominate the component
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Figure 3.11: FEP of the traveling-wave NNM corresponding to 1:1 internal resonance
between the modes of mode pair (1,3) (solid line). For comparison, the dashed line
represents the backbone of one standing-wave NNM of the mode pair (1,3). NNM shapes
represented by bar graphs are inset.

at the fundamental frequency, until this latter completely disappears. At this precise
moment, a transition to mode (1,12) is realized. This transition is illustrated in Figure
3.14 using time series representative of the NNM motion at three different locations on
the tongue.

As already reported in Chapter 1, modal interactions may occur without necessarily
having commensurate linear natural frequencies in the underlying linear system. Indeed,
the ratio of the linear natural frequencies of modes (0,6) and (1,12) is far from 3; it is equal
to 2.47. However, a 3:1 internal resonance between the two modes can still be realized,
because the frequency of mode (0,6) increases much less rapidly than that of mode (1,12),
as shown in Figure 3.5. It turns out that a 3:1 internal resonance is not the only possible
interaction between modes (0,6) and (1,12). Depending on the relative evolution of the
frequencies on the backbones of these modes, other n : m resonances with n and m being
relatively prime integers can exist.

As a result, there exists a countable infinity of branches of internally resonant NNMs in
this system, similarly to what was observed for the 2DOF system in Chapter 1. Figure
3.15 depicts the same FEP as in Figure 3.13, but the algorithm is not stopped after the
tongue. Clearly, there is an intricate succession of modal interactions, each one being a
different realization of an internal resonance between mode (0,6) and another mode of the
system.
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Figure 3.12: (a) Time series of the first six blades during traveling-wave NNM motion of
mode pair (1,3) (see Figure 3.11); (b) contour plot.
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Figure 3.14: Time series corresponding to NNM motions on the tongue of 3:1 internal
resonance (——: blade 1; −−−: disk 10; · · · · · · : disk 14). (a) Beginning of the tongue
(in the vicinity of the branch of mode (0,6)); (b) middle of the tongue; and (c) extremity
of the tongue (in the vicinity of the branch of mode (1,12)).
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modes of the system.
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Additional Mode Bifurcations

For linear mistuned bladed assemblies and according to the degree of detuning, double
modes with identical frequencies may split into two different modes with distinct natural
frequencies [37]. Due to mode bifurcations, mode splitting may still occur in nonlinear
systems with cyclic symmetry. A direct consequence is that a mode pair can bifurcate into
two mode pairs, and the number of NNMs exceeds the number of DOFs of the system.
For illustration, the splitting of one mode of the mode pair (1,5) is depicted in Figure
3.16. Clearly, after the bifurcation, two NNM branches exist and are characterized by
different oscillation frequencies and modal curves.

Other examples of mode bifurcations are shown in Figures 3.17 and 3.18 for the mode
pair (1,14) and mode (1,15), respectively. Mode pair (1,14) undergoes a bifurcation dur-
ing which a new NNM branch is generated. Interestingly, this branch is characterized by
modes that are localized to two sectors only. Even more interesting is the bifurcation of
mode (1,15), which generates mode shapes that are localized to only one sector. Depend-
ing on their stability properties, these NNMs may be excited in practice, giving rise to
potentially harmful motion that must be accounted for.
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Figure 3.17: Bifurcation of the mode pair (1,14).
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Figure 3.19: Stability analysis of mode (1,15). Top plot: FEP; a solid (dashed) line indi-
cates stability (instability). Bottom plots: unit circle and Floquet multipliers represented
by squares.
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Mode Stability

Stability analysis is performed numerically through the eigenvalues of the monodromy
matrix (i.e., the Floquet multipliers), which are a by-product of the proposed algorithm.
For instance, Figure 3.19 shows the stability properties of mode (1,15). From very low
energies to energies slightly above 1J , the Floquet multipliers lie on the unit circle. The
NNM motions are stable and, hence, physically realizable. From this latter energy, the
Floquet multipliers leave the unit circle, and the NNM motions become unstable. This
stability change occurs through a bifurcation, which coincides exactly with the generation
of the branch of NNMs localized to one sector in Figure 3.18.

3.4 Full-Scale Aircraft

As a final example, the numerical computation of the NNMs of a complex real-world
structure is addressed. This structure is the airframe of the Morane-Saulnier Paris aircraft,
which is represented in Figure 3.20. This French jet aircraft was built during the 1950s and
was used as a trainer and liaison aircraft. The structural configuration under consideration
corresponds to the aircraft without its jet engines and standing on the ground through its
three landing gears with deflated tires. For information, general characteristics are listed
in Table 3.2. A specimen of this plane is present in ONERA’s laboratory, and ground
vibration tests exhibited nonlinear behavior in the connection between the wings and
external fuel tanks located at the wing tip. As illustrated in Figure 3.21, this connection
consists of bolted attachments.

3.4.1 Structural Model of the Morane-Saulnier Paris Aircraft

Finite Element Model of the Underlying Linear Structure

The linear finite element model of the full-scale aircraft, illustrated in Figure 3.22, was
elaborated from drawings by ONERA [119]. The wings, vertical stabilizer, horizontal
tail and fuselage are modeled by means of 2-dimensional elements such as beams and
shells. The complete finite element model has more than 80000 DOFs. Three-dimensional
spring elements, which take into account the structural flexibility of the tires and landing
gears, are used as boundary conditions of the aircraft. At each wing tip, the fuel tank is
connected with front and rear attachments (see Figure 3.21). In this linear model, these
connections between the wings and the fuel tanks are modeled using beam elements. The
linear model, originally created in the Nastran software, was converted and exploited in
the Samcef finite element environment for this study.

The natural frequencies of the underlying linear system in the [0-50Hz] frequency range
are given in Table 3.3. The first nine modes correspond to aircraft rigid-body modes: six
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Figure 3.20: Morane-Saulnier Paris aircraft.

Length Wingspan Height Wing area Weight
(m) (m) (m) (m2) (kg)

10.4 10.1 2.6 18 1945

Table 3.2: Properties of the Morane-Saulnier Paris aircraft
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Figure 3.21: Connection between external fuel tank and wing tip (top view). Close-up of
(a) front and (b) rear bolted attachments.
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Figure 3.22: Finite element model of the Morane-Saulnier Paris aircraft.

Mode Freq. Mode Freq.
(Hz) (Hz)

1 0.0936 13 21.2193
2 0.7260 14 22.7619
3 0.9606 15 23.6525
4 1.2118 16 25.8667
5 1.2153 17 28.2679
6 1.7951 18 29.3309
7 2.1072 19 31.0847
8 2.5157 20 34.9151
9 3.5736 21 39.5169
10 8.1913 22 40.8516
11 9.8644 23 47.3547
12 16.1790 24 52.1404

Table 3.3: Natural frequencies of the linear finite element model of the Paris aircraft.
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modes are modes of suspensions of the landing gear while the three others are associated
to rigid-body motions of the control surfaces (i.e., the ailerons, elevator and rudder). The
frequency range of the rigid-body modes is comprised between 0.09 and 3.57 Hz, i.e.,
noticeably lower than the first flexible mode located at 8.19 Hz. The modal shapes of
different elastic normal modes of vibrations are depicted in Figure 3.23. Figure 3.23(a)
represents the first wing bending mode. The first and second wing torsional modes are
depicted in Figures 3.23(b) and 3.23(c). These two torsional modes correspond to sym-
metric and anti-symmetric wing motions, respectively. As shown thereafter, these modes
are of particular interest in nonlinear regime since there is a significant deformation of the
connections between the wings and fuel tanks. Indeed, the other modes mainly concern
the aircraft tail and are consequently almost unaffected by these nonlinear connections.

Reduced-Order Model

The proposed algorithm for the numerical computation of NNMs is computationally in-
tensive for the large-scale original model. Since the nonlinearities are spatially localized,
condensation of the linear components of the model is an appealing approach for a com-
putationally tractable and efficient calculation.

A reduced-order model of the linear finite element model is constructed using the Craig-
Bampton (also called component mode synthesis) reduction technique [29, 46]. This
method consists in describing the system in terms of some retained DOFs and internal
vibration modes. By partitioning the complete system in terms of nR remaining xR and
nC = n−nR condensed xC DOFs, the n governing equations of motion of the global finite
element model are written as

[

MRR MRC

MCR MCC

] [

ẍR

ẍC

]

+

[

KRR KRC

KCR KCC

] [

xR

xC

]

=

[

gR

0

]

(3.3)

The Craig-Bampton method expresses the complete set of initial DOFs in terms of: (i)
the remaining DOFs through the static modes (resulting from unit displacements on the
remaining DOFs) and (ii) a certain number m < nC of internal vibration modes (relating
to the primary structure fixed on the remaining nodes). Mathematically, the reduction is
described by relation

[

xR

xC

]

=

[

I 0

−K−1
CCKCR Φm

] [

xR

y

]

= R

[

xR

y

]

(3.4)

which defines the n × (nR + m) reduction matrix R. y are the modal coordinates of
the m internal LNMs collected in the nC × m matrix Φm = [φ(1) . . . φ(m)]. These modes
are solutions of the linear eigenvalue problem corresponding to the system fixed on the
remaining nodes

(

KCC − ω2
(j)MCC

)

φ(j) = 0 (3.5)
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(a)

(b)

(c)

Figure 3.23: Normal modes of the linear finite element model of the Morane-Saulnier Paris
aircraft. (a) First wing bending mode (8.19 Hz), (b) first (symmetric) wing torsional mode
(31.08 Hz) and (b) second (anti-symmetric) wing torsional mode (34.92 Hz).
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The reduced model is thus defined by the (nR +m)× (nR +m) reduced stiffness and mass
matrices given by

M = R∗MR

K = R∗KR
(3.6)

where star denotes the transpose operation. After reduction, the system configuration is
expressed in terms of the reduced coordinates (i.e., the remaining DOFs and the modal
coordinates). The initial DOFs of the complete model are then determined by means of
the reduction matrix using relation 3.4.

In order to introduce the nonlinear behavior of the connections between the wings and the
tanks, the reduced-order linear model of the aircraft is constructed by keeping one node
on both sides of the attachments. For each wing, four nodes are retained: two nodes for
the front attachment and two nodes for the rear attachment. In total, only eight nodes of
the finite element model are kept to build the reduced model. It is completed by retaining
the first 500 internal modes of vibrations. Finally, the model is thus reduced to 548 DOFs:
6 DOFs per node (3 translations and 3 rotations) and 1 DOF per internal mode. The
reduction is performed using the Samcef software. The generated reduced-order model is
next imported in the MATLAB environment.

Before proceeding to nonlinear analysis, the accuracy of the reduced-order linear model is
assessed. To this end, the LNMs of the initial complete finite element model are compared
to those predicted by the reduced model. The deviation between the mode shapes of the
original model x(o) and of the reduced model x(r) is determined using the Modal Assurance
Criterion (MAC)

MAC =

∣

∣

∣
x∗

(o)x(r)

∣

∣

∣

2

∣

∣

∣
x∗

(o)x(o)

∣

∣

∣

∣

∣

∣
x∗

(r)x(r)

∣

∣

∣

(3.7)

MAC values range from 0 in case of no correlation to 1 for a complete coincidence. In
the [0-100Hz] range, MAC values between modes shapes are all greater than 0.999 and
the maximum relative error on the natural frequencies is 0.2%. It therefore validates
the excellent accuracy of the reduced linear model in this frequency range. It is worth
noticing that less internal modes are sufficient to ensure such a correlation in the [0-100Hz]
frequency range, which is typically the range of interest for aircrafts. However, a larger
number of modes was deliberately chosen for two main reasons. On the one side, it serves
to illustrate the ability of the numerical algorithm to deal with the NNM computation
of higher-dimensional systems. On the other hand, due to nonlinearity, modes of higher
frequencies may interact with lower modes of interest. In nonlinear regimes, internal
modes of higher frequencies may then be necessary to guarantee the accuracy of the
model.
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Nonlinear Model

The existence of a softening nonlinear behavior was evidenced during different vibration
tests conducted by ONERA. In particular, FRF measurements revealed the decrease of
resonant frequencies with the level of excitation. The connections between the wings and
fuel tanks were assumed to cause this observed nonlinear effect.

To confirm this hypothesis, both (front and rear) connections of each wing were instru-
mented and experimental measurements were carried out. Specifically, accelerometers
were positioned on both (wing and tank) sides of the connections and two shakers were
located at the tanks. This is illustrated in Figure 3.24 for a rear connection.

The dynamic behavior of these connections in the vertical direction is investigated using
the restoring force surface (RFS) method [84]. By writing Newton’s second law at the
wing side of each connection, it follows

mcẍc(t) + fr,c = 0 (3.8)

where fr,c is the restoring force applied to this point. The index c is related to the
connection under consideration (i.e., either the rear or front attachment of the left or
right wing). From Equation (3.8), the restoring force is obtained by

fr,c = −mcẍc(t) (3.9)

Except the multiplicative mass factor mc, the restoring force is then given by the accel-
eration ẍc(t). Nevertheless, this total restoring force does not consist only of the internal
force related to the connection of interest, but also includes contributions from the linking
forces associated to the wing elastic deformation. Provided that these latter do not play a
prominent role, the measurement of the acceleration signal may still provide a qualitative
insight into the nonlinear part of the restoring force in the connection between the tank
and the wing.

The aircraft is excited close to the second torsional mode (see Figure 3.23(c)) using a
band-limited swept sine excitation in the vicinity of its corresponding resonant frequency.
In Figure 3.25, the measured acceleration at the wing side is represented in terms of the
relative displacement xrel and velocity ẋrel of the connection obtained by integrating the
accelerations on both sides of the attachment. It is given for the rear connections of the
right and left wings. A nonlinear softening elastic effect is observed from the evolution
of these estimated restoring force surfaces. In particular, the detected behavior has a
piecewise characteristic. This is more clearly evidenced by the corresponding stiffness
curves also depicted in Figure 3.25. Softening nonlinearity is typical of bolted connections
[43, 52]. Similar nonlinear effect occurs for the front connections, but they participate
much less in the considered response. Finally, the deviation between the right and left
connections seems to show asymmetry of the connections.

Although purely qualitative, the RFS results therefore indicate that the tank connec-
tions present a softening stiffness in the vertical direction. As previously mentioned,
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Figure 3.24: Instrumentation of the rear attachment of the right wing.
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Figure 3.25: Estimated restoring force in the connections between tanks and wings. Left
plots: measured acceleration (m/s2) in terms of the relative displacement (m) and ve-
locity (m/s). Right plots: stiffness curve given by two-dimensional section of the three-
dimensional plot for zero relative velocity. Top plots: rear tank connection of the left
wing. Bottom plots: rear tank connection of the right wing.
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a model with piecewise characteristic could be consistent with the experimental obser-
vations. However, the NNM algorithm, in its present form, cannot handle nonsmooth
nonlinearities. Alternatively, linear and negative cubic stiffness terms are one possible
manner of describing the observed nonlinear behavior. Hence, the reconstructed stiffness
curve is obtained by fitting to the data the mathematical model

fr,c = kxrel + k−

nlx
3
rel (k−

nl < 0) (3.10)

In view of the qualitative value of this approach, we note that the objective followed here
is to derive a simplified realistic model in order to illustrate the numerical computation
procedure of NNMs. Accordingly, in the present study, the nonlinear behavior is modeled
by adding negative cubic stiffness nonlinearities into the linear part of the connections.
An indicative value of −1013N/m3 is adopted for each connection. Finally, the nonlinear
system is constructed from the reduced-order model by means of cubic springs positioned
vertically between both corresponding nodes retained on either side of connections.

3.4.2 Nonlinear Modal Analysis

The numerical computation of NNMs is realized in the MATLAB environment using the
nonlinear reduced-order model. In this context, this section focuses on some specific
modes.

Fundamental NNMs

The modes of the aircraft can be classified into two categories, depending on whether they
correspond to wing motions or not. The modes localized mainly on other structural parts
(such as the vertical stabilizer, the horizontal tail or the fuselage) are almost unaffected
by the nonlinear connections located at the wing tips. Only the modes involving wing
deformations are perceptibly affected by nonlinearity. According to the relative motion
of the fuel tanks, these modes are more or less altered for increasing energy levels.

An unaffected mode is first examined in Figure 3.26. It corresponds to the nonlinear
extension of the first tail bending LNM (mode 13 in Table 3.3). In this figure, the
computed backbone and related NNM motions are depicted in the FEP. The modal shapes
are given in terms of the initial displacements (with zero initial velocities assumed) that
realize the NNM motion. It clearly confirms that the modal shape and the oscillation
frequency remain practically unchanged with the energy in the system.

Modes involving wing deformations are now investigated. The first wing bending mode
(i.e., the nonlinear extension of mode 10 in Table 3.3) is illustrated in Figure 3.27. The
FEP reveals that this mode is weakly affected by the nonlinearities. The frequency of
the NNM motions on the backbone slightly decreases with increasing energy levels, which
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results from the softening characteristic of the nonlinearity. Regarding the modal shapes,
they are almost identical over the energy range and resemble the corresponding LNM.
MAC value between the NNM shapes at low and high energy levels (see (a) and (b) in
Figure 3.27) is 0.99.

Figure 3.28 represents the FEP of the first (symmetric) wing torsional mode (i.e., mode 19
in Table 3.3). For this mode, the relative motion of the fuel tanks is more important, which
enhances the nonlinear effect of the connections. As a result, the oscillation frequency
has a stronger energy dependence along the backbone branch. On the other hand, the
modal shapes are still weakly altered. MAC value between the NNM shapes on the
backbone at low and high energy levels (see (a) and (b) in Figure 3.28) is equal to 0.98.
In addition, the FEP highlights the presence of three tongues, revealing the existence
of internal resonances between this symmetric torsional mode and other modes. These
observed modal interactions are discussed in the next section.

Finally, the second (anti-symmetric) wing torsional mode (i.e., mode 20 in Table 3.3) is
plotted in the FEP of Figure 3.29. While the oscillation frequency is noticeably altered by
nonlinearity, modal shapes are again slightly changed. Over the energy range of interest,
the decrease in frequency is around 5% along the backbone branch. MAC value between
the modal shapes at low and high energy levels (see (a) and (b) in Figure 3.29) is 0.97.
It shows that the nonlinearities spatially localized between the wing tips and the tanks
weakly influence the NNM spatial shapes. Besides the NNM backbone, one tongue is
present at higher energy. For information, the computation of the backbone branch up
to the tongue needs 20 min with 100 time steps over the half period (using Intel i7 920
2.67GHz processor). Due to the presence of turning points, the computation of the tongue
is more expensive and demands about one hour.

Similar dynamics were observed for the higher modes and are not further described herein.

Internally Resonant NNMs

Besides the backbone branches, the previous FEPs show the presence of tongues of inter-
nally resonant NNMs, similarly to what was observed for the previously studied systems.
Following the resonance scenario already detailed, these additional branches emanate from
the backbone of a specific NNM and coalesce into the backbone branch of another NNM,
thereby realizing an internal resonance between the two modes.

This is briefly illustrated in Figure 3.30 regarding the 3:1 tongue emanating from the
backbone of the first wing torsional mode (see Figure 3.28). Modal shapes are given
at three different locations on the tongue (see (a), (b) and (c) in Figure 3.30). When
the energy gradually increases along the tongue, a smooth transition from the first wing
torsional mode to a higher tail torsional mode occurs. Interestingly, Figure 3.30(b) shows
an inherently nonlinear mode with no counterpart in the underlying linear system. It
corresponds to a 3:1 internal resonance as evidenced by the evolution of the time series and
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Figure 3.26: FEP of the first tail bending NNM of the Paris aircaft. NNM shapes at energy
levels marked in the FEP are inset; they are given in terms of the initial displacements
(m) that realize the periodic motion (with zero initial velocities assumed).
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Figure 3.27: FEP of the first wing bending NNM of the Paris aircraft. NNM shapes
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Figure 3.29: FEP of the second (anti-symmetric) wing torsional NNM of the Paris aircraft.
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Figure 3.30: 3:1 internal resonance between the first wing torsional mode and a higher
tail mode of the Paris aircraft. Top plot: close-up in the FEP of the 3:1 tongue of Figure
3.28. Bottom plots: NNM motions at (a) beginning of the tongue (in the vicinity of the
backbone of the the first wing torsional mode); (b) middle of the tongue; and (c) extremity
of the tongue. From top to bottom: NNM shapes; time series of the vertical displacements
at the rear tip of the right tank (——) and at the right side of the horizontal tail (−−−);
Fourier coefficients of both displacements (in grey and black, respectively).
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the frequency content, also represented in Figure 3.30, of the periodic motions along the
tongue. A third harmonic progressively appears, and the structure vibrates according to a
subharmonic motion characterized by two dominant frequency components. The relative
importance of the third harmonic grows along the tongue, until the mode transition is
realized.

Similarly, two other tongues corresponding to 5:1 and 9:1 internal resonances between
this first wing torsional mode and higher modes are observed in the FEP of Figure 3.28.
Moreover, the FEP of Figure 3.29 reveals the presence of a 9:1 internal resonance between
the second wing torsional mode and another higher mode of the aircraft. We note that
the practical realization of these internal resonances is questionable in view of the low
frequency changes, and would deserve more attention in further studies.

3.5 Concluding Remarks

A computational approach for NNM calculation was considered in this chapter for per-
forming theoretical modal analysis of nonlinear systems of increasing complexity. The dif-
ferent examples revealed that the proposed numerical algorithm can investigate strongly
nonlinear regimes of motion, something which is not possible using existing analytic tech-
niques. Nonlinear phenomena with no linear counterparts, including localization and
modal interactions with no commensurate linear frequencies, were also exhibited by the
method. An important finding of this chapter is that the accurate computation of NNMs
of real-world structural systems, such as the full-scale aircraft studied herein, is now
within reach. This clearly opens up new horizons for the application of the NNM theory
in practical applications.



Chapter 4

Modal Testing based on Nonlinear

Normal Mode Force Appropriation

Abstract

Modal testing and analysis is well-established for linear mechanical systems.
The objective of the present chapter is to progress toward an experimental
modal analysis (EMA) methodology of nonlinear structures by targeting the
extraction of nonlinear normal modes (NNMs) from time responses. A non-
linear extension of force appropriation techniques is developed in this study in
order to isolate a single NNM during the experiments. Thanks to the invariance
principle, the energy dependence of that nonlinear mode (i.e., the NNM modal
curves and their frequencies of oscillation) can be extracted from the resulting
free decay response using time-frequency analysis. The proposed methodology
is demonstrated using two numerical examples, a 2DOF system and a planar
cantilever beam with a cubic spring at its free end.
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4.1 Introduction

In the virtual prototyping era, dynamic testing remains an important step of the design of
engineering structures, because the accuracy of finite element predictions can be assessed
[39]. In this context, experimental modal analysis (EMA) is indubitably the most popular
approach and extracts the modal parameters (i.e., the mode shapes, natural frequencies
and damping ratios). The popularity of EMA stems from its great generality; modal
parameters can describe the behavior of a system for any input type and any range of the
input.

For linear structures, the techniques available today for EMA are really quite sophisticated
and advanced: eigensystem realization algorithm [58], stochastic subspace identification
method [158], polyreference least-squares complex frequency-domain method [107], to
name a few. Modal identification of complex industrial structures with high modal density
and large modal overlap is now within reach. Unification of the theoretical development
of EMA algorithms was attempted in [2, 3], which is another sign of the maturity of this
research field.

As reported in [64], a large body of literature exists regarding dynamic testing and identifi-
cation of nonlinear structures, but very little work addresses nonlinear phenomena during
modal survey tests. Interesting contributions in this context are [10, 49, 113]. The force
appropriation of nonlinear systems (FANS) method extends linear force appropriation to
nonlinear structures [10]. A multi-exciter force pattern that includes higher harmonic
terms is used to counteract nonlinear coupling terms, which prevent any response other
than the linear normal mode (LNM) of interest. The nonlinear resonant decay (NLRD)
method applies a burst of a sine wave at the undamped natural frequency of a linear
mode and enables small groups of modes coupled by nonlinear forces to be excited [113].
A nonlinear curve fit in modal space is then carried out using the restoring force surface
(RFS) method. Another test strategy that identifies nonlinearities in modal space using
the RFS method is discussed in [49]. Alternatively, a nonlinear modal identification ap-
proach based on the single nonlinear resonant mode concept [138, 139] and on a first-order
frequency-domain approximation is proposed and applied in [26, 47, 124, 125]. The forced
frequency responses are expressed as a combination of a resonant nonlinear mode response
and of linear contributions from the remaining modes. By a curve-fitting procedure, the
amplitude-dependent nonlinear modal parameters may be identified from experimental
responses close to the resonance. In a recent work [23], nonlinear modal identification is
carried out by means of a linearization procedure.

In this chapter, an attempt is made to extend EMA to a practical nonlinear analog using
the nonlinear normal mode (NNM) theory. Following the philosophy of force appropri-
ation, the proposed method excites the NNMs of interest, one at a time. To this end,
the phase lag quadrature criterion is generalized to nonlinear structures in order to locate
single-NNM responses. Thanks to the invariance principle (i.e., if the motion is initiated
on one specific NNM, the remaining NNMs remain quiescent for all time), the energy de-
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pendence of the NNM modal curves and their frequencies of oscillation can be extracted
directly from experimental time data.

When used in conjunction with the numerical computation of the NNMs introduced in
Chapter 2 for theoretical modal analysis (TMA), the approach described herein leads
to an integrated methodology for modal analysis of nonlinear vibrating structures (see
Figure 1). This methodology can, for instance, be used for validating dynamic models, as
is routinely carried out for aerospace structures (e.g., ground vibration testing of aircrafts
[48, 106]).

The present chapter is organized as follows. In the next section, the proposed procedure
for nonlinear EMA is presented. The different concepts are illustrated using a nonlinear
2DOF system. The approach is demonstrated and assessed in Section 4.3 using numerical
experiments carried out on a nonlinear beam.

4.2 Experimental Modal Analysis

There are two classical linear approaches for EMA. Phase separation methods excite
several modes at once using either broadband excitation (e.g., hammer impact and ran-
dom excitation) or swept-sine excitation covering the frequency range of interest. Phase
resonance methods excite one mode at a time using multi-point sine excitation at the cor-
responding natural frequency [40]. A careful selection of the shaker locations is required
to induce single-mode behavior. This process is also known as normal-mode tuning or
force appropriation [165].

Phase resonance methods have been used for decades, particularly in the aerospace in-
dustry (e.g., for ground vibration testing of aircrafts [30] and modal survey of satellites
[31, 32]). They provide a very accurate identification of the modal parameters, but they
are time-consuming. In order to reduce the testing time, phase separation methods are
now used in conjunction with phase resonance methods [48, 106]; these latter are reserved
for modes that need a special attention (e.g., closely spaced modes and important modes
for flutter computations).

4.2.1 Proposed Methodology for NNM Identification

In the present chapter, the objective is to develop nonlinear EMA by targeting the iden-
tification of NNMs. Realizing that the general motion of a nonlinear system cannot be
expressed as a superposition of NNMs, it is not clear how individual NNMs can be ex-
tracted using phase separation methods. This is why our focus is on the extension of
phase resonance testing to nonlinear structures.

The present section introduces a two-step approach that extracts the NNM modal curves
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and their frequencies of oscillation directly from experimental data. This method is sum-
marized in Figure 4.1.

First, the method consists in exciting the system to induce single-NNM behavior at a
specific energy level. To this end, an extension of force appropriation to nonlinear systems
is developed. In particular, the phase lag of the response with respect to the applied force
is used as an indicator to assess the quality of the appropriation. This first step, referred
to as NNM force appropriation, is represented in the upper part of Figure 4.1.

The second step turns off the excitation to track the energy dependence of the NNM of
interest using the free damped response resulting from the appropriated NNM motion. A
schematic representation is presented in the lower part of Figure 4.1. During this NNM
free decay identification, the frequency-energy dependence may be extracted using time-
frequency analysis. More details on the two steps of the procedure are given in the next
sections.

The methodology therefore consists in extracting one NNM at a time from the time series
by means of this two-step procedure. In order to relate the forced and free responses
of the damped system to the NNMs of the underlying conservative (i.e., undamped and
unforced) system, the approach relies on three fundamental properties already discussed
in Chapter 1:

1. Forced responses of nonlinear systems at resonance occur in the neighborhood of
NNMs [154].

2. According to the invariance property, motions that start out in the NNM manifold
remain in it for all time [129].

3. For weak to moderate damping, its effect on the transient dynamics may be con-
sidered to be purely parasitic. The damped invariant manifold can therefore be
approximated by the undamped invariant manifold. The free damped dynamics
closely follows the NNM of the underlying undamped system [104, 153].

From a practical viewpoint, the overall procedure for nonlinear EMA may be viewed
as forced vibration testing where the appropriate force is applied as a burst excitation
through several exciters for inducing single-NNM decay response. The philosophy of the
resonant decay method [113] is then extended to the identification of NNMs of vibrating
structures.

4.2.2 Force Appropriation

For linear EMA, the force appropriation method generates appropriate harmonic forces
at different locations on the structure to isolate a single normal mode. The measurement
of the single-mode response then allows to extract the corresponding modal parameters.
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Figure 4.1: Proposed methodology for experimental modal analysis of nonlinear systems.
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Force appropriation is usually performed by adapting the frequency and the amplitude
distribution of the multi-point excitation. According to the phase lag quadrature crite-
rion (also called phase resonance criterion) [40, 46], a linear damped structure vibrates
according to one of the normal modes of the underlying conservative system if all degrees
of freedom vibrate synchronously with a phase lag of 90◦ with respect to the harmonic
excitation. Hence, if the phase quadrature criterion is verified during the experimental
testing, a single undamped normal mode is isolated, and the natural frequency and the
mode shape can be identified.

The NNM framework is used herein to extend force appropriation to nonlinear structures
in order to isolate and extract a single NNM at a time. To this end, the forced response
of a nonlinear structure with linear viscous damping is considered

Mẍ(t) + C ẋ(t) + Kx(t) + fnl {x(t)} = p(t) (4.1)

where p(t) is the external excitation and C is the damping matrix. It is assumed that
the nonlinear restoring force contains only stiffness nonlinearities.

In what follows, the necessary and sufficient conditions for isolating a single NNM are
formulated. In this context, the excitation that induces a single NNM, termed appropriate
excitation, is first examined. A generalization of the phase lag quadrature criterion to
nonlinear structures is next introduced. It is important to note that when an ‘NNM’
is referred to in this study, it stands for the NNM of the underlying conservative (no
damping and no external force) system (1.1), i.e., the undamped NNM, according to the
definition in Chapter 1.

Appropriate Excitation

Extracting a given NNM motion xnnm(t) of the underlying conservative system by means
of appropriate excitation is equivalent to assume

x(t) = xnnm(t) (4.2)

in the equations of motion of the forced and damped system (4.1). It leads to

Mẍnnm(t) + C ẋnnm(t) + Kxnnm(t) + fnl {xnnm(t)} = pnnm(t) (4.3)

where pnnm(t) is the corresponding appropriate excitation.

Because an undamped NNM motion xnnm(t) is defined as a periodic solution of the un-
derlying conservative system, it follows that

Mẍnnm(t) + Kxnnm(t) + fnl {xnnm(t)} = 0 (4.4)

Substituting expression (4.4) in Equation (4.3), the excitation vector achieving a perfect
appropriation (i.e., x(t)=xnnm(t)) of the damped system (4.1) is given by

pnnm(t) = C ẋnnm(t) (4.5)
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As in the linear case, it expresses that the applied excitation has to compensate for the
damping terms. This relationship shows that the appropriate excitation is periodic and
has the same frequency components as the corresponding NNM motion (i.e., generally
including multi-harmonic components).

An NNM motion is now expressed as a Fourier cosine series

xnnm(t) =

∞
∑

k=1

Xnnm
k cos(kωt). (4.6)

where ω is the fundamental pulsation of the NNM motion and Xk is the amplitude vec-
tor of the kth harmonic. This type of motion is referred to as monophase NNM motion
due to the fact that the displacements of all DOFs reach their extreme values simultane-
ously. Regarding the monophase NNM motion (4.6), the expression of the corresponding
appropriate excitation is given by

pnnm(t) = −
∞
∑

k=1

CXnnm
k kω sin(kωt) (4.7)

Comparing Equations (4.6) and (4.7), the excitation of a monophase NNM is thus charac-
terized by a phase lag of 90◦ of each harmonic with respect to the displacement response.

For illustration, the nonlinear 2DOF system studied previously and represented in Figure
1.1 is considered. Linear viscous damping is now taken into account to model dissipative
effects in the structure. The forced response of the damped system is governed by the
equations of motion

ẍ1 + 0.03ẋ1 + (2x1 − x2) + 0.5 x3
1 = p1

ẍ2 + 0.01ẋ2 + (2x2 − x1) = p2

(4.8)

which corresponds to moderate damping and where p1(t) and p2(t) represent the forces
applied to this system. The NNMs of the underlying conservative system

ẍ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + (2x2 − x1) = 0
(4.9)

have been examined in detail in Chapter 1 and are represented in the frequency-energy
plot (FEP) of Figure 1.13.

Figure 4.2 shows the time series and the configuration space of an undamped in-phase
NNM motion at low energy (see point (a) in Figure 4.10). This free motion of the un-
derlying undamped system (4.9) resembles that of the in-phase LNM. The modal curve
represented in the configuration space is a straight line. The appropriate excitation cor-
responding to this NNM motion calculated using expression (4.5) is depicted in Figure
4.3. The steady-state forced response of the damped system (4.8) under this appropriate
excitation is shown in Figure 4.4. The response is in perfect agreement with the un-
damped and unforced NNM motion in Figure 4.2. The Fourier coefficients of the forced
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Figure 4.2: Low-energy in-phase NNM motion of the conservative 2DOF system (4.9).
(a) Time series (——: x1(t); −−−: x2(t)). (b) Modal curve in the configuration space.

0 1 2 3 4 5 6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

Time (s)

F
or

ce
(N

)

Figure 4.3: Time series of the appropriate excitation corresponding to the low-energy
NNM motion in Figure 4.2 (——: p1(t); −−−: p2(t)).

0 1 2 3 4 5 6
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time (s)

D
is

p
la

ce
m

en
t

(m
)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Displacement x1 (m)

D
is

p
la

ce
m

en
t

x
2

(m
)

(a) (b)

Figure 4.4: Forced response of the damped 2DOF system (4.8) to the appropriate ex-
citation of Figure 4.3. (a) Time series (——: x1(t); − − −: x2(t)). (b) Motion in the
configuration space.
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Figure 4.5: Fourier coefficients of the appropriate excitation and the corresponding forced
response of the damped 2DOF system (4.8) consisting of a low-energy NNM motion
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Figure 4.6: High-energy in-phase NNM motion of the conservative 2DOF system (4.9).
(a) Time series (——: x1(t); −−−: x2(t)). (b) Modal curve in the configuration space.
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NNM motion in Figure 4.6 (——: p1(t); −−−: p2(t)).
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Figure 4.8: Forced response of the damped 2DOF system (4.8) to the appropriate ex-
citation of Figure 4.7. (a) Time series (——: x1(t); − − −: x2(t)). (b) Motion in the
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Figure 4.9: Fourier coefficients of the appropriate excitation and the corresponding forced
response of the damped 2DOF system (4.8) consisting of a high-energy NNM motion
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Figure 4.10: Frequency-energy dependence of the appropriate excitation for the 2DOF
system (4.8). Top plot: FEP of the in-phase NNM of the underlying undamped sys-
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(——: p1(t); − − −: p2(t)); Fourier coefficients of the appropriate excitation (grey: p1;
black: p2); time series of the corresponding NNM motion (——: x1(t); − − −: x2(t));
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response and of the appropriate excitation are represented in Figure 4.5. There is one
main harmonic component in the excitation and in the response: this fundamental fre-
quency corresponds to the linear natural frequency of the in-phase LNM. A phase lag
of 90◦ is observed between the excitation and the response. At this low energy level,
the nonlinear terms are negligible and the results are therefore consistent with the linear
theory.

Similarly, an undamped in-phase NNM motion at high energy (see point (d) in Figure
4.10) is considered. The time series and the configuration space of this NNM motion
are depicted in Figure 4.6. The related appropriate excitation is illustrated in Figure
4.7. Figure 4.8 shows that the corresponding steady-state forced response of the damped
system (4.8) agrees very well with the undamped NNM motion of Figure 4.6. The Fourier
coefficients are presented in Figure 4.9. For this strongly nonlinear regime, multi-harmonic
components are observed. In addition to the fundamental frequency, higher harmonic
terms are necessary to induce exactly this high-energy NNM motion. Figure 4.9 also
reveals the phase lag of 90◦ of each harmonic of the excitation with respect to that of the
response.

One important feature of the appropriate excitation is that it is energy-dependent. In par-
ticular, it is characterized by the same frequency-energy dependence as the corresponding
NNM. As evidenced in (4.5), both signals possess the same frequency components. This
is illustrated for the 2DOF example in Figure 4.10 where the FEP of the in-phase NNM
is depicted. The appropriate excitation and the resulting NNM motion are depicted for
four different energy levels. Their Fourier coefficients are also represented. Clearly, when
progressing from low to high energies, the fundamental frequency of the appropriate ex-
citation increases, which is due to the hardening behavior of the system. In addition,
multiple harmonics are necessary to induce single-NNM behavior.

Phase Lag Quadrature Criterion for NNM Force Appropriation

The previous section has demonstrated that nonlinear systems can successfully be forced
according to a given NNM at a specific energy level through force appropriation. Specifi-
cally, if the applied force obeys Equation (4.5), an NNM can be isolated. Because limited
knowledge of the damping matrix is available in practical applications, a direct applica-
tion of Equation (4.5) is generally not possible, and one has to resort to an iterative force
appropriation. In this context, an indicator highlighting that the NNM appropriation has
effectively been achieved would be particularly useful. This is why the objective of the
present section is to generalize the phase lag quadrature criterion (or phase resonance
criterion) to nonlinear systems.

The forced response of the damped system (4.1) is examined when it vibrates according
to a monophase periodic motion with a phase lag of 90◦ of each harmonic with respect to
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the periodic excitation, i.e.,

x(t) =

∞
∑

k=1

Xk cos(kωt) (4.10)

and

p(t) =
∞
∑

k=1

Pk sin(kωt) (4.11)

As the response is even with respect to the time, the nonlinear restoring forces can be
written as a cosine series

fnl(x(t)) =

∞
∑

k=1

Fnl,k cos(kωt) (4.12)

where Fnl,k = Fnl,k(Xr) is a function of the harmonic coefficients Xr (r = 1, . . . ,∞).

In addition, the velocity and the acceleration vectors are computed by time differentiation

ẋ(t) = −
∞
∑

k=1

kωXk sin(kωt)

ẍ(t) = −
∞
∑

k=1

k2ω2Xk cos(kωt)

(4.13)

By inserting all these expressions into the equations of motion (4.1), we obtain

−M

∞
∑

k=1

k2ω2Xk cos(kωt) − C

∞
∑

k=1

kωXk sin(kωt) + K

∞
∑

k=1

Xk cos(kωt) +

∞
∑

k=1

Fnl,k cos(kωt)

=
∞
∑

k=1

Pk sin(kωt)

(4.14)

By balancing the coefficients of respective harmonics, it follows that

−k2ω2MXk + KXk + Fnl,k(Xr) = 0

−kωCXk = Pk

(4.15)

for k = 1, . . . ,∞. So, the external force is given by

p(t) =

∞
∑

k=1

Pk sin(kωt)

= −
∞
∑

k=1

kωCXk sin(kωt)

= Cẋ(t)

(4.16)
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and the periodic response x(t) is a solution of the underlying conservative system (1.1).
The response x(t) is therefore an undamped NNM motion of the system: the NNM force
appropriation is realized.

In conclusion, the phase lag quadrature criterion, valid for linear systems, can be general-
ized to monophase NNM motions of nonlinear structures, where the phase lag is defined
with respect to each harmonic of the monophase signals.

In other words, if the response (in terms of displacements or accelerations) across the
structure is a monophase periodic motion in quadrature with the excitation, the structure
vibrates according to a single NNM of the underlying conservative system. The phase lag
of the generated monophase excitation with respect to the response can thus be used as
an indicator of the NNM appropriation.

No direct constructive method exists to determine the appropriate excitation of a given
NNM. Such an excitation has to be derived through successive approximations based
on this indicator. For nonlinear structures, in addition to the spatial distribution of
the multi-point excitation, the amplitude distribution of harmonic terms has also to be
tuned. In fact, the frequency-energy dependence of nonlinear systems prevents the direct
separation of space and time in the governing equations of motion, which may complicate
the experimental realization of force appropriation from a theoretical viewpoint.

The phase resonance feature has been highlighted in the previous section. For NNM
motions of the damped 2DOF system, a phase lag of 90◦ of the displacement response
with respect to the monophase appropriate excitation has been shown (see Figures 4.3
and 4.7). The phase lag quadrature criterion is now used for estimating the quality of the
NNM appropriation. The periodic forced responses of the damped 2DOF system (4.8) to
a harmonic force of frequency ω and amplitude F applied to the first DOF

ẍ1 + 0.03ẋ1 + (2x1 − x2) + 0.5 x3
1 = F sin(ωt)

ẍ2 + 0.01ẋ2 + (2x2 − x1) = 0
(4.17)

are analyzed. An imperfect force appropriation (i.e., p2(t) = 0 and purely harmonic exci-
tation) is purposely considered to investigate the robustness of the proposed procedure.

The nonlinear frequency responses close to the resonance of the in-phase mode were
computed using shooting and continuation methods and are depicted in Figure 4.11. They
are given in terms of amplitude and phase lag (of the fundamental frequency component)
of the displacement response for increasing forcing amplitudes. It is observed that the
phase quadrature criterion is almost verified close to the forced resonance. For F = 0.2N,
i.e., at the point marked by a square, the phase lag is equal to 90◦ and 91◦ for the first
and second DOFs, respectively. Figure 4.12 represents the time series of the displacement
response. Clearly, the displacement is practically monophase with a phase lag around 90◦

with respect to the excitation p1(t) = F sin(ωt).

These results also confirm that forced responses of nonlinear systems at resonance occur in
the neighborhood of NNMs as already shown in Chapter 1. The backbone of the in-phase
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Figure 4.11: Nonlinear frequency responses of the damped 2DOF system (4.17) close to the
first resonant frequency (6 different forcing amplitudes F : 0.005N, 0.01N, 0.02N, 0.05N,
0.1N, 0.2N). The dashed line is the backbone of the first undamped NNM (computed by
means of the numerical algorithm). Top plots: displacement amplitude. Bottom plots:
phase lag of the displacement with respect to the excitation. (a) x1; (b) x2.
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Figure 4.12: Forced response (corresponding to F = 0.2N and marked by a square in
Figure 4.11) of the damped 2DOF system (4.17). (a) Time series (——: x1(t); − − −:
x2(t)). (b) Motion in the configuration space.
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undamped NNM (represented in Figure 1.13) is expressed in terms of amplitude and is
displayed using a dashed line in Figure 4.11. This backbone curve traces the locus of the
frequency response peaks. In addition, the undamped NNM motion corresponding to the
same frequency as the point marked by a square in Figure 4.11 is shown in Figure 4.6.
An excellent agreement is observed between the time series of Figures 4.6 and 4.12, the
mean-square error (MSE) being around 0.01%.

It is interesting that no forcing on the second DOF and no higher harmonic terms were
necessary to isolate this high-energy NNM motion. This is an appealing feature for future
practical realizations, at least for structures with relatively well-separated modes. A
constructive procedure for inducing single-NNM behavior could be to perform successive
adjustments of a stepped sine excitation until the phase lag criterion is verified. This
approach is considered in Section 4.3 where the proposed methodology is demonstrated
using simulated experiments of a nonlinear beam.

It is worth pointing out that the phase lag quadrature criterion, demonstrated here for
linear viscous damping, still holds in case of nonlinear damping provided that the damping
force fd,nl is an odd function of the velocity only, i.e., fd,nl(ẋ) = −fd,nl(−ẋ). For monophase
motion (4.10), the damping terms are indeed expressed as a sine series and therefore have
to be compensated by the applied force (4.11). However, if the stiffness and damping
nonlinearities are coupled (i.e., fnl = fnl(x, ẋ)), this criterion generally disappears at the
same time as the concept of NNMs of the underlying conservative system.

4.2.3 Free Decay Identification

By means of nonlinear force appropriation, the forced response of the damped system (4.1)
may be restricted to a single undamped NNM at a specific energy level. In view of the
frequency-energy dependence, successive appropriate excitations at different force levels
have to be considered to provide a complete characterization of the NNM of interest. This
may complicate the experimental realization.

The alternative strategy proposed here consists in exploiting the NNM invariance prop-
erty. When a high-energy NNM motion is isolated using force appropriation, the exci-
tation is stopped to obtain the resulting free damped response. Due to invariance, this
free decay response initiated on the undamped NNM remains close to it when energy
decreases. Using this procedure, the energy dependence of the NNM modal curves and
the corresponding frequencies of oscillation may easily be extracted from the single-mode
free damped response at each measurement location.

As mentioned above, according to invariance, the resulting free damped response closely
follows the corresponding undamped NNM provided that the damping is moderate. The
relation between the two responses is only phenomenological, nevertheless it enables one
to interpret the damped response in terms of NNM motions of the underlying undamped
system. In fact, the damped manifold corresponds to the exact invariant manifold of the
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damped dynamics. However, for lightly damped structures, the latter may be approxi-
mated by the undamped NNM that can be viewed as an attractor of the free damped
response. For illustration, the 2DOF system (4.8) is considered. From the appropriated
in-phase undamped NNM motion of Figure 4.8, the resulting free damped response when
the excitation is removed is depicted in Figure 4.13. Figure 4.14 compares the manifold
corresponding to the in-phase undamped NNM with the free damped response represented
in the same projection of phase space. Clearly, it confirms that the free damped response
traces the NNM manifold of the underlying undamped system with very good accuracy
when energy decreases.

NNM Extraction

As a result, the NNM modal curves may be extracted directly from the single-NNM free
decay response. They are obtained by representing the time series in the configuration
space for one oscillation around specific time instants, associated with different energy
levels. It is illustrated in Figure 4.15 for the 2DOF system around four distinct instants.

To compute the oscillation frequency of NNMs, time-frequency analysis is considered.
The continuous wavelet transform (CWT) is used to track the temporal evolution of the
instantaneous frequencies. The oscillation frequency of the NNM may then be extracted
from the time series of the free damped response. The usual representation of the trans-
form is to plot its modulus as a function of time and frequency in a three-dimensional
or contour plot. For illustration, the CWT of the free decay response of the 2DOF sys-
tem represented in Figure 4.13 is shown in Figure 4.16. The instantaneous frequency
decreases with time, and hence with energy, which reveals the hardening characteristic of
the system.

Reconstructed FEP

When the total energy (i.e., the sum of the kinetic and potential energies) in the system can
be determined, the experimental FEP can be reconstructed in a straightforward manner by
substituting the instantaneous energy in the system for time: (i) the backbone expressing
the frequency-energy dependence of the NNM is provided by the CWT, (ii) the obtained
modal curves around different energy levels are superposed in the plot.

For the 2DOF example, the experimental FEP calculated from the time series of the free
damped response is represented in Figure 4.17. It displays the experimental backbone
determined through the CWT and the experimental modal curves. For comparison, the
theoretical FEP of the undamped NNM computed from the equations of motion is also
illustrated. Except the CWT edge effects, a perfect agreement is obtained between the
two FEPs, which shows again that the undamped NNM is an attractor for the damped
trajectories. In the present case, the linear modal damping ratios are 1% and 0.6%, but
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Figure 4.13: Free response of the damped 2DOF system (4.8) initiated from the in-phase
NNM motion of Figure 4.8. (a) Time series (——: x1(t); − − −: x2(t)). (b) Motion in
the configuration space.
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Figure 4.14: Invariant manifold of the in-phase NNM of the 2DOF system. (a) NNM
manifold of the underlying undamped system (4.9). (b) Free response of the damped
system (4.8).
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Figure 4.15: Extraction of NNM modal curves during the free decay. Top plot: time series
of the resulting single-NNM free response of the damped 2DOF system (4.8). Bottom
plots: NNM modal curves extracted from the time series around four time instants marked
in the top plot by (a), (b), (c) and (d).
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Figure 4.17: Frequency-energy plot of the in-phase NNM of the 2DOF system. (a) The-
oretical FEP computed by means of the numerical algorithm from the undamped system
(4.9). (b) Experimental FEP calculated directly from the time series of the free damped
response of system (4.8) using the CWT. The solid line is the ridge of the transform.
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we note that this result holds for higher damping ratios.

In summary, it is thus validated that the free damped dynamics can be interpreted based
on the topological structure of the NNM of the underlying conservative system. As a
result, one can fully reconstruct the FEP and extract the modal curves together with the
oscillation frequencies of the NNM using the proposed procedure.

4.3 Numerical Experiments of a Nonlinear Beam

The proposed methodology is now demonstrated using simulated experiments of an ex-
isting nonlinear beam. This structure was used as a benchmark for nonlinear system
identification during the European action COST F3 [141] and consists of a cantilever
beam with geometrical nonlinearity. The finite element model considered herein is repre-
sented in Figure 4.18. The main beam is modeled with 14 beam elements and the thin
part with three beam elements. An additional rotational stiffness is used to model the
junction between the two beams. As shown in [63, 75], the nonlinear behavior of the thin
beam can be modeled using a grounded cubic spring at the junction of the main and the
thin beams. The cubic term takes the geometrical stiffening effect of the thin part into
account. The geometrical and mechanical properties of the structure are listed in Tables
4.1 and 4.2.

4.3.1 Theoretical Modal Analysis

The NNMs of the underlying conservative system are computed using the numerical al-
gorithm detailed in Chapter 2. The theoretical FEPs of the first and second NNMs are
represented in Figures 4.19 and 4.20, respectively. The backbone of the plots corresponds
to fundamental synchronous NNM motions. The NNM frequency undergoes a strong in-
crease with increasing energy levels, which reveals the hardening behavior of the cubic
stiffness nonlinearity. The evolution with energy of the modal shapes of the main beam,
expressed in terms of displacement amplitudes, is also superposed. The FEPs highlight
the presence of two other branches, termed tongues, emanating from the NNM backbone.
These tongues reveal the existence of internal resonances. For instance, a 9:1 internal
resonance between the first and third NNMs appears on the tongue in Figure 4.19.

4.3.2 Experimental Modal Analysis

The proposed approach for EMA is now demonstrated numerically. In this context,
Newmark’s numerical time integration scheme is used. Linear proportional damping is
considered to model dissipative forces in the structure. The damping matrix C is given
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Figure 4.18: Finite element model of the nonlinear beam.

Length Width Thickness
(m) (m) (m)

Main beam 0.7 0.014 0.014
Thin beam part 0.04 0.014 0.0005

Table 4.1: Geometrical properties of the nonlinear beam.

Young’s modulus Density Nonlinear coeff. knl

(N/m2) (kg/m3) (N/m3)

2.05 × 1011 7800 8 × 109

Table 4.2: Mechanical properties of the nonlinear beam.

by
C = 3 10−7 K + 5M (4.18)

which corresponds to moderate damping; for instance, the modal damping ratio is equal to
1.28% for the first LNM. We note that the identified modal damping ratio is much smaller
for the existing beam (see Chapter 5). Nevertheless, damping is deliberately chosen larger
in order to ensure the applicability of the methodology to moderately damped structures.

NNM Force Appropriation Procedure

Imperfect Force Appropriation

From a practical viewpoint, it is useful to study the quality of imperfect force appro-
priation consisting of a single-point mono-harmonic excitation, i.e., using a single shaker
with no harmonics of the fundamental frequency. The harmonic force p(t) = F sin(ωt) is
applied to node 4 of the main beam (see Figure 4.18). The nonlinear forced frequency
responses of the damped system close to the first resonance are numerically determined.
They are represented in terms of displacement amplitudes for increasing forcing ampli-
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Figure 4.19: Theoretical frequency-energy plot of the first undamped NNM of the non-
linear beam computed using the numerical algorithm. The NNM shapes (displacement
amplitudes of the main beam) for four energy levels are inset.
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nonlinear beam computed using the numerical algorithm. The NNM shapes (displacement
amplitudes of the main beam) for four energy levels are inset.
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Figure 4.21: Nonlinear forced frequency responses of the damped nonlinear beam close to
the first resonant frequency (4 different forcing amplitudes: 1N, 2N, 3N, 4N). The dashed
line is the backbone of the first undamped NNM (computed by means of the numerical
algorithm). Displacement at the tip of the main beam (node 14); top plot: amplitude,
bottom: phase lag with respect to the excitation force.
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Figure 4.22: Forced response (——) of the damped nonlinear beam resulting from the
imperfect force appropriation (for F = 4N and marked by a square in Figure 4.21) and
the corresponding undamped NNM motion (−−−). (a) Time series of the displacements
of the main beam. (b) Motion in the configuration space composed of the displacements
at nodes 10 and 14.

tudes F in Figure 4.21. The backbone of the undamped NNM of Figure 4.19, expressed
in terms of amplitude, is also superposed. Figure 4.22 shows the forced damped response
close to the resonance for F = 4N (marked by a square in Figure 4.21) and the cor-
responding undamped NNM motion at the same frequency. Results similar to those of
Section 4.2.2 are obtained:

• The phase lag quadrature criterion is fulfilled close to resonant frequencies.

• Forced responses at resonance occur in the neighborhood of NNMs.

• Imperfect appropriation can isolate the NNM of interest (the beam has well-separated
modes).

These findings also hold for the second beam NNM.

Practical Realization of Force Appropriation

An assumption made throughout this chapter is that the forced response at resonance can
be reached (i.e., no unstable, quasi-periodic and chaotic motions). Unlike the linear case,
nonlinear systems possess coexisting stable solutions with their own domains of attraction.
A procedure relying on stepped sine frequency response measurements is examined herein
to study the practical feasibility of the force appropriation methodology for nonlinear
structures. It gradually changes the frequency of the excitation p(t) = F sin(ωt) to
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Figure 4.23: Stepped sine excitation procedure for carrying out the NNM force appropri-
ation (F = 4N) of the damped nonlinear beam. Top plot: responses along the branch
close to the first resonance are marked by circles. Bottom plots: phase scatter diagrams
of the complex Fourier coefficients of the displacements corresponding to the fundamental
frequency for the responses (a), (b), (c) and (d).
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track the change of the forced frequency responses until the NNM force appropriation is
achieved.

From the rest position, the structure is forced at the natural frequency of the undamped
LNM. After some transients, steady-state periodic forced response is obtained. Depending
on the nonlinearities, the excitation frequency is then gradually increased or decreased to
approach phase resonance. The phase lag indicator is continuously monitored during this
process to assess the quality of the NNM force appropriation. The process is carried out
until sufficiently good approximation of the phase quadrature criterion is achieved. In view
of the basins of attraction of the coexisting forced responses, this procedure needs to adapt
the frequency increments carefully. While quite large increments are initially suitable,
smaller changes of the excitation frequency are required near the resonance to remain on
the frequency response branch of interest. This stepped excitation frequency procedure is
illustrated in Figure 4.23 for a constant force amplitude F=4N. The frequency responses
obtained through this sequential process are represented by circles. The evolution of the
phase response is also shown for four specific frequencies: the complex Fourier coefficients
of the displacement responses corresponding to the fundamental frequency are illustrated.
Since the excitation force p(t) = F sin(ωt) is characterized by a phase of 90◦, the NNM
force appropriation is achieved when the phase of the displacements tends to 0◦. This is
performed for a frequency of 43.6 Hz, which corresponds to point (d) in Figure 4.23. The
imperfect appropriated response of Figure 4.22 is then reached, and the NNM is therefore
isolated. The second fundamental NNM may be appropriated in the same way.

NNM Free Decay Identification

Now that an NNM vibrates in isolation, its energy dependence is determined by turning
off the excitation and tracking the single-NNM free damped response. The resulting
response at the main beam tip is depicted in Figure 4.24. The dynamics closely follows
the corresponding undamped NNM.

The FEP determined from the numerical experiments and computed through the CWT
is illustrated in Figure 4.25. The ridge of the transform provides the corresponding back-
bone. For comparison, the theoretical FEP computed from the conservative equations of
motion is also represented. Apart from the CWT edge effects, a very good agreement is
obtained between the two backbones. The relative error of the frequency is lower than
0.2% for the complete energy range.

The modal curves extracted from the time series at different energy levels (marked by
circles in Figure 4.25) are displayed in Figure 4.26. The left plots represent the motions
in a two-dimensional projection of the configuration space while the right plots depict
the modal shapes. The theoretical undamped NNM motions are superposed using dashed
lines. The theoretical modal curves and those extracted from the time series agree to the
point where the motions cannot be distinguished. The MSE between the time series is
consistently lower than 0.1%.
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Figure 4.24: Free response of the damped nonlinear beam initiated from the imperfect ap-
propriated forced response represented in Figure 4.22. (a) Time series of the displacement
at the tip of the main beam (node 14). (b) Motion in the configuration space composed
of the displacements at nodes 10 and 14.
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Figure 4.25: Frequency-energy plot of the first NNM of the nonlinear beam. (a) Theoret-
ical FEP. (b) FEP calculated from the time series of the free damped response using the
CWT. The solid line is the ridge of the transform.
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Figure 4.26: Modal curves and modal shapes of the first NNM of the nonlinear beam for
decreasing energy levels marked in Figure 4.25 by circles (1), (2), (3) and (4). (a) Modal
curves in the configuration space composed of the displacements at nodes 10 and 14.
(b) Modal shapes composed of the displacement amplitudes of the main beam. The
theoretical NNM motions are also superposed using dashed lines.
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Figure 4.27: Frequency-energy plot of the second NNM of the nonlinear beam. (a) The-
oretical FEP. (b) FEP calculated from the time series of the free damped response using
the CWT. The solid line is the ridge of the transform.

Similar results are obtained for the second NNM. For illustration, the FEPs are depicted
in Figure 4.27.

4.4 Concluding Remarks

Realizing that linear EMA is of limited usefulness for nonlinear structures, the present
chapter was an attempt to develop nonlinear EMA by targeting the extraction of NNMs
from time series.

Because modal superposition is no longer valid, dynamic testing of nonlinear structures
is realized through a nonlinear phase resonance method, which relies on the extension of
the phase lag quadrature criterion. Specifically, if the forced response across the structure
is a monophase periodic motion in quadrature with the excitation, an NNM vibrates
in isolation. Once the NNM appropriation is achieved, the complete frequency-energy
dependence of that nonlinear mode can be identified during the free decay response using
time-frequency analysis. Eventually, an experimental FEP for one specific NNM can be
obtained, and the procedure can be applied for all NNMs of interest. To relate the NNMs
of the underlying undamped system to those extracted from the experimental data, the
procedure assumes moderately damped systems possessing elastic nonlinearities.

This two-step methodology paves the way for a practical nonlinear analog of EMA, which
may be applied to strongly nonlinear systems. For instance, it can certainly be a solid
basis for extending standard ground vibration testing to nonlinear aircrafts. Through
the combination of EMA with TMA, finite element model updating and validation of
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nonlinear structures are also within reach.

The objective of this chapter was to lay down the foundations for a rigorous experimen-
tal identification of NNMs. However, several issues still need to be addressed before the
methodology can be applied to large-scale, real-life structures. Unlike LNMs, which are
neutrally stable, NNMs can be stable or unstable, which may complicate their practical
realization. NNMs also possess basins of attraction which may shrink or expand along
the backbone branch of the FEP. Sensitivity to measurement noise and uncertainty might
therefore render nonlinear force appropriation more challenging than its linear counter-
part. Experimental demonstration of these results is the next logical step and is carried
out in the following chapter using the existing nonlinear beam.



Chapter 5

Experimental Demonstration of

Nonlinear Modal Testing

Abstract

This chapter deals with the experimental application of the methodology for
nonlinear normal mode (NNM) identification introduced in Chapter 4. To
demonstrate its efficacy, the methodology is applied to an experimental can-
tilever beam with geometrical nonlinearity. To this end, based on the phase
lag quadrature criterion, an indicator function is developed to assess whether
satisfactory NNM appropriation is effectively achieved.
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5.1 Introduction

The present chapter is devoted to the experimental demonstration of the methodology
developed in Chapter 4 for nonlinear experimental modal analysis (EMA). To this end, an
experimental structure corresponding to the nonlinear beam model studied in Chapter 4
is considered, and the ability of the proposed methodology to extract its nonlinear normal
modes (NNMs) from measured responses is assessed.

This chapter is organized as follows. In the next section, an indicator for NNM force
appropriation is introduced. The experimental set-up considered here is presented in
Section 5.3. Finally, the methodology is applied to the test structure in Section 5.4, and
the NNM identification is carried out.

5.2 Indicator for NNM Force Appropriation

As shown in Chapter 4, the phase lag quadrature criterion, valid for linear systems, can
be generalized to nonlinear systems (4.1). As a result, a nonlinear structure vibrates
according to a single NNM of the underlying conservative system if the response (in
terms of displacements or accelerations) across the structure is a monophase periodic
motion with a phase lag of 90◦ with respect to the excitation. It expresses that the
applied excitation compensates for the viscous damping forces. Specifically, the phase lag
of nonlinear signals (i.e., generally including multi-harmonic components) is defined with
respect to each harmonic, and the nonlinear monophase response x(t)

x(t) =
∞
∑

k=1

Xk cos(kωt) (5.1)

is in quadrature with the excitation p(t) if

p(t) =

∞
∑

k=1

Pk sin(kωt) (5.2)

i.e., if the force and the response can be written as a sine and cosine series, respectively.

For linear structures, the phase resonance criterion is frequently checked by means of
the mode indicator function (MIF) to evaluate the quality of modal appropriation [165].
This indicator can be extended to assess the quality of a tuned NNM motion of nonlin-
ear systems by taking into account the different harmonic components in the measured
response.

The general periodic response of nonlinear systems can be expressed as a complex Fourier
series

x(t) =
∑

k

Re
(

Zke
ikωt
)

(5.3)
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where Zk is the complex Fourier coefficient vector of the kth harmonic. Following the
MIF philosophy, the quality of NNM appropriation for the kth harmonic is given by

∆k =
Re (Zk)

∗ Re (Zk)

Z∗

kZk

(5.4)

where star denotes the conjugate transpose of the vector. This scalar expression returns a
value between zero and unity depending on the degree to which the kth harmonic compo-
nent of the responses deviate from being in quadrature with the applied force. Assuming
a sine series excitation (5.2), a value of unity indicates a perfect phase quadrature of
the corresponding harmonic. The NNM appropriation may therefore be assessed by ex-
amining separately this indicator for all harmonics in the response. A global confidence
indicator of NNM appropriation is introduced herein by considering the N significant
harmonic components in the measured responses

∆ =
1

N

N
∑

k=1

∆k =
1

N

N
∑

k=1

Re (Zk)
∗ Re (Zk)

Z∗

kZk

(5.5)

This NNM appropriation indicator is related to the purity of the appropriated response:
a value of unity indicates a perfect NNM isolation.

5.3 Experimental Set-Up

5.3.1 Description of the Experimental Fixture

Targeting the experimental application of the proposed EMA methodology, a set-up com-
posed of a cantilever beam with a thin beam at its end is considered throughout this
chapter. This experimental structure is represented in Figure 5.1, and the related geo-
metrical and mechanical properties are listed in Table 5.1. The nonlinear behavior comes
from the geometrical stiffening effect of the thin beam. This benchmark is similar to the
structure used during the European action COST F3 [141] for nonlinear system identifi-
cation and corresponds to the nonlinear beam model studied in Chapter 4. In particular,
its nonlinear behavior was identified and modeled in [63, 75].

In order to avoid the effect of gravity, the thin beam is positioned vertically with its neutral
axis parallel to ground, and the structure is excited in a horizontal plane by means of an
electrodynamic shaker (Figures 5.1 and 5.2). The structural response is measured using
seven accelerometers which span the main beam regularly, and a displacement sensor
(laser vibrometer) is located at the end of the beam, i.e., at position 7. The exciter is
connected to the structure by means of a rod at the end of which a force transducer is
mounted. As a result, the phase lag of the forced responses with respect to the measured
applied excitation may be determined during testing.
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1 2 3 4 5 6 7

Thin beam

Figure 5.1: Experimental set-up (top view)

Figure 5.2: Close-up of the thin beam of the experimental set-up. Top plot: top view.
Bottom plot: front view.

Length Width Thickness Material
(m) (m) (m)

Main beam 0.7 0.014 0.014 Steel
Thin beam part 0.04 0.014 0.0005 Steel

Table 5.1: Geometrical and mechanical properties of the nonlinear beam.



Chapter 5. Experimental Demonstration of Nonlinear Modal Testing 135

5.3.2 Preliminary Experimental Characterization

Prior to nonlinear modal analysis, a preliminary analysis consisting in the experimental
investigation of the dynamics of the test structure is performed. This first step is necessary
to characterize the nonlinear behavior of the structure in order to apply the methodology
for NNM extraction.

Nonlinear Characterization

To highlight its nonlinear behavior, the structure is forced by means of the shaker at
position 2 (see Figure 5.1) using white-noise excitation band-limited in the 0-500 Hz range.
Figure 5.3 shows two FRFs measured at low and high force levels. At low excitation level,
the test structure responds linearly while the large deflection of the thin beam at high
level induces geometrically nonlinear effects. As shown in Figure 5.3, distortions appear
in the FRF at high excitation level which significantly differs from the FRF measured at
low level. It is confirmed by the close-up where the resonant frequencies clearly increases
with the forcing amplitude, which reveals the hardening characteristic of the geometrical
nonlinearity. The first mode is the most affected by the nonlinear effect over the energy
range of interest. The FRF close to the second mode is moderately altered while the third
mode is practically unaffected by the nonlinearity.

Modal Analysis of the Underlying Linear Structure

Traditional modal analysis of the test structure considered as linear may therefore be
carried out at very low level of excitation. The identification of modal parameters of
the underlying linear structure then provides valuable insight into the structure for the
extraction of NNMs at higher energy levels (i.e., in the nonlinear range of motion). In
particular, the preliminary knowledge of linear natural frequencies allows to initiate the
stepped sine procedure for NNM force appropriation. In addition, the linear modal shapes
may be useful to determine suitable shaker locations.

To this end, hammer impact testing is performed at low excitation level on the test
structure alone, i.e., without the presence of the exciter system. This prevents possible
perturbations of the original test structure due to the presence of the exciter (i.e., shaker-
structure interactions). The linear modal properties are estimated using Ibrahim time
domain method [54], which is a phase separation approach commonly used for linear
modal analysis. The three linear normal modes (LNMs) obtained in the 0-500 Hz range
are given in Figure 5.4. The associated linear modal damping ratios are lower than 0.1%,
which highlights the weak damping of the structure.
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5.4 Experimental Demonstration of NNM Identifica-

tion

In the present section, the experimental extraction of NNMs of the test structure is consid-
ered using the two-step methodology detailed in Chapter 4. As evidenced in this chapter,
the use of a single shaker may be suitable for NNM appropriation of such a structure
with well-separated modes. This imperfect force appropriation approach combined with
a stepped sine excitation procedure is considered herein, and it is shown that the NNMs
of the test structure are isolated satisfactorily.

5.4.1 Extraction of the First NNM

NNM Force Appropriation using Stepped Sine Excitation

To minimize shaker-structure interaction, the shaker is placed near the clamped end of
the main beam. For the first mode, the exciter is located at position 2 (see Figure 5.1).
The generated force is a single-sine (i.e., mono-harmonic) excitation of tunable frequency.

Based on the knowledge of the underlying linear properties, the stepped sine excitation
procedure may be initiated using the natural frequency of the LNM as excitation fre-
quency. In view of the hardening nonlinear behavior observed previously, it is gradually
increased to follow the forced response branch of interest until resonance. At each step,
if the excitation frequency increment leads to a sudden change in the measured responses
(i.e., discontinuity in the amplitude and phase of the motion) indicating a jump to an-
other coexisting stable solution, the procedure is then restarted, and the last increment is
decreased to remain on the initial branch of forced responses. This procedure is stopped
when sufficiently good NNM appropriation is achieved. To this end, the indicator intro-
duced previously is continuously monitored during the process.

It is worth noticing that the shaker amplification does not operate at constant current
source, but the generated voltage is rather fixed during the experiments. As a result,
the amplitude and phase of the actual force introduced by the exciter may fluctuate
during the stepped sine procedure. It is of little importance since the applied force is
measured during experimental testing, which enables to determine the phase lag between
the responses and the excitation, this latter being relevant herein.

The measured steady-state forced responses are illustrated in Figure 5.5. The maximum
amplitude of the displacement at the main beam tip is depicted as a function of the
excitation frequency. The fundamental complex Fourier coefficients (i.e., corresponding
to the forcing frequency) of the measured acceleration responses along the structure are
also given in phase scatter diagrams. Initially, quite large increments of the excitation
frequency are suitable. Close to resonance, smaller variations are required to remain on
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Figure 5.5: Force appropriation of the first NNM of the test structure through experimen-
tal stepped sine excitation procedure. Top plot: Measured steady-state periodic forced
responses (marked by circles) given in terms of the maximum amplitude of the displace-
ment at the main beam tip (i.e., at position 7) as a function of the excitation frequency.
Bottom plots: phase scatter diagrams of the fundamental complex Fourier coefficients of
the measured accelerations (m/s2) across the beam (i.e., positions from 1 to 7) at different
excitation frequencies.
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Figure 5.6: Evolution of the NNM force appropriation indicator for the first NNM of the
test structure with respect to the excitation frequency. Indicator for (a) the fundamental
frequency, (b) the 3rd-harmonic, (c) the 5th-harmonic components, and (d) global NNM
appropriation indicator.

the frequency response branch of interest. It confirms the numerical results reported
in Chapter 4. For constant force amplitude, another branch of stable periodic motions
coexists near the resonance, and the basin of attraction of the initial forced responses gets
smaller as the frequency increases. From a practical viewpoint, the NNM appropriation
is then realizable by carefully changing the frequency of the generated excitation. For
instance, increments of 0.1 Hz are finally necessary during the stepped sine procedure to
prevent jump phenomenon.

The scatter plots display the evolution of the phase of the forced responses with respect
to the sine excitation which is along the vertical axis (purely imaginary excitation). The
motion across the structure is synchronous, and the phase lag changes with the excitation
frequency to come close to 90◦. It is confirmed by the evolution of the NNM appropria-



Chapter 5. Experimental Demonstration of Nonlinear Modal Testing 140

0 0.05 0.1 0.15
−2

−1

0

1

2
x 10

−3

D
is

p
l.

7
(m

)

Time (s)

0 0.05 0.1 0.15
−100

−50

0

50

100

A
cc

.
7

(m
/s

2
)

Time (s)

0 0.05 0.1 0.15
−100

−50

0

50

100

A
cc

.
5

(m
/s

2
)

Time (s)

0 0.05 0.1 0.15
−60

−40

−20

0

20

40

60

A
cc

.
3

(m
/s

2
)

Time (s)

0 50 100 150 200 250
−350

−300

−250

−200

−150

−100

P
S
D

d
is

p
l.

7
(d

B
)

Frequency (Hz)

0 50 100 150 200 250
−200

−150

−100

−50

0

50

P
S
D

ac
c.

7
(d

B
)

Frequency (Hz)

0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

P
S
D

ac
c.

5
(d

B
)

Frequency (Hz)

0 50 100 150 200 250
−150

−100

−50

0

50

P
S
D

ac
c.

3
(d

B
)

Frequency (Hz)

Figure 5.7: Appropriated forced response of the first NNM of the test structure (ω = 39.91
Hz). Left plots: measured time series. Right plots: power spectral density. From top to
bottom: accelerations at position 3, position 5, position 7 and displacement at the tip of
the beam, i.e., at position 7.



Chapter 5. Experimental Demonstration of Nonlinear Modal Testing 141

−60 −40 −20 0 20 40 60
−80

−60

−40

−20

0

20

40

60

80

1 2 3 4 5 6 7
0

20

40

60

80

Acc. at position 3 (m/s2)

A
cc

.
at

p
os

it
io

n
7

(m
/s

2
)

A
cc

el
er

at
io

n
(m

/s
2
)

Sensor position

Figure 5.8: Appropriated forced response of the first NNM of the test structure (ω = 39.91
Hz). Left plot: Modal curve in a two-dimensional projection of the configuration space in
terms of measured accelerations. Right plot: Modal shape composed of the amplitudes
of the measured accelerations along the main beam.

tion indicator depicted in Figure 5.6 which tends to 1. The proposed indicator, calculated
from the measured accelerations across the structure, is initially evaluated for each of
the significant harmonics included in the responses (i.e., for the fundamental, third and
fifth harmonics). The global NNM purity indicator combining all these harmonics is also
displayed in this figure. Only odd harmonics are considered herein, even harmonic com-
ponents of the responses being negligible (see Figure 5.7). In particular, the evolution
observed for the fundamental frequency indicator is in agreement with the change no-
ticed by the scatter diagrams. On the other hand, multiple quadratures of the harmonic
components occur prior to the one of the fundamental frequency terms. It is evidenced
by the existence of several unit values of the indicator for the harmonics of the funda-
mental frequency, which explains that the evolution of the global NNM indicator is not a
monotonically increasing function. Eventually, the forced response obtained for the final
excitation frequency of 39.91 Hz corresponds to a value of the indicator very close to 1
for all harmonics. The global NNM appropriation indicator is thus equal to 0.99. This
very satisfactory value reveals that the structure practically vibrates synchronously in
quadrature with the harmonic excitation. For each measured response along the beam, a
phase lag of 89◦ is actually observed for each harmonic.

As a result, the first undamped NNM is experimentally isolated at a specific energy level.
The measured time series of the resulting forced response are represented in Figure 5.7.
The displacement at the main beam end is about 1.2 mm. The nonlinearity is then
activated, and harmonic components of the excitation frequency appear in the response
as clearly noticed by the power spectral density (PSD) shown in Figure 5.7. The NNM
modal curve, expressing the motion in a two-dimensional projection of the configuration
space, is given in Figure 5.8 in terms of accelerations. This figure also represents the
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NNM modal shape composed of the maximum amplitudes of the accelerations for all
measurement locations along the structure. The modal shape is a snapshot of the NNM
motion at a specific time instant corresponding to the maximum response amplitude.

NNM Free Decay Identification

Now that the structure vibrates according to the first NNM at a specific energy level, the
exciter amplifier is turned off to initiate NNM free decay. The resulting response is illus-
trated in Figure 5.9 where the time series of the measured displacement at the beam end
is depicted. The dashed line corresponds to the time instant when the shaker is stopped,
i.e., the boundary between the steady-state forced response (NNM force appropriation
step) and the free damped motion (NNM free decay step). In addition, Figure 5.10 shows
the measured response in a two-dimensional projection of the configuration space in terms
of accelerations.

In practice, the applied excitation does not immediately drop to zero at the turn-off
instant. Nevertheless, the excitation rapidly reduces and can be assumed as negligible. It
confirms that the influence of the presence of the exciter on the free decay of the initial
test structure may be viewed as moderate. Finally, in view of the weak damping of the
structure and thanks to the invariance principle, the induced free damped response is
expected to follow the first undamped NNM when energy decreases with time.

The continuous wavelet transform (CWT) is computed to track the frequency content
of the measured single-NNM free decay response. For illustration, the time-frequency
dependence given by the CWT of the displacement at the beam tip is represented in Figure
5.11. The temporal evolution of the instantaneous fundamental frequency is determined
from the maximum ridge of the transform. The frequency-energy dependence of the first
NNM is then extracted from the measured time series. This dependence can be clearly
highlighted by substituting the response amplitude for time. The identified frequency as
a function of the amplitude (envelope) of the displacement at the end of the main beam
is illustrated in Figure 5.12. In Section 5.5.3, the total energy present in the system is
estimated, and the experimental frequency-energy plot (FEP) is fully reconstructed from
these measured data.

The modal curves of the first NNM are directly extracted from the measured time series
around specific time instants, related to different energy levels. The first NNM at five
distinct response levels corresponding to the squares in Figure 5.12 is displayed in Figure
5.13. This plot presents the identified modal curves and the associated modal shapes.

Figures 5.12 and 5.13 clearly reveal that the first NNM and its oscillation frequency are
strongly affected by nonlinearity for increasing energy levels. The frequency increases
with the energy level which confirms the hardening characteristic of the structure. The
NNM motions have also a marked energy dependence. At high energy, the modal curves
distinctly deviate from a straight line, which reveals the higher harmonic contents (mostly
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Figure 5.10: Measured free decay of the first NNM of the test structure initiated from
the appropriated forced response (ω = 39.91 Hz) in a two-dimensional projection of the
configuration space in terms of accelerations.



Chapter 5. Experimental Demonstration of Nonlinear Modal Testing 144

0 2 4 6 8 10 12 14
25

30

35

40

45
F
re

q
u
en

cy
(H

z)

Time (s)

NNM force

appropriation

NNM free decay

Figure 5.11: Wavelet transform of the measured free decay of the first NNM of the test
structure initiated from the appropriated forced response (ω = 39.91 Hz). Temporal
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Figure 5.13: First NNM of the test structure extracted from the measured free decay at
five different energy levels marked by squares in Figure 5.12. Left plot: modal curves in a
two-dimensional projection of the configuration space in terms of measured accelerations.
Right plot: modal shapes composed of the amplitudes of the measured accelerations along
the main beam.

the third harmonic) in the response. It is particularly pronounced given that the motion is
represented in terms of accelerations. The modal shape is also altered as shown in Figure
5.13. At low energy, the NNM thus comes close to the first LNM identified previously.
In particular, the modal curve tends to a straight line in the configuration space and the
NNM frequency corresponds to the natural frequency of the first linear mode.

5.4.2 Extraction of the Second NNM

NNM Force Appropriation using Stepped Sine Excitation

In view of its deformation shape, the second mode is more sensitive to the presence of
the exciter device in proximity to its antinode of vibration, which was also evidenced by
experimental investigations. The shaker is consequently positioned closer to the clamped
end of the main beam (namely at location 1) for the extraction of the second NNM.

Similarly, the NNM force appropriation of the second mode is carried out using stepped
sine excitation. Starting from the natural frequency of the second linear mode, the exci-
tation frequency is next gradually increased. In Figure 5.14, the measured steady-state
periodic responses resulting from this forced vibration testing are represented by means
of the displacement at the tip of the main beam. The fundamental frequency components
of the forced frequency responses are also given in scatter plots. The corresponding evo-
lution of the NNM appropriation indicator is illustrated in Figure 5.15. Similar results
as for the force appropriation of the first NNM are observed. Regarding the practical
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Figure 5.14: Force appropriation of the second NNM of the test structure through ex-
perimental stepped sine excitation procedure. Top plot: Measured steady-state periodic
forced responses (marked by circles) given in terms of the maximum amplitude of the
displacement at the main beam tip (i.e., at position 7) as a function of the excitation
frequency. Bottom plots: phase scatter diagrams of the fundamental complex Fourier
coefficients of the measured accelerations (m/s2) across the beam (i.e., positions from 1
to 7) at different excitation frequencies.
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Figure 5.16: Appropriated forced response of the second NNM of the test structure (ω =
144.02 Hz). Left plot: Modal curve in a two-dimensional projection of the configuration
space in terms of measured accelerations. Right plot: Modal shape composed of the
amplitudes of the measured accelerations along the main beam.



Chapter 5. Experimental Demonstration of Nonlinear Modal Testing 148

realization, the frequency of the excitation must nevertheless be adapted more carefully,
which indicates narrower domain of attraction of the forced responses close to the second
resonance. The NNM force appropriation is then performed for an excitation frequency
of 144.02 Hz that corresponds to a global NNM indicator of 0.99. At each measurement
location, the phase lag of the responses with respect to the excitation is 89◦ for all har-
monics. Accordingly, the second NNM practically vibrates in isolation. The measured
modal curve and modal shape are displayed in Figure 5.16.

From the considered location of the shaker, the magnitude of the induced response of the
test structure is limited by the maximum force that can be generated by the exciter. For
this higher-frequency mode, the displacement at the beam tip reached during NNM force
appropriation is around 0.6 mm. However, as shown in Section 5.5.3, the corresponding
energy level is of the same order of magnitude than for the appropriation of the first NNM.
So, for this energy level, the second mode seems to be moderately affected by nonlinearity.
The oscillation frequency of the NNM motion is slightly altered in comparison with the
natural frequency of the second linear mode: the frequency increases by only 1 Hz due to
the hardening effect of the geometrical nonlinearity. In addition, the NNM modal shape
does barely differ from the corresponding linear mode. The modal curve is practically
a straight line in the configuration space, which illustrates that the higher harmonic
components in the motion are insignificant.

NNM Free Decay Identification

As for the first NNM, the excitation is stopped by turning off the amplifier. Hence, the
measurement of the free damped response enables to identify the energy dependence of the
second NNM. Figure 5.17 shows the oscillation frequency identified from the time series
using the CWT as a function of the displacement at the main beam end. The modal curves
and the corresponding modal shapes extracted for five different energy levels (marked by
squares in Figure 5.17) are depicted in Figure 5.18.

It clearly illustrates the weak energy-dependence observed for the second NNM. The
frequency and modal curves are slightly affected by nonlinearity over the energy range
under consideration.

As previously evidenced by the FRF measurements at low and high levels, the third mode
is almost unaffected by the nonlinearity for the considered energy range. Accordingly, the
experimental extraction of the third NNM was not investigated herein.

The validation of these experimental results by means of a finite element model of the
structure is achieved in the next section.
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Figure 5.17: Frequency of the second NNM of the test structure, identified from the
measured free decay using the CWT, as a function of the amplitude displacement at the
main beam tip (i.e., at position 7). The solid line corresponds to the maximum ridge of
the transform.
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Figure 5.18: Second NNM of the test structure extracted from the measured free decay at
five different energy levels marked by squares in Figure 5.17. Left plot: modal curves in a
two-dimensional projection of the configuration space in terms of measured accelerations.
Right plot: modal shapes composed of the amplitudes of the measured accelerations along
the main beam.
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5.5 Validation of NNM Identification

As mentioned previously, the proposed methodology for nonlinear EMA lies on moderate
damping assumption, in which case the NNMs identified from experimental responses
can be related to the NNMs of the underlying conservative system. In this section, a
conservative finite element model of the test structure is considered. Theoretical modal
analysis (TMA) of the structure is carried out using the numerical algorithm developed
for NNM computation in Chapter 2. The computed theoretical NNMs may therefore
be compared with the NNMs experimentally extracted. From a practical viewpoint, the
procedure combining TMA and EMA may be used in the context of model validation of
nonlinear structures. In this study, it is performed to assess the ability of the proposed
methodology to extract the NNMs from experimental measurements. To this end, a
reliable finite element model of the structure is independently identified.

5.5.1 Mathematical Model of the Test Structure

The undamped model of the nonlinear test structure is obtained based on a finite element
approach. The governing equations of motion are then

Mẍ(t) + Kx(t) + fnl {x(t)} = 0 (5.6)

The underlying linear system (i.e., the mass and stiffness matrices M and K) is identified
through the linear modal analysis performed at low energy level. The nonlinear behavior
(i.e., the nonlinear restoring force fnl) is introduced in the model by resorting to a nonlinear
system identification method. It is worth pointing out that the finite element model
considered here corresponds to the system studied in Chapter 4 in which the parameters
are now updated from experimental data.

Finite Element Model of the Underlying Linear Structure

The finite element model of the test structure is illustrated in Figure 5.19. As in Chapter
4, the main and thin beams are modeled using 14 and 3 two-dimensional Euler-Bernoulli
beam elements, respectively. An additional linear rotational stiffness is used to model
the junction between the two beams. Based on the linear modal parameters extracted in
Section 5.3.2, the updating of the model provides an estimation of the rotational stiffness
term at the junction.

Nonlinearity Identification

As performed in [63], the conditioned reverse path method is applied to identify the
nonlinear behavior of the test structure. To this end, the structure is forced using white-
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Figure 5.19: Finite element model of the test structure.

noise excitation band-limited in the 0-500 Hz range. It shows that the nonlinear behavior
of the thin beam can be modeled using a grounded cubic spring at the junction of the
main and thin beams:

f(x) = knl|x|3sign(x) (5.7)

This cubic term takes the geometrical stiffening effect of the thin part into account. The
estimated value of the nonlinear coefficient knl is 8.5 × 109 N/m3.

5.5.2 Comparison between Experimental and Theoretical NNMs

The undamped NNMs of the finite element model of the structure are computed using
the numerical algorithm introduced in Chapter 2. In this section, these theoretical NNMs
are compared to the NNMs extracted from the experimental measurements.

For the first NNM, the dependence of its frequency on the displacement at the main
beam tip is plotted in Figure 5.20. The experimental evolution was identified previously
from the ridge of the CWT of the free decay. The frequency of the theoretical NNM
closely matches the experimental one with a relative error lower than 1.25%. This error
reaches its maximum value shortly after stopping the exciter. It could result from the
imperfect realization of the free decay phase because of the presence of the exciter. Due to
the existing coupling between the shaker and the structure, the applied excitation is not
initially negligible which may lead to a parasitic deviation from the actual single-NNM
free decay. In other words, the test structure of interest might be altered by interacting
with the shaker system during the free decay step. However, this observed difference
remains fully satisfactory and is rapidly reduced as evidenced in Figure 5.20.

The experimental modal curves and modal shapes of this first NNM at five different
energy levels (marked by squares in Figure 5.20) are depicted in Figure 5.21. The left
plots represent the modal curves in a two-dimensional projection of the configuration
space while the right plots depict the modal shapes of the main beam. For comparison,
the theoretical NNM at the same amplitude levels (marked by circles in Figure 5.20) is
also superimposed. From this figure, it is observed that the first NNM of the finite element
model is in good agreement with the experimental one for the complete energy range of
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Figure 5.20: Frequency of the first NNM of the nonlinear beam. —�—: experimental
frequency identified from the measured free decay of the test structure using the CWT;
−−◦−−: theoretical frequency computed from the finite element model of the structure.
The frequency is given as a function of the amplitude (envelope) displacement at the tip
of the main beam, i.e., at position 7.

interest.

Figure 5.22 shows the comparison between the experimental and theoretical frequencies
of the second NNM. For this weakly energy-dependent NNM, the observed deviation is
insignificant. Indeed, the maximum relative error is about 0.3% and corresponds to the
initial difference in frequency resulting from the linear model updating, i.e., the error
between the second normal mode of the updated underlying linear system and the exper-
imental one extracted at low energy.

The modal curves and modal shapes of this second NNM for the five amplitude levels
(marked in Figure 5.22) are compared in Figure 5.23. It shows that the experimental and
theoretical NNM match very well for all considered energy levels.

In conclusion, these results confirm that the proposed methodology is capable of reliably
extracting the energy dependence of NNMs of the test structure from experimental mea-
surements. Both a strongly and a weakly energy-dependent NNM have been identified.

5.5.3 Reconstructed Frequency-Energy Plot

Because a FEP facilitates the interpretation of the dynamics, it is convenient to recon-
struct this plot from the experimental results. To this end, it is necessary to determine the
total energy (i.e., the sum of the kinetic and potential energies) present in the structure
from the experimental measurements.
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Figure 5.21: First NNM of the nonlinear beam. —�—: experimental NNM identified
from the free decay of the test structure; −−◦−−: theoretical NNM computed from the
finite element model of the structure. Left plots: modal curves in the configuration space
composed of the accelerations at locations 3 and 7. Right plots: modal shapes composed
of the amplitudes of the accelerations across the main beam. From top to bottom: NNM
for decreasing energy levels marked in Figure 5.20.
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Figure 5.22: Frequency of the second NNM of the nonlinear beam. —�—: experimental
frequency identified from the measured free decay of the test structure using the CWT;
−−◦−−: theoretical frequency computed from the finite element model of the structure.
The frequency is given as a function of the amplitude (envelope) displacement at the tip
of the main beam, i.e., at position 7.

Considering system (5.6), the expressions for the kinetic and potential energies are pro-
vided by

T =
1

2
ẋ∗Mẋ (5.8)

and

V =
1

2
x∗Kx + Vnl(x) (5.9)

respectively, where star denotes the transpose operation. In addition to the linear contri-
bution, the potential energy is composed of the nonlinear term Vnl(x), which represents
the strain energy associated to the stiffness nonlinearities. The energy in the system,
which is time dependent, may thus be estimated from the time response of the struc-
ture through the finite element model. Nevertheless, the response is only available at the
measurement locations considered during the experiments.

Following the philosophy of model reduction techniques [46], the total energy can be
expressed in terms of measured responses only. The equations of motions (5.6) of the
conservative structural model can be partitioned as

[

MRR MRC

MCR MCC

] [

ẍR

ẍC

]

+

[

KRR KRC

KCR KCC

] [

xR

xC

]

+

[

fR,nl(xR)
0

]

=

[

0

0

]

(5.10)

where xR and xC are the vectors of the remaining and condensed DOFs, respectively.
Keeping the nonlinear DOFs in the remaining coordinates, the equations of motion as-
sociated to the condensed DOFs are linear as evidenced by Equation (5.10) in which the
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Figure 5.23: Second NNM of the nonlinear beam. —�—: experimental NNM identified
from the free decay of the test structure; −−◦−−: theoretical NNM computed from the
finite element model of the structure. Left plots: modal curves in the configuration space
composed of the accelerations at locations 3 and 7. Right plots: modal shapes composed
of the amplitudes of the accelerations across the main beam. From top to bottom: NNM
for decreasing energy levels marked in Figure 5.22.
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condensed part of the nonlinear restoring force fC,nl is zero. The finite element model can
then be reduced using linear static condensation, commonly known as Guyan reduction
method. This static condensation technique consists in neglecting the dynamic part of
the condensed coordinates xC and thence expressing the global DOFs in terms of the
remaining ones as follows

x =

[

xR

xC

]

= RxR (5.11)

where R is the static reduction matrix given by

R =

[

I

−K−1
CCKCR

]

(5.12)

The reduced kinetic and potential energies are thus expressed as

T =
1

2
ẋ∗

RMẋR (5.13)

V =
1

2
x∗

RKxR + Vnl(xR) (5.14)

with the nR × nR reduced structural matrices

M = R∗MR

K = R∗KR
(5.15)

The expression for the nonlinear deformation energy Vnl is unchanged since it initially
depends only on the nonlinear DOFs which belongs to the remaining coordinates.

In order to estimate the energy from the available measurements, the remaining DOFs
chosen here are the nodal coordinates corresponding to the measurement locations across
the structure. Hence, an estimation of the total energy can be determined using expres-
sions (5.13) and (5.14). Obviously, the quality of this estimation depends on the number
and positions of measured responses.

Targeting a general approach, the total energy is estimated by evaluating the kinetic
energy at the time instants when the displacements pass through zero, i.e., when the
potential energy vanishes. Since the kinetic energy depends only on the parameters of
the underlying linear system, this prevents from resorting to the nonlinear parameters
which are generally unknown a priori in practice. On the other hand, prior to nonlinear
modal testing, the underlying linear model can be identified by means of traditional linear
modal analysis performed at low energy level (i.e., when the geometrical nonlinearity
is not activated). Furthermore, the mass properties are generally better assessed and
subject to less uncertainty than the stiffness properties. A good approximation of the
model mass matrix could even be built based only on the geometrical and mechanical
properties of the experimental set-up. The resulting estimation of the energy, determined
from the experimental measurements and the reduced mass matrix, is referred to as the
reconstructed energy of the system.
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Figure 5.24: Frequency-energy plot of the NNMs of the nonlinear beam. Left plot: exper-
imental FEP reconstructed from the NNM identification results using the modal testing
methodology. Right plot: theoretical FEP computed from the finite element model of
the structure. The modal shapes composed of the amplitudes of the accelerations (m/s2)
across the main beam are inset.

For the considered test structure, the established finite element model is condensed by
keeping the translational DOFs at the positions of the seven accelerometers which span
the main beam. Based on this structural model, the displacement of the main beam end
is the only nonlinear DOF and is then kept in the reduction. Since the evaluation of the
kinetic energy requires the velocities, the time responses measured in terms of acceleration
are numerically integrated and filtered.

The instantaneous energy in the system during the NNM free decay is evaluated from
the experimental measurements. The experimental FEP is reconstructed through the
CWT by substituting the estimated instantaneous energy for time. The maximum ridge
of the transform therefore provides the experimental backbone of the NNM expressing
its frequency-energy dependence. The reconstructed experimental FEP of the first and
second NNMs is depicted in Figure 5.24. The experimental modal shapes extracted pre-
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viously for different energy levels are also superimposed in the plot. For comparison, the
theoretical FEP numerically computed from the finite element model is also displayed in
this figure. This figure confirms the good agreement between the theoretical and experi-
mental NNMs.

Finally, the quality of the energy estimation can be assessed from the finite element model.
It is observed that the reduced energy is very close to the actual energy present in the
system. For the first two NNMs, the theoretical FEPs given in terms of the actual energy
or the reduced energy cannot be distinguished. It confirms that the reconstructed energy
gives an excellent quantitative insight into the total energy in the structure.

5.6 Concluding Remarks

This chapter dealt with the experimental demonstration of the nonlinear phase resonance
methodology proposed in Chapter 4 for EMA of nonlinear vibrating structures. To this
end, a set-up composed of a nonlinear beam with geometrical nonlinearity was consid-
ered. Based on the nonlinear extension of the phase quadrature criterion, an indicator
was introduced for assessing the quality of NNM force appropriation. The experimental
realization of NNM force appropriation was completed by means of a stepped sine pro-
cedure using a single exciter at a single frequency. Eventually, the energy dependence of
NNM was properly identified from the measured single-NNM free decay response, which
indicates the robustness of the procedure.

Finally, this chapter experimentally validated the main assumption of the methodology:
the nonlinear dynamics of a moderately damped structure can be related to the NNMs
of the underlying conservative system. As a result, these experimental findings support
the approach followed throughout the present dissertation which consists in performing
nonlinear modal analysis based on the topological structure of the NNMs of the underlying
undamped system.



Conclusions

Because linear modal analysis fails dramatically in the presence of nonlinear dynamical
phenomena, the development of a practical nonlinear analog of theoretical and experi-
mental modal analysis (TMA and EMA) is the objective of this doctoral dissertation.
To this end, an adequate framework for modal analysis of nonlinear vibrating structures,
which includes the computation of nonlinear normal modes (NNMs) from finite element
models and their identification from experimental data, was introduced.

Targeting a useful, yet understandable by the practicing engineer, analysis of nonlinear
structural dynamics, several key aspects were reported and highlighted in Chapter 1 by
means of different examples. First, an appropriate NNM definition, in which an NNM
motion is defined as a (non-necessarily synchronous) periodic motion of the nonlinear
conservative system, was proposed to extend Rosenberg’s approach. Following this ex-
tended definition, NNMs can handle dynamical phenomena with no counterpart in linear
theory (e.g., frequency-energy dependence, modal interactions, mode bifurcations, insta-
bility) in a rigorous manner, yet they have a clear conceptual relation to the classical
linear normal modes (LNMs). Secondly, a suitable graphical depiction of NNMs, termed
a frequency-energy plot (FEP), was introduced to facilitate their interpretation and ex-
ploitation. Finally, in view of its ability to track the frequency-energy dependence inherent
to nonlinear systems, time-frequency analysis using the wavelet transform was shown to
be the ideal companion to NNMs for modal analysis. Thanks to this tool, the damped
dynamics can be related to the different branches of NNM motions in the FEP.

To address the limitations of existing analytic techniques for NNM computation, an im-
portant contribution of this thesis is to resort to numerical methods. Interestingly enough,
shooting algorithms have not received much attention from the NNM community whereas
they offer an exact computation of these modes, even in strongly nonlinear regimes of mo-
tion. When advantageously combined with continuation methods, we showed in Chapter 2
that they hold promise for an effective computation of NNMs. Because such algorithms
are known to be computationally intensive, a particular effort was devoted to progress
toward a practical NNM computation tool that can deal with large-scale structures. In
particular, a significant improvement was to resort to sensitivity analysis for the compu-
tation of the monodromy matrix to reduce the computational burden.

The ability of the numerical algorithm was demonstrated in Chapter 3 using different non-
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linear structures, namely an essentially nonlinear 2DOF system, a bladed disk assembly
and a full-scale aircraft. The NNMs were computed accurately with a reasonable compu-
tational burden. Some complex nonlinear phenomena, including modal interactions with
no commensurate linear frequencies and mode localization in periodic structures with
cyclic symmetry, were also highlighted. One significant result is that the algorithm has
the potential to deal with complex real-world structures, such as the full-scale aircraft
studied herein.

To make NNMs a viable tool, this doctoral dissertation also laid down the foundations
for their identification from experimental data. This topic has clearly been disregarded in
the literature and is another important contribution of the thesis. Based on a nonlinear
extension of phase resonance testing (also known as force appropriation), the methodology
developed in Chapter 4 consists in exciting the structure using stepped sine excitation
to isolate a single NNM. To propose a robust identification procedure, two important
properties of NNMs were exploited. First, similarly to linear theory, forced resonances in
nonlinear systems occur in the direct neighborhoods of NNMs. In this context, the phase
lag quadrature criterion was generalized to nonlinear structures. To our knowledge, it is
the first time that a nonlinear analog of this criterion is introduced to locate single-NNM
motions. Second, the invariance principle, valid for linear systems, extends to nonlinear
systems and states that, if the motion is initiated on one specific mode, the remaining
modes remain quiescent for all time. As a result, we showed that the frequency-energy
dependence of the NNM can be identified from the free damped dynamics using time-
frequency analysis. The procedure was illustrated by means of numerical experiments
using a 2DOF system and a nonlinear beam.

Finally, the experimental demonstration of NNM identification was addressed in Chap-
ter 5 using a cantilever beam possessing geometrical nonlinearity. Based on the phase
lag quadrature criterion, a mode indicator function was developed to assess whether a
satisfactory isolation of NNMs was effectively achieved. This information is crucial when
targeting practical applications. One important result of this research work is that the
NNMs were successfully extracted from measured responses, which indicates the practical
feasibility of the methodology. In addition, this experimental study confirms that the
nonlinear dynamics of a moderately damped structure can be related to NNMs of the
underlying conservative system, an assumption considered throughout this dissertation.

Directions for Future Work

The results presented herein clearly show promise to progress toward practical modal
analysis of nonlinear vibrating structures. Nevertheless, there is still much work to be
done to provide a broadly applicable framework, effective for large-scale, complex real-
world structures. The following discussion presents some aspects that might drive its
development in the years to come.
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Theoretical modal analysis. Further research should be carried out to develop a
robust NNM computation tool capable of dealing with a variety of large-scale structures:

• Due to mode bifurcations, supernumerary NNMs with no linear counterparts (i.e.,
those that are not the direct extension of the LNMs) may exist. Therefore, the devel-
opment of a robust and automatic branch switching strategy would be a meaningful
advancement for facilitating their computation [126].

• The procedure for NNM computation relies on numerical simulations, which may
be computationally intensive for large-scale finite element models. It was shown
that sensitivity analysis is an effective alternative to reduce the computational bur-
den. Future research should continue in this direction to optimize the algorithm.
For instance, an automatic time step control, which selects the most appropriate
time step in view of the current dynamics, should be investigated to speed up the
computations.

• All the structures considered in this thesis possessed spatially localized and smooth
nonlinearities. In particular, the studied nonlinearities were restricted to polynomial
stiffness terms. One interesting contribution would thus be to address more compli-
cated nonlinear behaviors, such as structures with distributed nonlinearities (e.g.,
geometrical nonlinearity) and nonsmooth nonlinearities (e.g., clearance nonlinear-
ity). Even though particular effort is still required, our computational approach has
certainly the potential to deal with such systems. For example, nonsmooth behavior
generally demands special treatment [74].

Experimental modal analysis. Further investigations need to be carried out to assess
the efficiency of the NNM identification in case of large-scale industrial structures:

• Because nonlinear systems undergo bifurcations, modal interactions and shrinking
basins of attraction, the practical realization of nonlinear force appropriation is more
challenging than its linear counterpart. In this context, validation of the method-
ology was performed using an experimental structure. However, it consists of an
academic benchmark and the next logical step should be to consider more complex
structures, e.g., structures possessing close modes or spatially distributed nonlin-
earities. To this end, the development of a more general constructive procedure for
NNM force appropriation, resorting to several shakers with harmonics of the funda-
mental frequency, is of particular interest to ensure the robustness of the proposed
methodology. In addition, to address changing basins of attraction, the experimen-
tal continuation of periodic orbits, as proposed in [131], is particularly attractive
and should be investigated in detail.

• The experimental methodology assumes that the damped dynamics can be inter-
preted based on the NNMs of the underlying conservative system in the presence of
weak to moderate viscous damping. This issue deserves more attention and should
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be investigated more thoroughly. For instance, large damping may modify the type
of nonlinear behavior (e.g., hardening or softening) that is observed [142]. When
targeting practical applications, a rigorous criterion indicating the validity of the
methodology would be a crucial contribution. The effect of the damping could be
examined by computing the damped NNMs as discussed below.

Nonlinear damping. Due to the lack of knowledge of damping mechanisms, its mod-
eling is known to be challenging. In this context, the framework developed in this thesis
for modal analysis is based on conservative systems and only addresses stiffness nonlin-
earities. An ambitious contribution would thus be to extend theoretical and experimental
methods for properly accounting for nonlinear damping (e.g., dry friction). To this end,
an meaningful approach is to resort to the invariant manifold theory in order to consider
the calculation of damped NNMs [127–130].

Finite element model updating. The methods introduced in this manuscript for
TMA and EMA could jointly be used to propose a new finite element model validation
technique of nonlinear systems. For this purpose, the potential exploitation of this inte-
grated approach for model identification and updating of nonlinear structures is yet to be
studied in detail.

Ground vibration testing. One important aerospace application that should benefit
from nonlinear modal analysis is aircraft ground vibration testing (GVT). GVTs are car-
ried out on aircraft prototypes and provide critical data for flutter analysis. Identification
of an accurate model during GVTs could allow the effects of nonlinearity on flutter to
be explored by calculation prior to the flight test programme. Specifically, the method-
ology proposed for nonlinear modal identification may be directly and fully integrated
into the strategy currently followed for standard GVT of aircrafts. Indeed, besides tradi-
tional linear modal analysis performed using phase separation methods, it is still common
nowadays to resort to classical force appropriation for some particular modes (e.g., closely
spaced modes and important modes for flutter computations) [48]. Similarly, in case of
modes affected by nonlinearity, the nonlinear phase resonance approach introduced for
NNM identification could therefore be realized, which should extend the existing strategy
to nonlinear structures.
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Newmark’s Time Integration Scheme

Newmark’s time integration method [46] is briefly reviewed here. It is applied to numeri-
cally solve:

• The original initial value problem defined by the governing equations of motion

Mẍ(t) + Kx(t) + fnl {x(t)} = 0 (A.1)

with the initial conditions z0 =

[

x(0)
ẋ(0)

]

=

[

x0

ẋ0

]

.

• The associated sensitivity problem given by

M
d2

dt2

[

∂x(t)

∂z0

]

+ K

[

∂x(t)

∂z0

]

+
∂fnl {x}

∂x

∣

∣

∣

∣

x(t)

[

∂x(t)

∂z0

]

= 0 (A.2)

with

[

∂x(0)
∂z0

∂ẋ(0)
∂z0

]

= I.

A.1 Equations of Motion

Let us rewrite the equations of motion as a relationship in terms of the displacement x(t)

r(x) = Mẍ(t) + Kx(t) + fnl {x(t)} = 0 (A.3)

where r is the residual vector.

From time t to t + h, Newmark’s integration formulae are obtained from a Taylor series
expansion of the displacements and velocities with respect to the time step h

{

ẋt+h = ẋt + (1 − γ)hẍt + γhẍt+h

xt+h = xt + hẋt + h2(1
2
− β)ẍt + h2βẍt+h

(A.4)
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where γ and β are integration constants. These equations can be rewritten as

{

ẋt+h = ẋ∗

t+h + γhẍt+h

xt+h = x∗

t+h + h2βẍt+h

(A.5)

where the predictions correspond to ẍt+h = 0 and depend only on the previously time
step t

ẋ∗

t+h = ẋt + (1 − γ)hẍt (A.6)

x∗

t+h = xt + hẋt + h2(
1

2
− β)ẍt (A.7)

Newmark’s time integration relationships may be expressed in terms of xt+h only in the
following way

{

ẍt+h = 1
βh2 (xt+h − x∗

t+h)

ẋt+h = ẋ∗

t+h + γ

βh
(xt+h − x∗

t+h)
(A.8)

By substituting (A.8) into (A.3), the residual equation is expressed in terms of xt+h only

r(xt+h) = 0 (A.9)

A Newton-Raphson procedure is used for solving this set of nonlinear equations in an
iterative manner

r(xk
t+h) + S(xk

t+h)(x
k+1
t+h − xk

t+h) = 0 (A.10)

where subscript k denotes iteration step. The iteration matrix

S(xk
t+h) =

[

dr

dx

]

xk
t+h

(A.11)

is given by

S(x) =
1

βh2
M + K +

fnl {x}
∂x

(A.12)

The displacement, velocity and acceleration approximations are then corrected

xk+1
t+h = xk

t+h + ∆xk
t+h (A.13)

ẋk+1
t+h = ẋk

t+h + ∆ẋk
t+h (A.14)

ẍk+1
t+h = ẍk

t+h + ∆ẍk
t+h (A.15)

where the displacement corrections are determined by solving

S(xk
t+h)∆xk

t+h = −r(xk
t+h) (A.16)
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and with

∆ẋk
t+h =

γ

βh
∆xk

t+h (A.17)

∆ẍk
t+h =

1

βh2
∆xk

t+h (A.18)

For nonlinear systems, Newmark’s time iteration scheme therefore contains, at each time
step t, an Newton-Raphson iterative process which is carried out until the residual value
of the equations of motion is lower than a prescribed accuracy threshold.

A.2 Sensitivity Equations

At the time step end of integration of (A.1), the sensitivity matrix
[

∂x

∂z0

]

is obtained by

solving (A.2). Using Newmark’s time integration scheme,
[

∂ẍ

∂z0

]

and
[

∂ẋ

∂z0

]

at time t + h

are written as
[

∂ẍ

∂z0

]

t+h

=
1

βh2

([

∂x

∂z0

]

t+h

−
[

∂x

∂z0

]

∗

t+h

)

(A.19)
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∂ẋ

∂z0

]

t+h

=

[

∂ẋ
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]

∗

t+h

+
γ

βh
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∂x

∂z0

]

t+h

−
[

∂x

∂z0

]

∗

t+h

)

(A.20)

with the predictions given by

[

∂ẋ

∂z0

]

∗

t+h

=

[

∂ẋ

∂z0

]

t

+ (1 − γ)h

[

∂ẍ

∂z0

]

t

(A.21)

[

∂x

∂z0

]

∗

t+h

=

[

∂x

∂z0

]

t

+ h

[

∂ẋ

∂z0

]

t

+ h2(
1

2
− β)

[

∂ẍ

∂z0

]

t

(A.22)

By substituting (A.19) in the linear equations (A.2), the sensitivity matrix at time t + h
is determined by solving

[

1

βh2
M + K +

∂fnl {xt+h}
∂x

] [

∂x

∂z0

]

t+h

=
1

βh2
M

[

∂x

∂z0

]

∗

t+h

(A.23)

Equations (A.19), (A.20) and (A.23) are then used to integrate the sensitivity problem.
Since Equations (A.2) are linear, only one single iteration is needed. Interestingly, the left
hand side of Equation (A.23) corresponds to the iteration matrix of the original problem.

By marching in time, the current motion and its sensitivity with respect to initial condi-
tions are therefore obtained at any time t using Newmark’s time integration.
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