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Preface

This monograph represents a completely reworked and considerably extended version
of my previous book on plates.1 It is based on the courses taught and the pertinent
research conducted at various universities in the United States and Germany, com-
bined with my many years of experience as a practicing structural engineer. Like
its predecessor, this new version intends, at the same time, to be a text and refer-
ence book. Such dual aims, however, put any author in a difficult position since the
requirements of text and reference books are different. The global success of the first
version indicates, however, that such an approach is justified. In spite of the number
of books on plates, there is no single book at the present time that is devoted to the
various plate theories and methods of analysis covering static, dynamic, instability
and large-deflection problems for very thin, thin, moderately thick and thick plates.
The author hopes that this comprehensive monograph will serve as a text and refer-
ence book on these highly diverse subjects. Thus, the main objectives of this book
are as follows:

1. To serve as an introductory text to the classical methods in various
plate theories.

2. To acquaint readers with the contemporary analytical and numerical methods
of plate analysis and to inspire further research in these fields.

3. To serve as a reference book for practicing engineers not only by giving them
diverse engineering methods for quick estimates of various plate problems but
also by providing them with a user-friendly computer program system stored
on a CD-ROM for computation of a relatively large spectrum of practical
plate problems. In addition, the accompanying CD-ROM contains a collection
of readily usable plate formulas for solutions of numerous plate problems that
often occur in the engineering practice.

Requirements of a Textbook. A textbook must clearly formulate the fundamen-
tals and present a sufficient number of illustrative examples. Thus throughout the
text the mathematical modeling of physical phenomena is emphasized. Although

1 Szilard, R., Theory and Analysis of Plates: Classical and Numerical Methods, Prentice-Hall, Upper
Saddle River, New Jersey, 1974.
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xviii Preface

the occasionally complicated mathematical theories of plates cannot be simplified,
they can certainly be presented in a clear and understandable manner. In addition, a
large number of carefully composed figures should make the text graphically more
descriptive. Rather than attempt the solutions of specific problems, the author has
introduced generally applicable analytical, numerical and engineering methods for
solution of static, dynamic and stability problems of plates. Since experience is the
best teacher, numerous worked examples illustrate the applications of these methods.
All the numerical examples are computed by using the modernized metric system as
defined by the International System of Units (Système international d’unités).

Although higher mathematics is essential to the analytical solution of most plate
problems, the mathematical prerequisites of the book are relatively modest. Merely
the familiarity with differential-integral calculus and matrix algebra is assumed, and
all further required mathematical tools are systematically developed within the text.
The sections dealing with the methods of higher analysis are treated as integral parts
of the text. The same procedure has been followed with such other prerequisites as
the theory of elasticity, structural dynamics, limit design and so forth. This approach
has resulted in a self-contained text on plates that can be used without consulting
related works.

Working knowledge of the fundamentals of the classical methods is considered
mandatory in spite of its serious limitations. As in most fields of mathematical physics,
exact analytical solutions can be obtained only for the simplest cases. For numerous
plate problems of great practical importance, the classical methods either fail to
yield a solution or yield a solution too complicated for practical application. Here,
the approximate and numerical methods offer the only reasonable approach. The
“exact” solutions, however, perform an important function because they provide the
benchmark against which all other solution techniques are tested.

With the present widespread availability of powerful desktop computers, there
has been a real revolution in the numerical analysis of plate problems. From the
various computer-oriented solution techniques, the finite difference, the gridwork,
finite element and finite strip methods have been treated extensively. The reader will
also find a short introduction to the recently emerging boundary element method.
The actual coding of the computerized solutions of plate problems is considered
to be outside the scope of this book. The numerical solutions of plate problems,
however, are formulated so that either standard computer programs can be used or
they can be easily programmed by utilizing readily available subroutines of numerical
analysis procedures. In order to facilitate the numerical solution of certain problems,
numerous finite difference stencils and finite element stiffness and mass matrices are
given in explicit forms. Furthermore, plate programs of practical interest are also
stored on the CD-ROM that accompanies this book. These include, in addition to
the FORTRAN source codes, the executable forms of these computer codes for static
and dynamic analysis of plates.

Of the analytical approaches, the energy methods are treated more extensively than
others because the author believes that their relative simplicity, efficiency and almost
universal use warrant this emphasis.

Sections marked with asterisks (*) in the table of contents are recommended for
classroom use in a one-semester course on plates for graduate students of civil,
mechanical, aeronautical, architectural, mining and ocean engineering and for students
of engineering mechanics and naval architecture. The material presented, however, is
sufficient for a two-semester course; preferably one semester of directed reading
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would be offered following the first semester of formal classroom presentation.
Exercises to be worked out by the students are included at the end of most chapters.
They are listed in order of ascending difficulty.

Use of the Book by Practicing Engineers. Although the requirements of prac-
ticing engineers are different from those discussed above, there are also numerous
overlapping areas. Practicing engineers must deal with “real-life” plate problems.
Consequently, they require a much broader coverage than that usually given in
“Analysis of Plates and Shells” textbooks. The present book, however, intends to
satisfy this important need by covering a large spectrum of plate problems and their
solution procedures. Plate analysis has undergone considerable changes during the
past decades. These changes were introduced by (a) proliferation of powerful—yet
relatively inexpensive—personal computers and (b) the development of computer-
oriented numerical analysis techniques such as gridwork and finite element methods,
to name the most important ones. Consequently, nowadays the practicing engineer
will apply a suitable computer code to analyze plate structures for their static or
dynamic behaviors and determine their stability performance under the given loads.
However, to be able to use such contemporary analysis methods properly, he or she
must have basic knowledge of pertinent plate theories along with the underlying prin-
ciples of these numerical solution techniques. All these fundamental requirements for
a successful computer-based plate analysis are amply covered in this book. Further-
more, it is of basic importance that the engineer properly idealizes the plate structures
which are in essence two-dimensional continua replaced by equivalent discrete sys-
tems in the numerical approach. This idealization process includes definition of plate
geometry along with the existing support conditions and the applied loads. It also
incorporates the discretization process, which greatly influences the obtainable accu-
racy. Although proper idealization of a real structure is best learned under the personal
guidance of an experienced structural engineer, numerous related guidelines are also
given throughout in this book. To start a numerical analysis, ab ovo the plate thickness
is required as input. For this purpose, this work contains various engineering meth-
ods. Using these, the required plate thickness can be determined merely by simple
“longhand” computations. After obtaining a usable estimate for plate behavior under
the applied load, the engineer can use a computer to compute more exact numerical
results. For this purpose, interactive, easy to use computer programs covering the most
important aspects of plate analysis are stored on the companion CD-ROM attached to
the back cover of the book. This CD-ROM contains a finite element program system,
WinPlatePrimer, which not only solves important static and dynamic plate problems
but also teaches its users how to write such programs by using readily available
subroutines. Consequently, next to the executable files the corresponding FORTRAN
source codes are also listed. The finite elements used in these programs have excellent
convergence characteristics. Thus, good results can be obtained even with relatively
crude subdivisions of the continuum. To validate the computer results, the practicing
engineer needs, again, readily usable simple engineering approaches that can provide
valuable independent checks. It is also important that he or she knows the effective-
ness and economy not only of these approximate solution techniques but also of all
methods presented here. These important aspects are also constantly emphasized. As
mentioned earlier, explicitly given structural matrices and finite difference stencils
allow the practicing engineer to develop his or her own computer programs to solve
some special problems not covered in commercially available program systems. In
general, strong emphasis is placed on practical applications, as demonstrated by an
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unusually large number of worked problems many of them taken directly from the
engineering practice. In addition, considering the needs of practicing engineers, the
book is organized so that particular topics may be studied by reading some chapters
before previous ones are completely mastered. Finally, it should be mentioned that
the practicing engineer has often to deal with such plate problems for which solutions
are already available in the pertinent technical literature. For this reason, a collec-
tion of the 170 most important plate formulas is given on the companion CD-ROM
attached to the back cover of the book. These formulas, along with the closed-form
solutions of certain plate problems presented in this book, can also be used to test
commercially available computer codes for their effectiveness and accuracy.

Guide to the Reference System of the Book. The mathematical expressions are
numbered consecutively, in parentheses, throughout each section carrying the perti-
nent section number before the second period. Equation (2.7.4), for example, refers
to Equation 4 in Section 2.7.

The author realizes that a complete volume could be written on each of the chapters
treated. Liberal inclusion of bibliographical references extends the comprehensiveness
of this book. The numbering system used for references is similar to that of equations.
The numbers in brackets refer to bibliographical references, again with the pertinent
section number as prefix. Numbers in brackets without a prefix indicate general
reference books on plates and are listed after the Introduction. References pertinent
to the history of development of various plate theories carry the prefix II. References
with prefixes “A” refer to the Appendixes.

Finally, the author is particularly indebted to Dr. L. Dunai, Professor, Techni-
cal University of Budapest, Hungary, and his co-workers (N. Kovács, Z. Kósa and
S. Ádányi) for developing the WinPlatePrimer program system. My thanks are also
due to my wife, Ute, for her continuous encouragement and support in writing this
book and for editing the manuscript and checking the page proofs.



Symbols

The following symbols represent the most commonly used notations in this book.
Occasionally, the same symbols have been used to denote more than one quantity;
they are, however, properly identified when first introduced.

a, b Plate dimensions in X and Y directions, respectively
ai, bi Coefficients
aij , bij Elements of matrices A and B, respectively
a, b, c Column matrices or vectors, respectively
{a}, {a}T or [a]T Column and row matrices, respectively
A Area, constant
A, B, C, . . . Matrices
[A], [B], . . . Matrices
B Effective torsional rigidity of orthotropic plate, constant
c1, c2, . . . Constants or numerical factors
di, de,i Elements of the displacement vectors d, de, respectively
d, de Displacement vector (global/element)
D Flexural rigidity of plate [D = Eh3/12(1 − ν2)]
Dx, Dy Plate flexural rigidities associated with X and Y directions,

respectively
Dt Torsional rigidity of plate
D, [D] Dynamical matrix of vibrating structural system, and representing

pertinent differentiations
E Young’s modulus of elasticity
E, [E] Elasticity matrix
f Frequency of a vibrating structural system (Hz)
fi(·) Function
g Acceleration of gravity (≈9.81 m/s2)
G, Gxy Shear moduli
h Thickness of plate
i, j, k, l Indices and/or positive integers (1, 2, 3, . . .)
I Moment of inertia
Itx, Ity Geometrical torsional rigidities of beams

xxi



xxii Symbols

k Modulus of elastic foundation, numerical factor
kij , ke,ij Elements of stiffness matrix (global/element)
K, Ke Stiffness matrix (global/element)
lx, ly, l Span lengths
L(·), L(·) Differential operators
m, n Positive integers (1, 2, 3, . . .)
mij Elements of consistent mass matrix M in global reference system
mT Thermal equivalent bending moment
mu, m′

u Ultimate bending moments per unit length
mx, my Bending moments per unit length in X, Y, Z Cartesian coordinate

system
mxy Twisting moment per unit length in X, Y, Z Cartesian coordinate

system
mr, mϕ Radial and tangential bending moments per unit length in r, ϕ, Z

cylindrical coordinate system
mrϕ Twisting moment per unit length in r, ϕ, Z cylindrical coordinate

system
M Moment-sum, =(mx + my)/(1 + ν)

M, Me Mass matrix (global/element)
Mx, My, Mt Concentrated and/or external moments
n Normal to boundary, index
ncr Critical (buckling) load
nT Thermal force per unit length acting in X, Y plane
nx, ny Normal forces per unit length acting in X, Y plane
nxy Shear forces per unit length acting in X, Y plane
pu Ultimate load
N, [N ] Matrix of shape functions
px, py, pz Load components per unit area in X, Y, Z Cartesian coordinate

system
PX, PY , PZ Concentrated forces in X, Y, Z Cartesian coordinate system
qr , qϕ Transverse shear forces per unit length in r, ϕ, Z cylindrical

coordinate system
qx, qy Transverse shearing forces in X, Y, Z Cartesian coordinate system
r, ϕ, z Cylindrical coordinates
r0, r1 Radii
R, ϕ, Z Cylindrical coordinate system
R, [R] Rotational matrix
t Time or tangent to boundary
T Temperature or kinetic energy
T, [T ] Transformation matrix
u, v, w Displacement components in X, Y, Z directions
U Strain energy
vx, vy Lateral edge forces per unit length associated with X and Y

directions, respectively
V Volume or potential of external forces
wH , wP Homogeneous and particular solutions of plate equation,

respectively
We, Wi Work of external and internal forces, respectively
x, y, z Cartesian coordinates
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X, Y, Z Coordinate axes of Cartesian coordinate system
α, β, ϑ Angles
αm, βm Constants
αT Coefficient of thermal expansion
γ, γxy Shear strain, shear strain in X, Y plane
δ, δi,j Displacement, flexibility coefficients
δ(·) Variational symbol
εT , εx, εy Thermal strain, normal strains in X and Y directions, respectively
εi(x, y) Error function
η, ξ Oblique coordinates
λ Finite difference mesh width (�x = �y = λ)

λi Lagrangian multiplier
ϑ, θ, ϕ, φ Angles
λ1, λ2, . . . Eigenvalues
λcr Critical load factor
κx, κy, κxy, χ Curvatures of deflected middle surface
v, vx, vy, vxy Poisson ratios
� Total potential energy
ρ Dimensionless quantity (r/r0)

σx, σy Normal stresses in X and Y direction, respectively
σu Ultimate stress
τ, τxy Shear stresses
ϕ, ϕi(·), ϕi(·) Angle, functions
�(x, y) Stress function
χ Warping of deflected middle surface
ω Circular (angular frequency of free vibration (rad/s))

∇2(·) = ∂2(·)
∂x2

+ ∂2(·)
∂y2

; ∇r = ∂2(·)
∂r2

+ 1

r2
· ∂2(·)

∂φ2
+ 1

r
· ∂(·)

∂r

∇4(·) = ∂4(·)
∂x4

+ 2
∂4(·)

∂x2∂y2
+ ∂4(·)

∂y4

The various boundary conditions are shown in the following manner:

Section Plan view

Free edge

Simple support

Clamped edge

Point support

Elastic support



I
Introduction

Plates are straight, plane, two-dimensional structural components of which one dimen-
sion, referred to as thickness h, is much smaller than the other dimensions. Geomet-
rically they are bound either by straight or curved lines. Like their counterparts, the
beams, they not only serve as structural components but can also form complete struc-
tures such as slab bridges, for example. Statically plates have free, simply supported
and fixed boundary conditions, including elastic supports and elastic restraints, or, in
some cases, even point supports (Fig. I.1). The static and dynamic loads carried by
plates are predominantly perpendicular to the plate surface. These external loads are
carried by internal bending and torsional moments and by transverse shear forces.

Since the load-carrying action of plates resembles to a certain extent that of beams,
plates can be approximated by gridworks of beams. Such an approximation, however,
arbitrarily breaks the continuity of the structure and usually leads to incorrect results
unless the actual two-dimensional behavior of plates is correctly accounted for.

The two-dimensional structural action of plates results in lighter structures and,
therefore, offers economical advantages. Furthermore, numerous structural configu-
rations require partial or even complete enclosure that can easily be accomplished by
plates, without the use of additional covering, resulting in further savings in material
and labor costs. Consequently, plates and plate-type structures have gained special
importance and notably increased applications in recent years. A large number of
structural components in engineering structures can be classified as plates. Typical
examples in civil engineering structures are floor and foundation slabs, lock-gates,
thin retaining walls, bridge decks and slab bridges. Plates are also indispensable in
shipbuilding and aerospace industries. The wings and a large part of the fuselage of an
aircraft, for example, consist of a slightly curved plate skin with an array of stiffened
ribs. The hull of a ship, its deck and its superstructure are further examples of stiffened
plate structures. Plates are also frequently parts of machineries and other mechanical
devices. Figure I.2 schematically illustrates some of these industrial applications.

This book deals with the various plate analysis techniques which, of course, can-
not be learned without a well-founded knowledge in the underlying plate theories.
The main objective to any structural analysis is to ensure that the structure under
investigation shall have an adequate safety factor against failure within reasonable

1Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
Copyright © 2004 John Wiley & Sons, Inc.



2 Introduction

g

p

Figure I.1 Various boundary conditions for plates.

economical bounds. Furthermore, the structure shall be serviceable when subjected
to design loads. A part of serviceability can be achieved, for example, by imposing
suitable limitations on deflections.

The majority of plate structures is analyzed by applying the governing equations
of the theory of elasticity. Consequently, a large part of this book presents various
elastic plate theories and subsequently treats suitable analytical and numerical solution
techniques to determine deflections and stresses.

As already mentioned in the Preface, “exact” solutions of the various governing
differential equations of plate theories can only be obtained for special boundary and
load conditions, respectively. In most cases, however, the various energy methods
can yield quite usable analytical solutions for most practical plate problems. Nowa-
days, with widespread use of computers, a number of numerical solution techniques
have gained not only considerable importance but, as in the case of the finite element
method, also an almost exclusive dominance. All numerical methods treated in this
book are based on some discretization of the plate continuum. The finite difference
and the boundary element methods apply mathematical discretization techniques for
solution of complex plate problems, whereas the gridwork, finite element and finite
strip methods use physical discretizations based on engineering considerations. Since
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the results obtained by the different computer-oriented numerical approaches always
require independent checks, engineering methods, capable of giving rough approxi-
mations by means of relatively simple “longhand” computations, are regaining their
well-deserved importance. In addition, engineering methods can also be used for pre-
liminary design purposes to determine the first approximate dimensions of plates. In
addition to static plate problems, all the above-mentioned solution techniques also
treat pertinent dynamic and elastic stability problems.

However, these methods, based on elastic theories, have certain limitations. The
most important of these is that they do not give accurate indication of the factor of
safety against failure. Partly due to this limitation, there is a tendency to replace the
elastic analysis by ultimate load techniques. On the other hand, since this method
cannot always deal with all the problems of serviceability, the author recommends
that, if required, an elastic analysis should be augmented by a failure assessment
using the ultimate load approach.

Slab
Slab

(a1) Reinforced concrete slabs in buildings

Plate

(a2) Steel bridge deck

(a) Use of plates in construction industry

Slab bridge

Figure I.2 Use of plates in various fields of engineering.
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(b1) Merchant ship

(b2) Section A–A

A

A

Deck plate

Plate
Steel plates

C

Plane of symmetry

(b) Use of plates in shipbuilding

Figure I.2 (continued)

In all structural analyses the engineer is forced, due to the complexity of any real
structure, to replace the structure by a simplified analysis model equipped only with
those important parameters that mostly influence its static or dynamic response to
loads. In plate analysis such idealizations concern

1. the geometry of the plate and its supports,

2. the behavior of the material used, and

3. the type of loads and their way of application.

A rigorous elastic analysis would require, for instance, that the plate should be consid-
ered as a three-dimensional continuum. Needless to say, such an approach is highly
impractical since it would create almost insurmountable mathematical difficulties.
Even if a solution could be found, the resulting costs would be, in most cases, pro-
hibitively high. Consequently, in order to rationalize the plate analyses, we distinguish
among four different plate categories with inherently different structural behavior and,
hence, different governing differential equations. The four plate-types might be cat-
egorized, to some extent, using their ratio of thickness to governing length (h/L).
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Plate

Plate

Plate skin

(c1) Aeroplane

(c2) Fuselage

(c) Use of plates in aerospace structures

Plate skin

Window
structure

Floor
beam

Frames

Stringers
Curved plate skin

Floor panels

Figure I.2 (continued)

Although, the boundaries between these individual plate types are somewhat fuzzy,
we can attempt to subdivide plates into the following major categories:

1. Stiff plates (h/L = 1
50 – 1

10 ) are thin plates with flexural rigidity, carrying loads
two dimensionally, mostly by internal (bending and torsional) moments and
by transverse shear, generally in a manner similar to beams (Fig. I.3a). In
engineering practice, plate is understood to mean stiff plate unless other-
wise specified.

2. Membranes (h/L < 1
50 ) are very thin plates without flexural rigidity, carrying

loads by axial and central shear forces† (Fig. I.3b). This load-carrying action
can be approximated by a network of stressed cables since, because of their
extreme thinness, their moment resistance is of negligible order.

† Transverse shear force acts perpendicularly to the plane of the plate, whereas central shear force
acts in the plane of the plate (see Figs. I.3a and b).
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(d1) Car body

Plane  of symmetry

Plate

Plate

Plate

(d2) Discretized body

(d) Use of plates in automobile industry

Figure I.2 (continued)

3. Moderately thick plates (h/L = 1
10 – 1

5 ) are in many respects similar to stiff
plates, with the notable exception that the effects of transverse shear forces on
the normal stress components are also taken into account.

4. Thick plates (h/L > 1
5 ) have an internal stress condition that resembles that

of three-dimensional continua (Fig. I.3d).

There is, however, a considerable “gray” area between stiff plates and membranes;
namely, if we do not limit the deflections of stiff plates, we obtain so-called flexible
plates, which carry the external loads by the combined action of internal moments,
transverse and central shear forces and axial forces (Fig. I.3c). Consequently, elastic
plate theories distinguish sharply between plates having small and large deflections.
Plates having large deflections are avoided, for the most part, in general engineer-
ing practice since they might create certain problems in their analysis as well as in
their use. The safety-driven and weight-conscious aerospace and submarine-building
industries are forced, however, to disregard these disadvantages since such plates pos-
sess considerably increased load-carrying capacities. Consequently, large-deflection
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Figure I.3 Internal forces in various types of plate elements.

plate theory, including pertinent solution techniques, is also treated in this book.
Furthermore, since plates can have isotropic or orthotropic mechanical properties
and can be composed of layered materials, these variations of plate theories are
also presented.

Plate theories can also be grouped according to their stress-strain relationships.
Linear-elastic plate theories are based on the assumption of a linear relationship
between stress and strain according to the well-known Hooke’s law, whereas non-
linear elasticity, plasticity and viscoelasticity consider more complex stress-strain
relationships. All these theories, with the exception of viscoelasticity, which treats
dynamic conditions only, may be further subdivided into statics and dynamics of
plates, depending on whether the external loads are of static or dynamic nature, as is
done in the more elementary beam theories.

In treating all these various plate theories and the analytical or numerical solutions
of the pertinent plate problems, emphasis is placed on the clear presentation of the
fundamentals rather than on achieving exhaustive coverage of an inherently large
body of subject matter. To encourage further study and research, several books are
listed in the bibliographical references following this Introduction. In addition, there
are also numerous published papers, each of which presents an in-depth study of a
special field of plate analysis. Those that belong to the topics treated in this book are
referred to and listed in the pertinent sections.
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II
Historical Background

Although the ancient Egyptians, Greeks and Romans already employed finely cut
stone slabs in their monumental buildings in addition to the most widely used tomb-
stones, there is a fundamental difference between these ancient applications of slabs
and those of plates in modern engineering structures. That is, the ancient builders
established the slab dimensions and load-carrying capacity by “rule of thumb” handed
down from generation to generation, whereas nowadays engineers determine plate
dimensions by applying various proven scientific methods.

The history of the evolution of scientific plate theories and pertinent solution
techniques is quite fascinating. While the development of structural mechanics as
a whole commenced with the investigation of static problems [II.1], the first ana-
lytical and experimental studies on plates were devoted almost exclusively to free
vibrations.

The first mathematical approach to the membrane theory of very thin plates was
formulated by L. Euler (1707–1783) in 1766. Euler solved the problems of free vibra-
tions of rectangular, triangular and circular elastic membranes by using the analogy
of two systems of stretched strings perpendicular to each other [II.2]. His student,
Jacques Bernoulli (1759–1789), extended Euler’s analogy to plates by replacing the
net of strings with a gridwork of beams [II.3] having only bending rigidity. Since
the torsional resistance of the beams was not included in the so-obtained differen-
tial equation of plates, he found only general resemblance between his theory and
experiments but no close agreement.

A real impetus to the research of plate vibrations, however, was given by the
German physicist E. F. F. Chladni (1756–1827). In his book on acoustics [II.4],
he described diverse experiments with vibrating plates. Chladni discovered various
modes of free vibrations. In his experiments he used evenly distributed powder that
formed regular patterns after introducing vibrations (Fig. II.1). The powder accu-
mulated along the nodal lines, where no displacement occurred. In addition, he
was able to determine the frequencies corresponding to these vibration patterns.
Invited by the French Academy of Science in 1809, he demonstrated his experi-
ments in Paris. Chladni’s presentation was also attended by Emperor Napoleon, who
was duly impressed by his demonstration. Following Napoleon’s suggestion, the
French Academy invited applications for a price essay dealing with the mathematical

10 Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
Copyright © 2004 John Wiley & Sons, Inc.
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Figure II.1 Free vibration patterns of plates.

theory of plate vibrations substantiated by experimental verification of the theoretical
results.† Since, at first, no papers were submitted, the delivery date had to be extended
twice. Finally, in October 1811, on the closing day of the competition, the Academy
received only one paper, entitled “Reserches sur la théorie des surfaces élastiques,”
written by the mathematician Mlle. Germain (S. Germain, “L’état des sciences et des
Lettres,” Paris, 1833).

Sophie Germain (1776–1831), whose portrait is engraved on a commemorat-
ing medallion shown in Fig. II.2, was indeed a colorful personality of her time.
Since the development of the first differential equation of plate theory is closely
connected with her, it appears to be justified to treat Germain’s person here in
more detail.

† “Donnez la théorie des surfaces élastiques et la comparez à l’expérience.”
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Figure II.2 Medallion showing Mlle. Germain’s portrait.

Already as a young girl, Mlle. Germain began to study mathematics in all earnest
to escape the psychological horrors created by the excesses of the French Revolu-
tion. She even corresponded with the greatest mathematicians of her time, including
Lagrange, Gauss and Legendre, using the pseudonym La Blanc. Presumably, she used
this pseudonym since female mathematicians were not taken seriously in her time.
In 1806, when the French army occupied Braunschweig in Germany, where Gauss
lived at the time, she personally intervened by General Pernetty on behalf of the city
and Professor Gauss to eliminate the imposed fines.

In her first work on the theory of plate vibration, she used (following Euler’s
previous work on elastic curves) a strain energy approach. But in evaluating the
strain energy using the virtual work technique, she made a mistake and obtained an
erroneous differential equation for the free vibration of plate in the following form:

∂2z

∂t2
+ λ2

(
∂6z

∂x4 ∂y2
+ ∂6z

∂x2 ∂y4

)
= 0, (II.1)

where z(x, y, t) represents the middle surface of the plate in motion expressed in
an X, Y, Z Cartesian coordinate system, t is the time and λ2 denotes a constant
containing physical properties of the vibrating plate. This constant was, however,
not clearly defined in her paper. Lagrange, who was one of the judges, noticed
this mathematical error and corrected it. The so-obtained differential equation now
correctly describing the free vibrations of plates reads

∂2z

∂t2
+ k2

(
∂4z

∂x4
+ 2

∂4z

∂x2 ∂y2
+ ∂4z

∂y4

)
= 0. (II.2)

Since the judges were not entirely satisfied with Germain’s work, they proposed
the subject again. In October 1813, Mlle. Germain entered the now-corrected
equation (II.2) but left out the precise definition of the constant k2. Thus, she was
again unsuccessful. Finally, at her third approach, she won the prize in 1816. But
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the judges criticized anew her definition of the constant k2 since she had thought
that it contains the fourth power of the plate thickness instead of the correct
value of h3. Although her original works are very hard to read and contain some
dubious mathematical and physical reasonings, she must, nevertheless, be admired
for her courage, devotion and persistence. The claim of priority for writing the
first valid differential equation describing free plate vibrations belongs—without any
doubt—to her!

Next, the mathematician L. D. Poisson (1781–1840) made an attempt to determine
the correct value of the constant k2 in the differential equation of plate vibration (II.2).
By assuming, however, that the plate particles are located in the middle plane, he
erroneously concluded that this constant is proportional to the square of the plate
thickness and not to the cube. Later, in 1828, Poisson extended the use of Navier’s
equation† to lateral vibration of circular plates. The boundary conditions of the prob-
lem formulated by Poisson, however, are applicable only to thick plates.

Finally, the famous engineer and scientist L. Navier (1785–1836) can be credited
with developing the first correct differential equation of plates subjected to distributed,
static lateral loads pz(x, y). The task, which Navier set himself, was nothing less
than the introduction of rigorous mathematical methods into structural analysis. In
his brilliant lectures, which he held in Paris at the prestigious École Polytechnique
on structural mechanics, Navier integrated for the first time the isolated discoveries
of his predecessors and the results of his own investigations into a unified system.
Consequently, the publication of his textbook Leçons [II.5] on this subject was an
important milestone in the development of modern structural analysis.

Navier applied Bernoulli’s hypotheses,‡ which were already successfully used for
treating bending of beams, adding to them the two-dimensional actions of strains and
stresses, respectively. In his paper on this subject (published in 1823), he correctly
defined the governing differential equation of plates subjected to static, lateral loads
pz as

D

(
∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+ ∂4w

∂y4

)
= pz(x, y). (II.3)

In this equation D denotes the flexural rigidity of the plate, which is now propor-
tional to the cube of the plate thickness, whereas w(x, y) represents the deflected
middle surface.

For the solution of certain boundary value problems of rectangular plates, Navier
introduced a method that transforms the plate differential equation into algebraic
equations. His approach is based on the use of double trigonometric series intro-
duced by Fourier during the same decade. This so-called forced solution of the plate
differential equation (II.3) yields mathematically correct results to various problems
with relative ease provided that the boundary conditions of plates are simply sup-
ported. He also developed a valid differential equation for lateral buckling of plates
subjected to uniformly distributed compressive forces along the boundary. He failed,
however, to obtain a solution to this more difficult problem. Navier’s further theoret-
ical works established connections between elasticity and hydrodynamics, based on
a “molecular hypothesis,” to which he was as firmly attached as Poisson [II.6].

† See below.
‡ That is, normals to the midplane remain normal to the deflected middle plane.
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The high-quality engineering education given at the École Polytechnique set the
standards for other European countries during the nineteenth century. The German
polytechniques, established soon after the Napoleonic wars, followed the very same
plan as the French. The engineering training began with two years of courses in
mathematics, mechanics and physics and concluded with pertinent design courses
in the third and fourth years, respectively. Such a thorough training produced a
succession of brilliant scientists in both countries engaged in developing the science
of engineering in general and that of strength of materials in particular.

In Germany, publication of Kirchhoff’s book entitled Lectures on Mathematical
Physics, Mechanics (in German) [II.7] created a similar impact on engineering sci-
ence as that of Navier’s Leçons in France. Gustav R. Kirchhoff (1824–1887), whose
picture is shown in Fig. II.3, developed the first complete theory of plate bending. In
his earlier paper on this subject, published in 1850, he summarized, first, the previ-
ous works done by French scientists in this field, but he failed to mention Navier’s
above-discussed achievements. Based on Bernoulli’s hypotheses for beams, Kirchhoff
derived the same differential equation for plate bending (II.3) as Navier, however,
using a different energy approach. His very important contribution to plate theory was
the introduction of supplementary boundary forces. These “equivalent shear forces”†

replace, in fact, the torsional moments at the plate boundaries. Consequently, all
boundary conditions could now be stated in functions of displacements and their
derivatives with respect to x or y. Furthermore, Kirchhoff is considered to be the
founder of the extended plate theory, which takes into account the combined bending
and stretching. In analyzing large deflection of plates, he found that nonlinear terms
could no longer be neglected. His other significant contributions are the develop-
ment of a frequency equation of plates and the introduction of virtual displacement

Figure II.3 Gustav R. Kirchhoff (1824–1887).

† Kirchhoffische Erzatzkräfte (Kirchhoff’s supplementary forces).
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methods for solution of various plate problems. Kirchhoff’s book [II.7] was translated
into French by Clebsch [II.8]. His translation contains numerous valuable comments
by Saint-Venant, the most important being the extension of the differential equation
of plate bending, which considers, in a mathematically correct manner, the combined
action of bending and stretching.

Another famous textbook that deals with the abstract mathematical theory of plate
bending is Love’s principal work, A Treatise on the Mathematical Theory of Elas-
ticity [II.9]. In addition to an extensive summary of the achievements made by his
already mentioned predecessors, Love considerably extends the rigorous plate theory
by applying solutions of two-dimensional problems of elasticity to plates.

Around the turn of the century, shipbuilders changed their construction meth-
ods by replacing wood with structural steel. This change in the structural material
was extremely fruitful for the development of various plate theories. Russian sci-
entists made a significant contribution to naval architecture by being the first to
replace ancient shipbuilding traditions by mathematical theories of elasticity. Espe-
cially Krylov (1863–1945) [II.10] and his student Boobnov [II.11–II.13] contributed
extensively to the theory of plates with flexural and extensional rigidities. Because of
the existing language barrier, the Western world was slow to recognize these achieve-
ments and make use of them. It is to Timoshenko’s credit that the attention of the
Western scientists was gradually directed toward Russian research in the field of the-
ory of elasticity. Among Timoshenko’s numerous important contributions [2] are the
solution of circular plates considering large deflections [II.14] and the formulation of
elastic stability problems [II.15].

Föppl, in his book on engineering mechanics [II.16] first published in 1907, had
already treated the nonlinear theory of plates. The final form of the differential
equation of the large-deflection theory, however, was developed by the Hungarian
scientist von Kármán [II.17], who in his later works also investigated the problem of
effective width [II.18] and the postbuckling behavior of plates [II.19].

The book of another Hungarian engineer-scientist, Nádai [3], was among the first
devoted exclusively to the theory of plates. In addition to analytical solutions of
various important plate problems of the engineering practice, he also used the finite
difference technique to obtain numerical results where the analytical methods failed.
Westergaard [II.20] and Schleicher [II.21] investigated problems related to plates on
elastic foundation. Prescott, in his book Applied Elasticity [II.22], introduced a more
accurate theory for plate bending by considering the strains in the middle surface.
The Polish scientist Huber investigated orthotropic plates [II.23] and solved circular
plates subjected to nonsymmetrical distributed loads and edge moments.

The development of the modern aircraft industry provided another strong impe-
tus toward more rigorous analytical investigations of various plate problems. Plates
subjected to, for example, in-plane forces, postbuckling behavior and vibration prob-
lems (flutter) and stiffened plates were analyzed by many scientists. Of the numerous
researchers whose activities fall between the two world wars, only Wagner, Levy,
Bleich and Federhofer are mentioned here.

The most important assumption of Kirchhoff’s plate theory is that normals to the
middle surface remain normal to the deflected midplane and straight. Since this theory
neglects the deformation caused by transverse shear, it would lead to considerable
errors if applied to moderately thick plates. For such plates, Kirchhoff’s classical
theory underestimates deflections and overestimates frequencies and buckling loads.
Reissner and Mindlin arrived at somewhat different theories for moderately thick
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plates to eliminate the above-mentioned deficiency of the classical plate theory. The
theory developed by Reissner [II.24] includes the effects of shear deformation and
normal pressure by assuming uniform shear stress distribution through the thickness
of the plate. Applying his theory, three instead of two boundary conditions must be
satisfied on the edge. Of these three displacement boundary conditions, one involves
deflection and the other two represent normal and tangential rotations, respectively.
Mindlin [II.25] also improved the classical plate theory for plate vibrations by con-
sidering, in addition to the effect of shear deformation, that of the rotary inertia. In
Mindlin’s derivation displacements are treated as primary variables. It was necessary,
however, to introduce a correction factor to account for the prediction of uniform
shear stress distribution.

In addition to the analysis of moderately thick plates, Reissner’s and Mindlin’s plate
theories received a great deal of attention in recent years for the formulation of reliable
and efficient finite elements for thin plates. Since in both theories displacements and
rotations are independent and slope continuity is not required, developments of finite
elements are greatly facilitated. Direct application of these higher-order theories to
thin-plate finite elements, however, often induced so-called shear locking behavior,
which first had to be overcome before such elements could be used. To alleviate
this undesirable effect, selective or reduced integration techniques were suggested,
as discussed in the pertinent section of this book.

In the former Soviet Union the works of Volmir [7] and Panov are devoted mostly to
solutions of nonlinear static plate problems, whereas Oniashvili investigated free and
forced vibrations. Korenev’s recent book [II.26] treats exclusively thermal stresses
created by various types of thermal loadings on isotropic elastic plates.

A basically new approach to the static analysis of plates based on estimating the
possible locations of fracture lines has been developed by Ingerslev. Johansen’s so-
called yield line analysis can be considered as the first important deviation from the
classic theory of elasticity in the solution of transversely loaded plates. Hodge [II.27]
and Reckling [II.28] extended the mathematical theory of plasticity to plates.

Plate-bending analysis is a classical field for the application of the finite difference
method. This straightforward numerical approach yields very usable results for a large
variety of specialized plate problems where analytical methods fail. The finite differ-
ence method is based on mathematical discretization of the plate continuum. In most
cases, it merely requires an advanced scientific calculator to solve the resulting simul-
taneous equations. As mentioned previously, Nádai utilized this technique in 1925
for the solution of practical plate problems using “longhand” calculation! In the early
1940s, Southwell revived the finite difference method in England. Stüssi and Collatz
further improved this important numerical technique, which is still regarded—despite
the existence of the more powerful finite element—a practical tool for plate analysis.

The invention of electronic computers in the late 1940s exerted the most dramatic
influence on the numerical analysis of plate structures. Although, in 1941, Hrennikoff
had already developed an equivalent gridwork system for the static analysis of com-
plex plate problems, his fundamental work [II.29] related to a physical discretization
process of continua could not be fully utilized due to the lack of high-speed com-
puters, since the resulting large number of coupled equations could not be solved by
conventional means.

As already shown, structural plates have a multitude of applications in the building,
aerospace, shipbuilding and automobile industries. Unfortunately, however, exact and
approximate analytical solutions are limited to constant plate thickness and relatively
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simple boundary and load conditions. What was most desired by these industries
was a generally applicable, highly versatile and computerized procedure that could
deal with all their complex “real-life” plate problems in a basically uniform fash-
ion. In 1956 Turner, Clough, Martin and Topp [II.30]—using solely their creative
engineering intuition and reasoning—introduced the finite element method, which
became the most important tool for engineers and scientists to solve highly complex
problems of elastic and nonelastic continua in an economical way. It is of interest
to note that the finite element method was already invented in 1943 by the mathe-
matician Courant, who in his paper on variational methods [II.31] discussed all the
theoretical foundations of this extremely powerful numerical technique based, again,
on physical discretization of the continuum. However, his work went, undetected
for a decade mainly because of lack of proper communication between engineers
and mathematicians. Numerous original contributions in this field are due to Argyris
and Zienkiewicz. The majority of recently published scientific papers on plates is
concerned with extension and refinement of the finite element method as related to
various theoretical and practical problems in this field. Literally hundreds of papers
are published every year dealing with all aspects of this very important numerical
solution technique. Thus, it is impossible to mention here all additional contributors.

The finite strip method, introduced by Cheung [II.32], is a semianalytical procedure
for plate structures with regular geometry, for example, rectangular or sectorial plates
with various boundary conditions at the opposite edges. This method applies a series
of beam eigenfunctions to express the variation of displacements in the longitudi-
nal direction, whereas a finite element–type piecewise discretization is used in the
transverse direction. A major advantage of this approach is a considerably smaller
number of degrees of freedom. Consequently, the required storage and computer time
are significantly reduced.

The formulation of elastic plate-bending problems via boundary integral equation
furnishes a recent alternative to the finite element approach in form of the bound-
ary element method, pioneered by Brebbia. If the external forces act only at the
boundaries of a large undisturbed plate domain, the method may offer computa-
tional advantages by drastically reducing the number of unknowns in the resulting
simultaneous equations, since merely the boundaries of the plate are discretized. In
addition, the boundary element method yields higher accuracy than the finite element
method, but only at some distance from the boundaries. Unfortunately, the resulting
system matrix is unsymmetrical. Furthermore, since the mathematical requirements
of the boundary element method are quite high, it is not as straightforward in its
formulations and applications as the finite element method. In the numerical solution
of specific types of plate problems, however, a combination of these two element
methods may be advantageous.
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1
Elastic Plate Theories
and Their Governing
Differential Equations

1.1 Classical Small-Deflection Theory of Thin Plates

A mathematically exact stress analysis of a thin plate—subjected to loads acting nor-
mal to its surface—requires solution of the differential equations of three-dimensional
elasticity [1.1.1]. In most cases, however, such an approach would encounter insur-
mountable mathematical difficulties. Yet, for the vast majority of technical applica-
tions Kirchhoff’s classical theory of thin plates† yields sufficiently accurate results
without the need of carrying out a full three-dimensional stress analysis. Conse-
quently, classical plate theory occupies a unique position on this subject. It is formu-
lated in terms of transverse deflections w(x, y) for which the governing differential
equation is of fourth order, requiring only two boundary conditions to be satisfied at
each edge. The simplifications used in the derivation of the plate equation are based
on the following assumptions:

1. The material is homogeneous, isotropic and linear elastic; that is, it follows
Hooke’s law.

2. The plate is initially flat.
3. The middle surface‡ of the plate remains unstrained during bending.
4. The constant thickness of the plate, h, is small compared to its other dimen-

sions; that is, the smallest lateral dimension of the plate is at least 10 times
larger than its thickness.

† As already mentioned under Historical Background, other contributors to classical plate theory
include Bernoulli, Navier, Saint-Venant and Lagrange.
‡ Equivalent to the neutral axis in elementary beam theory.
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24 Elastic Plate Theories and Their Governing Differential Equations

5. The transverse deflections w(x, y) are small compared to the plate thickness.
A maximum deflection of one-tenth of the thickness is considered the limit of
the small-deflection theory.

6. Slopes of the defected middle surface are small compared to unity.
7. Sections taken normal to the middle surface before deformation remain plane

and normal to the deflected middle surface. Consequently, shear deforma-
tions are neglected. This assumption represents an extension of Bernoulli’s
hypothesis for beams to plates.

8. The normal stress σz in the direction transverse to the plate surface can be
neglected.

(a)
Laterally loaded rectangular plate

(b)
Stress components on plate element
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Figure 1.1.1 Laterally loaded rectangular plate.
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With the help of these assumptions, the originally three-dimensional stress prob-
lems of elasticity are reduced to two-dimensional problems of plates. Many of these
assumptions are familiar to the reader since they have their equivalent counterparts in
elementary beam theory. In addition to more exact three-dimensional stress analysis,
extensive small- and large-scale tests have proved the validity of these simplifying
assumptions. Unless otherwise stated, Kirchhoff’s classical plate theory is employed
throughout this book.

For rectangular plates the use of a rectangular Cartesian coordinate system is
most convenient (Fig. 1.1.1). The external and internal forces, stresses and deflection
components u, v and w are considered positive when they point toward the positive
direction of the coordinate axes X, Y and Z. In general engineering practice, positive
moments produce tension in the fibers located at the bottom part of the pertinent
section. This sign convention is also maintained for plates.

Considering an elemental parallelepiped cut out of the plate, as shown in Fig. 1.1.2,
we assign positive internal forces and moments to the near faces of the plate element.

Figure 1.1.2 External and internal forces on the element of the middle surface.
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To satisfy the equilibrium of the element, negative internal forces and moments must
act on its far sides. The first subscript of the internal forces refers to the direction of
the surface normal pertinent to the section on which the force acts. The subscripts of
the internal bending and of the twisting moments refer to the stresses of which they
are produced. Thus, the bending moment MX, for instance, is caused by σX normal
stresses and rotates around the Y axis. These notations are standard in the theory of
elasticity but contradict those used in contemporary numerical methods, where MX

refers to a moment rotating around the X axis, as explained in the sections dealing
with the finite element and gridwork methods. Finally, we should point out that the
second subscript of the shear stresses (Fig. 1.1.1b) indicates the direction in which
their vectors point.
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1.2 Plate Equation in Cartesian Coordinate System

In deriving the governing differential equation for thin plates, we employ, for peda-
gogical reasons, a similar method as used in elementary beam theory. Other possibili-
ties, such as utilizing a variational approach or even simplifications of the differential
equations of three-dimensional elasticity, are not considered here.

a. Equilibrium of Plate Element. Assuming that the plate is subjected to lateral
forces only, from the six fundamental equilibrium equations, the following three can
be used: ∑

Mx
.= 0, My

.= 0 and
∑

Pz
.= 0. (1.2.1)

The behavior of the plate is in many respects analogous to that of a two-dimensional
gridwork of beams. Thus the external load Pz is carried by Qx and Qy transverse
shear forces and by Mx and My bending moments. The significant deviation from the
two-dimensional gridwork action of beams is the presence of the twisting moments
Mxy and Myx (Fig. 1.1.2a). In the theory of plates it is customary to deal with
internal forces and moments per unit length of the middle surface (Fig. 1.1.2b). To
distinguish these internal forces from the above-mentioned resultants, the notations
qx, qy, mx, my, mxy and myx are introduced.

The procedure involved in setting up the differential equation of equilibrium is
as follows:

1. Select a convenient coordinate system and draw a sketch of a plate element
(Fig. 1.1.2b).

2. Show all external and internal forces acting on the element.
3. Assign positive internal forces with increments (qx + · · · , qy + · · ·, etc.) to the

near sides.
4. Assign negative internal forces to the far sides.
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5. Express the increments by a truncated Taylor’s series† in the form

qx + dqx = qx + ∂qx

∂x
dx, my + dmy = my + ∂my

∂y
dy etc. (1.2.2)

6. Express the equilibrium of the internal and external forces acting on the
element.

Let us express, for instance, that the sum of the moments of all forces around the
Y axis is zero (Fig. 1.1.2b). This gives

(
mx + ∂mx

∂x
dx

)
dy − mx dy +

(
myx + ∂myx

∂y
dy

)
dx − myx dx

−
(

qx + ∂qx

∂x
dx

)
dy

dx

2
− qx dy

dx

2
= 0.

(1.2.3)

After simplification, we neglect the term containing 1
2 (∂qx/∂x)(dx)2 dy since it is a

small quantity of higher-order. Thus Eq. (1.2.3) becomes

∂mx

∂x
dx dy + ∂myx

∂y
dy dx − qx dx dy = 0, (1.2.4)

and, after division by dx dy, we obtain

∂mx

∂x
+ ∂myx

∂y
= qx. (1.2.5)

In a similar manner the sum of the moments around the X axis gives

∂my

∂y
+ ∂mxy

∂x
= qy. (1.2.6)

The summation of all forces in the Z direction yields the third equilibrium equation:

∂qx

∂x
dx dy + ∂qy

∂y
dx dy + pz dx dy = 0, (1.2.7)

which, after division by dx dy, becomes

∂qx

∂x
+ ∂qy

∂y
= −pz. (1.2.8)

Substituting Eqs. (1.2.5) and (1.2.6) into (1.2.8) and observing that mxy = myx , we
obtain

∂2mx

∂x2
+ 2

∂2mxy

∂x ∂y
+ ∂2my

∂y2
= −pz(x, y). (1.2.9)

† f (a + h) = f (a) + (h/1!)f ′(a) + (h2/2!)f ′′(a) + · · · + (hn/n!)f (n)(a) + · · · .
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The bending and twisting moments in Eq. (1.2.9) depend on the strains, and the
strains are functions of the displacement components (u, v, w). Thus, in the next steps,
relations between the internal moments and displacement components are sought.

b. Relation between Stress, Strain and Displacements. The assumption that
the material is elastic permits the use of the two-dimensional Hooke’s law,

σx = Eεx + νσy (1.2.10a)

and

σy = Eεy + νσx, (1.2.10b)

which relates stress and strain in a plate element. Substituting (1.2.10b) into (1.2.10a),
we obtain

σx = E

1 − ν2
(εx + νεy). (1.2.11)

In a similar manner

σy = E

1 − ν2
(εy + νεx) (1.2.12)

can be derived.
The torsional moments mxy and myx produce in-plane shear stresses τxy and τyx

(Fig. 1.2.1), which are again related to the shear strain γ by the pertinent Hookean
relationship, giving

τxy = Gγxy = E

2(1 + ν)
γxy = τyx. (1.2.13)

Next, we consider the geometry of the deflected plate to express the strains in
terms of the displacement coefficients. Taking a section at a constant y, as shown in

Figure 1.2.1 Stresses on a plate element.
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st

Figure 1.2.2 Section before and after deflection.

Fig. 1.2.2, we compare the section before and after deflection. Using assumptions 6
and 7, introduced earlier in sec. 1.1 we express the angle of rotation of lines I–I and
II–II by

ϑ = −∂w

∂x
and ϑ + · · · = ϑ + ∂ϑ

∂x
dx, (1.2.14)

respectively. After the deformation the length AB of a fiber, located at z distance
from the middle surface, becomes A′B ′ (Fig. 1.2.2). Using the definition of strain,
we can write

εx = � dx

dx
= A′B ′ − AB

AB
= [ dx + z(∂ϑ/∂x) dx] − dx

dx
= z

∂ϑ

∂x
. (1.2.15)

Substituting into this expression the first of the equations (1.2.14), we obtain

εx = −z
∂2w

∂x2
. (1.2.16)

A similar reasoning yields εy , the strain due to normal stresses in the Y direction; thus

εy = −z
∂2w

∂y2
. (1.2.17)

Let us now determine the angular distortion γxy = γ ′ + γ ′′ by comparing an ABCD
rectangular parallelogram (Fig. 1.2.3), located at a constant distance z from the middle
surface, by its deformed shape A′B ′C ′D′ on the deflected plate surface. From the
two small triangles in Fig. 1.2.3, it is evident that

γ ′ = ∂v

∂x
and γ ′′ = ∂u

∂y
; (1.2.18)
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Figure 1.2.3 Angular distortion.

but from Fig. 1.2.2

u = zϑ = −z
∂w

∂x
; (1.2.19)

similarly,

v = −z
∂w

∂y
,

consequently,

γxy = γ ′ + γ ′′ = −2z
∂2w

∂x ∂y
. (1.2.20)

The curvature changes of the deflected middle surface are defined by

κx = −∂2w

∂x2
, κy = −∂2w

∂y2
and χ = − ∂2w

∂x ∂y
, (1.2.21)

where χ represents the warping of the plate.

c. Internal Forces Expressed in Terms of w. The stress components σx and σy

(Fig. 1.2.1) produce bending moments in the plate element in a manner similar to that
in elementary beam theory. Thus, by integration of the normal stress components,
the bending moments, acting on the plate element, are obtained:

mx =
∫ +(h/2)

−(h/2)

σxz dz and my =
∫ +(h/2)

−(h/2)

σyz dz. (1.2.22)

Similarly, the twisting moments produced by the shear stresses τ = τxy = τyx can be
calculated from

mxy =
∫ +(h/2)

−(h/2)

τxyz dz and myx =
∫ +(h/2)

−(h/2)

τyxz dz; (1.2.23)

but τxy = τyx = τ , and therefore mxy = myx .
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If we substitute Eqs. (1.2.16) and (1.2.17) into (1.2.11) and (1.2.12), the normal
stresses σx and σy are expressed in terms of the lateral deflection w. Thus, we
can write

σx = − Ez

1 − ν2

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(1.2.24)

and

σy = − Ez

1 − ν2

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
. (1.2.25)

Integration of Eqs. (1.2.22), after substitution of the above expressions for σx and
σy , gives

mx = − Eh3

12(1 − ν2)

(
∂2w

∂x2
+ ν

∂2w

∂y2

)

= −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
= D(κx + νκy)

(1.2.26)

and

my = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
= D(κy + νκx), (1.2.27)

where

D = Eh3

12(1 − ν2)
(1.2.28)

represents the bending or flexural rigidity of the plate. In a similar manner, the
expression of twisting moment in terms of the lateral deflections is obtained:

mxy = myx =
∫ +(h/2)

−(h/2)

τz dz = −2G

∫ +(h/2)

−(h/2)

∂2w

∂x ∂y
z2 dz

= −(1 − ν)D
∂2w

∂x ∂y
= D(1 − ν)χ.

(1.2.29)

The substitution of Eqs. (1.2.26), (1.2.27) and (1.2.29) into Eq. (1.2.9) yields the
governing differential equation of the plate subjected to distributed lateral loads,

∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+ ∂4w

∂y4
= pz(x, y)

D
, (1.2.30)

or using the two-dimensional Laplacian operator

∇2(ž) = ∂2(ž)
∂x2

+ ∂2(ž)
∂y2

(1.2.31)
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we can write Eq. (1.2.30) in a more condensed form,

D ∇2 ∇2w(x, y) = pz(x, y). (1.2.32)

This equation is a fourth-order, nonhomogeneous, partial differential equation of
the elliptic-type with constant coefficients, often called a nonhomogeneous bihar-
monic equation. Equation (1.2.30) is linear since the derivatives of w(x, y) do not
have exponents higher than 1.

We would like to also express the transverse shear forces in terms of the lateral
deflections. The substitution of Eqs. (1.2.26), (1.2.27) and (1.2.29) into Eqs. (1.2.5)
and (1.2.6) gives

qx = ∂mx

∂x
+ ∂myx

∂y
= −D

∂

∂x

(
∂2w

∂x2
+ ∂2w

∂y2

)
= −D

∂

∂x
∇2w (1.2.33a)

and

qy = ∂my

∂y
+ ∂mxy

∂x
= −D

∂

∂y

(
∂2w

∂x2
+ ∂2w

∂y2

)
= −D

∂

∂y
∇2w. (1.2.33b)

The plate problem is considered solved if a suitable expression for the deflected
plate surface w(x, y) is found that simultaneously satisfies the differential equation
of equilibrium (1.2.30) and the boundary conditions. Consequently, it can be stated
that the solution of plate problems is a specific case of a boundary value problem of
mathematical physics.

In the X, Y coordinate system, the matrix of internal moments at a given point can
be written as

M =
[

mx mxy

myx my

]
, (1.2.34)

where mxy = myx . If we desire to obtain these moments on any other transverse
plane (Fig. 1.2.4), we should employ a coordinate transformation from the X, Y to
the X′, Y ′ coordinate system. Thus

M′ =
[

m′
x m′

xy

m′
yx m′

y

]
= RMRT, (1.2.35)

where R represents the rotational matrix

R =
[

cos φ sin φ

− sin φ cos φ

]
=

[
C S

−S C

]
. (1.2.36)

Thus, we obtain

M′ =
[

mxC
2 + myS

2 + 2mxySC mxy(C
2 − S2) + (my − mx)SC

symmetric mxS
2 + myC

2 − 2mxySC

]
. (1.2.37)
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Figure 1.2.4 Internal forces on arbitrary transverse planes.

Another approach would be to consider the equilibrium of a small triangular element
cut out from the plate at the point in question (Fig. 1.2.4). In this way, we obtain
from Fig. 1.2.4a, for instance, the transverse shear force

q ′
x = qx cos φ + qy sin φ. (1.2.38)
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The principal stresses can be calculated from

m1,2 = 1
2 (mx + my) ± 1

2

√
(mx − my)2 + 4m2

xy, (1.2.39)

where m1 > m2. The principal directions for M are

tan 2φ = 2mxy

mx − my

. (1.2.40)

Since this equation can give the angle for either m1 or m2, the use of the following
expression is recommended:

tan φ1 = 2mxy

(mx − my) +
√

(mx − my)2 + 4m2
xy

, (1.2.41)

where φ1 uniquely represents the angle pertinent to m1.
Finally, it should be mentioned that occasionally† it might be advantageous to

introduce the so-called moment-sum in the form.

M = 1

1 + ν
(mx + my) = −D ∇2w. (1.2.42)

The right-hand side of this equation is obtained from (1.2.26) and (1.2.27). The intro-
duction of this moment-sum permits us to split the governing fourth-order differential
equation of the plate into two second-order differential equations. Thus, we obtain

∇2M = −pz (1.2.43a)

and

∇2w = −M

D
. (1.2.43b)

Provided that the boundary conditions for M are known, we may solve the first dif-
ferential equation. Then utilizing M, the lateral deflection w(x, y) can be determined
from Eq. (1.2.43b). It is interesting to note that Eqs. (1.2.43a) and (1.2.43b) have a
form similar to that of the differential equation of the membrane.

Summary. It has been shown that in setting up the differential equation of an elastic
plate the following basic steps are required:

1. The expression of equilibrium of external and internal forces acting on a plate
element.

2. Linking strains and stresses by Hooke’s law.
3. The use of certain geometrical relationships, obtainable from the shape of the

deflected surface, which enables us to express strains in terms of displace-
ment components.

† A simply supported boundary condition is one of these special cases.
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4. The expression of internal forces in terms of stresses and strains and finally
in terms of displacement components.

Plate problems, like all two- and three-dimensional stress problems of elasticity, are
internally statically indeterminate; that is, the three equations of equilibrium [(1.2.5),
(1.2.6) and (1.2.8)] contain five unknowns: three moments and two shear forces. To
be able to obtain a solution, additional equations of elasticity have been utilized. In
this way the governing differential equation of laterally loaded plates [Eq. (1.2.30)],
which contains only one unknown (w), is derived.
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1.3 Boundary Conditions of Kirchhoff’s Plate Theory

An exact solution of the governing plate equation (1.2.30) must simultaneously satisfy
the differential equation and the boundary conditions of any given plate problem.
Since Eq. (1.2.30) is a fourth-order differential equation, two boundary conditions,
either for the displacements or for the internal forces, are required at each boundary.
In the bending theory of plates, three internal force components are to be considered:
bending moment, torsional moment and transverse shear. Similarly, the displacement
components to be used in formulating the boundary conditions are lateral deflections
and slope. Boundary conditions of plates in bending can be generally classified as
one of the following.

a. Geometrical Boundary Conditions. Certain geometrical conditions provided
by the magnitude of displacements (translation and rotation) can be used to formu-
late the boundary conditions in mathematical form. At fixed edges (Fig. 1.3.1a), for
instance, the deflection and the slope of the deflected plate surface are zero. Thus we
can write

(w)x = 0,

(
∂w

∂x

)
x

= 0 at x = 0, a,

and (1.3.1)

(w)y = 0,

(
∂w

∂y

)
y

= 0 at y = 0, b.

Such boundary conditions are called geometrical.

b. Statical Boundary Conditions (Free-Edges). For statical boundary conditions
the edge forces provide the required mathematical expressions. At an unloaded free
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Figure 1.3.1 Various boundary conditions.

plate edge (Fig. 1.3.1b), for instance, we can state that the edge moment and the
transverse shear force (v) are zero, giving

(mx)x = (vx)x = 0 at x = 0, a,

or

(my)y = (vy)y = 0 at y = 0, b. (1.3.2)

The shearing force at the edge of the plate consists of two terms, that is, transverse
shear and the effect of the torsional moment. Considering plate edges having normals
in the X and Y directions, respectively, the vertical edge forces per unit length can
be written as

vx = qx + ∂mxy

∂y
= −D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
at x = 0, a,

vy = qy + ∂myx

∂x
= −D

[
∂3w

∂y3
+ (2 − ν)

∂3w

∂x2 ∂y

]
at y = 0, b,

(1.3.3)



Boundary Conditions of Kirchhoff’s Plate Theory 37
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Figure 1.3.2 Edge effect of torsional moments.

where qx and qy are the lateral shear forces [Eq. (1.2.33)]. The second terms, ∂mxy/∂y

and ∂myx/∂x, in Eq. (1.3.3) represent additional shearing forces at the edges, pro-
duced by the torsional moments mxy = myx . Replacing the torsional moments by
statically equivalent couples mxy dy/dy and myx dx/dx, respectively (Fig. 1.3.2),
these forces cancel out at the adjoining elements, except for their incremental parts:

∂mxy

∂y
dy and

∂myx

∂x
dx.

Dividing these expressions by dy and dx, respectively, the additional shearing forces
per unit length are obtained:

q∗
x = ∂mxy

∂y
and q∗

y = ∂myx

∂x
. (1.3.4)

These forces are called Kirchhoff’s supplementary forces (kirchhoffsche Ersatzkräfte).
Replacing the torsional moments by these equivalent shear forces, Kirchhoff reduced
the number of internal forces to be considered from three to two. Thus from Eqs.
(1.2.26), (1.2.27), (1.3.2) and (1.3.3) the boundary conditions at the free-edges are

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
x

= 0,

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
x

= 0 at x = 0, a

(1.3.5)

and

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
y

= 0,

[
∂3w

∂y3
+ (2 − ν)

∂3w

∂x2 ∂y

]
y

= 0 at y = 0, b.

(1.3.6)
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c. Mixed Boundary Conditions. A simply supported edge (Fig. 1.3.1c) represents
mixed boundary conditions. Since the deflection and the bending moment along the
boundary are zero, formulation of this type of boundary condition involves statements
concerning displacements and forces. Thus,

(w)x = 0, (mx)x =
(

∂2w

∂x2
+ ν

∂2w

∂y2

)
x

= 0 at x = 0, a,

(w)y = 0, (my)y =
(

∂2w

∂y2
+ ν

∂2w

∂x2

)
y

= 0. at y = 0, b.

(1.3.7)

At the corners of rectangular plates the above-discussed action of torsional moments
add up instead of canceling (because mxy = myx), producing an additional cor-
ner force

R0 = 2mxy = −2D(1 − ν)
∂2w

∂x ∂y
. (1.3.8)

If no anchorage is provided, these forces can lift up the corners, as illustrated in
Fig. 1.3.3a. Since this condition is generally undesirable, it should be avoided by
holding down the edges of simply supported plates. For reinforced-concrete slabs,
when lifting up the corners is prevented, special corner reinforcing is required to
eliminate local failures (Fig. 1.3.3b).

When two adjacent edges are fixed, the additional corner force is zero (R0 = 0),
since along these edges no torsional moment exists. The case at the intersection of
two free-edges is similar.

If the solution of a given plate problem w(x, y) was obtained by one of the
approximate analytical or numerical methods, determination of the corner forces may
require special considerations, as discussed in Sec. 13.3.

Figure 1.3.3 Up-lift of corners.
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d. Elastic Support and Restraint. A special case of the mixed boundary condition
occurs when the plate is resting on yielding support (Fig. 1.3.1d), such as provided by
an edge beam without torsional rigidity. Assuming that the support is elastic and that
its translational stiffness or spring constant is ρ (Fig. 1.3.4), the boundary conditions,
for an edge having normals in the X direction, for instance, are

(w)x=a = −
[

vx

ρ(y)

]
x=a

= D

ρ(y)

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
x=a

,

(mx)x=a =
[

∂2w

∂x2
+ ν

∂2w

∂y2

]
x=a

= 0.

(1.3.9)

For continuous beam support, the first equation of (1.3.9) becomes

[
EIb

∂4w

∂y4

]
x=a

= D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
x=a

, (1.3.9a)

where Ib represents the moment of inertia of the edge beam.
If the edge beam has torsional rigidity ρ�, it also provides partial restraint (fixity),

as shown in Fig. 1.3.1f. Since the edge beam and the plate are built monolithically,
they must have the same displacements. Consequently, the geometrical boundary
conditions of elastic support and restraint along the edge at x = a are

(w)x=a = D

ρ(y)

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
x=a

,

(
∂w

∂x

)
x=a

= − D

ρ�(y)

[
∂2w

∂x2
+ ν

∂2w

∂y2

]
x=a

(1.3.10)

Similar expressions can be written for an edge at y = b.
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Figure 1.3.4 Force-displacement relationship of a linear spring.
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Table 1.3.1 Summary of Boundary Conditions

Type of Support at x = a Mathematical Expressions

Simple support (Fig. 1.3.1c) (w)x=a = 0; (mx)x=a =
(

∂2w

∂x2
+ ν

∂2w

∂y2

)
x=a

= 0

Fixed edge (Fig. 1.3.1a) (w)x=a = 0;

(
∂w

∂x

)
x=a

= 0

Free-edge (Fig. 1.3.1b) (mx)x=a =
(

∂2w

∂x2
+ ν

∂2w

∂y2

)
x=a

= 0

(vx)x=a =
[

∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
x=a

= 0

Partially fixed edge (Fig. 1.3.1e) (w)x=a = 0

(
∂w

∂x

)
x=a

= −(ρ�)−1D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
x=a

Elastic support (Fig. 1.3.1d) (mx)x=a =
(

∂2w

∂x2
+ ν

∂2w

∂y2

)
x=a

= 0

(w)x=a = ρ−1D

[
∂2w

∂x2
+ (2 − ν)

∂3w

∂x ∂y2

]
x=a

Elastic support and restraint
(Fig. 1.3.1f)

(w)x=a = ρ−1D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
x=a

(
∂w

∂x

)
x=a

= −(ρ�)−1D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
x=a

Note: ρ = translational stiffness of support; ρ� = rotational stiffness of support.

The analytical formulation of the various boundary conditions, illustrated in Fig.
1.3.1, is given in Table 1.3.1.

e. Curved Boundaries. In the case of curved boundaries (Fig. 1.3.5), the three
most important boundary conditions are given below:

1. Simply supported edge:

w = 0 and mn = −D

[
∇2

r w − (1 − ν)

(
∂2w

∂t2
+ 1

rt

∂w

∂n

)]
= 0,

(1.3.11)

where†

∇2
r w = ∂2w

∂n2
+ ∂2w

∂t2
+ 1

rt

∂w

∂n
(1.3.12)

and rt represents the radius of curvature of the curved edge at a given boundary
point (Fig. 1.3.5).

† See Sec. 1.4.
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2. Fixed edge:

w = 0 and
∂w

∂n
= 0. (1.3.13)

3. Free edge:

mn = −D

[
∇2

r w − (1 − ν)

(
∂2w

∂t2
+ 1

rt

∂w

∂n

)]
= 0 (1.3.14)

and

vn = −D

[
∂ ∇2

r w

∂n
+ (1 − ν)

(
∂2

∂t2

∂w

∂n
− ∂

∂t

(
1

rt

∂w

∂t

))]
= 0. (1.3.15)

Summary. In this chapter the fundamentals of the classical thin-plate theory are
presented, which is based on Bernoulli-Kirchhoff hypotheses. These hypotheses are
analogous to those used in elementary beam theory. In this way, the originally three-
dimensional problem of elasticity was reduced to a problem involving only two
dimensions. The governing differential equation of small-deflection, elastic thin-plate
theory [Eq. (1.2.30)] is a differential equation of fourth order, linking the displace-
ment of the midsurface w(x, y) to the transverse load pz(x, y).

Bending problems of plates can be considered as solved if the function of
lateral displacements w(x, y) simultaneously satisfies the governing differential
equation (1.2.30) and the boundary conditions, which require the specification of
any two of the following quantities:

w,
∂w

∂n
, mn and vn,

where n represents the direction of the normal vector of the boundary (Fig. 1.2.5).
Any two of these boundary conditions are sufficient to guarantee unique solutions of
the plate equation.

O
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Figure 1.3.5 Curved boundary.
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1.4 Differential Equation of Circular Plates

When circular plates are analyzed, it is convenient to express the governing differen-
tial equation (1.2.30) in a polar coordinate system, shown in Fig. 1.4.1a. This can be
readily accomplished by a coordinate transformation. An alternative approach, based
on the equilibrium condition of an infinitesimally small plate element (Fig. 1.4.1b),
is analogous to the derivation given in Sec. 1.2.

If the coordinate transformation technique is used, the following geometrical rela-
tionships between the Cartesian and polar coordinates are applicable (Fig. 1.4.1a):

x = r cos ϕ, y = r sin ϕ (1.4.1a)

Cartesian

Figure 1.4.1 Circular plate.
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and

r =
√

x2 + y2, ϕ = tan−1
(y

x

)
. (1.4.1b)

Since x is a function of r and ϕ, the derivative of w(r, ϕ) with respect to x can be
transformed into derivatives with respect to r and ϕ. Thus, we can write

∂w

∂x
= ∂w

∂r

∂r

∂x
+ ∂w

∂ϕ

∂ϕ

∂x
. (1.4.2)

Using Eq. (1.4.1), we obtain

∂r

∂x
= x

r
= cos ϕ and

∂ϕ

∂x
= − y

x2 + y2
= −1

r
sin ϕ; (1.4.3)

therefore,

∂w

∂x
= cos ϕ

∂w

∂r
− 1

r
sin ϕ

∂w

∂ϕ
=

[
cos ϕ

∂(ž)
∂r

− sin ϕ
1

r

∂(ž)
∂ϕ

]
w, (1.4.4)

from which

∂2w

∂x2
= ∂

∂x

(
∂w

∂x

)
=

(
cos ϕ

∂

∂r
− 1

r
sin ϕ

∂

∂ϕ

)(
cos ϕ

∂w

∂r
− 1

r
sin ϕ

∂w

∂ϕ

)
. (1.4.5)

Equation (1.4.5) can be reduced to

∂2w

∂x2
= cos2 ϕ

∂2w

∂r2
+ 1

r2
sin2 ϕ

∂2w

∂ϕ2
+ 1

r
sin2 ϕ

∂w

∂r

− 1

r
sin 2ϕ

∂2w

∂r ∂ϕ
+ 1

r2
sin 2ϕ

∂w

∂ϕ
. (1.4.6)

In a similar manner we obtain

∂w

∂y
= sin ϕ

∂w

∂r
+ 1

r
cos ϕ

∂w

∂ϕ
(1.4.7)

and

∂2w

∂y2
= sin2 ϕ

∂2w

∂r2
+ 1

r2
cos2 ϕ

∂2w

∂ϕ2
+ 1

r
cos2 ϕ

∂w

∂r

+ 1

r
sin 2ϕ

∂2w

∂r ∂ϕ
− 1

r2
sin 2ϕ

∂w

∂ϕ
. (1.4.8)

Furthermore, Eqs. (1.4.4) and (1.4.7) give

∂2w

∂x ∂y
= 1

2
sin 2ϕ

∂2w

∂r2
− 1

r2
cos 2ϕ

∂w

∂ϕ
− 1

2r2
sin 2ϕ

∂2w

∂ϕ2

− 1

2r
sin 2ϕ

∂w

∂r
+ 1

r
cos 2ϕ

∂2w

∂r ∂ϕ
. (1.4.9)
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Therefore, the Laplacian operator ∇2 (1.2.31), in terms of polar coordinates, becomes

∇2
r = ∂2

∂r2
+ 1

r2

∂2

∂ϕ2
+ 1

r

∂

∂r
. (1.4.10)

When the Laplacian operator ∇2 is replaced by ∇2
r in Eq. (1.2.32), the plate equation

in polar coordinates is obtained:

∇2
r ∇2

r w = ps(r, ϕ)

D
. (1.4.11)

The expressions for internal moments and shear forces, derived in Sec. 1.2, can also
be transformed into polar coordinates; thus, we can write

mr = −D

[
∂2w

∂r2
+ ν

(
1

r2

∂2w

∂ϕ2
+ 1

r

∂w

∂r

)]
, (1.4.12)

mϕ = −D

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂ϕ2
+ ν

∂2w

∂r2

)
, (1.4.13)

mrϕ = mϕr = −(1 − ν)D
∂

∂r

(
1

r

∂w

∂ϕ

)

= −(1 − ν)D

[
1

r

∂2w

∂r ∂ϕ
− 1

r2

∂w

∂ϕ

]
(1.4.14)

and

qr = −D
∂

∂r
∇2

r w and qϕ = −D
1

r

∂

∂ϕ
∇2

r w. (1.4.15)

Similarly, transformation of Eq. (1.3.3) into polar coordinates gives the lateral edge
forces:

vr = qr + 1

r

∂mrϕ

∂ϕ
and vϕ = qϕ + ∂mϕr

∂r
. (1.4.16)

These expressions for an edge with outward normal in the r or ϕ direction become

vr = −D

[
∂

∂r
∇2

r w + 1 − ν

r

∂

∂ϕ

(
1

r

∂2w

∂r ∂ϕ
− 1

r2

∂w

∂ϕ

)]
,

vϕ = −D

[
1

r

∂

∂ϕ
∇2

r w + (1 − ν)
∂

∂r

(
1

r

∂2w

∂r ∂ϕ
− 1

r2

∂w

∂ϕ

)]
.

(1.4.17)

Summary. The governing differential equation of circular plates, expressed in polar
coordinates, was derived by transformation of the Laplacian operator ∇2 from Carte-
sian to polar coordinates. In the same way, expressions for moments and shear forces
could be found in terms of r and ϕ. Exact solutions of Eq. (1.4.11) for nonsymmetric
loading and boundary conditions are extremely tedious or, in many cases, impossible
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to obtain. With symmetric boundary conditions, however, solutions for nonsymmet-
ric loading can often be achieved by separating the loading into symmetric and
antisymmetric parts, as discussed in pertinent sections.

1.5 Refined Theories for Moderately Thick Plates

Although classical plate theory yields sufficiently accurate results for thin plates,
its accuracy decreases with growing thickness of the plate. Exact three-dimensional
elasticity analysis of some plate problems indicates that its error is on the order
of plate thickness square. Such an inherent limitation of classical plate theory for
moderately thick plates† necessitated the development of more refined theories in
order to obtain reliable results for the behavior of these structures.

Experiments have shown that Kirchhoff’s classical plate theory underestimates
deflections and overestimates natural frequencies and buckling loads for moderately
thick plates. These discrepancies are due to the neglect of the effect of transverse
shear strains, since (following elementary beam theory) it is assumed that normals to
the middle plane remain straight and normal to the deflected midplane.

Nowadays many plate theories exist that account for the effects of transverse shear
strains. The earliest attempt is due to M. Lévy who in his pioneering work [1.5.1]
began to search for solutions using the equations of three-dimensional elasticity. More
recently, primarily two approaches are used to take into account the transverse shear
deformations. In the first one, which is attributed to Reissner [1.5.2], stresses are
treated as primary variables. In the second approach, attributed to Mindlin [1.5.3],
displacements are treated as unknowns. Both approaches provide for further devel-
opment. Consequently, more sophisticated so-called higher-order theories have also
been introduced in the last decades.

a. Reissner Theory. The above-discussed principal limitations of classical plate
theory are partially eliminated by Reissner by introducing the influence of transverse
shear and that of transverse direct stress σz [1.5.2]. Reissner made two assumptions.
First, he assumed a linear variation of the displacement field through the plate thick-
ness. Second, Reissner assumed that, as the plate bends, plane sections remain plane
but lines originally perpendicular to the middle surface will not remain perpendicular
to it after deformation (Fig. 1.5.1). Rotations of the normals to the middle surface
are expressed by

ωx = −∂w

∂x
+ 6

5 Gh
qx, ωy = −∂w

∂y
+ 6

5 Gh
qy. (1.5.1)

This departure from the Bernoulli-Kirchhoff hypothesis makes it possible to partially
account for the effect of transverse shear deformations.

Reissner formulated his plate equations by applying Castigliano’s theorem of least
work using stresses as variables. This stress-based theory yielded the following three
simultaneous differential equations:

D ∇2 ∇2w = pz − h2

10

2 − ν

1 − ν
∇2pz, (1.5.2)

† Moderately thick plates have an approximate thickness-to-span ratio h/L ≈ 1
10 – 1

5 .
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O X, u

Y,

Z, w

Midplane

wx
∂w
∂x

Assumed deformation

Normal to midplane
after deformation

Figure 1.5.1 Reissner’s cross-sectional assumption.

qx = −D
∂ ∇2w

∂x
+ h2

10
∇2qx − h2

10

1

1 − ν

∂pz

∂x
, (1.5.3)

qy = −D
∂ ∇2w

∂y
+ h2

10
∇2qy − h2

10

1

1 − ν

∂pz

∂y
. (1.5.4)

The bending and twisting moments are expressed by

mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
+ h2

5

∂qx

∂x
− h2

10

ν

1 − ν
pz, (1.5.5)

my = −D

(
ν
∂2w

∂x2
+ ∂2w

∂y2

)
+ h2

5

∂qy

∂y
− h2

10

ν

1 − ν
pz, (1.5.6)

mxy = −D(1 − ν)
∂2w

∂x ∂y
+ h2

10

(
∂qy

∂x
+ ∂qx

∂y

)
. (1.5.7)

The governing differential equations represent an integration problem of sixth order.
Consequently, three mutually independent boundary conditions must be satisfied at
the edges. These are

For fixed edge (Fig. 1.3.1a) : (w)x=a = 0, (ωx)x=a = 0, (wy)x=a = 0;

(1.5.8)

For free-edge (Fig. 1.3.1b) : (qx)x=a = 0, (mx)x=a = 0, (mxy)x=a = 0;

(1.5.9)

For simply supported edge (Fig. 1.3.1c):

(w)x=a = 0, (mx)x=a = 0, (mxy)x=a = 0. (1.5.10)
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Although, over the years, Reissner refined his theory (Refs. [1.5.4–1.5.7]) and even
formulated the governing differential equations in terms of transverse displacement
w(x, y) as a single variable, solutions of these differential equations remain extremely
demanding. For this reason simplified stress-based theories have been introduced.
Speare and Kemp [1.5.8], for instance, used the very same assumptions as Reissner
but accepted a somewhat lower accuracy. The so-derived differential equation for the
bending of moderately thick plate is

∇2w + h2(2 − ν)

10(1 − ν)
∇3w = pz

D
, (1.5.11)

where

∇3w =
(

∂2w

∂x2
+ ∂2w

∂y2

)3

. (1.5.12)

The pertinent bending and twisting moments are

mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
− h2D

10(1 − ν)

[
(2 − ν)

∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+ ν

∂4w

∂y4

]
,

(1.5.13)

my = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
− h2D

10(1 − ν)

[
(2 − ν)

∂4w

∂y4
+ 2

∂4w

∂x2 ∂y2
+ ν

∂4w

∂x4

]
,

(1.5.14)

mxy = (1 − ν)D
∂2w

∂x ∂y
+ h2D

5

(
∂4w

∂x3 ∂y
+ ∂4w

∂x ∂y3

)
, (1.5.15)

and the transverse shear forces are expressed by

qx = −D

(
∂3w

∂x3
+ ∂3w

∂x ∂y2

)
− h2(2 − ν)

10(1 − ν)
D

(
∂5w

∂x5
+ 2

∂5w

∂x3 ∂y2
+ ∂5w

∂x ∂y4

)
,

(1.5.16)

qy = −D

(
∂3w

∂y3
+ ∂3w

∂x2 ∂y

)
− h2(2 − ν)

10(1 − ν)
D

(
∂5w

∂y5
+ 2

∂5w

∂x2 ∂y3
+ ∂5w

∂x4 ∂y

)
.

(1.5.17)

The boundary conditions remain the same as given by Reissner in Eqs. (1.5.8)–
(1.5.10).

An alternative approach for a simplified Reissner theory is presented in Ref. [1.5.9].
Both theories are attractive from a computational point of view.

b. Mindlin Theory. The most widely used displacement-based theory for mod-
erately thick plates was developed by Mindlin [1.5.3]. It is based on a so-called
first-order deformation theory using the following kinematic assumptions for the
in-plane displacements:

u = zψx(x, y), v = zψy(x, y), (1.5.18)
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where ψx(x, y) and ψy(x, y) represent rotations at the midplane. Since the trans-
verse displacements w(x, y) are independent of z, no thickness stretch is permitted.
The cross-sectional assumption of Mindlin’s theory is identical to that of Reissner’s
assumption, shown in Fig. 1.5.1. Thus, in this case ωx = ψx and ωy = ψy .

Equation (1.5.18) yields constant values for the transverse shear strains and cor-
responding stress distributions. Since the real stress distribution in moderately thick
plates is parabolic, this assumption is incorrect. Furthermore, it fails to satisfy the
zero-stress condition on the top and bottom surfaces of the plate. Consequently, it was
necessary to introduce a correction factor κ2, which was evaluated by comparison
with the exact elastic solutions. Following Timoshenko’s earlier approach—used for
moderately deep beams—the value κ2 = 5

6 was selected.
Mindlin notes that the values of the shear correction factor κ2 are linear functions of

Poisson’s ratio ν. He provides two estimates based on comparison of his theory with
the more exact solution of three-dimensional elasticity. The first estimate gives 0.75 ≤
κ2 ≤ 0.91 for 0 ≤ ν ≤ 0.5. The second estimate is based on shear wave velocity
κ2 = π2/12 = 0.822. If ν = 0.3, then κ2 ≈ 0.86, which compares favorably with the
generally used assumption of κ2 = 5

6 = 0.8333.
A more exact expression for the shear correction factor is κ2 = 20(1 + ν)/(24 +

25ν + ν2), which even considers the parabolic variation of shear forces [1.5.24]. This
expression gives, for ν = 0.3, κ2 = 0.823, which is, for all practical purposes, the
same as Mindlin’s second estimate.

Applying the minimum of the potential energy theorem, Mindlin derived the fol-
lowing differential equations of equilibrium:

κ2Gh(∇2w + φ) + pz(x, y) = 0, (1.5.19)

D

2

[
(1 − ν)∇2ψx + (1 + ν)

∂φ

∂x

]
− κ2Gh

(
ψx + ∂w

∂x

)
= 0, (1.5.20)

D

2

[
(1 − ν)∇2ψy + (1 + ν)

∂φ

∂y

]
− κ2Gh

(
ψy + ∂w

∂y

)
= 0, (1.5.21)

where D represents the plate bending rigidity given in Eq. (1.2.28) and E, G and v

are Young’s modulus of elasticity, shear modulus and Poisson’s ratio, respectively.
The shear correction factor is κ2 and

φ = ∂ψx

∂x
+ ∂ψy

∂y
. (1.5.22)

The stress resultants in Mindlin’s plate theory are

mx = D

(
∂ψx

∂x
+ ν

∂ψy

∂y

)
, (1.5.23)

my = D

(
∂ψy

∂y
+ ν

∂ψx

∂x

)
, (1.5.24)

mxy = myx = 1 − ν

2
D

(
∂ψy

∂x
+ ∂ψx

∂y

)
, (1.5.25)
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qx = κ2Gh

(
ψx + ∂w

∂x

)
, (1.5.26)

qy = κ2Gh

(
ψy + ∂w

∂y

)
. (1.5.27)

In the case of rectangular plates, the boundary conditions (Fig. 1.3.1) are

For fixed edge: (wx)x=a = (ψx)x=a = (ψy)x=a = 0; (1.5.28)

For simple support: (w)x=a = (ψx)x=a = (mx)x=a = 0; (1.5.29)

For free-edge: (mx)x=a = (mxy)x=a = (qx)x=a = 0. (1.5.30)

c. Higher-Order Shear Theories. While all “first-order” theories assume that the
in-plane displacements u and v vary linearly, this kinematic approximation of real-
ity can be avoided by introducing cubic—or even higher-order—variations for these
displacement components. A higher-level theory is based upon the assumed displace-
ment forms

u = zψx(x, y) + z3φx(x, y),

v = zψy(x, y) + z3φy(x, y).
(1.5.31)

Here ψx and ψy represent rotations of the midplane of the plate, whereas the com-
parable quantities of the Reissner and Mindlin theories are, in some respect, average
rotations. The quantities φx and φy are the so-called warping functions. The pertinent
kinematic assumptions are

φx = − 4

3h2

(
ψx + ∂w

∂x

)
,

φy = − 4

3h2

(
ψy + ∂w

∂y

)
,

u = z

[
ψx − 4

3

z2

h2

(
ψx + ∂w

∂x

)]
,

v = z

[
ψy − 4

3

z2

h2

(
ψy + ∂w

∂y

)]
.

(1.5.32)

These kinematic assumptions satisfy the requirements for shear-free conditions on
the top and bottom surfaces of the moderately thick plates and represent a parabolic
distribution of shear stresses across the plate thickness. Furthermore, the cross sections
at the midplane are allowed to warp, as shown in Fig. 1.5.2.

Using the kinematic assumptions given in Eqs. (1.5.31) and (1.5.32), Levinson
[1.5.10] derived an improved approximation to the theory of moderately thick plates.
Applying similar equilibrium considerations as used in the derivation of classical
plate theory, the following differential equations have been obtained:

2
3Gh(∇2w + φ) + pz(x, y) = 0, (1.5.33)
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Figure 1.5.2 Levinson’s cross-sectional assumption.

2D

5

[
(1 − ν)∇2ψx + (1 + ν)

∂φ

∂x
− 1

2

∂

∂x
(∇2w)

]
− 2

3
Gh

(
ψx + ∂w

∂x

)
= 0,

(1.5.34)

2D

5

[
(1 − ν)∇2ψy + (1 + ν)

∂φ

∂y
− 1

2

∂

∂y
(∇2w)

]
− 2

3
Gh

(
ψy + ∂w

∂y

)
= 0.

(1.5.35)
The three unknowns in these differential equations are, again, the deflection w and the
rotations at the midplane ψx and ψy . The pertinent internal forces are expressed by

mx = D

5

[
4

(
∂ψx

∂x
+ ν

∂ψy

∂y

)
−

(
∂2w

∂x2
+ ν

∂2w

∂y2

)]
, (1.5.36)

my = D

5

[
4

(
∂ψy

∂y
+ ν

∂ψx

∂x

)
−

(
∂2w

∂y2
+ ν

∂2w

∂x2

)]
, (1.5.37)

mxy = D(1 − ν)

5

[
2

(
∂ψy

∂x
+ ∂ψx

∂y

)
− ∂2w

∂x∂y

]
(1.5.38)

and

qx = 2

3
Gh

(
ψx + ∂w

∂x

)
, (1.5.39)

qy = 2

3
Gh

(
ψy + ∂w

∂y

)
. (1.5.40)

The geometrical boundary conditions of the Mindlin and Levinson theories are for-
mally the same. But the Levinson theory allows only the specification of the rotations
at the midplane.
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Another higher-order theory developed by Lo and co-workers [1.5.11] employs
the following displacement forms:

u = u0 + zψx + z2ζx + z3φx,

v = v0 + zψy + z2ζy + z3φy, (1.5.41)

w = w0 + zψz + z2ζz,

where u0, v0, ψx, ψy and w0 are dependent on the in-plane coordinates x and y and
w0, ψx, ψy are weighted averages.

Subramanian introduced fourth- and fifth-order power series expressions for the
displacement components [1.5.12]. As already mentioned, Reissner even used a
twelfth-order theory for moderately thick plates [1.5.6]. Needless to say, the com-
plexity of the solutions, if they can be obtained at all, are also increased with the
order of polynomial expressions for displacements.

d. Governing Differential Equations for Circular Plates. The equilibrium equa-
tions for axisymmetric bending of circular Reissner-Mindlin plates of uniform thick-
ness h are given in terms of displacement components in Refs. [46] and [1.5.23]
as follows:

D

(
d2ψ

dr2
+ 1

r

dψ

dr
− ψ

r2

)
− κ2Gh

(
dw

dr
+ ψ

)
= 0, (1.5.42)

κ2Gh

(
d2w

dr2
+ 1

r

dw

dr
+ dψ

dr
+ ψ

r

)
+ pz = 0. (1.5.43)

The corresponding equations of the stress resultants are

mr = D

(
dψ

dr
+ ν

ψ

r

)
, mϕ = D

(
ν

dψ

dr
+ ψ

r

)
, qr = κ2Gh

(
dw

dr
+ ψ

)
.

(1.5.44)

Summary. In the past decades a great deal of research work has been conducted
on the effect of shear deformation in moderately thick plates. Since this effort is by
no means completed, further important developments can be expected on this sub-
ject. In addition to the above-discussed refined plate theories, the reader will find
additional pertinent information in Refs. [1.5.13–1.5.22]. Due to their inherent com-
plexities, direct use of these refined theories is cumbersome, and their computation
becomes increasingly demanding, since with each additional power in the kinematic
assumptions additional dependent unknowns are introduced into the governing dif-
ferential equations. Thus, it is recommended that simplified theories—such as those
given in Refs. [1.5.8] and [1.5.9]—be employed whenever possible. However, if the
thickness-to-span ratio h/L of the plate approaches 1

5 , the use of Levinson’s theory
(or its simplified version [1.5.22]) appears to be more advantageous.
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1.6 Three-Dimensional Elasticity Equations
for Thick Plates

When the thickness of the plate becomes significant compared to its smallest span
dimension,† the governing equations of three-dimensional elasticity (as given in Refs.
[1.6.1–1.6.4]) must be applied to determine the true three-dimensional distribution
of stresses in the plate. To describe the three-dimensional state of stresses in a rect-
angular Cartesian coordinate system, we take an infinitesimal element in the form of
a parallelepiped (dx, dy, dz) with faces parallel to the coordinate planes, as shown
in Fig. 1.6.1. The X, Y and Z components of the normal stresses are designated
by σx, σy and σz, respectively. Again, the subscripts refer to the normal of the sur-
face upon which the stress vector acts. The shearing stresses—as in the previous
sections—carry two subscripts. The first subscript refers to the direction of the nor-
mal of the surface, and the second subscript indicates the direction of the stress vector
τ . Since stresses are functions of their location in the body, their intensity is changed
when we move their reference plane by dx, dy and dz. The resulting increments are
expressed, again, by the first two terms of a Taylor series (Fig. 1.6.1).

Following the sign convention used throughout this book, we consider all stresses
positive if they act in the direction of the positive coordinate axes. Consequently,
on the near surfaces of the element (viewed from the tips of the positive coordinate
axes), all stresses are positive. On the far sides of the element, all stresses acting
in the negative coordinate direction are positive. This sign convention follows the
customary rule in engineering practice; that is, tension is positive and compression
is negative.

Figure 1.6.1 Three-dimensional element.

† That is, the thickness-to-span ratio is considerably greater than 1
5 .
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The three-dimensional state of stress at any point of the elastic body is defined by
nine components of the stress tensor† with the pertinent matrix

[σ ] =

 σx τxy τxz

τyx σy τyz

τzx τzy σz


 , (1.6.1)

which is symmetric with respect to the principal diagonal. Because of this symmetry,

τxy = τyx, τxz = τzx and τyz = τzy. (1.6.2)

Equation (1.6.2) is called the reciprocity law of shearing stresses and can easily be
verified by taking the moments of stresses about the coordinate axes.

In general, the solution of a three-dimensional elasticity problem consists of find-
ing the stresses in the elastic body subjected to surface forces px, py, pz and body
forces X, Y, Z. If the displacements are small, we have 15 linear field equations for
15 unknowns:

1. three equilibrium equations,
2. six kinematic relationships, and
3. six stress-strain equations.

In addition to these field equations, a set of boundary conditions are also required to
obtain a unique solution to a three-dimensional elasticity problem. We are, in general,
faced with three types of boundary conditions for thick plates:

(a) Statical : The surface forces (px, py, pz) are prescribed.
(b) Kinematic: The displacements (u, v, w) are prescribed.
(c) Mixed : Some boundary forces and some displacements are prescribed.

The original 15 equations used in a stress-based analysis can be reduced to three
differential equations in terms of the displacement components u, v and w. These
so-called Lamé equations of equilibrium are

(λ + G)
∂e

∂x
+ G∇2

3u + X = 0,

(λ + G)
∂e

∂y
+ G∇2

3v + Y = 0, (1.6.3)

(λ + G)
∂e

∂z
+ G∇2

3w + Z = 0,

where

λ = νE

(1 + ν)(1 − ν)
(1.6.4)

† A tensor is a quantity having physical significance that satisfies a certain transformation law. This
transformation law in the theory of elasticity is the rotation of axes. Tensors of second order are
represented by matrices.
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and/or considerably greater than

Figure 1.6.2 Thick plate in rectangular cartesian coordinate system.

represents the Lamé coefficient, G is the modulus of elasticity in shear and

∇2
3 (ž) = ∂2(ž)

∂x2
+ ∂2(ž)

∂y2
+ ∂2(ž)

∂z2
(1.6.5)

is the three-dimensional Laplacian operator. In addition, e in Eq. (1.6.3) denotes the
volume dilatation in the form

e = εx + εy + εx. (1.6.6)

In practice, we usually eliminate the body forces and apply the weight of the plate
as surface force pz(x, y) acting on the lower and upper faces of the plate. A similar
approach is taken with the external load acting in the transverse direction. Further-
more, we can write Eq. (1.6.3) in terms of derivatives of the displacement components
in more explicit form. Thus we obtain

(λ + 2G)
∂2u

∂x2
+ G

∂2u

∂y2
+ G

∂2u

∂z2
+ (λ + G)

∂2v

∂x ∂y
+ (λ + G)

∂2w

∂x ∂z
= 0,

(1.6.7)

(λ + G)
∂2u

∂x ∂y
+ G

∂2v

∂x2
+ (λ + 2G)

∂2v

∂y2
+ G

∂2v

∂z2
+ (λ + G)

∂2w

∂y ∂z
= 0,

(1.6.8)

(λ + G)
∂2u

∂x ∂z
+ (λ + G)

∂2v

∂y ∂z
+ G

∂2w

∂x2
+ G

∂2w

∂y2
+ (λ + 2G)

∂2w

∂z2
= 0.

(1.6.9)
The three most important boundary conditions of thick plates (Fig. 1.6.2) are as
follows:
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1. For clamped edges:

At x = 0, a : u = 0, v = 0, w = 0,

At y = 0, b : u = 0, v = 0, w = 0,

At z = 0, h : τxz = 0, τyz = 0, σz = ±pz/2;

(1.6.10)

2. For simply supported edges:

At x = 0, a : σx = 0, τxy = 0, w = 0,

At y = 0, b : σy = 0, τxy = 0, w = 0,

At z = 0, h : τxz = 0, τyz = 0, σz = ±pz/2;

(1.6.11)

3. For free-edges:

At x = 0, a : σx = 0, τxy = 0, τxz = 0,

At y = 0, b : σy = 0, τyx = 0, τyz = 0,

At z = 0, h : σz = ±pz/2 τzy = 0, τzx = 0.

(1.6.12)

From the displacement components the strains are obtained from

εx = ∂u

∂x
, εy = ∂v

∂y
, εz = ∂w

∂z
(1.6.13)

and

γxy = ∂u

∂y
+ ∂v

∂x
, γyz = ∂v

∂z
+ ∂w

∂y
, γzx = ∂w

∂x
+ ∂u

∂z
. (1.6.14)

Finally, from the relationship between strains and stresses,

εx = 1

E
(σx − νσy − νσz),

εy = 1

E
(σy − νσz − νσx), (1.6.15)

εz = 1

E
(σz − νσx − νσy)

and

γxy = τxy

G
, γyz = τyz

G
, γzx = τzx

G
, (1.6.16)

the sought stresses can be computed. Solving Eq. (1.6.15), for instance, we obtain

σx = E

(1 + ν)(1 − 2ν)
[(1 − ν)εx + ν(εy + εz)]. (1.6.17)

Similar expressions can be written for σy and σz, respectively.
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Summary. The three-dimensional elasticity solutions of thick plates have the abil-
ity to express precisely the high-order variation displacement and stress through the
thickness of the plate. Although such a three-dimensional approach is rigorous, find-
ing solutions is generally extremely difficult. The few analytical solutions available
are usually restricted to problems with simple plate geometry, loading conditions and
boundary conditions. Srinivas et al. [1.6.5], for instance, expressed the displacements
in the form of double trigonometric series to obtain a three-dimensional solution for
rectangular thick plates on simple supports. In a further work [1.6.6], the displacement
components are expressed in terms of hyperbolic functions to obtain a better conver-
gence of the solution. Practical alternatives to the analytical solutions are the various
numerical methods. The finite difference technique, for example, transforms the par-
tial differential equations of three-dimensional elasticity into a system of algebraic
equations as demonstrated in Ref. [1.6.8]. The three-dimensional gridwork and finite
element methods (as discussed later in this book) currently offer the most versatile
solution techniques for almost all thick-plate problems.
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[1.6.4] FLÜGGE, W. (Ed.), Handbook of Engineering Mechanics, McGraw-Hill Book Company,

New York, 1962.
[1.6.5] SRINIVAS, S., et al., “Flexure of Simply Supported Thick Homogeneous and Laminated

Rectangular Plates,” ZAMM, 49 (1969), 449.
[1.6.6] SRINIVAS, S., and RAO, A. K., “Flexure of Thick Rectangular Plates,” J. Appl. Mech., 49

(1973), 298.
[1.6.7] SUNDARA RAYA IYENGAR, K. T., et al., “On the Analysis of Thick Rectangular Plates,” Ing.

Arch., 43 (1974), 317.
[1.6.8] NG, S. F., and BENCHARIF, N., “A Finite Difference Computer Program for the Modelling

of Thick Plates,” Comp. Struct., 33 (1983), 1011–1016.
[1.6.9] MAU, S. T., et al., “Finite Element Solutions for Laminated Thick Plates,” J. Compos. Mat-

ter, 6 (1972), 304–311.

1.7 Membranes
Membranes are very thin plates with no flexural resistance. The structural behavior
of stretched membranes resembles that of a network of stretched strings. Conse-
quently, the lateral load-carrying capacity of the membranes is exclusively due to
the in-plane tensile forces that are assumed to be uniform along any section at the
boundary (Fig. 1.7.1). Membranes are extensively used in machine design for pumps,
compressors, pressure regulators (Fig. 1.7.2), and so on.

Governing Differential Equations. In derivation of the differential equation of
equilibrium, it is assumed that the lateral deflections are small,† and thus the ten-
sile force per unit length acting on the middle surface (σxh = σyh = σh) remains

† Most practical applications of nonstretched membranes require the use of large-deflection theory
(Sec. 11.1.).
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(a) Rectangular

(b) Circular

Figure 1.7.1 Stretched membranes.

Figure 1.7.2 Pressure regulator.
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constant. This limitation of membrane theory requires that (wmax/h)2 be negligible
in comparison with unity. Because of the assumed symmetric stretching forces, the
in-plane shear stresses are zero. Consequently, expressing the vertical equilibrium of
all forces acting on a dx dy element (Fig. 1.7.3), the summation of the forces in the
Z direction yields

(
σ + ∂σ

∂x
dx

)(
∂w

∂x
+ ∂2w

∂x2
dx

)
dy h − σ

∂w

∂x
dy h

+
(

σ + ∂σ

∂y
dy

)(
∂w

∂y
+ ∂2w

∂y2
dy

)
dx h − σ

∂w

∂y
dx h + pz(x, y) dx dy = 0,

(1.7.1)

which, after neglecting small quantities of higher order, reduces to

∂2w

∂x2
+ ∂2w

∂y2
= −pz(x, y)

σh
. (1.7.2)

This differential equation is of Poisson’s type and was first derived for membranes
by Euler [1.7.1].

Figure 1.7.3 Membrane element.
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Using the two-dimensional Laplacian operator, Eq. (1.7.2) can be written as

∇2w = −pz(x, y)

σh
. (1.7.3)

Applying the coordinate transformation discussed in Sec. 1.4, the governing differen-
tial equation of circular membranes, expressed in polar coordinates, can be derived:

∂2w(r, ϕ)

∂r2
+ 1

r2

∂2w(r, ϕ)

∂ϕ2
+ 1

r

∂w(r, ϕ)

∂r
= −pz(r, ϕ)

σh
, (1.7.4)

or, using the Laplacian operator (1.4.10),

∇2
r w(r, ϕ) = −pz(r, ϕ)

σh
. (1.7.5)

Since in most cases the lateral load is rotationally symmetric, Eq. (1.7.4) becomes

d2w(r)

dr2
+ 1

r

dw(r)

dr
= − pz

σh
. (1.7.6)

Summary. Membranes are very thin plates with thickness-to-span ratios less than
1/50. Since they do not have flexural rigidity, they carry the transverse load by in-
plane tension. Consequently, their edge support must be immovable. The membrane
theory discussed above is based on small deflections of the middle surface. Mem-
branes, however, may have deflections that are many times larger than their thickness.
This is an important subject for engineering practice and is treated in Sec. 11.1.
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1.8 Summary

In this chapter, the governing differential equations of equilibrium of the four most
significant plate types† are derived using the classical methods of the theory of elas-
ticity. Since the theory of elasticity is a part of mathematical physics, the methods
used in these derivations are mathematical in nature, linked with pertinent physical
and geometrical concepts. The so-obtained differential equations are limited to lateral
loads, small deflections and linear-elastic material behavior.

† These are thin, moderately thick, thick and very thin plates (membranes).
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In establishing suitable mathematical models capable of describing the actual phys-
ical phenomena of load carrying by plates, it was necessary to use certain simplifying
assumptions. Although these assumptions, which concern the material properties and
physical behaviors† inherent to the different plate types, are quite numerous, the errors
arising from them are negligible, as the corresponding test results prove. Using these
mathematical models, the bending of plates has been expressed in mathematically
correct forms by the governing differential equations for thin, moderately thick and
thick plates. In addition, the fundamentally different load-carrying behavior of very
thin plates (i.e., membranes) has been treated.

Although nowadays—due to the widespread use of computers—the interest in
numerical methods is quite dominant, the fundamental concepts of these plate theories
remain the basis upon which all numerical methods are built. Other important plate
theories covering, for example, large deflections, orthotropic and laminated plates
and vibration and stability problems are treated in subsequent chapters.

Problems‡

1.2.1 Derive the differential equation of a plate bent into a cylindrical surface.
1.2.2 Derive the governing differential equation of a plate without any torsional

rigidity.
1.2.3 Derive the governing differential equation of a square gridwork (Ix = Iy)

using the beam equations. Compare your result with the solution of Prob-
lem 1.2.2.

1.3.1 Derive the boundary conditions for a rectangular plate supported by edge
beams assuming that a uniformly distributed line load acts on two oppo-
site edges.

1.3.2 Rework Problem 1.3.1 considering the torsional rigidity of the beams.
1.4.1 Discuss the boundary conditions of rectangular and circular membranes.
1.4.2 Verify the validity of Eq. (1.7.6) by using the equilibrium of the membrane

element.

† Stress distributions, for instance.
‡ The first two numbers refer to the corresponding section.



2
Exact and Series Solutions
of Governing Differential
Equations

2.1 Rigorous Solution of Plate Equation†

Mathematically, the differential equation of plates (1.2.30) is classified as a linear
partial differential equation of the fourth order having constant coefficients [2.1.1,
2.1.2]. Its homogeneous form,

∇2 ∇2w = 0, (2.1.1)

is called the biharmonic equation.
In general, there are four types of mathematically “exact” solutions available for

plate problems:

1. closed-form solution,
2. solution of the homogeneous biharmonic equation upon which a particular

solution of the governing differential equation of plate (1.2.30) is super-
imposed,

3. double trigonometric series solution, and
4. single series solution.

Since the boundaries of these categories are not rigid, some overlap is possible.
The rigorous solution of Eq. (1.2.30) must satisfy the boundary conditions char-

acterizing each problem and the governing differential equation of the plate. Con-
sequently, the rigorous solution of plate problems is essentially a boundary value
problem of mathematical physics. Since the fulfillment of the boundary conditions

† In a Cartesian coordinate system.

62 Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
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usually presents considerable mathematical difficulties, in general, rigorous solutions
of plate problems are rare. In the few cases that lend themselves to exact analysis,
the linearity of Eq. (1.2.30) can be used to permit the linear combination of solutions
in the form of superposition. Thus, the most general form of the rigorous solution of
the governing differential equation can be written as

w(x, y) = wH (x, y) + wP (x, y), (2.1.2)

where wH represents the solution of the homogeneous equation (2.1.1) and wP is a
particular solution of the nonhomogeneous differential equation of the plate (1.2.30).
There are a few cases, however, when the solution can be obtained directly, without
employing the above-mentioned superposition principle (Fig. 2.1.1).

XZ
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a

X

Y

Y Z

X
a/2

b/2
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Clamped pz = p0 = const
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+ − 1
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w =
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Simply supported

Simply supported
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x3 − x2a − 3xy2 − y2a + a34
27 a2 − x2 − y24

9

w =
p0

24D
x4 − 2ax3 + a3x

Constant edge moments

w = C (x2 + y2)

X

Z Y

l = ∞

a

Figure 2.1.1 Closed-form, exact solutions of plate equation (1.2.30).
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Certain boundary conditions permit the use of special solutions, such as the Navier
solution, described in Sec. 2.2. In the Navier solution wH = 0; thus

w(x, y) = wP (x, y). (2.1.3)

Furthermore, if the boundary conditions for the edge moments are known, we may
use a two-step solution involving Eq. (1.2.43).

a. Solution of Homogeneous Equation. The physical interpretations of the solu-
tion of the biharmonic equation (∇4w = 0) is to obtain the deflection of the plate
wH (x, y) when only edge forces are acting. Consequently, the solution of the homo-
geneous equation fulfills the prescribed boundary conditions and maintains the equi-
librium with the external boundary forces. The fundamental difficulty of the rigorous
solution is the proper choice of functions wH (x, y) for a given problem.

The biharmonic equation (2.1.1) permits the use of the solutions of the Laplace
equation ∇2w = 0, which are

x, xy, cos αx, cosh αy, x2 − y2 and x3 − 3xy2, (2.1.4)

where α represents an arbitrary constant. In Eq. (2.1.4) we may interchange x and y

and replace cos by sin and cosh by sinh, respectively. If w1(x, y) and w2(x, y) are
solutions of the Laplace equation, then

w1 + xw2, w1 + yw2 and w1 + (x2 + y2)w2 (2.1.5)

are solutions of the homogeneous biharmonic equation ∇2 ∇2w = 0.
Furthermore, the following expressions are solutions of the biharmonic equation:

wH = x2, x3, x2y, x3y, cos αx cosh αy, x cos αx cosh αy,

x cos αy cosh αx, x4 − y4, e±αx cos αy, ln(x2 + y2),

(x + y) ln(x2 + y2), (x2 + y2) ln(x2 + y2) etc. (2.1.6)

Again, it is possible to interchange x and y and replace cos by sin and cosh by sinh,
respectively.

Additional solutions are obtained using “biharmonic” polynomials [2.1.13], such as

wH = x4 − 3x2y2, x4y − x2y3, x5 − 5x3y2, x5y − 5
3x3y3,

x6 − 10x4y2 + 5x2y4, x6y − 10
3 x4y3 + x2y5,

x7 − 14x5y2 + 35
3 x3y4, x7y − 14

3 x5y3 + 7
3x3y5,

x8 − 21x6y2 + 35x4y4 − 7x2y6, x8y − 7x6y3 + 7x4y5 − x2y7,

x9 − 27x7y2 + 63x5y4 − 21x3y6, x9y − 9x7y3 + 63
5 x5y5 − 3x3y7,

etc. (2.1.7)

In Eq. (2.1.7) we may, again, interchange x and y.
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All these expressions can be multiplied by arbitrary constants and, if required,
added. Worch [2.1.14] gives an extensive listing of functions that can be used for
solution of the biharmonic equation.

Since the homogeneous plate equation ∇4wH = 0 has the very same form as
the differential equation describing two-dimensional stress problems ∇4� = 0, it
is evident that an analogy exists between wH and � [2.1.18]. Neou introduced a
unique direct approach to determine the so-called Airy stress function �(x, y) in
polynomial form [2.1.19]. Based on the above-mentioned analogy, Szilard extended
Neou’s method to rectangular plates [2.1.20] and directly obtained the homogeneous
part of the solution, wH , also in polynomial forms.

A special method for finding solutions of the biharmonic equation is based on
separation of variables and is discussed in detail in Sec. 2.3.

b. Particular Solution. Although the solution wH of the homogeneous biharmonic
equation effectively describes the equilibrium conditions of the plate subjected to edge
forces, the expression of the deflection w(x, y) is not complete without also consider-
ing the equilibrium of the lateral forces pz. For this purpose, a particular solution wP

of the nonhomogeneous differential equation (1.2.30) must also be determined. We
require from the particular solution that it satisfy the differential equation of the plate
(1.2.30), but the fulfillment of the boundary conditions is not mandatory. In the case
of an infinite series solution, however, a more rapid convergence can be obtained if
the particular solution at least fulfills the boundary conditions of two opposite edges
of the plate.

For rectangular plates with fixed, or partially fixed, boundary conditions at certain
or all edges, the expression of deflections of the simply supported plate can be
used as a particular solution. This can be obtained with relative ease using Navier’s
method, described in Sec. 2.2. Upon this particular solution, the effects of the edge
moments are superimposed. In certain cases, however, it is more expedient to choose
the particular solutions as function of x or y only, which can be achieved by using
the expressions of the corresponding beam deflections, as shown in Sec. 2.3.

Finally, the possibility of expressing the true singularity† of the problem, in the
case of a concentrated lateral load, must be mentioned briefly. If such a force acts at
the center of a rectangular plate (Fig. 2.1.2), for instance, the particular solution can
be given by

wP (x, y) = Pz

16πD
(x2 + y2) ln

x2 + y2

a2
. (2.1.8)

These types of solutions coupled with Maxwell’s law of reciprocity are used for
obtaining influence surfaces for plates, as described in Sec. 10.5.

Summary. Closed-form solutions of plate problems are rare. The general solution
of the governing differential equation of the plate (1.2.30) is usually obtained as the
sum of the solution of the homogeneous equation (2.1.1) and a particular solution.
While obtaining a particular solution is relatively easy, finding suitable functions for
the biharmonic equation presents considerable difficulties. Consequently, rigorous
solutions of plate problems are usually limited to a number of cases, which are

† Theoretically, at the point of application of concentrated forces the internal forces (m, q) are
infinitely large.
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Figure 2.1.2 Rectangular plate under concentrated load.

discussed in Secs 2.2 and 2.3. For certain combinations of boundary and loading
conditions, the rigorous solution has not yet been found.

ILLUSTRATIVE EXAMPLE

One of the rare cases of plate problems for which a closed-form solution can
readily be obtained is the circular plate with clamped edges under a uniform
load (Fig. 2.1.3).

0

00

Figure 2.1.3 Clamped circular plate.
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We assume that the deflection is in the form

w(x, y) = c

(
x2

r2
0

+ y2

r2
0

− 1

)2

, (2.1.9)

where r0 represents the radius of the circular plate and c is an unknown constant.
The boundary conditions of the plate around the edge are

w = 0 and
∂w

∂x
= ∂w

∂y
= 0. (2.1.10)

By introducing the notation

W =
(

x2

r2
0

+ y2

r2
0

− 1

)
, (2.1.11)

the deflection surface of the plate becomes

w = cW2. (2.1.12)

Since at the edge r2 = r2
0 = x2 + y2, Eq. (2.1.9) gives zero deflection along

the circular edge.
Taking the first derivatives of Eq. (2.1.12), we can write

∂w

∂x
= 2cW

∂W

∂x
and

∂w

∂y
= 2cW

∂W

∂y
. (2.1.13)

These expressions vanish at r0 = x2 + y2. Thus, we conclude that the assumed
expression for the deflection (2.1.9) satisfies the prescribed boundary conditions
of the plate (2.1.10).

Next, we substitute Eq. (2.1.12) into the governing differential equation of
the plate (1.2.30). The calculation of the derivatives gives

∂4w

∂x4
= 24

c

r4
0

,
∂4w

∂x2 ∂y2
= 8

c

r4
0

,
∂4w

∂y4
= 24

c

r4
0

. (2.1.14)

Substituting these values into the governing differential equation of the plate,

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= p0

D
, (2.1.15)

we obtain
c

r4
0

(24 + 16 + 24) = p0

D
. (2.1.16)

Hence

c = p0r
4
0

64D
, (2.1.17)
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which substituted into Eq. (2.1.9) gives the sought-for expression of the deflec-
ted middle surface of the plate.

In a similar manner, the deflection of a uniformly loaded elliptical plate,
clamped at the edge, is readily obtained. In most cases, however, the rigorous
solution of the plate problems is extremely cumbersome or even impossible.
Illustrative examples of series-type solutions are given in Secs. 2.2–2.4.
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[2.1.18] SCHAEFER, R., “Die vollständige Analogie ScheibePlatte,” Abhandlungen Braunschweig
Wiss. Gesellschaft, Heft 5 (1956).

[2.1.19] NEOU, C. Y., “A Direct Method for Determining Airy Polynomial Stress Function,” J.
Appl. Mech., 24 (1957), 387–390.

[2.1.20] SZILARD, R., “Auswahl von biharmonischen Polynomen zur Lösung der Plattenglei-
chung,” Die Bautechnik, 54 (1977), 187–190.

2.2 Solutions by Double Trigonometric Series
(Navier’s Approach)

In 1820, Navier presented a paper to the French Academy of Sciences on the solution
of bending of simply supported rectangular plates by double trigonometric series.
Navier’s solution is sometimes called the forced solution of the differential equations
since it “forcibly” transforms the differential equation into an algebraic equation, thus
considerably facilitating the required mathematical operations.

The boundary conditions of rectangular plates, for which the Navier solution is
applicable, are†

(w)x=0,x=a = 0, (mx)x=0,x=a = 0,

(w)y=0,y=b = 0, (my)y=0,y=b = 0,
(2.2.1)

representing simply supported edge conditions at all edges.
The solution of the governing differential equation of the plate (1.2.30) subjected

to a transverse loading is obtained by Navier’s method as follows:

1. The deflections are expressed by a double sine series,

w(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
, (2.2.2)

which satisfies all the above-stated boundary conditions. In Eq. (2.2.2) the
coefficients of expansion Wmn are unknown.

2. The lateral load pz is also expanded into a double sine series:

pz(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin
mπx

a
sin

nπy

b
,

for m, n = 1, 2, 3, . . . .

(2.2.3)

The coefficients Pmn of the double Fourier expansion of the load are determined
from Eq. (A.1.34), as discussed in Appendix A.1.

3. Substituting Eqs. (2.2.2) and (2.2.3) into the governing differential equation
(1.2.30), an algebraic equation is obtained from which the unknown Wmn can
be readily calculated.

† For a coordinate system, see Fig. 1.1.1.
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Thus, for specific m and n values, Eq. (1.2.30) becomes

Wmn

[
m4π4

a4
+ 2m2n2π4

a2b2
+ n4π4

b4

]
sin

mπx

a
sin

nπy

b
= 1

D
Pmn sin

mπx

a
sin

nπy

b
;

(2.2.4)

hence

Wmn = Pmn

Dπ4[(m2/a2) + (n2/b2)]2
. (2.2.4a)

Summing the individual terms, an analytical solution for the deflection of the plate
is obtained. Thus, we can write

w(x, y) = 1

Dπ4

∞∑
m=1

∞∑
n=1

Pmn

[(m2/a2) + (n2/b2)]2
sin

mπx

a
sin

nπy

b
. (2.2.5)

Substituting w(x, y) into the expressions of internal moments and shears given in
Eqs. (1.2.26), (1.2.27), (1.2.29) and (1.2.33), the internal forces, and thus the state of
stress, at any point of the plate can be determined. For the moments in the plate, for
instance, we obtain

mx = π2D

∞∑
m=1

∞∑
n=1

[(m

a

)2 + ν
(n

b

)2
]

Wmn sin
mπx

a
sin

nπy

b
,

my = π2D

∞∑
m=1

∞∑
n=1

[(n

b

)2 + ν
(m

a

)2
]

Wmn sin
mπx

a
sin

nπy

b
,

mxy = −π2D(1 − ν)

∞∑
m=1

∞∑
n=1

mn

ab
Wmn cos

mπx

a
cos

nπy

b

(2.2.6)

and for the transverse shear forces,

qx = π3D

a

∞∑
m=1

∞∑
n=1

{
m

[(m

a

)2 + ν
(n

b

)2 + (1 − ν)
(n

b

)2
]}

× Wmn cos
mπx

a
sin

nπy

b
,

qy = π3D

b

∞∑
m=1

∞∑
n=1

{
n

[(n

b

)2 + ν
(m

a

)2 + (1 − ν)
(m

a

)2
]}

× Wmn sin
mπx

a
cos

nπy

b
.

(2.2.7)

Similarly, using Eq. (1.3.3), the vertical edge forces at the boundaries of the plate
can be calculated.

By the skillful application of the superposition theorem, one can extend the use of
Navier’s solution to rectangular plates that have other than simply supported boundary
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conditions.† The approach in such a case is similar to the solution of pertinent beam
problems. That is, on the solution of the simply supported plate wP , the effect of the
boundary forces or moments are superimposed, giving

w(x, y) = wP +
∑

wH . (2.2.8)

The infinite series solution for the deflections, w, generally converges quickly; thus,
satisfactory accuracy can be obtained by considering only a few terms. The conver-
gence of the series solution is, however, slow in the vicinity of concentrated forces,
as discussed in Appendix A.1. Since the internal forces are obtained from second
and third derivatives of the deflections w(x, y), some loss of accuracy in this pro-
cess is inevitable. Although the convergence of the infinite series expressions of the
internal forces (2.2.6) is less rapid, especially in the vicinity of edges, the results
are acceptable, since the accuracy of the solution can be improved by considering
more terms.

Summary. For simply supported rectangular plates, Navier’s solution offers con-
siderable mathematical advantages, since the solution of the governing fourth-order
partial differential equation (1.2.30) is reduced to solution of an algebraic equation.
The technique of application of Navier’s method is summarized as follows:

1. Expand the lateral load into double Fourier (sine) series using the technique
given in Appendix A.1.

2. Express the deflections also in double sine series.
3. Find the deflections using Eq. (2.2.5).
4. The substitution of the deflections, w, into the expressions for internal moments,

shears and edge forces gives the required quantities.
5. Carry out all operations for a specific (m, n)th component; the final results are

obtained by adding the terms.

The convergence of the series is usually fast in the case of distributed loads. The
convergence, however, becomes slow for concentrated and discontinuous loads.

ILLUSTRATIVE EXAMPLE I

Find the deflections of a simply supported rectangular plate (a × 2a) subjected
to a uniformly distributed load (Fig. 2.2.1). Determine the maximum bending
moments and calculate the edge reactions.

In the first step the uniformly distributed lateral load is expanded into a
double Fourier series, applying the technique shown in Appendix A.1. Using
Eq. (A.1.34), we can write

pz = 16p0

π2

∞∑
m=1

∞∑
n=1

1

mn
sin

mπx

a
sin

nπy

2a
, (2.2.9)

† See Sec. 2.5.
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s

0 c

Figure 2.2.1 Simply supported rectangular plate.

where 16p0/π
2mn = Pmn and m, n are positive odd integers (m, n =

1, 3, 5, . . .).
Using also a double sine series expression for the deflections [Eq. (2.2.2)],

the unknown constant Wmn, pertinent to a specific set of m, n values, is obtained
from Eq. (2.2.4a); thus

Wmn = Pmn

Dπ4{(m2/a2) + [n2/(2a)2]}2
= 16p0a

4

Dπ6mn[m2 + (n2/4)]2
; (2.2.10)

hence

w(x, y) = 16p0a
4

Dπ6

∞∑
m=1

∞∑
n=1

sin(mπx/a) sin(nπy/2a)

mn[m2 + (n2/4)]2
,

for m, n = 1, 3, 5 . . . . (2.2.11)

The maximum deflection occurs at x = a/2 and y = a, which is

wmax = 16p0a
4

Dπ6
(0.640 − 0.032 − 0.004 + 0.004 + · · ·)

≈ 0.0101p0a
4

D
. (2.2.12)

Since this series converges very rapidly, the consideration of two terms gives
an accuracy sufficient for all practical purposes.

Substituting b = 2a, x = a/2 and y = a into Eq. (2.2.6), the maximum mo-
ments are obtained:

(mx)max = 16p0a
2

π4

∑
m

∑
n

[m2 + ν(n2/4)] sin(mπ/2) sin(nπ/2)

mn[m2 + (n2/4)]2
(2.2.13a)
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and

(my)max = 16p0a
2

π4

∑
m

∑
n

[(n2/4) + νm2] sin(mπ/2) sin(nπ/2)

mn[m2 + (n2/4)]2

for m, n = 1, 3, 5, . . . . (2.2.13b)

Although these series converge somewhat more slowly than those of the deflec-
tions [Eq. (2.2.12)], the consideration of four terms gives sufficient accuracy.
The convergence of the series expressions of the moments at the edges is
slower; consequently more than four terms should be considered.

The vertical edge forces at the boundaries of the plate are calculated from
Eq. (1.3.3). Substituting the mth and nth terms of the deflections [Eq. (2.2.11)]
into Eq. (1.3.3), we obtain

(vx)m,n = 16p0a

π3

({
m3

mn[m2 + (n2/4)]2

}
+ (2 − ν)

m(n/2)2

mn[m2 + (n2/4)]2

)

× cos
mπx

a
sin

nπy

2a
. (2.2.14)

Thus, the reactive edge force at x = 0 is

(vx)x=0 = −16p0a

π3

∞∑
m

∞∑
n

m2 + (2 − ν)(n2/4)

n[m2 + (n2/4)]2
sin

nπy

2a

for m, n = 1, 3, 5, . . . . (2.2.15)

Similarly, the reactive edge force at y = 0 is calculated from

(vy)y=0 = −16p0a

π3

∞∑
m

∞∑
n

(n2/4) + (2 − ν)m2

2m[m2 + (n2/4)]2
sin

mπx

a

for m, n = 1, 3, 5, . . . . (2.2.16)

ILLUSTRATIVE EXAMPLE II†

Let us determine the deflections, internal moments and edge forces of a simply
supported rectangular plate under a hydrostatic pressure, shown in Fig. 2.2.2.

The coefficient Pmn of the double Fourier expansion of the load is obtained
from Eq. (A.1.34):

Pmn = 4

ab

∫ a

0

∫ b

0
pz(x, y) sin

mπx

a
sin

nπy

b
dx dy. (2.2.17)

† Details in computation have been omitted since the reader should find no difficulty in
working out the results.



74 Exact and Series Solutions of Governing Differential Equations

Simply
supported

Simply supported

b

0

0

Figure 2.2.2 Hydrostatically loaded rectangular plate.

Since

pz(x, y) = p0x

a
,

Eq. (2.2.17) can be written as

Pmn = 4p0

a2b

∫ a

0
x sin

mπx

a
dx

∫ b

0
sin

nπy

b
dy. (2.2.18)

The evaluation of these integrals yields

Pmn = 4p0

a2b

(
− a2

mπ
cos mπ

) (
2b

nπ

)
= −8p0 cos mπ

mnπ2
(2.2.19)

for all integers m and n.
By substituting Eq. (2.2.19) into Eq. (2.2.5), the following double Fourier

series expression of the deflected plate surface is obtained:

w(x, y) = 8p0

π6D

m∑
m=1,2,3,...

m∑
n=1,2,3,...

(−1)m+1 sin(mπx/a) sin(nπy/b)

mn[(m2/a2) + (n2/b2)]2
.

(2.2.20)

Let us compare this result with the more rigorous solution given on p. 125 of
Ref. [2]. If a = b, the deflection at the center of the plate becomes

(w)x=y=a/2 = 8p0

π6D

∞∑
m=1,2,3,...

∞∑
n=1,2,3,...

(−1)[(m+n)/2]−1

mn[(m2/a2) + (n2/b2)]2

= 0.00203
p0a

4

D
, (2.2.21)

which checks with the more rigorous solution mentioned above.
The internal moment mx is obtained by substituting Eq. (2.2.20) into Eq.

(1.2.26). Similarly, the edge force vx is computed from Eq. (1.3.3). Since the
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derivatives of w(x, y) are used in these expressions, first the differentiation is
carried out for a specific set of m and n values, and then the summation is
applied after the results are obtained. Thus, Eq. (1.2.26) gives

mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)

= 8p0

π6

∞∑
m=1,3,5,...

∞∑
n=1,3,5,...

(−1)m+1[(mπ/a)2 + ν(nπ/b)2]

mn[(m2/a2) + (n2/b2)]2

× sin
mπx

a
sin

nπy

b
. (2.2.22)

Considering only four terms (m, n = 1, 3) in the summation and using ν = 0.3,
the moment mx at x = y = a/2 becomes

mx = 0.0235a2p0, (2.2.23)

which checks closely with the “exact” value (0.0239a2p0). Since the load is
not symmetrical, mx �= my .

The edge reaction [Eq. (1.3.3)] at x = 0 and y = b/2 for ν = 0.3 is

vx = D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
= −0.12685p0a. (2.2.24)

Again, a comparison with the more exact solution (−0.126p0a) indicates only
a very small discrepancy.

The reader will find further examples of Navier’s method in Sec. 2.4.

2.3 Solutions by Single Trigonometric Series
(Lévy’s Method)

The solution of plate problems by a single trigonometric series may be considered
as a specific application of the rigorous solutions that were treated in general terms
in Sec. 2.1.

This powerful method, introduced by Lévy [2.3.1], obtains the solution of Eq.
(1.2.30) in two distinctly separated steps in accordance with Eq. (2.1.2); thus

w(x, y) = wH + wP ,

where wH represents the solution of the homogeneous plate equation (2.1.1) and wP

is a particular solution of Eq. (1.2.30).
To obtain a particular solution by Lévy’s method, it is required that two opposite

edges of the plate be simply supported and it is assumed that the plate is infinitely
long in the other direction. In our further discussion we assume that the edges at
x = 0 and x = a are simply supported and that the origin of the coordinate system is
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Figure 2.3.1 Location of coordinate system for Lévy’s method.

moved to x = 0 and y = b/2 (Fig. 2.3.1). Furthermore, it is required that the lateral
loading have the same distribution in all sections, parallel to the X axis.

From the assumption that b → ∞, it follows that the differential equation of the
plate degenerates into

d4w(x)

dx4
= pz(x)

D
. (2.3.1)

Since w(x) is a function of one variable only, Eq. (2.3.1) resembles the differential
equation of the beam:

d4w∗(x)

dx4
= pz(x)

EI
. (2.3.2)

Comparing Eqs. (2.3.1) and (2.3.2), the simple relationship

w = w∗(1 − ν2) (2.3.3)

is evident.
Equation (2.3.1) can be solved by utilizing Navier’s method; thus, we seek the

solution in the form

wP (x) =
∞∑

m=1

Wm sin
mπx

a
. (2.3.4)

Expressing the load by a similar type of Fourier expression (see Sec. 2.2), we obtain

pz(x) =
∞∑

m=1

Pm sin
mπx

a
. (2.3.5)

Substituting Eqs. (2.3.4) and (2.3.5) into (2.3.1), the differential equation is trans-
formed into an algebraic equation from which Wm, pertinent to a specific m value,
can easily be obtained.
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In the second step the solution of the homogeneous biharmonic equation

∇2 ∇2wH (x, y) = 0 (2.3.6)

is found in the form

wH = X(x) · Y (y), (2.3.7)

the substitution of which into Eq. (2.3.6) yields

XIVY + 2X′′Y ′′ + XY IV = 0. (2.3.8)

Let us express wH by a single trigonometric series; thus, we can write

wH (x, y) =
∞∑

m=1

Ym(y) sin
mπx

a
. (2.3.9)

This expression satisfies the assumed simply supported boundary conditions in the
X direction, since at x = 0 and x = a,

wH = 0 and
∂2wH

∂x2
= 0. (2.3.10)

Substitution of Eq. (2.3.9) into Eq. (2.3.6) gives

∞∑
m=1

[
m4π4

a4
Ym(y) − 2

m2π2

a2
Y ′′

m(y) + Y IV
m (y)

]
sin

mπx

a
= 0, (2.3.11)

or, for a specific m value,

m4π4

a4
Ym(y) − 2

m2π2

a2
Y ′′

m(y) + Y IV
m (y) = 0. (2.3.12)

Equation (2.3.12) is a linear, homogeneous, differential equation of the fourth order
with constant coefficients; consequently, its solution may be sought in e±mπy/a form.†

Nádai [3] has introduced the solution of Eq. (2.3.12) in the form of hyperbolic
functions:

Ym(y) = Am cosh
mπy

a
+ Bm

mπy

a
sinh

mπy

a
+ Cm sinh

mπy

a

+ Dm

mπy

a
cosh

mπy

a
. (2.3.13)

† See Sec. 2.1.
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Figure 2.3.2 Use of symmetry in Lévy’s solution.

The integration constants Am, Bm, Cm and Dm can be determined from the boundary
conditions at the four edges. A simplification in Lévy’s solution can be obtained by
making use of the symmetry. If the boundary conditions are symmetric about the X

axis, the deflection surface (Fig. 2.3.2) must be an even function of y:

w(+y) = w(−y); (2.3.14)

consequently, the coefficients Cm and Dm are to be taken equal to zero, which yields
a simplified form of Eq. (2.3.13):

Ym(y) = Am cosh
mπy

a
+ Bm

mπy

a
sinh

mπy

a
. (2.3.15)

Thus, in the case of identical boundary conditions at y = ±b/2, Lévy’s solution of
the differential equation of the plate can be represented by

w(x, y) =
∞∑

m=1

Wm sin
mπx

a

+
∞∑

m=1

(
Am cosh

mπy

a
+ Bm

mπy

a
sinh

mπy

a

)
sin

mπx

a
. (2.3.16)

Summary. Although Lévy’s method, which uses a single trigonometric series, is
more general than Navier’s solution, the former does not have an entirely general
character either since in its original form it can be applied only if

1. the two opposite edges of the plate are simply supported (in the solution
presented the simple supports were assumed to be at x = 0 and x = a) and

2. the shape of the loading function is the same for all sections parallel to the
direction of the other two edges (parallel to the X axis).

It should be noted, however, that the convergence of Lévy’s solution is extremely
fast, even in the case of concentrated or line loads. On the other hand, the required
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mathematical manipulations can be quite complex. Because of the fast convergence
of the solution, in most cases it is satisfactory to consider only the first few terms.

For some plate problems the assumption b → ∞ tends to be too limiting in the
derivation of particular solutions for the Lévy method, since the class of loads that
can be accommodated is considerably restricted. To overcome this limitation, we may
use the deflection functions of simply supported plates (obtained by Navier’s method)
for a particular solution, as shown in Sec. 3.1.

ILLUSTRATIVE EXAMPLE I

Let us determine the deflection of a uniformly loaded (pz = p0) rectangular
plate that is simply supported at all four edges using Lévy’s method.

Since both the loading and the boundary conditions satisfy the previously
discussed requirements for application of Lévy’s method and the deflection sur-
face is symmetrical with respect to the X axis, the solution can be represented
by Eq. (2.3.16). As the first step in the solution, the uniformly distributed load
is expanded into a sine series in accordance with Eq. (2.3.5). The coefficient
Pm of the single Fourier series expansion is obtained from the half-range sine
series expansion. Equation (A.1.20) yields

Pm = 2

a

∫ a

0
p(x) sin

mπx

a
dx = 2p0

a

∫ a

0
sin

mπx

a
dx

=



4p0

mπ
for m = 1, 3, 5, . . . ,

0 for m = 2, 4, 6, . . . .

(2.3.17)

Next, the load is expressed in the sine series according to Eq. (2.3.5):

p(x) = 4p0

π

∞∑
m=1,3,5,...

1

m
sin

mπx

a
. (2.3.18)

Substitution of Eq. (2.3.18) into the differential equation (2.3.1) gives the con-
stants of the trigonometric series expression of the particular solution:

Wm = 4p0a
4

π5Dm5
. (2.3.19)

Thus, the particular solution can be written as

wP = 4p0a
4

π5D

∞∑
m=1,3,5,...

1

m5
sin

mπx

a
. (2.3.20)

The homogeneous solution, represented by Eqs. (2.3.9) and (2.3.15), gives

wH =
∞∑

m=1

(
Am cosh

mπy

a
+ Bm

mπy

a
sinh

mπy

a

)
sin

mπx

a
. (2.3.21)
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From the boundary conditions of the plate at y = ±(b/2), which are

w = 0 and ∇2w = 0, (2.3.22)

we obtain two equations pertinent to one specific m = 1, 3, 5, . . . value:

Am cosh
mπb

2a
+ Bm

mπb

2a
sinh

mπb

2a
= − 4p0a

4

π5m5D
(2.3.23)

and

Am

m2π2

a2
cosh

mπb

2a
+ Bm

m2π2

a2

(
mπb

2a
sinh

mπb

2a
+ 2 cosh

mπb

2a

)
= 0,

(2.3.24)

from which Am and Bm are determined. The sum of the particular solution
and the solution of the homogeneous differential equation yields the deflection
surface of the plate (2.1.2):

w(x, y)

= 4p0a
4

π5D

∑
m=1,3,5...,

1

m5

×
(

1 − 2 cosh αm cosh ηm + αm sinh αm cosh ηm − ηm sinh ηm cosh αm

1 + cosh 2αm

)

× sin
mπx

a
, (2.3.25)

where

αm = mπb

2a
and ηm = mπy

a
. (2.3.26)

This series converges extremely rapidly, so that consideration of its first term
is sufficient for most practical purposes.

ILLUSTRATIVE EXAMPLE II

A square plate with two opposite edges simply supported and the other two
edges clamped is subjected to a partially sinusoidal load (Fig. 2.3.3). Determine
the maximum deflection of the plate and the maximum positive movement.

Since two opposite edges (x = 0, a) are simply supported and the load inten-
sity is the same along all cross sections parallel to the Y axis, Lévy’s method
can be used.

Due to the identical boundary conditions at y = ±(a/2), the deflection sur-
face can be represented by Eq. (2.3.16). To find a particular solution, we first,
expand pz(x) = p0 sin(πx/a) into a single Fourier series. The coefficient of
expansion Pm in Eq. (2.3.5) is obtained† from

† See Appendix A.1.
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Figure 2.3.3 Plate with opposite edges simply supported and other two fixed.

Pm = 2

a

∫ a

0
pz(x) sin

mπx

a
dx = 2

a

∫ a

0
p0 sin

πx

a
sin

mπx

a
dx = p0.

(2.3.27)

Therefore, the lateral load can be expressed by

pz(x) = p0 sin
πx

a
. (2.3.28)

In accordance with Eq. (2.3.4), the particular solution using one term is

wP = W1 sin
πx

a
. (2.3.29)

Substituting Eqs. (2.3.28) and (2.3.29) into the differential equation of the plate
strip (2.3.1), we obtain

W1 = p0a
4

π4D
; (2.3.30)

therefore

wP = p0a
4

π4D
sin

πx

a
. (2.3.31)

The boundary conditions

(w)y=±a/2 = 0 and

(
∂w

∂y

)
y=±a/2

= 0 (2.3.32)

yield the equations

W1 + A1 cosh α1 + B1α1 sinh α1 = 0,

A1 sin α1 + B1(α1 cosh α1 + sinh α1) = 0,
(2.3.33)

where α1 = π/2.
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Solving Eq. (2.3.33), we find that

A1 = −W1(α1 cosh α1 + sinh α1)

α1 + cosh α1 sinh α1
,

B1 = W1 sinh α1

α1 + cosh α1 sinh α1
.

(2.3.34)

Therefore, the expression (2.3.16) for the deflection surface of the plate becomes

w(x, y) = wP + wH = p0a
4

π4D

(
1 + sinh α1

α1 + cosh α1 sinh α1

πy

a
sinh

πy

a

−α1 cosh α1 + sinh α1

α1 + cosh α1 sinh α1
cosh

πy

a

)
sin

πx

a
. (2.3.35)

The maximum deflection occurs at x = a/2 and y = 0; thus we obtain

wmax ≈ 0.00154
p0a

4

D
. (2.3.36)

Using expression (2.3.35), the bending moments mx and my at the center of the
plate are calculated from Eqs. (1.2.26) and (1.2.27); thus at x = a/2, y = 0,

mx = Dπ2

a2
[W1 + A1 − ν(A1 + 2B1)],

my = −Dπ2

a2
[A1 + 2B1 − ν(W1 + A1)].

(2.3.37)

Using ν = 0.3, these expressions become

mx ≈ 0.0223p0a
2 and my ≈ 0.0268p0a

2 = +mmax. (2.3.38)
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[2.3.1] LÉVY, M., “Sur l’équlibre élastique d’une plaque rectangulaire,” C. R. Acad. Sci., 129
(1899), 535–539.
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2.4 Further Examples of Series Solutions

Examples given in this section illustrate both the versatility and limitation of the
single and double Fourier series solutions of certain plate problems. Evaluations of
the required definite integrals and higher-order partial derivatives are, in general, very
time consuming and error prone. Obtaining the results in the traditional manner may
take many hours and many pages of paper. Nowadays, with the help of the so-called
symbolic mathematics computer programs [2.4.1–2.4.4], however, the computation
of such tedious tasks of calculus is quite effortless. In most of these cases we have
eliminated the intermediate steps and merely give the end results. Some computer
programs† offer an additional collection of routines designed to carry out step-by-step
solutions of the given problems.

ILLUSTRATIVE EXAMPLE I

A simply supported rectangular plate is subjected to pz = p0(x/a)2 lateral load,
as shown in Fig. 2.4.1. Let us determine the deflected plate surface w(x, y), the
internal moments mx, my, mxy and transverse shear forces qx, qy using Navier’s
method. The obtained results should be checked by Lévy’s approach for w, mx

and my at the center of the plate assuming that ν = 0.3.
(a) Navier’s Solution. First, we expand the lateral load into a double Fourier

series, as described in Appendix A.1. Using Eq. (A.1.36), we obtain

Pmn = 4

ab

∫ a

0

∫ b

0
pz(x, y) sin

mπx

a
sin

nπy

b
dx dy

= 4p0

a3b

∫ a

0
x2 sin

nπx

a
dx

∫ b

0
sin

mπy

b
dy = 4p0

π2mn
I, (2.4.1)

where

I =
(

2

mπ
sin mπ + 2

m2π2
cos mπ − cos mπ − 2

m2π2

)
(− cos nπ + 1)

for m, n = 1, 2, 3, . . . . (2.4.2)

Equation (2.2.4a) gives

Wmn = Pmn

Dπ4(m2/a2 + n2/b2)2
= 4p0I

Dπ6mn(m2/a2 + n2/b2)2
. (2.4.3)

† Ref. [2.4.1], for example.
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Simply supported

O

Y

X

p0

a

b

Z,w

pz = p0 x
a

2

Figure 2.4.1 Simply supported plate subjected to parabolic lateral load.

Thus, the equation of the deflected plate surface (2.2.5) becomes

w(x, y) = 4p0

Dπ6

∞∑
m=1

∞∑
n=1

I

mn(m2/a2 + n2/b2)2
sin

mπx

a
sin

nπy

b
. (2.4.4)

If b = a, the deflection at the center of the plate is

wx=y=a/2 = 0.001197
p0a

4

D
. (2.4.5)

Equation (2.2.6) gives the following expressions for the internal moments:

mx = 4p0

π4

∞∑
m=1

∞∑
n=1

[(m/a)2 + ν(n/b)2] I

mn [(m/a)2 + (n/b)2]2
sin

mπx

a
sin

nπy

b
, (2.4.6)

my = 4p0

π4

∞∑
m=1

∞∑
n=1

[(n/b)2 + ν(m/a)2] I

mn [(m/a)2 + (n/b)2]2
sin

mπx

a
sin

nπy

b
, (2.4.7)

mxy = −4p0(1 − ν)

π4

∞∑
m=1

∞∑
n=1

I

ab [(m/a)2 + (n/b)2]2

× cos
mπx

a
cos

nπy

b
. (2.4.8)

If b = a, the internal moments at the center of the plate become

mx ≈ 0.0135p0a
2, my ≈ 0.01375p0a

2 and mxy = 0. (2.4.9)
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Equation (2.2.7) yields the transverse shear forces in the form

qx = 4p0

π3

∞∑
m=1

∞∑
n=1

I

an [(m/a)2 + (n/b)2]
cos

mπx

a
sin

nπy

b
(2.4.10)

and

qy = 4p0

π3

∞∑
m=1

∞∑
n=1

I

bm [(m/a)2 + (n/b)2]
sin

mπx

a
cos

nπy

b
. (2.4.11)

(b) Lévy’s Approach. In order to be able to solve the above given plate
problem by Lévy’s method, first, we must move the X axis to the y = b/2
location, as shown in Fig. 2.3.2. Next, we expand the lateral load into a single
Fourier series according to Eq. (2.3.5). Thus,

pz(x) =
∞∑

m=1

Pm sin
mπx

a
, (2.4.12)

where Pm is obtained from the half-range sine series expansion of the load in
the form

Pm = 2

a

∫ a

0
pz(x) sin

mπx

a
dx = 2p0

a3

∫ a

0
x2 sin

mπx

a
dx

=




2p0

m3π3
(m2π2 − 4) for m = 1, 3, 5, . . . ,

−2p0

mπ
for m = 2, 4, 6, . . . .

(2.4.13)

Hence, the single series expansion of the load becomes

pz(x) = 2p0

π3

∞∑
m=1,3,5,...

1

m3
(m2π2 − 4) sin

mπx

a
− 2p0

π

∞∑
m=2,4,6,...

1

m
sin

mπx

a
.

(2.4.14)

Substitution of Eq. (2.4.14) into the differential equation of the plate strip
(2.3.1) gives the constant of the trigonometric series expression for the par-
ticular solution

Wm = 2p0a
4

Dπ7m7
(m2π2 − 4) for m = 1, 3, 5, . . . (2.4.15)

and

Wm = −2p0a
4

Dπ5m5
for m = 2, 4, 6, . . . . (2.4.16)
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Hence, the particular solution can be written as

wP = 2p0a
4

Dπ7

∞∑
m=1,3,5,...

1

m7
(m2π2−4) sin

mπx

a
− 2p0a

4

Dπ5

∞∑
m=2,4,6,...

1

m5
sin

mπx

a
.

(2.4.17)

The homogeneous solution has the general form†

wH =
∞∑

m=1

(
Am cosh

mπy

a
+ Bm

mπy

a
sinh

mπy

a

)
sin

mπx

a
. (2.4.18)

From the boundary conditions of the plate at y = ±(b/2), which are

w = 0 and ∇2w = 0, (2.4.19)

we obtain two equations pertinent to one specific m value,

Wm + Am cosh
mπb

2a
+ Bm

mπb

2a
sinh

mπb

2a
= 0,

(2.4.20)

Am

m2π2

a2
cosh

mπb

2a
+ Bm

m2π2

a2

(
mπb

2a
sinh

mπb

2a
+ 2 cosh

mπb

2a

)
= 0,

(2.4.21)
from which

Am = −Wm

1 + (mπb/4a) tanh(mπb/2a)

cosh(mπb/2a)
and Bm = Wm

2 cosh(mπb/2a)
.

(2.2.22)
Hence, the equation of the deflected plate surface becomes

w(x, y) = wH + wP = 2p0a
4

Dπ7

∞∑
m=1,3,5,...

1

m7
(m2π2 − 4)F1 sin

mπx

a

− 2p0a
4

Dπ5

∞∑
m=2,4,6,...

1

m5
F1 sin

mπx

a
, (2.4.23)

where

F1 = 1 − 2 cosh αm cosh ηm + αm sinh αm cosh ηm − ηm sinh ηm cosh αm

1 + cosh 2αm

,

(2.4.24)

with

αm = mπb

2a
and ηm = mπy

a
. (2.4.25)

† See Sec. 2.3.
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Applying Eq. (1.2.26) and Eq. (1.2.27), we obtain for the bending moments

mx = 2p0a
2

π5

∞∑
m=1,3,5,...

1

m5
(m2π2 − 4)(F1 − νF2) sin

mπx

a

− 2p0a
2

π3

∞∑
m=2,4,6,...

1

m3
(F1 + νF2) sin

mπx

a
(2.4.26)

and

my = 2p0a
2

π5

∞∑
m=1,3,5,...

1

m5
(m2π2 − 4)(F2 − νF1) sin

mπx

a

− 2p0a
2

π3

∞∑
m=2,4,6,...

1

m3
(F2 + νF1) sin

mπx

a
, (2.4.27)

where

F2 = αm sinh αm cosh ηm − ηm sinh ηm cosh αm

1 + cosh 2αm

. (2.4.28)

If b = a, these expressions give us at the center of the plate the following
lateral deflection and bending moments, respectively:

w ≈ 0.001198
p0a

4

D
, mx ≈ 0.01319p0a

2 and my ≈ 0.01389p0a
2.

(2.4.29)

A comparison of the so-obtained results shows very little differences between
the two approaches, and even these extremely small discrepancies can be elim-
inated by using more than four terms in the Navier solution. Although Lévy’s
method yields faster converging expressions, it requires more extensive com-
putations to obtain those fast converging series. Consequently, if the boundary
and loading conditions permit, preference should be given to Navier’s approach
using the classical method in plate analysis.

ILLUSTRATIVE EXAMPLE II

Determine the deflection of a partially loaded, simply supported rectangular
plate, shown in Fig. 2.4.2, assuming that the partial load is uniformly distributed
(pz = p0). The constants of the Fourier expansion of the load are

Pmn = 4p0

ab

∫ ξ+(c/2)

ξ−(c/2)

∫ η+(d/2)

η−(d/2)

sin
mπx

a
sin

nπy

b
dx dy

= 16p0

π2mn
sin

mπξ

a
sin

nπη

b
sin

mπc

2a
sin

nπd

2b
. (2.4.30)

From Eq. (2.2.4a) the constants of the double series expression of the deflec-
tions can be computed:
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Simple support

p0

Figure 2.4.2 Uniform load over small rectangular area.

Wmn = 16p0 sin(mπξ/a) sin(nπη/b) sin(mπc/2a) sin(nπd/2b)

Dπ6mn[(m2/a2) + (n2/b2)]2
(2.4.31)

Substituting Wmn into Eq. (2.2.2), the equation of the deflection surface of the
plate is obtained:

w(x, y) = 16p0

Dπ6

∞∑
m=1

∞∑
n=1

sin(mπξ/a) sin(nπη/b) sin(mπc/2a) sin(nπd/2b)

mn[(m2/a2) + (n2/b2)]2

× sin
mπx

a
sin

nπy

b
. (2.4.32)

The convergence of this solution is relatively fast, provided that the ratios
a/c and d/b are not too small. The deflections can be obtained with sufficient
accuracy by taking the first four terms of the series.

ILLUSTRATIVE EXAMPLE III

Find the deflections of a simply supported rectangular plate subjected to a
concentrated lateral force P , as shown in Fig. 2.4.3. The solution is obtained
from the previous derivation by introducing

p0 = P

cd
(2.4.33)

and letting the contact area approach zero by permitting

c −→ 0 and d −→ 0.

Thus, Eq. (2.4.30) can be written as

Pmn = 16P

π2mncd
sin

mπξ

a
sin

nπη

b
sin

mπc

2a
sin

nπd

2b
. (2.4.34)
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Simple supports

X

Figure 2.4.3 Rectangular plate loaded by concentrated force.

But, to be able to use the limit approach first, Eq. (2.4.34) must be put into
a more suitable form. For this purpose, the right-hand side is multiplied and
divided by a · b, giving

Pmn = lim
c→0,d→0

[
4P

ab
sin

mπξ

a
sin

nπη

b
× sin(mπc/2a) sin(nπd/2b)

(mπc/2a) · (nπd/2b)

]
.

(2.4.35)

Knowing that

lim
α→0

sin α

α
= lim

α→0

[
(d/dα) sin α

(d/dα)α

]
= lim

α→0
cos α = 1, (2.4.36)

Eq. (2.4.35) becomes

Pmn = 4P

ab
sin

mπξ

a
sin

nπη

b
, (2.4.37)

and the deflection of the plate subjected to a concentrated load is obtained from

w(x, y) = 4P

π4abD

∞∑
m=1

∞∑
n=1

sin(mπξ/a) sin(nπη/b)

[(m2/a2) + (n2/b2)]2
sin

mπx

a
sin

nπy

b

for m, n = 1, 2, 3, . . . . (2.4.38)

The convergence of this series solution is slow in the vicinity of the concen-
trated load. The second derivatives of Eq. (2.4.38) will even diverge at the
point of application of force.

By applying the principle of superposition, the plate deflection due to all
types of lateral loading can be computed, provided that the plate is simply
supported at all edges.

ILLUSTRATIVE EXAMPLE IV

Determine the deflections of a partially loaded rectangular plate, shown in
Fig. 2.4.4, using Lévy’s method.
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pz = p0 = const

Figure 2.4.4 Partially loaded rectangular plate.

The general solution is sought in the form of Eq. (2.3.6); thus, we can write

w(x, y) = wP + wH =
∞∑

m=1

Wm sin
mπx

a

+
∞∑

m=1

(
Am cosh

mπy

a
+ Bm

mπy

a
sinh

mπy

a

)
sin

mπx

a
. (2.4.39)

From Eq. (2.3.5),

pz(x) =
∞∑

m=1

Pm sin
mπx

a
, (2.4.40)

where Pm is determined using Fourier’s expansion as described in Appendix
A.1. This gives

Pm = 2

a

∫ a/2

0
p(x) sin

mπx

a
dx = 2p0

mπ

(
1 − cos

mπ

2

)
; (2.4.41)

hence

Pm =




2p0

mπ
for m = 1, 3, 5, . . . ,

4p0

mπ
for m = 2, 6, 10, . . . ,

0 for m = 4, 8, 12, . . . .

(2.4.42)

Thus, the sine series expression for the lateral load (pz = p0) becomes

pz(x) = 2p0

π

∞∑
m=1,3,5,...

1

m
sin

mπx

a
+ 4p0

π

∞∑
m=2,6,10,...

1

m
sin

mπx

a
. (2.4.43)
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Application of Navier’s method to the plate strip (2.3.1) yields

Wm =




2p0a
4

Dπ5m5
for m = 1, 3, 5, . . . ,

4p0a
4

Dπ5m5
for m = 2, 6, 10, . . . ,

0 for m = 4, 8, 12, . . . .

(2.4.44)

Substituting this expression into (2.3.4), the particular solution becomes

wP = 2p0a
4

Dπ5

∞∑
m=1,3,5,...

1

m5
sin

mπx

a
+ 4p0a

4

Dπ5

∞∑
m=2,6,10,...

1

m5
sin

mπx

a
.

(2.4.45)

The constants Am and Bm in (2.3.16) are determined from the boundary con-
ditions at y = ±(b/2), which are

w = 0 and
∂2w

∂y2
+ ν

∂2w

∂x2
= ∂2w

∂y2
= 0. (2.4.46)

Considering a specific m value, the substitution of (2.4.39) into (2.4.46) gives

Wm + Am cosh
mπb

2a
+ Bm

mπb

2a
sinh

mπb

2a
= 0 (2.4.47)

and

(Am + 2Bm)
m2π2

a2
cosh

mπb

2a
+ Bm

m3π3b

2a3
sinh

mπb

2a
= 0; (2.4.48)

hence

Am = − Wm

2 cosh(mπb/2a)

(
2 + mπb

2a
tanh

mπb

2a

)
,

Bm = Wm

2 cosh(mπb/2a)
. (2.4.49)

Thus, the solution of the homogeneous plate equation becomes

wH = −p0a
4

Dπ4

∞∑
m

cm

m5

[
cosh ηm

2 cosh αm

(2 + αm tanh αm) − ηm

2 cosh αm

sinh ηm

]

× sin
mπx

a
, (2.4.50)

where

ηm = mπy

a
, αm = mπb

2a
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and

cm =



2 for m = 1, 3, 5, . . . ,

4 for m = 2, 6, 10, . . . ,

0 for m = 4, 8, 12, . . . .

(2.4.51)

If a = b, the deflection at the center of the plate becomes

(w)x=a,2,y=0 = 0.002028
p0a

4

D
. (2.4.52)
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2.5 Extensions of Navier’s and Lévy’s Methods

a. Generalization of Navier’s Solution. Lardy extended the use of Navier’s solu-
tion to rectangular plates clamped along all four edges [2.5.1]. Instead of using
trigonometric functions, he introduced the characteristic functions of a freely vibrating
beam to obtain an equation of the deflected plate surface. This Navier-type solution
converges quickly and—with the help of pertinent tables—is relatively easy to apply.
Since Lardy’s solution technique is basically the same as the more general approach
introduced later by Mukhopadhyay, here we will merely treat the latter in detail.

Mukhopadhyay further extended Lardy’s method to cover any type of boundary
and loading conditions [2.5.2]. He also used the characteristic functions of freely
vibrating uniform beams [2.5.3, 2.5.4] in his Navier-type plate analysis.

The characteristic function X(x) that satisfies the homogeneous differential equa-
tion of the freely vibrating uniform beam with span length a,

d4

dx4
X(x) − µ4

a4
X(x) = 0, (2.5.1)

can be written in the general form

X(x) = K1 sin
µx

a
+ K2 cos

µx

a
+ K3 sinh

µx

a
+ K4 cosh

µx

a
, (2.5.2)

where the integration constants K1, K2, K3 and K4 are unknowns [2.5.5, 2.5.6]. These
constants are determined from the four boundary conditions of the beam. A nontrivial
solution, however, is possible only if the circular frequency† ω assumes one of the
eigenvalues ωm [2.5.3].

† Embedded in µ.
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These characteristic functions for simply supported and clamped edges can be
directly applied to plate problems having similar boundary conditions. The charac-
teristic function of a beam with free-edges, however, is not directly applicable to
plates having free boundaries. We will briefly discuss this problem later.

Similar characteristic functions can be used in the Y direction; hence

Y (y) = K5 sin
µy

b
+ K6 cos

µy

b
+ K7 sinh

µy

b
+ K8 cosh

µy

b
. (2.5.3)

As known, these characteristic functions satisfy the following orthogonality
relations:

∫ a

0
Xm(x) · Xn(x) dx = 0,

∫ a

0
X′′

m(x) · X′′
n(x) dx = 0, (2.5.4)

∫ b

0
Ym(y) · Yn(y) dy = 0,

∫ b

0
Y ′′

m(y) · Y ′′
n (y) dy = 0, (2.5.5)

∫ a

0
X′′′′

m · Xn dx = 0,

∫ b

0
Y ′′′′

m · Yn dy = 0 (2.5.6)

for m �= n.
Next, we express the deflection surface of the plate in the form

w(x, y) =
r∑

p=1

r∑
s=1

WpsXp (x) · Ys (y), (2.5.7)

where Xp(x) and Ys(y) are beam characteristic functions along the X and Y axes sat-
isfying the pertinent boundary conditions of the plate and Wps are unknown constants
to be determined.

For this purpose, we express the lateral load pz(x, y) with the help of these char-
acteristic functions in the series form

pz (x, y) =
r∑

m=1

r∑
n=1

PmnXmYn = P11X1Y1 + P12X1Y2 + · · · + PmnXmYn

+ · · · + PrrXrYr . (2.5.8)

Multiplying both sides of Eq. (2.5.7) by Xm and Yn and integrating with respect to
x and y, from 0 to a and 0 to b, respectively, we can write

Pmn =

∫ a

0

∫ b

0
pz (x, y) · XmYn dx dy

∫ a

0
X2

m dx

∫ b

0
Y 2

n dy

. (2.5.9)
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Thus, for the uniformly loaded plate, for instance, we obtain

Pmn = p0

∫ a

0
Xm dx

∫ b

0
Yn dy

∫ a

0
X2

m dx

∫ b

0
Y 2

n dy

, (2.5.10)

where p0 represents the constant intensity of the lateral load. Similarly, for a plate
subjected to a concentrated load p0 at coordinates ξ and η, Eq. (2.5.9) gives

Pmn = P0(Xm)ξ · (Yn)η∫ a

0
X2

m dx

∫ b

0
Y 2

n dy

. (2.5.11)

If both ends of the beam are simply supported, the characteristic function has
the form

Xm(x) = sin
µmx

a
, µm = π, 2π, 3π, . . . , mπ. (2.5.12)

If one end is simply supported and the other end is fixed, the pertinent characteristic
function is

Xm(x) = sin
µmx

a
− αm (sinh)

µmx

a
, (2.5.13)

where

µm = 3.9166, 7.0685, . . . ,
(4m + 1)π

4
, αm

sin µm

sinh µm

. (2.5.14)

If both ends are fixed, we should use

Xm(x) = sin
µmx

a
− sinh

µmx

a
− αm

(
cos

µmx

a
− cosh

µmx

a

)
, (2.5.15)

where

µm = 4.712, 7.853, . . . , 1
2 (2m + 1)π (2.5.16)

and

αm = sin µm − sinh µm

cos µm − cosh µm

. (2.5.17)

However, when a free-edge is involved, derivation of characteristic functions for
a plate becomes far more complex. That is, the characteristic function for a beam
with free-edges cannot directly be applied to plates having a free boundary, since
the free-edge boundary condition of beams does not contain the torsional moment
embedded in Eqs. (1.3.5) and (1.3.6). Furthermore, such a characteristic function for
plates must also contain the effects of the boundary conditions of the two adjoining
plate edges, the aspect ratio a/b and the Poisson ratio ν, respectively. Because of
these complexities, we do not treat this problem here but refer the reader to the
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original paper [2.5.2]. It is evident that more research is required on this subject to
simplify this part of the analysis.

Fletcher and Thorne give readily usable Fourier series–type solutions for rectangu-
lar plates subjected to any type of transverse loads [2.5.7]. They treat 81 combinations
of free, simply supported and fixed boundary conditions.

The method is based on the superposition technique, discussed in detail in Sec. 3.8.
With the origin of the coordinate system at the center of the plate, the solution is
written in the form

w(x, y) = w1(x, y) + w2(x, y) + w3(x, y), (2.5.18)

where w1 is the deflection of a simply supported plate under the lateral load pz(x, y),

w2 is the deflection of an edge loaded plate such that the deflections and moments
on all edges are arbitrary except at the corners where the deflection is zero and w3 is
the deflection of a plate bent by concentrated corner loads. After taking the bending
moment boundary equations into account, these individual deflections are

w1(x, y) = 4K

a2b

∞∑
m=1

∞∑
n=1

Pmn

(α2 + β2)2
sin αx sin βy, (2.5.19)

w2(x, y) = 4K

ab

∞∑
m=1

∞∑
n=1

(−1)n+1α(α2 + 2β2)

νβ2
+ (−1)nαdm

+
[

α(α2 + 2β2)

νβ2
− α

]
em +

[
− (−1)mβ(β2 + 2α2)

να2
+ (−1)mβ

]
hn

+
[

β(β2 + 2α2)

να2
− β

]
in

sin αx sin βy

(α2 + β2)2
, (2.5.20)

w3(x, y) = 4

ab

∞∑
m=1

∞∑
n=1

[(−1)m+1w(a, b) − (−1)nwa, 0)

− (−1)mw(0, b) + w(0, 0)]
sin αx sin βy

αβ
, (2.5.21)

where α = nπ/a, β = mπ/b, K = pza
3/D and dm, em, hm and im are undetermined

Fourier coefficients arising from the second derivatives of w evaluated along the
boundaries. The constants Pmn are the conventional Fourier coefficients introduced
in Sec. 2.2. Satisfaction of the boundary conditions theoretically leads to an infinite
set of equations in infinitely many unknown constants. In practice, however, it is
sufficient to consider only a limited number of terms in the series to obtain very
usable results. Especially in the case of distributed lateral loads, the convergence of
the solution is quite fast. As already mentioned, in Ref. [5.5.7] readily the reader
will find usable expressions for all the above-discussed combinations of boundary
conditions. Although this method yields very accurate results, its application requires
considerable computational efforts.

b. Rationalization of Lévy’s Solution. The classical Lévy solution is unique. That
is, it can be mathematically proven that rectangular plates not having two opposite
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Pz(x, y)

b = Rt

A A

Y

X

PA, MA
PB, MB

PR Simply supported

PA
pz(x, y)

PR PB

MA MB

b = Rt

h Y

Section A−A

a

R = subdivision number
t = spacing btw. equiolistan lines

Figure 2.5.1 Finite plate represented by infinite plate strip.

edges simply supported do not admit such a solution. In order to rationalize Lévy’s
solution, however, Åkkeson introduced an “end-conditioning” technique [2.5.8]. He
used the simply supported infinite plate strip shown in Fig. 2.5.1, which carries the
lateral load pz and four external line loads MA, MB and PA, PB . These boundary line
loads are applied just outside of y = 0 and y = b boundaries to provide the prescribed
boundary conditions along the edges y = 0, b. All external loads are replaced by
R + 1 equidistant line loads PR . The external load and the boundary forces are
expanded into sine series. The deflections and the internal forces are also given in
trigonometric series forms. The so-derived expressions are lengthy, but they can be
rationalized by applying matrix methods.

References and Bibliography
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2.6 Method of Images

For certain plate problems the solution can be obtained by arbitrary extension of the
plate and/or applying fictitious forces to create the desired deflection patterns.†

In Fig. 2.6.1a, for instance, a simply supported plate in the form of an isosceles
right triangle is shown. This plate is subjected to a concentrated lateral force P . We
replace the triangular plate by an equivalent square plate upon which two loads, +̇P

and −P , are now acting. The point of application of the fictitious load −P is the
mirror or image point of that of the actual load with respect to the diagonal. It is
evident by observation that the deflections of the original and equivalent plates are
the same. Consequently, a solution of the problem can be obtained by superimposing

Fictitious support

Figure 2.6.1 Method of images.

† This method was introduced by Nádai [3].
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Navier’s solution given in Eq. (2.4.38) using +P and −P forces. Thus, we can write

w = w1 + w2 = 4Pa2

π4D

∞∑
m=1

∞∑
n=1

sin(mπξ/a) sin(nπη/a)

(m2 + n2)2
sin

mπx

a
sin

nπy

a

− 4Pa2

π4D

∞∑
m=1

∞∑
n=1

sin{[mπ(a − η)]/a} sin{[nπ(a − ξ)]/a}
(m2 + n2)2

× sin
mπx

a
sin

nπy

a
. (2.6.1)

The deflections of a triangular plate subjected to a uniformly distributed load p0 can
be obtained in an analogous manner.

ILLUSTRATIVE EXAMPLE

Determine the deflection surface of a simply supported plate subjected to a
concentrated moment at point A(ξ, η), as shown in Fig. 2.6.2a.

Figure 2.6.2 Concentrated moment.

Replacing the external moment by a couple, M = P ∇ξ , the deflection sur-
face, which corresponds to the action of a concentrated moment, is obtained
from

w(x, y) = P [ lim

ξ→0

f (ξ + 
ξ, η, x, y) − f (ξ, η, x, y)], (2.6.2)

where f (ž) represents shape functions pertinent to the concentrated forces +P

and −P acting at A(ξ, η) and A′(ξ + 
ξ, η), respectively (Fig. 2.6.2b). If we
decrease 
ξ without limit (
ξ → 0) while maintaining the original value of
M = P 
ξ , we must proportionally increase P . This process is identical with
replacing P by M in Eq. (2.4.38) and differentiating the shape function with
respect to ξ . Thus, we can write

w(x, y) = M
∂

∂ξ
f (ξ, η, x, y), (2.6.3)
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and we obtain

w = 4M

π3a2bD

∑
m

∑
n

m

[(m2/a2) + (n2/b2)]2

× cos
mπξ

a
sin

nπη

b
sin

mπx

a
sin

nπy

b
. (2.6.4)

2.7 Plate Strips

a. Plate Strip Bent to Cylindrical Deflection Surface. If the plate is infinitely
long in one direction, the plate becomes a plate strip (Fig. 2.7.1). Let us assume that
the plate strip has a finite dimension in the X direction and that it is subjected to a
lateral load pz(x) that is uniform at any section parallel to the X direction. In such
a case, the deflection of the plate w becomes a function of x only; consequently, all
the derivatives with respect to y are zero. Thus, the governing differential equation
of the plate (1.2.30) is considerably simplified and takes the form

d4w(x)

dx4
= pz(x)

D
, (2.7.1)

which has a marked similarity to the differential equation of a beam:

d4w∗(x)

dx4
= pz(x)

EI
, (2.7.2)

as already discussed in Sec. 2.3.

A A

Figure 2.7.1 Plate strip.
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Comparing Eqs. (2.7.1) and (2.7.2), it is evident that

w = w∗(1 − ν2), (2.7.3)

from which it follows that due to its two-dimensional action the deflection of a plate
strip is somewhat smaller than the corresponding beam deflection.

Solution of the differential equation of a plate strip [Eq. (2.7.1)] can follow Navier’s
method,† provided that the edges of the plate, pertaining to its finite dimensions, are
simply supported. Expanding the deflection w(x) and the lateral load pz(x) into single
Fourier series,‡ we can write

w(x) =
∑
m

Wm sin
mπx

a
,

pz =
∑

Pm sin
mπx

a
for m = 1, 2, 3, . . . .

(2.7.4)

The substitution of these expressions (pertinent to a specific m value) in Eq. (2.7.1)
yields Wm = a4Pm/Dm4π4; hence

w(x) = a4

π4D

∑
m

Pm

m4
sin

mπx

a
for m = 1, 2, 3, . . . . (2.7.5)

If the edges of the plate strip at x = 0 and x = a are not simply supported, the
integration of the differential equation (2.7.12) and the determination of the four
integration constants from the boundary conditions can follow the same technique
as that conventionally used in the solution of beam problems [2.7.1, 2.7.2]. But by
far the simplest way to obtain a solution for the plate strip is by the use of beam
formulas [5, 9, 2.7.3] in connection with the above-discussed relationship between
plate and beam deflections (2.7.3). The deflections of plate strips of this type have
already been used in Sec. 2.3 for the particular solutions of the governing differential
equation of the plate (1.2.30).

Since the deflection w(x) is only a function of x, the curvature of the plate strip
in the Y direction is zero; thus

d2w

dy2
= 0. (2.7.6)

Using Eq. (2.7.5), the internal moments can be obtained from Eqs. (1.2.26) and
(1.2.27):

mx = −D
d2w

dx2
(2.7.7)

and

my = −Dν
d2w

dx2
= νmx. (2.7.8)

† See Sec. 2.2.
‡ See Appendix A.1.
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The expression for the twisting moment is

mxy = 0. (2.7.9)

Similarly, Eqs. (1.2.33a) and (1.2.33b) yield the transverse shear:

qx = −D
d3w

dx3
and qy = 0. (2.7.10)

b. Partial Loading. The solution of plate strips loaded with a lateral load uni-
formly distributed on a subrectangle, as shown in Fig. 2.7.2, is of considerable
practical importance. This problem occurs frequently in design of the roadway slabs
of reinforced-concrete highway bridges. Since our previous assumptions concerning
the load distribution and the shape of the deflected plate surface are no longer valid,
the governing differential equation of the plate (1.2.30) must be used instead of the
equation of the plate strip (2.7.1).

For long rectangular plates, Navier’s solution, as given by Eq. (2.4.32), is appli-
cable, provided that the width-to-length ratio a/b is not zero and that the edges
are simply supported. When the plate length increases without limit (b → ∞), the
Fourier series expression of lateral loading and that of the pertinent plate deflections
can be transformed into Fourier integral forms [1]. Furthermore, if b becomes infinite,
Lévy’s solution (Sec. 2.3) can be applied advantageously with some modification.

To show the use of Lévy’s method, let us consider first an infinitely long plate
loaded with a line load, as shown in Fig. 2.7.3. The solution of the homogeneous

Main reinforcing

A A

Figure 2.7.2 Roadway slab of a reinforced-concrete highway bridge.

Figure 2.7.3 Line load on plate strip.
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form of the plate equation (2.1.1), again, can be written in the form of Eq. (2.3.9).
Functions that satisfy the resulting ordinary differential equation (2.3.13) are

Ym(y) = emπy/a, e−mπy/a, yemπy/a, ye−(mπy/a) (2.7.11)

and

Ym(y) = sinh
mπy

a
, cosh

mπy

a
, y sinh

mπy

a
, y cosh

mπy

a
. (2.7.12)

Since the deflections for the plate strip shown in Fig. 2.7.3 vanish at y = ∞, of the
above given expressions for Ym(y), only

Ym(y) =
(
Am + Bm

mπy

a

)
e−(mπy/a) (2.7.13)

can be considered. Hence, the solution of Eq. (2.1.1) takes the form

wH =
∞∑

m=1

(
Am + Bm

mπy

a

)
e−(mπy/a) sin

mπx

a
. (2.7.14)

Furthermore, the apparent symmetry of the deflected middle surface with respect to
the X axis requires that, at y = 0, ∂w/∂y = 0; this condition is satisfied if Am = Bm.
Therefore, Eq. (2.7.14) becomes†

wH =
∞∑

m=1

Am

(
1 + mπy

a

)
e∓(mπy/a) sin

mπx

a
. (2.7.15)

The integration constant Am in Eq. (2.7.15) can be determined from the “boundary”
condition at y = 0. That is, taking a section parallel to the Y axis, we find a dis-
continuity in the diagram of the transverse shear forces qy at the point of action of
the load. This phenomenon is analogous to the discontinuities found in the shear
diagrams of beams subjected to concentrated loads. Consequently, we can state that
at y = 0 the transverse shear qy is equal to half the line load. Therefore, if the line
load is uniformly distributed along the X axis, using Eq. (1.2.33b), we can write

(qy)y=0 = −D
∂

∂y
∇2w = −2p0

π

∑
m

1

m
sin

mπx

a
for m = 1, 3, 5, . . . , (2.7.16)

where the right-hand side of Eq. (2.7.16) represents the Fourier series expression of
the line load divided by 2.

The substitution of Eq. (2.7.15) in the left-hand side of Eq. (2.7.16) gives

Am = p0a
3

π4m4D
for m = 1, 3, 5, . . . . (2.7.17)

† The negative sign of the exponent is applicable for +y, whereas for −y the plus sign should
be used.
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Since the plate at y ≥ 0 carries no load, the particular solution of Eq. (1.2.30) is zero.
Thus, the expression of the deflection becomes

w = wH = p0a
3

π4D

∞∑
m=1

1

m4

(
1 + mπy

a

)
e−(mπy/a) sin

mπx

a
for m = 1, 3, 5, . . . .

(2.7.18)

A similar approach can be taken if the line load is distributed only along a portion
of the X axis, as shown in Fig. 2.7.4. Assuming, for instance, a uniformly distributed
partial line load p0, the constants of the Fourier expansion of the load are calculated
from†

Pm = 2p0

a

∫ ξ+(c/2)

ξ−(c/2)

sin
mπx

a
dx = 4p0

πm
sin

mπξ

a
sin

mπc

2a
. (2.7.19)

Thus, the partial line load expressed in a sine series can be written as

pz = 4p0

π

∞∑
m=1

1

m
sin

mπξ

a
sin

mπc

2a
sin

mπx

a
. (2.7.20)

From the boundary condition of the transverse shear forces qy at y = 0, the integration
constant Am is obtained in a similar manner, as discussed above, which gives

Am = p0a
3

m4π4D
sin

mπξ

a
sin

mπc

2a
. (2.7.21)

Substituting this expression in Eq. (2.7.15), we obtain

w = wH = p0a
3

π4D

∞∑
m=1

e−(mπy/a)

m4

(
1 + mπy

a

)
sin

mπξ

a
sin

mπc

2a
sin

mπx

a

for m = 1, 2, 3, . . . , y ≥ 0. (2.7.22)

Figure 2.7.4 Partial line load.

† See Appendix A.1.
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Equation (2.7.22) can be used for solution of plate strips subjected to a concentrated
load. For this condition, we substitute P = p0c and sin(mπc/2a) ≈ mπc/2a. The
resulting deflection is then

w = Pa2

2π3D

∞∑
m=1

e−(mπy/a)

m3

(
1 + mπy

a

)
sin

mπξ

a
sin

mπx

a

for m = 1, 2, 3, . . . , y ≥ 0. (2.7.23)

For problems involving uniform loads acting on a subrectangle, as shown in
Fig. 2.7.5, a solution can be obtained by superimposing plate deflections (2.7.22)
produced by many partial line loads (Fig. 2.7.5). An analytical expression can be
derived by taking an infinitesimal element of dη width and integrating Eq. (2.7.22)
between the proper limits [1, 2]. Furthermore, using a length-to-width ratio b/a ≤ 4,
Eq. (2.4.32) gives usable results for simply supported boundary conditions. In routine
design, however, it is impractical to compute the expressions of the actual deflections
and the resulting stress distributions. A simplified method based on the concept of
the effective width in bending gives usable results for most practical purposes.

c. Effective Width in Bending. The effective width b′ in the bending of a plate
strip subjected to a partial load uniformly distributed on a rectangular area is obtained
by equating the actual moment area for mx (at x = a/2) with that of a fictitious
rectangular moment diagram assuming that the maximum moments are the same
(Fig. 2.7.6a).

The simplest expression for the effective width is

b′ = 2
3a. (2.7.24)

Infinitely long plate (b → ∞)

Deflections due to pz1

Deflections due to pz2

Figure 2.7.5 Partial surface load.
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Wheel load
distribution P = Moving wheel load

R0

my,max = M0
Straight line

mx,max

Figure 2.7.6 Wheel load on plate strip.

Holmberg [2.7.5] recommends the use of

b′ = Pa

4mx,max
(2.7.25)

for the effective width, where P is the total wheel load.
Bittner [2.7.11] gives the following values for partial uniform loads distributed on

subsquares (c = d) assuming simply supported boundary conditions:

d/a = 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

b′/a = 0.75 0.87 1.04 1.16 1.25 1.33 1.40 1.46 1.52 1.57 1.62

In the case of fixed boundaries at x = 0 and x = a, the effective width in bending
b′ can be calculated from

d/a = 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

b′/a = 0.45 0.55 0.67 0.76 0.84 0.90 0.96 1.01 1.06 1.12 1.18

For simply supported boundary conditions, the curve shown in Fig. 2.7.7 gives
good results.

If the plate is continuous in the X direction, approximate values of the maximum
moments due to moving wheel load can be obtained from the extensive tables of
influence lines of continuous beams computed by Anger [2.7.13]. But in the case
of bridges the girders provide elastic supports (Fig. 2.7.8a), the consideration of
which can be economically done only by use of high-speed electronic computers, as
discussed later. Approximate values for maximum moments and reactions are given
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Simply supported plate

Plate supported by beams

Figure 2.7.7 Diagram of effective widths in bending.

Roadway slab

See Fig. 2.7.6b

c4R0 c5R0 +c2M0
+c1M0

−c3M0

Approximate
maximum
moment
diagram

Figure 2.7.8 Continuous one-way bridge slab.

in Fig. 2.7.8b. For simply supported plate strips the maximum moment diagram can
be approximated as shown in Fig. 2.7.6b.

Summary. Solutions of long rectangular plates bent to a cylindrical surface are
readily obtained from the corresponding beam deflections. The resulting expressions
give a particular solution, wP , of the governing plate equation (1.2.30) when Lévy’s
method is used.

Of considerable practical importance are problems involving partial loadings uni-
formly distributed on a small rectangular area, since they can represent the wheel
loads acting on the roadway slabs of certain types of highway bridges. For routine
design the use of a simplified method based on the concept of effective width in
bending is recommended.

ILLUSTRATIVE EXAMPLE I

A plate strip, shown in Fig. 2.7.9, is simply supported at x = 0 and clamped
at x = a. Determine the negative moments at the fixed edge assuming that the
plate strip carries a uniformly distributed load p0.
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A A

0

Figure 2.7.9 Plate strip bent to cylindrical surface.

Since the plate strip is bent to a cylindrical surface, the pertinent beam
formula can be used for expressing the deflections [2.7.3]. Thus, we can write

w(x) = p0a
4

48D

[
x

a
− 3

(x

a

)3 + 2
(x

a

)4
]

. (2.7.26)

The negative moments at the clamped edge are calculated from Eqs. (2.7.7)
and (2.7.8), giving

(mx)x=a = −D

(
d2w

dx2

)
x=a

= −p0a
2

8
(2.7.27)

and

(my)x=a = νmx = −ν
p0a

2

8
. (2.7.28)

ILLUSTRATIVE EXAMPLE II

Figure 2.7.10 shows a simply supported infinitely long plate strip carrying a
uniformly distributed load p0. Determine the maximum deflection and bending
moment using Navier’s approach. Consider only two terms in the pertinent
series expressions.

First, we express the load by a single Fourier series using the half-range
expansion† to obtain only sine terms. Thus, the period of expansion in this
case is T = 2a. This gives

pz(x) =
∑
m

Pm sin
mπx

a
for m = 1, 3, (2.7.29)

† See Appendix A.1.
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A A

0

Figure 2.7.10 Simply supported plate strip.

where

Pm = 2p0

a

∫ a

0
sin

mπx

a
dx = 2p0

a

(
− a

mπ

) [
cos

mπx

a

]a

0

= 4p0

mπ
for m = 1, 3; (2.7.30)

hence

pz(x) = 4p0

π
sin

πx

a
+ 4p0

3π
sin

3πx

a
. (2.7.31)

Substitution of this expression in Eq. (2.7.5) yields

w(x) = 4a4p0

Dπ5
sin

πx

a
+ 4a4p0

35Dπ5
sin

3πx

a
. (2.7.32)

Equation (2.7.7) gives us the expression for the bending moments in the fol-
lowing form:

mx(x) = −D
d2w

dx2
= 4a2p0

π3
sin

πx

a
+ 4a2p0

35π3
sin

3πx

a
. (2.7.33)

The maximum deflection and bending moment occur at x = a/2. They are

wmax = 0.01302p0a
4/D and mx,max = 0.12423p0a

2.

In this case, the deviation of these values from their “exact” ones is very
small. However, if the variation of the loading function is pronounced, more
than two terms must be considered in the computation.
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ILLUSTRATIVE EXAMPLE III

A simply supported semi-infinite rectangular plate is subjected to a concentrated
load P at x = ξ and y = η (Fig. 2.7.11a). Determine an expression for the
resulting deflections w.

(a) Actual (b) Equivalent

Simple support

Fictitious support

Figure 2.7.11 Concentrated force on a semi-infinite plate strip.

For this condition the method of images, as described in Sec. 2.6, can be
used. Consequently, we arbitrarily extend the plate strip in the −y direc-
tion and apply a fictitious negative concentrated force −P at x = ξ, y = −η

(Fig. 2.7.11b). Since the deflection patterns of the actual and equivalent plates
are the same, solution of the problem is obtained by superimposing the deflec-
tions produced by +P and −P forces.

For the region 0 ≤ y ≤ η, Eq. (2.7.23) gives

w = Pa2

2π3D

∞∑
m=1

1

m3

{[
1 + mπ(η − y)

a

]
e−[mπ(η−y)/a]

−
[

1 + mπ(η + y)

a

]
e−[mπ(η+y)/a]

}
sin

mπξ

a
sin

mπx

a
, (2.7.34)

and for y ≥ η we obtain

w = Pa2

2π3D

∞∑
m=1

1

m3

{[
1 + mπ(y − η)

a

]
e−[mπ(y−η)/a]

−
[

1 + mπ(y + η)

a

]
e−[mπ(y+η)/a]

}
sin

mπξ

a
sin

mπx

a
. (2.7.35)

It should be noted that bending moments calculated from these expressions
do not converge rapidly near the point of application of the load.



110 Exact and Series Solutions of Governing Differential Equations

References and Bibliography
[2.7.1] TIMOSHENKO, S. P., and YOUNG, D. H., Theory of Structures, 2nd ed., McGraw-Hill Book

Company, New York, 1965.
[2.7.2] WANG, CH. K., and ECKEL, C. L., Elementary Theory of Structures, McGraw-Hill Book

Company, New York, 1957.
[2.7.3] KLEINLOGEL, A., Belastungsglieder, W. Ernst und Sohn, Berlin, 1948.
[2.7.4] MORRIS, R. M., “Concentrated Loads on Slabs,” Bull. Ohio State Univ. Eng. Exp. Sta., No.

80 (Nov. 1933).
[2.7.5] HOLMBERG, A., “Medverkande bredden hos tvasidigt upplagda rektangulara plattor av

armerad betong,” Betong, 31 (1946), 124–145.
[2.7.6] BITTNER, E., Berechnung von kreuzbewehrten Platten und Behältern aus Eisenbeton,

Springer-Verlag, Berlin, 1962.
[2.7.7] OLSEN, H., and REINITZHUBER, F., Die zweiseitig gelagerte Platte, Vol. 1, 3rd ed., Vol. 2,

2nd ed., W. Ernst und Sohn, Berlin, 1959 and 1960.
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2.8 Rigorous Solution of Circular Plates Subjected
to Rotationally Symmetric Loading

If a circular plate is under the action of lateral loads, which are radially symmetric
with respect to the origin of the polar coordinate system, the deflected plate surface
is also rotationally symmetric (Fig. 2.8.1), provided that the support has the same
type of symmetry. In this case w is independent of φ; thus the Laplacian operator
(1.2.31) becomes

∇2
r = d2(ž)

dr2
+ 1

r

d(ž)
dr

. (2.8.1)

Consequently, the differential equation of the circular plate has the following form:†

† The same expression can be obtained from the equilibrium of the plate element [2]; also see
Sec. 3.4.
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Axis of rotational symmetry

Figure 2.8.1 Rotational symmetry.

∇2
r ∇2

r w(r) = d4w

dr4
+ 2

r

d3w

dr3
− 1

r2

d2w

dr2
+ 1

r3

dw

dr
= pz(r)

D
, (2.8.2)

where D is the flexural rigidity of the plate given by Eq. (1.2.28).
Since the deflections of the circular plate under radially symmetric loading are

independent of φ, the expressions of the internal forces given in Sec. 1.4 become

mr = −D

(
d2w

dr2
+ ν

r

dw

dr

)
, (2.8.3)

mφ = −D

(
ν

d2w

dr2
+ 1

r

dw

dr

)
, (2.8.4)

mrφ = mφr = 0, (2.8.5)

qr = vr = −D

(
d3w

dr3
+ 1

r

d2w

dr2
− 1

r2

dw

dr

)
and qφ = 0. (2.8.6)

The rigorous solution of Eq. (2.8.2) is obtained again as the sum of the solution
of the homogeneous differential equation (2.1.1) and one particular solution. Thus,
we can write

w = wH + wP . (2.8.7)

The solution of the homogeneous differential equation ∇2
r ∇2

r wH = 0 can be given by

wH = C1 + C2r
2 + C3 ln

r

r0
+ C4r

2 ln
r

r0
, (2.8.8)

where C1, C2, C3 and C4 are constants that can be determined from the boundary
conditions. If the deflections at the center of the plate are not infinitely large, C3 and
C4 must be equal to zero, and Eq. (2.8.8) becomes

wH = C1 + C2r
2. (2.8.9)
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The particular solution wP is obtained by direct integration of Eq. (2.8.2). For this
purpose we split the differential equation into two parts, in a way similar to that
described by Eq. (1.2.43) in Sec. 1.2. Let us express first the moment-sum in terms
of polar coordinates:

M = mr + mϕ

1 + ν
. (2.8.10)

Substituting the expression of the internal moments (2.8.3) and (2.8.4) into
Eq. (2.8.10), we obtain

M = − D.

1 + ν

(
d2w

dr2
+ ν

1

r

dw

dr
+ 1

r

dw

dr
+ ν

d2w

dr2

)

= −D

(
d2w

dr2
+ 1

r

dw

dr

)
= −D ∇2

r w. (2.8.11)

When we apply the differential operator ∇2
r to Eq. (2.8.11), a comparison with

Eq. (2.8.2) gives

∇2
r M = −pz(r). (2.8.12)

Equations (2.8.11) and (2.8.12) can be given in somewhat different forms:

∇2
r M = d2M

dr2
+ 1

r

dM

dr
= 1

r

d

dr

(
r

dM

dr

)
= −pz(r) (2.8.13)

and

∇2
r wP (r) = d2wP

dr2
+ 1

r

dwP

dr
= 1

r

d

dr

(
r

dwP

dr

)
= −M

D
. (2.8.14)

Let us integrate Eq. (2.8.13) with respect to r; this gives

dM

dr
= −1

r

∫
pz(r)r dr. (2.8.15)

The moment-sum is calculated by integrating Eq. (2.8.15):

M = −
∫

dr

r

∫
pz(r)r dr. (2.8.16)

Substituting into Eq. (2.8.14) and carrying out the integration, a particular solution
is determined:

wP = − 1

D

∫
dr

r

∫
Mr dr. (2.8.17)
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ILLUSTRATIVE EXAMPLE I

Determine the internal forces and the deflection of a circular plate, fixed at the
edge, loaded with a uniformly distributed load, as shown in Fig. 2.8.2.

pz = p0 = const

r0 r0

r0

Figure 2.8.2 Uniformly loaded circular plate with fixed boundary.

The moment-sum is determined from Eq. (2.8.16):

M = −p0

∫
dr

r

∫
r dr = −p0r

2

4
. (2.8.18)

Equation (2.8.17) gives the particular solution

wP = p0

4D

∫
dr

r

∫
r3 dr = p0r

4

64D
. (2.8.19)

The solution of the homogeneous form of Eq. (2.8.2) is obtained from
Eq. (2.8.9); thus, the general solution is

w = wH + wP = C1 + C2r
2 + p0r

4

64D
. (2.8.20)

Equation (2.8.20) must satisfy the boundary conditions

[w(r)]r=r0 = 0 and

(
dw

dr

)
r=r0

= 0. (2.8.21)
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The first equation of the boundary conditions states that the deflection at the
edge is zero. This gives

[w(r)]r=r0 = 0 = C1 + C2r
2
0 + p0r

4
0

64
. (2.8.22)

From the second equation of the boundary conditions, we obtain

[
dw(r)

dr

]
r=r0

= 0 = 2C2r0 + p0r
3
0

16D
; (2.8.23)

hence

C2 = −p0r
2
0

32D
. (2.8.24)

Substitution of this result into Eq. (2.8.22) yields

C1 = p0r
4
0

64D
. (2.8.25)

Thus, the equation of the deflected plate surface can be written as

w(r) = 1

D

(
p0r

4
0

64
− p0r

2
0 r2

32
+ p0r

4

64

)
= p0

64D
(r2

0 − r2)2. (2.8.26)

Hence, the maximum deflection at the center of the plate is

(wmax)r=0 = p0r
4
0

64D
. (2.8.27)

From Eqs. (2.8.3), (2.8.4) and (2.8.6) the internal forces are

mr = p0

16
[(1 + ν)r2

0 − (3 + ν)r2],

mϕ = p0

16
[(1 + ν)r2

0 − (1 + 3ν)r2],

qr = −p0r
2
0

2r
.

(2.8.28)

ILLUSTRATIVE EXAMPLE II

Determine the equation of the deflected plate surface w(r) of a simply supported
circular plate subjected to a rotationally symmetric lateral load that linearly
increases from the center of the edge, as shown in Fig. 2.8.3.

From Eq. (2.8.16)

M = −p0

r0

∫
dr

r

∫
r2 dr = −p0r

3

9r0
. (2.8.29)
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r0r0

pz = p0

p0

r
r0

r ′

Axis of rotational symmetry

Figure 2.8.3 Circular plate with linearly increasing lateral load.

Substituting this result into Eq. (2.8.17), a particular solution of the governing
differential equation of problem (2.8.2) is obtained:

wP = 1

D

∫
dr

r

∫
p0r

3

9r0
r dr = p0

45Dr0

∫
r4 dr = p0r

5

225Dr0
. (2.8.30)

Equation (2.8.9) gives the solution for the homogeneous form of the differ-
ential equation, ∇2

r ∇2
r wH = 0; thus the general solution of Eq. (2.8.2) can be

written as

w = wH + wP = C1 + C2r
2 + p0r

5

225Dr0
. (2.8.31)

The unknown constants C1 and C2 are determined from the boundary conditions
of the problem, which are

(w)r=r0 = 0 and (mr)r=r0 = 0. (2.8.32)

The second boundary condition gives

(mr)r0 =
[
−D

(
d2w

dr2
+ ν

r

dw

dr

)]
r=r0

= 0. (2.8.33)

By substituting Eq. (2.8.31) into (2.8.33), the boundary condition becomes the
equation of the second:

2C2 + 4p0r
2
0

45D
+ 2νC2 + νp0r

2
0

45D
= 0, (2.8.34)

from which

C2 = −p0r
2
0

90D

(
4 + ν

1 + ν

)
. (2.8.35)

The geometrical boundary condition,

(w)r=r0 = C1 + C2r
2
0 + p0r

4
0

225D
= 0, (2.8.36)
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yields

C1 = p0r
4
0

45D

[
4 + ν

2(1 + ν)
− 1

5

]
. (2.8.37)

Equation (2.8.31) with known C1 and C2 coefficients defines the deflected
plate surface.

Summary. The above-discussed method for rigorous solution of circular plates can
be used in most cases with relative ease, provided that the lateral loads and boundary
supports are rotationally symmetric with respect to the center of the plate. Con-
sequently, the application of this method is highly recommended. The practical
importance of the solution of such problems is especially pronounced in container,
pressure vessel, water tank, silo (where they are used as cover plates) and machine
design (Fig. 2.8.4).

2.9 Solutions of Membrane Problems

As introduced in Sec. 1.7, the governing differential equation for rectangular mem-
branes is Eq. (1.7.2). For circular plates we derived two differential equations, Eqs.
(1.7.4) and (1.7.6). The first one governs the general loading case, and the second
one is restricted to rotationally symmetric loads. In both cases, we assumed also
rotationally symmetric edge supports. All these differential equations are valid only
for small deflections. The large-deflection theory of membranes, which describes the
actual membrane behavior more effectively, is treated in Sec. 11.1.

Since for membranes the clamped boundary conditions are analogous to simple
supports of thin plates with flexural rigidity, a Navier-type approach, as discussed in
Sec. 2.2, can be applied in most cases.

A A

B B

Figure 2.8.4 Use of circular plate in machine design.
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Consequently, we express the lateral load in the double Fourier series

pz(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin
mπx

a
sin

nπy

b
, (2.9.1)

where Pmn is obtained from Eq. (A.1.36). Expressing the membrane deflections in a
similar way, we can write

w(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
. (2.9.2)

The substitution of Eqs. (2.9.1) and (2.9.2) into the governing differential equation
of rectangular membranes (1.7.2) yields (for specific m, n values) the amplitude of
the deflections:

Wmn = Pmn

π2[(m2/a2) + (n2/b2)]σh
. (2.9.3)

Solution of differential equation (1.7.6), which governs the small-deflection theory
of circular membranes subjected to rotationally symmetric loads, has the general form

w = wH + wp, (2.9.4)

where

wH = C1 + C2 ln r. (2.9.5)

A particular solution is obtained by direct integration of the differential equation
(1.7.6):

wP = − 1

σh

∫
dr

r

∫
pz(r) dr. (2.9.6)

Since the deflection at the center of the plate cannot be infinitely large, we must
disregard C2 in Eq. (2.9.5).

Classical solutions of differential equation (1.7.4) are, however, far more diffi-
cult. Although one can transform this partial differential equation into an ordinary
differential equation by separating the variables,

w(x, ϕ) = R(r) · �(ϕ), (2.9.7)

combined with other mathematical manipulations, the exact solutions remain cum-
bersome. Applying one of the energy methods discussed in Sec. 4.2 and Sec. 4.3,
respectively, one can obtain very usable solutions to these problems in analyti-
cal forms.

ILLUSTRATIVE EXAMPLE I

Let us determine the equation of small deflections of the rectangular, stretched
membrane shown in Fig. 2.9.1. The lateral load p0 is assumed to be uniformly
distributed.
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Z ,w Section A-A

sh
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p0 = Const.
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B

B-B
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Figure 2.9.1 Stretched rectangular membrane.

We use a Navier-type approach. From Table A.1.1 we obtain

Pmn = 16p0

π2mn
for m, n = 1, 3, 5, . . . . (2.9.8)

Substitution of Eq. (2.9.8) into Eq. (2.9.3) gives

Wmn = 16p0

π4mn[(m2/a2) + (n2/b2)]σh
. (2.9.9)

Thus the equation of the deflected membrane surface becomes

w(x, y) = 16p0

π4σh

∞∑
m

∞∑
n

1

mn[(m2/a2) + (n2/b2)]
for m, n = 1, 3, 5, . . . .

(2.9.10)

ILLUSTRATIVE EXAMPLE II

Find the lateral deflections of a stretched, circular membrane subjected to a
lateral load that is linearly increasing from center to edge (Fig. 2.9.2). Assume
that the small-deflection theory of membranes is valid.

We seek the general solution of Eq. (1.7.6) in the form

w = wH + wP . (2.9.11)
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Figure 2.9.2 Stretched circular membrane.

A particular solution wP is obtained from Eq. (2.9.6); thus

wP = − p0

r0σh

∫
dr

r

∫
r2 dr = − p0r

3

9r0σh
. (2.9.12)

Since the solution of the homogeneous form of Eq. (1.7.6) is

wH = C1 + C2 ln r, (2.9.13)

theoretically, the general solution should be written as

w = C1 + C2 ln r − p0r
3

9r0σh
. (2.9.14)

However, as already mentioned, the second term on the right-hand side of
this equation must be disregarded, since it would create an unwanted sin-
gularity in the solution. The remaining constant C1 is determined from the
boundary condition,

w(r0) = C1 − p0r
3
0

9r0σh
= 0; (2.9.15)

hence

C1 = p0r
3
0

9σhr0
(2.9.16)

and

w(r) = p0

9σhr0
[r3

0 − r3] (2.9.17)

which gives the required zero deflection at the boundary r0.
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2.10 Series Solutions of Moderately Thick Plates

a. Navier-Type Approach. Assuming a simply supported rectangular plate of
dimensions a · b and h subjected to pz(x, y) lateral load,† we may apply Navier’s
method to obtain double Fourier series solutions to this problem.

First, the lateral load is expanded in double Fourier series as described in Appendix
A.1; thus

pz(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin
mπx

a
sin

nπy

b
. (2.10.1)

Next, the unknown deflections and rotations of the midplane are expressed in similar
double Fourier series:

w(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
, (2.10.2)

ψx(x, y) =
∞∑

m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπy

b
, (2.10.3)

ψy(x, y) =
∞∑

m=1

∞∑
n=1

Bmn sin
mπx

a
sin

nπy

b
. (2.10.4)

Let us consider first Mindlin’s plate theory as introduced in Sec. 1.5b. The above
given expressions for the kinematic unknowns simultaneously satisfy the differential
equations of the moderately thick plate [Eqs. (1.5.19)–(1.5.21)] and the pertinent
boundary conditions given in Eq. (1.5.29).

Substitution of these double series expressions into the differential equations of
equilibrium gives the Fourier coefficients

Wmn =
{

1 + Dπ2

κ2Gh

[[m

a

]2 +
[n

b

]2
]}

Pmn

Dπ4
[
[m/a]2 + [n/b]2

]2 , (2.10.5)

Amn = − mPmn

aDπ3
[
[m/a]2 + [n/b]2

]2 , (2.10.6)

Bmn = − nPmn

bDπ3
[
[m/a]2 + [n/b]2

]2 . (2.10.7)

A similar approach can be taken with the sixth-order theory of moderately thick
plates developed by Levinson [2.10.1, 2.10.2]. In this case, the differential equations
of equilibrium are represented by Eqs. (1.5.33), (1.5.34) and (1.5.35), respectively.
The so-obtained improved set of Fourier coefficients are

Wmn =
{

1 + 6Dπ2

5Gh

[(m

a

)2 +
(n

b

)2
]}

Pmn

Dπ4 [(m/a)2 + (n/b)2]2
, (2.10.8)

† For a coordinate system see Fig. 1.1.1.
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Amn = −
{

1 − 3Dπ2

10Gh

[(m

a

)2 +
(n

b

)2
]}2

mPmn

aDπ3 [(m/a)2 + (n/b)2]2
, (2.10.9)

Bmn = −
{

1 − 3Dπ2

10Gh

[(m

a

)2 +
(n

b

)2
]}2

nPmn

bDπ3 [(m/a)2 + (n/b)2]2
. (2.10.10)

In addition, it is worth noting that the simplified Reissner plate theory described
by Eq. (1.5.11)—along with other higher-order plate theories derived only in terms
of the lateral deflections† w(x, y)—lend themselves well to the above-introduced
Navier-type solutions [2.10.3], provided that all edges are simply supported.

Furthermore, if we would like to compute only the lateral deflections of a simply
supported Mindlin plate, the use of the so-called conjugate plate analogy [2.10.4]
offers the easiest way. According to this analogy, the deflections w(x, y) obtained
by solving the governing differential equation of thin plates (1.2.30) should merely
be augmented by a shear deflection component ws = M/κ2Gh, where M represents
the moment-sum given in Eq. (1.2.42). This moment-sum can readily be computed
by solving the differential equation (1.2.43a), which is identical with that of the
membranes, that is, (1.7.2). Consequently, the very same Navier solution, discussed
in Sec. 2.9, can be applied.

b. Lévy-Type Approach. To obtain Lévy-type solutions of moderately thick plate
problems, we must use the uncoupled Mindlin differential equations of equilibrium:

D ∇4w (x, y) =
(

1 − D

κ2Gh
∇2

)
pz (x, y), (2.10.11)

D ∇4ψx (x, y) = −∂pz (x, y)

∂x
, (2.10.12)

D ∇4ψy (x, y) = −∂pz (x, y)

∂y
. (2.10.13)

As in Sec. 2.3, we assume that the two opposite edges at x = 0 and x = a are simply
supported and the load is symmetrical about the X axis, as shown in Figs. 2.3.1
and 2.3.2, respectively. The pertinent homogeneous forms of the differential equa-
tions are

∇4w(x, y) = ∇4ψx(x, y) = ∇4ψy(x, y) = 0. (2.10.14)

We seek the solution of the transverse displacements in the form

w(x, y) = wH (x, y) + wP (x, y), (2.10.15)

where wH is the solution of D ∇4wH = 0 and wP represents a particular solution of
the governing differential equation of thin plates (1.2.30).

† Listed in the reference part of Sec. 1.5.
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The corresponding uncoupled equilibrium equations in Levinson’s plate theory
[2.10.5] are

D∇4w(x, y) =
(

1 − 6D

5Gh
∇2

)
pz(x, y), (2.10.16)

D∇4ψx(x, y) = −
(

1 + 3D

10Gh
∇2

)
∂pz(x, y)

∂x
, (2.10.17)

D∇4ψy(x, y) = −
(

1 + 3D

10Gh
∇2

)
∂pz(x, y)

∂y
. (2.10.18)

As already mentioned in Sec. 1.5c, the midplane rotations ψx and ψy are in this case
somewhat differently defined from those given by Mindlin.

Expressing the lateral load and the particular solutions of the kinematic unknowns
by single Fourier sine series, that is,

pz(x) =
∞∑

m=1

Pm(y) sin
mπx

a
, (2.10.19)

wP (x) =
∞∑

m=1

Wm(y) sin
mπx

a
, (2.10.20)

ψx(P ) =
∞∑

m=1

Jm(y) sin
mπx

a
, (2.10.21)

ψy(P ) =
∞∑

m=1

Rm(y) sin
mπx

a
, (2.10.22)

and substituting these expressions into Mindlin’s uncoupled plate equations, we obtain
the following set of ordinary differential equations:

d4Wm

dy4
− 2

(mπ

a

)2 d2Wm

dy2
+

(mπ

a

)4
Wm

= 1

D

{[
1 +

(mπ

a

)2 D

κ2Gh

]
Pm − D

κ2Gh

d2Pm

dy2

}
, (2.10.23)

d4Jm

dy4
− 2

(mπ

a

)2 d2Jm

dy2
+

(mπ

a

)4
Jm

= −mπ

aD
Pm, (2.10.24)

d4Rm

dy4
− 2

(mπ

a

)2 d2Rm

dy2
+

(mπ

a

)4
Rm

= − 1

D

dPm

dy
. (2.10.25)
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A similar procedure using Levinson’s uncoupled higher-order plate equations
[2.10.5] yields

d4Wm

dy4
− 2

(mπ

a

)2 d2Wm

dy2
+

(mπ

a

)4
Wm

= 1

D

{[
1 +

(mπ

a

)2 6D

5Gh

]
Pm − 6D

5Gh

d2Pm

dy2

}
, (2.10.26)

d4Jm

dy4
− 2

(mπ

a

)2 d2Jm

dy2
+

(mπ

a

)4
Jm

= −mπ

aD

{[
1 −

(mπ

a

)2 3D

10Gh

]
Pm +

(mπ

a

) 3D

10Gh

d2Pm

dy2

}
(2.10.27)

and

d4Rm

dy4
− 2

(mπ

a

)2 d2Rm

dy2
+

(mπ

a

)4
Rm

= − 1

D

{[
1 −

(mπ

a

)2 3D

10Gh

]
dPm

dy
+ 3D

10Gh

d3Pm

dy3

}
. (2.10.28)

Solution of these equations gives the constants Wm, Im and Rm for a specific m value.
The boundary conditions in this case are those of simple supports at edges x = 0 and
x = a.

For solutions of the homogeneous form of both types of plate equations, Cooke
and Levinson [2.10.5] derived the following expressions:

wH =
∞∑

m=1

(
Am cosh

mπy

a
+ Bmy sinh

mπy

a
+ Cm sinh

mπy

a

+ Dmy cosh
mπy

a

)
sin

mπx

a
, (2.10.29)

ψx(H) =
∞∑

m=1

(
Em cosh

mπy

a
− Bm

mπy

a
sinh

mπy

a
+ Gm sinh

mπy

a

− Dm

mπy

a
cosh

mπy

a

)
cos

mπx

a
(2.10.30)

and

ψy(H) =
∞∑

m=1

[
(Gm − Dm) cosh

mπy

a
− Dm

mπy

a
sinh

mπy

a

+ (Em − Bm) sinh
mπy

a
− Bm cosh

mπy

a

]
sin

mπx

a
. (2.10.31)
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Using the sums of the pertinent homogeneous and particular solutions, the con-
stants Am, . . . , Gm are obtained from the six boundary conditions at the edges
y = ±b/2. These boundary conditions can be free-edge, simple support or fixed
edge, respectively.

Finally, it should be noted that somewhat different Lévy-type solutions of moder-
ately thick, rectangular plates can be found in Refs. [2.10.6] and [2.10.7].

These mathematical operations are extremely tedious and labor intensive. Some
relief of the large amount of “longhand” computations can be achieved, however,
by utilizing programs of “symbolic mathematics” listed in Appendix A.1 [A.1.18–
A.1.21]. If there is a frequent need to solve these equations, one can program the
whole procedure. The reader will find some additional information on solutions of
moderately thick plates in Refs. [2.10.8–2.10.11].

Summary. In this section the extension of Navier’s solution technique to Mindlin’s
and Levinson’s plate theories was demonstrated. Some other higher-order plate theo-
ries can also be treated in a similar fashion. The procedure is relatively simple. Further
simplification can be obtained by applying the conjugate plate analogy. Treating
other than simply supported boundary conditions by a Lévy-type approach, however,
becomes extremely difficult. The required extensive hand computations can be facili-
tated, to certain degree, by the use of symbolic mathematics programs. This later part
is intended mostly for research engineers, who will probably find some inspiration
to do further research in this important field.

ILLUSTRATIVE EXAMPLE

Let us determine the deflections of a simply supported, rectangular Mindlin
plate of a · b dimensions subjected to uniformly distributed lateral load of
constant p0 intensity.

We apply the above-mentioned conjugate plate analogy, according to which

w(x, y) = wK(x, y) + ws(x, y), (2.10.32)

where wK represents the Navier solution of Kirchhoff’s plate equation (1.2.30)
and ws is an additional shear contribution [2.10.4] in the form

ws(x, y) = M

κ2Gh
, (2.10.33)

where M is the moment-sum given in Eq. (1.2.42) and the constants of the
Mindlin plate, κ2 and G, are defined in Sec. 1.5b.

First, the load is expressed in the double Fourier series

pz(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin
mπx

a
sin

nπy

b
, (2.10.34)

where Pmn is obtained from Table A.1.1; hence

Pmn = 16p0

π2mn
for m, n = 1, 3, 5, . . . . (2.10.35)
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Expressing the solution wK in a similar way,

wK(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

mπy

b
, (2.10.36)

and substituting Eqs. (2.10.34) and (2.10.35) into the governing differential
equation of thin plates (1.2.30), we obtain, for a set of m, n values,

Wmn = Pmn

Dπ4
[
(m2/a2) + (n2/b2)

]2 ; (2.10.37)

hence

wK(x, y) =
∞∑

m=1

∞∑
n=1

Pmn[
(m2/a2) + (n2/b2)

]2 sin
mπx

a
sin

nπy

b
. (2.10.38)

We take a similar approach to determine the moment-sum. In this case, the
pertinent differential equation (1.2.43a) is

∂2M

∂x2
+ ∂2M

∂y2
= −pz. (2.10.39)

Expressing, again, the moment-sum in the double Fourier series

M(x, y) =
∞∑

m=1

∞∑
n=1

Mmn sin
mπx

a
sin

mπy

b
(2.10.40)

and substituting Eqs. (2.10.34) and (2.10.40) into Eq. (2.10.39) give

Mmn = Pmn

π2[(m2/a2) + (n2/b2)]
. (2.10.41)

Thus, the equation of deflections becomes

w = 16p0

Dπ6

∑
m

∑
n

sin(mπx/a) sin(nπy/b)

mn[(m2/a2) + (n2/b2)]2

+ 16p0

π4

∑
m

∑
n

sin(mπx/a) sin(nπy/b)

mn[(m2/a2) + (n2/b2)]

for m, n = 1, 3, 5, . . . . (2.10.42)
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2.11 Summary
Of the mathematical methods for solutions of plate problems introduced in this
chapter, the rigorous solution of the governing differential equation of thin plates
expressed in Cartesian coordinate system is purely of academic interest, since rig-
orous solutions of Kirchhoff’s plate equation can be obtained only in an extremely
limited number of cases. For the majority of practical problems, a rigorous solution
either cannot be found or is of such complicated structure that it can be applied only
with great difficulty in a practical computation. Closed-form solutions for circular
plates, however, can be obtained with relative ease, provided that the lateral loads
and supports are rotationally symmetric.

For simply supported rectangular thin-plates, Navier’s method yields mathemati-
cally correct solutions. The convergence of the resulting double Fourier series depends
considerably on the continuity of the loading function. Slow convergence, created by
discontinuous loading, is especially pronounced in the case of concentrated forces.
For continuously distributed lateral loads, however, the convergence of this solution
technique is very satisfactory.

The application of Lévy’s method based on the use of the single Fourier series is
somewhat more complex, but the solution converges very rapidly. In addition, Lévy’s
method is more general, although it does not have an entirely general character either.
It can be used only if two opposite edges of the plate are simply supported and the
shape of the loading is the same for all sections parallel to the direction of simply
supported edges.

A generalization of Navier’s approach has also been introduced. This solution
technique can be applied for thin plates with any boundary conditions and subjected
to any type of loading. The consideration of free-edge boundary conditions, however,
still appears to be somewhat more problematic.

In addition, it should be noted that the applicability of Navier’s and Lévy’s methods
can be considerably extended by means of the superposition technique. That is, these
results can provide a particular solution for the governing plate equation (1.2.30),
upon which the solution of the homogeneous form of the plate equation, representing
additional boundary conditions, can be superimposed.
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In the classical bending analysis of moderately thick, rectangular plates, again, a
Navier-type approach can be applied, provided that the plate is simply supported.
In a similar manner, Lévy’s classical solution can also be extended to solutions of
moderately thick plate problems. But because of its complexity, this approach is
recommended only to research engineers.

Finally, it should be mentioned that solutions of very thin plates create no prob-
lems if the deflections remain small. For rectangular membranes Navier’s approach
offers an easy solution technique. Solutions for circular membranes carrying circular
symmetrical loads are obtained by direct integration.

All classical solutions presented fall under the classification of boundary value
problems of mathematical physics. The mastery of the mathematical techniques
presented here can be obtained only by practice. Consequently, the study of the
illustrative problems is highly recommended. As mentioned, the number of math-
ematically correct solutions obtainable by the classical methods is limited. Many
problems of considerable practical importance either cannot be solved by these meth-
ods or the solution obtained is too cumbersome for most practical use. In spite of
these shortcomings, the classical methods do have their own merits, which are (1)
clearness of the mathematical modeling, (2) application of consistent mathematical
science and techniques, (3) yielding of reusable solutions and (4) the provision of
important theoretical foundations for almost all approximate and numerical methods.
Therefore, it is essential that the reader be introduced to the fundamentals of classical
methods in spite of their inherent limitations.

Problems†

2.2.1. A simply supported rectangular plate is loaded with a uniformly distributed
lateral load p0. Find the edge reactions and the anchorage forces at the corners.

2.2.2. A simply supported square plate is subjected to a sinusoidal-type load in the
form pz = sin(πx/a) · sin(πx/a). Find the deflection and bending moments
at the center of the plate.

2.2.3. Solve Problem 2.2.1 using a parabolic load distribution.

2.2.4. A simply supported rectangular plate carries a hydrostatic load that has its
maximum intensity at x = a. Determine the equation of the deflected plate
surface using Navier’s method.

2.2.5. Combine a uniformly distributed load with a hydrostatic load and determine
the location and magnitude of the maximum deflection.

2.2.6. Determine the maximum bending and torsional moments in Problem 2.2.5.

2.3.1. Rework Problem 2.2.4 using Lévy’s method.

2.3.2. Two opposite edges of a rectangular plate are simply supported, and the other
two are clamped. Determine the equation of the deflected plate surface by
Lévy’s method. Assume a uniformly distributed load p0.

2.3.3. Rework Problem 2.3.2 assuming a square plate and hydrostatic load.

2.3.4. Find the maximum bending moments in Problem 2.3.2.

† The first two numbers refer to the corresponding section.
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2.4.1. A rectangular plate is subjected to a uniform line load p0 at y = η. Assuming
simply supported boundary conditions, determine the equation of the deflected
plate surface.

2.4.2. Find all internal forces in Problem 2.4.1.
2.4.3. A simply supported square plate is subjected to a positive sinusoidal edge

moment at x = a. Determine the equation of the deflected plate surface.
2.8.1. Consider a simply supported circular plate subjected to a rotationally sym-

metric load in the form of a cone. Determine the equation of the deflected
plate surface.

2.8.2. Determine the maximum moments and shear forces in Problem 2.8.1.
2.8.3. Rework Problem 2.8.1 assuming fixed boundary conditions.
2.8.4. Determine the moments and shear forces in Problem 2.8.3.
2.8.5. Rework Illustrative Example II given in Sec. 2.8 assuming a parabolic load

distribution and a fixed boundary.



3
Further Plate Problems
and Their Classical
Solutions

3.1 Plates on Elastic Foundation

Many problems of considerable practical importance can be related to the solution
of plates on an elastic foundation. Reinforced-concrete pavements of highways and
airport runways and foundation slabs of buildings, to name a few, are well-known
direct applications. Of equal importance, however, is the lesser known indirect appli-
cation of this type of plate problem to solution of shallow shells. That is, an analogy
exists between the governing differential equation of a shallow shell and that of a
plate on an elastic foundation.

To simplify the inherently complex problem, let us assume that the supporting
medium is isotropic, homogeneous and linearly elastic. Such a type of subbase is
called a Winkler-type foundation [3.1.1]. The foundation’s reaction p∗

z (x, y) can be
described by the relationship

p∗
z (x, y) = kw, (3.1.1)

where k (in pounds per cubic inch or kilonewtons per cubic centimeter) represents
the bedding constant of the foundation material [3.1.2].

Numerical values for the bedding constants of various types of soils are given in
Ref. [3.1.2]. The hypothesis of linear-elastic, isotropic foundation material of soils is
only an approximation of the real condition; thus higher accuracy can be obtained by
considering the actual elastoplastic deformations of the soils. Since hand computation
tends to be too cumbersome [3.1.4], the use of high-speed electronic computers is
recommended [3.1.5, 3.1.6].

When the plate is supported by a continuous elastic foundation, the external load
acting in the lateral direction consists of the surface load pz(x, y) and the reac-
tion of the elastic foundation p∗

z (x, y). Thus, the differential equation of the plate

129Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
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(1.2.30) becomes

∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+ ∂4w

∂y4
= 1

D
[pz(x, y) − p∗

z (x, y)]. (3.1.2)

In this differential equation, the reactive force p∗
z exerted by the subbase is also

unknown, since it depends on the lateral displacement w(x, y) of the plate. Substi-
tuting Eq. (3.1.1) into (3.1.2), the governing differential equation of a plate on an
elastic foundation can be written as

D ∇2 ∇2w + kw = pz. (3.1.3)

Again, Eq. (3.1.3) can be solved only for relatively few combinations of load and
boundary conditions by the classical methods.

a. Applications of Navier’s Solution. If the edges of a plate on an elastic foun-
dation are simply supported, Navier’s method (discussed in Sec. 2.2) can be used
with relative ease. The unknown amplitudes of the deflections Wmn are obtained by
substituting the double trigonometric expression of the deflections [Eq. (2.2.2)] and
that of the lateral loads [Eq. (2.2.3)] into the governing differential equation of the
problem [Eq. (3.1.3)]. Thus, for a specific set of m and n values we obtain

Wmn = Pmn

Dπ4[(m2/a2) + (n2/b2)]2 + k
, (3.1.4)

which substituted into (2.2.2) yields

w(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin(mπx/a) sin(nπy/b)

Dπ4[(m2/a2) + (n2/b2)]2 + k
. (3.1.5)

The Navier-type boundary condition is more common in the case of shallow shells
(Fig. 3.1.1) than in actual foundation problems, since the edge beams or diaphragms
are usually weak and permit deformations other than those in their plane.

Let us now consider shallow shells. The differential equation of equilibrium of
such structures can be written as [7]

D ∇2 ∇2w = hkx

∂2�

∂y2
+ hky

∂2�

∂x2
+ pz, (3.1.6)

where �(x, y) is the Airy-type stress function and kx and ky represent the curvature
in the X and Y directions, respectively. The compatibility equation of the problem
has the form [3.1.1]

1

E
∇2 ∇2� = −kx

∂2w

∂y2
− ky

∂2w

∂x2
. (3.1.7)

If the curvature in both directions is the same,

kx = ky = 1

R
, (3.1.8)
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Figure 3.1.1 Analogy between shallow shell and plate on elastic foundation.

then Eq. (3.1.7) becomes

1

E
∇2 ∇2� + 1

R
∇2w = 0. (3.1.9)

We can introduce a new scalar function F (x, y) that satisfies the relationships

w(x, y) = ∇2 ∇2F(x, y), (3.1.10a)

�(x, y) = −E

R
∇2F(x, y). (3.1.10b)

Substituting Eq. (3.1.10) into Eq. (3.1.6), we then obtain

D ∇2 ∇2 ∇2 ∇2F + Eh

R2
∇2 ∇2F = pz. (3.1.11)

Or using Eq. (3.1.10a), the differential equation of a shallow shell, which satisfies
Eq. (3.1.8), can be written as†

D ∇2 ∇2w + Eh

R2
w = pz. (3.1.12)

† Equation (3.1.12) can be utilized for shells in which the rise is not more than one-fifth of the
smaller side of the rectangle covered. Strictly speaking, the use of Eq. (3.1.12) should be restricted
to the boundary condition nx = ny = 0 and w = 0; for other cases it is merely an approximation.
Equation (3.1.15) represents the more exact differential equation of shallow shells.
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The introduction of a fictitious bedding constant in the form

k = Eh

R2
(3.1.13)

makes Eq. (3.1.12) identical to Eq. (3.1.3).
The internal moments mx , my , mxy , myx and the transverse shear forces qx and

qy can be computed from the deflection in the same manner as that of the bending
of rectangular plates. The in-plane forces nx , ny , nxy and nyx can be calculated from
the stress function.

By substituting w(x, y), determined from Eq. (3.1.12), into the compatibility
equation (3.1.7), the stress function �(x, y) can be calculated either by analytical
or by numerical methods. Thus, the membrane forces are

nx = h
∂2�

∂y2
, ny = h

∂2�

∂x2
and nxy = nyx = −h

∂2�

∂x ∂y
. (3.1.14)

Although Marguerre’s more exact equation of a rectangular shallow spherical
shell [3.1.7, 3.1.8],

∇2 ∇2 ∇2w + 12(1 − ν2)

R2h2
∇2w = ∇2pz

D
, (3.1.15)

has a different form than the one given above in Eq. (3.1.12), Navier’s method can
also used for solution of Marguerre’s equation [3.1.9], provided the boundaries are
simply supported.

b. Application of Lévy’s Solution. If any two opposite edges of the plate on an
elastic foundation are simply supported and the shape of the loading is the same
for all sections parallel to the direction of the simply supported edges, then Lévy’s
solution† can be applied advantageously.

The general solution of the differential equation of the plate on an elastic foundation
(3.1.3) is sought, again, as the sum of a particular solution and the solution of the
homogeneous form of Eq. (3.1.3). Thus, we have

w = wP + wH . (3.1.16)

One particular solution is obtained from the application of Navier’s method to the
differential equation of a plate strip on an elastic foundation (Fig. 3.1.2), which
is [3.1.2]

D
d4w

dx4
+ kw = pz(x). (3.1.17)

By expressing the load pz in a single trigonometric series containing sine terms
only [Eq. (2.3.5)] and by seeking the solution of Eq. (3.1.17) in a similar type of

† See Sec. 2.3.
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Figure 3.1.2 Elastically supported plate strip.

trigonometric series, we obtain

wP (x) = 1

D

∞∑
m=1

Pm sin(mπx/a)

(m4π4/a4) + (k/D)
for m = 1, 3, 5, . . . . (3.1.18)

In this solution, we have assumed that the simple supports are at x = 0 and x = a.
The solution of the homogeneous form of Eq. (3.1.3),

D ∇2 ∇2w + kw = 0, (3.1.19)

is sought, again, with the help of Eq. (2.3.9); thus we have

wH =
∞∑

m=1

Ym(y) sin
mπx

a
for m = 1, 3, 5, . . . , (3.1.20)

where Ym(y) is a function of a single argument that has to satisfy the characteristic
equation of (3.1.19). This ordinary differential equation can be written as

Y IV
m (y) − 2m2π2

a2
Y ′′

m(y) +
(

m4π4

a4
+ k

D

)
Ym(y) = 0. (3.1.21)

The solution of Eq. (3.1.21) has the general form

Ym(y) = eCy. (3.1.22)

Timoshenko [2] gives Eq. (3.1.22) in the form

Ym(y) = Ameβmy cos γmy + Bme−βmy cos γmy + Cmeβmy sin γmy + Dme−βmy sin γmy,

(3.1.23)

where

βm =
√

1

2

(√
µ4

m + λ4 + µ2
m

)
(3.1.24)
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and

γm =
√

1

2

(√
µ4

m + λ4 − µ2
m

)
. (3.1.25)

In these equation µm and λ represent

µm = mπ

a
and λ4 = k

D
, (3.1.26)

respectively. The arbitrary constants Am, Bm, Cm and Dm are calculated from the
boundary conditions.

Lévy’s solution can also be applied to the problem, shown in Fig. 3.1.3, if we
replace the previously discussed particular solution by

wP = 4kw0

Dπ

∞∑
m=1,3,5,...

sin(mπx/a)

m[(m4π4/a2) + (k/D)]
, (3.1.27)

which represents the deflection of a simply supported plate strip on an elastic foun-
dation. The deflection of the edges, w0, is obtained from the assumption that a rigid
body is supported on an elastic foundation, in which case the deflection is

w0 =
∑

pz

abk
. (3.1.28)

The solution of the homogeneous equation, wH , is identical to the one
discussed above.

Doganoff [3.1.9] gives solutions of Marguerre’s equation (3.1.15) in a manner
basically similar to the one discussed above.

Figure 3.1.3 Foundation plate.
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c. Other Solutions. Volterra [3.1.10] has obtained a solution of a more general
nature by applying a Fourier transformation. Westergaard has investigated the behav-
iors of concrete road pavements [3.1.11] and those of airport runways [3.1.12].
Schleicher [3.1.13] has solved the problem of circular plates on an elastic foun-
dation by using Bessel functions. Hampe [15] made Schleicher’s solution more
accessible for practical use by providing extensive tables. All these solutions are
mathematically quite involved; consequently, they are beyond the introductory scope
of this book.

d. Other Than Winkler-Type Foundations. We can consider the Winkler founda-
tion as a series of uncorrelated linear springs that can be subjected to either tension
or compression. This assumption is valid for most cases, since cavities between the
plate and subgrade due to lateral loadings seldom occur. There are, however, some
foundation materials that admit only compressive stresses. For such a foundation,
combined with certain types of loadings and plate flexibility, the admission of ten-
sile stresses across the common interface separating the plate from the foundation
is not realistic. Within the no-contact region the plate lifts up away from the foun-
dation and gaps are created between the plate and the subgrade (Fig. 3.1.4). The
task is to determine the conditions under which no-contact regions will form and
to compute their locations and extent. The exact solution of such a problem is very
difficult and involves intricate dual integral equations [3.1.17]. The mathematical
complexity of this problem can be simplified—to some extent—for a concentrated
load of magnitude P by introducing a dimensionless ratio Pβ/q, where q is the
uniform distributed weight of the plate and β represents a characteristic number

r1
r

P

(a) Circular plate with up-lift

(b) Plate on tensionless foundation

h

Y

x1

x0 X

P

h

Y

Figure 3.1.4 Plates on foundation that reacts in compression only.
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that depends on the mechanical properties of the plate and the tensionless founda-
tion (β4 = k/4D). This ratio specifies the extent of the no-contact region under the
concentrated force [3.1.18].

For plates with constant thickness under a point load, the range of validity of the
Winkler-type foundation can be given by

−8 ≤ p

q�2
≤ 5610,

where �4 = D/k.
Instead of using the above-described “exact” solution of this difficult problem,

one can apply a simple iterative approach that can be employed to establish the
location and extent of the no-contact zones with relative ease. In the first step, we
determine where the lateral deflections are negative using either the finite difference
or finite-element method [3.1.19]. In the second step of computation, this region
will not obtain the foundation support whereas the rest of it does. The extent of the
no-contact zone can be further refined by repeating the second step.

The Reissner model [3.1.24] is more general than the Winkler-type foundation
and, consequently, is more difficult to handle. This model incorporates shear stresses
and includes some of the effects of lateral deflections within the foundation. The
fundamental assumption made by Reissner is that the normal stresses σx and σy vanish
within the foundation. For additional details the reader should consult Ref. [3.2.25].

ILLUSTRATIVE EXAMPLE I

Let us determine the equation of the lateral deflections of a simply supported
plate on a Winkler foundation subjected to a concentrated force, as shown in
Fig. 3.1.5.

Z, w

a b

P

h

x

O
Simple support

h

kY
X

Figure 3.1.5 Simply supported plate on elastic foundation.

The boundary conditions of the plate permit the use of Navier’s method.
Thus, following the corresponding standard procedure described in Sec. 2.2,
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first, we express the lateral load by a double Fourier series. Hence

pz(x, y) =
∑
m

∑
n

Pmn sin
mπx

a
sin

nπy

b
, (3.1.29)

where†

Pmn = 4P

ab
sin

mπξ

a
sin

nπη

b
for m, n = 1, 2, 3, . . . . (3.1.30)

Utilizing Eq. (3.1.4), we obtain

Wmn = (4P/ab) sin(mπξ/a) sin(nπη/b)

Dπ4[(m2/a2) + (n2/b2)]2 + k
, (3.1.31)

which substituted into the double Fourier series expression of the deflections
given by Eq. (2.2.2) gives

w(x, y) =
∑
m

∑
n

(4P/ab) sin(mπξ/a) sin(nπη/b)

Dπ4[(m2/a2) + (n2/b2)]2 + k
sin

mπx

a
sin

nπy

b

for m, n = 1, 2, 3, . . . . (3.1.32)

ILLUSTRATIVE EXAMPLE II

A rectangular shallow spherical shell is subjected to a uniformly distributed
lateral load, as shown in Fig. 3.1.6. Find the lateral deflections of the shell.

Figure 3.1.6 Uniformly loaded shallow shell.

† See Eq. (2.4.37).
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The governing differential equation of the problem is Eq. (3.1.12), and the
bedding constant of the plate is given by Eq. (3.1.13). The double Fourier series
expression of the load [Eq. (2.2.9)] yields

pz(x, y) = 16p0

π2

∞∑
m

∞∑
n

1

mn
sin

mπx

a
sin

nπy

b
for m, n = 1, 3, 5, . . . .

(3.1.33)

We express the plate deflections in a similar form:

w(x, y) =
∞∑
m

∞∑
n

Wmn sin
mπx

a
sin

nπy

b
for m, n = 1, 3, 5, . . . .

(3.1.34)

The substitution of Eqs. (3.1.33) and (3.1.34) into (3.1.12) yields, for a set of
specific m, n values, the amplitudes of the double Fourier series expression of
the deflections:

Wmn = 16p0

π2

1

mn{D[(mπ/a)2 + (nπ/b)2]2 + (Eh/R2)} . (3.1.35)

Thus, the lateral deflection of the shallow spherical shell can be written as

w(x, y) = 16p0

π2

∞∑
m

∞∑
n

sin(mπx/a) sin(nπy/b)

mn{π4D[(m2/a2) + (n2/b2)]2 + (Eh/R2)}
for m, n = 1, 3, 5, . . . . (3.1.36)
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3.2 Plates with Variable Flexural Rigidity

a. Rectangular Plates. We assume that the middle surface of the plate is plane
and coincides with the XY plane of our Cartesian coordinate system (Fig. 3.2.1). The
differential equation for the bending of the plate of variable flexural rigidity D(x, y) is
obtained by substituting the expressions of moments given by Eqs. (1.2.26), (1.2.27)
and (1.2.29) into the equilibrium equation (1.2.9). Since the flexural rigidity of the
plate is now a function of x and y, we obtain

∂2

∂x2

[
D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)]
+ 2(1 − ν)

∂2

∂x ∂y

[
D

∂2w

∂x ∂y

]
(3.2.1)

+ ∂2

∂y2

[
D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)]
= pz,

which may be written in the form

∇2(D ∇2w) − (1 − ν)L(D, w) = pz, (3.2.2)
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Figure 3.2.1 Rectangular plate with variable thickness.

where L(D, w) is defined by

L(D, w) = ∂2D

∂x2

∂2w

∂y2
− 2

∂2D

∂x ∂y

∂2w

∂x ∂y
+ ∂2D

∂y2

∂2w

∂x2
. (3.2.3)

Only a limited number of cases [3.2.1, 3.2.2] permit the solution of Eq. (3.2.2)
by the classical methods. Provided that the boundary conditions admit the Lévy-type
solution,† its rectangular plates with variable rigidity yields good accuracy [3.2.2].
The degree of complexity of the analysis, however, depends considerably on the
mathematical expressions describing the variation of thickness and flexural rigidity,
respectively.

b. Circular Plates. We limit ourselves to rotational symmetric loading and geome-
try, since this is the type most widely encountered in civil and mechanical engineer-
ing. Without this rotational symmetry the classical solutions are quite involved and
restricted [3.2.1]. Due to the symmetry, qϕ , mϕr and mrϕ (Fig. 1.4.1b) vanish, and
only the internal forces shown in Fig. 3.2.2 act on the plate element.

The sum of the moments of all forces about the Y ′ axis gives
(

mr + dmr

dr
dr

)
(r + dr) dϕ − mrr dϕ − qrr dϕ dr − mϕ dr dϕ = 0. (3.2.4)

The last term on the left-hand side of Eq. (3.2.4) is due to the resultant moment, shown
in Fig. 3.2.2b. After neglecting small quantities of higher-order, Eq. (3.2.4) becomes

mr + dmr

dr
r − mϕ − qrr = 0, (3.2.5)

or, in a more concise form,

mϕ − d(mrr)

dr
= −qrr. (3.2.6)

† See Sec. 2.3.
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Figure 3.2.2 Plate element.

By introducing the slope of the deflection surface,

ϑ = −dw

dr
, (3.2.7)

the expressions of the internal moments given in Eqs. (2.8.3) and (2.8.4) become

mr = D(r)

[
dϑ

dr
+ ν

ϑ

r

]
(3.2.8)

and

mϕ = D(r)

[
ϑ

r
+ ν

dϑ

dr

]
. (3.2.9)

The substitution of these expressions into Eq. (3.2.6) gives

D(r)
d

dr

[
dϑ

dr
+ ϑ

r

]
+ dD(r)

dr

[
dϑ

dr
+ ν

ϑ

r

]
= qr , (3.2.10)

or

d2ϑ

dr
+

[
1

r
+ 1

D(r)

dD(r)

dr

]
dϑ

dr
+

[
ν

D(r)

dD(r)

dr
− 1

r

]
ϑ

r
= qr

D(r)
. (3.2.11)

The transverse shear can be obtained by the free-body equilibrium (Fig. 3.2.3):

qr = − 1

2πr

∫ r

0
pz(r) · 2πr dr = −1

r

∫ r

0
pz(r)r dr. (3.2.12)

In designing machine parts, circular plates with linearly varying thicknesses are of
considerable practical interest. Consequently, let us first consider the case when the
thickness of the plate linearly increases with the radius (Fig. 3.2.4a):

h = cr . (3.2.13)
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Figure 3.2.3 Determination of transverse shear force.

Figure 3.2.4 Circular plates with linearly varying thickness.

The flexural rigidity [Eq. (1.2.28)] of the plate becomes

D(r) = Ec3r3

12(1 − ν2)
; (3.2.14)

hence
dD(r)

dr
= Ec3r2

4(1 − ν2)
and

1

D

dD

dr
= 3

r
. (3.2.15)

Substituting these values into Eq. (3.2.11), we obtain

r3 d2ϑ

dr2
+ 4r2 dϑ

dr
− (1 − 3ν)rϑ = 12qr(1 − ν2)

Ec3
. (3.2.16)
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By introducing ρ = r/r0, Eq. (3.2.16) becomes

ρ3 d2ϑ

dρ2
+ 4ρ2 dϑ

dρ
− (1 − 3ν)ρϑ = 12qr(1 − ν2)

Ec3r0
. (3.2.17)

The general solution of this differential equation is sought in two parts:

ϑ = ϑH + ϑP , (3.2.18)

where ϑH is the solution of the homogeneous form of Eq. (3.2.17) and ϑP is a par-
ticular solution of (3.2.17), containing the external load [Eq. (3.2.12)]. The solution
of the homogeneous differential equation is

ϑH = Aρc1 + Bρc2 ; (3.2.19)

where c1,2 = [−3 ± √
9 − 4(3ν − 1)]/2 and A and B represent arbitrary constants

that can be determined from the boundary conditions of the plate.
The second case of considerable practical interest is illustrated in Fig. 3.2.4b. The

maximum thickness of the plate is at the center and is linearly diminishing as the
radius r is increasing. Thus, the variation of the thickness of the plate can be written as

h = hmax

(
1 − r

a

)
, (3.2.20)

where a is the altitude of the triangle representing the variation of the thickness, as
shown in Fig. 3.2.4b. By introducing ρ = r/a, the governing differential equation of
the problem (3.2.11) becomes

d2ϑ

dρ2
+

[
1

ρ
+ 1

D(ρ)

dD(ρ)

d(ρ)

]
dϑ

dρ
+

[
ν

D(ρ)

dD(ρ)

dρ
− 1

ρ

]
ϑ

ρ
= qra

2

D(ρ)
. (3.2.21)

The variation of the flexural rigidity of the plate can be written as

D(ρ) = Dmax(1 − ρ)3, (3.2.22)

where

Dmax = Eh3
max

12(1 − ν2)
. (3.2.23)

Using Eq. (3.2.22) and assuming that ν = 1
3 , Eq. (3.2.21) becomes

ρ2(1 − ρ)3 d2ϑ

dρ2
+ ρ(1 − 4ρ)(1 − ρ)2 dϑ

dρ
− (1 − ρ)2ϑ = qra

2ρ2

Dmax
. (3.2.24)

The solution of the homogeneous form of Eq. (3.2.24) is

ϑH = A

(
1 + 2ρ

ρ

)
+ B

[
3ρ − 2ρ2

(1 − ρ)2

]
, (3.2.25)
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where A and B represent arbitrary constants to be determined from the boundary
conditions of the plate. To obtain the general solution of the differential equation of
the problem (3.2.24), we must, again, combine ϑH with a particular solution ϑP of
Eq. (3.2.24).

Summary. Variable flexural rigidity creates numerous mathematical problems. The
complexity of the exact solution depends considerably on the expressions for the
flexural rigidity and that of the applied loading. With the exception of rotationally
symmetric circular plates, problems related to plates with variable flexural rigidity
seldom can be solved by the classical methods. Consequently, the solutions are usually
obtained via approximate and numerical techniques described in Part II.

ILLUSTRATIVE EXAMPLE

Determine the moments mr and mϕ in a circular plate, shown in Fig. 3.2.5,
assuming that the variation of the plate thickness h = cr and that Poisson’s
ratio ν = 1

3 .

Figure 3.2.5 Spring made of assemblage of plates.
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The transverse shear is obtained from Eq. (3.2.12); thus

qr = − P

2πr
. (3.2.26)

Consequently, the differential equation of problem (3.2.17) becomes

ρ4 d2ϑ

dρ2
+ 4ρ3 dϑ

dρ
− (1 − 3ν)ρ2ϑ = −6P(1 − ν2)

πEc3r2
0

. (3.2.27)

Using ν = 1
3 , Eq. (3.2.27) can be considerably simplified:

ρ4 d2ϑ

dρ2
+ 4ρ3 dϑ

dρ
= − 16P

3πEc3r2
0

. (3.2.28)

The solution of the homogeneous form of Eq. (3.2.28) is obtained from
Eq. (3.2.19); thus

ϑH = A + B

ρ3
. (3.2.29)

A particular solution of Eq. (3.2.28) is

ϑP = −8

3

P

πEc3r2
0 ρ2

. (3.2.30)

Hence, the general solution of the differential equation of problem (3.2.28)
becomes

ϑ = ϑH + ϑP = A + B

ρ3
− 8P

3πEc3r2
0 ρ2

. (3.2.31)

The boundary conditions of the problem are

at r = r1 : ρ = r1

r0
= n and mr = 0;

at r = r0 : ρ = 1 and mr = 0.

(3.2.32)

Substituting Eq. (3.2.31) into Eq. (3.2.8), these boundary conditions yield

A = −40

3

P

πEc3r2
0

1 − n

1 − n3
(3.2.33)

and

B = 5

3

P

πEc3r2
0

n(1 − n2)

1 − n3
. (3.2.34)
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Hence

ϑ = − 8P

3πEc3r2
0

[
5(1 − n2)n

8(1 − n3)ρ3
− 1

ρ2
− 5(1 − n)

1 − n3

]
. (3.2.35)

The bending moments are obtained by substituting (3.2.35) into (3.2.8) and
(3.2.9), respectively. Thus

mr = 5P

12π

[
(1 − n2)n

(1 − n3)ρ
− 1 + (1 − n)ρ2

1 − n3

]
(3.2.36)

and

mϕ = P

4π

[
5(1 − n)ρ2

1 − n3
+ 1

3

]
. (3.2.37)
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3.3 Simultaneous Bending and Stretching

The derivation of the governing differential equation of the plate, discussed in Sec. 1.2,
is based on the assumption that no in-plane forces act on the middle surface of the plate.
Occasionally, however, in-plane forces are applied directly at the boundaries or they
arise due to temperature variations.† Furthermore, in-plane forces can occur when the
displacements of the plate parallel to its middle surface are hindered by the supports.
This latter type of stretching of the middle surface is generally of a negligible order of
magnitude, provided that the lateral deflections are small.

Let us now consider the equilibrium of a dx dy element, shown in Fig. 3.3.1, that
is subjected to in-plane (membrane) forces nx , ny and nxy = nyx per unit length.
The increments of these internal forces, acting on the near sides of the element, are
expressed by the first terms of Taylor’s expansion.‡ Since there are no “body forces,”
the projection of the membrane forces on the X axis gives§

(
nx + ∂nx

∂x
dx

)
dy − nx dy +

(
nyx + ∂nyx

∂y
dy

)
dx − nyx dx = 0, (3.3.1)

which after simplification becomes

∂nx

∂x
+ ∂nyx

∂y
= 0. (3.3.2)

Similarly, the projection of the in-plane forces on the Y axis gives

∂nxy

∂x
+ ∂ny

∂y
= 0. (3.3.3)

Figure 3.3.1 Membrane forces on plate element.

† See Sec. 10.4.
‡ See Sec. 1.2.
§ In the summation of forces in the X and Y directions we can neglect the effects of small angles
produced by the deformation.
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These equations are the same as the homogeneous form of the equilibrium equations
for the two-dimensional stress condition. Consequently, when h is constant, they can
be reduced to

∇2 ∇2� = 0, (3.3.4)

where �(x, y) represents the Airy stress function [1.6.4]. Since Eq. (3.3.4) is indepen-
dent of the differential equation of plate bending (1.2.30), it can be treated separately.

Next, we consider the equilibrium of the dx dy element in the direction of the Z

axis. For the sake of simplicity it is assumed that the far sides of the plate element
are fixed and lie in the XY plane (Fig. 3.3.2). The projection of the membrane forces
on the Z axis gives

∑
Fz =

(
nx + ∂nx

∂x
dx

)
dy

∂2w

∂x2
dx +

(
ny + ∂ny

∂y
dy

)
dx

∂2w

∂y2
dy

+
(

nxy + ∂nxy

∂x
dx

)
dy

∂2w

∂x∂y
dx

+
(

nyx + ∂nyx

∂y
dy

)
dx

∂2w

∂x∂y
dy, (3.3.5)

which, after neglecting small quantities of higher-order, becomes

nx

∂2w

∂x2
+ ny

∂2w

∂y2
+ 2nxy

∂2w

∂x∂y
= p∗

z (x, y). (3.3.6)

Thus, the effect of the membrane forces on the deflection is equivalent to a fictitious
lateral force. Adding p∗

z to the lateral forces in the governing equation of the plate
(1.2.30), we obtain

D ∇2 ∇2w(x, y) = pz + nx

∂2w

∂x2
+ ny

∂2w

∂y2
+ 2nxy

∂2w

∂x∂y
, (3.3.7)

Figure 3.3.2 Membrane forces on deformed plate element.
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or, using Airy’s stress function �(x, y), we can write

D

h
∇2 ∇2w = pz

h
+ ∂2�

∂y2

∂2w

∂x2
+ ∂2�

∂x2

∂2w

∂y2
− 2

∂2�

∂x∂y

∂2w

∂x∂y
. (3.3.7a)

If the plate has a small initial curvature w0, then Eq. (3.3.7) becomes

D ∇2 ∇2w = pz + nx

∂2(w0 + w)

∂x2
+ ny

∂2(w0 + w)

∂y2
+ 2nxy

∂2(w0 + w)

∂x∂y
, (3.3.8)

which is basically the same as the differential equation of equilibrium of a shallow
shell [3.1.1].

If the in-plane forces are not known, the solution of Eq. (3.3.7) can be obtained only
when an additional differential equation, which expresses the relationship between
lateral displacement w and Airy’s stress function �, is used. In this case, the prob-
lem can be solved by iteration, as discussed in Sec. 11.1. If the in-plane forces
expressed by � are independent of the lateral deflection w, Eq. (3.3.7a) yields the
required solution.

Summary. Since Eq. (3.3.7) can be considered as the governing differential equation
of the plate (1.2.30), upon which the effect of a fictitious lateral load is superimposed,
we can use either Navier’s or Lévy’s method† in our solution. In both cases the
magnitude of the in-plane forces should be known.

ILLUSTRATIVE EXAMPLE

A simply supported rectangular plate is simultaneously loaded with a uniform
lateral load pz = p0 and subjected to uniform edge tension nx = n0 at edges
x = 0 and x = a, as shown in Fig. 3.3.3. Find the expression of the deflected
plate surface.

Figure 3.3.3 Plate subjected to lateral and in-plane forces.

† See Secs. 2.2 and 2.3, respectively.



150 Further Plate Problems and Their Classical Solutions

Since ny = nxy = 0, Eq. (3.3.7) becomes

D ∇2 ∇2w = pz + n0
∂2w

∂x2
. (3.3.9)

The boundary conditions of the problem permit the use of Navier’s method;
thus, we express the lateral load in a double Fourier series [Eq. (A.1.37)]:

pz = 16p0

π2

∞∑
m

∞∑
n

1

mn
sin

mπx

a
sin

nπy

b
for m, n = 1, 3, 5, . . . .

(3.3.10)

Assuming the deflection in the form of a similar double Fourier series,

w(x, y) =
∞∑
m

∞∑
n

Wmn sin
mπx

a
sin

nπy

b
for m, n = 1, 3, 5, . . . ,

(3.3.11)

the substitution of Eqs. (3.3.10) and (3.3.11) into (3.3.9) (using a particular set
of m, n values) yields the unknown Wmn coefficients:

Wmn = 16p0/Dπ6

mn{[(m2/a2) + (n2/b2)]2 + (n0m2/π2Da2)} . (3.3.12)

Hence

w(x, y) = 16p0

Dπ6

∞∑
m=1

∞∑
n=1

× sin(mπx/a) sin(nπy/b)

mn{[(m2/a2) + (n2/b2)]2 + (n0m2/π2Da2)} (3.3.13)

for m, n = 1, 3, 5, . . . .
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3.4 Plates of Various Geometrical Forms

The geometrical configuration of certain design problems may force the structural
engineer to use other than circular or rectangular plates occasionally. Needless to
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say, the analytical approach to the solution of such problems is usually too compli-
cated to be considered for practical use [3.6.1, 3.6.2]. The more general numerical
techniques are based either on the finite difference or on the finite-element methods
treated in Chapters 5 and 7, respectively. In this section we shall discuss briefly those
problems related to plates of various geometrical shapes, the solution of which can be
obtained analytically with relative ease. It is assumed that such plates are of constant
thickness. Because of the considerable importance of skew plates in bridges and in
aeronautical structures (swept wings), they are treated in a more detailed form in
Secs. 10.3 and 12.7.2.

a. Elliptical Plates. Elliptical plates with clamped boundary conditions subjected to
uniformly distributed lateral loads (Fig. 3.4.1) are one of the few specific problems
for which an analytic solution is easily obtainable. The approach is similar to that
described in Sec. 2.1.

Let us describe the deflection surface by

w(x, y) = C

(
x2

a2
+ y2

b2
− 1

)2

, (3.4.1)

where a and b are the semimajor and semiminor axes of the ellipse, respectively.
Equation (3.4.1) satisfies the boundary conditions

w = 0,
∂w

∂x
= 0 and

∂w

∂y
= 0. (3.4.2)

The constant C is obtained from substituting Eq. (3.4.1) into the differential equation
of the plate problem (1.2.30), which gives

∇2 ∇2w = 8C

[
3

(
1

a2
+ 1

b2

)2

− 4

a2b2

]
= p0

D
; (3.4.3)

hence

C = p0

8D{3[(1/a2) + (1/b2)]2 − (4/a2b2)} . (3.4.4)

Figure 3.4.1 Clamped elliptical plate.
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This expression substituted into Eq. (3.4.1) yields the solution of the problem.
More complex boundary and loading conditions are treated by Sengupta [3.4.4] and
Perry [3.4.5].

b. Triangular Plates. Solutions for simply supported isosceles triangular plates can
be obtained with relative ease by applying the previously described method of images
(Sec. 2.6). Basically, the same approach is applicable for uniformly distributed loads.
Navier’s method applied to this problem provides that simply supported boundary
conditions (Fig. 3.4.2) give [3]

w(x, y) = 16p0a
4

π6D

[ ∞∑
m=1,3,5,...

∞∑
n=2,4,6,...

n sin(mπx/a) sin(nπy/a)

m(n2 − m2)(m2 + n2)2

+
∞∑

m=2,4,6,...

∞∑
n=1,3,5,...

m sin(mπx/a) sin(nπy/a)

n(m2 − n2)(m2 + n2)2

]
. (3.4.5)

Figure 3.4.2 Isosceles triangular plate.

Figure 3.4.3 Equilateral triangular plate.
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For simply supported triangular plates under uniform lateral loads, a closed-form
solution has been obtained by Woinowsky-Krieger [3.4.6] in the form

w(x, y) = p0

64Da

(
x3 − x2a − 3xy2 − y2a + 4

27
a3

)
·
(

4

9
a2 − x2 − y2

)
(3.4.6)

utilizing a membrane analogy. This method can also be extended to cover the case
of concentrated loads.

For preliminary design purposes, the simply supported equilateral triangular plate
can be replaced by an equivalent circular one [3.4.8], as shown in Fig. 3.4.3, which
gives approximately the same maximum moments. The radii of the simply supported
equivalent circular plates are

For uniform load : re = 0.35a;

For concentrated
load at the center : re = 0.38a.

The approximate value of the maximum negative moments in the line connecting the
center and the vertices of the triangle (Fig. 3.4.3b) is given by

−mmax ≈ −0.25(+mmax). (3.4.7)

Furthermore, the transverse moment in the line connecting the points of intersection
of the sides of the triangle with the equivalent circle can be approximated by

mT ≈ +0.25(+mmax). (3.4.8)

Similar approximations can be used for irregular triangles also, provided that the
length of the sides does not vary considerably.

c. Sector-Shaped Plates. Let us consider a sector plate subjected to uniform load,
as shown in Fig. 3.4.4. Again, the solution of the problem is sought in two parts:

w = wH + wP . (3.4.9)

Figure 3.4.4 Sector plate.
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By expanding the lateral load into a trigonometric series containing sine terms only,†

the expression for the load becomes

Pz = 4p0

π

∞∑
m=1,3,5

1

m
sin

mπϕ

α
. (3.4.10)

Utilizing the Clebsch approach, the solution of the homogeneous form of the differ-
ential equation of the plate (∇2

r ∇2
r w = 0) can be given by

wH = �0 +
∞∑

m=1

�m sin
mπϕ

α
, (3.4.11)

where

�m = C1mρmπ/α + C2mρ−mπ/α + C3mρ2+mπ/α + C4mρ2−mπ/α (3.4.12)

and

�0 = C10 + C20 ln ρ + C30ρ
2 + C40ρ

2 ln ρ. (3.4.13)

In these expressions, ρ represents ρ = r/r0. The particular solution assumes the form

wP = 4p0r
4
0

π
ρ4

∞∑
m=1,3,5

1

m(16 − m2π2/α2)(4 − m2π2/α2)
sin

mπϕ

α
. (3.4.14)

The coefficients C10, C20, C30, C40 and C1m, C2m, . . . are determined from the bound-
ary conditions at r = r0 and r = r1.

If the uniformly loaded plate sector takes the form of a semicircle (α = π)

(Fig. 3.4.5), then the solution assumes the form

w =
∞∑

m=1,3,5

(C1mrm + C2mr2+m) sin mϕ

+ 4p0r
4
0

πD

∞∑
m=1,3,5

1

m(16 − m2)(4 − m2)
sin mϕ; (3.4.15)

the constants C1m and C2m are obtained from the boundary condition at r = r0.
If the boundary conditions along the arc of the semicircle are those of simple

supports, Eq. (3.4.15) becomes [6]

w = p0r
4
0

D

∞∑
m=1,3,5

{
4ρ4 1

mπ(16 − m2)(4 − m2)

+ ρm m + 5 + ν

mπ(16 − m2)(2 + m)[m + 0.5(1 + ν)]

− ρm+2 m + 3 + ν

mπ(4 + m)(4 − m2)[m + 0.5(1 + ν)]

}
sin mϕ. (3.4.16)

† See Appendix A.1 and Sec. 3.6.
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Figure 3.4.5 Semicircular plate.

For any load expressed in single trigonometric series containing sine terms only,
a similar approach can be used. The particular solution is obtained from Eq. (2.3.4),
expressed in terms of polar coordinates. The prerequisite for the application of this
method is that the two straight-line boundaries be simply supported.

Although Clebsch’s method, as described in Sec. 3.6, can be applied to sector and
wedge-shaped plates with arbitrary boundary conditions, the solutions are invariably
difficult and complex. Readers who are interested in the mathematical theory of
elasticity should consult Refs. [3.4.10–3.4.13] for further study.

Six combinations of fixed, free and simply supported boundary conditions along
the radial edges of sector plates have been investigated by Williams [3.4.13]. The
assumed deflection function

w(r, ϕ) = rλ+1[B1 sin(λ + 1)ϕ + B2 cos(λ + 1)ϕ + B3 sin(λ − 1)ϕ

+ B4 cos(λ − 1)ϕ] (3.4.17)

contains the usual four (integration) constants Bi and an additional parameter λ. The
latter is calculated from the vanishing determinant of the four homogeneous algebraic
equations supplied by the boundary conditions of the radial edges, which gives the
equation f (λ, α, ν) = 0. The four constants B1, B2, B3 and B4 are evaluated from
the boundary conditions along the edges ϕ = 0 and ϕ = α.

Summary. The analytical solution of plates having other than rectangular or circu-
lar forms is usually complicated. Consequently, if solutions are not readily available,
the use of numerical methods (Part II) or yield-line analysis (Chapter 13) is recom-
mended. In the case of sector plates, the designer must be aware of the fact that the
stress at the apex (origin of the coordinate system) tends to infinity [3.4.13].
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3.5 Various Types of Circular Plates

a. Annular Plates. The solution of axially symmetric bending of circular plates
with central holes (Fig. 3.5.1) may follow a procedure similar to the one described in
Sec. 2.8, but one must consider the boundary conditions at the outer (r = r0) as well
as at the inner (r = ri) boundaries. For the solution of the homogeneous form of the
differential equation, the expression given by Eq. (2.8.8) can be used. By introducing

ρ = r

r0
, (3.5.1)

the homogeneous solution can be given in the form

wH = C1 + C2ρ
2 + C3 ln ρ + C4ρ

2 ln ρ. (3.5.2)

A particular solution wP can be obtained from Eqs. (2.8.16) and (2.8.17) by direct
integration, as described in Sec. 2.8. The four constants C1, C2, C3 and C4 are
determined from the boundary conditions at the inner and outer edges. The approach
is similar when the central hole is replaced by a nondeformable rigid body, as shown
in Fig. 3.5.2. Considerable simplification in the solution of these boundary value



Various Types of Circular Plates 157

Figure 3.5.1 Circular plate with central hole.

Figure 3.5.2 Annular plate with shaft.

problems can be achieved by assuming that ν = 0. Since the bending of annular
plates has important practical applications, especially in machine design, extensive
solutions for the most common loading cases are available in Refs. [5], [3.5.1], [3.5.2]
and [3.5.3]. The solutions of annular plates loaded with concentrated forces producing
arbitrary plate deflections are treated in Refs. [9] and [3.6.4].

b. Antisymmetric Loading. The linearly varying hydrostatic loading (Fig. 3.5.3a)
acting on a circular plate can be divided into a uniformly distributed load and an
antisymmetric triangular load, as shown in Fig. 3.5.3b. Thus, the expression of the
lateral load is

pz(r) = p0 + p1ρ cos ϕ. (3.5.3)

Since the uniform part of the load produces a rotationally symmetric deflection sur-
face, which has been treated in Sec. 2.8, only the case of the triangular loading will
be discussed here. The solution of the governing differential equation of a circular
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Figure 3.5.3 Hydrostatic load on circular plate.

plate (1.4.11) can, again, be given as the sum of a particular solution and the solution
of the homogeneous form of the differential equation; thus,

w(r, ϕ) = wH + wP . (3.5.4)

The particular solution of the nonhomogeneous differential equation (1.11.11),

∇2
r ∇2

r w = p1

D
ρ cos ϕ, (3.5.5)

may be taken in the form

wP = CP ρ5 cos ϕ. (3.5.6)
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Substituting Eq. (3.5.6) into Eq. (3.5.5), the unknown constant CP can be determined:

CP = p1r
4
0

192D
. (3.5.7)

The solution of the homogeneous form of the differential equation of the plate can
be given as†

wH = (C1ρ + C2ρ
3) cos ϕ. (3.5.8)

The general solution of the deflection of the circular plate, according to Eq. (3.5.4), is

w(r, ϕ) =
(

p1r
4
0

192D
ρ5 + C1ρ + C2ρ

3

)
cos ϕ. (3.5.9)

From the boundary conditions at the edge, the unknown coefficients C1 and C2 can
be obtained in the usual manner.

Another common type of antisymmetric loading is a moment applied to a rigid
disk located at the center of the circular plate, as shown in Fig. 3.5.4. In this case, we
may state that there is no external lateral load; thus the solution of the homogeneous
form of the differential equation yields the solution of the problem. Consequently,
the equation of the deflected plate surface has the form

w(r, ϕ) =
(

C1ρ + C2
1

ρ
+ C3ρ

3 + C4ρ ln ρ

)
cos ϕ. (3.5.10)

The constants C1, C2, C3 and C4 are determined from the boundary conditions.

c. Concentrated Load Acting at the Center. A special case of the symmetric
bending of circular plates is when the concentrated lateral load acts at the center
(Fig. 3.5.5). Because of the discontinuous character of the lateral loading, an approach
other than that described in Sec. 2.8 is utilized. The solution in this case is obtained
from the equilibrium of the vertical forces, which states that

−2πrqr = Pz, (3.5.11)

Figure 3.5.4 Circular plate with moment acting at center.

† Other types of functions can be obtained from Ref. [14].
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Figure 3.5.5 Concentrated force at center of circular plate.

and by expressing qr using Eq. (1.4.15); thus, we obtain

D

(
d3w

dr3
+ 1

r

d2w

dr2
− 1

r2

dw

dr

)
= D

d

dr

[
1

r

d

dr

(
r

dw

dr

)]
= Pz

2πr
. (3.5.12)

Repeated integration of Eq. (3.5.12) yields

w(r) = Pz

2πD

(
r2

4
ln r + C1r

2 + C2 ln r + C3

)
. (3.5.13)

Since for r = 0 the deflection should remain finite, we must use C2 = 0. The other
two coefficients, C1 and C3, are to be determined from the boundary conditions of the
specific problem. In the case of simply supported edges, for instance, the deflection
of the plate becomes

w(r) = Pzr
2
0

16πD

[
3 + ν

1 + ν
(1 − ρ2) + 2ρ2 ln ρ

]
, (3.5.14)

whereas for clamped edges we obtain

w(r) = Pzr
2
0

16πD
(1 − ρ2 + 2ρ2 ln ρ). (3.5.15)
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3.6 Circular Plate Loaded by an Eccentric
Concentrated Force

Since any lateral load acting on a plate can be replaced by a finite number of concen-
trated forces, the solution of the circular plates under an arbitrary concentrated load
can be considered one of the fundamental problems in the theory of plates. Although
it is assumed that the boundary condition is rotationally symmetric, the analysis of the
deflections due to such nonsymmetric loads, as outlined in Sec. 1.4, is quite tedious.
Certain simplifications can be achieved, however, by considering that the deflected
plate surface is symmetric with respect to the line connecting the origin of the polar
coordinate system (ϕ = 0) and the point of application, A, of the force (Fig. 3.6.1).

The general solution of the governing differential equation of circular plates (1.4.11)
was obtained by Clebsch in the form

w(r, ϕ) = wP + F0(r) +
∞∑

m=1

Fm(r) cos mϕ +
∞∑

m=1

F ′
m(r) sin mϕ, (3.6.1)

where wP represents a particular solution of Eq. (1.4.11) and F0(r), F1(r), F2(r),

. . . , F ′
1(r), F ′

2(r), . . . are functions of r only.
Let us divide the circular plate into two cylindrical parts by the radius OA = rP .

In the case of the outer plate ring, the load P is an edge load; consequently, only
the terms that represent the complementary part of the solution† must be considered.
Furthermore, utilizing the above-mentioned symmetry of the deflected plate surface,
Eq. (3.6.1), representing the deflection of the outer part, can be written as

wH1 = w1(r, ϕ) = F0(r) +
∞∑

m=1

Fm(r) cos mϕ, (3.6.2)

where

F0(r) = C10 + C20r
2 + C30 ln

r

r0
+ C40r

2 ln
r

r0
,

F1(r) = C11r + C21r
3 + C31r

−1 + C41r ln
r

r0
,

...

Fm(r) = C1mrm + C2mr−m + C3mrm+2 + C4mr−m+2 for m > 1.

(3.6.3)

Figure 3.6.1 Eccentric force.

† Solution of the homogeneous form of the differential equation.



162 Further Plate Problems and Their Classical Solutions

Similarly, the deflections of the inner part of the plate can be expressed in the form

wH2 = w2(r, ϕ) = f0(r) +
∞∑

m=1

fm(r) cos mϕ, (3.6.4)

where the functions f0(r), f1(r), f2(r), . . . are similar to those given in Eq. (3.6.3).
Thus we may write

f0(r) = c10 + c20r
2 + c30 ln

r

r0
+ c40r

2 ln
r

r0
,

f1(r) = c11r + c21r
3 + c31r

−1 + c41r ln
r

r0
,

...

fm(r) = c1mrm + c2mr−m + c3mrm+2 + c4mr−m+2 for m > 1.

(3.6.5)

Since at the center of the plate the deflection, the slope and the internal moments
are not infinite, we obtain

c30 = c40 = 0,

c31 = c41 = 0,

...

c3m = c4m = 0.

(3.6.6)

The remaining unknown constants in Eqs. (3.6.3) and (3.6.5) are determined from
the boundary conditions of the inner and outer ring plates.

Let us assume, for instance, that the edge of the circular plate is fixed; thus the
two boundary conditions are

(w1)r=r0 = 0 and

(
∂w1

∂r

)
r=r0

= 0. (3.6.7)

Because of the continuity of the plate at r = rP , the deflections and the slopes of the
inner and outer parts are the same; therefore,

(w1)r=rP
= (w2)r=rP

and

(
∂w1

∂r

)
r=rP

=
(

∂w2

∂r

)
r=rP

. (3.6.8)

Furthermore, another equation in the form of the compatibility of the internal forces
can be used; thus

(m1r )r=rP
= (m2r )r=rP

, (3.6.9)

or, in another form, (
∂2w1

∂r2

)
r=rP

=
(

∂2w2

∂r2

)
r=rP

. (3.6.10)
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The sixth equation for determination of the unknown constants is obtained by stating
that at the point of application of the load the difference of the transverse shear forces
is equal to the external load, which gives

(q1r − q2r )r=rP ,ϕ=0 = P, (3.6.11)

expressing the discontinuity of the internal shear forces at r = rP and ϕ = 0. This
equation is familiar to the readers from elementary treatment of mechanics, since a
similar equation is used for construction of the shear diagrams of beams.

To utilize Eq. (3.6.11) effectively, we must now express the concentrated load in
a form similar to Eqs. (3.6.2) and (3.6.4), representing a cosine series expansion. In
the Fourier series expression of the concentrated load P in polar coordinates, we
first replace the concentrated force with a partial line load distributed over an arc of
length rP 2 �ϕ, as shown in Fig. 3.6.2. The intensity of this line load between +�ϕ

and −�ϕ is

pz = P

2rP �ϕ
= const. (3.6.12)

As discussed in Appendix A.1, a cosine series expansion of an arbitrary function can
be obtained by making the function even (Fig. 3.6.2b) and using a period of T = 2L,

f

Figure 3.6.2 Arbitrary continuation of loading function.



164 Further Plate Problems and Their Classical Solutions

which, in the case of polar coordinates, becomes T = 2π . Thus Eq. (A.1.25) can be
written in the form

pz(ϕ) = 1

2
A0 +

∞∑
1

Am cos mϕ. (3.6.13)

Equation (A.1.24) gives

A0 = 2

π

∫ π

0
pz dϕ = 2

π

∫ +�ϕ

0

P

2rP �ϕ
dϕ = P

πrP

(3.6.14)

and

Am = 2

π

∫ π

0
pz cos mϕ dϕ = 2

π

∫ +�ϕ

0

P

2rP �ϕ
cos mϕ dϕ = P

πrP m�ϕ
sin m�ϕ.

(3.6.15)

Hence the cosine series expression of the line load in terms of polar coordinates
becomes

pz(ϕ) = P

2πrP

+
∞∑
1

P

πrP m�ϕ
sin m�ϕ cos mϕ

= P

πrP

(
1

2
+

∞∑
1

sin m�ϕ

m�ϕ
cos mϕ

)
. (3.6.16)

If �ϕ is approaching zero, the limit approach, described by Eq. (2.4.36), can be used.
Therefore, Eq. (3.6.16) can be written as

pz(ϕ) = P

πrP

(
1

2
+

∞∑
1

cos mϕ

)
. (3.6.17)

Substituting Eq. (3.6.17) into Eq. (3.6.11) and expressing the shear forces in accor-
dance with Eq. (1.4.15), we obtain

D

(
∂

∂r
∇2

r w1 − ∂

∂r
∇2

r w2

)
= P

πrP

(
1

2
+

∞∑
1

cos mϕ

)
. (3.6.18)

The previously discussed boundary conditions in connection with Eq. (3.6.18) yield
all the unknown coefficients in the expression of the plate deflections.

The results of these tedious computations are given in Ref. [14]. Solution for
simply supported edge conditions is discussed in Ref. [2]. The maximum deflection
for a clamped plate is

wmax = w(rp, 0) = P

16πD

(r2
0 − r2

P )2

r2
0

. (3.6.19)
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With rP = 0, Eq. (3.6.19) represents the solution for the concentrated load acting at
the center.

A similar approach can be taken to include arbitrary loadings acting on circular
and annular plates. This general application of Eq. (3.6.1), however, is more tedious.

Summary. It is evident that the classical solution of circular plate problems, which
do not have rotational symmetry, requires extensive mathematical manipulations and
can be rather time consuming. Consequently, this approach is not recommended for
everyday application by the design engineer.
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3.7 Plates with Edge Moments

First, let us consider a rectangular, simply supported plate subjected to an edge
moment described by a Fourier sine series,

my =
∞∑

m=1

Ym sin αmx, αm = mπ

a
, (3.7.1)

acting along the edge AB, as shown in Fig. 3.7.1a. The pertinent boundary conditions
of this plate problem are

w(x, y) = 0, mx = 0 for x = 0, x = a, (3.7.2a)

w(x, y) = 0, my = my for y = 0, (3.7.2b)

w(x, y) = 0, my = 0 for y = b. (3.7.2c)

Simple support Simple support

B BA

b b

D DC

Z , w Z , w
Y Y

(a) (b)

a aC

A
my X X

mx

Figure 3.7.1 Plates under distributed edge moments.



166 Further Plate Problems and Their Classical Solutions

The solution w(x, y) must simultaneously satisfy the homogeneous form of the dif-
ferential equation of the plate,

∇4w(x, y) = 0, (3.7.3)

and the above given boundary conditions.
We assume the solution in the form

w(x, y) =
∞∑

m=1

Wm sin αmx, (3.7.4)

where

Wm = 1

α2
m

(C1m cosh αmy + αmyC2m sinh αmy

+ C3m sinh αmy + αmyC4m cosh αmy) (3.7.5)

and C1m, C2m, C3m and C4m are unknown coefficients to be determined from the
boundary conditions.

For a specific m number the boundary conditions expressed by the first requirement
of Eqs. (3.7.2b) and (3.7.2c), respectively, give

C1m = 0, (3.7.6)

C1m cosh αmb + αmbC2m sinh αmb + C3m sinh αmb + αmbC4m cosh αmb = 0. (3.7.7)

The second requirement in those two equations can be formulated as

−D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
y=0

= Ym sin αmx, (3.7.8)

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
y=b

= 0. (3.7.9)

Since along the edges y is constant, the corresponding second derivatives, ∂2w/∂w2,
are zero. Thus, the two equations given above become

−D (C1m + 2 C2m) = Ym, (3.7.10)

(C1m + 2 C2m) cosh αmb + αmbC2m sinh αmb + (C3m + 2 C4m) sin αmb

+ αmbC4m cosh αmb = 0. (3.7.11)

The solution of these four equations† resulting from the boundary conditions yields

C1m = 0, C2m = − Ym

2 D
,

C3m = Ym

2D
αmb(1 − coth2 αmb), C4m = Ym

2D
coth αmb. (3.7.12)

† Equations (3.7.6), (3.7.7), (3.7.10) and (3.7.11)
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The equation of the deflected plate surface is therefore

w(x, y) = 1

2D

∞∑
m=1

Ym

α2
m sinh αmb

×
[
αmy cosh αm(b − y) − αmb

sinh αmy

sinh αmb

]
sin αmx. (3.7.13)

On the other hand, if the plate is subjected to an edge moment

mx =
∞∑

m=1

Xm sin βmy, βm = mπ

b
, (3.7.14)

acting along the edge AC (Fig. 3.7.1b), then a similar procedure, as treated above,
gives the following expression for the deflections:

w(x, y) = 1

2D

∞∑
m=1

Xm

β2
m sinh βma

×
[
βmx cosh βm(a − x) − βma

sinh βmx

sinh βma

]
sin βmy. (3.7.15)

Finally, if the rectangular, simply supported plate is subjected to two symmetrically
distributed edge moments (Fig. 3.7.2)

my =
∞∑

m=1

Ym sin αmx, αm = mπ

a
, (3.7.16)

A

B

ba

Simply supported

Y

Z, w

D

C

my

my X

Figure 3.7.2 Two symmetrically distributed edge moments.
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then the equation of deflections is readily obtained by replacing y with b − y in
Eq. (3.7.13); hence

w(x, y) = 1

2D

∞∑
m=1

Ym

α2
m sinh αmb

[
αm(b − y) cosh αmy + αmy cosh αm(b − y)

− αmb
sinh αm(b − y) + sinh αmy

sinh αmb

]
sin αmx. (3.7.17)

We introduced these plate problems and their solutions primarily with regard to
their future use in the subsequent Secs. 3.8 and 3.9, respectively.

3.8 Solutions Obtained by Means of Superposition

Since the governing differential equation of thin plates (1.2.30) is linear, we can
apply the principle of superposition to determine lateral deflections of rectangular
plates regardless of the boundary and/or loading conditions. This approach permits
us to reduce an initially complex plate problem to several simpler ones that can
be solved by either Navier’s or Lévy’s method. Then, the solutions of these less
complex problems are added in such a manner that the boundary conditions of the
initial problems are satisfied.

Considerable care must be taken, however, to ensure compatibility of the coor-
dinate systems before the superposition of the deflections is attempted. In most
cases just a simple translation of the origins of the coordinate systems is required to
obtain compatibility between our standard coordinate system (with the origin in the
upper left-hand corner, as shown in Fig. 1.1.1a) and that used by Lévy’s approach
(Fig. 2.3.1). For example, if we intend to use the previously mentioned “standard”
coordinate system for a Lévy-type solution, we must replace y with y − b/2. If the
lateral load and the boundary conditions both have double symmetry, it is advanta-
geous to transfer the origin of the coordinate systems to the center of the plate. In
addition, we should also consider that Lévy’s solution with all the combinations of
boundary conditions (Fig. 3.8.1) does have an additional requirement of symmetry
of the lateral loads with respect to the X axis, as shown in Fig. 2.3.2.

In the following, we briefly outline the superposition procedure using a quite
difficult plate problem as an example. Let us consider a rectangular plate with all
edges clamped. This plate is subjected to a uniformly distributed load p0. Since our
problem has double symmetry, it is advantageous to move the origin of the coordinate
system X,Y,Z to the center of the plate.

Although no direct solution exists to this problem that could simultaneously satisfy
the governing differential equation (1.2.30) and the boundary conditions, ∂w/∂n = 0,
we may obtain the equation of the deflected plate surface, w(x, y), by the superposi-
tion of the solution of each of the three simply supported plates shown in Fig. 3.8.2.
We observe that the deflected plate surfaces for these three simpler plate problems
(w1, w2, w3) are already available, having been obtained without too much difficulty.
In this case, the application of the principle of superposition requires four steps.

First, we determine the equation of the deflected plate surface, w1, for plate 1,
which represents a simply supported rectangular plate subjected to uniformly dis-
tributed load p0. For this purpose we can use Eq. (2.2.11) in a slightly modified
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Y
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Figure 3.8.1 Boundary conditions for Lévy’s solution.
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=
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+
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Simply supported

my

X
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3
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Figure 3.8.2 Graphical representation of principle of superposition.

form, since we have now b instead of 2a as plate dimension in the Y direction and,
in addition, we have moved the origin of the coordinate system to the center of the
plate. Thus, we can write

w1(x, y) = 16p0

π6D

∞∑
m=1

∞∑
n=1

sin[mπ(x + a/2)/a] sin[nπ(y + b/2)/b]

mn[(m2/a2) + (n2/b2)]2
. (3.8.1)

Next, we obtain the deflected plate surface, w2, for plate 2, which is, again, a
simply supported plate, but this time the plate is subjected to an edge moment my .
This problem has already been treated in the previous section. Consequently, we may
use Eq. (3.7.17) after the required coordinate transformation.
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The third step is similar to the second. The equation of the deflected plate surface,
w3, for plate 3 is, again, obtained from the modified form of Eq. (3.7.17). This
modification is carried out in two installments. First, we replace x with Y , a with b

and αm with βm. Next, we transfer the origin of the coordinate system to the center
of the plate, as discussed in the step first of this superposition procedure.

In the fourth step, for a set of m, n values, we fulfill the boundary conditions of
the initial plate problem, which are

(
∂w1

∂x
+ ∂w2

∂x
+ ∂w3

∂x
= 0

)
x=±a/2

, (3.8.2)

(
∂w1

∂y
+ ∂w2

∂y
+ ∂w3

∂y
= 0

)
y=±b/2

. (3.8.3)

This gives us two† equations, from which the unknown coefficients Ym and Xm can
be calculated. Since all these infinite series converge fast, we need to consider only
few terms.

Finally, we can write the solution of our initial plate problem in the form

w(x, y) = w1(x, y) + w2(x, y) + w3(x, y). (3.8.4)

The lengthy details of the above outlined solution can be found in
Refs. [3.8.1–3.8.6]. They are, however, too involved to be handled here.

A similar approach can be taken if we have to deal with free (instead of fixed)
edges. The reader finds sufficient details concerning such a computational technique
in Ref. [3.8.6]. In addition, a noteworthy application of the principle of superposition
is given in Ref. [3.8.7], which treats a cantilever plate. At the same time, this paper
serves as an example regarding the complexity of such a solution.

Summary. In the hands of competent research engineers, the superposition tech-
nique is a very powerful tool to obtain classical solutions to various difficult plate
problems that can serve as a benchmark for approximate and numerical analyses. The
reader should not be misled, however, by the seemingly simple principle of this com-
putational method (as outlined above), since the mathematical manipulations required
to obtain the solution is, in most cases, very lengthy and involved. Furthermore, the
final result appears to be quite cumbersome for practical use. As always, some help
concerning the lengthy mathematical manipulations can be obtained by using one of
the “symbolic mathematics” programs listed in Refs. [A.1.18–A.1.21].

ILLUSTRATIVE EXAMPLE

Let us obtain an analytical solution of the plate problem shown in Fig. 3.8.3
using the superposition technique. This plate has one simple supported edge.
The other three edges are fixed.

† Two equations are sufficient because of the prevailing double symmetry.
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Figure 3.8.3 Plate with three edges fixed and one simply supported.
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Figure 3.8.4 Superposition of two simpler plate problems.

We begin our computation by reducing this initially complex plate problem
to two lesser complex ones for which we have already developed solutions.
That is, Eq. (2.3.35) defines the deflected surface w1 of the plate shown in
Fig. 3.8.4a, and Eq. (3.7.15) represents the solution w2 of the simply supported
plate subjected to mx edge moments as illustrated in Fig. 3.8.4b. For the sake
of simplicity, in this example we are using only one term in both equations.
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The unknown constant X1 in Eq. (3.7.15) will be determined from the new
boundary condition, which requires that the slope of the deflected plate surface
becomes zero at the edge x = 0. Consequently,

(
∂w

∂x

)
x=0

=
(

∂w1

∂x
+ ∂w2

∂x

)
x=0

= 0. (3.8.5)

Since we have elected to use the coordinate system of Lévy’s approach
(Fig. 2.3.2), the origin of our “standard” coordinate system, used in obtaining
Eq. (3.7.15), must be transferred to be compatible with the new coordinate
system. This is accomplished by replacing y with y + b/2 in Eq. (3.7.15).
Consequently, the new form of Eq. (3.7.15) is

w2(x, y) = 1

2D

X1

β2
1 sinh β1a

[
β1x cosh β1(a − x) − β1a

sinh β1x

sinh β1a

]

× sin β1

(
b

2
+ y

)
, (3.8.6)

where β1 = π/b. Furthermore, we observe that

sin
π

b

(
b

2
+ y

)
= sin

π

2
cos

πy

b
. (3.8.7)

Thus, the first derivative of w2 with respect to x at x = 0 is
(

∂w2

∂x

)
x=0

= X1F2 sin β1y, (3.8.8)

where

F2 = 1

2Dβ1

(
coth β1a − β1a

sinh2 β1a

)
. (3.8.9)

Next, we determine the first derivative of w2 with respect to x at x = 0.
This gives (

∂w1

∂x

)
x=0

= p0a
3

π3D
F1, (3.8.10)

where

F1 = 1 + sinh α1

α1 + cosh α1 sin α1

(πy

a

)
sinh

πx

a
− α1 cosh α1 + sinh α1

α1 + cosh α1 sinh α1
cosh

πy

a
(3.8.11)

and α1 = π/2. Substitution of Eqs. (3.8.8) and (3.8.9) into the boundary con-
dition yields

p0a
3

π3D
F1 + X1F2 sin β1y = 0, (3.8.12)

from which

X1 = − (p0a
3/π3D)F1

(sin β1y)F2
. (3.8.13)
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This is substituted into Eq. (3.7.15). Finally, we can write the solution of our
initial problem as w = w1 + w2.
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3.9 Continuous Plates

a. Introduction. Rectangular plates that are continuous over one or more interme-
diate supports are of considerable practical interest, as illustrated in the Introduction
of this book. Unfortunately, their classical analysis—with the exception of the sim-
plest cases—is quite cumbersome. Consequently, numerical or engineering methods
are used almost exclusively in the praxis to obtain usable approximate solutions of
these important plate problems in an economical way. In spite of the mathematical
difficulties involved in the classical analysis of continuous plates, we would like to
outline some procedures that can be followed by research engineers who seek exact
solutions to specific continuous plate problems. As often mentioned in this book, the
main purpose of obtaining mathematically exact solutions is to provide a benchmark
against which other, less exact, methods can be judged.

In this section, we treat only continuous plates with rigid intermediate supports;
that is, the plate has zero lateral deflections at the supports. Furthermore, we assume
that the supports do not prevent rotations of the plate. It is noted that there are
cases when the supporting beams are relatively flexible; thus, the deflections of the
plate along the supports can no longer be neglected. Although this situation can be
best handled with numerical methods, the reader will find examples for the classical
solution of such a problem in Refs. [3.9.1] and [3.9.2].

Continuous plate problems are externally statically indeterminate. As in the case
of other statically indeterminate structures, the classical methods used in the analysis
of continuous plates fall into two distinct categories: force and deformation methods.
Following either approach, the continuous plate is subdivided along the intermediate
supports into individual, single-span panels. The analysis is based on (1) the equilib-
rium conditions of the individual panels and (2) the compatibility of displacements
at the adjoining edges. In this section, we treat only the force method. The defor-
mation method is discussed in Sec. 12.4 in connection with the moment distribution
technique as applied to continuous plates.

b. Plates Continuous in One Direction. Let us consider a plate that is simply
supported at the edges y = 0 and y = b and continuous in the X direction (Fig. 3.9.1).
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1 2 3

X

Y

b

Simple support

a1 a2 a3

Figure 3.9.1 Plate continuous in one direction.

In applying the force method, we first introduce fictitious hinges above the unyielding
intermediate supports. In this way, the redundant external moments are eliminated
(Fig. 3.9.2). Similar fictitious hinges should be used at the ends if those supports are
fixed. In our further discussion, we assume that the thickness of the plate is constant
between supports but the individual panels can have different flexural rigidities. The
analysis is based on expressing slope continuity at the adjoining edges, as we do in
the classical analysis of continuous beams. This requirement between panels �i and

i + 1 at support i (Fig. 3.9.2) gives

(
∂wi

∂x

)
xi=ai

=
(

∂wi+1

∂x

)
xi=0

. (3.9.1)

To formulate Eq. (3.9.1), however, it is necessary that we determine the edge slopes
of the deflected middle surface of the individual panels �i and i + 1 due to the
lateral loads and the rotations produced by the redundant edge moments mi−1, mi

and mi+1.
Applying the principle of superposition,† we express the deflected plate surface of

the component panel �i (Fig. 3.9.2) as

wi = w0i + wI
i + wII

i , (3.9.2)

where w0i is the known Lévy solution of the laterally loaded, simply supported plate
expressed in the (X, Y, Z)i local coordinate system of panel �i with its origin at the
upper-left corner. This can be written in the form

w0i =
∑

m=1,2,3...

Fim(x) sin βmy, βm = mπ

b
. (3.9.3)

† See Sec. 3.8.
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Figure 3.9.2 Deformations of two adjoining panels.

The other two deflection surfaces wI
i and wII

i represent solutions due to the edge
moments mi−1 and mi acting, again, on the simply supported component panel �i

(Fig. 3.9.2b). Since the Lévy solution usually converges very rapidly, it is sufficient
to consider only a few terms in the summation. The slopes of the deflected plate
surface w0i along the edges i − 1 and i can be expressed by the first derivatives of
w0i as (

∂w0i

∂x

)
xi=0

=
∑
m

(
∂Fim

∂x

)
xi=0

sin βmy (3.9.4)
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and (
∂w0i

∂x

)
xi=ai

=
∑
m

(
∂Fim

∂x

)
xi=ai

sin βmy. (3.9.5)

The edge moments

mi−1 =
∑
m

Xi−1,m sin βmy, mi =
∑
m

Xim sin βmy (3.9.6)

produce, according to Eq. (3.7.15), the pertinent deflected plate surfaces

wI
i = 1

2Di

∑
m

Xi−1,m

β2
m sinh βmai

[
βmx cosh βm(ai − x) − βmai

sinh βmx

sinh βmai

]
sin βmy

(3.9.7)

and

wII
i = 1

2Di

∑
m

Xim

β2
m sinh βmai

[
βm(ai − x) cosh βmx − βmai

sinh βm(x − ai)

sinh βmai

]
sin βmy.

(3.9.8)

In these expressions the coefficients Xi−1,m and Xim are yet unknowns. They will be
determined later in the course of the computation using Eq. (3.9.1).

The slopes created by the edge moments mi−1 and mi are determined by dif-
ferentiating the corresponding equations of the deflected plate surfaces [Eqs. (3.9.7)
and (3.9.8)] with respect to x. Thus, using an abbreviated form, we can write

[
∂wI

i

∂x

]
xi=0

=
∑
m

Xi−1,mφxm sin βmy, (3.9.9)

[
∂wI

i

∂x

]
xi=ai

= −
∑
m

Xi−1,mφ̂xm sin βmy (3.9.10)

and
[

∂wII
i

∂x

]
xi=0

=
∑
m

Ximφ̂xm sin βmy, (3.9.11)

[
∂wII

i

∂x

]
xi=ai

= −
∑
m

Ximφxm sin βmy. (3.9.12)

We shall treat the component panel i + 1 in a similar way. Now we assume,
for the sake of simplicity, that ai = ai+1 = a and Di = Di+1 = D. Then, from the
requirement of slope continuity at the edge i, as expressed in Eq. (3.9.1), we obtain
for a specific m value the so-called three-moment equation of continuous plates:

Xi−1,m + 2Xim

φxm

φ̂xm

+ Xi+1,m = 1

φ̂xm

[[
dFim

dx

]
xi=ai

−
[

dFi+1

dx

]
xi+1=0

]
, (3.9.13)
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where

φxm = 1

2Dβm

[
coth βma − βma

sinh2 βma

]
(3.9.14)

and

φ̂xm = βma coth βma − 1

2Dβm sinh βma
. (3.9.15)

A similar equation can be written for each immediate support, from which the
unknown Xi−1,m, Xim and Xi+1,m in the single series expressions of the edge moments
can be determined. Needless to say, the amount of the required mathematical opera-
tions is very high.

c. Plates Continuous in Two Directions. A procedure analogous to the one used
in the foregoing can be applied to plates continuous in both directions (Fig. 3.9.3).
For the solution of this complex plate problem Galerkin derived the so-called seven-
moment equation [3.9.3], which is valid for each intermediate edge. Although it
is theoretically possible to also obtain closed-form solutions for plates continuous
in two directions [3.9.4, 3.9.5], the required mathematical manipulations become
prohibitively extensive. Consequently, the numerical or engineering approximations
are used in practice almost exclusively. For this reason, we refer the reader to Parts II

i − 1 i + 1i

Xi

Yi

ai −1 ai +1ai

“i − 2” “i − 1” “i + 1”

“k − 1”

“k + 1”

“k + 2”

“k”

“i”

bi

Figure 3.9.3 Plate continuous in two directions.
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and IV, where numerous worked examples illustrate the application of these practical
approaches. Last but not least, we call the readers’ attention to the powerful WinPlate
Primer computer program,† which yields highly accurate results for any continuous
plate subjected to various types of lateral forces. For additional readings on analytical
solutions of continuous plates, the reader should consult Refs. [3.9.6–3.9.11].

d. Column-Supported Continuous Plates. If large plates are supported by rows
of equidistant columns, we speak of flat plates (Fig. 3.9.4). We assume that the dimen-
sions of the plate are large in relation to the column spacings and the lateral loads
are uniformly distributed over the surface of the whole plate. Additional assumptions
are that the cross-sectional areas of the columns are negligibly small and the columns
provide unyielding supports without any restraint in plate rotations.

For reinforced-concrete flat plates, the punching shear at the face of the supporting
columns can be at times critical. For this reason the analyst must always consult the
current Reinforced-Concrete Codes to obtain the required minimum plate thickness
for such constructions. To avoid any punching shear problems and yet maintain a
minimum plate thickness at the same time, drop panels around the top of the columns
are often used (Fig. 3.9.4). Another solution is increasing the size of the columns near
the top to form a mushroom-shaped column capital, as shown in Fig. 3.9.5. For heavy
live-loads, flat slabs have long been recognized as the most economical construction.
Because of the considerable practical importance of these types of plate structures,
we will treat them in more detail in Secs. 10.6 and 12.6.

Drop panel

Figure 3.9.4 Flat plate with and without drop panels.

Mushroom with
drop panel

Figure 3.9.5 Flat slab with “mushroom” column heads.

† See Sec. A.4.2.
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Summary. To obtain closed-form, analytical solutions for the difficult plate problems
discussed in this section, an extremely large amount of mathematical manipulations
is required. Therefore, we have given only an overview as well as sufficient refer-
ences covering the presently available computational methods on these subjects. This
section is clearly intended for research engineers who want to advance these classical
solution techniques. For the practicing engineer, however, we strongly recommend
the use of the numerical or approximate methods introduced later in this book.

References and Bibliography

[3.9.1] MCFARLAND, D., et al., Analysis of Plates, Spartan Books, New York, 1972.
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3.10 Summary

Although the material presented in this chapter is of considerable practical impor-
tance, a highly mathematically oriented presentation was followed. Development of
the mathematical aspects was deliberately pursued for mostly academic reasons. Con-
sequently, all sections of this chapter are written with a reasonably rigorous context to
present classical solutions for the plate problems treated. Reasons for such a theoreti-
cal approach are manifold. First, the mathematically inclined reader can gain valuable
insight into the physical and mathematical aspects of such solution techniques; sec-
ond, he or she might be inspired to refine or advance such solutions; and finally,
mathematically rigorous solutions of the problems presented in this chapter can serve
as a benchmark, as mentioned earlier, against which the accuracy of numerical and
approximate solutions can be tested.

Again, the classical solutions of these rectangular plates are based mostly on Lévy’s
approach and to a substantially lesser degree on Navier’s method. Both solution
techniques are considerably extended by means of the principle of superposition to
adapt them to the problems treated here. In the case of circular plates, the solutions
are given as the sum of a particular solution and the solution of homogeneous form
of the pertinent differential equation, properly expressed in a polar coordinate system.

† Translation of the original Russian work.
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Unfortunately, the increased sophistication of the plate problems creates increased
complexity in their classical analysis and ultimately places a practical limit on their
implementation. Therefore, the majority of the classical solutions presented here are
far too cumbersome for application in every-day engineering practice. Consequently,
the use of numerical and engineering methods, as discussed in Parts II and IV of
this book, are not only strongly recommended but should be considered manda-
tory. Nevertheless, readers with more inquisitive minds should probably compare
the results of the here-discussed classical solutions with those obtained numerically
and draw their own conclusions with respect to the obtained accuracy and required
computational efforts.

Problems†

3.1.1. Using Illustrative Example I in Sec. 3.1, determine the Winkler modulus k

by assuming that wmax = 0.004 m, E = 250 GPa, h = 4.0 mm, a = 1.0 m,
b = 1.2 m and p0 = 20 MPa.

3.1.2. Derive the equation of the elastic plate surface of the rectangular plate shown
in Fig. 3.1.3 by applying Lévy’s method. Assume that the lateral load is
uniformly distributed.

3.2.1. Determine the bending moments mr and mϕ of the circular plate shown in
Fig. 3.2.3. Assume, however, that the variation of plate thickness is h = cr2

and Poisson’s ratio is zero.
3.2.2. A simply supported rectangular plate is loaded by a concentrated center force

Pz and is simultaneously subjected to ny = n0 uniform edge tension at y = 0
and y = b. Derive the equation of the deflected plate surface.

3.3.1. Redo Problem 3.3.2 by assuming that the lateral load acting on the plate is
not a concentrated force but a hydrostatic pressure pz = p0x/a.

3.4.1. Check the accuracy of the equivalent circular plate approximation for a sim-
ply supported equilateral triangular plate (Fig. 3.4.3.).

3.5.1. Determine the bending moments mr and mϕ of a simply supported circular
plate with a central hole subjected to a uniformly distributed lateral load.

3.5.2. Derive the equation of a deflected plate surface of an annular plate with a
center shaft (Fig. 3.5.2). Assume that the plate is subjected to a uniformly
distributed lateral load.

3.5.3. Assume that a circular plate is subjected to a concentrated moment at its
center, as shown in Fig. 3.5.4. Determine the bending moments mr and mϕ

if the boundary conditions are simply supported.
3.5.4. Redo Problem 3.5.3 by assuming a fixed boundary condition.
3.7.1. A simply supported rectangular plate is subjected to an edge moment my

as shown in Fig. 3.7.1a. Determine the bending moments mx and my at the
center of the plate.

3.7.2. Determine the bending moments mx and my of the plate shown in Fig. 3.7.2.

† The first two numbers refer to the corresponding section.



4
Energy and Variational
Methods for Solution
of Lateral Deflections

4.1 Introduction and Basic Concepts

a. Introduction. Up to this point, we have used—almost exclusively—Newton’s
law of equilibrium of forces in the development of differential equations for plates.
Yet another approach can also be taken based on Bernoulli’s principle of virtual work,
which replaces the force vectors by work and potential energy, both of which are
scalar quantities.

The variational methods used in this chapter are among the most powerful ana-
lytical tools of mathematical physics for the engineer. Here we deal with the so-
called direct methods of calculus of variation—commonly called energy methods—to
obtain analytical solutions for complex plate problems. They comprise a body of
approximate solution techniques. Although several energy methods have been devel-
oped, we restrict ourself to discussion of the most widely used ones in plate analysis.
These were introduced by physicists Rayleigh, Ritz, Galerkin, Kantorovich, Lagrange
and Trefftz.

There are three reasons why energy methods may be preferable to the more rigor-
ous classical solutions discussed in the foregoing chapters. First, the energy methods
are easier, both conceptually and mathematically. Second, they are extremely pow-
erful to obtain reusable analytical solutions, even for plates of arbitrary shape and
boundary conditions. Finally, they provide a valuable preparation for understand-
ing the principles of finite element methods,† which have rapidly become the most
dominant numerical methods in structural analysis.

† Treated in Sec. 7.3.
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b. Basic Concepts. In the preceding sections, plate problems have been repre-
sented by a differential equation (1.2.30) derived from the equilibrium condition
of internal and external forces. This differential equation, including the boundary
conditions of the problem under consideration, can be solved by either classical or
numerical methods. Alternative approaches based on certain energy principles are pre-
sented in this and subsequent sections. Although the governing plate equation itself
can also be derived from energy considerations [4.1.1], we shall use these methods
exclusively for obtaining approximate analytic solutions of various plate problems.

When a structure is subjected to external forces, it deforms. During this deforma-
tion, the external forces do certain amounts of work. The work of a force is defined
as the scalar product of the force vector P and the corresponding displacement vector
s. This scalar quantity is positive if the direction of these two vectors is the same.
When the force remains constant, the work becomes W = P · s; on the other hand, if
the force varies during displacement, the work should be calculated from the definite
integral W = ∫ s2

s1
P ds cos α.

During deformation of an elastic body the work of the external forces, We, is
resisted by the work of the internal forces, Wi . These internal forces are conservative
forces; that is, after removal of the loads the elastic structure returns to its original
position and the work of the internal forces is completely recovered. If we define
energy as the ability to do work, then the law of conservation of energy requires that
the total internal work be equal and opposite to the total external work; consequently,
we can write

We + Wi = 0. (4.1.1)

There are various types of energies called potential, strain, kinetic, and so on.
Potential energy is defined as the capability of the force to do work because of its
position. The potential energy of the internal forces is called strain energy, U , which
is equal to the negative work of the internal forces (U = −Wi). The potential of the
external forces, V , is defined as the negative work done by the external forces, which
remain unchanged in magnitude, between their initial and final positions. The total
potential � of a structural system consists of its strain energy plus the potential of
the load:

� = U + V. (4.1.2)

In the analysis of structures by energy methods, we must distinguish between
real and virtual work. To illustrate the fundamental difference between these two
concepts, let us consider an elastic spring of one degree of freedom (DOF), as shown
in Fig. 4.1.1a.† To maintain the static equilibrium of the system, the load must be
applied at a slow rate; otherwise vibrations are produced. Such a loading process
results in a gradual buildup in the spring force, as illustrated in Fig. 4.1.1b. The work
done by stretching the spring is represented by the area of the triangle OAB; thus

Wi = −
∫ x1

0
(kx) dx = −kx2

1

2
= −1

2
Pi maxxmax. (4.1.3)

† In simplified statical and dynamic analysis of structures, plates can be approximated by a single
mass-spring system [14.1.2].
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Figure 4.1.1 Illustration of various energy concepts.

Consequently, we can state that the real internal work in an elastic system equals
half of the product of the final values of the internal forces and corresponding defor-
mations.

Similarly, the real work done by the external force (which has been gradually built
up) can be written as

We = 1
2Pe xmax. (4.1.4)

Thus, the real work of external forces acting upon an elastic system is half of the
product of these forces and the corresponding final displacement components.

To illustrate the concept of potential V of an external force, let us consider the
weight of a body, Pw , in the gravitational field of the earth, as shown in Fig. 4.1.1c.
If the body is located at datum level H above the earth’s surface, then its weight (due
to its position) can perform PwH total work, provided that the supporting structure
is removed. Consequently, if the corresponding final deformation of the structure
subjected to this load is xmax, the potential of the external force becomes

V = −Pexmax. (4.1.5)

The negative sign indicates the loss of potential energy while the force moves from
its initial to its final position. It should be noted that in expression (4.1.5) the factor of
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1
2 is absent, since in computing the potentials of the external forces they are assumed
to be kept unchanged during the deformation.

In the case of virtual work we deal with an elastic body that is already in equilib-
rium. Consequently, the body, subjected to the maximum values of static (i.e., slowly
piled-up) external forces, has already reached its final state of deformation. Now, we
disturb this equilibrium condition by introducing small, arbitrary, but compatible dis-
placements that satisfy the boundary conditions.† During these virtual displacements
all forces are held constant.

Using, again, the spring-force system with a one-DOF motion (Fig. 4.1.1d) to
represent an elastic structure, we introduce the virtual displacement in the form of
an incremental‡ deformation δx; then the incremental work of the spring becomes

δWi = −(kxmax)δx = −Pi max δx. (4.1.6)

Similarly, the increment of work done by the external force is

δWe = Pe δx. (4.1.7)

Note that Eqs. (4.1.6) and (4.1.7) do not contain the factor of 1
2 , since we have com-

menced from the equilibrium conditions and have assumed that during the infinites-
imal displacements neither the external nor the internal forces change.

The strain energy, stored in a plate during deformation, is found by integrating
(over the entire middle surface) the negative work of internal forces (U = −Wi). In
general, the strain energy of the plate consists of bending (Ub) and membrane (Um)

parts, which are

Ub = 1

2

∫∫
(A)

(mxκx + myκy + 2mxyχ) dx dy (4.1.8a)

and

Um = 1

2

∫∫
(A)

(nxεx + nyεy + nxyγ ) dx dy, (4.1.8b)

where mx, my, mxy and κx, κy, χ are the internal force (per unit length) and the corre-
sponding strain components produced by bending, as described in Sec. 1.2. Similarly,
nx, ny, nxy are the membrane forces (per unit length) and εx, εy, γ are the correspond-
ing strains caused by stretching of the plate.§ In the small-deflection theory of plates,
the membrane and bending effects are decoupled; thus, they can be treated sepa-
rately. Although the transverse shear forces (qx and qy) produce additional strain
energy, its order of magnitude is very small compared to the bending strain energy;
consequently, it is usually neglected.¶

† As discussed later, there are cases when satisfaction of the geometrical boundary conditions
is sufficient.
‡ The variational symbol δ is used here to express the infinitesimal increment. Since these incremental
values are usually represented by the second term of Taylor’s series, δ represents a differen-
tial operator.
§ See Secs. 1.1 and 3.3.
¶ For consideration of the effects of transverse shear deformation, see Secs. 1.5 and 4.7.
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Using the definition of potential of external forces, the potential of distributed and
concentrated surface forces can be written as

V1 = −


∫∫
(A)

(pxu + pyv + pzw) dx dy +
∑

i

Pi�i +
∑

i

Miθi


 , (4.1.9)

where u, v, w, �i and θi are the corresponding displacement components. A similar
expression can be obtained for body forces by replacing the surface integral by
a volume integral. In Eq. (4.1.9), however, the potentials of edge forces are not
included. These forces have potentials only if compatible boundary displacements are
permitted. In such cases, the potentials of edge moments (mn, mnt ) and transverse
edge force (vn) can be expressed by

V2 = −
∮ (

vnw + mn

∂w

∂n
+ mnt

∂w

∂t

)
ds, (4.1.10)

where n and t represent the outward normal and the tangent directions respectively,
along the plate boundary, s. Additional expressions for the potential energy of external
forces are developed in various sections of this book as need for them arises.

c. Variational Methods. Variational methods are among the most important approx-
imate methods of mathematical physics, used for solution of difficult boundary value
problems. In the theory of elasticity the variational principle, introduced by Lagrange,
is based on the virtual work theorem. The objective of the variational methods is to
find from a group of admissible functions those that represent the deflections of the
elastic body, pertinent to its stable equilibrium condition, [4.1.2–4.1.7].

The principle of minimum potential makes use of the change of the total poten-
tial [Eq. (4.1.2)] during arbitrary variation of the deflection. Again, we disturb the
equilibrium position of the elastic system by introducing δu, δv and δw, compati-
ble virtual displacements. The new position (u + δu, v + δv, w + δw) produces an
increase in the strain energy stored. The change in the total potential δ� can be
calculated from

δ� = �(u + δu, v + δv, w + δw) − �(u, v, w).

Since the equilibrium configuration is represented by those admissible functions that
make the total potential of the system minimum, we can write

δ� = δU + δV = δ(U + V ) = 0. (4.1.11)

Components of the compatible infinitesimal virtual displacements (δu, δv, δw) must
be piecewise continuous functions of x, y and z in the interior domain of the body. In
addition, they should satisfy the geometrical boundary condition of the elastic system
and be capable of representing all possible displacement patterns. If these admissible
displacement functions are chosen properly, very good accuracy can be attained, as
is illustrated in this and subsequent sections.
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Let us apply Eq. (4.1.11) to the force-spring system shown in Fig. 4.1.1d. The
total potential, corresponding to the deflection x + δx, is

� = U + V = (x + δx)2 k

2
− Pe(x + δx),

from which, after neglecting the higher-order quantities such as the square of the
virtual displacement δx, we obtain

δ� = kx δx − Pe δx = (kx − Pe) δx = 0;

hence

kx = Pe.

It is evident from this simple case that the virtual work of the internal and external
forces also must vanish; hence

δWi + δWe = 0. (4.1.12)

Equation (4.1.12) represents an alternative formulation of the variational method. We
note that if all boundary conditions are satisfied, Eqs. (4.1.11) and (4.1.12) yield
the same result. Furthermore, it is of importance to remember that Eqs. (4.1.1)
and (4.1.11) represent independent energy principles. That is, while the law of con-
servation of energy involves real work, the principle of minimum total potential is
concerned with virtual work. In addition, the latter deals with the first derivative of
the total potential without containing any statement about the total potential itself
[4.1.2–4.1.7].
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4.2 Ritz’s Method
a. Ritz Method. An energy method developed by Ritz [4.2.2] applies the principle
of minimum potential energy (4.1.11). According to this theorem, as discussed above,
of all displacements that satisfy the boundary conditions, those making the total
potential energy of the structure a minimum are the sought deflections pertinent to
the stable† equilibrium conditions.

Let us represent the deflected middle surface in the form of a series [4.2.3]:

w(x, y) = c1f1(x, y) + c2f2(x, y) + c3f3(x, y) + · · · + cnfn(x, y)

=
n∑

i=1

cifi(x, y), (4.2.1)

where fi(x, y), i = 1, 2, 3, . . . , n, are continuous functions that satisfy individually
at least the geometrical boundary conditions and are capable of representing the
deflected plate surface. The unknown constants c1, c2, c3, . . . , cn are determined from
the minimum potential energy principle; thus

∂�

∂c1
= 0,

∂�

∂c2
= 0, · · · , ∂�

∂cn

= 0. (4.2.2)

This minimization procedure yields n simultaneous algebraic equations in the unde-
termined coefficients c1, c2, c3, . . . , cn, from which the unknown parameters ci can
be calculated. It should be noted that during the partial differentiation all coefficients,
except the specific ci under consideration, are taken constant.

If we substitute into Eq. (4.1.8a) the internal moments expressed in terms of the
displacement components,‡

mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
, my = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)

mxy = −D(1 − ν)
∂2w

∂x∂y
,

(4.2.3)

and use the following auxiliary functions§ for expressing the changes of curvature,

κx = −∂2w

∂x2
, κy = −∂2w

∂y2
, χ = − ∂2w

∂x ∂y
, (4.2.4)

then the strain energy for the plate in bending can be written as

Ub = 1

2

∫∫
(A)

D

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

− 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2
−

(
∂2w

∂x ∂y

)2
]}

dx dy

(4.2.5)

† Unstable equilibrium conditions are treated in Chapter 16.
‡ See Sec. 1.2.
§ See Eq. (1.2.21).
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If all edges of the plate are fixed, the second term on the right-hand side of Eq. (4.2.5)
becomes zero. Thus, the expression of potential energy becomes simplified:

Ub = 1

2

∫∫
(A)

D

(
∂2w

∂x2
+ ∂2w

∂y2

)2

dx dy. (4.2.6)

The same simplification holds for other boundary conditions for rectangular plates,
provided that either w = 0 or ∂w/∂n = 0, where n represents the outward normal to
the boundary.

For the most general case the potential energy of a circular plate, expressed in
terms of polar coordinates,† has the form

Ub =
∫∫
(A)

{
D

2

(
∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂ϕ2

)2

+ 2(1 − ν)

[
∂

∂r

(
1

r

∂w

∂ϕ

)]2

− 2(1 − ν)
∂2w

∂r2

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂ϕ2

)}
r dr dϕ, (4.2.7)

which, in the case of a fixed edge, becomes

Ub =
∫∫
(A)

D

2

(
∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂ϕ2

)2

r dr dϕ. (4.2.8)

When the deflected middle surface is symmetrical about the center, w is a function
of r only. Thus, Eq. (4.2.7) is simplified:

Ub = π

∫ r0

0
D

[(
d2w

dr2
+ 1

r

dw

dr

)2

− 2(1 − ν)
d2w

dr2

1

r

dw

dr

]
r dr. (4.2.9)

Similarly, for clamped circular plates with axially symmetric deflections, Eq. (4.2.8)
can be written as

Ub = π

∫ r0

0
D

(
d2w

dr2
+ 1

r

dw

dr

)2

r dr, (4.2.10)

where r0 is the radius of the circular plate (Fig. 1.4.1a).
The total potential energy for a rectangular plate subjected to lateral load assumes

the following form in a Cartesian coordinate system:

† See Sec. 1.4.



Ritz’s Method 189

� = 1

2

∫ a

0

∫ b

0
D

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

− 2(1 − ν) ×
[

∂2w

∂x2

∂2w

∂y2
−

(
∂2w

∂x∂y

)2
]}

dx dy

−
∫ a

0

∫ b

0
pzw dx dy.

(4.2.11)

If the edge forces, including reactions, are able to gain or lose potentials during the
deformation, then Eq. (4.2.11) should be augmented by Eq. (4.1.10).

In the case of elastically supported boundaries, the strain energy produced in the
edge beam during its deformation is given by

Ub,edge = 1

2

∮
w2ρ ds, (4.2.12)

where ρ is the spring constant of the edge beam (per unit length), as defined as in
Sec. 1.3.

Similarly, if the edge beam is elastically restrained against rotation, the strain
energy stored in the edge beam can be written as

U�
b,edge = 1

2

∮ (
∂w

∂n

)2

ρ� ds, (4.2.13)

where ρ� represents the torsional stiffness (per unit length) of the edge beam.
The membrane part of the strain energy, Um, is obtained by substituting the perti-

nent expressions for in-plane strains† (εx, εy and γ ) into Eq. (4.1.8b); thus

Um = 1

2

∫∫
(A)

(nxεx + nyεy + nxyγ ) dx dy

= 1

2

∫∫
(A)

[
nx

∂u

∂x
+ ny

∂v

∂y
+ nxy

(
∂u

∂y
+ ∂v

∂x

)]
dx dy. (4.2.14)

This expression can be written in terms of displacement components,

Um = 1

2

∫∫
(A)

{
Eh

1 − ν2

[(
∂u

∂x
+ ν

∂v

∂y

)
∂u

∂x
+

(
∂v

∂y
+ ν

∂u

∂x

)
∂v

∂y

+ 1 − ν

2

(
∂u

∂y
+ ∂v

∂x

)2
]}

dx dy, (4.2.15)

† See Sec. 1.6.
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or in terms of stress and Airy’s stress function,

Um = h

2E

∫∫
(A)

[(σx + σy)
2 − 2(1 + ν)(σxσy − τ 2)] dx dy

= h

2E

∫∫
(A)

{(
∂2�

∂x2
+ ∂2�

∂y2

)2

− 2(1 + ν)

[
∂2�

∂x2

∂2�

∂y2
−

(
∂2�

∂x∂y

)2
]}

dx dy.

(4.2.16)

b. Selection of Proper Shape Functions for Bending. It is evident from the
preceding discussion that the solution of plate problems by the Ritz method is reduced
to the finding of suitable functions, fi(x, y), that satisfy the boundary conditions and
closely approximate the shape of the actual deflection surface. Satisfaction of the
differential equation of the plate (1.2.30) by the assumed series expression (4.2.1),
however, is not required. The accuracy of the Ritz method depends considerably on
how well the assumed shape functions are capable of describing the actual deflec-
tion surface.

Of the several methods available for selecting suitable shape functions, fi(x, y), for
bending analysis of plates by the Ritz method, the use of the trigonometric function
and the utilization of beam deflection formulas are considered here. Other alternatives,
based on the eigenfunctions of transverse vibrations of beams or on column buckling,
are discussed in the subsequent section.

Let us express the lateral displacements in the form of infinite series in which the
variables are separated; thus, we can write

w(x, y) =
∑
m

∑
n

WmnXm(x) · Yn(y), (4.2.17)

where Xm(x) and Yn(y) represent the terms in the series expressions that individually
satisfy (at least) the geometrical boundary conditions and are functions of either x

or y.
In the case of simply supported boundary conditions at x = 0 and x = a, for

instance, a sine series in the form

∞∑
m

Wm sin
mπx

a
for m = 1, 2, 3, . . . (4.2.18)

can be used advantageously. Similar expressions can be written in the Y direction,
provided that the edges at y = 0 and y = b are simply supported.

If the edges at x = 0 and x = a are fixed, the type of cosine series given as

∞∑
m

1

2
Wm

(
1 − cos

2mπx

a

)
for m = 1, 3, 5, . . . (4.2.19)

offers a suitable shape function.† An analogous expression can also be used in the Y

direction, provided that the edges at y = 0 and y = b are clamped. Combination of

† If the origin of the coordinate system coincides with the center of the plate, Eq. (4.2.19) becomes
Xm = ∑∞

m Wm[1 − (−1)m cos(2mπx/a)] for m = 1, 3, 5, . . . .
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sine and cosine functions in the form

w(x, y) = 1

2

∑
m

∑
n

Wmn sin
mπx

a

(
1 − cos

2nπy

b

)

for m = 1, 2, 3, . . . ; n = 1, 3, 5 . . . (4.2.20)

is useful when opposite edges are simply supported and the others are clamped.

Table 4.2.1 Shape Functions for Approximate Analysis of Rectangular Plates

Case Boundary Conditions
Shape Functions∑

m Xm(x) in Eq. (4.2.17)

1
∑
m

Xm =
∑
m

sin
mπx

a

2
∑
m

Xm =
∑
m

1

2

(
1 − cos

2mπx

a

)

for m = 1, 3, 5, . . .a

∑
m

Xm =
∑
m

sin
πx

a
sin

mπx

a

∑
m

Xm = x

a

(x

a
− 1

)2 +
∑
m

(−1)m
x2

a2

(x

a
− 1

)
−

∑
m

1

mπ
sin

mπx

a

3
∑
m

Xm =
∑
m

(a2 − 4x2)2xm for m = 0, 1, 2, 3, . . .

4
∑
m

Xm = x

a

(x

a
− 1

) ( x

2a
− 1

)
−

∑
m

1

mπ
sin

mπx

a

4a
∑
m

Xm =
∑
m

x

2a

(
x2

a2
− 1

)
(−1)m −

∑
m

1

mπ
sin

mπx

a

Note: These expressions for Yn are analogous; a = span length in X direction. For vibrating beam
and column buckling formulas, see Sec. 4.3.
a An alternate form of this expression is

w = W11

(
1 − cos

2πx

a

)(
1 − cos

2πy

b

)
+

(
1 − cos

2πx

a

)∑
n

W ∗
1n

(
1 − cos

2nπy

b

)

+
(

1 − cos
2πy

b

)∑
m

W ∗
m1

(
1 − cos

2mπx

a

)
for m,n = 2, 3, . . . , r.
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Trigonometric functions are not the only possible choice for shape functions; they
can also be obtained from the static deflection formulas of beams. For this purpose we
consider the plane strip (of dy width) as a beam and derive the elastic deflection line
by integrating the governing differential equation of beam. Combination of statical
deflection formulas with trigonometric series offers another possibility for suitable
shape functions. Often-used shape functions for simply supported and fixed boundary
conditions are given in Table 4.2.1. These functions are sufficiently general to be able
to represent all possible displacement patterns. Additional expressions are given in
Sec. 4.4. Although high accuracy can be attained by the Ritz method in the deflection
analysis of plates, the accuracy of the internal forces, because second- or third-order
derivatives of w are involved in their determination, is usually somewhat reduced.

Summary. Advantages of the Ritz method lie in the relative ease with which com-
plex boundary conditions can be handled. It is a powerful tool yielding high accuracy
in the deflection analysis, provided that suitable shape functions are employed. The
Ritz method can be used, for example, for plates of various shapes and of variable
thicknesses. Since it is essentially an analytical procedure, approximate analytical
solutions of complex plate problems can be obtained by this approach. Furthermore,
the method merely requires the evaluation of definite integrals of simple functions
selected in advance. The crux of the solution of plate problems by this, and by all
energy methods, is the selection of the proper shape functions, on which the obtain-
able accuracy depends. The use of the Ritz method is recommended when computers
are not readily available and the solution must be obtained by hand computation.
Although the required mathematical operations are relatively simple, they can occa-
sionally be quite lengthy. The Ritz method can be considered as one of the most
usable methods of higher analysis for solving complex boundary value problems in
mathematical physics.

ILLUSTRATIVE EXAMPLE I

Find the maximum deflection of the simply supported square plate under a
lateral load in the form of a triangular prism (Fig. 4.2.1) by the Ritz method.

P0

Y

X

Z, w

O

Simple supports

Figure 4.2.1 Simply supported plate loaded in as triangular prism.

Because of the simply supported boundary conditions, a double sine series,
restricted to odd numbers, can be used for the deflection surface; thus

w(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

a

for m, n = 1, 3, 5, . . . ,

(4.2.21)
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where Wmn = ci represents the undetermined constants in Eq. (4.2.1). Mathe-
matical expressions for the lateral load are

pz =




2p0x

a
for 0 < x <

a

2
,

2p0 − 2p0x

a
for

a

2
< x < a.

(4.2.22)

The potential energy of the lateral load is calculated from Eq. (4.1.9):

V = −
∫∫
(A)

[pz(x, y)w(x, y)] dA

= −2
∑
m

∑
n

∫ a/2

0

∫ a

0

2p0x

a
Wmn sin

mπx

a
sin

nπy

a
dx dy

= −
∑
m

∑
n

8p0a
2

m2nπ3
Wmn sin

mπ

2
. (4.2.23)

The strain energy, after elimination of all double product terms that do not
contribute to the value of Ub, is [Eq. (4.2.6)]:

Ub = D

2

∫ a

0

∫ a

0

∑
m

∑
n

[
Wmn

(
m2π2

a2
+ n2π2

a2

)
sin

mπx

a
sin

nπy

a

]2

dx dy

= Dπ4a2

8

∑
m

∑
n

W 2
mn

(
m2

a2
+ n2

a2

)2

. (4.2.24)

Minimization of the total energy (4.2.2),

∂�

∂Wmn

= ∂Ub

∂Wmn

+ ∂V

∂Wmn

= 0, (4.2.25)

gives, for a specific set of m, n values,

Dπ4a2

4
Wmn

(
m2

a2
+ n2

a2

)2

− 8p0a
2

m2nπ3
sin

mπ

2
= 0; (4.2.26)

hence

Wmn = 32p0a
4 sin(mπ/2)

m2nπ7D(m2 + n2)2
(4.2.27)

and

w(x, y) = 32p0a
4

Dπ7

∞∑
m=1

∞∑
n=1

sin(mπ/2)

m2n(m2 + n2)2
· sin

mπx

a
sin

nπy

a

for m, n = 1, 3, 5, . . . . (4.2.28)
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The maximum deflection at x = y = a/2, using the first three terms (m = n =
1; m = 1, n = 3; m = 3, n = 1) of the series expression (4.2.28) is

wmax = 7.9289p0a
4

π7D
= 0.002625

p0a
4

D
. (4.2.29)

A comparison with the corresponding result of a more exact solution, wmax =
0.00263p0a

4/D, given in Ref. [2], indicates only an insignificant error. This
example illustrates the high accuracy obtainable by the Ritz method, provided
that proper shape functions are used. Considering more terms, even this rela-
tively small error can be eliminated.

ILLUSTRATIVE EXAMPLE II

Determine the maximum deflection of the clamped rectangular plate shown in
Fig. 4.2.2 by the Ritz method. Assume that the plate is subjected to constant
lateral load and use a/b = 1.5 span ratio.

AA

O

Y

Z, w

X

X

b

b

a

2a

a

pz = p0 = const

Section A − A

(a)

(b)

Figure 4.2.2 Rectangular plate with fixed edges.

To utilize the apparent symmetry of the deflected plate surface, we take the
coordinate axes through the middle of the plate parallel to the sides. In this
case, the deflection given by Eq. (2.5.30) becomes

w(x, y) =
∞∑
m

∞∑
n

Wmn

4

[
1 − (−1)m cos

mπx

a

] [
1 − (−1)n cos

nπy

b

]

for m, n = 1, 3, 5, . . . . (4.2.30)
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This series expression satisfies the given boundary conditions

(w)x=±a = 0,

(
∂w

∂x

)
x=±a

= 0;

(w)y=±b = 0,

(
∂w

∂y

)
y=±b

= 0.

(4.2.31)

For the sake of simplicity, let us consider only the first term (m = n = 1) in
Eq. (4.2.30). Thus, we can write

w = W11

4

(
1 + cos

πx

a

) (
1 + cos

πy

b

)
. (4.2.31a)

Substitution of this expression into Eq. (4.2.6) gives the strain energy of the
plate in bending; therefore

Ub = D

2

∫ a

−a

∫ b

−b

(∇2w)2 dx dy = Dπ4W 2
11

32

(
3b

a3
+ 3a

b3
+ 2

ab

)
. (4.2.32)

Similarly, from Eq. (4.1.9), the potential of the external forces is computed:

V = −p0

∫ +a

−a

∫ +b

−b

w(x, y) dx dy = −p0W11ab. (4.2.33)

Minimization of the total potential,

∂(Ub + V )

∂W11
= 0,

yields

W11 = 16p0a
4

Dπ4

1

3 + 3(a4/b4) + 2(a2/b2)
. (4.2.34)

If a/b = 1.5 and ν = 0.3, the maximum deflection at x = y = 0 is calculated
from Eqs. (4.2.31a) and (4.2.34):

wmax = 0.0791
p0a

4

Eh3
. (4.2.35)

A comparison with the “exact” solution of the problem [2], which is

wmax = 0.0760
p0a

4

Eh3
, (4.2.36)

shows that the approximate solution is accurate enough for most practical pur-
poses. By considering more terms in the series representation of the deflections,
a more accurate solution can be obtained.
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4.3 Galerkin’s Method and Its Variant by Vlasov

a. Galerkin’s Method. The variational principle defined in Sec. 4.1 was reformu-
lated by Galerkin [4.3.1, 4.3.2], who further generalized and simplified the virtual
work principle. Galerkin’s method can be applied successfully to such diverse types
of problems as small- and large-deflection theories, linear and nonlinear vibration and
stability problems of plates and shells, provided that differential equations of the prob-
lem under investigation have already been determined. Although the mathematical
theory behind Galerkin’s method is quite complex [4.3.3], its physical interpretation
is relatively simple.

We assume that the structural system is in equilibrium. Consequently, the sum of
all external and internal forces is zero. The equilibrium condition of an infinitesimal
element is represented by the pertinent differential equations

L1(u, v, w) − px = 0,

L2(u, v, w) − py = 0,

L3(u, v, w) − pz = 0,

(4.3.1)

which describe the equilibrium of all forces in the X, Y and Z directions, respec-
tively. In Eq. (4.3.1), L1, L2 and L3 denote differential operators operating on the
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displacement functions, while px, py and pz are external forces. The equilibrium of
the structural system is obtained by integrating these differential equations (4.3.1)
over the entire structure.

Let us express the small arbitrary variations of the displacement functions by
δu, δv and δw. Although the displacement components are interrelated, their arbitrary
variations are not interrelated. The virtual work of the external and internal forces
[Eq. (4.1.12)],

δWl + δWe = δ(Wl + We) = 0, (4.3.2)

is obtained directly from the differential equations of the equilibrium without deter-
mining the actual potential energy of the system. Thus, we can write

∫∫∫
(V )

[L1(u, v, w) − px](δu) dV = 0,

∫∫∫
(V )

[L2(u, v, w) − py](δv) dV = 0,

∫∫∫
(V )

[L3(u, v, w) − pz](δw) dV = 0.

(4.3.3)

In a rigorous sense, these variational equations are valid only if the displacement
functions u, v and w are the exact solutions of the problem under investigation. As
in the case of the Ritz method, we replace the exact solutions for displacements by
approximate expressions in the form

u =
m∑

i=1

aiξi(x, y, z), v =
n∑

i=1

biηi(x, y, z), w =
r∑

i=1

ciζi(x, y, z), (4.3.4)

where ξi(x, y, z), ηi(x, y, z) and ζi(x, y, z) are functions that satisfy all prescribed
boundary conditions and ai, bi and ci are undetermined constants. Furthermore, it is
required that these displacement functions (4.3.4) should have at least the same order
derivatives as called for by the differential operators in Eq. (4.3.3).

Although differential equations are used in the variational equations (4.3.3), it is not
required that the assumed approximate displacements satisfy Eq. (4.3.1). Expressing
the small arbitrary variations of the displacements by

δu =
m∑

i=1

ξi(x, y, z) δai, δv =
n∑

i=1

ηi(x, y, z) δbi, δw =
r∑

i=1

ζi(x, y, z) δci,

(4.3.5)

the validity of Eq. (4.3.3) is maintained, even for approximate solutions of the dis-
placement functions, provided that the variation of the displacement is carried out
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term by term. Thus, the substitution of Eq. (4.3.5) into Eq. (4.3.3) results in

m∑
i=1

δai

∫∫∫
(V )

[L1(u, v, w) − px]ξi(x, y, z) dV = 0,

n∑
i=1

δbi

∫∫∫
(V )

[L2(u, v, w) − py]ηi(x, y, z) dV = 0,

r∑
i=1

δci

∫∫∫
(V )

[L3(u, v, w) − pz]ζi(x, y, z) dV = 0.

(4.3.6)

These equations have to be satisfied for any small variations of δui, δvi and δwi.
Thus, the variations of the expansion coefficients δai, δbi, δci are arbitrary and not
interrelated. This provides m + n + r equations,

∫∫∫
(V )

[L1(u, v, w) − px]ξi(x, y, z) dV = 0,

∫∫∫
(V )

[L2(u, v, w) − pz]ηi(x, y, z) dV = 0,

∫∫∫
(V )

[L3(u, v, w) − pz]ζi(x, y, z) dV = 0.

(4.3.6a)

for the computation of m + n + r unknown coefficients ai, bi and ci.
It should be noted that the differential operators, L(·), act on the entire series

expressions of the displacement components [Eq. (4.3.4)], which in turn are multi-
plied by the individual terms of functions ξi, ηi and ζi resulting in simple analytic
expressions. By integrating these expressions over the entire structural system, a
set of coupled algebraic equations for the undetermined coefficients (ai, bi and ci)
is obtained.

In particular, let us investigate the approximate solution of plate bending by
Galerkin’s method. We select† a complete set of independent, continuous functions
capable of representing the lateral deflections

w(x, y) =
n∑

i=1

cifi(x, y). (4.3.7)

Each term of this expression must satisfy all boundary conditions of the problem but
not necessarily the governing differential equation of the plate (1.2.30). Since the

† In selection of suitable shape functions, generally the methods described in Sec. 4.3 are applicable,
but with more restrictions. Here we require the satisfaction of the geometrical as well as the statical
boundary conditions.
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derivation of Eq. (1.2.30) is based on the equilibrium of the internal and external
forces in the Z direction, the total work performed by all these forces during a small
virtual δw displacement can be expressed by

∫∫
(A)

[D ∇2 ∇2w − pz(x, y)](δw) dx dy = 0. (4.3.8)

This equation represents the basic variational equation of plate bending. Substitution
of the series expression of the lateral displacements (4.3.7) into this equation gives

n∑
i=1

δci

∫∫
(A)

[D ∇2 ∇2w(x, y) − pz(x, y)]fi(x, y) dx dy = 0. (4.3.9)

Since Eq. (4.3.9) must be satisfied for any values of δci it follows that

∫∫
(A)

(D ∇2 ∇2w − pz)f1(x, y) dx dy = 0,

∫∫
(A)

(D ∇2 ∇2w − pz)f2(x, y) dx dy = 0,

...

∫∫
(A)

(D ∇2 ∇2w − pz)fn(x, y) dx dy = 0.

(4.3.10)

After substituting Eq. (4.3.7) into Eq. (4.3.10), we evaluate the integrals over the
entire surface of the plate. In this way, again, the solution of the differential equation
of the plate (1.2.30) is reduced to the evaluation of definite integrals of simple
functions, selected in advance. From the resulting linear equations the undetermined
coefficients (c1, c2, c3, . . . , cn) can easily be calculated.

Since the virtual work of internal forces is obtained directly from the differen-
tial equations, without determining the strain energy, Galerkin’s method appears to
be more general than that of Ritz. The use of Galerkin’s method is particularly
recommended for solution of differential equations with variable coefficients.

Accuracy of the method depends considerably on the selected shape function,
which is the case for all energy approaches. Solutions can also be obtained by sat-
isfying merely the geometrical boundary conditions of the problem by the assumed
series expression of the deflected plate surface. In such a case, the edge forces may
create additional virtual work, which must be considered. The solution, however,
converges much faster when all the boundary conditions are satisfied.

The Galerkin method can be extended for the solution of simply supported plates
of general shape [4.3.23]. To express the geometry of the plate in a simple form, how-
ever, the use of natural coordinates is recommended. Applying Vlasov’s technique,
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this approach can be extended to other than simply supported boundary conditions. In
this case, however, the required computations “by longhand” can be quite extensive.

b. Vlasov’s Method. An important version of Galerkin’s method, which can be
used for approximate solution of difficult plate and shell problems, was developed
by Vlasov [4.3.4, 4.3.5].

Let us express, again, the lateral deflections by infinite series:

w(x, y) =
∑
m

∑
n

Wmnφmn(x, y). (4.3.11)

Similarly, we may express the lateral loads as

pz(x, y) =
∑
m

∑
n

Pmnϕmn(x, y). (4.3.12)

Furthermore, let us represent φmn(x, y) and ϕmn(x, y) as the product of two functions,
each of which depends just on a single argument; thus

φmn = Xm(x) · Yn(y), (4.3.13)

and

ϕmn = Xm(x) · Yn(y). (4.3.14)

Separation of the variables reduces the variational problem to the selection of two
linearly independent sets of functions Xm(x) and Ym(y) that satisfy all boundary
conditions. For these functions, Vlasov [4.3.4] used the eigenfunctions of vibrating
beams, with boundary conditions similar to those of the plate.

The free vibrations of a single-span† beam (of uniform cross section) is described
by the partial differential equation

∂4w(x, t)

∂x4
= − m

EI

∂2w(x, t)

∂t2
, (4.3.15)

where w(x, t) is the time-dependent (t) lateral deflection and m is the mass per unit
length. We assume the solution of Eq. (4.3.15) in the form

w(x, t) = X(x) sin ωt, (4.3.16)

where ω is the circular frequency‡ of the free vibration. Substitution of (4.3.16) into
(4.3.15) gives

d4X(x)

dx4
= mω2

EI
X(x). (4.3.17)

† For vibrations of structural systems, see Chapters 14 and 15.
‡ For the definition, see Sec. 14.1.
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Upon introduction of the symbol

λ4

l4
= mω2

EI
, (4.3.18)

Eq. (4.3.17) becomes

XIV = λ4

l4
X, (4.3.19)

where λ is the shape parameter and l is the span length.
The general solution of Eq. (4.3.19) is

X(x) = C1 sin
λx

l
+ C2 cos

λx

l
+ C3 sinh

λx

l
+ C4 cosh

λx

l
. (4.3.20)

The constants C1, C2, C3 and C4 are determined from the boundary conditions, while
λ is a root of the characteristic equation. This equation is derived by equating
the determinants of the homogeneous boundary equations to zero. Eigenfunctions
Xm(x), pertinent to the mth mode of vibration, are obtained by substituting λm into
Eq. (4.3.20); thus

Xm(x) = C1 sin
λmx

l
+ C2 cos

λmx

l
+ C3 sinh

λmx

l
+ C4 cosh

λmx

l
. (4.3.21)

Table 4.3.1 contains expressions of these eigenfunctions for various boundary
conditions.

The eigenfunctions and their derivatives satisfy certain important mathematical
relations. Let Xm(x) and Xn(x) be any two eigenfunctions of the vibrating beam
corresponding to ωm and ωn circular frequencies, respectively. Then, for different
modes (m �= n), the integral of the following products is zero:

∫ l

0
Xm(x)Xn(x) dx = 0 and

∫ l

0
X′′

m(x)X′′
n(x) dx = 0. (4.3.22)

Thus, the eigenfunctions and their second derivatives are said to be orthogonal for
some boundary conditions.† The same holds for their fourth-order derivatives, while
the desirable property

∫ l

0 X′′
mXn dx = 0, which facilitates the solution, is slightly

violated.
Since the eigenfunctions are orthogonal, we may utilize another useful property

common to all orthogonal functions; that is, we may expand the arbitrary load pz(x, y)

in terms of the eigenfunctions. The constants Pmn in Eq. (4.3.12) can be expressed
in terms of eigenfunctions Xm(x) and Ym(y) by means of

Pmn =

∫ a

0

∫ b

0
pz(x, y)Xm(x)Yn(y) dx dy

∫ a

0

∫ b

0
X2

m(x)Y 2
n (y) dx dy

. (4.3.23)

† Strictly speaking, these functions are only quasi-orthogonal. These orthogonality conditions, how-
ever, do not hold for free and guided or elastically supported edges.
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Let us now express the plate deflection by eigenfunctions in the form

w =
∑
m

∑
n

Wmnφmn(x, y) =
∑
m

∑
n

WmnXm(x)Yn(y) (4.3.24)

and use a similar expression for the lateral load [Eq. (4.3.12)]. Then, after substitution
of Eqs. (4.3.11) and (4.3.12) into the variational equation of the plate problem (4.3.8),
we obtain

D
∑
m

∑
n

Wmn

∫ a

0

∫ b

0
φik∇4φmn dx dy −

∑
m

∑
n

Pmn

∫ a

0

∫ b

0
ϕmnφik dx dy = 0.

(4.3.25)
Let us analyze separately the integral terms in this equation. If we use φmn = ϕmn =
Xm(x) · Yn(y), then the first integral term in Eq. (4.3.25) can be written as

∫ a

0

∫ b

0
φik∇4φmn dx dy =

∫ a

0

∫ b

0

[
XIV

m (x)Yn(y)Xi(x)Yk(y)

+ 2X′′
m(x)Y ′′

n (y)Xi(x)Yk(y)

+ Y IV
n (y)Xm(x)Xi(x)Yk(y)

]
dx dy. (4.3.26)

By neglecting the terms with nonidentical subscripts mi and nk, the error induced is
zero or negligible. If we introduce the notation.

I1 =
∫ a

0
XIV

m (x)Xm(x) dx, I2 =
∫ b

0
Yn(y)Yn(y) dy,

I3 =
∫ a

0
X′′

m(x)Xm(x) dx, I4 =
∫ b

0
Y ′′

n (y)Yn(y) dy,

I5 =
∫ b

0
Y IV

n (y)Yn(y) dy I6 =
∫ a

0
Xm(x)Xm(x) dx,

(4.3.27)

then Eq. (4.3.26) can be written as

∫ a

0

∫ b

0
φik ∇4φmn dx dy = I1I2 + 2I3I4 + I5I6. (4.3.28)

The integrals of the second term in Eq. (4.3.25) are calculated in an analogous man-
ner; thus

∫ a

0

∫ b

0
ϕmnφik dx dy =

∫ a

0

∫ b

0
X2

m(x)Y 2
n (y) dx dy = I7I8, (4.3.29)

where

I7 =
∫ a

0
X2

m(x) dx and I8 =
∫ b

0
Y 2

n (y) dy. (4.3.30)
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Considering a specific set of m, n values, the variational equation of the plate problem
can be reduced to

DWmn(I1I2 + 2I3I4 + I5I6) − PmnI7I8 = 0. (4.3.31)

Therefore, the undetermined expansion coefficients Wmn can be calculated from

Wmn = PmnI7I8

(I1I2 + 2I3I4 + I5I6)D
, (4.3.32)

which, after substitution of Eq. (4.3.23), becomes,

Wmn =

∫ a

0

∫ b

0
pz(x, y)Xm(x)Yn(y) dx dy

(I1I2 + 2I3I4 + I5I6)D
. (4.3.33)

In this way, approximate solution of plate bending is reduced to the evaluation of
simple definite integrals. Furthermore, the orthogonality (or quasi-orthogonality) of
the eigenfunctions reduces the required numerical work significantly. The reader will
find usable tables for the eigenfunctions and their derivatives in Refs. [11], [3.1.1],
[3.1.4], [4.3.21] and [4.3.22].

A similar approach can be taken with the eigenfunctions of column buckling
[4.5.1], the governing differential equation of which is

EI
d4w

dx4
+ P

d2w

dx2
= 0. (4.3.34)

Upon introduction of (
λ

l

)2

= P

EI
, (4.3.35)

Eq. (4.3.34) becomes

XIV +
(

λ

l

)2

X′′ = 0. (4.3.36)

The general solution of Eq. (4.3.36) is

Xm = C1 sin
λmx

l
+ C2 cos

λmx

l
+ C3

x

l
+ C4, (4.3.37)

where C1, C2, C3 and C4 represent constants to be found from the boundary condi-
tions of the column, while λ1, λ2, λ3, . . . are the roots of the characteristic equation
pertinent to the first, second, third, and so on buckling modes.

A comparison of Eq. (4.3.37) with Eq. (4.3.21) indicates that the eigenfunctions of
column buckling are simpler. Consequently, their use may offer considerable advan-
tages in some cases. These functions are also quasi-orthogonal; that is, for m �= n

they satisfy ∫ l

0
XIV

m Xn dx = 0 and
∫ l

0
X′′′

mXn dx = 0, (4.3.38)
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while ∫ l

0
XmXn dx �= 0 for m �= n. (4.3.39)

Again, this violation of the orthogonality requirement (4.3.39) is of negligible order
of magnitude.

In the case of orthotropic plates,† the eigenfunctions of a vibrating beam may
yield better results, provided that the torsional rigidity of the plate is small. On the
other hand, if the orthotropic plate has small flexural rigidity in one of the principal
directions of orthotropy, the use of the eigenfunctions of column buckling can be more
advantageous [24, 4.5.1]. If possible, one should take advantage of the symmetry by
moving the origin of the coordinate system to the center of the plate, as shown in
Illustrative Example II of Sec. 4.2. In this way the tedious task of calculation of
integrals can be mitigated.

Summary. The variational methods introduced in this section are more general
than the Ritz method. Consequently, they occupy an important position among the
approximate methods for solving static and dynamic plate problems, when classi-
cal methods present unsurmountable difficulties. In the final analysis, the problem is
reduced to the evaluation of certain definite integrals of simple functions selected in
advance. Although these integrals are basically simple, in certain cases, the compu-
tation required might be quite lengthy. If possible, advantage should be taken of the
symmetry. For the mathematically inclined reader, the use of these methods is highly
recommended, especially when computers are not readily available.

The accuracy of variational methods depends considerably on the selection of the
shape functions. While variational methods are one of the most recommended com-
putational tools for longhand calculation, they are not suited for automated computer
applications. Because of its relative ease in selecting shape functions for almost all
boundary conditions encountered in actual practice, Vlasov’s method can be consid-
ered more universal than the other methods. Further simplification in the numerical
computation is due to the quasi-orthogonality of the eigenfunctions of the vibrating
beam or those of column buckling.

ILLUSTRATIVE EXAMPLE I

Find an analytical expression by Galerkin’s method for the deflection of a uni-
formly loaded square plate with all edges clamped (Fig. 4.3.1). Use a Cartesian
coordinate system with the point of origin located at the upper left-hand corner
of the plate.

We select the product of the cosine series given in Eq. (4.2.30) to represent
the deflected plate surface; thus

w(x, y) =
∑
m

∑
n

Wmn

1

4

(
1 − cos

2mπx

a

)(
1 − cos

2nπy

a

)

for m, n = 1, 3, 5, . . . , (4.3.40)

† See Sec. 10.1.
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X
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Z, w

pz = p0 = const

a
Section A-A

Figure 4.3.1 Clamped square plate.

which satisfies the geometrical boundary conditions

w = 0 and
∂w

∂x
= ∂w

∂y
= 0 (4.3.41)

at the edges (x = 0, a; y = 0, a).
To simplify the solution, let us consider only the first term (m = n = 1) in

Eq. (4.3.40). Thus, the variational equation (4.3.9) becomes

∫ a

0

∫ a

0
[DW11 ∇2 ∇2f1(x, y) − p0]f1(x, y) dx dy = 0, (4.3.42)

where

f1 = 1

4

(
1 − cos

2πx

a

)(
1 − cos

2πy

a

)
. (4.3.43)

Substituting (4.3.43) into (4.3.42), the first term becomes

W11D

∫ a

0

∫ a

0
[∇2 ∇2f1(x, y)]f1(x, y) dx dy

= W11D

∫ a

0

∫ a

0

[
− 1

16

(
2π

a

)4 (
1 − cos

2πy

a

)
cos

2πx

a
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+ 1

8

(
2π

a

)4

cos
2πx

a
cos

2πy

a

− 1

16

(
2π

a

)4 (
1 − cos

2πx

a

)
cos

2πy

a

]

×
(

1 − cos
2πx

a

)(
1 − cos

2πy

a

)
dx dy

= W11D

(
3π4

4a2
+ π4

2a2
+ 3π4

4a2

)
= 2W11Dπ4

a2
. (4.3.44)

For the second term of Eq. (4.3.42) we obtain

p0

∫ a

0

∫ a

0
f1(x, y) dx dy = p0

4

∫ a

0

∫ a

0

(
1 − cos

2πx

a

)(
1 − cos

2πy

a

)
dx dy

= p0a
2

4
; (4.3.45)

thus
2W11Dπ4

a2
= p0a

2

4
; (4.3.46)

hence

W11 = p0a
4

8Dπ4
. (4.3.47)

To obtain information concerning the accuracy of this solution, let us com-
pare the maximum deflection,

(wmax)x=y=a/2 = p0a
4

8Dπ4
= 0.00128

p0a
4

D
, (4.3.48)

with its “exact” value,

wmax = 0.00126
p0a

4

D
, (4.3.49)

obtained by a more rigorous approach [2]. Although only one term of the series
expression has been used, the error is less than 1.6%.

ILLUSTRATIVE EXAMPLE II

A square plate of side a has simply supported boundary conditions along the
edges x = 0 and y = 0 and is fixed at the other edges (Fig. 4.3.2). The plate
is subjected to a uniformly distributed lateral load. Find (1) an approximate
expression for the deflected plate surface using Vlasov’s method and (2) the
maximum deflections.
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b = a

X

X

Y

Z, w

pz = p0 = const

Simply supported

a Section A-A

Figure 4.3.2 Square plate with various boundary conditions.

1. The fundamental functions of the vibrating beam corresponding to the
boundary problem under consideration are given in Table 4.3.1. We express
the lateral deflection in the form

w(x, y) =
∑
m

∑
n

Wmnφmn =
∑
m

∑
n

WmnXm(x)Yn(y), (4.3.50)

where

Xm(x) = sin
λmx

a
− Cm sinh

λmx

a
, (4.3.51)

Yn(y) = sin
λny

a
− Cn sinh

λny

a
(4.3.52)

and

Cm = sin λm

sinh λm

and Cn = sin λn

sinh λn

. (4.3.53)

Using only the first term (m = 1, n = 1), Eq. (4.3.50) can be written as

w = W11X1(x)Y1(y) = W11

(
sin

λ1x

a
− C1 sinh

λ1x

a

)

×
(

sin
λ1y

a
− C1 sinh

λ1y

a

)
, (4.3.54)
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where

C1 = sin λ1

sinh λ1
= sin 3.9266

sinh 3.9266
= −0.0279. (4.3.55)

The unknown expansion coefficient W11 is calculated from Eq. (4.3.33):

W11 =
p0

∫ a

0

∫ a

0
X1Y1 dx dy

(I1I2 + 2I3I4 + I5I6)D
, (4.3.56)

where I1, I2, . . . , I6 denote the definite integrals given in Eq. (4.3.27). Substi-
tuting Eq. (4.3.54) into the numerator of the right-hand side of Eq. (4.3.56),
we obtain

p0

(∫ a

0
X1(x) dx

)2

= p0

{[
− a

λ1
cos

λ1x

a
− aC1

λ1
cosh

λ1x

a

]a

0

}2

= 0.3695a2p0. (4.3.57)

The evaluation of the definite integrals I1, I2, . . . , I6 yields

I1 = I5 =
∫ a

0
XIV

1 X1 dx =
(

λ1

a

)4 ∫ a

0

(
sin

λ1x

a
− C1 sinh

λ1x

a

)2

dx

= 237.72

a4
(0.4364 − 0.0001 + 0.0634)a = 237.72

a4
0.4997a,

I2 = I6 =
∫ a

0
X2

1 dx =
∫ a

0

(
sin

λ1x

a
− C1 sinh

λ1x

a

)2

dx = 0.4997a,

I3 = I4 =
∫ a

0
X′′

1X1 dx =
(

λ1

a

)2 ∫ a

0

(
− sin2 λ1x

a
+ C2

1 sinh2 λ1x

a

)
dx

=
(

λ1

a

)2 [
−a

2
+ a

4λ1
sin 2λ1 + C2

1

(
a

4λ1
sinh 2λ1 − a

2

)]
= −5.751

a
.

(4.3.58)

Substitution of Eqs. (4.3.57) and (4.3.58) into Eq. (4.3.56) gives

W11 = p0 × 0.3695a4

D(59.3827 + 66.148 + 59.3718)
= 0.00198

p0a
4

D
. (4.3.59)

Thus, an approximate expression for the deflected middle surface (4.3.50) is

w(x, y) = 0.00198
p0a

4

D

(
sin

3.9266x

a
+ 0.0279 sinh

3.9266x

a

)

×
(

sin
3.9266y

a
+ 0.0279 sinh

3.9266y

a

)
. (4.3.60)
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2. The maximum deflection occurs where the slope (∂w/∂x and ∂w/∂y) is
zero. The location of the zero slope was found to be at x = y = 0.3826a. The
deflection of the plate at this point is

wmax = 0.002233
p0a

4

D
. (4.3.61)

A comparison of this value with the more rigorous solution [2] indicates an
error of 3.3%. If required, the results can be improved by taking more terms
in the series expansion of the deflected plate surface (4.3.50) into account.
Evaluation of the definite integrals, however, becomes increasingly tedious.
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4.4 Further Variational and Energy Procedures

Besides the Ritz and Galerkin methods, there are a number of approximate ways of
solving variational problems related to boundary value problems of plates. Since due
to the space limitation we cannot treat them all here, we confine ourselves to those
that are—in our opinion—the most effective ones.

a. Ritz Method Combined with Lagrange Multipliers. This variation of Ritz’s
method was first proposed by Trefftz [4.4.1, 4.4.2] and further developed by Budian-
sky and co-workers [4.4.3]. Since it is often difficult to construct a series of assumed
functions that satisfies all the prescribed boundary conditions of a plate under inves-
tigation, the application of Ritz’s method is in many cases unnecessarily restricted.
With the help of the so-called Lagrange multipliers, however, we can enforce those
boundary conditions that are not satisfied by our original assumption

w(x, y) = c1f1(x, y) + c2f2(x, y) + · · · + cnfn(x, y). (4.4.1)

Let us suppose that this equation satisfies all but k boundary conditions or restraints,
which may be expressed in terms of the n unknown of the assumed deflection given
by Eq. (4.4.1). Thus, we write

φ1[c1, c2, . . . , cn] = 0,

φ2[c1, c2, . . . , cn] = 0,

...

φk[c1, c2, . . . , cn] = 0.

(4.4.2)

The stationary value of the total potential requires that

∂�

∂c1
δc1 + ∂�

∂c2
δc2 + · · · + ∂�

∂cn

δcn = 0. (4.4.3)

† The German translation of the Russian original (Variatsionnye methody v matematicheskii fiziki ) is
Variationsmethode der mathematischen Physik, Akademie-Verlag, Berlin, 1962.
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In addition, if we take the first variation of each of the constraints, we have

∂φ1

∂c1
δc1 + ∂φ1

∂c2
δc2 + · · · + ∂φ1

∂cn

δcn = 0,

∂φ2

∂c1
δc1 + ∂φ2

∂c2
δc2 + · · · + ∂φ2

∂cn

δcn = 0,

...

∂φk

∂c1
δc1 + ∂φk

∂c2
δc2 + · · · + ∂φk

∂cn

δcn = 0.

(4.4.4)

Now we multiply the first equation given above by the constant λ1 and the second
one by λ2 and so on. Then we add the results to Eq. (4.4.3). After rearranging the
terms, we obtain

[
∂�

∂c1
+ ∂φ1

∂c1
λ1 + ∂φ2

∂c1
λ2 + · · · + ∂φk

∂c1
λk

]
δc1

+
[

∂�

∂c2
+ ∂φ1

∂c2
λ1 + ∂φ2

∂c2
λ2 + · · · + ∂φk

∂c2
λk

]
δc2 + · · ·

+
[

∂�

∂cn

+ ∂φ1

∂cn

λ1 + ∂φ2

∂cn

λ2 + · · · + ∂φk

∂cn

λk

]
δcn = 0. (4.4.5)

The undetermined constants λ1, λ2, . . . , λk are called Lagrange multipliers [4.4.3].
We can determine the values of these constants by using the following conditions:

∂�

∂c1
+ ∂φ1

∂c1
λ1 + ∂φ2

∂c1
λ2 + · · · + ∂φk

∂c1
λk = 0,

∂�

∂c2
+ ∂φ1

∂c2
λ1 + ∂φ2

∂c2
λ2 + · · · + ∂φk

∂c2
λk = 0,

...

∂�

∂cn

+ ∂φ1

∂cn

λ1 + ∂φ2

∂cn

λ2 + · · · + ∂φk

∂cn

λk = 0.

(4.4.6)

Equations (4.4.2) and (4.4.6) form a set of k + n independent equations that we must
solve for the unknowns c1, c2, . . . , cn and λ1, λ2, . . . , λk.

These equations may also be generated by defining a so-called modified total
potential �∗ as

�∗ = �(c1, c2, . . . , cn) + λ1φ1(c1, c2, . . . , cn)

+ λ2φ2(c1, c2, . . . , cn) + · · · + λkφk(c1, c2, . . . , cn), (4.4.7)

or in another form

�∗ = �∗(c1, c2, . . . , cn, λ1, λ2, . . . , λk). (4.4.8)
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The stationary value of this modified total potential requires that

∂�∗

∂c1
= 0,

∂�∗

∂c2
= 0, . . . ,

∂�∗

∂cn

= 0 (4.4.9)

and
∂�∗

∂λ1
= 0,

∂�∗

∂λ2
= 0, . . . ,

∂�∗

∂λk

= 0, (4.4.10)

from which the unknown coefficients ci and multipliers λi can be computed. A
Lagrange multiplier λi represents the reaction necessary to maintain the constraint to
which is associated.

Unfortunately, the solution criteria, as discussed above, are conceptionally more
difficult to understand than those of the Galerkin and Ritz methods. In addition,
evaluation of the governing equations (4.4.9) and (4.4.10) requires sufficient math-
ematical facilities, as shown in Illustrative Example I. It is of interest to note that
one can achieve almost the same objectives by the very simple error minimization
technique, introduced by Szilard [4.5.2].

b. Kantorovich Method. In order to achieve improved accuracy, Kantorovich
introduced a solution procedure [4.4.4] that falls between the exact solution of the
plate differential equation (1.2.30) and Galerkin’s variational approach. By means of
separating the variables, the task of solving the partial differential equation of the
plate is reduced to solving an ordinary differential equation of fourth order.

The solution is sought in the form

w(x, y) = φ1(y) · f1(x) + φ2(y) · f2(x) + · · · + φn(y) · fn(x), (4.4.11)

where φ1, φ2, . . . , φn are functions of y alone and satisfy the prescribed boundary
conditions of the plate in the Y direction. Such functions may be chosen in different
ways, as discussed in the foregoing sections. However, if for the sake of simplicity
we would like to limit ourselves only to one term, we may use the pertinent beam
equations given in Ref. [A.2.1], for instance, by replacing EI with D. Thus, the
simplified form of Eq. (4.4.11) is

w(x, y) = φ1(y) · f1(x). (4.4.12)

Since the dependence upon y is completely known in φ1(y), the y variable can be
integrated out of Galerkin’s variational equation (4.3.8) which, in this case, takes
the form ∫ b

0
[C1f

IV + C2f
′′ + C3f + C4]φ1(y) dy = 0, (4.4.13)

where C1, C2, C3 and C4 are known constants and primes denote differentiation with
respect to x. The expression in brackets represents an ordinary nonhomogeneous
differential equation whose general solution is

f (x) = A1 cosh αx cos βx + A2 cosh αx sin βx

+ B1 sinh αx sin βx + B2 sinh αx cos βx + f0(x), (4.4.14)
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where f0(x) is the particular solution of this differential equation. The constants
A1, A2, B1 and B2 must be determined from the boundary conditions of the plate
in the X direction. If the plate problem is symmetrical in the X direction, we can
discard the unsymmetrical terms in Eq. (4.4.14) and use the simplified expression

f (x) = A1 cosh αx cos βx + B sinh αx sin βx + f0(x). (4.4.15)

As shown above, this method requires reasonably good assumptions of the dis-
placement field only in one independent variable and then generates an ordinary
differential equation in the remaining independent variable. After solving this differ-
ential equation, we have a fairly reliable assumption in that direction. This improves
the overall accuracy of Galerkin’s method. Although, in our discussion, we have
selected the Y direction for the assumed shape function, there is no reason why the
X direction cannot be used for this purpose. Generally speaking, one selects the
direction for the assumed function depending on the availability of a suitable shape
function. The other independent variable should be reserved for boundary conditions,
such as free-edges, that are more difficult to treat.

c. Principle of Conservation of Energy. When the plate is acted upon by con-
servative forces, pz(x, y), which have potential energy, the conservation-of-energy
equation is

We + Wi = 0. (4.4.16)

This equation states that the sum of the real work of the external forces, We, and that
of the internal forces, Wi , is zero.

Conservative forces are defined as forces whose work done in displacement of a
structure is path independent. Since this is the case for the lateral forces that act upon
the plate, we can write

We =
∫ a

0

∫ b

0
pz(x, y) · w(x, y) dx dy. (4.4.17)

The work of the internal forces represents the negative value of the strain energy; thus

Wi = −Ub = −1

2

∫ a

0

∫ b

0
(mxκx + myκy + mxyχ) dx dy, (4.4.18)

where the bending and torsional moments are given by Eqs. (1.2.26), (1.2.27)
and (1.2.29), respectively, while the pertinent strains κx, κy and χ are defined by
Eq. (1.2.21).

Since in this case we have only one energy equation at our disposal, the assumed
field of displacements can contain only one unknown constant W1; therefore

w(x, y) = W1φ(x, y). (4.4.19)

Substitution of this expression into the conservation-of-energy equation (4.4.16) yields
the unknown coefficient W1 in a very simple way. If the assumed deflection field
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satisfies all the prescribed boundary conditions of the plate, the so-obtained solu-
tions are surprisingly good. If necessary, however, the error minimization technique
described in Sec. 4.5 can further improve the results. Although the concept of conser-
vation of energy is very transparent and the required computational effort is relatively
small, for unknown reasons this energy method is seldom used for solution of static
plate problems.

d. Finite Element Method.† In essence, the FEM‡ is a piecewise application of the
classical Ritz method introduced in Sec. 4.2. As shown therein, central to this classical
energy procedure is the assumption of admissible displacement fields covering the
whole region of the plate. In many practical problems, however, it is quite difficult
or even impossible to generate suitable shape functions for plates with complicated
geometrical configurations and/or with difficult boundary conditions and supports
(Fig. 4.4.1). In contrast to this approach, the FEM deals with shape functions covering
only finite sized subdomains called “finite element.” Thus, instead of considering the
plate as a continuum, the FEM subdivides the structure into a number of finitely
sized and conveniently shaped subregions (Fig. 4.4.2) and considers the plate as an

P1

P2

Pz(x, y)

P3

P4

Y

X

Z, w

b

a

Fixed

Simply supported

Free

h

Figure 4.4.1 Plate of arbitrary shape and boundary conditions.

† We restrict ourselves here only to the displacement formulation.
‡ Throughout the book finite element methods and finite element(s) will be abbreviated as FEM and
FE, respectively.
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Finite elements
Point support

Simply supported

Free edge

Figure 4.4.2 Finite element representation of plate bridge.

assembly of small elements. As an analogy, we may use the mosaic representation
of a painting.

Within these elements we can use relatively simple shape functions. To obtain an
acceptable representation of the original continuum, a sufficient number of elements
is required. In addition, as a further contrast to the classical Ritz method, in the
FEM all mathematical manipulations necessary to obtain the appropriate functional
representing the total potential of the system can be evaluated in piecewise manner
from element to element with the help of a computer. The total potential is then com-
puted as the sum of the potentials of the individual finite elements. In this piecewise
interpretation of the original Ritz method, we also apply the principle of stationary
total potential to compute the response of the plate structure. The functions chosen
to describe the assumed displacement fields with the subregions must fulfill certain
criteria that are discussed later in Sec. 7.4 in detail.

Such a piecewise application of the Ritz method was first proposed by Courant
in 1943 [4.4.9]. Since that time the FEM has become one of the most important
computer-aided numerical methods for obtaining approximate solutions to a large
variety of real-life problems that arise in engineering and mathematical physics.
Consequently, a considerable part of this book is devoted to this very important
numerical method, which currently appears to monopolize the field of numerical
solution techniques.

e. Other Methods. Besides the variational methods discussed in this section, there
are a number of other ways for solving boundary value problems of plates by using
variational or direct energy methods. Here, we shall confine ourselves simply to
the enumeration of these other approaches: the Morley-Trefftz method [4.4.10], the
use of a modified Castigliano theorem [4.4.11], the complimentary energy method,
an alternative to the FEM [4.4.12], weighted residuals and the Hellinger-Reissner
variational principle [4.4.13], to name a few. Of course, this list is not complete.

Summary. As often mentioned previously, the single most important step in all
variational and direct energy methods is the selection of admissible shape functions
for the displacement fields. While satisfying all the prescribed boundary conditions
generally improves the achievable accuracy, this desirable requirement cannot always
be satisfied. This limitation can be overcome by applying the Lagrange multipliers in
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connection with the Ritz method. Although all methods treated in more detail in this
section require quite lengthy mathematical manipulations, the conservation-of-energy
procedure combined with the error-minimization technique appears to be the most
efficient in this respect. Furthermore, the limitations imposed on the classical energy
and variational methods by nonconventional geometrical shapes and odd boundary
conditions can be successfully overcome by using simple subdomains for which the
generation of shape functions is relatively easy. This technique is provided by the
FEM, which is the topic of numerous sections in this book.

ILLUSTRATIVE EXAMPLE I

Figure 4.4.3 shows a square plate subjected to p0 uniformly distributed lateral
force. Three edges of the plate are clamped, while the fourth one is simply
supported at x = a. To be determined is the deflection at the center of the plate
by applying the Lagrangian multiplier approach.

A

B

B

A

b

X

X

Y
a

p0

Section B-B

Section A-A

Z, w

Z, w

p0

Figure 4.4.3 Square plate with various boundary conditions.

The boundary conditions of the plate are

w(x, y) = 0 at x = 0, a,

∂w(x, y)

∂x
= 0 at x = 0

(4.4.20)
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and

w(x, y) = 0,
∂w(x, y)

∂y
= 0 at y = 0, a. (4.4.21)

The equation of the deflected plate surface is approximated by

w(x, y) =
∞∑

m=1

∞∑
n=1,3,5,...

Wmn

2
sin

mπx

a
·
(

1 − cos
2πy

a

)
. (4.4.22)

Since this equation does not satisfy the prescribed constraint of zero slope at
the edge x = 0, we use Lagrangian multipliers to also enforce this bound-
ary condition.

In our case, the total potential given in Eq. (4.2.1) becomes simplified; thus
we can write

� = −D

2

∫ a

0

∫ a

0

(
∂2w

∂x2
+ ∂2w

∂y2

)2

dx dy + p0

∫ a

0

∫ a

0
w(x, y) dx dy.

(4.4.23)

Since at x = 0 the slope must be zero,

∂w(x, y)

∂x
= π

a

∞∑
m=1

∞∑
n=1

mWmn

sin nπy

a
= 0, (4.4.24)

a sufficient constraint is

∞∑
m=1

mWmj = 0 for j = 1, 2, 3, . . . , ∞. (4.4.25)

Thus, we must have an infinite number of constraints to satisfy the zero-slope
boundary condition along the edge x = 0. Consequently, an infinite number of
Lagrange multipliers λ1, λ2, . . . , λn is required. To compute these, we use the
modified total potential given in Eq. (4.4.7). In our case, this becomes

�∗ = � +
∞∑

m=1

∞∑
n=1

λnmWmn. (4.4.26)

Substituting Eq. (4.4.22) into Eq. (4.4.23) and performing the required differ-
entiations and integrations, we obtain

� = −
∞∑

m=1

∞∑
n=1

Dπ4

8a2

{
W 2

mn

[
m4

2
+ (m2 + 4n2)2

4

]}

+
∞∑

m=1,3,5,...

∞∑
n=1

p0a
2

π

(
Wmn

m

)
. (4.4.27)
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Substituting this expression into Eq. (4.4.26), we can write

�∗ = Eq.(4.4.27) +
∞∑

m=1

∞∑
n=1

λnmWmn. (4.4.28)

After performing the differentiations as prescribed in Eq. (4.4.9), we satisfy the
stationary values of �∗ for each value of Wmn. Consequently, we can write

∂�∗

∂Wmn

= −Dπ4

4a2

{
Wmn

[
m4

2
+ (m2 + 4n2)2

4

]}
= 0 + p0

π

1

m
+ λnm = 0,

(4.4.29)

from which

Wmn = p0a
4(4/πm) + 4a2mλn

Dπ4[m4/2 + (m2 + 4n2)2/4]
. (4.4.30)

Similarly, Eq. (4.4.10) gives

∂�∗

∂λn

=
∞∑

m=1

mWmn = 0. (4.4.31)

Substituting Eq. (4.4.30) into Eq. (4.4.31), we have

4p0a
4

Dπ5

∞∑
m=1,3,5,...

1

[m4/2 + (m2 + 4n2)2/4]

+ 4a2λn

Dπ4

∞∑
m=1

m2

[m4/2 + (m2 + 4n2)2/4]
= 0, (4.4.32)

or, in more compact form,

4p0a
4

Dπ5
AI

mn + 4a2λn

Dπ4
AII

mn = 0, (4.4.33)

from which

λn = −p0a
2

π
Bn, (4.4.34)

where

Bn = AI
mn

AII
mn

. (4.4.35)

This constant is calculated by first summing AI
mn in the numerator and AII

mn in
the denominator separately and then performing the division. To evaluate λn,
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we must compute Bn. For B1 we obtained the approximate value of B1 ≈ 0.19.
Substituting this into Eq. (4.4.34), Eq (4.4.30) then yields

W11 = 0.00157
p0a

4

D
, W31 = 0.00007

p0a
4

D
. (4.4.36)

Similarly, with B3 ≈ 0.033, we get

W13 = 0.00004
p0a

4

D
, W33 = 0.00002

p0a
4

D
. (4.4.37)

With these Wmn constants, the equation of the deflected plate surface (4.4.22)
is now completely defined. For the deflection at the center of the plate, we
have obtained

[w(x, y)]x=a/2,y=b/2 = 0.00152
p0a

4

D
. (4.4.38)

A comparison with the more exact solution of this problem given in Ref. [2]
shows an error of approximately 3%. Finally, we would like to mention again
that, for the sake of simplicity, we omitted the quite lengthy intermediate math-
ematical operations.

ILLUSTRATIVE EXAMPLE II

The rectangular plate shown in Fig. 4.4.4 supports a uniformly distributed
load p0. Its span ratio is a/b = 1.2. The plate is clamped on two opposite
edges, while the other edges are simply supported. Determine the deflected

A A

B

B

b

X

Y

Z

X

p0

Section A-A

Section B-B

a

p0

Figure 4.4.4 Rectangular plate with clamped and simply supported boundary conditions.
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plate surface using the conservation-of-energy principle. Compare the obtained
center deflection with that quoted in Ref. [2].

The prescribed boundary conditions of the plate are

w(x, y) = 0 at x = 0, a, y = 0, b,

∂w(x, y)

∂y
= 0 at y = 0, b,

∂2(x, y)

∂x2
= 0 at x = 0, a.

(4.4.39)

We select a shape function with just one unknown coefficient, C, which satisfies
all the above given boundary conditions. Using only one term in the expressions
given in Table 4.2.1, we can write

w(x, y) = C

2
sin

πx

a

(
1 − cos

2πy

b

)
. (4.4.40)

Next, we calculate the work of the internal forces, which in this case has the
simplified form

Wi = −Ub = −D

2

∫ a

0

∫ b

0

(
∂2w

∂x2
+ ∂2w

∂y2

)2

dx dy = −11.9244
C2D

8

(π

a

)4
ab.

(4.4.41)

The work of the external forces is

We = p0

2

∫ a

0

∫ b

0
w(x, y) dx dy = C

abp0

2π
. (4.4.42)

From the principle of conservation-of-energy,†

C
abp0

2π
= 11.9244C2 Dπ4

8a4
ab, (4.4.43)

we obtain

C = 0.001098
p0a

4

D
or C = 0.0022784

p0b
4

D
. (4.4.44)

Thus the equation of the deflected plate surface becomes

w(x, y) = 0.0011392
p0b

4

D

[
sin

πx

a

(
1 − cos

2πy

b

)]
; (4.4.45)

† Given in Eq. (4.4.16).
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hence the center deflection is

[w(x, y)]x=a/2,y=b/2 = 0.0022784
p0b

4

D
. (4.4.46)

A comparison with Timoshenko’s more exact value given in Ref. [2]

[w(x, y)]x=a/2,y=b/2 = 0.00223
p0b

4

D
(4.4.47)

shows an error of only 2.1%. Even this relatively small error can be further
reduced by applying the error-minimization technique treated in the next section.

ILLUSTRATIVE EXAMPLE III†

Let us consider a rectangular plate clamped all around its edges, as shown in
Fig. 4.4.5. This plate is subjected to p0 uniformly distributed lateral load. Deter-
mine the equation of the deflected plate surface by using Kantorovich’s method.

Y

X

Y

p0

p0 Z, w O

a a

b

b

Z, w

Figure 4.4.5 Clamped rectangular plate.

First, we make a reasonable assumption for the variation of w(x, y) in the
Y direction that satisfies the following boundary conditions:

w[x, y] = 0 and
∂w

∂y
= 0 at y = ±b. (4.4.48)

† After Ref. [4.4.4].
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Assuming only one term expansion, we write

w[x, y] = φ[y] · f (x) = [y2 − b2]2f (x). (4.4.49)

Applying Galerkin’s variational equation,†

∫ b

−b

[
∇4w[x, y] − p0

D

]
· φ[y] dy = 0. (4.4.50)

Substituting the assumed shape function into this equation gives

∫ b

−b

{[
24f + 2[12y2 − 4b2]f ′′ + [y2 − b2]f IV − p0

D

]
[y2 − b2]2

}
dy = 0,

(4.4.51)

or

0.8127b9f IV − 1.6254b7f ′′ + 25.6b5f = 1.0667
b5p0

D
, (4.4.52)

where primes denote differentiations with respect to x. Its characteristic
equation is

0.8127b9λ4 − 1.6254b7λ2 + 25.6b5λ = 0, (4.4.53)

the roots of which are

λi = [±α ± βi]
1

b
, α = 2.075, β = 1.143, i = 1, 2, 3, 4.

(4.4.54)

The general solution of Eq. (4.4.52) is‡

f (x) = A cosh α
x

b
cos β

x

b
+ B sinh α

x

b
sin β

x

b
+ f0(x), (4.4.55)

where

f0 = p0

24D
(4.4.56)

represents a particular solution of Eq. (4.4.52).
Applying the boundary conditions at the edges x = +a, x = −a, we obtain

f (a) = A cosh α
a

b
cos β

a

b
+ B sinh α

a

b
sin β

a

b
+ p0

24D
= 0 (4.4.57)

† See Sec. 4.3.
‡ After discarding the unsymmetrical terms.
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and
[

df (x)

dx

]
x=a

= A

[
a

b
sinh α

a

b
cos β

a

b
− β

b
cosh α

a

b
sin β

a

b

]

+ B

[
α

b
cosh α

a

b
sin β

a

b
+ β

b
sinh α

a

b
cos β

a

b

]
= 0.

(4.4.58)
The solution of these two equations gives

A = γ1

γ0
· p0

24D
, B = γ2

γ0
· p0

24D
, (4.4.59)

where (for µ = a/b)

γ0 = β sinh αµ cosh αµ + α sin βµ cos βµ,

γ1 = −(α cosh αµ sin βµ + β sinh αµ cos βµ),

γ2 = α sinh αµ cos βµ − β cosh αµ sin βµ. (4.4.60)

Thus, the final form of the equation of the deflected plate surface will be

w(x, y) = p0(b
2 − y2)2

24γ0D

(
γ1 cosh α

x

b
cos β

x

b
+ γ2 sinh α

x

b
sin β

x

b

)

+ p0(y
2 − b2)2

24D
. (4.4.61)

For a = b, the maximum deflection is

w(0, 0) = 0.01996
p0b

4

D
. (4.4.62)

The error in this case is between 1 and 2%.
We can improve this result by either using more terms in the assumed

shape function

φk(y) = (y2 − b2)2 · y2k−2 (4.4.63)

or applying the obtained result as an assumed shape function now in the X

direction and determining f (y) as described above. In both cases, however,
the required mathematical operations will be extremely time consuming.
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4.5 Techniques to Improve Energy Solutions

The success of variational methods, as mentioned earlier, depends principally on
the suitable choice of approximate functions, but the nature of the load may also
have an influence on convergence of the solution. That is, for obtaining the same
accuracy, a distributed load usually requires less terms in the polynominal expression
of the deflections than a concentrated force. Accelerated convergence can be attained,
however, by replacing the concentrated force with two distributed loads, as shown
in Fig. 4.5.1. By superimposing the deflections due to this equivalent load system,
the deflections of the plate subjected to a concentrated force can be approximated
more closely.

Further improvement in the results of energy methods can be accomplished by a
generalization of the error distribution principle introduced by Szilard [4.7.2]. Let us
assume that an approximation w1(x, y) to the exact solution has already been found
by either Ritz’s or Galerkin’s method. This first approximation of the deflection
surface is expressed in infinite series form:

w1(x, y) =
n∑

i=1

Wifi(x, y) for i = 1, 2, 3, . . . , n. (4.5.1)

Each term in Eq. (4.5.1) must at least satisfy the geometrical boundary conditions
of the plate. If all boundary conditions are satisfied, convergence of the solution
is usually improved. Although the latter limitation is required only for Galerkin’s
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Figure 4.5.1 Equivalent load system for concentrated forces.

method, we assume in the first part of our discussion that all terms in Eq. (4.5.1)
satisfy all boundary conditions of the problem.

Since the obtained solution is only an approximation of the actual plate deflections,
the insertion of Eq. (4.5.1) into the governing differential equation (1.2.30) yields
residual errors ε within the interior domain of the plate. Thus, at point, ζ, η, the
residual error is

(ε1)ζ,η = (D ∇2 ∇2w1 − pz)ζ,η. (4.5.2)

The definite integral

ε1 =
∫∫
(A)

(D ∇2 ∇2w1 − pz) dx dy �= 0 (4.5.3)

represents the total residual error of the first approximate solution.
Next, we select a suitable error function ε1(x, y). If the edges of the plate have

continuous unyielding supports, a parabolic error function, with its apex at the locus
of the maximum deflection, usually gives good results. An error function, of course,
can also be generated by evaluating Eq. (4.5.2) at numerous points and by curve
fitting the results. This approach, however, is more tedious and usually not required.

We write the improved solution in the form

w(x, y) = w1(x, y) + w2(x, y) + · · · , (4.5.4)

where

w2(x, y) =
m∑

i=1

ciφi(x, y). (4.5.5)

Again, each function φi(x, y) in Eq. (4.5.5) must satisfy the geometrical boundary
conditions of the problem. The unknown coefficients (c1, c2, . . . , cm) are determined
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by the least-squares method, which brings the errors toward zero as much as possible.
Thus, the necessary minimum conditions are obtained from

∂

∂ci

∫∫
(A)

[D ∇2 ∇2w2(x, y) − ε1(x, y)]2 dx dy = 0

for i = 1, 2, 3, . . . , m.

(4.5.6)

This procedure, as in the case of Ritz’s method, leads to a set of linear equations in
the unknown parameters. The solution of these equations yields the coefficients ci.
When the total residual error is small, the use of one term in Eq. (4.5.5) is usually
sufficient. If required, this error distribution procedure can be repeated until the order
of the total residual error becomes negligible.

It appears that the least-squares method could also be used for determination of the
first approximation, w1(x, y), to the deflections. This approach, however, as Weber
points out [4.5.3], often leads to an entirely incorrect solution, in which the deflections
even have wrong signs throughout. The method presented here is quite different, since
it consists merely of improving a close approximation by means of minimizing a small
residual error. On the other hand, when the originally chosen displacement function
w1(x, y) is incapable of further approximation of the exact solution, regardless of the
number of terms carried, this simple technique may result in a significant improve-
ment. In fact, in many instances it may be more economical to use a limited number
of terms in the first approximation, w1(x, y), and repeat the error distribution twice.

We may also partition the plate into k subregions, as shown in Fig. 4.5.2. Now the
residual first error for each subregion can be determined from

ε1,k =
∫∫

(Ak)

D(∇2 ∇2w1 − pz) dAk �= 0. (4.5.7)

If our first approximation, w1(xy), satisfies only the geometrical boundary con-
ditions, we have to minimize the boundary errors as well as the residual errors of
the interior domain [4.5.4]. This alternative procedure, however, tends to be more
complex than the one introduced above.

Figure 4.5.2 Subregions.
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Summary. As the following example indicates, this simple error distribution tech-
nique gives encouraging results when the approximate solution obtained by varia-
tional methods is unable to represent the exact deflections beyond a certain degree
of accuracy. Since the method makes further use of the differential equation, it
is especially recommended for refinement of Galerkin’s method. For concentrated
loads, accelerated convergence can be attained by introduction of an equivalent
load system.

ILLUSTRATIVE EXAMPLE

A clamped square plate of uniform thickness is subjected to a concentrated
lateral force Pz at its center. An approximate expression for the deflected plate
surface has been obtained by Vlasov’s method in the form

w1(x, y) = Pza
2

D
[1.935×10−3X1(x) ·Y1(y) + 6.1594×10−6X1(x) ·Y2(y)

+ 6.1594×10−6X2(x) ·Y1(y) + 3.3489×10−8X2(x) ·Y2(y)

− 1.3619×10−4X1(x) ·Y3(y) − 1.3619×10−4X3(x) ·Y1(y)],
(4.5.8)

where Xi(x) and Yi(y) represent the eigenfunctions of clamped beams pertinent
to the ith mode. Improve this solution by distributing the residual error using
the least-squares approach.

The total residual error is determined from Eq. (4.5.3), yielding

ε1 =
(

D

∫ a

0

∫ a

0
∇4w1 dx dy

)
− Pz = Pz(2.2534 + 0.00249 + 0.00638

+ 0.000008261 − 0.1816 − 0.9824) − Pz = 0.098Pz. (4.5.9)

Let us assume that the error function has the form

ε1(x, y) = A0 sin
πx

a
sin

πy

a
, (4.5.10)

where

A0 ≈ 0.098Pz∫ a

0

∫ a

0
sin(πx/a) sin(πy/a) dx dy

= 0.098π2Pz

4a2
. (4.5.11)

For w2(x, y) we introduce a simple one-term expression,

w2(x, y) = c

4

(
1 − cos

2πx

a

)(
1 − cos

2πy

a

)
, (4.5.12)

which satisfies all boundary conditions of the problem.
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Equation (4.5.6) can be written as

2
∫ a

0

∫ a

0

{
[D ∇2 ∇2w2(x, y) − ε1(x, y)]

× ∂

∂ci

[D ∇2 ∇2w2(x, y) − ε1(x, y)]

}
dx dy = 0. (4.5.13)

Substitution of Eqs. (4.5.10) and (4.5.11) into this expression gives

2
∫ a

0

∫ a

0

{
Dc

4

(
2π

a

)4 [
cos

2πx

a

(
cos

2πy

a
− 1

)
+ 2 cos

2πx

a
cos

2πy

a

+
(

cos
2πx

a
− 1

)
cos

2πy

a

]

− 0.098π2Pz

4a2
sin

πx

a
sin

πy

a

}

× D

4

(
2π

a

)4 [
cos

2πx

a

(
cos

2πy

a
− 1

)
+ 2 cos

2πx

a
cos

2πy

a

+
(

cos
2πx

a
− 1

)
cos

2πy

a

]
dx dy = 0.

(4.5.14)
After simplification, we evaluate the definite integrals in Eq. (4.5.14) and deter-
mine the required constant:

c = 0.5586 × 10−4 Pza
2

D
. (4.5.15)

Figure 4.5.3 Exact–vs.–approximate solution.
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Hence, the improved expression for the deflections becomes

w(x, y) = w1(x, y) + 0.13965 × 10−4 Pza
2

D

(
1 − cos

2πx

a

)(
1 − cos

2πy

a

)
,

(4.5.16)

where w1(x, y) is defined by Eq. (4.5.8).
As Fig. 4.5.3 indicates, by this simple procedure a close approximation of

the exact solution for the interior region of the plate has been attained.
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4.6 Application of Energy Methods to Moderately
Thick Plates

a. Galerkin’s Method. We can extend here the use of Galerkin’s variational
approach, treated in Sec. 4.3 for thin plates, to moderately thick plates. We seek,
again, approximate solutions for the unknown deflections w and rotations ψx and ψy

in finite linear combinations of shape functions in the form

w(x, y) =
m∑

m=1

Aiφi(x, y) for i = 1, 2, . . . , m, (4.6.1a)

ψx(x, y) =
n∑

j=1

Bjφj (x, y) for j = 1, 2, . . . , n (4.6.1b)

ψy(x, y) =
k∑

k=1

Ckφk(x, y) for k = 1, 2, . . . , k, (4.6.1c)

where φi, φj and φk are independent, continuous displacement functions that satisfy
all prescribed boundary conditions and have at least the same order of deriva-
tives as called for by the differential operators in the governing equations of the
moderately thick plates.† These differential equations can be written in the following

† See Sec. 1.5.
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general forms:

L1(w, ψx, ψy) − pz = 0, (4.6.2a)

L2(w, ψx, ψy) = 0, (4.6.2b)

L3(w, ψx, ψy) = 0, (4.6.2c)

where L1, L2 and L3 represent differential operators; w, ψxψy are displacement
components and pz is the external load.

The unknown parameters Ai, Bj and Ck in Eq. (4.6.1) are determined from
Galerkin’s variational equations (4.3.3), which in this case take the following forms:

∫ a

0

∫ b

0
[diff. eq. (4.6.2a)]φi(x, y) dx dy = 0, (4.6.3a)

∫ a

0

∫ b

0
[diff. eq. (4.6.2b)]φj (x, y) dx dy = 0, (4.6.3b)

∫ a

0

∫ b

0
[diff. eq. (4.6.2c)]φk(x, y) dx dy = 0. (4.6.3c)

These equations provide i + j + k linearly independent algebraic equations for the
determination of the parameters Ai, Bj and Ck .

However, instead of using Reissner’s or Mindlin’s three differential equations, we
may considerably simplify this variational procedure by utilizing the simplified form
of the governing equations, as given in Eq. (1.5.11). That is, this differential equation
is formulated only in terms of transverse displacement. Consequently, we can write

∫ a

0

∫ b

0

[
D

(
∇2w + h2(2 − ν)

10(1 − ν)
∇3w − pz

)]
φi(x, y) dz dy = 0

for i = 1, 2, . . . , m,

(4.6.4)

where ∇3w is defined by Eq. (1.5.12). The boundary conditions for the deflec-
tions w(x, y) and, consequently, for the shape functions φi are already discussed
in Sec. 1.5.

b. Ritz’s Method. We can also use Ritz’s method, treated in Sec. 4.2, to obtain
approximate, analytical solutions for laterally loaded, moderately thick plates. Again,
we express the displacement fields through Eq. (4.6.1). In the case of simply sup-
ported rectangular plates, for example, we may use the following expressions for the
displacement components:

w∗(ξ, η) =
∞∑

m=1

Am sin(mπξ) sin(πη), (4.6.5a)

ψ∗
x (ξ, η) =

∞∑
m=1

Bm cos(mπξ) sin(πη), (4.6.5b)
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ψ∗
y (ξ, η) =

∞∑
m=1

Cm sin(mπξ) cos(πη), (4.6.5c)

where w∗, ξ and η represent normalized expressions by the plate dimensions, that is,

ξ = x

a
, η = y

b
, w∗ = w

b
. (4.6.6)

The bending strain energy for the Mindlin plate can be written [4.6.2] as

U ∗
b = D

2

∫ 1

0

∫ 1

0

{(
1

a

∂ψ∗
x

∂ξ
+ 1

b

∂ψ∗
y

∂η

)2

− 2(1 − ν)

[
1

ab

∂ψ∗
x

∂ξ
· ∂ψ∗

y

∂y
− 1

4

(
1

b

∂ψ∗
x

∂η
+ 1

a

∂ψ∗
y

∂ξ

)]

+ κ2Gh

D

[(
ψ∗

x + b

a

∂w∗

∂ξ

)2

+
(

ψ∗
y + ∂w∗

∂η

)2
]}

ab dξ dη.

(4.6.7)
Similarly, the nondimensional form of the potential energy of the external
forces becomes

V ∗ = −
∫ 1

0

∫ 1

0
[p∗

z (ξ, η) · w∗(ξ, η)]ab dξ dη. (4.6.8)

Thus, the total potential of the system, expressed in nondimensional terms, is

�∗ = U ∗
b + V ∗. (4.6.9)

After substituting the admissible functions of the displacement fields (4.6.5) into
Eqs. (4.6.7) and (4.6.8), respectively, we apply the principle of minimum poten-
tial energy,

∂�∗

∂Am

= 0,
∂�∗

∂Bm

= 0,
∂�∗

∂Cm

= 0. (4.6.10)

This yields a set of algebraic equations, from which the unknown parameters Am, Bm

and Cm can be determined.

Summary. To obtain approximate, closed-form solutions for the deflections of mod-
erately thick plates, we applied the basic concepts of the Galerkin and Ritz methods
in this section. Although the underlying principles of both methods, as discussed in
the foregoing sections, are not changed, the required mathematical operations can be
quite extensive. For this reason, the use of the simplified form of Reissner’s equation
for moderately thick plates in connection with Galerkin’s variational approach is
recommended.
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4.7 Summary

As already discussed in Chapters 2 and 3, the more exact classical methods of ana-
lytical solutions cannot be applied to plate-bending problems in cases of irregular
geometry and boundary conditions or loads. Consequently, approximate analytical
approaches must be used if one desires to obtain closed-form solutions to the above-
mentioned problems. The energy methods treated in this chapter offer the required
flexibility and generality in such cases. Furthermore, some of these techniques can
also be applied for solution of vibration and stability problems of plates, as shown
in Secs. 14.5 and 16.3. In addition, the basic ideas underlying the Galerkin and Ritz
methods also allow their extensions to moderately thick plates [4.6.2, 4.6.3].

An important merit of the energy methods is the relatively uncomplicated way in
which they can be applied without actually solving the pertinent differential equations
of plates. To obtain realistic results, the most important step in all energy methods
is the selection of suitable shape functions. To facilitate such selection, the reader
will find numerous usable suggestions (including worked examples) in Tables 4.2.1
and 4.3.1.

Based on the author’s experience, the conservation-of-energy principle followed
by an error minimization procedure offers the most efficient way to obtain very good
results. [4.5.2] Both concepts are quite transparent; consequently, they are easy to
learn. Naturally, these comments are valid only for rectangular plates having continu-
ous boundary conditions, as shown in all illustrative examples of this chapter. Finally,
it is recommended that in the error minimization technique one should resort to shape
functions that are different from the one used in connection with the conservation
of energy. In this way, the superposition of the two shape functions, compensating
each other, can better approximate the actual deflection field of the plate. In addition,
experienced analysts can also select error functions that correspond to the actual error
distribution of the problem at hand, thus further improving the achievable accuracy.

Leissa and his co-workers evaluated and compared nine other energy methods
using (1) a uniformly loaded, simply supported elliptical plate and (2) a square plate
having free-edges supported at four asymmetrically located interior points and loaded
by its own weight [4.3.20]. Here, we would like to summarize their most important
findings concerning only the Ritz (R), Galerkin (G) and Kantorovich (K) methods,
since, of the nine energy methods investigated by them, these three have been treated
in this chapter. With regards to their capability in obtaining accurate solutions, the K
procedure appears to be the best, including yielding higher derivatives required for
the determination of moments and shears in the plate. Since the R and K methods
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only require the satisfaction of the essential boundary conditions, they are more
effective in treating free boundary conditions than the G method. All three methods
are difficult to apply in the case of curvilinear boundaries. Concerning the ease in
learning to understand and use these methods by practicing engineers, the K and
G methods are conceptually more difficult, since they require the understanding of
variational calculus. Furthermore, the K method is often beyond the grasp of the
average engineer.

The disadvantage of all energy methods is the fact that the solution procedure can-
not be automated. Therefore, a large portion of the computation must be carried out by
“longhand.” Although the required differentiations and integrations are relatively sim-
ple, they become quite lengthy. Nowadays, however, this tedious task can be reduced
to a large degree by using programs of “symbolic mathematics” [A.1.18–A.1.21].
In addition, the resulting algebraic equations can also be solved with the help of
these programs. Finally, it should be mentioned that some of the more sophisticated,
programmable calculators offer, to somewhat lesser degree, similar services at far
more acceptable price.

Problems†

4.2.1. Determine an approximate expression for the deflections of the plate shown
in Fig. 4.4.4, applying the Ritz method. Assume a span ratio of a/b = 1.2.
Compute the center deflection and compare your value with the results given
in Illustrative Example II of Sec. 4.4.

4.2.2. Figure 4.2.2 shows a clamped rectangular plate subjected to a uniform load
p0. Determine an approximate equation for the deflections using the Ritz
method. Assume only a one-term shape function in form

w(x, y) = c(x2 − a2)2(y2 − b2)2.

Compare the so-obtained center deflection with that given in Eq. (2.2.29).
4.2.3. Find an approximate equation for the elastic surface of a rectangular plate,

shown in Fig. 2.3.3, using Ritz’s method. Determine the moments mx and
my at the center of the plate.

4.2.4. A simply supported rectangular plate carries a concentrated load Pz at x =
a/2 and y = b/2, as shown in Fig. 2.1.2. Using Ritz’s method, determine an
approximate expression for the deflections. Evaluate the maximum deflection.

4.2.5. A uniformly loaded rectangular plate is simply supported at the edges y =
0, b. The edge x = 0 is clamped, while the fourth side of the plate at x = a

is free. Assuming a one-term shape function in the form

w(x, y) = c
(a

x

)2
sin

(
b

πy

)
,

determine the deflection at the center of the plate.

† The first two numbers refer to the corresponding section.
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4.3.1. Solve the problem given in problem 4.2.2 but this time applying Galerkin’s
variational approach. Compare the two methods for their efficiency
and accuracy.

4.3.2. Redo problem 4.2.5 using Galerkin’s method.
4.3.3. Figure 2.4.1 shows a simply supported plate subjected to a parabolic load.

Determine the center deflection using Galerkin’s method.
4.3.4. Using Galerkin’s method, redo problem 2.2.4.
4.4.1. Using the conservation-of-energy principle (CEP), find a one-term approxi-

mation for the plate problem shown in Fig. 4.3.2.
4.4.2. Redo problem 4.2.2 using the CEP.
4.4.3. A simply supported rectangular plate is subjected to a hydrostatic load, as

shown in Fig. 2.2.2. Determine an approximate expression for the deflections
using the CEP.

4.4.4. Using the CEP, determine the elastic surface of the plate shown in Fig. 2.3.3.
4.5.1. Improve the solution obtained in problem 4.4.2 by using the error minimiza-

tion technique (EMT), treated in Sec. 4.5.
4.5.2. Using the EMT, obtain an improved result for the deflected plate surface

obtained in the solution of problem 4.4.1.
4.5.3. Improve the solution of problem 4.2.4 by applying the EMT.
4.5.4. Using the EMT, improve the solution obtained in problem 4.4.4.



Part II
Numerical Methods
for Solution of Static,
Linear-Elastic Plate
Problems

As we have already discussed and illustrated in the Introduction to this book, struc-
tural plates have a multitude of applications in extremely diverse fields of the industry.
Consequently, economical and reliable analyses of various types of plate structures
are of great interest to civil, architectural, mechanical and aeronautical engineers and
naval architects.

In Chapter 1, we formulated the flexural behaviors of various plate types, introduc-
ing mathematically correct partial differential equations. Unfortunately, the analytical
solutions of these differential equations have been limited to homogeneous plates of
relatively simple geometry and loading and boundary conditions. Even when analyt-
ical solutions could be found, they were often too difficult and cumbersome to use
in everyday engineering practice. Thus, general solution techniques are required that
are applicable to plates of arbitrary geometry and loadings and can handle various
boundary conditions with relative ease. In addition, their concept should be trans-
parent and their technique easy to learn. The numerical methods treated in this book
satisfy most of these practical requirements.

The aim of all these numerical methods is to provide suitable computational
algorithms for obtaining approximate numerical solutions to difficult problems of
mathematical physics. The numerical techniques introduced in Part II of the book are
the so-called discrete methods. That is, the continuum of the plate or its boundary
is discretized either mathematically or physically. Here we will treat the following
numerical methods for the solution of various, often very difficult, plate problems:

(a) finite difference methods (FDMs),
(b) gridwork method (GWM),
(c) finite element method (FEM),

237Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
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(d) finite strip method (FSM) and

(e) boundary element method (BEM).

Of these five methods the FDM and BEM are based on mathematical discretization
of the plate continuum or its boundary, respectively, while the others employ various
types of physical discretization techniques.

Although we intend to solve here only linear-elastic bending problems of plates,
in subsequent parts of the book the reader will find extensions of these numeri-
cal methods to special plates, including treatments of various dynamic and stabil-
ity problems.

a. Finite Difference Methods. These are the oldest—but still very viable—nu-
merical methods and are especially suited for the solutions of various plate problems.
As already mentioned, the FDM is based on a mathematical discretization of the
plate continuum. For this purpose, the plate is covered by a two-dimensional mesh
(Fig. Ov.1). Next, the partial derivatives in the governing plate equation (1.1.30)
are replaced by corresponding finite difference quotients at each mesh point. In this
way, we transform the differential equation governing the displacements w(x, y) into
algebraic equations. The finite difference expressions for the interior points are con-
veniently given in so-called stencil forms, which represent graphical representations
of the pertinent finite difference expressions. These stencils must usually be modified
at the boundaries in order to satisfy the prescribed boundary conditions. Since the
FDM gives an algebraic equation at each mesh point, the solution of these coupled
equations yields the displacement wi at each mesh point “i.”

A considerable improvement in accuracy over the above-discussed ordinary FDM
can be obtained by approximating the governing differential equation at several mesh
points. This approach, however, can be quite involved. Thus, these so-called multi-
local methods should only be used when pertinent stencils are readily available.

Although currently the FEM has achieved an almost exclusive dominance in the
numerical analysis of surface structures, it would be shortsighted not to consider

Finite difference
 mesh

Mesh point

Z, w

Y

O

X

Figure Ov.1 Finite difference discretization of plate.
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the FDM as viable alternatives in plate analysis. That is, the FDM may offer the
following advantages over the FEM:

1. The procedure is simple and entirely transparent to the user. Consequently,
there is no “black-box” mentality involved, since the analyst is always in
command.

2. The use of the FDM does not require elaborate program systems with input
and output procedures that are often difficult to learn.

3. The only computer program required is an algorithm for the solution of a set
of algebraic equations that is readily available and very simple to use.

4. The number of equations is considerably reduced. For the use of the multilocal
approach, for instance, not even a computer is required, since the limited
number of equations generated by this highly accurate method can also be
solved by some upscale scientific calculators with built-in equation solvers.

b. Gridwork Method. This powerful numerical method for the analysis of surface-
type structures, such as plates and shells, was the forerunner of the now more popular
FEM. Consequently, it exhibits many affinities with the FEM. Using the GWM, we
replace the continuum of the plate by an equivalent gridwork of beams. Thus, this
approach is based on physical instead of mathematical discretization. To determine
the required equivalent bending and torsional stiffness of these beams, we may use
one of the following procedures:

1. State the equivalence of the strain energies of the plate and gridwork.
2. Use the equivalence of the stress conditions between the original continuum

and its substitute system.
3. Employ a limit approach of the corresponding finite difference equation of

a substitute system. That is, by introducing infinitely small mesh widths, the
finite difference equation of the substitute system should pass into the dif-
ferential equation of the plate. From this requirement, equivalent values for
bending and torsional stiffness can be determined.

Analysis of the substitute gridwork of beams (Fig. Ov.2) follows the matrix dis-
placement method of three-dimensional framed structures that is currently familiar to

Equivalent beams

Y

X
Node points

Nodal force

Simple support

O

Z, w

Figure Ov.2 Gridwork representation of plate bridge.
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all structural engineers. Furthermore, all pertinent computer programs can be used for
the analysis of diverse plate problems. This is one of the most important advantages of
the GWM. Analysis of the substitute beam structure yields the nodal displacements,
that is, one translation and two rotations. As with the matrix displacement method,
treatment of the boundary conditions is relatively simple. This is not always the case
with the determination of the internal forces of the plate based on the displacement
field of the substitute structure. The FDM offers a welcome help in this respect.

Taking patterns from the FEM, we can also create so-called gridwork cells having
three, four or more nodal points. These gridwork cells are, for all practical purposes,
equivalent to finite elements; thus, they can be used in any finite element program.
Furthermore, it is often easier to create so-called conforming† framework cells than to
create their finite element counterparts. Consequently, the convergence characteristics
of such conforming framework cells in elastic stability analysis, for instance, are
superior to those of nonconforming finite elements.

c. Finite Element Method. The FEM is currently the most powerful and versatile
numerical technique for the solution of structural-mechanical problems. The FEM
applies a physical discretization in which the actual continuum is replaced by an
assembly of discrete elements (Fig. Ov.3), referred to as finite elements, connected
together to form a two- or three-dimensional structure.

Several types of FEMs have been developed for analyzing various plate problems.
The three major categories are (a) FEM based on displacements, (b) mixed or hybrid
FEM and (c) equilibrium-based FEM. Of the three approaches, the displacement
method is the most natural and therefore the most used in engineering. Hence, we in
this book we deal exclusively with the displacement-type of FEM.

As already mentioned in Sec. 4.4c, in the FEM the continuum of plate is replaced
by an assembly of a number of individual elements connected only at a limited

Simply supported

Finite element

Fixed

Node point

Free edge
X

Pi

Z, w

Y

O

Figure Ov.3 Arbitrary plate discretized by triangular finite elements.

† For a definition see Secs. 7.2 and 7.4.
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number of so-called node points. The method assumes that if the load deforma-
tion characteristics of each element can be defined, then by assembling the ele-
ments the load deflection behavior of the plate can be approximated. Mathematically,
the FEM is based on the Ritz variational approach. In this case, however, we
apply this classical energy method piecewise over the plate, as already discussed
in Sec. 4.4c.

The practical analysis of a plate using the FEM consists of a six-stage process:

1. discretization of the continuum,
2. formulation of the element stiffness matrix,
3. assembly of the individual elements into a plate structure,
4. imposition of the prescribed boundary conditions,
5. solution of the resulting matrix displacement equations and
6. evaluation of the results.

Once the second stage has been completed, the solution technique follows the standard
matrix displacement approach used in the analysis of framed structures. Thus, here
we need only elaborate on the discretization and element formulation processes.

In the discretization of the plate, we idealize its continuum by using imaginary
lines to divide it into a number of two-dimensional finite elements. These elements
are assumed to be interconnected at their nodal points. The displacements of these
nodal points are the basic unknowns, similar to the matrix displacement analysis of
framed structures.

In the formulation of element stiffness matrices, shape functions are chosen to
uniquely define the state of displacements within each element in terms of nodal
displacements. This is done by selecting shape functions to specify the pattern in
which the elements are to deform. Using these shape functions, the element stiffness
matrices are derived by applying either the principle of minimum potential energy or
that of virtual work.

Like its forerunner, the matrix displacement method, the FEM is also extremely
well suited to computer applications. That is, because of the matrix structure of
its formulation, most of the subroutines of a finite element program is based on
matrix manipulations. Pertinent algorithms are, however, mostly provided in perma-
nent library forms of all scientific computer languages. In addition, the reader can find
some books that exclusively deal with the programming aspects of the FEM. These
books† are often accompanied with diskettes that contain the necessary algorithms in
prerecorded form, further facilitating their applications.

There are also numerous, commercially available finite element program systems
that can deal with various plate problems. Such widely used program systems include
ADINA, ANSYS, ASKA, MARC, NASTRAN, STRUDL and SAP, to name a few.
Since they are too general, these very large program systems are relatively cumber-
some to use for the solution of a specific plate problem. In addition, their learning
curves are quite steep. To avoid such difficulties, program systems (such as WinPlate
Primer‡) were developed that are devoted exclusively to the solution of various plate
problems. In choosing a finite element package, one should consider the convergence

† For the list of them see Sec. 7.13.
‡ See Section A.4.2.
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characteristics of the program, the ease in generating the input data and the way one
can evaluate the results. (These considerations are discussed in detail in the pertinent
sections of Chapter 7).

d. Finite Strip Method. This method represents a semianalytical, seminumerical
process that offers substantial computational advantages for a specific class of plate
problems by drastically reducing the number of equations to be solved. The FSM was
originally presented as an extension of the FEM for rectangular plate bending in which
two opposite ends in one (usually in the longitudinal) direction are assumed to be
simply supported while the other two edges can have arbitrary boundary conditions.
We subdivide the plate into a small number of strips each of constant thickness
(Fig. Ov.4). These strips represent two-dimensional finite elements having simple
polynomial functions in one direction and a continuously differentiable smooth series
in the other. Thus, the FSM can be considered as a special case of the FEM.

The FSM was considerably improved after its initial introduction in 1968. Now,
boundary conditions other than simple supports in the longitudinal directions can be
used. Furthermore, the method was also extended to cover vibration and stability
analyses of thin and even moderately thick plates. The FSM can be employed advan-
tageously in static, dynamic and stability analysis of rectangular plates, bridge slabs,
box-girder bridges and shear wall-frame systems in multistory buildings.

e. Boundary Element Method. In recent years, the BEM has emerged as a power-
ful alternative to the FDM and FEM. While these and all other previously discussed
numerical solution techniques require the discretization of the entire plate domain,
the BEM applies discretization only at the boundary of the continuum (Fig. Ov.5).

Boundary element methods are usually divided into two categories: direct and
indirect BEMs. The direct BEM formulates the problem in terms of variables that
have definite physical meanings, such as displacements of the boundary nodes of the
plate. In contrast, the indirect BEM uses variables whose physical meanings cannot
always be clearly specified. Consequently, the direct BEM is more transparent. For
this reason, the direct BEM is preferred by engineers and, thus, will be treated
exclusively in this book. The indirect BEM still remains very much the province of
applied mathematicians.

The essential feature of this method is that the governing differential equation of the
plate is transformed into a set of integral equations on the boundary using Galerkin’s
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Figure Ov.4 Uniformly loaded plate represented by finite strips.
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Figure Ov.5 Uniformly loaded plate discretized by using linear boundary elements.

variational approach. The so-obtained integral equations are then discretized by the
help of so-called fundamental solutions of the related field equation, thus creating a
finite number of elements around the external boundary of the plate. These discretized
equations include nodal unknowns at the boundary of the plate alone. The prescribed
boundary conditions are then used to connect the unknown boundary values to the
known ones.

Mathematically, the direct version of the BEM is closely related to the collocation
method and as such is not extremely difficult to relate to other domain-type meth-
ods. Thus, in many cases, it appears to be advantageous to combine the BEM with
the FEM.

Several interesting advantages can be attributed to the BEM. The most important
of these are

1. simplified analysis by reduction of the size of the problem to be handled and
2. ease of treatment of infinite and semi-infinite domains, such as for plate-soil

interactions

In contrast to the FDM and FEM, currently the BEM is not a general-purpose
numerical approach but is under rapid development. While the FEM can use, for
instance, very sophisticated computer power in its preprocessing and postprocessing
phase, the BEM begins with elementary solutions and uses computer implementation
mostly in the very last stage. Although the mathematical requirements for the use of
the BEM are much higher than in other numerical methods discussed here, anyone
acquainted with influence lines or influence surfaces and superposition of unit solu-
tions will find the main ideas of the BEM not too difficult to understand. The future
of the BEM lies in making the method more accessible to the practicing engineers.

Examples. The numerical examples given in this book are solely for illustrating the
applications of the various methods. Consequently, the subdivisions used are often
very crude. Of course, by applying finer discretizations, the obtainable accuracy can
be increased up to certain point. That is, after the convergence curve flattens out, a
finer subdivision merely creates more work—and even divergence caused by roundoff
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errors—instead of providing the desired higher accuracy. Thus, it is important that
the user know the convergence characteristics of the numerical method he or she
intends to use and plan the discretization of the plate structure accordingly.

Finally, the analyst should be aware of some pitfalls of the numerical computa-
tions. Gross errors can be caused by human or mechanical mistakes that are often
very difficult to detect. For this reason, it is recommended that the computation be
independently checked by another person using a different solution technique. The
engineering methods treated in Part IV, for instance, offer easy-to-use alternatives for
such quick checking. These approximate methods mostly require only manual com-
putations. Of course, the results of a finite element analysis can also be independently
checked by either the GWM or the FDM using computerized approaches.

Roundoff errors may also distort the end results. These errors are created by not
using a sufficient number of digits in the computation. Another source of error is
truncation error, which occurs when an originally infinite process is truncated after a
finite number of steps. Sometimes even the algorithms used in the numerical process
are unstable. In such case, a “small perturbation” in a single coefficient changes the
process from one that yields a unique solution to one that gives an infinite number
of solutions to the same problem.

A very important source of error can be an ill-conditioned coefficient matrix of a
system of algebraic equations. Such ill-conditioned systems are characterized by the
fact that the determinant of the coefficient matrix is small in magnitude relative to
certain cofactors of elements of the matrix. This is often encountered in the stability
analysis of plates, because large numbers occur next to relatively very small num-
bers in the main diagonal of the coefficient matrix. The large numbers represent the
resistance of the plate to axial compression, while the small numbers are pertinent
to its much smaller bending stiffness. Increasing the significant figures used in the
computation often eliminates this very disturbing error that may render the results of
the whole computation entirely useless.

Remember that in the engineering application of plate analysis we are usually
dealing with inaccurate input data. In the first place, the external loads are known
only with a certain degree of accuracy. In addition, the material properties, such as
the modulus of elasticity E and Poisson’s ratio ν, can contain certain inaccuracies.
Furthermore, the actual boundary conditions are merely approximations of the theo-
retical ones. Consequently, even an “exact” solution can only approximate the real
behavior of a plate. The error caused by these inherent inaccuracies of the input is
called error of data.

The above-mentioned errors of calculation introduced in our numerical compu-
tation must always be smaller than the data errors. As a rule, it is desirable that
the errors of calculation have less than ±5% discrepancy in comparison with the
mathematically exact solution of a given plate problem.

Last, but not least, the emotional state of the analyst should not be neglected, since
it is frequently a source of human error. Consequently, any haste in computation
should be avoided. No calculation should be attempted when the analyst is upset,
depressed or overly excited. Without a “cool head” for logical thinking, any type
of computation is virtually impossible. A clear and systematic presentation of each
computational step not only permits an easier independent check by other persons
but also mitigates the chances for human error.

Summary. The interest of engineers in numerical methods has grown exponentially
in the last decades for various reasons. First, high-capacity personal computers are
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now mass produced and, thus, are available for a very reasonable price. Second, these
computers combined with commercially available subroutines or complete program
systems make it possible to obtain numerical results for complex, “real-world” plate
problems in engineering practice for which analytical solutions are not available.
Third, most numerical processes can be handled by engineers with somewhat limited
training in higher mathematics.

These conditions not only explain the popularity of numerical methods in plate
analysis but also emphasize the need for extensive training of students in these disci-
plines in colleges and universities. Therefore, a comprehensive and systematic presen-
tation of the most important numerical methods—briefly introduced above—occupies
a significant part of this book. A large number of worked numerical examples
are also given in order to facilitate the understanding and practical applications of
these methods.



5
Finite Difference Methods

5.1 Ordinary Finite Difference Methods

a. Introduction. In the previous chapters, plate problems were solved by means of
various analytical approaches. Due to their inherent mathematical difficulties, how-
ever, such analytical solutions are restricted to simple plate geometry, loading and
boundary conditions. As mentioned earlier, for many plate problems of considerable
practical interest, analytical solutions to the governing differential equations cannot
be found; thus, numerical methods must be engaged to obtain approximate solu-
tions. Among the numerical techniques presently available for solutions of various
plate problems, the finite difference method (FDM) is probably the most transparent
and the most general. Especially, plate bending analysis is a classical field of the
FDM. Today, despite the existence of numerous finite element–based software pack-
ages, the FDM can still be regarded as a numerical method that has merit due to its
straightforward approach and a minimum requirement on hardware. In applying the
FDM, the derivatives in the governing differential equations are replaced by differ-
ence quantities at some selected points of the plate. These points are located at the
joints of a square, rectangular, triangular or other reference network, called a finite
difference mesh. Consequently, if some static, dynamic or elastic stability problem of
a plate can be described by a differential equation, we can replace it at each mesh
point by an equivalent finite difference equation. A similar approach is taken with
the expressions describing the boundary conditions. Thus, the FDM applies a math-
ematical discretization of the plate continuum yielding a set of algebraic equations,
from which the plate deflections at the mesh points can be obtained.

b. Finite Difference Expressions. In the ordinary FDM, we replace the differ-
ential operators d and ∂ by suitable difference operators �. Let us first consider
the one-dimensional case. To obtain finite difference expressions for derivatives, we
approximate the function y = f (x) a given interval by an interpolating polynomial
φ(x) and accept φ′(x), φ′′(x), φ′′′(x), . . . in place of f ′(x), f ′′(x), f ′′′(x), . . . . It is
evident that a better polynomial approximation of the original function f (x) at the

247Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
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so-called pivotal point m yields better finite difference expressions and therefore
improved accuracy.

The simplest way of obtaining usable finite difference expressions for the first and
second derivatives of a function y = f (x) at a pivotal point m is by substituting for
f (x) a second-order parabola through a number of equally placed points, as shown
in Fig. 5.1.1. This collocating polynomial using �x intervals between points can be
expressed by

φ(x) = ym + ym+1 − ym−1

2(�x)
· x + ym+1 − 2ym + ym−1

(�x)2
· x2

2
; (5.1.1)

therefore

φ′(x) = ym+1 − ym−1

2(�x)
+ ym+1 − 2ym + ym−1

(�x)2
· x. (5.1.2)

Since the pivotal point m is located at xm = 0, the first derivative of the original
function can be approximated by

(
dy

dx

)
m

≈
(

�y

�x

)
m

= [φ′(x)]m = 1

2(�x)
(ym+1 − ym−1). (5.1.3)

Similarly, the finite difference expression for the second derivative is

(
d2y

dx2

)
m

=
[

d

dx

(
dy

dx

)]
m

≈
(

�2y

�x2

)
m

= φ′′(x)m = 1

(�x)2
(ym+1 − 2ym + ym−1).

(5.1.4)

A procedure identical to that used above yields the higher-order derivatives

(
d3y

dx3

)
m

≈
[

�

2(�x)

(
�2y

�x2

)]
m

= 1

2(�x)3
(�2ym+1 − �2ym−1)

= 1

2(�x)3
(ym+2 − 2ym+1 + 2ym−1 − ym−2) (5.1.5)

f(x) = a0 + a1 + a2x2

Tangent
Y

X

Chord
(forward difference)

Chord
(center difference)

y m
−1

m − 2 m − 1
∆x ∆x ∆x ∆x

m + 1 m + 2m

y m
+1

y m

Chord
(backward difference)

Figure 5.1.1 Graphical representation of finite differences.
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and

(
d4y

dx4

)
m

≈
(

�4y

�y4

)
m

=
[

�

�x

(
�3y

�x3

)]
m

= 1

(�x)4
(�3ym+1/2 − �3ym−1/2)

= 1

(�x)4
(�2ym+1 − 2 �2ym + �2ym−1)

= 1

(�x)4
(ym+2 − 4ym+1 + 6ym − 4ym−1 + ym−2), (5.1.6)

These expressions are called central differences, since they can also be obtained
by advancing centrally in the table of differences with discrete points located sym-
metrically with respect to the pivotal point m, as shown in Table 5.1.1. These finite
difference expressions are schematically represented in Table 5.1.2, including the first
error terms ε1 obtained by using the Taylor series approach, discussed later.

The physical meaning of central differences is also shown in Fig. 5.1.1. That is,
using a second-order parabola for interpolating polynomials, the slope of the chord
line from point xm−1 to point xm+1 becomes identical to that of the tangent at point
xm. Similarly, we can interpret the meaning of the first forward difference

(
dy

dx

)
m

≈
(

�y

�x

)
m

= ym+1 − ym

�x
(5.1.7)

and that of the first backward difference

(
dy

dx

)
m

≈
(

�y

�x

)
m

= ym − ym−1

�x
. (5.1.8)

We shall thereafter consider only central differences because of their higher accuracy.

C. Finite Difference Representation of Plate Equation. Let us restrict our
derivation to equally spaced square mesh. Introducing a �x = �y = λ mesh width
(Fig. 5.1.2.), the finite difference expressions for the fourth-order derivatives of

Table 5.1.1 “Central” Differences

x y �y �2y �3y �4y

xm−2 ym−2
�ym−(3/2)

xm−1 ym−1 �2ym−1
�ym−(1/2) �3ym−(1/2)

xm ym �2ym �4ym
�ym+(1/2) �3ym+(1/2)

xm+1 ym+1 �2ym+1
�ym+(3/2)

xm+2 ym+2
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Table 5.1.2 Schematic Representation of Derivatives by Central Differences

y(k)
m Coefficients First Error Term

y′
m

[
�−1 �+1

] 1

2(�x)
− 1

6
(�x)2y′′′

m

y′′
m

[
�+1 �−2 �+1

] 1

(�x)2
− 1

12
(�x)2yIV

m

y′′′
m

[
�−1 �+2 �−2 �+1

] 1

2(�x)3
− 1

4
(�x)2yV

m

yIV
m

[
�+1 �−4 �+6 �−4 �+1

] 1

(�x)4
− 1

6
(�x)2yVI

m

Point
�

m − 2
�

m − 1
�
m

�
m + 1

�
m + 2 ε1

m − 2

m − 2,n m + 2,n n

m

m,n − 2

Pivotal point

Plate

m,n + 2

m, n

m − 1 m + 1 m + 2 X
Z

Y

n − 2

n − 1

n + 1

n + 2

n

m

∆y

∆x ∆x

∆y

Figure 5.1.2 Plate covered by rectangular mesh.

Eq. (1.2.30) can be written as

(
∂4w

∂x4

)
m,n

≈ 1

λ4
(wm+2,n − 4wm+1,n + 6wm,n − 4wm−1,n + wm−2,n),

(
∂4w

∂y4

)
m,n

≈ 1

λ4
(wm,n+2 − 4wm,n+1 + 6wm,n − 4wm,n−1 + wm,n−2).

(5.1.9)

Similarly, the finite difference expression of the mixed fourth derivative ∂4w/(∂x2∂y2)

is derived by using the same approach as described above for the fourth derivatives; thus

(
∂4w

∂x2∂y2

)
m,n

≈
{

�2

(�y)2

[
�2w

(�x)2

]}
m,n

= 1

(�y)2

{[
�2w

(�x)2

]
m,n+1

− 2

[
�2w

(�x)2

]
m,n

+
[

�2w

(�x)2

]
m,n−1

}
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= 1

λ4
[4wm,n − 2(wm+1,n + wm−1,n + wm,n+1 + wm,n−1)

+ wm+1,n+1 + wm+1,n−1 + wm−1,n+1 + wm−1,n−1]. (5.1.10)

Therefore, the finite difference representation of Eq. (1.2.30) at pivotal point m, n is

(D ∇2 ∇2w)m,n ≈ D

λ4
[20wm,n − 8(wm+1,n + wm−1,n + wm,n+1 + wm,n−1)

+ 2(wm+1,n+1 + wm−1,n+1 + wm+1,n−1 + wm−1,n−1)

+ wm+2,n + wm−2,n + wm,n+2 + wm,n−2] + ε(λ2) = (pz)m,n,

(5.1.11)

where ε(λ2) is the error term describing the discrepancy between the exact expression
of the biharmonic operator (∇4 operating on w) and its finite difference representation.
The accuracy of the finite difference method can be improved by reducing the error
term, as described in Sec. 5.2. In Fig. 5.1.3, Eq. (5.1.11) is given in a diagrammatic
form. Again, using the m, n pivotal point, the finite difference expressions for the
internal forces and moments are

(mx)m,n ≈ −D

[
�2w

(�x)2
+ ν

�2w

(�y)2

]
m,n

= − D

λ2
[(wm+1,n − 2wm,n + wm−1,n) + ν(wm,n+1 − 2wm,n + wm,n−1)],

(5.1.12)

(my)m,n ≈ −D

[
�2w

(�y)2
+ ν

�2w

(�x)2

]
m,n

= − D

λ2
[(wm,n+1 − 2wm,n + wm,n−1) + ν(wm+1,n − 2wm,n + wm−1,n)],

(5.1.13)

(mxy)m,n = (myx)m,n ≈ −(1 − ν)D

{
�

2(�x)

[
�w

2(�y)

]}
m,n

= − (1 − ν)D

4λ2
(wm+1,n+1 − wm+1,n−1 − wm−1,n+1 + wm−1,n−1), (5.1.14)

(qx)m,n ≈ −D

{
�

2(�x)

[
�2w

(�x)2
+ �2w

(�y)2

]}
m,n

= − D

2λ

{[(
�2w

(�x)2

)
m+1,n

−
(

�2w

(�x)2

)
m−1,n

]

+
[(

�2w

(�y)2

)
m+1,n

−
(

�2w

(�y)2

)
m−1,n

]}
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Figure 5.1.3 Stencils for interior mesh points.

= − D

2λ3
[(wm+2,n − 2wm+1,n + 2wm−1,n − wm−2,n)

+ (wm+1,n+1 − 2wm+1,n + wm+1,n−1 − wm−1,n+1

+ 2wm−1,n − wm−1,n−1)], (5.1.15)

(qy)m,n ≈ −D

{
�

2(�y)

[
�2w

(�x)2
+ �2w

(�y)2

]}
m,n

= − D

2λ

{[(
�2w

(�x)2

)
m,n+1

−
(

�2w

(�x)2

)
m,n−1

]

+
[(

�2w

(�y)2

)
m,n+1

−
(

�2w

(�y)2

)
m,n−1

]}

= − D

2λ3
[(wm+1,n+1 − 2wm,n+1 + wm−1,n+1 − wm+1,n−1

+ 2wm,n−1 − wm−1,n−1)

+ (wm,n+2 − 2wm,n+1 + 2wm,n−1 − wm,n−2)]. (5.1.16)
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The pattern of coefficients for these finite difference approximations of the stress
resultants is given in Fig. 5.1.4.

d. Boundary Conditions. Solution of the governing plate equation (1.2.30) by the
finite difference method also requires proper finite difference representation of the
boundary conditions. Consequently, we replace the derivatives in the mathematical
expressions of various boundary conditions (discussed in Sec. 1.3) with the perti-
nent finite difference expressions. When central differences are used. however, the
introduction of fictitious points outside of the plate is required.

The finite difference expression of Eq. (1.3.1), describing a fixed boundary condi-
tion along a grid line parallel to the X axis (Fig. 5.1.5a), gives

wm,n = 0 and

(
∂w

∂x

)
m,n

≈ 1

2λ
(wm+1,n − wm−1,n) = 0, (5.1.17)

which represents zero deflection and slope at pivotal point m, n. Therefore, from
Eq. (5.1.17) it follows that

wm+1,n = wm−1,n. (5.1.18)

Although a fictitious point (m − 1, n) has been introduced to express the boundary
condition by central differences, no additional deflection ordinate is carried in the
computation.

The boundary condition representing a simple support (Fig. 5.1.5b) can be treated
in a similar manner. The finite difference form of Eq. (1.3.7) gives

wm,n = 0 and

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
m,n

≈ wm+1,n + wm−1,n = 0; (5.1.19)

hence

wm+1,n = −wm−1,n. (5.1.20)

The treatment of a free boundary condition by central differences is somewhat
more involved. If the pivotal point (m, n) is at the boundary, we must introduce
four fictitious points outside of the plate (Fig. 5.1.6a). Again, deflections at these
fictitious points can be expressed in terms of deflections of the mesh points located
on the plate. For this purpose, we specify that the edge force and edge moment at
the pivotal point are zero. Using notations of Fig. 5.1.6a, the finite difference form
of Eqs. (1.3.2) and (1.3.3) becomes

(my)m,n ≈ −(2 + 2ν)wm,n + wm,n−1 + wm,n+1 + ν(wm−1,n + wm+1,n) = 0, (5.1.21)

(vy)m,n ≈ (6 − 2ν)(wm,n−1 − wm,n+1) + (2 − ν)

× (wm+1,n+1 + wm−1,n+1 − wm−1,n−1 − wm+1,n−1)

− wm,n−2 + wm,n+2 = 0. (5.1.22)
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Figure 5.1.4 Stencils for moments and lateral shear forces.
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Figure 5.1.5 Representation of boundary conditions for ordinary FDM.

The two additional equations required to eliminate the defections of the fictitious
points from Eq. (5.1.21) are

(my)m−1,n ≈ −2(1 + ν)wm−1,n + wm−1,n−1 + wm−1,n+1

+ ν(wm−2,n + wm,n) = 0 (5.1.23)

and

(my)m+1,n ≈ −(2 + 2ν)wm+1,n + wm+1,n−1 + wm+1,n+1

+ ν(wm+2,n + wm,n) = 0. (5.1.24)

Eliminating wm,n+2, wm−1,n+1, wm,n+1 and wm+1,n+1 from these equations and substi-
tuting the result into Eq. (5.1.21), the finite difference representation of the free-edge
condition is obtained. This is schematically shown in Fig. 5.1.6b.

When the pivotal point is at distance λ from the free-edge (Fig. 5.1.7a), the deflec-
tion of the fictitious mesh point m, n+2 can be eliminated by stating that the my

moment at this point is zero. The finite difference form of this boundary condition is

(my)m,n+2 ≈ − D

2λ2
[(wm,n+2 − 2wm,n+1 + wm,n)

+ ν(wm+1,n+1 − 2wm,n+1 + wm−1,n+1)] = 0, (5.1.25)

from which

wm,n+2 = 2wm,n+1(1 + ν) − wm,n − (wm+1,n+1 + wm−1,n+1)ν. (5.1.26)
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Figure 5.1.6 Finite difference representation of free edge.

Substituting this expression into Eq. (5.1.11), we obtain the finite difference repre-
sentation of this condition, which is schematically shown in Fig. 5.1.7b.

At a corner where two free-edges parallel to the X and Y axes meet, we first
apply the free-edge boundary condition to all mesh points on the edge parallel to the
X axis. Then, we apply similar equations to the mesh points on the edge parallel to
the Y axis. In addition, we state that at the corner the torsional moment mxy = 0.
The obtained finite difference patterns are schematically shown in Fig. 5.1.8. In the
case of rectangular mesh, stencils pertinent to various free-edge conditions are given
in Fig. 5.1.9. It is obvious that the axes could be rotated for all the preceding finite
difference patterns.

When the plate is continuous over beam supports, we may follow three different
approaches in the analysis. First, if the beams are small and closely spaced, such
a plate and beam assembly can be considered an orthotropic plate, the analysis of
which is discussed in detail in Sec. 10.1. If the supporting beams are large and
relatively widely spaced, we may either apply the readily usable stencils given in
Refs. [5.1.13] and [5.1.14] or carry out the following simple iteration: We begin
this iterative cycle by assuming that the beams represent rigid supports. Next the
reactive forces acting on these beams are calculated. Then we load the beams with
these reactive forces, making them active, and calculate the beam deflections at each
mesh point. In doing so, however, we must consider in the moment of inertia the
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Figure 5.1.7 Pivotal point near edge of plate.

effective width† of the plate that acts together with the beam. In the last step, the
calculated deflections are introduced into the finite difference analysis of the plate as
known values. If necessary, this iterative cycle can be repeated until convergence is
achieved. However, a second iterative cycle is only seldom required.

Curved boundaries may require an unevenly spaced finite difference mesh. In this
case, the derivation of ordinary finite difference expressions remains fundamentally
the same, but the resulting expressions [5.1.4] are cumbersome to handle. Conse-
quently, it is more economical to approximate the plate geometry by equally placed

† For definition and approximate values see Sec. 16.10.
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Figure 5.1.8 Finite difference stencils at free corner.

mesh points, as shown in Fig. 5.1.10. Such a practical approximation is discussed in
more detail later in this section.

By representing the governing differential of the plate and the equations defin-
ing the prescribed boundary conditions of a given problem by finite difference
expressions, we replace the continuum of the plate with a pattern of discrete points.
Consequently, the original problem of solving the plate equation has been transformed
into the solution of a set of simultaneous algebraic equations in the form

Aw = p, (5.1.27)

where A symbolizes the resulting coefficient matrix, w is the vector of the unknown
mesh-point displacements and p represents the vector of the loads acting on the
mesh points (to be discussed next). The solution of this matrix equation can be easily
accomplished by personal computers or one of the more advanced programmable
calculators with a built-in equation solver.

e. Load Representation. If the lateral load pz is uniformly distributed, its value
can be readily substituted into the right-hand side of Eq. (5.1.11). This method can
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Figure 5.1.9 Finite difference patterns with various locations of pivotal point m, n.
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Figure 5.1.9 (continued)

be extended to other types of distributed lateral loads, pz(x, y), provided that the
variation of the load intensity from mesh point to mesh point is not excessive. This
type of load representation results in a stepped distribution (Fig. 5.1.11), which, in
a general case, can yield good results only if the width of the mesh (λ) is relatively
small. This statement is especially true for the representation of concentrated loads
by stepped distribution in the form

(pz)m,n =
[

Pz

(�x)(�y)

]
m,n

, (5.1.28)

which in the extreme case (λ → 0) can create a singularity (wm,n → ∞) in the
solution. This problem can easily be overcome by expressing the concentrated load
by an equivalent load system, as shown in Sec. 4.5.
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Figure 5.1.10 Approximation of irregular boundary line by square mesh.

Figure 5.1.11 “Stepped” representation of distributed load.

If the intensity of the lateral load varies considerably from mesh point to mesh
point, a weighted value of this quantity should be used. There are several ways to
obtain such a weighted representation of the lateral load. One of the simplest ways
is to use a straight-line distribution between the gridwork points. Dealing first with
a one-dimensional case, as shown in Fig. 5.1.12a, the equivalent concentrated force
Pm, at pivotal point m, can be obtained by introducing a fictitious load-supporting
structure in the form of simply supported beams. The sum of the reactions of two
adjoining beams is

Pm(x) =
(

1

2
pm−1,n

)
�x

3
+ (pm,n)

2 �x

3
+
(

1

2
pm+1,n

)
�x

3

= �x

6
(pm−1,n + 4pm,n + pm+1,n); (5.1.29)

hence

(pz)m = Pm(x)

�x
= 1

6
(pm−1,n + 4pm,n + pm+1,n). (5.1.30)

For square mesh, this one-dimensional load-averaging rule becomes two dimensional
by creating a Cartesian product with a similar expression in the Y direction.† Thus

† This expression is equivalent to Simpson’s one-third rule of numerical integration for four squares.
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Z
(a) One-dimensional case

(b) Stencil for two-dimensional load averaging

l
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Operating on  pij [Eq. (5.1.31)]1
36

l

Figure 5.1.12 “Straight-line” load-averaging method.

the weighted value of the lateral load at the pivotal point becomes

(pz)m,n = 1

36
×



pm−1,n−1 + 4pm,n−1 + pm+1,n−1
+ 4pm−1,n + 16pm,n + 4pm+1,n

+ pm−1,n+1 + 4pm,n+1 + pm+1,n+1


 . (5.1.31)

Schematic representation of this load-averaging rule is given in Fig. 5.1.12b. An
improved expression, which uses a second-order parabola instead of a straight line
for the development of the lower-dimensional rules, is discussed in Sec. 5.2.

f. Two-Stage Solution. The accuracy obtainable by the ordinary finite difference
method can be increased by lowering the order of the derivatives using Eq. (1.2.43)
instead of Eq. (1.2.30). The finite difference expressions of the two coupled second-
order partial differential equations are

(∇2 M)m,n ≈
[

�2M

(�x)2

]
m,n

+
[

�2M

(�y)2

]
m,n

= 1

(�x)2
(Mm+1,n − 2Mm,n + Mm−1,n)

+ 1

(�y)2
(Mm,n+1 − 2Mm,n + Mm,n−1) = −(pz)m,n (5.1.32)
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and

(∇2w)m,n ≈ 1

(�x)2
(wm+1,n − 2wm,n + wm−1,n)

+ 1

(�y)2
(wm,n+1 − 2wm,n + wm,n−1) = −(p∗

z )m,n, (5.1.33)

where

(p∗
z )m,n =

(
M

D

)
m,n

(5.1.34)

is a fictitious lateral load and M represents the moment-sum in accordance with
Eq. (1.2.42). Both differential equations [(5.1.32) and (5.1.34)] are of the Poisson
type. To be able to solve Eq. (5.1.32), however, we must know the boundary condi-
tions for M. In the case of simple support, M is zero at the boundary. Representation
of the real and fictitious lateral loads in these equations can follow either of the above-
described load representation methods, depending on the type of load and the required
accuracy of the solution. When the boundary values of M are not directly obtain-
able, the two-stage method tends to be more involved. Marcus [5.1.15] extended
the application of the two-stage methods to flat plates. Other investigators [5.1.2,
2.2.16] have treated continuous plates and plates of various geometrical form by this
two-stage approach.

g. Error of Finite Difference Approximation. To determine the error involved in
representing the derivatives of the original function f (k)(x) by those of the interpolat-
ing polynomial φ(k)(x), we use Taylor’s series, which is considered to be the ultimate
in osculation. That is, Taylor’s expansion of a function f (x) not only represents the
curve going through the same collocation points but also has the same geometrical
properties (tangent, curvature, etc.) as the original function.

Taylor’s expansion of f (x) in the vicinity of mesh point x = xm + �x gives

ym+1 = f (xm + �x) = y(x)m + �x

1!
y ′(x)m + (�x)2

2!
y ′′(x)m

+ (�x)3

3!
y ′′′(x)m + · · · =

∞∑
k=0

(�x)k

k!
y(k)(x)m, (5.1.35)

from which

y ′(x)m =
(

dy

dx

)
m

≈ ym+1 − ym

�x
− �x

2
y ′′(x)m − (�x)2

6
y ′′′(x)m + · · ·

= ym+1 − ym

�x
+ ε(�x), (5.1.36)

where ε(�x) = ε1 + ε2 + · · · is the error term, representing the truncation error of all
neglected terms. Error terms for higher derivatives can be derived similarly [5.1.20].
In general, the error involved by expressing the kth derivative by finite difference
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approximation is

f (k)(x)m = �(k)ym

(�x)k
+ εk(�x). (5.1.37)

In this expression εk does not vanish when �x → 0. Unfortunately, the accuracy
of ordinary finite difference expressions gets progressively lower as the order of the
derivative is increased. Consequently, results obtained from ordinary finite difference
solution of higher than fourth-order differential equations should be viewed with
some skepticism.

h. Recommended Procedures. In planning the analysis of a plate by means
of the ordinary FDM, one must first consider the convergence characteristics of this
numerical procedure. As Fig. 5.1.13 indicates, the ordinary FDM converges relatively
fast toward the exact solution of a given plate problem, provided that the finite
difference mesh is not too fine. When using very small subdivisions, the convergence
becomes quite slow. In addition, the number of equations to be solved increases
exponentially. Furthermore, an extremely fine mesh and the resulting large number
of simultaneous equations may create roundoff errors in their solution that adversely
affect its accuracy. Thus, the use of an iterative approach is recommended.

In setting up the finite difference equations, the first mesh can be relatively crude,
say (�x)(1) = a/4 and (�y)(1) = b/4, respectively. To facilitate this procedure, the
plate and the finite difference mesh are drawn to a convenient scale. Next, the mesh
points are numbered in such a manner that the resulting coefficient matrix A in
Eq. (5.1.27) will have a band structure and the so-created bandwidth of the matrix
will be relatively small. In the process of numbering the mesh points, we must also
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Error
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Figure 5.1.13 Convergence of ordinary FDM.
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consider the prescribed boundary conditions as previously described in Sec. 5.1d. Of
course, if the structure and the loads are symmetrical, we should utilize the prevailing
symmetry, since it can considerably reduce the required computational effort. In the
third step, we draw the stencil representing the finite difference form of the biharmonic
operator ∇4 (Fig. 5.1.3) on a piece of transparent paper using the same scale as for
the first finite difference mesh. It is recommended that for the stencil on transparent
paper we use a different color, say red, in order to clearly distinguish it from the finite
difference mesh in the following step. Now, by superimposing at each mesh point
this stencil for ∇4 upon the mesh covering the plate, we can write the corresponding
finite difference equations with relative ease. However, an independent check for this
procedure is highly recommended. Such a computation that tests the correctness of
the resulting algebraic equations should be performed, if possible, by another person.

Next, we repeat the above-described procedure, this time using half of the pre-
viously applied mesh size. Following the recommendation given above, the refinded
mesh sizes should now be (�x)(2) = a/8 and (�y)(2) = b/8, for instance. The so-
obtained more accurate values for the mesh-point deflections w

(2)
i can be further

improved by using Richardson’s powerful extrapolation formula

w
(3)
i = w

(2)
i + w

(2)
i − w

(1)
i

2µ − 1
, (5.1.38)

where w
(1)
i is the lateral deflection of mesh point i obtained from the first finite

difference solution of the plate problem with (�x)(1) and (�y)(1) mesh sizes and
w

(2)
i represents the results of the second computation with (�x)(2) = (�x)(1)/2 and

(�y)(2) = (�y)(1)/2, respectively. The value of the exponent µ depends on the con-
vergence characteristics of the numerical method applied. For the ordinary FDM
µ = 2. It should be noted, however, that if the results of the second solutions
already fall into the flat region of the convergence curve (Fig. 5.1.13), Robinson’s
extrapolation formula may even overcorrect the end results, since in such a case
µ �= 2.

The second refined finite difference mesh introduces additional mesh-point deflec-
tions that were not computed in the first solution of the problem. To be able to use the
above given extrapolation formula for these points, we apply a quadratic interpolation

wj = wi,� + wi,c = 1
2 (wi + wi+1) − 0.125(wi − 2wi+1 + wi+2), (5.1.39)

where the first term is obviously the linear part of the interpolation and the second
term represents the quadratic correction, as illustrated in Fig. 5.1.14. Equation (5.1.39)
can be derived from Newton-Gregory’s interpolating formula for equally spaced argu-
ments. Logically, this interpolation formula can also be used in a diagonal direction
between the mesh points.

If the plates are of arbitrary shape—instead of triangular, trapezoidal, hexagonal
or other finite difference nets—we should try to match the geometrical boundaries
with either a proper square or an equally spaced rectangular mesh, as shown in
Fig. 5.1.15, which also illustrates the right and wrong ways of such an approximation.
Of course, some manipulations are usually required until a desirable fit is achieved.
Experience shows that even with a moderately fine subdivision satisfactory results
can be obtained. Such an approach is straightforward and can be applied for almost all
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Figure 5.1.14 Linear and quadratic interpolations.

(a) Approximation of
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(b) Approximation of an
ellipse

(c) Right (d) Wrong

Figure 5.1.15 Approximation of plates of arbitrary shape.

arbitrary boundary shapes. Using this approximation, the above given finite difference
patterns are still applicable; thus, the need for lengthy derivations of new stencils are
completely eliminated.

In the vicinity of openings in the plate or column supports, for instance, the use of
finer meshes is recommended (Figs. 5.1.16 and 5.1.17) in order to deal with the stress
concentration associated with such locations. Assuming that a finer mesh is used,
additional points a → q must be locally added to accommodate the pertinent stencil
of the biharmonic operator ∇4 (Fig. 5.1.18). Again, we can apply the interpolation
formula (5.1.38) to incorporate these additional points into the coefficient matrix A.

Summary. The ordinary FDM is one of the most general numerical methods used
in structural mechanics. It is especially suited for solutions of a wide variety of plate
problems, as illustrated throughout this book. As shown above, the FDM transforms
the governing plate equations—along with the prescribed boundary conditions—into
a set of simultaneous algebraic equations the solution of which is obtained by using
either computers or one of the more advanced scientific calculators. Thus, the method
is based on a combination of manual and computer operations.
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Figure 5.1.16 Mesh refinements in vicinity of opening.
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Figure 5.1.17 Finer mesh for column support.
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Figure 5.1.18 Additional points required by λ/2 subdivision.
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The advantages of the ordinary FDM are as follows:

1. It is simple and transparent in its operations.
2. It has readily usable and reusable finite difference patterns (stencils).
3. Since only the deflection ordinates wi are the unknowns, the size of the coef-

ficient matrix is much smaller in comparison to that of the FEM.
4. It is versatile. That is, basically the same technique can be applied for the

solution of dynamic and elastic stability problems of plates.
5. Using the above-described and recommended procedure, acceptable accuracy

for all technical purposes can be achieved with relative ease.
6. There is no need for computers or pertinent program systems since the result-

ing simultaneous algebraic equation, in most of the cases, can also be solved by
advanced scientific calculators with built-in equation solvers. Moreover, com-
puter programs for the solution of this task are plentiful and readily available.

The disadvantages of the FDM are as follows:

(a) Since the FDM—as described above and illustrated by the numerical examples
below—is partially a “longhand” operation, it is not well suited for solution of
very large plate systems involving hundreds or even thousands of equations.

(b) Automation of the FDM by development of pertinent computer programs is
not an easy task.

(c) Beyond certain mesh widths, convergence of the solution becomes slow.
(d) In most cases, the resulting coefficient matrix, A is not symmetrical.
(e) Using FDM is not recommended when higher than fourth-order derivatives

are involved.

ILLUSTRATIVE EXAMPLE I

Determine the maximum deflection of a simply supported square plate sub-
jected to a distributed load in the form of a triangular prism, as shown in
Fig. 5.1.19a.

Because of the simply supported boundary conditions, the two-stage solution
can be applied. Numbering of the mesh points (utilizing the apparent symme-
try) is shown in Fig. 5.1.19b. With a stepped-load representation, Eq. (5.1.32)
yields

At point 1: 2M2 + 2M3 − 4M1 = −p0

(
a2

16

)
;

At point 2: M1 + 2M4 − 4M2 = −p0

(
a2

16

)
;

At point 3: M1 + 2M4 − 4M3 = −p0

2

(
a2

16

)
;

At point 4: M2 + M3 − 4M4 = −p0

2

(
a2

16

)
.

(5.1.40)
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Figure 5.1.19 Simply supported plate subjected to triangular prismatic load.

Solutions of these equations are

M1 = + 14

256
p0a

2, M2 = + 11

256
p0a

2,

M3 = + 9

256
p0a

2, M4 = + 7

256
p0a

2.

(5.1.41)

To obtain deflections at the mesh points, we apply Eq. (5.1.33) in a simi-
lar manner:

At point 1:
16

a2
(2w2 + 2w3 − 4w1) = − 14

256

p0a
2

D
;

At point 2:
16

a2
(w1 + 2w4 − 4w2) = − 11

256

p0a
2

D
;

At point 3:
16

a2
(w1 + 2w4 − 4w3) = − 9

256

p0a
2

D
;

At point 4:
16

a2
(w2 + w3 − 4w4) = − 7

256

p0a
2

D
.

(5.1.42)
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Solution of these equations yields

w1 = + 0.00293
p0a

4

D
= wmax, w2 = + 0.00214

p0a
4

D
,

w3 = + 0.00202
p0a

4

D
, w4 = + 0.00148

p0a
4

D
.

(5.1.43)

ILLUSTRATIVE EXAMPLE II

Find approximate values of displacements of a continuous plate, shown in
Fig. 5.1.20. by the ordinary FDM.
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−2 −3

−3

1 2 −2 −3

l

Figure 5.1.20 Continuous plate.

To satisfy the boundary conditions, we use Eqs. (5.1.18) and (5.1.20) at the
fixed and simply supported boundaries, respectively. From the stencil given in
Fig. 5.1.3, the finite difference equations in matrix form are


 12 −6 0

−6 12 0
0 −6 12






w1
w2

w3


 = λ4p0

D




1
1
0


 . (5.1.44)

Solution of these simultaneous equations yields

w1 = w2 = λ4p0

6D
= p0a

4

486D
and w3 = λ4p0

12D
= − p0a

4

972D
. (5.1.45)

These approximate values can be improved using a finer mesh.
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ILLUSTRATIVE EXAMPLE III

Find the maximum deflection and negative moment of the uniformly loaded
square plate shown in Fig. 5.1.21a using the recommended procedures dis-
cussed in Sec. 5.1h.

(a) Plate (b) First subdivision

(c) Second subdivision
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−14 −13−15−16
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8

12

16

CL

l = a
8

Figure 5.1.21 Square plate with two opposite edges fixed and two edges simply supported.

First, we select a relatively coarse finite difference mesh with λ = a/4. In
numbering the mesh points, the apparent double symmetry of the plate is con-
sidered (Fig. 5.1.21b). From the clamped boundary conditions it follows that the
fictitious points outside the domain of the plate are the same as the correspond-
ing points within the plate proper. Similarly, the simply supported boundary
conditions require that the pertinent fictitious mesh-points outside the plate
should have a negative sign, according to Eq. 5.1.20.

By applying the stencil of the biharmonic operator ∇4 (Fig. 5.1.20) at each
interior mesh-point, we obtain the following simultaneous equations given in
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matrix form:




20 −16 −16 8
8 22 4 −16

−8 4 20 −16
2 −8 −8 22


 ·




w
(1)

1

w
(1)
2

w
(1)

3

w
(1)
4




=




p0

p0
p0

p0




a4

256 D
, (5.1.46)

the solution of which gives the first approximation of the deflection ordinates
at the mesh points,

{w(1)} = { 247 162 182 121 } · a4p0 × 10−5

D
. (5.1.47)

Next, we use smaller mesh widths, λ = a/8, as shown in Fig. 5.1.21c. Now,
the coefficient matrix A(2) in the matrix equation of the problem

A(2) w(2) = p(2) (5.1.48)

becomes

A(2) =




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

20 −16 2 −16 8 2

−8 21 −8 1 4 −16 4 2

1 −8 20 −8 4 −16 4 2

1 −8 21 4 −16 2

−8 4 21 −16 2 −8 4 1

2 −8 2 −8 22 −8 1 2 −8 2 1

2 −8 2 1 −8 21 −8 2 −8 2 1

2 −8 1 −8 22 2 −8 1

1 −8 4 20 −16 2 −8 4

1 2 −8 2 −8 21 −8 1 2 −8 2

1 2 −8 2 1 −8 20 −8 2 −8 2

1 2 −8 1 −8 21 2 −8

1 −8 4 19 −16 2

1 2 −8 2 −8 20 −8 1

1 2 −8 2 1 −8 19 −8

1 2 −8 1 −8 20




1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

.

(5.1.49)
The corresponding vector of the loads is

{p} = { 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 } · p0a
4

4096D
.

(5.1.50)
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The solution of Eq. (5.1.48) is

w(2) = { 0.2088 0.1868 0.1272 0.0507 0.1952 0.1748 0.1193

0.0478 0.1543 0.1385 0.0951 0.0387 0.0871 0.0784

0.0543 0.0226 } · p0a
4 × 10−2

D
. (5.1.51)

By using Richardson’s extrapolation formula [Eq. (5.1.38)], the improved value
of the maximum deflection becomes

wmax = w
(3)
1 = w

(2)
1 + w

(2)
1 − w

(1)
1

3
= 0.002215p0a

4

D
(error: 2%).

(5.1.52)

In a similar fashion, we can improve the values obtained for the maximum
negative moment. The first analysis with the coarse mesh (λ = a/4) gave

−m(1)
max = − D

λ2
(2w2) = −0.05184p0a

2 (error: −25%). (5.1.53)

With the refined mesh (λ = a/8) we obtained

−m(2)
max = − D

λ2
(2w4) = −0.06489p0a

2 (error: −7%). (5.1.54)

Thus, the extrapolation yields

−m(3)
max = m(2)

max + m(2)
max − m(2)

max

3
= −0.0694p0a

2 (error: −0.4%).

(5.1.55)

A comparison with the analytical solution of this problem [2] indicates only a
relatively small discrepancy of 0.4%. This and the other results of this compu-
tation are listed in Table 5.1.3.

Table 5.1.3 Summary of Results

Deflection
and

Moments λ(1) = a/4 % λ(2) = a/8 % Extrapolated % Factor

w1 0.00247 +28.6 0.002088 +8.3 0.001958 +2.0 p0a
4/D

mx,1 0.03344 + 0.7 0.03338 +0.5 0.03336 +0.4 p0a
2

my,2 0.02896 −18.7 0.02586 +6.0 0.02467 +1.1 p0a
2

−mmax −0.0518 −25 −0.06489 −7.0 −0.0694 −0.4 p0a
2
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ILLUSTRATIVE EXAMPLE IV

Figure 5.1.22a shows a simply supported triangular plate subjected to a uni-
formly distributed load p0. Let us determine the maximum deflection ordinate
wmax and the maximum moments mx,max, my,max of the plate by the ordi-
nary FDM.

A B

C

(a) Simply supported triangular plate

(b) Numbering of mesh points

Fictitious point

Z, w

Y

X

n = 0.0

pz = p0

Simple
support

l =

−1 −2 −3 −4 −3 −2 −1

1 2 3 4 3 2 1

−1 5 6 7 6 5 −1

−5 8 9 8 −5

−8 10 −8

−10 −10

CL

a
2

a
2

a
2

a
10

Figure 5.1.22 Approximation of oblique boundaries of triangular plate.

Applying a square mesh with λ = a/2 subdivisions, we approximate bound-
aries of the two oblique edges by zigzag lines, as shown in Fig. 5.1.22b. In
numbering the mesh points, we have considered the apparent symmetry of the
structure and the simply supported boundary conditions according to Fig. 5.1.5.
Using the stencil for the biharmonic operator ∇4 given in Fig. 5.1.3a, we obtain
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the coefficient matrix

A =




17 −8 1 0 1 0 0 0 0 0
−8 19 −8 1 −8 2 0 0 0 0

1 −8 20 −8 2 −8 2 1 0 0
0 2 −16 19 0 4 −8 0 1 0
1 −8 2 0 18 −8 1 1 0 0
0 2 −8 2 −8 21 −8 −8 2 0
0 0 4 −8 2 −16 20 4 −8 1
0 0 1 0 1 −8 2 19 −8 1
0 0 0 1 0 4 −8 −16 20 −8
0 0 0 0 0 0 1 2 −8 16




(5.1.56)

of the simultaneous algebraic equations, while the vector of the loads becomes

p = { 1 1 1 1 1 1 1 1 1 1
} p0λ

4

D
. (5.1.57)

The solution of the matrix equation

w = A−1p (5.1.58)

gives

w = { 0.305894 0.765854 1.165164 1.322904 0.761478

1.493077 1.793943 0.934673 1.354966 0.511027 } 12p0a
4

104Eh3
.

(5.1.59)

Hence, the maximum deflection ordinate of the plate is

wmax = w7 = 0.00215316
p0a

4

Eh3
(error: 1.3%). (1.5.60)

Using the stencils given in Fig. 5.1.4, we also calculate the maximum moments.
At mesh point 9, we obtain

mx,max = −Eh3

λ2
(w8 − 2w9 + w8) = p0a

2

100
0.840586 (error: 3.7%),

(5.1.61)

while the maximum moment

my,max = −Eh3

λ2
(w4 − 2w7 + w9) = p0a

2

100
0.910016 (error: 3.2%)

(5.1.62)
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occurs at mesh point 7. The above given errors represent the deviations from
the finite difference solution of the same problem but using a triangular mesh
instead of a square one. The so-obtained accuracy can be, of course, further
increased by using a finer mesh. This example shows that the approximation
of the oblique boundaries by a zigzag line not only simplifies the calculation
but also gives quite usable results.
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5.2 Improved Finite Difference Methods

a. Need for Improvements. While the use of an ordinary finite difference tech-
nique is very simple and the method is quite general, it is characterized by slow
convergence. Furthermore, when higher-order derivatives and a large number of
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mesh points are involved, the solution, due to machine errors, may converge to a
wrong number. One of the reasons for such convergence characteristics is that the
collocating polynomials used in deriving finite difference expressions agree only in
value with the exact function at the mesh points and their derivatives do not match.
Additional sources of error are the approximation of boundary conditions and the use
of the usually coarse load-averaging rules. Furthermore, extremely fine mesh, and
the resulting large number of simultaneous equations, may create roundoff errors in
computer solutions and adversely affect the accuracy and economy of the method.
Consequently, when high accuracy in the finite difference solution of plate problems
is required, improved finite difference techniques should be applied.

Refinements in the finite difference method usually come from three sources: (1)
replacement of the individual derivatives by expressions obtained from osculating
polynomials (which also collocate, up to some higher order, the derivatives of the
exact function), (2) refined representation of the actual boundary conditions and (3)
improved load-averaging techniques.

b. Method of Higher Approximation. The general tool for derivation of improved
derivatives is the Taylor expansion, which not only collocates a function by going
through the same points but also has the same geometrical properties (e.g., tan-
gent, curvature) in the vicinity of a given point. To obtain improved finite difference
expansions, we consider additional mesh points in the vicinity of the pivotal point m.

Suppose that we want to derive an improved expression for the second derivative.
For this purpose let us expand the function y(x) at point m + 1 and m − 1 into a
Taylor series. This yields

ym+1 = y(xm + �x) = y(xm) + �x

1!
y ′(xm) + (�x)2

2!
y ′′(xm)

+ (�x)3

3!
y ′′′(xm) + · · · + (�x)k

k!
y(k)(xm) + · · · (5.2.1)

and

ym−1 = y(xm − �x) = y(xm) − �x

1!
y ′(xm) + (�x)2

2!
y ′′(xm)

− (�x)3

3!
y ′′′(xm) + · · · + (−�x)k

k!
y(k)(xm) + · · · . (5.2.2)

Adding Eqs. (5.2.1) and (5.2.2), we can write

y ′′
m = 1

(�x)2
(ym+1 − 2ym + ym−1) − (�x)2

12
yIV

m − (�x)4

360
yVI

m + · · ·

=
[

�2y

(�x)2

]
m

+ ε1 + ε2 + · · · , (5.2.3)

where ε1 and ε2 represent the error terms. By expressing the fourth-order derivative
yIV

m in ε1 using central differences, we obtain(
d2y

dx2

)
m

= y ′′
m = 1

12(�x)2
(−ym+2 + 16ym+1 − 30ym + 16ym−1 − ym−2)

+ (�x)4

90
yVI

m + · · · . (5.2.4)



278 Finite Difference Methods

The order of magnitude of the error in this expression (given in �x) is (�x)4,
compared with (�x)2 in the corresponding ordinary finite difference expressions
obtained from central differences. Thus, the accuracy of this finite difference expres-
sion [Eq. (5.2.4)] has been considerably increased.

Improved finite difference quantities for other derivatives can be derived in a sim-
ilar manner. These sharpened finite difference expressions are schematically given in
Table 5.2.1. Operators for mixed derivatives can be calculated from one-dimensional
expressions, as discussed in Sec. 5.1.1. The corresponding improved finite differ-
ence patterns are given in Fig. 5.2.1. Sharpened finite difference expressions for the
Laplacian and biharmonic operators, obtained through the method of higher approx-
imation, are given in Fig. 5.2.2. Although these expressions have a higher degree of
accuracy, they require more mesh points, a pronounced disadvantage of this tech-
nique, especially when boundary conditions are evaluated. That is, to simplify the
relatively complex treatments of boundary conditions by improved finite differences,
one often applies the less accurate approximations shown in Fig. 5.1.5. Such an
approach is, in most cases, just “barely sufficient.” Consequently, special attention
should always be paid to the boundaries since the accuracy gained can easily be lost
by less accurate representation of the boundary conditions. Furthermore, the use of
these improved operators should be accompanied by better load-averaging techniques,
already discussed in Sec. 5.1.1.

c. Multilocal Method (Hermitian Method). The German and French terms for the
multilocal method are Mehrstellenverfahren and méthode plurilocale, respectively.
In the pertinent English language literature this method is often called the Hermitian
method, although this sharpened finite difference technique was not originated by
Hermite. The improved accuracy is obtained, again, by expanding the function into
the Taylor series at points m + 1 and m − 1, as discussed above. If we want to derive
an improved expression for the second derivative, for instance, we write the fourth
derivative of the error term, ε1, (5.2.3) in terms of the second derivatives; thus

yIV
m =

(
d4y

dx4

)
m

=
[

d2

dx2

(
d2y

dx2

)]
m

≈
(

�2η

�x2

)
m

, (5.2.5)

Table 5.2.1 Schematic Representation of Higher-Order Finite Difference Expressions

y(k)
m Coefficients First Error Term

y′
m

[
�−1 �+8 �−8 �+1

] 1

12(�x)
+ 1

30
(�x)4yV

m

y′′
m

[
�−1 �+16 �−30 �+16 �−1

] 1

12(�x)2
+ 1

90
(�x)4yVI

m

y′′′
m

[
�−1 �+8 �−13 �+13 �−8 �+1

] 1

8(�x)3
+ 7

120
(�x)4yVII

m

yIV
m

[
�−1 �+12 �−39 �+56 �−39 �+12 �−1

] 1

6(�x)4
+ 7

240
(�x)4yVIII

m

Point
�

m + 3
�

m + 2
�

m + 1
�
m

�
m − 1

�
m − 2

�
m − 3 ε1
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Z X×

Y

≈ ×
m,n

∂2 (·)
∂x ∂y

1 −8 8 −1

−8 64 −64 8

8 −64 64 −8

−1 8 −8 1

m, n

(a)

(b)

(c)

l

l

1

144 l2

≈ ×
m,n

∂3 (·)
∂x2 ∂y

1

1 −16 −16 1

−8 128 128 −8

8 −128 −128 8

−1 16 16

30
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l

≈ ×
m,n

∂3 (·)
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1

1 −8 8 −1

−16 128 −128 16

30 −240 240 −30

−16 128 −128 16

1 −8 8 −1

144 l3

m, n

l

l

∆x = ∆y = l

Figure 5.2.1 Stencils for mixed derivatives of higher order.
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Z X×

Y

×∇2 (·)m,n =

m, n

1

12 l2

l

l

−1

−1

16

16

(a) Laplacian operator

−60−1 −116 16

∆x = ∆y = l

Z X×

Y

×∇4 (·)m,n =

m, n

1

6 l4

l

l

(b) Biharmonic operator

18414−1 −1−77 −77 14

−77

−1

−1

−1 20 20

14−1 −1

14−1 −1

−1

−77−1 20 20 −1

Figure 5.2.2 Improved ∇2 and ∇4 operators.
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where η = y ′′. Using only the first error term, Eq. (5.2.3) gives

η′′
m = 1

(�x)2
(ηm−1 − 2ηm + ηm+1) − (�x)2

12
ηIV

m − · · · , (5.2.6)

or, in another form,

yIV
m = 1

(�x)2
(y ′′

m−1 − 2y ′′
m + y ′′

m+1) − (�x)2

12
yVI

m + · · · . (5.2.7)

Substitution of this expression into Eq. (5.2.3) yields

1

(�x)2
(ym−1 − 2ym + ym+1) = 1

12
(y ′′

m−1 + 10y ′′
m + y ′′

m+1)

− (�x)4

240
yVI

m + · · · . (5.2.8)

Equations (5.2.4) and (5.2.8) have errors of the same order of magnitude, but the
latter requires fewer mesh points than the expression previously obtained through
higher-order approximation.

Similar expressions in which, in addition to the ordinates, the derivatives of
the function appear at various mesh points† can be derived for other derivatives.
Equation (5.2.8) can be written in the more general form

y(k)
m =

i=+κ∑
i=−κ

(am+iym+i) +
i=+1∑
i=−1

(Am+iy
(k)
m+i ) + ε for κ = k

2
,

k + 1

2
, (5.2.9)

where k represents the order of derivative and the error term is usually neglected.‡

Let us consider, for instance, a linear differential equation in the form

y(k) = f (x, y, y ′, . . . , y(k−2), y(k−1)) (5.2.10)

in which we have expressed the derivative y(k) in terms of lower derivatives (k −
1, k − 2, . . . , 2, 1). The substitution of (5.2.10) into the right-hand side of (5.2.9)
gives, for each pivotal point, xm, an equation that contains the unknowns y

(s)

m+1,
where 0 ≤ s ≤ k − 1. Additional equations of the form (5.2.9) for each y(s)

m result in
the following system of equations:

i=κ∑
i=−κ

[a(1)
m+iym+i + A

(1)
m+iy

(k−1)
m+i ] = 0,

i=κ∑
i=−κ

[a(2)
m+iym+i + A

(2)
m+iy

(k−2)
m+i ] = 0,

...

i=κ∑
i=−κ

[a(k−1)
m+i ym+i + A

(k−1)
m+i y ′

m+i] = 0.

(5.2.11)

† Hence the name multilocal.
‡ The first term on the right-hand side of Eq. (5.2.9) represents the central difference operator.
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In these equations the ordinates and the derivatives of the functions are unknown.
Using additional statements about the boundary conditions involving higher deriva-
tives, a sufficient number of equations for the solution can be obtained. Furthermore,
a successive elimination of the unknown derivatives from Eq. (5.2.11) yields finite
difference expressions in terms of the ym+1, ym, and ym−1 ordinates for the specific
differential equation (5.2.10) in consideration.

Collatz [5.2.1, 5.2.2] extended this concept to the governing differential equation
of the plate (1.2.30) utilizing two-dimensional Taylor series expansion that has the
general form

w(x − �x, y − �y) = wm,n +
∞∑

j=1

[
(−1)j

j !

(
�x

∂

∂x
+ �y

∂

∂y

)j

w

]
m,n

. (5.2.12)

Stencils for schematic representation of the governing differential equation (1.2.30)
are given in Fig. 5.2.3. The derivation of such improved finite difference operators is
usually tedious and involved. Therefore, it should not be attempted routinely but only
when the elaborate derivations required are justified by repeated reuse of the improved
finite difference expressions. Zurmühl [5.2.4] has derived extensive formulas for
the treatment of various boundary conditions by the multilocal method, the most
important of which are given Figs. 5.2.4–5.2.10. In addition, the reader finds in
Zurmühl’s paper very useful expressions for the internal forces expressed by the
multilocal technique, further contributing to the practical applicability of this method.
Other applications of this improved finite difference technique can be found in the
references listed at the end of this section.

0

Figure 5.2.3 General stencil for multilocal method.
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Figure 5.2.4 Multilocal stencils for second derivatives.
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Figure 5.2.5 Pivotal point m, n next to boundaries.
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Figure 5.2.6 Stencils for simply supported and fixed corner points.

d. Funicular Polygon Method (Variation of the Hermitian Method). The funic-
ular polygon method represents a sharpened finite difference technique introduced
by Stüssi [5.2.5, 5.2.6] and extended by Dubas [5.2.7]. It is based on a relationship
that exists in the field of structural mechanics between a function y and its second
derivative y ′′.

The fourth-order differential equation of a plate strip (2.7.1) can be written in terms
of two second-order differential equations:

d2M(x)

dx2
= −pz(x) (5.2.13)
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Figure 5.2.7 Stencils for free-edge conditions. These two stencils must be used jointly.
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Figure 5.2.8 Pivotal point m, n at λ distance from free edge. These two stencils must be used
jointly.
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Figure 5.2.9 Stencils for corner of simply supported and free edges.

and
d2w

dx2
= −M

D
. (5.2.14)

Assuming, again (as we did for the straight-line representation of the load in
Sec. 5.1), that the lateral load at the mesh points is transmitted by a series of fic-
tive simply supported beams (Fig. 5.2.11), the equivalent concentrated load (Pm) is
obtained by computing the reactions of these beams using a second-order parabola for
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Figure 5.2.10 Additional multilocal patterns for edge regions.

the representation of the load distribution. This requires the superposition of the reac-
tions created by the shaded area in Fig. 5.2.11 upon the already derived equivalent
joint load (5.1.29) pertinent to the assumption of the straight-line load distribution.
This yields

Pm = �x

12
(pm−1 + 10pm + pm+1). (5.2.15)
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Figure 5.2.11 Improved load averaging.

Expressing Eq. (5.2.13) by central differences, we can write

Mm−1 − 2Mm + Mm+1 = −Pm(�x)2

�x
= − (�x)2

12
(pm−1 + 10pm + pm+1). (5.2.16)

By introducing

M = η and η′′ = d2M

dx2
= −pz, (5.2.17)

a more general form of Eq. (5.2.16) is obtained:

ηm−1 − 2ηm + ηm+1 = (�x)2

12
(η′′

m−1 + 10η′′
m + η′′

m+1) = (�x)Pm(η′′), (5.2.18)
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which is called the funicular polygon equation, since it corresponds to the equation
of the funicular polygon of the equivalent joint forces Pm. Equation (5.2.18), with
the exception of the error term, is identical to the previously derived Eq. (5.2.8).
The advantage of the structural mechanics analogy used in the derivation of the
funicular polygon equation lies in the fact that the usability of Eq. (5.2.18) is extended
to discontinuous functions, since the equivalent joint load of any function can be
obtained by applying the above-described procedure.

Equation (5.2.18) gives a mathematical relationship between a function and its
second derivative, which can be used for solving second- and fourth-order differential
equations, since it permits the substitution of the second and fourth derivatives by
the function itself or by lower-order derivatives, respectively. The finite difference
solution of the differential equation of the plate (1.2.30) by this improved finite
difference method is based on the same principle; that is, the derivatives are expressed
by suitable combinations of the joint loads. For this purpose we express the two-
dimensional lateral load pz(x, y) as the Cartesian product of two one-dimensional
load-averaging rules. This operation yields

Pm,n = (�x)(�y)

144




pm−1,n−1 + 10pm,n−1 + pm+1,n−1

+10pm−1,n + 100pm,n + 10pm+1,n

+pm−1,n+1 + 10pm,n+1 + pm+1,n+1


 . (5.2.19)

Next, an analogous expression is constructed from the joint loads:




Pm−1,n−1 + 10Pm,n−1 + Pm+1,n−1

+10Pm−1,n + 100Pm,n + 10Pm+1,n

+Pm−1,n+1 + 10Pm,n+1 + Pm+1,n+1


 . (5.2.20)

To formulate the partial derivatives of the differential equation of the plate (1.2.30)
in terms of joint loads, first, the funicular polygon equation (5.2.18) is written for
the X and Y directions:

�x Pm,n(w
′′) = wm−1,n − 2wm,n + wm+1,n (5.2.21)

and

�y Pm,n(ẅ) = wm,n−1 − 2wm,n + wm,n+1, (5.2.22)

where Pm,n is a joint load [Eq. (5.2.19)]. Similarly,

�x Pm,n(w
IV) = w′′

m−1,n − 2w′′
m,n + w′′

m+1,n, etc. (5.2.23)

Now all terms of the differential equation of the plate (1.2.30) can be expressed by
joint loads that have the general form of (5.2.20). Then, using Eqs. (5.2.21), (5.2.22)
and (5.2.23), all derivatives of w are eliminated in two subsequent operations [5.2.7].
The results of these mathematical manipulations are given in diagrammatic form
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Figure 5.2.12 General stencils for funicular polygon method.

in Fig. 5.2.12. Stencils for the various edge conditions are shown in Figs. 5.2.13
and 5.2.14.

In the previous subsection we gave multilocal stencils for rectangular plates cov-
ering practically all edge and corner conditions. Here—to save space—we have
restricted ourselves to the most commonly used edge supports. Readers who are inter-
ested in obtaining additional readily usable finite difference patterns for the funicular
polygon method are referred to Ref. [5.2.7]. The convergence characteristics of this
improved FDM is illustrated in Fig. 5.2.15.

e. Successive Approximation. Other ways for improving on the accuracy of ordi-
nary finite difference solutions are based on error minimizations combined with
iteration.

First, we obtain a solution w(0)(x, y) using ordinary finite difference techniques
and an improved load-averaging rule. For a quadratic mesh (�x = �y = λ(0)), the
magnitude of the error can be expressed by ε(0) = F(x, y)(λ(0))µ, where µ represents
the order of error and F (x, y) is a function that is independent of mesh size. The order
of error for the biharmonic operator, calculated from central difference, is µ = 2.

Next, decreasing the mesh width to λ(1) = λ(0)/2, a new solution w(1)(x, y) is
obtained. We estimate the error of this second solution by Runge’s principle, which
gives

ε(1)
m,n ≈ w(0)

m,n − w(1)
m,n

2µ − 1
= w(0)

m,n − w(1)
m,n

3
. (5.2.24)

An improved solution is sought in the form

w(x, y) = w(1)(x, y) + c1φ1(x, y) + · · · , (5.2.25)
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Figure 5.2.13 Stencils for simple supported edges (funicular polygon method).

where φ1(x, y) is a function affine to w(1)(x, y). The product of the corresponding
beam deflections in the X and Y directions, for instance, provides very usable shape
functions. In a computerized solution, the deflected plate surface can easily be curve
fitted, yielding the best choice for φ1(x, y). Other suitable expressions can be found
in Secs. 4.2 and 4.3. The unknown constant c1 in Eq. (5.2.25) is determined from
minimizing the error ε(1). If the exact solution is w(x, y), the square of the error sum
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Figure 5.2.14 Stencils for fixed edges (funicular polygon method).

of the improved solution [Eq. (5.2.25)] is

(s(1))2 =
k∑

i=1

[wm,n − w(1)
m,n − c1φ1(x, y)m,n − · · ·]2

≈
k∑

i=1

[ε(1)
m,n − c1φ1(x, y)m,n]2, (5.2.26)
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Figure 5.2.15 Convergence characteristics of funicular polygon method.

where i = 1, 2, 3, . . . , k represents the number of mesh points. The minimum prin-
ciple gives

∂[s(1)]2

∂c
= 2

k∑
i=1

{[c1φ1(x, y)m,n − ε(1)
m,n]φ1(x, y)mn} = 0; (5.2.27)

hence

c1 =
∑k

i=1 ε(1)
mnφ1(x, y)m,n∑k

i=1[φ1(x, y)m,n]2
(5.2.28)

This cycle can be repeated. The least-squares method, used in this error distribu-
tion process, usually yields better estimates of the derivatives, because it provides a
“smoothing” effect.

Since it is usually inconvenient to use λ(2) = λ(0)/4 for the second cycle, we may
estimate the maximum error for rectangular plates from

ε(2)
max = c2 = 1.5(w(2)

max − w(1)
max)

(1/M2) + (1/N2)
, (5.2.29)

where M and N represent the number of mesh widths between the location of w(2)
max

and the nonyielding (w = 0) boundaries. Equation (5.2.29) assumes that the maxi-
mum deflection occurs close to the center of the plate and that the error function is

φ2(x, y) = c2

(
1 − x2

M2λ2

)(
1 − y2

N2λ2

)
. (5.2.30)

This simple iterative technique results in an especially fast convergence to the exact
solution when sharpened biharmonic operators are used, but without the benefit of
improved expressions for the boundary conditions. In such a case µ = 4 for interior
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mesh points [Eq. (5.2.24)], while µ = 2 (or another pertinent number) is applicable
at the boundaries. Usually one cycle gives sufficiently improved results.

Summary. Sharpened FDMs are very powerful tools in the hands of a competent
analyst. Improved finite difference expressions are generally obtained from Taylor
series expansion, used to satisfy the differential equation at several points for each
finite difference expression. Special attention should be paid to (1) load representation
and (2) the boundary value problems. Inaccurate formulas used at the boundaries
considerably reduce the accuracy gained at interior points. Although, with the same
mesh size, these improved techniques require more work, in general, they prove
to be more economical than ordinary FDMs. That is, a relatively coarse mesh is
sufficient for good accuracy. Since the method of higher approximation requires
more mesh points, preference should be given to the so-called Hermitian methods
(multilocal and funicular polygon). In fact, these methods are recommended most
by the author for “hand” computation and for the use with programmable desk-top
calculators, provided that appropriate stencils are readily available. Derivation of
improved formulas can be quite involved; consequently, a simple error distribution
technique has been developed for solution of complicated differential equations by
the ordinary FDM. The iteration converges quickly to the exact solution when the
derivatives at the interior region are expressed by the method of higher approximation
and the boundary errors are minimized.

ILLUSTRATIVE EXAMPLE I

Let us solve the problem shown in Fig. 5.1.19a using the funicular poly-
gon method. The joint-point loads are determined from Eq. (5.2.19); thus we
can write

P1 = P2 = λ2

144

(
24

p0

2
+ 120p0

)
= 0.916λ2p0,

P3 = P4 = λ2

144

(
120

p0

2
+ 12p0

)
= 0.500λ2p0.

The finite difference equations at each of the grid points are calculated using
the stencils shown in Figs. 5.2.12 and 5.2.13:

At point 1: 1872w1 − 1152w2 − 1152w3 − 128w4

= λ4p0

D
(24 × 0.5 + 120 × 0.916) = 122

λ4p0

D
;

At point 2: − 576w1 + 1872w2 − 64w3 − 1152w4

= λ4p0

D
(22 × 0.5 + 110 × 0.916) = 112

λ4p0

D
;

At point 3: − 576w1 − 64w2 + 1872w3 − 1152w4

= λ4p0

D
(120 × 0.5. + 12 × 0.916) = 71

λ4p0

D
;
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At point 4: − 32w1 − 576w2 − 576w3 + 1872w4

= λ4p0

D
(110 × 0.5 + 11 × 0.916) = 65.1

λ4p0

D
.

The solution of this system of linear algebraic equations gives

w1 = 0.00265
a4p0

D
, w2 = 0.00193

a4p0

D
,

w3 = 0.00185
a4p0

D
, w4 = 0.00132

a4p0

D
.

Since the analytically obtained maximum deflection [2] is w1 = wmax =
0.00263a4p0/D, the discrepancy between the “exact” and the improved finite
difference solutions is only 0.76%. A comparison with the relatively accurate
two-step finite difference solution (error 5%), discussed in the previous section,
clearly illustrates the advantages of this powerful tool in analyzing plate
problems. If we compare the results obtainable using the central difference
expressions for the biharmonic operator with those of the funicular polygon
method, we can state that, applying the same mesh size, the latter method
reduces the error by more than an order of magnitude. On the other hand, the
increase of additional effort required is relatively small.

ILLUSTRATIVE EXAMPLE II

The problem shown in Fig. 5.1.19a is to be solved by the multilocal method.
Using the stencils given in Figs. 5.2.3 and 5.2.8a, the following set of equations
can be written:

At point 1: 36w1 − 20w2 − 20w3 − 8w4

=
[

2p0 + 2p0 + 2

(
1

2
p0

)]
λ4

D
= 2.5

p0

D
λ4;

At point 2: − 2772w1 + 4296w2 + 1648w3 − 2768w4

=
[

124p0 + 13 × 2

(
1

2
p0

)
− 72p0

]
λ4

D
= 65

p0

D
λ4;

At point 3: − 2772w1 + 1648w2 + 4296w3 − 2768w4

=
[

124

(
1

2
p0

)
+ 13 × 2

(
1

2
p0

)
− 72p0

]
λ4

D
= 3p0

D
λ4;

At point 4: 432w1 − 1630w2 − 1630w3 + 3952w4

=
[

102

(
1

2
p0

)
+ 12 × 2

(
1

2
p0

)
+ 12p0

]
λ4

D
= 75

p0

D
λ4.
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Solving these equations, we obtain

w1 = wmax = 0.00270
p0a

4

D
, w2 = 0.00196

p0a
4

D
,

w3 = 0.00186
p0a

4

D
, w4 = 0.00136

p0a
4

D
.

A comparison of the maximum deflection with the exact solution [2] shows
an error of 2.66%. Although the funicular polygon method yields somewhat
more favorable results (0.76%), the accuracy of the multilocal method can still
be considered very good.

It is interesting to note that using the stencil given in Fig. 5.2.3 but not
applying the stencils for the edge and corner expressions,† the maximum deflec-
tion shows an error of approximately 10%. This result clearly illustrates the
influence of inaccurate boundary expressions on the overall result.

ILLUSTRATIVE EXAMPLE III

Find the maximum deflection of a uniformly loaded square plate by the ordi-
nary finite difference method. Improve the result by successive approximation,
described in Sec. 5.2e. Assume that two opposite edges of the plate are fixed,
while the two others are simply supported.

4

Figure 5.2.16 Uniformly loaded square plate.

For a 4 × 4 mesh (Fig. 5.2.16) the ordinary finite difference equations are

+ 20w
(0)

1 − 16w
(0)

2 − 16w
(0)

3 + 8w
(0)

4 = p0a
4

256D
,

− 8w
(0)

1 + 22w
(0)

2 + 4w
(0)

3 − 16w
(0)

4 = p0a
4

256D
,

† The method of handling boundary conditions was similar to those discussed in Sec. 5.1.
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− 8w
(0)
1 + 4w

(0)
2 + 20w

(0)
3 − 16w

(0)
4 = p0a

4

256D
,

+ 2w
(0)
1 − 8w

(0)
2 − 8w

(0)
3 + 22w

(0)
4 = p0a

4

256D
.

Solution of these equations yields

w
(0)

1 = 0.63129
p0a

4

256D
, w

(0)

2 = 0.41449
p0a

4

256D
,

w
(0)

3 = 0.46630
p0a

4

256D
, w

(0)

4 = 0.30835
p0a

4

256D

and

w(0)
max = w

(0)

1 = 0.00247
p0a

4

D
.

This result compared with the “exact” solution, 0.00192p0a
4/D, shows an error

of 28.6%.
Next, we decrease the mesh width to λ(1) = a/8 and calculate an improved

solution w(1). The estimated error of this solution, based on Eq. (5.2.24), is

ε
(1)

1 = 0.53446 − 0.63129

3
· p0a

4

256D
= −0.03228

p0a
4

256D
,

ε
(1)
2 = 0.32560 − 0.41449

3
· p0a

4

256D
= −0.02963

p0a
4

256D
,

ε
(1)

3 = 0.39514 − 0.46630

3
· p0a

4

256D
= −0.02372

p0a
4

256D
,

ε
(1)
4 = 0.24338 − 0.30835

3
· p0a

4

256D
= −0.02168

p0a
4

256D
.

Assuming an error function for w(1) in the form

ε1(x, y) = c1φ1(x, y) = c1

2

(
1 − cos

2πx

a

)
sin

πy

a
,

we obtain the unknown coefficient c1 from Eq. (5.2.28):

c1 = − p0a
4

256D

× 0.03228 × 1+0.02963×0.5+0.02372×0.70711+0.02168×0.35355

1+0.25+0.5+0.125

= −0.03815
p0a

4

256D
;
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Table 5.2.2 Summary of Results

Cycle Number w(i)
max = (w)

(i)

x=y=a/2 Percentage Error

1 w(0) = 0.00247p0a
4/D 28.6

2 w(1) = 0.00208p0a
4/D 8.33

3 w(2) = w(1) + c1φ1

= 0.0019388p0a
4/D 0.98

4 w(3) = w(1) + c1φ1 + c2φ2

= 0.001925p0a
4/D 0.26

therefore

w(2)
max = [w(1) + c1φ1(x, y)]x=y=a/2 = 0.00193880

p0a
4

D
.

Repetition of the same procedure gives wmax = 0.001925p0a
4/D. The results

of this successive approximation are summarized in Table 5.2.2. Although
the deflections converge rapidly to their exact values, this is not always the
case with the internal moments and shear forces, especially if the assumed
φ1(x, y), φ2(x, y), . . . error functions are not affine to the exact deflected place
surface. In such a case, we may use the errors ε1, ε2, . . . , εn associated with
each mesh point as fictitious loads p∗

1, p∗
2, . . . , p∗

n to obtain the required correc-
tions by the finite difference technique. Then we proceed with the final cycle
of approximation, as indicated in Sec. 5.2e. When high accuracy is required,
improved operators should be used for the interior mesh points and for deter-
mination of the internal forces.

ILLUSTRATIVE EXAMPLE IV

Assume, again, that the edges x = 0 and x = a of a square plate are fixed
and the other two edges are simply supported. The plate carries a uniformly
distributed lateral load p0. Determine the maximum deflection and moments of
this plate using the method of higher approximation, introduced in Sec. 5.2b.

Since in this case we do not have readily usable stencils for the boundary
conditions, we try to extend the simplified assumptions, given in Fig. 5.1.5,
to deal with the simply supported and clamped boundaries of this plate. The
finite difference mesh and the numbering of the corresponding mesh points are
shown in Fig. 5.2.17.

Employing the improved biharmonic operator given in Fig. 5.2.2b and using
the above-mentioned simplifications for the boundaries, we obtain the coeffi-
cient matrix

A =




184 −154 28 −154 8 −4 28 −4 0
−77 198 −79 40 −156 40 −2 28 −2

14 −79 198 −2 40 −156 0 −2 28
−77 40 −2 198 −156 28 −77 40 −2

2 −78 20 −78 212 −80 20 −78 20
−1 20 −78 14 −80 212 −1 20 −78
14 −2 0 −77 40 −2 170 −152 28
−1 14 −1 20 −78 20 −76 184 −78

0 −1 14 −1 20 −78 14 −78 184
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for the matrix equation Aw = p. The corresponding load vector is

p = { 1 1 1 1 1 1 1 1 1 }6λ4p0

D
.

9 8 7 8 9

−9 −8 −7 −8 −9

898 9

6 5 4 5 6

−6 −5 −4

a

b = a

X

Y

Pz = P0

−5 −6

565 6

3 2 1 2 3 232 3

6 5 4 5 6 565 6

9 8 7 8 9 898 9

−6 −5 −4 −5

−9 −8 −7 −8

−6

−9
n = 1

3

l = a
6

Figure 5.2.17 Square plate with two opposite edges simply supported and other two
clamped.

Solution of our matrix equation yields the vector of displacements

w =




1.933
1.568
0.685
1.706
1.386
0.610
1.030
0.842
0.377




p0a
410−3

D
.

Since the maximum displacement occurs at the center of the plate, w1 =
wmax = 0.001933p0a

4/D. A comparison of this result with its analytically
obtained more exact value [2] indicates only a negligible error of 0.5%.
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The case with the maximum positive moment is similar. Using

(mx)m,n = D

12λ2
[wm−2,n − 16wm−1,n + 30wm,n − 16wm+1,n

+ wm+2,n + ν(wm,n−2 − 16wm,n−1 + 30wm,n

− 16wm,n+1 + wm,n+2)], (a)

we obtain

(mx)x=y=a/2 = 0.03301p0a
2,

which also shows only a negligible error.
But the finite difference equation

(my)m,n = D

12λ2
[wm,n−2 − 16wm,n−1 + 30 wm,n − 16wm,n+1

+ wm,n+2 + ν(wm−2,n − 16wm−1,n + 30wm,n

− 16wm+1,n + wm+2,n)] (b)

gives

(my)x=0,y=a/2 = −0.05635 p0a
2.

This result compared with its analytically obtained value of −0.0697p0a
2

[2] shows an unacceptable error of −19.2%. Consequently, we can state that,
while the approximation of the simply supported boundaries using Fig. 5.1.5b
may occasionally be acceptable, we must use a better approach than given in
Fig. 5.5.1a when we are dealing with clamped edges in connection with any
of the improved FDMs.
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[5.2.5] STÜSSI, F., “Numerische Lösung von Randwertproblemen mit Hilfe der Seilpolygonglei-
chung,” Z. f. Angew. Math. u. Phys., 1 (1950), 53–80.
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5.3 Finite Difference Analysis of Moderately Thick Plates

As was already discussed in Sec. 1.5, neglecting the effects of transverse shear defor-
mation in moderately thick plates causes error in computation of deflections and stress
resultants of such plates. In addition, in some cases transverse direct stress may also
influence results. To consider these effects, which are neglected in classical plate
theory, we can follow three different approaches. The selection of the most suitable
one depends, on the one hand, on the accuracy we seek and, on the other hand, on the
effort we are willing to put in such a numerical analysis. The three approaches are
(a) correction to classical finite difference solutions, (b) direct finite difference for-
mulation of the problem, and (c) finite difference representation of three-dimensional
elasticity. Here, we will treat only the first two methods in detail, since they are
quite usable in everyday engineering practice. In dealing with the third technique,
however, we restrict ourselves to an introductory presentation because its application
is more involved and requires special, not readily available computer programs.

a. Correction to Classical Finite Difference Solutions. This is, by far, the sim-
plest and most economical method to approximate the additional shear deformation
effects in moderately thick plates. First, we perform a finite difference analysis based
on the classical Kirchhoff’s plate theory obtaining the deflections wK . Next, we aug-
ment the so-obtained results with deflections revised with a correction factor in the
form of CwK .

For simply supported Mindlin plates of various shapes, we can use the discrete
form of the conjugate plate analogy mentioned in Sec. 2.10. In the first step of
such a numerical analysis of moderately thick plates, we can use any of the already
introduced FDMs to obtain wK,i at each mesh point. In the second step, we calculate
the additional deflections caused by the transverse shear using

ws,i = Mi

κ2Ghi

= (mx + my)i

(1 + ν)κ2Ghi

, (5.3.1)

where Mi is the so-called moment-sum (1.2.42) at mesh point i and κ2 = 5
6 represents

the shear correction factor. Thus, for simply supported Mindlin plates the deflection
at each mesh point can be calculated from

wM,i = wK,i + ws,i . (5.3.2)

This represents the exact relationship between the deflection values of Mindlin and
Kirchhoff plates [5.3.1]. With the so-augmented deflections, we can also estimate
the stress resultants using the corresponding finite difference expressions introduced
in Secs. 5.1 and 5.2, respectively. However, a more exact approach leads to utiliza-
tion of the stencils developed for the direct finite difference analysis, discussed in
Section 5.3b.

For other not simply supported boundaries, we may apply a similar approach
developed by Donnell [5.3.2] that also considers the additional effect caused by
direct stress. His approximation of the deflected plate surface is

wmt(x, y) ≈ wK(x, y) − (8 − 3ν)h2

40(1 − ν)
∇2wK(x, y), (5.3.3)
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where wK represents, again, the solution for the Kirchhoff plate obtained from a
previously introduced finite difference procedure. The second term on the right-hand
side of Eq. (5.3.3) can also be given in a discrete form by applying the finite difference
patterns of ∇2 operating on the already calculated deflections wK,i . Thus, using
ordinary finite differences, we can write

(∇2wK)m,n =
(

∂2wK

∂x2
+ ∂2wK

∂y2

)
m,n

≈ 1

(�x)2
[(wK)m−1,n − 2(wK)m,n + (wK)m+1,n]

+ 1

(�y)2
[(wk)m,n−1 − 2(wK)m,n + (wK)m,n+1]. (5.3.4)

A corresponding stencil for ∇2 but expressed by higher-order finite differences is
given in Fig. 5.2.2a.

b. Direct Finite Difference Formulation. Despite their wide use in the solution
of plate problems related to their classical theory, FDMs have been very sparingly
utilized for the analysis of moderately thick plates. Speare applies the ordinary FDM
to Reissner’s plate theory [5.2.3]. We consider here only the simplified version of
the pertinent differential equation (1.5.11), since in this case only one variable, w, is
involved in the analysis. The ordinary finite difference representation of Eq. (1.5.11)
developed by Speare is given in Fig. 5.3.1, and the finite difference patterns of the
stress resultants† mx , mz and qx are shown in Figs. 5.3.2–5.3.4 [5.2.3].

The boundary conditions to be satisfied are as follows:

Simply supported : w = mn = φt = 0,

Fixed : w = φn = φt = 0,

Free : mn = mnt = qn = 0,

where

φn = −∂w

∂n
+ 12(1 + ν)

5Eh
qn, φt = −∂w

∂t
+ 12(1 + ν)

5Eh
qt .

Subscripts n and t refer to the normal and tangential directions, respectively. The finite
difference forms of these equations can be derived using stencils of the corresponding
stress resultants (Figs. 5.3.2–5.3.4).

A closer inspection of all the above-introduced stencils reveals that certain values
of plate thickness h will make some terms zero or very small. If this occurs, the
mesh length λ should be changed. Furthermore, it should be noted that the use of the
general stencil (Fig. 5.3.1) in combination with the simplified boundary conditions
(Fig. 5.1.5) gives completely erroneous results.

To increase the accuracy of this finite difference procedure, we may apply the suc-
cessive approximation technique introduced in Sec. 5.2e. In selecting the first mesh
size, λ(0) = L/(4 → 6) is recommended, while the subsequent subdivision should

† See Eqs. (1.5.13)–(1.5.17).
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Figure 5.3.1 Finite difference representation of left-hand side of differential Equation (1.5.11).

be half of the first one. Here L represents the shortest span length of the plate. For
the treatment of oblique plates and other irregular plate geometry, the approximation
recommended in Sec. 5.1 can be used. Even without the above-mentioned iterative
improvements, this versatile direct FDM shows acceptable accuracy and good con-
vergence characteristics, in comparison with the more exact series solutions of certain
test problems [5.3.2]. Its use, however, is not simple because of the relatively complex
handling of the boundary conditions.

c. Finite Difference Representation of Three-Dimensional Elasticity. Ng and
Bencharif [5.3.4] simplified Lamé’s differential equations of three-dimensional elas-
ticity (1.6.2) using three principal planes at the elevations z = 0 and z = ±h/2 and
applied them to moderately thick plates in the following form:

(λ + 2G)
∂2u

∂x2
+ G

∂2u

∂y2
+ (λ + G)

∂2v

∂x ∂y
= 0,

(λ + G)
∂2u

∂x ∂y
+ G

∂2v

∂x2
+ (λ + 2G)

∂2v

∂x ∂y
= 0,

∇4w = pz(x, y)

D
,

(5.3.5)
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where λ is defined by Eq. (1.6.4). These differential equations are then expressed in
finite difference form at each mesh point of the middle surface of the plate using a
three-dimensional finite difference mesh. The two most important boundary condi-
tions of rectangular, moderately thick plates† are as follows:

For clamped plates:

x = ±a

2
: u = 0, v = 0, w = 0;

y = ±b

2
: u = 0, v = 0, w = 0;

z = ±h

2
: τxz = 0, τyz = 0, σz = ±pz

2
.

(5.3.6)

For simply supported plates:

x = ±a

2
: σx = 0, τxy = 0, w = 0;

y = ±b

2
: σy = 0, τxy = 0, w = 0;

z = ±h

2
, τxz = 0, τyz = 0, σz = ±pz

2
.

(5.3.7)

† The origin of the Cartesian coordinate system is at the center of the plate.
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To use this alternative three-dimensional finite difference approach for the analysis
of moderately thick plates effectively, however, one needs a readily usable computer
program. For more details on this method the reader is referred to Ref. [5.3.5].

Summary. To compute the deflections of simply supported moderately thick plates,
utilization of the effortless conjugate plate analogy is the most effective. In addition,
using this approach, one can apply stencils of the direct finite difference approach for
determination of stress resultants without creating any incompatibility, since in both
methods w is the only variable. For consideration of more general plate geometry
and boundary conditions, application of the direct finite difference approach combined
with the iterative successive approximation technique is recommended. It should be
noted, however, that handling of the boundary conditions is not always a simple
task. For approximate results, Donnell’s simplified approach is the most suitable.
When the problem is on the border line between moderately thick and thick plates,
researchers may find the three-dimensional elasticity approach to be the most exact
and, therefore, the most appealing.

ILLUSTRATIVE EXAMPLE I

Let us determine the maximum deflection of a simply supported rectangular
plate subjected to a pz = p0 uniformly distributed lateral load. This moderately
thick reinforced concrete (RC) plate has the following dimensions:

a = 10 m,
b

a
= 3

4
, h = 2 m, E = 30, 000 MN/m2, ν = 0.3.

Due to the double symmetry of this plate problem, we can work with a quarter
plate. With a mesh size of λ = a/6 = b/8, only 12 mesh-point deflections have
to be found. The numbering of these mesh points is shown in Fig. 5.3.5.

3 2 1−3

6 5

Y

X

4−6

9 8 7−9

12 11 10−12

−12 −11 −10

l = b
8

a
2

b
2

CL

CL

Figure 5.3.5 Mesh-point numbering of quarter plate.
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Since the plate is simply supported, we can apply the conjugate plate anal-
ogy discussed above. In the first step, deflections of the Kirchhoff plate are
determined using the ordinary finite difference technique. Consequently, the
pertinent stencil to be applied is given in Fig. 5.1.3a. Similarly, the boundary
conditions can be approximated according to Fig. 5.1.5. The obtained coeffi-
cient matrix of the coupled linear equations Aw = p becomes

A =




20 −16 2 −16 8 0 2 0 0 0 0 0
−8 21 −8 4 −16 4 0 2 0 0 0 0

1 −8 19 0 4 −16 0 0 2 0 0 0
−8 4 0 21 −16 2 −8 4 0 1 0 0

2 −8 2 −8 22 −8 2 −8 2 0 1 0
0 2 −8 1 −8 20 0 2 −8 0 0 1
1 0 0 −8 4 0 20 −16 2 −8 4 0
0 1 0 2 −8 2 −8 21 −8 2 −8 2
0 0 1 0 2 −8 1 −8 19 0 2 −8
0 0 0 1 0 0 −8 4 0 19 −16 2
0 0 0 0 1 0 2 −8 2 −8 20 −8
0 0 0 0 0 1 0 2 −8 1 −8 18




.

(5.3.8)

The corresponding vector of the loads is

p = { 1 1 1 1 1 1 1 1 1 1 1 1 }p0λ
4

D
. (5.3.9)

Solution of the above given matrix equation gives

wK =




8.5941
7.5014
4.4178
8.0250
7.0070
4.1303
6.3246
5.5279
3.2678
3.5580
3.1152
1.8511




p0λ
4

D
=




6.6312
5.7881
3.4088
6.1921
5.4066
3.1869
4.8801
4.2653
2.5214
2.7454
2.4037
1.4283




10−3p0a
4

D
. (5.3.10)

With

D = Eh3

12(1 − ν2)
= 30000 × 23

12(1 − 0.32)

= 21, 978 and G = E

2(1 + ν)
= 11, 538.5, (5.3.11)
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the maximum deflection of the Kirchhoff plate is

wK,1 = 6.6312 × 10−3 × 104p0

21, 978
= 0.00317p0. (5.3.12)

To obtain the additional deflection ws1 caused by transverse shear, we use
Eq. (5.3.1), which requires determination of mx,1 and my,1. These are calcu-
lated as

mx,1 = − D

λ2
[2(w2 − w1) + 2ν(w4 − w1)] = 2.5268p0λ

2, (5.3.13)

my,1 = − D

λ2
[2(w4 − w1) + 2ν(w2 − w1)] = 1.7938p0λ

2. (5.3.14)

Consequently,

ws,1 = mx,1 + my,1

(1 + ν)κ2Gh
= (2.5268 + 1.7938)(10/6)2p0

1.3(5/6)11, 538.5 × 2
= 0.00048p0.

(5.3.15)

Thus, the maximum deflection of the Mindlin plate is

wM,max = wM,1 + ws,1 = 0.00365p0. (5.3.16)

The result shows that for this moderately thick plate consideration of trans-
verse shear increases the maximum deflection by approximately 15%. A similar
approach should be taken if we want to determine the increased deflections of
other mesh points.

ILLUSTRATIVE EXAMPLE II

Figure 5.3.6a shows a moderately thick square plate with two opposite edges
simply supported while the other two edges are free. The plate is subjected to
a uniformly distributed line load p0 acting at half of the span between the two
supports. Dimensions and elastic properties of this RC plate are

a = 10.0 m, h = 1.2 m, E = 30,000 MN/m2, ν = 0.3,

D = Eh3

12(1 − ν2)
= 4747.2 Mnm, G = E

2(1 + ν)
= 11538.5 MN/m2.

Determine the maximum deflection using Donnell’s approximation in connec-
tion with the ordinary FDM.

Utilizing the double symmetry of this plate problem, the mesh points are
numbered as shown in Fig. 5.3.6b. First, we determine the maximum deflection
of the Kirchhoff plate according to Eq. (5.3.3). For this purpose, we apply the
general stencil given in Fig. 5.1.3a. Boundary conditions of the two simply
supported edges are approximated using Fig. 5.1.5b. Stencils pertinent to the
free edges are given in Figs. 5.1.6 and 5.1.7.
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(a) Moderately thick plate
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Figure 5.3.6 Moderately thick plate with two simply supported and two free-edges.

Consequently, the ordinary FDM yields the following coefficient matrix:

A =




20 −16 −16 8 0 2
−8 20 4 −16 2 0
−8 4 20 −16 3.4 −5.4

2 −8 −8 20 −5.4 1.7
0 2 3.4 −10.8 13.06 −6.44
2 0 −10.8 6.8 −12.88 13.06




. (5.3.17)

With the pertinent load vector

p = { 1 0 1 0 0 1 }p0a
3

64D
, (5.3.18)

solution of the matrix equation Aw = p becomes

w =




0.02357
0.01573
0.02419
0.01616
0.01787
0.02680




p0a
3

D

(12.6%)

(9.2%)

(12.5%)

(9.2%)

(8.3%)

(11.6%)

. (5.3.19)
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In this case w = wK represents deflections of the Kirchhoff plate. Percentages
in parentheses in the above equation indicate deviations from the more exact
analytical solution obtained by Lévy’s approach. These discrepancies, of course,
can be reduced considerably by using smaller mesh sizes combined with the
techniques discussed in Secs. 5.1 and 5.2, respectively.

To approximate the effect of the transverse shear on the lateral deflection, the
second term on the right-hand side of Eq. (5.3.3) must be evaluated. This gives

ws,1 = − (8 − 3ν)h2

40(1 − ν)
∇2wK,1

= −0.36514

[
1

λ2
(2w2 − 2w1) + 1

λ2
(2w3 − 2w1)

]

= 0.194 × 10−3p0. (5.3.20)

Hence, the approximate value of the maximum deflection becomes

wmax = w1 = wK,1 + ws,1 ≈ 5.16 × 10−3p0. (5.3.21)

This indicates merely a 4% increase over the classical solution of this plate
problem. With h = 2.0 m, however, this difference becomes approximately
10%. The same approach can be applied to calculate all mesh-point deflections.
A similar technique can also be used in connection with the improved FDMs.
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5.4 Advances in Finite Difference Methods

Although nowadays the bulk of innovative research in numerical analysis of surface
structures is devoted to FDMs, there are some noteworthy exceptions.

For instance, Reddy and Gera introduced an alternate formulation to the ordinary
FD method to improve its accuracy [5.4.1]. Their approach is based on elimination of
the biharmonic plate equation (1.2.30) by replacing it with two bending moment rela-
tions given in Eqs. (1.2.26) and (1.2.27) and by formulating the equilibrium equation
in the form

∂2mx

∂x2
− 2D(1 − ν)

∂4w

∂x2 ∂y2
+ ∂2my

∂y2
= −pz(x, y). (5.4.1)
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Then, applying the ordinary FDM, the bending moment relations are expressed in
finite difference forms as given in Eqs. (5.1.12) and (5.1.13), respectively. Similarly,
using finite difference approximations, Eq. (5.4.1) becomes

−L2
x(mx) + 2D(1 − ν)L4

xy(w) − L2
y(my) = pm,n, (5.4.2)

where the finite difference operators L2
x and L4

xy are represented by Eqs. (5.1.4)
and (5.1.10), respectively. An analogous finite difference expression can be written
for L2

y .
After imposing appropriate boundary conditions, Eqs. (5.1.12), (5.1.13) and (5.4.2)

are solved simultaneously for the three unknowns w, mx and my . This approach
results in more accurate moments than those obtained by using the OFD
method [5.4.1].

For distributed lateral loads, accuracy of this FDM can be further improved by
applying their weighted representations as given in Eq. (5.1.31) and simultaneously
using a similar straight-line averaging technique for the two moments. Thus, for each
pivotal point m, n we can write

[S](mx) = −D[L2
x(w) + νL2

y(w)], [S](my) = −D[L2
y(w) + νL2

x(w)],

− L2
x(mx) + 2D(1 − ν)L4

xy(w) − L2
y(my) = [S](p), (5.4.3)

where [S] represents the matrix operator schematically given in Fig. 5.1.12.
Another improvement in the ordinary FD method is due to the finite difference

energy approach. So far, we have been using the traditional FDMs by replacing the
differential quantities in the governing differential equation of the plate by difference
quantities. The finite difference energy method uses the expressions of strain energy
and expresses these by fine difference quantities. Such an approach was originally
introduced by Courant [5.4.2] and Forsyth et al. [5.4.3]. Minimization of these poten-
tial energy expressions yields a set of algebraic equations that can be solved for the
unknowns. This type of FDM is equivalent to a constant-strain FEM with slope dis-
continuities at the element edges.† If the displacement wi are expressed as unknowns
at the mesh points of the finite difference grid, then we speak of a “whole-station”
scheme. In contrast, in the “half-station” scheme, the energy due to bending is inte-
grated over the shaded area shown in Fig. 5.4.1. The functional values and derivations
of displacements are evaluated at the centroid of this area. Using this approach, a
comprehensive computer program system for linear and nonlinear analysis of surface
structures was developed at Lockheed Palo Alto Research Laboratory [5.4.4].

Giencke improved the multilocal FDM by using a different energy approach [5.4.5].
That is, in the classical higher-order FDMs, the internal forces are calculated as
difference quantities of the lateral displacements w(x, y). This creates an undesirable
loss of accuracy in the results. To avoid such a loss, Giencke introduced the bending
curvatures‡ as unknowns in plate bending problems, from which the bending and
twisting moments can be calculated directly.§ Equations for these unknowns are
derived using the principles of virtual forces and displacements simultaneously. In
this way, a type of multilocal finite difference equation is created [5.4.6].

† See Sec. 7.6.
‡ See Eq. (1.2.21).
§ See Eqs. (1.2.26), (1.2.27) and (1.2.29).
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Y

Z, w X

m, n

Figure 5.4.1 Half-station technique.

For mathematically inclined research engineers, the study of Refs. [5.4.7] and
[5.4.8] is highly recommended. These very accurate higher-order finite difference
techniques, however, should be considerably simplified and made more accessible
to engineers.
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5.5 Summary and Conclusions

For fairly simple plate geometry, loading and boundary conditions, the FDMs dis-
cussed in this chapter offer valuable alternatives in the numerical analysis of plate
problems. In addition, the FDMs can be used for independent checks of the results
obtained by other numerical or analytical analysis techniques.
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The FDMs are based on mathematical discretization of the plate continuum. In
their classical forms, the differential quantities in the governing differential equations
are replaced by finite difference expressions at each mesh point of the fine difference
grid that is laid over the plate domain. Since only one unknown, wi , is used at each
mesh point, the size of the resulting coefficient matrix as well as its bandwidth is
greatly reduced. Consequently, the obtained set of a few linear algebraic equations
can be solved even by some advanced scientific calculators with preprogrammed
equation solvers.

The procedure required for the solution of various plate problems is transparent. If
readily usable stencils for the plate domain and prescribed boundary conditions are
available, generation of the required finite difference equations is simple and involves
only “longhand” operations. In most cases, a computer is not required. With improved
FDMs, the obtained accuracy is remarkably good even with relatively coarse mesh.
Furthermore, the FDM is highly versatile. That is, basically the same approach can
be used to solve dynamic and elastic stability plate problems, as shown in Secs. 15.1
and 16.4.

The most significant drawbacks of the FDM are as follows:

ž The FDMs—with the notable exception of the finite difference energy
method—are ill-suited for automated procedures, since their programming is
cumbersome. Consequently, it is not recommended for the analysis of large
plate structures.

ž Handling of irregular geometry, loads and boundary conditions can be
quite difficult.

ž If suitable finite difference stencils are not readily available, their development
is generally time consuming.

Although at present the FEM dominates the field of numerical analysis of plates,
at times, as shown in this chapter, FD methods can offer significant advantages over
other numerical solution techniques. Unfortunately, research in this field has been
neglected to a large extent. Currently the finite difference energy approach appears
to be the most promising to compete successfully with the all-dominating FEM,
especially if it is combined with the method of higher approximation.

Problems†

5.1.1. Find the maximum deflection of a simply supported rectangular plate sub-
jected to pz = p0 uniformly distributed lateral load. Assume the following
values for the plate: a = 10 m, b/a = 4

3 and a mesh size of λ = a/6 = b/8.
Apply the two-stage approach in connection with the ordinary FDM.

5.1.2. Determine the convergence characteristics of the two-stage approach using
problem 5.1.1 and λ1 = a/4, λ2 = a/6 and λ3 = a/8 mesh sizes.

5.1.3. Find (a) the maximum deflection and (b) the maximum negative and positive
bending moments of a uniformly loaded square plate using the ordinary FDM.
Assume fixed boundary conditions.

† The first two numbers refer to the corresponding section.
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5.1.4. Re-solve problem 5.1.3, but assume this time that a square opening the size
of a/6 × a/6 is located at the center of the plate.

5.1.5. Obtain an approximate solution for the maximum positive moment in the
lock-gate, shown in Fig. 1.1.1c. Use a b/a = 4

2 span ratio and the ordi-
nary FDM.

5.1.6. Re-solve problem 5.1.5, but assume that the thickness of the plate varies
linearly from the bottom to the top of the plate.

5.1.7. A square plate with two opposite edges simply supported and the other two
clamped carries a concentrated load Pz at its center. Determine the maximum
positive and negative moments by the ordinary FDM. Use an equivalent load
representation according to Fig. 4.5.1.

5.1.8. A rectangular plate shown in Fig. 2.3.1 carries a distributed load pz =
p0 sin(πx/a). Determine the maximum moments in the plate using the
ordinary FDM. Assume a b/a = 4

3 span ratio and use λ = a/6 = b/8
mesh size.

5.2.1. Determine the maximum deflection of the plate shown in Fig. 5.2.16 by the
multilocal method.

5.2.2. Use the successive approximation technique described in Sec. 5.2.e to improve
the results obtained by solving problem 5.1.3.

5.2.3. Determine the deflections of the plate shown in Fig. 5.3.6 by the multilocal
method, but assume that the plate is thin rather than moderately thick.

5.2.4. Determine the maximum positive and negative deflections of the continuous
plate shown in Fig. 5.1.20 by the multilocal method. Use λ = a/5 for the
mesh size.

5.2.5. A square clamped plate is subjected to a concentrated load at its center.
Find the deflections of the plate using the funicular polygon method. The
concentrated force can be represented by the equivalent load system shown
in Fig. 4.5.1. In addition, determine the maximum positive and negative
moments either by the method of higher approximation or by applying the
stencils given in Fig. 5.2.4.

5.2.6. Re-solve problem 5.2.5, this time using the multilocal method, and compare
the obtained two sets of results for accuracy.

5.3.1. A simply supported moderately thick rectangular plate carries a hydrostatic
load. Determine the deflections by means of the conjugate plate analogy. Use
h = a/5 for the plate thickness.

5.3.2. A moderately thick clamped square plate carries a uniformly distributed load.
Determine its deflections.



6
Gridwork and Framework
Methods

6.1 Basic Concepts

Already at the beginning of the twentieth century it was established that analogies
exist between the behavior of plates in flexure or tension and that of a gridwork [6.1.1,
6.1.2]. A gridwork is a plane, two-dimensional structure consisting of intersecting
rigidly jointed beams, as shown in Fig. 6.1.1. The framework, in comparison with
the gridwork, represents a space frame, that is, a three-dimensional assemblage of
interconnecting bars and/or beams (Fig. 6.1.2). In general, we can state that the stress
and strain distributions in elastic continua can be approximated to a high degree
of accuracy by equivalent gridworks or frameworks depending on the type of the
actual surface structure. The basic requirement for such a lattice analogy is that the
strain energy of the continuum should be represented as accurately as possible by
that of the substitute system. If this requirement is satisfied, stiffness of the actual
system can be replaced by that of an equivalent grid- or framework. For such an
analogy, in the case of plates the required equivalent axial, flexural and torsional
rigidities of the corresponding beam structure can be derived by using one of the
following approaches:

(a) Comparison of Differential Equations. After a limit approach, concerning the
distances between beams, we compare the differential equation for deflections
of the gridwork with that of the plate. This relatively difficult procedure
yields the required equivalent cross-sectional properties of the gridwork in
the most exact forms. It can be used for rectangular as well as triangular
beam assemblages [6.1.3, 6.1.4].

(b) Equivalence of Displacement Fields. We assume that the plate is divided
into discrete rectangular elements. With each plate element we associate an
equivalent gridwork model consisting of rigidly jointed beams. The equiva-
lent cross-sectional properties of these beams are obtained by equating the

317Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
Copyright © 2004 John Wiley & Sons, Inc.
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(a) Actual structure

Y

X

Z, w

Pz

(b) Substitute system

Y

X

Z, w

Pz

Equivalent beams

Figure 6.1.1 Gridwork representation of plate.

Framework cell

(a) Framework representation of folded plate structure

Nodal points

(b) Framework representation of box-type structure

Figure 6.1.2 Three-dimensional frameworks.
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Y Z

X

jx

jy

(a) (jy)plate = (jy)gridwork

(b) (jx)plate = (jy)gridwork

(c) (c)plate = (c)gridwork

Figure 6.1.3 Equivalent displacements.

rotations of the nodes of the gridwork with those of the plate element of equal
size when both are subjected to statically equivalent moments, as shown in
Fig. 6.1.3. Logically, a similar approach can be used in the case of axial
tensions and in-plane shear deformations [6.1.5].

(c) Equivalence of Strain Energies. We use the same technique described above,
but this time the strain energies of the plate element are simply equated with
those of the gridwork model. This is a straightforward and relatively simple
method, as demonstrated in Sec. 6.2.

To obtain the required equivalent cross-sectional properties, in all these approaches
we apply physical discretization techniques instead of the mathematical ones used
in FDMs.

In determining the equivalent cross-sectional properties, however, one should
clearly distinguish between discretized continuum (Fig. 6.1.1) and cell models
(Fig. 6.1.3) in future applications of the obtained results. For instance, using the
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first method discussed above, we derive equivalent cross-sectional properties for the
interior region of the plate. Thus, for equivalent beam members at the boundaries or
at the edges of grid- or framework cells, only half of the obtained values should be
used in the computation. On the other hand, if we apply the equivalent cross-sectional
properties derived from gridwork cells in a three-dimensional framework computer
program, values obtained for the edge members of the cell must be added to those of
the adjoining ones. This is, however, not the case if they are used in a finite element
program since we deal here with stiffness coefficients that must be added at any rate
at the joints.

It is apparent that there is a close connection between the gridwork-framework
method and the FEM. Consequently, this discrete analysis technique can be consid-
ered as a special case of the FEM. Although in recent years the FEM has achieved
almost exclusive dominance in the field of numerical analysis of surface structures,
there are cases when the grid- and framework methods can offer distinct advan-
tages over the FEM. The most significant advantage of the former is that plates
can be analyzed by standard computer programs developed for gridworks or three-
dimensional frameworks.
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6.2 Equivalent Cross-Sectional Properties

a. Articulated Continuum. This method for derivation of equivalent cross-sectional
properties consists of replacing the continuum of the plate by a gridwork whose
rigidly jointed beams are arranged in a definite pattern. The gridwork is given the
same geometrical outline and boundary conditions as the plate. It is assumed that
the statically equivalent lateral loads act only on the nodal points. If these beams
are endowed with suitable equivalent cross-sectional rigidities, then the deflections
of the gridwork will closely resemble those of the original plate.

Hrennikoff has proposed several gridwork patterns [6.2.1]. The one discussed here
is shown in Fig. 6.2.1. Although it is valid only for Poisson’s ratio ν = 1

3 , with the
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Figure 6.2.1 Hrennikoff’s square gridwork pattern.

help of the conversion formulas given in Appendix A.2, however, its applicability
can be extended to any value of ν.

The equivalent flexural properties of these beams are obtained from the equality
of deformations for bending of the plate (1.2.30) with those of the square gridwork
of unit size. This comparison gives the equivalent moment of inertias

I1 = ah3

12(1 + ν)
and I2 = ah3

12
√

2(1 + ν)
. (6.2.1)

A basically similar approach is used for stretching the plate. This gives the following
areas of the equivalent bars:

A1 = 3

4
ah and A2 = 3

4
√

2
ah. (6.2.2)

As already mentioned above, in both cases Poisson’s ratio is ν = 1
3 . Edge members,

however, should be endowed only with I1/2 and A1/2 cross-sectional properties.
Most researchers who have studied plate bending problems using the lattice anal-

ogy introduced rectangular beam patterns in their analysis. Practical applications of
such gridworks are, however, restricted if plates of arbitrary shape are to be analyzed.
To overcome this restriction, Salonen [6.2.2] proposed a more general triangular
shape in his gridwork pattern (Fig. 6.2.2). In deriving the corresponding differential
equation, he assumed that the gridwork is constructed of identical triangular units
with equally spaced parallel bars. Furthermore, these bars have constant and identi-
cal bending and torsional rigidities.† Using these assumptions, Salonen obtained the

† These assumptions were required only for deriving the differential equation.
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Figure 6.2.2 Salonen’s triangular pattern.

following differential equation for triangular gridworks:

3∑
i=1

(
Bi

∂4w

∂x4
i

+ Ci

∂4w

∂x2
i ∂y2

i

)
�i = Pz,i, (6.2.3)

where Bi is the bending stiffness of the ith beam parallel to Xi axis and Ci rep-
resents its torsional rigidity. The beam length is denoted by �i , and Pzi represents
the concentrated joint force. Equation (6.2.3) was derived in a manner similar to
that presented in Ref. [6.2.3]. Assuming that the distance between beams becomes
infinitely small, the requirement that differential equation (6.2.3) must be identical
with the differential equation of the plate (1.2.30) gives the equivalent cross-sectional
properties of the ith beam,

Bi = Ci = D�i

ci

si

, (6.2.4)

where

ci = cos αi and si = sin αi (6.2.5)

and αi is an angle corresponding to the beam and �i represents its length (Fig. 6.2.3).
The indices i = 1, 2, 3 are cyclicly permutated.

Y

X

Z, w

Yi Zi

li

ai Xi

3

1

i 2

(I, It, E, G)i

With flexural and
torsional rigidities

Figure 6.2.3 Beam i of triangular gridwork.
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Equation (6.2.4) can be written in a slightly different form

(EI )i = (GI t )i = D�i cot αi, (6.2.6)

where (EI)i represents the equivalent bending rigidity of the ith interior beam in
the gridwork and (GIt )i denotes its torsional rigidity. Again, stiffness values of the
exterior beams are half of the interior ones. Strictly speaking, Eqs. (6.2.4) and (6.2.6)
are valid only for ν = 0, but with the help of the conversion formulas given in
Appendix A.2, any ν value can be considered. Furthermore, some plate problems
permit the use of arbitrary Poisson ratios. Fixed boundary conditions of arbitrary
shape and simply supported straight boundaries are examples of such cases, provided
that the thickness of the plate is constant or varies linearly in the X and Y directions.

The usefulness of this simple but effective gridwork method can be consider-
ably extended by employing rectangular grids in connection with triangular ones.
The equivalent cross-sectional properties of a rectangular unit (shown in Fig. 6.2.4)
constructed from two triangular ones are

(EI )1 = (GI t )1 = D�y and (EI )2 = (GI t )2 = D�x. (6.2.7)

It is of interest to note that these values are identical with those given in Ref. [6.1.5],
although their derivation is quite different.

As mentioned above, we can effectively combine the triangular and rectangular
gridworks. In such a case, however, care should be taken in determining the equivalent
cross-sectional properties at the connecting lines of the two patterns. Nevertheless, a
simple approximation can yield usable results. That is, we calculate the average value
of the two exterior beam properties and use the so-obtained cross-sectional properties
for the beams where the two patterns meet. As will be illustrated† in Sec. 6.3, the
convergence characteristics of these gridwork methods are quite different. That is,
Hrennikoff’s square model approaches the exact solution from below, while that of

1

1

1

1

1

1

2

2

2

2

2

2

X

Y

ly

ly

lx lx

Rigid joint

Figure 6.2.4 Rectangular gridwork constructed from triangular units.

† See Fig. 6.3.7.
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Salonen approaches from above. Consequently, their weighted averages give quite
reliable results. Both methods can be used in connection with commercially available
gridwork or framework programs.

b. Equivalence of Strain Energies. The most effective general tool for obtain-
ing equivalent cross-sectional properties of gridworks is the energy method. In this
approach we state that the strain energy of a plate element is equal to the strain
energy of the gridwork cell,† assuming that both elements have the same geometrical
configurations. Thus, we write

Ue = Ug, (6.2.8)

where Ue is the strain energy of the plate element and Ug represents the strain
energy of the equivalent gridwork. Both energies are expressed in a global X, Y , Z

reference system (Fig. 6.2.5). We can express the strain energy of the plate in the
slightly different form

Ue = AeU 0, (6.2.9)

where Ae represents the surface area of the plate element and U 0 is the strain energy
density per unit area:

U 0 = D

2

{(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2

(
∂2w

∂x ∂y

)2

− 2ν

[(
∂2w

∂x ∂y

)2

− ∂2w

∂x2 · ∂2w

∂y2

]}
.

(6.2.10)

The bending moment of an exterior beam i of a gridwork cell can be expressed in
its local X, Y coordinate system (Fig. 6.2.6) as

Mi = EI i

∂2w

∂x2
. (6.2.11)

Y

XO

Z, w

P1
Pz (x, y)

h (x, y)

P2

Figure 6.2.5 Plate in global coordinate system.

† A gridwork cell is an isolated gridwork unit.
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Figure 6.2.6 Beam in X,Y plane.

Using the pertinent transformation relationship

∂2w

∂x2
= ∂2w

∂x2 cos2 αi + 2
∂2w

∂x ∂y
sin αi cos αi + ∂2w

∂y2 sin2 αi, (6.2.12)

we can transform the strain energy of the beam from the local coordinate system into
the global reference system

(Ub)i = 1

2
Mi

∂2w

∂x2
li = 1

2
E(I l)i

(
∂2w

∂x2

)2

= 1

2
ρ ′

i

(
∂2w

∂x2 cos2 αi + 2
∂2w

∂x ∂y
sin αi cos αi + ∂2w

∂y2 sin αi

)2

,

(6.2.13)

where

ρ ′
i = E(I l)i . (6.2.14)

We can follow a similar approach for torsion as described above for bending. If the
exterior beam i of a gridwork cell has a torsional rigidity GI t,i , the strain energy of
this beam subjected to torsional moment Mt expressed in its local coordinate system
X, Y is

(Ut )i = 1

2
GI t,iMt

∂2w

∂x ∂y
li = 1

2
G[It l]i

(
∂2w

∂x ∂y

)2

. (6.2.15)

Using, again, a corresponding coordinate transformation

∂2w

∂x ∂y
=

(
∂2w

∂y2 − ∂2w

∂x2

)
sin αi cos αi + ∂2w

∂x ∂y
(cos2 αi − sin2 αi), (6.2.16)
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we can express Eq. (6.2.15) in the global reference system X, Y , Z as

(U t )i = 1

2
γi

[
1

2

(
∂2w

∂y2 − ∂2w

∂x2

)
sin 2αi + ∂2w

∂x ∂y
cos 2αi

]2

, (6.2.17)

where

γi = G[It l]i . (6.2.18)

c. Equivalence of Displacement Fields. Since this approach to determine equiv-
alent cross-sectional properties is restricted to rectangular units, it is not as general as
the two other methods discussed above; consequently, it is not treated here in detail.
Interested readers are referred to Ref. [6.1.5].

Summary. The gridwork method constitutes a physical discretization technique of
the plate continuum by replacing it with specially arranged beams. To obtain the
corresponding equivalent cross-sectional properties of these beams, we introduced
three different approaches from which the equivalence of strain energies appears to
be the most usable one. In any case, deriving these equivalent properties is, in general,
not an easy task. Consequently, when such information is not readily available, the
reader should first conduct an extensive library research before embarking on such
a tedious project, since a number of additional equivalent cross-sectional properties
will be found in the pertinent literature.

ILLUSTRATIVE EXAMPLE

Let us determine the equivalent cross-sectional properties of the rectangu-
lar gridwork cell shown below in Fig. 6.3.1. We assume that the beams are
rigidly jointed together and can be subjected as well to bending as to tor-
sion. Furthermore, to simplify the derivation, let us assume that Poisson’s ratio
ν = 0.

Y

Z, w

Y

1

1

2 2

lx

ly

lyD
2

EI1 = GIt, 1 =

lxD
2

EI2 = GIt, 2 =

Figure 6.3.1 Rectangular gridwork cell.
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In this case, the strain energy of the corresponding plate element, given in
Eq. (6.2.10), becomes

Ue = AeU 0 = �x�y

D

2

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2

(
∂2w

∂x ∂y

)2
]

, (6.2.19)

whereas the strain energy of the equivalent gridwork cell can be expressed by

Ub = 2(Ub + Ut)1 + 2(Ub + Ut)2. (6.2.20)

With α1 = 0 and α2 = 90◦, Eqs. (6.2.13) and (6.2.17) become

(Ub)1 = 1

2
ρ ′

1

(
∂2w

∂x2

)2

, (U t )1 = 1

2
γ1

(
∂2w

∂x ∂y

)2

(6.2.21)

and

(Ub)2 = 1

2
ρ ′

2

(
∂2w

∂y2

)2

, (U t )2 = 1

2
γ2

(
∂2w

∂x ∂y

)2

. (6.2.22)

Substituting these equations into Eq. (6.2.20), the strain energy of the gridwork
cell can be expressed by

Ub = ρ ′
1

(
∂2w

∂x2

)2

+ ρ ′
2

(
∂2w

∂y2

)2

+ (γ1 + γ2)

(
∂2w

∂x ∂y

)2

. (6.2.23)

Since equivalence of the strain energies requires that

ρ ′
1

(
∂2w

∂x2

)2

+ ρ ′
2

(
∂2w

∂y2

)2

+ (γ1 + γ2)

(
∂2w

∂x ∂y

)2

= �x�y

D

2

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2

(
∂2w

∂x ∂y

)2
]

,

(6.2.24)

by identifying the corresponding terms in this equation of equivalence, we
obtain

ρ ′
1 = ρ ′

2 = 1

2
(γ1 + γ2) = �x�y

D

2
. (6.2.25)

It follows from Eq. (6.2.15) that

EI 1 = �yD

2
and EI 2 = �xD

2
. (6.2.26)
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Furthermore,

G[It ]1 = �yD

2
and G[It ]2 = �xD

2
, (6.2.27)

since they also satisfy the equation of equivalence (6.2.20).
As mentioned repeatedly, isolated gridwork cells must be juxtaposed to

replace the plate, as shown in Fig. 6.3.2. Consequently, the cross-sectional
properties of adjacent beams must be added. Thus, the so-obtained results are
logically equivalent to those given in Eq. (6.2.7).

X

Y

Z, w

(a) Loose cells (b) Juxtaposed condition

Figure 6.3.2 Juxtaposing adjacent gridwork cells.

References and Bibliography
[6.2.1] HRENNIKOFF, A., “Solution of Problems of Elasticity by the Framework Method,” J. Appl.

Mech., ASME, 8 (Dec. 1941), A169–A175.
[6.2.2] SALONEN, E.-M., “A Gridwork Method for Plates in Bending,” Civil Eng. Build. Construc.

Ser., No. 8 (1969), 1–31.
[6.2.3] WOINOWSKY-KIEGER, S., “Zur Theorie schiefwinkliger Trägerroste,” Ing. Archiv, 25 (1957),
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6.3 Gridwork Cells and Their Stiffness Matrices
By isolating a unit from the equivalent gridwork structure of the plate, we obtain
a gridwork cell ; an example of it is shown in Fig. 6.3.1. The equivalent cross-
sectional properties of such gridwork cells are determined by using one of the meth-
ods described in the foregoing section. Next, we apply the superposition technique
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(illustrated in Fig. 6.3.2) to assemble the complete lattice structure from these individ-
ual cells. Consequently, if a commercially available computer program for gridworks
is utilized to analyze such a substitute structure, the equivalent cross-sectional prop-
erties pertinent to the adjacent exterior beams of each cell must be added.

In addition to the two gridwork models, already introduced Table 6.3.1 provides
further equivalent cross-sectional properties pertinent to other rectangular and trian-
gular gridwork cells.

There are instances, however, when a finite element program is more readily avail-
able than that of a gridwork or the reader intends to write his or her own computer
codes for the analysis of the equivalent lattice structure utilizing gridworks. In such
cases, we must first determine the stiffness matrix of these gridwork cells in order

Table 6.3.1 Additional Gridwork Cells

Gridwork
Cell

Beam
Number EI i GI t,i Reference

3

3

2 l

kl

2 1

1

2

3

lh3

24

(1 + κ2)3/2

κ

× νE

1 − ν2

lh3

24
· (κ2 − ν)E

κ(1 − ν2)

lh3

24
· (1 − κ2ν)E

1 − ν2

0

lh3

24
· κ(1 − 3ν)E

(1 − ν2)

lh3
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· (1 − κ2ν)E

(1 − ν2)
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to replace it with the stiffness matrix of the corresponding finite elements. To obtain
the stiffness matrix of the total substitute structure, we simply add these individual
stiffness matrices, as discussed in Sec. 6.4.

To generate the flexural part of the gridwork cell stiffness coefficients, we apply
the so-called direct procedure similar to that used in obtaining stiffness coefficients
for beams. That is, we introduce unit motions, one at the time, along the displacement
components of the nodal points and calculate the required active force that creates
the unit displacement and the resulting reactive forces and moments along the other
displacement coordinates that are prevented from motion. This procedure is illustrated
in Fig. 6.3.3.

If all beam elements of the gridwork cells are parallel to the local coordinate axes
X, Y , determination of the stiffness coefficients is relatively simple. That is, after
renumbering the stiffness matrices of the individual beams of the gridwork cells, we
add those stiffness coefficients that have the same indices. Thus

Kij =
∑

kij . (6.3.1)

The stiffness matrix of the ith member of the gridwork cell N in its local x, y, z

coordinate system (Fig. 6.3.4) is

K(i)
b =


GI t /L 0 0 −GI t /L 0 0

0 12EI y/L
3 −6EI y/L

2 0 −12EI y/L
3 −6EI y/L

2

0 −6EI y/L
2 4EI y/L 0 6EI y/L

2 2EI y/L
2

−GI t /L 0 0 GI t /L 0 0
0 −12EI y/L

3 6EI y/L
2 0 12EI y/L

3 6EI y/L
2

0 −6EI y/L
2 2EI y/L 0 6EI y/L

2 4EI y/L




(i)

,

(6.3.2)
where GI t and EI y represent the equivalent cross-sectional properties of the beam.

By comparing this stiffness matrix with that of a plane frame member [6.3.7], the
similarity is striking, since a gridwork cell resembles a plane frame structure in many
respects. Both structures can be considered as plane frames. The only difference is
the nature of their loading.

For beams having a general position in the X, Y plane, we must first rotate their
local coordinate system x, y, z into a X′, Y ′, Z′ position that is parallel to the X, Y, Z

axes (Fig. 6.3.5) before we can add the corresponding stiffness coefficients according
to Eq. (6.3.1). The corresponding matrix operation is

K′(i)
b = T(i)K(i)

b (T(i))T, (6.3.3)

where the transformation matrix T has the form

T(i) =




c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0
0 0 0 0 0 1




(i)

. (6.3.4)
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(a) Sign convention and numbering system
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Figure 6.3.3 Generation of flexural stiffness coefficients.

In this equation c and s represent cos β and sin β, respectively. Equation (6.3.4) is
obtained by applying the above-mentioned analogy between gridworks and plane
frame structures. It is of basic importance, however, to note that the angle β is
measured from the local x axis of the beam to the intermediate X′ axis, as shown in
Fig. 6.3.5.
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Figure 6.3.6 Triangular gridwork cell.

The so-obtained stiffness matrices for two rectangular gridwork cells are given in
Tables 6.3.2 and 6.3.3, respectively. The stiffness matrix for a gridwork cell of general
triangular shape (Fig. 6.3.6) can be found in explicit form in Ref. [6.3.1], but it is
not reproduced here since its application is somewhat cumbersome. Consequently, if
the plate geometry requires triangular discretization, use of the pertinent equivalent
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Figure 6.3.7 Convergence characteristics of gridwork cells.

cross-sectional properties in connection with a computer program for gridwork is
preferable. The convergence characteristics of these gridwork cells are graphically
illustrated in Fig. 6.3.7. Additional gridwork cells pertinent to orthotropic plates are
treated in Sec. 10.1.

Any calculation error in these stiffness matrices can easily be detected by checking
the macroscopic equilibrium of the gridwork cell. Since, by definition, the elements
of a column or row in the stiffness matrix represent active or reactive forces and
moments produced by unit motion of a nodal point (Fig. 6.3.3), the correspond-
ing equations of equilibrium within a column or row must be satisfied. Thus, we
require that ∑

Mx = 0,
∑

My = 0,
∑

Pz = 0. (6.3.5)

Summary. Provided that the equivalent cross-sectional properties of gridworks are
already determined, calculation of the stiffness matrices corresponding to rectangular
gridwork cells is a relatively straightforward procedure, since gridworks resemble
plane frames. Such a simple approach is, however, not the case with triangular cells
because of their inherently more complex geometry. Gridwork cells can be effectively
used in Finite element programs by replacing rectangular finite elements. Besides
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having reasonable good convergence characteristics, they are always “conformable,”†

which is important in the finite element stability analysis of plates. Furthermore, the
use of rectangular gridwork cells is especially advantageous for orthotropic and ribbed
plates, as discussed in Sec. 10.1.
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6.4 Computational Procedures for Gridworks

Introduction. The gridwork analysis treated here is based on the matrix displace-
ment method of computerized structural analysis techniques, which is most commonly
used in design and analysis of rigid-frame structures. This computational approach is
also often called the direct stiffness method in the pertinent literature. The unknown
quantities are the joint displacements, that is, translation w and rotations ϕx and ϕy .
An advantage of this method is that it is extremely well suited for matrix-type formu-
lation and, thus, for computer programming. In addition, it is of importance that the
analyst can more easily visualize the deflected plate surface than the stresses created
by the loads. The same statement is valid for the kinematic boundary conditions.

As mentioned in Sec. 6.3, a grillage-type structure resembles a plane frame in
many respects. First, all rigidly connected beams of both types lie in a plane. Second,
bending of these beams plays the dominant role in carrying the external loads in both
structures. In gridworks, the effects of torsional moments are of secondary importance.
Similarly, the axial stresses are mostly of negligible order in planar frames. The
most important difference, however, is the way external loads are applied to these
structures. That is, external forces in gridworks act normal to its own plane, whereas
forces applied to planar rigid-frames lie in their planes. Furthermore, vectors of

† For a definition see Sec. 7.4.
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the internal moments lie in the plane of the gridwork, whereas internal moments
in the planar rigid-frames have their vectors normal to the plane of the structure.
Consequently, we may state that a gridwork is a special case of plane frames.

Based on the analogy discussed above between gridworks and planar rigid-frames,
we may assume that most readers will find the following treatment of gridwork
analysis quite familiar. Thus, we can concentrate on the salient features of the com-
putational approach emphasizing the specific highlights pertinent to gridworks and
refer to the numerous textbooks on matrix displacement analysis of framed structures
[6.4.1–6.4.12]† for more details.

In addition, it should be mentioned that the gridwork representation of plates
provides a relatively smooth transition between the basic structural analysis of frames
and the more advanced treatment of surface-type structures such as plates.

In the following, we will treat the computational procedures for gridworks in two
parts. First, commercially available computer programs for analysis of gridworks or
frameworks are plentiful. Thus, we will concentrate on their use as related to plate
analysis. Next, in isolated cases, the engineer must write his or her own program. So
the reader is provided with sufficient guidance to accomplish such a task.

Finally, an often neglected phase in the procedures of numerical analysis of plates
must be mentioned. That is, before any computation can proceed, we must have a
good assumption concerning the thickness of the plate. For this purpose, a paper-and-
pencil approach using one of the simple engineering methods treated in this book is
the most useful. Furthermore, such approximations by longhand computation can also
be used for predicting maximum deflections, critical stresses and regions of stress
concentration. Hence, they will help in the discretization process and may render the
first independent check of computer results.

6.4.1 Procedures Using Commercially Available Programs

Computational procedures using commercially available software for gridwork anal-
ysis can be divided into three parts:

1. preprocessing,
2. analysis and
3. postprocessing.

A flow chart shown in Fig. 6.4.1 shows the various processing phases in more detail.

a. Preprocessing. The first step in analyzing a plate structure using the gridwork
method is selection of the global Cartesian coordinate system X, Y , Z. The plate
should lie in the X, Y plane and the applied forces should act parallel to the Z

axis, as illustrated in Fig. 6.1.1a. If rectangular units are used, the axes X and Y

should be parallel to the corresponding local axes of these units. Next, we replace
the plate with an equivalent gridwork (Fig. 6.1.1b). In this step (except in the simplest
cases), some modeling skill is expected from the engineer, which can be acquired
mostly by experience. However, as mentioned above, a preliminary computation by
hand using one of the engineering approaches discussed in Part IV can give some
guidance in this respect. Areas of stress concentrations, for instance, require finer

† Listed in chronological order.
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Idealization of plate by gridwork

Numbering of joints + displacements

Imposing boundary conditions

Computing load vector

Input of equivalent cross sections

Graphical presentation of gridwork

Selection of reference system X, Y, Z

Calculation of stress resultants

Validation of results

Further postprocessing

Presentation of output

Analysis program

Preprocessing

Analysis

Postprocessing

Figure 6.4.1 Phases of gridwork analysis process.

grids than the rest of the plate. Furthermore, since the gridwork method requires
that concentrated external forces must act on joints, we must construct the grillage
accordingly. A similar consideration applies to line loads. That is, they also must act
on grid members. In addition, the total number of joints to be used in the computation
should depend on the convergence characteristics of the specific schemes applied and
on the required accuracy of the final results.

Nowadays, using up-to-date software for grillage analysis, the automatic mesh
generator also assigns numbers to the joints when the grid is created. If this is not
the case, the analyst should refer to Fig. 6.4.2, which shows effective and ineffective
joint-numbering sequences. The simplest rule is to keep the maximum joint point
difference as small as possible when the numbering is based on joints, since this
procedure influences the structure of the stiffness matrix of the total gridwork system
and may affect the efficiency of the solution of the resulting set of equations. This is
especially true when very large gridwork systems are analyzed. The location of the



Computational Procedures for Gridworks 339

(a) Effective

(b) Ineffective

D
ir

ec
tio

n Nodal pointsP

4

3

2

1

8

7

6

5

12

11

10

9

16

15

14

13

n

n−1

n−2

n−3

K =

0

0

P

K =

Direction
Nodal points

12

1

13

2

14

3

15

4

16

5

17

6

18

7

19

8

20

9

21

10

22

11

nn−1n−2

0

0

Figure 6.4.2 Effect of joint numbering on stiffness matrix.

joints must be defined by specifying their coordinates in the global reference system.
Since a gridwork is essentially a two-dimensional structure, only the input of two
coordinates xi and yi are required. Usually, numbering of the joints automatically
takes care of identifying the individual members in the grid. As already mentioned,
there are three significant displacement components at each joint: translation in the Z

direction and rotation about the X and Y axes, respectively. The numbering sequence
for these displacements usually follows the above given order. Their sign convention,
however, must be clearly specified in the program; otherwise serious mistakes can
occur when interpreting the results. The most common practice in this respect is to
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assign positive signs for the translation vectors that point in the positive direction of
the Z axis. For the vectors of rotations, the so-called right-hand screw sign convention
is most frequently used, as discussed in Sec. 6.4.2.

Treating the boundary conditions in the matrix displacement method is extremely
simple. That is, we strike out—either on a local or on a global level—those rows
and columns in the element stiffness matrices or in the stiffness of the total structure
that correspond to the “locked” displacement components. More will be said on this
important subject in Sec. 6.4.2. Handling the boundary conditions is, again, automatic
by using commercially available programs. We are merely required to input the
pertinent joint data.

Loads on the gridwork can have a variety of sources. Some examples are

1. externally applied forces and moments,
2. body forces created by the gravity,
3. prescribed boundary displacements,
4. temperature changes† and
5. initial-strain and stress.

Concentrated point loads and moments are directly applied to the joints. Conse-
quently, during discretization of the plate, joints should be assigned to the points
where they act. Since gridworks can carry only joint loads, surface loads must be
converted to equivalent joint loads. These can be obtained by calculating the static
equivalent forces of the surface loads. The simplest way is to lump the distributed
loads at the joints. This can give an acceptable approximation, provided that a rela-
tively fine subdivision has been used. Alternatively, one can calculate the equivalent
joint loads by equating the work expressions for the equivalent joint loads with those
created by distributed surface or body forces. This is the most exact way of han-
dling distributed loads and will be discussed in more detail in the pertinent section
dealing with the FEM. For triangular units or cells, the equivalent joint loads can be
approximated by creating partial loading areas, as shown in Fig. 6.4.3. This gives

P j = pz(x, y)�Aj for j = 1, 2, 3. (6.4.1)

Y

X
Z, w

1 1
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2
3

3

S

90°

(a) General case (b) Right triangle

∆A3

∆A2

∆A2
∆A3

∆A1 ∆A1

Figure 6.4.3 Loading areas for triangular gridworks.

† To be treated in Secs. 10.4 and 16.8
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As already mentioned, line loads require “supporting” beams in the discretization
process. The corresponding fixed-end reactions with opposite signs should be used
as equivalent joint loads.

Before analysis of the gridwork can start, checking the validity of the input data
is mandatory. This time-consuming task can be helped considerably by using inter-
active graphic displays. This gives the user immediate feedback as to the validity of
the grid generated. These programs also can display the joint loads and the bound-
ary conditions.

b. Analysis. The mathematical task associated with analysis of equivalent gridwork
structures consists of solving the matrix displacement equation

Kp = d (6.4.2)

for its unknown displacement vector d. In this equation K is the stiffness matrix of the
total structure and p represents the load vector. This task constitutes the single most
computer-time-intensive phase of the analysis. For this reason, considerable efforts
have been undertaken to develop special solution algorithms that require a minimum
number of operations to obtain the required solution. In programs for the analysis
of gridwork or framework structures the equation solver is usually embedded in the
“black box” and consequently remains hidden from the user. Here we will list briefly
the most-often-used equation solver algorithms.

Since K in Eq. (6.4.2) is always a square, symmetric and positive-definite matrix,
the Cholesky square-root† technique of matrix decomposition is particularly well
suited as an equation solver in matrix analysis of structures. This method is more
economical concerning computer time than other elimination processes. It has already
been mentioned that the joint numbering sequence is quite significant since it deter-
mines the bandwidth of the coefficient matrix K. That is, by properly numbering the
joints and hence the unknown displacements, the bandwidth is kept small. Thus, the
computational effort needed for equation solution is often near a minimum.

The Gauss elimination scheme is often the equation solver used in various pro-
grams. This approach in effect factorizes or triangularizes the coefficient matrix during
the forward elimination process. Furthermore, it is characteristic of the Gauss algo-
rithm applied to sparsely populated matrices that only part of the matrix is affected
by elimination of one unknown.

These elimination methods, including their variations and various other equation-
solving techniques, are well documented in Refs. [6.4.11–6.4.16]. Some of these ref-
erences also contain readily usable FORTRAN programs, as discussed in Sec. 6.4.2.

c. Postprocessing. The above-discussed analysis phase of the program yields the
deformations of the equivalent gridwork structure. The postprocessing phase of the
so-obtained results consists of the following steps:

1. presentation of the output,
2. calculation of the stress resultants,
3. validation of the results and
4. further processing steps (if required).

† Also known as Crout’s method.
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Commercially available gridwork programs generate considerable data concerning
the deformation of the structure, part of which is, for instance, joint rotations, of
secondary interest to the analyst. Consequently, only the lateral displacements of
the joints expressed in global coordinates should be documented in a well-organized
manner. In addition, use of the computer graphics showing the deflected gridwork
(Fig. 6.4.4) proves to be an ideal combination in connection with the tabular output.

Before computing the stress resultants of the original plate, the analyst should
become familiar with the sign convention of the program given in the user’s manual.
Unfortunately, this is often not clearly defined. When in doubt, the analyst should run
a small comparative study using a simple plate problem with known “exact” solution,
as given in Chapter 2, to eliminate any ambiguity in this respect.

The computer program gives the displacements at each joint point of the equiva-
lent structure. The engineer, however, is usually more interested in distributions of
moments and shear forces throughout the plate. For rectangular gridwork patterns,
use of the finite difference stencils given in Fig. 5.1.4 offers the simplest and most
reliable way to calculate the stress resultants. In addition to the displacements, the
program commonly gives the bending and torsional moments along with the trans-
verse shears at the joint point of the gridwork. To obtain good results using these
outputs, it is often advantageous to evaluate the stress resultants at the midpoints
of the equivalent beams. For a triangular gridwork pattern, determination of stress
resultants in the plate is not a trivial matter. That is, although the internal forces given
in the local coordinate system of the beams can be easily computed from [6.2.2]

mx,i = D

Bi

Mi, mxy,i = D

Ci

Mt,i, (6.4.3)

they must be transferred from their local coordinate system to the global reference
system of the plate. In the above equation Bi and Ci represent the equivalent bending
and torsional rigidities of beam i as previously defined in Eq. (6.2.4). If the gridwork
is formed using rectangular units (Fig. 6.2.4), the stress resultant can be evaluated
(even for an arbitrary value of ν) from

mx = M1

�y

+ ν
M2

�x

, my = M2

�x

+ ν
M1

�y

(6.4.4a)

O

Y X

Z, w

Figure 6.4.4 Three-dimensional representation of deflected plate surface.
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Figure 6.4.5 Stress resultant averaging.

and

mxy = (1 − ν)
Mt,1

�y

, myx = (1 − ν)
Mt,2

�x

. (6.4.4b)

The approximate nature of the gridwork method manifests itself clearly in that the
internal forces in adjacent units show some discrepancies at the common joint points
that can be removed by averaging them (Fig. 6.4.5).

The final step in postprocessing is validation and verification of the results. The
analyst should run a small (if possible similar) test example with known exact or
reliable results to build confidence in the program system. It is false to assume that
all commercial runs yield useful results! The most fundamental check involves an
equilibrium check. That is, all externally applied forces must be in equilibrium with
the obtained reactions. As mentioned earlier, engineers experienced in plate analysis
can use the graphic image of the deflected plate surface to detect further discrepancies.
For instance, instead of smooth continuous lines, wavy lines may indicate numerical
instability in the analysis that can be eliminated by prescribing “double precision”
in the equation-solving algorithm. In addition, the reasonableness of the solution can
be established by applying one of the engineering methods treated in Part IV. If an
entirely independent check is required, a separate computation with the help of the
FDM should be considered.

6.4.2 Guidance for Gridwork Programming

The development of a program for matrix analysis of gridwork structures is no simple
undertaking by any means. Consequently, the engineer should write his or her own
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program only if a definite need for it exists and the program will be reused many
times. Otherwise, the FDM offers a considerably simpler way for plate analysis, since
requires an equation solver that is readily available even in some advanced scientific
calculators rather than a computer program.

The first step in writing a computer program includes selecting a suitable pro-
gramming language. The recommended choice in this respect is FORTRAN, since it
is still the dominant programming language in science and engineering, and many
usable subroutines are written in this language. Other programming languages such
as PASCAL and the new and improved versions of BASIC or C++ may also qualify
if the analyst is more familiar with them.

Next, a library research should be conducted as to whether such a program exists
in the literature because modifying an existing program for gridworks to suit some
specific individual need is far easier than writing one from “scratch.” References
[6.4.11–6.4.14] provide such codes written in FORTRAN. In addition, engineers can
apply the so-called building block strategy to write their own computer program for
matrix displacement analysis of gridworks. That is, as its name implies, this procedure
mainly involves manipulations of matrices. A collection of FORTRAN subroutines
that perform these functions can be found in Refs. [6.4.15–6.4.23]. These can be
used directly by readers to assemble their own computer program.

Procedures of program development can be divided into three phases: (1) prepro-
cessing, (2) analysis and (3) postprocessing. Most of what was said about these phases
in the previous subsection retains its validity here, so we will only emphasize the
differences. The general statement in this respect is, however, that the program should
be considerably simpler than those commercially distributed, since it is intended for
personal or internal use and not for general distribution and/or sale.

a. Preprocessing. Generation of a gridwork model can be considered a six-step
procedure:

1. definition of plate geometry, including boundary and loading conditions;
2. discretization of the plate continuum by using an equivalent gridwork structure;
3. numbering of joint points, displacement and load components;
4. definition and input of joint coordinates;
5. input of equivalent cross-sectional and material properties of each beam and
6. input of loads acting on the joints.

These steps do not need to be as elaborate and sophisticated as we are accus-
tomed to when using commercially distributed programs. The mesh generation, for
instance, can be accomplished without a mesh generator program and corresponding
graphic display. Although the creation of gridwork models by hand is a simple and
straightforward process, it can be occasionally quite time consuming, especially when
dealing with very large plate structures. That is, the gridwork models are hand drawn
by the analyst laying out the mesh on paper. The analyst must number all joints and
displacement components on this drawing by hand following the recommendations
and sequences already discussed in Sec. 6.4.1. Since the input of the global joint
coordinates along with all other inputs should be interactive, it is important that
during this input process the user be guided by appropriate comments concerning
each step.
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b. Analysis. As already mentioned, the analysis of grid structures resembles that
of plane frames in many respects. Hence, the required computational procedures
for the latter are readily available in numerous textbooks on matrix displacement
analysis of structures [6.4.1–6.4.12] and can be used as samples in writing such
programs. Furthermore, the reader will find complete FORTRAN codes for static
gridwork analysis in Refs. [6.4.11–6.4.12]. Consequently, it appears to be sufficient
if we briefly concentrate here on the steps required after the preprocessing phase is
already completed.

The closed-form expression for the stiffness matrix of an individual beam element
is given in Eq. (6.3.2). This is valid only in the local X, Y, Z coordinate system
of the beam (Fig. 6.3.4). If the axes of the local and global coordinate systems are
parallel, computing the stiffness matrix of the structure, K, from stiffness matrices
of individual beams, K(i)

b , requires only simple additions. That is, after the beam
matrices are renumbered following the new global numbering system of the structure,
the elements Ki,j of the stiffness matrix K are obtained by adding element stiffness
coefficients having the same subscripts, as shown in Eq. (6.3.1).

However, if the local coordinate axes are not parallel to those of the global refer-
ence system, rotation of X, Y, Z axes into a parallel position with the global axes is
required before additions of element stiffness coefficients can be carried out. Such a
rotation according to Eq. (6.3.3) yields

K(i)
b =


Ac2 + Bs2 −Asc + Bsc −Cs −Ac2 − Bs2 Asc − Bsc −Cs

−Asc + Bsc As2 + Bc2 −Cc Asc − Bsc −As2 − Bc2 −Cc

−Cs −Cc D Cs Cc E

−Ac2 − Bs2 Asc − Bsc Cs Ac2 + Bs2 −Asc + Bsc Cs

Asc − Bsc −As2 − Bc2 Cc −Asc + Bsc As2 + Bc2 Cc

−Cs −Cc E Cs Cc D




,

(6.4.5)
where s = sin β, c = cos β and

A = GIt
�

, B = 12EI y

�3
, C = 6EI y

�2
, D = 4EI y

�
, E = 2EI y

�
.

(6.4.6)
Equation (6.4.5) is valid if the angle β is measured from the intermediate X′ axis
into the direction of the local X axis. Otherwise, the transposed relationship

K(i)
b = (T(i))TK(i)

b T(i) (6.4.7)

must be used.
In addition to the joint coordinates and beam properties, the analysis part of the

program must give detailed information for each joint concerning the degrees of free-
dom that are constrained to take care of the boundary conditions. This can be easily
accomplished by numbering the local and global displacements. Those displacement
components that are constrained do not receive any number during the numbering
process of the displacement components. Consequently, these degrees of freedom
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must be eliminated either from the beam matrices† on the local level or from the
stiffness matrix of the structure on the global level.

The structure stiffness matrix K has the following three important properties, which
can be advantageously utilized in solving the governing matrix equation of the struc-
ture Kp = d:

1. Since K is symmetric, only half of the matrix needs to be assembled and stored
in the computer. This very desirable property of the matrix also reduces the
equation solution effort by about one-half.

2. The structure matrix K is always positive definite, since the strain energy
stored in the joints is always positive.

3. The matrix K is a spare matrix, that is, most of its elements are zero. Further-
more, by properly numbering the displacements, we obtain a band matrix with
relatively small bandwidth. This property also reduces the effort required for
solving the governing matrix equation.

Once the global equation of equilibrium in form

Kp = d (6.4.8)

has been assembled and appropriate boundary conditions have been applied, either
Cholesky’s or Gauss’s method is normally used to solve Eq. (6.4.8) for n displace-
ments.

In writing a program for the above-discussed analysis phase, the reader should
apply the previously mentioned building block technique; that is, by combining the
readily available pertinent FORTRAN subroutines [6.4.15–6.4.21], the programming
effort can be considerably reduced. The final analysis program should also have
sufficient embedded “comment statements” by the programmer that will help in
remembering what he or she has done on a later reading and help others to understand
the program.

c. Postprocessing. The first and most important step in this phase is validation
of the newly created program. For this purpose, the analyst should solve a few
of the plate problems with known exact or series solutions‡ using subsequently
reduced mesh widths. If the so-obtained approximate results are satisfactory, the
next step should concern the presentation of the results. In this respect, we refer to
the corresponding part of Sec. 3.4.1. However, two additional comments are appro-
priate. The first one concerns the often misleading differences in the commonly used
notations and sign conventions that, unfortunately, exist between the matrix displace-
ment method and classical plate theory. These are illustrated in Fig. 6.4.6. Thus, in
evaluating the obtained results, these differences must be taken into account; other-
wise, serious errors can occur. The second comment deals with the highly desirable
graphical presentation of the results. The best course in this respect is, of course,
to use one of the many commercially available “plot” programs. If the analyst
wants to write a graphic program, the FORTRAN subroutine given in Ref. [6.4.23]

† This is the preferred way.
‡ See Chapter 2.
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will be of great help to code contour line displays for joint displacements and
stress resultants.

When gridwork cells are employed in plate analysis, the required steps are identical
to those used in the FEM. Consequently, it is sufficient to refer here only to Sec. 7.13,
where the guidelines for finite element programming are treated in detail. For solu-
tions of smaller plate problems, however, use of the stiffness method combined with
the code number technique can be of advantage, since this approach requires only
very limited computer programming efforts. In view of an abundant literature avail-
able for the stiffness analysis of structures [6.4.1–6.4.15], the most important steps
are summarized below:

1. We start out, again, with a line drawing of the substitute structure number-
ing every joint and cell. On this drawing only the allowed displacements are
also shown and globally numbered. To obtain the stiffness matrix K of the
total structure having the narrowest bandwidth possible, we should follow the
previously given recommendations on this subject.

2. Next, we numerically evaluate the stiffness matrices for each cell. In the case of
triangular cells, a transformation of these matrices from their local coordinate
system to the global reference system is also required.

3. The indices of all stiffness coefficients kij of each cell are now renumbered
using the code number technique to conform to the previously selected global
numbering system [6.4.25]. Thus, we obtain kij . In the next step, all stiffness
coefficients with the same subscripts are simply added to obtain the stiffness
matrix K of the total substitute structure.
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4. As already discussed, all loads must be reduced to the joints creating the
load vector p. We also combine the unknown displacements into a column
vector d. Solution of the obtained algebraic equations, Kp = d, yields the
joint deformations d.

5. Once these joint displacements are determined, the internal stress resultants
can be computed using either the ordinary or the improved FDMs.

The only programming required in this case involves steps 3 and 4, for which,
however, computer programs are readily available. Thus, analysts must only combine
them to suit their purpose. See Illustrative Examples III and IV for the application
of this stiffness method.

Summary. Since gridworks closely resemble planar frame structures, using the
matrix displacement analysis with which most readers are already familiar, treating
a plate as an articulated continuum by means of an equivalent plate structure does
not create considerable difficulties for the analyst. If possible, commercially available
gridwork programs should be used. Most of the difficulties, however, usually arise in
the interpretation of the results concerning the stress resultants, since notations and
sign conventions are different from those accustomed to in the analytical part of the
plate analysis. In addition, an averaging method is required to obtain continuously
smooth values for the stress resultants.

If possible, the reader should not attempt to write a computer program for gridwork
method, since this is by no means an easy task. Work in this respect, however, can
be considerably helped by using available subroutines.

ILLUSTRATIVE EXAMPLE I

Let us determine the deflected plate surface w(x, y) and the maximum bending
moment mmax of the square plate shown in Fig. 6.4.7a by using the gridwork
method. The elastic properties of this plate are

E = 30,000,000 kN/m2, ν = 0.3, G = 11,540,000 kN/m2.

First, we substitute the plate continuum by an equivalent gridwork system.
Utilizing the existing double symmetry of the structure and load, our compu-
tational model becomes a quarter of the total system, as shown in Fig. 6.4.7b.
Based on Eq. (6.2.7), the equivalent cross-sectional properties of the interior
beams are, for i = 4, 6, 7, 9,

Ii = D�

E
= h3�

12(1 − ν2)
= 0.1099 × 10−2 m4,

Ii,t = D�

G
= h3�

6(1 − ν)
= 0.2857 × 10−2 m4.

(6.4.9)

Since the exterior beams have only half of the above given values, we obtain

Ie = Ii

2
= 0.5495 × 10−3, Ie,t = Ii,t

2
= 0.1429 × 10−2

for e = 1, 2, 3, 5, 8, 10, 11, 12.

(6.4.10)
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Coordinates of the joints in the X, Y , Z reference system are given in Table
6.4.1. Numbering of the beams, including their joint points and types, is given
in Table 6.4.2.

The pertinent boundary conditions of the joints are tabulated in Table 6.4.3,
where “y” indicating yes and “n” denoting no refer to the displacements that
can or cannot take place, respectively.
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Table 6.4.1 Coordinates

Joint x y Joint x y

1 0.0 0.0 6 3.0 1.5
2 1.5 0.0 7 0.0 3.0
3 3.0 0.0 8 1.5 3.0
4 0.0 1.5 9 3.0 3.0
5 1.5 1.5

Table 6.4.2 Identification of Beams

Beam Joints Type Beam Joints Type

1 1–2 e 7 5–6 i
2 2–3 e 8 4–7 e
3 1–4 e 9 5–8 i
4 2–5 i 10 6–9 e
5 3–6 e 11 7–8 e
6 4–5 i 12 8–9 e

Note: i = interior, e = exterior.

Table 6.4.3 Boundary Conditions

Joints w Locked φx Locked φy Locked

1 y y y
2 y n y
3 y n y
4 y y n
6 n n y
7 y y n
8 n y n
9 n y y

Our gridwork program [6.4.24] gave the following vertical displacements of
the joints in meters:

w =




0.0000
0.0000
0.0000
0.0000
0.0059
0.0088
0.0000
0.0088
0.0143




m. (6.4.11)

A comparison of the maximum vertical displacement with its more exact ana-
lytical solution

wmax = 0.01160
Pza

2

D
= 0.0137 m (6.4.12)
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gives an error of 4.3% in spite of the relatively crude subdivision. To obtain
the maximum bending moment mmax, we use Eq. (5.1.12), which gives

mmax = −D

�2
[2w6 − 2(1 + ν)w9 + 2νw8] = 139.68 kN-m/m (6.4.13)

ILLUSTRATIVE EXAMPLE II

Figure 6.4.8a shows a simply supported triangular plate subjected to a uni-
formly distributed lateral load pz = p0 = 100 kN/m2. By means of the grid-
work method, let us determine (a) the deflected plate surface, (b) the maximum
lateral deflection and (c) the maximum bending moment.

The elastic properties of the plate are

E = 30,000,000 kN/m2, G = 15,000,000 kN/m2, ν = 0.

By utilizing the apparent symmetry of the structure and the load, it is suffi-
cient to treat only one-half of the plate if we introduce a “guided”† boundary
condition along the symmetry line. To take care of the oblique edge of the tri-
angular plate, we combine triangular units with the rectangular ones, as shown
in Fig. 6.4.8b. With a grid size � = 1.00 m, Eq. (6.2.7) gives the following
cross-sectional properties for the interior beams of rectangular units:

I1 = D�

E
= h3�

12
= 8333 cm4,

It,1 = D�

G
= h3�

6
= 16,666 cm4.

(6.4.14)

As mentioned in Sec. 6.4.2, we should use only one-half of the above given
values for the exterior beams of rectangular units; thus

I2 = I1

2
= 4166 cm4 and It,2 = I1,t

2
= 8333 cm4. (4.4.15)

The equivalent cross-sectional properties of the diagonal members of triangular
units [Eq. (6.4.6)] are

I3 = D�

2E
cot 90◦ = 0 and It,3 = D�

G
cot 90◦ = 0. (6.4.16)

To avoid divisions by zero, we substitute 0 by 1, which represents a very
small number in relation to the cross-sectional properties of the other beams.
Consequently, we can approximate I3 = It,3 ≈ 1.

It is of interest to note that the remaining two types of equivalent beams can
be reduced to types 1 and 2, respectively. Hence

† See Fig. 5.1.5d.
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I4 = I2 + D�

2E
cot 45◦ = 4166 + 4166 = 8333 cm4 = I1,

It,4 = It,2 + D�

2G
cot 45◦ = 8333 + 8333 = 16,666 cm4 = It,1

(6.4.17)
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Computational Procedures for Gridworks 353

and

I5 = D�

2E
cot 45◦ = 4166 cm4 = I2,

It,5 = D�

2G
cot 45◦ = 8333 cm4 = It,2.

(6.4.18)

Coordinates of the joint points are listed in Table 6.4.4. Identification of the
equivalent beams and their specific types, which include information concern-
ing their equivalent cross-sectional properties, is given in Table 6.4.5. Boundary
conditions of the joint points are given in Table 6.4.6. The joint loads are
summarized in Table 6.4.7. In this case the “statically equivalent” load approx-
imation was applied. Furthermore, loads acting on joints without freedom in the
lateral direction have been eliminated, since they do not influence the deflec-
tion pattern.

Table 6.4.4 Coordinates

Joint x y Joint ψ y

1 0.00 0.00 9 3.00 1.00
2 1.00 0.00 10 0.00 2.00
3 2.00 0.00 11 1.00 2.00
4 3.00 0.00 12 2.00 2.00
5 4.00 0.00 13 0.00 3.00
6 0.00 1.00 14 1.00 3.00
7 1.00 1.00 15 0.00 4.00
8 2.00 1.00

Our gridwork program [6.4.24] has yielded the following joint point dis-
placements:

w =




0.000
2.515
2.759
1.271
0.000
0.000
2.035
1.915
0.000
0.000
0.919
0.000
0.000
0.000
0.000




cm. (6.4.19)
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Table 6.4.5 Identification of Beams

Beam Joints Type Beam Joints Type

1 1–2 2 13 6–10 2
2 2–3 2 14 7–11 1
3 3–4 2 15 8–12 1
4 4–5 2 16 9–12 3
5 1–6 2 17 10–11 1
6 2–7 1 18 11–12 1
7 3–8 1 19 10–13 2
8 4–9 1 20 11–14 1
9 5–9 3 21 12–14 3

10 6–7 1 22 13–14 1
11 7–8 1 23 13–15 2
12 8–9 1 24 14–15 3

Table 6.4.6 Boundary Conditions

Joint w Locked φx Locked φy Locked

1 y y n
2 n y n
3 n y n
4 n y n
5 y y n
6 y y n
9 y n n

10 y y n
12 y n n
13 y y n
14 y n n
15 y y n

Note: y = yes; n = no.

Table 6.4.7 Joint Loads

Joint Px Mx My

1 0.00 −6.25 6.25
2 50.00 −12.50 0.00
3 50.00 −12.50 0.00
4 50.00 −12.50 0.00
5 0.00 −2.10 −4.17
6 0.00 0.00 12.50
7 100.00 0.00 0.00
8 100.00 0.00 0.00
9 50.00 6.50 6.50

10 0.00 0.00 12.50
11 100.00 0.00 0.00
12 50.00 6.50 6.50
13 0.00 0.00 12.50
14 50.00 6.50 6.50
15 0.00 0.00 2.10
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A comparison of the computed maximal lateral deflection w3 = 2.759 cm
with its more exact analytically obtained value of wmax = 2.662 cm shows
a relatively small error of 3.6%. The maximum bending moment† that occurs
at point 2 has been computed, again, using the ordinary FDM. This
gives

mx,max = −D

�2
(−2w2 + w3) = 56.77 kN-m/m. (6.4.20)

This moment has a still acceptable error of −5%. Using smaller mesh widths,
of course, even these small errors will also decrease.

ILLUSTRATIVE EXAMPLE III

Let us consider a uniformly loaded square plate with simply supported edges
as shown in Fig. 6.4.9a. Using the gridwork cell given in Table 6.3.2 with
a = b = L/4 = 0.75 m grid size, let us determine the deflected plate surface
w(x, y) at various joint points and compute the maximum bending moment
mmax. Poisson’s ratio ν = 1

3 .
Since both the structure and load have double symmetry, we can analyze

only one-quarter of the plate by assigning guided‡ boundary conditions at the
planes of symmetry. The unknown displacements d that can occur at the joint
points of the quarter plate are shown and numbered in Fig. 6.4.9b.

For a square gridwork cell (a = b) the element stiffness matrix becomes

K
(N)

e = Eh3

12(1 + ν)

×




15/a2

4.5/a 3.0

−4.5/a −1.0 3.0

−6./a2 0.0 3/a 15/a2

0.0 0.0 0.0 4.5/a 3.0 Symmetric

−3/a 0.0 1.0 4.5/a 1.0 3.0

−3/a2 −1.5/a 1.5/a −6/a2 −3/a 0.0 15/a2

1.5/a 0.5 −0.5 3/a 1.0 0.0 −4.5/a 3.0

−1.5/a −0.5 0.5 0.0 0.0 0.0 4.5/a −1.0 3.0

−6/a2 −3/a 0.0 −3/a2 −1.5/a −1.5/a −6/a2 0.0 −3/a 15/a2

3/a 1.0 0.0 1.5/a 0.5 0.5 0.0 0.0 0.0 −4.5/a 3.0

0.0 0.0 0.0 1.5/a 0.5 0.5 3/a 0.0 1.0 −4.5/a 1.0 3.0




.

(6.4.21)
Next, we substitute the given value for a into this matrix, and using the

code number technique, we renumber the joint displacements to conform to the
global numbering shown in Fig. 6.4.9b. This gives

† In the subscript, we used the notation of classical plate theory.
‡ See Fig. 5.1.5d.
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Cell Number 1 2 3 4 5 6 7 8 9 10 11 12
}

Local number

1 6 7 8 9 10 0 1 0 0 2 0 3

2 0 0 5 6 7 8 2 0 3 0 0 4




Global number
3 0 0 0 0 12 0 6 7 8 0 0 5

4 0 12 0 0 11 0 9 10 0 6 7 8

h = 0.15 m

E = 3.0 · 107 kN/m2

p0 = 10 kN/m2
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During this renumbering process, those displacements that cannot take place
on the substitute structure have obtained zero designations, indicating that their
corresponding rows and columns should be struck from the pertinent element
stiffness matrices. Adding the element stiffness coefficients that have the same
global subscripts, the stiffness matrix of the total structure is determined. Now,
if we lump the uniformly distributed load at the joints, we obtain the governing
matrix equation of this problem:

Eh3

12(1 + ν)




6.6667

−2.6667 13.3333

2.0 0 6.0

0 2.0 1.0 3.0 Symmetrical

0 1.0 0.5 0 6.0

−1.3333 −5.3333 0 1.0 4.0 26.6667

−1.0 −4.0 0 0.5 0 0 12.0

1.0 0 0 0.5 2.0 0 0 12.0

−2.6667 −1.3333 1.0 0 0 −5.3333 0 4.0 13.3333

−2.0 −1.0 0.5 0 0 0 0 0 0 6.0

0 0 0 0 0 −1.0 0.5 0.5 −2.0 1.0 3.0

0 0 0 0 0.5 −4.0 2.0 0 −1.0 0.5 0 6.0

1 2 3 4 5 6 7 8 9 10 11 12







d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12




=




5.625

11.25

0

−1.40625

−2.8125

22.5

0

0

11.25

0

1.40625

2.8125




1

2

3

4

5

6

7

8

9

10

11

12

.

(6.4.22)
The solution of Eq. (6.4.22) gives the column matrix of the joint displace-

ments:

d =




5.55766
4.02009
1.99195
3.06314
2.23316
2.91894
1.43098

−1.43098
4.02009
1.99195
3.06314
2.23316




× 10−3 m and rad. (6.4.23)
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The deflected plate surface is shown in Fig. 6.4.10. The obtained maximum
deflection w1 has an error of merely 0.3%. The maximum bending moment is
calculated using the ordinary FDM. Equation (5.1.12) gives

max mx = −3 × 107 × 0.153

12[1 − (1/3)2]

1

1.52
[(4.02009 − 5.55766) × 10−3

+ 2 1
3 (4.02009 − 5.5766) × 10−3]

= 4218.75(−3.07514 − 1
3 3.07514) × 10−3

= 17.298 kNm/m (error: 0.31%). (6.4.24)

Z, w

X

Y

w1 =  2.2 cm

Figure 6.4.10 Deflected plate surface.

Again, a comparison with its analytically obtained more exact value shows
only a negligible discrepancy of 0.31%.
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ILLUSTRATIVE EXAMPLE IV

Let us solve the preceding plate problem again, but this time we use the gridwork
cell given in Table 6.3.3. In this case, the element stiffness matrix becomes

K(N)
e =

1

2

3

4

5

6

7

8

9

10

11

12




50,612

18,979 23,724 Symmetric

−18,979 0 23,724

−25,306 0 18,979 50,612

0 −4744 0 18,979 23,724

−18,979 0 9489 18,979 0 23,724

0 0 0 −25,306 −18,979 0 50,612

0 0 0 18,979 9489 0 −18,979 23,724

E = 3 × 107 kN/m2

0 0 0 0 0 −4744 18,979 0 23,724

ν = 0.33

−25,306 −18,979 0 0 0 0 −25,306 0 −18,979 50612

h = 0.15m

18,979 9489 0 0 0 0 0 −4744 0 −18,979 23,724

0 0 −4744 0 0 0 18,979 0 9489 −18,979 0 23,724

1 2 3 4 5 6 7 8 9 10 11 12




(N)

.
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Using the same code numbers as in Illustrative Example III, the stiffness matrix
of the substitute structure becomes

K =
1

2

3

4

5

6

7

8

9

10

11

12




50,612

−25,306 101,224 Symmetric

18,979 0 47,449

0 18,979 9489 23,724

0 0 0 −4744 47,449

0 −50,612 0 0 37,959 202,449

0 −37,959 0 0 0 0 94,898

0 0 −9489 0 18,979 0 0 94,898

−25,306 0 0 0 0 −50,612 0 37,959 101,224

−18,979 0 0 0 0 0 −9489 0 0 47,449

0 0 0 0 0 0 0 0 −18,979 9489 23,724

0 0 0 0 0 −37,959 18,979 0 0 0 −4744 47,449




.

(6.4.26)
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Since the column vector of the loads also remains the same as in Eq. (6.4.23),
solution of the governing matrix equation yields the following displacement
components:

d =




0.00580
0.00420

−0.00199
−0.00306
−0.00223

0.00303
0.00143

−0.00143
0.00420
0.00199
0.00306
0.00223




1
2
3
4
5
6
7
8
9
10
11
12

m and rad. (6.4.27)

The maximum lateral displacement wmax = w1 = 0.0058 m (error 2.3.%) and
using the ordinary FDM the computed maximum bending moment show only
relatively small errors.

mx, max = −4218.75[2(4.2 − 5.8)10−3 + 2
3 (4.2 − 5.8)10−3]

= 18.0

[
kN

m

]
(error: 4.4%). (6.4.28)

References and Bibliography
[6.4.1] PRZEMIENIECKI, J. S., Theory of Matrix Structural Analysis, McGraw-Hill Book Co., New

York, 1968.
[6.4.2] BEAUFAIT, F. W., et al., Computer Methods of Structural Analysis, Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1970.
[6.4.3] MEEK, J. L., Matrix Structural Analysis, McGraw-Hill Book Co., New York, 1971.
[6.4.4] AZAR, J. J., Matrix Structural Analysis, Pergamon Press, New York, 1972.
[6.4.5] VANDERBILT, M. D., Matrix Structural Analysis, Quantum Publishers, New York, 1974.
[6.4.6] KARDESTUNCER, H., Elementary Matrix Analysis of Structures, MacGraw-Hill Book Co.,

New York, 1974.
[6.4.7] NORRIS, C. H., et al., Elementary Structural Analysis, 3rd ed., MacGraw-Hill Book Co.,

New York, 1976.
[6.4.8] WILLEMS, N., and LUCAS, W. M., Structural Analysis for Engineers, MacGraw-Hill Book

Co., New York, 1978.
[6.4.9] GHALI, A., and NEVILLE, A. M., Structural Analysis: A Unified Classical and Matrix

Approach, 2nd ed., Chapman & Hall, London, 1978.
[6.4.10] MEYERS, V. J., Matrix Analysis of Structures, Harper & Row, New York, 1983.
[6.4.11] WEAVER, W., and GERE, J. M., Matrix Analysis of Framed Structures, 3rd ed., Van Nos-

trand Reinhold, New York, 1990.
[6.4.12] HARRISON, H. B., Structural Analysis and Design, 2nd ed., Pergamon Press, Oxford, 1990.
[6.4.13] SMITH, I. M., and GRIFFITHS, D. V., Programming the Finite Element Method, 2nd ed.,

John Wiley & Sons, Chichester, United Kingdom, 1988.



Summary and Conclusions 361

[6.4.14] SCHWARZ, H. R., FORTRAN-Programme zur Methode der finiten Elemente, 3rd ed., Teub-
ner, Stuttgart, 1991.

[6.4.15] SZILARD, R., Finite Berechnungsmethoden der Strukturmechanik, Vol. 1: Stabwerke, Ernst
& Sohn, Berlin, 1982.

[6.4.16] PRESS, W. H., et al., Numerical Recipes in FORTRAN: The Art of Scientific Computing,
2nd ed., Cambridge University Press, Cambridge, Massachusetts, 1992.

[6.4.17] BATHE, K.-J., and WILSON, E. L., Numerical Methods in Finite Element Analysis, Prentice-
Hall, Englewood Cliffs, New Jersey, 1976.

[6.4.18] GRIFFITHS, D. V., and SMITH, G. M., Numerical Methods for Engineers, CRC Press, Boca
Raton, Florida, 1991.

[6.4.19] BATHE, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1982.

[6.4.20] BREBBIA, C. A., and FERRANTE, A. J., Computational Methods for the Solution of Engi-
neering Problems, 2nd ed., Pentech Press, London, 1979.

[6.4.21] JAMES, M. L., SMITH, G. M., and WOLFORD, J. C., Applied Numerical Methods for Digital
Computation with FORTRAN and CSMP, 2nd ed., Individual Education Plan, New York,
1977.

[6.4.22] RALSTON, A., and WILF, H. S., Mathematical Methods for Digital Computers, John Wiley
& Sons, New York, 1964.

[6.4.23] MORO, D. M., FORTRAN 77, Edward Arnold, London, 1982.
[6.4.24] SZILARD, R., et al., Turbo-Basic Programme für Baumechanik und Statik, Ernst & Sohn,

Berlin, 1989.
[6.4.25] TEZCAN, S. S., “Discussion of the Simplified Formulation of Stiffness Matrices,” J. Struct.

Div., ASCE, 89 (1963), 445–449.
[6.4.26] WEST, R., Recommendations on the Use of Grillage Analysis for Slab and Pseudo-Slab

Bridges, Cement & Concrete Association, London, 1973.
[6.4.27] COPE, R. J., and CLARK, L. A., Concrete Slabs: Analysis and Design, Elsevier, London,

1984.
[6.4.28] HABLY, E. C., Bridge Deck Behaviour, Chapman & Hall, London, 1991.
[6.4.29] NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY, CMLIB, Core Mathematics Library,

http://gams.nist.gov.
[6.4.30] NUMERICAL ALGORITHMS GROUP, Libraries and Programs, Mayfield House, Oxford, United

Kingdom, 1999.
[6.4.31] ROSS, C. T. F., Finite Element Programs in Structural Engineering and Continuum

Mechanics, Albion Publishing, Chister, United Kingdom, 1996.

6.5 Summary and Conclusions

The gridwork method presented in this chapter is a simple, very transparent and
yet highly versatile numerical technique for the analysis of diverse plate problems.
The method replaces the continuum of plates by a system of interconnected beams
endowed with equivalent cross-sectional properties. For determination of these prop-
erties, one of the following approaches can be applied: (a) comparing the differential
equation of plates with that of the equivalent gridwork systems, (b) equating the
strain energy expressions of plates and gridworks and (c) employing the equal defor-
mation principle for the two systems. In any case, determination of these equivalent
cross-sectional properties often involves tedious high-level research. Consequently,
it should not be routinely attempted by the analyst unless a definite need exists for
it. For instance, derivation of such properties for moderately thick plates could be
considered a worthwhile but time-consuming undertaking.

Fortunately, a sufficient number of equivalent cross-sectional properties are readily
available in the pertinent literature. Thus, their determination is seldom required. With
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these known beam properties, the analysis procedure follows either the well-known
matrix displacement method for framed structures or the equally familiar stiffness
approach combined with the code number technique if gridwork cells are employed
in the computation.† Gridwork cells represent finite beam units of various geometrical
configurations. The beams in these cells are interconnected at their joints. In the
analysis, we use the stiffness matrices of such cells, which can also be substituted
for element stiffness in a corresponding finite element computer programs. In both
cases, all lateral loads must be reduced to equivalent joint loads.

Various gridwork models were presented in this chapter. Their merits are simplic-
ity, versatility and efficiency. That is, plates of arbitrary shape, loadings and boundary
conditions can be easily analyzed by applying conventionally available computer pro-
grams for gridworks or three-dimensional frames. In particular, Salonen’s rectangular
and triangular models are noteworthy, since they provide rapid and fairly accurate
solutions for many difficult plate problems. It is recommended that in the case of
arbitrary plate geometry the interior domain should be discretized by using rectangu-
lar units, while at the edges triangular units should be employed. With the decrease
of mesh sizes, the method produces solutions approaching the exact values. Last,
but not least, the gridwork method can provide an entirely independent check of the
results of other numerical methods.

Finally, we should also mention the few minor drawbacks associated with the
gridwork method:

(a) While the deflected plate surface can be determined with relative ease, this
is not the case when it is necessary to also compute the stress resultants. As
demonstrated, the FDM offers a valuable alternative to mitigate this problem.

(b) Computer programs for either gridwork or finite element analysis are required.
An exception to this is the solution of a relatively simple plate problem
employing the stiffness matrices of gridwork cells. In this case, only an
equation solver is required.

(c) Strictly speaking, the various equivalent cross-sectional properties are valid
for a fixed Poisson ratio (ν = 1

3 or ν = 0). In general, this restriction does not
create major problems in practical plate analysis, since clamped arbitrarily
shaped and simply supported straight boundaries are independent of ν. In
addition, with the formulas given in Section A.2, one can also approximate
the effects of other Poisson ratios.

(d) Since at each joint three displacement components are considered, the result-
ing matrix displacement equations are considerably greater than in the FDM.

Problems‡

6.3.1. Verify the value of the stiffness coefficient k11 in Table 6.3.3. Assume that
Dx = Dy = D.

6.3.2. Verify the value of the stiffness coefficient k13 in Table 6.3.3.
6.4.1. Using a computer program for gridworks in combination with Eq. (6.2.7),

determine the deflected plate surface and the maximum positive bending

† As demonstrated in Illustrative Examples III and IV.
‡ The first two numbers refer to the corresponding section.
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moment of a uniformly loaded square plate. Assume the following dimen-
sions and elastic properties for the plate: p0 = 50 kN/m2, h = 0.2 m, E =
30,000,000 kN/m2 and ν = 0.

6.4.2. Re-solve problem 6.4.1, this time using the equivalent cross-sectional prop-
erties given in Eq. (6.2.1).

6.4.3. Solve the plate problem shown in Fig. 5.2.17 by means of the gridwork
method. Use a computer program for gridworks and Eq. (6.2.6) for the equiv-
alent cross-sectional properties.

6.4.4. Select a uniformly loaded, simply supported plate of triangular shape. Deter-
mine the maximum lateral deflection of this plate by the gridwork method.
Use a computer program for gridworks and Eq. (6.2.6) for the equivalent
cross-sectional properties.

6.4.5. Solve problem 6.4.4 but assume that the plate boundaries are fixed.
6.4.6. Determine the deflected plate surface and the maximum positive and neg-

ative bending moments of the continuous plate shown in Fig. 5.1.20. Use
Eq. (6.2.6) and a computer program for gridworks.

6.4.7. Determine the maximum lateral deflection of the square plate shown in
Fig. 5.1.19. Use the gridwork cell given in Table 6.3.3.

6.4.8. Solve the plate problem shown in Fig. 5.2.16 using the stiffness coefficients
of a square gridwork cell given in Eq. (6.4.21). Determine the maximum
bending moment by means of the FDM.

6.4.9. Design a continuous reinforced-concrete plate bridge with two equal spans.
Assume that four concentrated forces represent the moving truck load. This
structure should be analyzed by the gridwork method using Eq. (6.2.7) and
a computer program for gridworks. Determine the maximum negative and
positive moments with the help of the ordinary FDM.



7
Finite Element Method

7.1 Introduction and Brief History of the Method

During the past three decades, the finite element method (FEM) has rapidly become
the most dominant numerical technique in almost all fields of engineering and applied
science. Its present popularity can be attributed to the following major factors:

ž It is familiar to engineers. That is, the FEM evolved as an extension of the
earlier established matrix displacement analysis of framed structures, in which
the structure is represented as an assemblage of bar and beam elements. The
same concepts and matrix operations are used in the FEM. But instead of beam
elements, discrete pieces of continua are employed to represent the surface-type
structural system.

ž The FEM used in computation closely represents the actual continuum and thus
is easy to visualize. The same can be said for the support and load conditions.
Such essential simplicity in modeling greatly contributes to its popularity.

ž The general availability and greatly increased power of personal computers
have facilitated the use of numerical methods in everyday engineering analysis.
These personal computers with their unprecedented memory and speed have
brought the FEM within the reach of every engineer.

ž Once a general computer program for displacement analysis† of structures
is written, it can be easily modified to solve diverse problems in continuum
mechanics, since the basic matrix operations—for which subroutines are readily
available—remain the same. Furthermore, the simple logic of the FEM makes it
ideally suited for “structured” computer programming. Consequently, numerous
FEM programs are commercially available.

ž The FEM is versatile and flexibility. That is, the continuum may have arbitrary
shape, supports and loading conditions. Even in such a complex case, the FEM

† In this book we deal exclusively with the finite element displacement method, since it is the most
widely used finite element technique.
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delivers a realistic solution. Common applications include linear and nonlinear
static, dynamic and stability problems in the fields of structural, mechanical,
naval, mining, and aerospace engineering.

The classical methods discussed in the first part of this book consider plates as a
continua, the behaviors of which are governed by corresponding partial differential
equations (PDEs). Analytical solutions of these PDEs, however, are limited to the
simplest cases. But in engineering practice, the shape of the plates and their support
and loading conditions are often arbitrary. Analytical solutions of such “real-life”
problems are mostly very difficult or even impossible. The FEM, on the other hand,
considers the continuum of a plate as an assembly of finite size particles, and the
overall response of such a system is obtained by formulating simultaneous algebraic
equations that can be readily solved by a computer. An unsophisticated analogy of
the FEM is a comparison with the mosaic technique used for discrete representation
of pictures. In our case, the finite size particles of the continuum are called finite
elements. The behavior of each such element is described in a simple way. These
elements are reconnected by nodes that act as a binding mechanism to hold the
discretized system together. A more sophisticated description of the FEM considers
it as a piecewise polynomial interpolation used in connection with energy theorems,
as treated in subsequent sections.

In the application of the FEM for the analysis of any problems of physical continua,
the following steps are routinely applied:

1. discretization of the continuum,

2. selection of suitable shape functions,

3. element formulation,

4. treatment of the boundary conditions and loads,

5. assembly of the discretized system,

6. solution of the resulting system of equations and

7. computation of the stress resultants.

We may use the FEM in three ways: (a) setting up a relatively simple plate prob-
lem “by hand” and solving the resulting simultaneous equations with the help of
an advanced scientific calculator with built-in equation solver, (b) generating and
writing the required computer codes employing available subroutines and (c) using
commercially available finite element program systems.

The origins of the FEM are well known by now. This important numerical tech-
nique first appeared in the 1950s for the stress analysis of aircraft structures. Long
before this, however, the mathematician Courant introduced [7.1.1] a piecewise poly-
nomial solution of St.-Venant torsional problems applying an energy theorem in
combination with triangular elements. He assumed a linear distribution of the warping
functions among these elements. This approach can be viewed as an extension of the
Rayleigh-Ritz method. Consequently, Courant was the first to establish the mathemat-
ical foundation of the method. Unfortunately, this important work was unnoticed by
engineers, since the procedure appeared to be impractical at the time due to the lack
of digital computers, which are required for solution of the resulting large number of
simultaneous algebraic equations.
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Prior to that, most of the essential ideas of the FEM can be found in Hrennikoff’s
framework solution of stress problems related to elastic continua [7.1.2, 7.1.3]. Using
the “lattice analogy” that replaces the original continuum by a system of elastic bars
and beams, Hrennikoff extended the well-established method for matrix displacement
analysis of framed structures to plates and shells. But instead of an infinite number of
displacement components as are present in the original system, the substitute frame-
work deals only with a finite number of degrees of freedom. Based on the equivalent
elastic properties of such bars and beams in the substitute structure, the displace-
ments of the framework can closely approximate those of the original continuum.
Furthermore, if we consider the use of framework cells as described in the previous
chapter, we can state that the forerunner of the FEM was the framework approach
to stress problems of continua.

As its framework counterpart, the FEM grew out of the matrix displacement method
for structural analysis. Instead of bars and beams, this time an assembly of small
particles of the continuum was used to obtain the overall response of the original
system. During its early development for stress analysis of aircraft structures, the
method relied heavily on engineering intuitions. The continuum was assumed to
be composed of small (finite) elements physically connected only at a number of
nodal points. The comprehensive treatment of energy theorems by Argyris [7.1.4,
7.1.5] established the foundation for the derivation of an element stiffness matrix
for rectangular panels under plane stress. Clough and his co-workers, employing a
direct engineering analogy between a framed structure and a discretized continuum,
introduced the method to practicing structural engineers. Their classical paper [7.1.6]
describes the FEM for analyzing delta wings of airplanes. The term “finite element
method” was coined in 1960. Later, Melosh established the connection between the
FEM and certain energy approaches [7.1.7]. In 1967 Zienkiewicz and Cheung pub-
lished the first book on the FEM [7.1.8]. Since then, the method has become firmly
established as an indispensable tool for engineers and scientists. Besides its original
structural-mechanical applications, the FEM is now used for solution of such diverse
problems as steady-state heat conduction, fluid dynamics and numerical solution of
PDEs of mathematical physics, to name a few.

During the decade 1960–1970, further development of the FEM emphasized the
improvement of various elements combined with the creation of large general-purpose
computer program systems. By mid-1990, roughly 40,000 papers and more than a
hundred books had been published about the method. Of these books, 87 are listed
here [7.1.8–7.1.95] approximately in chronological order.
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7.2 Engineering Approach to the Method

As already mentioned, the precursor of the FEM was the matrix displacement method
for the analysis of framed structures. Thus, we may also consider the FEM as an
extension of this familiar technique, in a similar way, as the first originators of the
method used it in connection with the analysis of delta-wing panels [7.1.6]. Conse-
quently, in applying a piecewise approach to the approximate solution of complex
plate problems, the required procedures are analogous to those described in the fore-
going chapter that dealt with the gridwork method. Therefore, we intend to treat the
basic principles and steps of this numerical solution technique by extending the famil-
iar engineering approach for framed structures to plates. In the subsequent section,
however, the rigorous mathematical foundation of the FEM will also be introduced.
Naturally, because of the close similarity between the gridwork and finite element
methods, some overlap, and hence repetition, is unavoidable.

Similar to the gridwork method, the FEM uses local approximate solutions to build
the solution for the entire plate problem. In applying a piecewise approximation,
first the continuum of the plate is subdivided into a finite number of subregions
called finite elements. The elements may be straight-sided or curvilinear triangles or
quadrilaterals (Fig. 7.2.1). These elements do not overlap and are connected only
through their nodal points. This first step in the finite element procedure is called
discretization. For smaller problems, the discretization is usually done “by hand.”
For larger plate systems, this procedure becomes nearly impossible. Consequently,
automatic mesh generation algorithms capable of discretizing a given plate geometry
into efficient finite element mesh are employed [7.2.1–7.2.3].

The number of elements to be used is determined, to a large extent, by the conver-
gence characteristics of the selected elements. In addition, one must consider smaller
mesh sizes in the vicinity of expected stress concentrations, such as point supports,
or cut-outs, as shown in Fig. 7.2.2.

In connection with the discretization procedure, an efficient node-numbering scheme
must be adopted in the global X, Y , Z reference system. As stated in Sec. 6.4, this
determines the bandwidth of the global stiffness matrix. Since in our case the number
of degrees of freedom (DOF) per node† is 3 and the stiffness matrix is symmetrical,
the half bandwidth, BW, can be calculated from

BW = 3(d + 1), (7.2.1)

† See Fig. 6.4.6.
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Figure 7.2.1 Discretization of plate continuum.

(a) Opening
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(b) Column supports

Figure 7.2.2 Finer subdivision in vicinity of stress concentrations.

where d is the maximum largest difference in the node numbers occurring for all ele-
ments of the assemblage. The above equation indicates that d must be small in order
to obtain the optimum half bandwidth. Thus, the smallest bandwidth can be achieved
simply by numbering the nodes across the shortest dimension of the plate. By reduc-
ing the bandwidth, the storage requirements in the computer and the solution time
of the governing matrix equation are equally reduced. Simultaneous with the node
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numbering, the displacements at each node are numbered according to the follow-
ing sequence: (1) translation, (2) rotation around the X axis and (3) rotation around
the Y axis. This numbering process results in 1, 2, 3, . . . , n nodal displacements that
actually can take place.

The next step involves the calculation of the element stiffness matrix K(N)
e , which

relates a displacement at a nodal point to the so-created forces at the other nodes.
According to the engineering definition of the coefficients kij of the element stiffness
matrix, they represent active or reactive forces caused by a unit displacement of one
node while the other nodes are kept fixed. Thus, for the rectangular plate element
shown in Fig. 7.2.3, the general form of the element stiffness matrix—expressed in
its local X, Y, Z coordinate system—becomes

K(N)
e =




k11 k12 k13 . . . k1,10 k1,11 k1,12
k22 k23 . . . k2,10 k2,11 k2,12

k33 . . . k3,10 k3,11 k3,12

...
...

...

Symmetric k10,10 k10,11 k10,12

k11,11 k11,12

k12,12




(N)

(7.2.2)

Using the principle of virtual displacement [7.2.4], the individual coefficients of
the element stiffness matrix can be computed [7.2.5] from

kij 1 =
∫∫∫
V

σT
i εj dV =

∫∫
A

mT
i κj dA, (7.2.3)

where mi is the vector of the stress resultants created by the unit displacement on
the coordinate i. Thus, we can write

mi =



mx,i

my,i

mxy,i


 = D


 1 ν 0

ν 1 0
0 0 (1 − ν)/2







− ∂2

∂x2
wi

−∂2wi

∂y2

−2
∂2wi

∂x ∂y




, (7.2.4)
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Figure 7.2.3 Rectangular element.
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and

κj =



κx,j

κy,j

2κxy,j = 2χj


 =




−∂2wj

∂x2

−∂2wj

∂y2

−2
∂2wj

∂x ∂y




(7.2.5)

represents the vector of curvatures created by a unit displacement on coordinate j .
The substitution of Eqs. (7.2.4) and (7.2.5) into Eq. (7.2.3) gives the general equa-

tion for evaluation of stiffness coefficients in the form

kij = D ·
∫∫
A




∂2wi

∂x2

∂2wi

∂y2

∂2wi

∂x ∂y




T 


1 ν 0

ν 1 0

0 0 2(1 − ν)







∂2wj

∂x2

∂2wj

∂y2

∂2wj

∂x ∂y




dA. (7.2.6)

The assumed displacement functions wi(x, y) and wj(x, y), which are chosen to
describe the displacement patterns in the plate element, must meet certain strict cri-
teria to obtain convergence to the exact solutions of plate problems. These important
requirements for obtaining suitable finite elements will be discussed extensively in
Sec. 7.4. These assumed displacement functions represent, in general, only approx-
imately the displacements in the plate elements. For this purpose polynomial and
trigonometric functions are most commonly used.

Employing an engineering approach, we can create an exact displacement function
for the lateral nodal displacements of a rectangular plate element. For this purpose
we use a plate of 2a × 2b dimensions with clamped edges under a load P = 1
concentrated at the center (Fig. 7.2.4). The mathematically exact solution of this
problem is given in Ref. [7.2.6]. Since we require a unit amplitude for the lateral
displacement at the center, the result w∗

max must be normalized accordingly. In this
way, the displacement function φi = wi(x, y) for unit translation on coordinate 7
(Fig. 7.2.5a) can be determined. Obviously, the same function can also be used for
the translation of the other nodes with appropriate modifications.

However, it is much more difficult to derive a compatible displacement function
for the unit rotation on coordinate 9 (Fig. 7.2.5b). We can circumvent this prob-
lem to a certain extent by using the normalized derivatives of φi with respect to x

and y, respectively. Again, the same displacement functions can be employed, after
appropriate modifications, for the unit rotations of the other nodes. The obtained dis-
placements, however, violate the slope continuity at the far end of the plate element.
Experience shows, nonetheless, that good results can be obtained with such slightly
nonconforming shape functions, provided that they are used in static (versus stability)
analysis of plates.

On the other hand, Cartesian products of the displacement functions of beam
elements give conforming shape functions that satisfy all continuity requirements
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Figure 7.2.4 Generation of displacement functions for translations of nodal points.

between elements. Thus, the deflection pattern produced by normalized unit transla-
tion of the node located at x = a and y = b distance can be approximated by

φi(x, y) =
[

3
(x

a

)2 − 2
(x

a

)3
] [

3
(y

b

)2 − 2
(y

b

)3
]

. (7.2.7)

Similarly, the deflection pattern due to a normalized rotation around the Y axis of
the same nodal point, for example, can be approximately described by

φj (x, y) =
[
a
(x

a

)2 (
1 − x

a

)] [
3
(y

b

)2 − 2
(y

b

)3
]

. (7.2.8)

Although these shape functions satisfy all continuity requirements at the bound-
aries as well as within the element domain, their convergence characteristics are not
satisfactory. That is, computations with the derived elements yield approximately
5–7% smaller deflections compared to the exact solutions [7.2.7]. These discrepan-
cies are created by the fact that the elements do not deform similarly to the actual
deformations developed in the plate.

As was the case with gridwork cells, any calculation error in computing the ele-
ment stiffness matrix can be detected by checking the equilibrium of the element.
Consequently, equations of equilibrium† must be satisfied for each column or row in
the matrix.

The next step involves conversion of all external forces to equivalent joint loads.
Since all loads must act on joints, we assign nodes to concentrated forces and
moments during the discretization process. Distributed lateral loads pz(x, y) can
easily be converted to joint loads by employing their statically equivalent forces.
More exact results can be obtained by using the approximate displacement func-
tions introduced above in connection with the principle of virtual work. Thus, we

† See Eq. (6.3.5).
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Figure 7.2.5 Shape functions due to unit displacements.

can write

Pi =
∫∫
A

φi(x, y) · pz(x, y) dA,

Mi =
∫∫
A

φj (x, y) · pz(x, y) dA.

(7.2.9)

Similar expressions can be used for triangular elements. One can also apply the
approximations given in Fig. 6.4.3.
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Figure 7.2.6 Rotation of local coordinate system (CS).

Since the element stiffness matrices and the equivalent joint loads are determined
in local coordinate systems X, Y, Z, they must be rotated into an intermediate system
X′, Y ′, Z′ (Fig. 7.2.6) before assemblage. The axes of this intermediate system are
parallel to those of the global reference system X, Y , Z. This coordinate rotation is
expressed by

(K
′
e)

(N) = (TKeTT)(N), (7.2.10)

where the transformation matrix T(N) has the form

T(N) =



R1
R2

R3

R4




(N)

(7.2.11)

and the rotation matrix for the nodal point �i is

R(N)
i =


 1 0 0

0 cos α sin α

0 − sin α cos α




(N)

(7.2.12)

A similar approach can be taken to transfer the vectors of the external joint loads
to the intermediate coordinate system. Very often, however, such coordinate transfor-
mations are not necessary, since the axes of the local and global coordinate systems
are generally parallel.

It is important to remember that Eq. (7.10) is valid only if the angle of rotation α in
Eq. (7.2.12) is measured from the local X axis of the element toward the intermediate
X′ axis, as shown in Fig. 7.2.6. Otherwise a transposed relationship in Eq. (7.2.10)
is applicable.

To solve a plate problem, it is necessary to combine the individual stiffness matrices
K

(N)

e into the overall stiffness matrix K of the plate structure. Similarly, the individual
nodal forces p(N)

i must also be combined to form the vector of the nodal forces, p,
acting on the whole structure. For this purpose, we have to renumber the nodal
displacements of the elements, d(N)

i , by replacing the local numbers 1, 2, . . . , 12
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with their equivalent global numbers 1, 2, 3, . . . , n. This is accomplished by using
the index number technique,† which is already familiar to most engineers from the
analysis of framed structures. A similar procedure is followed for the nodal forces to
obtain the vector p, which represents all nodal forces acting upon the whole structure
expressed in the global reference system. In connection with this renumbering process,
we can also impose the boundary conditions of the plate. That is, those displacements
that cannot take place receive 0 numbers. The zero number indicates that the pertinent
rows and columns must be eliminated from the element stiffness matrices. Then, the
obtained reduced stiffness matrices must be shrunk to a smaller size. An alternative
procedure for dealing with the boundary conditions are given in Sec. 7.3.

The assembly of the governing matrix equation for the whole structure includes
building up the global stiffness matrix K of the plate from the stiffness matrices K

(N)

e

of the individual elements N and creating the overall global forces or load vector p.
The most common technique builds up K by simply adding the stiffness coefficients
of the elements having the same subscripts. Hence,

Kij =
∑
N

k
(N)

e,ij , (7.2.13)

where the summation is taken over all elements and k
(N)
e,ij represents the coefficient

of the element stiffness matrix. Similarly, by

pi =
∑
N

p
(N)
i , (7.2.14)

we obtain the global load vector. This process is graphically presented in Fig. 7.2.7.
The resulting system of simultaneous algebraic equations

K d = p (7.2.15)

Element
stiffness matrices

dn

d1

d2

Kij = Σ kijij

1 n − 1n2 3
1
2
3

n

=

Ke
(1)

Ke
(2)

Ke
(N −1)

Ke
(N )

p(1)

p(2)

p(N −1)

p(N )

Figure 7.2.7 Assembly of governing equation.

† See, for instance, Illustrative Example III in Sec. 6.4.
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is solved for the unknown nodal displacements d. Once these are known, the assumed
shape functions define the displacements throughout the assemblage of elements.

Finally, subsidiary quantities such as moments and shear forces are evaluated for
each element nodal point �i . That is, once the nodal displacements are known, the
stress resultants of the N th element can be found from

mi = (Sede)
(N)
i and qi = (Qede)

(N)
i , (7.2.16)

where S(N)
e and Q(N)

e are the so-called element stress matrices. Since in these expres-
sions we deal with element displacements d(N)

e , the pertinent displacement vectors
must be transformed back to their local coordinate systems. Hence

d(N)
e = {

(T)Tde

}(N)
, (7.2.17)

The general expression for the stress matrices is

σ
(N)
i =

{
mi

qi

}(N)

= (EDNde)
(N)
i , (7.2.18)

where E is the elasticity matrix, D represents a matrix of differential operators and
N stands for the matrix of the shape functions.

An important item that the structural engineer, wishes to determine in an analysis
is the stress pattern induced in the plate by the external loads. Since this knowledge
is probably more important than the displacements, we devote a separate section† to
cover this subject.

ILLUSTRATIVE EXAMPLE

To determine the stiffness coefficient k77 of the rectangular plate element shown
in Fig. 7.2.3, we use Eq. (7.2.6). The assumed displacement functions wi and
wj required for evaluation of this equation are approximated by

wi = wj = w7 =
[

3
(x

a

)2 − 2
(x

a

)3
]

·
[

3
(y

b

)2 − 2
(y

b

)3
]

, (7.2.19)

which represents the Cartesian product of the corresponding beam functions.
In this case, Eq. (7.2.6) becomes

k77 = D

∫ b

0

∫ a

0

[(
∂2w7

∂x2

)2

+
(

∂2w7

∂y2

)2

+ 2ν
∂2w7

∂x2
· ∂2w7

∂y2

+2(1 − ν)

(
∂2w7

∂x ∂y

)2
]

dx dy. (7.2.20)

† See Sec. 7.8.
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Substitution of Eq. (7.2.19) into this expression gives

k77 = D

∫ b

0

∫ a

0

{
36

a4

[
1 − 2

x

a

]2
[

3

(
y

b

2
)

− 2

(
y

b

3
)]2

+ 2ν
6

a2

[
1 − 2

x

a

] [
3
(y

b

)2−2
(y

b

)3
]

×
[

3
(x

a

)2−2
(x

a

)3
]

· 6

b2

[
1 − 2

y

b

]

+
[

3
(x

a

)2 − 2
(x

a

)3
]2

· 36

b4

[
1 − 2

y

b

]2

+2(1 − ν)
36

a2

[
x

a
−
(x

a

)2
]2 36

b2

[
y

b
−
(y

b

)2
]2
}

dx dy

(7.2.21)
and

k77 = D

∫ b

0

∫ a

0

{
36

a4

[
1 − 4

x

a
+ 4

(x

a

)2
] [

9

(
y

b

4
)

− 12
(y

b

)5 + 4
(y

b

)6
]

+ 72ν

a2b2

[
3
(x

a

)2 − 2
(x

a

)3 − 6
(x

a

)3 + 4
(x

a

)4
]

×
[

3
(y

b

)2 − 2
(y

b

)3 − 6
(y

b

)3 + 4
(y

b

)4
]

+ 36

b4

[
1 − 4

y

b
+ 4

(y

b

)2
] [

9
(x

a

)4 − 12
(x

a

)5 + 4
(x

a

)6
]

+ 2592(1 − ν)

[(x

a

)2 − 2
(x

a

)3 +
(x

a

)4
]

×
[(y

b

)2 − 2
(y

b

)3 +
(y

b

)4
]}

dx dy. (7.2.22)

After performing the integration, we obtain

k77 = D

{
36

a4

[
a − 2a + 4a

3

] [
b − b

2

]

+ 72ν

a2b2

[
3a

2
− a

2
− 3a

2
+ 4a

5

] [
b − b

2
− 3b

2
+ 4b

5

]

+ 36

b4

[
b − 2b + 4b

3

] [
9a

5
− 2a + 4a

7

]

+2592

a2b2
(1 − ν)

[a

3
− a

2
+ a

5

] [b

3
− b

2
+ b

5

]}
, (7.2.23)
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or in more condensed form

k77 = D

(
156

35

b

a3
+ 156

35

a

b3
+ 72

25

1

ab

)

= Eh3

12(1 − ν2)
· 1

ab

[
156

35

(
b

a

)2

+ 156

35

(a

b

)2 + 72

25

]
. (7.2.24)

Remarks: Since the application of the FEM by longhand is identical to that of
the gridwork method using framework cells, we refer the reader to Illustrative
Examples III and IV in Sec. 6.4. The only difference in the two approaches
involves the element stiffness matrices, but the computational sequence remains
the same. In addition, the reader will find a few corresponding examples in
subsequent sections.
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7.3 Mathematical Formulation of Finite Element Method

7.3.1 Consideration of Total System

In Sec. 7.2, the displacement approach of the FEM was introduced as an intuitively
conceived direct extension of the familiar matrix displacement analysis technique
used for framed structures. Here, we are concerned with the stricter mathematical
formulation of this method.

From a mathematical standpoint, the displacement version of the FEM can be
considered as a special case of the Ritz method discussed in Sec. 4.2. That is, both
methods are essentially equal, since each uses a set of assumed displacement func-
tions for obtaining approximate solutions to given plate problems. Furthermore, the
principle of minimum potential energy is applied by both methods to make these
functions stationary. The major difference between the two approaches is that the
assumed displacement functions in the FEM are not defined over the whole domain
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of the plate, since they represent piecewise trial functions that must satisfy certain
continuity and completeness conditions to be discussed later. The principle of min-
imum potential energy ensures that, if the selected displacement fields satisfy the
above-mentioned conditions, the total potential energy of the discrete structure will
be greater than the energy of the corresponding exact deformation of the plate. In
addition, as the number of elements is increased, the FEM solution will converge to
its correct value [7.3.1, 7.3.2].

For a linear-elastic plate defined in a global coordinate system X, Y , Z and sub-
jected to p external forces, we seek a solution φ = F a that makes the total potential
of the system minimum:

� = �int + �ext. (7.3.1)

Following the classical Ritz method, this requirement can be formulated as




∂�

∂a1

∂�

∂a2

...

∂�

∂am




= {0}, (7.3.2)

where a1, a2, . . . , am are unknown coefficients of the assumed global displacement
functions

φ = F a, (7.3.3)

which satisfy the prescribed boundary conditions of the plate as already discussed
in Sec. 4.2. Equation (7.3.2) gives m simultaneous algebraic equations from which
the unknown coefficients a are determined. Unfortunately, we can find suitable dis-
placement functions only for the simplest geometry, load and boundary conditions.
To eliminate such serious restrictions in solving plate problems, we are using here a
piecewise approximation that enables us to solve more general plate problems that
are of considerable practical interest. For this purpose, the plate is discretized by
using a finite number of elements, as shown in Fig. 7.2.1.

The assumed displacement functions of the element N with r nodal points can be
written as

f(N)
e = (Nede)

(N), (7.3.4)

where

d(N)
e =




d1

d2
d3

...

dr




(N)

(7.3.5)
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is the vector of nodal displacements and

N(N)
e = [ N1 N2 N3 · · · Nr ](N) (7.3.6)

represents the matrix of the assumed shape functions that must satisfy certain require-
ments to be discussed in Sec. 7.4.

The total potential of the continuum can be approximated as the sum of the potential
energies of the individual finite elements:

� ≈
M∑

N=1

(�int + �ext)
(N)
e . (7.3.7)

The strain energy of the N th element evaluated in its local X, Y, X coordinate
system can be written as

�
(N)

int,e = 1

2

(∫
V

εTσ dV

)(N)

= 1

2

(∫
V

εTE ε dV

)(N)

, (7.3.8)

where E represents the elasticity matrix and ε is the strain vector. Furthermore, we
can express the strain vector through pertinent differentiation of the assumed shape
functions N combined with the nodal displacements of the elements de in the form

ε(N) = (Dde)
(N), (7.3.9)

where the matrix D is obtained by corresponding differentiation of the shape functions
N. By substituting Eq. (7.3.9) into Eq. (7.3.8), we obtain

�
(N)

int,e = 1

2

(∫
V

dT
e DTEDde dV

)(N)

= 1

2
(dT

e Kede)
(N), (7.3.10)

where

K(N)
e =

(∫
V

DTED dV

)(N)

(7.3.11)

represents the stiffness matrix of the N th element. A more elaborate form of this
equation is already given by Eq. (7.2.6).

Since the element stiffness matrix K(N)
e was determined in its local coordinate

system X, Y, Z, it must be subsequently transferred to the global reference sys-
tem X, Y, Z of the plate. This can be accomplished by using the already familiar
transformation relationship

K
(N)

e = (TKeTT)(N). (7.3.12)

The size of the transformation matrix T(N) depends on the number of nodal points
of the element and that of its allowed DOF allowed at each node.
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Next, we can express the total potential energy of the external and internal forces
in the global coordinate system in the form

� = �int + �ext = 1

2
d

T

(
M∑

N=1

K
(N)

e

)
d − d

T
p, (7.3.13)

where d represents the vector of the unknown nodal displacements. Since the sum

M∑
N=1

K
(N)

e = K (7.3.14)

symbolizes the stiffness matrix of the whole system, the principle of minimum poten-
tial energy yields

∂�

∂d
= ∂

∂d

(
1

2
d

T
K d − d

T
p
)

= {0}, (7.3.15)

the governing matrix equation of the finite element in the already familiar form

K d − p = {0}, (7.3.16)

or

d = K
−1

p. (7.3.17)

7.3.2 Formulation of Element Stiffness Matrices†

A general approach to formulate the element stiffness matrices is the application of
one of the following variational principles:

ž principle of virtual work,
ž minimum principle of potential energy,
ž minimum principle of complimentary energy,
ž Castigliano’s second theorem and
ž unit displacement method.

Here we will only deal with the first two methods since they are most commonly
used in structural mechanics.

a. Application of Virtual Work. The virtual work of the external forces, p, acting
on the nodal points of the element is

δWext = δdTp, (7.3.18)

† To simplify notation, in this section we are omitting the subscripts and superscripts that refer to
elements, since all matrix operations are carried out on the element level.
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where δ represents the conventional variation notation [7.3.5] and d is the vector of
nodal displacements as defined in Eq. (7.3.5). Variation of the corresponding strain
energy can be written as

δWint = δεT σ dV. (7.3.19)

The virtual work of the external forces must equal that of the strain energy, hence

δW
(N)
ext = δW

(N)

int ; (7.3.20)

therefore

δdTp =
∫

V

δεTσ dV. (7.3.21)

where ε represents the strain vector according to Eq. (7.3.9) and σ denotes the per-
tinent stress vector

σ = Eε. (7.3.22)

The matrix E is the elasticity matrix for elastic and isotropic materials. By substituting
Eqs. (7.3.9) and (7.3.22) into Eq. (7.3.21), we obtain

δdT p =
∫

V

δdTDTEDd dV. (7.3.23)

Since this equation is valid for any variation of the nodal point displacements, we
can write

p =
∫

V

DTEDd dV, (7.3.24)

or

p = Ked, (7.3.25)

where

Ke =
∫

V

DTED dV (7.3.26)

represents the stiffness matrix of the finite element.

b. Principle of Minimum Potential Energy. We define the elastic potential of a
finite element as

� = �int + �ext = 1

2

∫
V

εTσ dV − dTp, (7.3.27)

or

� = 1

2

∫
V

εTEε dV − dTp. (7.3.28)
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By substituting Eq. (7.3.9) into this expression, we obtain

� = 1

2
dT
∫

V

(DTED dV )d − dTp. (7.3.29)

The necessary condition for II to have a stationary value is that

∂�

∂d
= {0}. (7.3.30)

This requirement yields

(∫
V

DTED dV

)
d − p = {0}, (7.3.31)

or since

Ke =
∫

V

DTED dV (7.3.32)

represents, again, the element stiffness matrix, we obtain the governing FEM equation
for the N th element in the form

Ked = p. (7.3.33)

It is evident by now that Eq. (7.3.32) is identical with Eqs. (7.3.11) and (7.3.26).
Again, we want to point out that a more elaborate form of these equations is given
in Eq. (7.2.6).

c. Alternative Formulation. We can also express the internal displacements f(x, y)
in terms of the displacement functions M(x, y):

f = Mα, (7.3.34)

where α denotes the column matrix of the amplitudes of the displacement functions.
These unknown coefficients are represented by generalized coordinates. The number
of independent functions in matrix M, however, should equal that of the indepen-
dent nodal displacement components di , which are given in terms of generalized
coordinates:

d = Aα. (7.3.35)

The matrix A is obtained by substituting the coordinates of the nodal points into the
square matrix M. The unknown coefficients are determined from

α = A−1d. (7.3.36)
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Using this formulation, the vector of the element strains becomes

ε = Lα. (7.3.37)

The matrix L in this equation is obtained by appropriate differentiation of the dis-
placement functions. The corresponding element stresses are

σ = Eε = ELα, (7.3.38)

where E represents, again, the elasticity matrix of the finite element material.
Applying the principle of virtual displacements, the virtual work of the external

and internal forces using generalized coordinates may be written as

δαTβ =
∫

V

δεTσ dV =
∫

V

δαT LTELα dV, (7.3.39)

where β represents the vector of the generalized nodal forces corresponding with
displacements α. From Eq. (7.3.39) we obtain

β =
(∫

V

LTEL dV

)
α. (7.3.40)

The term in parentheses represents the generalized coordinate stiffness matrix of the
finite elements:

K̃e =
∫

V

LTEL dV . (7.3.41)

Since

ε = Bd = Lα, (7.3.42)

we can write

Ke =
∫

V

(LA−1)TELA−1 dV = (A−1)TK̃eA−1 . (7.3.43)

The right-hand side of this equation represents a coordinate transformation in which
the transformation matrix A−1 relates the generalized coordinates α to the nodal point
displacements d, as given in Eq. (7.3.35).

ILLUSTRATIVE EXAMPLE

Let us apply the general relationships introduced above to the rectangular plate
element shown in Fig. 7.2.3.

The lateral deflections of the element may be represented by

w(x, y) = NTd, (7.3.44)
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where N is the shape function matrix and d represents the vector of nodal point
displacements. A more detailed expression for this equation is

w(x, y) = [ N�1 N�2 N�3 N�4 ]




d�1

d�2

d�3

d�4


 . (7.3.45)

Here the subscripts refer to the nodal points �i = �1 , �2 , �3 , �4 . At each
nodal point three displacement components (Fig. 7.3.1a) are to be considered:

d�i =




w

θx

θy




�i

=




w

∂w

∂y

−∂w

∂x




�i

for i = 1, 2, 3, 4. (7.3.46)

The corresponding nodal forces (Fig. 7.3.1b) are

f�i =



Q

Mx

My




�i

for i = 1, 2, 3, 4. (7.3.47)

(a) Displacement components (b) Corresponding nodal
forces

w

X

Z

Y

+

+

Θy = −
∂w

∂x

Θx =
∂w

∂y

Myx

My

Mxy

Mx

i

Q

Figure 7.3.1 Nodal forces and displacements.

It should be pointed out, again, that contrary to the classical plate theory
θy represents a negative slope in the FEM. Furthermore, the concentrated
nodal point moments rotate around the X and Y axis, respectively. That is,
they are not obtained by integrating the σx and σy stresses as discussed in
Sec. 1.2. Their sign conventions follow also that of the FEM and are shown in
Fig. 7.3.1b.†

† See also Fig. 6.4.6, which represents a similar case.
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The shape functions pertinent to a nodal point �i have the general form

N�i =



φ1(x, y)

φ2(x, y)

φ3(x, y)




T

�i

, (7.3.48)

where φ1, φ2 and φ3 are assumed displacement functions corresponding to
d1, d2 and d3 nodal displacements (Fig. 7.3.1a).

The stain vector ε is defined as

ε = Dd, (7.3.49)

where D in this case is

D = [ D�1 D�2 D�3 D�4 ], (7.3.50)

with

D�i =




−∂2N�i

∂x2

−∂2N�i

∂y2

−2
∂2N�i

∂x ∂y




. (7.3.51)

For elastic isotropic plate, the elasticity matrix is

E = Eh2

12(1 − ν2)


 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)


 . (7.3.52)

Thus, the element stiffness matrix according to Eq. (7.3.32) becomes

Ke =
∫ b

0

∫ a

0
DTED dx dy. (7.3.53)

By substituting Eqs. (7.3.51) and (7.3.52) into this equation, we obtain an
explicit expression for the stiffness coefficients

kij = D

∫ b

0

∫ a

0




∂2φi

∂x2

∂2φi

∂y2

2
∂2φi

∂x ∂y




T


 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)







∂2φj

∂x2

∂2φj

∂y2

2
∂2φj

∂x ∂y




, (7.3.54)
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where φi and φj represent shape functions at a specific nodal point. These
shape functions have unit values at the nodal point in question and zero values at
other nodal points, as shown in Fig. 7.2.5. Equation (7.3.54) is, for all practical
purposes, identical with Eq. (7.2.6).

In Sec. 7.6.1 the alternative approach will be used to derive explicit expres-
sions for a nonconforming stiffness matrix.
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7.4 Requirements for Shape Functions

The process of creating a finite element displacement model was treated in the fore-
going sections. There we stated that the FEM is a special case of Ritz’s energy-based
solution technique. The essential difference of the FEM lies in the special nature of
the assumed displacement functions, since they are local rather than global. Con-
sequently, it is assumed that the finite element solutions of plate problems can be
obtained in functional forms element by element across the whole domain; that is,
they can be defined piecewise over the plate.

As is the case with all energy methods, the accuracy of the solution depends
considerably on the quality of the assumed displacement functions. The functions
defined over each element are called shape functions. The shape function Ni for node
i must assume unit value at node i and must be zero at all other nodes of the element
and along all sides of the element that do not contain node i. These fundamental
requirements are depicted in Fig. 7.2.5.

Within an element, the lateral deflections can be described by a linear combination
of shape functions N1, N2, . . . , Nr . These functions, however, must meet certain
requirements if convergence to the true solution is to be obtained as the number of
elements is increased. These basic convergence requirements are

1. continuity within the element,
2. continuity across element boundaries,
3. compatibility between elements,
4. rigid-body motions that must be represented,
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5. invariability by rigid-body motions,
6. ability to represent constant curvatures,
7. invariability by coordinate transformations and
8. close approximation of true plate deflections due to unit motions of nodes

(Fig. 7.2.5).

Condition 1 guarantees that the displacement field within the element and certain
of its derivatives will be continuous since discontinuity will cause infinite strains.
Condition 1 will also ensure that all integrals necessary for computation of element
stiffness coefficients kij are well defined.

Condition 2 deals with compatibility at element interfaces. In general, the shape
functions should provide interelement compatibility up to the order n − 1, where
n is the highest-order derivative in the energy functional used to generate element
stiffness coefficients. Shape functions that satisfy these conditions of compatibility
are called conformable. In the pertinent technical literature the degree of continuity
is usually expressed by C(n). Thus, C(0) implies continuity of lateral deflections
w, C(1) indicates additional continuity of the first derivatives of w, and C(2) implies
continuity even of the second derivatives of w. Consequently, for bending of plates
C(1) continuity is required. To satisfy this requirement, we have to ensure continuity of
w as well as its normal derivatives ∂w/∂n along the element boundaries. However,
this is not always an easy task! Thus, this requirement is often violated by many
successful nonconforming elements. Their good performance must be contributed to
the fact that, as the element approaches constant-curvature condition, interelement
compatibility can be approximated.

u

1

j1 j2

w jy

jx

(a) Plate stretching

(b) Plate bending

Figure 7.4.1 Rigid-body motions.
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Rigid-body motion without strain must be represented. That is, when nodal element
displacement components are given unit values corresponding to rigid-body motion
(Fig. 7.4.1), the elements must exhibit zero strains and zero nodal forces. In addition,
the element must be invariable by such rigid-body motion.

As the size of the elements decreases, the derivatives appearing in the functional of
the variational expression should tend to have constant values. Consequently, when
the nodal displacements are given values corresponding to the state of constant-
curvatures, the shape functions must produce constant strains throughout the element.
Since a constant-curvature condition automatically ensures C(1) continuity as the

 Y
 Z

 X

(a) Curvature axis parallel to Y

(b) Curvature axis parallel to X

(c) Warping 

mx

my

mx = const

myx = const

mxy = const

myx

mxy

my = const

Rx = 1
kx

Ry = 1
ky

Figure 7.4.2 Constant-curvatures.
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element size decreases, it is necessary to include terms in the shape functions that
represent this very important state of strains (Fig. 7.4.2).

Finally, we require that the shape functions do not change when we transform
them from a Cartesian coordinate system to another one. When symmetrical polyno-
mials are used, the expressions of the polynomials should be complete to a required
degree to satisfy this requirement. Incomplete polynomials should contain, at least,
symmetrical terms.

Requirement 8 is often overlooked. Although some shape functions, such as those
obtained using beam functions, may satisfy all previously discussed requirements, the
solution will not converge to its true value [7.4.1]. The reason for such discrepancy is
easy to comprehend when one graphically compares the displacement fields obtained
by unit nodal motions with those of the exact solution of such plate problems†.

In addition to the mathematical requirements discussed above for appropriate shape
functions, one should consider two other physical requirements:

9. the shape of the element and
10. the number of the nodal points.

Many types of functions could serve as shape functions for plate bending. Polyno-
mials are currently the most widely used [7.4.2]. The reason for this is that polyno-
mials are relatively easy to integrate and differentiate. Trigonometric functions also
possess these properties, but they are seldom used [7.4.3, 7.4.4].

Selection of proper shape functions and generating pertinent element stiffness
matrices are very difficult tasks requiring plenty of devotion, time and work. Con-
sequently, such an assignment should not be routinely undertaken but left to mathe-
matically inclined research engineers or Ph. D. Candidates.
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7.5 Various Shape Functions and Corresponding
Element Families‡

One of the most difficult tasks facing an analyst is element selection. An area for
which this problem is quite pronounced is that of plate bending, since there is a
bewildering array of plate elements that have resulted from approximately 40 years
of research activities in this field [7.5.1–7.5.3].

† See Fig. 7.2.4.
‡ To eliminate the discrepancy in sign conventions between the FEM and classical plate theory
concerning the rotation �y , either we use directly −∂w/∂x or it must be assumed that the pertinent
shape function has a negative sign.
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The critical step, which largely controls the accuracy of the finite element solu-
tion, is the selection of appropriate shape functions. To achieve convergence to the
true solutions, the selected shape function must satisfy the requirements introduced
in Sec. 7.4. It is not very difficult to achieve C(0) continuity. The degree of dif-
ficulty, however, considerably increases when higher-order continuity such as C(1)

is required.
In this section we give a brief overview of the most frequently employed shape

functions and their corresponding element families. By element families we mean
finite elements that are constructed by using certain related groups of shape functions.

7.5.1 Polynomials and Their Element Families

Polynomial series expressions in x and y form the basis of several shape functions
used in constructing finite elements for plate analysis. One of the reasons for their
popularity is that they can be easily integrated and differentiated. As stated previously,
accuracy of the finite element solutions directly depends upon the extent to which
the assumed shape function can approximate the true deflection of the plate. With
polynomials, we can state that the higher the degree, the better is this approximation.
Such polynomials of high degree, however, create some problems of their own, which
we will be pointed out later.

The polynomial form of shape functions for plate elements is

w(x, y) = [ 1 x y x2 xy y2 x3 x2y xy2 y3 · · · ]




α1
α2

α3

α4

...




, (7.5.1)

where αi represents generalized coordinates, the definition of which was already
introduced in Sec. 7.3.

The terms of successive-degree polynomials can be represented by Pascal’s tri-
angle:

1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x3 x4y x3y2 x2y3 xy4 y5

(7.5.2)

which is the product of a column and row matrix:




1
x

x2

x3

...




[ 1 y y2 y3 · · · ] =




1 y y2 y3 · · ·
x xy xy2 xy3 · · ·
x2 x2y x2y2 x2y3 · · ·
x3 x3y x3y2 x3y3 · · ·
...

...
...

...
...




. (7.5.3)
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In choosing the order of the polynomial, the following considerations should be
taken into account:

ž The polynomial should satisfy the requirements listed in Sec. 7.4.
ž The number of generalized coordinates αi should be equal to the number of

nodal DOF of the element.
ž Polynomials of order n that are complete are invariant to transformation from

one Cartesian coordinate system to another one.
ž Polynomial of order n that are incomplete yet contain appropriate terms to pre-

serve symmetry are also invariant during coordinate transformation. Thus, the
polynomials should not only include terms containing x and y but always both.

Schemes of complete and incomplete polynomials for triangular and rectangular ele-
ments are graphically depicted in Fig. 7.5.1.

Since plate deformations involve second derivatives of w(x, y), interelement com-
patibility requires continuity of the normal derivatives ∂w/∂n as well as continuity of
the deflections w. Furthermore, to satisfy the requirement for constant-curvatures and
that of rigid-body motion, the polynomial representation of the shape function must
contain a complete second-degree polynomial in x and y, as shown in the equation

w(x, y) = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 + · · · . (7.5.4)

a. Polynomials for Triangular Elements. By selecting a cubic polynomial with
10 terms,

w(x, y) = [ 1 x y x2 xy y2 x3 x2y xy2 y3 ]




α1

α2
α3

...

α10




, (7.5.5)
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(a) For triangular elements (b) For rectangular elements

Figure 7.5.1 Polynomials in context in Pascal’s triangle.
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we cannot uniquely define its 10 unknown αi coefficients with only three nodal
points having three displacement quantities at each nodal point (Fig. 7.5.2a). Conse-
quently, we must introduce an additional node located at the centroid of the triangle.
While dealing with this center node creates certain computational difficulties, it is
desirable to eliminate this additional nodal point. To reduce the number of coeffi-
cients in Eq. (7.5.5) to nine, Tocher collected the two terms x2y and xy2 by taking
α8 = α9 [7.5.5]. The resulting shape function is not invariant to coordinate trans-
formation and the convergence characteristics of the element formulated with it is
not always monotone. To eliminate these problems, Bazeley and co-workers intro-
duced α2 = 0.5 in the polynomial expression [7.5.6]. With this assumption, based
on certain mathematical considerations, all other parameters could now be uniquely
defined. The convergence characteristics of the formulated element are also quite
satisfactory [7.5.7].
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With a complete polynomial of fourth degree,

w(x, y) = [ 1 x y x2 xy y2 . . . xy3 y4 ]




α1

α2

α3

...

α15




, (7.5.6)

we introduce 15 unknown coefficients αi that again require an equal number of nodal
DOF to be uniquely defined. An obvious choice for additional nodal displacements is
the midpoint of each side of the triangle, as shown in Fig. 7.5.2b. Unfortunately, the
required slope continuity along the sides is not yet satisfied with this shape function.

The next approach is the selection of a complete quintic polynomial,

w{x, y} = [ 1 x y x2 xy y2 · · · x2y3 xy4 y5 ]




α1

α2
α3

...

α21




, (7.5.7)

with 21 coefficients αi . By introducing six displacements per corner nodes,

d�i =
{
w

∂w

∂x

∂w

∂y

∂2w

∂x2

∂2w

∂x∂y

∂2w

∂y2

}
�i

for i = 1, 2, 3, (7.5.8)

and three additional displacement quantities in form of normal slopes at the midpoints
of the sides,

d�j =
(

∂w

∂n

)
�j

for j = 4, 5, 6, (7.5.9)

as shown in Fig. 7.5.3, we can uniquely define the 21 parameters αi in Eq. (7.5.7).
Triangular elements formulated with this polynomial yields excellent results [7.5.3].
Finally, in Fig. 7.5.4 we give a brief overview of the possibilities one can have for
creating shape functions with polynomials for triangular plate elements [7.5.8].

b. Polynomials for Rectangular Elements. Numerous plate elements have rect-
angular geometry. Since in such a case the element sides are parallel to the local
Cartesian coordinate system, it is more convenient to formulate a finite element of
rectangular shape than a triangular one. A typical rectangular element with four corner
nodes is shown in Fig. 7.5.5a. At each node three displacements are introduced:

d�i =




w

−∂w

∂x
∂w

∂y




�i

for i = 1, 2, 3, 4. (7.5.10)
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The polynomial expression that defines the corresponding shape function is

w(x, y) = [ 1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3 ]




α1

α2

α3

...

α12




.

(7.5.11)
This is an incomplete fourth-order polynomial in x and y with x4, x2y2 and y4

terms missing, as shown in Fig. 7.5.5b. Furthermore, because the normal slopes
∂w/∂n are not compatible, slope discontinuities occur at the adjacent edges. The
corresponding element was originally developed by Melosh, Zienkiewicz and Che-
ung [7.5.9, 7.5.10] and is therefore referred to in the pertinent literature as the MCZ
rectangle. However, the explicit form for the pertinent stiffness matrix was derived by
Aldini, Clough and Melosh; consequently, this element is sometimes also labeled as
ACM. Although the derived element is not conforming, it delivers satisfactory results,
as discussed in Sec. 7.6.1. The reason for its good performance is manifold. First,
the presence of 1, x, y, x2, xy and y2 terms in Eq. (7.5.11) guarantees rigid-body
motion and constant-curvature states of deformations. Second, with the fourth-order
terms x3y and xy3 the governing differential equation of the plate is satisfied when
a and b are approaching zero.

To obtain a conforming rectangular plate element, we add the second-order twist
derivative ∂2w/∂x ∂y as the nodal DOF. Thus, the displacements for a typical corner
node �i , as shown in Fig. 7.5.6a, are

d�i =




w

−∂w

∂x
∂w

∂y

∂2w

∂x ∂y




�i

for i = 1, 2, 3, 4. (7.5.12)
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Figure 7.5.4 Overview of triangular elements in polynomial element family.

In this case, the shape function contains 16 terms of the complete sixth-order poly-
nomial (Fig. 7.5.6b)

w(x, y) = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 + α7x
3 + α8x

2y + α9xy2

+ α10y
3 + α11x

3y + α12x
2y2 + α13xy3 + α14x

3y2

+ α15x
2y3 + α16x

3y3, (7.5.13)
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achieving compatible slope conditions at all four edges. The convergence charac-
teristics of the obtained rectangular element are very good. The above given shape
function can also be written in terms of a bicubic Hermitian polynomial, as shown
in the subsequent section.

Bogner and his co-workers developed a more refined shape function [7.5.11] based
on a biquintic polynomial (Fig. 7.5.7). The corresponding rectangular element with
four corner nodes has the following nine nodal displacements:

d�i =
{

w
∂w

∂x

∂w

∂y

∂2w

∂x2

∂2w

∂y2

∂2w

∂x ∂y

∂3w

∂x2 ∂y

∂3w

∂x ∂y2

∂4w

∂x2 ∂y2

}
.

(7.5.14)
As expected, on the one hand, such a plate element has superior convergence char-
acteristics but, on the other hand, its complexity creates certain computational diffi-
culties.

7.5.2 Hermitian Elements

Shape functions in polynomial form, in general, do not provide constant twist modes;
thus, the convergence of such elements to the correct solutions is not always guar-
anteed. To overcome this problem, we already introduced a polynomial† with 16

† See Eq. (7.5.13).
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constants—equal to the number of nodal displacements—that includes the twisting
freedom ∂2w/∂x ∂y into the vector of nodal displacements, de, given in Eq. (7.5.12).
An alternative approach is the use of Hermitian polynomials.

First, we introduce the one-dimensional Hermitian cubic polynomial

w(ξ) = d1N1(ξ) + d2N2(ξ) + d3N3(ξ) + d4N4(ξ), (7.5.15)

where ξ = x/l and

N1(ξ) = 1 − 3ξ 2 + 2ξ 3,

N2(ξ) = (ξ − 2ξ 2 + ξ 3)l,

N3(ξ) = 3ξ 2 − 2ξ 3, (7.5.16)

N4(ξ) = −(−ξ 2 + ξ 3)l.

These shape functions are depicted in Fig. 7.5.8. The reader will readily recognize
them as the equations of deflected shape of a beam to which unit translations and
rotations have been applied at the ends. These shape functions have the required
features: That is, either the function or its derivative takes the value of unity at one
end and both are zero at the other end.

1
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2 1

1
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Z, w

3

X x
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1

x  = x
l

Figure 7.5.8 Shape functions of beam.
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Next, we can form the products of these one-dimensional expressions to obtain the
two-dimensional case. Thus,

{N}�1 =




N1(ξ) N1(η)

N1(ξ) N2(η)

−N2(ξ) N1(η)

N2(ξ) N2(η)




�1

, {N}�2 =




N3(ξ) N1(η)

N3(ξ) N2(η)

N4(ξ) N1(η)

N4(ξ) N2(η)




�2

,

{N}�3 =




N3(ξ) N3(η)

N3(ξ) N4(η)

N4(ξ) N3(η)

N4(ξ) N4(η)




�3

, {N}4 =




N1(ξ) N3(η)

N1(ξ) N4(η)

N2(ξ) N3(η)

N2(ξ) N4(η)




�4

,

(7.5.17)

where

N1(ξ) = 1 − ξ 2 + 2ξ 3, N1(η) = 1 − η2 − 2η3,

N2(ξ) = (ξ − 2ξ 2 + ξ 3)a, N2(η) = (η − 2η2 + η3)b,

N3(ξ) = 3ξ 2 − 2ξ 3, N3(η) = 3η2 − 2η3,

N4 = (−ξ 2 + ξ 3)a, N4(η) = (−η2 + η3)b,

(7.5.18)

and

l = a, ξ = x

a
,

l = b η = y

b
.

(7.5.19)

Hence the two-dimensional form of the Hermitian shape functions can be written as

w(x, y) = [ {N1}T {N2}T {N3}T {N4}T
]




d1

d2

d3

...

d15
d16




. (7.5.20)

The corresponding functions associated with four DOF at the corner node �1 are
depicted in Fig. 7.5.9.

These types of Hermitian shape functions were first introduced by Bogner and his
co-workers to formulate a rectangular plate element with C(1) continuity [7.5.13].
An explicit expression for the derived stiffness matrix Ke is given in Sec. 7.7.1. A
similar approach, but with some improvements, has been taken in Ref. [7.5.13].

To seek a more accurate solution, one can also consider a fifth-order Hermitian
polynomials. Once again, Fig. 7.5.10 shows such a plate element and the one intro-
duced above in the context of Pascal’s triangle.
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7.5.3 Other Element Families

In this section we intend to give only a brief summary of some additional element
families that are used in the finite element analysis of plates. Interested readers should
refer to the pertinent literature for more details [7.5.14].

a. Lagrangian Elements. These elements are characterized by using nodal dis-
placements for values of dependent variables. The two-dimensional Lagrangian inter-
polation functions are obtained from the Cartesian products of one-dimensional
equations. A rectangular element with complete quadratic representation, for instance,
contains nine parameters and hence nine nodes. Consequently, an internal node is
required to be able to uniquely define these parameters. The usefulness of this element
family is limited by (a) a number of internal nodes that usually must be eliminated
and (b) its poor curve-fitting properties.

b. Serendipity Elements. This element family is actually a Lagrangian element
and is characterized by omission of internal nodes. The interpolation functions of
serendipity elements are not complete since the last terms are omitted, as illustrated
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Figure 7.5.10 Hermitian elements in context of Pascal’s triangle.

in the context of Pascal’s triangle (Fig. 7.5.11). We are referring here only to two
variants of rectangular serendipity elements: one with four corner nodes and another
with eight nodes. In both cases the DOF per node points are one translation w and
two rotations ∂w/∂x and ∂w/∂y. These elements have been proven to be effective
in plate analysis.

c. Hierarchical Elements. Recently some alternate types of interpolation functions
have became popular for formulating plate elements. They are called hierarchical
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Figure 7.5.11 Serendipity elements in context of Pascal’s triangle.

functions. The unique feature of these polynomials is that the higher-order polyno-
mials contain the lower-order ones.

d. Heterosis Elements. These elements—used mostly for moderately thick
plates—represent a synthesis of selectively integrated nine-node Lagrangian elements
and eight-node serendipity elements. The name heterosis (used mostly in genetics)
refers to improvement in characteristics exhibited by hybrids over those of their
parents. The selective integration technique will be treated later.

Summary. In this section a number of shape functions and corresponding element
families were introduced with the sole purpose of illustrating the predominant com-
plexity associated with the element selection procedure. While formulation of element
stiffness matrices is a relatively standard approach, selection of appropriate shape
functions, which guarantee monotonic convergence to the correct solution, represents
a difficult task requiring experience, time and even a certain amount of serendipity.
Thus, it is best left to qualified research engineers. In subsequent sections, the reader
will find readily usable stiffness matrices with proven convergence characteristics in
explicit form for triangular and rectangular plate bending elements.
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7.6 Simple Plate Elements

In this section low-order rectangular and triangular plate bending elements are intro-
duced. Applying the alternative formulation technique described in Sec. 7.3c, explicit
expressions for the stiffness matrix of the rectangular element are presented. Although
these relatively simple elements have merely C(0) continuity, usable results can be
obtained with them, as their practical applications demonstrate [7.6.1].

7.6.1 Rectangular Element with Four Corner Nodes

Let us consider the rectangular element shown in Fig. 7.6.1. For the nodal displace-
ments, we choose one lateral displacement and two rotations; thus we can write

d�i =



w

θx

θy




�i

for �i = 1, 2, 3, 4. (7.6.1)

In this case, we select the polynomial expression given in Eq. (7.5.11) to define the
displacement field of the element. As Fig. 7.5.5b illustrates, certain terms are omitted
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from the complete fourth-order polynomial to be able determine the 12 parameters
αi in the shape function

w(x, y) = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 + α7x
3 + α8x

2y

+ α9xy2 + α10y
3 + α11x

3y + α12xy3 = wTα (7.6.2)

with the help of 12 displacement components,

de = {d1 d2 d3 · · · d11 d12}. (7.6.3)

Before we demonstrate how this can be accomplished, let us first investigate this
shape function more closely. In particular, at x = 0, the shape function becomes

w(y)x=0 = α1 + α3y + α6y
2 + α10y

3, (7.6.4)

which permits its unique definition with the four nodal displacements d1, d2, d10 and
d11, but the pertinent slope equation

(
∂w

∂x

)
x=0

= α2 + α5y + α9y
2 + α12y

3 (7.6.5)

with four unknowns cannot be uniquely determined with only d3 and d12 displacement
components. Consequently, discontinuity of the normal slope will occur. The case
at the other element boundaries at x = a, y = 0 and y = b is similar. Hence this
element is nonconforming and has only C(0) continuity. In spite of this apparent
weakness, this simple element delivers good results. The reasons for this relatively
good performance were already discussed in Sec. 7.5.1b.

The rotation about the X axis of nodal point �i is obtained from

(θx)�i =
(

∂w

∂y

)
�i

= α3 + α5x + 2α6y + α8x
2 + 2α9xy + 3α10y

2

+ α11x
3 + 3α12xy2. (7.6.6)
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Similarly, the rotation about the Y axis is calculated from

(θy)�i = −
(

∂w

∂x

)
�i

= −α2 − 2α4x − α5y − 3α7x
2 − 2α8xy

− α9y
2 − 3α11x

2y − α12y
3. (7.6.7)

The minus sign in this equation is due to the already discussed† differences in sign
conventions used in classical plate theory and FEMs, respectively.

To determine the unknown parameters αi in Eq. (7.6.2), we substitute the nodal
point coordinates xi and yi into Eqs. (7.6.2), (7.6.6) and (7.6.7). Thus, we can write

de =




w�1

θx�1

θy�1

w�2

θx�2

θy�2

w�3

θx�3

θy�3

w�4

θx�4

θy�4




= A




α1

α2
α3

α4

α5
α6

α7

α8
α9

α10

α11
α12




, (7.6.8)

where the explicit form of matrix A is

A =
1 2 3 4 5 6 7 8 9 10 11 12

1 x1 y1 x2
1 x1y1 y2

1 x3
1 x2

1y1 x1y
2
1 y3

1 x3
1y1 x1y

3
1

0 −1 0 −2x1 −y1 0 −3x2
1 −2x1y1 −y2

1 0 −3x2
1 y1 −y3

1


 �1

0 0 1 0 x1 2y1 0 x2
1 2x1y1 3y2

1 x3
1 3x1y

2
1

1 x2 y2 x2
2 x2y2 y2

2 x3
2 x2

2y2 x2y
2
2 y3

2 x3
2y2 x2y

3
2

0 −1 0 −2x2 −y2 0 −3x2
2 −2x2y2 −y2

2 0 −3x2
2 y2 −y3

2


 �2

0 0 1 0 x2 2y2 0 x2
2 2x2y2 3y2

2 x3
2 3x2y

2
2

1 x3 y3 x2
3 x3y3 y2

3 x3
3 x2

3y3 x3y
2
3 y3

3 x3
3y3 x3y

3
3

0 −1 0 −2x3 −y3 0 −3x2
3 −2x3y3 −y2

3 0 −3x2
3 y3 −y3

3


 �3

0 0 1 0 x3 2y3 0 x2
3 2x3y3 3y2

3 x3
3 3x3y

2
3

1 x4 y4 x2
4 x4y4 y2

4 x3
4 x2

4y4 x4y
2
4 y3

4 x3
4y4 x4y

3
4

0 −1 0 −2x4 −y4 0 −3x2
4 −2x4y4 −y2

4 0 −3x2
4 y4 −y3

4


 �4

0 0 1 0 x4 2y4 0 x2
4 2x4y4 3y2

4 x3
4 3x4y

2
4







(7.6.9)

† See Figs. 6.4.6 and 7.3.1a.
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Since

de = Aα and α = A−1de, (7.6.10)

the shape function can be obtained from

w(x, y) = wTα = wTA−1de = {N}Tde. (7.6.11)

Aldini and Clough [7.6.2] were the first to derive explicit expressions for the element
stiffness matrix Ke in the form

K(N)
e = Eh

180(1 − ν2)




1 2 3 4 5 6 7 8 9 10 11 12

F G −H L −M −N O −P −Q I J −K

R −Z −M T φ P U φ −J S φ

V N φ X Q φ Y −K φ W

F G H I J K O −P Q

R Z −J S φ P U φ

Symmetric V K φ W −Q φ Y

F −G H L M N

R −Z M T φ

V −N φ X

F −G −H

R Z

V




1

2

3

4

5

6

7

8

9

10

11

12

,

(7.6.12)
where the individual stiffness coefficients are

F = (42 − 12ν + 60ρ2 + 60ρ−2)h2

ab
, Q = [15ρ−1 − 3(1 − ν)ρ]h2

a
,

G = (30ρ + 3ρ−1 + 12νρ−1)h2

b
, R = [20ρ + 4(1 − ν)ρ−1]h2,

H = (30ρ−1 + 3ρ + 12νρ)h2

a
, S = [10ρ − (1 − ν)ρ−1]h2,

I = (−42 + 12ν − 60ρ2 + 30ρ−2)h2

ab
, T = [10ρ − 4(1 − ν)ρ−1]h2,
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J = [30ρ + 3(1 − ν)ρ−1]h2

b
, U = [5ρ + (1 − ν)ρ−1]h2,

K = (15ρ−1 − 3ρ − 12νρ)h2

a
, V = [20ρ−1 + 4(1 − ν)ρ]h2,

L = (−42 + 12ν − 60ρ−2 + 30ρ2)h2

ab
, W = [10ρ−1 − 4(1 − ν)ρ]h2,

M = (−15ρ + 3ρ−1 + 12νρ−1)h2

b
, X = [10ρ−1 − (1 − ν)ρ]h2,

N = [30ρ−1 + 3(1 − ν)ρ]h2

a
, Y = [5ρ−1 + (1 − ν)ρ]h2,

O = (42 − 12ν − 30ρ2 − 30ρ−2)h2

ab
, Z = (15νh2),

P = [−15ρ + 3(1 − ν)ρ−1]h2

b
, φ = 0,

ρ = a

b
and ρ−1 = b

a
. (7.6.13)

Similar expressions can be found in Refs. [7.6.3–7.6.6]. The good monotonic con-
vergence characteristics of this bending plate element are shown in Fig. 7.6.2. As
mentioned in connection with gridwork cells, it is always advisable to check the
macroscopic equilibrium of each column in a stiffness matrix to detect any printing
errors. That is, the stiffness coefficients kij represent active or reactive nodal forces

%
15

10

5

2 4 16 36

Number of elements per
quarter plate

Error in wmax

CL

p0

a /2 a /2

a
/2

a
/2

X

Y

Figure 7.6.2 Convergence characteristics of nonconforming rectangular element.
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+
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+

1

Figure 7.6.3 Equilibrium of stiffness coefficients.

created by unit displacement of one node while all other displacements are pre-
vented from taking place, as illustrated in Fig. 7.6.3. These nodal forces must be in
equilibrium.

7.6.2 Triangular Element with Three Corner Nodes

In most engineering applications, triangular plate elements are more attractive than
rectangular ones, since it is easier to treat irregular boundaries with triangular shapes.
In addition, it is also easier to vary element sizes in the vicinity of stress concen-
tration. Against these obvious advantages of triangular bending elements, one must
consider considerably increased difficulties encountered in generating element stiff-
ness matrices. Therefore, it is extremely rare to find triangular element stiffness
matrices in explicit forms. In most cases, however, FORTRAN or BASIC subroutines
are available [7.6.1, 7.6.8].

As mentioned in Sec. 7.5.1a, it is not possible to uniquely define the 10 parameters
in the cubic polynomial

w(x, y) = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2

+ α7x
3 + α8x

2y + α9xy2 + α10y
3 (7.6.14)

with merely nine DOF. To eliminate this problem, Tocher [7.6.7] set α8 = α9 and
obtained the shape function

w(x, y) = wTα, (7.6.15)

with

wT = [ 1 x y x2 xy y2 x3 (x2y + xy2) y3 ] (7.6.16a)

and

α =




α1

α2
α3

...

α9




. (7.6.16b)
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Figure 7.6.4 Triangular element of arbitrary shape.

For each node point �i , the transverse displacements and rotations about the X and
Y axes are taken as DOF, as shown in Fig. 7.6.4. thus

d�i =



w

θ

θy




�i

=




w

∂w

∂y

−∂w

∂x




�i

for �i = 1, 2, 3. (7.6.17)

The minus sign for the third DOF indicates that if we take a positive dw displace-
ment at the distance dx, the rotation dw/dx about the Y axis will be opposite to the
corresponding direction of the rotation used in the FEM.

To derive the element stiffness matrix, we apply again the alternative formulation
described in Sec. 7.3.2c. By substituting Eq. (7.6.16) into Eq. (7.6.17), we obtain




w

∂w

∂y

−∂w

∂x




=

 1 x y x2 xy y2 x3 (x2y + xy2) y3

0 0 1 0 x 2y 0 (x2 + 2xy) 3y2

0 −1 0 −2x −y 0 −3x2 −(2xy + y2) 0






α1
α2

...

α9




.

(7.6.18)

X

Y

(x2, y2)

(x1, y1)

(x3, y3)

2
1 1 2

33

A
A0

(0, 1)

(0, 0) (1, 0)
x

h

Figure 7.6.5 “Mapping” of arbitrary triangle into unit triangle.
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The parameters α1, α2, . . . , α9 are calculated from

α = A−1de, (7.6.19)

where A represents the transformation matrix that relates the generalized coordinates
α to the nodal point displacements de in the form

A =




1 x1 y1 x2
1 x1y1 y2

1 x3
1 (x2

1y1 + x1y
2
1) y3

1

0 0 1 0 x1 2y1 0 (x2
1 + 2x1y1) 3y2

1

0 −1 0 −2x1 −y1 0 −3x2
1 −(2x1y1 + y2

1) 0
1 x2 y2 x2

2 x2y2 y2
2 x3

2 (x2
2y2 + x2y

2
2) y3

2

0 0 1 0 x2 2y2 0 (x2
2 + 2x2y2) 3y2

2

0 −1 0 −2x2 −y2 0 −3x2
2 −(2x2y2 + y2

2) 0
1 x3 y3 x2

3 x3y3 y2
3 x3

3 (x2
3y3 + x3y

2
3) y3

3

0 0 1 0 x3 2y3 0 (x2
3 + 2x3y3) 3y2

3

0 −1 0 −2x3 −y3 0 −3x2
3 −(2x3y3 + y2

3) 0




(7.6.20)

and

de =




d1

d2

d3

...

d9




(7.6.21)

are the nodal displacements of the element.
The element stiffness matrix is calculated from†

Ke = (A−1)TK̃eA−1 with K̃e =
∫

A

LTEL dA, (7.6.22)

which require differentiation in matrix L and integration over the area of the triangle,
A. To facilitate these mathematical manipulations, the triangle is usually mapped
into a rightangled, isosceles unit triangle in the ξ , η coordinate system, as shown in
Fig. 7.6.5. Using the notation

xij = xi − xj and y ij = y i − y j, (7.6.23)

the correspondence between x, y coordinates and the new ξ , η coordinates can be
expressed by

x = x1 + x21ξ + x31η and y = y1 + y21ξ + y31η. (7.6.24)

Conversely,

ξ = 1

2A
[y31x + x13y + (x3y1 − x1y3)] (7.6.25a)

† See Eqs. (7.3.41)–(7.3.43).
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and

η = 1

2A
[y12x + x21y + (x1y2 − x2y1)]. (7.6.25b)

Differentiation with respect to ξ and η may be expressed as




∂

∂ξ

∂

∂η




=




∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η


 = J




∂

∂x

∂

∂y




. (7.6.26)

The elements of the Jacobian matrix J are

J =
[

x21 y21
x31 y31

]
. (7.6.27)

The inverse relation of Eq. (7.6.26) is




∂

∂x

∂

∂y




= J−1




∂

∂ξ

∂

∂η




, (7.6.28)

where

J−1 = 1

2A

[
y31 y12
x13 x21

]
. (7.6.29)

The integral of polynomial terms in ξ and η over the triangular area may be com-
puted from

Ipq =
∫

A

ξpηq dA = 2A

∫
A0

ξpηq dA0 = 2A
p!q!

(p + q + 2)!
. (7.6.30)

Although symmetry is maintained by combining two of the cubic terms in Eq.
(7.6.14), a lack of invariance has been introduced into this equation. Consequently,
for certain orientations of the element sides with respect to the global coordinate
axes X, Y , the matrix A becomes singular and cannot be inverted. In spite of this
shortcoming, this triangular element has been extensively used in the past, since
reasonable good results could be obtained with it.

Zienkiewicz and his co-workers succeeded in constructing a more satisfactory
stiffness matrix for simple triangular elements [7.6.10]. They also used the complete
10-term polynomial displacement expression given in Eq. (7.6.14) but reduced it to
a 9-DOF expression by setting α2 = 0.5, thus eliminating the problem of invariance.
This element is in principle similar to the one discussed above. Again, in formulating
the element stiffness matrix, the procedure described above of mapping the general
triangle into a unit triangle is used. Pertinent BASIC and FORTRAN programs for
plate analysis can be found in Refs. [7.6.1] and [7.6.8], respectively. This element
performs satisfactorily for all element orientations.
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Summary. In this section nonconforming, low-order rectangular and triangular ele-
ments for plate bending analysis with the FEM are presented. While the stiffens matrix
of the quite usable rectangular element could be formulated in explicit form, unfor-
tunately, this was not the case for elements of general triangular shape. However, the
procedure of generating stiffness matrices for triangular elements by employing the
so-called alternative formulation technique is also explained in detail. For practical
computation with triangular elements, the reader is referred to Sec. 7.7.2, where an
explicitly formulated stiffness matrix for a higher-order triangular element is intro-
duced. In addition, one can find an explicitly given stiffness matrix for a triangular
element in Refs. [7.6.6] and [7.6.9].

ILLUSTRATIVE EXAMPLE

Let us determine the maximum displacement wmax of the clamped rectangular
plate shown in Fig. 7.6.6a by using the FEM in connection with the stiffness
matrix given in Eq. (7.6.12). This procedure is fundamentally the same as the
one previously employed in connection with framework cells.

Utilizing the apparent double symmetry of the structure and load, it is suf-
ficient to deal only with a quarter plate, provided that “guided” boundary

6
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Z,w
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(a) Plate structure

(b) Discrete computational model
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h

n = 
3
1
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3

1

Figure 7.6.6 Rectangular plate with fixed edges under central load.
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conditions are introduced at the symmetry lines. Using a crude subdivision
of 2 × 2 = 4, the corresponding finite element computational model is shown
in Fig. 7.6.6b. Employing the already familiar code-numbering technique, the
following correspondence exists between the local and global numbers of the
displacement components:

Element 1 2 3 4 5 6 7 8 9 10 11 12 Local numbers

�1 0 0 0 0 0 0 6 8 7 0 0 0

�2 0 0 0 0 0 0 4 5 0 6 8 7 Global

�3 6 8 7 4 5 0 1 0 0 2 0 3


 numbers

�4 0 0 0 6 8 7 2 0 3 0 0 0

The stiffness matrix of the total structure obtained from elements �1 to �4 is

K = Eh

180(1 − ν2)




1 2 3 4 5 6 7 8
F L N I −J O Q P

2F 0 O P 2I 0 −2J

2V Q 0 0 2W 0
2F 0 2L 2N 0

2R 0 0 2T

4F 0 0
Symmetric 4V 0

4R




1
2
3
4
5
6
7
8

(7.6.31)
Substitution of the numerical values gives

K = 1

160




1 2 3 4 5 6 7 8

33.278 0.472 7.667 −26.611 −23.167 −7.139 2.333 −10.583

66.555 0 −7.139 −10.583 −53.222 0 −46.333

34.667 2.333 0 0 5.333 0

66.555 0 0.944 15.333 0

Symmetric 63.555 0 0 26.444

133.111 0 0

69.333 0

127.111




1

2

3

4

5

6

7

8

.

(7.6.32)

With the load vector

p = { 25 0 0 0 0 0 0 0 }, (7.6.33)



References and Bibliography 417

solution of the governing matrix equation Kd = p yields the displacement com-
ponents

d =




524.57
180.41

−122.95
246.45
192.37
98.52

− 62.70
69.42




. (7.6.34)

A comparison of the obtained maximum deflection wmax = w1 = 524.57
with its “exact” value of wmax = 489.94 indicates an error of 8.8%. Using a
4 × 4 = 16-element subdivision, we obtain a much more improved value for the
maximum deflection, wmax = 498.58. A further improvement can be achieved
by employing Richardson’s extrapolation formula† with µ = 2. This gives

wmax = 498.58 + 498.58 − 524.57

(3.0/1.5)2 − 1
= 489.92 (error ≈ 0%). (7.6.35)
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7.7 Higher-Order Plate Elements

7.7.1 Rectangular Element with 16 DOF

Formulating a plate bending element that is continuous in deflections w and normal
derivatives ∂w/∂x and ∂w/∂y along the element boundaries is far more difficult
than constructing an element with only C(0) continuity. As already mentioned, the
Cartesian products of beam functions represent conforming shape functions with C(1)

continuity. Unfortunately, since the constant twist is missing in such shape functions,
elements formulated with them are too “stiff”; that is, the obtained deflections are
smaller than the actual ones.

Attempts to achieve C(1) continuity at the element boundaries encounter the funda-
mental difficulty that the twist can not be uniquely defined at the corners. This diffi-
culty was overcome by Bogner and his co-workers [7.7.1] by adding twist ∂2w/∂x ∂y

to the list of nodal DOF. Hence at each corner node the displacements are

d�i =




w

θx

θy

θxy




�i

=




w
∂w

∂y

−∂w

∂x

∂2w

∂x∂y




�i

for �i = 1, 2, 3, 4. (7.7.1)

The formulated 16-DOF conforming element is shown in Fig. 7.7.1. The correspond-
ing shape function in polynomial form is

w(x, y) = wTα = Eq. (7.6.11). (7.7.2)

The parameters αi in this equation can be uniquely determined by using the so-called
alternative formulation procedure† for element stiffness matrices. Consequently, the
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Figure 7.7.1 Conforming element with 16 DOF (CS = coordinate system).

† See Sec. 7.3.2c.
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strategy is the same as the one already introduced in connection with the 12-DOF
nonconforming rectangular element.

This shape function fulfills all the criteria for monotonic convergence listed in
Sec. 7.4. Furthermore, it can be shown that interelement compatibility in deflections
and in normal slopes along the element boundaries is satisfied. Therefore the element
formulated with Eq. (7.7.2) is conforming and has C(1) continuity.

In computing the pertinent element stiffness matrix Ke, one of the two equations
(7.3.32) or (7.3.43) can be used. Although the shape functions given in Eqs. (7.5.17)
and (7.5.18) can be conveniently used for computational manipulations, it appears to
be easier to obtain an explicit expression for stiffness coefficients by hand computa-
tions if the physical interpretation of the beam shape functions are preserved. That
is, as usual,

w(x, y) = [ N1 N2 N3 · · · N16 ]




d1

d2
d3

...

d16




, (7.7.3)

defining

p1 = 1

a3
(a3 − 3ax2 + 2x3), q1 = 1

b3
(b3 − 3by2 + 2y3),

p2 = 1

a2
(a2x − 2ax2 + x3), q2 = 1

b2
(b2y − 2by2 + y3),

p3 = 1

a3
(3ax2 − 2x3), q3 = 1

b3
(3by2 − 2y3),

p4 = 1

a2
(x3 − ax2), q4 = 1

b2
(y3 − by2).

(7.7.4)

Hence the shape functions Ni for the 16 nodal displacements become

N1 = p1q1, N9 = p3q3,

N2 = p2q1, N10 = p4q3,

N3 = p1q2, N11 = p3q4,

N4 = p2q2, N12 = p4q4,

N5 = p1q3, N13 = p3q1,

N6 = p2q3, N14 = p4q1,

N7 = p1q4, N15 = p3q2,

N8 = p2q4, N16 = p4q2

. (7.7.5)

The stiffness coefficients kij of the element stiffness matrix Ke can be computed from

kij = D

∫ b

0

∫ a

0

[
∂2Ni

∂x2

∂2Nj

∂x2
+ ν

∂2Ni

∂x2

∂2Nj

∂y2
+ ν

∂2Nj

∂x2

∂2Ni

∂y2



420 Finite Element Method

+ ∂2Ni

∂y2

∂2Nj

∂y2
+ 2(1 − ν)

∂2Ni

∂x ∂y

∂2Nj

∂x ∂y

]
dx dy. (7.7.6)

Expressed in a more general form, this equation becomes

kij = Eh3

12ab(1 − ν2)

[
β1

(
b

a

)
+ β2

(a

b

)2 + β3 + β4ν

]
aβ5bβ6 , (7.7.7)

where the constants β1, β2, . . . , β6 are given in Table 7.7.1. Fortunately, it is not
required to determine all the coefficients of the element stiffness matrix, since it is
sufficient to determine only the first four columns in this matrix. That is, by adequately
changing the indices i, j and also the sign if required, all other stiffness coefficients
can be readily determined. These required changes are listed in Table 7.7.2.

Table 7.7.1 Constants βi for Eqs. (7.7.7) and (15.2.29)

j i β1 β2 β3 β4 β5 β6 β7

1 1 156
35

156
35

72
25 0 0 0 169

1 2 22
35

78
35

6
25

6
5 0 1 143

6

1 3 78
35

22
35

6
25

6
5 1 0 143

6

1 4 11
35

11
35

1
50

1
5 1 1 121

36

1 5 − 156
35

54
35 − 72

25 0 0 0 117
2

1 6 − 22
35

27
35 − 6

25 − 6
5 0 1 33

4

1 7 78
35 − 13

35
6

25 0 1 0 − 169
12

1 8 11
35 − 13

70
1

50
1
10 1 1 − 143

75

1 9 − 54
35 − 54

35
72
25 0 0 0 81

4

1 10 13
35

27
35 − 6

25 0 0 1 − 39
8

1 11 27
35

13
35 − 6

25 0 1 0 − 39
8

1 12 − 13
70 − 13

70
1

50 0 1 1 169
144

1 13 54
35 − 156

35 − 72
25 0 0 0 117

2

1 14 − 13
35

78
35

6
25 0 0 1 − 169

12

1 15 27
35 − 22

35 − 6
25 − 6

5 1 0 33
4

1 16 − 13
70

11
35

1
50

1
10 1 1 − 143

72
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Table 7.7.1 (continued)

j i β1 β2 β3 β4 β5 β6 β7

2 2 4
35

52
35

8
25 0 0 2 13

3

2 4 2
35

22
105

2
75

2
15 1 2 11

18

2 6 − 4
35

18
35 − 8

25 0 0 2 3
2

2 8 2
35 − 13

105
2

75 0 1 2 − 13
36

2 10 3
35

9
35

2
25 0 0 2 − 9

8

2 12 − 3
10 − 13

210 − 1
150 0 1 2 13

48

2 14 − 3
35

26
35 − 2

25 0 0 2 − 13
4

2 16 − 3
70

11
105 − 1

150 − 1
30 1 2 − 11

24
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 2 11

35
11
35

1
50

6
5 1 1 121

36

3 3 52
35

4
35

8
25 0 2 0 13

3

3 4 22
105

2
35

2
75

2
15 2 1 11

18

3 6 − 11
35

13
70 − 1

50 − 1
10 1 1 143

72

3 7 26
35 − 3

35 − 2
25 0 2 0 − 13

4

3 8 11
105 − 3

70 − 1
150 − 1

30 2 1 − 11
24

3 10 13
70

13
70 − 1

50 0 1 1 − 169
144

3 11 9
35

3
35

2
25 0 2 0 − 9

8

3 12 − 13
210 − 3

70 − 1
150 0 2 1 13

48

3 14 − 13
70

11
35

1
50

1
10 1 1 − 141

72

3 15 18
35 − 4

35 − 8
25 0 2 0 3

2

3 16 − 13
105

2
35

2
75 0 2 1 − 13

36
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 4 4

105
4

105
8

225 0 2 2 1
9

4 8 2
105 − 1

35 − 2
225 0 2 2 − 1

12

4 12 − 1
70 − 1

70
1

450 0 2 2 1
16

4 16 − 1
35

2
105 − 2

225 0 2 2 − 1
12

Notes: i = row, j = column.

As shown in Fig. 7.7.2, the convergence properties of this higher-order element
are excellent. In the same figure, we also compared the convergence characteristics
of the 12-DOF nonconforming element with those of the 16-DOF conforming
element introduced in this section. It is evident that using the same subdivision
the conforming element approaches the exact solution faster than the nonconforming
one. Furthermore, one is converging from “above” and the other one from “below”.
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Table 7.7.2 Index Scheme i, j for Evaluation of kij

kij = (±)
Eh3

12ab(1 − ν2)

[
β1

(
b

a

)2

+ β2

(a

b

)2 + β3 + β4ν

]
aβ5 bβ6

1 1,1

2 2,1 2,2

3 3,1 3,2 3,3

4 4,1 4,2 4,3 4,4

(−) (−)

5 5,1 6,1 7,1 8,1 1,1

(−)

6 6,1 6,2 6,3 8,2 2,1 2,2

(−) (−) (−)

7 7,1 6,3 7,3 8,3 3,1 2,3 3,3

(−) (−)

8 8,1 8,2 8,3 8,4 4,1 4,2 4,3 4,4

(−) (−) (−) (−)

9




9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1 1,1

(−) (−) (−) (−) Symmetric
10 10,1 10,2 10,3 12,2 14,1 14,2 14,3 16,2 2,1 2,2

(−) (−) (−) (−)

11 11,1 10,3 11,3 12,3 15,1 14,3 15,3 16,3 3,1 2,3 3,3

(−) (−) (−) (−)

12 12,1 12,2 12,3 12,4 16,1 16,2 16,3 16,4 4,1 4,2 4,3 4,4

(−) (−) (−) (−) (−) (−)

13 13,1 14,1 15,1 16,1 9,1 10,1 11,1 12,1 5,1 6,1 7,1 8,1 1,1

(−) (−) (−)

14 14,1 14,2 14,3 16,2 10,1 10,2 10,3 12,2 6,1 6,2 6,3 8,2 2,1 2,2

(−) (−) (−) (−) (−) (−) (−) (−) (−)

15 15,1 14,3 15,3 16,3 11,1 10,3 11,3 12,3 7,1 6,3 7,3 8,3 3,1 2,3 3,3

(−) (−) (−) (−) (−) (−)

16 16,1 16,2 16,3 16,4 12,1 12,2 12,3 12,4 8,1 8,2 8,3 8,4 4,1 4,2 4,3 4,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note: The notation (−) indicates change of sign for the corresponding stiffness coefficients.



Higher-Order Plate Elements 423

−10

−5

0

4 16 36

Pz

64

5

Nonconforming

Conforming

Error in wmax

10

15

20
%

Number of elements

Figure 7.7.2 Convergence characteristics of conforming and nonconforming elements.

7.7.2 Discrete Kirchhoff Triangular Element

This viable alternative approach for formulating triangular bending elements for thin
plates is based on the so-called discrete KIRCHHOFF theory. The resulting element
is known as the discrete Kirchhoff triangular (DKT) element.

The DKT approach was proposed in 1969 by Dhatt et al. [7.7.2] and somewhat
later by Kikuchi [7.7.3], but wider acceptance of this new formulation came only 10
years later, mostly due to the continuous efforts of Batoz et al. [7.7.4–7.7.8]. In the
meantime, the DKT element was extensively tested for its convergence properties.
Because of its proven excellence, it remains one of the best triangular elements for
plate bending.

It is apparent from reading the foregoing sections that by using only a single
polynomial expression for the transverse deflections w, it is extremely difficult to
formulate a compatible triangular element with 9 DOF for plate bending. The alter-
native DKT approach uses the Reissner-Mindlin theory for moderately thick plates
and assumes that the nodal deflections and rotations are independent from each other.
In this way, the shape functions for the displacement components can be made contin-
uous at the interelement boundaries. Since the plate to be analyzed is not moderately
thick but thin, the transverse shear strain must be zero at specific discrete points.
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Consequently, the corresponding terms in the energy functional for moderately thick
plates can be neglected. Kirchhoff’s thin-plate theory is then imposed at particular
points to relate rotations and transverse displacements. The shape functions for w, θx

and θy maintain compatibility at the boundaries of the element; therefore, the DKT
element is conforming.

Since it is beyond the scope of this book to engage in lengthy derivation leading to
the explicit formulation of the DKT element, it was omitted here. Interested readers
are referred to Refs. [7.7.4] and [7.7.5] to obtain more details on this subject. Here
we give only a brief summary of the essential steps required to formulate the element
stiffness matrix.

The DKT element uses the same nodal displacement components, w, θx and θy , for
each of the three corner nodes (Fig. 7.7.3) as the simple triangular element introduced
in the foregoing section. The starting point for the element formulation is, however,
an initial element with corner and midside nodes, as shown in Fig. 7.7.4a:

ž First, the rotations θx and θy are approximated by

Qx =
6∑

i=1

Niθxi and Qy =
6∑

i=1

Niθyi (7.7.8)

using Ni complete quadratic polynomials for the shape functions expressed in area
coordinates ξ1, ξ2 and ξ3, as shown in Fig. 7.7.4b. These assumed shape functions are

N1 = ξ1(2ξ1 − 1), N2 = ξ2(2ξ2 − 1), N3 = ξ3(2ξ3 − 1),

N4 = 4ξ1ξ2, N5 = 4ξ2ξ3, N6 = 4ξ3ξ1. (7.7.9)

X

Z, w Local CS

Global CS

X, u

qx

qy

(x2, 0)2

(x3, y3)3

9 7

h

8

6 4
53 1

2

(0, 0)1

Y

Z

Y,  

Figure 7.7.3 Explicitly formulated DKT element.



Higher-Order Plate Elements 425

X

Y

(a) Initial element (b) Area coordinates

1

6 5

4

3

2

s

s
s

n3

n1
n2

b12

x2 x1

x3

b23

b31

Figure 7.7.4 Development of DKT element.

ž The transverse displacements w along the edges are represented by cubic poly-
nomials in the edge tangent coordinate s. Thus, along the edges the rotation
∂w/∂s at midpoint �k is

∂w

∂s

∣∣∣∣
k

= − 3

2lij
wi − 1

4

∂wi

∂s
+ 3

2lij
wj − 1

4

∂wj

∂s
for k = 4, 5, 6, (7.7.10)

where lij denotes the length of the side ij with corner nodes �i and �j and the
corresponding midpoint is �k .

ž According to the classical theory of thin plates, the rotations at the corner
nodes are

θxi = ∂w

∂y

∣∣∣∣
i

and θyi = −∂w

∂x

∣∣∣∣
i

for i = 1, 2, 3. (7.7.11)

ž Similarly, we impose this classical plate theory approach also at the midpoints.
Thus, we can write

θs

∣∣
k

= ∂w

∂s

∣∣∣∣
k

for k = 4, 5, 6. (7.7.12)

ž Furthermore, if we assume that the normal slopes vary linearly along the ele-
ment sides, then we obtain

θn

∣∣
4

= 1

2

[(
∂w

∂n

)
1

+
(

∂w

∂n

)
2

]
,

θn

∣∣
5

= 1

2

[(
∂w

∂n

)
2

+
(

∂w

∂n

)
3

]
, (7.7.13)

θn

∣∣
6

= 1

2

[(
∂w

∂n

)
3

+
(

∂w

∂n

)
1

]
.
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ž To acquire a relationship between the 12 nodal rotations and the 9 nodal DOF,
the following transformation is required for each side:

{
θx

θy

}
=
[

cos βij − sin βij

sin βij cos βij

]{
θn

θs

}
,




∂w

∂s

∂w

∂n




=
[

cos βij sin βij

sin βij − cos βij

]{
θx

θy

}
,

(7.7.14)

where the angle βij is defined in Fig. 7.7.4a.
ž The stiffness matrix of the DKT element is now expressed in the standard form†

Ke =
∫∫
A

DTED dx dy (7.7.15)

for which Batoz [7.7.5] introduced the explicit form

Ke = 1

2A
[α]TE[α], (7.7.16)

where A represents the area of the triangle and E denotes the matrix of homogeneous
isotropic elastic material given by

E = 1

24




DR νDR 0
νDR DR 0

0 0
D(1 − ν)

2
R


 . (7.7.17)

In this matrix D stands for the flexural rigidity of the plate given by Eq. (1.2.28) and

R =

 2 1 1

1 2 1
1 1 2


 . (7.7.18)

Table 7.7.3 provides explicit expressions for the matrix [α]. In addition, a FOR-
TRAN subroutine for generating the above DKT stiffness matrix is listed in Appendix
A.4.2. In addition, in Ref. [7.7.7] the reader will find pertinent FORTRAN coding.
Figures 7.7.5 and 7.7.6 demonstrate the excellent convergence characteristics of this
unique plate bending element.

Summary and Conclusions. In the past decades, a large number of plate bending
elements have been developed. This area of research is still active, and we may antic-
ipate additional developments in the future. While in the foregoing section we dealt
with relatively simple—yet quite usable—plate elements with C(0) continuity, here
we introduced two higher-order conforming elements. According to the convergence
requirements stated in Sec. 7.4, the shape functions must contain constant-curvatures
∂2w/∂x2 and ∂2w/∂y2 and constant twist ∂2w/∂x ∂y. In addition, continuity not

† See Eq. (7.3.32).
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(+17.48%)
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Figure 7.7.5 Convergence studies for DKT element.
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Figure 7.7.6 Further convergence studies.



430 Finite Element Method

only in displacements w but also in its derivatives must be maintained between adja-
cent elements. Our selection from the presently available numerous plate bending
elements was based on (a) conformity, (b) accuracy and (c) relative ease in applica-
tions. To satisfy the last requirement, the stiffness matrices of both elements presented
in this section are given explicitly. Furthermore, their convergence properties are
excellent. These criteria are especially important for practical applications of these
elements. To facilitate their use in practice, FORTRAN subroutines for formulat-
ing the corresponding stiffness matrices are given in Appendix A.4.2. In addition,
Refs. [7.7.10] and [7.7.11] provide complete FORTRAN programs for static analysis
of plates using the rectangular element with 16 DOF. Finally, we call the reader’s
attention to some other very good elements listed in Refs. [7.7.9] and [7.7.12–7.7.14].
Unfortunately, their practical applications are not that easy.

ILLUSTRATIVE EXAMPLE I

Let us consider the analysis of a clamped square plate subjected to a con-
centrated center force Pz = 1000 kN, as shown in Fig. 7.7.7a. We apply the
16-DOF rectangular plate bending element to determine the maximum lateral
defection wmax. For the discretization, we use only four elements (Fig. 7.7.7b).
Utilizing the apparent double symmetry of the structure and load, we can deal
only with one element (Fig. 7.7.7c). The corresponding element stiffness matrix
is given in Table 7.7.1. Between the local and global numbering of the lateral
deflection, the following relationship exists: 9 → 1. Thus, using Eq. (7.7.7),
we obtain

k11 = K = D

(a/2)2

(
156

35
+ 156

35
+ 72

25

)
= 11.7943

D

(a/2)2
, (7.7.19)

or with

D = Eh3

12(1 − v2)
= 9272 m-kN and a = 4.00 m (7.7.20)

the stiffness coefficient becomes k11 = 27,339. Consequently, the maximum
lateral deflection is

d = K
−1

p = d1 = Pz/4

k11
= 250

27,339
= 0.00914 m (error : −5.8%).

(7.7.21)

ILLUSTRATIVE EXAMPLE II

Let us compare the efficiency of the triangular DKT element with that of the
conforming 16-DOF rectangular element. For this purpose, we use a simply
supported square plate subjected to a center load as shown in Fig. 7.7.8a.

Utilizing the apparent double symmetry of the structure and load, our first
discretization scheme involves four rectangular elements per quarter plate
(Fig. 7.7.8b). Our computer program [7.7.15] gave the following displacement
components:
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a/2

a/2

a/2

a/2

(a) Plate

Y

X

Z, w

Pz Pz = 1000 kN
a = 4.0 m
h = 0.15 m
E = 3 × 107 kN/m2

n = 0.3

Clamped

(b) Discrete system
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Y

X1 32

9

4

7

5

1 2

3 4

6

8

(c) Analysis quadrant

Y

X Global CS

Z, w

1 2

54

1

1

Figure 7.7.7 Clamped square plate under central load.

Node Number w �x �y �xy

1 .0000D + 00 .0000D + 00 .0000D + 00 .3819D + 01
2 .0000D + 00 .0000D + 00 .7064D + 01 .2977D + 01
3 .0000D + 00 .0000D + 00 .1033D + 02 .0000D + 00
4 .0000D + 00 .7064D + 01 .0000D + 00 .2977D + 01
5 .1334D + 02 .5805D + 01 .5805D + 01 .2822D + 01
6 .1992D + 02 .0000D + 00 .9066D + 01 .0000D + 00
7 .0000D + 00 .1033D + 02 .0000D + 00 .0000D + 00
8 .1992D + 02 .9066D + 01 .0000D + 00 .0000D + 00
9 .3207D + 02 .0000D + 00 .0000D + 00 .0000D + 00
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(b) Discretization I
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Figure 7.7.8 Simply supported square plate under central load.

A comparison of the obtained maximum deflection† wmax = 32.07 with its
“exact” value wexact = 32.43 [2] shows only a very small percentage error of
−1.1%, which can be neglected for all practical purposes.

Next, we use the DKT triangular element for the analysis quadrant, as
shown in Fig. 7.7.8c. Our computer program [7.7.15] gave the flowing dis-
placement components:

† Dimensionless value.
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Node Number w �x �y

1 .0000D + 00 .0000D + 00 .0000D + 00
2 .0000D + 00 .7253D + 01 .0000D + 00
3 .0000D + 00 .1061D + 02 .0000D + 00
4 .0000D + 00 .0000D + 00 −.7253D + 01
5 .1379D + 02 .5616D + 01 −.5616D + 01
6 .2133D + 02 .1022D + 02 .0000D + 00
7 .0000D + 00 .0000D + 00 −.1061D + 02
8 .2133D + 02 .0000D + 00 −.1022D + 02
9 .3589D + 02 .0000D + 00 .0000D + 00

Since in this case the procentual error is +10.1%, we can state that the
rectangular element has better convergence properties.
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7.8 Computation of Loads and Stress Resultants
a. Loads. In the FEM, the right-hand side, p, of its governing matrix equation
(7.2.15) represents the column vector of forces acting on the nodal points expressed
in the global reference system of the plate structure. Five different types of loading
conditions can occur in practice: (1) concentrated forces and moments acting at a
point, (2) distributed loads, (3) prescribed boundary displacements, (4) body force
loadings and (5) thermal loadings.

A concentrated load may be applied as a force or moment at a point. It must
be assigned directly to a node of the discretized structure. It is obvious that such
a moment load can only be assigned to a node that has corresponding rotational
DOF in the stiffness formulation. If the nodes have only translational DOF, we apply
the moments as couples of lateral forces. Furthermore, it is required that when we
subdivide the plate into elements, we must select nodal locations that coincide with
the location of concentrated forces. It is also of importance, as discussed earlier, that
in the vicinity of concentrated forces finer subdivisions are used. Since in most cases
the Z axes of the local and global coordinate systems are parallel, no transformation
of lateral forces from the local coordinate system to the global reference system
is required.

Distributed loads on the plate act between nodes; thus, they must be converted
to direct nodal forces. This conversion can be accomplished by applying one of the
following approaches: direct method, lumped loads based on static equivalencies of
the forces and consistent load representations.

The direct method of formulation considers the distributed loads on an element
based on their tributary area. This is the simplest approach. In rectangular elements,
for instance, the total distributed lateral load on the element is assigned as four equal
concentrated forces acting on the nodes. For the triangular element N, the assigned
forces at nodal point �i are

P (N)

�i =
∫∫
A

pz(x, y) �A ≈ p0Aj for j = 1, 2, 3, (7.8.1)

where Aj represents the corresponding tributary areas according to Fig. 6.4.3. Since
the FEM is not overly sensitive to representation of the lateral loads, the direct method
yields quite acceptable results, provided that the element size is reasonably small.

An somewhat more refined approach uses statically equivalent lumped nodal forces
and corresponding moments of the these concentrated forces rotating about the
nodal point.

The most exact formulation of distributed loads involves the consistent load ap-
proach based on virtual work. That is, we state that during a virtual displacement the
work of the concentrated nodal force and that of the actual distributed load must be
equal. Thus, the consistent load acting at node i of element N is obtained from

1 · P (N)

�i = 1 ·
∫∫

φ
(N)
i (x, y) · pz(x, y) dx dy,

1 · M(N)

�i = 1 ·
∫∫

φ
(N)
j (x, y) · pz(x, y) dx dy,

(7.8.2)
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where φi and φj represent the Cartesian products of corresponding beam shape
functions given in Eqs. (7.2.7) and (7.2.8), respectively. Strictly speaking, however,
we should have used the actual shape functions N of the pertinent finite element.
Logically, the same approach can be applied to line loads. Since, as mentioned above,
the FEM is not overly sensitive to representations of lateral loads, Eq. (7.8.2) yields
very good results for all practical purposes.

Such insensitivity in load representation, however, is not the case for prescribed
displacements. Therefore, it is of importance that such displacements be described
with high precision because even small changes can produce large differences in
stress response. To account for prescribed nodal displacements, the expanded sys-
tem equation 



k11 k12 k13 · · · k1n

k21 k22 k23 · · · k2n

k31 k32 k33 · · · k3n

...
...

...
. . .

...

kn1 kn2 kn3 · · · knn







d1

d2

d3

...

dn




=




P 1

P 2

P 3

...

P n




(7.8.3)

is modified according to one of the following computational methods:

1. To illustrate the first approach, let us assume that the prescribed displacement
component corresponding to d2 is δ. To obtain this d2 = δ value and the other
displacements, we multiply the corresponding coefficient in the main diagonal
of the stiffness matrix K by a very large number, say 1010, and replace the P 2

nodal force by k221010δ. Thus, we obtain




k11 k12 k13 · · · k1n

k21 1010k22 k23 · · · k2n

k31 k32 k33 · · · k3n

...
...

...
. . .

...

kn1 kn2 kn3 · · · knn







d1

d2

d3

...

dn




=




P 1

k221010δ

P 3

...

P n




. (7.8.4)

Now, it is relatively easy to prove that

k21

k22
10−10d1 + d2 + k23

k22
10−10d3 + · · · + k2n

k22
10−10dn = δ; (7.8.5)

therefore
d2 ≈ δ. (7.8.6)

2. Assuming, again, that the prescribed displacement component is d2 = δ, we
rearrange Eq. (7.8.3) as follows:




k11 0 k13 · · · k1n

0 1 0 · · · 0
k31 0 k33 · · · k3n

...
...

...
. . .

...

kn1 0 kn3 . . . knn







d1

d2

d3

...

dn




=




P 1 − k12δ

δ

P 3 − k32δ

...

P n − kn2δ




. (7.8.7)
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Solution of these equations gives us anew not only the prescribed displacement com-
ponent d2 = δ but also its effect on the other displacements.

For thick plates, another possible load can be body force loading, which acts at
every material point of the plate rather than on its surface. Such body forces include
self-weight (gravity) loading. They are best handled by the direct method discussed
above using concentrated forces lumped at the nodal points. In other than thick plates,
gravity forces can be treated as surface loads.

Finally, we should mention thermal loading. Because of its importance in the
engineering practice, a separate section† is devoted to this loading condition.

b. Stresses and Stress Resultants. Stresses are usually computed at the nodal
points of the elements. If the state of deformations d of the plate is known, we have

to transform first the element displacements d
(N)

e from the global reference system
back to their individual local coordinate system. This is accomplished by

d(N)
e = (TTde)

(N), (7.8.8)

where d
(N)

e represents a subset of the global displacement vector d corresponding to
element N. It should be noted that this subset contains not only the nodal displace-
ments of the element but also its boundary conditions. After these local DOF are
computed, we calculate the stresses by means of the general equation

σ (N) = (Eε)(N) = (EDde)
(N) = (EDNde)

(N) = (Sede)
(N). (7.8.9)

All notation used in this equation was defined in Secs. 7.2 and 7.3. First, we are
interested in obtaining the stress resultants of the plate from which the corresponding
stress components can be calculated. Referring to Eq. (7.2.16), we can write the stress
resultants at nodal point �i as

m(N)

�i =



mx

my

mxy




(N)

�i

and q(N)

�i =
{

qx

qy

}(N)

�i

, (7.8.10)

and for the N th element

m(N)
e = (Sede)

(N) and q(N)
e = (Qede)

(N), (7.8.11)

where S(N)
e and Q(N)

e are the stress matrices due to bending and transverse shearing of
the plate, respectively. A more explicit expression of the stress matrix for bending is

m(N)

�i = (EDNde)
(N)

�i = E




− ∂2

∂x2
NT

− ∂2

∂y2
NT

−2
∂

∂x ∂y
NT




(N)

�i

· d(N)
e , (7.8.12)

† See Sec. 10.4.
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where N is the column matrix of the corresponding shape functions and E represents
the elasticity matrix for isotropic homogeneous plates:

E = D


 1 ν 0

ν 1 0
0 0 (1 − ν)/2


 . (7.8.13)

Similarly, the stress matrix for transverse shearing can be written as

Q(N)
i = −D




∂3

∂x3

∂3

∂x ∂y2

∂3

∂y3

∂

∂x2 ∂y



{

NT

NT

}(N)

�i

. (7.8.14)

Consequently, the matrix expressions for a rectangular plate with four corner nodes
become

m(N)
e = [S1 S2 S3 S4](N)




d1

d2
d3

d4




(N)

= (Sede)
(N) (7.8.15)

and

q(N)
e = [Q1 Q2 Q3 Q4](N)




d1

d2

d3
d4




(N)

= (Qede)
(N). (7.8.16)

Explicit expressions of the stress matrices S(N)
e and Q(N)

e for the simple rectangular
element shown in Fig. 7.6.1 are given in Tables 7.8.1 and 7.8.2, while the corre-
sponding stiffness matrices can be found in Eqs. (7.6.12) and (7.6.13), respectively.

Since the stress resultants are computed at the nodal points of each element, these
procedures usually result in considerable discrepancies at the common nodes. Such
discrepancies are commonly resolved by averaging the stress resultants in all elements
joined at the same node, as illustrated in Fig. 6.4.6.

For triangular finite elements, the procedure used to compute stress resultants is
the same as the one discussed above. Such an approach, however, will be far more
efficient if the general triangular shape of the element is mapped into an equivalent
unit triangle [7.8.3, 7.8.4], as shown in Fig. 7.8.1. For this purpose, we need the
Jacobi determinant

|J | =
∣∣∣∣ x2 − x1 y2 − y1

x3 − x1 y3 − y1

∣∣∣∣ (7.8.17)

and the partial derivatives

ξ,x = y3 − y1

|J | , η,x = −y2 − y1

|J | ,

ξ,y − x3 − x1

|J | , η,y = x2 − x1

|J | .

(7.8.18)
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Y

X

1 (x1, y1)

2 (x2, y2)
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3* (0, 1)
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3 (x3, y3)

N*

N

Figure 7.8.1 Mapping of triangular element.

The corresponding nodal displacements of the element that has now the shape of a
unit triangle are

δ∗
e =




w1

(w�1 ,xη,y − w�1 ,yη,x) · |J |
(w�1 ,yξ,x − w�1 ,xξ,y) · |J |

w2

(w�2 ,xη,y − w�2 ,yη,x) · |J |
(w�2 ,yξ,x − w�2 ,xξ,y) · |J |

w3

(w�3 ,xη,y − w�3 ,yη,x) · |J |
(w�3 ,yξ,x − w�3 ,xξ,y) · |J |




e

1∗

2∗

3∗

4∗

5∗

6∗

7∗

8∗

9∗

. (7.8.19)

The partial derivatives required for computation of the bending and twisting moments
can be written as

w�i∗
,ξξ =

9∗∑
j=1∗

N�i∗
j,ξξ δ

∗
j ,

w�i∗
,ηη =

9∗∑
j=1∗

N�i∗
j,ηηδ

∗
j ,

w�i∗
,ξη = 1

2

9∗∑
j=1∗

N�i∗
j,ξηδ

∗
j

for �i∗ = �1∗ ,�2∗ ,�3∗ , j = 1∗, 2∗, 3∗, . . . , 9∗, (7.8.20)

where the superscript �i∗ refers to the nodal points of the unit triangle. In order to
transfer Eq. (7.8.20) back to the coordinate system x, y, z of the original triangular
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element, we use the relationships

w�i

,xx = w�i

,ξξ ξ
2
,x + 2w�i

,ξηξ,xη,x + w�i

,ηηη
2
,x,

w�i

,yy = w�i

,ξξ ξ
2
,y + 2w�i

,ξηξ,yη,y + w�i

,ηηη
2
,y,

w�i

,xy = w�i

,ξξ ξ,xξ,y + w�i

,ξη(ξ,xη,y + ξ,yη,x) + w�i

,ηηη,xη,y, (7.8.21)

where the superscript �i refers now to the nodes of the general triangular element.
A similar approach can be used to compute the transverse shearing forces. In Ref.
[7.8.4] the reader will find usable BASIC programs for all these somewhat tedious
mathematical operations.

For the DKT triangular plate element, explicit expressions for bending and twist-
ing moments are given in Ref. [7.8.5]. Knowing the nodal displacements de of the
element in its local coordinate system, the moments can be computed from

m(N)
e (ξ, η) =




mx

my

mxy




(N)

= 1

24
Eb(Lαde)

(N), (7.8.22)

where Eb is the elasticity matrix given in Eq. (7.8.13) and

L =

 〈l〉 〈0〉 〈0〉

〈0〉 〈l〉 〈0〉
〈0〉 〈0〉 〈l〉


 (7.8.23)

with

〈0〉 = 〈0 0 0〉 and 〈l〉 = (1 − ξ − ξη). (7.8.24)

An explicit expression for matrix α in Eq. (7.8.22) is given in Table 7.7.3. Since
matrix L depends upon ξ and η, computation of moments at several points of the
element is possible.

Summary and Conclusions. Since the FEM is not overly sensitive to load rep-
resentation, use of the direct approach is recommended in most cases, provided the
finite element mesh is relatively fine. Thus we may lump the distributed forces at the
nodes using the pertinent tributary areas. Consideration of prescribed displacements,
however, requires more attention.

The stress resultants at the nodes are calculated using the nodal displacements and
the appropriate derivatives of the shape functions. This procedure is quite tedious
by longhand computation; thus one should utilize computerized approaches. The
obtained stress resultants may differ substantially between adjacent elements if coarse
idealization is used. These differences decrease as the finite element mesh is refined.
Acceptable results are obtained if the stress resultants are averaged. Finally, we
should mention that, in rectangular elements, the FDM can give a simple alternative
approach for calculating stress resultants.

ILLUSTRATIVE EXAMPLE I

Let us compute the bending and twisting moments at the center of the plate
shown in Fig. 7.6.6a.
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The displacement field of this plate was already determined in the Illustra-
tive Example of Sec. 7.6.† For this purpose, the explicit expressions‡ of the
simple rectangular element with four corner nodes (Fig. 7.6.1) are used. The
corresponding stress matrix S(N)

e for the moments is also presented in explicit
form in Table 7.8.1. To utilize this stress matrix, however, we must first change
the numbering of the DOF for element �3 from the global to the local system.
This constitutes an inverse process of the index number technique applied in
the original Illustrative Example of Sec. 7.6. Thus, under consideration of the
prescribed boundary conditions, we obtain the displacement vector of element
�3 as

d(3)
e =




d1
d2

d3

d4




(3)

=




d1

d2
d3

d4

d5
d6

d7

d8
d9

d10

d11
d12




(3)

=




98.5184
69.4160

−62.6984
246.4504
192.3716

0.0000
524.5735

0.0000
0.0000

180.4093
0.0000

−122.9534




(3)

. (7.8.25)

“Long-hand” multiplication of the first three rows in Table 7.8.1 with the above
given vector of element displacements gives

m(3)
y = 1

64

(−9 × 246.4504 − 6 × 192.3716 + 10 1
3 524.5735

− 1
3 180.4093 − 1

3 122.9534
) = 25.6848,

m(3)
x = 1

64 (−3 × 264.4504 − 2 × 192.3716 + 7 × 524.5735

−4 × 180.4093 − 4 × 122.9534) = 20.85,

m(3)
xy = 1

64

(− 2
3 98.5184 + 2

3 246.4504

− 2
3 524.5735 + 2

3 180.4093
) = −2.0441. (7.8.26)

These results are verified by computer results with a corresponding BASIC
program for plates [7.8.4].

ILLUSTRATIVE EXAMPLE II

To demonstrate in detail the computation of stress resultants using triangular
finite elements, we refer again to the plate problem shown in Fig. 7.6.6a. This
time, however, an alternative form of idealization is employed (Fig. 7.8.2b). The
computation is based on nonconforming triangular elements. In Eq. (7.6.14),
following the recommendation of Bazeley [7.5.6], we set α2 = 0.5.

† The pertinent finite element idealization the plate is shown in Fig. 7.6.6b.

‡ See Eqs. (7.6.12) and (7.6.13).
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The obtained column matrix of the shape functions is

N(N ) =




N1(ξ, η) = 1 − 3ξ 2 − 4ξη − 3η2 + 2ξ 3 + 4ξ 2η + 4ξη2 + 2η3

N2(ξ, η) = ξ − 2ξ 2 − 3
2 ξη + ξ 3 + 3

2 ξ 2η + 1
2 ξη2

N3(ξ, η) = η − 3
2 ξη − 2η2 + 1

2 ξ 2η + 3
2 ξη2 + η3

N4(ξ, η) = 3ξ 2 + 2ξη − 2ξ 3 − 2ξ 2η − 2ξη2

N5(ξ, η) = −ξ 2 − ξη + ξ 3 + ξ 2η + ξη2

N6(ξ, η) = 1
2 ξη + 1

2 ξ 2η − 1
2 ξη2

N7(ξ, η) = 2ξη + 3η2 − 2ξ 2η − 2ξη2 − 2η3

N8(ξ, η) = 1
2 ξη − 1

2 ξ 2η + 1
2 ξη2

N9(ξ, η) = −ξη − η2 + ξ 2η + ξη2 + η3




(N )

, (7.8.27)

where ξ and η represent the coordinates in the unit triangle, displayed in
Fig. 7.8.1. The local numbering of the DOF corresponds to that shown in
Fig. 7.8.2a.

(a) Local numbering

(b) Analysis quadrant
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Figure 7.8.2 Alternative discretization of plate shown in Fig. 7.6.6a.

Utilizing the apparent double symmetry of the plate structure and its loading,
we subdivide the quarter plate into eight triangular elements (Fig. 7.8.2b). Since
we would like to compute only the maximum moments, it is sufficient to restrict
our investigation to element �2 and node �3 .

A computer analysis based on the above triangular plate element [7.8.4]
gives the following displacement components for the element �2 , expressed in
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the global reference system of the plate:

d
(2)

e =




230.3
144.3

0.0
635.5

0.0
0.0

285.0
0.0

−218.7




(2)

. (7.8.28)

As required, the prescribed boundary conditions are also incorporated into this
displacement vector. By comparing Fig. 7.8.2a with Fig. 7.8.2b, the follow-
ing relationship between the global and local numbering of the nodes can be
established:

Local global
1 2
2 3
3 6

. (7.8.29)

Thus, we can write
x1 = 3, x2 = 6, x3 = 6,

y1 = 0, y2 = 0, y3 = 2.
(7.8.30)

Based on these coordinates, the Jacobian determinant becomes

|J| = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1) = 6. (7.8.31)

The derivatives required for mapping element �2 into a unit triangle are

ξ,x = y2 − y1

|J| = 0.33, ξ,y = −x3 − x1

|J| = −0.5,

(7.8.32)

η,x = −y2 − y1

|J| = 0.0, η,y = x2 − x1

|J| = 0.5.

Now, we can express the displacement vector of element �2 in terms of the
unit triangle. This calculation gives

δ∗(2)
e =




230.3
144.3 × 0.5 |J|

−144.3(−0.5) |J|
635.5

0.0
0.0

285.0
0.0

−218.7 × 0.33 |J|




=




230.3
432.8
432.8
635.5

0.0
0.0

285.0
0.0

−433.0




. (7.8.33)
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Next, the required partial derivatives of the shape functions are determined
using Eq. (7.8.20). Some of these are

N1,ξξ = −6 + 12ξ + 8η, N2,ξξ = −4 − 6ξ + 3η,

N1,ηη = −6 + 8ξ + 12η, N2,ηη = ξ,

N1,ξη = −4 + 8ξ + 8η, N2,ξη = − 3
2 + 3ξ + η, (7.8.34)

The lengthy longhand computation yields the following results for Eq. (7.8.20):

w�3∗
,ξξ = −1565, w�3∗

,ηη = −1511.4, w�3∗
,ξη = −924.1. (7.8.35)

By applying Eq. (7.8.21), these results are transferred back to the original coor-
dinate system of element �2 . Hence

w(2)
,xx = −173.9, w(2)

,yy = −307.1, w(2)
,xy = 106.9. (7.8.36)

Finally, to obtain the moments in the center of the plate, we substitute these
second derivatives into the corresponding equations of classical plate theory†;
this gives

m(2)
x = 14.49, m(2)

y = 25.59, m(2)
xy = −8.9. (7.8.37)

It is apparent that the procedure introduced above is not suited for hand
computation, since it is intended exclusively for computer use. Consequently,
this example serves merely to clarify, up to a certain extent, the individual
steps discussed in the descriptive part of this section. However, the reader will
find BASIC and FORTRAN programs for plate analysis utilizing this type of
triangular element in Refs. [7.8.4] and [7.8.6], respectively. Needless to say, in
this case application of the FDM for determination of the maximum moments
would be far superior to the longhand approach used here.
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7.9 Moderately Thick Plate Elements
The finite element analysis of moderately thick plates with h/L ≥ 1

10 – 1
5 ratios must

consider additional deformations of the plate caused by transverse shearing. The
corresponding Reissner-Mindlin plate theories were treated in Sec. 1.5. These theories
have been used in a variety of ways for generating rectangular [7.9.1–7.9.8] and
triangular [7.9.9–7.9.13] finite elements.

Applying the first-order shear theory from Mindlin, the displacement components
are expressed using Eq. (1.5.18) as

u = zψx(x, y), v = zψy(x, y), w = w(x, y), (7.9.1)

where ψx and ψy are rotations of the normal in the X, Z and Y, Z planes, respectively.
The Mindlin plate model is shown in Fig. 7.9.1a. In this plate theory w, ψx and ψy

are independent variables. Consequently, finite elements based on Mindlin’s theory
require only C(0) continuity in the lateral displacements and rotations.

The strains due to bending of the plate are

κ =



κx

κy

φ


 =




∂ψx

∂x
∂ψy

∂y

∂ψx

∂x
+ ∂ψy

∂y




. (7.9.2)

In addition, we must consider the strains due to transverse shear, which are calcu-
lated from

γ =
{

γx

γy

}
=




∂w

∂x
+ ψx

∂w

∂y
+ ψy




. (7.9.3)

The corresponding stress resultants can be written as

m =



mx

my

mxy


 = Ebκ and q =

{
qx

qy

}
= Esγ, (7.9.4)

(a) Assumed deformation (b) Notation
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Figure 7.9.1 Moderately thick plate model.
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where Eb and Es represent the elasticity matrices for bending and shear, respectively:

Eb = Eq. (7.8.13) and Es = Ehα

2(1 + ν)

[
1 0
0 1

]
, (7.9.5)

where α = κ2 is the shear modification number usually taken as 5
6 for homogeneous

isotropic plates.†

The stress resultants given in Eqs. (1.5.23)–(1.5.27) for moderately thick plates
of uniform thickness may be written in a simplified matrix form as

{
m
q

}
= Eh

12(1 − ν2)




h2 νh2 0 0 0
νh2 h2 0 0 0

0 0
h2(1 − ν)

2
0 0

0 0 0 5(1 − ν) 0
0 0 0 0 5(1 − ν)







κx

κy

φ

γx

γy




.

(7.9.6)

The internal strain energy of the element is

�int,e = 1

2

∫∫
κTm dA + 1

2

∫∫
γ Tq dA. (7.9.7)

Since the strain due to bending and shear may be expressed in terms of nodal
displacements de, by performing the operations indicated in Eqs. (7.9.2) and (7.9.3),
we can write

κ = Dbde and γ = Dsde, (7.9.8)

where Db and Ds represent the differentiations of the shape functions N, as indicated
in Eqs. (7.9.2) and (7.9.3).

Substituting Eqs. (7.9.4) and (7.9.5) into Eq. (7.9.7), the strain energy of the ele-
ment becomes

�int,e = 1

2

∫∫
dT

e DT
b Eb Db de dA + 1

2

∫∫
dT

e DT
s EsDsde dA, (7.9.9)

or in a more concise form

�int,e = 1
2 dT

e Kede, (7.9.10)

in which Ke is the stiffness matrix for the moderately thick plate element and includes
bending and transverse shear effects.

Using the shape functions

w = a1 + a2x + a3y + a4xy + a5x
2 + a6y

2 + a7x
2y + a8xy2,

ψx = b1 + b2x + b3y + b4xy, ψy = c1 + c2x + c3y + c4xy
(7.9.11)

† See Sec. 1.5.
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and applying the restrictions of constant shear strain

∂ψx

∂x
= 0 and

∂ψy

∂y
= 0, (7.9.12)

we obtain [7.9.8]

a5 = 1
2b2, a6 = 1

2c3, a7 = 1
2b4, a8 = 1

2c4. (7.9.13)

Since now the number of unknowns is reduced to 12, the element has the same nodal
DOF as the simple nonconforming rectangular element with four corner nodes shown
in Fig. 7.6.1.

A very usable alternative approach based on Reissner’s theory is offered by Pryor
et al. [7.9.7]. The chosen displacement function for w(x, y) is the same as used in
Eq. (7.6.2) in connection with the simple rectangular thin-plate element. The assumed
displacement functions for the rotations correspond to those in Eq. (7.9.11). Thus, we
can superimpose the stiffness matrix listed in Eq. (7.6.12) and the stiffness matrix con-
taining the shear terms represented by the second right-hand side term of Eq. (7.9.9).
Consequently, Eq. (7.9.10) can be written as

�int,e = 1
2 dT

e (Ke,b + Ke,s)de (7.9.14)

Furthermore, the shape functions for rotations caused by transverse shear are the
same as those used in computing stiffness matrices for bilinear plane stress elements
[7.9.15–7.9.17]. The derivation of element stiffness matrices for moderately thick
plates follows the standard procedures already introduced for Kirchhoff plates. It is
important to realize, however, that the subscript notation and sign conventions in the
classical and improved plate theories sometimes differ from those used in the finite
element approach (Fig. 7.9.2b), as was already pointed out. Of course, in formulating
the stiffness matrix containing the additional transverse shear effects Ke,s , one must
use the expressions introduced above in the procedure. It means that in the strain
vector γ only the additional strain produced by transverse shear can be considered.
The obtained rectangular plate element with 20 DOF is shown in Fig. 7.9.2.

In addition, one should be also aware of the fact that the boundary conditions in
the present approach are not always the same as those of the Reissner theory given in
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Figure 7.9.2 Moderately thick plate element.



Moderately Thick Plate Elements 449

Eqs. (1.5.8)–(1.5.10). That is, boundary conditions for finite element analysis of mod-
erately thick plates must satisfy the prescribed displacement conditions at the plate
edges. These can be satisfied, however, only approximately. The vanishing twisting
moment condition, for example, could not be fulfilled because the appropriate DOF
is not included in the displacement-based FEM. However, the formulation presented
above has the ability to satisfy zero shear resultant condition along a free edge, since
the rotation γ (caused by the transverse shear) is specified to vanish at two end nodal
points. Thus, there will be no transverse shear deformation along the free edge. The
most common boundary conditions encountered in practice are given as follows for
x = const:

Simply supported: w = 0, ψx �= 0, θx �= 0; (7.9.15a)

Clamped: w = 0, ψx = 0, θx = 0; (7.9.15b)

Free: w �= 0, ψx �= 0, θx = 0. (7.9.15c)

As Fig. 7.9.3 shows, the accuracy of the FE procedure presented here is good.
To compute the stress resultants, one should follow logically the standard finite ele-

ment procedures as described in the foregoing section. For this purpose, however, an
additional stress matrix Se,s containing the transverse shear effects must be generated.

It is much more difficult to develop stiffness matrices of triangular elements for
moderately thick plates. Consequently, only relatively few triangular elements are
presently available. The principal difficulty appears to be that there are only two
expressions for the average shear strains without the coupling strain ∂u/∂y + ∂v/∂x

for plane stress. This sometimes leads to numerical difficulties.
In most cases, numerical integration is used for generating element stiffness matri-

ces. This approach may lead to the so-called locking behavior, resulting in overstiff
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Figure 7.9.3 Accuracy of 20-DOF element [7.8.7].
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solutions. Selective or reduced integration† may overcome this difficulty. With highly
constrained plate boundaries, however, overstiff solutions may still occur. In recent
years much research activity has been directed to eliminate this problem [7.9.12,
7.9.14].

Finally, we should mention the conjugate plate analogy introduced in Sec.5.3.
This simple approach to the analysis of simply supported moderately thick plates of
polygonal shape eliminates the need for more complicated finite element analysis.
That is, this analogy presents a relationship between the deflections of Kirchhoff and
Mindlin plates and therefore allows speedy and accurate computation of deflections
of moderately thick plates from the corresponding Kirchhoff solution. For other than
simply supported boundary conditions, application of Donnel’s correction factor‡ to
the classical deflections is recommended. While the conjugate beam analogy yields
exact results, this correction factor gives only usable approximations.

Summary. Classical plate theory neglects the transverse shear deformations. How-
ever, the effects of these additional deformations on moderately thick plates can be of
importance, especially if the ratio of thickness to span length (h/L) is approaching 1

5
value. An expanded FEM based on the Reissner-Mindlin theory is presented herein
and is applied to a 4-node, 12-DOF rectangular plate element. By separating the
bending effects of classical plate theory from the effects of transverse shearing, it is
possible to superimpose the stiffness matrix of the simple rectangular plate bending
element and that of a matrix obtained from the transverse shearing terms. In this way,
a finite element of 20 DOF is obtained.

References [7.9.2] and [7.9.14] give FORTRAN programs for generating stiff-
ness matrices for moderately thick plates that can facilitate the reader in writing a
computer program.

ILLUSTRATIVE EXAMPLE

Figure 7.9.4a shows a square rectangular plate with simply supported bound-
ary conditions subjected to uniformly distributed load p0. To be determined
are (a) the maximum lateral deflection and (b) the maximum bending moment.
Since the thickness-to-span ratio of the plate is h/a ≈ 1

5 , the effects of trans-
verse shear must be considered in the analysis.

The simply supported boundary conditions permit the use of the conjugate
plate analogy. Thus, in the first part of the analysis we compute the deflections
wK of the corresponding Kirchhoff plate. For this purpose the stiffness matrix of
the simple rectangular plate element with four corner nodes—explicitly given
in Eqs. (7.6.12) and (7.6.13)—is used. Figure 7.9.4b shows the finite element
idealization of the analysis quadrant. A computer program based on this plate
element gives the following maximum lateral deflection and moment at the
nodal point �16 :

wK,16 = 0.0112 m (error : 2.2%) and mK,16 = 12318 m-kN/m
(7.9.16)

† See Sec. 7.11.
‡ See Eq. (5.3.3).
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Figure 7.9.4 Moderately thick plate.

Next, we calculate the additional maximum deflection caused by the transverse
shear by applying Eq. (5.3.1). Thus, we can write

ws,16 = 2 mK,16

κ2Gh
= 2 × 12318

0.8333 × 15 × 106 × 1.2
= 0.0164 m. (7.9.17)

Hence, the total maximum deflection of the plate including the effect of shear
deformation becomes

wt,16 = wK,16 + ws,16 = 0.01284 m. (7.9.18)

This represents an approximate 14% increase over the finite element solution
based on classical plate theory. The same approach can be taken for the other
nodal points.

A comparison with maximum deflection obtained from the Reissner theory
for moderately thick plates,

wR,max = 0.05217
p0a

4

Eh3
= 0.0117 m, (7.9.19)

shows an error of 9%. Interpreting this result, however, one must consider
the approximate nature of the FEM used in the computation and the relatively
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coarse subdivision of the finite element idealization. These errors are carried
over into Eq. (7.9.18). Consequently, the inherent error of this computation due
to the finite element approach can be estimated as 5–6%. By increasing the
number of elements, this error will get subsequently smaller.

To calculate the maximum positive moment at the center of the plate, we
utilize the corresponding finite difference equation (5.1.12), which with v =
0 becomes

mt,max ≈ − D

(�x)2
(2wt,15 − 2wt,16). (7.9.20)

To evaluate this equation, we also require the total plate deflection at node �15 .
We obtain this by the procedure used above for nodal point �16 . Thus, we
can write

wt,15 = wK,15 + (mx,15 + my,15)K

κ2Gh
= 0.0098 + 11,636 + 10,705

14.9994 × 106
= 0.0113,

(7.9.21)

Consequently, the approximate value of the maximum moment is

mt,max ≈ −4.32 × 106 × 2(0.113 − 0.01284) = 13306 m-kN/m. (7.9.22)
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7.10 Thick-Plate Elements

When the thickness-to-span ratio h/L exceeds approximately 2.0, a plate problem
becomes a corresponding problem of three-dimensional elasticity. In Sec. 1.6 we
introduced the governing differential equations of three-dimensional elasticity in a
Cartesian coordinate system; its solution, however, can rarely be obtained analyt-
ically. Even the application of the FDM is extremely cumbersome. Consequently,
it is natural that we extend the versatile FEM to, thick-plate problems. The finite
element procedure in this case follows, again, the standard approach introduced in
the foregoing sections. The main difference is that idealization of the thick plate is
now three dimensional, as shown in Fig. 7.10.1. However, creating a corresponding

L = a

X

Y

Z,w

h

h
L

> 0.20

Figure 7.10.1 Three-dimensional idealization of a thick plate.
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finite element mesh can be involved, particularly in terms of proper numbering of
the nodes.

To formulate finite elements for thick plates, first we express the three-dimensional
strain-displacement relationship in matrix form as

ε =




εx

εy

εz

γxy

γyz

γzx




=




∂u

∂x

∂v

∂y

∂w

∂z

∂u

∂y
+ ∂v

∂x

∂v

∂z
+ ∂w

∂y

∂w

∂x
+ ∂u

∂z




, (7.10.1)

where u, v and w represent the displacements at any point of the three-dimensional
continuum. Thus, the strain-displacement operator becomes

B =
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Hence, the stress-strain relationship for a homogeneous isotropic material can be
written as

σ = Eε, (7.10.3)

where the stress vector is

σ = { σx σy σz τxy τyz τzx } (7.10.4)

and E represents the corresponding elasticity matrix. By expanding Eq. (7.10.3),
we obtain
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(7.10.5)
The strain energy part of the total potential of the system is

�int = 1

2

∫
V

εTEε dV. (7.10.6)

As in previous sections, it is convenient to write some element displacement fields
in terms of nodal displacements d. In such a case the strain vector can be written as

ε = Dd (7.10.7)

Thus, the strain energy can be expressed in the form

�int = 1

2
dT
∫

V

(DTED dV )d, (7.10.8)

or

�int = 1
2 dTKed, (7.10.9)

with

Ke =
∫

V

DTED dV, (7.10.10)

which represents the stiffness matrix of the three-dimensional finite element. We may
also use the alternative approach discussed in Sec. 7.3c by employing generalized
coordinates. In such a case, the element stiffness matrix is Eq. (7.3.43).

a. Rectangular Hexahedronal Element. In this subsection we shall only consider
the simplest hexahedronal element having eight corner nodes with three DOF u, v, w
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Figure 7.10.2 Simple hexahedronal thick-plate element.

per node. Such a three-dimensional finite element (often called “brick”) is shown in
Fig. 7.10.2. We assume the following displacement functions:

u(x, y, z) = α1 + α2x + α3y + α4z + α5xy + α6xz + α7yz + α8xyz

v(x, y, z) = α9 + α10x + α11y + α12z + α13xy + α14xz + α15yz + α16xyz

w(x, y, z) = α17 + α18x + α19y + α20z + α21xy

+ α22xz + α23yz + α24xyz. (7.10.11)

It is often convenient to use dimensionless local coordinates ξ ,η, ζ with their origin
at the centroid of the element. With the introduction of

ξ = x

a
, η = y

b
, ζ = z

c
, (7.10.12)

the displacement functions for u, v and w may also be written in the form of
shape functions:

Ni = 1
8 (1 + ξξi)(1 + ηηi)(1 + ζ ζi) for i = 1, 2, . . . , 8. (7.10.13)

Consequently, the displacement fields can be expressed as

u = [N ]u, v = [N ]v, w = [N ]w, (7.10.14)

with

[N ] = [N1, N2, . . . , Ni, . . . , N8],

u = {u1, u2, . . . , u8}, v = {v1, v2, . . . , v8},
w = {w1, w2, . . . , w8} (7.10.15)

Formulating the element stiffness matrix Ke follows the standard procedure des-
cribed above and in the foregoing sections. An explicit form of the obtained stiffness
matrix is given in Ref. [7.10.1].
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Higher-order rectangular hexahedronal elements can also be formulated by employ-
ing the Lagrangian interpolation techniques. This approach, however, creates addi-
tional difficulties due to the presence of nodal points within the volume of the element.
More sophisticated representations of three-dimensional finite elements can be found
in Ref. [7.10.4]. Furthermore, computer programs for three-dimensional finite element
analysis of solids are published in Ref. [7.10.5].

b. Thick-Plate Elements of Various Shapes. Use of the simple hexahedronal
elements discussed above is restricted to thick plates of regular boundaries, as shown
in Fig. 7.10.1. Somewhat more flexible is the wedge-shaped element obtained from
a hexahedronal element by cutting it diagonally along the 14–67 plane (Fig. 7.10.2).
Such an element can be efficiently combined with the simple parallelepiped elements
to accommodate more complex plate geometry [7.10.7].

The most flexible thick-plate element appears to be the tetrahedron-shaped three-
dimensional element. Its drawback, however, is the large number of elements required
for proper idealization of thick plates. Furthermore, the so-created finite element mesh
is hard to visualize.

The isoparametric elements [7.10.8, 7.10.9] represent some improvement in this
respect, since they make it possible to treat thick plates with curved boundaries with
smaller numbers of elements.

A detailed discussion of these elements is out of the scope of this book. Interested
readers are referred to the pertinent literature for further study [7.10.6–7.10.10].

Summary and Conclusions. The FEM is a powerful numerical technique for the
analysis of thick plates. Theoretically, one can also employ the standard finite element
procedures in this case. A serious drawback of its practical application, however, is
that the required very large amount of data usually exceed the storage capacities
of desktop computers. In addition, the necessary computer time can be excessive.
Consequently, one is forced to use the more powerful “mainframes”. Other difficulties
lie in the mesh generation, especially if tetrahedron elements are used.
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7.11 Numerical Integration

The determination of element stiffness matrix coefficients kij requires evaluation
of certain definite integrals. In the foregoing sections, we introduced some explicitly
given stiffness coefficients obtained by performing closed-form analytical integrations
throughout the element areas. For some elements, however, analytical integration is
either impossible or too cumbersome to perform economically. Consequently, the
recent trend in formulating finite element matrices is to use numerical integration
procedures that can be carried out efficiently by computer. This is also true with
consistent load representations and evaluating the elements of mass matrices.†

In numerical integration techniques, the integral is approximated by the sum of val-
ues of the integrand at a number of selected points that are multiplied by a numerical
factor Wi , known as the weight coefficient.

Although a wide variety of numerical integration schemes exist, here we will only
treat the Gaussian quadrature in more detail, since it is the most frequently used
numerical integration technique yielding on average very good accuracy. For the
other numerical integration procedures (e.g., Simpson’s two-dimensional rule and
the Newton-Cotes method), we refer the reader to Refs. [7.11.1–7.11.5].

For the integration of a function over a rectangular area, we employ a coordinate
transformation to obtain an equivalent unit square with the limits of integration ±1
in each direction (Fig. 7.11.1). The corresponding relationships are:

x = a

2
ξ + a

2
y = b

2
η + b

2
. (7.11.1)

The integral ∫ a

0

∫ b

0
ψ(x, y) dx dy =

∫ +1

−1

∫ +1

−1
ψ(x, y) dξ dη (7.11.2)

can be evaluated by using the two-dimensional Gaussian quadrature

∫ +1

−1

∫ +1

−1
ψ(x, y) ≈

m∑
i=1

m∑
j=1

ψ(ξ, η)Wi Wj , (7.11.3)

where Wi and Wj are the weight coefficients. Furthermore, ξ i and ηi represent coor-
dinates of the sampling points, and m is the number of the points. Care must be taken
to find the correct locations of these points. They cannot be located, for instance, at
the boundaries of the unit square. Table 7.11.1 contains sampling points and cor-
responding weight coefficients in the ξ direction [7.11.6]. Since the boundaries of

† See Sec. 15.2.2.
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Table 7.11.1 Gaussian Quadrature in ξ Direction,
∫ +1
−1 ψ(ξ) dξ ≈ ∑m

i=1 Wiψ(ξi )

±ξi Coordinates m Weight Coefficient, Wi

0.57735 0.02691 0.89626 2 1.00000 0.00000 0.00000

0.00000 0.00000 0.00000 3 0.88888 0.88888 0.88889
0.77459 0.66692 0.41483 0.55555 0.55555 0.55556

0.33998 0.10435 0.84856 4 0.65214 0.51548 0.62546
0.86113 0.63115 0.94053 0.34785 0.48451 0.37454

0.00000 0.00000 0.00000 5 0.56888 0.88888 0.88889
0.53846 0.93101 0.05683 0.47862 0.86704 0.99366
0.90617 0.98459 0.38664 0.23692 0.68850 0.56189

0.23861 0.91860 0.83197 6 0.46791 0.39345 0.72691
0.66120 0.93864 0.66265 0.36076 0.15730 0.48139
0.93246 0.95142 0.03152 0.17132 0.44923 0.79170

0.00000 0.00000 0.00000 7 0.41795 0.91836 0.73469
0.40584 0.51513 0.77397 0.38183 0.00505 0.05119
0.74153 0.11855 0.99394 0.27970 0.53914 0.89277
0.94910 0.79123 0.42759 0.12948 0.49661 0.68870

0.18343 0.46424 0.95650 8 0.36268 0.37833 0.78362
0.52553 0.24099 0.16329 0.31370 0.66458 0.77887
0.79666 0.64774 0.13627 0.22238 0.10344 0.53374
0.96028 0.98564 0.97536 0.10122 0.85362 0.90376

the unit square are parallel to the Cartesian coordinate axis ξ , η, the variables are
uncoupled. Consequently, we can logically use the same data for the η direction.

Use of the standard Gaussian quadrature over triangular areas is also possible. In
this case, we consider the triangle as a degenerated rectangle, as shown in Fig. 7.11.2.
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It is, however, more common to employ special coordinate systems for this purpose.
The triangular element, for instance, can also be presented in area coordinates through
the introduction of

ξ1 = A1

A
, ξ2 = A2

A
, ξ3 = A3

A
, (7.11.4)

where A represents the area of the triangle and A1, A2, A3 are subareas pertinent to
the centroid P of the triangle, as shown in Fig. 7.11.3a. Let

A1 + A2 + A3 = A; (7.11.5)

then

ξ1 + ξ2 + ξ3 = 1, (7.11.6)
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Figure 7.11.3 Area coordinates used in mapping.
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and consequently,

ξ3 = 1 − ξ1 + ξ2. (7.11.7)

The linear relationship with the Cartesian coordinates can be written as

x = x1ξ1 + x2ξ2 + x3ξ3, y = y1ξ1 + y2ξ2 + y3ξ3. (7.11.8)

where (x1, y1), (x2, y2) and (x3, y3) represent the coordinates of the corner nodes in
the X, Y coordinate system.

Numerical integration over triangular regions can be simplified by the use of Ham-
mer’s formula [7.11.4], which takes the general form

∫ 1

0

∫ 1−ξ1

0
ψ(ξ1, ξ2) dξ2 dξ1 ≈ 1

2

m∑
i=1

Wi(ξ
(i)
1 , ξ

(i)
2 ), (7.11.9)

where Wi is the weight coefficient corresponding to the sampling points ξ
(i)

1 , ξ
(i)

2
and m represents the number of sampling points. Typical values of Wi and sampling
points are given in Table 7.11.2.

General quadrilateral elements can also be mapped into a unit square (Fig. 7.11.4)
by using the bilinear function

φ =




(1 − ξ)(1 − η)

ξ(1 − η)

ξη

(1 − ξ)η


 (7.11.10)

In this case, the transformation relationships are

x = xTφ(ξ, η) and y = yTφ(ξ, η), (7.11.11)

where

xT = { x1 x2 x3 x4 }T and yT = { y1 y2 y3 y4 }T. (7.11.12)

Full numerical integration of bending and transverse shear terms in the stiffness
matrix expressions for moderately thick plates may lead to the so-called shear-locking
behavior. That is, if we examine the deflection patterns of moderately thick plates for
different stiffness-to-span ratios, we observe overstiff results for thinner plates. This

Table 7.11.2 Coordinates and Weights in Eq. (7.11.9)

m ξ
(i)
1 ξ

(i)
2 Wi

1 1
3

1
3 1

3 1
2

1
2

1
3

1
2 0 1

3

0 1
2

1
3
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is due to the imposition of excessive number of shear restraints. To overcome this
difficulty, reduced or selected integration techniques are introduced. In this approach,
Ke,s , representing the transverse shear terms, is deliberately underintegrated. In some
cases with lightly restrained boundaries, however, the solution may fail if such ele-
ments are employed. Interested readers should consult Refs. [7.11.9–7.11.11] for
further study of this subject.

References and Bibliography

[7.11.1] IRONS, B. M., “Engineering Application of Numerical Integration in Stiffness Methods,”
AIAA J., 4 (1966), 2035–2037.

[7.11.2] ABRAMOWITZ, M., and STEGAN, I. A., Handbook of Mathematical Functions, McGraw-
Hill Book Co., New York, 1970.

[7.11.3] BATHE, K. J., Finite Element Procedures, Prentice-Hall, Upper Saddle River, New Jersey,
1996.

[7.11.4] MAMMER, P. C., and STROUD, A. H., “Numerical Evaluation of Multiple Integrals,” Math.
Tables Other Aids Computat., 12 (1958), 272–280.

[7.11.5] GRIFFITHS, D. V., and SMITH, I. M., Numerical Methods for Engineers, CRC Press, Boca
Raton, Florida, 1991.

[7.11.6] DAVIS, P., and RABANOWITZ, P., “Abscissas and Weights for Gaussian Quadrature,” J.
Res. Nat. Bur. Stand., 56 (1956), RP 2645.

[7.11.7] YING, L. A., “Some Special Interpolation Formulae for Triangular and Quadrilateral Ele-
ments,” Int. J. Num. Meth. Eng., 18 (1982), 959–966.

[7.11.8] SMITH, I. M., and GRIFFITHS, D. V., Programming the Finite Element Methods, 2nd ed.,
John Wiley & Sons, Chichester, 1988.

[7.11.9] ZIENKIEWICZ, O. C., et al., “Reduced Integration Technique in General Analysis of Plates
and Shells,” Int. J. Num. Meth. Eng., 3 (1971), 275–290.



Modeling Finite Element Analysis 463

[7.11.10] HUGHES, T. J. R., et al., “Reduced and Selective Integration Techniques in the Finite
Element Analysis of Plates,” Nucl. Eng. Des., 46 (1976), 203–222.

[7.11.11] MACNEAL, R. H., “Simple Quadrilateral Shell Element,” Comp. Struct., 8 (1978),
175–183.

7.12 Modeling Finite Element Analysis

Creating a suitable computational model is the first important step in a finite element
analysis of plates. Before embarking on modeling, however, the geometry and bound-
ary conditions of the structure along with the applied loads must be clearly defined. A
proper modeling starts with a good conceptual understanding of the physical behavior
of the plate, which includes the anticipated stress and deflection patterns. As a pre-
requisite, it is expected that the analyst has a clear understanding of the underlying
plate and finite element theories. The engineering approximations treated in Part IV
of this book offer valuable help in this respect. In addition, these simple procedures
can also be used to determine the first estimate of the required plate thickness, which
represents an important input data in the finite element analysis.

The next step involves the discretization of the plate continuum by using properly
selected finite elements. These plate elements are connected only at a discrete number
of nodal points along their periphery. In this way, a finite element mesh representing
a substitute structure is created. For smaller projects, the mesh is hand generated by
laying it out on paper and numbering the elements and their nodal points. To minimize
the bandwidth of the global stiffness matrix of the plate, the procedure discussed in
Sec. 6.4 in connection with the gridwork method is applied. For larger projects,
mostly automated mesh generation techniques are used. These procedures afford
the user to create a large number of elements quickly, as discussed in subsequent
sections.† In both cases, the following guidelines are to be followed:

1. Whenever possible, the finite element mesh should be relatively uniform. How-
ever, in the vicinity of rapid changes in geometry and loading, finer mesh
subdivisions are required (Fig. 7.12.1b). Special caution should be exercised
in transition from coarse to finer mesh.

2. The use of rectangular elements should be preferred, except where triangular
elements are required to model irregular boundaries and loadings.

3. The aspect ratio between the element’s longest and shortest dimensions should
not be excessive. The optimum aspect ratio is close to unity. As a general rule,
however, it is desirable to keep the aspect ratios under 3–4. Illegal element
shapes must be avoided. For triangular elements acute angles less than 30◦ are
not desirable.

4. If rectangular elements are combined with triangular ones, elements with cor-
ner nodes are preferred. In addition, all these elements must have the same
nodal DOF.

5. Selection of element-types should be governed by the geometrical requirements
of the plate and the convergence characteristics of the element. In most cases,
the conforming rectangular element with 16 DOF combined with the triangular

† See also Sec. 6.4.1.
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DKT element‡ represents a good choice. In real-life structures, such as bridges,
often more than one type of element must be selected to properly idealize the
structure. That is, plate elements model the bridge deck, while beam elements
represent the girders. In such cases, however, special elements with proper
interface between plate and beam must be employed.

‡ See Sec.7.7.
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6. Since large stiffness variations between elements can lead to an ill-conditioned
stiffness matrix of the total structure, rendering meaningless results, such con-
ditions must be avoided by all means.

7. Concentrated external forces and column supports cause high stresses in the
vicinity of their point actions. Thus, a relatively fine mesh is required to
obtain sufficiently accurate stresses in such regions. Similarly, openings in the
plate also call for mesh refinements to obtain detailed stress information in
their regions.

8. For one-way symmetry of the structure and its loading, it is sufficient to analyze
half of the plate by assuming “guided” boundary conditions at the symmetry
line. For double symmetry, the quarter plate represents the analysis quadrant.
Again, at the lines of symmetry guided boundary conditions must be used.
Certain triangular elements, however, may exhibit unsymmetrical response.
The analyst should be aware of such troubling possibilities.

9. Needless to say, moderately thick plates should not be modeled by plate ele-
ments that do not include the effects of transverse shear in their stiffness matrix
formulation. Similarly, moderately thick-plate elements are unsuitable for mod-
eling thick plates, since thick plate theory belongs to the three-dimensional
stress analysis category.

Summary. In this section, some fundamental aspects of the finite element modeling
of a plate structure are addressed. It is of basic importance that the structure and its
supports and loads are well defined before actual modeling takes place. In creating a
finite element computational model, we replace the actual continuum by a substitute
discrete system consisting of rectangular and triangular plate elements connected
only at their nodal points. In selecting suitable element-types, one should strive for
accuracy and computational efficiency. The understanding of the structural behavior
of the plate cannot be overemphasized. For this purpose, simple engineering methods
can provide valuable information and furnish, at the same time, a rough approximate
check of the finite element solution.
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7.13 Programming Finite Element Analysis

In general, the reader will resort to the use of commercially available large-scale pro-
gram systems for the finite element analysis of plate structures. Application of such
programs is, however, not without problems, as discussed in the next section. There
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are, nevertheless, some isolated instances—such as dealing with unique plate prob-
lems or preparing a master of science thesis or even a doctoral dissertation—when one
must develop a specialized finite element program. Since such relatively small-scale
programs are intended mostly for research rather than for repeated commercial use,
priority in programming should be given to readability. This can be achieved, among
other items, by using a structured programming style and by including numerous
comment statements. In general, elaborate input and output schemes are not required
for such research-oriented programs, but it is highly desirable that the user be guided
during program execution by appropriate comments appearing on the screen calling
for the next step to be taken. The reader will find our WinPlatePrimer program system
FORTRAN source codes that represents a good model to emulate. Larger programs
might follow a similar approach, provided that more efficient storage schemes and
data management techniques are incorporated.

In programming the FEM, the first step involves the selection of a suitable lan-
guage. Since nearly all finite element software, independent subroutines for numerical
analysis and codes listed in various text and reference books are written in FOR-
TRAN, this high-level programming language should be the primary choice. No
language has yet been devised that is better suited for numerical analysis. Further-
more, its syntax of file-handling operations is clear and well established. In addition,
since FORTRAN is so entrenched in structural engineering applications, programs
written in this language assure maximum leadership and portability. Of course, the
programmer should always employ the latest version of FORTRAN, which usually
incorporates numerous new and useful features. It is of special importance that such a
new version always maintain compatibility with its earlier editions. Other high-level
languages worth considering are PASCAL, ALGOL, C++, ADA and various new
and improved versions of BASIC.

Programming the FEM involves three distinct stages: (a) preprocessing, (b) analy-
sis to determine the structural response and (c) postprocessing. Preprocessing consists
of data preparation such as nodal coordinates, boundary conditions, loading, material
information and mesh generation, as described in the foregoing section. The anal-
ysis part deals with generation of element stiffness matrices, their transformation
from local to global coordinate system, assembly of the stiffness matrix of the total
structure, imposing the prescribed boundary conditions and solution of the govern-
ing matrix equation K d = p. The Postprocessing stage manages the results obtained
from the analysis, which typically involves presentation of the deflection pattern of
the plate, distribution of the internal stress resultants and validation of the results.
These processing phases are graphically illustrated in Fig. 7.13.1. In the following
some additional comments are given to elaborate these steps.

Although preprocessing is the least technologically demanding aspect of finite ele-
ment programming, its execution requires considerable effort and time. Since the input
phase is highly error prone, a significant amount of time must be spent on checking
the input data. Consequently, it is advisable that the program contain numerous diag-
nostic messages that call the user’s attention to erroneous inputs. The highly crucial
modeling phase has already been treated in the foregoing section in detail. Similarly,
computation of the loads has already been discussed in Sec. 7.8a. The final step in
preprocessing should be a plot graph of the computational model that can help in
detecting some input errors.

The analysis stage represents the core of the finite element procedure. First, by
using appropriate subroutines, stiffness matrices of all elements are generated. If the
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Figure 7.13.1 Processing phases of finite element analysis.

axes of the local coordinates are not parallel to those of the global reference sys-
tem, they must be rotated into a parallel position. Next, the stiffness matrix and the
load vector of the system are assembled† to obtain the governing matrix equation
K d = p. Before solution of this equation can be attempted, however, boundary con-
ditions must be incorporated into the stiffness matrix. In the displacement-based
FEM, the boundary conditions are represented by certain zero-displacement compo-
nents. Hence, appropriate information must be given in the assembly routine that
prevents these components from being assembled in the total system. This can be
achieved by simply striking out the rows and columns in the system equation that
are associated with zero displacements. The most obvious approach to the solution of

† See Sec. 7.2.



468 Finite Element Method

the governing matrix equation would be d = K
−1

p, requiring matrix inversion. Such
a solution not only requires a time-consuming matrix operation but, also destroys
the important band structure of the stiffness matrix by creating a fully populated
inverted matrix. Consequently, its use is not recommended. Cholesky factorization
[7.13.1–7.13.8] represents a far more economical solution technique. Since the stiff-
ness matrix K is always positive-definite and symmetrical, this method is extensively
used in the finite element analysis of structures. If the main random-access memory
of the personal computer does not have sufficient storage capacity, the frontal solution
technique [7.13.9] may offer a usable alternative.

The Postprocessing phase involves selection, display and validation of the results.
The output of the finite element analysis consists of numbers. These represent nodal
displacements and stress resultants presented in suitable table forms. Since the finite
element program generates a very large amount of numbers, a function of postpro-
cessing should be to relate only the important information and filter out the rest. A
very efficient and attractive way to present the results graphically is using appropriate
contour lines in the X, Y plane. Reference [7.13.15] provides a FORTRAN program
for the generation of such contour lines. Needless to say, for proper interpretation of
the obtained results, experience with plate structures is required on the part of the
analyst. Finally, the results should be verified. The deflected plate surface offers the
first check. The experienced analyst can detect coarse errors by simply viewing the
deformed structure. The next check should be an equilibrium check of the external
forces and the reactions at the supports. It is also recommended to include in the
program computation of the work of the external and internal forces. The sum of the
work of the external and internal forces must be, of course, approximately zero. When
applicable, some engineering methods† can also offer valuable approximate checks.
To obtain a truly independent validation of the results, the computation must be
repeated using, for instance, the gridwork method or another finite element program.

The building blocks of structured computer programs are the individual subrou-
tines. Again, one of the important advantages of FORTRAN is the ready availability
of such subroutines. For instance, Refs. [7.13.1–7.13.8], give FORTRAN libraries of
matrix operations, solutions of simultaneous linear equations, numerical differentia-
tions and integrations and so on. Thus, the finite element programming may consist
of merely incorporating these subroutines in proper sequence in the new program
system. Furthermore, in Refs. [7.13.10–7.13.14] complete finite element programs
written in FORTRAN are listed that can either be used directly or modified to suit
some individual needs. Finally, the reader’s attention should be called to the fact that
modern pre- and postprocessing codes with graphical interfaces are also commercially
available [7.3.15].

Summary. Programming the finite element plate analysis is usually a tedious and
time-consuming assignment requiring not only fundamental knowledge in plate and
finite element theories but also good programming skills. Consequently, it should
only be undertaken when a definite need for a specialized plate program exists. Oth-
erwise, one should use one of the commercially available large program systems‡

that also deal with the analysis of plate structures. If for some reason program-
ming is required, the recommended computer language is FORTRAN, since many

† See Part IV.
‡ See Sec. 7.14.
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of the required subroutines—and even small program systems—are available in the
pertinent literature. The finite element program should be structured. The available
FORTRAN subroutines should be the building blocks from which the program should
be constructed.
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7.14 Commercial Finite Element Codes

Nowadays many general-purpose, large-scale finite element program systems are
commercially available. A few of them are listed in alphabetical order at the end
of this section in Refs. [7.14.1–7.14.14]. Due to the prevailing high volatility of
the computer hardware and software market, some of these program systems will
certainly disappear in time; on the other hand, we will also see interesting newcom-
ers presenting valuable innovative features. Although most of these programs were
originally developed for mainframe computers, they can now run on powerful work-
stations and personal computers that have sufficiently fast CPU processors, adequate
random-access memory and large-capacity hard disks. These large-scale, general-
purpose program systems do have, among numerous other features, plate analysis
capabilities. It should be noted, however, that most sophisticated program systems
lose their large built-in potential in the hands of inexperienced users. As already
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emphasized, without true understanding of the physical behavior of plate structures
and funded knowledge in FEMs, the user cannot properly model the actual structural
systems, thus rendering the resulting finite elements computation mostly meaningless.

Supplying a user-friendly interface between the analyst and computer in the form of
interactive computer graphics considerably simplifies the otherwise tedious pre- and
postprocessing procedures. In Preprocessing, for instance, automatic mesh generation
can be achieved by using only a relatively small amount of input information in
the form of plotting the boundaries of the plate. With a similar approach, mesh
refinements can be obtained in the vicinity of stress concentrations. Furthermore, the
created mesh can automatically assign the element numbers, their nodal points and
corresponding DOF and even compute the global coordinates of the nodes. Some
other required features of user-friendly preprocessing are as follows:

ž menu system with submenus (if required);
ž screen instructions concerning the next steps to be executed by the user;
ž extensive “help” information;
ž diagnostic error messages;
ž easy way to correct erroneous inputs;
ž load generator program creating nodal loads;
ž graphical display of the generated finite element mesh showing elements, node

numbers and nodal restrains and
ž element library that contains the following finite elements: rod, bar, beam, shear

panel, membrane, plane strain, thin and thick and laminated plates, shell, wedge,
“brick” and tetrahedrons.

The Analysis Phase deals with extensive computations of the input data obtained
from the preprocessing part of the program†. The most important portion of this
stage is solution of the governing matrix equation. Unfortunately, the user very sel-
dom knows which method has been used to solve the large number of simultaneous
equations created by the program.

Postprocessing involves the selection and display of input data and the obtained
results. More sophisticated program systems may also give some estimate of the
accuracy. A quasi-independent check of the obtained results for plates, however,
may be achieved by repeating the computation using the folded plate, cylindrical
shell or general shell analysis part of the program system. The printable portion of
the output contains most of the input data for checking purposes and the computed
displacements and stresses at the nodes. The most attractive and efficient way of
presenting the results of the analysis is to display them graphically. The interactive
graphic postprocessing program displays the deformed geometry of the structure and
various stress contours. To obtain smooth contour lines, the stress values at the nodes
are always averaged. A built-in “zoom” capability allows the user to view details at
close range. A very effective way to call the user’s attention to the zones of critical
stresses is to paint it with red color.

All general-purpose, large-scale finite element program systems share the follow-
ing drawbacks:

† See corresponding part of flow chart in Fig. 7.13.1.
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ž Since the source codes are not given, these programs always represent “black
boxes” for the analyst. That is, the user is in no position to know and/or control
the individual computer operations. Consequently, he or she cannot change the
program to suit his or her special needs.

ž General-purpose program systems are ab ovo very large. Thus, it takes consid-
erable effort and time to learn their proper use.

ž In general, the plate analysis section is only a small portion of the total program
systems. Hence, the analyst has to first study the total “user’s manual” before
applying the program to a plate problem. This can be very time consuming
and frustrating. In this respect smaller program systems devoted exclusively
to the solution of plate problems (the so-called “program-packages” that deal
individually with framed structures, plates, shells and three-dimensional stress
problems) are much more effective.

Since all commercially marketed large, general-purpose finite element program
systems are relatively expensive, the engineer must have some guidelines for their
efficient evaluation in order to avoid costly mistakes by purchasing the wrong one.
Some guidelines for rating such program systems are as follows:

ž The distributor must be a reputable firm whose employees consist of highly
trained structural engineers with extensive experience in the field of FEMs.

ž A well-written user’s manual that contains on-line training in the form of numer-
ous worked examples and clear step-by-step instructions is essential.

ž The manual should be accompanied by a well-designed “demo” disk. This
combination should enable the engineer to a large extent to evaluate the whole
program system before purchasing it.

ž Built-in convergence and/or error estimation is highly desirable.
ž The program system should not contain expensive items—such as fluid dynam-

ics, for instance—which a structural engineer, in general, does not need.
ž Last, but not least, the engineer should obtain pertinent references and recom-

mendations from the users concerning the specific software.

Summary. The analysis of large plate structures undoubtedly requires the employ-
ment of large-scale commercial software. However, without good background in plate
theory and the FEM proper modeling of the structure and right interpretation of the
obtained results are not possible. In selecting a suitable program system, user friend-
liness and accuracy of the results should be the primary concerns of the engineer.
In addition, it is recommended that he or she follow the guidelines given above to
avoid costly mistakes in purchasing a commercial finite element code that does not
live up to expectations.
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7.15 Summary and Conclusions

In the last four decades, methods of numerical plate analysis have undergone an
unprecedented development. Three separate but interrelated factors contributed to
this remarkable progress:

1. introduction of the matrix analysis of structures,
2. development of the FEM and
3. progress in computer technology and proliferation of relatively inexpensive

workstations and personal computers.

The development of the FEM can be considered one of the most significant achieve-
ments in the field of structural analysis. It provides a convenient and powerful
technique to solve problems covering the whole spectrum of structural engineer-
ing. One of the greatest advantages of the FEM is its versatility; that is, the same
unified approach is employed in analyzing deflections and stresses of any type of
structure. The geometrical configuration, boundary conditions and loading may be
completely arbitrary.

The main characteristics of the FEM are as follows:

ž The finite element approach considers the plate structure to be an assembly of
finite-sized units by applying a physical discretization technique. Consequently,
the plate problem is not stated in terms of partial differential equations of the
continuum.

ž The plate problem is solved by using variational formulation in the form of
minimizing the total potential of the assembled substitute structure with respect
to nodal displacements.

ž The analysis involves subdivision of the plate domain into finite elements and
the evaluation of the elastic properties of each element. This results in element
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stiffness matrices that express the relationship between element nodal forces
and displacements. By applying an appropriate superposition technique and
imposing the prescribed boundary conditions, the stiffness matrix K of the
total structure is obtained.

ž The equilibrium of the plate is expressed in terms of the stiffness matrix of the
total structure, resulting in the simultaneous algebraic equations Kd = p. For-
mulation of this governing matrix equation and its solution requires, however,
extensive computer-based matrix operations.

Since the achievable accuracy of the FEM depends to a large degree on the ele-
ment shape functions, a fairly extensive survey of these functions, including methods
of their generation, has been included in this chapter. The perplexing array of shape
functions and their corresponding elements raises the valid question: Which are the
best elements? We were trying to answer this undoubtedly difficult question by tak-
ing into account the introductory nature of our treatment of the FEM in this book.
Thus, we recommend that use of the conforming rectangular element with 16 DOF
and that of the DKT triangular element. The reason for this recommendation is the
corresponding stiffness matrices are given in explicit forms, which assures their rela-
tively easy application. In addition, the convergence characteristics of both elements
are excellent or very good, respectively.

As mentioned before, only the displacement-based FEM was treated in this chapter,
since it is currently the most popular and widely used model. There are, however,
other finite element approaches also worth mentioning. The so-called hybrid method,
for instance, uses separate shape-functions for the displacements and stresses in
the finite elements. Although this reduces the problem of enforcing compatibility
conditions, the number of unknowns in the governing matrix equation is consider-
ably increased.

Finally, it may be of interest to the reader if we compare the two most widely used
numerical techniques for solution of plate problems: the finite difference and finite
element methods. Although the two methods appear superficially different, they have
many similarities. That is, both discretize the plate continuum and generate simul-
taneous algebraic equations to be solved for mesh-point or nodal displacements.
Furthermore, The FDM can be used to generate the flexibility matrix of the total
structure, the inversion of which leads to the stiffness matrix K. On the other hand,
the FEM can also be used to create governing differential equations for structures.
Consequently, these two most important numerical methods in structural analysis
are related, especially if one considers the energy-based variety of the FDM. How-
ever, there are also significant differences between the two methods. The FDM uses
mathematical discretization based on the partial differential equations, while finite
element discretization is strictly physical and applies the minimum principle of the
total potential to obtain the governing matrix equation. Furthermore, the finite differ-
ence stencils overlap one another and may have points outside the plate boundaries.
The finite elements do not overlap and have no nodes outside the plate boundaries.
Since in the FDM the unknowns are only the lateral mesh-point displacements, the
number of equations to be solved, assuming the same mesh for both, is merely a
fraction of that required for the FEM. In addition, application of the FDM does
not need a special computer program. The only requirement is an equation solver.
Consequently, for small-scale and relatively “regular” plate problems, the FDM may
have distinct advantages over the FEM. On the other hand, for solution of large plate
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structures of arbitrary shape and boundary conditions having variable thickness and
various types of loading, the FEM is far better suited than the FDM, provided that a
corresponding finite element computer program is readily available. Since writing and
testing a finite element code for plate analysis is a very tedious and time-consuming
task requiring solid programming experience, such an undertaking should be reserved
only for special cases.

Problems†

7.2.1. Determine the stiffness coefficient k78 of the rectangular plate element shown
in Fig. 7.2.3 by using Eq. (7.2.6). The pertinent shape functions should be
approximated by appropriate cross products of the beam functions given
in Eqs. (7.2.7) and (7.2.8), respectively. Follow the Illustrative Example in
Sec. 7.2.

7.6.1. Find the center deflection of the plate shown in Fig. 7.7.7a by employing the
nonconforming rectangular plate element with 12 DOF. The corresponding
stiffness matrix is given in Eqs. (7.6.12) and (7.6.13).

7.6.2. Repeat problem 7.6.1 but with a 2 × 2 subdivision of the analysis quadrant.
7.7.1. Verify the results obtained in Illustrative Example II of Sec. 7.7 by using

the conforming rectangular plate element with 16 DOF.
7.7.2. Obtain an expression for the stiffness coefficient k77 of the DKT plate ele-

ment.
7.8.1. Compute the maximum bending moment of problem 7.6.1. Use Table 7.8.1

for the corresponding stress matrix.
7.8.2. Determine the internal stress resultants in problem 7.6.2.
7.9.1. Compute the maximum deflection of a simply supported moderately thick

square plate subjected to P0 = 400,000 kN concentrated force at its center
by using the conjugate beam analogy‡. The plate dimensions are given in
Fig. 7.9.4a. The subdivision of the analysis quadrant should be 2 × 2.

7.9.2. Repeat problem 7.9.1 assuming clamped boundary conditions. Use Donnel ’s
approximation

w ≈
[

1 − 1.065h2

6(1 − ν)
∇2

]
wK,

where wK represents Kirchhoff ’s classical solution of the given plate prob-
lem obtained by FEM analysis. The harmonic operator ∇2 in this equation
may be approximated by a corresponding finite difference expression.

7.13.1. Write a simple finite element program for plate analysis. Use the sample
program given in Appendix A.4.2 as your guide.

7.13.2. Determine the convergence characteristics of the plate element used in your
finite element program.

† The first two numbers refer to the corresponding section.
‡ See Sec. 2.10.
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8.1 Introduction and Basic Concepts

Although, the FEM is a very powerful and highly versatile tool for the analysis
of diverse plate problems, it becomes uneconomical with simple rectangular plates.
Since rectangular plates are used frequently either as plate structures or structural
components in various branches of engineering, a more economical treatment of such
plates is needed. For this purpose the finite strip method (FSM) was developed. The
classical FSM can be considered as a simplified extension of the FEM for the analysis
of Kirchhoff’s plates in which two opposite edges in the longitudinal direction are
assumed to be either simply supported or fixed. However, the two other edges in
the transverse direction can have arbitrary boundary conditions. The FSM represents
a semianalytical, seminumerical hybrid process that has important advantages for
plates with fairly simple geometry.

The classical FSM was first introduced by Cheung [8.1.1] for the analysis of
rectangular plates with two opposite edges simply supported. A similar—but quite
independent—approach was also published by Powell and Odgen [8.1.2] at a later
date.

Basically, the classical FSM involves an approximation of the mathematically
exact solution of a plate problem by using a continuous harmonic function series
that satisfies the boundary conditions in the longitudinal direction and a piecewise
interpolation polynomial in the transverse direction. As already mentioned, the bound-
ary conditions in the transverse direction can be arbitrary. This approach permits
the discretization of the rectangular plates in finite longitudinal strips, as shown on
Fig. 8.1.1. These strips are connected to one another along the nodal lines. Displace-
ments and rotations represent the degrees of freedom of each nodal line. Stiffness
and load matrices of the individual strips are determined either by virtual work or
by using the minimum of the potential energy principle. These matrices of the finite
strips are assembled in the usual way to form the stiffness and load matrices of the
total structure. Consequently, the steps to be followed are generally similar to those
of the FEM.

475Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
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Figure 8.1.1 Plate bending using classical FSM.

The displacement function for each finite strip is chosen in the general form

w(x, y) =
∞∑

n=1

Xn(x) · Yn(y), (8.1.1)

which represents in effect Kantorovich’s technique of separation of variables treated
in Sec. 4.4. The simply supported boundary conditions in the longitudinal direction
call for a Yn(y) = sin nπy/b smooth and differentiable trigonometric function, while
Xn(x) in the transverse direction may represent simple polynomials corresponding
to the n terms of the series Yn. As in the case of the FEM, the selection of a suitable
shape function is of primary importance concerning the convergence characteristics
of the method.

While in the FEM each nodal point has at least three degrees of freedom, the FSM
replaces numerous elements by a single strip with just two degrees of freedom at
the nodal lines. Consequently, the number of unknown displacements is drastically
reduced. Furthermore, the classical FSM takes advantage of the orthogonality of the
harmonic functions in the stiffness matrix formulation, resulting in a block diagonal
stiffness matrix of the plate. This approach not only simplifies the data manipulation in
forming the assembled stiffness matrix of the structure but also reduces its bandwidth.
Thus, considerable economy in the solution is achieved.

In the last decades, static solutions to thin-plate problems using the FSM have been
developed extensively. For instance, the method has been extended to cover other than
simply supported edges in the longitudinal direction [8.1.3], which includes clamped
and simply supported and clamped boundary conditions. In addition, the recently
developed spline and “computed” shape functions† further increase the applicability

† See Sec. 10.8.
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of the FSM [8.1.4]. Free vibrations and elastic stability problems of rectangular plates
can also be solved economically by the FSM.

While the above-mentioned solutions have been based entirely on Kirchhoff’s plate
theory, recently, moderately thick plate theories are also being used to include the
effect of transverse shear. This effort has resulted in moderately thick finite strip
solutions discussed later detail.
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8.2 Displacement Functions for Classical FSM

As with the FEM, selection of suitable displacement functions for the strip elements
is the most important part of the analysis, since it greatly influences the quality of
the obtained results. Consequently, great care should be exercised in selecting suit-
able displacement functions to achieve convergence to the exact solutions of plate
problems. Since the FSM can be considered an extension of the FEM, it can also
be mathematically classified as a variation of Ritz’s energy approach with piece-
wise approximation of the displacement field. The types of displacement functions to
be used for the finite strips, however, are different from those employed for the
finite elements. That is, while the FEM uses mostly polynomials in both direc-
tions, the classical FSM utilizes trigonometric series in the longitudinal (Y ) direction
and employs polynomials in the transverse (X) direction. The most general require-
ment to achieve convergence to the exact solution is that the strain should remain
finite at the interfaces between strips in the Ritz-type energy formulation of the
plate problem.

Selection of suitable displacement functions for the finite strip elements is based
on the separation of variables, as indicated in Eq. (8.1.1). Convergence to the right
solutions can be assured if the following three conditions are satisfied:

1. The basic function Yn(y) should be represented by trigonometric series that
satisfy the boundary conditions of the plate in the Y direction.

2. The transverse part of the displacement function Xn(x) should be a polynomial
satisfying the constant-strain conditions in the X direction. It should be noted
that the strain vector ε is obtained by differentiating the displacement function,
as discussed in Sec. 8.3.

3. The displacements w, θx = ∂w/∂x must be compatible along the nodal lines.

a. Basic Functions in Longitudinal Direction. For the series representation of the
basic function Yn(y), the classical FSM employs mostly eigenfunctions of vibrating
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beams or those of beam buckling. Although the recently developed spline and
“computed” shape functions can replace the series by polynomials [8.2.1], treatment
of these alternatives is discussed later in connection with the advanced topics of
the FSM.

The general form of the eigenfunctions of a vibrating beam has the general form

Yn(y) = C1 sin
λny

b
+ C2 cos

λny

b
+ C3 sinh

λny

b
+ C4 cosh

λny

b
, (8.2.1)

where λn is a parameter to be determined according to the end supports and b

represents the length of the strip element (Fig. 8.1.1b). The coefficients C1, C2, C3
and C4 should be determined from the boundary conditions in the Y direction. The
use of the eigenfunctions of vibrating beams in connection with Galerkin’s solution of
plate and shell problems was first suggested by Vlasov [8.2.2, 8.23] and was treated
in Sec. 4.3.

The following particular shapes of the basic function Yn(y) can be used in FSM
to solve the most common plate problems:

1. Both ends are simply supported (Fig. 8.2.1). The boundary conditions can be
written as

Yn(0) = Y ′′
n (0) = 0 and Yn(b) = Y ′′

n (b) = 0; (8.2.2)

hence

Yn(y) = sin
λny

b
, λn = π, 2π, 3π, . . . . (8.2.3)
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Y
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Y

Figure 8.2.1 Shapes of vibrating beams.
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2. One end is simply supported while the other is fixed.
The boundary conditions in this case are

Yn(0) = Y ′′
n (0) = 0 and Yn(b) = Y ′

n(b) = 0, (8.2.4)

and the corresponding eigenfunction becomes

Yn(y) = sin
λny

b
− cn sinh

λny

b
,

λn = 4n + 1

4
π for n = 1, 2, 3, . . . ,

cn = sin λn

sinh λn

.

(8.2.5)

3. Both ends are fixed, having the pertinent boundary conditions

Yn(0) = Y ′
n(0) = 0 and Yn(b) = Y ′

n(b) = 0. (8.2.6)

Thus, the corresponding eigenfunction is

Yn(y) = sin
λny

b
− sinh

λny

b
− cn

(
cos

λny

b
− cosh

λny

b

)
,

λn = 2n + 1

2
π for n = 1, 2, 3, . . . ,

cn = sin λn − sinh λn

cos λn − cosh λn

.

(8.2.7)

For the other boundary conditions, such as free-free, fixed-free and simply sup-
ported–free, we merely refer to Ref. [8.2.4], which also contains valuable data
concerning their integrals to be used in formulating the finite strip procedures.

Another valuable source for basic functions Yn(y) can be the eigenfunctions of
column buckling [8.2.5]. The general form of these equations is

Yn(y) = C1 sin ky + C2 cos ky + C3y + C4, (8.2.8)

where C1, C2, C3 and C4 are constants and k represents a parameter; their values are
found by considering the boundary conditions of the finite strip in the Y direction.

If both ends are simply supported, Eq. (8.2.8) becomes

Yn(y) = C1 sin
nπy

b
for n = 1, 2, 3, . . . , (8.2.9)

where C1 represents the undetermined amplitude of the buckled shape. For our pur-
pose C1 can be taken as C1 = 1. Consequently, Eqs. (8.2.3) and (8.2.9) become
identical.

For fixed end columns, for example, the equation of the deflection curve is

Yn(y) = cos
2nπy

b
− 1. (8.2.10)
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For a plate strip fixed at y = 0 and free at the other end, the eigenfunction of the
buckled column becomes

Yn(y) = 1 − cos
(2n − 1)πy

2b
. (8.2.11)

The reader will find additional deflection curves of column buckling in most
standard textbooks on elastic stability. For stability analysis of elastic plates, for
example, these functions give more exact results than the eigenfunctions of vibrating
beams.

Finally, it should be noted that all these basic functions are orthogonal. Conse-
quently, for m �= n

∫ b

0
YmYn = 0 and

∫ b

0
Y ′′

m · Y ′′
n = 0. (8.2.12)

Due to these valuable properties of orthogonality, computation of integrals required
in formulating the finite strip procedures becomes simpler, as discussed in Sec.8.3.

b. Shape Functions in Transverse Direction. For the Xn(x) part of the displace-
ments [Eq. (8.1.1)], polynomials can be used. For this purpose, we can employ the
well-known beam functions† that represent the deflection curves of a fixed beam
subjected subsequently to unit translations and rotations, respectively, at each end
(Fig. 8.2.2). Thus for a typical strip element with sides �i and �j (Fig. 8.1.1), the
displacement function can be written as

w(x, y) =
r∑

n=1

[(
1 − 3x2

a2
+ 2x3

a3

)
win +

(
−x + 2x2

a
− x3

a2

)
θin

+
(

3x2

a2
− 2x3

a3

)
wjn +

(
x2

a
− x3

a2

)
θjn

]
Yn(y), (8.2.13)

Z, w

Xji

a
f1(x)

wi = 1

Z, w

Xji

a

f2(x)qi = 1

Z, w

X
ji

a

f3(x)

Z, w

Xji

af4(x)

qj = 1

wj = 1

Figure 8.2.2 Fixed beam subjected to unit displacements.

† See Refs. [6.4.1–6.4.15].
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where win, wjn and θin, θjn are translations and rotations, respectively, corresponding
to the nodal lines �i and �j .

We can also express the displacement function w(x, y) in a more general form by
using polynomials

w(x, y) =
r∑

n=1

(α1 + α2x + α3x
2 + α4x

3)Yn, (8.2.14)

where α1, . . . , α4 are parameters to be expressed in terms of the nodal-line displace-
ments. Equation (8.2.14) can be written in a more concise form as

w(x, y) =
r∑

n=1

[Ci Cj ]

{
δi

δj

}
Yn, (8.2.15)

where Ci and Cj are matrices associated with δi and δj nodal-line displacements
(deflection and rotation) and n denotes the number of terms in series Yn.

Although the shape functions Xn(x) and Yn(y) introduced here are capable of
giving good results in most of cases, they nevertheless have some shortcomings. For
instance, because the beam functions are continuously differentiable, it is difficult to
use them to simulate abrupt changes of bending moments at internal supports or in
the vicinity of concentrated forces. In addition, they are not too exact at the free-
edges of the plates. These difficulties, however, can be overcome by using refined
shape functions [8.2.1].
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8.3 Formulation of the Method

The nodal displacements of a rectangular strip element corresponding to the nth term
in the series Yn are

δn =
{

wi,

(
∂w

∂x

)
i

, wj ,

(
∂w

∂y

)
j

}T

n

=




win

θin

wjn

θjn


 =

{
δin

δjn

}
. (8.3.1)
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Consequently, the displacements wi , wj and the rotations θi , θj along the nodal lines
i and j are: 


wi

θi

wj

θj


 =

r∑
n=1

{win, θin, wjn, θjn}TYn =
{

δi

δj

}
. (8.3.2)

The displacement field given previously in Eq. (8.2.13) can be rewritten in the more
concise matrix form

w(x, y) =
r∑

n=1

Lnδn = Nδ, (8.3.3)

where

Ln =
[(

1 − 3x2

a2
+ 2x3

a3

)
,

(
−x + 2x2

a
− x3

a2

)
,

(
3x2

a2
− 2x3

a3

)
,

(
x2

a
− x3

a2

)]
Yn

(8.3.4)

and

δ =




δ1

δ2

...

δr




. (8.3.5)

The strain vector ε is obtained by differentiating the displacement function w with
respect to the x and y coordinates. Hence

ε =




−∂2w

∂x2

−∂2w

∂y2

2
∂2

∂x

w

∂y




=
r∑

n=1

Bnδn = Bδ, (8.3.6)

where B represents the strain matrix. Its submatrix Bn corresponding to the nth term
of the series Yn is defined as

Bn =



(
6

a2
− 12x

a3

)
Yn

(
− 4

a
+ 6x

a2

)
Yn

(
12x

a3
− 6

a2

)
Yn

(
− 2

a
+ 6x

a2

)
Yn

−
(

1 − 3x2

a2
+ 2x3

a3

)
Y ′′

n

(
x − 2x2

a
+ x3

a2

)
Y ′′

n −
(

3x2

a2
− 2x3

a3

)
Y ′′

n

(
x3

a2
− x2

a

)
Y ′′

n

(
− 12x

a2
+ 12x2

a3

)
Y ′

n

(
−2 + 8x

a
− 6x2

a2

)
Y ′

n

(
12x

a2
− 12x2

a3

)
Y ′

n

(
− 6x2

a2
+ 4x

a

)
Y ′

n




.

(8.3.7)
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In this equation Yn, Y ′
n and Y ′′

n are series defining the strip displacements in the Y

direction† and its first and second derivatives, respectively.
Similarly, the stress vector is

σ =



mx

my

mxy


 = Dε = DBδ = D

r∑
n=1

Bnδn, (8.3.8)

where D represents the elastic matrix

D = D


 1 ν 0

ν 1 0
0 0 (1 − ν)/2


 and D = Eh3

12(1 − ν2)
. (8.3.9)

To derive the stiffness matrix Ke for the finite strip element, we use—as in the
FEM—the minimum principle of the total potential energy. This is given as

� = U + W, (8.3.10)

where U is the strain energy of the elastic strip,

U = 1

2

∫ b

0

∫ a

0
εTσdx dy = 1

2

∫ b

0

∫ a

0
σTBTDBδ dx dy, (8.3.11)

and W represents the work done by the load vector on the displacement field w = Nδ.
Thus, we can write

W = −
∫ b

0

∫ a

0
δTNTp dx dy, (8.3.12)

where N denotes the shape function defined in Eq. (8.3.3) and p is the load vector.
The principle of the minimum potential energy requires that

∂�

∂δ
= ∂(U + W)

∂δ
= {0}. (8.3.13)

After performing the partial differentiations in Eq. (8.3.11), we obtain

∂�

∂δ
=

∫ b

0

∫ a

0
BTDBδ dx dy −

∫ b

0

∫ a

0
NTp dx dy = {0}; (8.3.14)

hence

Keδ − fp = {0}, (8.3.15)

where

Ke =
∫ b

0

∫ a

0
BTDB dx dy (8.3.16)

† See Sec. 8.2.
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represents the stiffness matrix of the rectangular finite strip and

fp =
∫ b

0

∫ a

0
NTp dx dy (8.3.17)

denotes the consistent load vector.
We recall that the displacement function w(x, y) is expressed as a series; thus,

Eq. (8.3.16) can be written in the more expanded form

Ke =
∫ b

0

∫ a

0
BTDB dx dy =

∫ b

0

∫ a

0
[B1 B2 · · · Br ]TD[B1 B2 · · · Br ] dx dy

=
∫ b

0

∫ a

0




BT
1 DB1 BT

1 DB2 · · · BT
1 DBr

BT
2 DB1 BT

2 DB2 · · · BT
2 DBr

...
...

. . . · · ·
BT

r DB1 BT
r DB2 · · · BT

r DBr


 dx dy. (8.3.18)

Thus, the stiffness matrix of the finite plate strip becomes

Ke =




K11 K12 · · · K1r

K21 K22 · · · K2r

...
...

. . . · · ·
Kr1 Kr2 · · · Krr


 , (8.3.19)

with the current term

Kij ,mn =
∫ b

0

∫ a

0
BT

mDBn dx dy =
[

Kii Kij

Kji Kjj

]
mn

. (8.3.20)

If both ends of the finite strip are simply supported in the longitudinal direction,
the basic function and its first and second derivatives are involved in the evaluation
of the stiffness matrix. These are

Yn = sin
nπy

b
, Y′

n = nπ

b
cos

nπy

b
, Y′′

n = −
(nπ

b

)2
sin

nπy

b
. (8.3.21)

Thus we have

∫ b

0
Y ′

mY ′
n dy =




(mπ

b

) (nπ

b

) ∫ b

0 cos
mπy

b
cos

mπy

b
dy = 0 for m �= n,

n2π2

2b
for m = n

(8.3.22)

and

∫ b

0
YmY ′′

n dy =




−n2π2

b2

∫ b

0 sin
mπy

b
sin

nπy

b
dy = 0 for m �= n,

−n2π2

2b
for m = n.

(8.3.23)
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Therefore, for m �= n Eq. (8.3.20) becomes zero. For m = n the elements of the
stiffness matrix

Ke,n = D




k11 k12 k13 k14
k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44


 (8.3.24)

corresponding to simply supported rectangular plate strips (Fig. 8.1.1b) are given
in Table 8.3.1.† Numbering of the nodal line displacement components is defined
in Fig. 8.3.1. Similarly, the elements of the stiffness matrix Ke,mn covering general
boundary conditions in the Y direction are listed in Table 8.3.2.‡ Expressions for the
definite integrals in this table are (if m �= n and I1 = I4 = 0)

I1 =
∫ b

0
YmYn dy, I2 =

∫ b

0
Y ′′

m · Yn dy, I3 =
∫ b

0
YmY ′′

n dy,

I4 =
∫ b

0
Y ′′

m · Y ′′
n dy, I5 =

∫ b

0
Y ′

m · Y ′
n dy.

(8.3.25)

Table 8.3.1 Stiffness Matrix Coefficients of Simply
Supported Stripa

k11 = 6b

a3
+ 13ab

70
c2 + 6b

5a
cν + 6b(1 − ν)

5a
c

k21 = − 3b

a2
− 11a2b

420
c2 − 3b

5
cν − b(1 − ν)

10
c = k12

k31 = − 6b

a3
+ 9ab

140
c2 − 6b

5a
cν − 6b(1 − ν)

5a
c = k13

k41 = − 3b

a2
+ 13a2b

840
c2 − b

10
cν − b(1 − ν)

10
c = k41

k22 = 2b

a
+ ba3

210
c2 + 2ab

15
cν + 2ab(1 − ν)

15
c

k32 = 3b

a2
− 13a2b

840
c2 + b

10
cν + b(1 − ν)

10
c = k23

k42 = 1

a
− a3b

280
c2 − ab

30
cν − ab(1 − ν)

30
c = k24

k33 = 6b

a3
+ 13ab

70
c2 + 6b

5a
cν + 6b(1 − ν)

5a
c

k43 = 3b

a2
+ 11a2b

420
c2 + 3b

5
cν + b(1 − ν)

10
c = k34

k44 = 2b

a
+ a3b

210
c2 + 2ab

15
cν + 2ab(1 − ν)

15
c

c = n2π2

b2

aEq. (8.3.24).

† See also Refs. [8.3.1] and [8.3.2].
‡ See also Refs. [8.3.3] and [8.3.4].
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Figure 8.3.1 Simply supported plate strip.

Table 8.3.2 Stiffness Matrix for General Boundary Conditionsa

k11 =
[

12

a3
I1 − 6ν

5a
[I2 + I3] + 39a

105
I4 + 12(1 − ν)

5b
I5

]
D

k21 =
[
− 6

a2
I1 − ν

10
[I2 + 11I3] + 11a2

210
I4 + 1 − ν

5
I5

]
D = k12

k31 =
[
− 12

a3
I1 + 6ν

3a
[I2 + I3] + 27a

210
I4 − 12(1 − ν)

5a
I5

]
D = k13

k41 =
[

6

a2
I1 − ν

10
[I2 + I3] − 13a2

420
I4 + 1 − ν

5
I5

]
D = k14

k22 =
[

4

a
I1 − 2aν

15
[I2 + I3] + a3

105
I4 + 4a(1 − ν)

15
I5

]
D

k32 =
[
− 6

a2
I1 − ν

10
[I2 + I3] + 13a2

420
I4 − 1 − ν

5
I5

]
D = k23

k42 =
[

2

a
I1 + 7aν

210
[I2 + I3] − a3

140
I4 − a(1 − ν)

15
I5

]
D = k24

k33 =
[

12

a3
I1 − 6ν

5a
[I2 + I3] + 39a

105
I4 + 12(1 − ν)

5a
I5

]
D

k43 =
[
− 6

a2
I1 + ν

10
[I2 + I3] − 11a2

210
I4 − 1 − ν

5
I5

]
D = k34

k44 =
[

4

a
I1 − 2aν

15
[I2 + I3] + a3

105
I4 + 4a(1 − ν)

15
I5

]
D

aIn the Y direction.
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In the FEM one way of checking the correctness of the element stiffness matrix
Ke is by calculating the sums of all stiffness coefficients in each column. For a
correct element stiffness matrix these sums must be zero. Unfortunately, such a
simple way for checking the stiffness matrices given in Tables 8.3.1 and 8.3.2 is no
longer valid in the FSM, since supporting forces exist that are not included in these
matrices.

For determination of the consistent load vector fp, we first refer to Eq. (8.3.17),
which can be rewritten as

fp =
∫ b

0

∫ a

0




N1
N2

...

Nr


 (P1Y1 + P2Y2 + · · · + PrYr) dx dy, (8.3.26)

where the expression in parentheses represents a series-type expansion† using the
selected basic function Yn. Consequently, the external lateral load is expressed as

p = P1Y1 + P2Y2 + · · · + PrYr =
r∑

n=1

PnYn. (8.3.27)

The coefficient Pn can be obtained by multiplying Eq. (8.3.27) by Yn and integrating
it between zero and b. Thus, we have

∫ b

0
pYn dy = P1

∫ b

0
Y1Yn dy + P2

∫ b

0
Y2Yn dy + · · ·

+ Pn

∫ b

0
Y 2

n dy + · · · + Pr

∫ b

0
YrYn dy. (8.3.28)

Because of the already discussed orthogonality of the basic functions, Eq. (8.3.28)
gives

Pn =

∫ b

0
pYn dy

∫ b

0
Y 2

n dy

. (8.3.29)

In a similar way, the expansion coefficient Pn can be determined for various load
distributions. For a locally distributed load, for instance, Cheung [8.3.5] gives

Pn =

∫ d

c

pYn dy

∫ b

0
Y 2

n dy

, (8.3.29a)

† See Appendix A.1 for Fourier-type series expansion.
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and for a concentrated load P0 acting on a nodal line† at y = c distance,

Pn = P0Yn(c)∫ b

0
Y 2

n dy

. (8.3.29b)

Due to the orthogonality of the basic function Yn, Eq. (8.3.26) can be written as

fp =
∫ b

0

∫ a

0




N1P1Y1

N2P2Y2

...

NrPrYr


 dx dy =




fp,1

fp,2

...

fp,r




, (8.3.30)

where

fp,n =
∫ b

0

∫ a

0
NnPnYn dx dy. (8.3.31)

For simply supported strips subjected to uniformly distributed loads, Eq. (8.3.31)
becomes

fp,n = Pnb

2




a/2
−a2/12

a/2
a2/2




. (8.3.32)

Similarly, for a concentrated force P0 acting on the nodal line i, we obtain

fp,n = P0Yn(c)




1
0
0
0


 . (8.3.33)

From the previous equations, it is clear that the accuracy obtained by the FSM
in a given plate problem depends not only on the shape function but also on how
closely the external load can be approximated by the first few terms of the series
expansion. Furthermore, it is evident that with different basic functions we obtain
different stiffness matrices as well as different consistent load vectors for the finite
strips, as shown in Refs. [8.3.1–8.3.4].
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8.4 Outline of Computational Procedures

The analysis of a rectangular plate by the classical FSM follows, in general, the
already familiar matrix displacement approach by solving a system of algebraic
equations pertinent to the nth term of the series expansion.

First, the plate is discretized by a suitable number of strips connected to each other
by the longitudinal nodal lines, as shown in Fig. 8.4.1b. It is advisable to assign a
nodal line to each concentrated force acting on the plate proper. Although the reader
will find in Refs. [8.3.3] and [8.3.4] expressions for dealing with concentrated forces
acting in the domain of a strip, experience shows that the former approach gives
better accuracy.
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Next, the admissible displacement components of each nodal line are numbered
with reference to the global X, Y , Z coordinate system of the structure. As in the
closely related FEM, nodal-line displacements, which are restrained, receive no
numbers.

For each strip (Fig. 8.4.1c) we compute the element stiffness matrix Ke,n and
consistent load vector fp,n corresponding to the nth term of the series expansion. If
the plate is simply supported in the Y direction, we use Table 8.3.1 and Eqs. (8.3.32)
and (8.3.33), respectively. These matrices are relevant to the local coordinate system
X, Y, Z of each strip. Due to the orthogonality of the selected basic function Yn, all
terms in the stiffness matrix of the strip are uncoupled. Consequently, Eq. (8.3.19)
becomes a block diagonal matrix

Ke =




K11 0 · · · 0
0 K22 · · · 0
...

...
. . .

...

0 0 0 Krr


 . (8.4.1)

Assemblage of the stiffness matrix Kn of the total structure corresponding to the
nth term of the series expansion follows along the same line as that of the FEM,
discussed in Sec. 7.2. Since in this case the axes of the global and local coordinate
systems are parallel, no rotations of the local coordinate systems are required. In the
next step, the coefficients kij of the strip matrices will be renumbered based on the
global numbering of the discretized system by applying the code number technique;
this gives kij . Since the restrained nodal-line displacements do not receive any global
numbers, the corresponding rows and columns are eliminated in the stiffness matrices
of the plate strips. Now the stiffness matrix of the total structure, Kn, is assembled
using the familiar additive approach.

Solution of the uncoupled system of equilibrium equations

Knfp,n = δn for n = 1, 2, . . . , r (8.4.2)

gives the nodal-line displacements δn pertinent to the nth term of the series expansion,
and the sum of these,

δ =
r∑

n=1

δn, (8.4.3)

yields the final nodal-line displacement vector.
According to Eq. (8.3.8), the moments are related to the strain, while D contains

all the material properties in the form of E and ν, respectively. The matrix of the
moments for the midpoint of the two longitudinal sides of the strip for the nth term
of the series expansion is

mn =




mx,i

my,i

mxy,i

mx,j

my,j

mxy,j




n

= D

[
Bi

Bj

]
n

{
δi

δj

}
n

. (8.4.4)
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Again, the sum of these results,

m =
r∑

n=1

mn =




mx,i

my,i

mxy,i

mx,j

my,j

mxy,j




n

, (8.4.5)

yields the final moments for the nodal lines �i and �j , respectively. The excellent
convergence characteristics of the FSM are demonstrated by numerous examples in
Ref. [8.1.1].

As is the case with the FEM, we obtain slightly different values at both sides of
the nodal lines. By averaging these two values and using a parabolic interpolation
between the nodal lines, moments at the middle of the strip can be calculated.

ILLUSTRATIVE EXAMPLE

Let us compute the deflections and the moments of the square reinforced-
concrete slab shown in Fig. 8.4.2a using the FSM. The slab carries a concen-
trated load P0 = 1 at its midpoint. Poisson’s ratio of the concrete is assumed
to be v = 0.15. To make the computation easier to follow, let us use only one
term (n = 1) in the series expansion.

Free

CL

Simply supported

P0 = 1 0.50

0.50

0.50 0.50

lx = 1.00

(a) Loading and edge supports (b) Substitute system

n = 0.15

CL

Y

0.25 0.25

0 3

1 2

5

4

1.00

1 2 3

21

Figure 8.4.2 Square plate with two opposite edges supported and other two edges free.

Because of the symmetry, only one-half of the plate is used. This half plate is
divided by lines parallel to the Y axis into only two strips. The five admissible
nodal-line displacements (lateral translations and rotations) are numbered as
shown in Fig. 8.4.2b.
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The stiffness matrix of a simply supported strip (Fig. 8.4.1c) is calculated
using the explicit expressions given in Table 8.3.1. Hence, for the first term
(n = 1) of the series expression, we obtain

Ke,1 = D




435.89/b2 Symmetric
−49.89/b2 8.34
−429.81/b2 48.89 435.89/b2

−48.89/b2 3.912 49.89/b2 8.34




n=1

, (8.4.6)

and with b = 1, the corresponding stiffness matrix of one-half of the slab
becomes

K1 = D




435.89
−429.81 871.79 Symmetric
−48.89 0.00 16.67

0.00 −429.81 48.89 435.89
0.00 −48.89 3.91 49.89 8.34




1

. (8.4.7)

From Eq. (8.3.33) the consistent load vector is

fp,1 =




0.50
0.00
0.00
0.00
0.00




1

. (8.4.8)

Solution of the matrix equation

K1fp,1 = δ1 (8.4.9)

gives

δ1 = D




22.46
20.33
11.29
18.21

4.93




10−3. (8.4.10)

According to Eqs. (8.3.7) and (8.4.4), the moment (stress) matrix for the mid-
points of the two sides of a strip is




mx,i

my,i

mxy,i

- - -
mx,j

my,j

mxy,j




= D




(96 + π2)/b2 −16/b −96/b2 −8/b

(96 + π2)/b2 −16/b −96/b2 −8/b

0.00 0.00 0.00 0.00
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

−96/b2 8/b (96 + π2)/b2 16/b

−96/b2 8/b (96 + π2)/b2 16/b

0.00 0.00 0.00 0.00







δi

- -
δj


 ,

(8.4.11)
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or




mx,i

my,i

mxy,i

- - -

mx,j

my,j

mxy,j




= D




97.48/b2 −16/b −96/b2 −8b

24.27/b2 −2.4/b −14.4/b2 4.2/b

0.00 0.00 0.00 0.00

- - - - - - - - - - - - - - - - - - - - - - - - - - -

−96/b2 8/b 97.48/b2 16/b

−14.4/b2 1.2/b 24.27/b2 2.4/b

0.00 0.00 0.00 0.00







δi

- -
δj


 .

(8.4.12)

Thus, moments at the midpoint i of strip �1 are




mx,i

my,i

mxy,i




�1

1

= D




97.48 −16 −96 −8

24.27 −2.4 −14.4 −1.2

0.00 0.00 0.00 0.00







22.46

0.00

20.33

11.29




10−3

= D




147.3

238.8

0.00


 10−3. (8.4.13)

Similarly, the moments at the midpoint �j of strip �1 become




mx,j

my,j

mxy,j




�1

1

= D




−96 8 97.48 16

−14.4 12 24.27 2.4

0.00 0.00 0.00 0.00







22.46

0.00

20.33
11.29




10−3

= D




6.3

197.1

0.00


 10−3. (8.4.14)

Using the same approach for strip �2 , we obtain




mx,i

my,i

mxy,i




�2

1

= D




97.48 −16 −96 −8

24.27 −2.4 −14.4 −1.2

0.00 0.00 0.00 0.00







20.33

11.29

18.21
4.93




10−3

= D




13.1

198.1

0.00


 10−3 (8.4.15)
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and




mx,j

my,j

mxy,j




�2

1

= D


 −96 8 97.48 16

−14.4 1.2 24.27 2.4
0.00 0.00 0.000 0.00







20.33
11.29
18.21

4.93


 10−3

= D




−6.9
174.7

0.00


 10−3. (8.4.16)

To determine the deflected plate surface, we utilize the already computed
lateral translations δ1,1, δ2,1 and δ4,1 as amplitudes for the sine functions used in
this case for Yn. A basically similar approach can be taken for the determination
of the moment diagrams. As mentioned earlier, we obtained two values for
the moments at the nodal line �2 . Consequently, their average values should
be considered as amplitudes for the pertinent second derivatives of the basic
function Yn.

Although we used only a very crude discretization, in combination with a
fairly difficult load and merely one term in the series expansion, the obtained
maximum deflection of the plate shows only 6.4% error in comparison with a
corresponding FEM solution. In this independent check, the conforming rect-
angular plate element with 16 DOF and a 2 × 2 subdivision were employed.

8.5 Summary and Conclusions

The classical FSM is a semianalytical, seminumerical technique for the analysis of
plates. This approach is particularly suited to accurate and efficient solutions of single,
rectangular Kirchhoff plates of simple boundary conditions subjected to quasi-regular
transverse forces.

Since the FSM can also be mathematically classified as an energy approach, spe-
cial attention must be paid to the selection of suitable shape functions, which greatly
influences its convergence characteristics. The method utilizes series of orthogo-
nal functions in the longitudinal direction combined with conventional beam func-
tions in the transverse direction. By taking advantage of the orthogonality of the
harmonic functions, the FSM yields a block diagonal structure of the assembled
stiffness matrix, resulting in greatly simplified data manipulation and drastically
reduced computer storage and running time with respect to other numerical meth-
ods. These advantageous characteristics of the FSM, combined with the fact that
it transforms the two-dimensional plate problems into one-dimensional analysis,
permit even the use of advanced scientific calculators in the solution of single
plates.

Against the above-mentioned advantages of the classical FSM, however, the analyst
must carefully weigh the following disadvantages before applying it:

1. Because of the semianalytical nature of the FSM, its mathematical require-
ments are generally higher than those for the other numerical techniques treated
so far.
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2. The method is not always quite transparent. Consequently, its study curve is
steeper than usual.

3. If stiffness matrices and load vectors are not readily available in explicit forms,
their computation by long hand requires elaborate differentiations and integra-
tions of the shape functions. Symbolic mathematical programs such as MAPLE
and MATHEMATICA†, however, can eliminate much of these tedious com-
putations. Generally, we need pertinent subroutines in our computer programs
to generate these inputs.

4. The classical FSM is limited to rectangular plates and relatively simple bound-
ary conditions.

5. Highly irregular loads are difficult, or even impossible, to handle.

Most of these limitations of the classical FSM, however, have been overcome by
recent developments and extensions of the method. Now the FSM can deal effectively
with circular and continuous plates, plates with arbitrary geometrical shapes, dynamic
and stability plate problems, moderately thick plates, and so on. These advances are
treated under Extensions of the Classical FSM in Sec. 10.3.

Problems‡

8.4.1. Rework the Illustrative Example in Sec. 8.4 using a uniformly distributed
load and three strips.

8.4.2. A uniformly loaded square plate has fixed boundary conditions. Calculate the
maximum deflection of the plate by using the FSM. Use three strips for the
half plate and only one term in the series. Take the Poisson ratio v = 0.3.

8.4.3. Repeat problem 8.4.2 for the next two terms.
8.4.4. A simply supported rectangular plate with the side ratio of 1/1.5 carries a con-

centrated force at its midpoint. Calculate moments in the plate using the FSM.
Assume that the Poisson ratio v = 0.25. Use only three-strip idealization and
one term in the series expansion.

8.4.5. Repeat problem 8.4.4, but assume that one side of the plate is fixed.
8.4.6. Repeat problem 8.4.4, but assume a partially distributed lateral load that is

symmetrically located with respect to the center of the plate.

† See References in Sec. 2.4.
‡ The first two numbers refer to the corresponding section.



9
Boundary Element Method

9.1 Introduction

In recent years, a new numerical method has attracted much attention from applied
mathematicians and mathematically inclined structural engineers. This currently emer-
ging numerical solution technique—called the boundary element method (BEM)—
proceeded from the highly mathematical theory of integral equations. The principal
feature of the BEM is that the governing differential equation of plates (1.2.30)
is transformed into a set of integral equations on the plate boundary and then
these equations are discretized by introducing a finite number of elements located
only on the boundary. Consequently, element approximations are made only at the
boundary of the plate. At every interior point of the plate, the governing differen-
tial equation (1.2.30) is satisfied. Therefore, no interior discretization of the plate is
required. In this way, the whole domain of the plate becomes large “finite element”
(Fig. 9.1.1a). This leads to a considerable reduction of the unknowns and therefore
to reduced computer time.

Although the BEM is now slowly gaining acceptance in structural analysis, it
still remains mostly the providence of applied mathematicians and mathematically
well trained engineers. The reason for its relatively modest gain in popularity among
practicing engineers is partially well founded. That is, in spite of its mathemat-
ically elegant formulation, its practical implementation for plate analysis remains
quite problematic. In addition, it is difficult write a computer program for
the BEM.

Three formulations have been proposed for the BEM: direct, semidirect and indi-
rect. These three types are derived in different way. In the direct formulation, the
unknowns are real physical quantities such as displacement components. Mathemat-
ically, the direct BEM formulation, which is briefly presented here, can be classified
as a special case of the weighted residuals technique [9.1.5]. In this case, the dis-
cretized boundary element equations are formulated with the help of the so-called
fundamental solution of the plate differential equation, as discussed in the subsequent
section.

496 Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
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Figure 9.1.1 Discretization of plate boundary.
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9.2 Basic Concepts of Boundary Element Method

To be able to apply the BEM, the fundamental solution of the governing differential
equation must be known. The fundamental solution is represented by Green’s function
for infinite domain. By the Green’s function we mean the solution of a linear partial
differential equation whose nonhomogeneous term has been replaced by a product
of delta functions, so as to represent the effect of a concentrated forcing function.
Consequently, the fundamental solution is a function that satisfies the governing
differential equation at every point of an infinite domain, except at one point called the
load or source point. At this point the differential equation should exhibit singularity;
that is, it will tend to become infinite.

Formulation of the direct BEM is based on the Maxwell-Betti reciprocal theorem,
which describes the relationships between two distinct equilibrium states in an elastic
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structure. This is the same theorem that is used in computation of influence lines and
influence surfaces†.

a. BEM Applied to Beams. To introduce the basic concepts of the BEM, we select
first an elastic beam whose second-order differential equation is

d2w(x)

dx2
+ M(x)

EI
= 0. (9.2.1)

The fundamental solution of this differential equation can be written as

w∗(x, y) = 1
2 |x − y|, (9.2.2)

which represents the deflection of the beam at point x caused by the unit moment
applied at point y.

Substitution of Eq. (9.2.2) into Eq. (9.2.1) gives

d2w∗(x, y)

dx2
+ δ(x, y) = 0, (9.2.3)

where δ(x, y) is the Dirac delta function that can represent the concentrated unit
moment with the fundamental property

∫ ∞

−∞
δ(x, y) dx = 1. (9.2.4)

In the direct BEM, we use an identity produced by multiplying Eq. (9.2.1) with
the fundamental solution and integrate it over the span l of the beam. This gives

∫ l

0

[
d2w(x)

dx2
+ M(x)

EI

]
w∗(x, y) dx = 0. (9.2.5)

Carrying out the integration by parts and applying the property of the Dirac delta
function, we obtain the following boundary integral equation:

w(y) = [θ(l)w∗(l, y) − w(l)θ∗(l, y)] − [θ(0)w∗(0, y) − w(0)θ∗(0, y)]

+
∫ l

0

M(x)

EI
w∗(x, y) dx, (9.2.6)

where

θ(x) = dw(x)

dx
and θ∗(x, y) = dw∗(x, y)

dx
. (9.2.7)

Letting y �→ 0 and y �→ l in Eq. (9.2.6), we obtain

A
{

w(0)

θ(0)

}
+ B

{
w(l)

θ(l)

}
=

∫ l

0

1

EI

{
M(x)w∗(x, 0)

M(x)w∗(x, l)

}
dx. (9.2.8)

† See Sec. 10.5.
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This equation, with known coefficient matrices A and B, provides two equations
for the four boundary values w(0), θ(0), w(l) and θ(l). Since we can prescribe two
of these boundary conditions, Eq. (9.2.8) can be solved for the remaining two. Con-
sequently, solution of the boundary integral equation immediately yields the desired
results at the boundary. In a similar manner, the results at the interior points can
be obtained, but in this case the source point of the fundamental solution must be
located at the interior point.

b. BEM Applied to Plates. An approach similar to the one used above for beams
can be taken when the BEM is applied to plates. However, the corresponding formu-
lation is far more complex. Essentially, the direct boundary element formulation for
plates is based upon the same two theorems employed for beams: (a) a fundamental
solution of the governing plate equation and (b) the Maxwell-Betti reciprocity theo-
rem. In addition, however, a third theorem in the essence of Gauss-Green must also be
applied. This theorem expresses an identity that relates an area integral of a derivative
of a function to a line integral of that function around the boundary of that area.

To briefly introduce the reader to the inherently difficult formulation of the BEM as
applied to plate bending problems, our short description here is partially based, with
some appropriate modifications, on the paper written by Hu and Hartley [9.2.6]. This
short summary should serve merely as an introduction illustrating the mathematical
complexity of this type of numerical solution of plate problems. A more extensive
discussion of the BEM would be outside the scope of this book. For further studies,
the reader is referred to the references listed at the end of this and the previous section.

The plate deflection problem is governed by the already introduced plate equation
(1.2.30):

D ∇4w(x, y) = p(x, y). (9.2.9)

The fundamental solution of this fourth-order partial differential equation is given as

w∗(P, Q) = r2

8πD
ln(r), (9.2.10)

where Q represents a field point and P denotes the source or load point where the
unit load is acting (Fig. 9.2.1). The distance between these two points is r . In this
case, the meaning of the fundamental solution is the deflection w∗ at field point Q

Y
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t
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Mn

Vn

h

Z,w
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Qp(x,y)

Ω

Γ

r

Figure 9.2.1 Relevant notation.
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caused by the unit force acting at point P . By employing this fundamental solution of
an infinite plate under unit concentrated force, the plate equation is transformed into

D ∇4w∗(x, y) = δ(P, Q), (9.2.11)

where δ(ž) denotes, again, the Dirac delta function, which tends to approach infinity
at point Q and is equal to zero anywhere else.

Next, we utilize the Gauss-Green identity for the biharmonic operator in the form

∫∫
�

(u ∇4v − v ∇4u) d� =
∫

�

(
u

∂ ∇2v

∂n
− ∂u

∂n
∇2v − v

∂ ∇2u

∂n
+ ∂v

∂n
∇2u

)
d�,

(9.2.12)

where u and v are two functions having fourth-order derivatives inside of the plate
domain, �, and third-order derivatives at the boundary �. If u = w and v = w∗, then
we obtain

∫∫
�

wδ(P, Q) d� −
∫∫
�

pw∗ d�

= D

∫
�

(
w

∂ ∇2w∗

∂n
− ∂w

∂n
∇2w∗ − w∗ ∂ ∇2w

∂n
+ ∂w∗

∂n
∇2w

)
d�. (9.2.13)

This equation represents the general integral equation of the plate bending prob-
lems. We want, however, to express Eq. (9.2.13) in terms of the normal moment M∗

n ,
equivalent shear force V ∗

n and corner force T ∗
i (Fig. 9.2.2) along the boundary corre-

sponding to the fundamental solution given in Eq. (9.2.6). After some mathematical
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Figure 9.2.2 Fundamental solution.
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manipulations, the following equation for the free boundary condition is obtained:

Cw(P ) −
∫

�

(M∗
nθn + V ∗

n W) d� −
Nc∑
i=1

WiT
∗
i =

∫∫
�

pw∗ d�, (9.2.14)

where W , θn are deflections and normal rotations, respectively, along the plate bound-
ary and Nc represents the number of boundary corners. Furthermore, the factor C in
this equation equals unity if the point P is located inside the plate domain and zero
if P is located outside of it. The plate deflection at point P is represented by w(P ).

In this formulation of the integral equation, the deflections W and normal rota-
tions at the boundary θn are the unknowns. Consequently, for two unknowns to
be determined, we need two boundary integral equations: One is the fundamental
equation (9.2.14) and the other one is a complementary equation obtained by differ-
entiating the fundamental equation with respect to the boundary normal n at point
P . This gives

C
∂w(P )

∂n
−

∫
�

(
∂M∗

n

∂n
θn + ∂V ∗

n

∂n
W

)
d� −

Nc∑
n=1

Wi

∂T ∗
i

∂n
=

∫∫
�

p
∂w∗

∂n
dθ, (9.2.15)

where ∂w(P )/∂n is the normal rotation at point P .
Equations (9.2.14) and (9.2.15) represent the integral formulation of the free

boundary condition of the plate. The obvious approach for their solution would be
to integrate them analytically. Since analytical integrations are not feasible because
of their complexity, we must resort to numerical solution techniques. To be able to
solve these two boundary integral equations numerically, however, discretization of
the plate boundary is required. The discretization should start from some corner point
with jumps in the boundary curvature forming a number of boundary segments. One
of the strengths of the BEM is a theoretically unlimited choice of boundary elements.
The most common types, however, are constant, linear, quadratic and some higher-
order elements. In Fig. 9.2.3 a few boundary elements with appropriate number
of nodes—as used in discretization of the boundary—are shown. The unknown
functions within each boundary element are the boundary displacements W(�) and
normal boundary rotations θ(�)n. Within each element these unknown functions

Constant element

Linear element

Quadratic element
Boundary element

node

Higher-order element

Figure 9.2.3 Different types of boundary elements.
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are usually approximated by polynomials. In our case, we use the Lagrange-type
shape function.

After the boundary is discretized into boundary elements and the boundary func-
tions are interpolated, the problem reduces to the task to determine the nodal val-
ues of the unknown functions. Consequently, the integral equations (9.2.14) and
(9.2.15) become

Cw(P ) −
Ne∑
i=1

Ni∑
j=1


∫

�i

M∗
nLij (�) d�


 θnij −

Ne∑
i=1

Ni∑
j=1


∫

�i

V ∗Lij (�) d�


 Wij

−
Ne∑
i=1

WiT
∗
i =

∫∫
�

pw∗ d� (9.2.16)

and

C
∂w(P )

∂n
−

Ne∑
i=1

Ni∑
j=1


∫

�i

∂M∗
n

∂n
Lij (�) d�


 θnij −

Ne∑
i=1

Ni∑
j=1


∫

�i

∂V ∗

∂n
Lij (�) d�


 Wij

−
Ne∑
i=1

Wi

∂T ∗
i

∂n
=

∫∫
�

p
∂w∗

∂n
d�, (9.2.17)

where Ne is the number of boundary elements, Ni is the number of nodes within
the ith element, Lij represents the Lagrangian shape function and Wij , Qnij are the
unknown values at the boundary nodes j of the boundary element i.

After the analytical evaluation of the integrals in this equation, we obtain a set of
algebraic equations

Ax = b, (9.2.18)

where the coefficient matrix A depends only on geometrical and material parameters.
The column matrix x contains the unknown boundary values, and the applied loads
are represented by the vector b. It should be noted that the fully populated coefficient
matrix A is unsymmetric.

Once the boundary values are determined, we can compute the internal stress
resultants mx , my and mxy of the plate. For this purpose Eq. (9.2.14) is rewritten using
C = 1. This gives the expression of the plate deflection at point P . The curvatures
required for the computation of the internal moments† are obtained from




∂2w

∂x2

∂2w

∂y2

∂2w

∂x ∂y




=
∫∫
�




∂2w∗

∂x2

∂2w∗∗
∂y2

∂2w∗∗
∂x ∂y




p d� +
Ne∑
i=1

Ni∑
j=1




∫
�i




∂2M∗
n

∂x2

∂2M∗
n

∂y2

∂2M∗
n

∂x ∂y




Lij (�) d�




θnij

† See Sec. 1.2.
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+
Ne∑
i=1

Ni∑
j=1




∫
�i




∂2V ∗
n

∂x2

∂2V ∗
n

∂y2

∂2V ∗
n

∂x ∂y




Lij (�) d�




Wij +
Ne∑
i=1

Wi




∂2T ∗
i

∂x2

∂2T ∗
i

∂y2

∂2T ∗
i

∂x ∂y




(9.2.19)

c. Concluding Remarks. Recently, the BEM has emerged as a powerful numer-
ical method in engineering applications. Although the principles of the BEM are
mathematically elegant, its practical implementation remains highly problematic. Its
accuracy depends largely upon the choice of load points, which is usually beyond the
competence of the average user. Furthermore, it is difficult to automate the required
procedures within a computer program. As was shown in this section, there are
many of complexities in the analysis that require considerable simplifications before
the BEM will be as enthusiastically accepted by structural engineers as the FEM
for numerical analysis of plates. Until such simplification occurs, the BEM remains
mostly the tool of mathematically well versed research engineers.
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10
Linear Considerations

10.1 Orthotropic Plates
a. General Concepts. In the preceding chapters of this book, it was always assumed
that the plate material is homogeneous and isotropic in all directions. In many practical
applications of plate structures, however, it is often necessary to consider directional-
dependent bending stiffness. If the structural properties of the plate differ in two
mutually perpendicular directions, the plate is described as orthogonally anisotropic or,
in short, orthotropic. Such structural anisotropy can be introduced by ribs, corrugations
or beam stiffeners (Fig. 10.1.1a), to name a few. In some other cases, the structural
material itself is inherently orthotropic. Two-way reinforced-concrete slabs are prime
examples of such natural anisotropy.

Orthotropic plate structures are very common in present-day engineering. In archi-
tectural engineering, for instance, reinforced-concrete slabs with one-way or two-way
joists are often used for floor systems in buildings. In civil engineering, the high-
way bridge decks usually consist of plates stiffened with rectangular, triangular or
trapezoidal ribs. The use of stiffened plates is especially indispensable in ship and
aerospace structures. That is, the hull of a ship, its deck, its bottom and superstructure
(Fig. I.2b) may be considered as orthotropic plates. Similarly, in flight structures the
wings and fuselage consist of skin with an array of stiffening ribs (Fig. I.2c).

Although the actual structural behavior of plate stiffener assemblies cannot com-
pletely be replaced by that of orthotropic plates, experimental data indicate good
agreement with such idealization, provided that the relatively small stiffeners are
uniform and closely spaced. The basic idea of this approximation is to convert the
stiffened plate into an equivalent orthotropic plate by “smearing out” the stiffen-
ers. Such an approximation, however, cannot be justified if the stiffeners are large
(Fig. 10.1.2). In this case, the FEM may be used for the analysis of such a plate-grid
structure subjected to lateral loading. The plate should be independently divided into
elements, and the corresponding stiffeners must be treated as beam elements with
imposed compatibility along the lines of beam-plate junctions. Another—probably
more economical approach—uses macro-plate-beam elements. The stiffness matrix
of such an assembly can be computed by applying the engineering approach already
demonstrated in connection with gridwork cells (Sec. 6.3). Consequently, the stiffness
coefficients of such large elements can be computed by superimposing the already

507Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
Copyright © 2004 John Wiley & Sons, Inc.
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Figure 10.1.1 Examples of structural and natural orthotropy.

available plate and beam stiffness coefficients. Again, compatibility along the lines
of beam-plate junctions must be maintained by using appropriate element stiff-
ness matrices.

b. Theory. In the derivation of Kirchhoff’s small-deflection plate theory, the number
of independent elastic constants was two (E, ν). If we assume that the principal
directions of orthotropy coincide with the X and Y coordinate axes, it becomes
evident that four elastic constants (Ex, Ey, νx, νy) are required for the description of
the orthotropic stress-strain relationships:

εx = σx

Ex

− νy

σy

Ey

, εy = σy

Ey

− νx

σx

Ex

, γ = τ

Gxy

, (10.1.1)
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Figure 10.1.2 Plate-grid assembly.

where the shear modulus Gxy of the orthotropic material can be expressed in terms
of Ex and Ey as follows:

Gxy ≈
√

ExEy

2(1 + √
νxνy)

≈ E

2(1 + √
νxνy)

.

Solving Eq. (10.1.1) for σx , σy and τ , we find

σx = Ex

1 − νxνy

(εx + νyεy),

σy = Ey

1 − νxνy

(εy + νxεx),

τ = Gxyγ.

(10.1.2)

Next, we express the strains in terms of the lateral deflection, as described in Sec. 1.2.
The substitution of these relations into Eqs. (1.2.22) and (1.2.23) gives

mx = −Dx

(
∂2w

∂x2
+ νy

∂2w

∂y2

)
,

my = −Dy

(
∂2w

∂y2
+ νx

∂2w

∂x2

)
,

mxy = −2Dt

∂2w

∂x ∂y
,

(10.1.3)

where

Dx = Exh
3

12(1 − νxνy)
and Dy = Eyh

3

12(1 − νxνy)
(10.1.4a)
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are the flexural rigidities of the orthotropic plate, while

2Dt = (1 − √
νxνy)

√
DxDy = (1 − νxy)Dxy (10.1.4b)

represents its torsional rigidity. For an orthotropic plate of uniform thickness, the
torsional rigidity can be written as

Dt = Gxy

h3

12
. (10.1.5)

The substitution of Eq. (10.1.3) into the equilibrium equation of a plate element
(1.2.9) yields the governing differential equation of orthotropic plates†:

Dx

∂4w

∂x4
+ 2B

∂4w

∂x2 ∂y2
+ Dy

∂4w

∂y4
= pz(x, y), (10.1.6)

where

B = 1
2 (νyDx + νxDy + 4Dt) (10.1.7)

is called the effective torsional rigidity of the orthotropic plate. Based on Betti’s
reciprocal theorem, we can write

νxEy = νyEx or νxDy = νyDx ; (10.1.8)

therefore, another form for Eq. (10.1.7) is

B = νxDy + 2Dt = νyDx + 2Dt ≈ νxyDxy + 2Dt. (10.1.9)

Equation (10.1.8) can be used to determine the Poisson ratios due to structural
orthotropy. It should be pointed out that in the latter case νy and νx are not material
properties, but rather are elastic constants corresponding to the geometrical configu-
ration of the structural system.

By substituting Eq. (10.1.3) into Eqs. (1.2.5) and (1.2.6), we find the shear forces:

qx = − ∂

∂x

(
Dx

∂2w

∂x2
+ B

∂2w

∂y2

)
,

qy = − ∂

∂y

(
Dy

∂2w

∂y2
+ B

∂2w

∂x2

)
.

(10.1.10)

Similarly, the expressions of the lateral edge forces (1.3.3) become

vx = −Dx

[
∂3w

∂x3
+
(

4Dt

Dx

+ νy

)
∂3w

∂x ∂y2

]
,

vy = −Dy

[
∂3w

∂y3
+
(

4Dt

Dy

+ νx

)
∂3w

∂x2 ∂y

]
.

(10.1.11)

† Often called Huber’s equation [10.1.3].
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If the orthotropic plate is subjected to simultaneous bending and stretching, the
governing equation of equilibrium of the isotropic case should also be modified,

Dx

∂4w

∂x4
+ 2B

∂4w

∂x2 ∂y2
+ Dy

∂4w

∂y4
= pz(x, y) + nx

∂2w

∂x2
+ 2nxy

∂2w

∂x ∂y
+ ny

∂2w

∂y2
,

(10.1.12)
which will be used in Sec. 16.7 for the elastic stability analysis of orthotropic plates.

The nonlinear differential equations of the large-deflection orthotropic plate theory
can be derived in a manner analogous to isotropic plates, with the exception that, in
this case, the orthotropic stress-strain relationships (10.1.2) are valid. The governing
equations, deduced by Rostovtsev [10.1.5], are

Dx

h

∂4w

∂x4
+ 2

B

h

∂4w

∂x2 ∂y2
+ Dy

h

∂4w

∂y4
= ∂2�

∂y2

∂2w

∂x2
− 2

∂2�

∂x ∂y

∂2w

∂x ∂y
+ ∂2�

∂x2

∂2w

∂y2
+ pz

h

(10.1.13a)
and

1

Ey

∂4�

∂x4
+
(

1

Gxy

− 2
νx

Ex

)
∂4�

∂x2 ∂y2
+ 1

Ex

∂4�

∂y4
=
(

∂2w

∂x ∂y

)2

− ∂2w

∂x2

∂2w

∂y2
.

(10.1.13b)
The more rigorous differential equation of the orthogonally stiffened plate [10.1.4,

10.1.18] is

D1
∂8w

∂x8
+ D2

∂8w

∂x6 ∂y2
+ D3

∂8w

∂x4 ∂y4
+ D4

∂8w

∂x2 ∂y6
+ D5

∂8w

∂y8
= pz(x, y),

(10.1.14)

where the constants D1, . . . , D5 express the elastic rigidities of the plate and stiffeners.

c. Determination of Principal Flexural Rigidities. Since the accuracy of the anal-
ysis of orthotropic plates depends, to a large extent, on the expressions used for
the sectional properties, direct tests, if possible, should be applied to determine the
actual flexural and torsional rigidities. Of these, the value of the torsional rigid-
ity is usually the most difficult to obtain. Based on certain analytic considerations,
however, reasonable approximations can be introduced. In determining these val-
ues, it should always be kept in mind that all sectional properties are defined per
unit length.

A suitable formula for the effective torsional rigidity of two-way reinforced-
concrete slabs of uniform thickness is

B = √
DxDy. (10.1.15)

If a reinforced-concrete, slab-girder configuration (Fig. 10.1.3) should be approxi-
mated by an equivalent isotropic plate, the flexural rigidities can be defined by

Dx = EIx

c1
(10.1.16a)
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Figure 10.1.3 Reinforced-concrete slab stiffened by orthogonal ribs.

and

Dy = EIy

c2
, (10.1.16b)

where Ix and Iy are the moments of inertia of the section with respect to the neutral
axis† and c1 and c2 denote the spacing of the beams. For more rigorous calculation
the portion of the cross section formed by the slab should be divided by‡ 1 − ν2

xy .
For the effective width of the T sections the use of c1 and c2 beam spacings (instead
of their code values) is recommended.

In calculating the effective torsional rigidity of such a deck-girder assemblage
(Fig. 10.1.3), we usually separate the beam and slab portions; thus

B = Eh3

12(1 − ν2
xy)

+ Gxy

2

(
h1b

3
1η1

c1
k1 + h2b

3
2η2

c2
k2

)
, (10.1.17)

where ηi is a numerical factor depending on the ratio hi/bi . Some values of ηi are:

hi/bi 1.0 1.2 1.5 2.0 2.5 3.0 4.0 6.0 8.0 10.0 ∞
ηi 0.140 0.166 0.196 0.229 0.249 0.263 0.281 0.299 0.307 0.313 0.333

Since the torsional rigidities of reinforced-concrete beams are, in general, consid-
erably diminished after cracks have been developed in the concrete [10.1.23], it is
recommended that the terms representing the beam portions in Eq. (10.1.17) should
be reduced. The magnitude of such a reduction factor, ki , depends on the reinforcing
hi/bi ratio and on the ratio of the torsional moment to the simultaneously acting
bending moment. Research on this subject has been carried out at the University

† For moments of inertia the same subscript notation is used as for flexural rigidities and internal
forces (see Sec. 1.2).
‡ ν2

xy = νxνy .
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Figure 10.1.4 Steel deck-plate.

of Stuttgart (F. Leonhardt) and at the Swiss Federal Institute of Technology, Zurich
(B. Thürlimann).

A similar approach can be used for estimating the equivalent sectional properties of
steel deck plates (Fig. 10.1.4). In this case the flexural properties can be expressed as

Dx = Eh3

12(1 − ν2
xy)

+ Ehe2
x

1 − ν2
xy

+ EI0x

c1
, (10.1.18)

Dy = Eh3

12(1 − ν2
xy)

+ Ehe2
y

1 − ν2
xy

+ EI0y

c2
, (10.1.19)

B = Eh3

12(1 − ν2
xy)

+ Gxy

6



∑

dt t
3
t

c1
+
∑

dt t
3
t

c2


 , (10.1.20)

where I0x and I0y denote the moments of inertia of the stiffeners with respect to their
neutral axis in the X and Y directions, respectively, while ex and ey represent the dis-
tance of the neutral axes from the middle plane of the plate. These formulas can also
be used for composite (i.e., concrete-steel; Fig. 10.1.5b) deck slabs by transforming
the concrete part of the section into an equivalent steel plate.

If open gridworks (Fig. 10.1.6a) are to be approximated by an equivalent ortho-
tropic plate, provided that the parallel beams are closely spaced at equal distances,
the use of the following sectional properties is recommended:

Dx = EIx

c1
, Dy = EIy

c2
and B = Gxy

2

(
Itx

c1
+ Ity

c2

)
, (10.1.21)

where Ix , Iy , Itx and Ity represent the moments of inertia and the geometrical tor-
sional rigidities of the beams. In this case we have assumed that νxyDxy = 0. This
assumption is justified, since there is no slab between the beams.
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Figure 10.1.5 Typical orthotropic plate structures.

For corrugated plates made of isotropic materials with corrugation in the X direc-
tion, as shown in Fig. 10.1.6b, the principal rigidities can be estimated from

Dx = l

s

Eh3

12(1 − ν2)
, Dy = EI, B = s

l

Eh3

12(1 + ν2)
, (10.1.22)

where

s = l

(
1 + π2H 2

4l2

)
and I = 0.5H 2h

[
1 − 0.81

1 + 2.5(H/2l)2

]
. (10.1.23)
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Figure 10.1.6 Orthotropic plate approximations.

d. Analysis Procedures. Most analytical and numerical solution techniques already
introduced in the previous chapters for isotropic plates can be logically applied to
the solutions of orthotropic plate problems. Simply supported rectangular orthotropic
plates, for instance, can be conveniently analyzed by Navier’s method. Similarly,
Lévy’s solution can be used for rectangular orthotropic plates that are simply sup-
ported on two opposite sides and arbitrarily supported on the two opposite sides.
Since the governing differential equation for orthotropic plates is available, Galerkin’s
variational technique can be readily applied to almost any boundary condition of rect-
angular orthotropic plates. The required procedure remains the same as described in
Sec. 4.3 for isotropic plates.

If the plate geometry and its boundary and loading conditions are quite arbitrary,
numerical methods must be used. The extension of the ordinary finite difference
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Figure 10.1.7 Coefficient pattern for finite difference expression of orthotropic plate equ-
ation (10.1.6).

method to orthotropic plates is straightforward. The corresponding coefficient pattern
is given in Fig. 10.1.7. Simply supported and fixed boundary conditions can be treated
as described in Sec. 5.1d. For the more difficult case of free edge, a readily usable
stencil is provided in Fig. 10.1.8.

By its very nature, the gridwork method discussed in Chapter 6 is well suited for
the analysis of many orthotropic plate problems. The analysis procedure is identical
with that already discussed in Chapter 6. Let us now consider an orthotropic gridwork
cell shown in Fig. 10.1.9. The required equivalent sectional properties were obtained
by equating the strain energy of the orthotropic plate element with that of the beams
of the gridwork cell [10.1.32]. This resulted in

IAB = ICD = Dx

2Ex

b, IAC = IBD = Dy

2Ey

a,

JAB = JCD = Dt

G
b, JAC = JBD = Dt

G
a.

(10.1.24)

One can use these values in combination with any commercially available computer
program developed for grillage analysis.

The stiffness matrix of a somewhat more complex gridwork was derived by Hussein
and Morsi [10.1.32]. Although working with this gridwork cell requires more compu-
tational effort, it provides rapid convergence and satisfactory accuracy (Fig. 10.1.10).

The finite element method treated extensively in Chapter 7 can also be extended to
orthotropic plates without any additional difficulty by using appropriate orthotropic
stress-strain relationships. For a rectangular plate element in which the local coor-
dinate directions coincide with the principal directions of orthotropy, we rewrite
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Eq. (7.2.6) as

kij =
∫∫




∂2wi

∂x2

∂2wi

∂y2

∂2wi

∂x ∂y




T


Dx D1 0

D1 Dy 0
0 0 Dt







∂2wj

∂x2

∂2wj

∂y2

∂2wj

∂x ∂y




dA, (10.1.25)
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Figure 10.1.10 Convergence characteristics of gridwork cell given in Ref. [10.1.32].

where Dx , Dy and Dt are defined by Eqs. (10.1.4a) and (10.1.5), respectively, and

D1 = νyDx = νxDy. (10.1.26)

By formulating the stiffness matrix for a rectangular orthotropic plate element,
Zienkiewicz and Cheung [10.1.26] applied the same technique as described in
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Figure 10.1.11 Orthotropic plate element.

Sec. 7.6.1. The corresponding four-node finite element with three degrees of freedom
at each node is shown in Fig. 10.1.11. The polynomial expression selected for the
displacement functions is similar to that given in Eq. (7.6.2). The explicit form of
this stiffness matrix as supplied in Ref. [10.1.35] is

K(N)
e = 1

60ab
A(DxK1 + DyK2 + D1K3 + DxyK4)A, (10.1.27)

where

A =



α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α


 with α =


 1 0 0

0 2b 0
0 0 2a


 and Dxy = Gh3

12
,

(10.1.28)

and the matrices Ki (i = 1, 2, 3, 4) are listed in Table 10.1.1. The corresponding
stress matrix Se is given in Table 10.1.2. The convergence characteristics of this
finite element is shown in Fig. 10.1.12.

For naturally orthotropic plates, Dt is defined in Eq. (10.1.4). If the sectional
properties must be related to those of an equivalent plate, as in the case of struc-
tural orthotropy such as shown in Fig. 10.1.3, it is probably more convenient to use
Eq. (10.1.9) in the form

B = νxyDxy + 2Dt = √
νxνy

√
DxDy +

[
2Gxy

h3

12
+ Gxy

2

(
It1

c1
+ It2

c2

)]
,

(10.1.29)
where the expression in brackets represents 2Dt . Thus, with the torsional rigidity of
the plate given in Eq. (10.1.5), the torsional rigidities of the beam portions of the
section (without the plate) have been superimposed. If Eq. (10.1.29) proves to be too
difficult to evaluate, we may assume that vxy = 0; therefore,

B ≈ 2Dt, (10.1.30)
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Figure 10.1.12 Convergence characteristics of finite element given in Eqs. (10.1.27)–(10.1.32).
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Figure 10.1.13 Approximate treatment of RC slab-beam interaction [10.1.36].
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from which the required Dt can be calculated. Again, the principal directions of
orthotropy must coincide with those of the local coordinate axis. Since symmetry
of the stiffness matrix is usually an essential requirement for efficient computations,
especially when large matrices are involved, vyDx must equal vxDy in Eq. (10.1.26).
If this is not the case, it can be accomplished by using average values in the form
of vxyDxy .

Summary. Readers who have already mastered the previously treated Kirchhoff
plate theory and its analytical and numerical solution techniques will not find any
difficulty in extending them to orthotropic plates. Based on the author’s experience,
the recommended methods for solution of “real-life” orthotropic plate problems are
the finite difference, gridwork and finite element methods. Arbitrary geometry can
also be approximated by zigzag lines without losing too much accuracy provided
a relatively small mesh size is used. For smaller problems, the application of the
FDM offers definite advantages. Among other items, there is no need for a computer
program. The only requirement for a finite difference solution is that of an equation
solver. Since the number of the generated algebraic equations is usually small, even a
high-powered scientific calculator will be sufficient for this purpose. A final reminder:
Plate-girder assemblies usually cannot be treated as orthotropic plates! Thus, the FEM
must be applied, with certain restrictions, as mentioned in the introduction of this
section. The approximation shown in Fig. 10.1.13 may simplify such an approach. It
is of importance, however, that degrees of freedom of the plate stiffness matrix and
those of the beams have the same directions.

ILLUSTRATIVE EXAMPLE I

Determine an expression for the deflected middle surface of a rectangular
orthotropic plate subjected to a uniformly distributed load pz = p0. The edges
of the plate are simply supported. Assume that the principal directions of
orthotropy are parallel with those of the edges.

Because of the simply supported boundary conditions, Navier’s method can
be applied. The double Fourier series of the load† is

p0 = 16p0

π2

∑
m

∑
n

1

mn
sin

mπx

a
sin

nπy

b

for m = 1, 3, 5, . . . , n = 1, 3, 5, . . . . (10.1.31)

We seek the solution of Eq. (10.1.6) also in form of a double trigonometric
series; thus

w(x, y) =
∑
m

∑
n

Wmn sin
mπx

a
sin

nπy

b

for m = 1, 3, 5, . . . , n = 1, 3, 5, . . . . (10.1.32)

The unknown coefficient Wmn for a specific set of m and n is found by substi-
tuting Eqs. (10.1.31) and (10.1.32) into the governing differential equation of

† See Appendix A.1.
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orthotropic plate (10.1.6), which gives

Wmn = 16p0

π6

1

mn[Dx(m4/a4) + 2B(m2n2/a2b2) + Dy(n4/b4)]

for m = 1, 3, 5, . . . , n = 1, 3, 5, . . . . (10.1.33)

By substituting this expression into Eq. (10.1.32), we obtain the required expres-
sion for the deflected plate surface. In the case of isotropy, this solution becomes
equal to that obtained in Sec. 2.2.

ILLUSTRATIVE EXAMPLE II

Let us solve the governing differential equation (10.1.6) for a plate that is
simply supported on opposite edges and clamped on the other two. The plate
is subjected to a distributed lateral load pz(x, y), as shown in Fig. 10.1.14.
Because of the prescribed boundary conditions, Lévy’s method† can be applied.
Accordingly, we assume that the solution consists of two parts:

w(x, y) = wH (x, y) + wP (x, y), (10.1.34)

b/2

b/2
X

a

Y Z, w

Simply supported

Fixed

pz (x, y)

Figure 10.1.14 Orthotropic plate with Lévy’s boundary conditions.

where wH (x, y) represents the solution of the homogeneous form of Eq. (10.1.6)
and wP (x, y) is a particular solution of the governing equation. The homoge-
neous form of Eq. (10.1.6) is

Dx

∂4wH

∂x4
+ 2B

∂4wH

∂x2 ∂y2
+ Dy

∂4wH

∂y4
= 0. (10.1.35)

Solution of this equation can be expressed by the single trigonometric series

wH (x, y) =
∞∑

m=1

Ym(y) sin
mπx

a
, (10.1.36)

† See Sec. 2.3.
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which satisfies the boundary conditions at the simply supported edges. Substi-
tution of Eq. (10.1.36) into Eq. (10.1.35) gives

∞∑
m=1

[
Dx

(mπ

a

)4
Ym(y) − 2B

(mπ

a

)2 ∂2Y (y)

∂y2
+ Dy

∂4Ym(y)

∂y4

]
sin

mπx

a
= 0.

(10.1.37)

Equation (10.1.37) is an ordinary homogeneous differential equation of fourth
order. Consequently, its solution may be sought in the form

Ym(y) = Ceλy (10.1.38)

in which C and λ are constants. Substituting Eq. (10.1.38) into Eq. (10.1.37),
we obtain the characteristic equation

Dx

(mπ

a

)4 − 2Bλ2
(mπ

a

)2 + Dyλ
4 = 0, (10.1.39)

the roots of which are

λ1 = mπ

a

√
1

Dy

(
B +

√
B2 − DxDy

)
,

λ2 = mπ

a

√
1

Dy

(
B −

√
B2 − DxDy

)
,

λ3 = −mπ

a

√
1

Dy

(
B +

√
B2 − DxDy

)
,

λ4 = −mπ

a

√
1

Dy

(
B −

√
B2 − DxDy

)
.

(10.1.40)

Thus, the general form of the homogeneous solution can be written as

wH (x, y) =
∞∑

m=1

(C1e
λ1y + C2e

λ2y + C3e
λ3y + C4e

λ4y) sin
mπx

a
. (10.1.41)

Now, we express the loading in terms of sine series,

p(x) = Pm sin
mπx

a
, (10.1.42)

in which

Pm = 2

a

∫ a

0
p(x) sin

mπx

a
dx. (10.1.43)
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Consequently, we can assume the particular solution to be of the form

wP (x, y) =
∞∑

m=1

Am(y) sin
mπx

a
. (10.1.44)

Substitution of wP (x, y) into the differential equation (10.1.6) yields

∞∑
m=1

[
Dx

(mπ

a

)4
Am − 2B

(mπ

a

)2 d2Am

dy2
+ Dy

d4Am

dy4
− Pm

]
sin

mπx

a
= 0.

(10.1.45)

Hence

Am = Pm

Dx

( a

mπ

)4
; (10.1.46)

thus

wp(x, y) =
∞∑

m=1

Pm

Dx

( a

mπ

)4
sin

mπx

a
, (10.1.47)

and the general form of the total solution becomes

w(x, y) =
∞∑

m=1

[
C1e

λ1y + C2e
λ2y + C3e

λ3y + C4e
λ4y + Pm

Dx

( a

mπ

)4
]

sin
mπx

a
.

(10.1.48)

The unknown constants C1, C2, C3 and C4 in this equation are determined
from the boundary conditions at the two clamped edges, which are

(w)y=±b/2 = 0 and

(
∂w

∂y

)
y=±b/2

= 0. (10.1.49)

ILLUSTRATIVE EXAMPLE III

A square orthotropic plate with fixed boundary conditions is subjected to pz =
p0 = constant lateral load. Find approximate values of the deflection by the
ordinary FDM. Assume that the principal directions of natural orthotropy are
parallel with the plate edges. The arbitrarily assumed flexural rigidities of the
plate are Dx , Dy = 0.5DX and 2B = 2.496Dx , νx = νy = 0.3.

Using these flexural rigidities, the governing differential equation (10.1.6)
becomes

Dx

∂4w

∂x4
+ 2.4296Dx

∂4w

∂x2 ∂y2
+ 0.5Dx

∂4w

∂y4
= p0. (10.1.50)

Since the plate is orthotropic, the finite difference equation given in Fig. 10.1.7
should be employed. Thus, we obtain
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Dx

λ4
(wm+2,n − 4wm+1,n + 6wm,n − 4wm−1,n + wm−2,n)

+ 2.4296Dx

λ4
[4wm,n − 2(wm+1,n + wm−1,n + wm,n+1 + wm,n−1)

+ wm+1,n+1 + wm+1,n−1 + wm−1,n+1 + wm−1,n−1]

+ 0.5Dx

λ4
(wm,n+2 − 4wm,n+1 + 6wm,n − 4wm,n−1 + wm,n−2) = p0

(10.1.51)
Using only a very coarse subdivision λ = a/4, as shown in Fig. 10.1.15, and
applying the above expression at various mesh points, we obtain




18.7184 −17.7184 −13.7184 9.7194
− 8.8592 20.7184 4.8592 −13.7184
− 6.8592 4.8592 19.7184 −17.7184

2.4296 − 6.8592 − 8.8592 21.7184






w1

w2

w3
w4


 =




p0

p0

p0
p0




λ4

Dx

.

(10.1.52)
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4

Z, w

4 2 4

4 2

a

a

4

4 2 4

4 2 4

3 1 3

l

l = a/4

Y pz = p0 = const

X

Figure 10.1.15 Numbering of mesh points.

Solution of these algebraic equations gives

w =




w1
w2

w3

w4


 =




0.4963
0.3392
0.3592
0.2412




p0λ
4

Dx

. (10.1.53)



528 Linear Considerations

Since there is no “exact” solution of this problem, we must use an approximate
value to judge the obtained accuracy. Thus, a comparison of the approxi-
mate center deflection wmax ≈ 0.0019p0a

4/Dx with its energy solution [10.1.6]
counterpart

wmax ≈ 0.003418
p0a

4

Dx + 0.5714B + Dy

= 0.001544
p0a

4

Dx

(10.1.54)

shows an error of 23%. In this comparison, however, one must weigh the
fact that the ordinary FDM gives lower-bound solutions, while an approximate
solution based on energy consideration approaches the exact solution from
above. Consequently, the actual error will be less than the value given above.
By using a finer mesh combined with Richardson’s extrapolation technique,
the results can be considerably improved.

ILLUSTRATIVE EXAMPLE IV

Solve the problem in Illustrative Example III by the FEM, assuming that B =
2Dt and vxyDxy = 0. Use Table 10.1.1 for the element stiffness matrix.

Let us subdivide the plate into four elements, as shown in Fig. 10.1.16.
Considering only those displacements that can take place, the element stiffness
matrix becomes

Ke = Dx

a2


 51.2115 Symmetric

5.94368 5.25824
− 9.94364 0.00000 7.92491


 . (10.1.55)

+ +
+

Sign convention

a/2

a/2

Y

Z, w

Tributary area

1 23

Dx

Dy

X

Figure 10.1.16 Finite element representation of clamped orthotropic plate.

Utilizing the apparent double symmetry of the structure and load, it is sufficient
to consider only one quarter plate. Hence, the matrix displacement equation of
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this plate problem can be written as

d =



d1

d2

d3


 =


 204.846 0.0 0.0

0.0 21.033 0.0
0.0 0.0 31.699




−1 


0.25
0.0
0.0




p0a
4

Dx

. (10.1.56)

Solution of this equation gives d1 = wmax = 0.00123p0a
4/Dx , which in com-

parison with the approximate energy solution of the problem shows an error
of 21%. However, by increasing the number of elements, this error can be
substantially reduced.
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10.2 Laminated and Sandwich Plates

In recent years the use of laminated composite and sandwich plates has considerably
increased. They are used especially in aerospace and naval structures, but nowadays
their frequent applications can also be found in the automobile industry and building
construction in the form of prefabricated and mobile homes and floors made of
plywood laminates. Their popularity arises from the fact that, due to their light weight
and high strength, they can be used very efficiently.

The term laminated refers to a composite structural material that is formed by
combining two or more materials that are bonded together by strong adhesives
(Fig. 10.2.1a). Consequently, they are by their very nature anisotropic. Unlike
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Figure 10.2.1 Laminated and sandwich plates.

isotropic materials, anisotropic materials exhibit complicated mechanical behaviors
that do not admit exact solutions very easily. Thus, the analyst must rely mostly on
representative approximations to obtain solutions of their boundary value, stability
and dynamic problems. Sandwich-type construction refers to laminates that consist of
two layers of strong materials on the outer faces and a relatively weak core between
them (Fig. 10.2.1b). Such sandwich plates offer high bending stiffness for a small
weight penalty.

With increasing use of such composite materials, the need for practical methods
of analysis is obvious. Laminated plate analysis is based on two types of theo-
ries: (1) classical Kirchhoff plate theory and (2) Reissner-Mindlin shear deformation
theory for moderately thick plates.

10.2.1 Classical Laminated Plate Theory

Classical laminated plate theory is a direct extension of Kirchhoff’s theory for thin
plates, which does not account for the effects of transverse shear and strain components
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in the plate. However, this assumption is not applicable to moderately thick plates, as
discussed in Sec. 1.5. Consequently, classical laminated plate theory is only adequate
for the analysis of relatively thin plates when transverse deformation can be neglected.

Structural anisotropy in laminated plates is created by constructing plates of two
or more thin bonded layers of isotropic or anisotropic materials. In formulating the
governing differential equation, we assume that the individual layers are isotropic
and that sliding between them is prevented.

Using the assumptions of classical plate theory, the strain-displacement relation-
ships for the kth layer (Fig. 10.2.2) can be written† as

ε(k)
x = −zk

∂2w

∂x2
, ε(k)

y = −zk

∂2w

∂y2
, γ (k)

xy = −2zk

∂2w

∂x ∂y
. (10.2.1)

From Hooke’s law we obtain

σ (k)
x = Ek

1 − ν2
k

(ε(k)
x + νkε

(k)
y ), σ (k)

y = Ek

1 − ν2
k

(ε(k)
y + νkε

(k)
x ),

τ (k)
xy = Ek

2(1 + νk)
γ (k)

xy . (10.2.2)

By substituting the appropriate expressions of Eq. (10.2.1) into Eq. (10.2.2) and inte-
grating the latter over each layer, the sum of these results yields the bending and
twisting moments,‡ respectively; thus

mx, my, mxy =
∑

k

∫ zk

zk−1

(σx, σy, τxy)
(k)z dz. (10.2.3)
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O
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pz (x, y) dx, dy

Figure 10.2.2 Multilayered plate element.

† See Sec. 1.2.
‡ See Sec. 1.2.



Laminated and Sandwich Plates 533

The governing differential equation of laminated plates is derived in the same manner
as described in Sec. 1.2. Thus, we can write

D∗∇2∇2w(x, y) = pz(x, y), (10.2.4)

where the transformed flexural rigidity of the laminated plate is given by Pister and
Dong [10.2.1] in the form

D∗ = AC − B2

A
. (10.2.5)

The additional elastic constants in Eq. (10.2.5) are

A =
∑

k

Ek

1 − ν2
k

(zk − zk−1), B =
∑

k

Ek

1 − ν2
k

z2
k − z2

k−1

2
(10.2.6)

and

C =
∑

k

Ek

1 − ν2
k

· z3
k − z3

k−1

3
. (10.2.7)

As Eq. (10.2.4) indicates, the flexural behavior of a laminated plate is analogous to
that of a homogeneous plate, provided that in Eq. (1.2.30) a transformed flexural
rigidity D∗ is used.

The deflected plate surface w(x, y) is determined by the same analytical and
numerical methods used for homogeneous plates. When w(x, y) is known, the stress
components in the kth layer can be calculated from

σ
(k)
k = −z

Ek

1 − ν2
k

(
∂2w

∂x2
+ νk

∂2w

∂y2

)
,

σ (k)
y = −z

Ek

1 − ν2
k

(
∂2w

∂y2
+ νk

∂2w

∂x2

)
, (10.2.8)

τ (k)
xy = −z

Ek

1 + νk

∂2w

∂x ∂y
.

Finally, a simplified engineering approach often used for approximation of trans-
formed flexural rigidities of laminated plates should be mentioned. In this approxi-
mation, we assume that the Poisson ratios of the layers are nearly the same; thus their
average value, νa , gives sufficient accuracy. Using the largest Young’s modulus of
elasticity E0 as reference value, the expression for the transformed flexural rigidity is

D∗ ≈ E0I
∗

1 − ν2
a

, (10.2.9)

where

I ∗ ≈
∫ h1

−h2

Ek

E0
z2 dz. (10.2.10)
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Figure 10.2.3 Transformed section.

In Eq. (10.2.10), z represents the distance of fibers from the neutral axis of the cross
section having transformed widths Ek/E0 (Fig. 10.2.3). A similar approach can be
taken to determine the transformed extensional rigidity, which gives

K∗ ≈ EA∗

1 − ν2
a

= E0

1 − ν2
a

∑
k

Ek

E0
tk, (10.2.11)

where A∗ is the transformed area of the cross section per unit length.

10.2.2 Sandwich Plates

First, we will treat sandwich plates with cores of metallic honeycomb or of equivalent
structural materials, as shown in Fig. 10.2.1b. Next, we will introduce a numerical
approach to steel sandwich plates, which are depicted in Fig. 10.2.4. Sandwich plates
with really soft cores will not be covered here since they require special considerations
to prevent premature failure at a load level much lower than the one determined using
the theory presented in this section.

The classical small-deflection theory of sandwich plates generally uses variational
principles to derive the governing differential equations, taking into account the

Figure 10.2.4 Steel sandwich plates with various core shapes.
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effect of transverse shear. These differential equations are based on the following
assumptions:

ž The thickness of the two outer faces is equal (tf = t1 = t2), and they are thin
in comparison with the overall plate thickness h = tc + tf (Fig. 10.2.5a).

ž The in-plane stress in the core is negligible.
ž The normals to the midplane remain straight after deformation.
ž The materials are linear elastic.

Using the somewhat modified strain energy functional given by Reissner [10.2.13–
10.2.17], we can write

U = 1

2

∫
f

2∑
i=1

[
ti

(
σ 2

xi

Exi

+ σ 2
yi

Eyi

− 2νxyi

Exi

σxiσyi + τ 2
xyi

Gi

)]
dA + 1

2

∫
c

(
τ 2
xz

Gxz

+ τ 2
yz

Gyz

)
dV,

(10.2.12)
where f and c refer to the facing and core, respectively. The subscripts i = 1, 2
denote the upper and lower facings. Furthermore, τxz, τyz and Gxz, Gyz denote the
shear stresses and shear moduli of the core, respectively.

Applying Castigliano’s second theorem, the differential equations of isotropic sand-
wich plates become [10.2.14]

∇2 ∇2w∗ = pz

D∗ − 1

S
∇2pz, (10.2.13a)

1 − ν

2
∇2γx − S

D∗ γx = ∂

∂x
∇2w∗ + 1 + ν

2S

∂pz

∂x
, (10.2.13b)
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2
∇2γy − S

D∗ γy = ∂
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2S

∂pz

∂y
, (10.2.13c)

where

D∗ = Ef tf

2(1 − ν2)
h2, S = h2

tc
Gc, ν = νxy1 = νxy2 (10.2.14)
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and γx and γy are shear deformations in the X and Y directions, respectively, as
shown in Fig. 10.2.5b.

Since we have assumed that the behavior of the sandwich plate is linear elastic,
the total deflection w∗ can be given as the sum of the bending and shear deflections.
Consequently, Eq. (10.2.13a) can be split into two:

∇2 ∇2wb = pz

D∗ and ∇2∇2ws = − 1

S
∇2pz, (10.2.15)

where wb denotes the bending part of the total deflections and ws represents the
other part caused by the transverse shear. The bending and twisting moments are
calculated from

mx = −D∗
(

∂θx

∂x
+ ν

∂θy

∂y

)
, my = −D∗

(
∂θy

∂y
+ ν

∂θx

∂x

)
,

θx = ∂w∗

∂x
− γx, θy = ∂w∗

∂y
− γy

(10.2.16)

and

mxy = −0.5D∗(1 − ν)

(
∂θx

∂y
+ ∂θy

∂x

)
. (10.2.17)

Similarly, the shearing forces are obtained from

qx = Gc

h2

tc
γx and qy = Gc

h2

tc
γy. (10.2.18)

Consequently, the corresponding bending and shearing stresses can be expressed by:

σx = mx

htf
, σy = my

htf
, τxy = mxy

htf
, τx = qx

h
, τy = qy

h
. (10.2.19)

If the boundary conditions of the sandwich plates are simply supported,
we can use Navier’s method to obtain solutions for the governing differential
equations (10.2.13a)–(10.2.13c). However, either the ordinary FDM or its improved
versions offer much more convenient and general solution techniques covering all
boundary conditions, arbitrary geometry and even continuous composite plates. In
both cases, the two differential equations given in Eq. (10.2.15) must be solved first
to obtain the total lateral deflection field w∗ = wb + ws . From the computed lateral
deflections, the bending and twisting moments can be evaluated. In the next step,
the shear deformations γx and γy should be determined if calculation of the shearing
forces is also required.

Sandwich plates constructed from steel facing plates with stiff steel cores of various
types (Fig. 10.2.4) can be efficiently analyzed by the gridwork method, provided the
equivalent sectional properties are available. The rigid attachment between facing
and core can be welding, rivets or screws.
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Figure 10.2.6 Gridwork representation of steel sandwich plate.

As usual in the gridwork method, the steel sandwich plate is discretized into a
grillage of orthogonally oriented beams, as shown in Fig. 10.2.6. In the gridwork
analysis of steel sandwich plates the following additional assumptions are made:

ž The plane sections of the substitute beams remain plane but not normal to
the neutral axis of the beams, since shear deformations are also considered in
the analysis.

ž The shear stiffness in the direction of the core stiffeners is infinitely large.

Let us first consider a beam lying in the X direction (Fig. 10.2.7). We regard it
as a “shear wall panel” whose element stiffness matrix, which simultaneously takes

lx

Y

1
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2

h/2

h/2

h X

5

4
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Z, w

EIx = Bending stiffness
(GIt)x = Torsional stiffness

Figure 10.2.7 Shear-wall element.
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into account the bending and shear deformations, can be expressed by [10.2.17]

Ke =




12EIx

(1 + αx)l3
x

6EIx

(1 + αx)l2
x

(4 + αx)EIx

(1 + αx)lx
Symmetric

0 0
(GIt )x

lx

− 12EIx

(1 + αx)l3
x

− 6EIx

(1 + αx)l2
x

0
12EIx

(1 + αx)l3
x

6EIx

(1 + αx)l2
x

(2 − αx)EIx

(1 + αx)lx
0 − 6EIx

(1 + αx)l2
x

(4 + αx)EIx

(1 + αx)lx

0 0 − (GIt )x

lx
− 0 0

(GIi)x

lx




.

(10.2.20)
The same element stiffness matrix can be used in the Y direction by simply changing
the subscript x to y.

However, to be able to use this element stiffness matrix for the proposed gridwork
analysis, its elastic constants must be replaced by those pertinent to steel sandwich
plates. In this respect, the following relationships apply:

EIx = lyDy, (GIt )x = lyDxy,

EIy = lxDy, (GIt )y = lxDxy.
(10.2.21)

In addition, the shear stiffness of the sandwich plate can be calculated from Dqx and
Dqy per unit length, respectively. The required expressions Dx , Dy , Dxy , Dqx and
Dqy vary according to the types of core stiffeners used and can be derived from the
procedures applied in Ref. [10.2.19]. The shear deformation constants αx and αy are
expressed as

αx = 12Dx

l2
xDqx

and αy = 12Dy

l2
yDqy

. (10.2.22)

As usual, these values are valid only for the internal beams. For external beams, these
values must be reduced by 2, as already discussed in Chapter 6. Finally, it should
be noted that basically the same approach can be used for other types of composite
laminates, provided the corresponding bending and torsional stiffness values can be
computed or experimentally determined.

In addition to the two relatively simple numerical solution techniques discussed
above, the versatile FEM is also widely applied to solve plate problems related
to composite laminates [10.2.20, 10.2.21]. Several finite element computer programs
covering such plate problems have also been written [10.2.22–10.2.24]. For a detailed
treatment of finite element modeling of laminated plates, we refer the reader to
Ref. [10.2.25]. Furthermore, all major commercially available finite element codes,
such as ABAQUS, NASTRAN, and SAFE, do have laminated plate elements in
their extensive element library. Each layer in such an element can represent different
materials, including its specific orientation. In many cases, even the material angle
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can be rotated. Some finite elements program systems support up to 50 layers of a
laminated plate. Since the use of these codes is basically the same as that of programs
written for isotropic plates, it is sufficient here to refer to Chapter 7 in general and
Sec. 7.14, in particular.

10.2.3 Moderately Thick Laminated Plates

To predict accurately the structural behavior of moderately thick multilayered com-
posite plates, many different high-order theories have been proposed with the intent to
improve the classical laminated plate theory by accounting for transverse shear defor-
mation in a more rigorous way than the approximations discussed above. The simplest
of all high-order theories are the ones based on the assumption of a single-layer plate
combined with a first-order shear deformation theory of the form

u = u0(x, y) + zψx(x, y),

v = v0(x, y) + zψy(x, y),

w = w0(x, y) + zψz(x, y),

(10.2.23)

where the subscript zero refers to the displacements obtained from the classical solu-
tion and the terms ψx , ψy and ψz, representing the effect of shear deformation, are
directly specified as derivatives of w. This approach, however, gives only moderate
improvement over the classical laminated plate theory and practically no improve-
ments over the two approximate solution techniques discussed above.

Consequently, still in the spirit of single-layer plate theory, second-order displace-
ment fields

u = u0(x, y) + zψx(x, y) + z2ζx(x, y),

v = v0(x, y) + zψy(x, y) + z2ζy(x, y),

w = w0(x, y) + zψz(x, y) + z2ζz(x, y)

(10.2.24)

or even third-order displacement fields

u = u0(x, y) + zψx(x, y) + z2ζx(x, y) + z3φx(x, y),

v = v0(x, y) + zψy(x, y) + z2ζy(x, y) + z3φy(x, y),

w = w0(x, y) + zψz(x, y) + z2ζz(x, y) + z3φz(x, y)

(10.2.25)

are assumed. Such an approach represents the extension of the moderately thick plate
theory introduced in Sec. 1.5 for homogeneous isotropic plates. Since in the third-
order theory the displacement field accommodates cubic variations of transverse shear
strain, there is no need to use a shear correction factor. Needless to say, all these high-
order theories considerably complicate the analysis procedures and, therefore, cannot
be treated in the framework of this book. For a more detailed study of this interesting
subject, the reader is referred to the books written by Reddy [2.10.25–2.10.27].

Unlike the single-layer theories, the layerwise theories assume separate
displacement fields within each layer. Again, numerous displacement-based theories
have been proposed. The ultimate refinement of the analysis includes three-
dimensional elastic models that give the most accurate prediction of stresses and
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displacements through the thickness of the multilayered plates. The reader is referred
to Refs. [10.2.28] and [10.2.29] for extensive lists of publications related to laminated
plate theories.

Summary. The use of laminated composite plates has increased steadily during the
past decades, since they exhibit high strength-to-weight and stiffness-to-weight ratios.
Classical laminated plate theory, based on Kirchhoff’s hypotheses, yields sufficiently
accurate results only for thin composite layered plates when the effect of transverse
shear deformation can be neglected. Since classical laminated plate theory represents
only an extension of Kirchhoff’s plate theory for homogeneous isotropic plates, all
previously introduced analytical and numerical solution techniques can be applied,
provided the properly determined transformed rigidities are used. Several approaches
have been proposed to account for transverse shear flexibility, neglected in classical
laminated plate theory. Differential equations of sandwich plates, for instance, that
take into account the effect of transverse shear can be solved either analytically
or numerically by means of various FDMs. Furthermore, a variation of the simple
gridwork method not only can be used for the solution of steel sandwich plates
but also can be logically extended to other types of laminated plates. First-order
single-layer laminate theories are quite adequate if proper correction factors are used.
Second- and third-order theories, however, are free from such factors. Considering
laminates made of dissimilar materials, layerwise theories in combination with the
FEM offer the most accurate results. For detailed studies of these more refined and
quite complex theories, the reader is directed to the pertinent literature.

ILLUSTRATIVE EXAMPLE I

A simply supported sandwich plate with dimensions a and b carries a uniformly
distributed load p0. Let us determine the equation of the deflected plate sur-
face w∗(x, y) and corresponding expressions for the internal stress resultants
mx, my, mxy, qx and qy .

Since the simply supported boundary conditions

w∗ =
{
mx = γy = 0 for x = 0, x = a

my = γx = 0 for y = 0, y = b.
(10.2.26)

permit the application of Navier’s method to solve the governing differen-
tial equations (10.2.13a)–(10.2.13c) of the sandwich plate, we can express the
deflected plate surface in our standard coordinate system† as:

w∗(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin αmx sin βny, (10.2.27)

where

αm = mπ

a
and βn = nπ

b
. (10.2.28)

and Wmn represents the unknown coefficient of the Fourier series expansion.

† See Table A.1.1, for instance.
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Next, we express the lateral load by a similar double sine series,

p(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin αmx sin βny, (10.2.29)

where the coefficient of the expansion according to Table A.1.1 is Pmn =
16p0/π

2mn for m, n = 1, 3, 5, . . . .
The unknown coefficient Wmn in Eq. (10.2.27) is determined by

substituting Eqs. (10.2.27) and (10.2.29) into Eq. (10.2.27) and (10.2.29) into
Eq. (10.2.13a). This gives

Wmn = (1/D∗) + [(α2
m + β2

n)/S]

(α2
m + β2

n)2
Pmn. (10.2.30)

Consequently, the equation of the deflected plate surface becomes

w∗(x, y) =
∞∑

m=1

∞∑
n=1

Pmn

(1/D∗) + [(α2
m + β2

n)/S]

(α2
m + β2

n)
2

sin αmx sin βn. (10.2.31)

A similar approach is taken to determine the shear deformations. The pertinent
Fourier series expressions for the shear deformations [10.2.25, 10.2.30] are

γx(x, y) =
∞∑

m=1

∞∑
n=1

�x,mn cos αmx sin βny,

γy(x, y) =
∞∑

m=1

∞∑
n=1

�y,mn sin αmx cos βny,

(10.2.32)

where the unknown coefficients of expansion are determined from
Eqs. (10.2.13a) and (10.2.13b), respectively. Thus, we can write

�x,mn = mπPmn

aS(α2
m + β2

n)
and �y,mn = nπPmn

bS(α2
m + β2

n)
. (10.2.33)

Next, we obtain the expressions for the bending moments by substituting
Eq. (10.2.31) into Eq. (10.2.16). This results in

mx =
∞∑

m=1

∞∑
n=1

Pmn

α2
m + νβ2

n

(α2
m + β2

n)
2

sin αmx sin βny,

my =
∞∑

m=1

∞∑
n=1

Pmn

β2
n + να2

m

(α2
m + β2

n)
2

sin αmx sin βny.

(10.2.34)

In a similar way, the twisting moment is determined from Eq. (10.2.17). This
gives

mxy = (1 − ν)

∞∑
m=1

∞∑
n=1

mnπ2Pmn

ab(α2
m + β2

n)2
cos αmx cos βny. (10.2.35)
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Finally, the expressions for the shear forces are determined by substituting
Eqs. (10.2.32) and (10.2.33) into Eq. (10.2.18), and we obtain

qx =
∞∑

m=1

∞∑
n=1

mπPmn

a(α2
m + β2

n)
cos αmx sin βny,

qy =
∞∑

m=1

∞∑
n=1

nπPmn

b(α2
m + β2

n)
sin αmx cos βny.

(10.2.36)

Finally, it should be noted that the equations derived above are quite general.
That is, by using an appropriate Pmn coefficient, other loading conditions can
be considered. For the most common lateral loads, this coefficient is listed in
Table A.1.1.

ILLUSTRATIVE EXAMPLE II

A rectangular fixed sandwich plate with side ratio b/a = 4
3 and fixed boundary

conditions carries a uniformly distributed lateral load pz = p0 (Fig. 10.2.8a).
Determine the deflected plate surface.

Due to the fixed boundary conditions, we must resort in this case to the
ordinary FDM to obtain the required results. The double symmetry of the
structure and load allows us to consider only one-quarter of the plate. Using
the finite difference mesh shown in Fig. 10.2.8b, only 12 deflection ordi-
nates, w∗

1, . . . , w∗
12, have to be found. Making use of the two-stage solution

technique given in Eq. (10.2.15), the bending part of the total deflections is
obtained from

∇2 ∇2wb = p0

D∗ . (10.2.37)

By applying the stencil given in Fig. 5.1.3a, the resulting matrix equation
becomes

Awb = bb, (10.2.38)

where the coefficient matrix with mesh width λ = a/6 is

A =




20 −16 2 −16 8 0 2 0 0 0 0 0
−8 21 −8 4 −16 4 0 2 0 0 0 0

1 −8 21 0 4 −16 0 0 2 0 0 0
−8 4 0 21 −16 2 −8 4 0 1 0 0

2 −8 2 −8 22 −8 2 −8 2 0 1 0
0 2 −8 1 −8 22 0 2 −8 0 0 1
1 0 0 −8 4 0 20 −16 2 −8 4 0
0 1 0 2 −8 2 −8 21 −8 2 −8 2
0 0 1 0 2 −8 1 −8 21 0 2 −8
0 0 0 1 0 0 −8 4 0 21 −16 2
0 0 0 0 1 0 2 −8 2 −8 22 −8
0 0 0 0 0 1 0 2 −8 1 −8 22




(10.2.39)
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Figure 10.2.8 Analysis of sandwich plate by FDM.

and

bb =




1
1
1
...

1




λ4p0

D∗ for λ = a/6 (10.2.40)
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represents the corresponding load vector. Solution of this matrix equation
(10.2.38) gives the following bending deflection ordinates at the mesh points:

wb =




234.09
192.20
88.60
214.27
176.18
81.62
156.11
128.92
60.62
70.25
58.48
28.19




p0a
4

1296D∗ . (10.2.41)

In a similar manner, the shear deflections can be computed from the second
expression of Eq. (10.2.15) which, in our special case, is simplified as

∇2ws = −p0

S
(10.2.42)

or in matrix form

Bws = −




1
1
1
...

1




a2p0

36S
, (10.2.43)

where the coefficient matrix B is obtained by applying the finite difference form
of the Laplacian operator ∇2(·), given in Fig. 10.2.8c, at each mesh point. To
avoid negative values in the main diagonal of matrix B, however, Eq. (10.2.42)
was multiplied by −1. This gives the coefficient matrix

B =




4 −2 0 −2 0 0 0 0 0 0 0 0
−1 4 −1 0 −2 0 0 0 0 0 0 0

0 −1 4 0 0 −2 0 0 0 0 0 0
−1 0 0 4 −2 0 −1 0 0 0 0 0

0 −1 0 −1 4 −1 0 −1 0 0 0 0
0 0 −1 0 −1 4 0 0 −1 0 0 0
0 0 0 −1 0 0 4 −2 0 −1 0 0
0 0 0 0 −1 0 −1 4 −1 0 −1 0
0 0 0 0 0 −1 0 −1 4 0 0 −1
0 0 0 0 0 0 −1 0 0 4 −2 0
0 0 0 0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 0 0 0 −1 0 −1 4




.

(10.2.44)
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Solution of the altered Eq. (10.2.43) yields

ws =




3.3236
2.9798
1.9092
3.1674
2.8432
1.8286
2.6596
2.3971
1.5618
1.6768
1.5238
1.0214




a2p0

36S
, (10.2.45)

which represents the vector of shear deformations. The total deflections are
obtained from

w∗ = wb + ws = Eq. (10.2.41) + Eq. (10.2.45). (10.2.46)
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10.3 Analysis of Skew Plates

Skew plates are of considerable practical importance, since they are often used in
civil, mechanical, aeronautical and marine engineering. Continuous skew plate struc-
tures are especially important in the design of bridges for oblique-angle crossings
(Fig. 10.3.1). In addition, reinforced-concrete skew slabs also find extensive applica-
tions in building floor systems. Skew plates can be analyzed using either analytical or
numerical solution techniques, introduced in previous chapters. Owing to its mathe-
matical complexity, analytical methods often fail to provide adequate solutions; thus,
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AA

(a) Plan view

(b) Section A-A

Figure 10.3.1 Skew slab bridge.

numerical techniques such as the finite difference, gridwork and finite element meth-
ods are the most commonly used procedures for the bending analysis of skew plates.

a. Analytical Methods. The governing differential equation for isotropic skew
plates can be conveniently obtained by introducing an oblique coordinate system,
as shown in Fig. 10.3.2. The coordinates of the rectangular (X, Y, Z) and oblique
(X, Y, Z) systems are related by

x = x − y tan ϕ and y = 1

cos ϕ
y. (10.3.1)

Substitution of these expressions into Eq. (1.2.31) transforms the Laplacian operator
from the rectangular to the oblique coordinate system. Thus, we have

∇2 = 1

cos2 ϕ

(
∂2

∂x2
− 2 sin ϕ

∂2

∂x ∂y
+ ∂2

∂y2

)
. (10.3.2)

Y

y

X, X

a

b

x

x

Y

y

Point

j

O

J

Figure 10.3.2 Oblique coordinate system.
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Therefore, the governing plate equation (1.2.30) expressed in terms of the oblique
coordinates is

D

cos4 ϕ

[
∂4w

∂x4 + 2(1 + 2 sin2 ϕ)
∂4w

∂x2∂y2

− 4 sin ϕ

(
∂4w

∂x3 ∂y
+ ∂4w

∂x ∂y3

)
+ ∂4w

∂y4

]
= pz(x, y), (10.3.3)

or, more concisely,

D ∇2 ∇2
w(x, y) = pz(x, y). (10.3.4)

For convenience, the boundary conditions should also be expressed in terms of
oblique coordinates parallel to edges. A similar procedure can be applied to the
governing equation (10.1.6) of orthotropic plates.

The analytical solution of Eq. (10.3.4) becomes complicated by the absence of
orthogonal relationships. Consequently, rigorous solutions are quite difficult and thus
rarely obtained [10.3.3, 10.3.4]. In addition, special problems arising at corners with
acute and obtuse angles make exact solutions even more difficult.

Since the differential equation of skew plates is available, in the case of simple
loading and boundary conditions Galerkin’s variational process can be employed to
obtain deflections and moments. Equation (10.3.1) will also transform the expressions
for moments and shears, given in Eqs. (1.2.26), (1.2.27) and (1.2.23), into oblique
coordinates. The problem of clamped oblique plates subjected to uniform lateral load,
for instance, can be analyzed by using the displacement function

w(x, y) = W

4

(
1 − cos

2πx

a

)(
1 − cos

2πy

b

)
(10.3.5)

expressed in terms of oblique coordinates. In more general cases, however, even such
an approximate solution becomes very tedious. For solutions of skew plate problems,
frequently occurring in bridge design, extensive tables and graphs are available to
practicing engineers [10.3.4–10.3.11, 10.3.19, 10.3.20].†. Morley has presented in
Ref. [10.3.1] a detailed overview of the analytical methods discussed above.

Another analytical approach applies geometrical mapping. The skew plate
(Fig. 10.3.3a) can be mapped into a unit-square region (Fig. 10.3.3b) in the ξ -η
plane by using the transformation relationships

x = aξ + bκη and y = bη, (10.3.6)

where

κ = cos θ

sin θ
. (10.3.7)

Since such a mapping process requires extensive mathematical manipulations, its
treatment is beyond the scope of this book.

† Also see the references on influence surfaces for skew plates given in Sec. 10.5
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(a) Skew plate (b) Unit square computational domain

Figure 10.3.3 Mapping of skew plate.

b. Numerical Methods. When analytical methods fail to provide solutions to prob-
lems of skew plates, numerical methods must be applied. Although the ordinary FDM
described in Sec. 5.1 can easily be extended to oblique or triangular meshwork, the
user of this simple technique must be aware of the following problems created by
oblique plate shapes:

1. Increase in the skew angle ϕ adversely influences convergence of the solution.
2. Singularities at corners with obtuse angles cannot be properly accounted for.

Additional problems arise at corners with acute angles.
3. Complete satisfaction of the boundary conditions at free edges is difficult.
4. Since moments and shears depend upon differences between the deflection

values, it is of basic importance that deflections are determined with a good
degree of accuracy.

In spite of these and other limitations of this simple numerical technique, the method
yields acceptable results for most practical design purposes. That is, with sufficiently
fine subdivisions the oblique boundary can be approximated with a rectangular mesh,
as shown in Fig. 5.1.2, thus eliminating the need for oblique or triangular mesh-
work. Furthermore, the reader will find finite difference solutions of skew plates in
Refs. [10.3.12–10.0.15]. Coefficient values for maximum moments along the edge
beams were determined by Stiglat using the finite difference technique [10.3.24].

The ordinary finite difference expression for the Laplacian operator ∇2
is given

in Fig. 10.3.4. This operator can be directly utilized in the two-stage solution of the
governing differential equation. For simply supported pales, Marcus’s method† splits
the governing fourth-order differential equation (10.3.4) into the two second-order
differential equations

∇2
M = −pz(x, y),

∇2w = −M

D
, (10.3.8)

† See Eqs. (1.2.43a) and (1.2.43b).
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Figure 10.3.5 Stencil for operator ∇4 in oblique coordinate system (ϑ = 60◦
).

where M is the so-called moment-sum expressed in the oblique coordinate system.
In this way, the loads can be expressed in terms of M and subsequently are related
to the deflections w. Figure 10.3.5 shows a readily usable finite difference stencil for
the biharmonic operator in an oblique coordinate system.
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The gridwork method discussed in Chapter 2 is well suited for the bending analysis
of skew plates. In this case, especially, Salonen’s approach appears to have certain
advantages over the other gridwork approximations, since it can be directly used in a
commercially available grillage program. After the deflections of the joint points are
determined, the moments and shears can be calculated using the pertinent ordinary
finite difference approximations in the oblique coordinate system.

The great versatality of the FEM permits, among other items, consideration of
variable thickness, orthotropy and even interactions between spandrel beams and
columns with the plate by utilizing the corresponding stiffness matrices of the indi-
vidual structural members. The discrete Kirchhoff triangular (DKT) plate element
has already been treated in Sec. 7.7.2. Because of its excellent convergence charac-
teristics, it should be the prime choice for analyzing skew plates by the FEM. Here,
again, singularities may create problems in the solution. For instance, in the case
of obtuse corners bound by fixed and free-edges, infinite stresses occur whenever
the corner angle exceeds approximately 95◦. Furthermore, the effect of singularity
increases with the increase of skew angles. To partly offset such localized stress
irregularities, a fine subdivision should be used in such regions.

Finally, it should be mentioned that the bending behavior of moderately thick skew
Reissner-Mindlin plates has also recently been investigated [10.3.25]. In certain cases,
the newly introduced spline finite strip element method [10.3.26] can offer a usable
alternative to the FEM.

c. Behavior of Skew Plates at Certain Corner Points. Since classical plate
theory per se cannot satisfy all boundary conditions, Kirchhoff replaced the torsional
moments at the plate edges with equivalent supplementary forces to eliminate this
mathematical problem, as discussed in Sec. 1.3. There are, however, certain boundary

Free edge

Simple support

Free edge

Clamped

Simple support

Free edge

Clamped

Clamped

Figure 10.3.6 Plate corners without twisting moments and corner forces.
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configurations where the torsional edge moments and corresponding corner forces
vanish at the corners [10.3.27]. Such corners with acute and obtuse angles are shown
in Fig. 10.3.6 [10.3.29].

Summary. The problems associated with skew plates are discussed in this section
considering the available analytical and numerical methods of solution. Again, the
shortcomings of the analytical methods are underscored, while the potentials of the
numerical methods are emphasized. For smaller skew plate problems, the FDM
yields satisfactory results in a simple way. For larger problems, the ease with which
the gridwork method can be applied and the versatality of the FEM are demon-
strated below in Illustrative Examples II and III, respectively. Special attention is
paid to the assessment of skew plate behaviors at corners with acute or obtuse
angles.

ILLUSTRATIVE EXAMPLE I

Let us consider a simply supported skew plate with a = b, ϑ = 60◦ (ϕ = 30◦)
and α = 1. In this case, the Laplacian operator ∇2

becomes the operator shown
in Fig. 10.3.7. Determine the maximum deflection wmax of this plate subjected
to uniformly distributed load p0.

O X

Y

J

j

J = 60°

l

l

44 −16

1−1 4

−11 4

1
3l2×

Figure 10.3.7 Operator ∇2 with ϑ = 60◦ (ϕ = 30◦).

The simply supported boundary conditions

w = 0 and mx = my = 0 (10.3.9)

permit the use of the two-stage solution technique. However, to avoid negative
definite coefficient matrices in the solutions, we multiply both equations in
Eq. (10.3.8) by −1.

First, we use a very crude finite difference mesh with λ = a/2. Thus, the
first equation of Eq. (10.3.8) gives
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16M1

3λ2
= p0; ∴ M1 = 3a2p0

64
= 0.04688a2p0. (10.3.10)

From the second Eq. (10.3.8) we obtain

16w1

3λ2
= 3a2p0

64D
; ∴ w1 = w(1)

max = 9λ2a2p0

16 × 64D
= 0.0022

a4p0

D
. (10.3.11)

Next, we refine the finite difference mesh by using λ = a/4. Numbering
of the mesh points is shown in Fig. 10.3.8. By applying the ∇2

operator at
each numbered mesh point, we obtain the following simultaneous algebraic
equations for the moment-sums:

{M} =




16 −4 0 −4 1 0 0 0 0
−4 16 −4 −1 −4 1 0 0 0

0 −4 16 0 −1 −4 0 0 0
−4 −1 0 16 −4 0 −4 1 0

1 −4 −1 −4 16 −4 −1 −4 1
0 1 −4 0 −4 16 0 −1 −4
0 0 0 −4 −1 0 16 −4 0
0 0 0 1 −4 −1 −4 16 −4
0 0 0 0 1 −4 0 −4 16




−1 


1
1
1
1
1
1
1
1
1




× 0.1875 a2p0 = A−1b, (10.3.12)
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Figure 10.3.8 Oblique finite difference mesh for λ = a/4.
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which gives

{M} =




0.155

0.221

0.191

0.221

0.288

0.221

0.191

0.221

0.155




0.1875a2p0. (10.3.13)

Using the same coefficient matrix A as given above, the second equation of
Eq. (10.3.8) now becomes

Aw = {M}0.1875a2p03λ2

D
; (10.3.14)

hence

w = A−1{M}0.03516a4p0

D
. (10.3.15)

Solution of this matrix equation yields

w =




0.0295

0.0481

0.0402

0.0481

0.0674

0.0481

0.0402

0.0481

0.0295




0.03516
a4p0

D
. (10.3.16)

Consequently,

w5 = w(2)
max = 0.0674 × 0.03516

a4p0

D
= 0.002369

a4p0

D
. (10.3.17)

Applying Eq. (5.1.38), Richardson’s extrapolation formula gives

w(3)
max =

(
0.002369 + 0.002369 − 0.0022

3

)
a4p0

D
= 0.00243

a4p0

D
,

(10.3.18)
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which is already reasonably close to the difficult analytical solution of this
plate problem. Of course, we can further increase the accuracy of this finite
difference solution by using λ = a/8 subdivisions and a repeated extrapolation.

ILLUSTRATIVE EXAMPLE II

Figure 10.3.9 shows a simple-span, reinforced-concrete, skew bridge subjected
to Pz = 100 kN concentrated force acting at the center of the bridge. Determine
the maximum deflection wmax and the maximum moments mx,max and my,max

of the bridge by using the gridwork method (GWM).
Applying Salonen’s† lattice analogy, we introduce a substitute gridwork

system consisting of 56 beams, as shown in Fig. 10.3.10. The equivalent
cross-sectional properties I , It are calculated from Eq. (6.2.6). In this case

8.66 m Pz = 100 kN

h = 0.2 m X, x

Section A–A
Z, w

O

Y

A A

h

X

j = 30°

a = 60°

a 
=

 1
0.

00
 m

Pz

E = 3.0 × 107 kN/m2

G = E /2
n = 0.0

x

5.
00

 m
5.

00
 m

b* = 20.00 m

Figure 10.3.9 Skew plate in parallelogram shape.

† See Sec. 6.2.
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we deal with five beam types. Their equivalent sectional properties are listed
in Table 10.3.1

Beams with the corresponding types are listed in Table 10.3.2. The boundary
conditions of each joint located at the periphery of the plate are given in
Table 10.3.3.

With these values, our gridwork program [10.3.30] yielded wmax = 0.062 m
at joint �13 , while the same problem solved utilizing the ordinary FDM gave
wmax = 0.066 m [10.3.9]. Thus, the difference between these two approximate
results is merely 6%. Since the convergence characteristics of the GWM is
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Figure 10.3.10 Substitute gridwork system.

Table 10.3.1 Beam Types

Type l(N) (m) α(N) (deg) cot α(N) I (N) (m4) I
(N)
t (m4) Beam

1 2.5 19.1074 2.887 2.406 4.812 �1

2 5.00 40.8926 1.1547 1.9245 3.849 �5

3 6.61 120 −0.577 −2.543 −5.0883 �6

4 5.00 40.8926 1.1547 3.849 7.698 �7

5 2.5 19.1074 2.887 4.8116 9.6233 �14
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Table 10.3.2 Partial List of Beam Data

Beam
Number

Joint
Number Type

1 1–2 1
2 2–3 1
3 3–4 1
4 4–5 1
5 1–6 2
6 1–7 3
7 2–7 4
8 2–8 3
9 3–8 4

10 3–9 3
11 4–9 4
12 4–10 3
13 5–10 2
14 6–7 5
15 7–8 5
16 8–9 5
17 9–10 5
18 6–11 2
19 6–12 3
20 7–12 4

Table 10.3.3 Partial List of Boundary Conditions

Joint
Number w Locked �x Locked �y Locked

1 Y Y N
2 Y Y N
3 Y Y N
4 Y Y N
5 Y Y N
6 N N N

10 N N N
11 N N N
15 N N N
16 N N N
20 N N N
21 Y Y N
22 Y Y N
23 Y Y N
24 Y Y N
25 Y Y N

Note: Y = yes; N = no.
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better than those of the FDM and, in addition, the subdivision was finer, we may
consider the solution obtained by the GWM as more accurate. The maximum
moments, expressed in the oblique coordinate system, can be approximated by

mx,max ≈ D

(EI)13
M

�22

�13 = 8

12 × 3.849
250.7 = 43.42 kN/m,

my,max ≈ D

(EI)13)
M

�29

�13 = 8

12 × 4.8116
86.9 = 11.90 kN/m,

(10.3.19)

where M represents the moment of the corresponding beam at joint point �13 .
Since the above-mentioned gridwork program gave all joint-point deflections,
we could also have calculated these maximum bending moments by apply-
ing the pertinent expressions of the FDM expressed in the oblique coordinate
system X, Y .

ILLUSTRATIVE EXAMPLE III

Let us now analyze the continuous plate bridge shown in Fig. 10.3.11 using the
versatile FEM. The two abutments at the ends of the bridge represent simple
supports, while the interior supports are provided by columns. This reinforced-
concrete bridge carries its dead load of pz = 3 kN/m2 along with a live load in
the form of four concentrated forces Pz = 100 kN, which may symbolize the
wheel loads of a truck. We will determine (a) the deflected midsurface of the
plate and (b) the stresses σy in the longitudinal direction.

Simple support

4.0 m
2.0 2.50

Pz

Pz
Pz

Pz

10.00 m 12.00 m 10.00 m

10.00 m
1.25

Free edge

3 × 2.50

1.25

1.25

j = 45°

Columns

E = 30 × 106 kN/m2

n = 0.2
h = 0.4 m
pz = 3 kN/m2

Pz = 100 kN

A

Figure 10.3.11 Continuous skew plate.

To solve this “real live” plate problem, we subdivide the bridge into 512 DKT
elements. With this relatively fine subdivision, our pertinent finite element com-
puter program [10.3.31] computed wA = 0.00097 m lateral deflection under
the dead load at reference point �A . A check of this result with Ref. [10.3.20]
reveals merely 3% discrepancy. The contour lines of the deflected plate sur-
face and those of the σy stresses in the vicinity of the truck load are shown in
Fig. 10.3.12. The dimensions are in meters and kilonewtons per meters squared,
respectively.
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1958.
[10.3.9] BARES, R., Tables for the Analysis of Plates, Slabs and Diaphragms Based on the Elas-

tic Theory: Berechnungstafeln für Platten und Wandscheiben (German-English edition),
Bauverlag GmbH, Wiesbaden, 1969.
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10.4 Thermal Bending of Plates

Temperature variations often represent serious loading conditions, since they may
produce excessive deflections and/or high stresses. If the temperature of the plate is
uniformly raised or lowered, the plate expands or contracts, respectively. In addi-
tion, nonuniform temperature fields create temperature gradients between the top
and bottom surfaces of the plate, producing curvature changes and thus rotations
(Fig. 10.4.1). Under the influence of Tav, the plate remains flat. However, if the unre-
strained plate is subjected to �T temperature differences between the top and bottom,
the plate would assume a spherical shape, as shown in Fig. 10.4.2. When a free plate
is heated or cooled uniformly, no normal stresses, just normal strains, are present.
Nevertheless, if expansions or rotations are restrained—by boundary conditions or
other suitable forces— thermal stresses will occur in the plate. Another cause of
thermal stresses is nonuniform temperature change. In such a case, the individual
laminae cannot expand or contract freely across the plate thickness. That is, the var-
ious layers tend to expand or contract but the restriction of continuity prevents their
free movement. Although the plate may be physically free to move at the bound-
aries, its laminae may be unable to expand or contract freely in a manner compatible
with the temperature distribution through the plate thickness, thus producing self-
equilibrated † thermal stresses. Therefore, we should distinguish these two different
sets of circumstances under which thermal stresses occur.

Z, w

X

Tb

Tt

T(z)

Temperature profile

h/2

h/2

Figure 10.4.1 Linear temperature distribution through thickness of plate (Tt > Tb).

† That is, no reactions appear at the boundaries.
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Y

X

Z, w

Figure 10.4.2 Deformation of unrestrained rectangular plate temperature gradient.

A practical example of thermal bending of plates includes slab bridges, which are
subject to intensive solar radiation in addition to daily change of ambient temperature.
The so-created temperature gradients produce thermal stresses, the magnitude of
which depends upon the temperature distribution, the boundary conditions and the
thermal coefficients of the materials used in construction of the bridge. Thin plates
are particularly susceptible to buckling failure induced by thermal or combined lateral
and thermal forces, as treated in Sec. 16.8.

Problems involving flexure of plates constructed of isotropic, homogeneous mate-
rials subjected to thermal loadings are discussed in this section. Various analytical
and numerical solution techniques based upon Kirchhoff’s classical plate theory are
briefly treated. For moderately thick plates, for which the effect of shear deforma-
tion can be significant, we give only the governing differential equations and refer
otherwise to the pertinent literature [10.4.15–10.4.18].

a. Governing Equations. With changing temperature, expansion and construction
of the plate occur. For most structural materials, these movements are directly pro-
portional to the change of temperature. Within a certain temperature range, such
linear relationships can be expressed by the coefficient of thermal expansion αT,

which represents the change in unit length caused by a one-degree (T = 1 ◦C) change
of temperature. In SI units, αT is expressed in meters per degree Celsius. Stresses
owing to temperature variations are called temperature stresses. As mentioned above,
thermal stresses σT in a plate are generally present if the movements produced by
temperature changes are restricted; otherwise only thermal strains εT occur.

Solution for the deflection and stresses in plates due to temperature variations
requires augmentation of the previously introduced stress-strain relationships by the
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thermal strain. Thus, we can write

εx = 1

E
(σx − νσy) + αT T (z), εy = 1

E
(σy − νσx) + αT T (z),

γxy = 1

E
2(1 + ν)τxy.

(10.4.1)

It should be noted that temperature change has no effect on the shear-strain com-
ponent. The quantity of T (z) in Eq. (10.4.1), assuming a linear variation of the
temperature gradient, can be expressed by

T (z) = Tt + Tb

2
+ Tt − Tb

h
= Tav + �T

h
, (10.4.2)

where �T represents the difference in temperature between the top and bottom faces
of the plate, as shown in Fig. 10.4.1. The temperature gradient between the top and
bottom faces is assumed to be linear. An increase in �T is considered algebraically
positive.

From Eq. (10.4.1) we obtain the corresponding stress components given by

σx = E

1 − ν2
(εx + νεy) − E

1 − ν
αT T (z),

σy = E

1 − ν2
(εy + νεx) − E

1 − ν
αT T (z), (10.4.3)

τxy = E

2(1 + ν)
γxy.

In the case of bending, we express the strains by the second derivatives of the
deflections, w, as discussed in Sec. 1.2. Thus, integration of the stresses gives

mx,y =
∫ +h/2

−h/2
σx,yz dz and mxy =

∫ +h/2

−h/2
τz dz (10.4.4)

or, in more detailed form,

mx = −D

[
∂2w

∂x2
+ ν

∂2w

∂y2
+ αT

�T

h
(1 + ν)

]
= mx,b − mT ,

my = −D

[
∂2w

∂y2
+ ν

∂2w

∂x2
+ αT

�T

h
(1 + ν)

]
= my,b − mT , (10.4.5)

mxy = −D(1 − ν)
∂2w

∂x ∂y
,

where

mT = αT E

1 − ν

∫ +h/2

−h/2
(�T )z dz = DαT

Tt − Tb

h
(1 + ν) (10.4.6)
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represents the thermal equivalent bending moment per unit length. In addition to the
above given equations for moments, expressions for the lateral shearing forces are
also needed for description of the boundary conditions. These are

qx = −D
∂

∂x
∇2w − ∂mT

∂x
and qy = −D

∂

∂y
∇2w − ∂mT

∂y
. (10.4.7)

Similarly, the edge forces can be expressed as

vx = −D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x ∂y2

]
− ∂mT

∂x
,

vy = −D

[
∂3w

∂y3
+ (2 − ν)

∂3w

∂y ∂x2

]
− ∂mT

∂y
.

(10.4.8)

Substitution of Eq. (10.4.5) into Eq. (1.2.9), which represents the equilibrium of
the infinitesimal plate element in the Z direction, results in

∂2mx

∂x2
+ 2

∂2mxy

∂x ∂y
+ ∂2my

∂y2
= −pz + ∇2mT . (10.4.9)

Hence, the extended governing differential equation becomes

D ∇2 ∇2w = pz + pT , (10.4.10)

or, in the absence of lateral forces (pz = 0), we obtain the differential equation of
thermoelastic bending of plates:

D ∇4wT = −∇2mT = pT , (10.4.11)

where pT represents the equivalent transverse thermal load.
As usual in classical plate theory, a solution of the governing equation (10.4.11)

must satisfy the differential equation as well as the prescribed boundary conditions.
In this case, the boundary conditions of a rectangular plate at edge x = a are†

ž For simply supported edge:

w = 0 and
∂2w

∂x2
= −mT

D
. (10.4.12)

ž For fixed edge:

w = 0 and
∂w

∂x
= 0. (10.4.13)

ž For free- edge:

∂2w

∂x2
= −mT

D
and vx = 0. (10.4.14)

Consequently, not all boundary conditions are homogeneous.

† See Fig. 2.4.3, for instance.
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A similar approach can be taken for moderately thick plates. Again, with

mT (x, y) = αT E

1 − ν

∫ +h/2

−h/2
T (x, y, z)z dz (10.4.15)

the governing differential equations for the Reissner plate, for instance, are given
in [10.4.16] as

qx = h2

10
∇2qx − ∂mT x

∂x
− D

∂

∂x
∇2w,

qy = h2

10
∇2qy − ∂mTy

∂y
− D

∂

∂y
∇2w, (10.4.16)

D ∇4w = −∇2mT .

All the above equations consider only the pure thermal bending of plates. How-
ever, if in connection with thermal bending thermal stretching occurs, we must also
augment the in-plane force components of two-dimensional stress problems† with a
corresponding thermal stress resultant nT .

These in-plane force components are expressed by




nx

ny

nxy


 =

∫ +h/2

−h/2




σx

σy

τxy


 dz (10.4.17)

or in more detailed form by

nx = Eh

1 − ν2

(
∂u

∂x
+ ν

∂v

∂y

)
− nT

1 − ν
,

ny = Eh

1 − ν2

(
∂v

∂y
+ ν

∂u

∂x

)
− nT

1 − ν
, (10.4.18)

nxy = E

2(1 + ν)

(
∂u

∂y
+ ∂v

∂x

)
,

where u and v are displacement components in the X and Y directions, respec-
tively, and

nT = αT E

∫ +h/2

−h/2
�T dz (10.4.19)

represents the in-plane thermal stress resultant.

† This is, however, a subject of the theory of elasticity and thus cannot be treated here in detail.
Consequently, the reader is referred to the pertinent textbooks.
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By considering simultaneous thermal bending and stretching, the governing differ-
ential equation (10.4.10) must be augmented by

Eh

1 − ν2
∇4u = 1

1 − ν

∂

∂x
(∇2nT ),

Eh

1 − ν2
∇4v = 1

1 − ν

∂

∂y
(∇2nT ).

(10.4.20)

These relations show that the thermal bending and stretching are decoupled in the
small-displacement theory.

b. Methods of Solution. Although problems related to thermal stresses in plates
have received considerable attention in the past [10.4.19], still only relatively few ana-
lytical solutions are known. One of the reasons for this is that by solving linear partial
differential equations, separation of variables cannot be used when nonhomogeneous
boundary conditions are present.

Focusing our attention first on problems involving only the flexural response of
plates, it is evident that they are governed by the differential equation (10.4.11).
Closed-form solutions can only be found for special plate geometry and boundary
conditions. Two such solutions are given at the end of this section as examples. It
is apparent from Eq. (10.4.11) that by introducing a fictitious lateral force in the
form pT = −∇2mT , the problem can be reduced to the solution of the corresponding
isothermal plate problem, provided the boundary conditions are modified according
to Eqs. (10.4.12) and (10.4.14), respectively. Consequently, with the exception of the
fixed boundary condition, the thermal equivalent moment mT must be included in
the formulation of all other boundary conditions.

As for the solution of the corresponding isothermal plate problems, approximate or
numerical methods are mostly used in the determination of thermal flexural responses.
Since the governing differential equation is given, Galerkin’s method is a logical
choice for obtaining analytical expressions for the thermally induced deflections
wT. In the case of arbitrary geometry and boundary conditions of the plate, use
of one of the previously introduced numerical methods (FDM, GWM, FEM, FSM)
is recommended. Again, in applying these numerical methods, the thermal bound-
ary conditions must be considered. It is of basic importance to remember that the
above-treated analogy yields only the deflections wT.

A more general approach that includes the combined effect of thermal stretching
and bending was introduced by Zienkiewicz and his co-worker Cruz [10.4.5]. The
fundamental idea of this so-called equivalent load method consists in first determining
a force system that prevents any motions caused by temperature change and then
computating the deformations after these forces are removed.

The required steps for this procedure are as follows:

1. The plate is restrained against any movement by a suitable force system.

2. The obtained restraining forces with reversed signs are applied to the plate as
active forces.

3. The results of step 2 give the lateral deflections, while superposition of the
results obtained from steps 1 and 2 yields the stresses.
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If any expansions due to temperature rise �T (x, y, z) are prevented, this creates

D∗ ∇2 ∇2w(x, y) = pz(x, y), (10.4.21)

compressive stresses and the corresponding thermal stress resultants

mT,x = mT,y =
∫ +h/2

−h/2

EαT (�T )

1 − ν
z dz,

nT,x = nT,y = −
∫ +h/2

−h/2

EαT (�T )

1 − ν
dz.

(10.4.22)

in the X and Y directions, respectively. The equilibrium of the vertical forces acting
on a plate element,

∂2mT,x

∂x2
+ 2

∂2mxy

∂x ∂y
+ ∂2mT,y

∂y2
= −qT (x, y), (10.4.23)

requires a lateral force qT to restrain the plate from vertical deflections. In addition,
the in-plane forces, which restrain the expansion of the plate, can be computed from

nr,x = −∂nT,x

∂x
and nr,y = −∂nT,y

∂y
. (10.4.24)

Next, the plate will be subjected to these restraining forces but with reversed signs.
Consequently, the lateral thermal deflections are obtained by solving the differen-
tial equation

D ∇4wT (x, y) = −qT . (10.4.25)

Similarly, the pertinent two-dimensional stress problem must be solved by assuming
that the plate is subjected to −nr,x and −nr,y body forces. The final thermal stresses
are obtained by superposition of the stresses due to thermal bending and stretching.
It is evident from Eq. (10.4.23) that if the thermal moments mT,x and mT,y do not
vary over the plate domain, the lateral force qT is zero.

Although the solution of Eq. (10.4.25) and that of the corresponding two-
dimensional stress problem can be achieved analytically, the versatile finite difference
and finite element methods offer much more ease in obtaining usable results in the
case of real-life problems. To apply these two numerical methods to two-dimensional
stress problems, the reader is referred to Ref. [5.3.1], for instance, or to any other
textbook treating these numerical techniques.

Summary. The methods presented in this section are directed primarily to obtaining
lateral deflections of thermally loaded plates. It is evident from Eq. (10.4.11) that, by
introducing a fictitious lateral force pT = −∇2mT , the problems can be reduced to
those of Kirchhoff plates, provided the properly augmented boundary conditions are
considered. Consequently, all previously introduced analytical and numerical solu-
tion techniques can be logically applied to obtain the deflection patterns caused by
temperature gradients. However, the solution procedure is much more involved if the
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computation of thermal stresses is also required. In such a case, the generalized for-
mulation of thermal stress problems introduced in Ref. [10.4.5] permits the reduction
of these relatively complex problems to those of externally loaded plates. It should
be noted that to treat such relatively difficult problems in real-life applications, great
reliance must be placed on such numerical solution techniques as the finite difference
and finite element and other numerical methods. This is the direction on which future
research efforts should concentrate.

ILLUSTRATIVE EXAMPLE I

Consider a rectangular plate with fixed boundary conditions subjected to non-
uniform heating �T (Fig. 10.4.3). Compute the temperature stresses in the
plate.

A

XZ, w

a

b

Y

Fixed

a
Tb

Tt

Section A-A

Tt > TbA

Figure 10.4.3 Clamped plate under nonuniform temperature change.

First we assume that the edges of the plate are free to slide but they restrained
against rotation. In such a case, we have a similar condition to that of pure
bending of the plate by uniformly distributed edge moments. The edge moments
required to restore the originally plane condition are the same, but with opposite
signs, as the moments due to the temperature gradient given in Eq. (10.4.6).
Consequently,

mT = −DαT (�T )

h
(1 + ν), (10.4.26)

and the corresponding maximum stresses are

σmax,b = ±6mT

h2
. (10.4.27)

However, if the edges are also prevented from in-plane movements, to
the stresses produced by bending we must add the created additional normal
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stresses, which are

σx = 1

h

(
nr,x − nT

1 − ν

)
− αT E(�T )

1 − ν
,

σy = 1

h

(
nr,y − nT

1 − ν

)
− αT E(�T )

1 − ν
, (10.4.28)

τxy = nxy

h
.

ILLUSTRATIVE EXAMPLE II

Let us determine the deflections wT (x, y) of the simply supported rectangular
plate shown in Fig. 10.4.4, assuming that the temperature of its top surface is
higher than that of the bottom one (�T = Tt − Tb).

A
Z,w

a

Y

Simple support

X

b /2

b /2

a

Tb

Tt

Tt > Tb

a

Tb

Tt

Tt > Tb

Section A - A
A

Figure 10.4.4 Simply supported plate subjected to thermally induced bending.

First, we assume that the boundaries of the plate are fixed. According to
Eq. (10.4.6), this condition produces uniformly distributed edge moments† in
the amount of

mT,n = DαT (�T )

h
(1 + ν). (10.4.29)

Next, we superpose on these moments the moments produced in a simply
supported plate, −mT,n, acting on the edges. Thus, at the boundaries we have

mT,x + mT,y

1 + ν
= −DαT (�T )

h
(1 + ν). (10.4.30)

† The subscript n refers to the normal direction.
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In this case, we can replace the fourth-order differential equation of plates
(1.2.30) by two second-order differential equations. This approach represents
the one already introduced in Sec. 1.2f. Now, for the interior domain of the
plate we can write

∂2wT

∂x2
+ ∂2wT

∂y2
= αT (�T )

h
(1 + ν). (10.4.31)

This equation is analogous to that of a uniformly stretched and uniformly loaded
membrane. According to Timoshenko [2], we can express the deflected plate
surface as a sum,

wT = w1 + w2, (10.4.32)

where

w1 = −αT (�T )(1 + ν)

h

4a2

π3

∞∑
m=1,3,5,...

sin(mπx/a)

m3
(10.4.33)

and

w2 =
∞∑

m=1,3,5,...

Ym sin
mπx

a
, (10.4.34)

with

Ym = Am sinh
mπy

a
+ Bm cosh

mπy

a
. (10.4.35)

With the help of the boundary conditions, we can determine the constants Am

and Bm. Thus, the final expression for the thermally induced bending is

wT = −αT (�T )(1 + ν)4a2

π3h

∞∑
m=1,3,5,...

sin(mπx/a)

m3

(
1 − cosh(mπy/a)

cosh(mπb/2a)

)
.

(10.4.36)
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10.5 Influence Surfaces

In bridge design one is often confronted with the problem of placing a group of
moving loads,† representing vehicles, in such a position that maximum stresses will
occur in the deck slabs. Although this task can be accomplished by trial and error,
the use of influence surfaces eliminates the ambiguity of such procedure and may
offer considerable time savings.

Influence surfaces of plates are two-dimensional counterparts of influence lines
used extensively for analysis of girder, arch and truss bridges; consequently, they
indicate how the changing of position for a unit load influences such important
design parameters as bending moments, shear forces, reactions and deflections. An
ordinate of moment influence surface w(x, y) represents, for instance, the moment
produced at the observation point (ξ, η) when the unit load P = 1 is located at point
(x, y), as shown in Fig. 10.5.1. Such influence surfaces are generally represented by
contour lines, or as profiles, drawn at certain intervals (Fig. 10.5.2).

The use of influence surfaces is simple and economical. Let us assume,
for instance, that P1, P2, . . . , Pn concentrated loads are acting at points
(x1, y1), (x2, y2), . . . , (xn, yn); then the total particular effect, say moment mx , at
the observation point (ξ, η) is

(mx)ξ,η =
n∑

i=1

Piwi . (10.5.1)

† The dynamic effects produced by moving loads are not considered here; hence the analysis is
quasi-static; thus, the results should be multiplied by appropriate dynamic load factors, as discussed
in Sec. 14.1.
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Figure 10.5.1 Concept of influence surface.

Similarly, if the pz(x, y) distributed load acts on an area A, then the moment produced
at point (ξ, η) can be calculated from

(mx)ξ,η =
∫∫
A

pz(x, y)w(x, y) dA. (10.5.2)

An influence surface can be generated by applying the unit load to numerous points
of the plate and evaluating the particular effect (moment, shear, etc.) produced at the
observation point (ξ, η). The results are then plotted as ordinates at the points of
applications (xi, yi) of the unit load. Although such an approach is straightforward,
its use is discouraged because of the large amount of computational work involved.
Instead, we apply Maxwell’s theorem of reciprocal deflections [10.5.1], which states
that an influence surface w(x, y) may be considered as a deflected plate surface
w(x, y) due to an affine unit motion introduced at the observation point (Fig. 10.5.2).
Thus, we can write

w12 = w21. (10.5.3)

In this way, the generation of influence surfaces is reduced to solution of the
homogeneous† plate equation ∇4w(x, y) = 0. From w(x, y) we require that it satis-
fies the boundary conditions and has singularities at the observation point. Before we
discuss this so-called singularity method, let us investigate how affine unit motions
can be generated at the observation point by a group of highly localized concentrated
forces. From such a load group we require that they should have no resultants (force,
moment or twisting moments) [10.5.2, 10.5.5].

Suppose that we would like to generate an influence surface for bending moment
mx at observation point (ξ, η) of an elastic plate, shown in Fig. 10.5.1. The plate can
be of arbitrary shape and may have arbitrary boundary conditions, including holes.

The affine motion pertinent to moment mx is a unit rotation αx = 1 representing the
discontinuity in slope angle in the X direction at the observation point. Let us consider
now the structural action of the load group, shown in Fig. 10.5.3. This particular
system of forces, although it has no transverse resultants or resultant moments, can

† Since deflections are created by induced motions instead of forces.
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Figure 10.5.2 Influence surface for moment at point ξ = a/2, η = b/2.
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Figure 10.5.3 System of forces to produce αx = 1.

create the desired change of the slope within the interval ξ − �x to ξ + �x, since the
total moment area of these external forces (which represents the diagram of imposed
slopes) is unity: ∫ ξ+�x

ξ−�x

Mx dx = 1. (10.5.4)

Letting �x approach zero but maintaining the same value for the integral [Eq.
(10.5.4)], the distributed slopes will approach the required concentrated αx = 1 at
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the observation point (ξ, η). This limit approach, however, creates load singularity.
That is, as �x approaches zero, the load must approach infinity to satisfy Eq. (10.5.4).

In the analytic approach, the particular solution wP of Eq. (1.2.30) should contain
the required singularity, while the solution of the homogeneous plate equation, wH ,
helps to fulfill the requirements of the boundary conditions.

The singular solution in a modified form, given in Eq. (2.1.8),

w
(i)
P = Pi

16πD
[(ξ − x)2 + (η − y)2] ln[(ξ − x)2 + (η − y)2], (10.5.5)

can be used for Pi individual forces of the appropriate load groups. The superposi-
tion of these particular solutions, in connection with the appropriate complimentary
solutions, gives

w(x, y)ξ,η =
∑

w
(i)
P +

∑
w

(k)
H . (10.5.6)

In a similar manner, influence surfaces for twisting moment mxy or shear forces
qx, qy may be obtained. In Fig. 10.5.4 additional load groups capable of producing
the required concentrated affine motions at the observation point are shown. In all
these cases, these highly concentrated, self-equilibrated loads produce only the desired
deformations [10.5.3].

Although generation of influence surfaces by the above-described analytic method
is usually tedious, either finite difference [10.5.4] or finite element methods can be
used economically. In both these numerical approaches the required affine motions
can be introduced directly or indirectly, that is, by employing the appropriate
load groups.

Summary. Influence surfaces for particular effects can be obtained based on
Maxwell’s reciprocity law as deflections of the plate due to a certain system of
loads that produce the required affine motions at the observation point. For cases
most frequently used in bridge design, influence diagrams are readily available in
the German technical literature [10.5.1, 10.5.5, 10.5.6, 10.5.9]. While the analytic
approach is generally tedious, numerical methods yield economical solutions.
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1
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1
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5
l3

l l l

l

l

(a) Torsion mxy (b) Shear qx

Figure 10.5.4 Load groups for generation of additional influence surfaces.
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ILLUSTRATIVE EXAMPLE I

Let us determine an influence surface for the lateral deflections of the sim-
ply supported rectangular plate shown in Fig. 10.5.5a. We assume that the
observation point is located at ξ = 2/3a and η = 1/4b.
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Figure 10.5.5 Generation of influence surface for deflection w1.

To generate the required influence surface, we use Maxwell’s law of reci-
procity. That is, instead of calculating the deflections at the observation point
�1 when the moving load Pz = 1 is at various points on the plate, we intro-
duce a unit lateral displacement at the observation point and determine the
deflections produced at each point of the plate. Therefore, we can state that

w12(x, y) = w21(x, .y). (10.5.7)
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The deflected plate surface due to a unit lateral displacement is obtained from
Eq. (2.4.38) if we divide this expression by P ; thus, we can write

w12(x, y) = 4

π4abD

∞∑
m=1

∞∑
n=1

sin(mπξ/a) sin(nπη/b)

((m2/a2) + (n2/b2))2
sin

mπx

a
sin

nπy

b
.

(10.5.8)

The influence surface obtained is shown in Fig. 10.5.5b. Although Eq. (10.5.8)
does not contain singularity at the observation point, it gives a quite usable
approximation for the sought influence surface. However, the convergence of
this expression is relatively slow.

ILLUSTRATIVE EXAMPLE II

Let us find the influence surface of bending moment my at point �A of the
simply supported continuous plate shown in Fig. 10.5.6. Assume the following
dimensionless properties for the plate: E = 10.0, h = 1 and v = 0.0.

4.00

10.0010.00

5.00

Y

X

Z, w

5.00

A B

Figure 10.5.6 Plate continuous over two spans.

Since it is very difficult and time consuming to obtain an analytical solution
for this problem, we selected a numerical approach in the form of the versatile
FEM. Consequently, the plate is subdivided into 200 conforming rectangular
finite elements with 16 DOFs†, as shown in Fig. 10.5.7. With the help of the
pertinent group forces (Fig. 10.5.3), we are able to approximate the required
singularity and produce αA ≈ 1 at the observation point �A .

With λ = 1 in this case, we apply Pz = 1 lateral forces at nodal points 105
and 127, respectively, while Pz = −2 acts at nodal point 116, which repre-
sents our observation point �A . Our computer program [10.3.31] produced the
contour lines of the influence surface, as depicted in Fig. 10.5.8. To check the

† See Sec. 7.7.1.
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231 220 209 198 187 176 165 154 143 132 121 110 99 88 77 66 55 44 33 22 11

230 219 208 197 186 175 164 153 142 131 120 109 98 87 76 65 54 43 32 21 10

229 218 207 196 185 174 163 152 141 130 119 108 97 86 75 64 53 42 31 20 9

228 217 206 195 184 173 162 151 140 129 118 107 96 85 74 63 52 41 30 19 8

227 216 205 194 183 172 161 150 139 128 117 106 95 84 73 62 51 40 29 18 7

226 215 204 193 182 171 160 149 138 127 116 105 94 83 72 61 50 39 28 17 6

225 214 203 192 181 170 159 148 137 126 115 104 93 82 71 60 49 38 27 16 5

224 213 202 191 180 169 158 147 136 125 114 103 92 81 70 59 48 37 26 15 4
X

223 212 201 190 179 168 157 146 135 124 113 102 91 80 69 58 47 36 25 14 3

222 211 200 189 178 167 156 145 134 123 112 101 90 79 68 57 46 35 24 13 2

221 210 199 188 177 166 155 144 133 122 111 100 89 78 67 56 45 34 23 12 1ZY

Figure 10.5.7 Numbering of nodal points.
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Figure 10.5.8 Influence surface for bending moment my,A.

validity of our solution, we selected the deflection ordinate at point �B (x =
5.00, y = 16.00) for which we obtained the value w50 = 0.0605. A compari-
son with its analytically determined counterpart wB = 0.0597 [10.5.5] shows
a good agreement.
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10.6 Continuous Plates Supported by Rows of Columns

a. Introduction. When two-way reinforced-concrete slabs are not supported by
beams, the lateral loads are transferred directly to the columns, and the plates are
referred to as flat plates of flat slabs (Fig. 10.6.1). Due to the absence of supporting

Figure 10.6.1 Column-supported plates.
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(a) Drop panel (b) Column capital (c) Drop panel and
    column capital

Figure 10.6.2 Various flat-slab configurations.

beams, the columns tend to punch through the slab, as discussed later in detail. To
prevent such so-called punching shear failures, the thickness of the slabs is usually
increased around the columns by rectangular or square drop panels (Fig. 10.6.2a).
Another approach to reducing such punching shear failures is the use of column
capitals. In this case, the top of the columns flare out to a shape somewhat simi-
lar to an inverted cone (Fig. 10.6.2b), rendering a mushroom-type of appearance to
the columns. The column capital gives a wider support, thus reducing the shear and
bending stresses in the slab. Furthermore, column capitals and drop panels are often
effectively combined (Fig. 10.6.2c). This type of reinforced-concrete floor system is
referred to as a flat slab. If neither drop panels nor column capitals are used and the
slab is of uniform depth, we call such a floor system a flat plate. In this case, special
shear reinforcement, for instance in form of I-beams embedded into the concrete, is
required to increase the shear resistance of the plate. Flat plates are generally used
in engineering practice for light loads.

For heavy loads mostly flat slabs are employed, since they offer numerous advan-
tages over an ordinary beam-and-girder floor system. The most important of these
are as follows:

ž For heavy loads, a flat slab is more economical than other types of floor systems.
ž A flat slab results in a more rigid structure.
ž The formwork is simpler.
ž More clear heights can be obtained in multistory buildings.

For the recommended plate thickness, column spacings and size of drop panels and/or
column capitals, the reader should always consult current local building codes such
as the Building Code of the American Concrete Institute, the Euro Design Code, the
German Industry Norms (DIN) or similar building codes.

b. Analysis of Flat Plates. We assume that the column dimensions are small in
relation to the other plate dimensions. Consequently, the infinitely large plate can be
regarded as being point supported. Furthermore, we assume that the lateral load p0
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a

b
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Y

Figure 10.6.3 Interior panel of flat plate.

is uniformly distributed. Using these assumptions, it is sufficient to limit our analysis
to one typical interior panel. The origin of the reference coordinate system X, Y, Z

is placed at the center of this interior panel, as shown in Fig. 10.6.3. According to
Refs. [1–3], the deflections may be expressed as

w(x, y) = p0b
4

384D

(
1 − 4y2

b2

)2

+ A0 + p0a
3b

2π3D

∞∑
m=2,4,...

(−1)m/2 cos(mπx/a)

m3 sinh αm tanh αm

×
[
tanh αm

mπy

a
sinh

mπy

a
− (αm + tanh αm) cosh

mπy

a

]
, (10.6.1)

where

A0 = −p0a
3b

2π3D

∞∑
m=2,4,...

1

m3

(
αm − αm + tanh αm

tanh2 αm

)
(10.6.2)

and

αm = mπb

2a
. (10.6.3)

By setting x = y = 0 and inserting w(x, y) into Eqs. (1.2.26) and (1.2.27), respec-
tively, we obtain the maximum positive bending moments at the center of the plate
in the following form

mx,max = c1p0b
2 and my,max = c2p0b

2. (10.6.4)
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The constants c1 and c2 are listed in Table 10.6.1 for different span ratios b/a using
the value ν = 0.2. Similarly, the maximum deflection at the center of the interior
plate is

wmax = c3
p0b

4

D
. (10.6.5)

Again, the coefficients c3 for different span ratios and ν = 0.2 are listed in
Table 10.6.1.

Formulas for calculating the negative moments at the columns (x = a/2, y =
b/2) are

mx,col = −p0ab

4π

[
(1 + ν) ln

a

d
− (c4 + c5ν)

]
,

my,col = −p0ab

4π

[
(1 + ν) ln

a

d
− (c5 + c4ν)

]
.

(10.6.6)

The coefficients c4 and c5 for different span ratios and ν = 0.2 are given in
Table 10.6.2. The value d represents the diameter of circular columns. In the case of
square or rectangular columns the value of d can be approximated by

d ≈ 0.57C with C = 1
2 (u + v), (10.6.7)

where u and v are the cross-sectional dimensions of the column. However, the
moments obtained by using Eq. (10.6.6) should be reduced, as shown in Fig. 10.6.4.

Since the deflections of the plate are known, the shearing forces can be calculated
using Eq. (1.2.3). This relatively tedious computation, however, can be circumvented
by treating a portion of the plate as a circular plate that is fixed at the periphery of
the column (Fig. 10.2.5). Such an approximation is justified as long as the panels
are nearly square. The free-body of this substitute plate is loaded by a uniformly
distributed load p0, shearing forces qp around its periphery and the reactive forces

Table 10.6.1 Values of Coefficients c1 and c2

b/a c1 c2 c3

1.0 0.0331 0.0331 0.00581
1.1 0.0261 0.0352 0.00487
1.2 0.0210 0.0363 0.00428
1.3 0.0175 0.0375 0.00387
1.4 0.0149 0.0384 0.00358
1.5 0.0131 0.0387 0.00337
2.0 0.0092 0.0411 0.00292
∞ 0.0083 0.0417 0.00260

Table 10.6.2 Values of Coefficients c4 and c5

b/a 1.0 1.1 1.2 1.3 1.4 1.5 2.0

c4 0.811 0.822 0.829 0.833 0.835 0.836 0.838
c5 0.811 0.698 0.588 0.481 0.374 0.268 −0.256
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Figure 10.6.4 Reduction of maximum negative moments.
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Figure 10.6.5 Substitute circular plate.

p0ab at the inner fixed boundary, as shown in Fig. 10.6.5. The radius of this circular
plate and the shear force per unit length is given by Nádai [3] as

r ≈ 0.22a and qp = 0.723p0b − 0.11p0a. (10.6.8)

To obtain the maximum negative moments acting at the columns, we load the
entire area with uniformly distributed load p0. On the other hand, to calculate the
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p2 = −p0/2

p2 = +p0/2

p1 = p0/2

Figure 10.6.6 Loading for maximum field moments.

maximum positive moments in the midspan regions, the loading should be arranged
according to Fig. 10.6.6. Thus, we use a uniformly distributed load p1 = p0/2 in
combination with the load p2 = ±p0/2 by changing its direction from each bay to
the next (Fig. 10.6.7). This second type of loading produces a deflected plate surface
similar to that of a uniformly loaded simply supported plate strip of width a.

If only one panel is loaded while the four adjacent panels do not carry any load,
we can analyze such a condition by superposition of the loads p1 = +p0/2 and
p2 = −p0/2 in a chess-board fashion (Fig. 10.6.7). Under such loading conditions,
each panel behaves as a simply supported plate; thus we can use Navier’s method in
the analysis.

c. Analysis of Flat Slabs. In the foregoing treatment of infinitely large plates
supported by rows of columns, we assumed that the plate is point supported. This is,
however, not the case with flat slabs since the column reactions are distributed over
the column capitals. Lewe [10.6.1] assumed a uniform distribution of these reactions
(Fig. 10.6.8) in the form

p1 = p0ab

4cd
. (10.6.9)

Consequently, the total lateral forces acting on the flat plate are

p(x, y) = p0 − p1(x, y) (10.6.10)
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Figure 10.6.8 Assumed distribution of column reactions.
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This equation can be written in more detailed form by using Fourier series expan-
sion; thus

p(x, y) = −p0a

πc

∑
m

1

m
sin αmc cos αmx − p0b

πd

∑
n

1

n
sin βnd cos βny

− p0ab

π2cd

∑
m

∑
n

1

mn
sin αmc sin βn d cos αmx cos βny

for m, n = 1, 2, 3, . . . , (10.6.11)

where

αm = 2mπ

a
and βn = 2nπ

b
(10.6.12)

Under these combined loads the equation of the deflected plate surface becomes

w = A0 − p(x, y)

16Dπ5

(
a5

c

∑
m

1

m5
sin αmc cos αmx + b5

d

∑
n

1

n5
sin βnd cos βny

)

− p(x, y)a5b5

16cdDπ6

∑
m

∑
n

sin αmc sin βnd cos αmx cos βny

mn(m2b2 + n2a2)2

for m, n = 1, 2, 3, . . . . (10.6.13)

The constant A0 in this equation can be determined from the boundary condition
at x = y = 0 where w = 0. The stress resultants mx , my and q can be calculated
from the corresponding equations given in Sec. 1.2. Unfortunately, is not only this
procedure tedious but the convergence of the resulting expressions is quite slow.

Soinier’s approach [10.6.2] appears to be somewhat simpler. In this case, the
expression for deflections takes the form

w(x, y) = 2p0

π4D

∑
m

a4

m4

sin mπα

mπα
(1 − cos mπξ) +

∑
n

b4

n4

sin nπβ

nπβ
(1 − cos nπη)

+ 2
∑
m

∑
n

sin mπα · sin nπβ

mπα · nπβ

[
1 − cos mπξ · cos nπη

(m2/a2 + n2/b2)2

]
, (10.6.14)

where ξ = x/a and η = y/b. The constants α and β in this equation determine the
supporting area of the column capital in terms of the column spacings a and b, as
defined in Fig. 10.6.9. Again, the stress resultants can be computed using the pertinent
expressions given in Sec. 1.2. Critical loading patterns for the maximum positive and
negative moments are the same as discussed above for flat slabs. To facilitate such
otherwise tedious computations, the maximum values for moments and shear forces
are given in Table 10.6.3 for α = β and ν = 0.3. It should be noted that the maximum
negative moments can be reduced according to Fig. 10.6.10.

Very noteworthy is the analytical solution of this complex plate problem by Pfaffin-
ger and Thürlimann [10.6.11], since due to the accompanying numerous tables, it is
well suited for hand computation. A single series solution was employed for the
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Figure 10.6.9 Top view of flat slab with column capitals.

Table 10.6.3 Design Coefficients for Stress Resultants

β 0 0.1 0.2 0.3 0.4

mcol/p0a
2 −∞ −0.206 −0.142 −0.101 −0.0735

mcenter/p0a
2 0.0359 0.0356 0.0348 0.0334 0.0313

q/p0a ∞ 2.73 0.842

Tangent

c c

R = Column reaction

∆M

∆M ≅ Rc
4

−

+ +

Figure 10.6.10 Reduction of moment above column.

governing plate equation (1.2.3) along with various practical boundary conditions.
As already mentioned, extensive tables facilitate the otherwise time-consuming anal-
ysis. For instance, values of bending moments are given for the quarter points of the
panels; thus the user can easily draw the corresponding moment diagrams required in
design for the arrangement of reinforcing bars. In addition, the twisting and principal
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moments† and their corresponding directions are also listed. The required parameters
cover most practical situations. The limitations of these otherwise excellent tables
are as follows:

(a) The structural system must have double symmetry.
(b) Simply supported boundary conditions at the opposite edges are required.
(c) For corner panels other boundary conditions as shown cannot be used.

A closer investigation, however, reveals that the influence of the boundary conditions
of one panel on the next is negligibly small. Consequently, use of these tables can
be further extended.

d. Numerical Analysis. In the foregoing analytical treatments of flat-plate and flat-
slab problems, we were forced to use mostly idealized conditions to obtain some
usable results. In real life, however, the plates are not infinitely large and the columns
are not always equally spaced in the X and Y directions. In discussing the bending
of flat slabs, it was also assumed that the column reactions are uniformly distributed
over the column capitals. As a rule, however, flat slabs are rigidly connected to
their supporting columns. In addition, edge and corner panels are often cantilevered
and/or supported by edge beams. Furthermore, in most cases the individual panels
have numerous small or large openings and the lateral loads can also be partial
loadings or even concentrated forces. Since the analytical methods introduced above
are completely unsuited to deal with such real problems of engineering practice,
numerical methods must be applied to obtain usable results.

When dealing with such complex flat-plate problems, the various finite difference
methods can be effectively employed, provided the supporting columns are relatively
weak in bending. Consequently, their bending rigidity in comparison with that of the
plate is of negligible order.

For a realistic flat-slab analysis, however, application of the various gridwork or
finite element methods is recommended since both numerical techniques can account
for the interaction between slab and columns in bending and can also consider the
above-mentioned nonclassical geometrical configurations and nonuniform loadings
with relative ease. In the FEM approximation of quasi-rigid drop panels or its com-
bination with column capitals, sufficiently small subdivision should be used covering
the pertinent areas.

e. Punching Shear. Reinforced-concrete flat-plates may fail by punching shear
when the columns suddenly perforate the slab. Such failures are highly localized,
involving tangential and radial cracks in the concrete. Consequently, the regions
around the columns pose a critical analysis problem since bending moments and shear
forces are concentrated in these regions. In addition, because of their interaction, they
cannot be treated separately. Punching shear failures are due to tensile failure of the
concrete along the developed cracks; hence, a sufficient amount of flexural reinforce-
ment is of primary importance. Readily applicable design formulas for estimating
punching shear strength are given in building codes [10.6.12, 10.6.13]. Although
these formulas are simple and, hence, convenient to use, they are based on empirical

† See Eq. (1.2.39).
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findings. Recent research efforts, however, try to correlate two- three-dimensional
finite element predictions with experimental results [10.6.14–10.6.17].

Summary. Although applications of the analytical approaches introduced here to
flat-plate and flat-slab problems are seriously limited by the idealized conditions
presented, they can serve extremely well as benchmarks when the accuracy and
effectiveness of the more productive numerical methods are tested. For analysis of
relatively small practical problems involving flat plates, the FDMs give good results
in a simple way. Unfortunately, commercially available program systems employing
finite difference approaches are extremely rare; consequently, the use of the finite
difference approach is restricted to relatively small problems that still can be handled
by a combination of hand and computer computations, as discussed in Chapter 2. On
the other hand, the readily available gridwork and finite element program systems
can deal with all complex flat-plate and flat-slab problems encountered in engineer-
ing practice.

Finally, the reader should note that the yield-line method (Sec. 11.6) and the
engineering approximation of flat-slab problems by using substitute rigid frames
(Sec. 12.6) can yield practical approximations to these complex problems in a rel-
atively simple way. Furthermore, the results obtained can provide valuable inde-
pendent checks for the more sophisticated finite difference, gridwork or finite ele-
ment analyses.

ILLUSTRATIVE EXAMPLE

Determine the maximum deflection, bending moments and critical shear forces
in a typical interior panel of an infinitely large reinforced-concrete flat-plate
(Fig. 10.6.3) subjected to p0 = 25 kN/m2 uniformly distributed lateral forces.
Assume that the center spacings of the columns are a = b = 7.0 m. These
supporting columns are of square cross-sectional shape with the dimension
d = 0.4 m. Additional properties of the plate are h = 0.25 m, E = 30,000,000
kN/m2 and ν = 0.2.

Since we are dealing here with the idea lized conditions introduced above,
we can use the pertinent formulas developed for such cases. Consequently,
with

D = Eh3

12(1 − ν2)
= 30 × 106 × 0.252

12(1 − 0.22)
= 40,690 kNm, (10.6.15)

the bending stiffness of the plate, Eq. (10.6.5) gives the maximum deflection as

wmax = c3
p0b

4

D
= 0.00581

25 × 7.04

40,690
= 0.0086 m. (10.6.16)

Similarly, from Eq. (10.6.4) we obtain the maximum positive bending moment

mx,max = my,max = c1p0b
2 = 0.0331 × 25 × 7.02 = 40.55 kN-m/m.

(10.6.17)
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In addition, Eq. (10.6.6) yields the maximum negative moments above the
columns of interior panels:

mx,col = −p0a
2

4π

[
(1 + ν) ln

a

d
− (c4 + c5ν)

]

= −25 × 7.02

4π

[
(1 + 0.2) ln

7.0

0.4
− (0.811 + 0.811 × 0.2)

]

= −186.95 kN-m/m. (10.6.18)

This peak value, however, should be reduced in accordance with Fig. 10.6.4.
The value of the critical shear is computed from Eq. (10.6.8), which gives

qp = 0.723 p0a − 0.11p0a = 107.27 kN/m. (10.6.19)

A similar approach can be taken for the interior panels of infinitely large
reinforced-concrete flat slabs.
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10.7 Additional Topics Related to FEM

10.7.1 Various Convergence Tests

There is only one exact solution to a given plate problem. Considering the approxi-
mate nature of the FEM, however, the resulting numerical solution after we succes-
sively refine the element mesh can

ž converge to the exact solution,
ž converge to a wrong number,
ž or diverge entirely.

The subject of convergence of any approximate solution of a plate problem involves
several abstract mathematical concepts requiring highly sophisticated analyses. Such
rigorous treatment is in the realm of functional analysis and therefore outside the
scope of this book.

The discretization error that has the most pronounced influence on the convergence
of a finite element solution depends mostly on the following four parameters:

ž the shape functions used in generating the element stiffness coefficients,
ž the mesh size,
ž boundary conditions and
ž representation of the external loads.

As already discussed in Sec. 7.3.1, the FEM can be considered a special case of
the Ritz energy method. Consequently, to obtain convergence in the finite element
solution of a plate problem, we must require that the total potential of the external
and internal forces of the substitute system must be equal to that of the original
continuum [10.7.1]. This necessary requirement for convergence can be expressed by

� = �int + �ext = 1

2
d

T

( ∞∑
N=1

K(N)
e

)
d − d

T
p. (10.7.1)

For this purpose we can use certain plate problems for which an exact solution is
available.†

To ensure convergence to the exact solution of the finite element results when
the mesh is refined, the shape functions must satisfy all the criteria introduced in
Sec. 7.4. Observance of the criterion concerning nonstraining of the element is of
basic importance to avoid divergence. As already discussed, straining of the element
occurs when all nodal points are subjected to rigid-body displacements. This case
can be tested by solving a set of eigenvalue equations for the element, which can be
formulated as

(Ke − ω2I)de = {0}, (10.7.2)

† See Fig. 2.1.1, for instance.
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where I is the identity matrix and ω represents the corresponding eigenvalues. For
plate elements, there are three rigid-body modes: a transverse displacement and rota-
tions about the X and Y axes, respectively. Solution of Eq. (10.7.2) must include all
rigid-body modes corresponding to zero ωi frequencies.

To evaluate the convergence characteristics of finite elements, the so-called patch
test [10.7.2] is used most frequently in engineering practice. The patch represents
a small assembly of finite elements. These elements are subjected to either a set of
displacements or boundary forces that produce constant-curvatures at each point of
the patch. Thus, we require that

κ =



κx

κy

χ


 =




−∂2w

∂x2

−∂2w

∂y2

− ∂2w

∂x ∂y




= const. (10.7.3)

Consequently, we can state that the patch test is passed for a given plate assembly if
the above given constant-curvatures are produced under a certain set of displacement
or boundary forces. If boundary forces are used, for instance, the boundary forces
shown in Fig. 10.7.1 produce the required constant state of curvatures. By applying
the bending moments mx = M0 at two opposite edges of the plate assembly as shown
in Fig. 10.7.1a, the moments my = mxy become zero. Thus, from the corresponding
equations for moments† we obtain

∂2w

∂y2 = −ν
∂2w

∂x2 = −12νM0

Eh3
and

∂2w

∂x ∂y
= 0. (10.7.4)

To generate constant warping in the plate assembly, we now apply the boundary
forces shown in Fig. 10.7.1b. A closer investigation of the obtained deflection shape
reveals that due to the antisymmetry of the given plate configuration and its deflected
condition, there are no deflections in the line of the X and Y axes. Furthermore, the
free-body equilibrium of a plate quadrant requires that the quadrant must be balanced
by four corner forces in the same manner as the whole plate assembly maintains its
equilibrium. Subsequent subdivision of this quadrant into four quadrants leads to an
infinitesimal element of size dx dy subjected to the same type of corner forces. To
produce corresponding twisting moments, we split each of the four corner forces
into halves. Under this condition, the whole plate assembly is subjected to constant
twisting moments in the size of P z dx/2 and P z dy/2, respectively. Next, we apply the
reverse concept of Kirchhoff’s supplementary forces‡ and transform the corner forces
into constant twisting moments acting on the edges. Consequently, we can write

P z dx

2 dx
= P z

2
= mxy = const. (10.7.5)

† See Sec. 1.2.
‡ See Sec. 1.3.
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Figure 10.7.1 Patch test for plate bending elements.

Solving the pertinent moment equations by assuming that mx = my = 0 and mxy =
P z/2, we obtain

∂2w

∂x2 = ∂2w

∂y2 = 0 and
∂2w

∂x ∂y
= 6P z(1 + ν)

Eh3
. (10.7.6)

It is recommended that for patch tests relatively simple geometrical configurations
be used. However, it is often desirable that the elements be of irregular shape, since
some quadrilateral elements may pass the patch test when used as rectangles but fail
when used in general quadrilateral form.

Assume the plate element in question satisfies the following criteria:

ž state of constant strains,
ž rigid-body modes without straining and
ž interelement compatibility.

Then, passing the patch test indicates that the finite element solution will converge
to the exact value when increasingly finer mesh is used.

Robinson introduced a single-element test [10.7.5] to judge a priori the element
performances in bending analysis of plates. He used only a single rectangular plate
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element with three edges free and one built in. In the test, the element in question will
be subjected to various loading conditions, as shown in Fig. 10.7.2. If the results of
the finite element computations correspond to the analytical solutions of the pertinent
plate problems, the element will also yield satisfactory results in the finite element
analysis of various plate problems. To test triangular elements, a rectangular element
must be formed using two such elements.

m1 = const

m2 = const

q = const

Torsion

1.0

1.0

Built in

Figure 10.7.2 Robinson’s single-element test.
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10.7.2 Elements with Curved Sides

In most practical applications of the FEM, we can subdivide the interior domain of
plates into rectangular elements and approximate the curved boundaries by a num-
ber of straight-sided triangular elements. There are, however, some relatively rare
plate problems with highly irregular boundaries. In such cases, a large number of
straight-sided elements may be required to satisfactorily model the plate geome-
try. The number of required finite elements, however, can be considerably reduced
by using elements with curved sides. For instance, if the boundary shape is simi-
lar to a parabolic curve, we can use a second-order quadratic mapping function to
approximate that boundary.

While in some of the previous sections we employed mapping techniques for
elements of various shapes to obtain simple squares or triangles, now another mapping
concept will be used to provide rectangles and triangles with curved sides. To obtain
curved-element boundaries, however, the mapping function must be at least quadratic
or even of higher order.

One of these mapping techniques is called isoparametric, where the Greek word
iso means “equal,” referring to the fact that the mapping functions for the joint-point
coordinates are chosen to be the same as the shape functions Ni(x, y), which define
the displacement fields of the same finite element. The word parametric refers to the
use of parameters. If the mapping functions employed in the procedure are of lower
order than functions describing the displacement fields, we call the obtained element
subparametric. On the other hand, if the mapping functions are of higher-order than
the shape functions of the displacements, we speak of superparametric elements.

For the so-called parent element, we usually select fairly regular shapes such as
squares, rectangles or right and equilateral triangles. To avoid numerical problems
when mapping plate elements, the following rules should be observed:

ž The parent element should be straight sized.
ž For quadrilateral elements, the corner angle should be close to 90◦. Similarly,

the corner angle for triangular elements should be in the vicinity of 60◦.
ž If side nodes are used, the length between nodes should be equal.
ž The node numbers should be stated in a specific order.

As already mentioned, the isoparametric formulation employs the same functions,
Ni(x, y), for mapping as the ones used for generating the element stiffness matrix
Ke. But we can, of course, also use other types of mapping functions to obtain curve-
sided elements. In the following, we intend to give merely a short outline of such
mapping proceses. Because of the relative complexity inherent in the generation of
curve-sided plate elements, a detailed handling of this advanced topic is considered
to be outside the scope of this book. For more information, the reader is referred to
the pertinent literature.

First, a master set of mapping functions fi(ξ, η) are developed. Then, we map the
local dimensionless coordinates ξ, η of the parent element into curved coordinates
ξ, η, referred in the global coordinate system, X, Y , as shown in Fig 10.7.3. Since
in many cases the shape functions Ni(ξ, η) used in the transformation process are
implicitly defined, there is a great need for corresponding numerical procedures when
they are applied in isoparametric mapping. Furthermore, it is of basic importance
that two adjacent elements satisfy the continuity requirements between them. This
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can always be achieved if the shape functions of the parent element also satisfy this
requirement.

The main concept underlying the development of curve-sided elements centers
on transforming simple geometrical shapes of parent elements given in the local
coordinate system into elements with curved edges expressed in the global reference
system X, Y (Fig. 10.7.3). The N nodes of the element given in the local coordinate
system may be mapped into corresponding nodes in the global system by

x =
N∑

i=1

fi(ξ, η)ξi , y =
N∑

i=1

fi(ξ, η)ηi, (10.7.7)

where N represents the total number of nodes, fi(ξ, η) is the mapping function and
ξi, ηi are coordinates of the nodes. As already mentioned, the mapping functions
must be at least quadratic to obtain elements with curved boundaries.

After having described the new element shape via Eq. (10.7.7) in the global refer-
ence system, we now face the task of determining the corresponding element stiffness
matrix Ke by carrying out the required differentiations and integration. In differenti-
ations the chain rule must be applied, which gives the relations

∂

∂ξ
= ∂

∂x

∂x

∂ξ
+ ∂

∂y

∂y

∂ξ
and

∂

∂η
= ∂

∂x

∂x

∂η
+ ∂

∂y

∂y

∂η
. (10.7.8)

In general, the element stiffness matrix is calculated from†

Ke =
∫∫
A

(DTED) dA, (10.7.9)

h
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Figure 10.7.3 Mapping straight-sided element into element with curved edges.

† See Eq. (7.3.51).
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where D is the matrix defined by Eq. (7.3.51) and E represents the elasticity matrix
as specified in Eq. (7.3.52). The stiffness matrix of the curved element in the global
reference system is usually expressed with the help of the Jacobian matrix J. Thus,
we can write

Ke =
∫ 1

−1

∫ 1

−1
(B

T
EB) det J dξ dη. (10.7.10)

Since the matrix product in parentheses, in general, cannot be expressed in explicit
form, we must resort to numerical integration to calculate Ke. It is apparent that this
procedure is rather complicated even for the simplest case. However, the reader will
find detailed description of this process accompanied by a corresponding FORTRAN
program in Ref. [10.7.6].

Summary. Nowadays, engineers are seldom required to test plate elements for con-
vergence, since most of the plate elements given in this book converge relatively
well or, in some cases, even extremely well. The same can be said concerning plate
elements used in commercially available finite element programs. Probably, the only
exception is when research engineers are engaged in developing new elements. In
such circumstances, comparison of the energy of a test problem having an exact
solution with that of the finite element system is the most recommended technique to
obtain reliable results. Of course, the other convergence testing method can also be
used, but one must consider that this method delivers the necessary but not sufficient
part of the convergence requirement. Thus, its reliability is not as high as that of the
energy method.

Although the highly flexible subdivision of a plate by straight-sided triangular
elements can approximate quite well curved plate edges, there are some plate prob-
lems with highly irregular boundaries that may require the application of curve-sided
elements. However, to determine the curved shapes of the elements and the corre-
sponding stiffness matrices, a relatively involved mapping process is required. In this
section, only the basic concepts of this procedure were briefly described. For more
detailed studies of this subject, the reader is referred to the pertinent literature.
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10.8 Extensions of Classical Finite Strip Method

The classical finite strip method introduced by Cheung in 1968 was originally
intended only for the analysis of rectangular plates with two opposite simply
supported ends. In the meantime, restrictions concerning the boundary conditions
have been eliminated by employing various types of beam functions, as demonstrated
in Chapter 8.

Unfortunately, the use of the classical FSM still has some shortcomings and may
even lead to some difficulties in its practical applications. For instance, when the
lateral load acting on the plate is highly irregular, the number of nodes required for
the analysis sharply increases. In addition, since the functions used in the longitudinal
strip direction are continuously differentiable, they cannot represent satisfactorily
abrupt changes in bending moments at interior point supports and at the vicinity of
concentrated loads. Other shortcomings of the classical FSM are related to handling
of continuous spans, mixed boundary conditions in the longitudinal strip direction and
dealing with arbitrary plate geometry. Finally, the classical FSM is applicable only
for Kirchhoff’s plates; thus it is not suited for the analysis of moderately thick plates.

However, in recent years the classical FSM has been substantially improved.
Through the efforts of dedicated researchers the difficulties associated with the clas-
sical FSM are now mostly eliminated. One of the mathematical “tools” used to
overcome the above-mentioned problems is the application of the B3-spline func-
tion for longitudinal displacement function. This approach creates the spline finite
strip alternative. So far, this analysis technique could be successfully applied to a
wide variety of plate problems [10.8.1]. It should be mentioned that the cubic spline
function has C(2) continuity. In addition, it permits the use of arbitrary boundary
conditions in the longitudinal strip direction. It is also applicable to the analysis of
rectangular plates with cut-outs or to flat plates with drop panels and even to column-
supported continuous plate bridges. Recent studies extend the spline fine strip method
to moderately thick plates by considering the effect of transverse shear. The other
mathematical tool used to overcome the difficulties of the classical FSM is based on
the so-called computed shape function. These recent developments further increase
the flexibility in the choice of interpolating functions. Consequently, the classical
FSM is now substantially improved.
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10.8.1 Spline Finite Strip Method

a. Spline Functions. The spline functions are piecewise interpolating functions.
The term spline derives from the drafting tool used by naval architects in laying out
curved ship hull contours. The cubic spline (n = 3) is especially important since it is
almost exclusively employed in the spline FSM. It represents the equation of beam
deflections when the clamped beam is subjected to a concentrated force. A cubic
spline function is a piecewise polynomial that is continuously differentiable over the
entire domain of interpolation. Another favorable property of this function is that it
breaks the continuous domain into small intervals, and constrains placed in one region
have no effects in regions far removed. In addition, the cubic spline function has accu-
racy in derivatives coupled with good convergence characteristics [10.8.2–10.8.4].
Furthermore, it can be easily adapted to fit various boundary conditions, as illus-
trated below. A typical cubic spline function is shown in Fig. 10.8.1. Its use as a
displacement function in the longitudinal strip direction with fixed and free boundary
conditions and equally spaced nodal points is shown in Fig. 10.8.2.

The cubic B3-spline function for equally placed sections is expressed as

Y (y) =
m+1∑
i=−1

αiφi = {φ}T{α}, (10.8.1a)

in which φi has nonzero values over four consecutive sections. The section φi with
the section knot y = yi as center is given as

φi = 1

6h3




0 for y < yi−2,

(y − yi−2)
3 for yi−2 ≤ y ≤ yi−1,

h3 + 3h2(y − yi−1) + 3h(y − yi−1)
2

− 3(y − yi−1)
3 for yi−1 ≤ y ≤ yi,

h3 + 3h2(yi+1 − y) + 3h(yi+1 − y)2

− 3(yi+1 − y)3 for yi ≤ y ≤ yi+1,

(yi+2 − y)3 for yi+1 ≤ y ≤ yi+2,

0 for y < yi+2.
(10.8.1b)

The corresponding unknown parameters are represented by αi . Unequally spaced
nodal points can also be used. In this case, however, expression for the function
becomes more elaborate.

The treatment of various boundary conditions at the ends of the strip can be easily
accomplished by amending the B3-spline function at the corresponding boundaries.
Due to the localized nature of the spline functions, only three local boundary splines
have to be amended at each end, that is,

{φ}T = { φ̃−1 φ̃0 φ̃1 φ2 φ3 . . . φm−2 φ̃m−1 φ̃m φ̃m+1 }T, (10.8.2)

where φi represents standard local splines and φ̃i denotes amended local splines.
Consequently, the function Y (y) can be written as

Y (y) = {φ}T{α}, (10.8.3)
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where the vector of the displacement parameters is

{α} =




α−1

α0
α1

α2

α3

...

αm−2
αm−1

αm

αm+1




. (10.8.4)
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To incorporate the kinematic boundary conditions, zero values are used in Eq. (10.8.4)
for the restrained degrees of freedom. Thus, the corresponding local splines are elim-
inated in Eqs. (10.8.2) and (10.8.3), respectively. For example, if the boundary is
clamped at y = 0, we can write

Y (y) = { φ̃−1 φ̃0 φ̃1 φ2 φ3 . . . }T




0

0

α1

α2

α3

...




. (10.8.5)

A similar approach can be used at the y(l) end. Table 10.8.1 shows other amendment
schemes of practical interest.

b. Finite Strip Formulation. The displacement field of a strip is expressed as the
product of the cubic spline function with equally spaced nodes in the longitudinal
strip direction and conventional beam functions in the other. These functions are

{N}T =




N1 = 1 − 3
(x

b

)2 + 2
(x

b

)3

N2 = x

[
1 − 2x

b
+
(x

b

)2
]

N3 = 3
(x

b

)2 − 2
(x

b

)3

N4 = x

[(x

b

)2 − x

b

]




T

. (10.8.6)

Table 10.8.1 Amended Boundary Spline Functions at End Support

Boundary
Modified Local Spline Functions

Condition φ̃−1 φ̃0 φ̃1

Free φ̃−1 φ̃0 φ̃1

Simply supported Eliminated φ̃0 − 4φ̃−1 φ̃1 − φ̃−1

Clamped Eliminated Eliminated φ̃1 − 1
2 φ̃0 + φ̃−1

Sliding clamped supported Eliminated φ̃0 φ̃1 + φ̃−1

Continuous φ̃−1 − 1
4 φ̃0 Eliminated φ̃1 − 1

4 φ̃0

Note: From Ref. [10.8.1].
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They connect each nodal line with two degrees of freedom, that is, the transverse
displacement wi and its corresponding rotation θi . Thus,

{ N1 N2 N3 N4 }T




wi

θi

wj

θj


 , (10.8.7)

where i and j represent the nodal lines. Consequently, as shown in Fig. 10.8.3, the
displacement function for a plate strip can be given as

{w} = { N1 N2 N3 N4 }T




{φwi
}T

{φθi
}T

{φwj
}T {

φθj

}T







{wi}
{θi}
{wj }
{θj }




,

(10.8.8)

where {φi}T and {φj }T are row matrices in terms of B3 splines and {wi}, {θi}, {wj }
and {θj } are the vectors of the corresponding displacements for nodal lines �i and
�j , respectively.

Now, since the displacement functions representing the shape functions for the
strip element have been determined, we can use the standard procedure described in
Sec. 7.3.2 to obtain the corresponding stiffness matrix Ke. For this purpose, we must
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Figure 10.8.3 Typical plate strip.
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first establish the strain-displacement relationship, which can be written as

κ =




κx

κy

χ


 =




−∂2w

∂x2

−∂2w

∂y2

2
∂2

∂x ∂y




=



−{N ′′}T 0 0

0 −{N}T 0

0 0 2{N ′}T






{φ}
{φ′′}
{φ′}


 {d} = Dd,

(10.8.9)

where

{N ′}T = ∂

∂x
{N}T, {N ′′}T = ∂2

∂x2
{N}T,

{φ′}T = ∂

∂y
{φ}, {φ′′} = ∂2

∂y2
{φ}

(10.8.10)

represent differentiations of pertinent functions with respect to x and y, res-
pectively.

Thus, the stiffness matrix of the strip element is obtained from

Ke =
∫

V

DTED dV, (10.8.11)

or in a more detailed form [10.8.5]

Ke =
∫

V

{{φ}T {φ′′}T {φ′}T}T




−{N ′′}T 0 0

0 −{N}T 0

0 0 2{N ′}T




× E




−{N ′′} 0 0

0 −{N} 0

0 0 2{N ′}






{φ}
{φ′′}
{φ′}


 dV. (10.8.11a)

The elasticity matrix E for an orthotropic plate, for instance, can be written as

E =

Dx D1 0

D1 Dy 0
0 0 Dxy


 , (10.8.12)

where Dxy = Dt represents the torsional rigidity and D1 = νxDy = νyDx . This along
with the bending rigidities of the plate is defined in Sec. 10.1.

Fan [10.8.5] derived the bending stiffness matrix of a typical plate strip
(Fig. 10.8.3) in the following explicit form:
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Ke = 1

420b3


5040DxI111 2520bDxI112 −5040DxI113 2520bDxI114

−504b2D1I211 −462b3D1I212 +504b2D1I213 −42b3D1I214

−504b2D1I311 −42b3D1I312 +504b2D1I313 −42b3D1I314

+156b4DyI411 +22b5DyI412 +54b4DyI413 −13b5DyI414

+2016b2DxyI511 +168b3DxyI512 −2016b2DxyI513 +168b3DxyI514

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5040b2DxI122 −2520bDxI123 840b2DxI124

−504b3D1I222 +42b3D1I223 +14b3D1I224

−504b4D1I322 +42b3D1I323 +14b4D1I324

+156b6DyI422 +13b5DyI423 −3b6DyI424

+2016b4DxyI522 −168b3DxyI523 −56b4DxyI524

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5040DxI133 −2520bDxI134

−504b2D1I233 +462b3D1I234

−504b2D1I333 +42b3D1I334

+156b4DyI433 −22b5DyI434

+2016b2DxyI533 −168b3DxyI534

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

- - - - - - - - - - - - - - - - - - - - - - -Symmetric
5040b2DxI144

−504b3D1I244

−504b4D1I344

+156b6DyI444

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

+2016b4DxyI544




,

(10.8.13)

where

I1ij
=
∫ l

0
t{φ}T

i {φ}j dy, I2ij
=
∫ l

0
t{φ′′}T

i {φ}j dy, I3ij
=
∫ l

0
t{φ}T

i {φ′′}j dy,

I4ij
=
∫ l

0
t{φ′′}T

i {φ′′}j dy, I5ij
=
∫ l

0
t{φ′}T

i {φ′}j dy. (10.8.14)

It is important to note that the stiffness matrix given in Eq. (10.8.13) is of a general
form for a plate strip having any number of sections. That is, the size of the matrix
depends on the size of the above integrals of spline vectors or their derivatives.

As usual, the internal stress resultants† can be obtained from

σ =



mx

my

mxy


 = E




−∂2w

∂x2

−∂2w

∂y2

2
∂2w

∂x ∂y




. (10.8.15)

† See also Secs. 1.2 and 10.1.
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Figure 10.8.4 Concentrated forces acting on nodal line i.

c. Formulation of Load Vector. It is recommended that a nodal line and nodal
point should be assigned to each concentrated force (Fig.10.8.4). Needless to say,
concentrated forces acting on a common nodal line should not be considered twice
when the load matrix of the total structure is compiled. Since there are only four
local splines with nonzero values at their specific location, the vector of concentrated
forces and moments acting on an strip element should be formulated as

pe = {φ(y1)}T




P

0
0
0


+ {φ(y2)}T




0
Mx

0
0


+ {φ′(y3)}T




My

0
0
0


 . (10.8.16)

Because the FSM, similar to other FEM, is not overly sensitive to the way dis-
tributed loads are represented, it is in most cases satisfactory to allocate statically
equivalent concentrated forces and moments to the corresponding nodal points.

d. Computational Procedures. The required steps follow, in general, those of the
standard FEM described in Sec. 7.1.3:

ž A Cartesian global reference system X, Y , Z is selected.
ž Discretization of the plate is performed by a suitable number of longitudinal

strips connected to each other by nodal lines. These strips are further subdivided
into a group of nodal sections by equally spaced section knots (nodal points).

ž For each strip the plate thickness h, Young’s modulus of elasticity E and
Poisson’s ratio ν must be defined.

ž The selected spline representation for each nodal line must satisfy the prescribed
boundary conditions in the longitudinal strip direction.

ž The displacement function for a strip is expressed as a product of longitudinal
spline functions and transverse beam functions.

ž The displacements of the nodal lines are defined by the lateral displacements wi

and transverse rotations θi of the section knots. These unknowns are separately
numbered in the local and global coordinate systems, respectively.
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ž The element stiffness matrix Ke and the load vector pe are computed in the
local coordinate system X, Y, Z of the strip element.

ž In the stiffness matrices Ke, and load vectors pe, the local numbering is replaced
by its global equivalent.

ž The global stiffness matrix K relevant to the degrees of freedom of the nodal
lines is computed from the stiffness matrices Ke of the individual strips accord-
ing to the additive technique. The same goes for the load vector p of the total
system using the vectors pe of the strips.

ž By solving the governing matrix equation K d = p, the tridiagonal block struc-
ture of the global stiffness matrix can be utilized.

ž With known displacement vector d, the internal stress resultants can be deter-
mined through the kinematic and constitutive equations.

10.8.2 Computed Shape Functions

If the plate thickness varies significantly along the longitudinal strip direction Y , the
use of the so-called computed shape functions may save considerable computational
efforts, since the degrees-of-freedom can be substantially reduced [10.8.1, 10.8.9].
Applying this approach, a plate strip with varying thickness along the strip direction Y

is considered as a beam with the same boundary conditions and variation of thickness
as the plate strip (Fig. 10.8.5a). This equivalent beam is divided into beam elements
representing the various plate rigidities (Fig. 10.8.5b). To compute the longitudinal
shape functions Ym(y), a number of joint points are assigned for each beam section.
Next, we determine the influence lines for lateral deflections at each node m by
imposing a unit translation at the node point in question, while the other nodes have
zero deflections (Fig. 10.8.5c). These influence lines for a continuous beam can easily
be determined by either the FEM or the FDM. In this way, a total of r computed shape
functions are obtained. Again, the shape function of a typical plate strip bounded by
lines �1 and �2 can be written as

w(x, y) =
r∑

m=1

Ym(y){N(x)}T{d}m, (10.8.17)

where Ym(y) is the computed shape function at the nodal point and m and r represent
the number of these points. In addition, {N(x)}T symbolizes a row matrix containing
the usual beam shape functions in the X direction as already given in Eq. (10.8.6)
and

{d}m =




w1

θ1
w2

θ2




m

(10.8.18)

is the vector of displacement components at nodal point m along the nodal lines �1

and �2 .
Since the shape function is now known, we can follow the same procedures as

used in connection with the classical FSM† to obtain the stiffness matrix of all plate

† See Sec. 8.3.
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Figure 10.8.5 Concept of computed shape function Ym(y).

strips and subsequently that of the complete plate structure. Again, the computational
algorithm remains the same as the one used for the classical FSM. As mentioned
before, all FEMs are not sensitive to the manner of load representation. Thus, we
may apply the simple “tributary load” approximations for distributed loads, as already
discussed in connection with gridwork and finite element methods. However, if a
more exact load representation technique is needed, it can be found in Ref. [10.8.9].
Concentrated loads, as usual, require the assignment of individual nodal lines and
nodal points.

10.8.3 Finite Strip Formulation of Moderately Thick Plates

So far, we have limited the applications of the FSM to Kirchhoff plates.
Recently, however, the FSM was also extended to the analysis of moderately thick
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plates by using first- (and even higher) order Mindlin or Reissner plate theories
[10.8.10–10.8.14] introduced in Sec. 1.5. Applying Mindlin’s first-order theory, the
displacement vector can be written as




u

v

w


 =




−zψx(x, y)

−zψy(x, y)

w(x, y)


 , (10.8.19)

where w(x, y) represents the transverse displacements and ψx(x, y), ψy(x, y) denote
the section rotations illustrated in Fig. 10.8.6.

We express, again, the functions for deflections and rotations as products of the
Ym(y) and Nk(x) shape functions

w(x, y) =
r∑

m=1

s∑
k=1

Ym(y)Nk(x)wkm,

ψx(x, y) =
r∑

m=1

s∑
k=1

Ym(y)Nk(x)ψx,km, (10.8.20)

ψy(x, y) =
r∑

m=1

s∑
k=1

Ym(y)Nk(x)ψy,km,

where Ym(y) represents the classical shape functions introduced in Sec. 8.2 and
Nk(x) denotes the beam functions given in Eq. (10.8.6). For nondominant shear
effects, however, it is often sufficient to use straight-line shape functions with two
nodes (Fig. 10.8.7), which are expressed by

N1(x) = 1 − x

b
and N2(x) = x

b
(10.8.21)
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Figure 10.8.6 Cross-sectional deformation of moderately thick plate.
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Figure 10.8.7 Straight-line function with two nodes.

The strain-displacement relationships required for generating element stiffness
coefficients are




εb

- - -
εs


 =




εx

εy

γxy

- - -
γxz

γyz




=




−z
∂ψx

∂x

−z
∂ψy

∂y

−z

(
∂ψx

∂y
+ ∂ψy

∂x

)

- - - - - - - - - - - -
∂w

∂x
− ψx

∂w

∂y
− ψy




, (10.8.22)

in which εb represents strains produced by bending and εs denotes the part of the
strain vector due to shear effects.

Substituting Eq. (10.8.20) into Eq. (10.8.22) and following the standard procedures
for generating element stiffness matrices, we obtain

Ke = Ke,b + Ke,s =
∫ l

0

∫ b

0
DT

b EbD dx dy +
∫ l

0

∫ b

0
DT

s EsDs dx dy, (10.8.23)

where Db and Ds represent matrices containing the corresponding differentiations
of the shape functions and Eb and Es are elasticity matrices for bending and shear,
respectively, as defined in Sec. 7.9. The computational procedures are similar to those
given in Sec. 7.8.1.

However, the relative simplicity of the above given outline should not mislead
the reader, since the actual programming of these procedures requires quite a bit
of expertise.

Furthermore, it should be noted that as the plate thickness becomes small, the
influence of the shear terms tends to dominate. Consequently, numerical solutions of
the plate problems may yield unsatisfactory (i.e., overstiff) results. This shear locking
phenomenon is well known for plates analyzed using refined plate theories. The
problem is similar to that already discussed in connection with the FEM. The use of
deliberate under integration is one of the methods often practiced. Namely, a reduction
of the order of numerical integration leads to considerably improved accuracy.
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Summary. To overcome the shortcomings of the classical FSM, the spline finite
strip approach was introduced by Fan [10.8.5]. Unlike its classical counterpart, this
new technique employs B3-spline functions for displacements in the longitudinal
strip direction and uses cubic polynomials in the transverse direction for shape func-
tions. The general form of the displacement function is given as their product. The
developed spline FSM possesses the combined advantages of the FEM and the clas-
sical FSM. Consequently, this new approach may emerge, in some cases, as a viable
alternative numerical procedure for plate analysis. A similar approach was taken
by using computed shape functions instead of splines. Furthermore, to treat even
arbitrarily shaped general plates, a mapping procedure was introduced that trans-
forms the arbitrary shapes into unit squares. Thus skew and curved plates can be
analyzed with relative ease [10.8.16, 10.8.17]. The spline FSM was also extended
to solution of such diverse plate problems as plates with varying rigidities and
flat plates, to name a few. Unfortunately, the number of commercially available
computer programs using the spline FSM is still relatively small, in spite of its
merit of considerably reducing the unknowns required in the computation. Thus, the
method still remains mostly within the realm of mathematically inclined engineers
with good computer programming background. For further study, the reader will
find in Ref. [10.8.20] an extensive chronological listings of publications treating all
versions of the FSM.

ILLUSTRATIVE EXAMPLE

Let us determine a spine shape function with only two consecutive sections
(i.e., m = 2). This function can be written as

Y (y) =
3∑

−1

αiφi(y) = { φ−1 φ0 φ1 φ2 φ3 }T




α−1

α0
α1

α2

α3




(10.8.24)

with the locations at y0, y1 and y2 taken as nodal points and denoted by 0,
1 and 2, respectively. A transformation procedure is now applied to express
Eq. (10.8.24) in terms of a set of functions and a corresponding set of nodal
parameters. By choosing f0, f ′

0, f1, f2 and f ′
2 as nodal parameters in which

fi and f ′
i are the functional value and the value of its first derivative with

respect to y, respectively, at node �i , the following expression can be writ-
ten:




f0

f ′
0

f1

f2

f ′
2




=




φ−1(y0) φ0(y0) φ1(y0) φ2(y0) φ3(y0)

φ′
−1(y0) φ′

0(y0) φ′
1(y0) φ′

2(y0) φ′
3(y0)

φ−1(y1) φ0(y1) φ1(y1) φ2(y1) φ3(y1)

φ−1(y2) φ0(y2) φ1(y2) φ2(y2) φ3(y2)

φ′
−1(y2) φ′

0(y2) φ′
1(y2) φ′

2(y2) φ′
3(y2)







α−1

α0

α1

α2

α3




= [C]{α}.

(10.8.25)
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Inverting the matrix [C], we obtain




α−1
α0

α1

α2
α3




= [C]−1




f0
f ′

0
f1

f2
f ′

2




. (10.8.26)

Substituting Eq. (10.8.26) into Eq. (10.8.24), the expression for the spline func-
tion becomes

Y (y) = { φ−1 φ0 φ1 φ2 φ3 }T[C]−1




f0

f ′
0

f1

f2

f ′
2




= { F01 F02 F11 F21 F22 }T




f0

f ′
0

f1
f2

f ′
2




, (10.8.27)

in which F01, F02, F11, F21 and F22 are linear combinations of φi . They repre-
sent functions corresponding to the nodal parameters. It can be shown that

F01 = − 1
2φ−1 + 7

4φ0 − 1
2φ1 + 1

4φ2 − 1
2φ3,

F02 = h
[− 13

6 φ−1 + 7
12φ0 − 1

6φ1 + 1
12φ2 − 1

6φ3
]
,

F11 = 2φ−1 − φ0 + 2φ1 − φ2 + 2φ3, (10.8.28)

F21 = − 1
2φ−1 + 1

4φ0 − 1
2φ1 + 7

4φ2 − 1
2φ3,

F22 = h
[

1
6φ−1 − 1

12φ0 + 1
6φ1 − 7

12φ2 + 13
6 φ3

]
.
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10.9 Summary and Conclusions

This chapter contains a compilation of several advanced topics related to the linear
static analysis of various plate problems of considerable practical interest. To limit
the size of the book, however, each topic has been treated in a relatively condensed
form. Accordingly, corresponding presentations emphasize fundamentals and practi-
cal applications of the methods discussed. For further study of the individual subjects,
quite an extensive list of references and pertinent literature is given at the end of
each section. Because of the advanced nature of the topics treated in this chapter,
the mathematical requirements are somewhat higher than usual. Again, the FDM and
FEM combined with computer support are in most cases the recommended solution
techniques. To facilitate practical applications of these computer based approaches,
readily usable finite difference stencils and element stiffness matrices are given in
explicit forms. Furthermore, numerous work examples should also contribute to the
understanding of the solution procedures. At the end of this chapter, the recently
developed spline strip method is briefly introduced. This improved FSM makes it
relatively convenient to treat complex plate structures with various edge restraints
and loading conditions by using computers of small capacity, since it considerably
reduces the number of DOFs required in computation. Its application is, however,
not as straightforward as that of the FDM or FEM.
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Problems†

10.1.1. An orthotropic square reinforced concrete slab with simply supported bound-
ary conditions is subjected to a concentrated center force Pz. Using Navier’s
method, determine expressions for (a) a deflected plate surface and (b) bend-
ing moments mx . Employ the double trigonometric series expression given
in Table A.3.1.

10.1.2. Determine the values of the unknown coefficients C1, C2, C3 and C4 in
Illustrative Example II in Sec. 10.1.

10.1.3. A rectangular plate with fixed boundaries carries a uniformly distributed load
pz = p0. Using Galerkin’s approach, determine the equation of the deflected
plate surface by retaining only the first term in the series expression.

10.1.4. Determine the validity of the results obtained from problem 10.1.3. Use the
ordinary FDM with a mesh width λ = a/8.

10.1.5. Solve the problem given in Illustrative Example IV of Sec. 10.1 by the
FEM. Subdivide the plate into eight finite elements.

10.2.1. Consider a square honeycomb sandwich plate with simply supported bound-
aries subjected to hydrostatic pressure. Using Table A.3.1, determine an
analytic expression for the deflected plate surface.

10.2.2. A continuous sandwich plate consisting of two square panels of equal span
carries a uniformly distributed load pz = p0 on both panels. Assuming sim-
ply supported boundary conditions, determine (a) the deflected plate surface
and (b) the maximum positive and negative moment by using the ordi-
nary FDM.

10.2.3. Repeat problem 10.2.2, but this time use the funicular polygon method
treated in Sec. 5.2.

10.2.4. Consider a rectangular steel sandwich plate of 6 × 3 m dimension subjected
to pz = p0 = 20 kN/m2 distributed load. Assuming simple supports along
all four boundaries, determine the maximum deflection wmax via the GWM.
The steel plate has a depth of 200 mm with 15 mm-thick top and bottom
panels and a corrugated core 5 mm thick. The corresponding expressions
for bending and twisting stiffness should be taken from Ref. [10.2.19].

10.3.1. Derive a generally valid finite difference stencil for the differential operator
∇4(·) in an oblique coordinate system. Check your result for ϑ = 60◦ against
the stencil given in Fig. 10.3.5.

10.3.2. Check the validity of Eq. (10.3.3) by applying the stencil given in
Fig. 10.3.5. The mesh width is λ = a/8.

10.3.3. Check the validity of Eq. (10.3.19) by applying Salonen’s lattice analogy.
10.3.4. For the maximum deflection of the skew plate shown in Fig. 10.3.9, a

value of wmax = 0.062 m was obtained via the GWM. Check this result
by (a) the ordinary FDM and (b) the finite element program described in
Appendix A.4.2.

10.4.1. Consider a clamped square steel plate of sides a subjected to linear tem-
perature variation through its thickness h = 10 mm. The top surface of
the plate is heated to 50 ◦C, while the temperature of its bottom surface

† The first two numbers refer to the corresponding section.
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remains at 20 ◦C. Compute the thermal stress resultants mT and nT . Assume
E = 21 × 104 N/mm2, ν = 0.33 and αT = 12 × 10−6 m/C◦.

10.4.2. Determine the maximum deflection wmax of a clamped square plate of sides
a under an equivalent transverse thermal loading pT (x, y) using the FDM.
Consider a parabolic variation of pT according to Fig. 2.4.1.

10.4.3. Solve Illustrative Example II in Sec. 10.4 by using a Fourier series approx-
imation for the thermal load, deflections and moments.

10.5.1. Determine the influence surface for the maximum bending moment my of
a simply supported square plate by using the ordinary FDM. Assume that
the observation point is at the center of the plate. Use λ = a/10 and utilize
the apparent symmetry.

10.5.2. Redo problem 10.5.1 by using the FEM.
10.5.3. Determine the influence surface for the maximum negative moment of a

square clamped plate. Assume that the observation point is at x = 0 and
y = a/2. Employ either the FDM or the FEM.

10.6.1. Rework the Illustrative Example in Sec. 10.6 by assuming a flat-slab con-
figuration. Use β = 0.2.

10.6.2. Using a finite element approach, verify the results obtained in the Illustrative
Example in Sec. 10.6.

10.7.1. Using the patch test for plate bending, investigate the finite element given
in Eq. (7.6.12) for its convergence.

10.7.2. Redo problem 10.7.1 by applying Robinson’s single-element test.
10.9.1. Solve the plate problem given in Fig. 8.4.2a by using the spline FSM.



11
Nonlinear Aspects

11.1 Large-Deflection Analysis

a. Introduction. In all previous discussions we tacitly assumed that the deflections
are small in comparison with the plate thickness (w ≤ 0.2 h). There are, however,
some applications of plate structures, especially in naval and aerospace engineering,
where the deflections are no longer small; thus the analysis must be extended to
include the additional effects produced by large deflections. By increasing the mag-
nitude of the deflections beyond a certain level (w ≥ 0.3 h), the relation between
external load and deflection is no longer linear. Due to the large deflections, the mid-
dle plane stretches, developing tensile membrane forces that can add considerably to
the load-carrying capacity of the plate (Fig. 11.1.1).

In this respect, the boundary conditions have a pronounced effect upon the mag-
nitude of the membrane forces developed during the large-deflection process. In
the case of simply supported edges, where rotary supports permit rotations but
restrain any horizontal displacements (u = v = 0), the edges will be free of stress
in the direction normal to the boundaries, while other points within the plate will
develop tensile stresses. These stresses increase with the distance from the plate
edges. However, the situation with fixed boundaries is quite different. That is, at
clamped edges tangential and normal stresses occur simultaneously. This is the
reason that only in the case of fixed edges can these tensile stresses be fully uti-
lized to carry some part of the lateral load. In general, we can state that middle
plane strain will develop whenever the plate is deformed into a nondevelopable
surface.

If the plate is permitted to deform beyond half its thickness, its load capacity
is already significantly increased. When the magnitude of the maximum deflection
reaches the order of the plate thickness (wmax ≈ h), the membrane action becomes
comparable to that of the bending. Beyond this (wmax > h), the membrane action pre-
dominates. Consequently, for such plate problems, the use of large-deflection theory,
which accounts for the created membrane forces, is mandatory.

Although the large-deflection theory of plates assumes that the deflections are equal
or larger than the plate thickness, these deflections should remain small compared to
the other dimensions (a, b) of the plate.

614 Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
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Figure 11.1.1 Deflections of square plate under constant lateral load.

b. Governing Differential Equations. Considering the simultaneous effects of
bending and stretching, the differential equation (3.3.7), which describes the lateral
equilibrium of the external and internal forces acting on an infinitesimal plate ele-
ment, is also applicable for the large-deflection theory. In this case, however, the
in-plane forces [nx(�), ny(�) and nxy(�)] are produced by large deflections. Since
Eq. (3.3.7a) contains two unknowns (w, �), an additional equation that relates the
deflections and the stress function is required. This is obtained in the form of a
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Figure 11.1.2 Strain εx due to large deflections.

compatibility equation, in which the nonlinear terms in the large-deflection strain-
displacement expression (Fig. 11.1.2) are also considered. Thus we can write

εx = εL
x + εNL

x = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

= 1

Eh
(nx − νny),

εy = εL
y + εNL

y = ∂v

∂y
+ 1

2

(
∂w

∂y

)2

= 1

Eh
(ny − νnx), (11.1.1)

γ = γ L + γ NL = ∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y
= 2(1 + ν)

Eh
nxy.

If we eliminate, by successive derivation, the displacement components and replace
the membrane forces by

nx = h
∂2�

∂y2
, ny = h

∂2�

∂x2
, nxy = −h

∂2�

∂x ∂y
, (11.1.2)

where �(x, y) represents an Airy-type stress function, the pertinent compatibility
equation is obtained:

∇4� = E

[(
∂2w

∂x ∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
. (11.1.3)

Using Eqs. (3.3.7a) and (11.1.3), the governing differential equation of large-
deflection theory can be written in a more condensed form:

D

h
∇4w(x, y) = L(w, �) + pz

h
,

1

E
∇4�(x, y) = −1

2
L(w, w),

(11.1.4a)

(11.1.4b)
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where the differential operator L(·) applied to w and � represents

L(w, �) = ∂2w

∂x2

∂2�

∂y2
+ ∂2w

∂y2

∂2�

∂x2
− 2

∂2w

∂x ∂y

∂2�

∂x ∂y
, (11.1.5)

and L(w, w) is obtained by replacing � with w in Eq. (11.1.5).
Equations (11.1.4a) and (11.1.4b) are coupled, nonlinear, partial differential

equations of fourth order. The geometrical nonlinearities are caused either by higher-
order terms of derivates or by their products. These equations, in the form given
above, were first derived by von Kármán in 1910 [II.17].

For circular plates, the governing differential equations of large-deflection theory
(11.1.4) are usually expressed in polar coordinates, r , ϕ. Thus, using the coordinate
transformation described in Sec. 1.4, we can write

D

h
∇2

r ∇2
r w(r, ϕ) = Lr (w, �) + pz

h
,

1

E
∇2

r ∇2
r �(r, ϕ) = −1

2
Lr (w, w),

(11.1.6)

where

Lr (w, �) = ∂2w

∂r2

(
1

r

∂�

∂r
+ 1

r2

∂2�

∂ϕ2

)
+
(

1

r

∂w

∂r
+ 1

r2

∂2w

∂ϕ2

)
∂2�

∂r2

− 2
∂

∂r

(
1

r

∂�

∂ϕ

)
∂

∂r

(
1

r

∂w

∂ϕ

)
. (11.1.7)

From this expression Lr (w, w) can be obtained by substituting w for �.

c. Analytical Methods of Solution.† Exact solutions of the two simultaneous
nonlinear differential equations introduced above are very rare, but a number of
indirect analytical methods have been developed that give very satisfactory results to
these difficult plate problems. The most important of these are

ž double Fourier series approximation,
ž Galerkin’s energy method,
ž Ritz’s energy method and
ž step-by-step iteration technique.

Whether one uses equilibrium or energy methods for the solution, it is important
that proper boundary conditions are considered in the analysis. That is, solution of the
large displacement w(x, y) and that of the stress function �(x, y) must satisfy the
governing differential equations and the prescribed boundary conditions. The flexural
boundary conditions were already treated in Sec. 1.3, but here we resummarize and
augment them with the corresponding boundary conditions of the membrane stresses.
For this purpose, we employ our standard image of rectangular plates, as shown

† For numerical solution techniques see Sec. 11.2.
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in Fig. 1.1.1a. We limit ourself to the plate edges at x = 0 and x = a. Boundary
conditions for the two other edges at y = 0 and y = b can be obtained by simply
replacing x with y and a with b.

The most important boundary conditions encountered in engineering practice are
as follows:

ž Rigidly clamped edge:

w = ∂w

∂x
= u = v = 0. (11.1.8)

ž Clamped edge but not rigidly fixed:

w = ∂w

∂x
= nx = nxy = 0. (11.1.9)

ž Simply supported edge with no sliding in the X direction:

w = mx = u = v = 0. (11.1.10)

ž Simply supported edge with sliding in the X direction:

w = mx = nx = nxy = 0. (11.1.11)

ž Free-edge:

mx = vx = nx = nxy = 0. (11.1.12)

Since the governing equations (11.1.4a) and (11.1.4b) are defined in terms of
w(x, y) and �(x, y), we must express the boundary conditions by using the same
variables. Consequently, for mx and vx we apply the corresponding equations given
in Sec. 1.3. For the membrane forces nx and nxy , we utilize Eq. (11.1.2), which
defines them in term of the stress function �(x, y). For example, Eq. (11.1.11) can
be written in the form

w = 0,
∂2w

∂x2
+ ν

∂2w

∂y2
= 0,

∂2�

∂y2
= 0,

∂2�

∂x ∂y
= 0. (11.1.11a)

To obtain the in-plane displacements u and v in terms of w and �, the procedure
is somewhat more involved. For this purpose, we use Eq. (11.1.1), from which

∂u

∂x
= εx − 1

2

(
∂w

∂x

)2

. (11.1.13)

Now, if we express εx with the help of the stress function, we obtain

∂u

∂x
= 1

E

∂2�

∂y2
− ν

E

∂2�

∂x2
− 1

2

(
∂w

∂x

)2

. (11.1.14)
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Integration of this equation with respect to x gives

u =
∫ a

0

∂u

∂x
dx. (11.1.15)

A similar procedure can be applied for v.
If the boundary conditions permit the use of double Fourier series, then the solution

can be sought in the form

w(x, y) =
∞∑

m=1

∞∑
n=1

WmnXm(x) · Yn(y),

�(x, y) =
∞∑

p=1

∞∑
q=1

FpqXp(x) · Yq(y).

(11.1.16)

Simultaneously, the lateral load must be expressed as

pz(x, y) =
∞∑

m=1

∞∑
n=1

PmnXm(x) · Yn(y), (11.1.17)

where

Pmn = 1

ab

∫ a

0

∫ b

0
pz(x, y)Xm(x)Yn(y) dx dy. (11.1.18)

For X(x) and Y (y) we may select the eigenfunctions of vibrating beams. The solution
procedure becomes quite similar to that used by Vlasov in connection with small-
deflection analysis of plates, as discussed in Sec. 4.3. Consequently, we select a pair
of mn and pq values and substitute the obtained Eqs. (11.1.16) and (11.1.17) into
the differential equations (11.1.4a) and (11.1.4b). This gives us two simultaneous
nonlinear equations from which the unknowns Wmn and Fpq can be determined. This
procedure is repeated for another set of mn and pq values until convergence in
the solution is achieved. Although the use of this double Fourier series approach is
straightforward, it is evident that “long-hand” computation of each step becomes quite
cumbersome. However, using some “symbolic mathematic” programs, such as Maple
or Mathematica, the required computational effort can be considerably reduced.

By applying the Galerkin-Vlasov method† to the governing differential equations,
their variational expressions become

∫ a

0

∫ b

0

[
D

h
∇4w − L(w, �) − pz

h

]
δw dx dy = 0 (11.1.19a)

and ∫ a

0

∫ b

0

[
1

E
∇4� + 1

2
L(w, w)

]
δ� dx dy = 0. (11.1.19b)

† See Sec. 4.3.
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It should be noted that in a variation of the equilibrium equation (11.1.19a), a
small virtual displacement δw has been used. In a variation of the compatibility
equation (11.1.19b), however, a small virtual change of the stress function δ� has
been applied. These variations are not interrelated.

Again, let us represent the lateral deflection w(x, y) and the corresponding
stress function �(x, y) with the eigenfunctions of vibrating beams, as stipulated
by Eq. (11.1.16). Then the analysis procedure will be quite similar to that used in
Sec. 4.3. for small deflections of plates.

The second energy method often used in large-deflection analysis of plates is based
on Ritz’s principle of minimum potential energy. In this case, however, the strain
energy becomes

U = Um + Ub, (11.1.20)

where Um represents the membrane part of the total strain energy and Ub stands for
the bending part.

The membrane part of the strain energy, which is due to the stretching of the
middle surface of the plate, can also be expressed in terms of the stress functions:

Um = 1

2

∫ a

0

∫ b

0
(nxεx + nyεy + nxyγxy) dx dy

= h

2E

∫ a

0

∫ b

0

{(
∂2�

∂x2
+ ∂2�

∂y2

)2

− 2(1 + ν)

[
∂2�

∂x2

∂2�

∂y2
−
(

∂2�

∂x ∂y

)2
]}

dx dy;

(11.1.21)
the strain energy due to bending has already been given by Eq. (4.2.5). The potential

of the lateral forces remains

V =
∫ a

0

∫ b

0
[pz(x, y)w(x, y)] dx dy. (11.1.22)

Thus, the total potential of the plate becomes

� = Um + Ub + V. (11.1.23)

In the case of homogeneous boundary conditions, Eq. (11.1.23) can be written as

� = 1

2

∫ a

0

∫ b

0

{
D

2

[
(∇2w)2 − (1 − ν)L(w, w)

]

− h

2E

[
(∇2�)2 − (1 + ν)L(�, �)

]

− h

2
�L (w, w)

}
dx dy −

∫ a

0

∫ b

0
pzw dx dy, (11.1.24)

where the differential operator L(·) represents

L[(·), (·)] = ∂2(·)
∂x2

∂2(·)
∂y2

+ ∂2(·)
∂y2

∂2(·)
∂x2

− 2
∂2(·)
∂x ∂y

∂2(·)
∂x ∂y

. (11.1.25)
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The unknown constants Wmn and Fpq in the series expressions can be determined by
applying the principle of minimum potential. Hence

∂�

∂Wmn

= 0 and
∂�

∂Fpq

= 0. (11.1.26)

As in the case of small deflections, Eq. (11.1.26) yields a set of nonlinear simulta-
neous equations, the solution of which determines these unknowns. Again, we may
state that the procedure using long-hand computation is quite tedious.

Probably, the step-by-step iteration offers, in combination with some computer use,
the simplest approach to large-deflection analysis of plates.

In the first step, we reduce the governing differential equations to

D ∇2 ∇2w1 = pz, ∇2 ∇2�1 = 0. (11.1.27)

In the second step, we substitute the obtained first approximations into the right-
hand sides of Eqs. (11.1.4a) and (11.1.4b). Therefore, the second approximations are
obtained from

D

h
∇2 ∇2w2 = L(w1, �1) + pz

h
,

1

E
∇2 ∇2�2 = −L(w1, w1).

(11.1.28)

Following this procedure, general expressions for these approximations become

D

h
∇2 ∇2wn+1 = L(wn, �n) + pz

h
,

1

E
∇2 ∇2�n+1 = −1

2
L(wn, wn).

(11.1.29)

Convergence of this iterative solution can be accelerated by applying the energy-
balancing principle discussed in the following section.

Summary. When plates undergo large deflections, the lateral loads are carried by
simultaneous bending and stretching actions. In this way, important weight reduc-
tion can be achieved, provided such large deflections are not objectionable on other
grounds. The large-deflection theory of plates leads to geometrically nonlinear dif-
ferential equations, the solution of which by hand is generally very tedious. Although
all analysis techniques for large deflections follow the same patterns as those already
introduced in connection with small-deflection plate problems, the required compu-
tational efforts are considerably higher. However, the drudgery of long-hand com-
putations can be greatly mitigated by employing a combination of a long-hand and
computer-aided approach. In this respect, the use of computer programs offering
“symbolic mathematics” can be of great advantage.

For further study of this relatively difficult subject, the books written by Cia
[11.1.19] or by Donnel [11.1.21] (along with the other references) are recommended.
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ILLUSTRATIVE EXAMPLE

Let us determine, based on large-deflection theory, the center deflection of a
simply supported square plate subjected to pz = p0 uniformly distributed lateral
load. Let us assume sliding edges and hence zero membrane forces at the edges
(nx = ny = 0). The corners of the plate, however, should be restrained against
in-plane displacements.

To solve this plate problem, Galerkin’s method is used in combination with
the step-by-step iterative procedure.

Let us represent the lateral deflections w(x, y) and the stress function �(x, y)

as infinite series (for m, n = 1, 3, 5, . . .),

w(x, y) =
∑
m

∑
n

Wmn sin
mπx

a
sin

nπy

b
,

�(x, y) =
∑
m

∑
n

Fmn sin
mπx

a
sin

nπy

b
,

(11.1.30)

which satisfy the prescribed boundary conditions

w = 0, mx = my = 0, nx = ny = 0. (11.1.31)

To simplify the solution, only the first term in the infinite series expressions
for the deflections and stress function will be used in our computation. Thus,
for square plates Eq. (11.1.30) can be written as

w = Wn sin αx sin αy, (11.1.32a)

� = Fn sin αx sin αy, (11.1.32b)

where α = π/a = π/b.
Assuming that �1 = 0, the first approximation of the deflection, w1, is

obtained from Navier’s solution of Eq. (1.2.30); thus

w1 = W1 sin αx sin αy = 4p0

Dπ2α4
sin αx sin αy. (11.1.33)

Substituted into the second equation of (11.1.28), this solution gives

∫ a

0

∫ a

0
[F24α4 sin αx sin αy + EW 2

1 α4 sin2 αx sin2 αy

− EW 2
1 α4 cos2 αx cos2 αy] sin αx sin αy dx dy = 0. (11.1.34)

The further solution of this variational equation is not difficult, since it has been
reduced to evaluation of definite integrals of simple trigonometric functions.
From Eq. (11.1.34) the second approximation for the expansion coefficient of
the stress function, F2, is obtained. Thus, we can write

�2(x, y) = F2 sin αx sin αy = −4EW 2
1

3a2α2
sin αx sin αy. (11.1.35)
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Substitution of this expression and that of the first approximation of the
deflection (11.1.33) into Eq. (11.1.28) gives

∫ a

0

∫ a

0

[
∇4w2 − h

D

(
∂2�2

∂y2

∂2w1

∂x2
+ ∂2�2

∂x2

∂2w1

∂y2
− 2

∂2�2

∂x ∂y

∂2w2

∂x ∂y

)
− p0

D

]

× sin αx sin αy dx dy = 0, (11.1.36)

from which, after evaluation of the definite integrals of trigonometric functions,
an improved coefficient, W2, for the deflections is obtained. Thus, the second
approximation of the deflections becomes

w2 = W2 sin αx sin αy = 4p0

Dπ2α4 + (1536Eha4p2
0/27D2π10)

sin αx sin αy.

(11.1.37)

Using a pressure ratio p0a
4/Eh4 = 110, for instance, this simplified solu-

tion shows only 6% error in center deflection when compared with Levy’s
“exact” result [11.1.1]. By continuing the iteration, the accuracy can be fur-
ther improved.
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11.2 Numerical Methods for Geometrically
Nonlinear Analysis

It is obvious from the foregoing section that analytical solution methods for nonlin-
ear plate problems have serious limitations. Therefore, their use is mostly restricted
to solve problems that are merely of academic interest. But during the last decades
the recent development of nonlinear numerical analysis has assumed quite an impor-
tance, since it is realized that numerous real-life plate problems are in fact nonlinear.
In addition, the application of new lightweight materials combined with higher
than conventional loadings makes nonlinear analysis of such structures mandatory.
Nowadays, parallel developments in computer hardware and software have made
it possible to obtain solutions to practical nonlinear plate problems at a reason-
able cost and time. A large variety of nonlinear solution techniques have been
developed, but here we will treat only the most commonly used numerical solution
techniques.

a. Application of Finite Difference Method. If the nonlinear plate problem is
relatively small, one may apply the ordinary FDM. Using the square mesh (�x =
�y = λ) shown in Fig. 11.2.1, the corresponding finite difference expressions for
the governing geometrically nonlinear differential equations (11.1.1a) and (11.1.1b)
at the pivotal point m, n can be written as

D[20wm,n − 8(wm−1,n + wm+1,n + wm,n+1 + wm,n−1)

+ 2(wm−1,n+1 + wm+1,n+1 + wm−1,n−1 + wm+1,n−1)

+ (wm−2,n + wm+2,n + wm,n+2 + wm,n−2)]
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m, n − 2

m − 1, n + 1

m − 2, n m − 1, n m, n m + 1, n m + 2, n

m + 1, n − 1m, n − 1

m − 1, n + 1 m + 1, n + 1m, n + 1

m, n + 2

X

Y

l

l

Figure 11.2.1 Numbering of mesh points.

− h
[
(�m,n+1 − 2�m,n + �m,n−1)(wm−1,n − 2wm,n + wm+1,n)

+ (�m−1,n − 2�m,n + �m+1,n)(wm,n+1 − 2wm,n + wm,n−1)

− 1
8 (�m−1,n+1 + �m+1,n−1 − �m+1,n+1 − �m−1,n−1)

× (wm−1,n+1 + wm+1,n−1 − wm+1,n+1 − wm−1,n−1)
]− pzλ

4 = 0 (11.2.1)
and

20�m,n − 8(�m−1,n + �m+1,n + �m,n+1 + �m,n−1)

+ 2(�m−1,n+1 + �m+1,n+1 + �m−1,n−1 + �m+1,n−1)

+ (�m−2,n + �m+2,n + �m,n+2 + �m,n−2)

− E

[
1

16
(wm−1,n+1 + wm+1,n−1 − wm+1,n+1 − wm−1,n−1)

2

− (wm−1,n − 2wm,n + wm+1,n)(wm,n+1 − 2wm,n + wm,n−1)

]
= 0. (11.2.2)

The procedures to be applied to solve nonlinear plate problems using the ordi-
nary FDM are identical with those introduced in Sec. 5.1 in connection with linear
plate problems. Considering treatments of the boundary conditions, we refer to the
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foregoing section and, again, to Sec. 5.1. Although this numerical procedure appears
to be simple, solution of the obtained large set of coupled nonlinear equations can
be problematic, since it requires special algorithms to solve such problems. In this
respect, probably the direct iteration technique is the most commonly used proce-
dure. Convergence of the solution can be accelerated by either applying Richardson’s
extrapolation formula† or improving the first approximation by a correction factor C

obtained by balancing the energy of the system. That is, we require that the work of
the external forces must be the same as that of the internal forces represented by the
strain energy. Since this is usually not the case, we must use a correction factor for
the deflections to approximate the required equality of works. Thus, the improved
deflections are

d(2) = Cd(1) with C = W
(1)
ext

W
(1)
int

. (11.2.3)

The work of the external forces is expressed by multiplying Eq. (11.1.22) by 1
2 .

This multiplier represents the difference between the potential and actual work of the
external forces, as discussed in Sec. 4.1. However, the work of the internal forces
remains the same as the strain energy. Consequently,

W
(1)
ext = 1

2V (1) and W
(1)
int = U(1)

m + U
(1)
b , (11.2.4)

where U(1)
m and U

(1)
b have been defined in analytical form by Eqs. (4.2.5) and

(11.1.21), respectively. However, to determine the required correction factor C

numerically, these equations must also be expressed in finite difference forms. In
addition, the definite integrations must be carried out numerically.

b. Application of FEM to Nonlinear Problems. Stiffness matrices of nonlin-
ear problems depend on displacements. This creates nonlinearity in the solution.
Therefore, the governing matrix equation for a system in equilibrium exhibiting geo-
metrically nonlinear behavior has the form

[K
L + K

NL
(d)]d = p, (11.2.5)

where K
L

is the linear part of the stiffness matrix of the system and K
NL

represents
the displacement-dependent nonlinear part. In writing Eq. (12.1.5), we have assumed
that the external forces acting on the plate are not dependent on the displacements.
This assumption is valid until the deflections become quite excessive.

The nonlinear part of element stiffness matrix KNL
e is often referred to in the

pertinent literatures as the geometric stiffness matrix Kg,e, since it contains the geo-
metrically nonlinear effects. To derive KNL

e , we must consider the nonlinear in-plane
strains in the element. Using the second terms in Eq. (11.1.1), we can write

εNL
x = 1

2

(
∂w

∂x

)2

, εNL
y = 1

2

(
∂w

∂y

)2

, γ NL = ∂w

∂x

∂w

∂y
. (11.2.6)

† See Eq. (5.1.38).
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Consequently, the nonlinear part of the potential energy of a rectangular finite ele-
ment becomes

�NL
e =

∫ a

0

∫ b

0
(nxε

NL
x + nyε

NL
y + nxyγ

NL) dx dy

= 1

2

∫ a

0

∫ b

0




∂w

∂x

∂w

∂y




T [
nx nxy

nxy ny

]
∂w

∂x

∂w

∂y


 dx dy, (11.2.7)

where nx, ny and nxy represent the membrane forces produced by large deflections.
Now, the total potential energy of the element can be expressed by

�e = �L
e + �NL

e . (11.2.8)

Applying the principle of minimum potential energy,

∂�e

∂de

= 0, (11.2.9)

which gives

Kede = pe, (11.2.10)

where

Ke = KL
e + KNL

e , (11.2.11)

and with w = NTde, we obtain

KNL
e =

∫ a

0

∫ b

0




∂Ni

∂x

∂Ni

∂y




T [
nx nxy

nxy ny

]



∂Nj

∂x

∂Nj

∂y


 dx dy, (11.2.12)

where Ni and Nj represent the matrices of the shape functions.
Equation (11.2.12) depends on the numerical values of the membrane forces, which

are assumed to be constant for a small load increment. In evaluating the nonlinear
element stiffness matrices, all definitions and procedures used previously in Chapter 7
apply. Therefore we do not repeat them here.

For the nonconforming rectangular plate element with 12 DOF†, explicit expres-
sions of KNL

e,x , KNL
e,y and KNL

e,xy are given in Table 11.2.1. Similarly, the nonlinear
elements kNL

ij of the geometric stiffness matrix corresponding to the four-node rect-
angular plate element with 16 DOF‡ [7.7.1, 11.2.3] are explicitly defined as

kNL
ij =

[
β1

(
b

a

)
nx + β2

(a

b

)
ny + β3nxy

]
aβ4bβ5 . (11.2.13)

† See Sec. 7.6.
‡ See Sec. 7.7.
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Table 11.2.1 Nonlinear Stiffness Matrix Corresponding to Nonconforming Element with 12 DOFa

[KNL
e ](N)

x = nxb

1260a

(N)

552 1

−66b 12b2 2

42a 0 56a2 3

−552 66b −42a 552 4

66b −12b2 0 −66b 12b2 5




42a 0 −14a2 −42a 0 56a2




6

−204 39b −21a 204 −39b −21a 552 Symmetric 7

−39b 9b2 0 39b −9b2 0 66b 12b2 8

21a 0 −7a2 −21a 0 28a2 −42a 0 56a2 9

204 −39b 21a −204 39b 21a −552 −66b 42a 552 10

39b −9b2 0 −39b 9b2 0 −66b −12b2 0 66b 12b2 11

21a 0 28a2 −21a 0 −7a2 −42a 0 −14a2 42a 0 56a2 12

1 2 3 4 5 6 7 8 9 10 11 12

[KNL
e ](N)

y = nya

1260b

(N)

552 1

−42b 56b2 2

66a 0 12a2 3

204 −21b 39a 552 4

−21b 28b2 0 −42b 56b2 5

−39a 0 −9a2 −66a 0 12a2 6

−204 21b −39a −552 42b 66a 552 Symmetric 7

−21b −7b2 0 −42b −14b2 0 42b 56b2 8




39a 0 9a2 66a 0 −12a2 −66a 0 12a2




9

−552 42b −66a −204 21b 39a 204 21b −39a 552 10

−42b −14b2 0 −21b −7b2 0 21b 28b2 0 42b 56b2 11

−66a 0 −12a2 −39a 0 9a2 39a 0 −9a2 66a 0 12a2 12

1 2 3 4 5 6 7 8 9 10 11 12

[KNL
e ](N)

xy = nxy

360

(N)

180 1

0 0 2

0 −5ab 0 3

0 −36b 0 −180 4

36b 0 5ab 0 0 5

0 5ab 0 0 −5ab 0 6




−180 36b −36a 0 0 36a 180 Symmetric




7

−36b 6b2 −5ab 0 0 5ab 0 0 8

36a −5ab 6a2 −36a 5ab 0 0 −5ab 0 9

0 0 36a 180 −36b −36a 0 36b 0 −180 10

0 0 5ab 36b −6b2 −5ab −36b 0 5ab 0 0 11

−36a 5ab 0 36a −5ab −6a2 0 5ab 0 0 −5ab 0 12

1 2 3 4 5 6 7 8 9 10 11 12

a See Sec. 7.6.
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Table 11.2.2 Index Scheme for Evaluation of Eq. (11.2.13)

KNL
ij = (±)

[
β1

(
b

a

)
nx + β2

(a

b

)
ny + β3nxy

]
aβ4 bβ5

1



1,1



2 2,1 2,2

3 3,1 3,2 3,3

4 4,1 4,2 4,3 4,4

(−)

5 5,1 5,2 7,1 5,4 5,5

(−)

6 6,1 6,2 6,3 8,2 2,1 2,2

(−)

7 7,1 7,2 7,3 7,4 3,1 6,7 3,3

(−)

8 8,1 8,2 8,3 16,4 8,5 4,2 4,3 4,4

(−) (−) (−) (−)

9 9,1 10,1 11,1 12,1 9,5 14,1 15,1 16,1 1,1 Symmetric

(−) (−) (−)

10 10,1 10,2 10,3 12,2 14,1 14,2 10,7 16,2 2,1 2,2

(−) (−) (−)

11 11,1 10,3 11,3 12,3 11,5 14,3 11,7 16,3 3,1 2,3 3,3

(−) (−)

12 12,1 12,2 12,3 12,4 12,5 12,6 12,7 16,4 4,1 4,2 4,3 4,4

(−) (−) (−) (−) (−)

13 13,1 14,1 11,5 12,5 13,5 14,5 15,5 16,5 5,1 2,5 7,1 4,5 5,5

(−) (−) (−) (−) (−)

14 14,1 14,2 14,3 12,6 14,5 14,6 14,7 16,6 6,1 6,2 6,3 4,6 6,5 2,2

(−) (−) (−) (−) (−)

15 15,1 10,7 15,3 12,7 14,5 14,7 15,7 16,7 7,1 2,7 7,3 4,7 7,5 6,7 3,3

(−) (−) (−) (−)

16 16,1 16,2 16,5 16,4 16,5 16,6 16,7 16,8 8,1 8,15 8,3 8,4 8,5 8,6 8,7 4,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note: (−) indicates negative ki,j .

A pertinent scheme for the indices (i, j ) is provided in Table 11.2.2. The coefficients
β1, β2, . . . , β5 in this equation are listed in Table 11.2.3. The same nonlinear element
stiffness matrices are also used in Sec. 16.5 in connection with the elastic stability
analysis of plates. It should be noted, however, that whereas with large deflections
the in-plane forces are positive tension forces, they are negative compressive forces
in the stability analysis.

c. Determination of KNL
e for Gridwork Cells. Due to the nature of the gridwork

representation of the plate continuum, we must now take an approach that is quite
different from the one discussed above for finite elements. That is, to determine
the nonlinear stiffness matrix KNL

e,x of a square gridwork cell (Fig. 11.2.2) subjected
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Table 11.2.3 Coefficients in Eq. (11.2.13)

i j β1 β2 β3 β4 β5

1 1 78
175

78
175

1
2 0 0

2 1 11
175

13
350 0 0 1

3 1 13
350

11
175 0 1 0

4 1 11
2100

11
2100 − 1

50 1 1

5 1 − 78
175

27
175 0 0 0

6 1 − 11
175

9
700 − 1

10 0 1

7 1 13
350 − 13

350 0 1 0

8 1 11
2100 − 13

4200
1

50 1 1

9 1 − 27
175 − 27

175 − 1
2 0 0

10 1 13
350

9
700

1
10 0 1

11 1 9
700

13
350

1
10 1 0

12 1 − 13
4200 − 13

4200 − 1
50 1 1

13 1 27
175 − 78

175 0 0 0

14 1 − 13
350

13
350 0 0 1

15 1 − 9
700

11
175

1
10 1 0

16 1 − 13
4200

11
2100

1
50 1 1

2 2 2
175

26
525 0 0 2

4 2 1
1050

11
1575 0 1 2

6 2 − 2
175

3
175 0 0 2

8 2 1
1050 − 13

3150 0 1 2

10 2 3
350 − 3

700
1

60 0 2

12 2 − 1
1400

13
12600 − 1

300 1 2

14 2 − 3
350 − 13

1050 0 0 2

16 2 − 1
1400 − 11

6300
1

300 1 2

4 3 11
1575

1
1050 0 2 1

6 3 − 11
2100

13
4200 − 1

50 1 1

8 3 − 11
6300 − 1

1400
1

300 2 1

10 3 13
4200

13
4200

1
50 1 1

12 3 13
12600 − 1

1400 − 1
300 2 1

14 3 − 13
4200

11
2100 − 1

50 1 1

16 3 − 13
3150

1
1050 0 2 1

2 3 11
2100

11
2100

1
50 1 1

3 3 26
525

2
175 0 2 0
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Table 11.2.3 (continued)

i j β1 β2 β3 β4 β5

7 3 − 13
1050 − 3

350 0 2 0

11 3 − 3
700

3
350

1
60 2 0

15 3 3
175 − 2

175 0 2 0

4 4 2
1575

2
1575 0 2 2

8 4 − 1
3150 − 1

1050 0 2 2

12 4 1
4200

1
4200 − 1

1800 2 2

16 4 − 1
1050 − 1

3150 0 2 2

2 5 − 11
175

9
700 − 1

10 0 1

4 5 − 11
2100

13
4200

1
50 1 1

5 5 78
150

78
175 − 1

2 0 0

8 5 − 11
2100 − 11

2100 − 1
50 1 1

9 5 27
150 − 78

175 0 0 0

11 5 − 9
700

11
175 − 1

10 1 0

12 5 13
4200 − 11

2100
1
50 1 1

13 5 − 27
150 − 27

175
1
2 0 0

14 5 13
350

9
700 − 1

10 0 1

15 5 − 9
700

13
350

1
10 1 0

16 5 13
4200

13
4200 − 1

50 1 1

12 6 1
1400

11
6300

1
300 1 2

14 6 3
350 − 3

700 − 1
60 0 2

16 6 1
1400 − 13

12600 − 1
300 1 2

2 7 11
2100 − 13

4200 − 1
50 1 1

4 7 − 11
6300 − 1

1400 − 1
300 2 1

6 7 − 11
2100 − 11

2100
1
50 1 1

10 7 13
4200 − 11

2100 − 1
50 1 1

11 7 3
175 − 2

175 0 2 0

12 7 − 13
3150

1
1050 0 2 1

14 7 − 13
4200 − 13

4200
1
50 1 1

15 7 − 3
700

3
350 − 1

60 2 0

16 7 13
12600 − 1

1400
1

300 2 1

16 8 1
4200

1
4200

1
1800 2 2
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Figure 11.2.2 Gridwork cell subjected to constant nx tensile forces.

to a constant tensile in-plane force nx , for instance, we apply the classical matrix
displacement method used for beam structures by considering the pertinent nonlinear
effects [11.2.4].

Since we are dealing de facto with a bending problem of this gridwork cell, we
should introduce a unit translation at each nodal point and determine the produced
axial forces in each of the beams. Subjecting, for instance, node �3 to a unit transla-
tion according to Fig. 6.3.3b, only beams �A , �B and �C participate in this motion.
Consequently, the nodal forces produced by the tensile force nx (Fig. 11.2.3b) will
be carried only by these beams. By solving the created statically undetermined truss
problem, we obtain the following axial forces:

P (A) = 2

3

nxa

2
= nxa

3
, P (B) = −1

3

nxa

2
= −nxa

6
,

P (C) =
√

2

3

nxa

2
= nxa

3
√

2
. (11.2.14)

Next, we use the nonlinear stiffness matrix of a beam undergoing large deflections
(Fig. 11.2.4), which has the general form

[KNL
e ] = P

L




0 0 0 0 0 0

0 6
5

1
10L 0 − 6

5
1

10L

0 1
10L 2

15L2 0 − 1
10L − 1

30L2

0 0 0 0 0 0

0 − 6
5 − 1

10L 0 6
5 − 1

10L

0 1
10L − 1

30L2 0 − 1
10L 2

15L2




(11.2.15)
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Figure 11.2.3 Gridwork cell subjected to tensile nodal forces.

Now, we substitute directly P (A) and P (B) into Eq. (11.2.15) and change the number-
ing of the DOF of the beam to correspond to numbering of the gridwork cell given
in Fig. 11.2.2. In the case of the diagonal beam �C , however, we need a coordinate
transformation of the displacement vectors from the beam coordinate system to the
X, Y, Z coordinate system of the gridwork cell before renumbering the displacement
components. We also repeat this procedure for the other nodal points. As usual, by
adding the obtained stiffness coefficients kij , having the same indices, we obtain
KNL

e,x , which is given in Table 11.2.4. A similar approach in the Y direction yields
KNL

e,y listed in Table 11.2.5.
If the plate is subjected to nxy shearing forces, only the beams �C and �C ′ partic-

ipate in the load-carrying action (Fig. 11.2.5c). In this case, the corresponding axial
forces in these beams become

P (C) = −P (C ′) = −√
2
nxya

2
= −nxya√

2
. (11.2.16)
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Figure 11.2.4 Large deflections of beam.

Table 11.2.4 Nonlinear Stiffness Matrix KNL
e,x of Gridwork Cell Subjected to nx Tensile Forces

[KNL
e ](N)

x = nx×




(N)


2
5

1

0 0 2

− a

20
− a2

45

a2

15
3

− 2

5
0

a

30

2

5
4

0 0 0 0 0 5

− a

30
0 − a2

90

a

20

a2

45

a2

15
6

− 1

5
− a

60

a

60

1

5

a

60
0

2

5
Symmetric 7

a

60
− a2

180

a2

180
− a

60

a2

180
0 0 0 8

− a

60

a2

180
− a2

180
0 0 0

a

20
− a2

45

a2

15
9

1

5

a

60
0 − 1

5
− a

60
− a

60
− 2

5
0 − a

30

2

5
10

− a

60

a2

180
0

a

60
− a2

180
− a2

180
0 0 0 0 0 11

0 0 0
a

60
− a2

180
− a2

180

a

30
0 − a2

90
− a

20

a2

45

a2

15
12

1 2 3 4 5 6 7 8 9 10 11 12
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Table 11.2.5 Nonlinear Stiffness Matrix KNL
e,y of Gridwork Cell Subjected to ny Tensile Forces

[KNL
e ](N)

y = ny×




(N)


2
5

1

a

20

a2

15
2

0 − a2

45
0 3

1

5
0 − a

60

2

5
4

0 0 0
a

20

a2

15
5

a

60
0 − a2

180
0

a2

45
0 6

− 1

5
− a

60

a

60
− 2

5
− a

30
0

2

5
Symmetric 7

a

60
− a2

180

a2

180

a

30
− a2

90
0 − a

20

a2

15
8

− a

60

a2

180
− a2

180
0 0 0 0 − a2

45
0 9

− 2

5
− a

30
0 − 1

5
− a

60
− a

60

1

5
0

a

60

2

5
10

a

30
− a2

90
0

a

60
− a2

180
− a2

180
0 0 0 − a

20

a2

15
11

0 0 0
a

60
− a2

180
− a2

180
− a

60
0

a2

180
0

a2

45
0 12

1 2 3 4 5 6 7 8 9 10 11 12

Again, we substitute these axial forces into Eq. (11.2.15) and transform the cor-
responding displacement vectors from their beam coordinate system to the X, Y, Z

coordinate system of the gridwork cell. This procedure is repeated for the other nodal
points. After proper renumbering of the indices of the individual element stiffness
coefficients kij and adding those that have the same indices, we obtain the KNL

e,xy

stiffness matrix given in Table 11.2.6. Now, we can express the total stiffness matrix
of this gridwork cell in the form

Ke = KL
e + (Ke,x + Ke,y + Ke,xy)

NL. (11.2.17)

Hrennikoff’s gridwork model is well suited for large-deflection analysis of plates,
since the membrane forces at the nodal points of each cell can be determined by using
the deflected shape of the plate, as subsequently discussed. In the case of arbitrary
plate geometry, we may approximate the irregular boundaries by “zigzag” lines, as
shown in Chapters 7 and 8.
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Figure 11.2.5 Gridwork cell subjected to shear forces.
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Table 11.2.6 Nonlinear Stiffness Matrix KNL
e,xy of Gridwork Cell Subjected to nxy Shearing Forces

[KNL
e ](N)

xy = 3nxy×



(N)


1
5

Z, w

1

a

60

a2

45
2

− a

60
− a2

45

a2

45
3

0 0 0 − 1

5
4

0 0 0 − a

60
− a2

45
5

0 0 0 − a

60
− a2

45
− a2

45
6

− 1

5
− a

60

a

60
0 0 0

1

5
Symmetric 7

a

60
− a2

180

a2

180
0 0 0 − a

60

a2

45
8

− a

60

a2

180
− a2

180
0 0 0

a

60
− a2

45

a2

45
9

0 0 0
1

5

a

60

a

60
0 0 0 − 1

5
10

0 0 0 − a

60

a2

180

a2

180
0 0 0

a

60
− a2

45
11

0 0 0 − a

60

a2

180

a2

180
0 0 0

a

60
− a2

45
− a2

45
12

1 2 3 4 5 6 7 8 9 10 11 12

11.2.1 Various Finite Element Procedures†

As already mentioned, geometric nonlinearity results in two classes of plate problems:
large deflections and stability. Here, we are concerned only with the large-deflection
analysis of plates. Problems related to plate stability are treated extensively in Part VI
of this book. In every-day engineering practice, solutions of nonlinear plate problems
are usually carried out in the framework of the versatile FEM. However, finite element
solutions of nonlinear problems create additional difficulties because larger than usual
computational resources, in the form of high clock speed and large memory capacity,
are required.

In general, three basic numerical solution techniques can be applied to large-
deflection analysis based on the finite element approach: (a) incremental, (b) iterative
and (c) combined incremental and iterative procedures. In all these procedures the
following standard assumptions are used:

† Also logically applicable to the gridwork method.
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ž The displacements are computed in a Lagrangian reference system with
nonmoving X, Y , Z coordinate axes of the undeformed state.

ž The strains are represented by Green’s strain tensor.
ž The strains are small in comparison to unity.
ž The material is linear elastic.
ž The external loads are static and conservative; that is, their magnitude is

unchanged during the deformation process.

a. Incremental (or Euler) Procedure. One of the strongest recommendations for
the incremental procedure is its “relatively” easy applicability to nonlinear prob-
lems created by large displacements. As introduced in the previous section, these
nonlinear problems are characterized by the dependence of the stiffness matrix
upon the displacement vector. Thus, the governing matrix equation of equilibrium
becomes

K(d)d = [K
L + K

NL
(d)]d = p, (11.2.18)

where the linear and nonlinear stiffness matrices of the total structure are obtained
by the usual additive process

K
L =

M∑
i=1

K
L
e,i and K

NL
(d) =

M∑
i=1

K
NL
e,i (d). (11.2.19)

We divide the total external load p into �pm increments. The starting vector of the
displacements is obtained from the linear solution of the problem

�d
(0)

1 = (K
L
)−1

1 �p1, (11.2.20)

where the superscript (0) indicates the initial cycle of the corrective procedure.
By checking the state of equilibrium, however, we obtain an unbalanced residual
load vector

[K
L + K

NL
](j)

1 �d
(j)

1 = r(j)

1 for j = 1, 2, 3, . . . , (11.2.21)

which creates additional small displacements

�d
(j+1)

1 = (K
(j)

)−1r(j)

1 for j = 1, 2, 3, . . . . (11.2.22)

Thus, the improved final displacements vector �d
(f )

1 due to the first load incre-
ment becomes

�d
(f )

1 = �d
(0)

1 +
n∑

j=1

�d
(j)

1 for j = 1, 2, 3, . . . . (11.2.23)
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Figure 11.2.6 Schematic illustration of starting process.

This correction procedure should be continued until the residual load vector becomes
approximately zero. Figure 11.2.6 illustrates this starting process.

In computing the first residual load, however, difficulty arises in determining the
membrane forces, which are essential parts of nonlinear element stiffness matrices.
The first approximations for them may be obtained from Eq. (11.1.1) by writing

n
(1)

1 ≈ Eh

2

(
∂w

∂x

)2

, n
(1)

y,1 ≈ Eh

2

(
∂w

∂y

)2

, n
(1)

xy,1 ≈ Eh

2(1 + ν)

(
∂w

∂x

∂w

∂y

)
.

(11.2.24)
In the course of subsequent equilibrium corrections, we should also use the in-

plane displacements u, v in computing the membrane forces of the plate according
to Eq. (11.1.1).

After obtaining the first final solution of displacements corresponding to the first
load increment, we normally engage the tangent stiffness matrix KT for all other
load increments �pm. Thus, at all higher load levels

pm+1 = pm + �pm+1 for m = 1, 2, 3, . . . , (11.2.25)

we assume that the equilibrium conditions corresponding to the previous load level
pm are already satisfied. Consequently, the tangent stiffness matrix of the total system
pertinent to this load level,

K
(f )

T ,m = [K
L + K

NL
](f )
m = K

(f )

T ,m+1, (11.2.26)
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d
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Figure 11.2.7 Schematic illustration of computations corresponding to higher load level.

is already determined. In this equation the superscripts (f ) and (1) refer, again,
to the final iterative cycle corresponding to the previous load level and the initial
iterative cycle of the new load increment, respectively. The first approximation of
the displacement vector (Fig. 11.2.6) is obtained from

�d
(1)

m+1 = (K
(f )

T ,m)−1 �pm+1. (11.2.27)

Now, the algorithm to reach the final equilibrium state becomes

r(j) = K
(j)

T ,m+1 �d
(j)

m+1 − �pm+1,

�d
(j+1)

m+1 =
(

K
(j)

T ,m+1

)−1
r(j).

(11.2.28)

The final displacements pertinent to load level pm+1 are computed from

d
(f )

m+1 = d
(f )

m +
n∑

j=1

�d
(j)

m+1 for j = 1, 2, 3, . . . , n. (11.2.29)

This procedure is schematically illustrated in Fig. 11.2.7.
Needless to say, programming the complete procedure requires a certain amount

of expertise in this field. Instead of applying the tangent stiffness matrices, however,
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P
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( f )kS,m
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( f )

1
1

d

kL + kNLkS = S

d

P

Figure 11.2.8 Incremental procedure using secant stiffness matrix.

one can select the secant matrix KS , approach (Fig. 11.2.8) or even a combination of
tangent-secant matrix procedures, as shown in Fig 11.2.9, by using a simple 1-DOF
system.

b. Iterative (or Newton-Raphson) procedure. This alternative solution technique
for nonlinear plate analysis uses the well-known Newton-Raphson method. Mathe-
matically, this procedure is based on a truncated Taylor’s series expansion. For this
purpose, we write the equation of the nonlinear load-displacement curve in the form

p = f (d). (11.2.30)

The Taylor’s series expansion of this function at position dm is

p = f (dm) + d − dm

1!
f ′(dm) + (d − dm)2

2!
f ′′(dm) + (d − dm)3

3!
f ′′′(dm) + · · · .

(11.2.31)

After neglecting the higher-order terms, we obtain the curtailed expression

p = f (dm) + (d − dm)f ′(dm), (11.2.32)
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Figure 11.2.9 Combination of tangent and secant matrix approaches.

and from this the incremental displacement

�dm = [f ′(dm)]−1[p − f (dm)] = kT,m �qm (11.2.33)

can be obtained, where kT,m is the tangential stiffness and �qm represents the dif-
ference between the total external load and the load sustained by the structure at
position dm. The pertinent finite element computational algorithm describing this
iterative process is

d0 = (K
L
)−1
T ,

�d1 = [K
L + K

NL
(d0)]

−1
T �q1,

�d2 = [K
L + K

NL
(d1)]

−1
T �q2,

�d3 = [K
L + K

NL
(d2)]

−1
T �q3,

...

(11.2.34)

Here, as mentioned before, �qn represents the difference between the total load
applied p and the load equilibrated by the nodal forces after the previous step, which
is computed from KT ,n−1dn−1. This iterative process is continued until �q ≈ 0. The
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resulting displacements are

d(f ) = d0 +
N∑

n=1

�dn. (11.2.35)

This iterative algorithm is schematically illustrated in Fig. 11.2.10.
To eliminate problems associated with repeated solutions of completely new

equations at each iterative cycle, one may keep the stiffness matrix of the system
constant throughout the whole iterative process by using KT = K

L
T . This simplified

iterative technique is termed a modified Newton-Raphson method (Fig. 11.2.11).
Although its convergence is slower than that of the conventional Newton-Raphson
procedure, however, not only is its use more economical but also writing a
corresponding computer program is a relatively easy task. A possible improvement of
convergence can be achieved by updating KT after some iteration. Unfortunately, both
methods display some drifting tendency from the actual load-displacement curve.

c. Combined Incremental-Iterative Solutions. Occasionally, it may be useful to
combine the incremental solution technique with an iterative solution of nonlinear
problems. Using again a simple one-dimensional problem, Fig. 11.2.12 schematically
illustrates the combination of the previously introduced incremental process with
the modified Newton-Raphson iteration. Such a mixed method tends to combine
the advantages of both the incremental and iterative procedures while somewhat
mitigating their disadvantages.

Summary. In this section analytical and numerical procedures dealing with
geometrical nonlinearity of plates are introduced. In general, solutions of these
problems are quite involved. Therefore, application of the proposed analytical

Displacement
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−
d0

−
KL

∆−
d1

∆q−1

K
− L + K− NL(d

−
1)

∆q−2
p−

∆−
d2 ∆−

d3

∆q−3

Figure 11.2.10 Iterative Newton/Raphson procedure.
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Figure 11.2.11 Modified Newton/Raphson procedure.
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Figure 11.2.12 Mixed procedure.

methods are restricted to relatively simple one-bay plate geometry. Almost the
same can be stated with respect to the finite difference approach, which, however,
appears to be somewhat more flexible and therefore more applicable, provided the
plate structure is not large. In everyday engineering practice, however, one of the
various finite element procedures is generally applied to solve “real-life” nonlinear
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plate problems. A survey of the numerous finite element procedures presently
available [11.2.7–11.2.12] reveals that none of the nonlinear solution techniques
can be considered a universal method. The modified Newton-Raphson iteration
technique appears to be the simplest procedure for computer coding. However, the
principal disadvantage of all iterative methods is that there is no assurance that the
solution will converge to the exact value of the problem. The incremental methods
are better in this respect but require considerably more programming effort, and
executing such programs is time consuming. A combination of incremental and
iterative approaches may offer some advantages over using either one individually.
A significant improvement in accuracy and stability of the incremental procedure can
be achieved by one-step energy- balancing at each load increment [11.2.5].

References and Bibliography

[11.2.1] ODEN, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill Book Co., New York,
1972.

[11.2.2] TESCAN, S. S., “Nonlinear Analysis of Thin Plates by Framework Method,” AIAA J., 5
(1967), 1890–1892.

[11.2.3] WANG, T. Y., Finite Element Structural Analysis, Prentice-Hall, Englewood Cliffs, New
Jersey, 1986.

[11.2.4] SZILARD, R., and POWELL, R., “Dynamic Stability Analysis of Prismatic Shells by Frame-
work Method,” in R. Krapfenbauer (Ed.) Proceedings of the IASS Symposium on Folded
Plate Structures, held in Vienna, Krapfenbauer, Vienna, Austria, 1970.

[11.2.5] SZILARD, R., “An Energy Balancing Method for Large Displacement Analysis of Struc-
tures,” Comp. Meth. Appl. Mech. Eng., 34 (1982), 801–818.

[11.2.6] SZILARD, R., “A Hybrid, Finite Element Finite Difference Approach to Large Deflection
Analysis of Structures,” Comp. Struct., 9 (1978), 341–350.

[11.2.7] BERGAN, P. G., et al., Finite Elements in Nonlinear Mechanics, TAPIR, Norwegian Insti-
tute of Technology, Trondheim, Norway, 1978.

[11.2.8] LIU, W. K., et al. (Eds.), Innovative Methods for Nonlinear Problems, Penridge, Swansea,
United Kingdom, 1984.

[11.2.9] CRISFIELD, M. A., Nonlinear Finite Element Analysis , Vol. 1, John Wiley & Sons, New
York, 1988.

[11.2.10] BATHE, K.-J., Finite Element Procedures, Prentice-Hall, Upper Saddle River, New Jersey,
1996.

[11.2.11] KLEIBER, M., Incremental Finite Element Modelling in Non-Linear Solid Mechanics, Ellis
Horwood, Chichester, United Kingdom, 1989.

[11.2.12] STEIN, E. (Ed.), Nichtlineare Berechnungen im konstruktiven Ingenieurbau, Springer-
Verlag, Berlin, 1989.

11.3 Material Nonlinearity

11.3.1 Nonlinear Stress-Strain Relationships

In the previous sections of this chapter we have assumed that structural material
behaves linear-elastically. There are, however, plate problems in which linear-elastic
behavior is not preserved. Consequently, we should also treat problems where the
nonlinearity of the structural response stems from the nonlinear stress-strain relation-
ship of the material. Here we will consider only nonlinear-elastic and elastic-plastic
material behaviors. The much more difficult treatment of time-dependent nonlinear
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material response is considered to be beyond the scope of this book. Although there
are a few analytical solutions concerning material nonlinearities in plates, their scope
is very limited. In addition, their application is quite cumbersome. Consequently, we
are treating here, as in the previous section, only the more practical finite element
approach to this nonlinear problem.

Since in plates the state of stress is essentially two dimensional, strictly speaking, a
pertinent but more difficult stress-strain relationship should also be used in the com-
putations. However, considerable simplification of such inherently complex handling
of the two-dimensional state of stress and strain may be obtained by introducing the
concept of equivalent uniaxial stress [11.3.1–11.3.4],

σe =
√

σ 2
x + σ 2

y − σxσy + 2τ 2, (11.3.1)

and that of the corresponding equivalent uniaxial strain,

εe = 2√
3

√
ε2
x + ε2

y + εxy + γ 4

4
. (11.3.2)

In the following discussion, we will tacitly assume that such an equivalent stress-strain
relationship is used in all computations.

Figure 11.3.1a shows a nonlinear-elastic stress-strain curve. In this case, loading
and unloading follow the same path. However, this curve can be simplified, without
losing significant accuracy, by substituting it with an equivalent bilinear stress-strain
relationship, as shown in Fig. 11.3.1b. Such material follows only two Hooke’s laws
in loading and unloading.

The basic assumptions for an ideal elastic-plastic material are as follows:

ž The stress-strain relationship obeys a law similar to that shown in Fig. 11.3.2a.
ž Prior to yield, the material behaves elastically and follows Hooke’s law in

loading and unloading.

0

(a) Nonlinear elastic
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e
0

(b) Bilinear simplification
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1
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Figure 11.3.1 Nonlinear stress-strain curves.
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Figure 11.3.2 Stress-strain relationships of plastic materials.

ž In the plastic range, however, the unloading produces permanent strain εpl.
ž Under a two-dimensional state of stress, it is useful to engage the above-

introduced equivalent uniaxial stress σe, the yield point of which is the yield
stress in simple tension (σe,y = σy).

While the stress-strain relationship of structural steel can be well approximated by
using such ideal elastic-plastic stress-strain relationship, there are, also more compli-
cated strain-hardening cases, as shown in Fig. 11.3.2b, that must also be considered.

The commonly used solution procedures usually apply the tangent stiffness con-
cept. But unlike the linear tangent modulus of elasticity Et , its nonlinear counterparts,
Et(ε), are not constant anymore since they depend on the current values of strain
(Fig. 11.3.3a). Thus, they should be defined by

Et,i =
(

dσ

dε

)
i

≈
(

�σ

�ε

)
i

. (11.3.3)
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Figure 11.3.3 Two types of elastic modulus.
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However, when the σ − ε curve becomes quite flat, the tangent modulus of elasticity
will approach zero. In this case, the secant modulus of elasticity (Fig. 11.3.3b)

Esi = σi

εi

(11.3.4)

must be employed.

11.3.2 Computational Procedures

Both incremental and iterative methods are used for nonlinear elasticity and elasto-
plasticity. In addition, two modified methods are also often employed for elastic-
plastic analysis: the initial-strain method and the initial-stress method. By the very
nature of these numerical techniques, the reader will find some overlap with the
procedures discussed in the previous section. Although here we will apply these
procedures exclusively in connection with the FEM, their use can also be logically
extended to other numerical approaches.

One of the simplest numerical techniques to deal with nonlinear plate problems is
the incremental or Euler method, which utilizes the tangent stiffness matrix concept.
If no unloading occurs, the solution procedure is straightforward. If it occurs, special
modification to the procedure may become necessary.

The element stiffness matrix for this nonlinear analysis is computed by following
the standard finite element procedures,†

Ke(σi) =
∫

V

DTE(σi)D dV, (11.3.5)

where E(σi) is now variable and represents the matrix of tangent moduli correspond-
ing to the obtained stress level σi . In other words, the matrix Ke is updated for each
load increment. Consequently, the tangent stiffness is computed at the end of each
increment and used for the succeeding increment. For elastic-plastic material, it is
more useful to compute the element stiffness matrix from

Ke(εi) =
∫

V

DTE(εi)D dV. (11.3.6)

To schematically illustrate this and all finite element procedures discussed in this
section, we use simple 1-DOF systems. The corresponding algorithms, however,
should be interpreted for the total structure represented in a X, Y , Z global coordi-
nate system.

The relatively simple algorithm for the incremental procedure can be written as

�di+1 = [K(Ei)]
−1 �pi (11.3.7)

and

d =
m∑

i=1

�di , (11.3.8)

which is schematically illustrated in Fig. 11.3.4.

† See Sec. 7.3.2.
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Figure 11.3.4 Basic incremental procedure.

The principal drawbacks of the incremental approach are as follows:

(a) It is necessary to compute new elasticity matrices and to assemble and invert
the overall stiffness matrix K(Ei) for each incremental step.

(b) Unless very small load increments are used, this procedure has an undesirable
drifting tendency, as shown in Fig. 11.3.4.

(c) If tangent stiffness is used, the incremental method fails completely in the
plastic region of an ideal elastic-plastic material for the reasons already
discussed.

Instead of using very small load increments, the undesirable drifting tendency of
the incremental method can also be eliminated by applying the mixed step itera-
tion procedure, which is a combination of incremental and iterative schemes. This
method, often referred to as the Newton-Raphson procedure, is schematically shown
in Fig. 11.3.5. Here, we also apply the load by increments, but after each increment,
successive iterations are performed to satisfy the condition of equilibrium. While the
accuracy of the results are considerably improved by applying the Newton-Raphson
procedure, the higher accuracy is obtained at the price of more computer effort.

The corresponding algorithm for the nonincremental version of the Newton-
Raphson method (Fig. 11.3.6) is as follows:

1. In the first step, the structure is subjected to the total load p, and the first
approximation of the displacements are computed from

d0 = [K0(E0)]−1p, (11.3.9)

where the stiffness matrix of the total system is determined by using the starting
value E0 for the modulus of elasticity.
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Figure 11.3.6 Iterative tangent stiffness procedure.

2. Based on the results obtained for displacements, the stress σ (or strain ε) and
the corresponding modulus of elasticity E

(N)
i , are determined in each element.

A check of the state of equilibrium with the updated stiffness matrix reveals
an unbalanced residual force vector

r0 = K1(E1)d0 − p. (11.3.10)
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3. These unbalanced forces produce additional displacements

�d1 = [K1(E1)]
−1r0. (11.3.11)

4. These new deflections of the plate, d1 = d0 + �d1, create new residual forces
r2 and corresponding incremental displacements �d2, and so on.

Consequently, the general form of this algorithm can be written as

rj = Kj+1(Ej+1)dj − p,

�dj+1 = [Kj+1(Ej+1)]
−1rj ,

for j = 1, 2, 3, . . . .

(11.3.12)

When the magnitudes of the residual forces become negligibly small, the iteration is
terminated. The final deflections are the sum of the incremental displacements; thus

d = d0 +
m∑

j=0

�dj+1. (11.3.13)

This iterative procedure can also be combined with the incremental scheme
(Fig. 11.3.5). In this case, however, the above given algorithm is valid only for
a load increment �pi .

For elastic-plastic materials, the secant stiffness approach must be applied in an iter-
ative procedure. A schematic representation of this numerical technique is shown in
Fig. 11.3.7. In this case, the secant modulus of elasticity Es,i is used (Fig. 11.3.3b) to
compute the element stiffness matrices. The corresponding computational scheme is

Ki (Es,i)di = p. (11.3.14)

The initial-strain method can also be employed to determine the structural response
in the plastic region. While the incremental and iterative procedures introduced above
always require the recomputation of element stiffness matrices and the solution of
the governing matrix equation at every stage of computation, the initial-strain method
uses the same stiffness matrix, K(E0), throughout the whole computational sequence.
The basic idea of this procedure is schematically illustrated in Fig. 11.3.8.

Using the stiffness matrix K(E0) of the total structure based on the elastic modulus
of elasticity E0, the first estimate of displacements is computed from

dA = [K(E0)]−1p (11.3.15)

The correct state of equilibrium, however, is at point �B on the nonlinear load-
deflection curve (Fig. 11.3.8). The difference between the correct displacements dB

and their previously obtained first estimate dA, is

d0 = dB − dA (11.3.16)
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The initial-strain vector ε0 corresponding to the load p0 is obtained from

ε0 = Dd0. (11.3.17)

A load vector to improve the first estimate of displacements, dA, is found from

p0 =
∫

V

D
T
Eε0 dV. (11.3.18)

This computation is repeated with

p = p ± p0 (11.3.19)

until convergence (p0 ≈ 0) is achieved. Using this procedure for the elastic-plastic
material, we can write

ε0 = εpl (11.3.20)

Since the initial-strain method fails in the ideal plastic region of the material,
Zienkiewicz and his co-workers introduced the initial-stress method as an alterna-
tive procedure [11.3.10]. This mixed approach also uses the linear stiffness matrix
K1(E0) for the first estimate of the displacements. The required corrections of the
displacement vector is obtained, as in the initial-strain method, with the help of a
load vector. In the region of plasticity, however, numerous iterative steps are required
until the state of equilibrium is reached.

The following steps are used for the initial-strain method: The incremental dis-
placements due to the ith load increment are computed from

K(E0)�d
(0)

i = �pi (11.3.21)

by using the linear stiffness matrix K(E0) of the total system. The pertinent vector
of strains is

�ε
(0)
i = D

T
�d

(0)

i . (11.3.22)

The corresponding increment in stress, �σ
(0)
i , as shown in Fig. 11.3.9b, is

obtained from

�σ
(0)
i = E0 �ε

(0)
i . (11.3.23)

But, due to the nonlinearity of the stress-strain relationship, the stress vector† should
have been �σ

(0)
r,i . The force required for this corrections is

�p(1)
k,i =

∫
V

D
T
(�σ

(0)
i − �σ

(0)
r,i ) dV. (11.3.24)

† The superscript refers to the number of the iterative cycle, and the subscript represents the number
of load increments.
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For the further iterative steps, the following algorithm should be used:

K(E0)�d
(j)

i = �pi + �p(j)

k,i ,

�p(k)
k,i =

∫
V

D
T
(
�σ

(j)

i − �σ
(j)

r,i

)
dV.

(11.3.25)

This computation is repeated with �pi + �pr,i until

�σ
(j)

i − �σ
(j)

r,i ≈ 0. (11.3.26)

If the nonlinear stress-strain relationship is represented by an equivalent bilinear curve
(Fig. 11.3.1b), this procedure can be especially effective. In this case, a simplified
form of corrections can be used:

�p(j)

k,i =
∫

V

D
T
(E0 − E1)�ε

(j)

i dV for j = 1, 2, 3, . . . (11.3.27)

A combination of the initial-stress approach and the tangent stiffness procedure
offers the following additional advantages:

ž smaller number of iterations and
ž a more realistic representation of the stiffness matrix K.

Finally, it should be mentioned that the initial-strain method can also handle the
quite difficult loading and unloading situations in plastic regions [11.3.9, 11, 3.10].

Summary. In this section we have treated various finite element procedures for
the analysis of material nonlinearities of plates by assuming small displacements
and small strains. Incremental, iterative and mixed solution techniques were briefly
introduced. A comparison of these numerical methods indicates that probably the
incremental method is the most general. Another advantage of this procedure is
that it gives a complete description of the load-deformation curve of the structure.
Furthermore, it is relatively easy to program. Unfortunately, the solution has a ten-
dency to drift from exact values. Application of iterative methods is generally not
as time consuming as that of incremental ones. The iterative procedure combined
with the secant stiffness approach is capable of handling even elastic-plastic material
behaviors, where incremental methods fail. Iterative methods, however, do not give
information concerning the load-deformation curve of the structure, since only the
final displacements are determined for the total load. It appears that mixed methods
can combine the advantages of the two numerical techniques while their disadvantages
are minimized to a certain degree.
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11.4 Combined Geometrical and Material Nonlinearities
Under high load levels, geometrical and material nonlinearities often occur jointly.
However, due to the high complexity of such problems, realistic treatments of the
structural response to such high loads are usually too sophisticated for any practical
use. Thus, in spite of past achievements in this field, a more practical procedure is
required that efficiently integrates the most relevant aspects of nonlinear material and
nonlinear structural behavior.

In this section, we present a simplified numerical procedures for the analysis of
plates subjected to such combined nonlinearities. Our approach is based on the FEM,
which includes nonlinear effects due to the actual behavior of structural material
under high load and the geometrical nonlinear effects due to large deflections. In
addition, we intend to achieve computational simplicity and economy by means of
some approximations.

As mentioned above, the present model of analysis is based on the displacement
formulation of the FEM or GWM. The incremental-iterative approach used here
employs the total Lagrangian formulation, which is by far the most widely used
frame of reference in nonlinear structural analysis. Furthermore, the associated com-
putational strategies may utilize both the tangential stiffness and secant stiffness
approaches introduced in the previous section. The nonlinear geometric effects caused
by large displacements of the plate must be considered since they are not negligible
compared to the plate thickness. They are included in the stiffness matrices of the
plate elements. Strains are assumed to be small compared to unity.

To simplify the treatment of material nonlinearity, we use again a bilinear stress-
strain relationship, shown in Fig. 11.4.1. In addition, in all further computations we
assume that the stresses σ and strains ε represent their two-dimensional counterparts,
given in Eqs. (11.3.1) and (11.3.2), respectively; thus σ = σe and ε = εe. That is,
experience shows that such bilinear representation of the stress-strain diagram results
in considerable simplification in treating material nonlinearities without noticeably
affecting the achievable accuracy [11.4.1, 11.4.2].
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Figure 11.4.1 Bilinear stress-strain curve.

a. Approximations. Our first approximation, as mentioned above, involves the use
of the bilinear stress-strain diagram to describe the nonlinear material behavior. The
corresponding mathematical expressions are

σ =
{

E1ε for ε < εy,

E1εy + E2(ε − εy) for ε > εy

(11.4.1)

Our second approximation utilizes the concept of reduced modulus of elasticity
Er coupled with a reduced flexural rigidity Dr of the plate. Timoshenko has shown
that in the case of pure bending of beams, the nonlinear material behavior can be
expressed by a properly reduced modulus of elasticity [11.4.3]. This idea is based
on the apparent analogy that exists between the nonlinear stress-strain curve and the
diagram of the bending stresses along the depth of the beam, h, provided that h is
replaced by κh, where κ represents the curvature of the neutral axis of the beam. We
can also use the same analogy for plates. Figure 11.4.2 shows the extension of this
simple but effective concept to bending of plates subjected to additional axial (i.e.
membrane) forces created by the large deflections as introduced by Szilard [11.4.2].
That is, if we enter the elongation εa produced by the axial forces, into the σ − ε

diagram then we obtain the origin of a revised σ ′ − ε′ coordinate system by a simple
coordinate transformation procedure. It can be easily proven that the shaded areas in
Fig. 11.4.2 represent the distribution of bending stresses in the plate cross section.
The strains ε1 and ε2 can be obtained by considering the combined membrane and
bending effects for the curvature in the plate element e. Thus, the curvature in the X
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direction can be approximated by

(κx)
(j)

m+1,e =
(

w,xx

1 + w2
,x

)(j)

m+1,e

for j = 0, 1, 2, 3, . . . . (11.4.2)

A similar expression can be written in the Y direction by simply replacing the sub-
scripts x by y. Consequently, in the case of bending coupled with membrane forces,
the reduced modulus of elasticity in the X direction can be defined by

(Exr)
(j)

m+1,e =
[

12

(hκx)3

∫ ε2

ε1

(σ ′ε′) dε′
](j)

m+1,e

. (11.4.3)

In these equations the subscript m represents the load level and the superscript (j)

refers to the number of iterative cycles required to obtain equilibrium.
Figure 11.4.3 illustrates the determination of the moduli of elasticity in the assumed

bilinear stress-strain relationship. Consequently, the corresponding reduced flexural
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rigidity of the plate in the X direction can be expressed by

(Dxr)
(j)

m+1,e ≈
[

Exrh
3

12(1 − ν2)
· 1

(1 + w2
,x)

3/2

](j)

m+1,e

. (11.4.4)

Again, a similar expression can be written for Dyr by replacing the subscript x by
y. Since the reduced moduli of elasticity and the corresponding reduced flexural
rigidities are different in the X and Y directions, respectively, orthotropic finite
elements must be employed in the computational procedures. However, if the GWM
is used instead of the FEM, the corresponding reduced moments of inertia are

Irx = Ix

(1 + w2
,x)

3/2
and Iry = Iy

(1 + w2
,y)

3/2
. (11.4.4a)

b. Outline of Computational Strategy. Logically, all previously introduced
incremental-iterative procedures for nonlinear plate analysis can be applied in
combination with the above-introduced simplifications. In any case, such a procedure
tends to be quite involved. However, if we merely want to obtain a reasonable estimate
of the plate response to high loads considering combined nonlinearities, the simplest
approach appears to be Euler’s incremental method without equilibrium iteration. A
further aid can be the use of the GWM.

Again, the external load is divided into m increments. Euler’s forward strategy
gives the starting vector of the displacements

�d0 = (K
L
T ,b)

−1 �p1, (11.4.5)

where K
L
T ,b represents the linear tangent stiffness matrix of the system considering

only the bending part. At the end of the first load increment and that of all other
mth increments, the element stiffness matrices must be updated by using the current
displacement vector dm and the corresponding reduced tangent modulus of elasticity
ET,r and the pertinent reduced moment of inertias Irx and Iry , respectively. For
this purpose, the simplified expression or Green’s strain can be used. Thus, for an
equivalent beam oriented in the X direction, we can write

εx ≈ u,x + 1
2w2

,x ± zκx = u,x + 1
2w2

,x ± z
w,xx

(1 + w2
,x)

3/2
. (11.4.6)

Similarly, the strain for a beam oriented in the Y direction is

εy ≈ v,y + 1
2w2

,y ± z
w,yy

(1 + w2
,y)

3/2
. (11.4.7)

Consequently, for any higher load level

pm+1 = pm + �pm+1, (11.4.8)
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the tangent stiffness matrix of the plate becomes

KT ,m = [K
L
a (Er) + K

L
b (Ir ) + K

NL
(d)]T ,m, (11.4.9)

where KL
a is the axial (i.e., membrane) stiffness matrix. Assuming that the plastic

region is not yet reached in the elements, the incremental displacement vector is
computed from

�dm+1 = (KT ,m)−1 �pm+1. (11.4.10)

As the load intensity is increased, the strain in some beams will be larger than the
yield point εy of the material. In such a case, provided that E2 is not too small, we can
continue the procedure outlined above by using E2 in calculating the reduced moduli
of elasticity along with the reduced moment of inertias for such beam elements. As
before, the displacement vector is the sum of the incremental displacements

d =
M∑

m=0

�dm. (11.4.11)

However, if E2 becomes small or even approaches zero, the tangent stiffness
approach fails and must be replaced by a combination of tangent and secant stiffness
approaches [11.4.2].

Summary. Plate problems involving both geometrical and material nonlinearities
can be considered one of the most difficult tasks to solve. Research in this category
of nonlinear problems is still in progress. Most solution procedures apply the versatile
FEM or GWM. A common numerical technique for solution of the resulting matrix
equations is Euler’s incremental procedure. Since this procedure tends to drift away
from the true solution, the use of relatively small increment loads is recommended.
Although equilibrium iterations can eliminate this drifting tendency, they considerably
complicate the computational strategy. The same can be said of the energy-balancing
approach developed for planar beam-type structures [11.4.2] if it will be extended
to the solution of such nonlinear plate problems. To simplify the analysis of plates
subjected to these combined nonlinearities, an approximate solution procedure has
been introduced in this section.

References and Bibliography
[11.4.1] CAJES, A., “Inelastic Deflections of Beams,” J. Struct. Div., ASCE, 94 (1968), 1549–1565.
[11.4.2] SZILARD, R., “An Energy Balancing Strategy for Solution of Combined Geometrical and

Material Nonlinear Problems,” Comp. and Struct., 23 (1986), 147–162.
[11.4.3] TIMOSHENKO, S., Strength of Materials, Part II: Advanced Theory and Problems, Van Nos-

trand, Princeton New Jersey, 1956.
[11.4.4] POWELL, G. H., “Theory of Nonlinear Elastic Structures,” J. Struct. Div., ASCE, 95 (1969),

2687–2701.
[11.4.5] YAGMAI, S., “Incremental Analysis of Large Deformations in Mechanics of Solids,” Ph.D.

Dissertation, University of California, Berkeley, 1966.
[11.4.6] GADALA, M. S., and ORAVAS, A. E., “Numerical Solutions of Nonlinear Problems of Con-

tinua,” Comp. and Struct., 19 (1984), 865–877.
[11.4.7] ROCA, P., et al., “Geometric and Material Nonlinearities in Steel Plates,” J. Struct. Div.,

ASCE, 122 (1996), 1427–1438.



662 Nonlinear Aspects

11.5 Reinforced-Concrete Slabs

a. Introduction. The nonlinear analysis of reinforced-concrete (RC) slabs represents
an inherently complex problem caused by the following factors:

(a) nonlinear relationships of concrete and steel,
(b) cracking of concrete,
(c) imperfect bond between reinforcement and concrete and
(d) other effects such as creep and shrinkage.

In the last decades numerous sophisticated mathematical models have been devel-
oped for the nonlinear analysis of RC slabs [11.5.1–11.5.4]. In general, the behavior
of RC slabs can be classified into two distinctively different stages: linear-elastic
behavior of the uncracked concrete and elastoplastic behavior of the cracked RC
slab. Its nonlinear elastoplastic behavior is mainly governed by the following factors:
(1) compressive response of the concrete between cracks, (2) bond between concrete
and reinforcing bars and (3) shear transfer effect due to aggregate interlock between
cracked concrete surface and dowel action of the reinforcing bars crossing the cracks.

Of these, the forming of cracks under short time loading is generally recognized to
be the most important factor governing the nonlinear behavior of RC slabs. Mathemat-
ical models for handling this phenomenon can be divided into two main categories:
smeared crack concept and discrete models. Discrete models can be either bond slip
or layered. Although nowadays the FEM is used almost exclusively for nonlinear
analysis of RC slabs, a solution technique based on the FDM [11.5.5] may offer a
more usable approach, provided its present limitation concerning simply supported
boundary conditions can be eliminated.

b. Smear Crack Concept. This FEM deals with distributed cracks that are
“smeared” over either the element or its integration points. It is assumed that the
cracks are uniformly distributed at small distances normal to the maximum principal
stress and the reinforcing steel is also evenly distributed throughout the finite element.
In addition, this concept uses two material laws, one for the equivalent medium cracks
and the other for the concrete between the cracks. However, fixed values for these
constitutive laws are hard to determine. A usual practice is to adjust the parameters of
these laws independently for each sampling point in the finite element mesh according
to the element size and try to match them with some experimental values. When the
crack width is less than 0.05 mm, shear transfer takes place. With larger than 1.2 mm
crack width, however, no such load transfer is possible. Adoption of fixed values
for these constitutive laws can lead to unobjectional results. For this reason, it is
not as widely used as the layered model subsequently discussed. Readers who want
to obtain specifics on the use of shear crack models should consult Refs. [11.5.12]
and [11.5.13].

c. Bond-Slip Model. In the behavior of RC slabs under short-term load, the inter-
face between concrete and reinforcing bars plays an important role. The most common
approach in modeling this phenomenon is the introduction of so-called interface ele-
ments [11.5.6, 11.5.7], as shown in Fig. 11.5.1. These elements connect a node of the
concrete element with a node of the steel element (Fig. 11.5.2). Although this concept
was originally developed for modeling plane stress problems of RC, its application
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Figure 11.5.1 Bond-slip model for plane stress.
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Figure 11.5.2 Bond-link interface element (two dimensions).

can be extended to cover nonlinear bending analysis of RC slabs by using appropriate
three-dimensional elements for concrete and steel. The stiffness of such linkage is
usually determined on the basis of experimental tests. Consequently, a wide variation
in this value can be expected. As in all three-dimensional finite element analysis, the
computer requirements for this concept are considerable.

d. Layered RC Elements. For the bending analysis of RC slabs, probably the use
of layered finite elements appears to be the most promising. The plate elements are
divided into layers of concrete and steel (Fig. 11.5.3). Thus the stress distribution in

1.0
1.0

Midsurface

Concrete layers
Steel layer

h

Figure 11.5.3 Layered element.
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the RC slab is approximated with layers of plane stress elements. The plane stress
properties are assigned to each of these layers. Consequently, the state of plane stress
varies from layer to layer. It should be noted, however, that this layered-element
concept is not capable of including nonlinear responses to transverse shear effects,
which occur in the case of punching shear, for instance. By including nonlinear
properties of concrete and steel, however, this method can predict failure that involves
flexural or even membrane force systems. It is of importance to note that the material
models used in these analyses can be rather crude. The application of such a two-
dimensional model for RC is justified on the grounds that by making the concrete
layers thin enough, the variation of stresses and strains across the thickness of the
slab can be well accounted for.

A variety of material models have been proposed for the use of layered nonlinear
analysis of RC slabs. The model of reinforcing steel is usually represented by a uni-
axial stress-strain curve, in which the steel is considered an elastic-plastic material. Its
stress-strain curve is taken to be identical in tension and compression (Fig. 11.5.4a).
The material properties of the concrete can also effectively be approximated by a
bilinear stress-strain curve with tensile strength (Fig. 11.5.4b). A common practice is
to assume 0.1σc,u for its maximum tensile strength. Because of the two-dimensional
nature of plate problems, the assumed uniaxial concrete stress-strain curve must
be modified to cover the biaxial stress states. For this purpose, one may use the
approaches presented in Refs. [11.5.17] and [11.5.18]. An assumed yield surface for
biaxial stresses in plain concrete is shown in Fig. 11.5.5.
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Figure 11.5.4 Assumed stress-strain curves for steel and concrete.

−s′c

−s′c

sc

s2

s1

s′ 1
= s 2

s′t

Figure 11.5.5 Yield surface for biaxial stress in concrete.
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Considering all the various numerical methods for nonlinear analysis of RC slabs
[11.5.1–11.5.4], only the layered plate approach is discussed here briefly, since it
offers, if combined with the versatile FEM, the most flexibility in RC slab anal-
ysis. For finite elements, one uses mostly relatively simple rectangular, four-node
membrane and bending elements.

Under lateral loads, the layers of the RC elements are subjected mainly to mem-
brane stresses. However, due to the eccentric locations of most of these layers,
additional bending moments are also activated. Consequently, coupling exists between
the in-plane extension and transverse bending. Thus, by developing the membrane
stiffness of the elements, these coupling effects must also be considered. By their very
nature, the steel layers possess only membrane stiffness. Furthermore, we can assume
that the transverse displacements w(x, y) are the same for each layer. To satisfy
this requirement, the in-plane displacements are augmented by terms that represent
interlayer compatibility. Consequently, for the ith layer we can write [11.5.15]

ui(x, y) = umc(x, y) ± hcθxc(x, y)

2
±

l2∑
p=l1

hpθxp(x, y) ± hiθxi(x, y)

2
,

vi(x, y) = vmc(x, y) ± hcθyc(x, y)

2
±

l2∑
p=l1

hpθyp(x, y) ± hiθyi(x, y)

2
,

(11.5.1)

where c represents a sequential number of the central layer and θx and θy are rotations
of a general point within the ith layer. The thickness of the layers is hi . The layers
should be numbered sequentially starting from the top. With nine layers as shown in
Fig. 11.5.6, for instance, where c = 5,

l1 = i + 1 and l2 = c − 1 for i = 1, 2, 3, (11.5.2)

l1 = c + 1 and l2 = i − 1 for i = 7, 8, 9. (11.5.3)

Using a simple rectangular four-node element (Fig. 11.5.7) for the membrane part,
we can utilize, for instance, the quadratic displacement functions

umc(x, y) = α1 + α2x + α3y + α4xy + α5y
2,

vmc(x, y) = α6 + α7x + α8y + α9xy + α10x
2,

(11.5.4)

which yield good convergence characteristics (Fig. 11.5.8).
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Figure 11.5.6 Laminated section.
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Figure 11.5.8 Convergence characteristics of element shown in Fig. 11.5.7.

Computation of the layer stiffness follows the already introduced standard pro-
cedures† for finite elements. Consequently, the strain vector for the membrane part
considering the ith element becomes

εm =




∂umi

∂x

∂vmi

∂y

∂umi

∂y
+ ∂vmi

∂x




=
4∑

j=1

D(m)
ji dej , (11.5.5)

† See Secs. 7.1 and 7.2.
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where dej is the vector of the displacements of the four nodes (j = 4) and
D(m)

ji represents the strain-displacement matrix obtained from differentiations of the
shape functions.

Similarly, we can also select again a simple four-node element for the bending part.
Such an element is shown in Fig. 7.6.1. Its convergence characteristics are illustrated
in Fig. 7.6.2. The pertinent shape function is given in Eq. (7.6.2). The bending part
of the strain vector for the ith layer is

εb =




−∂θxi

∂x

−∂θyi

∂y

−∂θxi

∂y
− ∂θyi

∂x




=
4∑

j=1

D(b)
ji dej . (11.5.6)

The subscripts and superscripts m and b in Eqs. (11.5.5) and (11.5.6) refer to mem-
brane and bending components, respectively. The stiffness matrix of the elements
can be written as

Ke,i = K(m)
e,i + K(b)

e,i =
L∑

i=1

∫∫
D(m)T

i E(m)
i D(m)

i dA +
∫∫

D(b)T
i E(b)

i D(b)
i dA, (11.5.7)

where L represents the total number of layers per element. The elasticity matrix for
the concrete layers is

E(m)
i =




Ex

1 − nν2
1

ν1Ey

1 − nν2
1

0

ν1Ey

1 − nν2
1

Ey

n(1 − nν2
1 )

0

0 0 Gxy




for n = Ex

Ey

, ν1 = √
νxνy, Gxy =

√
ExEy

2(1 + ν1)
, (11.5.8)

and for the steel layer we can use

E(m)
s,i = hi


Est 0 0

0 0 0
0 0 0


 . (11.5.9)

The elasticity matrix for the bending part can be given as

E(b)
i =


Dx D1 0

D1 Dy 0
0 0

√
DxDy


 , (11.5.10)

where the sectional properties Dx and D1 are already defined in Sec. 10.1.
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The reader can find other approaches for the nonlinear analysis of RC slabs using
layered finite elements in Refs. [11.5.9] and [11.5.12], respectively.

Using the incremental procedure described in Sec. 11.3, we start with the uncracked
sections of the RC slab. By applying an initially small load level �p1, we compute
the corresponding vectors of the displacements �d1 and stresses �σ1. Next, we
use, again, a small load increment �p2. Now the p2 = �p1 + �p2 load gives d2 =
�d1 + �d2 displacements and yields σ2 = �σ1 + �σ2 stresses, and so on. If the
tensile stress of the concrete exceeds 0.1σu, cracks will develop and the stiffness
matrix of the elements must be computed using the methods for layered sections
described above. As we continue with the incremental loading, the depth of the
cracks will increase. Thus, more and more concrete layers will not be able to sustain
tensile forces. This situation requires a constant recomputation of the element stiffness
matrices corresponding to the actual stress levels in concrete and steel. Needless to
say, coding such an incremental procedure is highly complex and consequently time
consuming. The same can be said for the computer time required to execute such a
nonlinear analysis.

We can considerably simplify the layered-element method described above and
still obtain usable estimates of the nonlinear behavior of RC slabs. To keep this
approach as simple as possible, the lamination of the concrete should be relatively
crude and only a limited number of equilibrium iterations between the individual load
increments should be carried out. The steps of this simplified approach are as follows:

1. For the small initial load increment, the uncracked concrete section is used. The
transverse displacements w(x, y) are computed with the help of the bending
stiffness matrix given in Eq. (7.6.12).

2. Step 1 is repeated for the next load increments until the tensile strength of
the concrete is reached in one of the outer fibers of the sections. Next, the
lateral displacements must be recomputed based on the equivalent transformed
sections (Fig. 10.2.3) using the reinforcing steel and the uncracked portion of
the concrete. The in-plane displacements u, v of the nodal points corresponding
to the individual layers are estimated from their rotations.

3. The corresponding steel and concrete stresses are computed with the help of
the matrices given in Fig. 11.5.9.

4. This procedure is repeated, always using the obtained stress levels in concrete
and steel in computing the element stiffness and stress matrices.

e. Composite Finite Elements. These finite elements are assemblies of a sin-
gle concrete plate element and n steel beam elements representing the reinforcing
bars [11.5.19]. The rectangular concrete element combines the 8-DOF plane stress
element (Fig. 11.5.9) with the 12-DOF nonconforming plate bending element intro-
duced in Sec. 7.6. The steel elements are the commonly used beam column elements
with 6 DOF. It is assumed that a perfect bond between concrete and steel exists.
This assumption results in the following compatibility equations for a beam element
oriented in the X direction:

us = uc = e
∂wc

∂x
and ws = wc, (11.5.11)

where e is the distance between the centroidal axis of the beam element and the mid
surface of the concrete plate element.
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Using this compatibility condition, the stiffness matrix of the steel beam element
is transformed from its local coordinate system into the coordinate system X, Y, Z

of the plate element by

K′
e,s = TTKe,sT. (11.5.12)

In this way, the stiffness matrix of the composite finite element becomes simply the
assembly of the individual elements. Consequently, we can write

Ke,comp = Ke,c +
n∑

i=1

(Ke,s )i , (11.5.13)

where n is the total number of reinforcing steel bars.
Based on the composite nature of this element, the corresponding constitutive

modeling consists of two parts. For the steel reinforcement, a uniaxial elastic-plastic
stress-strain relationship can be used. But modeling the concrete behavior is much
more complex, details of which are available in Ref. [11.5.20]. However, a con-
siderable simplification can be achieved by using the previously introduced equivalent
bilinear stress-strain relationship for the concrete. In this case, the solution procedure
should use an appropriate incremental-iterative approach, discussed in the foregoing
section. When the maximum tensile stress of the concrete is reached in the lower
fibers, the thickness of the concrete element must be reduced to take care of the
already cracked condition of the concrete.

Summary. Reinforced-concrete slabs are, by their very nature, difficult to analyze
since they combine two different materials each with nonlinear properties. In addition,
the concrete cracks in tension and can crush in compression. Furthermore, the bond
between reinforcing steel and concrete can also slip and even fail.

Because of these difficulties, the present design practice is based on the assumptions
that the RC slab is uncracked, homogeneous, isotropic and linear-elastic. Using these
assumptions, the internal forces are computed either analytically or, nowadays, mostly
numerically. The required slab thickness and the amount of reinforcing steel are
determined by applying the ultimate strength approach. While such a simple design
philosophy may be admissible for small slabs in buildings, larger plate structures
such as bridges require more exact considerations of the nonlinear behavior of slabs
under static and dynamic loadings.

In recent years, there has been considerable research of the nonlinear analysis
of RC slabs. These mostly academic research efforts, however, led to increase in
complexity and sophistication of various material models proposed to represent the
actual nonlinear behavior of RC slabs. Unfortunately, the results of these researches
have little or no impact on current engineering practice. This may be partially due
to the directions taken by academic researchers. A simplified composite element
approach might indicate a direction that can result in development of a numerical
method that may be accepted by practicing engineers in their everyday work.

The layered plate element approach combined with the FEM has been discussed
here in somewhat more detail, since it offers good accuracy combined with flexibility.
For this reason, even some commercially available program systems have already
incorporated this solution technique into their finite element program libraries. It is
evident that future research is required to simplify the nonlinear analysis of RC slabs.
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In the meantime, the yield-line method† in combination with the ultimate load design
technique—for determining the required slab thickness and the amount of reinforcing
steel—is recommended for the design of smaller RC slabs. Researchers who intend
to write their own computer code covering a layered slab analysis, should consult
Ref. [11.5.13].
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11.6 Summary and Conclusions

This chapter has presented a compilation of analysis procedures related to the solu-
tion of nonlinear plate problems the reader may encounter in engineering practice.
Because of the inherently complex nature of such problems, we concentrated almost
exclusively on numerical methods in general and the corresponding application of the
FEM in particular. Despite the significant progress already made in the development
of suitable analysis procedures, accurate prediction of the overall deformation char-
acteristics of plates subjected to geometrical and material nonlinearities still remains
a difficult task. This is due mainly to the fact that to accurately model the mathemat-
ical behavior of such plates is extremely difficult or even impossible. Of the many
possible nonlinear effects, the two most important nonlinearities represented by large
deflections and nonlinear material behaviors have been presented here. To limit the
size of the book, however, only the algorithmic paths of recommended solution pro-
cedures were given, without going into such details as actual computer programming.
That is, in many cases this material is provided in commercially available larger pro-
gram systems. Therefore, the presentation has consisted primarily of discussing the
fundamentals to furnish readers with sufficient background either to use such com-
puter programs intelligently or to be able to develop their own program system. In
the latter case, however, one must consider that the required coding efforts can be
quite excessive and time consuming.

Problems†

11.1.1 Redo the Illustrative Example of Sec. 11.1 by using Ritz’s energy method.
11.2.1 Develop a correction factor C to improve the results of finite difference

solutions of large-deflection analysis of plates.
11.2.2 Solve the Illustrative Example in Sec. 11.1 using the ordinary FDM.
11.3.1 Develop a computer program for large-deflection analysis of plates using the

ordinary FDM and the incremental procedure. Assume a simply supported
square plate. Use your favorite programming language.

† The first two numbers refer to the corresponding section.
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12
Practical Design Methods

12.1 Need for Engineering Solution Procedures

The solution of plate problems via the classical route, as shown in Part I, is limited to
simple geometry, load and boundary conditions. If these conditions are not satisfied,
the classical analysis becomes increasingly complex or even impossible. In such cases
numerical methods, introduced in Parts II and III, must be used to obtain reliable
results concerning the behavior of plates subjected to various types of static loads.

By employing numerical methods in plate analysis, however, the analyst must have
ab ovo the plate thickness as an input. This can be satisfactorily estimated by using
simple engineering solution techniques. Furthermore, after a solution is obtained, uti-
lizing either classical or numerical procedures, the analyst must validate the results
by means of an independent check. Usually, numerical solutions are either acceptable
or entirely “out-of-bounds.” To detect the latter case, again, simple engineering meth-
ods can be employed. In addition, in many cases alternative design schemes must be
evaluated before a final selection of the type of structural system to be used in the
actual design can be made. Engineering solution methods permit such comparative
preliminary design evaluations economically.

In engineering applications of the theory of plates, we are usually dealing with
inaccurate input data. In the first place, the external loads are known only with
a certain degree of accuracy. Next, the material properties, such as the modulus
of elasticity E and Poisson’s ratio ν, contain considerable inaccuracies. Further-
more, the actual boundary conditions of plate structures are merely an approximation
of the theoretical ones. Additional sources of errors in numerical computations are
roundoff and truncation errors, to name a few. Finally, in all types of computations
human errors may also be present. Consequently, even “exact” analytical solutions
are merely approximations of the actual plate behavior under static loading.

Last, but not least, the economy of computational procedures must always be
considered. That is, for reasons of various error sources inherent in all computations,
as discussed above, a method that yields the required results in an economical way
but has ±10% error of calculation is almost invariably selected over a more exact
approach. Plate analysis using engineering methods can always be accomplished by
“long-hand” computations in a relatively short time. Thus, these practical design
methods do not require either computers or pertinent software. Furthermore, there

675Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
Copyright © 2004 John Wiley & Sons, Inc.



676 Practical Design Methods

are some simple plate structures, such as two-way floor slabs in buildings, that can
be analyzed quite effectively by employing one of the methods introduced in this
chapter. In addition, when a lower-bound engineering solution is checked by an
upper-bound practical solution technique, such as the work method of yield-line
analysis,† the average of the results obtained yields quite acceptable solutions for all
engineering purposes.

12.2 Elastic Web Analogy for Continuous Plate Systems

The oldest engineering approach for analyzing continuous plate systems was intro-
duced by Marcus [12.2.1]. The plate system was considered by him as an elastic web
(elastische Gewebe) consisting of plate strips located at midspans of the individual
plates. Application of this approach is limited to uniformly (per-panel) distributed
lateral loads and to aspect ratios lx/ ly given in the tables. Furthermore, sizes of the
neighboring panels should not vary more than approximately 50%.

Let us consider, first, two simply supported plate strips, as shown in Fig. 12.2.1. It
is evident that the center deflection of these two connected strips must be equal; thus

(wx)lx/2 = (wy)ly/2 = 5

384

p1l
4
x

Dx

= 5

384

p2l
4
y

Dy

. (12.2.1)

Furthermore,

p0 = p1 + p2 and Dx = Dy = D; (12.2.2)

hence, from the total lateral load p0, we can assign

p1 = l4
y

l4
x + l4

y

p0 and p2 = l4
x

l4
x + l4

y

p0 (12.2.3)

lx

l y

l y
/2

l y
/2

lx/2

Dx = Dy

(wx)lx/2

(w
y)

l y
/2

p1

p 2

lx/2

O

Y

X

1

1

1

2

Figure 12.2.1 Equivalent plate strips.

† See Sec. 13.2.
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to the plate strips in the X and Y directions, respectively. Equation (12.2.3), written
in more general form, becomes

p1 = κp0, p2 = ρp0, (12.2.4)

where

κ = cyl
4
y

cxl4
x + cyl4

y

and ρ = 1 − κ. (12.2.5)

In Eq. (12.2.5) cx and cy represent correction factors, the values of which depend on
the boundary conditions. These coefficients are easily obtained from the deflection
ordinates of beams at lx/2 and ly/2 and are shown in Fig. 12.2.2.

As mentioned earlier, the fundamental difference between the structural behavior
of an open gridwork and that of a plate is the presence of transverse shear forces along
the edges of the plate strips. These shear forces, caused by the continuity between
individual plate strips, produce torsional resistance, which in turn reduces the deflec-
tions of the substitute gridwork. By considering the effect of the torsional resistance
of the plate, Marcus [12.2.1] obtained the following approximate expressions† for the
maximum positive moments:

mx = m′
x

[
1 − 5

6
(ε∗)2 m′

x

Mx

]
= αp0l

2
x (12.2.6)

and

my = m′
y

[
1 − 5

6
ε2

m′
y

My

]
= βp0l

2
y, (12.2.7)

where ε∗ = lx/ ly and ε = ly/ lx . Furthermore, m′
x and m′

y denote the positive moments
of the plate strips at the center (lx/2, ly/2), while

Mx = 1
8p0l

2
x and My = 1

8p0l
2
y (12.2.8)
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Figure 12.2.2 Typical cases.

† For ν = 1
6 .
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represent the maximum moments of simply supported beams subjected to the total
load p0.

The coefficients α, β, κ and ρ for various span ratios and boundary conditions have
been calculated by Löser [12.2.2] and are given in Table 12.2.1a–f.† Figure 12.2.2
illustrates the six possible combinations of fixed and simply supported boundary
conditions. Stencils for compilation of these exterior and interior panels into various

Table 12.2.1 Bending Moments

a. Case �1

Moments at center of plate:

mx,max = +α1p0l
2
x

my,max = +β1p0l
2
y

p0 = const

ε = ly : lx α1 β1 κ1 ρ1 ε = ly : lx α1 β1 κ1 ρ1

1 2 3 4 5 6 7 8 9 10
0.60 0.01053 0.08127 0.1147 0.8853 1.00 0.03646 0.03646 0.5000 0.5000
0.62 0.01160 0.07851 0.1287 0.8713 1.02 0.03792 0.03503 0.5198 0.4802
0.64 0.01271 0.07575 0.1437 0.8563 1.04 0.03940 0.03368 0.5391 0.4609
0.66 0.01385 0.07301 0.1595 0.8405 1.06 0.04088 0.03238 0.5580 0.4420
0.68 0.01503 0.07029 0.1761 0.8239 1.08 0.04238 0.03115 0.5764 0.4236
0.70 0.01623 0.06761 0.1936 0.8064 1.10 0.04388 0.02997 0.5942 0.4058
0.72 0.01746 0.06497 0.2118 0.7882 1.12 0.04538 0.02884 0.6114 0.3886
0.74 0.01871 0.06240 0.2307 0.7693 1.14 0.04689 0.02776 0.6281 0.3719
0.76 0.01998 0.05990 0.2502 0.7498 1.16 0.04840 0.02673 0.6442 0.3558
0.78 0.02127 0.05747 0.2702 0.7298 1.18 0.04990 0.02574 0.6597 0.3403
0.80 0.02258 0.05512 0.2906 0.7094 1.20 0.05141 0.02479 0.6746 0.3254
0.82 0.02390 0.05286 0.3113 0.6887 1.24 0.05439 0.02300 0.7028 0.2972
0.84 0.02524 0.05069 0.3324 0.6676 1.28 0.05732 0.02135 0.7286 0.2714
0.86 0.02659 0.04861 0.3536 0.6464 1.32 0.06020 0.01983 0.7522 0.2478
0.88 0.02796 0.04662 0.3749 0.6251 1.36 0.06300 0.01842 0.7738 0.2262
0.90 0.02934 0.04471 0.3962 0.6038 1.40 0.06572 0.01711 0.7935 0.2065
0.92 0.03073 0.04290 0.4174 0.5826 1.44 0.06835 0.01589 0.8113 0.1887
0.94 0.03214 0.04117 0.4384 0.5616 1.48 0.07087 0.01477 0.8275 0.1725
0.96 0.03357 0.03952 0.4593 0.5407 1.54 0.07447 0.01324 0.8490 0.1510
0.98 0.03501 0.03795 0.4798 0.5202 1.62 0.07889 0.01145 0.8732 0.1268

b. Case �2

Moments at center of plate: Edge moment:

mx,max = +α2p0l
2
x Mx = − 1

8 κ2p0l
2
x

my,max = +β2p0l
2
y p0 = const

ε = ly : lx α2 β2 κ2 ρ2 ε = ly : lx α2 β2 κ2 ρ2

1 2 3 4 5 6 7 8 9 10
0.60 0.01172 0.07302 0.2447 0.7553 1.00 0.03341 0.02721 0.7143 0.2857
0.62 0.01273 0.06993 0.2698 0.7302 1.02 0.03445 0.02584 0.7302 0.2698
0.64 0.01375 0.06689 0.2955 0.7045 1.04 0.03547 0.02453 0.7452 0.2548
0.66 0.01479 0.06391 0.3217 0.6783 1.06 0.03648 0.02330 0.7594 0.2406

† For span ratios between the values given, the coefficients can be obtained by linear interpolation.
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Table 12.2.1 (continued)

ε = ly : lx α2 β2 κ2 ρ2 ε = ly : lx α2 β2 κ2 ρ2

0.68 0.01584 0.06100 0.3483 0.6517 1.08 0.03746 0.02213 0.7728 0.2272
0.70 0.01691 0.05818 0.3751 0.6249 1.10 0.03842 0.02102 0.7854 0.2146
0.72 0.01799 0.05545 0.4019 0.5981 1.12 0.03936 0.01997 0.7973 0.2027
0.74 0.01908 0.05281 0.4285 0.5715 1.14 0.04027 0.01897 0.8085 0.1915
0.76 0.02017 0.05027 0.4548 0.5452 1.16 0.04116 0.01803 0.8191 0.1809
0.78 0.02128 0.04783 0.4806 0.5194 1.18 0.04202 0.01714 0.8290 0.1710
0.80 0.02239 0.04548 0.5059 0.4941 1.20 0.04286 0.01629 0.8383 0.1617
0.82 0.02351 0.04324 0.5306 0.4694 1.24 0.04446 0.01473 0.8553 0.1447
0.84 0.02463 0.04110 0.5545 0.4455 1.28 0.04595 0.01334 0.8703 0.1297
0.86 0.02574 0.03905 0.5776 0.4224 1.32 0.04736 0.01209 0.8836 0.1164
0.88 0.02686 0.03710 0.5999 0.4001 1.36 0.04867 0.01097 0.8953 0.1047
0.90 0.02798 0.03524 0.6212 0.3788 1.40 0.04989 0.00997 0.9057 0.0943
0.92 0.02908 0.03347 0.6417 0.3583 1.44 0.05102 0.00907 0.9149 0.0851
0.94 0.03018 0.03178 0.6612 0.3388 1.48 0.05208 0.00827 0.9230 0.0770
0.96 0.03127 0.03018 0.6798 0.3202 1.54 0.05353 0.00721 0.9336 0.0664
0.98 0.03235 0.02866 0.6975 0.3025 1.62 0.05526 0.00604 0.9451 0.0549

ε∗ = lx : ly β∗
2 α∗

2 ρ∗
2 κ∗

2 ε∗ = lx : ly β∗
2 α∗

2 ρ∗
2 κ∗

2

Notes:
For case �2 ∗ use values marked with asterisk:

m∗
x,max = +α∗

2p0l
2
x M∗

y = − 1
8 ρ∗

2 p0l
2
y

m∗
y,max = +β∗

2 p0l
2
y

c. Case �3

Moments at center of plate: Edge moments:

mx,max = +α3p0l
2
x Mx = − 1

12 κ3p0l
2
x

my,max = +β3p0l
2
y p0 = const

ε = ly : lx α3 β3 κ3 ρ3 ε = ly : lx α3 β3 κ3 ρ3

1 2 3 4 5 6 7 8 9 10
0.60 0.01141 0.06204 0.3932 0.6068 1.00 0.02668 0.01794 0.8333 0.1667
0.62 0.01227 0.05864 0.4249 0.5751 1.02 0.02734 0.01686 0.8440 0.1560
0.64 0.01313 0.05536 0.4562 0.5438 1.04 0.02778 0.01585 0.8540 0.1460
0.66 0.01399 0.05219 0.4868 0.5132 1.06 0.02829 0.01490 0.8632 0.1368
0.68 0.01485 0.04916 0.5167 0.4833 1.08 0.02878 0.01402 0.8718 0.1282
0.70 0.01570 0.04626 0.5456 0.4544 1.10 0.02925 0.01320 0.8798 0.1202
0.72 0.01655 0.04350 0.5733 0.4267 1.12 0.02970 0.01243 0.8872 0.1128
0.74 0.01739 0.04088 0.5999 0.4001 1.14 0.03013 0.01172 0.8941 0.1059
0.76 0.01822 0.03840 0.6252 0.3748 1.16 0.03035 0.01105 0.9005 0.0995
0.78 0.01903 0.03605 0.6492 0.3508 1.18 0.03094 0.01042 0.9065 0.0935
0.80 0.01983 0.03383 0.6719 0.3281 1.20 0.03131 0.00983 0.9120 0.0880
0.82 0.02061 0.03175 0.6933 0.3067 1.24 0.03202 0.00877 0.9220 0.0780
0.84 0.02138 0.02979 0.7134 0.2866 1.28 0.03266 0.00785 0.9307 0.0693
0.86 0.02212 0.02794 0.7323 0.2677 1.32 0.03324 0.00703 0.9382 0.0618
0.88 0.02284 0.02621 0.7499 0.2501 1.36 0.03378 0.00632 0.9448 0.0552
0.90 0.02354 0.02460 0.7664 0.2336 1.40 0.03427 0.00569 0.9505 0.0495
0.92 0.02422 0.02308 0.7817 0.2183 1.44 0.03472 0.00513 0.9556 0.0444
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Table 12.2.1 (continued)

ε = ly : lx α3 β3 κ3 ρ3 ε = ly : lx α3 β3 κ3 ρ3

0.94 0.02487 0.02166 0.7971 0.2039 1.48 0.03513 0.00464 0.9600 0.0400
0.96 0.02550 0.02034 0.8094 0.1906 1.54 0.03568 0.00400 0.9657 0.0343
0.98 0.02610 0.01910 0.8218 0.1782 1.62 0.03633 0.00331 0.9718 0.0282

ε∗ = lx : ly β∗
3 α∗

3 ρ∗
3 κ∗

3 ε∗ = lx : ly β∗
3 α∗

3 ρ∗
3 κ∗

3

Notes:
For Case �3 ∗ use values marked with asterisk:

m∗
x,max = +α∗

3p0l
2
x M∗

y = − 1
12 ρ∗

3 p0l
2
y

m∗
y,max = +β∗

3 p0l
2
y

d. Case �4

Moments at center of plate: Edge moments:

mx,max = +α4p0l
2
x Mx = − 1

8 κ4p0l
2
x

my,max = +β4p0l
2
y My = − 1

8 ρ4p0l
2
y

p0 = const

ε = ly : lx α4 β4 κ4 ρ4 ε = ly : lx α4 β4 κ4 ρ4

1 2 3 4 5 6 7 8 9 10
0.60 0.00686 0.05295 0.1147 0.8853 1.00 0.02692 0.02692 0.5000 0.5000
0.62 0.00763 0.05164 0.1287 0.8713 1.02 0.02799 0.02586 0.5198 0.4802
0.64 0.00844 0.05031 0.1437 0.8563 1.04 0.02905 0.02483 0.5391 0.4609
0.66 0.00929 0.04895 0.1595 0.8405 1.06 0.03010 0.02384 0.5580 0.4420
0.68 0.01017 0.04758 0.1761 0.8239 1.08 0.03114 0.02289 0.5764 0.4236
0.70 0.01109 0.04620 0.1936 0.8064 1.10 0.03216 0.02197 0.5942 0.4058
0.72 0.01204 0.04480 0.2118 0.7882 1.12 0.03317 0.02108 0.6114 0.3886
0.74 0.01302 0.04341 0.2307 0.7693 1.14 0.03416 0.02022 0.6281 0.3719
0.76 0.01402 0.04202 0.2502 0.7498 1.16 0.03513 0.01940 0.6442 0.3558
0.78 0.01504 0.04063 0.2702 0.7298 1.18 0.03608 0.01861 0.6597 0.3403
0.80 0.01608 0.03926 0.2906 0.7094 1.20 0.03702 0.01785 0.6746 0.3254
0.82 0.01714 0.03791 0.3113 0.6887 1.24 0.03883 0.01642 0.7028 0.2972
0.84 0.01821 0.03658 0.3324 0.6676 1.28 0.04055 0.01511 0.7286 0.2714
0.86 0.01929 0.03526 0.3536 0.6464 1.32 0.04219 0.01390 0.7522 0.2478
0.88 0.02038 0.03398 0.3749 0.6251 1.36 0.04374 0.01278 0.7738 0.2262
0.90 0.02147 0.03272 0.3962 0.6038 1.40 0.04520 0.01177 0.7935 0.2065
0.92 0.02256 0.03150 0.4174 0.5826 1.44 0.04658 0.01083 0.8113 0.1887
0.94 0.02366 0.03030 0.4384 0.5616 1.48 0.04788 0.00998 0.8275 0.1725
0.96 0.02475 0.02914 0.4593 0.5407 1.54 0.04968 0.00883 0.8490 0.1510
0.98 0.02584 0.02801 0.4798 0.5202 1.62 0.05182 0.00752 0.8732 0.1268

Note: The cases at the bottom are identical to the one shown at the top.
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Table 12.2.1 (continued)

e. Case �5

Moments at center of plate: Edge moments:

mx,max = +α5p0l
2
x Mx = − 1

12 κ5p0l
2
x

my,max = +β5p0l
2
y My = − 1

8 ρ5p0l
2
y

p0 = const

ε = ly : lx α5 β5 κ5 ρ5 ε = ly : lx α5 β5 κ5 ρ5

1 2 3 4 5 6 7 8 9 10
0.60 0.00722 0.04835 0.2059 0.7941 1.00 0.02263 0.01977 0.6667 0.3333
0.62 0.00794 0.04672 0.2282 0.7718 1.02 0.02329 0.01879 0.6840 0.3160
0.64 0.00869 0.04507 0.2513 0.7487 1.04 0.02394 0.01786 0.7006 0.2994
0.66 0.00945 0.04342 0.2751 0.7249 1.06 0.02456 0.01696 0.7164 0.2836
0.68 0.01023 0.04177 0.2995 0.7005 1.08 0.02516 0.01612 0.7313 0.2687
0.70 0.01103 0.04013 0.3244 0.6756 1.10 0.02574 0.01532 0.7454 0.2546
0.72 0.01184 0.03850 0.3496 0.6504 1.12 0.02631 0.01455 0.7589 0.2411
0.74 0.01265 0.03690 0.3749 0.6251 1.14 0.02685 0.01382 0.7716 0.2284
0.76 0.01347 0.03532 0.4002 0.5998 1.16 0.02737 0.01314 0.7836 0.2164
0.78 0.01428 0.03378 0.4254 0.5746 1.18 0.02788 0.01248 0.7950 0.2050
0.80 0.01509 0.03228 0.4503 0.5497 1.20 0.02835 0.01187 0.8057 0.1943
0.82 0.01590 0.03081 0.4749 0.5251 1.24 0.02926 0.01073 0.8254 0.1746
0.84 0.01670 0.02939 0.4989 0.5011 1.28 0.03010 0.00971 0.8430 0.1570
0.86 0.01750 0.02802 0.5225 0.4775 1.32 0.03088 0.00879 0.8586 0.1414
0.88 0.01828 0.02669 0.5453 0.4547 1.36 0.03159 0.00797 0.7825 0.1275
0.90 0.01905 0.02541 0.5675 0.4325 1.40 0.03224 0.00724 0.8848 0.1152
0.92 0.01980 0.02419 0.5890 0.4110 1.44 0.03285 0.00658 0.8958 0.1042
0.94 0.02053 0.02301 0.6096 0.3904 1.48 0.03340 0.00599 0.9056 0.0944
0.96 0.02125 0.02188 0.6295 0.3705 1.54 0.03415 0.00522 0.9184 0.0816
0.98 0.02195 0.02080 0.6485 0.3515 1.62 0.03501 0.00436 0.9323 0.0677

ε∗ = lx : ly β∗
5 α∗

5 ρ∗
5 κ∗

5 ε∗ = lx : ly β∗
5 α∗

5 ρ∗
5 κ∗

5

Notes:
For Case �5 ∗ use values marked with asterisk:

m∗
x,max = +α∗

5p0l
2
x M∗

x = − 1
8 κ∗

5 p0l
2
x

m∗
y,max = +β∗

5 p0l
2
y M∗

y = − 1
12 ρ∗

5 p0l
2
y

f. Case �6

Moments at center of plate: Edge moments:

mx,max = +α6p0l
2
x Mx = − 1

12 κ6p0l
2
x

my,max = +β6p0l
2
y My = − 1

12 ρ6p0l
2
y

p0 = const

ε = ly : lx α6 β6 κ6 ρ6 ε = ly : lx α6 β6 κ6 ρ6

1 2 3 4 5 6 7 8 9 10
0.60 0.00436 0.03362 0.1147 0.8853 1.00 0.01794 0.01794 0.5000 0.5000
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Table 12.2.1 (continued)

ε = ly : lx α6 β6 κ6 ρ6 ε = ly : lx α6 β6 κ6 ρ6

0.62 0.00486 0.03295 0.1287 0.8713 1.02 0.01865 0.01723 0.5198 0.4802
0.64 0.00540 0.03220 0.1437 0.8563 1.04 0.01935 0.01654 0.5391 0.4609
0.66 0.00597 0.03146 0.1595 0.8405 1.06 0.02004 0.01588 0.5580 0.4420
0.68 0.00656 0.03069 0.1761 0.8239 1.08 0.02072 0.01523 0.5764 0.4236
0.70 0.00718 0.02991 0.1936 0.8064 1.10 0.02138 0.01460 0.5942 0.4058
0.72 0.00782 0.02911 0.2118 0.7882 1.12 0.02203 0.01400 0.6114 0.3886
0.74 0.00849 0.02830 0.2307 0.7693 1.14 0.02266 0.01341 0.6281 0.3719
0.76 0.00917 0.02748 0.2502 0.7498 1.16 0.02327 0.01285 0.6442 0.3558
0.78 0.00987 0.02666 0.2702 0.7298 1.18 0.02387 0.01231 0.6597 0.3403
0.80 0.01058 0.02583 0.2906 0.7094 1.20 0.02445 0.01179 0.6746 0.3254
0.82 0.01130 0.02500 0.3113 0.6887 1.24 0.02556 0.01081 0.7028 0.2972
0.84 0.01204 0.02418 0.3324 0.6676 1.28 0.02661 0.00991 0.7286 0.2714
0.86 0.01278 0.02336 0.3536 0.6464 1.32 0.02758 0.00909 0.7522 0.2478
0.88 0.01352 0.02254 0.3749 0.6251 1.36 0.02849 0.00833 0.7738 0.2262
0.90 0.01426 0.02174 0.3962 0.6038 1.40 0.02934 0.00764 0.7935 0.2065
0.92 0.01501 0.02095 0.4174 0.5826 1.44 0.03013 0.00701 0.8113 0.1887
0.94 0.01575 0.02017 0.4384 0.5616 1.48 0.03086 0.00643 0.8275 0.1725
0.96 0.01649 0.01941 0.4593 0.5407 1.54 0.03186 0.00566 0.8490 0.1510
0.98 0.01722 0.01867 0.4798 0.5202 1.62 0.03302 0.00479 0.8732 0.1268

arrangements of continuous plates are shown in Fig. 12.2.3. If one or more exterior
boundaries are clamped, the pertinent stencils should be changed logically by applying
suitable exterior panels with fixed boundaries. For the cases marked by an asterisk,
the X and Y directions should be interchanged.

The negative moments above the intermediate supports are calculated from

Mx = −1

k
κp0l

2
x and My = −1

k
ρp0l

2
y, (12.2.9)

where k = 8, provided the slab is continuous only over two spans in the direction
under consideration. The use of k = 10 and k = 12 is recommended for other interior
supports, depending on their location (Fig. 12.2.3). The maximum negative moment
is obtained by loading the adjoining panels simultaneously with the total dead and live
loads: p0 = pDL + pLL. If the negative moment on one side of the support is less than
80% of the moment calculated for the other side, a one-step moment distribution can
be applied to distribute this unbalanced moment. In calculating the stiffness coeffi-
cients of the individual panels, Table 12.2.1 can be used. In the case of RC slabs, built
monolithically with the supporting beams, girders or walls, the reduction of the max-
imum negative moments by rounding off the peaks (Fig. 12.2.4) may be permitted.

To calculate the maximum positive moments, first, the total load p0 = pDL + pLL
is resolved into two parts:

p′
0 = pDL + 1

2pLL and p′′
0 = 1

2pLL. (12.2.10)

Next, all panels are loaded with p′
0 and each alternative panel in a checkerboard

fashion with ±p′′
0 , as shown in Fig. 12.2.5. This checkerboard-type loading pattern

should be moved so that the panel under investigation receives +p′′
0 load (shaded

area). For an interior panel the p′
0 loading creates boundary conditions equivalent to

those of complete fixity at the support above which the plate is continuous; conse-
quently, the pertinent cases with fixed boundaries should be used in the calculation.
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Figure 12.2.3 Stencils for continuous slabs.

On the other hand, the antisymmetric part of the loading (±p′′
0 ) produces hinged

boundary conditions; thus case �1 should be applied. The maximum and minimum
field moments for the individual panels are

mx,max = p′
0α�n l2

x + p′′
0α1l

2
x, mx,min = p′

0α�n l2
x − p′′

0α1l
2
x

and

my,max = p′
0β�n l2

y + p′′
0β1l

2
y, my,min = p′

0β�n l2
y − p′′

0β1l
2
y,

(12.2.11)
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Figure 12.2.4 Reduction of negative moment above wide girder.

where �n represents the case number (Fig. 12.2.2), assuming complete fixity at the
adjoining edges. The results of these two computations are superimposed. By logical
application of the technique, shown in Fig. 12.2.6, an approximate moment diagram
can be drawn. This moment diagram eliminates one of the inherent weaknesses of the
method presented; that is, the locations of the actual maximum positive moments are
not always at midspans. In case of doubt, for short spans, the course of the moment
diagram between the calculated maximum and minimum points could follow that of
an equivalent continuous beam. In addition, Fig. 12.5.3 gives useful approximations
for the loads acting on the supporting beams.

Maximum deflections, which sometimes might govern the plate design, can also
be estimated by Marcus’s method. Using Eq. (12.2.4) and the pertinent κ and ρ

factors, given in Fig. 12.2.2, usable estimates are obtained from the corresponding
beam formulas.

For deflection control of two-way RC slabs, the following formula can be used
[12.2.4]:

hmin = ln1K1K2K3

(
ln1

dlim

PDL + γPLL

Ec

)1/3

, (12.2.12)

where ln1 is the length of the clear spans in the direction of the longer span, dlim is
the limiting deflection and

K1 = 0.535 − [0.093 − 0.015(β − 1)2]
√

α − 0.086β ≥ 0.15 + 0.16

β
,

K2 = 1.18 + 0.042β − 0.025
α

β
≥ 1.0,

K3 = 1.02 + 0.16β − 0.022
α

β
≥ 1.0,

(12.2.13)

where α is the ratio of the flexural stiffness of the beam to the flexural stiff-
ness of the slab (EcIb/D) in the direction of the longer span. Furthermore, in this
formula β denotes the ratio of spans in the long direction to spans in the short
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Figure 12.2.5 Critical loading patterns for maximum positive moments.

direction, and γ = 1 + λ represents a multiplier with λ for additional long-term
deflection.

For uncracked slab K2 becomes 1.0. For interior panels K3 equals unity. It should
be noted that Eq. (12.2.12) can also be utilized for determining the deflections of RC
slabs by using the prescribed plate thickness as hmin.
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Figure 12.2.6 Approximate moment diagrams.

ILLUSTRATIVE EXAMPLE

The framing plan of a RC floor slab is shown in Fig. 12.2.7. The dead load of
this floor system is 2.394 kN/m2. In addition to the dead load, the slab supports
a live load of 4.788 kN/m2. Determine the approximate moments in the X and
Y directions by using Marcus’s approach.
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Figure 12.2.7 Framing plan.

First, based on Fig. 12.2.3, we determine the pertinent case numbers (n = 4,
5, 5*, 6). These data are also indicated on the framing plan (Fig. 12.2.7). Next,
the design loads are grouped into

p0 = pDL + pLL = 2.394 + 4.788 = 7.182 kN/m2,

p′
0 = pDL + 1

2pLL = 2.394 + 2.394 = 4.788 kN/m2,

p′′
0 = ±pLL = ±2.394 kN/m2.

The span ratios are

ε = ly

lx
= 5.49

6.71
= 0.82 and ε∗ = lx

ly
= 1.22.

Corner Panel �4 . From Table 12.2.1d the pertinent coefficients for ε =
0.82 are

α4 = 0.017, β4 = 0.038, κ4 = 0.311, ρ4 = 0.689.

The coefficients for simply supported boundary conditions are taken from
Table 12.2.1a. This gives

α1 = 0.024 and β1 = 0.053.

The maximum positive moments are calculated from Eq. (12.2.11); thus

mx,max = p′
0α4l

2
x + p′′

0α1l
2
x

= 4.788 × 0.017 × 6.712 + 2.394 × 0.024 × 6.712 = 6.251 kN-m/m,



688 Practical Design Methods

my,max = p′
0β4l

2
y + p′′

0β1l
2
y

= 4.788 × 0.038 × 5.492 + 2.394 × 0.053 × 5.492 = 9.308 kN-m/m.

The maximum negative moments are determined from Eq. (12.2.9):

Mx = − 1
10κ4p0l

2
x = − 1

10 (0.311 × 7.182 × 6.712) = −10.056 kN-m/m,

My = − 1
10ρ4p0l

2
y = − 1

10 (0.689 × 7.182 × 5.492) = −14.914 kN-m/m.

A similar approach is used for the other panels.
Exterior Panel �5 . From Table 12.2.1e, the corresponding coefficients for

ε = 0.82 are

α5 = 0.016, β5 = 0.031, κ5 = 0.475, ρ5 = 0.525.

The maximum positive moments are

mx,max = p′
0α5l

2
x + p′′

0α1l
2
x

= 4.788 × 0.016 × 6.712 + 2.587 = 6.035.56 kN-m/m,

my,max = p′
0β5l

2
y + p′′

0β1l
2
y

= 4.788 × 0.031 × 5.492 + 3.824 = 8.298 kN-m/m.

The maximum negative moments are

M I
x = −

(
1

kI

)
κ5p0l

2
x = − 1

10
(0.475 × 7.182 × 6.712) = −15.358 kN-m/m,

M II
x = −

(
1

kII

)
κ5p0l

2
x = − 1

12
(0.475 × 7.182 × 6.712) = −12.799 kN-m/m,

My = −
(

1

k

)
ρ5p0l

2
y = − 1

10
(0.525 × 7.182 × 5.492) = −11.364 kN-m/m.

Exterior Panel �5∗ . With ε∗ = 1.22, the corresponding coefficients are

α∗
5 = 0.011, β∗

5 = 0.029, ρ∗
5 = 0.816, κ∗

5 = 0.185.

The maximum positive moments are

mx,max = p′
0α

∗
5 l2

x + p′′
0α1l

2
x

= 4.788 × 0.011 × 6.712 + 2.587 = 4.958 kN-m/m,

my,max = p′
0β

∗
5 l2

y + p′′
0β1l

2
y

= 4.788 × 0.029 × 5.492 + 3.824 = 8,009 kN-m/m.
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The maximum negative moments are

Mx
∗ = − 1

10κ∗
5 p0l

2
x = − 1

10 (0.185 × 7.182 × 6.712) = −5.982 kN-m/m,

My
∗ = − 1

10ρ∗
5p0l

2
y = − 1

10 (0.816 × 7.182 × 5.492) = −17.664 kN-m/m.

Interior Panel �6 . With ε = 0.82, the corresponding coefficients are

α6 = 0.011, β6 = 0.025, κ6 = 0.311, ρ6 = 0.689.

The maximum positive moments are

mx,max = p′
0α6l

2
x + p′′

0α1l
2
x

= 4.788 × 0.011 × 6.712 + 2.587 = 4.958 kN-m/m,

my,max = p′
0β6l

2
y + p′′

0β1l
2
y

= 4.788 × 0.025 × 5.492 + 3.824 = 7.432 kN-m/m.

The maximum negative moments are

M I
x = − 1

kI
κ6p0l

2
x = − 1

10
(0.311 × 7.182 × 6.712) = −10.056 kN-m/m,

M II
x = − 1

kII
κ6p0l

2
x = − 1

12
(0.311 × 7.182 × 6.712) = −8.380 kN-m/m,

My = −1

k
ρ6p0l

2
y = − 1

10
(0.689 × 7.182 × 5.492) = −14.915 kN-m/m.

An independent check of these results is performed in Sec. 13.4 by the yield-
line approach.
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[12.2.3] EISENBIEGLER, G., “Die Berücksichtigung von Momentenumlagerung von vierseitig
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12.3 Simplified Slope-Deflection Method

As mentioned earlier, application of the classical approach for the solution of con-
tinuous two-way floor slabs represents an extremely tedious task, as demonstrated
in Ref. [12.3.1]. That is, the classical approach results in a number of coupled
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seven-moment equations, one for each supporting edge. However, we can quite effec-
tively use a considerably simplified procedure introduced by Maugh and Pan [12.3.2].
This simplified version of the slope-deflection method is based partially on the clas-
sical approach† and on a slightly modified version of the slope-deflection technique
used for the analysis of continuous beams and frames.

If the external lateral loads are fairly symmetric about the center of the individual
panels, then the distribution of the moments along the edges can be represented by
the simple sinusoidal functions

Mr = Ar sin
πx

a
and Ms = Bs sin

πy

b
. (12.3.1)

Furthermore, it is sufficient to express the continuity between the individual pan-
els only at the middle of each edge, since the resulting slopes are also sinusoidal.
Therefore, the resulting slope at the ith edge created by all loads acting on panel �K
(Fig. 12.3.1) can be expressed by

θ
(K)
i=1 = α

M
(K)

1

DK

a + β
M

(K)

2

DK

a + γ
M

(K)
3 + M

(K)
4

DK

b + ϕ
(K)
is , (12.3.2)

where ϕis is the edge slope at point �i due to the lateral loading acting on the simply
supported panel �K . All terms should carry their proper sign. The corresponding
sign convention is shown in Fig. 12.3.2.

Values for the constants α, β and γ in the above equation can be taken from
Fig. 12.3.3, while the edge slopes ϕis produced by the lateral loads acting on the
corresponding simply supported panels can be easily computed by applying Navier’s
method and differentiating the obtained equation of the deflected plate surface with
respect to x and y, respectively. The values of ϕis for the most commonly used loads
are given in diagrams (Fig. 12.3.4). Accuracy of this simplified approach is satisfac-
tory for all practical purposes, provided the loading is fairly symmetric with respect

K

Y

X

Z, w

M4 = A4 sin

P

P

a

3

2

4

qi =1

1

b

b
py

M1 = A1 sin a
px

M2 = A2 sin a
px

M3 = A3 sin
b
py

Figure 12.3.1 Typical interior panel.

† See Sec. 3.9.
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Figure 12.3.4 Edge slopes due to lateral loading.

to the center of each panel. Continuity between the various panels is maintained only
at the middle of each edge by equating the slopes of the adjoining panels, that is,
θ

(K)
i = θ

(M)
i .

By knowing the edge moments Mi at the center of the supporting beams, the
continuous plate problems can be considered as solved. That is, the field moments
at the center of various panels can be determined by taking the algebraic sum of
the edge moments upon which the maximum positive moment of the correspond-
ing simply supported plate is superimposed. These maximum positive moments of
simply supported plates due to lateral loads can be calculated by using readily avail-
able tables† or even any of the classical methods treated in Part I. For the sake of
convenience, however, one may utilize the graphs shown in Figs. 12.3.5 and 12.3.6,
respectively. That is, by considering the approximate nature of this procedure, the
center moments for uniformly distributed load p0 and the concentrated load P acting
at the center of the plates, the center moments can be evaluated from these graphs
with acceptable accuracy. The center moments caused by the sinusoidal distribution
of the edge moments can be calculated from Eqs. (3.15) and (3.17), respectively.
Again, we may considerably simplify this procedure by using Fig. 12.3.7. For effects
of moments along the adjacent sides, the values of a/b and the direction of X and
Y can be interchanged. Care must be taken, however, in determining these values

† Listed on the accompanying CD.
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since the moments Mx and My are dependent on the edge direction. For approximate
moment diagrams and loads acting on the supporting beams, see Figs. 12.5.2 and
12.5.3, respectively.

ILLUSTRATIVE EXAMPLE I

Figure 12.3.8 shows a continuous plate system, the shaded areas of which are
loaded with p0 = 3.0 kN/m2 uniformly distributed lateral load. The thicknesses
of the individual panels are hA = hC = 0.18 m and hC = 0.24 m. The modulus
of elasticity of this plate system is E = 15,000 N/mm2, and Poisson’s ratio v

is 0.3. Determine the edge and field moments by using the simplified slope-
deflection method described above.

Applying logically the sign convention shown in Fig. 12.3.2 and using
Eq. (12.3.2), we can establish the equality of slopes at point �1 . This gives

αA

MA
1

DA

10 + ϕ1s = −αB

MB
1

DB

10 − γB

MB
2

DB

− βB

MB
3

DB

10 (12.3.3a)
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Figure 12.3.8 Continuous plate system.

or
αA

DA

M1 + ϕ1s

10
+ αB

DB

M1 + γB

DB

M2 + βB

DB

M3 = 0. (12.3.3b)

At point �2 we obtain the slope equality equation

αC

MC
2

DC

10 + βC

MC
4

DC

10 + ϕ2s = −αB

MB
2

DB

10 − γB

MB
1 + MB

3

DB

10 (12.3.4a)

or

γB

DB

M1 +
(

αC

DC

+ αB

DB

)
M2 + γB

DB

M3 + βC

DC

M4 + ϕ2s

10
= 0. (12.3.4b)

Similarly, the equality of slopes at point �3 gives

αB

MB
3

DB

10 + βB

MB
1

DB

+ γB

MB
2

DB

10 = 0 (12.3.5a)

or
αB

DB

M3 + βB

DB

M1 + γB

DB

M2 = 0. (12.3.5b)
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Finally, the equality of slopes at point �4 yields

αC

MC
4

DC

10 + βC

MC
2

DC

10 + ϕ2s = 0 (12.3.6a)

or
βC

DC

M2 + αC

DC

+ ϕ2s

10
= 0. (12.3.6b)

Using Figs. 12.3.3 and 12.3.4, we determine the corresponding coefficients for
these equations. For panel �A these are

b

a
= 0.8, αA = 0.151, ϕ1s = 0.0102p0a

3

DA

= 0.0038,

DA = 8.01 × 103 kN-m.

(12.3.7)

For panel �B we obtain

b

a
= 1.0, αB = 0.155, βB = 0.03, γB = 0.045,

DB = 18.99·103 kN-m.

(12.3.8)

The coefficients for panel �C are

b

a
= 0.6, αC = 0.1362, βC = 0.0475,

ϕ2s = 0.0062p0a
3

DC

= 0.0023, DC = DA.

(12.3.9)

By substituting these values into Eqs. (12.3.3b), (12.3.4b), (12.3.5b) and
(12.3.6b), we obtain the following set of simultaneous equations:




2.7013 0.237 0.158 0.000
0.237 2.5166 0.237 0.593
0.158 0.237 0.8162 0.000
0.000 0.593 0.00 1.7004







M1
M2

M3
M4


 =




−38.00
−23.00

0.00
−23.00


 , (12.3.10)

from which

m =




M1
M2

M3

M4


 =




−13.8345
− 5.5042

4.2763
−11.6067


 kN-m/m. (12.3.11)

These results are checked in Sec. 12.4 by applying the moment distribution
procedure. By knowing the edge moments Mi at the center of each supporting
beam, the field moment at the center of each plate is determined by utilizing
the graphs given in Figs. 12.3.5 and 12.3.7, respectively.
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Consequently, by using these graphs we calculate the following moments
for panel �A :

With
b

a
= 0.8, Mx0 = 0.0323p0a

2 = 9.69 kN-m/m,

My0 = 0.066p0b
2 = 12.672 kNm/m:

mx = 0.112M1 + Mx0 = 8.1405 kN-m/m,

my = 0.145M1 + My0 = 10.666 kN-m/m. (12.3.12)

For panel �B a similar procedure gives

With
b

a
= 1.0, Mx0 = My0 = 0.00:

mx = 0.147(M1 + M3) + 0.056M2 = 2.9705 kN-m/m,

my = 0.056(M1 + M3) + 0.147M2 = 1.8233 kN-m/m. (12.3.13)

Finally, for panel �C we obtain

With
a

b
= 0.6, Mx0 = 0.0176p0a

2 = 5.28 kN-m/m,

My0 = 0.0844p0b
2 = 9.6552 kN-m/m:

mx = 0.117(M2 + M4) + Mx0 = 5.994 kN-m/m,

my = 0.045(M2 + M4) = 9.9298 kN-m/m. (12.3.14)

ILLUSTRATIVE EXAMPLE II

Figure 12.3.9 shows a larger RC floor slab consisting of seven panels. The
shaded panels carry p0 = 4.0 kN/m2 lateral load. Utilizing the apparent sym-
metry of the structure and loading, let us determine the joint-point moments
M1, M2, . . . , M6 by using the simplified slope-deflection method. The flexural
rigidity of all panels is D.

For each joint point we write the slope equations (12.3.2) θ
(K)
i . The subscript

i in these equations refers to the joint point, and the superscript (K) represents
the number of individual panels. Thus we can write:

At point �1

θ
(5)

1 = α5
M1

D
5.0 + β5

M2

D
5.0 + γ5

M3

D
5.0 = 0. (12.3.15)

At point �2

θ
(5)
2 = α5

M2

D
5.0 + β5

M1

D
5.0 + γ5

M3

D
5.0,

θ
(4)
2 = α4

M2

D
5.0 + β4

M4

D
5.0 + γ4

M4 + M2

D
5.0 + ϕ4s .

(12.3.16)
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Figure 12.3.9 Reinforced-concrete floor slab.

At point �3

θ
(5)
3 = α5

M3

D
5.0 + γ5

M1 + M2

D
0.5,

θ
(6)
3 = α6

M3

D
5.0 + γ6

M5 + M6

D
8.0 + ϕ6s .

(12.3.17)

At point �4

θ
(4)

4 = α4
M4

D
5.0 + β4

M2

D
5.0 + γ4

M2 + M4

D
5.0 + ϕ4s ,

θ
(7)

4 = α7
M4

D
5.0 + γ7

M6

D
8.0.

(12.3.18)

At point �5

θ
(6)

5 = α5
M5

D
8.0 + β6

M6

D
8.0 + γ6

M3

D
5.0 + ϕ6s = 0. (12.3.19)
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At point �6

θ
(6)

6 = α6
M6

D
8.0 + β6

M5

D
8.0 + γ6

M3

D
5.0 + ϕ6s ,

θ
(7)
6 = α7

M6

D
8.0 + γ7

M4

D
5.0.

(12.3.20)

Using Figs. 12.3.3 and 12.3.4, we determine the following coefficients:

Point 4 Point 5 Point 6 Point 7

b/a 1.0 1.0 1.6 1.6
α 0.157 0.157 0.159 0.159
β 0.03 0.03 0.009 0.009
γ 0.045 0.045 0.032 0.032
ϕis 0.0125C — 0.0185C —

,

(
C = P0a

3

D

)
.

Next, we substitute these values into the slope equations and state the equality
of slopes θ

(K)
i = θ

(M)
i at each joint point,

θ
(5)

1 = 0.0, θ
(5)

2 = −θ
(4)

2 , θ
(5)

3 = −θ
(6)

3 , θ
(4)

4 = −θ
(7)

4 ,

θ
(6)

5 = 0.0, θ
(6)

6 = −θ
(7)

6 .
(12.3.21)

We obtain the simultaneous equations




0.785 0.150 0.225 0.00 0.00 0.00
0.150 1.795 0.225 0.375 0.00 0.00
0.225 0.225 1.580 0.00 0.256 0.256
0.00 0.375 0.00 1.805 0.00 0.256
0.00 0.00 0.160 0.00 1.272 0.072
0.00 0.00 0.160 0.160 0.072 2.544







M1

M2

M3
M4

M5

M6




=




0.00
−6.25
−9.25
−6.25
−9.25
−9.25




,

(12.3.22)
the solution of which gives

m =




M1

M2
M3

M4

M5
M6




=




1.688
−2.578
−4.171
−2.497
−6.576
−3.031




kN-m/m. (12.3.23)

References and Bibliography
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12.4 Moment Distribution Applied to Continuous Plates

Moment distribution, introduced by Cross in 1932 [12.4.1], can be mathematically
classified as a special relaxation procedure applied to slope-deflection equations of
structural mechanics. Since this relaxation technique in the solution of continuous
beams and frames [12.4.2] offers numerous advantages, the idea of extending the
method to continuous plates is obvious. Based on the initial work by Fischer [12.4.3]
and Newmark [12.4.4], Brunner [12.4.5] has introduced the moment distribution
method to continuous plates, subjected to uniformly distributed lateral loads.

In the following discussion the reader’s familiarity with moment distribution as
applied to continuous beams is assumed. To be able to extend the general procedure of
this simple, yet highly successful, method to continuous plates, the stiffness and carry-
over factors of the individual plates must first be determined. Limiting ourselves to
uniformly distributed lateral loads, we may assume that all edge moments vary as the
half waves of the sine curve, which is in close agreement with the real conditions.
This simplifying assumption permits locating the joint points (where continuity is
expressed) at the center of the plate edges.

Brunner [12.4.5] uses nine typical cases for individual panels, which are shown in
Fig. 12.4.1. The shorter span is always described by lx = a, while the longer one is
ly = b. All quantities, depending on span lengths, are expressed as functions of the
shorter span (lx = a).

Applying a sinusoidal edge moment of unit amplitude at the shorter span of a
simply supported, rectangular plate (Fig. 12.4.2a), the following slopes are produced
at the center of the edges:

α′
1 = 1

2π

sinh 2β − 2β

cosh 2β − 1

a

D
, (12.4.1)

Y

X

l y
=

b

lx = a

1 2 3 4

6 7 8 9

5

Figure 12.4.1 Typical cases. (Note: Always use lx for shorter span!).



Moment Distribution Applied to Continuous Plates 701
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y
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1 

si
n

p
y

b

1′
1′

2′

2′

a1′

b2′

a2′b1′

lx = a lx = a
l y

=
b

l y
=

b

X X

Figure 12.4.2 Sinusoidal edge moments.

β ′
1 = 1

π

β cosh β − sinh β

cosh 2β − 1

a

D
, (12.4.2)

ε′
1 = 1

8

sinh(β/2)

cosh2(β/2)

b

D
, (12.4.3)

where β = πb/a and D represents the flexural rigidity of the plate [Eq. (1.2.28)].
Analogous expressions can be obtained when the sinusoidal edge moment is

applied to one of the longer edges (α′
2, β ′

2, ε′
2) by replacing a with b and b with

a in the above-given simple formulas (Fig. 12.4.2b).
In determining the stiffness factors of individual plates, it is assumed that the

continuous edges are fixed and that the distribution of the reactive fixed-end moments
is also sinusoidal. Edge moments producing unit rotation at the joint points are defined
as stiffness factors and are designated by K for the short edges and by K for the
long edges. To illustrate how plate stiffness factors are determined, let us investigate
Case 9 (Fig. 12.4.1). Applying the classical method, a simply supported plate is used
upon which the effects of edge moments Mn are superimposed. The slopes at the
joint points (Fig. 12.4.3), due to a sinusoidal edge moment, producing unit rotation
at joint point �1 , are the following:

At point �1 : M1α
′
1 − M2β

′
1 − 2M4ε

′
2 = 1.

At point �2 : M1β
′
1 − M2α

′
1 − 2M4ε

′
2 = 0.

At point �4 : M1ε
′
1 − M2ε

′
1 − M4(α

′
2 + β ′

2) = 0.

(12.4.4)

From symmetry
M3 = M4.

Solving (12.4.4) for M1, we obtain

M1 = K9 = α′
1(α

′
2 + β ′

2) − 2ε′
1ε

′
2

(α′
1 − β ′

1)[(α
′
1 + β ′

1)(α
′
2 + β ′

2) − 4ε′
1ε

′
2]

. (12.4.5)
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Figure 12.4.3 Edge moments on clamped plate (Case 9).

The ratio of the far-end moment to the joint moment is defined as the carry-over
factor to opposite edges. Thus

µ = M2

M1
= β ′

1(α
′
2 + β ′

2) − 2ε′
1ε

′
2

α′
1(α

′
2 + β ′

2) − 2ε′
1ε

′
2

. (12.4.6)

Similarly, the carry-over factor to the adjoining edges (Fig. 12.4.3) is determined from

µ′ = M4

M1
= M3

M1
= ε′

1(α
′
1 − β ′

1)

α′
1(α

′
2 + β ′

2) − 2ε′
1ε

′
2

. (12.4.7)

The stiffness and carry-over factors for the other typical cases can be calculated fol-
lowing the same approach. The results of this computation are given in Table 12.4.1.

The sign convention, used for continuous beams [12.4.1], can be applied to con-
tinuous plates (Fig. 12.4.4a). It should be noted, however, that while the carry-over
factors for beams are always positive, carry-over factors assigned to adjoining edges,
µ′, can be either positive or negative, as illustrated in Fig. 12.4.4b.

The distribution factor DF is defined as the ratio of the stiffness factors. Thus

(DF)R = KR

KR + KL

and (DF)L = KL

KR + KL

, (12.4.8)

where the subscripts R and L denote right and left, respectively.
Fixed-end moments of uniformly loaded rectangular plates are given in the tech-

nical literature listed on the accompanying CD. Since the computational procedure
of moment distribution for plates is identical to that of beams and frames, a detailed
treatment of this part can be eliminated.

For calculating moments at the center of individual plates, we can follow a pro-
cedure similar to that already introduced in Sec. 12.3. That is, at the center of the
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Table 12.4.1 Stiffness and Carry-over Factors

Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

ly/ lx K2 K3 K4 µ′ K4 µ′ K5 µ K6 µ K7 µ µ′ ly/ lx

1.00 6.41 6.41 7.01 0.293 7.01 0.293 6.65 0.190 6.65 0.190 7.10 0.114 0.259 1.00
1.05 6.13 6.37 6.72 0.309 6.98 0.277 6.42 0.208 6.58 0.173 6.83 0.134 0.267 1.05
1.10 5.90 6.35 6.44 0.322 6.94 0.262 6.21 0.224 6.52 0.158 6.60 0.153 0.273 1.10
1.15 5.68 6.33 6.20 0.334 6.91 0.247 6.03 0.239 6.47 0.142 6.38 0.172 0.277 1.15
1.20 5.49 6.32 5.97 0.345 6.88 0.233 5.87 0.255 6.43 0.128 6.19 0.189 0.279 1.20
1.25 5.31 6.31 5.77 0.353 6.85 0.220 5.72 0.267 6.40 0.115 6.02 0.205 0.281 1.25
1.30 5.16 6.31 5.58 0.361 6.82 0.207 5.59 0.279 6.38 0.104 5.86 0.220 0.282 1.30
1.35 5.01 6.30 5.41 0.368 6.79 0.195 5.48 0.285 6.36 0.094 5.73 0.237 0.282 1.35
1.40 4.89 6.30 5.25 0.374 6.76 0.183 5.37 0.301 6.34 0.084 5.59 0.249 0.281 1.40
1.45 4.76 6.30 5.10 0.378 6.73 0.172 5.28 0.311 6.33 0.075 5.48 0.264 0.279 1.45
1.50 4.66 6.29 4.97 0.382 6.70 0.161 5.20 0.321 6.32 0.067 5.38 0.276 0.277 1.50
1.55 4.56 6.29 4.84 0.385 6.68 0.151 5.12 0.330 6.32 0.059 5.28 0.289 0.275 1.55
1.60 4.47 6.29 4.73 0.389 6.66 0.142 5.05 0.339 6.31 0.053 5.20 0.301 0.272 1.60
1.65 4.38 6.29 4.62 0.391 6.64 0.133 4.99 0.347 6.31 0.047 5.12 0.312 0.269 1.65
1.70 4.31 6.29 4.53 0.392 6.61 0.125 4.93 0.355 6.30 0.041 5.05 0.322 0.266 1.70
1.75 4.23 6.28 4.44 0.393 6.59 0.117 4.88 0.362 6.30 0.037 4.99 0.331 0.262 1.75
1.80 4.17 6.28 4.36 0.393 6.57 0.110 4.83 0.368 6.29 0.033 4.93 0.340 0.259 1.80
1.85 4.11 6.28 4.29 0.393 6.55 0.103 4.78 0.374 6.29 0.028 4.88 0.348 0.256 1.85
1.90 4.06 6.28 4.22 0.392 6.53 0.097 4.74 0.380 6.29 0.025 4.83 0.355 0.252 1.90
1.95 4.00 6.28 4.15 0.390 6.51 0.090 4.71 0.385 6.29 0.021 4.78 0.362 0.248 1.95
2.00 3.96 6.28 4.09 0.389 6.50 0.085 4.67 0.390 6.29 0.019 4.74 0.369 0.245 2.00
∞ 3.00 6.28 3.00 ∼0.38 ∼6.5 0 4.00 0.500 6.28 0 4.00 0.500 ∼0.24 ∞
MF D/lx D/lx D/lx D/lx D/lx D/lx D/lx MF

Case 7 Case 8 Case 9

ly/ lx K7 µ′ K8 µ′ K8 µ µ′ K9 µ µ′ K9 µ µ′ ly/ lx

1.00 7.49 0.246 7.49 0.246 7.10 0.114 0.259 7.51 0.054 0.233 7.51 0.054 0.233 1.00
1.05 7.43 0.230 7.20 0.263 7.04 0.095 0.250 7.23 0.073 0.243 7.45 0.037 0.222 1.05
1.10 7.37 0.214 6.91 0.278 6.99 0.080 0.241 6.97 0.092 0.252 7.38 0.023 0.209 1.10
1.15 7.31 0.199 6.65 0.292 6.95 0.065 0.231 6.73 0.111 0.259 7.32 0.010 0.197 1.15
1.20 7.25 0.186 6.40 0.305 6.90 0.052 0.221 6.51 0.131 0.265 7.25 0.000 0.186 1.20
1.25 7.19 0.173 6.17 0.317 6.86 0.042 0.211 6.32 0.148 0.270 7.20 −0.009 0.175 1.25
1.30 7.14 0.162 5.97 0.327 6.83 0.032 0.200 6.14 0.166 0.273 7.15 −0.015 0.164 1.30
1.35 7.08 0.150 5.76 0.336 6.79 0.023 0.189 5.98 0.183 0.275 7.09 −0.020 0.154 1.35
1.40 7.04 0.140 5.59 0.345 6.76 0.016 0.180 5.82 0.200 0.276 7.04 −0.024 0.144 1.40
1.45 6.98 0.130 5.42 0.352 6.73 0.010 0.169 5.69 0.216 0.276 6.99 −0.027 0.135 1.45
1.50 6.94 0.122 5.27 0.358 6.70 0.005 0.160 5.57 0.232 0.275 6.94 −0.029 0.126 1.50
1.55 6.89 0.113 5.12 0.364 6.68 0.001 0.151 5.46 0.247 0.274 6.90 −0.031 0.117 1.55
1.60 6.85 0.106 4.99 0.369 6.66 −0.002 0.142 5.36 0.262 0.272 6.86 −0.032 0.109 1.60
1.65 6.81 0.099 4.86 0.373 6.64 −0.005 0.134 5.27 0.275 0.270 6.82 −0.032 0.102 1.65
1.70 6.77 0.092 4.75 0.376 6.61 −0.008 0.126 5.18 0.288 0.268 6.78 −0.033 0.095 1.70
1.75 6.74 0.086 4.65 0.379 6.59 −0.010 0.118 5.11 0.299 0.265 6.75 −0.033 0.089 1.75
1.80 6.71 0.080 4.55 0.380 6.57 −0.011 0.111 5.04 0.310 0.262 6.71 −0.032 0.083 1.80
1.85 6.67 0.075 4.46 0.381 6.55 −0.012 0.104 4.98 0.320 0.259 6.68 −0.031 0.078 1.85
1.90 6.65 0.070 4.38 0.382 6.53 −0.013 0.098 4.92 0.330 0.256 6.66 −0.031 0.072 1.90
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Table 12.4.1 (continued)

Case 7 Case 8 Case 9

ly/ lx K7 µ′ K8 µ′ K8 µ µ′ K9 µ µ′ K9 µ µ′ ly/ lx

1.95 6.62 0.066 4.30 0.383 6.51 −0.014 0.091 4.87 0.339 0.252 6.63 −0.030 0.067 1.95
2.00 6.60 0.061 4.23 0.382 6.50 −0.014 0.086 4.82 0.348 0.249 6.60 −0.030 0.062 2.00
∞ ∼6.6 0 3.00 ∼0.38 ∼6.5 0 0 4.00 0.500 ∼0.24 ∼6.6 0 0 ∞
MF D/lx D/lx D/lx D/lx D/lx MF

Notes: lx is always the shorter span! D = flexural rigidity (1.2.28); MF = multiplication factor. From Ref. [12.4.5].

+ +

+

+
Fixed

(a) Joint moments (b) Carry-over factors

+m′

+m

+m

+m+m

+m′

+m′
+m′−m′

−m′

−m′

−m′

Direction of
viewing

Figure 12.4.4 Sign conventions.

plate, we take the algebraic sum of moments caused by sinusoidal edge moments
upon which the moments of the simply supported plate subjected to lateral loads
are superimposed. Again, to determine these center moments of simply supported
plates, we may either use the readily available formulas published in the pertinent
technical literature† or calculate these moments by using Navier’s method. Calcu-
lating the corresponding effects caused by the restraining edge moments, however,
is much more complex. Although theoretically we may use Eqs. (3.15) and (3.17)
for this purpose, this approach is quite tedious. Instead, we can utilize the following
formulas developed by Brunner [12.4.5]:

mx = (M1 + M3)cx + (M2 + M4)cx,

my = (M1 + M3)cy + (M2 + M4)cy.
(12.4.9)

† See also the “Plate Formulas” on the accompanying CD.
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Table 12.4.2 Coefficients for Field Moments

ν = 0 ν = 0.3

M ly

lx

M

ly

lx

M ly

lx

M

ly

lx

ly/ lx cx cy cx cy cx cy cx cy ly/ lx

1.00 0.056 0.144 0.144 0.056 0.099 0.160 0.160 0.099 1.00
1.05 0.070 0.144 0.142 0.042 0.112 0.165 0.155 0.086 1.05
1.10 0.083 0.144 0.140 0.032 0.126 0.169 0.150 0.074 1.10
1.15 0.098 0.143 0.136 0.023 0.139 0.172 0.144 0.064 1.15
1.20 0.109 0.142 0.133 0.015 0.152 0.175 0.138 0.055 1.20
1.25 0.123 0.141 0.129 0.000 0.165 0.177 0.133 0.047 1.25
1.30 0.136 0.139 0.126 −0.002 0.177 0.179 0.127 0.039 1.30
1.35 0.148 0.137 0.122 −0.004 0.188 0.181 0.122 0.033 1.35
1.40 0.161 0.135 0.118 −0.008 0.201 0.182 0.115 0.027 1.40
1.45 0.172 0.131 0.113 −0.012 0.212 0.183 0.110 0.023 1.45
1.50 0.185 0.128 0.109 −0.015 0.223 0.183 0.104 0.018 1.50
1.55 0.196 0.125 0.104 −0.017 0.233 0.184 0.099 0.014 1.55
1.60 0.207 0.122 0.100 −0.019 0.243 0.184 0.094 0.011 1.60
1.65 0.218 0.118 0.095 −0.021 0.252 0.184 0.085 0.008 1.65
1.70 0.228 0.116 0.091 −0.022 0.262 0.184 0.084 0.005 1.70
1.75 0.238 0.112 0.087 −0.024 0.270 0.183 0.080 0.003 1.75
1.80 0.247 0.108 0.084 −0.025 0.279 0.183 0.076 0.000 1.80
1.85 0.256 0.106 0.079 −0.025 0.287 0.182 0.071 −0.001 1.85
1.90 0.264 0.103 0.075 −0.025 0.295 0.182 0.067 −0.002 1.90
1.95 0.272 0.100 0.071 −0.024 0.302 0.181 0.064 −0.003 1.95
2.00 0.280 0.097 0.068 −0.024 0.310 0.181 0.060 −0.004 2.00
∞ 0.500 0.000 0.000 0.000 5.000 0.150 0.000 0.000 ∞

The coefficients cx , cx , cy and cy for RC (ν = 0) and for steel (ν = 0.3) are listed
in Table 12.4.2. The above-given equations consider that all four edge moments M1,
M2, M3 and M4 are acting simultaneously on all edges (Fig. 12.4.4).

Although Brunner developed this moment distribution technique for uniformly
distributed lateral loads, the procedure can also be used for other types of lateral
loads, provided the edge moments are fairly symmetrical with respect to the joint
points. For entirely arbitrary loading conditions, the application of a similar slope
distribution procedure is recommended [12.4.7, 12.4.8]. This approach is, however,
somewhat more complicated since more than one term in the sine series expressions
of the edge moments must be considered.

ILLUSTRATIVE EXAMPLE I

Let us check the joint-point moments of the plate problem shown in Fig. 12.3.8
by applying the moment distribution method.
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To obtain the required fixed-end moment at the joint point �1 , we use the
“Plate Formulas” listed on the accompanying CD. This gives

ly

lx
= 10

8
= 1.25, M∗

1 = −0.1006p0l
2
x = −19.32 kN-m/m. (12.4.10)

Similarly, for joint point �2 we obtain

ly

lx
= 10

6
= 1.666, M∗

2 = −0.0828p0l
2
x = −8.94 kN-m/m,

M∗
4 = −M∗

2 = −8.94 kN-m/m.

(12.4.11)

The flexural rigidities of the individual panels are

DA = DC = 8.01 × 103 kN-m and DB = 18.99 × 103 kN-m.

(12.4.12)

The stiffness and carry-over factors for each panel are determined from
Table 12.4.1:

Panel �A , type 2, ly/ lx = 1.25:

At point �1 : KA = 5.31

(
8.019 × 103

8

)
= 5.32 × 103,

µ = 0.0.

Panel �B , type 8, ly/ lx = 1.0:

At point �1 : KB = 7.1

(
18.99 × 103

10

)
= 13.48 × 103,

µ = 0.114,

µ′ = 0.259.

At point �2 : KB = 7.49

(
18.99 × 103

10

)
= 14.22 × 103,

µ′ = 0.246.

Panel �C , type 5, ly/ lx = 1.667:

At point �2 : KC = 4.98

(
8.01 × 103

6

)
= 6.65 × 103,

µ = 0.349.

The moment distribution factors are

(DF)A = KA

KA + KB

= 5.32

5.32 + 13.48
= 0.283,

(DF)B = KB

KA + KB

= 13.48

5..32 + 13.48
= 0.717

(12.4.13a)
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Figure 12.4.5 Moment distribution applied to plate shown in Fig. 12.3.8.

and

(DF)B = 14.22

14.22 + 6.65
= 0.6814, (DF)C = 6.65

14.22 + 6.65
= 0.3186.

(12.4.13b)
The corresponding moment distribution process is illustrated in Fig. 12.4.5.
Consequently, the final joint-point moments are

m =




M1
M2

M3
M4


 =




−13.2396
− 4.8242
+ 3.9162

−10.3764


 kN-m/m




− 4.30%
−12.35%
− 8.42%

−10.6%


 .

(12.4.14)
The percentile deviations from the previously obtained results are listed in
parentheses. By taking the average of this and in Sec. 12.3 the calculated results

mav =




−13.54
− 5.16
+ 4.10

−10.99


 kN-m/m, (12.4.15)

a good approximation of the joint-point moments can be achieved.
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ILLUSTRATIVE EXAMPLE II

Panel �A of the continuous RC square plate shown in Fig. 12.4.6 is subjected
to a uniformly distributed lateral load p0 = 4.788 kN/m2. Assume that the
thickness h = 1.0 m of all panels is the same. Determine the edge moments at
points �1 , �2 , �3 and �4 by applying the moment distribution method.

Again, we use the “Plate Formulas” listed on the accompanying CD to
calculate the fixed-end moments at joint points �1 and �4 . These are

M∗
1 = M∗

4 = −0.0677p0l
2
x = −32.4 kN-m/m.

Since the flexural rigidity is the same for each panel, we can write

DA = DB = DC = DD = Eh3

12(1 − ν2)
= 20.68 × 103

12
= 1723 kN-m.

(12.4.16)

The stiffness and carry-over factors are obtained from Table 12.4.1:

Panel �A , type 4, ly/ ly = 1.0:

At point �1 : KA = 7.01 × 1723

10
= 1207.8,

µ′ = 0.293,

µ = 0.0.

The same values are valid also for panels �B , �C and �D .

C D

BA

3

1

24

10.0 m

10.0 m

10.0 m10.0 m

Simply supported

E = 20.68 × 103

n = 0.0

kN

m2Y

X

+

+

Figure 12.4.6 Continuous RC slab.
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The moment distribution factor at point �1 is

(DF)A = 1207.8

1207.8 + 1207.8
= 0.5. (12.4.17)

In this case, we can use the same factors for points �2 , �3 and �4 . The moment
distribution process is shown in Fig. 12.4.7. This yielded the following joint-
point moments:

m =




M1

M2

M3
M4


 =




−18.57
+ 2.37
+ 2.37

−18.57


 kN-m/m. (12.4.18)

Checking the results with the simplified slope deflection method, practically no
deviations could be found in the joint-point moments.
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12.5 Practical Analysis of RC Floor Slabs

A simple, yet effective engineering procedure was developed by Pieper and Martens
[12.5.1] for the analysis of RC floor slabs used in building construction. Applying
this approach, the field moments at the center of individual panels can be calculated
by taking the average of the corresponding field moments of plates with simply
supported boundary conditions and those with completely fixed edges. To further
simplify the application of this procedure, the pertinent constants are given in table
or graphical forms.

Thus, the field moments at the center of plates with various types of boundary
conditions can be obtained from

mf x = ql2
x

fx

and mfy = ql2
x

fy

, (12.5.1)

where q is the sum of dead and live loads (q = pDL + pLL) and the constants fx and
fy are listed in Table 12.5.1. In Eq. (12.5.1), lx always represents the shorter span in
the local coordinate system X, Y , Z of individual panels. One can even interpolate
within this table between the given values.

However, if the corners of simply supported plates are not properly anchored, one
should use

mf x = ql2
x

f 0
x

and mfy = ql2
x

f 0
y

. (12.5.2)

Again, the corresponding factors are listed in Table 12.5.1.
Similarly, negative moments at the supports are obtained by averaging the negative

moments of plates with completely fixed boundaries, provided this average value is
not smaller than 75% of the largest negative moment. This procedure is valid only
if the span ratios of the neighboring panels are smaller than 5:1. If it is not the case,
one should use the edge moment of the larger panel.



Practical Analysis of RC Floor Slabs 711

Table 12.5.1 Coefficients for Field and Support Moments

Types

Y

X
1 2 32′ 4 5′5 63′

Type

Span Ratio
ly/ lx

Coefficient 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 > ∞
1 fx 27.2 22.4 19.1 16.8 15.0 13.7 12.7 11.9 11.3 10.8 10.4 8.0

fy 27.2 27.9 29.1 30.9 32.8 34.7 36.1 37.3 38.5 39.4 40.3 *

f 0
x 20.0 16.6 14.5 13.0 11.9 11.1 10.6 10.2 9.8 9.5 9.3 8.0

f 0
y 20.0 20.7 22.1 24.0 26.2 28.3 30.2 31.9 33.4 34.7 35.9 *

2 fx 32.8 26.3 22.0 18.9 16.7 15.0 13.7 12.8 12.0 11.4 10.9 8.0
fy 29.1 29.2 29.8 30.6 31.8 33.5 34.8 36.1 37.3 38.4 39.5 *
sy 11.9 10.9 10.1 9.6 9.2 8.9 8.7 8.5 8.4 8.3 8.2 8.0

f 0
x 26.4 21.4 18.2 15.9 14.3 13.0 12.1 11.5 10.9 10.4 10.1 8.0

f 0
y 22.4 22.8 23.9 25.1 26.7 28.6 30.4 32.0 33.4 34.8 36.2 *

2′ fx 29.1 24.6 21.5 19.2 17.5 16.2 15.2 14.4 13.8 13.3 12.9 10.2
fy 32.8 34.5 36.8 38.8 40.9 42.7 44.1 45.3 46.5 47.2 47.9 *
sx 11.9 10.9 10.2 9.7 9.3 9.0 8.8 8.6 8.4 8.3 8.3 8.0

f 0
x 22.4 19.2 17.2 15.7 14.7 13.9 13.2 12.7 12.3 12.0 11.8 10.2

f 0
y 26.4 28.1 30.3 32.7 35.1 37.3 39.1 40.7 42.2 43.3 44.8 *

3 fx 38.0 30.2 24.8 21.1 18.4 16.4 14.8 13.6 12.7 12.0 11.4 8.0
fy 30.6 30.2 30.3 31.0 32.2 33.8 35.9 38.3 41.1 44.9 46.3 *
sy 14.3 12.7 11.5 10.7 10.0 9.5 9.2 8.9 8.7 8.5 8.4 8.0

3′ fx 30.6 26.3 23.2 20.9 19.2 17.9 16.9 16.1 15.4 14.9 14.5 12.0
fy 38.0 39.5 41.4 43.5 45.6 47.6 49.1 50.3 51.3 52.1 52.9 *
sx 14.3 13.5 13.0 12.6 12.3 12.2 12.0 12.0 12.0 12.0 12.0 12.0

4 fx 33.2 27.3 23.3 20.6 18.5 16.9 15.8 14.9 14.2 13.6 13.1 10.2
fy 33.2 34.1 35.5 37.7 39.9 41.9 43.5 44.9 46.2 47.2 48.3 *
sx 14.3 12.7 11.5 10.7 10.0 9.6 9.2 8.9 8.7 8.5 8.4 8.0
sy 14.3 13.6 13.1 12.8 12.6 12.4 12.3 12.2 12.2 12.2 12.2 11.2

f 0
x 26.7 22.1 19.2 17.2 15.7 14.6 13.8 13.2 12.7 12.3 12.0 10.2

f 0
y 26.7 27.6 29.2 31.4 33.8 36.2 38.1 39.8 41.4 42.8 44.2 *

5 fx 33.6 28.2 24.4 21.8 19.8 18.3 17.2 16.3 15.6 15.0 14.6 12.0
fy 37.3 38.7 40.4 42.7 45.1 47.5 49.5 51.4 53.3 55.1 58.9 *
sx 16.2 14.8 13.9 13.2 12.7 12.5 12.3 12.2 12.1 12.0 12.0 12.0
sy 18.3 17.7 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

5′ fx 37.3 30.3 25.3 22.0 19.5 17.7 16.4 15.4 14.6 13.9 13.4 10.2
fy 33.6 34.1 35.1 37.3 39.8 43.1 46.6 52.3 55.5 60.5 66.1 *
sx 18.3 15.4 13.5 12.2 11.2 10.6 10.1 9.7 9.4 9.0 8.9 8.0
sy 16.2 14.8 13.9 13.3 13.0 12.7 12.6 12.5 12.4 12.3 12.3 11.2

6 fx 36.8 30.2 25.7 22.7 20.4 18.7 17.5 16.5 15.7 15.1 14.7 12.0
fy 36.8 38.1 40.4 43.5 47.1 50.6 52.8 54.5 56.1 57.3 58.3 *
sx 19.4 17.1 15.5 14.5 13.7 13.2 12.8 12.5 12.3 12.1 12.0 12.0
sy 19.4 18.4 17.9 17.6 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

Notes : If h < 10 cm, multiply the moment with 15(h + 5). The smaller span is lx .
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The negative moments at the supports can be calculated from

ms =
{ ms01 + ms02

2
≥ 0.75 min ms0 for l1 : l2 < 5 : 1,

min ms0 for l1 : l2 > 5 : 1,
(12.5.3)

where

ms0 = −ql2
x

sx

or ms0 = −ql2
y

sy

. (12.5.4)

Again, the corresponding coefficients sx and sy are listed in Table 12.5.1 for various
panel types. The whole procedure is valid for†

pLL ≤ 1
3q, pLL ≤ 2pDL, pDL ≥ 0.5pLL. (12.5.5)

So far, we have assumed that the variation of spans between adjacent panels is
relatively normal. There are, however, floor configurations where two small panels
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Figure 12.5.1 Design charts for uncommon span ratios.

† However, according to Ref. [12.5.2] the method can also be used for pLL/q ≤ 2
3 .
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are attached to a large one. In such cases, the positive field moments of the first
panel should be calculated from

mf x1 = ql2
x1

fx1
. (12.5.6)

The pertinent coefficients, fx1, can be determined from the charts given in Fig. 12.5.1
for span ratios ly3/lx3 = ∞, 1.0, 0.75, 0.5 and for a = 10lx1/lx3, b = 10lx2/lx3. In
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Figure 12.5.2 Approximate moment diagrams.
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general, however, it is sufficient to use the chart that has a span ratio in the third panel
nearest to the span ratio of the problem at hand. In that case, when the chart with lower
values of ly3/lx3 is selected, it is recommended that the number of reinforcing bars
should be somewhat increased. If fx1 > 10.25, one should work with the coefficients
given in Table 12.5.1.

The field moment at the center of the second panel is

mf x2 = 1
12ql2

x2. (12.5.7)

However, if fx1 < 10.25, this indicates completely clamped edges on both sides.
Thus, one should refer to the corresponding type in Table 12.5.1.

After the field moment mf x1 is determined, the edge moment at the first interior
support can be calculated from

mb = (
√

2qmf xi)lx1 − 1
2ql2

x1. (12.5.8)
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Figure 12.5.3 Approximate loads on supporting beams.
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Again, if fx1 < 10.25, this indicates completely fixed boundaries on both sides, and
one should proceed accordingly.

Approximate moment diagrams are shown in Fig. 12.5.2. Furthermore, the lateral
load can be assigned to the corresponding supports according to Fig. 12.5.3. Both
figures can also be used for the other engineering methods treated earlier. In addition,
it is noteworthy to mention that the method of Pieper and Martens can also handle
cases where only three edges meet at a corner point, as shown below in Illustrative
Example II.

ILLUSTRATIVE EXAMPLE I

Let us determine the positive field and negative support moments of the RC
slab configuration shown in Fig. 12.5.4. All panels carry uniformly distributed
loads pDL = 0.3q and pLL = 0.7q, where q = pLL + pDL; thus pDL/q = 0.3.

2

3

1

Y

Y Y Y
+m +m

+m

0.5a a

2a
a

X X

X

X

Figure 12.5.4 Floor slab with various aspect ratios.

Table 12.5.2 summarizes the calculation of the field moments at the center of
each panel, and Table 12.5.3 summarizes the calculation of the negative edge
moments at the partially clamped boundaries.
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Table 12.5.2 Moments at Center of Panels (Fig. 12.5.4)

Coefficients Moments
Panel
Number Type ly lx ε = ly/ lx fx fy mxm

mym

1 2′ a 0.5a 2.0 12.9 47.9 0.0194qa2 0.0052qa2

2 4 a a 1.0 33.2 33.2 0.0301qa2 0.0301qa2

3 2 2a a 2.0 10.9 39.5 0.0917qa2 0.0253qa2

Table 12.5.3 Moments at Middle of Supports (Fig. 12.5.4)

Coefficients Moments
Panel i,
Panel k Type ly lx ε = ly/ lx sx sy ms0 msi−k

≥ 0.75ms0,min

1 2′ a 0.5a 2.0 −8.3 — −0.0301qa2 −0.0500qa2 −0.0525qa2

2 4 a a 1.0 −14.3 — −0.0699qa2 −0.0500qa2 −0.0525qa2

2 4 a a 1.0 — −14.3 −0.0699qa2 −0.0960qa2 —

3 2 2a a 2.0 — −8.2 −0.1220qa2 −0.0960qa2 —

ILLUSTRATIVE EXAMPLE II

Figure 12.5.5 shows an unconventional floor-slab configuration where at cor-
ner point k only three plate edges meet. Let us determine the positive field
moments at the center of each panel and the negative edge moments at the par-
tially clamped plate boundaries. The floor-slab configuration carries a uniformly
distributed load q = const. Poisson’s ratio is ν = 0.
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Figure 12.5.5 Uncommon slab configuration.

Calculation of the positive moments at the center of each panel is summarized
in Table 12.5.4. Similarly, calculation of the negative moments at the panel
supports is given in Table 12.5.5.

Table 12.5.4 Field Moments of Slab Shown in Fig. 12.5.5

Coefficients Moments
Panel
Number Type lx ly ε = ly/ lx fx fy mxm

mym

�1 2′ a 2a 2 12.9 47.9 0.0775qa2 0.0209qa2

�2 4 a a 1 33.2 33.2 0.0301qa2 0.0301qa2

�3 4 a a 1 33.2 33.2 0.0301qa2 0.0301qa2
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Table 12.5.5 Moments at Supports (Fig. 12.5.5)

Coefficients Moments
Panel i,
Panel k Type lx ly ε = ly/ lx sx sy ms0 msi−k

≥ 0.75ms0,min

�1 �1 2′ a 2a 2 −8.3 — −0.1204qa2 −0.0952qa2 — =̂mxex

�2 �3 4 a a 1 −14.3 — −0.0699qa2 −0.0952qa2 — =̂mxex

�2 4 a a 1 — −14.3 −0.0699qa2 −0.0699qa2 — =̂myey

�3 4 a a 1 — −14.3 −0.0699qa2 −0.0699qa2 — =̂myey
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12.6 Equivalent Frame Method Applied to Flat Slabs

The analytical solution of flat-slab problems is inherently complex, as described in
Sec. 10.6 and demonstrated in Refs. [12.6.1] and [12.6.2]. To simplify this analytical
procedure, we have even neglected the flexural stiffness of the supporting columns.
This simplification gives usable results as long as the columns are quite slender or
carry only vertical reactions. In the case of realistic column dimensions and uneven
column spacing or alternative loading of panels, however, the interaction between
columns and slabs can no longer be neglected.

Since all analytical procedures that consider the monolithic connection between
columns and slab are highly complex and therefore time consuming, it is more
advantageous to use simplified engineering methods for routine design of flat slabs.
A suitable practical approach, which is in good agreement with pertinent test results,
replaces the flat-slab–column structure by an equivalent rigid frame. Such a frame
consists of a row of upper and lower columns at each floor, as shown in Fig. 12.6.1.

Codes of practice for RC structures [12.6.3, 12.6.4] permit the use of such equiv-
alent frames for the analysis of flat slabs and flat plates. However, the usefulness
of such simplification in predicting the actual structural response of these structures
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Figure 12.6.1 Equivalent rigid frame.

Figure 12.6.2 Flat slab with drop panels and column capitals.

depends to a large extent on realistic evaluation of the flexural stiffness of the equiva-
lent beam and on the fraction of the total frame moments distributed across the panels.
This procedure becomes somewhat more complicated for flat slabs with drop panels
and/or with column capitals (Fig. 12.6.2), which cause a variation in the flexural
stiffness of the slab. For this reason, here we use recommendations for the stiffness
of flat slabs with drop panels given in Ref. [12.6.5]. Furthermore, we distribute the
total frame moments across the panels according to Fig. 12.6.3. All designs of flat
slabs without column capitals also apply to flat plates.

For the equivalent beams, we take the continuous floor slab of a bay width; thus,
its moments of inertia in the X and Y directions are

Ix = ly
h3

12
and Iy = lx

h3

12
. (12.6.1)

We usually analyze these equivalent rigid frames by applying the familiar moment
distribution technique [12.4.2] in the longitudinal and transverse directions at each
floor level. However, the obtained positive and negative moments (±M) must be
distributed across the panels, according to Fig. 12.6.3, or be modified as follows:

mx =




Mx

ly

(
1 − 1

5
cos

πy

b

)
at x = 0,

Mx

ly

(
1 − 3

5
cos

πy

b

)
at x = ±a.

(12.6.2)
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Figure 12.6.3 Assumed distribution of frame moments across panel.

A similar expression gives the distribution of frame moments in the Y direction. The
shear forces are also determined from the analysis of the equivalent frame.

If required, further refinement in the equivalent frame analysis can be obtained
by considering the variable moment of inertia of the slab. That is, if dropped panels
are used, the cross section of the slab near the columns becomes T shaped. At the
edge of the column, the moment of inertia of the equivalent horizontal beam must be
further increased, because it includes a portion of the drop panel or column capital.
Since calculation of the required coefficients for the moment distribution method is
quite tedious, design charts are presented in Fig. 12.6.4 to simplify this part of the
analysis. For example, for coefficients kij of the chart, the flexural stiffness of the
slab with drop panel is

Kij = kijEIij

lij
, (12.6.3)

where Iij is the moment of inertia of the slab as defined by Eq. (12.6.1). Similarly
the fixed-end moment of the lij span is calculated from

M∗
ij = fijP0l

2
ij , (12.6.4)

while cij gives the carry-over factor of the equivalent frame. In this notation the first
subscript represents the joints in question and P0 denotes the uniformly distributed
resultant line load (per unit length of the bay span).

For the following reasons, the equivalent frame method presented here is more
general than the so-called direct design method described in various codes:

ž There are no limitations on dimensions or loading.
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Figure 12.6.4 Charts for coefficients of equivalent frame.

ž The moments of the equivalent rigid frame are determined by classical elastic
analysis.

ž It can also be used for lateral load condition.

As the Illustrative Example demonstrates, the results are in good agreement with
those calculated by the yield-line method (Sec. 13.6).

One can extend this approach even to flat slabs with flared column capitals by
introducing

l′x = lx − 2cx and l′y = ly − 2cy (12.6.5)

equivalent interior span lengths. Similarly, for exterior panels the equivalent span
lengths are

l′x = lx − cx and l′y = ly − cy. (12.6.6)

In these expressions the value of c, the effective support size, depends on the type of
column flare, as illustrated in Fig. 12.6.5.

Deflections of the flat slab can also be estimated by using the equivalent frame
method [12.6.10]. It is convenient to find the midspan deflection of each panel as a
sum of three parts: (a) deflection of the panel assumed to be fixed at both ends and
(b) deflections caused by the additional rotations of the left and right supports.



722 Practical Design Methods

h c c c c c c

45° 45° 45° 45°

Figure 12.6.5 Effective support size for flared columns.

To obtain the fixed-end deflection of the column strip, we first calculate the midspan
deflection of a uniformly loaded beam with fixed ends. This gives

dbeam = pl4

384EIframe
, (12.6.7)

where p is the load per unit length acting on the full width of the equivalent frame
and Iframe represents the moment of inertia of the equivalent frame by considering,
again, its full width, as given in Eq. (12.6.1).

Equation (12.6.7) provides a basis for further determination of the fixed-end deflec-
tion of the column strip or middle strip using the M/EI ratio of the strip in question
to that of the full panel. Thus, we write

dstrip = dbeam
Mstrip

Mframe

EIframe

EIstrip
, (12.6.8)

where Istrip is the moment of inertia of the column strip or the middle strip.
The joint-point rotation can be expressed by

θ = Mnet

Kc

, (12.6.9)

where Mnet is the net applied moment of the equivalent frame at the column and
Kc denotes the column stiffness. Thus, the center deflection of the equivalent frame
subjected to θ rotation (expressed in radians) at one of its fixed ends is

dθ = 1
8θl. (12.6.10)

Consequently, the total deflection at the midspan of the panel becomes

d = dstrip + d0,left + d0,right. (12.6.11)

ILLUSTRATIVE EXAMPLE

A RC flat slab with drop panels has 5 × 5.00 m column spacings in the X

direction and 4 × 4.00 m in the Y direction. This floor carries the weight of
the slab and toppings (pDL = 5.1 kN/m2) and a live-load pLL = 2.55 kN/m2.
The slab thickness is h = 0.13 m, and the thickness of the drop panels is
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0.10 m. The other properties of the RC slab are E = 2.25 × 103 kN/cm2

and ν = 1
6 . The slab is supported by 0.40 × 0.40-m square RC columns in

monolithic construction. To be able to design this floor system, we have to
determine all positive and negative moments to which the individual panels
are subjected.

Since the structure and lateral loads have double symmetry, it is suffi-
cient to consider only one analysis quadrant of this plate system, as shown in
Fig. 12.6.6. A typical section of the slab at a column is illustrated in Fig. 12.6.7.
Furthermore, to analyze this flat slab, we utilize the equivalent frame method.
Strictly speaking, to obtain the maximum field moments, we should use the
loading patterns given in Fig. 10.6.6. Similarly, the critical loading for the
negative moments at the columns requires that dead and live loads act on all
panels around the columns. Although we can use these loading patterns with-
out any complications to rationalize our calculations, we apply the load factor
approach here, which, according to American Concrete Institute (ACI) building
codes [12.6.3], specifies that

p0 = 1.4pDL + 1.7pLL = 15.85 kN/m2, (12.6.12)

Y

xz1w

A A

5.00 m 5.00 m

4.
00

 m
4.
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00

 m

CL

CL

Figure 12.6.6 Analysis quadrant of flat-slab floor.
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•

Lx /6 Lx /6

Figure 12.6.7 Typical section A-A.

a uniformly distributed factored load to be resisted by the related internal forces
of the slab. In addition, we make use of the design charts given in Fig. 12.6.4 to
determine the stiffness factors, carry-over factors and fixed-end moments of the
equivalent frame required for the conventional moment distribution procedure
of rigid frames.

Let us assume that the uniformly distributed factored load is 15.85 kN/m2

and the length of the columns is 3.0 m. The equivalent frame for the interior
slab column configuration in the X direction is shown in Fig. 12.6.8. The line
load carried by this frame amounts to p0 = 15.85 × 4 = 63.4 kN/m. Using the
previously introduced design charts,† we obtain the following coefficients‡ for

5.0 m 5.0 m 5.0 m 5.0 m 5.0 m

3.
0 

m

A B C D E F

p0 = 63.4 kΝ/m

CL

Figure 12.6.8 Equivalent frame for interior panels in X direction.

† See Fig. 12.6.4.
‡ Because of symmetry, coefficients for the other members, CD, DC and DE, ED, are the
same.
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the ratio of the slab to the slab and drop panel (13/23 ≈ 0.565):

ij ; j i kij cij fij

AB; EF 4.40 0.651 0.071
BA; FE 6.08 4.54 0.114
BC; CB 7.00 0.624 0.096

. (12.6.13)

With

IAB = bh3

12
≈ 91.54 × 103 cm4, (12.6.14)

Eq. (12.6.3) gives the flexural stiffness of the equivalent beam members. For
member AB, for instance, we obtain

KAB = kABEIAB

lAB

= 18.12 × 103 kN-m. (12.6.15)

The corresponding fixed-end moment is calculated from Eq. (12.6.4). This gives

MAB = fABp0l
2
AB = 0.071 × 63.4 × 25 = 112.5 kN-m. (12.6.16)

A similar approach for the other beam members gives

ij Kij Mij

(kN-m) (kN-m)

AB 18.12 × 103 112.54
BA 25.03 × 103 178.19
BC 28.83 × 103 152.17

. (12.6.17)

The stiffness of the columns is

Icol = d4

12
= 404

12
= 21.333 × 104 cm4,

Kcol = EIcol

lcol
= (2.25 × 106)(21.333 × 104)

300
= 16 × 108 N-cm.

(12.6.18)

The distribution factors required for the moment distribution are defined by

rij = Kij∑
(Kij + Kcol)

. (12.6.19)

Thus, at joint B, for instance, the distribution factor for the beam member BA is

rBA = KBA

KBA + KBC + 2Kcol
= 25.03

25.03 + 28.83 + 2 × 16
= 0.292. (12.6.20)
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In a similar way we obtain the other distribution factors:

rAB = 0.452 and rBC = rCB = rCD = rDC = 0.336. (12.6.21)

The carry-over factors cij and the fixed-end moments are already given in
Eqs. (12.6.13) and (12.6.17), respectively.

Now, we are able to carry out the moment distribution on the equivalent
frame. This procedure gives the following results for the joint moments†:




MAB

MBA

MBC

MCB

MCD

MDC




=




− 66.77
−194.83
−171.56
−142.75
−156.38
−156.38




kN-m. (12.6.22)

The corresponding positive field moments can be approximated by

mij ≈ 1
8p0l

2
ij + 1

2 (Mij + Mji), (12.6.23)

which gives

mAB = 67.32 kN-m, mBC = 40.97 kN-m, mCD = 41.74 kN-m.

(12.6.24)

In the next step, the obtained positive and negative moments of the equivalent
frame should be distributed according to Fig. 12.6.3 between the column and
middle strip. This distribution is summarized in Table 12.6.1.

Table 12.6.1 Distribution of Moments Across Panel

Span
(ij ; ji)

Mij ; mij

(kN-m)
Column

(%)
Strip

(Ms ; ms)
Middle

(%)
Strip

(Ms ; ms)

AB −66.77 75 −50.08 25 −16.69
AB +67.32 60 +40.39 40 +26.93
BA −194.83 75 −146.12 25 −48.71
BC −171.56 75 −128.67 25 −42.89
BC +40.97 60 +24.58 40 +16.39
CB −142.75 75 −107.06 25 −35.69
CD −156.38 75 −117.28 25 −39.10
CD +41.74 60 +25.01 40 +16.70
DC −156.38 75 −117.28 25 −39.10

A similar procedure is used for the exterior column-slab configuration. These
calculations should also be repeated for the Y direction to obtain a complete
picture of the structural response of this flat slab. Needless to say, the analysis
of a multistory flat-slab construction, even utilizing an engineering approach,
is a difficult task.

† For the other members, again, symmetry should be applied.
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12.7 Other Practical Design Methods
12.7.1 Approximate Analysis of Bridge Decks

Approximate values of moments in bridge-deck slabs produced by wheel loads of
trucks can be calculated applying the simplified approach developed Rüsch [12.7.1],
which gives

+mmax ≈ k(+m0) and −mmax ≈ k(−m0), (12.7.1)

where m0 is the pertinent maximum positive or negative moment due to the wheel
load in the individual slabs with various boundary conditions and

k = 1.2

1 + [lx(m)/100]
k0 for lx ≤ 20 m. (12.7.2)

Coefficient k0 is given in Table 12.7.1. The last column in this table contains approx-
imate values for moments at the first support, assuming that the slab is built mono-
lithically with its supporting beam. It should be noted that lx (in meters) is always
the respective direction under consideration, as shown in Fig. 12.7.1.

Since beams usually provide elastic supports, the maximum moments given in
Eq. (12.7.1) should be further corrected to take into account this effect. Thus, we
can write

+mmax ≈ k(+m0)(1 + α) and −mmax ≈ k(−m0)(1 − α), (12.7.3)

where

α = lh3Ep

12IgEg

. (12.7.4)

In this expression, l is the span between the supporting beams or girders, h the
thickness of the slabs, Ig the moment of inertia of the beam, Ep the modulus of
elasticity of the slab and Eg the modulus of elasticity of the beam.
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Table 12.7.1 Correction Factors for Moments of Continuous Bridge Slabs

k0 at Points Shown in Fig. 12.7.1

ly/ lx �1 �B �2 �C �A

Slab Supported at All Four
Boundaries

≤0.8 1.00 1.00 1.05 1.00 1
2 MB

1.0 1.05 0.96 1.13 1.00 1
2 MB

1.2 1.07 0.94 1.18 1.00 1
2 MB

∞ 1.10 0.92 1.23 1.00 1
3 MB

Slab Supported at Two
Opposite Boundaries Only

∞ 1.10 0.92 1.23 1.00 1
3 MB

1.0 1.14 0.89 1.30 1.00 1
3 MB

0.50 1.22 0.82 1.45 1.00 1
3 MB

0.25 Slab behaves as a continuous beam.

Note: From Ref. [12.7.1].

Kupfer and Maier [12.7.2] have improved Rüsch’s method by introducing equiva-
lent plates, shown in Fig. 12.7.2. First, the maximum positive moment +m0 and the
maximum negative moment −m0 of these individual roadway slabs are computed,
preferably using the corresponding influence surfaces [10.5.1] or Lévy’s method. The
effect of continuity and of loading on adjacent slabs can be approximated by the use
of proper coefficients; thus

+mmax ≈ c1(+m0) and −mmax ≈ c2(−m0). (12.7.5)

The coefficients to be used for all panels are given in Tables 12.7.2 and 12.7.3.
The minimum moments for exterior slabs can be computed from

mmin = (1 − c1)(+m0). (12.7.6)

For the interior panels, Eq. (12.7.6) should be multiplied by 2.

Table 12.7.2 Coefficient c1

ly/ lx
lx ≤0.8 1.0 1.2 1.4 1.6 1.8 2.0 3.0 3.5 ∞

Edges simply ≤2.0 m 1.03 1.03 1.07 1.09 1.09 1.10 1.10 1.10 1.10 1.10
supported 6.0 m 1.03 1.06 1.12 1.16 1.18 1.20 1.22 1.22 1.22 1.22
(Fig. 12.7.2) ≥20.0 m 1.03 1.06 1.12 1.17 1.21 1.23 1.26 1.29 1.30 1.35

Free longitudinal ≤2.0 m 1.40 1.40 1.40 1.29 1.21 1.15 1.10 1.10 1.10 1.10
edges (not shown) 6.0 m 1.40 1.40 1.40 1.33 1.28 1.25 1.22 1.22 1.22 1.22

≥20.0 m 1.40 1.40 1.40 1.38 1.37 1.36 1.35 1.35 1.35 1.35

Note: Use c1 = 1.0 along free-edges. After Ref. [12.7.2].
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730 Practical Design Methods

Table 12.7.3 Coefficient c2

Span Length Bridge Type DIN 1075
(m)

60 30 12

lx ≤ 2.0 0.90 0.90 0.90
lx ≈ 6.0 0.62 0.71 0.82
lx ≥ 20.0 0.75 0.85 0.92

Notes: DIN = Deutsche Industrie Normen. For fixed end
supports use c2 = 1.0. After Ref. [12.7.2].

The method can also be used when the spans of the individual panels vary, provided
the ratio of the smaller span to the larger is less than 0.8. In such a case the use of
the larger span length is recommended for the equivalent plate.

Approximate moment diagrams of bridge slabs due to moving wheel loads are
shown in Fig. 12.7.3.

Other satisfactory methods for the approximate analysis of continuous rectangular
slabs are listed in the bibliography at the end of the section. Based on the ultimate
load-carrying capacity of plates, the recently introduced yield-line analysis treated
in Chapter 13 offers another powerful tool for the economical solution of continuous
rectangular plates. An additional advantage of the latter approach is that it is not limited
to uniformly distributed loads or to simply supported or fixed boundary conditions.

12.7.2 Simplified Treatments of Skew Plates

As discussed earlier, analytical methods, with the exception of the simplest cases, are
too cumbersome for practical analysis of skew plates. In Sec. 10.3 numerical methods
were introduced for handling such plate problems. The GWM and FEM appear to
be the most effective numerical techniques, but under certain circumstances even the
FDM can yield usable results. In all cases, however, care should be exercised when
assessing stresses in acute or obtuse corners and near column heads, where stress
concentration is known to occur.

Engineering design procedures for analysis of skew plates rely heavily upon exten-
sive tables and design charts in order to simplify the inherently complex manual
calculations. In Ref. [12.7.3], for instance, readily usable tables are given for bend-
ing and twisting moments of uniformly loaded skew plates simply supported at two
opposite edges and free at the other two edges (Fig. 12.7.4). These tables cover aspect
ratios κ = b/a of 1

3 , 1
2 , 2

3 , 1
1 and 3

2 aspect ratios and skew angles ϕ of 0◦, 15◦, 30◦,
45◦, 52◦30, and 60◦. However, to simplify our discussion, we are dealing here only
with κ = 1

3 , 1
2 , 1

1 and ϕ = 30◦, 45◦, 60◦.
The plate deflections w(x, y) can be expressed by

w(x, y) = kw

p0λ
4

D
for λ = b

a
, (12.7.7)

where kw is a coefficient value (see Tables 12.7.4–12.7.6) and λ represents the
mesh width.

Similarly, using the coefficients, kx, ky and kxy bending and twisting moments at
given points can be calculated from

mx = kxp0λ
2 my = kyp0λ

2, mxy = kxyp0λ
2 (12.7.8)
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Table 12.7.4 Coefficients for κ = 1/3

ϕ = 30◦
ϕ = 45◦

ϕ = 60◦

Point kw kx ky kxy kw kx ky kxy kw kx ky kxy

b 0 −0.64 0.64 0.37 0 −0.01 0.01 0 0 0.40 −0.40 0.23
c 0 −1.31 1.31 0.75 0 −0.30 0.30 0 0 0.94 −0.94 0.54
d 0 −2.15 2.15 1.24 0 −0.96 0.96 0 0 1.32 −1.32 0.76
e 0 −3.47 3.47 2.00 0 −2.44 2.44 0 0 1.11 −1.11 0.64
f 0 −5.69 5.69 3.28 0 −5.82 5.82 0 0 −0.88 0.88 −0.51
1 330.16 5.58 0 2.59 181.20 2.01 0 1.21 76.75 0.77 0 0.28
2 631.26 14.60 0 5.01 351.94 6.42 0 3.29 149.46 2.65 0 1.14
3 332.16 6.63 1.74 3.53 181.23 2.82 1.33 1.82 75.51 1.70 0.35 0.83
4 856.35 22.92 0 7.22 489.24 11.78 0 5.96 208.39 4.92 0 2.59
5 631.31 15.95 1.73 6.46 348.90 7.60 2.02 4.69 142.46 3.72 0.95 2.11
6 336.23 7.49 2.82 4.81 182.04 3.33 2.51 2.83 72.59 2.46 0.59 1.51
7 962.11 28.25 0 8.94 565.18 16.61 0 8.55 241.68 7.03 0 4.65
8 848.91 23.97 1.35 8.52 478.76 13.03 2.00 7.74 190.85 5.69 1.54 4.05
9 635.89 17.29 2.65 7.90 348.89 8.59 3.41 6.49 132.89 4.25 1.93 3.30
10 342.94 8.26 3.47 6.41 184.63 3.50 3.60 4.20 68.48 2.73 1.07 2.20
11 920.76 29.28 0 10.35 554.66 19.08 0 10.70 238.34 8.45 0 7.13
12 942.86 28.48 1.07 9.83 542.48 17.32 1.62 10.09 210.95 7.21 1.94 6.55
13 847.84 25.01 2.02 9.50 473.95 14.19 3.04 9.52 172.76 5.72 3.01 5.90
14 645.89 18.75 2.86 9.43 354.15 9.60 4.08 8.75 123.67 3.96 3.15 4.88
15 353.75 9.16 3.64 8.68 191.23 3.41 4.57 6.65 65.00 1.99 2.23 3.16
16 726.94 25.27 0 11.69 444.78 17.39 0 12.53 190.97 8.18 0 9.67
17 889.46 28.34 1.00 10.81 517.45 18.36 1.36 11.66 195.20 7.60 1.98 9.03
18 931.32 28.60 1.67 10.25 527.75 17.73 2.41 11.18 185.46 6.66 3.37 8.65
19 853.70 26.09 2.11 10.30 477.23 15.45 3.16 11.15 160.97 5.20 4.11 8.30
20 662.97 20.54 2.39 10.92 368.68 11.15 3.70 11.46 121.58 2.98 4.35 7.94
21 371.48 10.79 2.92 12.26 206.94 3.83 4.64 12.06 67.73 0.42 4.54 7.62
22 401.51 14.61 0 13.18 244.33 8.43 0 14.07 101.03 2.13 0 10.59
23 689.34 22.82 1.25 11.81 397.98 14.04 1.77 12.94 141.59 4.29 2.42 10.38
24 867.30 27.23 1.72 10.75 491.30 16.96 2.44 11.95 166.43 5.56 3.60 9.95
25 927.47 28.64 1.86 10.41 522.57 17.85 2.63 11.63 174.78 5.96 3.96 9.81
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Table 12.7.5 Coefficients for κ = 1/2

ϕ = 30◦
ϕ = 45◦

ϕ = 60◦

Point kw kx ky kxy kw kx ky kxy kw kx ky kxy

b 0 0.035 −0.035 −0.020 0 0.239 −0.239 0 0 0.266 −0.286 0.165
c 0 −0.109 0.109 0.063 0 0.391 −0.391 0 0 0.756 −0.756 0.436
d 0 −0.352 0.352 0.203 0 0.364 −0.364 0 0 1.071 −1.071 0.618
e 0 −0.844 0.844 0.487 0 −0.035 0.035 0 0 0.957 −0.957 0.552
f 0 −1.879 1.879 1.085 0 −1.331 1.331 0 0 0.230 −0.230 0.133
1 64.555 2.562 0 0.696 35.593 1.042 0 0.293 15.758 0.381 0 0.106
2 123.179 6.342 0 1.705 68.775 3.055 0 1.032 30.634 1.301 0 0.449
3 64.482 3.305 0.852 1.222 35.163 1.783 0.546 0.717 15.163 1.095 0.121 0.548
4 167.125 9.824 0 2.819 94.888 5.235 0 2.092 42.501 2.423 0 1.006
5 121.644 7.074 1.146 2.466 66.411 3.824 1.045 1.764 27.838 2.122 0.460 1.148
6 64.708 3.774 1.344 1.774 34.459 2.236 0.942 1.156 13.592 1.654 0.101 1.014
7 188.337 12.243 0 3.876 108.885 7.079 0 3.337 48.760 3.405 0 1.774
8 162.876 10.308 1.157 3.583 89.212 5.772 1.335 3.017 35.781 2.962 0.799 1.912
9 121.200 7.639 1.779 3.222 64.108 4.222 1.816 2.539 23.395 2.408 0.883 1.754
10 65.440 4.038 1.682 2.417 33.805 2.341 1.371 1.625 11.366 1.756 0.271 1.322
11 181.216 13.011 0 4.814 106.500 8.080 0 4.612 47.141 3.866 0 2.740
12 180.698 12.267 1.060 4.474 99.169 7.159 1.420 4.282 37.177 3.253 1.151 2.780
13 160.700 10.698 1.772 4.255 84.685 5.941 2.243 3.967 27.967 2.638 1.673 2.543
14 122.183 8.143 2.030 4.040 62.721 4.281 2.420 3.447 18.772 1.990 1.560 2.081
15 67.195 4.205 1.913 3.413 33.868 2.006 1.992 2.400 9.377 1.249 0.860 1.345
16 143.982 11.587 0 5.633 85.417 7.539 0 5.783 36.574 3.245 0 3.868
17 170.540 12.357 0.994 5.150 93.106 7.363 1.403 5.337 31.490 2.567 1.570 3.544
18 176.125 12.212 1.659 4.869 92.377 6.896 2.328 5.082 27.078 2.101 2.484 3.224
19 160.864 11.105 1.935 4.824 82.664 5.954 2.718 4.916 22.174 1.589 2.810 2.882
20 125.395 8.808 1.859 4.960 63.862 4.275 2.706 4.802 16.195 0.775 2.765 2.533
21 71.099 4.636 1.804 5.395 36.264 1.314 2.742 4.876 8.899 −0.698 2.734 2.272
22 79.933 6.864 0 6.176 46.885 3.610 0 6.310 18.496 0.181 0 4.056
23 132.164 9.984 1.082 5.637 70.544 5.341 1.665 5.915 20.469 0.595 2.148 3.529
24 163.928 11.656 1.652 5.162 85.006 6.358 2.436 5.540 22.286 1.067 3.031 3.310
25 174.593 12.174 1.858 5.020 89.875 6.680 2.687 5.430 22.982 1.245 3.281 3.250

For small skew bridges (span < 10 m) with edge beams, which do not warrant
extensive computations, we may also use an approximate method based on use of
design charts [12.7.4]. For this purpose, the skew plate under consideration is replaced
by an equivalent orthogonal plate, as shown in Fig. 12.7.5. By multiplying the maxi-
mum moments mx,max and my,max of this substitute structure by appropriate correction
factors, good estimates of the corresponding maximum moments in the skew plate
can be obtained; thus

mx,max ≈ cxmx,max, my ≈ cymy,max, −my,max ≈ c′(−my,max). (12.7.9)

The factors cx , cy and c′
y ′ , in the above equation are listed in Table 12.7.7. (Note:

For the coefficients k1, k2, and k3, given in Table 12.7.7 see Fig. 12.7.6.)
In addition, the reader is referred to Refs. [12.7.5] and [12.7.6] for extensive tables

used in the analysis of skew plates.

12.7.3 Degree-of-Fixity Procedure

This simplified method for continuous plates estimates the degree of fixity at the
corresponding supports of each individual panel [12.7.7]. The degree of fixity is
defined by

η = msupport corresponding to mfield,max

msupport with complete fixity
. (12.7.10)
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Table 12.7.6 Coefficients for κ = 1/1

ϕ = 30◦
ϕ = 45◦

ϕ = 60◦

Point kw kx ky kxy kw kx ky kxy kw kx ky kxy

b 0 0.0730 −0.0730 −0.0422 0 0.1433 −0.1433 0 0 0.2006 −0.2006 0.1158
c 0 0.0801 −0.0801 −0.0463 0 0.2161 −0.2161 0 0 0.2444 −0.2444 0.1411
d 0 0.0520 −0.0520 0.0300 0 0.1745 −0.1745 0 0 0.1327 −0.1327 0.0766
e 0 −0.0171 0.0171 0.0098 0 0.0722 −0.0722 0 0 0.0387 −0.0387 0.0223
f 0 −0.1852 0.1852 0.1068 0 −0.0779 0.0779 0 0 0.0213 −0.0213 0.0123
1 4.0590 0.6986 0 0.0688 2.2756 0.3303 0 0.0261 1.0425 0.1979 0 0.0492
2 7.7138 1.6178 0 0.3255 4.3602 0.8364 0 0.1952 1.9705 0.4139 0 0.0528
3 3.9830 1.0294 0.2638 0.3070 2.1467 0.6545 0.1583 0.2630 0.8340 0.4088 0.0207 0.2782
4 10.4326 2.4534 0 0.6216 5.9608 1.3684 0 0.4502 2.6590 0.6401 0 0.1849
5 7.3959 1.9136 0.4595 0.6242 3.9300 1.1421 0.3910 0.5475 1.4335 0.5611 0.2339 0.4389
6 3.8997 1.1533 0.3789 0.4295 1.9522 0.7455 0.2780 0.3812 0.5801 0.3648 0.1678 0.3044
7 11.7319 3.0349 0 0.9307 6.7696 1.7892 0 0.7555 2.9771 0.8099 0 0.3900
8 9.7460 2.5909 0.5633 0.9164 5.0903 1.5082 0.5618 0.8322 1.7308 0.6339 0.4180 0.5777
9 7.1686 2.0136 0.6775 0.8099 3.4999 1.1549 0.6554 0.7150 0.9652 0.4420 0.4909 0.4366

10 3.8456 1.1677 0.4610 0.5195 1.7952 0.6850 0.4152 0.4313 0.4422 0.2483 0.3166 0.2367
11 11.2752 3.2294 0 1.2288 6.5433 1.9665 0 1.0850 2.8266 0.8514 0 0.6568
12 10.6513 2.9400 0.6061 1.1661 5.4321 1.6485 0.6891 1.0777 1.7018 0.5927 0.5705 0.6551
13 9.3378 2.5844 0.8517 1.1012 4.4426 1.3796 0.9348 0.9743 1.1420 0.4505 0.7333 0.5056
14 7.0601 2.0157 0.7954 0.9382 3.2341 1.0469 0.8537 0.7690 0.7712 0.3400 0.6355 0.3518
15 3.8634 1.1161 0.5436 0.6452 1.7302 0.5683 0.5510 0.4560 0.4020 0.2037 0.3716 0.1931
16 8.9502 2.8787 0 1.4800 5.1793 1.7296 0 1.4037 2.1836 0.6801 0 0.9749
17 9.9141 2.8455 0.6158 1.3382 4.8865 1.4682 0.7912 1.2191 1.3848 0.4218 0.6848 0.6280
18 10.0939 2.7971 0.9301 1.2803 4.6772 1.3839 1.1176 1.1182 1.1289 0.3957 0.8825 0.4999
19 9.1851 2.5526 0.9779 1.2099 4.1496 1.2341 1.1505 1.0026 0.9648 0.3694 0.8583 0.4095
20 7.1335 2.0088 0.8305 1.1073 3.1847 0.8955 1.0149 0.8625 0.7219 0.2449 0.7451 0.3161
21 4.0557 1.0099 0.6512 1.0950 1.8003 0.2055 0.8934 0.7859 0.3799 −0.1099 0.6890 0.1980
22 4.9596 1.6749 0 1.5513 2.8145 0.7773 0 1.4579 1.1470 0.1909 0 0.9340
23 7.5900 2.1963 0.6282 1.3642 3.5678 0.9220 0.8781 1.1547 0.8898 0.1491 0.7400 0.4670
24 9.3214 2.6013 0.9297 1.3030 4.2190 1.1906 1.1702 1.0924 0.9720 0.3115 0.9022 0.4276
25 9.9275 2.7387 1.0335 1.3035 4.4620 1.2892 1.2545 1.0878 1.0275 0.3731 0.9382 0.4264

Simple
support

Simple support

(a) Original structure (b) Substitute structure

90° a*

a*

b b

j

Edge beam Edge beam

Y

Y

X X

Figure 12.7.5 Substitute orthogonal structure.

Table 12.7.7 Correction Factors for Skew Plates

Type of Loading For mx For my For (−)my

Plate
Uniformly distributed cx = 1 + k1 cy = 1 + kx —

Concentrated cx = 1 + k1

2
cy = 1 + k2

2
c′
y = 1 + k2

4
Edge beam

Uniformly distributed cb = 1 + k3

Concentrated cb = 1 + k3

2
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Figure 12.7.6 Coefficients for approximate analysis of skew bridges [12.7.6].

One can calculate η from the following empirical formula:

η = ϕ + n3

n2 + n3
− 11(n − 1) − 2.5(7 − 2n)(n − 1)ϕ

100
, (12.7.11)

where ϕ = pDL/(pDL + pLL) and n = l2/l1 represents the ratio of the shorter span
of a panel to the shorter span of the neighboring panels (l2), (l1).
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Bending moments can be calculated from

m = ηmi + (1 − η)m0, (12.7.12)

where mi is the moment of the individual panels assuming complete fixity at the inte-
rior supports and m0 denotes the moment of the corresponding simply supported plate.

Evaluation of Eqs. (12.7.11) and (12.7.12) is greatly facilitated by extensive tables
given in Ref. [12.7.7]. Using the values from these tables, we can write

m = (pDL + pLL)lx lymi, (12.7.13)

where mi is obtained from [12.7.7].

ILLUSTRATIVE EXAMPLE

Let us check the results obtained in Illustrative Example I of Sec. 12.5 by esti-
mating the degree of support fixities. The global and local coordinate systems
are shown in Fig. 12.7.7.

The field moments mf = mxm and mym are calculated from

mf = qlxlymi for q = pDL + pLL, (12.7.14)

In addition, the moment above the support is obtained from

msi−k
= qlxly [(−0.5me)i + (−0.5me)k] ≥ 0.75me,min. (12.7.15)

For calculation of these moments required values of mi , me and η are taken
from tables in Ref. [12.7.7]. The analysis procedure and results are listed
in Tables 12.7.8 and 12.7.9. Comparing these values with those given in
Tables 12.5.4 and 12.5.5s, respectively, we see relatively good agreement if
we consider the approximate nature of both engineering methods.

a

X
Y

X

Y Y

X

Y

0.5a

lx is always the smaller span:

1 2

2a
a

3

X

Figure 12.7.7 Continuous RC floor slab.
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12.8 Summary and Conclusions

Classical methods for solution of continuous RC floor slabs lead to extensive com-
putations. Such efforts, however, are not warranted in the routine design of floors.
An engineering method originally developed by Marcus and later improved by Löser
yields usable results for uniformly loaded floor slabs.

A simplified slope-deflection method offers an economical way to solution of con-
tinuous plate systems subjected to either uniformly distributed loads or concentrated
forces acting at the center of the panels. Corresponding design charts developed
by Maugh and Pan greatly facilitate the practical application of this engineering
approach, which gives good results in a relatively easy way.

Similar is the case with the moment distribution technique. The computational pro-
cedure is analogous to that used for continuous beams and rigid frames. Consequently,
it is familiar to structural engineers. However, instead of design charts, Brunner gives
extensive tables for stiffness and carry-over factors. Although this method has been
primarily developed for uniformly distributed lateral loads, its applicability can be
extended to other types of loading, provided the deviation of the produced edge
moments from the assumed sinusoidal shape is not too pronounced. Comparing all
engineering approaches discussed in this chapter, the moment distribution method
gives the best results, followed closely by the slope-deflection technique.

The simplified design method for RC floor slabs developed by Pieper and Martens
relies heavily on the use of tables and charts. This is the simplest and fastest method.
The method based on estimated fixity of individual slabs has some serious limitation.
That is, it is not easy to use without the corresponding tables, which are not always
readily available.

All the engineering procedures for the routine design of floor slabs introduced in
this chapter do not give a complete elastic analysis of such plate systems but only
yield reliable estimates for the maximum positive field moments and the negative
moments at supports. Their deviation from the more exact solutions obtained by
numerical methods can be estimated as 10–15%, which lies within the error range
of corresponding input data.
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Because of the inherent complexity of the classical analysis of RC flat slabs, it
is necessary to make various simplifying approximations. An engineering approach
based on an equivalent rigid-frame analogy gives acceptable results for most practi-
cal purposes. Again, tables and design charts facilitate the approximate analysis of
skew plates.

It is of great practical importance that all results obtained from these engineering
approximations can be easily checked by means of the yield-line method, discussed
in Chapter 13 in general and demonstrated in Sec. 13.4 and 13.5 in particular. That
is, if one uses the energy-based work method of this ultimate design approach and
calculates the average of the results obtained by the elastic analysis and those of
the yield-line analysis, then quite reliable values for the design moments can be
acquired; that is, the elastic methods give lower-bound solutions, while the results
of the energy-based yield-line analysis are upper bound. Consequently, their average
lies quite close to the more exact results.

Problems†

12.2.1. Assume a typical RC floor slab with 4 × 3 panels with spans lx = 5.5 m
and ly = 4.3 m in the X and Y directions, respectively. The dead load
of each panel is pDL = 2.0 kN/m2, and the live load carried by the floor
amounts to pLL = 4.0 kN/m2. All exterior boundaries of this continuous
plate system are simply supported. Determine the design moments by using
the Marcus-Löser approximate analysis technique.

12.2.2. Check the results obtained in Illustrative Example I of Sec. 12.5 by the
Marcus-Löser engineering solution technique.

12.3.1. Redo problem 12.2.2 this using time the simplified slope-deflection method.
12.3.2. A simply supported floor slab consists of four square panels. Assume that

the span of these panels is a. Only one of the panels carries a live-load
pLL = p0. By neglecting the dead load, determine the maximum positive
and negative moments using the simplified slope-deflection method.

12.4.1. A simply supported continuous plate consists of three subsequent equal
panels. Assume that the middle panel is subjected to p0 uniformly distributed
live load. Calculate the maximum moments of this continuous plate by
applying the moment distribution method. The dead load of the plates can
be neglected.

12.4.2. Redo problem 12.4.1, but this time assume that all panels carry a pDL. The
ratio of dead load to live load is 1

2 .
12.4.3. Check the results obtained in Illustrative Example I of Sec. 12.5 by moment

distribution.
12.5.1. Apply the design approach of Piper and Martens to the floor system shown

in Fig. 12.4.6.
12.5.2. Apply the Piper-Martens method to the floor system shown in Fig. 12.3.9.
12.5.3. Check the results obtained problem 12.4.2 by using the Piper-Martens

approximation.

† The first two numbers refer to the corresponding section.
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12.6.1. Assume that the RC floor system shown in Fig. 12.2.7 represents flat slabs
with drop panels. Use the same loadings and concrete dimensions used
in the Illustrative Example of Sec. 12.6. Determine the design moments
for the interior panels in the X direction by utilizing the equivalent frame
approximation.

12.7.1. Check the results obtained in Illustrative Example II of Sec. 10.3 using one
of the simplified methods for analysis of skew plates and draw your own
conclusions.



13
Yield-Line Method

13.1 Introduction to Yield-Line Method

Although a structural analysis based on elastic theory yields good results for defor-
mations and stresses produced by working (service) loads, it fails to assess the real
load-carrying capacity of the structure. At failure, the fundamental assumptions of
the theory of elasticity (Hooke’s law and small deformations) are no longer valid;
consequently, information obtained on the factor of safety against collapse is not
accurate. In most cases, an elastic design is overly conservative. There are condi-
tions, however, when elastic theory might even give unsafe results. Furthermore, for
the aerospace industry, for instance, the reduction of weight is of prime importance;
thus, a knowledge of the real factor of safety is mandatory for all flight structures.
Another serious limitation of elastic analysis, with the exception of the simplest cases,
is its mathematical complexity. Although contemporary numerical methods, based on
extensive use of computers, are potentially capable of solving the most difficult plate
problems, there is a pronounced need for a simple analytical method against which
computerized solutions can be checked. Yield-line analysis is such an alternative
computational technique. This method is especially useful for RC slabs.† Yield-line
analysis eliminates (at least partially) these limitations of elastic design, since it deals
with the ultimate load-carrying capacity of plates, assuming impending collapse.

The objective of this chapter is to introduce the reader to the fundamental concepts
of yield-line analysis and to its practical application for most support and loading
conditions. The few problematics of the method will also be mentioned, but their
extensive discussion is avoided. The mathematical theory of plasticity of plates is
often more complex than its elastic counterpart; consequently, its treatment is con-
sidered to be beyond the scope of this book. For a more complete study of the
yield-line method, the reader is referred to the pertinent literature.

a. Basic Concepts and Assumptions. In 1914 Kazinczy [13.1.1] observed that
the ultimate load-carrying capacity of clamped steel beams was considerably higher
than predicted by the theory of elasticity. This increased load-carrying capacity is due
to the ductility (plasticity) of most structural materials such as steel, aluminum, and

† The method also can logically be extended to metallic plates.

742 Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
Copyright © 2004 John Wiley & Sons, Inc.
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Figure 13.1.1 Bending moments before and after development of plastic hinges.

RC [13.1.2]. When a beam, as shown in Fig. 13.1.1, is loaded so that at the location
of the maximum moment the maximum stresses are below the proportional limit, the
stress distribution follows the familiar triangular pattern assumed by elastic theory.
By gradually increasing the lateral load, however, the outer fibers of the beam in the
vicinity of the maximum moments reach the yield stress σY . As the load is further
increased, the yield stresses will penetrate toward the neutral axis of the section until
the stress distribution is nearly rectangular (Fig. 13.1.2).

By introducing an idealized stress-strain relationship and a rectangular stress pat-
tern (Fig. 13.1.3), we can estimate the true moment-carrying capacity of the beam.
The fully plastic or ultimate moment of a rectangular beam, for instance, is

Mu =
∫

(A)

zσY dA = σY

∫
(A1)

z dA − σY

∫
(A2)

z dA = σY

bh2

4
, (13.1.1)

or, per unit length,

mu = σY

h2

4
. (13.1.1a)
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A comparison of this ultimate moment with the moment capacity of the section,
obtained from elastic theory,

mu

mel

= σY h2/4

σY h2/6
= 1.5, (13.1.2)

indicates a 50% increase.
At the fully plasticized section a plastic hinge is formed (Fig. 13.1.1). This bound-

ary condition is analogous to the elastic restraint in the theory of elasticity; that is,
the plastic hinge rotates under the effect of a constant moment, but its deformation is
permanent. The constant moment in this case is the ultimate moment capacity of the
section under consideration. An additional load, P2, can be carried without further
increasing the moment at the clamped boundary (Fig. 13.1.1b). Failure is reached
when a second plastic hinge is developed at the location of the maximum posi-
tive moment (Fig. 13.1.1c). The deformation pattern, called the collapse or failure
mechanism, consists basically of rigid-body motions. Even in the case of distributed
loads the elastic deformations between the plastic hinges are of a negligible order of
magnitude in comparison with rigid-body motions.
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The behavior of underreinforced-concrete† beams is similar.‡ Near the ultimate
load, the distribution of compressive stresses in the concrete is parabolic, which can
be approximated by an equivalent rectangular stress block, as shown in Fig. 13.1.4b.
Consequently, the ultimate moment capacity of a rectangular RC section, which fails
by reaching the yield point of the steel, is [13.1.4]

Mu = φ[bd2f ′
cq(1 − 0.59q)], (13.1.3)

where φ = 0.90 = factor for flexural members
q = pfY /f ′

c

p = As/bd = reinforcement ratio(p ≤ 0.75)

As = area of reinforcing steel (tension)
fY = σY = yield stress of steel
f ′

c = compressive strength of concrete

Using the extensive test results obtained by Mörsch, Bach, and Graf at the Technical
University of Stuttgart, first Ingerslev [13.1.5] derived an analytical approach to
ultimate load design of plates. Johansen [13.1.3] extended the ultimate load analysis
of beam and frame structures to RC slabs by introducing the concept of yield lines,
which are the two-dimensional counterparts of plastic hinges. Instead of calculating
the shape of the elastically deformed slab, yield-line analysis seeks of all possible
failure patterns the one that corresponds to the smallest failure load, called the critical
or ultimate load. When a laterally loaded slab is on the verge of collapse (collapse
is impending), yield lines are formed at the locations of the maximum positive and
negative moments. These yield lines, as shown in Fig. 13.1.5, subdivide the slab into
plane segments. Since the lateral deflections along the yield lines are large, the slab
segments rotate as rigid bodies in a manner similar to beam parts between plastic
hinges. Provided that the correct failure pattern is known, the critical load can be
obtained either from virtual work or from equilibrium considerations, as discussed in
the subsequent sections. Both approaches use the following basic assumptions:

† Most concrete slabs are underreinforced. This condition can be assured by setting the upper limit
ratio of reinforcement [13.1.3].
‡ For ultimate moments of prestressed concrete, see Ref. [13.1.4].
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1. At impending collapse, yield lines are developed at the location of the maxi-
mum moments.

2. The yield lines are straight lines.†

3. Along the yield lines, constant ultimate moments (mu) are developed.
4. The elastic deformations within the slab segments are negligible in compari-

son with the rigid-body motions created by the large deformations along the
yield lines.

5. Of the many possible collapse mechanisms, only one, pertinent to the lowest
failure load, is important. In this case the yield-line pattern is optimum.

6. When yield lines are in the optimum position only ultimate bending moments,
but no twisting moments or transverse shear forces, are present along the
yield lines.

For our discussion, we further assume that the slabs are of uniform thickness
and that the reinforcing is the same in both directions (isotropy). The treatment of
orthotropic reinforcements, variable thicknesses, and so on, is basically the same.
The reader is referred to Refs. [13.1.6], [13.1.7], [13.1.9] and [13.1.10] for fur-
ther study of these subjects. In the same works, experimental verifications of the
above-mentioned assumptions can also be found. In addition, Olszak and Sawczuk
[13.1.18] have demonstrated the good agreement obtained between experiments and
analytic calculations. Although the primary application of the yield-line method
is in connection with the ultimate load analysis of under reinforced-concrete or
prestressed-concrete slabs, the method gives usable estimates for the ultimate load-
carrying capacity of overreinforced-concrete slabs and for ductile metallic plates
[13.1.6], provided that the pertinent ultimate moments are used. The resulting dis-
crepancy between experimental and analytical approaches originates from the fact that
Johansen’s square yield criterion (Fig. 13.1.4) approximates better the actual failure

† Strictly speaking, this statement is valid only for distributed loads; point loads do have curved yield
lines, as discussed in Sec. 13.5.
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conditions of underreinforced-concrete slabs than those of metallic plates [13.1.15,
13.1.16]. Hopkins [13.1.17] has shown that in most cases the yield-line analysis may
be used for estimating ultimate loads of metallic plates. Caution should be exercised,
however, when concentrated loads act on metallic plates with fixed boundaries.

When the slab is subjected to concentrated loads or is supported by columns, the
yield-line analysis, which gives the bending strength of the slab, must always be
supplemented by checking the punching shear.

b. Guidelines for Estimating Failure Patterns. The location and orientation of
yield lines determine the collapse mechanism of the slab. Assuming on optimum
yield-line pattern, the work method gives an upper-bound solution to the critical load.
Using a true equilibrium approach, in connection with the same collapse mechanism,
a lower-bound solution can be obtained in a different manner. Thus, in both cases,
the crux of the analysis is to estimate the most probable optimum yield-line pattern,
which can be improved by an iterative technique. The following guidelines are helpful
to establish the required collapse mechanism:

1. Yield lines developed under distributed critical loads are usually straight.
2. For one-way slabs and for the smaller span lengths of two-way slabs, the

location of the maximum positive plate-strip moment obtained from elastic
theory gives a good starting point.

3. Along fixed boundaries, negative yield lines develop (Fig. 13.1.5).
4. Yield lines pass through the intersection of the axis of rotation of adjacent slab

segments (Figs. 13.1.5 and 13.1.6).
5. Lines of support generally serve as axes of rotation, as shown in Fig. 13.1.6.
6. Increased stiffness in the plate invites development of yield lines, while flexi-

bility counteracts their formation.

Yield lines usually obey these general rules. There are cases, however, when the
optimum collapse mechanism follows different yield-line patterns than those dis-
cussed and illustrated. With some experience, the designer can find with relative ease
the optimum failure mechanism using a trial-and-error procedure coupled with an
iterative technique discussed in the subsequent section. A study of Refs. [13.1.7],
[13.1.9], [13.1.10] and [13.1.13] for the selection of suitable yield-line patterns is
strongly recommended. For plate problems of high complexity, the optimum yield-
line pattern can quickly be established by model tests using plaster of Paris, for
instance, reinforced by mild steel wires. Complex yield-line patterns can be calculated
by computers [13.1.12].

The determination of the optimum yield-line pattern becomes quite involved when
different types of loads, such as distributed and concentrated, act simultaneously on
a given slab. Johansen’s superposition theorem [13.1.11], however, offers a simple
method of calculation. This theorem states: The sum of the ultimate moments for
series of loads is greater than or equal to the ultimate moment for the sum of the
loads. Thus, we can write

mu1 + mu2 + mu3 + · · · + muk + · · · + mun ≥ m�P , (13.1.4)

where muk is the ultimate moment corresponding to the puk ultimate load and yield-
line pattern and m�P is the ultimate moment pertinent to the yield-line pattern
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Figure 13.1.6 Possible yield-line patterns.

produced by the total loads: pu1 + pu2 + pu3 + · · · + pun = ∑
n P . The designer’s

equation is Eq. (13.1.4), but with an equality sign.

c. Estimating Deflections. Since a plate design might be governed by allowable
deflections rather than by allowable stresses, a reasonable attempt should be made
to find some approximate values for the maximum deflections produced by work-
ing loads.

The approximate method of Marcus [12.2.1], discussed in Sec. 12.2, can be ex-
tended to obtain estimates of the maximum deflections produced by service loads.
This approximation is based on the general expression of maximum beam deflection
expressed in terms of the governing moment. Thus,

wmax = c
mmaxl

2

EI
, (13.1.5)

where the constant c depends on the shape of the moment diagram, as shown in
Fig. 13.1.7, and mmax = mu; the boundaries are simply supported. While yield-line
analysis assumes constant ultimate moments along the yield lines, elastic theory gen-
erally yields a parabolic moment distribution. This discrepancy can be compensated
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Figure 13.1.7 Factor c in Eq. (13.1.5) pertinent to various moment diagrams.

for by introduction of a correction factor obtained from equating the areas of the
rectangular and parabolic moment diagrams. Thus, using an average value 1

9 for c,
Eq. (13.1.5) becomes

wmax = 3

2
c
mul

2

EI
= 1

6

mul
2

EI
. (13.1.6)

The same expression as (13.1.6) can be used for other boundary conditions provided
that for l the distance between the points of zero moment is substituted.

The accuracy of two methods discussed for estimating maximum deflections is
approximately the same. The actual deflections in both cases are smaller than the
computed ones; consequently, the results are on the safe side. In Table 13.1.1 the
obtainable accuracy of these methods for various span ratios is illustrated, assuming
uniformly loaded, simply supported, rectangular plates whose maximum deflection
can be written as

wmax = C
5

384
p0l

4
x . (13.1.7)
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Table 13.1.1 Variation of Coefficient C in Eq. (13.1.7)

Method lx/ ly = 0.4 lx/ ly = 0.6 lx/ ly = 0.8 lx/ ly = 1.00

“Exact” 0.887 0.67 0.47 0.315
Marcus 0.97 0.88 0.71 0.500
Eq. (13.1.7) 0.99 0.768 0.65 0.533

From Ref. [13.1.8].
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[13.1.13] COMITÉ EUROPÉEN DU BÉTON, “The Application of the Yield-Line Theory to Calculations
of the Flexural Strength of Slabs and Flat-slab Floors,” Information Bulletin No. 35,
Cement and Concrete Association, London, 1962.

[13.1.14] JONES, L. L., Ultimate Load Analysis of Reinforced and Prestressed Concrete Structures,
John Wiley & Sons, New York, 1962.

[13.1.15] HODGE, PH. G., Limit Analysis of Rotationally Symmetric Plates and Shells, Prentice-Hall,
Englewood Cliffs, New Jersey, 1963.

[13.1.16] HOPKINS, H. G., and PRAYER, W., “The Load Carrying Capacity of Circular Plates,” J.
Mech. Phys. Solids, 2 (1953), 1–13.

[13.1.17] HOPKINS, H. G., “Some Remarks Concerning the Dependence of The Solution of Plastic
Plate Problems upon the Yield-Line Criterion,” in Proceedings of the 9th International
Congress on Applied Mechanics held in Brussels 1956, Vol. 6, University of Brussels
1957, p. 448.

[13.1.18] OLSZAK, W., and SAWCZUK, A., “Experimental Verification of the Limit Analysis of
Plates,” Bull. Acad. Polonaise Sci., 3, No. 4 (1955), 195–200.

[13.1.19] ARMER, G. S. T., “The Strip Method; A New Approach to Design of Slabs,” Concrete
(London), 2, No. 9 (Sept. 1968), 358–363.

[13.1.20] NEALE, K. W., and LIND, N. C., “Limit Analysis of Plates under Combined Loads,” Proc.
ASCE, J. EM Div., 96 (Oct. 1970), 711–728.



Work Method 751

[13.1.21] SAVE, M. A., and MASSONNET, C. E., Plastic Analysis and Design of Plates, Shells and
Disks, North-Holland Publishing Co. Amsterdam, 1972.

[13.1.22] ACI COMMITTEE 224, Cracking, Deflection and Ultimate Load of Concrete Slab Systems,
ACI SP-30, American Concrete Institute, Detroit, Michigan, 1972.

[13.1.23] WOLFENSBERGER, R., Traglast und optimale Bemessung von Platten, 2nd ed., Beton Ver-
lag, Düsseldorf, 1967.

13.2 Work Method
The work (or energy) method gives an upper-bound solution to the critical load at
which the slab, with a certain ultimate resisting moment, will fail. Of a family of
possible yield-line patterns, we seek a particular configuration that gives the lowest
value of the ultimate load pu. The solution is based on the principle of virtual work.

Using the general guidelines established in Sec. 13.1, a probable yield-line pattern
is assumed. We assume that the yield lines have already been formed but the complete
collapse is merely impending. Consequently, the external forces and the internal
ultimate moments are still in equilibrium. For an infinitesimally small disturbance of
this equilibrium condition, we can state that the work done by the external forces
equals the work done by the internal forces; thus,

We = Wi. (13.2.1)

The work of the external forces due to a virtual displacement w(x, y) is

We =
∑

n




∫∫
(Au)

puw(x, y) dAn +
∮

l

P uw(s) ds +
∑

i

Pui wi


 , (13.2.2)

where n = 1, 2, 3, . . . indicates the number of plate segments formed after the yield-
line pattern has been established. The second and third terms in Eq. (13.2.2) represent
the work done by line and concentrated loads, respectively. During an assumed small
virtual displacement the individual rigid plate segments rotate. The virtual work of the
internal forces (moment times corresponding angle of rotation) can be calculated from

Wi =
∑

n

[∫
l

θmu ds

]
, (13.2.3)

where the integration is carried out along each yield line. The summation in (13.2.3)
indicates, again, that the internal work must be calculated for each plate segment and
the values, so obtained, added together. Instead of using Eq. (13.2.3), it is more con-
venient to use the components of the moment vectors projected to the axes of rotation
multiplied by the corresponding slab rotations θ (Fig. 13.2.1). Thus, an alternative
form of the work done by the internal forces is

Wi =
∑

n

[θjmuj�j ], (13.2.3a)

where θj is the “normal” rotation of the plate segments j, muj represents the ultimate
moments (per unit length) projected to the axis of rotation of each rigid portion and
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H

Figure 13.2.1 Plate segment.

� is the total projected length. Figure 13.2.1 illustrates this simple procedure. Since
along the yield lines the moment and rotation vectors have the same direction, the
work of the internal forces, including that of the negative ultimate moments, always
have the same signs in these computations.

To identify the optimum collapse mechanism, that is the yield-line pattern corre-
sponding to the smallest ultimate load pu, we introduce x1, x2, x3, . . . , xr variables
that define the geometry of an assumed yield-line pattern. Thus, for a given slab, the
general expression of the ultimate load becomes

pu = muf (x1, x2, x3, . . . , xr). (13.2.4)

Therefore, the optimum configuration of yield lines can be obtained from the mini-
mization procedure of differential calculus, which can be written as

∂pu

∂x1
= 0,

∂pu

∂x2
= 0,

∂pu

∂x3
= 0, . . . ,

∂pr

∂xr

= 0. (13.2.5)
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This analytical procedure results in coupled (usually nonlinear) equations from which
the unknown parameters can be calculated.

With the exception of simple cases, however, such an analytical process tends to
be cumbersome; thus, its use would defeat the main virtue of yield-line analysis,
that is, simplicity. Fortunately, an iterative technique based on the familiar trial-and-
error approach, often applied in engineering practice, gives very satisfactory results
economically.

Before proceeding further, let us express the negative ultimate moment capacity
of isotropic slabs, m′

u, as some multiple of the positive ultimate moment:

m′
u = −µmu, (13.2.6)

which simplifies the arithmetic of the work equations.
Next, based on the guidelines for estimating the location and orientation of yield

lines, a probable failure mechanism is assumed. The yield-line pattern so imposed
subdivides the slab into a series of inclined plane elements. Equating the maximum
deflection ordinate to unity, the normal rotations θ1, θ2, . . . , θj , . . . , θn for each rigid
region are calculated from the geometrical relationship

θj = �j

Hj

= 1

Hj

. (13.2.7)

Then, virtual work expressions (13.2.3a) are formed keeping all variables constant,
with the exception of one that most likely will dominate. After solving the equations
thus obtained for the ultimate load pu and plotting the results in function of the
selected parameter, the minimum value of the ultimate load can easily be determined
from the diagram (Fig. 13.2.2a) with satisfactory accuracy. By adopting another vari-
able, one repeats the procedure. Since the work method is generally not sensitive to
the exactness of the yield-line pattern, the variation of two or three parameters is
usually sufficient. To be certain that the optimum yield-line pattern has been attained,
one should check the critical load by the equilibrium method, discussed in the sub-
sequent section.

Since the functions of the unknown variables are generally nonlinear, mathemati-
cally more than one solution for the parameter xi is possible (Fig. 13.2.2b). Of the
multiple solutions, the one that gives the lowest ultimate load should be selected. The

Figure 13.2.2 Diagram of ultimate load vs. governing parameter.
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nonlinear interaction among various parameters usually does not affect the accuracy
of the described iterative procedure, except in the rare case when the collapse load
is overly sensitive to changes in the yield-line pattern. Such a case, which can easily
be detected from the diagram of the ultimate load, might call for a more accurate
analytic procedure.

Summary. Based on simple guidelines, a probable yield-line pattern is assumed.
Using a trial-and-error procedure, the optimum configuration of yield lines can rapidly
be established with satisfactory accuracy, even for complex boundary-load combi-
nations. The ultimate load of a given slab is obtained from simple work equations.
Since the energy method yields upper-bound solutions, the minimum ultimate load,
selected semigraphically, should be used in the design of slabs. The work method is
not overly sensitive to the assumed optimum failure mechanism; thus, it can offer dis-
tinct advantages in the case of difficult plate problems. The critical load so obtained
should be checked by the equilibrium method, or in the absence of such a check,
the selected ultimate load should be further reduced by 5% to cover possible errors
made in selection of the optimum yield-line pattern. Yield-line analysis is highly
recommended for checking the actual strength of plates analyzed by elastic theory.
The limitations of the method are listed in Sec. 13.6.

ILLUSTRATIVE EXAMPLE I

A rectangular slab, shown in Fig. 13.2.3, is subjected to a uniform lateral
load. Find the critical load by the work method, assuming that the positive
ultimate moment of the slab is mu = 0.8M and the negative ultimate moment
m′

u = −1.6M is adopted.
For this problem the coordinate axes X and Y coincide with the axes of rota-

tion of the individual plate segments. According to the guidelines established
in Sec. 13.1, the positive yield line must pass through the intersection of these
axes†. As shown in Fig. 13.2.3, the only variable for the failure mechanism is
the distance x at y = b.

c

2

2

Figure 13.2.3 Uniformly loaded rectangular plate with free and clamped boundary
conditions.

† An alternative failure mechanism is a single straight line running from the top right to the
bottom left corner.
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Assuming that the maximum virtual displacement is unity (� = 1), the work
of the external forces can be calculated from

We = pu

∑
n

Vin = pu(V1a + V1b + V2), (13.2.8)

where Vin represents the volumes of wedges and pyramids produced by the
virtual displacements of the individual slab segments. Thus, we can write

We = pu�

[
(a − x)

b

2
+ bx

3

]
=

(
3 − x

3

)
pu. (13.2.9)

The normal angles pertinent to slab segments �1 and �2 are

θ1 = �

b
= 1

2
and θ2 = �

x
= 1

x
. (13.2.10)

Consequently, using Eq. (13.2.3a), the work done by the internal forces is

Wi =
(

0.8M
1

2
x + 1.6M

1

2
a

)
+

(
0.8M

1

x
b + 1.6M

1

x
b

)

=
(

2.4 + 0.4x + 4.8

x

)
M.

(13.2.11)

Equating the work of the exterior and interior forces,

We = Wi, (13.2.12)

gives

pu = M
2.4 + 0.4x + (4.8/x)

3 − (x/3)
. (13.2.13)

Assigning various values to parameter x, a diagram representing the variation
of the ultimate load in terms of the governing parameter is drawn (Fig. 13.2.4).
The critical load for the slab is at x = 2

3a. As Fig. 13.2.4 illustrates, the ultimate
load is not sensitive to variation of the governing parameter.

1.5

1.25

1.0

0.75

0.50

k

pu = k(x)pcr

pcr = Critical load

a
x

a1
3

a2
3

Figure 13.2.4 Graphical determination of minimum ultimate load.
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ILLUSTRATIVE EXAMPLE II

Determine the ultimate load that can be carried by a rectangular plate, shown
in Fig. 13.2.5. Assume that the lateral load is uniformly distributed.

Figure 13.2.5 Yield-line pattern of partially loaded rectangular slab with simply supported
edges.

First, using the guidelines established in Sec. 13.1, a probable yield-line
pattern is adopted. It is evident from inspection that the yield line parallel to
the coordinate axis X is located at y = b/2. Consequently, we shall determine
the other two variables (x1, x2) of the assumed failure mechanism.

The work of the external forces acting on the individual panels are

We�1 = pub�

4

(
b − 2

3
x1

)
= We�2

and

We�3 = pub�

6
x1, We�4 = 0. (13.2.14)

Hence, the total work done by the external forces is

We = We�1 + We�2 + We�3 = 1
2pub�

(
b − 1

3x1
)
. (13.2.15)

The work done by the internal forces is calculated from Eq (13.2.3a); thus

Wi = Wi�1 + Wi�2 + Wi�3 + Wi�4

= 4mu� + 4mu� + mu�
b

x1
+ mu�

b

x2

= mu�

[
8 + b

(
x1 + x2

x1x2

)]
. (13.2.16)
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Equating the work of the external and internal forces, we obtain

pu = 2mu

b[b − (x1/3)]

[
8 + b

(
x1 + x2

x1x2

)]
. (13.2.17)

Next, we seek the minimum value of this expression. We assume for one
variable the value x1 = 0.3b and let x2 = k2b; then we have

pu = 2mu

0.9b2

[
8 +

(
1

k2
+ 3.33

)]
. (13.2.18)

This expression will be minimum when k2 = 1 or x2 = b. Using this result and
introducing the notation x1 = k1b, Eq. (13.2.17) can be written as

pu = 6mu

b2

[
9k1 + 1

k1(3 − k1).

]
. (13.2.19)

2

0 0.5

Minimum

1.0 1.5

4

6

8

10

12

k1

Optimum k1 ≈ 0.45

pu

6mu /b2

Figure 13.2.6 Graphical method for selection of optimum failure pattern.

As Fig. 13.2.6 shows, the minimum value for pu occurs at k1 = 0.45. Conse-
quently, with x1 = 0.45b and x2 = b, the ultimate lateral load is

pu = 26.3mu

b2
. (13.2.20)
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13.3 Equilibrium Method

The true equilibrium method [13.3.1, 13.3.2] provides lower-bound solutions for
the failure load. Such lower-bound solutions are only attained if the equilibrium
requirements are satisfied at all points of the plate. Mathematically, bracketing of
an approximate solution by lower and upper bounds is highly desirable since such
a bracketing yields usable estimates concerning the accuracy of the results. Further-
more, by averaging the lowest upper-bound and the highest lower-bound solutions,

pu,av = min pu,1 + max pu,2

2
, (13.3.1)

usually an improved, most probable failure load is obtained (Fig. 13.3.1). It should
be noted that all elastic solutions are acceptable, unique, lower-bound solutions;
consequently, by combining the elastic solution with that of yield-line analysis, the
actual failure load can be bracketed. Since the elastic moments vary along the spans
and clamped edges, respectively, the constant ultimate moments can be considered
as the average value of the elastic moments. Consequently, for a valid comparison,
the pertinent moment areas should be used.

The equilibrium method presented in this chapter is an upper-bound solution of
the critical load. It is based on the equilibrium of each slab segment (vs. that of
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Figure 13.3.1 Bracketing critical load.
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each point) created by the optimum yield-line pattern of an impending complete
collapse. Although the mathematical manipulations involved in the work and equi-
librium methods are quite different, they yield the same results [13.1.7], provided
that the optimum yield-line pattern has been used in both methods. Thus, the work
method provides a valuable check concerning the accuracy of the graphical min-
imization process, especially when the previously described iterative technique is
used. When the discrepancy in the results obtained by these two methods is larger
than 5%, the minimization of the upper-bound solution should be repeated. Unfor-
tunately, agreement between the two solutions merely indicates that for the assumed
yield-line pattern the minimum collapse load has been found, but it does not exclude
the possibility of other, probably more critical, yield-line patterns.† Identical upper-
and lower-bound solutions, on the other hand, are proof that the collapse mechanism
indeed corresponds to the critical load.

The equilibrium of each slab segment studied as a “free body” yields, in a general
case, one force and two moment equilibrium equations,

∑
Pz = 0,

∑
Mx = 0,

∑
My = 0, (13.3.2)

assuming that the external loads are lateral loads. This general equation is used only
when the slab segment under consideration has no exterior supports. For column-
(point-) supported segments, two moment equations are required, while for seg-
ments supported along a line, one moment equation is sufficient, provided that one
of the axes of the selected Cartesian coordinate system coincides with the line on
the support.

If we assume an optimum yield-line pattern, a given segment is under the action of
the external loads, that is, the reactions produced at the support, the moments along
the yield lines and certain concentrated forces called nodal forces. These nodal forces,
introduced by Johansen [13.1.11], appear at the intersections of positive and negative
yield lines and where they meet free-edges (Fig. 13.3.2) or along curved yield-lines.‡

Nodal forces are required to maintain the equilibrium of individual segments and are
analogous to the anchorage forces,§ discussed in Sec. 1.3. It should be noted that,

Figure 13.3.2 Nodal forces.

† In some cases, when the assumed yield-line pattern has less than a sufficient number of parameters,
the discrepancy in the two solutions can also indicate that the assumed and actual failure mechanisms
are different [13.1.6].
‡ See Sec. 13.5.
§ As a result of “Kirchhoff’s supplementary forces.”
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theoretically, the introduction of nodal forces is also required at the intersection of
yield lines with simply supported and clamped edges, but since moments are usually
taken about these lines, they are eliminated in the actual computation.

Let us investigate the case when a yield line intersects a free-edge that is parallel
to the X axis. The boundary conditions [Eq. (1.3.2)]

my = 0 and vy = qy + ∂myx

∂x
= qy + q∗

y = 0 (13.3.3)

state only that the sum of the transverse shear forces and the reactions produced
by the torsional moment myx must be zero; consequently, qy and ∂myx /∂x are not
necessarily zero. Considering the moment equilibrium of a small element at the
intersection of a free-edge and a positive yield line (Fig. 13.3.3), the projection of
moment vectors on axis �1 gives

mu cos β − q∗
y sin β = 0, (13.3.4)

or

q∗
y = mu cot β = N1(↓). (13.3.5)

The same force with opposite sign (N2 = −N1) is attached to the adjoining element
to maintain the equilibrium of the total slab (Fig. 13.3.2). In a similar way, nodal
forces acting at the intersections of positive and negative yield lines can be derived.
The results of these simple derivations are given in Fig. 13.3.4.

Considering the equilibrium of each slab segment, a sufficient number of equilib-
rium equations can be obtained to determine the unknown parameters, x1, x2, . . . , xn,
defining the optimum yield-line pattern. Although in some cases the equilibrium
method has distinct advantages over the work method (requiring less algebraic manip-
ulations), the fundamental concepts of calculating the critical load by the energy
method is considered simpler, since it does not require the use of nodal forces. Fur-
thermore, applying the work method, we calculate the virtual work of the total slab,
while the equilibrium method considers the equilibrium of each segment separately;

2

Figure 13.3.3 Intersection of yield line and free-edge. Note: Change signs for negative yield line.
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Figure 13.3.4 Nodal forces corresponding to various yield-line configurations.

thus, the latter method is more sensitive to errors in assuming an optimum yield-line
pattern. In this book, the equilibrium method is used mostly to check the results
obtained by the work method.

Summary. The equilibrium method involving the use of nodal forces is an alter-
native technique for obtaining upper-bound solutions to the critical load. The use
of the equilibrium method for checking the results obtained from the energy princi-
ple is strongly recommended. Provided that the optimum yield-line pattern already
has been established by the work method, the required computations are remarkably
simple. It should be noted, however, that the equilibrium method is more sensitive
to errors made in assuming the optimum failure mechanisms than the work method.
For some plate problems, the use of the equilibrium method can offer distinct advan-
tages.

ILLUSTRATIVE EXAMPLE I

Let us check the critical load obtained in Illustrative Example I of Sec. 13.2
by the equilibrium method.

Using the energy principle we have previously established (13.2.13),

pcr =
[
M

2.4 + 0.4x + (4.8/x)

3 − (x/3)

]
x=2

= 2.4M. (13.3.6)

Taking moments about the X axis for part �1 , it is found that

−2pu − 4
3pu + (1.6 + 4.8)M + 0.8M(cot β)2 = 0, (13.3.7)



762 Yield-Line Method

where, for x = 2, cot β = x/2 = 1. The last term in Eq. (13.3.7) represents the
moment of nodal forces, N2 (Fig. 13.3.2); hence

pu = 8.0M

3.333
= 2.4M. (13.3.8)

Since the minimization process has yielded an “exact” solution, the same result
is obtained by taking the moments of part �2 about the Y axis. Thus,

− 4
3pu + (3.2 + 1.6)M − 0.8M(cot β)2 = 0; (13.3.9)

hence

pu = 3.2M

1.333
= 2.4M. (13.3.10)

Both solutions agree with the results of the energy method.

ILLUSTRATIVE EXAMPLE II

Let us check the results of the second example presented in the previous section
using the equilibrium method.

Figure 13.3.5 Assumed failure mechanism.

We assume that the yield-line pattern (Fig. 13.3.5a) determined by the energy
method is the optimum. Since only positive yield lines intersect, the moment
equations, taken about the supports of the individual segments, do not con-
tain nodal forces. From the moment equilibrium

(∑
Mx ′ = 0

)
of panel �1

we obtain

2bmu = p�1

u (b − x1)
b

2

b

4
+ p�1

u

(
1

2
x1

b

2

)
b

6
. (13.3.11)

Substituting x1 = 0.45b, the ultimate load from Eq. (7.3.11) becomes

p�1

u = 23mu

b2
. (13.3.12)

This expression is also valid for panel �2 .
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In a similar manner, taking moments for panel �3 about axis Y gives

mu = 1
2 (2p�3

u 0.45 × 0.15b2); (13.3.13)

hence

p�3

u = 29.5mu

b2
. (13.3.14)

The results of these computations indicate that the assumed yield-line pattern
is not quite optimum. Taking the average of these solutions, however, gives

pu ≈ 26.25mu

b2
, (13.3.15)

which compares favorably with the result [Eq. (13.2.20)] obtained by the work
method.

This example illustrates the sensitivity of the equilibrium method to the
exactness of the optimum yield-line pattern.
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13.4 Further Applications of Yield-Line Analysis

a. Approximate Solution for Combined Loadings. Let us assume that the slab
is subjected to p1(x, y), p2(x, y), . . . , pn(x, y) lateral loads of various intensities
acting at various locations. Determination of the optimum yield-line pattern due to
such combined loading is usually a difficult task, even by the simplified trial-and-error
procedure. Fortunately, a simple superposition principle in the form

mu ≤ mu1 + mu2 + · · · + mun (13.4.1)
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Figure 13.4.1 Bounds of multiple loadings.

yields safe results. Equation (13.4.1) states that the moment resistance of the slab
required to carry the combined load is equal to or less than the sum of the ultimate
moments corresponding to p1, p2, . . . , pn loads.

To determine limiting bounds for the critical multiple load, we consider first a
slab subjected to two independent distributed loads, p1(x, y), p2(x, y). Intersections
of the enveloping curve of the critical loads with the coordinate axes are pu1 and
pu2, as shown in Fig. 13.4.1. Hodge [13.1.15] has shown that the bounding curve for
critical loads is always convex. Consequently, using a

p1

pu1
+ p2

pu2
= 1 (13.4.2)

enveloping straight-line (Fig. 13.4.1), safe values for the critical combined loads can
be obtained.

In an analogous manner, the enveloping surface for the critical combined load
when three independent surface loads act simultaneously can be approximated by

p1

pu1
+ p2

pu2
+ p3

pu3
= 1. (13.4.3)

b. Continuous Slabs. Yield-line analysis of slabs continuous over beam supports
is of considerable practical interest. Let us assume, first, that the supporting beams are
sufficiently strong to carry the critical slab loads without developing plastic hinges.
This case involves merely the study of independent slab failures. When on each panel
dead and live loads are acting simultaneously, the collapse mechanism of the indi-
vidual slabs is similar to the one shown in Fig. 13.1.5. However, by superimposing
on the dead load a checkerboard-type live loading, a different yield-line pattern, as
shown in Fig. 13.4.2, can be obtained. This failure mechanism should be used to
determine the cutoff points (ξa andξb) for top bars of RC two-way slabs. Craemer
[13.4.4] has derived the following equation for the parameter ξ :

4ξ 3 − 6ξ 2 + (1 + 2δ)ξ − 3δ = 0, (13.4.4)

where

δ = µ1mu + µ3mu

pDLb2
+ µ2mu + µ4mu

pDLa2
. (13.4.5)
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Figure 13.4.2 Yield-line pattern of continuous two-way slab (live load on alternative panels).

A usable approximate value for ξ is

ξ ≈ 1

2 + (1/δ)
. (13.4.6)

A considerable simplification in the yield-line analysis of continuous two-way
slabs is due to Ingerslev and Johansen [13.1.1], who developed simple formulas
based on reduced spans ar and br , respectively. The critical load of an interior panel
is computed from an equivalent simply supported slab having reduced span lengths.
Johansen’s simplified formula gives

pu ≈ 8mu[1 + (ar/br) + (br/ar )]

arbr

, (13.4.7)

where

ar = 2a√
1 + µ2 + √

1 + µ4
and br = 2b√

1 + µ1 + √
1 + µ3

. (13.4.8)

In these expressions, µi is, again, defined as the ratio of the negative moment
capacity of the slab to the positive moment resistance (m′

ui = −µimu), as shown
in Fig. 13.1.5a. By assigning zero degree of restraint (µi = 0) to any support, the
validity of this simplified equation (13.4.7) can be extended to cover other boundary
conditions.

The required negative moments of resistance computed from the adjoining pan-
els (using the method described above) may differ at the mutual edges. When the
discrepancy is small, averaging yields satisfactory results. In the case of significant
differences, however, one-step moment distribution should be applied to distribute
the unbalanced moments above the supports. To calculate the pertinent distribution
factors, the reader is referred to the tables given in Sec. 12.4. Since the total moment
resistance of the panel must remain the same, the positive moments should be adjusted
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Figure 13.4.3 Combined beam and slab failures.

by moving the baseline of the moment diagrams for each span. Such a correction is
required only when the spans of the adjacent panels differ significantly.

The study of the combined collapse of beams and slabs is more complex, since
in this case the location of plastic hinges of the edge beams considerably influences
the location of yield lines in the slab. Some possible yield-line patterns for combined
slab and beam failures are shown in Fig. 13.4.3. For further study of this subject, the
reader is referred to the pertinent literature [13.1.7, 13.1.9].

c. Affine Transformation of Certain Orthotropic Slabs. In RC slabs, the rein-
forcement is usually different in the X and Y directions. If the ratio of the negative
moment resistance of the slab to the positive moment resistance is the same in both
directions, then the orthotropic slab can be substituted by an equivalent isotropic slab
by a simple transformation. This transformation is based on the factor of orthotropy
λ, which is defined by

λ = mux

muy

. (13.4.9)

The following transformation rules can easily be verified by the energy principle of
the work method [13.1.10]:

Orthotropic slab Equivalent isotropic slab

x = ξ

y = η = y/
√

λ

a = a′

b = b′ = b/
√

λ

pu(x, y)(distributed) = pu(ξ, η)

Pu(concentrated) = Pu/
√

λ

pu(line) = pu/
√

λ cos2 ω + sin2 ω

(13.4.10)
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Here ω is the angle between the line along which the load acts and the X axis,
measured in the clockwise direction.

ILLUSTRATIVE EXAMPLE

Let us check the elastic design of the two-way slab floor system used as the
Illustrative Example in Sec. 12.2 by the yield-line method. Again, we assume
that the supports are unyielding and the slab is isotropic.

Figure 13.4.4 Interior and corner panels of RC floor slab.

Interior Panel �6 (Fig. 13.4.4a). To determine the degrees of restraint µi ,
we use the pertinent ratios of elastic moments. Thus, the following degrees of
restraint are obtained:

µ1 = |My |
my

= 14.915

7.432
≈ 2.00, µ2 = |M II

x |
my

= 8.380

7.432
≈ 1.13,

µ3 = |My |
my

= 14.915

7.432
≈ 2.00, µ4 = |M II

y |
my

= 10.056

7.432
≈ 1.35.

(13.4.11)

Using Eq. (13.4.8), the reduced spans are

ar = 2a√
1 + µ2 + √

1 + µ4
= 2 × 6.71√

1 + 1.3 + √
1 + 1.35

= 4.49 m,

br = 2b√
1 + µ1 + √

1 + µ3
= 2 × 5.49√

1 + 2.0 + √
1 + 2.0

= 3.17 m.

(13.4.12)

From Eq. (13.4.7) we obtain the required moment capacity of the slab:

mu = p0arbr

8[1 + (ar/br ) + (br/ar)]

= 7.182 × 4.49 × 3.17

8[1 + (4.49/3.17) + (3.17/4.49)]
= 4.082 kN-m/m, (13.4.13)
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By equating the areas of the rectangular and parabolic moment diagrams,
we obtain

+mu,max = 3

2
mu

1

0.8
= 7.654 kN-m/m. (13.4.14)

The required negative moments of resistance are calculated from m′
ui = −µimu.

The comparable maximum values are 1.5µ′
ui . This multiplication factor is

obtained by assuming that the elastic moment diagram is parabolic. Thus, the
negative moments above the supports are

m′
u1 = −µ1mu = −2.0 × 4.082 = −8,165 kN-m/m, m1,max = −1.5 × 8.165 = −12.247,

m′
u2 = −µ2mu = −1.13 × 4.082 = −4.613 kN-m/m, m2,max = −1.5 × 4.613 = −6.92,

m′
u3 = −µ3mu = −2.0 × 4.082 = −8.165 kN-m/m, m3,max = −1.5 × 8.165 = −12.247,

m′
u4 = −µ4mu = −1.35 × 4.082 = −5.511 kN-m/m, m4,max = −1.5 × 5.511 = −8.267.

(13.4.15)
Corner Panel �4 (Fig 13.4.4b). Based on the elastic analysis, the assumed

degrees of restraint are

µ1 = µ4 = 0, µ2 = |Mx |
my

= 10.06

9.308
≈ 1.08, µ3 = |My |

my

≈ 1.6.

(13.4.16)

Thus, for the reduced spans we obtain

ar = 2a√
1 + µ2 + √

1 + µ4
= 2 × 6.71√

1 + 1.08 + 1.0
= 5.49 m,

br = 2b√
1 + µ1 + √

1 + µ3
= 2 × 5.49

1 + √
1 + 1.6

= 4.20 m.

(13.4.17)

The required positive moment of resistance of the exterior panel is

mu = p0arbr

8[1 + (ar/br) + (br/ar)]

= 7.182 × 5.49 × 4.20

8[1 + (5.49/4.2) + (4.2/5.49)]
= 6.732 kN-m/m, (13.4.18)

By equating the corresponding moment areas, the maximum positive moment
becomes

+ mmax = 3

2
mu

1

0.95
= 10.629 kN-m/m. (13.4.19)

For the negative moments we obtain

m′
u2 = −µ2mu = −1.08 × 6.732 = −7.27 kN-m/m, m2,max = −1.5 × 7.27 = −10.905,

m′
u3 = −µ3mu = −10.771 kN-m/m, m3,max = −1.5 × 10.771 = −16.156.

(13.4.20)
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In Table 13.4.1 we compare the results obtained with those of the elastic analy-
sis based on the Marcus-Löser approximation (Sec. 12.2). Although these two
engineering methods for designing continuous floor slabs are fundamentally
different, relatively good agreement was achieved. However, by averaging the
resulting values, even more reliable design moments can be obtained.

Table 13.4.1 Comparison of Results

Panel Moment Marcus Yield Line Discrepancy (%) Average

�6 +my,max 7.432 7.654 3.0 7.543

−M I
x,max −10.056 −8.267 17.8 −9.162

−M II
x,max −8.380 −6.920 17.4 −7.65

−My,max −14.914 −12.247 17.9 −13.580

�4 +my,max 9.308 10.629 14.2 9.968

−Mx,max −10.056 −10.905 8.5 −10.480

−My,max −14.914 −16.156 8.3 −15.535
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13.5 Yield Lines due to Concentrated Loads

a. Point Load. Before we discuss the yield-line analysis of slabs subjected to con-
centrated loads, the reader’s attention is called to the problem of punching shear.
Quite often the punching shear strength, rather than the moment resistance, limits the
load-carrying capacity of point-supported slabs. Although the theoretical solution of
the problem is quite complex, the following simple formula gives satisfactory results
for interior point loads or column supports.

For concentrated loads distributed on a small circular area, the punching shear can
be estimated from

τ ≈ P

π(d + h)h
, (13.5.1a)

which should be less than the allowable value of shear, τallowable, given in the pertinent
specifications. In this expression, d is the diameter of the small circular area upon
which the load is distributed and h represents the thickness of the slab. Similarly,
when the concentrated load is distributed over a small square area, we require that

P

4(d + h)h
≤ τallowable. (13.5.1b)

The use of these expressions can be logically extended to point loads acting at the
edge of the slab. Codes and specifications for reinforced- and prestressed-concrete
slabs contain safe recommendations to prevent failures due to punching shear; thus,
they should always be consulted in actual design work.

Failure under a concentrated load is a localized slab collapse [13.5.1]. Positive
yield lines radiate straight from the point of application of the concentrated load
until they intersect with a curved, negative yield line (Fig. 13.5.1a), which bounds

Figure 13.5.1 Localized failure under concentrated load.
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the conical failure mechanism [13.5.2]. Such a collapse mode is called a fan in the
pertinent literature [13.1.7].

Using a convenient polar coordinate system, as shown in Fig. 13.5.1b, the work
of the internal forces is obtained from

Wi =
∫ ϕ1

ϕ2

(mu + m′
u)

�

r
r dϕ, (13.5.2)

which, using � = 1 and a complete circle,† becomes

Wi = 2π(1 + µ)mu. (13.5.3)

Since the work of the concentrated force is

We = Pu� = Pu, (13.5.4)

the critical concentrated load for an isotropic slab can be expressed by

Pu = 2π(1 + µ)mu. (13.5.5)

This result is independent of the radius of a circle, provided that the load is a real
point load. The only requirement is that the failure mechanism should be within the
boundary of the slab, as shown in Fig. 13.5.1a.

The yield-line pattern is somewhat more complicated when the concentrated load
is applied near a simply supported edge, as shown in Fig. 13.5.2. In this case, the
work equation becomes

Pu = (mu + m′
u)

∫ 2π−α

α

dϕ + mu2d tan α
1

d
= 0, (13.5.6)

Figure 13.5.2 Failure pattern due to concentrated load near simply supported edge.

† Although other noncircular fans such as logarithmic spirals are possible, the assumption of circular
fans yields safe results [13.1.7].
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or

Pu = (mu + m′
u)(2π − 2α) + 2mu tan α. (13.5.7)

Differentiating this expression with respect to the parameter α, we obtain

dPu

dα
= −2(mu + m′

u) + 2mu sec2 α = 0; (13.5.8)

hence

tan α =
√

m′
u

mu

. (13.5.9)

Yield-line patterns of narrow bridge deck slabs are characterized by the appearance
of two separate fans (Fig. 13.5.3a). The work equation in this case becomes

Pu = 2mu(1 + µ)(π − α1 − α2) + 2mu tan α1 + 2mu tan α2, (13.5.10)

which can best be minimized by the trial-and-error procedure described in Sec. 3.2. A
straight-line approximation of the two-fan collapse pattern, as shown in Fig. 13.5.3b,
gives a somewhat lower, thus safer, ultimate load. Similar straight-line failure patterns
(Fig. 13.5.4) can yield very good approximations, provided that they are used to
substitute more complex fan-type failure mechanisms. Various yield-line patterns
due to point loads acting on slabs of different shape and boundary conditions are
described in Refs. [13.1.7], [13.1.9] and [13.1.10].

When the equilibrium method is used, the nodal forces per unit length along the
circular bounding yield line can be calculated from

n = mu + m′
u

r
. (13.5.11)

Figure 13.5.3 Actual and simplified yield-line patterns due to concentrated load.
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Figure 13.5.4 Yield lines due to concentrated load on free-edge.

For multiple loadings consisting of distributed and concentrated forces, Johansen’s
principle of superposition [Eq. 13.4.1)] is still applicable. In practice, however, dis-
tributed loads are usually large in relation to the concentrated forces; thus, most of
the foregoing discussion is of rather academic interest. An exception in this respect
is the wheel load acting on bridge deck slabs.

b. Point (Column) Support. Point supports can be considered as special cases
of point loadings. When the slab is supported only by columns without beams in
the regions of the concentrated reactions, an inverted fan-type failure mechanism
can form. The first trial for the optimum collapse mode should follow the yield
lines shown in Fig. 13.5.5a. To guard against local failures, however, an alternative
collapse mode consisting of fan-type yield-line patterns (Fig. 13.5.5b) must also be
considered. This alternative failure mode may govern in certain cases.

The most often encountered point support conditions in civil and architectural
engineering are the flat-plate and flat-slab floors introduced in Sec. 10.6. In the ulti-
mate load analysis of flat plates, three yield-line patterns should be considered. The
simplest consists of one-way collapse modes (Fig. 13.5.6a), either in the X or Y

direction. Investigating the one-way collapse of a continuous slab subjected to uni-
formly distributed lateral load (Fig. 13.5.7), the equilibrium equations for the two
plate segments can be written as

mu + m′
u1 = 1

2pux
2 and mu + m′

u2 = 1
2pu(1 − x)2. (13.5.12)

Figure 13.5.5 Straight-line and conical collapse modes.
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Figure 13.5.6 Collapse modes of flat plates.

Figure 13.5.7 One-way collapse mode of continuous slab.
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Introducing the following factors of restraint,†

µ1 = m′
u1

mu

and µ2 = m′
u2

mu

, (13.5.13)

we solve the two equations (13.5.12) for x; then the critical load is obtained from
either of these equations. Thus

pu = 2mu

l2

(√
1 + µ1 + √

1 + µ2

)2
, (13.5.14)

which for µ1 = µ2 = µ becomes

pu = 8mu(1 + µ)

l2
; (13.5.15)

hence

mu = pul
2

8(1 + µ)
. (13.5.16)

For simultaneous two-way collapse, the same yield-line pattern turned 90◦ is superim-
posed on the yield lines of the one-way failure, as shown in Fig. 13.5.6b. The critical
load, however, remains unchanged (13.5.14) because of the right angle between these
yield lines.

Considering the alternative yield-line pattern, consisting of inverted fans
(Fig. 13.5.6c), we assume that the shaded part of one panel (lx × εly) is dropped with
� = 1 displacement (Fig. 13.5.6d); consequently, the work of the external forces for
one panel is

We = pu(l
2
xε − πr2 + 1

3 2πr2) = pu(l
2
xε − 1

3πr2), (13.5.17)

while the work of the internal forces within the fans can be computed from

Wi = 2πmu(1 + µ). (13.5.18)

Thus, the energy equation (We = Wi) gives

pu = 2πmu(1 + µ)

l2
xε − (πr2/3)

= 2πmu(1 + µ)

l2
x [ε − (π/3)(r2/l2

x)]
. (13.5.19)

To find the critical radius of fans at which two-way and conical collapse modes
appear simultaneously, we equate Eqs. (13.5.15) and (13.5.19), so that

8mu(1 + µ)

l2
x

= 2πmu(1 + µ)

l2
x [ε − (π/3)(r2/l2

x)]
, (13.5.20)

† Recommended µ values are 1.0–1.5.
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or

8 = 2π

ε − (π/3)(r2/l2
x)

; (13.5.21)

hence

r

lx
=

√
3ε

π
− 3

4
. (13.5.22)

This result indicates that in the case of square panels (ε = 1) the critical radius is r ≈
0.45lx . On the other hand, if ε < 0.785, no conical collapse mode is possible [13.1.7].

The results obtained for flat plates can be used for flat slabs by introducing

l′x = lx − 2cx and l′y = ly − 2cy (13.5.23)

equivalent interior span lengths. Similarly, for exterior panels the equivalent spans
are

l′x = lx − cx and l′y = ly − cy. (13.5.24)

In these expressions the value of c, called effective support size, depends on the type
of column flare, as illustrated in Fig. 12.6.5. The yield-line pattern of a correctly
designed flat slab is shown in Fig. 13.5.8.

Sawczuk [13.1.9] has derived expressions for moment resistance of flat slabs con-
sidering various ratios of restraint.

Equation (13.5.15) states only that the external load is counteracted by the internal
moments of resistance developed at the yield lines but does not give information
on the variation of moments under the service load. Based on analytical and exper-
imental investigations [13.5.3–13.5.10], the positive and negative panel moments

Figure 13.5.8 Yield-line pattern of typical interior panels of flat slabs.
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(M = mul, M ′ = m′
ul) can be distributed as shown in Fig. 12.6.3. This distribution

approximately follows the variation of moments under service loads and thus reduces
the permanent deflection of the flat slab. The panels are divided into middle and col-
umn strips, and constant moments throughout each strip are assumed. When checking
elastic design by yield-line analysis, the calculated moment areas should approx-
imately add up to the total panel moments (M + M ′). The method given here is
generally valid and can be used for checking most plate designs based on elastic
theory. When yield-line analysis is used for flat slabs, the reader is urged to consult
the pertinent specifications. Finally, it should be mentioned that the desirable ratio of
positive to negative moments of resistance is µ = 1–1.5.

Summary. Collapse mechanisms due to heavily concentrated loads (or reactions)
are more complicated than those formed under distributed loads. The assumption
that the collapse mode of isotropic slabs subjected to point load is conical (circular
fan) yields safe results. The recommended analytical procedure is the work method
coupled with a trial-and-error procedure. The computation can be simplified by using
polygonal yield lines instead of curved ones. For multiple loadings, Johansen’s super-
position principle is applicable. Fan-type collapse modes are likely to occur under
the following conditions [13.1.7]:

1. under large point loads,

2. under heavily concentrated reactions (point supports),

3. with slabs subjected to distributed loads having acute angled corners† and

4. with free-edges.

ILLUSTRATIVE EXAMPLE I

A point load is applied at the corner of a cantilever slab, shown in Fig. 13.5.9.
Determine its ultimate load-carrying capacity, assuming a localized failure.

Figure 13.5.9 Concentrated load at corner of cantilever plate.

† Although the assumption of corner fans gives better results, the use of straight-line collapse modes
is acceptable.



778 Yield-Line Method

Since in the vicinity of the load the edges are free, limited fans similar to those
shown in Fig. 13.5.4, are postulated. The energy equation gives

Pu = mu(1 + µ)
(π

2
− 2α

)
+ 2µmu tan α. (13.5.25)

The only variable in this expression is the angle α. By minimizing Eq. 13.5.25,
we obtain

dPu

dα
= 0 = −2mu(1 + µ) + 2µmu sec2 α; (13.5.26)

hence tan α = √
µ; thus the critical load is

Pu = 2mu

√
µ + mu(1 + µ)

(
π

2
− 2 tan−1

√
1

µ

)
. (13.5.27)

Investigating the results, we can conclude that the load-carrying capacity of
the slab depends on the ratio of its positive and negative moments of resistance.
It should be noted that the use of Eq. (13.5.27) can be extended to the case of
free-edges supported by columns (Fig. 13.5.5b).

ILLUSTRATIVE EXAMPLE II

A flat-slab floor system with drop panels consists of 5 × 5 bays. Spans between
the supporting columns are lx = ly = 5.00 m. The thickness of the slab and
drop panel is h = 0.13 m. Dimensions of the square columns are given in
Fig. 13.5.10. The floor carries a total load p = 10.12 kN/m2. An equivalent
frame analysis gives the following moments for an interior column row:

MAB = −80.33 kN-m, MCD = −104.85 kN-m,

mAB = +60.25 kN-m, mCD = +53.27. kN-m, (13.5.28)

MBA = −115.40 kN-m MDC = −104.85 kN-m.

Let us check these moments by the yield-line method. For the ratios of neg-
ative moments to positive moments, µ, we may use the moments given above.

a. Interior Panel. For a typical interior panel a simple one-way collapse mech-
anism (Fig. 13.5.11a) is assumed. Using the equilibrium approach, with µ1 =
µ2 = 10.48/53.27 ≈ 1.97 we obtain the following positive ultimate moment per
unit length:

mu = pl2

2(
√

1 + µ1 + √
1 + µ2)2

= 10.12 × 5.002

2(2
√

2.97)2
= 10.65 kN-m/m.

(13.5.29)

The corresponding negative moments are calculated from

m′
u1 = m′

u2 = −µ1mu = −µ2mu = −1.97 × 10.65 = −20.98 kN-m/m.

(13.5.30)
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A B C D

5.00 m 5.00 m 2.50 m 2.50 m

3.
00

 m
3.

00
 m

All columns: 0.45 m × 0.45 m

Figure 13.5.10 Equivalent frame representation of flat-slab floor system.

However, to be able to compare these values with those given in Eq. (13.5.28),
we must multiply them by the span length ly = 1. This gives

MCD = MDC = m′
u1l = −20.98 × 5.00 = −104.9 kN-m,

mCD = mul = 10.65 × 5.00 = +53.25 kN-m. (13.5.31)

A comparison of Eq. (13.5.31) with Eq. (13.5.28) indicates only insignificant
discrepancies.

b. Edge Panel. We select again a typical one-way collapse mechanism, as
shown in Fig. 13.5.11b. The required degrees of restraint are calculated from
the corresponding moments given in Eq. (13.5.28). Thus

µ1 = 80.33

60.25
≈ 1.33 and µ2 = 115.40

60.25
≈ 1.92. (13.5.32)

The equilibrium approach yields the following positive ultimate moment:

mui = pl2

2(
√

1 + µ1 + √
1 + µ2)2

= 10.12 × 5.002

2(
√

2.33 + √
2.92)2

= 12.09 kN-m/m.

(13.5.33)

The corresponding negative moments per unit length are

m′
u1 = −µ1mu1 = −16.08 kN-m/m and

m′
u2 = −µ2mu2 = −23.21 kN-m/m. (13.5.34)

Again, we must multiply these results by the span length to obtain

MAB = mu1l = −16.08 × 5.00 = −80.4 kN-m,

MBA = −mu2l = −23.21 × 5.00 = −116.05 kN-m,

mAB = mul = 12.09 × 5.00 = +60.05 kN-m. (13.5.35)
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X

Y

C D

m′u1 m′u2

lx/2 = 2.5 m

ly = 5.00 m
mu

x

Negative yield line

Positive yield line

(a) Interior panel

A B

m′u1 m′u2 ly = 5.00 mmu

(b) Edge panel

Figure 13.5.11 Assumed collapse patterns.

Again, by comparing these values with those given in the first column of
Eq. (13.5.28), we can state that remarkable good agreement has been achieved
between the results of the equivalent frame analysis and those of the yield-line
method. Yield-line analysis of the corner panel, however, requires more effort,
since its collapse pattern is more complex.
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13.6 Summary and Conclusions

Since stress analysis based on classical elastic theory fails to assess the real load-
carrying capacity of structures, there is an increasing tendency to design structures by
the limit analysis procedure. Yield-line analysis provides such an alternative design
method for plates.

This remarkably simple method, which uses concepts and techniques familiar to
structural engineers, furnishes realistic upper bounds of collapse loads even for arbi-
trary shape, boundary and loading conditions. Although the yield-line method was
primarily developed for the design of RC slabs, its basic principles are generally
applicable for the analysis of plates, provided that the plate material has the ability to
deform plastically and that its stress-strain behavior can be reasonably well approxi-
mated by Johansen’s rigid ideally plastic yield criterion. With the exception of certain
troublesome boundary conditions and load combinations, such as concentrated loads
and fixed boundaries, the yield-line analysis also furnishes usable estimates of the
failure loads for bending of metal plates.

The accuracy of this simplified limit design method, when applied to RC slabs,
as demonstrated by numerous independent tests, is good, provided that the proper
failure mechanism has been assumed. With some experience, the assumption of the
critical failure pattern is relatively simple. The same can be stated for the required
computational work, especially if an iterative technique rather than an analytical min-
imization process is used to obtain the lowest mode of collapse. Using a trial-and-error
procedure, the optimum failure pattern and the critical load can easily be determined.
This procedure in combination with the energy method yields acceptable estimates
in all circumstances. While the energy method is not sensitive to the assumed yield-
line pattern, the work method really shows how well the optimum yield-line pattern
has been determined. Since the equilibrium equations of the individual parts should
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give the same critical load, the results are acceptable only if these values are suffi-
ciently close. It is recommended that the results obtained from the energy equation
be checked by the equilibrium method.

The advantages of the yield-line method are as follows:

1. The method is simple and economical.
2. Information is provided on the real load-carrying capacity of the slab.
3. For RC slabs close agreement is obtained between experimental and analyti-

cal results.
4. The basic principles used are familiar to structural engineers; furthermore, it

applies procedures that can be easily visualized. Consequently, in the hands of
an experienced structural engineer, the yield-line method always yields usable
results irrespective of the complexity of the problem.

5. The method also gives acceptable estimates for the ultimate load-carrying
capacity of structural steel plates.

6. Resulting designs are often more economical.

The present limitations of the method are as follows:

1. Since the total ultimate load-carrying capacity of the plate is obtained, the
results cannot be applied directly to design.

2. Maximum deflections, which might control the design, can be estimated only
via crude approximations.

3. The method fails in vibration analysis and cannot be used in the case of
repeated static or dynamic loads (but can be applied effectively for suddenly
applied one-time loads).

4. Theoretically, the law of superposition is not valid.

Although the yield-line method is not yet fully developed, it offers, especially for
the practicing engineer, certain advantages over the elastic stress analysis approaches.
Recently, one of the most important applications of this simple technique concerns the
computerized solutions of complex plate problems; that is, it offers quick independent
checks for computer results.

Problems†

13.2.1. Using the work approach of the yield-line method, determine the ulti-
mate load capacity of a simply supported square plate subjected to hydro-
static pressure.

13.2.2. Solve problem 13.2.1 but this time assume clamped boundary conditions.
13.2.3. An L-shaped RC slab carries a uniformly distributed load p. Determine

the lowest upper-bound solution of the critical load by the work method.
The outside dimensions of the L shape is 3a × 3a, where a represents

† The first two numbers refer to the corresponding section.
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dimensions of the square panels. Assume that the outside boundaries are
simply supported.

13.3.1–13.3.3. Check the results obtained for problems 13.2.1–13.2.3 by the equi-
librium approach of the yield-line method.

13.4.1. Check the moments listed in Tables 12.5.2 and 12.5.3 by using the equilib-
rium approach of the yield-line method.

13.4.2. Assume that all panels of the RC continuous slab shown in Fig. 12.3.8 carry
uniformly distributed loads. Determine the critical loads for each panel by
the yield-line method. Elastic properties of the slab are given in Illustrative
Example I in Sec. 12.3.

13.4.3. Assume that the RC floor system treated in Illustrative Example II
of Sec. 13.5 has nonyielding continuous supports instead of supporting
columns. Design this floor system using the yield-line method. To estimate
the corresponding degrees of restraint µi , use the engineering method
discussed in Sec. 12.5.

13.4.4. Check the results obtained in Illustrative Example II in Sec. 12.3 by the
yield-line method.

13.5.1. Using the work approach of the yield-line method, verify the results of
Illustrative Example II in Sec. 13.5.

13.5.2. Prove that all yield-line patterns shown in Fig. 13.5.6 give identical results
for the interior panel in Illustrative Example II in Sec. 13.5. Use the equi-
librium approach.

13.5.3. Redo problem 13.5.2 using the work method.
13.5.4. A hexagonal RC slab with fixed boundaries is subjected to a uniformly

distributed load plus a point load acting at its center. Determine the required
moment resistance.

13.5.5. Check the results obtained for problem 12.6.1 using the yield-line method.
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14
Classical and Energy
Methods in Dynamic
Analysis

14.1 Introduction to Structural Dynamics

a. General Concepts. All loads considered in the preceding chapters have been
static. In engineering practice, however, plate problems often involve consideration of
dynamic disturbances produced by time-dependent external forces or displacements.
Dynamic loads may be created by, for example, moving vehicles, wind gusts, seis-
mic disturbances, unbalanced machines, wave impacts, flight loads, shock or blast and
sound. Structural dynamics deals with time-dependent motions of structures and ana-
lyzes the internal forces associated with them. Thus, its objective is to determine the
effect of vibrations on the performance of the structure. Vibrations of a plate bridge,
for instance, may be objectionable or even critical, while vibrations of a membrane
may be necessary to the performance of its task.

Since the reader is not assumed to have any prior knowledge of structural dynam-
ics, we shall treat here, in a condensed form, the fundamental concepts of dynamic
analysis. For this purpose, let us introduce a single-DOF system, shown in Fig. 4.1.1.
Understanding the dynamic behavior of this simple system is essential for later treat-
ment of more advanced topics. Furthermore, simple structures, such as beams and
plates can be idealized by introducing equivalent single-DOF systems [4.1.2]. Com-
ponents of such dynamic systems are a mass m, a spring with spring constant k and
a time-dependent excitation P (t). This system has one degree of freedom, since only
one coordinate, x, is required to define the position of the mass at a given time t .

Let us first define the two parameters m and k, which are invariant with time and
represent the given dynamic characteristics of the vibrating system. The mass m is
defined by Newton’s law, which states that the product of mass and its acceleration
equals the force applied to the mass. Consequently, we can write

P = m
d2x

dt2
and m = P

ẍ
. (14.1.1)
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Figure 14.1.1 Free vibration of spring-mass system.

The weightless spring produces spring forces only when it is deformed. In the
vibration of elastic systems we deal with linear springs, and their spring constant
k represents the force required to produce unit deformation. Such a system is called
a linear system for which the important principle of superposition is valid.

The time-dependent force P (t) acting on the mass can be harmonic, such as P(t) =
P0 sin pt , producing steady-state vibration. Suddenly applied loads, or forces acting
on the system for short duration, are called transient forces. Vibrations in a system
may also be produced by harmonic or transient motion of the support. For simplicity,
we assume that there is no damping; its effect on the vibration will be considered
later.†

In a vibrating system a new form of energy, corresponding to the velocity‡ (v = ẋ)

of the mass, is also present. This so-called kinetic energy (T ) is computed from
the work done by the inertia force. The product of the force (P = mẍ) and the

† See Sec. 15.3.
‡ Dots indicate differentiation with respect to time.
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corresponding displacement component (dx = v dt) yields the kinetic energy density:

dT = P dx = m

(
dv

dt

)
(v dt) = mv dv. (14.1.2)

By integrating this expression, we obtain the kinetic energy:

T = m

∫ v

v=0
v dv = 1

2
mv2 = 1

2
m(ẋ)2. (14.1.3)

Hence, the total potential of the undamped vibrating system is

� = U + V + T . (14.1.4)

Since � remains constant with time, the undamped vibrating system is said to be
conservative. The energy enters into the system through external excitation. The
energy approach is of great value in the dynamic analysis of more complicated
systems and will be discussed in greater detail in Sec. 14.5.

b. Equation of Motion. The general equation of motion is derived by applying
d’Alembert’s dynamic equilibrium principle. Since we measure the displacement x

from the static equilibrium position of the system, the effect of gravity (weight) need
not be included, because it is counteracted by the spring force (Fig. 14.1.1a). If we
displace the mass from its equilibrium position by applying a force P (t), then the
spring force −kx tends to return it to its equilibrium position. The inertia force mẍ

also acts against the dynamic force. Thus, the summation of all forces yields

P(t) − kx − mẍ = 0, (14.1.5)

or

mẍ + kx = P(t), (14.1.5a)

which represents the general equation of forced motion. If the disturbing force P (t)
is zero, we obtain the equation of free vibration of the single-DOF system; therefore

mẍ + kx = 0. (14.1.6)

Free vibration of a dynamic system is produced by introducing an initial velocity or
displacement into the system; thereafter, however, no disturbance is applied to it.

In Eq. (14.1.6) we have a linear homogeneous differential equation of second order
that can be solved by the usual mathematical procedures. In this particular case,
however, Eq. (14.1.6) can be solved easily, since certain trigonometric functions,
such as sine and cosine, satisfy the differential equation. Thus, let us assume a simple
harmonic motion in the form

x = X0 sin ωt. (14.1.7)
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Substitution of this expression into Eq. (14.1.6) yields

−mX0ω
2 sin ωt + kX0 sin ωt = 0; (14.1.8)

hence

ω2 = k

m
or ω =

√
k

m
. (14.1.9)

The term ω is called the natural circular frequency of the vibration and is custom-
arily measured in radians per second (rad/s). The resulting vibration is represented
graphically in Fig. 14.1.1c.

Equation (14.1.7) represents a simple harmonic vibration, where one cycle has
been completed when the amplitude vector X0 has made one complete revolution.
Thus, the angle of the function ω has varied through 2π radians. Hence, we can write

τ = period of vibration = 2π

ω
(s). (14.1.10)

The natural frequency, which is the reciprocal of the period, is defined as†

f = 1

τ
= ω

2π
(Hz). (14.1.10a)

The natural frequency is often used for appraisal of the dynamic characteristics of
structural elements and complete systems.

A more general form for solution of Eq. (14.1.6) is

x = C1 sin ωt + C2 cos ωt, (14.1.11)

where C1 and C2 are arbitrary constants. These constants can be determined by
specifying the initial conditions.‡ For example, let the mass be pulled down to x = X0

and then released. If the time is measured from the moment of release, then

(x)t=0 = X0 and (ẋ)t=0 = 0. (14.1.12)

Substituting the first condition into (14.1.11), we have

X0 = C1 · 0 + C2 · 1 or C2 = X0. (14.1.13)

Differentiating Eq. (14.1.11) and substituting the second initial condition (ẋ = 0) into
the result, we obtain C1 = 0; therefore,

x = X0 cos ωt. (14.1.14)

The vibration so obtained is represented graphically in Fig. 14.1.2.

† The SI unit of natural frequency is the hertz (Hz), which equals one cycle per second.
‡ The initial conditions can also be described by a phase angle α; thus Eq. (14.1.11) becomes x =
X0 sin(ωt ± α). The phase angle α indicates the initial position of the amplitude vector X0.
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Figure 14.1.2 Free vibration with initial condition.

Let us consider, again, the same single-DOF system, as shown in Fig. 14.1.1,
assuming that a harmonic force P (t) is acting upon the mass; consequently, energy
is being added to the system at all times, producing a forced vibration. We can write
the differential equation of forced vibration as

mẍ + kx = P0 sin pt, (14.1.15)

where p is the frequency (in radians per second) of the simple harmonic disturbance.
The theory of differential equations states that the general solution of this type of

equation is the sum of the homogeneous solution and a particular solution. Conse-
quently, the general solution is

x = xH + xP . (14.1.16)

We already have the first part of the solution, xH , since the homogeneous form of
Eq. (14.1.15) represents the differential equation of the free vibration (14.1.6). The
particular solution, xP , is obtained by applying Navier’s method to this problem;
thus, we express the particular solution in a form similar to the disturbing force:

xP = X0 sin pt. (14.1.17)

Substitution of this assumed solution into the differential equation of motion (14.1.15)
yields

−mp2X0 + kX0 = P0; (14.1.18)

hence

X0 = P0

k − mp2
= P0/k

1 − (m/k)p2
= P0/k

1 − (p/ω)2
. (14.1.19)

Therefore, the complete general solution of the equation of undamped forced
motions is

x = C1 sin ωt + C2 cos ωt + P0/k

1 − (p/ω)2
sin pt. (14.1.20)
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This general solution is the sum of harmonic functions having different frequencies
and hence no harmonic function itself. The physical meaning of Eq. (14.1.20) is the
following: The system will tend to vibrate at its natural frequency ω as well as to
follow the frequency of the excitation, p. Since all real structures have some damping,
the free-vibration part slowly dies out, and the system will eventually vibrate with
the frequency of the excitation. This condition is called steady-state vibration.

If the support of the system vibrates up and down, with a motion of xs = S sin ωt ,
then another class of forced-vibration problems is created. Examples of these types of
dynamic excitations are earthquake loads, ground motions due to blast and vibrations
induced by pile driving. The mathematical formulation of the problem is similar to
that discussed for external load. Let us assume that the support is accelerated by ẍs ;
then, the governing differential equation of motion becomes

mẍ + kx = −mẍs(t) = mSω2 sin ωt, (14.1.21)

which is of the same form as Eq. (14.1.15).
Navier’s solution, used for simple harmonic excitation, can easily be extended to

arbitrary periodic forces by expanding the time-dependent function into Fourier sine
or cosine series, as discussed in Appendix A.1. The dynamic response of the system
is then obtained by simple superposition of the results, calculated from the individual
terms of the Fourier expansion.

c. Resonance. Let us consider, again, the forced-vibration part (14.1.17) of the
general solution [Eq. (14.1.20)]. Since the static deflection of the spring under the
constant load P0 is

Xst = P0

k
, (14.1.22)

we can write Eq. (14.1.19) as

X0

Xst
= 1

1 − (p/ω)2
= DLF, (14.1.23)

which is called the dynamic load factor (DLF) and represents the ratio between the
maximum dynamic and static displacements. A static load equivalent to a dynamic
load can be obtained by multiplying the maximum dynamic load intensity by the
dynamic load factor. If the p/ω ratio approaches unity, the amplitude of the forced
motion becomes infinitely large. This condition, which is most feared by structural
engineers, is called resonance.

The resonance diagram of a vibrating system is shown in Fig. 14.1.3. For certain
values of p/ω the amplitude of the forced vibration is negative; however,

−XP sin α = XP sin(α + 180◦
); (14.1.24)

therefore, the negative amplitude is equivalent to the positive amplitude of a sine
wave 180◦ out of phase; hence the negative sign is often disregarded and the res-
onance curve is drawn in the dotted position in Fig. 14.1.3. Three points on the



Introduction to Structural Dynamics 793

C

A

B

7
D

yn
am

ic
 lo

ad
 f

ac
to

r

6

5

4

3

2

1

0

−1

−2

−3

−4
1.0 2.0

p/w

3.0

Figure 14.1.3 Resonance diagram.

diagram are of particular interest. At point A, the frequency of the excitation is very
low; hence the mass is deflected to its static deflection and the ordinate of the curve
approximates unity. At point B, the force varies so fast that the system does not
have time to respond; hence the ordinate approaches zero. At point C, the frequency
of the excitation coincides with the natural circular frequency of the vibrating sys-
tem and the amplitude becomes infinite. This is the case of resonance, mentioned
above.

d. Transient Response. The most convenient treatment of dynamic response of
structural systems to arbitrary excitation is the representation of the forcing function
by a Fourier series, containing only sine or cosine terms.

In the case of suddenly applied loads, however, care should be taken that the
fictitious load (resulting from arbitrary continuation of the forcing function) is applied
to the system with a sufficient time delay so that it will not interfere with its vibration
during the time of interest (Fig. 14.1.4). By expanding the transient disturbance into
sine series, for instance, we have

px(t) =
n∑
1

Pn sin pnt, (14.1.25)

where

pn = 2nπ

T
(14.1.26)

and T = 2L represents the period of the half-range expansion, discussed in
Appendix A.1.



794 Classical and Energy Methods in Dynamic Analysis

Figure 14.1.4 Approximation of transient load by periodic function.

The particular solution in this case is

xP (t) =
n∑
1

Xn sin pnt. (14.1.27)

In this way, again, the differential equation of the problem has been transformed
into an algebraic equation. Additional advantages of the Fourier series representa-
tion of transient load are connected with computerized solutions of forced-vibration
problems.

Another method for evaluating the dynamic response of a single-DOF system is
based on a definite integral. Let us assume that at time t = 0 the mass is not displaced
(x = 0). After applying an impulse I = mv = P�t , the system vibrates freely. At
t = 0, x = 0 and v = I/m, the constants in Eq. (14.1.11) become C1 = v/ω and
C2 = 0, respectively; hence

x = I
mω

sin ωt. (14.1.28)

If the impulse I1 is applied at t = t∗ (Fig. 14.1.5), assuming that until t = t∗ the
mass has been at rest, then

x = I1

mω
sin ω(t − t∗) for t > t∗. (14.1.29)

The increment in displacement due to this impulse can be written as

�x = P(t∗)�t∗

mω
sin ω(t − t∗). (14.1.30)

If we consider that the exciting force P (t) is composed of a large number of impulses,
then by summing up the impulses, the final displacement is obtained:

x = 1

mω

∫ t

0
P(t∗) sin ω(t − t∗) dt∗. (14.1.31)
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Figure 14.1.5 Arbitrary transient load.

Let us multiply and divide the right-hand side of this equation by ω and recall that
P(t∗) = P0f (t∗); then the substitution of Eqs. (14.1.9) and (14.1.22) results in

x = Xst

[
ω

∫ t

0
f (t∗) sin ω(t − t∗) dt∗

]
= Xst(DLF). (14.1.32)

The integral in this equation is known as Duhamel’s integral or convolution inte-
gral.

Even if the forcing function can be integrated, evaluation of Duhamel’s integral
is usually a tedious process. One can, of course, use a computer program with sym-
bolic mathematical capabilities to simplify this problem. In many practical vibration
problems, however, the loading functions are given numerically. Consequently, the
integral in Eq. (14.1.32) must also be evaluated numerically. For this purpose, we
apply the trigonometric identity sin(ωt − ωt∗) = sin ωt cos ωt∗ − cos ωt sin ωt∗ and
write Eq. (14.1.31) in the form

x(t) = sin ωt
1

mω

∫ t

0
P(t∗) cos ωt∗ dt∗ − cos ωt

1

mω

∫ t

0
p(t∗) sin ωt∗ dt∗,

(14.1.31a)
or

x(t) = A(t) sin ωt − B(t) cos ωt, (14.1.31b)

where

A(t) = 1

mω

∫ t

0
P(t∗) cos ωt∗ dt∗ and B(t) = 1

mω

∫ t

0
P(t) sin ωt∗ dt∗.

(14.1.31c)
Since a plate under impact behaves approximately as a single-DOF system, the

above-derived dynamic load factor may be used for simplified dynamic plate analysis,
provided that the plate has neither displacement nor velocity, when the excitation
is applied.

Other methods, such as Laplace transforms and numerical integration† of the
equation of motion, can also be used to calculate the transient responses of structures.

† See Sec. 15.2.3.c.
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These methods, however, are beyond the scope of this introductory treatise; therefore,
they are not discussed here. For further study on the subject the reader is referred to
the pertinent references [14.1.2, 14.1.8].

e. Continuous and Discrete Systems. A structural system is defined as an assem-
blage of components acting together. To describe the static or dynamic response of
structures, we introduce mathematical models. These models, as already introduced
in the static analysis, can be either continuous or discrete. In any case the mathe-
matical model must be chosen so that its behavior closely resembles that of the real
structure. Plates are continua, since their mass and elastic properties are distributed
continuously over their middle surface. Some plate problems can be analyzed as dis-
tributed systems, but in the majority of the cases it is necessary to represent the plate
by an equivalent discrete system, having lumped parameters.

Discrete systems that will satisfactorily represent the dynamic behavior of plates
are finite difference, gridwork, finite strip and finite element representations of the
elastic continua. All these discrete methods have already been introduced for the static
analysis of plates. If we lump the inertia forces at discrete points, these methods can
easily be extended to analysis of complex dynamic plate problems. Since the classical
single-DOF system is basically a discrete system, matrix equations of motion can be
obtained directly from the above-derived equations by introducing matrix notations.
The matrix equation governing free vibrations of a lumped-parameter system, for
instance, can be obtained from Eq. (14.1.6) by applying suitable matrix notation; thus

[m]{ẍ} + [k]{x} = 0. (14.1.33)

In this approach, each lumped mass is assumed to be a rigid body. The discrete
masses are connected by springs that are assumed to have no masses. In this way,
the inertia and stiffness properties are separated.

The behavior of continuous vibratory systems such as plates is described by partial
differential equations. In setting up the governing differential equations of motion,
d’Alembert’s principle is of considerable help, since it states that any dynamic prob-
lem may be treated as a static problem by addition of the appropriate inertia forces.
Consequently, dynamic problems of the plate theory can be reduced to the correspond-
ing static problems; therefore, in the solutions, all previously introduced analytical
and numerical methods can be applied.

The integrals in these equations can be evaluated numerically either by the trape-
zoidal rule or by Simpson’s rule or even using a simple summation technique.

The ratio of duration of time, td , to the natural period of the vibrating system,
T , is a deciding factor for the maximum DLF. Figure 14.1.6 shows the maximum
dynamic response of an undamped single-DOF system to various types of suddenly
applied forces.

f. Equivalent One-DOF System. In a simplified approach to the dynamic analysis
of plates, we may even use equivalent single-DOF systems for response calcula-
tion. This can be accomplished by introducing appropriate transformation factors
that define the equivalent loads, masses and spring factors in terms of those of
the actual system. In determining the dynamic parameters of the equivalent system
(Fig. 14.1.7b), we equate the kinetic and strain energies and the works of the external
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Figure 14.1.7 Actual and substitute vibrating systems.

forces in the real and substitute systems. In these work and energy expressions we
use the static deflections

W(x, y)static = Wmaxφ(x, y) (14.1.34)

due to the dynamic peak load applied statically and make the maximum deflections
of the two systems equal:

xmax = Wmax. (14.1.35)

Furthermore, we assume that the load-time variations in both systems are the same.
From the work of the external forces we obtain

1

2
Pexmax = 1

2
Wmax

∫∫
(A)

φ(x, y)pz(x, y) dA; (14.1.36)

hence

Pe =
∫∫
(A)

φ(x, y)pz(x, y) dA. (14.1.37)

Multiplying the total load PT acting on the plate by the load factor cL, the equivalent
load is obtained. Therefore, the load factor can be determined from

cL = Pe(t)

PT (t)
=

∫∫
(A)

φ(x, y)pz(x, y) dA

∫∫
(A)

pz(x, y) dA

. (14.1.38)

Similarly, by equating the kinetic energies

Te = Treal, (14.1.39)



Introduction to Structural Dynamics 799

or

1

2
me(ẋ)2 = 1

2

∫∫
(A)

m(x, y)(ẇ)2 dA, (14.1.40)

the equivalent mass me is obtained:

me =
∫∫
(A)

m(x, y)φ2(x, y) dA. (14.1.41)

Hence, the mass factor cm is

cm = me

mT

, (14.1.42)

where mT represents the total mass of the plate.
The definition of the equivalent spring factor ck is

ke = ckK, (14.1.43)

where K is the spring constant of the plate, obtained from

K = PT

Wmax
=

∫∫
(A)

pz(x, y) dA

Wmax
. (14.1.44)

Equations (14.1.35), (14.1.43) and (14.1.44) yield

ck = ke

K
= Pe/xmax

PT /Wmax
= Pe

PT

= cL. (14.1.45)

Consequently, we can state that the load and spring factors are the same.
Dynamic reactions of the plate can be approximated by determining the maximum

dynamic displacements using a quasi-static analysis:

(DLF)Wstatic = (DLF)xmaxφ(x, y). (14.1.46)

By substitution of this expression into Eq. (1.3.3), approximate values for the reac-
tions can be obtained.

Summary. By studying vibrations of one-DOF systems, the reader is introduced to
the fundamentals of structural dynamics. Results of the response analysis of one-DOF
systems can be used for the simplified dynamic analysis of plates. This is accom-
plished by employing an idealized vibrating system. The required parameters of such
an equivalent system are obtained from work and energy principles. Fortunately, the
analysis is quite simple and its accuracy is acceptable. The method can be extended
to cover the failure behavior of plates [14.1.14].
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ILLUSTRATIVE EXAMPLE

Determine the required transformation factors for a simply supported square
plate to obtain an equivalent single-DOF system. Assume that the plate is
subjected to a uniformly distributed dynamic load pz = p0θ(t).

Deflections of the plate under the peak load p0 acting statically can be written
in the simplified form

W(x, y)static = Wmax sin
πx

a
sin

πy

a
, (14.1.47)

where Wmax = 0.00406p0a
4/D, determined by Navier’s method.

Equation (14.1.38) yields the load and spring factors:

cL = ck =

∫ a

0

∫ a

0
sin(πx/a) sin(πy/a) dx dy

a2
= 4

π2
≈ 0.406. (14.1.48)

By considering more terms in the expression for deflections, we obtain an
improved value, cL = 0.45, for these factors.

Similarly, the mass factor is calculated from Eq. (14.1.42):

cm = me

mT

=

∫ a

0

∫ a

0
sin2(πx/a) sin2(πy/a) dx dy

a2
≈ 0.25. (14.1.49)

Again, using Eq. (2.2.11) instead of Eq. (14.1.47), we obtain cm = 0.31.
Hence, the dynamic parameters of the equivalent single-DOF systems are

Pe(t) = cLPT (t) = 0.45p0a
2θ(t),

me = cmmT = 0.31ma2, (14.1.50)

ke = ckK = 0.45
D

0.00406a2
.

All further response analysis can be carried out on this equivalent single-DOF
system, as previously described. Let us now check these results by comput-
ing the lowest natural frequency of the plate from the equivalent single-DOF
system. Thus, Eq. (14.1.9) gives

ω1 =
√

ke

me

≈ 18.9

a2

√
D

m
, (14.1.51)

whereas the “exact” value, calculated from Eq. (14.3.8), is

ω11 = 19.73

a2

√
D

m
. (14.1.52)

This shows an acceptable accuracy for most design purposes.
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14.2 Differential Equations of Lateral Motion

In the previous section, we briefly considered the vibration of the classic single-DOF
system and that of systems consisting of discrete masses connected by springs. The
mass was assumed to be a rigid body and the spring was assumed to have no mass;
in other words the inertia and stiffness properties were separated. Now our task is to
describe in mathematical form the governing equations of motion of plates that are
continuous elastic systems. Since usually only the lateral vibration is of interest, we
can reduce the number of degrees of freedom by neglecting the effects of rotational
inertia; therefore, merely the inertia forces, associated with the lateral translation of
the plate, will be considered. Although we can, for all practical purposes, describe the
lateral vibrations of plates even by imposing such hypothetical restraint,† it should be
remembered that certain physical phenomena observed in tests might not be explained
by such a simplified theory. The case with damping is similar. Damping effects are
caused either by internal friction or by the surrounding media. Although structural
damping is theoretically present in all plate vibrations, it has usually little or no effect
on (1) the natural frequencies and (2) the steady-state amplitudes; consequently, it
can be safely ignored in the initial treatment of the problem.

In writing the governing differential equations of motion, basically two approaches
are possible. We may either apply d’Alembert’s dynamic equilibrium principle or
use a work formulation based on the conservation of energy. In the following, the
dynamic equilibrium of a plate element will be used exclusively for writing the
governing differential equations of motions, since it appears to be simpler. The inertia
force associated with the lateral translation of a plate element (Fig. 1.1.2) can be
expressed by

p∗
z = −m

∂2w

∂t2
= −mẅ, (14.2.1)

where m represents the mass‡ of the plate per unit area.
In the dynamic analysis of plates, the lateral loads, and therefore the resulting

deflections, are time dependent. A convenient way for expressing such time depen-
dency is by means of the Fourier series, as discussed in Sec. 14.1. Thus, the forcing
function, for example, can be written as

pz(x, y, t) = pz(x, y)(θt) = pz(x, y)
∑

n

Pn sin pnt. (14.2.2)

Extending the differential equation of static equilibrium (1.2.30) by adding the
inertia force [Eq. (14.1.1)], the differential equation of forced, undamped motion of
plates is obtained:

D∇2∇2w(x, y, t) = pz(x, y, t) − m
∂2w(x, y, t)

∂t2
, (14.2.3)

where x and y are Cartesian coordinates in the plane of the middle surface, as
described in Sec. 1.2.

† An additional restriction is the neglect of the effect of shearing forces.
‡ m = γ h/g = ρh, where γ = specific weight of the material and g = gravitational acceleration.
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For the case of a freely vibrating plate, the external force pz is zero, and the
differential equation of the undamped motion becomes

D∇2∇2w + m
∂2w

∂t2
= 0. (14.2.4)

Assuming a harmonic vibration, we may write

w(x, y, t) = W(x, y) sin ωt, (14.2.5)

where W(x, y) is the shape function describing the modes of the vibration and
ω is the natural circular frequency of the plate. Substitution of Eq. (14.2.5) into
Eq. (14.2.4) gives

∇2∇2W(x, y) − mω2

D
W(x, y) = 0, (14.2.6)

or

∇2∇2W − λ∗W = 0. (14.2.7)

Similarly, the extension of the governing plate equation expressed in polar coordinates
(1.4.11) yields

D∇2
r ∇2

r w(r, ϕ, t) = pz(r, ϕ, t) − m
∂2w(r, ϕ, t)

∂t2
, (14.2.8)

from which the differential equation of free undamped vibration is

D∇2
r ∇2

r w(r, ϕ, t) + m
∂2w(r, ϕ, t)

∂t2
= 0, (14.2.9)

or

∇2
r ∇2

r W(r, ϕ) − λ∗W(r, ϕ) = 0, (14.2.10)

where

λ∗ = mω2

D
. (14.2.11)

If the plate is subjected to simultaneous, static, in-plane loadings (3.3.7), the dif-
ferential equation of lateral motion becomes

D∇2∇2w(x, y, t) = pz(x, y, t) + nx

∂2w

∂x2
+ ny

∂2w

∂y2
+ 2nxy

∂2w

∂x ∂y
− m

∂2w(x, y, t)

∂t2
.

(14.2.12)

In an analogous way, differential equations of motion can be derived for triangular,
oblique and trapezoidal plates [14.2.1]. In all these equations, uniform plate thickness
was assumed. As in the case of static problems, for most boundary conditions and
shapes, “exact” solutions of dynamic plate problems are not available.
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Summary. As in the case of the classic single-DOF system, the differential equations
of motion for plates can be conveniently derived by applying the dynamic equi-
librium principle. The effects of rotatory inertia, shear forces and damping have
been neglected.
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14.3 Free Flexural Vibration of Plates
a. Rectangular Plates. The undamped free flexural vibrations of rectangular plates
are basically boundary value problems of the mathematical physics. Since the solu-
tion in the case of freely vibrating plates reduces to that of homogeneous differential
equations (14.2.4), the methods described in Secs. 2.2 and 2.3 for the solution of the
homogeneous biharmonic equations (∇4w = 0) can logically be extended. As men-
tioned earlier, in Eq. (14.2.4) the effects of the rotational inertia forces are neglected

We investigate the solution of Eq. (14.2.4) in the form

w(x, y, t) = W(x, y) · θ(t), (14.3.1)

where

W(x, y) = X(x) · Y (y) (14.3.2)

represents the shape function of the vibration, while the time dependency of the
displacements, θ(t), are assumed to be harmonic.†

θ(t) = sin ωt or θ(t) = cos ωt. (14.3.3)

The solution w(x, y, t) must satisfy the boundary conditions of the plate and the initial
conditions of the motion at t = 0; these conditions are (w)t=0 and (ẇ)t=0. Let us

† A more general form of the solution can be written as w = (A sin ωt + B cos ωt)W(x, y). The
arbitrary constants A and B are determined from specifying the initial conditions, as described in
Sec. 14.1.
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substitute Eq. (14.3.1) into Eq. (14.2.4), and use primes to denote differentiation with
respect to the independent variables x and y, while dots indicate differentiation with
respect to time; thus, the governing differential equation of free vibration becomes

X′′′′(x) · Y (y) · θ(t) + 2X′′(x) · Y ′′(y) · θ(t) + X(x) · Y ′′′′(y) · θ(t)

+ m

D
X(x) · Y (y) · θ(t) = 0, (14.3.4)

or

X′′′′Y + 2X′′Y ′′ + XY ′′′′ − mω2

D
XY = 0. (14.3.5)

For simply supported boundary conditions, the shape function can be given by double
Fourier series,

W(x, y) = X(x) · Y (y) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b

for m, n = 1, 2, 3, . . . , (14.3.6)

which corresponds to Navier’s solution, discussed in Sec. 2.2. Substitution of Eq.
(14.3.6) into Eq. (14.3.5) gives

m4π4

a4
+ 2

m2π2

a2
· n2π2

b2
+ n4π4

b4
− mω2

D
= 0; (14.3.7)

hence

ωmn = π2

[
m2

a2
+ n2

b2

]√
D

m
, (14.3.8)

where m, n = 1, 2, 3, . . .. The fundamental mode of flexural vibration is a single sine
wave in the X and Y directions, respectively, and the pertinent natural frequency
is associated with m = 1 and n = 1 values. Taking either m or n equal to 2 and
the other equal to 1, the next two higher modes are obtained. Although these two
modes have the same frequencies, the associated mode shapes are different; in such
a case the two vibration modes can be superimposed in any ratio of their maximum
deflections, provided that the a/b ratio is rational. For a simply supported square
plate, for instance, such a combination is

W(x, y) = C1 sin
2πx

a
sin

πy

b
+ C2 sin

πx

a
sin

2πy

b
, (14.3.9)

where C1 and C2 are arbitrary constants. In Fig. 14.3.1 such combined modes are
shown.

Lévy’s type of solution can be applied to plates that are simply supported at two
opposite edges. Assuming that the simple supports are at x = 0 and x = a, the shape
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Figure 14.3.1 Combination of modes.

function takes the form of Eq. (2.3.9):

W(x, y) =
∞∑

m=1

Y (y) sin
mπx

a
. (14.3.10)

Substituting this expression into Eq. (14.3.5) and using a specific value of m yield

m4π4

a4
Y − 2

m2π2

a2
Y ′′ + Y IV − mω2

D
Y = 0. (14.3.11)

The general solution for Y is found to be

Y (y) = C1 cosh αy + C2 sinh αy + C3 cos βy + C4 sin βy, (14.3.12)

where

α =
√

ω

√
m

D
+ m2π2

a2
and β =

√
ω

√
m

D
− m2π2

a2
. (14.3.13)

The constants (C1, C2, C3 and C4) are determined from the boundary conditions
at y = 0 and y = b, as described in Sec. 2.3. The boundary conditions yield the
frequency equation from which ω is determined. The boundary conditions for fixed
edges, for instance, are

(Y )y=0 = C1 + C3 = 0,(
∂Y

∂y

)
y=0

= αC2 + βC4 = 0,

(Y )y=b = C1 cosh αb + C2 sinh αb + C3 cos βb + C4 sin βb = 0,

(14.3.14)

(
∂Y

∂y

)
y=b

= αC1 sinh αb + αC2 cosh αb − βC3 sin βb + βC4 cos βb = 0.

The nodal patterns corresponding to free vibrations of a square plate with fixed
boundaries are shown in Fig. 14.3.2.

Like its static counterpart treated in Sec. 2.3, the free-vibration analysis of rectan-
gular plates by Lévy’s method creates some mathematical difficulties to the analyst in
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Figure 14.3.2 Some nodal patterns of clamped square plates.
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selecting suitable shape functions that simultaneously satisfy the differential equation
of motion and the prescribed boundary conditions. For this reason, the location of
the coordinate system can be important. The reader will note that in the foregoing
discussion we located the origin of our coordinate system, as usual, at the upper left
corner of the plate to determine the fundamental modes of plate vibrations. However,
locating the Y axis along the center of the plate, as shown in Fig. 2.3.1, may offer
certain advantages in dealing with higher mode shapes. That is, by using such a coor-
dinate system, the symmetric and antisymmetric modes of vibration can be uniformly
treated. Gorman [14.3.12] presents a comprehensive study of free-vibration analysis
of rectangular plates by Lévy’s method.

For other than the above-discussed Navier-and Lévy-type boundary conditions, the
exact solution of free vibration creates considerable mathematical difficulties.

b. Circular Plates. The governing differential equation of the undamped, free vibra-
tion of circular plates is Eq. (14.2.9). The solution to this differential equation is
assumed in the form

w(r, ϕ, t) = R(r) · �(ϕ) · θ(t) = R(r) · �(ϕ) · sin ωt, (14.3.15)

Figure 14.3.3 Typical nodal patterns for circular plate.
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where �(ϕ) can be represented by cos mϕ, for instance, where m denotes the number
of nodal diameters. Functions R(r) must satisfy the governing differential equation
(14.2.9) and the boundary conditions.

In the case of the lowest mode, the shape function is symmetric; thus the method
described in Sec. 2.8 can be applied. Modified or hyperbolic Bessel functions [14.3.1,
14.3.2] can also be used to obtain higher modes and pertinent frequencies. The nodal
lines for plates are either concentric circles or diameters, as shown in Fig. 14.3.3. In
the general case, however, the classical approach to the free-vibration problems of
plates leads to such mathematical complexities that solutions cannot be obtained.

Summary. Provided that the boundary conditions permit, we can use either Navier’s
or Lévy’s method for the determination of circular frequencies and modal shapes of
freely vibrating plates. For the other, more general, cases, the classical methods for
determination of plate frequencies and associated vibration modes involve consider-
able mathematical difficulties; thus, from the point of view of practical application,
these methods should be abandoned in favor of numerical or approximate approaches,
treated in Chapters 14 and 15, respectively.

Finally, the reader’s attention should be called to the monograph Vibration of Plates
by Leissa [28, 14.2.8], which contains a wealth of information in readily usable form.

ILLUSTRATIVE EXAMPLE

Determine the natural frequencies and associated modal shapes of a simply
supported rectangular, orthotropic plate of size a × b. Assume that the principal
directions of orthotropy coincide with X and Y coordinate axes, respectively.

The differential equation of motion is obtained by adding the inertia term of
the lateral translation to Eq. (10.1.6) and setting pz = 0. Thus, we can write

Dx

∂4w

∂x4
+ 2B

∂4w

∂x2 ∂y2
+ Dy

∂4w

∂y4
= −m

∂2w

∂t2
. (14.3.16)

For a plate that is simply supported at all four edges, the differential equation
(14.3.16) and the boundary conditions are satisfied by taking the solution in
the form

w(x, y, t) = W(x, y)θ(t) = Wmn sin
mπx

a
sin

nπy

b
sin ωt

for m, n = 1, 2, 3, . . . .

(14.3.17)

Substituting this expression into Eq. (14.3.16), we obtain

Dx

(mπ

a

)4 + 2B

(
mnπ2

ab

)2

+ Dy

(nπ

b

)4 − ω2m = 0; (14.3.18)

hence

ωmn = π2

b2

√
1

m

√
Dx

(
mb

a

)4

+ 2Bn2

(
mb

a

)2

+ Dyn4, (14.3.19)



810 Classical and Energy Methods in Dynamic Analysis

and the corresponding modal shapes are

w(x, y) = Wmn sin
mπx

a
sin

nπy

b
sin ωmnt. (14.3.20)

The lowest circular frequency is obtained by taking m = n = 1:

ω11 = π2

a2

√
1

m

√
Dx

(
b

a

)4

+ 2B

(
b

a

)2

+ Dy. (14.3.21)
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14.4 Free Transverse Vibration of Membranes

a. Rectangular Membranes. The differential equation of motion is obtained from
Eq. (1.7.2) by adding the inertia force pertinent to lateral translation of the membrane.
Thus, we can write

∂2w

∂x2
+ ∂2w

∂y2
= m

σh

∂2w

∂t2
− pz

σh
, (14.4.1)

where m is the mass of the membrane per unit area and σh is the uniform tensile force,
the change of which is assumed to be negligible during the vibration. Furthermore,
as in Sec. 1.7, we assume that the lateral deflections are small.
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When the external excitation pz is zero, Eq. (14.4.1) becomes

∇2w − m

σh

∂2w

∂t2
= 0, (14.4.2)

which represents the differential equation of the free vibration of rectangular
membranes.

We seek the solution of Eq. (14.4.2) in the form

w = w(x, y, t) = W(x, y) · θ(t), (14.4.3)

where W(x, y) is the shape function and θ(t) represents the time dependency of the
free vibration. Assuming, again, a harmonic type of oscillation,

θ(t) = sin ωt, (14.4.4)

and representing the shape function by a double sine series,†

W(x, y) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
, (14.4.5)

the substitution of Eqs. (14.4.3) and (14.4.5) into (14.4.2) yields (for specific m and
n values)

π2m2

a2
+ π2n2

b2
= ω2 m

σh
; (14.4.6)

hence

ωmn = π

√
σh

m

(
m2

a2
+ n2

b2

)
. (14.4.7)

Using m, n = 1, 2, 3, . . ., which represents the number of half-waves in the X and
Y directions, respectively, the circular frequencies pertinent to various modes of free
vibration can easily be calculated.

If the a/b ratio is rational, there is more than one combination of m, n values
for which the circular frequency is the same. In the case of square membranes, for
instance, there is more than one mode of vibration (Fig. 14.4.1) that yields the same
circular frequency. The modes pertinent to the same frequencies can be superimposed
in any ratio of their maximum deflections and are called combined or resultant modes
of free vibration.

In the case of forced vibration, a particular solution of the differential equation
of motion (14.4.1) is obtained by extending Navier’s method.‡ That is, we express
the forcing function pz(x, y, t) and the deflected membrane surface w(x, y, t) in a
trigonometric series of the same type. Since this approach is fundamentally the same
as the one discussed in Sec. 1.5, further treatment of this problem is unnecessary.

† See Sec. 1.7 for a discussion of the boundary conditions.
‡ See Sec. 2.2.
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Figure 14.4.1 Nodal patterns of square membranes pertinent to higher modes.

b. Circular Membranes. By augmenting Eq. (1.7.4) with the inertia term, the gov-
erning differential equation of the forced vibration of circular membranes can be
written as

∂2w

∂r2
+ 1

r2

∂2w

∂ϕ2
+ 1

r

∂w

∂r
= m

σh

∂2w

∂t2
− pz

σh
. (14.4.8)

If pz = 0, the differential equation of the free vibration of membranes, expressed in
polar coordinates, is obtained:

∂2w

∂r2
+ 1

r2

∂2w

∂ϕ2
+ 1

r

∂w

∂r
= m

σh

∂2w

∂t2
. (14.4.9)

Again, we seek the solution of Eq. (14.4.9) in the form of a product of three functions:

w = w(r, ϕ, t) = R(r) · φ(ϕ) · θ(t). (14.4.10)
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Assuming a harmonic vibration,

w = R(r) · φ(ϕ) sin ωt, (14.4.11)

the substitution of Eq. (14.4.11) into (14.4.9) gives

R′′(r)
R(r)

+ 1

r2

φ′′(ϕ)

φ(ϕ)
+ 1

r

R′(r)
R(r)

+ ω2 m

σh
= 0, (14.4.12)

where primes indicate differentiation with respect to the pertinent arguments.
By introducing

λ2 = ω2 m

σh
, (14.4.13)

we reduce Eq. (14.4.12) to

[
R′′(r) + 1

r
R′(r)

]
φ(ϕ) + R(r)

r2
φ′′(ϕ) + λ2R(r)φ(ϕ) = 0. (14.4.14)

This equation can be separated into two ordinary differential equations:

d2φ(ϕ)

dϕ2
+ n2φ(ϕ) = 0 (14.4.15)

and
d2R(r)

dr2
+ 1

r

dR(r)

dr
+

(
λ2 − n2

r2

)
R(r) = 0, (14.4.16)

where the constant n2 must be so selected that we obtain a harmonic equation in ϕ.
Consequently, the solution of Eq. (14.4.15) is a trigonometric function:

φn(ϕ) = C1n sin nϕ + C2n cos nϕ for n = 0, 1, 2, 3. (14.4.17)

Since Eq. (14.4.16) is a Bessel-type differential equation [14.4.2], its solution for a
fixed boundary condition becomes

R(r) = Jn(λ, r0) = 0, (14.4.18)

where Jn(λ, r0) is a Bessel function of the first kind and of nth order.
The roots of Eq. (14.4.18) take the form [14.3.1]

ωni = αni

r0

√
σh

m
. (14.4.19)

The constants αni for various n and i values are given in Table 14.4.1. The physical
meaning of n and i are the following: n is the number of nodal diameters and i
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Table 14.4.1 Parameter αni

i n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

1 2.404 3.832 5.135 6.379 7.586 8.708
2 5.520 7.016 8.417 9.760 11.064 12.339
3 8.654 10.173 11.620 13.017 14.373 15.700
4 11.792 13.323 14.796 16.224 17.616 18.982
5 14.931 16.470 17.960 19.410 20.827 22.220
6 18.071 19.616 21.117 22.583 24.018 25.431
7 21.212 22.760 24.270 25.749 27.200 28.628
8 24.353 25.903 27.421 28.909 30.371 31.813
9 27.494 29.047 30.571 32.050 33.512 34.983

22 n

2

2

Figure 14.4.2 Nodal patterns of clamped circular membrane.

represents the number of nodal circles. Several modes of free vibration of a clamped
circular membrane are shown in Fig. 14.4.2.

Summary. For other boundary conditions than those discussed above, application
of classical methods becomes quite tedious; consequently, the use of approximate or
numerical methods is recommended.

References and Bibliography
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14.5 Energy Methods for Determination of Natural
Frequencies

a. Kinetic Energy of Plates. The energy methods for solution of boundary value
problems of plates subjected to static loading have already been studied in Secs. 4.2
and 4.3. Now the use of these methods will be extended to find approximate solutions
to dynamic plate problems when exact solutions are unavailable or too cumbersome
for practical application.

Considering a vibrating plate, the total potential energy, given in Eq. (4.2.11) for
the static case, must be augmented by an additional term, representing the kinetic
energy (14.1.3), which can be written as

T = 1

2

∫∫
(A)

m(x, y)

[
∂w(x, y, t)

∂t

]2

dx dy, (14.5.1)

or, in terms of polar coordinates,

T = 1

2

∫∫
(A)

m(r, φ)

[
∂w(r, ϕ, t)

∂t

]2

r dr dϕ, (14.5.2)

where m is the mass of the plate per unit area and the integration extends over the
entire surface of the plate. Thus, the total energy of a vibrating plate becomes

� = U + V + T , (14.5.3)
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where U represents the strain energy of the plate and V is the potential energy of
the external forces. Both types of energy are described in detail in Sec. 4.1.

b. Rayleigh’s Method. An approximate method for determining the lowest natu-
ral frequency of a vibrating system was developed by Lord Rayleigh [14.5.1]. This
method involves determination of the kinetic and potential energies of the struc-
tural system, using assumed shape functions, which satisfy the geometrical boundary
conditions and approximate the actual modes of vibrations. If the vibrating system is
conservative (no energy is added or lost), the maximum kinetic energy must equal the
maximum potential energy. Thus, in the case of free flexural vibration, we can write

Ub,max = Tmax. (14.5.4)

Assuming that the plate is undergoing harmonic oscillations, the lateral deflection
can be written as

w(x, y, t) = W(x, y) sin ωt, (14.5.5)

where W(x, y) is the shape function and ω represents the unknown natural cir-
cular frequency of the plate pertinent to the assumed shape function. Substituting
Eq (14.5.5) into the expression of the kinetic energy of the oscillating plate (14.5.1),
we obtain

T = ω2

2
cos2 ωt

∫∫
(A)

m(x, y)W 2(x, y) dx dy. (14.5.6)

The kinetic energy is at a maximum when the velocity of the plate is maximum,
which occurs when w(x, y, t) is zero. This will be true if sin ωt is zero; thus

ωt = nπ for n = 0, 1, 2, 3, . . . . (14.5.7)

Substituting these values into (14.5.6), we find the expression for the maximum
kinetic energy:

Tmax = ω2

2

∫∫
(A)

m(x, y)W 2(x, y) dx dy = ω2

2
I. (14.5.8)

The bending part of the strain energy [Eq. (4.1.8a)] is at a maximum when the
deflection of the plate is maximum. From Eq. (14.5.5), it is obvious that this occurs
when sin ωt equals unity. This is true when

ωt = (n + 1
2 )π for n = 0, 1, 2, 3, . . . . (14.5.9)

Using these values of ωt , the maximum strain energy of the plate is identical to
Eq. (4.2.5).
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In applying Rayleigh’s method, we first select an appropriate deflection shape,
W(x, y); then we equate the maximum kinetic and strain energies. From this,

ω2 = 2Ub,max∫∫
(A)

m(x, y)W 2(x, y) dx dy

,

(14.5.10)

where

Ub,max = Ub = 1

2

∫∫
(A)

D

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

(14.5.11)

+ 2(1 − ν)

[(
∂2W

∂x∂y

)2

− ∂2W

∂x2

∂2W

∂y2

]}
dx dy.

For plates with fixed boundary conditions, Eq. (14.5.11) can be simplified, as
discussed in Sec. 4.2. If polar coordinates are used, the expression of strain energy
given in polar coordinates (4.2.9) should be combined with Eq. (14.5.2) to obtain an
approximate value for the lowest natural frequency of the vibrating circular plate.

The approximate natural frequencies calculated from Rayleigh’s method are always
higher than the “exact values,” since we have arbitrarily stiffened the plate by assum-
ing a modal shape, thus increasing its frequencies. This method can also be used to
obtain approximate values pertinent to the second and third modes of free vibration.
A modification of Rayleigh’s method is described in Sec. 14.6.

c. Ritz Method. Ritz [14.5.2] has extended Rayleigh’s method by including more
than one parameter in the expression of shape functions. In this way, not only
can a more accurate value for the lowest natural frequency be obtained, but also
additional information concerning the higher frequencies and pertinent mode shapes
is gained.

Assuming the shape function W(x, y) in the form of a series, we can write

W(x, y) = C1ϕ1(x, y) + C2ϕ2(x, y) + · · · + Cnϕn(x, y), (14.5.12)

where ϕ1(x, y), ϕ2(x, y), . . . , ϕn(x, y) are appropriate displacement functions, which
individually satisfy at least the geometrical boundary conditions. Again, satisfaction
of the differential equation of motion (14.2.4) is not required. The unknown coeffi-
cients (C1, C2, . . . , Cn) in Eq. (14.5.12) are obtained from the minimum total energy
principle, discussed in Sec. 4.2. Thus, based on Eq. (4.2.2), we may write

∂�

∂Ci

= 0 for i = 1, 2, 3, . . . , n, (14.5.13)

where
� = Ub,max − Tmax. (14.5.14)
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From Eqs. (14.5.8) and (14.5.13) we obtain the following set of equations:

∂Ub

∂C1
− 1

2
ω2 ∂I

∂C1
= 0,

∂Ub

∂C2
− 1

2
ω2 ∂I

∂C2
= 0, (14.5.15)

...

∂Ub

∂Cn

− 1

2
ω2 ∂I

∂Cn

= 0.

Next, we substitute Eq. (14.5.12) into Eq. (14.5.15) and evaluate the definite integrals
indicated in Eqs. (14.5.8) and (14.5.11). This procedure yields a set of homogeneous
linear equations in C�i . In this way, the problem is reduced to an eigenvalue and
eigenvector problem.

If the relationship between W(x, y) and C1, C2, . . . , Cn parameters is nonlinear,

W(x, y) = ϕ(C1, C2, C3, . . . , Cn, x, y), (14.5.16)

the simultaneous equations obtained from (14.5.15) are also nonlinear. By plotting,
however, the family of curves pertinent to

(ω∗)2(C1, C2, C3, . . . , Cn), (14.5.17)

where

(ω∗)2 = 2Ub

I
, (14.5.18)

an extremum of the function (14.5.17) can be determined graphically.

d. Galerkin-Vlasov Method. We can also extend the Galerkin-Vlasov method to
solution of free-vibration problems of plates by applying the variational principle to
Eq. (14.2.6), which expresses the dynamic equilibrium of the plate. Thus, assuming
again a shape function in the form of a series (14.5.12), which satisfies, term by term,
all boundary conditions,† we obtain

∫∫
(A)

[D∇2∇2W(x, y) − ω2m(x, y)W(x, y)]ϕ1(x, y) dx dy = 0,

∫∫
(A)

[D∇2∇2W(x, y) − ω2m(x, y)W(x, y)]ϕ2(x, y) dx dy = 0, (14.5.19)

...∫∫
(A)

[D∇2∇2W(x, y) − ω2m(x, y)W(x, y)]ϕn(x, y) dx dy = 0.

† An additional requirement in the case of plate problems is that the fourth derivative of (14.5.12)
does not vanish.
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After substitution of a suitable series expression for W(x, y), we evaluate the definite
integrals over the whole surface of the plate. This procedure leads, again, to a
set of homogeneous algebraic equations and to an eigenvalue-eigenvector problem,
described in the subsequent sections. In selecting appropriate shape functions, the
same techniques recommended in Secs. 4.2 and 4.3 for the static analysis of plates
can be applied. Concerning shape functions obtained from static deflection analysis,
the reader is referred to Sec. 14.6.

Since the use of the eigenfunctions of vibrating beams,† as introduced by Vlasov
and extended by Oniashvili [14.5.3], offers special advantages in the vibration analysis
of plates, this method will be discussed now in more detail.

Let us represent the shape function W(x, y) in Eq. (14.5.5) as an infinite series,

W(x, y) =
∑

n

∑
m

Wmnφmn(x, y), (14.5.20)

where Wmn = 1 represents the normalized amplitudes of the free-vibration modes and
φmn(x, y) is the product of the pertinent eigenfunctions of lateral beam vibrations,

φmn(x, y) = Xm(x) · Yn(y), (14.5.21)

which satisfy the prescribed boundary conditions. Consequently, in Eq. (14.5.21),
Xm(x) represents the mth mode of a freely vibrating uniform beam with span a,
given in Table 4.3.1. Similarly, Yn(y) is the nth mode of a beam of length b.

By applying the variational method discussed above, the problem of free flexu-
ral vibration of plates can be reduced to the solution of the following variational
equations:

∫∫
(A)

[D∇2∇2φmn(x, y) − mω2φmn(x, y)]φmn(x, y) dx dy = 0, (14.5.22)

where m, n = 1, 2, 3, . . .. By introducing the notation

I1 =
∫∫
(A)

[φmn(x, y)∇2∇2φmn(x, y)] dx dy (14.5.23)

and

I2 =
∫∫
(A)

φ2
mn(x, y) dx dy, (14.5.24)

an approximate analytical expression for the frequencies of the free flexural vibration
of plates of uniform thickness is obtained:

ω2
mn = I1

I2
· D

m
. (14.5.25)

† The idea of using eigenfunctions of beams for solving plate vibration problems was originally pro-
posed by Ritz [14.5.2]; Vlasov, however, combined the use of eigenfunctions and Galerkin’s method.
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The definite integrals given in Eqs. (14.5.23) and (14.5.24) can be further expanded
on the basis of Eq. (14.5.21). Thus, if a rectangular plate is considered, we can write

I1 =
∫ a

0

∫ b

0
{Xm(x)Yn(y)∇2∇2[Xm(x)Yn(y)]} dx dy

=
∫ a

0

∫ b

0
[X′′′′

m (x)Yn(y) + 2X′′
m(x)Y ..

n (y) + Xm(x)Y ....
n (y)]Xm(x)Yn(y) dx dy,

(14.5.26)
where the primes and dots indicate differentiations with respect to x and y, respec-
tively.

Similarly,

I2 =
∫ a

0

∫ b

0
X2

m(x) · Y 2
n (y) dx dy. (14.5.27)

The quasi-orthogonality of the eigenfunctions of beams permits the introduction of
the following definite integrals:

I3 =
∫ a

0
X2

m(x) dx,

I4 =
∫ a

0
Y 2

n (y) dy,

I5 =
∫ a

0
X′′′′

m (x)Xm(x) dx,

I6 =
∫ a

0
X′′

m(x)Xm(x) dx, (14.5.28)

I7 =
∫ a

0
Y ..

n (y)Yn(y) dy,

I8 =
∫ a

0
Y ....

n (y)Yn(y) dy.

Using these expressions, the circular frequencies of free vibrations of plates become

ωmn =
√

I4I5 + 2I6I7 + I3I8

I3I4
·
√

D

m
. (14.5.29)

Since the definite integrals indicated in Eq. (5.1.28) can be evaluated numerically,
Eq. (14.5.29) can also be used for plates of arbitrary contour.

Summary. As in the case of static analysis of plates, the energy methods occupy an
important position among the approximate methods for solving free-vibration prob-
lems. When only the lowest frequency is of interest, Rayleigh’s method gives remark-
ably accurate results that are slightly higher than the actual frequencies. Although
the Ritz method is capable of yielding information on the higher frequencies, the
accuracy of these frequencies usually deteriorates progressively for the higher modes.
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The other variational methods are more general. Especially noteworthy is the exten-
sion of Galerkin’s method by Vlasov, which affords the possibility of an approximate
solution of dynamic problems of plates having arbitrary contours and, to some extent,
arbitrary boundary conditions. Solution of such problems by the classical methods is
very difficult or often impossible. Vlasov’s method uses linear combinations of the
eigenfunctions of lateral beam vibrations, which are able to satisfy most boundary
conditions. In this way, the determination of natural circular frequencies is reduced
to evaluation of definite integrals of simple functions. Tables given in Refs. [11],
[4.3.21], and [4.3.22] can facilitate the computational work. The required mathemati-
cal operations are simple, but occasionally the computation tends to be quite lengthy.
Although the accuracy of all the energy methods depends on the selection of appro-
priate shape functions, the free-vibration analysis of plates by energy methods is not
as sensitive to the proper choice of these functions as its static counterpart.

The energy methods presented in this section can logically be extended to cover
forced vibrations of plates by adding the potential energy of the dynamic forces to
the total energy of the vibrating system. With the exception of the simplest case,
however, the required computational work is tedious. In the author’s opinion, com-
puterized solutions based either on finite element or finite difference methods are
more economical for forced-vibration analyses. Estimates of the dynamic response,
however, can be obtained with relative ease by energy methods via the dynamic
load factor, which requires the knowledge of the lowest frequency of the structure.
Further details of the application of energy methods to the solution of dynamic plate
problems, including the obtainable accuracy, can be found in the bibliography at the
end of this section.

ILLUSTRATIVE EXAMPLE

Find the lowest circular frequency of a rectangular plate clamped on all edges
(Fig. 14.5.1) using the Ritz method and check the result by the Galerkin method.

To be able to utilize the computational advantages offered by the double
symmetry of the problem, we transfer the origin of the coordinate system to
the center of the plate.

a. Ritz Method. In selecting a suitable infinite series expression of the deflec-
tion that satisfies the geometrical boundary conditions and closely approximates
the shape of the first mode of vibration, we use

W(x, y) = C1ϕ1(x, y) = C1(x
2 − a2)2(y2 − b2)2, (14.5.30)

which represents the first term of Eq. (14.5.12). This expression is obtained
from the static deflection formulas of uniformly loaded beams clamped at
both ends.

Since the plate is clamped all along the edges, the simplified form of the
strain energy expression (4.2.6) is applicable; thus,

Ub = D

2

∫ +a

−a

∫ +b

−b

(
∂2W

∂x2
+ ∂2W

∂y2

)2

dx dy

= C2
1D

28

52
a9b9

(
1

a4
+ 28

32×72

1

a2b2
+ 1

b4

)
. (14.5.31)
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Figure 14.5.1 First mode of vibration of clamped plate.

The maximum kinetic energy of the plate, calculated from Eq. (14.5.8), is

Tmax = 1

2
ω2

1I = 1

2
ω2

1m

∫ +a

−a

∫ +b

−b

W 2(x, y) dx dy = 1

2
ω2

1mC2
1

24

52
a9b9.

(14.5.32)

From minimization of the total energy (14.5.15),

∂Ub

∂C1
− 1

2
ω2

1
∂I

∂C1
= 0,

we obtain

ω1 = 4

√
2

(
1

a4
+ 28

32×72
· 1

a2b2
+ 1

b4

)
·
√

D

m
, (14.5.33)

or, for a square plate (a = b),

ω1 = 9.09

a2

√
D

m
. (14.5.33a)

This result agrees within 1.04% with the value obtained from more exact com-
putation. Using two additional terms in Eq. (14.5.12), the “exact” value of the
lowest circular frequency is obtained.

b. Galerkin’s Method. The first modal shape is approximated, again, by
Eq. (14.5.30). Thus, the variational equation (14.5.19) becomes

∫ +a

−a

∫ +b

−b

[D∇2∇2W(x, y) − ω2mW(x, y)]W(x, y) dx dy = 0. (14.5.34)
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Substitution of Eq. (14.5.30) into (14.5.34) gives

∫ +a

−a

∫ +b

−b

C1{D[24(y2 − b2)2 + 32(3x2 − a2)(3y2 − b2) + 24(x2 − a2)2]

− ω2m(x2 − a2)2(y2 − b2)2}(x2 − a2)2

× (y2 − b2)2 dx dy = 0, (14.5.35)

which, after evaluation of the definite integrals, becomes

C1

{
D · 215

32×52×7

[
a9b5 + 4

7
a7b7 + a5b9

]
− ω2 216m

34×52×72
a9b9

}
= 0;

(14.5.36)

hence

ω = 3

√
7

2

(
1

a4
+ 4

7

1

a2b2
+ 1

b4

)√
D

m
. (14.5.37)

Therefore, the lowest circular frequency for square plates is

ω = 9

a2

√
D

m
. (14.5.38)

The obtained result agrees almost completely with the exact solution of the
problem:

ωexact = 8.9965

a2

√
D

m
.
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14.6 Natural Frequencies Obtained from Static
Deflections

The Rayleigh method, described in Sec. 14.5, depends upon equating the maximum
potential and kinetic energies. The same principle can be used to determine circular
frequencies by utilizing the static deflection curves due to symmetric or antisymmetric
inertia forces. These forces, which correspond to the lateral translations, can be the
dead loads.

Let us divide the plate into many small sections. Using a suitable network, we
lump the mass of each section at discrete points. When the plate is in the position of
maximum deflection, all the energy of the system is stored as potential energy.

Assuming, again, that the free vibration is harmonic,

w(x, y, t) = W(x, y) sin ωt, (14.6.1)

the potential energy can be written as the sum of the products of the average forces
and deflections; thus

Umax ≈ 1

2
k1w

2
1 + 1

2
k2w

2
2 + 1

2
k3w

2
3 + · · · + 1

2
knw

2
n = 1

2

n∑
i=1

kiw
2
i , (14.6.2)

where ki is the effective spring constant and wi is the lateral displacement for the
ith mass. Similarly, the maximum kinetic energy Tmax can be written as

Tmax ≈ 1

2

n∑
i=1

miw
2
i ω

2
r , (14.6.3)

where mi is the mass of the ith section and ωr is the natural circular frequency pertinent
to the rth vibration mode under investigation. Equating Eqs. (14.6.2) and (14.6.3),
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we have

ω2
r = g

∑n

i=1
kiw

2
i∑n

i=1
qiw

2
i

, (14.6.4)

where g is the gravitational acceleration and qi is the weight of the ith section. Since
the dynamic response in the first mode has approximately the same shape as the
static deflection, we can assume, based on Eq. (14.1.23), that the dynamic deflection
ordinates are proportional to the static deflections Wi ; therefore

wi = cWi, (14.6.5)

where c represents the constant of proportionality. Next, we substitute Eq. (14.6.5)
into Eq. (14.6.4) and express the natural frequency, corresponding to the desired
mode of vibration, in terms of the pertinent static deflections of the plate; thus

ω2
r = g

∑n

i=1
kiW

2
i∑n

i=1
qiW

2
i

. (14.6.6)

Since the spring constant for each mass is

ki = qi

Wi

, (14.6.7)

for discrete systems, Eq. (14.6.6) becomes

ω2
r = g

∑n

i=1
qiWi∑n

i=1
qiW

2
i

. (14.6.8)

This expression is called the modified Rayleigh quotient or Morley’s formula. [14.6.1].
For continuous systems the summation in Eq. (14.6.8) is replaced by integrals;

thus,

ω2
r = g

∫∫
(A)

q(x, y) · W(x, y) dx dy

∫∫
(A)

q(x, y) · W 2(x, y) dx dy

. (14.6.9)
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The use of these formulas is very convenient, since it involves merely the determi-
nation of static deflections of a plate, which may be obtained using the analytical or
numerical methods. Furthermore, deflections for the most common types of plates are
readily available. Knowing the circular frequencies, we can easily obtain the dynamic
load factors [Eq. (14.1.23) or (14.1.32)] for a quasi-static structural analysis,

Equations (14.6.8) and (14.6.9) can also be used for calculating the natural fre-
quencies corresponding to the second and higher modes. When the second mode is
sought, for instance, the plate is loaded antisymmetrically with q, representing the
inertia forces (Fig. 14.6.1b). Unfortunately, these modal shapes, except for the low-
est modes, are not always known, a fact that limits the application of this simple
technique. Modal shapes, however, can be obtained with relative ease using ordinary
finite difference techniques. Consequently, the combination of these two methods

Figure 14.6.1 Loading and deflection patterns for simplified free-vibration analysis.
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may offer distinct advantages, especially in the case of small computers with limited
storage capacity.

The accuracy of this method is generally good, since the results are seldom more
than 5% in error. The obtainable accuracy depends largely on how closely the static
deflection shape W(x, y) approximates the fundamental mode. It should be noted
that the circular frequencies obtained from Eq. (14.6.8) are somewhat higher than the
actual ones.

The Stodola-Vianello [14.6.7] iterative technique described in Sec. 15.1 can be
used to improve the obtained results. For continuous systems, improved frequencies
are obtained from

ω(1) =

√√√√√√√√√√√

∫∫
(A)

p(0)(x, y)W(1)(x, y) dA

∫∫
(A)

m(x, y)[W(1)(x, y)]2 dA

, (14.6.10)

where p(0) is a fictitious load (5.2.14) containing the first estimate of the natural
frequency ω(0) and W(1) represents the static deflections due to such a load.

For estimating natural frequencies of continuous plates, the following simple pro-
cedure may be used, provided the spans of the individual panels are approximately
the same in both directions. First, we determine the lowest frequencies of the indi-
vidual panels, assuming that the plate is (1) simply supported and (2) clamped at all
boundaries; this yields f1i and f ∗

1i , respectively. Then, the average values

f1 ≈
4√√√√√

n∑n

i=1

1

f 4
1i

and f ∗
1 ≈

4√√√√∑n

i=1
(f ∗

1i )
4

n
(14.6.11)

provide estimates of the natural frequencies.† In these expressions n represents the
number of individual panels. A similar approach can be taken for the frequencies
corresponding to second modes of free vibration. These approximate formulas are
based on Dunkerley’s derivation and yield lower-bound solutions.

Summary. This simplified energy approach to free-vibration problems yields suf-
ficiently accurate results in a convenient way. By applying an iterative technique,
the accuracy can be further increased to any desired degree. In the case of unknown
modal shapes, this approach can be combined with finite difference or finite element
methods. If evaluation of eigenvalues and eigenvectors of large matrices create spe-
cial problems, this method can be used to eliminate the determination of eigenvalues.
Consequently, Morley’s formula is well suited for hand computation or for use on
programmable desk calculators.

† The relation between circular and natural frequencies is f = ω/2π ; see Sec. 14.1.
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ILLUSTRATIVE EXAMPLE

Find the circular frequencies pertinent to the first and second modes of free
vibration of a simply supported square plate.

Since the plate thickness is constant, Eq. (14.6.9) can be written as

ω2
n = g

∫ a

0

∫ a

0
Wn(x, y) dx dy

∫ a

0

∫ a

0
W 2

n (x, y) dx dy

. (14.6.12)

For simplicity, a one-term sinusoidal deflected shape is assumed (Fig. 14.6.2a);
thus

W1(x, y) = W11 sin
πx

a
sin

πy

a
, (14.6.13)

where

W11 = 0.00416
pza

4

D
= 0.00416

mga4

D
, (14.6.14)

(a) First mode

(b) Second mode

Figure 14.6.2 First and second modes of simply supported plate.
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which represents the maximum deflection ordinate. By substituting Eq. (14.6.13)
into Eq. (14.6.12), we obtain

ω2
1 = g

W11

∫ a

0

∫ a

0
sin(πx/a) sin(πy/a) dx dy

∫ a

0

∫ a

0
sin2(πx/a) sin2(πy/a) dx dy

= g

W11

[(a/π) cos(πx/a)]a0 × [(a/π) cos(πy/a)]a0
[ 1

2x − (a/4π) sin(2πx/a]a0 × [ 1
2y − (a/4π) sin(2πy/a)]a0

= g

W11

16

π2
. (14.6.15)

Hence, the circular frequency pertinent to the first mode of vibration is

ω1 = 4

πa2

√
D

0.00416m
= 19.722

a2

√
D

m
. (14.6.16)

A comparison with the exact solution of the problem [14.1.8],

ω1 = 2π2

a2

√
D

m
= 19.74

a2

√
D

m
, (14.6.17)

indicates a discrepancy of a negligible order of magnitude.
Similarly, for the second mode, we assume the following sinusodial deflec-

tion shape (Fig. 14.6.2b):

W2(x, y) = W21 sin
2πx

a
sin

πy

a
. (14.6.18)

Substitution of this expression in Eq. (14.6.12) yields

ω2
2 = g

W21

∫ a/2

0

∫ a

0
sin(2πx/a) sin(πy/a) dx dy

∫ a/2

0

∫ a

0
sin2(2πx/a) sin2(πy/a) dx dy

= g

W21

[(a/2π) cos(2πx/a)]a/2
0 × [(a/π) cos(πy/a)]a0

[ 1
2x − (a/8π) sin(2πx/a)]a/2

0 × [ 1
2y − (a/4π) sin(2πy/a)]a0

= g

W21

16

π2
. (14.6.19)

The corresponding maximum deflection ordinate at x = a/4 is

W21 = 0.01013
mg

D

(a

2

)4 = 0.000634
mg

D
a4; (14.6.20)
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hence

ω2 = 4

πa2

√
D

0.000634m
= 50.6

a2

√
D

m
, (14.6.21)

while the exact solution (14.3.8.) is

ω2 = π2

(
4

a2
+ 1

a2

)√
D

m
= 5π2

a2

√
D

m
. (14.6.22)

The error of this approximate solution for the frequency pertinent to the second
mode is less than 2.5%.

In both cases the good accuracy obtained is due to the fact that the assumed
deflection shapes and the actual modes are identical.
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14.7 Forced Transverse Vibration of Rectangular Plates

In the previous sections classical methods for the free-vibration analysis of plates and
membranes have been discussed. Let us now consider the dynamic response of plates
to time-dependent disturbing forces P (t) that produce so-called forced vibration in
the structure. In determining the dynamic response of a plate to external exciting
forces pz(x, y, t), we seek an expression for the deflections w(x, y, t) from which
other quantities, such as velocities, accelerations and stresses, can be derived.

Forced-vibration analysis of plates by classical methods involves solution of bound-
ary value problems in a manner similar to those discussed in Chapter 1. Let us
consider a simply supported plate acted upon by an arbitrary (in-space) lateral load
that varies harmonically over the time:

pz(x, y, t) = P ∗(x, y)θ(t) = P ∗(x, y) sin pt. (14.7.1)

† Available also in English translation under the title Vibration Analysis and Design of Foundations
for Machines and Turbines, Collet’s Holdings, London, 1962.
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In the presence of this simple harmonic excitation the governing differential equation
of motion is Eq. (14.2.3). Again, we seek the solution in two parts,

w(x, y, t) = wH (x, y, t) + wP (x, y, t), (14.7.2)

where wH represents the solution of the homogeneous form of the equation of motion
(14.2.4) and wP is a particular solution of Eq. (14.2.3). Since the homogeneous
solution is associated with the free vibration of the plate at its natural frequency
(treated in Sec. 14.3), it is sufficient to discuss here merely the particular solution,
corresponding to the steady-state oscillation at the frequency (p) of the exciting force.

In the first part of our discussion, we assume that the free vibration is successfully
damped; consequently, we consider only the action of the harmonic excitation. The
time-invariant part of the forcing function can be represented by a double trigono-
metric series:

P ∗(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin
mπx

a
sin

nπy

b
. (14.7.3)

Thus, Eq. (14.7.1) can be written as

pz(x, y, t) = sin pt

∞∑
m=1

∞∑
n=1

Pmn sin
mπx

a
sin

nπy

b
. (14.7.1a)

In accordance with Navier’s method,† we shall look for the particular solution in
the form

wP (x, y, t) = sin pt

∞∑
m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
. (14.7.4)

The substitution of Eqs. (14.7.4) and (14.7.1a) into the governing differential equation
of motion (14.2.3) using a specific set of m, n values yields

Wmn

[
Dπ4

(
m2

a2
+ n2

b2

)2

− mp2

]
= Pmn. (14.7.5)

Let us express the first term on the left-hand side of Eq. (14.7.5) in terms of free
vibration (14.3.8); then

Wmn = Pmn

m(ω2
mn − p2)

. (14.7.6)

If the time-dependent changes of the excitation are very slow, p will be small in
comparison with ωmn and the displacements will correspond to those obtained from
the static loading; thus, for the static case, Eq. (14.7.6) becomes

W ∗
mn = Pmn

mω2
mn

. (14.7.7)

† See Sec. 2.2.
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Therefore, the dynamic load factor for simply supported plates can be expressed as
the ratio of Wmn/W ∗

mn. This gives

DLF = 1

1 − (p/ωmn)2
, (14.7.8)

which is the same expression as Eq. (14.1.23), obtained for a single-DOF system.
Next, let us assume the simultaneous action of free and forced vibrations. It is

evident that the superposition of Eqs. (14.3.1) and (14.7.4) will correspond to this
condition. The lateral deflections of a freely vibrating simply supported plate can be
expressed by

w =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
sin(ωmnt − α), (14.7.9)

where α represents the phase angle† and can be determined from the initial conditions.
If the initial conditions, for instance, are

w = 0 and
∂w

∂t
= 0 at t = 0, (14.7.10)

then α is zero. The combined solution of simultaneous free and forced vibrations can
be written as

w(x, y, t) =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
sin(ωmnt − α)

+ sin pt

∞∑
m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
.

(14.7.11)

From the second initial condition (ẇ = 0 at t = 0), we obtain

Wmn = − p

ωmn

Wmn. (14.7.12)

Consequently, Eq. (14.7.11) becomes

w(x, y, t) =
∞∑

m=1

∞∑
n=1

(
sin pt − p

ωmn

sin ωmnt

)
Wmn sin

mπx

a
sin

nπy

b
, (14.7.13)

where Wmn is calculated from Eq. (14.7.6).

† Known also as angle of lag of response.
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A similar approach can be taken when the excitation is not simple harmonic but
arbitrary periodic or even transient. For such conditions, we separate the variables in
the forcing function, as well as in the expression for displacements:

pz(x, y, t) =
∑
m

∑
n

∑
r

PmnrXm(x) · Yn(y) · θr (t),

w(x, y, t) =
∑
m

∑
n

∑
r

WmnrXm(x) · Yn(y) · θr (t).

(14.7.14)

In these series expressions the time-dependent parts are also expressed in Fourier
series. The dynamic response of the system is obtained by superimposing the results
of the individual terms θr(t).

Let us now investigate the case when the frequency of the forcing function, p, has
approximately the same magnitude as one of the free-vibration frequencies ωik . We
consider only one term in Eq. (14.7.13), which corresponds to this special case; thus,
m = i and n = k. We denote the difference in frequencies by

ωik − p = 2�ik. (14.7.15)

Since the two frequencies are nearly equal, �ik represents a small quantity. By
neglecting small quantities with the coefficients of 2�ik/p, Eq. (14.7.13), corre-
sponding to the selected set of values for m and n, can be written as

wik = −2(sin �ikt) cos
(p + ωik)t

2
Wik sin

iπx

a
sin

kπy

b
. (14.7.16)

Since �ik is a small quantity, the function of �ikt varies slowly, with the large
period 2π/�ik . Equation (14.7.16) can be considered as an imaginary vibration with
the period of 4π/(p + ωik) and with the amplitude

2(sin �ikt)Wik sin
iπx

a
sin

kπy

b
. (14.7.17)

This phenomenon, which occurs whenever the frequency of the excitation is close
to the natural frequency of the system, is called beat. Figure 14.7.1 illustrates the
general nature of this type of vibration. The dashed lines are the envelopes of the
amplitudes. The period of the beat increases as the vibration approaches the resonance
condition. When p = ωik , Eq. (14.7.16) becomes

wik = −2 �ikt cos
(p + ωik)t

2
Wik sin

iπx

a
sin

kπy

b
(14.7.18)

and the amplitude will increase without bounds, as shown in Fig. 14.7.2. Oniashvili
has treated the forced vibrations of double-curved shallow and nonshallow shells in
a similar manner [14.5.3].
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Figure 14.7.1 Oscillations called “beat.”

Figure 14.7.2 Resonance.

It is also possible to extend Lévy’s method, described in Secs. 2.3 and 14.3, to
obtain a particular solution to Eq. (14.2.3), provided that the boundary conditions sat-
isfy the requirements of this method. The mathematical operations, however, become
increasingly involved.

Dynamic responses of plate bridges, produced by smooth-running wheel loads,
seldom create more than a 10% stress increase. Consequently, the dynamic behavior
of the bridge can be approximated by applying a dynamic load factor [14.1.8],

DLF = 1 + v2P l

3gEIe

(RF), (14.7.19)

where P is the rolling load and v represents its velocity. In calculating the moment of
inertia Ie, the effective width in bending should be used. Furthermore, since the other
girders also participate in the load-carrying action, a reduction factor (RF) should be
applied to the wheel load [10.1.10, 10.1.17]. More exact analysis of a similar problem
can be found in Ref. [1.1.8], pp. 234–237.

Irregularities on the surface of the bridge deck, however, may produce much higher
impact than that given in Eq. (14.7.19). In this case, the load-time relationship of the
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excitation can be expressed [14.1.8] by

P(t) = −P

g

∂2(w + η)

∂t2
, (14.7.20)

where η represents the shape of the low spot (Fig. 14.7.3), given by

η = �

2

(
1 − cos

2πvt

l∗

)
. (14.7.21)

In both cases of excitations, computerized solutions, based on either finite differ-
ence or finite element methods,† can yield more accurate results.

The static behavior of highway bridges can be approximated with good accuracy
by the orthotropic plate theory, as discussed in Sec. 10.1. In a similar manner, the
orthotropic plate theory can offer considerable improvement over the quasi-static
approach in formulating the dynamic response of beam-slab bridges. A satisfactory
representation for the wheel loads of the moving vehicle is obtained by means of sim-
ple spring-mass systems, as shown in Fig. 14.7.4. The equations of motion, neglecting
damping, can be written as

Dx

∂4w

∂x4
+ 2B

∂4w

∂x2 ∂y2
+ Dy

∂4w

∂y4
+ m

∂2w

∂t2
= M

(
g − ∂2w

∂t2

)
f (x − vt, y)

(14.7.22)

and

M
∂2w

∂t2
+ k(w − w|x=νt ) = 0, (14.7.23)

where M represents the mass of the wheel load, k is its spring constant and w denotes
the absolute deflection of the spring-mass system. For the time-dependent function
f , which distributes the load over the surface of the small bridge, we may assume
uniform values over the c × d area and zero elsewhere.

While a relatively tedious analytical solution of this problem is possible [14.7.9],
the numerical treatment of Eqs. (14.7.22) and (14.7.23), based on finite difference
methods, is straightforward.‡ In addition, the use of an iterative approach similar to the
one described in Sec. 11.1 is recommended. In the first cycle we assume that w = w

n = const

Figure 14.7.3 Irregular plate surface.

† See Secs. 15.1 and 15.2.
‡ See Sec. 15.1.
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n

n

n

p

Figure 14.7.4 Highway bridge under moving load.

in Eq. (14.7.22). More sophisticated vehicle representations may involve three-DOF
systems having some damping mechanism [14.7.10]. The essential features of the
dynamic behavior of the bridge, however, can also be obtained by employing the
aforementioned, simple spring-mass systems, either for the individual wheel loads or
for the whole moving vehicle [14.7.9]; see Sec. 15.4 for more details.

Summary. Transverse forced vibration of simply supported plates can be solved
with relative ease by applying Navier’s method to the governing equation of motion.
Because of damping (which exists in every real structure), the free-vibration part of
the motion will eventually disappear, and the plate will oscillate with the frequency
of the exciting force. Consequently, in most cases only the steady-state vibration,
corresponding to the particular solution of the differential equation of motion, is
of interest. With the exception of simply supported boundary conditions, classical
solutions of forced-vibration problems are extremely tedious, in many instances even
impossible. The use of dynamic load factors, however, offers a simple technique for
estimating the maximum stresses.
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ILLUSTRATIVE EXAMPLE

Determine the steady-state response of a simply supported rectangular plate to
a uniformly distributed, pulsating load, shown in Fig. 14.7.5.

p0

2
2

+p(t)

Figure 14.7.5 Plate subjected to pulsating load.

In the first step, we expand the time-dependent part of the excitation into a
sine series:

θ(t) =
∑

r

Pr sin prt. (14.7.24)

Since θ(t) is an odd function, the coefficients of expansions can be computed
from Eq. (A.1.20):

Pr = 2

0.5

∫ 0.5

0
p0 sin

rπt

0.5
dt =




0 if r even,
4p0

rπ
if r odd;

(14.7.25)

therefore

θ(t) = 4p0

π

[
sin 2πt + sin 6πt

3
+ sin 10πt

5
+ · · ·

]
. (14.7.26)

Since we are concerned only with the particular solution of the differential
equation of motion, it is sufficient to apply Eq. (14.7.6). Preparatory to this, we
must calculate the Fourier coefficients of the time-invariant part of the load.
These are obtained from Eq. (A.1.37); thus, combining with Eq. (14.7.25),
we have

Pmnr = Pmn · Pr =
(

16

π2mn

)(
4p0

rπ

)
= 64p0

π3mnr
.

(m, n = 1, 2, 3, . . . and r = 1, 3, 5, . . .). (14.7.27)
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Next, the undamped circular frequencies ωmn of the plate are determined.
Equation (14.3.8) gives

ω2
mn = π4D

m

(
m2

a2
+ n2

b2

)2

for m, n = 1, 2, 3, . . . . (14.7.28)

For simplicity, let us limit ourselves to r = m = n = 1 and a = b; hence,

ω11 = 19.73

a2

√
D

m
and p1 = 2π. (14.7.29)

Substitution of these values into Eq. (14.7.6) gives

W11,1 = Pmnr

m(ω2
11 − p2

1)
= 64p0

π3[(389.27D/a4) − (2π)2m]
. (14.7.30)

This is the amplitude of the dynamic response of the plate corresponding to
the m = n = r = 1 values (14.7.14). The rest of the computation is a simple
repetition of the above-illustrated technique using different sets of m, n and r .
It should be noted, however, that if the frequency of one of the terms in the
expansion of the forcing function happens to be close to one of the natural fre-
quencies (ωik ≈ pr), the result will be unrealistic. In such a case, the approach
based on a definite integral [Eq. (14.1.32)] should be used.
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14.8 Free Vibration of Moderately Thick Plates

As discussed in Sec. 1.5, the moderately thick plate theory includes the effects of
transverse shear deformations. Neglecting transverse shear effects and to a lesser
extent that of rotary inertia leads to significant errors when calculating natural fre-
quencies of such plates. Consequently, the previously introduced vibration theory
based on Kirchhoff’s classical assumptions cannot be directly applied to moderately
thick plates.

Here we consider a simply supported moderately thick plate, as shown in
Fig. 14.8.1. Applying Mindlin’s plate theory introduced in Sec. 1.5, the corresponding
displacement components are w, ψx and ψy . The quantity ψx represents the total
rotation in the XZ plane during the deformation process of a straight line that initially
lies along the Z axis, as shown in Fig. 1.5.2. The quantity ψy is defined in a similar
manner.

By normalizing the rectangular coordinates and the transverse displacement w∗,
we introduce

ξ = x

a
, η = y

b
, w = w∗

b
. (14.8.1)

According to Ref. [14.8.1], the strain energy of an isotropic moderately thick plate
can be expressed by

U = D

2

∫ 1

0

∫ 1

0

{(
1

a

∂ψx

∂ξ
+ 1

b

∂ψy

∂η

)2

− 2(1 − ν)

×
[

1

ab

∂ψx

∂ξ

∂ψy

∂η
− 1

4

(
1

b

∂ψx

∂η
+ 1

a

∂ψy

∂ξ

)2
]

+ κ2Gh

D

×
[(

ψx + b

a

∂w

∂ξ

)2

+
(

ψy + ∂w

∂η

)2
]}

ab dξ dη. (14.8.2)

During vibration the maximum kinetic energy of the plate becomes

T = 1

2
ω2ρh

∫ 1

0

∫ 1

0

[
w2 + 1

12
h2(ψ2

x + ψ2
y )

]
ab dξ dη. (14.8.3)

Here ω represents the angular frequency of the vibration and ρ symbolizes the mate-
rial density per unit volume.

To simplify our further discussion, we introduce the following dimensionless terms:

β = h

b
, χ = a

b
, λ = ω2b4ρh

D
, (14.8.4)

where β is the thickness-to-width ratio of the plate, χ represents its aspect ratio and
λ denotes a frequency ratio. Thus, the energy functional pertinent to this problem
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Figure 14.8.1 Simply supported Mindlin plate.

can be given [14.8.3] by

� = 2(U − T )b

aD
=

∫ 1

0

∫ 1

0

{(
1

χ

∂ψx

∂ξ
+ ∂ψy

∂η

)2

− 2(1 − ν)

×
[

1

χ

∂ψx

∂ξ

∂ψy

∂η
− 1

4

(
∂ψx

∂η
+ 1

χ

∂ψy

∂ξ

)2
]

+ 6(1 − ν)κ2

β2

[(
ψx + 1

χ

∂w

∂ξ

)2

+
(

ψy + ∂w

∂η

)2
]

− λ

[
w2 + 1

12
β2(ψ2

x + ψ2
y )

]}
dξ dη. (14.8.5)

Considering the boundary conditions, we recall that in Mindlin plate theory three con-
ditions must be specified compared with two in classical plate theory. Consequently,
solutions of the present vibration problem are sought in the forms

ψx = Amn cos(mπξ) sin(nπη),

ψy = Bmn sin(mπξ) cos(nπη), (14.8.6)

w = Cmn sin(mπξ) sin(nπη),

where Amn, Bmn and Cmn are coefficients, the values of which are determined by
applying Ritz’s energy method. Accordingly, we are setting to zero each partial
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derivative of the total potential, �, with respect to these coefficients. Thus, we
can write

∂�

∂Amn

= 0,
∂�

∂Bmn

= 0,
∂�

∂Cmn

= 0. (14.8.7)

Next, the substitution of Eq. (14.8.6) into Eq. (14.8.5) and the above-described mini-
mization process yield a set of equations that can be solved [14.8.3] for the vibration
frequencies.

To eliminate this relatively tedious procedure, Wang derived the following closed-
form solution [14.8.3] for the free vibration of simply supported Mindlin plates:

ω2
i = 3κ2E

ρh2(1 + ν)





1 + ω∗

i h

√
ρ(1 − ν2)

12E

(
1 + 2

(1 − ν)κ2

)


−

√√√√√√√√√

[
1 + ω∗

i h

√
ρ(1 − ν2)

12E

(
1 + 2

(1 − ν)κ2

)]2

−2(ω∗
i )

2ρh2(1 + ν)

3κ2E




, (14.8.8)

where ωi is the angular frequency corresponding to the ith mode of free vibration and
ω∗

i represents the pertinent quantity of the Kirchhoff plate. Since the effect of rotary
inertia on the free vibration of moderately thick plates is relatively small, it can be
neglected without losing significant accuracy. Thus, Eq. (14.8.8) can be simplified to

ω2
i ≈ (ω∗

i )
2

1 + [(ω∗
i )

2h2/6(1 − ν)κ2]
√

ρh/D
, (14.8.8a)

where κ2 ≈ 5
6 represents, again, the shear correction factor introduced in Sec. 1.5.

It is of considerable interest to note that Eq. (14.8.8) be used also for other types
of simply supported plates having skew, circular and annular sectorial surface geom-
etry, and it delivers almost exact solutions to such free-vibration problems. Although
Wang’s formula is exact only for simply supported Mindlin plates, it appears that
Eq. [14.8.8] can predict angular frequencies with reasonably good accuracy for any
simply supported moderately thick plates.

Furthermore, a similar energy-based approach can also be taken for other than
simply supported plates, provided that the assumed displacement fields can represent
the expected free-vibration patterns and satisfy the prescribed boundary conditions.
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14.9 Summary and Conclusions

This chapter was devoted to the dynamic analysis of plates based on classical meth-
ods. As in static analysis, exact solutions of the differential equation of motion are
limited to the simplest geometry, loading and boundary conditions. The various
energy-based solution techniques offer somewhat more flexibility. However, prac-
tical dynamic problems of “real life” can be solved only by numerical methods, as
shown in Chapter 15.

Since the effect of structural damping is, in most cases, of negligible order of
magnitude, solutions of undamped free and forced vibrations have been emphasized.
However, to provide a generally usable tool for the rare cases when damping must be
considered, numerical solution of damped vibrations is briefly treated in Sec. 15.3.

Since the natural frequencies of free vibration can serve as an important index
capable of describing the dynamic characteristics of plate structures, considerable
attention is paid to their free-vibration analysis. For simply supported, isotropic,
rectangular plates of uniform thickness, the extension of Navier’s method yields the
natural frequencies in a relatively simple manner. Also, the forced vibration of such
plates can be solved without too much difficulty by expressing the time dependency
of the forcing function in trigonometric series. Similarly, the extension of Lévy’s
method can yield, in a somewhat more complex way, solutions to free vibrations of
rectangular plates having two opposite edges simply supported while the other two
edges are free or fixed. Solution of forced vibrations of such plates, however, tends to
be extremely tedious. Similar is the case of the free-vibration analysis of rectangular
and circular plates having all edges free or clamped.

As mentioned previously, energy methods are somewhat more general than the
above-discussed classical methods and yield remarkably accurate results even if the
boundary conditions are more difficult. Application of these methods can also be
extended to plates of various shapes and of variables thickness. Their accuracy,
however, depends to a large extent on a suitable selection of eigenfunctions. This need
to select appropriate shape functions that satisfy the geometric boundary conditions
and approximate the modes of vibrations is the main disadvantage of energy methods,
since it requires experience and certain skill on the part of the investigator. Methods
have been introduced to facilitate the selection of suitable shape functions.

When the only information sought is the lowest natural frequency of the plate, the
use of Rayleigh’s method, which often yields good accuracy, is highly recommended.
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A modification of Rayleigh’s method by Morley uses merely the dead-load deflections
of plates. In certain cases this approach can be extended to obtain natural frequencies
pertinent to second and even to third modes as well. The resulting solutions, as all
energy solutions, are upper bound.

The Ritz method is based on the principle of minimum potential. This approach
is more general than Rayleigh’s solution techniques, since it can give information
on frequencies and mode shapes of higher modes. The accuracy of the first and
second modes is usually good. However, the accuracy for higher than second mode,
in general, deteriorates progressively. It is important to note that Ritz’s method can
also be applied to moderately thick plates, as demonstrated in Sec. 14.8.

Russian scientists working on the theory of elasticity have significantly contributed
to the development of energy methods. Like the method of Ritz, the energy-based
method developed by Galerkin assumes the solution of modal shapes in the form of
series, terms of which individually satisfy all boundary conditions and have fourth
derivatives.

Galerkin’s approach applies the lateral displacements directly to the differential
equation of motion, which leads to a simpler way of obtaining eigenvalues and
eigenfunctions. In the first step, the vibration problem of plates is reduced to the
evaluation of definite integrals of simple functions selected in advance. Next, this
integral transformation results in a system of homogeneous linear equations that has a
nontrivial solution only when the system determinant vanishes. Thus, the final solution
of a plate vibration problem is further reduced to the determination of eigenvalues
and eigenvectors.

Vlasov’s method eliminates (1) the problem of selecting shape functions and (2) the
solution of the above-mentioned eigenvalue problem. This simplification is achieved
by separating the variables and by introducing linear combinations of eigenfunctions
of transverse vibrations of beams as shape functions. An additional advantage of this
approach is that its accuracy does not deteriorate with higher modes, as is the case
for Ritz’s method and to a lesser extent for Galerkin’s. Although the required mathe-
matical operations are relatively simple, they tend to be lengthy. Vlasov’ method can
be extended to cover forced vibrations of plates, but numerical methods are better
suited to handle arbitrary plate geometry, boundary conditions and loadings. Simple
estimates for forced vibrations can be obtained by applying the dynamic load factor,
based on circular frequencies of the plate.

As is the case with the classical solutions of static plate problems, classical methods
in plate dynamics serve one important purpose: that the results obtained can be used
as benchmarks for all numerical methods.

Problems†

14.1.1. Determine an approximate value for the lowest circular frequency of a
rectangular plate (a/b = 2) with fixed boundary conditions by using an
equivalent single-DOF system.

14.1.2. Redo problem 14.1.1 but assume that two opposite edges are simply sup-
ported while the others are clamped.

† The first two numbers refer to the corresponding section.
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14.1.3. The plate described in problem 14.1.1 is subjected to a uniformly distributed
transient load p(t). Determine the dynamic response of this plate assuming
that the time-dependent part of the forcing function has a triangular shape.
The plate is initially at rest.

14.1.4. Obtain an approximate value for the lowest natural frequency of a circular plate
by using the equivalent single-DOF system. First, assume simply supported
boundary conditions; next, repeat your calculation with fixed boundary.

14.1.5. Find the dynamic response of the plate described in problem 14.4.1 assum-
ing that the time-dependent part of the uniformly distributed dynamic load
has a triangular shape. Find a solution to the simultaneous free and forced
vibrations by using an equivalent single-DOF system.

14.3.1. A simply supported rectangular plate vibrates freely. Find the mode shapes
and corresponding frequencies for the second and third modes. Use the
classical approach described in Sec. 14.3.

14.5.1. Solve problem 14.1.1 by Rayleigh’s method. Compare the result with that
obtained in solving problem 14.1.1.

14.5.2. Redo problem 14.5.1 by using Galerkin’s approach.
14.5.3. Find the lowest natural frequency of the plate shown Fig. 14.6.1 by using

Vlasov’s solution technique.
14.5.4. Redo problem 14.5.1 using Ritz’s energy-based solution method.
14.6.1. Determine the lowest circular frequency of an isotropic rectangular plate

(a/b = 1.4) by applying Morley’s formula. Assume that all boundaries of
the plate are fixed.

14.6.2. Check the results obtained in the Illustrative Example of Sec. 14.3 using
Morley’s formula.

14.6.3. Redo problem 14.6.1 assuming that the plate is orthotropic.
14.7.1. An isotropic square plate with simple supported boundary conditions is

subjected to a harmonic excitation. Consider simultaneous free and forced
vibrations.

14.8.1. Find the lowest circular frequency of the moderately thick RC plate shown
in Fig. 14.8.1 by applying Eq. (14.8.8). Use the following dimensions for
this plate: a = 5.00 m, b = 7.00 m, h = 1.50 m, E = 30 × 103 MN/m2

and ν = 1
6 .



15
Numerical Methods
in Plate Dynamics

15.1 Solution of Differential Equation of Motion
by Finite Differences

a. Free Undamped Vibration. Let us assume that the plate performs harmonic
oscillations about its equilibrium position; then the lateral deflections can be
expressed as

w(x, y, t) = W(x, y) sin ωt, (15.1.1)

where W(x, y) is the shape function that satisfies the boundary conditions and
represents the shape of the deflected middle surface of the vibrating plate. The time-
dependent part of the harmonic oscillations is represented by sin ωt , where ω is the
natural circular frequency of the plate.

The substitution of Eq. (15.1.1) into the governing differential equation of motion
(14.2.4) yields

∇2∇2W(x, y) − ω2 m

D
W(x, y) = 0. (15.1.2)

Replacing the derivatives by ordinary finite difference expressions as described in
Sec. 5.1 (for quadratic mesh), Eq. (15.1.2) becomes

1

(�x)4
[20Wm,n − 8(Wm+1,n + Wm−1,n + Wm,n+1 + Wm,n−1)

+ 2(Wm+1,n+1 + Wm−1,n+1 + Wm+1,n−1 + Wm−1,n−1)

+ Wm+2,n + Wm−2,n + Wm,n+2 + Wm,n−2] = ω2 m

D
Wm,n (15.1.3)

The boundary value problems are also treated in the same manner as that described
in Sec. 5.1.

845Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
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For each finite difference mesh point, an equation similar to Eq. (15.1.3) is obtained.
These algebraic equations can be written in more general terms as

a11x1 + a12x2 + a13x3 + · · · + a1nxn = λx1b1,

a21x1 + a22x2 + a23x3 + · · · + a2nxn = λx2b2,

a31x1 + a32x2 + a33x3 + · · · + a3nxn = λx3b3,

...

an1x1 + an2x2 + an3x3 + · · · + annxn = λxnbn

(15.1.4)

or, using matrix notation,

AX = λBx; (15.1.5)

therefore

(A − λB)x = 0, (15.1.6)

where x = {xi} is a column matrix whose elements xi represent the amplitudes of
the free vibration, A = [aij ] is a square matrix obtained from the finite difference
expression of the biharmonic operator ∇2∇2(·) and B = [bii ] is a diagonal matrix
representing the constants in the right-hand term of Eq. (15.1.3) and λ = ω2.

Premultiplying Eq. (15.1.6) by B−1, we obtain

(C − λI)x = 0, (15.1.7)

where C = B−1A and I is the identity matrix.
To have a solution of Eq. (15.1.7) other than the trivial one (x1, x2, x3, . . . , xn = 0),

the determinant of the coefficients must equal zero; thus we can write

|C − λI| =

∣∣∣∣∣∣∣∣∣∣

c11 − λ c12 c13 · · · c1n

c21 c22 − λ c23 · · · c2n

c31 c32 c33 − λ · · · c3n

...
...

...
...

...

cn1 cn2 cn3 · · · cnn − λ

∣∣∣∣∣∣∣∣∣∣
= 0. (15.1.8)

The expansion of this determinant yields an nth-order equation in λ, which is called
the characteristic polynomial or characteristic equation. The roots (λ1, λ2, . . . , λn)

are the characteristic numbers or eigenvalues of the vibrating system, from which
the natural circular frequencies

ωr = √
λ, for r = 1, 2, 3, . . . , n (15.1.9)

can be calculated. If matrix [cij ] is symmetric and its diagonal elements are all
positive, all eigenvalues are real. It should be noted that the characteristic polynomial
may yield multiple roots. The eigenvalue problem represented by Eq. (15.1.7) is a
special or classical eigenvalue problem.
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The conventional Laplace expansion of the determinant (15.1.8) is generally not
well suited for computer use. For digital computer expansion of large matrices,
Householder’s technique [7.3.11] is recommended. Householder expressed the char-
acteristic equation as

λn + K1λ
n−1 + K2λ

n−2 + · · · + Kn−1λ + Kn = 0, (15.1.10)

where the coefficients K1, K2, . . . , Kn are defined by

K1 = −T1,

K2 = − 1
2 (K1T1 + T2),

K3 = − 1
3 (K2T1 + K1T2 + T3),

...

Kn = − 1
n
(Kn−1T1 + Kn−2T2 + · · · + K1Tn−1 + Tn).

(15.1.11)

In Eq. (15.1.11), T1, T2, T3, . . . , Tn represent the traces of the matrices An, which
are defined as the sum of the diagonal elements of the corresponding matrix [4.3.14].
Thus, we can write

T1 = trace A,

T2 = trace A2,

...

Tn = trace An.

(15.1.12)

Each eigenvalue gives a solution in the form

wir =




W1r

W2r

...

Wnr




× sin ωrt = {Wir} sin ωrt. (15.1.13)

The amplitude matrix {Wir } is the eigenvector pertinent to the rth eigenvalue. Since
the matrix equation (15.1.6) is homogeneous, the eigenvectors cannot be uniquely
defined; only the ratios of the deflection ordinates can be obtained. Normally, the
largest deflection ordinate is chosen as unity and the remaining ordinates are shown
as fractions of that value.

To obtain the desired information, which consists of the natural circular frequen-
cies (eigenvalues) and the principal modes of oscillation (eigenvectors), computer
programs are readily available. To be able to use these computer programs, however
it is required that the problem be formulated in a matrix form similar to Eq. (15.1.7).

Improved finite difference methods, as described in Sec. 5.2, can be used to advan-
tage to obtain high accuracy with a relatively coarse finite difference mesh. The
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procedure is identical to the one described above. Thus, after introducing the iner-
tia forces due to lateral displacements, the pertinent stencils of either the funicular
polygon or the multilocal methods can be applied.

Approximate results, obtained for frequencies and mode shapes using finite dif-
ference methods, can be improved to any desired degree of accuracy by means of
the Stodola-Vianello iterative procedure [14.6.7]. This simple technique is especially
useful for improving frequencies and eigenfunctions associated with the first mode
of free vibration.† The required iterative steps are as follows:

1. Obtain an approximate shape function W(0)(x, y) and the corresponding nat-
ural circular frequency ω(0) using the ordinary finite difference method, for
instance.

2. Based on the first estimate of frequency, ω(0), introduce a fictitious inertia
force p(0)

z acting in the direction of displacements. The intensity of this lateral
force at the ith mesh point is given by

p
(0)
i = (ω(0))2miW

(0)
i . (15.1.14)

3. The plate is subjected to this static loading, and improved deflection ordi-
nates W

(1)
i of the shape function are determined, again, by the finite differ-

ence method.
4. An improved value for frequency associated with the specific mode shape can

be calculated from

ω(1) =
√√√√ ∑n

i p
(0)
i W

(1)
i∑n

i mi(W
(1)
i )2

= ω(0)

√√√√∑n
i W

(0)
i W

(1)
i∑n

i (W
(1)
i )2

. (15.1.15)

The iterative cycle is now repeated using ω(1), ω(2), . . . until the last cycle shows
no marked improvement in comparison with results of the previous cycle. This self-
correcting iterative technique converges to the exact solution. Consequently, its use
is highly recommended, especially in connection with the lower modes.

b. Forced Vibration. Let us now investigate the effect of time-dependent lateral
forces pz(x, y, t) that act on the vibrating system. As in the previous sections, sinu-
soidal forcing functions, which produce steady-state vibrations, are our major interest.

Suppose that the plate is acted upon by a simple harmonic excitation,

pz = P(x, y) sin pt ; (15.1.16)

then the steady-state response, assuming that the free-vibration part is already damped,
is easily obtained by using the dynamic load factor (14.1.23). Consequently,

wi,max = 1

1 − (p/ω)2
Wi, (15.1.17)

where Wi represents the deflection ordinate at mesh point i under the peak load,
taken statically.

† Although improvement of eigenvalues obtained by finite difference techniques are discussed here,
the method is applicable to any approximate analytic or numerical method.
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If the frequency of the forcing functions varies at certain mesh points, the steady-
state response can be evaluated separately and the results superimposed. Similarly,
the superposition technique can be applied in determining the response of the plate
to arbitrary periodic excitations, as described in Secs. 14.1 and 14.5. Considerably
more effort is required, however, for evaluation of the transient response unless a
dynamic load factor based on a definite integral [Eq. (14.1.32)] is again introduced
and the computation is carried out for a quasi-static load. Since in the finite difference
approach to response analysis of plates we have idealized the vibrating system by
using a network of lumped masses, the method described in the subsequent section
can logically be extended to cover also finite element techniques.

Summary. The ordinary finite difference method, especially in connection with the
Stodola-Vianello iterative procedure, represents a generally applicable mathematical
tool for dynamic analysis of plates. This method is recommended, for example, when
arbitrary geometry, variable thickness or nonuniform distribution of the dynamic load
makes the use of analytical techniques too cumbersome or even impossible. Improved
finite difference methods are capable of yielding high accuracy, even with relatively
coarse mesh. Concerning the relative advantages and disadvantages of the various
finite difference techniques, the reader is referred to Secs. 5.1 and 5.2.

ILLUSTRATIVE EXAMPLE I

Using the funicular polygon method, determine the natural circular frequencies
associated with the first and second modes of a square plate with
clamped boundaries.

The differential equation of free, undamped vibration is

∇2∇2W − ω2

D
mW = 0.

The mesh points are numbered as indicated in Fig. 15.1.1a. Applying Eq.
(5.2.19), the following expressions for the inertia forces are obtained:

P1 = (�x)2

144
m(100W1 + 10W2 + 10W4 + W5),

P2 = (�x)2

144
m(10W1 + 100W2 + 10W3 + W4 + 10W5 + W6),

P3 = (�x)2

144
m(10W2 + 100W3 + W5 + 10W6),

P4 = (�x)2

144
m(10W1 + W2 + 100W4 + 10W5 + 10W7 + W8),

P5 = (�x)2

144
m(W1 + 10W2 + W3 + 10W4 + 100W5 + 10W6

+ W7 + 10W8 + W9),

P6 = (�x)2

144
m(W2 + 10W3 + 10W5 + 100W6 + W8 + 10W9),
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Figure 15.1.1 Free vibration of clamped square plate.

P7 = (�x)2

144
m(10W4 + W5 + 100W7 + 10W8),

P8 = (�x)2

144
m(W4 + 10W5 + W6 + 10W7 + 100W8 + 10W9),

P9 = (�x)2

144
m(W5 + 10W6 + 10W8 + 100W9).

By introducing the notation λ∗ = mω2(�x)4/144D = ω2ma4/144 × 256D, the
finite difference equations at the various mesh points (Figs. 5.2.10 and 5.2.14)
can be written as

At point 1:

3816W1 − 765W2 + 120W3 − 765W4

− 180W5 + 51W6 + 120W7 + 51W8 + 8W9

= λ∗(13,122W1 + 2916W2 + 162W3 + 2916W4

+ 648W5 + 36W6 + 162W7 + 36W8 + 2W9).
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At point 2:

− 768W1 + 3888W2 − 768W3 − 132W4

− 1134W5 − 132W6 + 64W7 + 144W8 + 64W9

= λ∗(3240W1 + 16, 524W2 + 3240W3 + 720W4

+ 3672W5 + 720W6 + 40W7 + 204W8 + 40W9).

At point 3:

120W1 − 765W2 + 3816W3 + 51W4

− 180W5 − 765W6 + 8W7 + 51W8 + 120W9

= λ∗(162W1 + 2916W2 + 13, 122W3 + 36W4

+ 648W5 + 2916W6 + 2W7 + 36W8 + 162W9).

At point 4:

− 768W1 + 132W2 + 64W3 + 3888W4

− 1134W5 + 144W6 − 768W7 − 132W8 + 64W9

= λ∗(3240W1 + 720W2 + 40W3 + 16, 524W4

+ 3672W5 + 204W6 + 3240W7 + 720W8 + 40W9).

At point 5:

− 32W1 − 576W2 − 32W3 − 576W4

+ 1872W5 − 576W6 − 32W7 − 576W8 − 32W9

= λ∗(400W1 + 2040W2 + 400W3 + 2040W4

− 10, 404W5 + 2040W6 + 400W7 + 2040W8 + 400W9).

At point 6:

64W1 − 132W2 − 768W3 + 144W4

− 1134W5 + 3888W6 + 64W7 − 132W8 − 768W9

= λ∗(40W1 + 720W2 + 3240W3 + 204W4

+ 3672W5 + 16, 524W6 + 40W7 + 720W8 + 3240W9).

At point 7:

120W1 + 51W2 + 8W3 − 765W4

− 180W5 + 51W6 + 3816W7 − 765W8 + 120W9

= λ∗(162W1 + 36W2 + 2W3 + 2916W4

+ 648W5 + 36W6 + 13, 122W7 + 2916W8 + 162W9).
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At point 8:

64W1 + 144W2 + 64W3 − 132W4

− 1134W5 − 132W6 − 768W7 + 3888W8 − 768W9

= λ∗(40W1 + 204W2 + 40W3 + 720W4

+ 3672W5 + 720W6 + 3240W7 + 16, 524W8 + 3240W9).

At point 9:

8W1 + 51W2 + 120W3 + 51W4

− 180W5 − 765W6 + 120W7 − 765W8 + 3816W9

= λ∗(2W1 + 36W2 + 162W3 + 36W4

+ 648W5 + 2916W6 + 162W7 + 2916W8 + 13, 122W9).

These equations are of the form

[A]{W } = λ∗[B]{W }

or

([A] − λ∗[B]){W } = 0,

which, premultiplied by [B]−1, gives

[C] − λ∗[I ] = 0,

where [C] = [B]−1[A]. Consequently, the problem is reduced to an eigenvalue-
eigenvector problem for which computer programs are readily available.

The results of the computer solution are as follows:

First Mode Second Mode

Eigenvalues
1

λ∗
1

= 28.99915
1

λ∗
2

= 7.33362

Eigenvectors W1 = 0.27550 W1 = −0.5236

W2 = 0.53268 W2 = 0.0000
W3 = 0.27550 W3 = 0.5236
W4 = 0.53268 W4 = −1.0000
W5 = 1.00000 W5 = 0.0000
W6 = 0.53268 W6 = 1.0000
W7 = 0.27549 W7 = −0.5236
W8 = 0.53268 W8 = 0.0000
W9 = 0.27549 W9 = 0.5236
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These two fundamental modes are plotted in Figs. 15.1.1b and c. Thus, the
lowest natural circular frequency of the plate is

ω1 = 12 × 16

5.3851

1

a2

√
D

m
= 35.65

1

a2

√
D

m
rad/s,

which, in comparison with the “exact” solution [14.1.8], shows an error of less
than 2%.

Similarly,

ω2 = 12 × 16

2.708

1

a2
= 70.90

1

a2

√
D

m
rad/s.

The error is, again, less than 2.5%. It should be noted, however, that if fre-
quencies pertinent to higher modes are also required, the introduction of more
nodal points is necessary, since limited nodal points are not able to describe
the true shapes of these modes effectively.

ILLUSTRATIVE EXAMPLE II

Solve the problem given in the first example by Collatz’s multilocal method.
By introducing the notation λ∗ = (�x)4ω2(m/D), the stencils (given in

Figs. 5.2.3 and 5.2.6) yield the following finite difference equations:

At point 1:

448W1 − 124W2 + 16W3 − 124W4 + 8W6 + 16W7 + 8W8 = λ∗(12W1).

At point 2:

− 80W1 + 336W2 − 80W3 + 16W4 − 144W5 + 16W6 + 32W8

= λ∗(2W1 + 8W2 + 2W3).

At point 3:

16W1 − 124W2 + 448W3 + 8W4 − 124W6 + 8W8 + 16W9 = λ∗(12W3).

At point 4:

− 80W1 + 16W2 + 336W4 − 144W5 + 32W6 − 80W7 + 16W8

= λ∗(2W1 + 8W4 + 2W7).

At point 5:

− 2W1 − 10W2 − 2W3 − 10W4 + 36W5 − 10W6 − 2W7 − 10W8 − 2W9

= λ∗

2
(W2 + W4 + 2W5 + W6 + W8).
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At point 6:

16W2 − 80W3 + 32W4 − 144W5 + 336W6 + 16W8 − 80W9

= λ∗(2W3 + 8W6 + 2W9).

At point 7:

16W1 + 8W2 − 124W4 + 8W6 + 448W7 − 124W8 + 16W9

= λ∗(12W7).

At point 8:

32W2 + 16W4 − 144W5 + 16W6 − 80W7 + 336W8 − 80W9

= λ∗(2W7 + 8W8 + 2W9).

At point 9:

8W2 + 16W3 + 8W4 − 124W6 + 16W7 − 124W8 + 448W9

= λ∗(12W9).

The computer solution of these homogeneous, linear, algebraic equations has
yielded

λ∗
1 = 5.2496 and λ∗

2 = 19.5542.

Thus,

ω1 = 36.659
1

a2

√
D

m
(error ≈ 1.8%)

and

ω2 = 70.75
1

a2

√
D

m
(error ≈ 2.5%).

Comparing these results with those obtained from the funicular polygon method,
it can be stated that the accuracy of the two methods in the free-vibration
analysis of plates is approximately the same.

ILLUSTRATIVE EXAMPLE III

Find the lowest natural circular frequency of the plate shown in Fig. 15.1.1a by
the ordinary finite difference method and improve the results by the Stodola-
Vianello iterative technique.

Since we are interested merely in the circular frequency associated with the
first mode, we may utilize the apparent double symmetry of the problem to
reduce the number of unknowns; thus, we can write

W1 = W3 = W7 = W9
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and

W2 = W4 = W6 = W8.

Let us introduce the notation λ∗ = (�x)4ω2
1(m/D) and represent the fixed

boundary conditions in accordance with Fig. 5.1.5a. The difference equations
(15.1.3) can be written in matrix form as


 24 − λ∗ −16 +2

−16 26 − λ∗ −8
+8 −32 20 − λ







W1

W2
W5


 = 0.

The vanishing determinant of these equations gives the characteristic equation

(λ∗)3 − 70(λ∗)2 + 1096(λ∗) − 2848 = 0.

The lowest root of this equation is λ∗ = 3.25, obtained by Newton’s method.
Thus, the first estimate of the fundamental frequency is

ω
(0)
1 =

√
λ∗D

m(�x)4
= 28.95

a2

√
D

m
rad/s.

This result, in comparison with the exact solution [14.2.1], has an error of
approximately 15%. The ordinates Wi of the shape function are obtained by
substituting λ∗ = 3.25 into the homogeneous algebraic equations and taking
the largest ordinate as unity. Thus, we have


+20.75 −16 +2

−16 +22.75 −8
+8 −32 +16.75







W
(0)
1

W
(0)
2

W
(0)
5 = 1


 = 0;

hence

W
(0)
1 = 0.384 and W

(0)
2 = 0.622.

To improve this first approximation of frequency and, that of the pertinent
mode shape by the Stodola-Vianello iterative technique, we first compute the
fictitious loads p

(0)
i from Eq. (15.1.14). Next, the static deflections due to p

(0)
i

are determined from the following finite difference equations:


+24 −16 +2

−16 +26 −8
+8 −32 +20







W
(1)

1

W
(1)

2

W
(1)

5


 =




0.384
0.622
1.00


 (ω

(0)
1 )2m

(�x)4

D
;
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hence

W
(1)

1 = 0.119(ω
(0)

1 )2m
(�x)4

D
, W

(1)

2 = 0.193(ω
(0)

1 )2m
(�x)4

D

and

W
(1)
5 = 0.316(ω

(0)
1 )2m

(�x)4

D
.

Substituting these deflection ordinates into Eq. (15.1.15), an improved value
for the lowest circular frequency is obtained:

ω
(1)

1 =
√

0.4897D

0.12869m(�x)4
= 31

a2

√
D

m
.

This result has an error of approximately 9%. By repeating this iterative cycle,
the accuracy of the solution can be improved further. Using static deflections
for determining the first estimates ω

(0)

1 , W(0), as described in Sec. 14.6, even
the calculation of eigenvalues and eigenvectors can be eliminated. Such an
approach is of importance only if computers are not readily available and
hand computation must be used, since the solution of high-order polynomials
can be cumbersome. On the other hand, with advanced scientific calculators a
reasonable number of algebraic equations can be solved with ease.
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15.2 Application of Finite Element Method
to Plate Dynamics

15.2.1 Matrix Equations of Free Vibrations

The problem most frequently encountered in the vibration analysis of plates is to find
the natural frequencies and modes of the oscillations corresponding to free vibra-
tions. Lagrange’s equations of motion written for such a system with n degrees of
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freedom are

m11d̈1 + · · · + m1nd̈1n + k11d1 + · · · + k1ndn = 0,

m21d̈1 + · · · + m2nd̈n + k21d1 + · · · + k2ndn = 0,

...

mn1d̈1 + · · · + mnn d̈n + kn1d1 + · · · + knndn = 0,

(15.2.1)

where d represents individual displacement components and k and m are the corre-
sponding stiffness and mass components, respectively. The two dots refer to differen-
tiation with respect to time. This set of homogeneous equations can be conveniently
written in matrix form in the global reference system X, Y , Z of the plate:

M d̈ + K = {0}, (15.2.2)

where d is the vector of displacement components and M and K are the mass and
stiffness matrices of the vibrating system, respectively. It has already been shown
that K is a symmetric matrix. The same can be said for M, as discussed later in the
subsequent section. Consequently, we can write

mij = mji and kij = kji . (15.2.3)

Incidentally, the kinetic and potential energies may also be expressed in easily
usable matrix form as

T = 1
2 ḋ

T
M ḋ and U = 1

2 d
T
K d. (15.2.4)

Let us now consider a solution of Eq. (15.2.2) in the form

d = {A} sin(ωt + α), (15.2.5)

where {A} is the column matrix of the amplitudes, ω represents the angular fre-
quency and α denotes an arbitrary phase angle. Substituting this solution (15.2.5)
into Eq. (15.2.2), we have

(K − ω2M) {A} = {0}. (15.2.6)

Let us multiply both sides of Eq. (15.2.6) by K
−1

. Then,

(I − ω2K
−1

M) {A} = {0}, (15.2.7)

where I is the unit matrix of order n. Next, let

D = K
−1

M. (15.2.8)
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This matrix is called the dynamic matrix. Then Eq. (15.2.7) becomes

(I − ω2D) {A} = {0}, (15.2.9)

or

I − ω2D = {0}. (15.2.9a)

Next, let

λ = 1

ω2
; (15.2.10)

then, Eq. (15.2.9) becomes

(λI − D) {A} = {0}. (15.2.11)

This matrix equation represents a system of linear homogeneous equations in the
amplitude constants {A}. For other than its trivial solution, the determinant of the
coefficients must equal zero. Thus, we can write

det |λI − D| = 0. (15.2.12)

The expansion of this determinant yields an nth-order equation in λ for which it can
be proved that all roots are real and positive. For each of the roots λr , we find the
value of ωr from

ωr =
√

1

λr

for r = 1, 2, 3, . . . , n. (15.2.13)

These values of ωr are called natural circular frequencies of the vibrating system.
Each value of ωr yields a solution in the form

dr =




A1r

A2r

...

Anr




sin(ωr t + αr). (15.2.14)

Therefore, a general solution of Eq. (15.2.2) is the sum of all solutions of form
(15.2.14):

d =
n∑

r=1

{A} sin(ωr t + αr). (15.2.15)

Any particular column of amplitude constants {A} will satisfy Eq. (15.26), where ωr

is used; hence

ω2
r M{Ar} = K{Ar}. (15.2.16)

This equation establishes the ratio of the amplitude constants. We may choose an
arbitrary value—usually the expected maximum amplitude value—for any element
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of {A}, and by Eq. (15.2.14) the other elements are known in terms of the chosen
element. Hence, we see that the general solution (15.2.15) has 2n arbitrary constants,
one for each column matrix of amplitudes and n values of the phase angle α. These
constants may be determined for the particular vibrating plate if all amplitudes and
velocities are known at a particular time. Usually, the general solution is not of par-
ticular interest. That is, the desired information of a freely vibrating plate consists
only of the natural frequencies and corresponding mode shapes. Each solution of
Eq. (15.2.14) represents a pure harmonic motion without damping and is called the
principal oscillation of the plate. Furthermore, the amplitudes represented by the col-
umn matrix {A} are called natural modes of the free oscillation. As mentioned above,
normally the assumed largest amplitude is selected and the remaining amplitudes are
expressed as a fraction of this value.

Equations (15.2.9) and (15.2.9a) represent a classical eigenvalue-eigenvector
problem of mathematical physics. As already stated in the previous section, solution of
eigenvalue problems by using the characteristic equation resulting from the expansion
of Eq. (12.2.12) is a very difficult task. Thus, it can be used only in the case of small
vibrating systems with a limited number of degrees of freedom. Fortunately, numerous
very usable eigenvalue-eigenvector subroutines readily available in the pertinent
literature [15.2.1–15.2.6] are usually based on vector iteration such as Houshoder’s
or Jacobi’s transformation procedures. In general, in using such computer programs
one can choose to determine one of the following options:

ž all eigenvalues and eigenvectors,
ž all eigenvalues and some eigenvectors and
ž some eigenvalues and the corresponding eigenvectors.

The reader will find readily usable computer programs for dynamic analysis of
plates in the WinPlatePrimer 2001 program system (see Appendix A.4.2). Further-
more, nowadays most of the commercially available larger program systems have
provisions for vibration analysis of large structural systems, including those for plates
and shells.

An important property of the eigenfunctions is known as the orthogonality rela-
tionship, which has already been briefly mentioned in Sec. 4.3 in connection with
vibrating beams. The orthogonality conditions of natural modes state that

d
T

rM ds = 0 for r �= s,

d
T

rK ds = 0 for r �= s, (15.2.17)

where dr and ds are any two column matrices of amplitude constants associated with
ωr and ωs circular frequencies, respectively. These relationships can also be used to
check the accuracy of the computed eigenvectors. In addition, one may also utilize
the matrix form of Rayleigh’s quotient

λr = d
T

rK dr

d
T

r M dr

(15.2.18)

to checking the obtained natural frequencies and even to improve them.
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15.2.2 Mass Matrix

a. Lumped Masses. In the finite element approach to plate dynamics, the mass
matrix M, represents the inertia properties of the plate structure. In plate structures
the mass is always a continuously distributed property. Consequently, if we use
a discrete solution technique such as the FEM, we must also discretize the con-
tinuous mass of the plates, as we did with its load-carrying stiffness properties.
The most common and easiest approach is lumping the masses at the nodal points
according to their corresponding tributary areas. In the case of a rectangular ele-
ment, for instance, we simply divide the total mass of the element by 4 and put
the results along the diagonal of the mass matrix of the element, Me, with sequence
w1, w2, w3, w4. To combine the element mass matrices Me into the mass matrix M
of the total structure, we follow the procedures introduced in Sec. 7.2 for stiffness
matrices. However, to avoid the undesirable zeros in the principal diagonal of the
dynamic matrix D, the lumped rotary inertias can also be approximated by taking
the mass moment of inertia of thin-plate elements. Thus, if we employ rectangular
finite elements, for instance, for an internal nodal point of the discretized plate, we
may use

mii ≈ µab, mjj ≈ 1
12µba3 or mjj ≈ 1

12µab3 (15.2.19)

in the principal diagonal of the mass matrix of the system. In this expressions µ

represents the mass of the plate per unit area. Thus, the lumped mass matrix of the
plate has the following diagonal form:

M =




m11

m22
m33 0

. . .

mii

0 mjj

. . .

mnn




. (15.2.19a)

An important advantage of this simple lumping process is that it contributes only
diagonal terms in the mass matrix; that is, an acceleration of the ith degree of
freedom is affected only by the inertia of that degree of freedom and is indepen-
dent of the others. Such diagonal mass matrices offer considerable computational
advantage because they are easy to store and invert; in addition, they preserve the
all-important symmetry of the dynamic matrix D. Consequently, the use of lumped
mass matrices considerably simplifies the solution of the resulting matrix equations
of motion.

In many plate problems, it may be sufficient to use lumped masses in their
dynamic analysis, provided that a sufficiently large number of elements is used.
However, the error created by lumping the masses increases with higher modes
and with the complexity of the finite elements employed in the dynamic analy-
sis [15.2.7].
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b. Kinematically Consistent Mass Matrices. In the finite element formulation of
the free vibration of plates, the accuracy of the eigenvalues, especially those pertinent
to higher modes, can be improved by using the so called kinematically-consistent mass
matrices. Such mass matrices can be derived by comparing the kinetic energy of the
original structure with that of the discretized finite element system.

The most important convergence criterion of the FEM requires that the energy of
the substitute discretized system approaches that of the original continuum when the
number of elements is increased. In the dynamic analysis, the total energy of the
vibrating system also includes the kinetic energy. Considering, for instance, only the
kinetic energy associated with the lateral translation of a rectangular plate, the con-
vergence criterion involving the kinetic energy of the plate element can be written as

1

2

∫ a

0

∫ b

0
µ(x, y)

(
∂w

∂t

)2

dx dy ≈ d
T

eMede, (15.2.20)

where Me is the mass matrix of the element and de represents the corresponding
vector of displacements.

Let us express the lateral deflection w(x, y) of the plate as the sum of the products
of the shape functions Ni associated with the unit displacement of the nodes and that
of the pertinent displacement di ; thus we can write

w(x, y, t) =
r∑

i=1

Ni(x, y)d(t). (15.2.21)

Substitution of Eq. (15.2.21) into Eq. (15.2.20) yields the coefficients of the kine-
matically consistent mass matrix for a rectangular plate element in the form

mij = µ

∫ a

0

∫ b

0
Ni(x, y) × Nj(x, y) dx dy. (15.2.22)

The same result is obtained by determining the concentrated dynamic nodal forces
corresponding to the distributed inertia force system (e.g., µẅ) by applying the con-
cept of virtual work. Following this second approach, we state that the work done
by the concentrated dynamic forces assigned to the nodes equals the work done
by the distributed dynamic forces acting on the element. Assuming the same time
dependency θ(t) for the element displacements as for the displacements of the nodes,
we obtain

θ̈ (t) mij × 1 = θ̈ (t)

∫ a

0

∫ b

0
µ Ni(x, y) × Nj(x, y) dx dy, (15.2.23)

which reduces to Eq. (15.2.22).
The shape functions Ni and Nj are identical to those used in derivations of stiffness

coefficients. Consequently, the stiffness and inertia properties of the finite elements
are intimately related.
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The mass matrix for a rectangular plate element in matrix form becomes

Me = µ

∫ a

0

∫ b

0
NT

iNj dx dy, (15.2.24)

where Ni and Nj represent the corresponding matrices of the shape functions. We
can also use the generalized coordinates, as described in Sec. 7.3. In this case, the
shape functions can also be expressed as N = �A−1. Thus, the mass matrix of the
plate element becomes

Me = µ[AT]−1

(∫ a

0

∫ b

0
�T� dx dy

)
A−1. (15.2.25)

Similar procedures can be used for triangular elements. However, usually numer-
ical integrations must be employed to evaluate Eq. (15.2.22). Consequently, explicit
formulations for mass matrices of triangular elements are rare.

For the simple rectangular plate-element (Fig. 7.6.1) Dawe [15.2.8] obtained the
consistent mass matrix in the following explicit form:

Me = QM̂Q, (15.2.26)

where

Q =



q 0 0 0
0 q 0 0
0 0 q 0
0 0 0 q


 with q =


 1 0 0

0 a 0
0 0 b


 (15.2.27)

and

M = µab

25,200
×

3454 1

461 80 2

−461 −63 80 3

1226 199 −274 3454 Symmetric 4

199 40 −42 461 80 5




274 42 −60 461 63 80




6

394 116 −116 1226 274 199 3454 7

−116 −30 28 −274 −60 −42 −461 80 8

116 28 −30 199 42 40 461 −63 80 9

1226 274 −199 394 116 116 1226 −199 274 3454 10

−274 −60 42 −116 −30 −28 −199 40 −42 −461 80 11

−199 −42 40 −116 −28 −30 −274 42 −60 −461 63 80 12

1 2 3 4 5 6 7 8 9 10 11 12

(15.2.28)

.
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Since the coefficients mij of the element mass matrix are not overly sensitive to
the correctness of the shape functions used in their evaluation, we can considerably
simplify the required procedures by employing the products of beam shape functions†

in Eq. (15.2.24). The obtained simplified element mass matrix, which yields quite
acceptable results in the dynamic analysis of plates, is given in Table 15.2.1.

For the higher-order rectangular plate element shown in Fig. 7.7.1, we use the
shape functions given in Eq. (7.7.5) to generate coefficients of the corresponding
mass matrix. These can be expressed by

mij = µab

1225
β7a

β5bβ6 , (15.2.29)

where the required parameters β5, β6 and β7 are listed in Table 7.7.1. Furthermore,
the index scheme given in Table 7.7.2 is also valid for Eq. (15.2.29).

We can also formulate a usable quasi-consistent mass matrix for a rectangular
gridwork cell by proportionally assigning the mass of the plate (corresponding to the
cell area) only to the beams located at its boundaries and by utilizing the following
mass matrix of a typical beam (Fig. 15.2.1):

(Me,b)
(N) = (µ∗l)(N)

420




1 2 3 4
156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l

−13l −3l2 −22l 4l2




1
2
3
4

, (15.2.30)

where µ∗ represents the allocated mass of the beam per unit length. As usual, by
changing the local numbering in Eq. (15.2.30) to the global one and summing the
mass coefficients of identical indices, as we always do by developing the perti-
nent stiffness matrices for a cell, we obtain the mass matrix given in Table 15.2.2.
Equation (12.2.30) can also be successfully applied to Salonen’s triangular gridwork‡

by using, again, a procedure similar to that employed in formulating the stiffness
matrix of the system. Furthermore, an analogous procedure is also required when the
local coordinate axes of the element are not parallel to those of the global ones. In
such a case, the usual coordinate transformation

(Me
′)(N) = (TMeTT)(N) (15.2.31)

is also necessary before compiling the mass matrix of the total system from the mass
matrices of the individual elements.

It is of interest to know that, in general, the use of kinematically consistent mass
matrices results in upper-bound solutions for natural frequencies, while the lumped
mass matrix approach gives lower-bound results, as illustrated in Fig. 15.2.1. Con-
sequently, one can calculate the average of these results to improve the required
frequencies without resorting to fine subdivisions.

Although the inverted stiffness matrix K
−1

of the system and the consistent mass
matrix M of the plate are symmetric matrices, their product, the dynamic matrix D,
is unsymmetric. It is usually very difficult to obtain eigenvalues of an unsymmet-
ric matrix that is larger than 150 × 150. If only the first three lowest eigenvalues

† See Illustrative Example III.
‡ See Sec. 6.2.



Ta
bl

e
15

.2
.1

Si
m

pl
ifi

ed
C

on
si

st
en

t
M

as
s

M
at

ri
x

fo
r

R
ec

ta
ng

ul
ar

Pl
at

e
E

le
m

en
ts

M
(N

)
e

=
(µ

a
2
b

2
)(

N
)
×

(N
)

16
9

12
25

·
1 a
b

N

1

85
8

44
,1

00
·1 a

13 36
75

·b a
2

−8
58

44
,1

00
·1 b

−1
21

44
,1

00

13 36
75

·a b
3

11
7

24
50

·
1 a
b

29
7

44
,1

00
·1 a

−2
02

8

17
6,

40
0

·1 b

16
9

12
25

·
1 a
b

4

29
7

44
,
10

0
·1 a

9

73
50

·b a

−1
43

88
,
20

0

85
8

44
,
10

0
·1 a

13 36
75

·b a
5

                                                           

20
28

17
6,

40
0

·1 b

14
3

88
,2

00

−1
3

49
00

·a b

85
8

44
,1

00
·1 b

12
1

44
,1

00

13 36
75

·a b

                                                           

6

81 49
00

·
1 a
b

11
7

29
,4

00
·1 a

−1
17

29
,4

00
·1 b

11
7

24
50

·
1 a
b

20
28

17
6,

40
0

·1 a

29
7

44
,1

00
·1 b

16
9

12
25

·
1 a
b

Sy
m

m
et

ri
c

7

−1
17

29
,4

00
·1 a

−9 98
00

·b a

16
9

17
6,

40
0

−2
02

8

17
6,

40
0

·1 a

−1
3

48
00

·b a

−1
43

88
,2

00

−8
58

44
,1

00
·1 a

13 36
75

·b a
8

11
7

29
,4

00
·1 b

16
9

17
6,

40
0

−9 98
00

·a b

29
7

44
,1

00
·1 b

14
3

88
,2

00

9

73
50

·a b

85
8

44
,1

00
·1 b

−1
21

44
,1

00

13 36
75

·a b
9

11
7

24
50

·
1 a
b

20
28

17
6,

40
0

·1 a

−2
97

44
,1

00
·1 b

81 49
00

·
1 a
b

11
7

29
,4

00
·1 a

11
7

29
,4

00
·1 b

11
7

24
50

·
1 a
b

−2
97

44
,1

00
·1 a

20
28

17
6,

40
0

·1 b

16
9

12
25

·
1 a
b

10

−2
02

8

17
6,

40
0

·1 a

−1
3

49
00

·b a

14
3

88
,2

00

−1
17

29
,4

00
·1 a

−9 98
00

·b a

−1
69

17
6,

40
0

−2
97

44
,1

00
·1 a

9

73
50

·b a

−1
43

88
,2

00

−8
58

44
,1

00
·1 a

13 36
75

·b a
11

−2
97

44
,1

00
·1 b

−1
43

88
,2

00

9

73
50

·a b

−1
17

29
,4

00
·1 b

−1
69

17
6,

40
0

−9 98
00

·a b

−2
02

8

17
6,

40
0

·1 b

14
3

88
,2

00

−1
3

49
00

·a b

−8
58

44
,1

00
·1 b

12
1

44
,1

00

13 36
75

·a b
12

1
2

3
4

5
6

7
8

9
10

11
12

864



Application of Finite Element Method to Plate Dynamics 865

Table 15.2.2 Quasi-Consistent Mass Matrix for Quadratic Gridwork Cells

M(N)
e = (µa2)(N)

1680
×

(N)

312
N

1

22a 4a2 2

−22a 0 4a2 3

54 0 −13a 312 4

0 0 0 22a 4a2 5




13a 0 −3a2 22a 0 4a2




6

0 0 0 54 13a 0 312 Symmetric 7

0 0 0 −13a −3a2 0 −22a 4a2 8

0 0 0 0 0 0 22a 0 4a2 9

54 13a 0 0 0 0 54 0 13a 312 10

−13a −3a2 0 0 0 0 0 0 0 −22a 4a2 11

0 0 0 0 0 0 −13a 0 −3a2 −22a 0 4a2 12

1 2 3 4 5 6 7 8 9 10 11 12

Finite element Eq. (7.6.12)
(lumped mass)

Finite element Eq. (7.6.12)
Consistent mass Eq. (15.2.26)

Gridwork cell (Table 6.3.3)
Mass matrix (Table 15.2.2)

Error in w1
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Figure 15.2.1 Convergence characteristics of various mass representations.
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are of interest, the iterative method and Rayleigh’s quotient can be applied. How-
ever, the obtainable accuracy of these procedures is not always satisfactory. A better
approach, especially if all eigenvalues should be determined, is to apply simple matrix
manipulations to obtain an equivalent symmetric dynamic matrix.

For this purpose, we write the mass matrix in triangular form,

M = L L
T
, (15.2.32)

in which L is the lower triangular matrix having only zero coefficients above the
principal diagonal. Furthermore, multiplying Eq. (12.2.9a) by D

−1
, the eigenvalue

problem of the free vibration of plates becomes

D
−1 − λI = {0}. (15.2.33)

Substituting Eq. (15.2.32), we obtain

L
T−1

L
−1

K − λI = {0}, (15.2.34)

which premultiplied by L
T

gives

L
−1

K − λL
T
I = {0}. (15.2.35)

Postmultiplying this equation by [L
T
]−1 yields

L
−1

K[L
T
]−1 − λI = {0}, (15.2.36)

or

C − λI = {0}. (15.3.37)

Since Eqs. (15.2.34) and (15.2.36) are the same, matrix C has to be symmetric.

ILLUSTRATIVE EXAMPLE I

Determine the coefficients m27 and m89 of a kinematically consistent mass
matrix corresponding to the rectangular finite element shown in Fig. 7.6.1 using
the product of beam functions (Fig. 7.5.7) as simplified shape functions.

Introducing the notations ξ = x/a and η = y/b, respectively, the simplified
shape functions can be written as

N2(ξ, η) = b[(1 − η)2η] × [3(1 − ξ)2 − (1 − ξ)3]

= b(η − 2η2 + η3) × (1 − 3ξ 2 + 2ξ 3),

N7(ξ, η) = (3ξ 2 − 2ξ 3) × (3η2 − 2η3),

N8(ξ, η) = −b[η2(1 − η) × (3ξ 2 − 2ξ 3)],

N9(ξ, η) = a(ξ 2 − ξ 3) × (3η2 − 2ξ 3).

(15.2.38)
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These expressions substituted in Eq. (15.2.22) give

m27 = µab

∫ 1

0

∫ 1

0
N2(ξ, η) × N7(ξ, η) dξ dη

= µab2

[∫ 1

0
(3ξ 2 − 2ξ 3)(1 − 3ξ 2 + 2ξ 3)

]

×
[∫ 1

0
(η − 2η2 − η3)(3η2 − 2η3) dη

]
= 117

29,400
µab2

(15.2.39)

and

m89 = −µa2b2

[∫ 1

0
(ξ 2 − ξ 3)(3ξ 2 − 2ξ 3) dξ

]

×
[∫ 1

0
(η2 − η3)(3η2 − 2η3) dη

]
= − 121

44,100
µa2b3. (15.2.40)

These results agree with the corresponding coefficients of the mass matrix given
in Table 15.2.1

ILLUSTRATIVE EXAMPLE II

Let us determine the lowest circular frequency ω1 of the clamped square plate
shown in Fig. 15.2.2a, by applying the FEM.

We discretize the plate by only four finite elements (Fig. 15.2.2b). Utilizing
the apparent double symmetry of the plate, we can deal with one element.
By changing the local number 9 to global number 1, Eq. (7.7.7) gives, in
connection with the corresponding Table 7.7.1, the stiffness coefficient

k11 = K = D

(a/2)2

(
156

35
+ 156

35
+ 72

25

)
= 11.7943

D

(a/2)2
. (15.2.41)

Similarly, we calculate the corresponding coefficient of the mass matrix from
Eq. (15.2.29). This gives

m11 = M = µ(a/2)2

1225
169 = 0.138µ

(a

2

)2
. (15.2.42)

From the eigenvalue problem

[K − ω2
1M]d1 = {0}, (15.2.43)

we obtain

ω2
1 = K

M
≈ k11

m11
= 11.7943

0.138(a/2)4

D

µ
= 85.46

(a/2)4

D

µ
, (15.2.44)
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Figure 15.2.2 Dynamic analysis of clamped plate.

from which

ω1 = 36.98

a2

√
D

µ
(rad/s) (error: +2.7%). (15.2.45)

ILLUSTRATIVE EXAMPLE III

The static response of the simply supported plate shown in Fig. 6.4.9a was
already determined by using the gridwork method. Now, we are interested
in its free-vibration behavior. Thus, let us compute the lowest circular fre-
quency ω1 and the corresponding mode of vibration of this plate using the
same gridwork approach.

For the free-vibration analysis the required stiffness matrix K of the analysis
quadrant (Fig. 6.4.9b) is already established during the static analysis of the
plate and is listed on the left-hand side of Eq. (6.4.22). Next, we calculate the
diagonal elements of the lumped mass matrix using the approximations given
in Eq. (15.2.19). These calculations result in

m11 = 1
4 µa2 = 0.14063µ, m22 = m99 = 1

2 µa2 = 0.28125µ,

m33 = m10,10 = 1
24 µa4 = 0.01318µ, m44 = m11,11 = 1

48 µa4 = 0.00659µ,

m55 = m12,12 = 1
24 µa4 = 0.01318µ, m66 = µa2 = 0.56250µ,

m77 = m88 = 1
12 µa4 = 0.02637µ.

(15.2.46)
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Hence, the lumped mass matrix becomes

M = µ

×




0.14063
0.28125

0.01318

0.00659 0
0.01318

0.5625
0.02637

0.02637

0 0.28125
0.01318

0.00659
0.01318




(15.2.47)

Solution of the matrix equation of the free plate vibration,

[K − λM]d = {0}, (15.2.48)

gives the required lowest natural frequency

λ1 = ω2
1 = 1.748

D∗

µ
with D∗ = E h3

12(1 + ν)
(15.2.49)

and the corresponding mode shape (Fig. 15.2.3) in the form of the pertinent
eigenvector

d1 =




1.0000
0.7071

−0.3662
−0.5179
−0.3662

0.4999
0.2589

−0.2589
0.7071
0.3662
0.5179
0.3662




. (15.2.50)

Thus, the lowest circular frequency becomes

ω1 = 1.32

√
D∗

(1 − ν)µ
= 1.62

√
D

µ
(rad/s). (15.2.51)

A comparison with the analytical solution of this vibration problem reveals a
relatively large error of −26%. This error can be considerably reduced by using
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Z, w = d X

Y

Figure 15.2.3 First mode shape of simply supported plate.

ž a finer subdivision,
ž a gridwork cell with better convergence characteristics such as the one

given in Table 6.3.3 and
ž the quasi-consistent mass matrix (Table 15.2.2).

15.2.3 Forced Vibrations

a. Estimating Dynamic Response Using DLF. Strictly speaking, the dynamic
load factor (DLF) introduced in Sec. 14.1 is valid only for undamped single-DOF
systems. However, its use can be extended for estimating the dynamic response of
plates. That is, the maximum dynamic defections produced by the dynamic load
P(t) applied to a plate with neither initial displacements nor initial velocity can be
approximated by

ddynamic ≈ dstatic × (DLF). (15.2.52)

This equation states that the structural response produced by a given dynamic load
is independent of motion of the structure when the load is applied. In this case, the
static displacements dstatic are determined by the FEM. The DLF is usually computed
using Eq. (14.1.32).

The dynamic response determined with the help of the DLF can also be super-
imposed on the free vibration caused by initial displacements or initial velocity.
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Consequently, we can also estimate the total dynamic behavior of a plate that already
has displacements and velocity when subjected to the dynamic load P(t).

b. Harmonic Analysis. The first stage of the dynamic response of a structural
system before the free part is damped out is called the transient state and will be
discussed subsequently. The stage after the free part of vibration has been damped
out, the steady state, will be discussed first.

We assume that the plate is subjected to a harmonic forcing function with � exiting
frequency. Such harmonic force, for instance, may be exerted by reciprocating electric
motors supported by the plate. In this case, dynamic response of the plate can be
classified as steady-state vibration, and the pertinent equation of undamped motion
can be written as

M d̈ + K d = p0 sin �t, (15.2.53)

where p0 represents the time-independent vector of amplitudes. Alternate forms for
the forcing function are

p(t) = p0 sin (�t ± α) (15.2.53a)

and

p(t) = p0e
i�t . (15.2.53b)

In Eq. (15.2.53a) α is the phase-lag angle, as shown in Fig. 11.1.1c.
After the free-vibration phase dies out, the plate moves with the frequency of the

exiting function. Consequently, the solution of Eq. (15.2.53) can be written as

dP (t) = dP sin �t, (15.2.54a)

dP (t) = dP sin (�t + α), (15.2.54b)

dP (t) = dP ei�t . (15.2.54c)

Substituting, for instance, Eq. (15.2.54a) in the equation of motion (15.2.53), we
obtain a set of simultaneous algebraic equations in the form

[K − �2M]dP = p0, (15.2.55)

the solution of which is

dP = [K − �2M]−1p0 (15.2.56)

and represents the amplitude vector of the forced part of the harmonic vibration. A
similar procedure can be applied when using Eqs. (15.2.53a) and (15.2.53b), respec-
tively. In many cases, it can be advantageous to divide the forcing function in
two parts,

p(t) = p1 sin �t + p2 cos �t, (15.2.57)

and use similar expressions for the displacements,

dr (t) = dr,1 sin �t + dr,2 cos �t (15.2.58)
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It should be noted, however, that using the FEM steady-state vibration analysis
results are accurate only for forcing frequencies ranging from zero to an upper bound
that depends on the mesh size of the FEM.

In engineering practice, dynamic forces acting on plates are typically transient,
that is, of limited duration. Even if the time dependency of a transient force is of
a general nature, we can still represent such force by piecewise periodic functions
using Fourier series expansion, as discussed in Appendix A.1 and demonstrated in
Illustrative Example II of this section. With arbitrary transient forces, usually the
half-range expansions (sine or cosine) are preferred. We assume that the nonperiodic
excitation is a periodic one having a relatively long period T compared to the actual
duration of the disturbance and expand the nonperiodic function into sine series, for
instance. Because of the assumed linearity of the vibrating system, we analyze the
structure for each individual term in the series expansion in the manner discussed
above. The final dynamic response of the system will consist of the sum of the
responses of these harmonic components. The result will improve by increasing the
period of expansion. The “exact” solution is obtained when T approaches infinity.
But usually, the use of long enough T and consideration of a sufficient number of
terms in the half-range expansion yield sufficient accuracy for all practical purposes.
Standard computer programs are available for harmonic analysis of structures. This
procedure can be considered one of the most useful because the dynamic response
of the plates to arbitrary (in space and time) exiting forces can be evaluated using
the principle of superposition, even when the time dependency of the dynamic force
varies from nodal point to nodal point.

The procedure for such harmonic analysis is, assuming that all nodal forces have
the same time dependency, the following.

Harmonic Analysis Procedure

ž The governing differential equation of motion in matrix form is

M d̈(t) + K d(t) = p(t)

ž The time-dependent forcing function is expressed by Fourier sine series

p(t) =
N∑

m=1

pm sin �mt

ž A similar expression is used for the time-dependent displacement vector

d(t) =
N∑

m=1

dm sin �mt

ž Substitution of force and displacement vectors into the differential equation
of motion gives for each term m of the series expression:

[K − �2
mM]dm = pm
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ž The corresponding displacement vector is computed from

[K − �2
mM]−1pm = dm

ž The sum of these solutions gives the deflections in function of time, thus

d(t) =
N∑

m=1

dm sin �mt

c. Numerical Integration Methods.† Numerical integration of the equation of
motion consists in obtaining numerical values of displacements and velocities at dis-
crete times �t. This can be achieved by step-by-step integration procedures, starting
with necessary initial conditions and evaluating the equation of motion at the end
of discrete time increments t+�t. The better-known numerical integration proce-
dures are

ž the constant-acceleration method,
ž the linear acceleration procedure and
ž the constant-velocity approach.

In this section we will only consider two variants of the constant-acceleration method
that are currently the most applied numerical integration techniques.

Newmark’s method. In his paper [15.2.9], Newmark extended the linear acceleration
method that had been commonly used up to the year 1959. He approximated the
velocities and displacements of a multi-DOF system at the incremental time t+�t
with the following assumptions:

ḋt+�t = ḋt + [(1 − δ)d̈t + δḋt+�t ]�t,

dt+�t = dt + ḋt�t + [(
1
2 − α

)
d̈t + α d̈t+�t

]
�t2, (15.2.59)

where α and δ are parameters that govern the accuracy and stability of the procedure
and the dots indicate differentiation with respect to time t . The parameter α produces
an algorithmic damping within the time step �t .

In addition, the equilibrium of the vibrating system at time t + �t is also used by
considering the corresponding matrix equation

Mt+�t d̈ + Cḋt+�t + Kdt+�t = pt+�t , (15.2.60)

where C represents the damping matrix of the system to be discussed in the next
section. For undamped systems C = 0. When δ = 1

2 and α = 1
4 , this numerical proce-

dure is unconditionally stable. Newmark’s constant-acceleration scheme is illustrated
in Fig. 15.2.4.

† To simplify the presentation of matrix equations, in this section we omit the overbars since it would
interfere with other notation.
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1
2

Figure 15.2.4 Average acceleration.

Rather than going into a detailed discussion of the underlying derivations,† we
restrict ourself here only to a description of the step-by-step procedure. The solution
algorithm starts with computation of the initial conditions of dt , ḋt and d̈t and
selection of time step �t . Next, the parameters

δ ≥ 0.5 and α ≥ 0.25 (0.5 + δ)2 (15.2.61)

are calculated along with the integrations constants

a0 = 1

α �t2
, a1 = δ

α �t
, a2 = 1

α �t
, a3 = 1

2α
− 1,

a4 = δ

α
− 1, a5 = �t

2

(
δ

α
− 2

)
, a6 = �t(1 − δ), a7 = δ�t

(15.2.62)

required for the subsequent step. This involves the use of an effective stiffness matrix

K̂ = K + a0M + a1C (15.2.63)

and that of the corresponding effective load vector computed from

p̂t+�t = pt+�t + M(a0dt + a2ḋt + a3d̈t ) + C(a1dt + a4ḋt + a5d̈t ). (15.2.64)

In the next step, we solve the matrix equation

dt+�t = K̂−1p̂t+�t (15.2.65)

to obtain the displacement vector at time t + �t . Consequently, the corresponding
accelerations are

d̈t+�t = a0(dt+�t − dt ) − a2ḋt − a3d̈t . (15.2.66)

Similarly, the velocities at time t + �t become

ḋt+�t = ḋt + a6d̈t + a7d̈t+�t . (15.2.67)

† For details see Ref. [15.2.9].
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t + ∆t t + q (∆t)

dt

∆dt

d [t + q (∆t)]d (t + ∆t)

d

Figure 15.2.5 Linear acceleration with extended time step.

From these results, the initial conditions for the next time step are given. The whole
process can then be repeated for as many steps as desired.

Wilson’s θ-method. This numerical step-by-step integration procedure is, again, an
extension of the linear acceleration method in which a linear variation of accelerations
from time t to time t + �t is used. The basic assumption of Wilson’s θ-approach
[15.2.10] is that the acceleration d̈ varies linearly even over an extended time step τ =
θ(�t), as illustrated in Fig. 15.2.5. During this time step the incremental acceleration
is �d̈τ = θ(�d̈t ). It can be shown that for the value θ = 1.4 the method has an
unconditional numerical stability.

Based on the linear acceleration assumption, the acceleration at the end of the
extended time can be expressed by

d̈t+τ = d̈t + τ

θ(�t)
(d̈t+τ − d̈t ). (15.2.68)

By integrating this equation with respect to time, we obtain the matrix equation for
the velocities at time t + τ as

ḋt+τ = ḋt + d̈t τ + τ 2

2θ(�t)
(d̈t+τ − d̈t ) (15.2.69)

and the corresponding vector of displacements in the form

dt+τ = dt + ḋt τ + 1

2
d̈t τ

2 + 1

6θ(�t)
τ 3(d̈t+τ − d̈t ). (15.2.70)
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From Eq. (15.2.69) and (15.2.70) we have

ḋt+τ = 3

θ(�t)
(dt+τ − dt ) − 2 ḋt − θ(�t)

2
d̈t (15.2.71)

and

d̈t+τ = 6

θ2(�t)2
(dt+τ − dt ) − 6

θ(�t)
ḋt − 2 d̈t . (15.2.72)

In addition, a linearly extrapolated load vector is employed in the matrix equation
of equilibrium,

M d̈t+τ + Cḋt+τ + K dt+τ = pt + θ(pt+�t − pt ), (15.2.73)

to obtain the solutions for the displacements, velocities and accelerations at time
t + �t .

The corresponding algorithm for this integration process, based on Refs. [15.2.11]
and [15.2.13], is given here in detail.

After computing K, M and C,† the initial conditions for d0, ḋ0 and d̈0 are deter-
mined and the time step �t is selected. In addition, the integration constants

a0 = 6

θ(�t)2
, a1 = 3

θ(�t)
, a2 = 2a1,

a3 = θ(�t)

2
, a4 = a0

θ
, a5 = −a2

θ
,

a6 = 1 − 3

θ
, a7 = �t

2
, a8 = (�t)2

6

(15.2.74)

are calculated. Next, the effective stiffness matrix

K̂ = K + a0M + a1C (15.2.75)

along with the effective load vector

p̂t+τ = pt + θ(pt+�t − pt ) + M(a0dt + a2ḋt + 2 d̈t ) + C(a1dt + 2 ḋt + a3d̈t )

(15.2.76)

are computed.
Solution of the pseudostatic matrix equation

dt+τ = (K̂)−1p̂t+τ (15.2.77)

† For undamped systems C = 0.
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yields the displacement vector at the end of the extended time t + τ . Hence, the
vectors of displacements, velocities and accelerations at time t + �t can be deter-
mined from

d̈t+�t = a4(dt+τ − dt ) + a5ḋt + a6d̈t ,

ḋt+�t = ḋt + a7(d̈t+�t + d̈t ),

dt+�t = dt + (�t)ḋt + a8(d̈t+�t + 2 d̈t ).

(15.2.78)

In general, the dynamic analysis of a plate structure by this method gives good
accuracy for motions of structures associated with periods of vibration at least
5–10 times greater than the selected time steps �t . In Refs. [15.2.11], [15.2.13]
and [15.2.14], the will reader find readily usable computer programs for Wilson’s
θ-method.

Summary. In the preceding discussions of the dynamic response of plates, it has
been assumed that the structure is linear elastic. In this section, we introduced three
numerical methods for dealing with forced vibrations:

ž dynamic load factors (DLFs),
ž harmonic analysis based on Fourier series representation of the forcing func-

tion and
ž direct integration of the matrix equation of motion.

At first glance, use of the DLF appears to be the most attractive choice, provided
the engineer is interested only in obtaining the maximum dynamic effects, that is,
displacements and/or stresses. For instance, with the help of Duhamel integral pro-
vided in Eq. (14.1.32), the maximum transient response of the structure is obtained
by multiplying its static response by the DLF. If the applied forcing function is
given in analytical form, the definite integral can be evaluated by formal integra-
tion. But even in such a case, the integration process may be too tedious. Thus, to
make practical use of the DLF approach, it is advisable to use numerical integra-
tion procedures.

On the other hand, if the dynamic response analysis must cover the entire time
domain, one can apply one of two fundamentally different numerical approaches:
(a) harmonic analysis or (b) step-by-step integration of the matrix equation of motion.

Harmonic analysis is employed to study the steady-state vibration of plates for a
specific frequency range. That is, if the exciting frequency is approximately equal
to one of the natural frequencies of the plate, a near resonance occurs; that is, the
response amplitude can increase substantially. An extension of harmonic analysis
involves determination of the dynamic response in the time domain due to tran-
sient forces. In this case, the time-dependent load is expressed usually by half-range
Fourier expansions, and the superposition of the resulting terms of sine- or cosine-
type excitations yields the dynamic response of the structure in the time domain, as
demonstrated in Illustrative Example II of this section. This method is easy and eco-
nomical; in addition, it is unconditionally stable even when one of the terms of the
Fourier series is an “illusory” resonance with the plate. The relatively new concept
of fast Fourier transform [15.2.15] has made harmonic analysis even more appealing
to engineers working with real-life dynamic problems.
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Numerical integration methods integrate the matrix equation of motion step by
step. Instead of trying to always satisfy this differential equation, the aim is to satisfy
it only at discrete time intervals �t apart. The basic assumption of these procedures
is that acceleration varies linearly during the load time increments while the prop-
erties of the structure remain constant during these time steps. Although such an
approach is simple in concept, it may require extremely small time steps to achieve
numerical stability. This aspect makes the method impractical or even impossible to
use. In contrast, the two variants of the linear acceleration methods discussed in this
section offer unconditional numerical stability. Newmark’s method uses a constant-
acceleration formula. Thus, the acceleration of the vibrating system at the beginning
of time step �t is taken to be constant within the step. Another widely used mod-
ification of the linear acceleration method due to Wilson [15.2.10] and co-workers
applies a θ-factor to expand the linearity of accelerations beyond the �t interval. For
θ = 1.4 this approach is also unconditionally stable.

ILLUSTRATIVE EXAMPLE I

A rectangular plate with fixed boundaries (Fig. 15.2.6a) is subjected to a uni-
formly distributed transient load in the form

p(t∗) = p0

(
1 − t∗

td

)
, (15.2.79)

where p0 = 10.0 kN/m2 and the duration of the suddenly applied triangular
load is td = 0.1 s (Fig. 15.2.6b). Assuming that the plate is initially at rest,
let us determine the maximum dynamic response of this plate by applying a
corresponding DLF.

Since we can utilize the double symmetry of the structure and the load, it is
sufficient to analyze only one quadrant of the vibrating system. This analysis
quadrant is discretized by nine finite elements, as shown in Fig. 15.2.6c. Using
the conforming plate element with 16 DOFs, introduced in Sec. 7.7.1, our
computation yielded the following lateral displacements† under load p0 that
was assumed to act statically:

wstc =




W1 = 0.705
W2 = 0.643
W3 = 0.459
W4 = 0.184
W6 = 0.563
W7 = 0.515
W8 = 0.369
W9 = 0.149
W11 = 0.227
W12 = 0.209
W13 = 0.152
W14 = 0.052




10−2 m. (15.2.80)

† Zero displacements are not given.
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Figure 15.2.6 Dynamically loaded RC plate.

The corresponding maximum moments are

mx,�1 = 12.202 kN-m/m, my,�1 = 4.333 kN-m/m,

mx,�16 = −25.55 kN-m/m. (15.2.81)
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Next, using Morley’s formula, given in Eq. (14.6.8), we calculate the circular
frequency of the plate by utilizing only the static deflection ordinates. Thus,
we obtain

ω1 ≈
√√√√g

∑4
i=1 Wi + 4

∑14
i=6 Wi∑4

i=1 W 2
i + 4

∑14
i=6 W 2

i

=
√

8.91
10.935 × 10−2

4.603 × 10−4
= 46 rad/s.

(15.2.82)

With a finer subdivision, we improve the value of the circular frequency to ω2 =
54 rad/s. Hence the period of free vibration becomes T = 2π/ω2 = 0.116 s.
For the triangular forcing function given in Fig. 15.2.6b, Duhamel’s integral
and hence the DLF is

DLF = 1

2π(td/T )

[
sin 2π

t

T
− sin 2π

(
t

T
− td

T

)]
− cos 2π

t

T
. (15.2.83)

The plot of the maximum DLF as a function of the ratio td/T , shown in
Fig. 14.1.6, gives DLFmax ≈ 1.6. Consequently, the maximum dynamic res-
ponse of the plate can be estimated as

wmax = 1.6 × 0.705 × 10−2 = 1.12 10−2 m,

+mx,max = 1.6 × 12.202 = 19.52 kN-m/m,

+my,max = 1.6 × 4.333 = 6.93 kN-m/m,

−mx,max = −1.6 × 25.55 = −40.88 kN-m/m.

(15.2.84)

It is evident that the dynamic nature of the load significantly increases the
response of the plate.

ILLUSTRATIVE EXAMPLE II

The plate shown in Fig. 15.2.2 is now subjected to a concentrated dynamic
load acting at its center. The time dependency of this suddenly applied load
has the shape of an isosceles triangle (Fig. 15.2.7) with duration td = 0.5 s. Let
us determine the maximum deflection of the plate, wmax(t), in the time domain.

0.25 0.50 0.75 1.0

P (kN)

P0 = 1000 kN

t (s)

1000

Figure 15.2.7 Loading function.
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The plate is discretized by using four conforming finite elements introduced
in Sec. 7.7.1. Since the structure and load have double symmetry, it is suffi-
cient to consider only one quarter plate. In our case, this substitute structure
consists of only one element (Fig. 15.2.2b). Its characteristic structural prop-
erties are already determined in the Illustrative Example II of Sec. 15.2.2 and
are given in Eqs. (15.2.41) and (15.2.42). Since the substitute structure has
only one degree of freedom, these coefficients simultaneously represent the
corresponding stiffness matrix K and mass matrix M respectively.

Applying the harmonic analysis technique, we express one-fourth of the
loading function by sine series. For this purpose, we arbitrarily continue the
actual load, as shown in Fig. 15.2.8, and employ the half-range Fourier expan-
sion, as described in Appendix A.1. This gives

P 1(t) ≈
3∑

m=1

P
∗

sin �mt = 1

4
(336.4 sin �t + 408.6 sin 2�t + 221.5 sin 3�t),

(15.2.85)

where

�m = m� = m2π

T = 2
= mπ for m = 1, 2, 3. (15.2.86)
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Figure 15.2.8 Fourier series representation of transient load.
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Repeated solution of the equation of motion,

(K − �2
mM)dm = pm or (k11 − �2

mm11) = P ∗
m for m = 1, 2, 3,

(15.2.87)

gives

dm = P
∗
m

k11 − �2
mm11

, (15.2.88)

or with k11 = 25,915 and m11 = 207,

d1 = 3.52 × 10−3, d2 = 5.75 × 10−3, d3 = 7.36 × 10−3. (15.2.89)
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Figure 15.2.9 Dynamic response in function of time.

Consequently, the maximum deflection of the plate in the time domain
(Fig. 15.2.9) becomes

wmax(t) = (3.52 sin �t + 5.75 sin 2�t + 7.36 sin 3�t) × 10−3. (15.2.90)

In comparison with the maximum deflection caused by the statically applied
load P0, we can state, again, that the dynamic response of the plate is consid-
erably greater.
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15.3 Damping of Discrete Systems

a. General Concepts. In the preceding treatment of free and forced vibrations of
plates it was assumed that the vibrating system possesses no damping. While this
mathematically convenient assumption closely approximates, in most cases, the actual
dynamic behavior of the structure, there is always some damping effect in any real
system. As a result of damping, the free vibration dies out when, after initial excita-
tion, the structure is left alone. The rates of decay at which the amplitudes decrease
are measured by the ratio of two successive amplitudes (Fig. 15.3.1). The effect of
the damping is usually given as the logarithm of this ratio and is called the logarith-
mic decrement. The force that produces the dissipation of free vibration is called the
damping force. All damping forces oppose the motion of the vibrating system.

Damping forces acting on a structural system usually fall into two categories: exter-
nal and internal forces. External damping forces can be produced by the surrounding
media, such as water, air and soil, or by the friction in the structural connections.
Internal damping forces are attributed to the hysteresis of elastic materials; that is,
the work required to produce certain deformations is larger than the energy regained
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Figure 15.3.1 Amplitude vs. time in free vibration with damping.

in the reloading process. Consequently, there is a loss of energy, which can have
a pronounced effect on the vibration only when the deformations are in the plastic
range. Since, strictly speaking, these internal damping forces are stress dependent,
their exact consideration in the analysis is cumbersome. Fortunately, the influence of
the internal damping forces on the free and steady-state vibrations is small. In the
case of a single-DOF system, for instance, a relatively strong damping force capable
of reducing the amplitudes of free vibration to half within a period will have only a
negligible effect (±0.6%) on the lowest circular frequency.

Occasionally, damping effects of the surrounding media should be considered
[15.3.1, 15.3.2, 15.3.11], especially in connection with transient excitations. Damp-
ing can also be intentionally introduced to the system to provide shock isolation
[15.3.3]. While the stiffness matrix represents the structural characteristics of the
system, the damping force is an inherent physical property of the material and that
of the environment.
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The effect of the damping force R(t) is customarily described by one of the fol-
lowing damping laws:

Coulomb damping [15.3.4]. In this formulation, the damping force is expressed by

R(t) = c1P, (15.3.1)

where c1 is the coefficient of kinetic or dry friction and P is the normal pres-
sure between the two surfaces in contact. The use of Eq. (15.3.1) is limited to
specific cases.

Viscous damping. This damping law associates the velocity ẋ and the damping force
and is usually represented by a dashpot. Thus, the viscous damping force is

R(t) = c2ẋ. (15.3.2)

The modification of Eq. (15.3.2) is called the velocity-squared damping and is rep-
resented by

R(t) = c3(ẋ)2. (15.3.3)

The formulation of damping forces, as given by Eq. (15.3.2), can be handled math-
ematically in the matrix equation of motion with relative ease. The determination of
the coefficient c2, however, may create some problems. Since Eq. 15.3.2 is able to
represent not only hydraulic or soil resistance but structural damping as well, it is
one of the most widely used damping laws [15.3.5].

Structural damping. A recently introduced formulation of damping employed exten-
sively in the dynamic analysis of aerospace structures [15.3.6], expresses damping as
a function of the imaginary number (i = √−1) and that of the displacement; thus

R(t) = c4ix, (15.3.4)

or, in another form,

R(t) = ic5kx, (15.3.5)

where the damping factor c5 is approximately 0.03–0.05 for most structural materials
and k is the stiffness of the spring (or vibrating system). In Eq. (15.3.5) the damping
coefficient is attached to the stiffness coefficient.†

b. Free Vibration with Viscous Damping. The differential equation of motion
of damped free vibration is obtained from Eq. (15.3.6) by adding the matrix of the
damping force. Thus, assuming the viscous damping law (15.3.2), the matrix equation
of the free vibration of a discrete system representing the plate becomes

Md̈ + Cḋ + Kd = {0}, (15.3.6)

† The damping coefficient can also be attached to the mass [15.3.7].
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where C is the damping matrix, which is given customarily in diagonal form, pro-
vided that the fictitious dampers are attached to the nodal points. From the theory of
differential equations we know that the motion of the j th mass can be expressed in
the form

dj = Aje
λt . (15.3.7)

Hence, for the solution of the matrix equation of motion we can assume that

d = {A}eλt . (15.3.8)

Substitution of Eq. (15.3.8) into the differential equation of motion (15.3.6) yields

(Mλ2 + Cλ + K){A}eλt = {0}, (15.3.9)

or

Mλ2 + Cλ + K = {0}, (15.3.10)

where M, C and K are symmetric square matrices of order n. Since Eq. (15.3.10)
represents a set of coupled, linear, homogeneous equations for the nontrivial solution,
the system determinant must vanish; consequently,

det |Mλ2 + Cλ + K| = {0}. (15.3.11)

By expanding Eq. (15.3.11), an equation of degree 2n in λ is obtained. In this way,
the problem is reduced to a general eigenvalue problem. Equation (15.3.11) is called
Lagrange’s determinantal equation. It can be shown that the roots of Eq. (15.3.11)
have the following properties:

1. None of the roots are real positive.
2. If the damping matrix C is zero, the roots are all pure imaginary.
3. If the damping matrix C is zero or the stiffness matrix K is zero but the damp-

ing matrix C is not equal to zero, the roots are real and negative so the motion
dies out exponentially. This case corresponds to the overdamped system.

4. If the elements of the damping matrix C are not too large, all roots are conju-
gate complex numbers with a negative real part. This condition permits damped
vibrations and is the most frequently encountered in practice.

We solve Eq. (15.3.11) for the 2n roots of λ. Then, substituting the results into
Eq. (15.3.9), we obtain 2n equations of the form

(Mλ2
r + Cλr + K){Ar} = {0}, (15.3.12)

where λr is a particular root of Eq. (15.3.11) and {Ar} represents a column matrix
of coefficients associated with the root λr ; thus

{Ar} =




A1r

A2r

A3r

...

Anr




. (15.3.13)
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Then, the general solution of the matrix differential equation of motion can be writ-
ten as

d =
2n∑

r=1

{Ar}eλr t . (15.3.14)

The ratio of A’s for any particular value of r is fixed by Eq. (15.3.9). Thus, there is
one arbitrary factor for each column of A’s, making a total of 2n arbitrary constants
in the general solution. These constants can be determined from the initial conditions
of vibration.

In the usual case, the values of λr appear in complex conjugate pairs. For this
case, the general solution may be written as

d =
2n∑

r=1

{Ar}eλr t =
n∑

r=1

({Ar}eλr t + {Ar}eλr t )

=
n∑

r=1

{Br}eβr t cos(ωr t + αr). (15.3.15)

Again, we have 2n arbitrary constants, the ratio of B’s and the phase angle α for n

values of r . The motion described by the general solution (15.3.15) may be analyzed
as follows: Each coordinate performs the resultant of n damped harmonic oscillations
of different period. The phase and the damping factors of any single oscillation of a
particular period are the same for all coordinates. The absolute value of the amplitudes
for any particular coordinate is arbitrary, but ratios of the amplitudes for a particular
circular frequency ωr can be determined. When the system has large number of
degrees of freedom, the computation will be quite cumbersome.

c. Damped Forced Vibrations. Let us assume that an external harmonic force is
acting upon each discrete mass of the vibrating system. Then, the differential equation
of motion becomes

Md̈ + Cḋ + Kd = p0e
ipt , (15.3.16)

where p represents the frequency of the harmonic excitation. To obtain the particular
solution of this differential equation, we assume the solution in the form

d = d0e
ipt , (15.3.17)

where d0 is the column matrix of amplitudes. Substituting this assumed solution into
Eq. (15.3.16), we obtain

(−p2M + ipC + K)d0 = p0. (15.3.18)

This matrix equation represents a set of linear, nonhomogeneous equations in the
desired amplitudes.

Let us introduce

N = (−p2M + ipC + K); (15.3.19)
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then

Nd0 = p0; (15.3.20)

hence

d0 = N−1p0e
ipt . (15.3.21)

Consequently, the steady-state part of the vibration is represented by

d = N−1p0e
ipt . (15.3.22)

The response of discrete vibrating systems to transient excitations can be calculated
in a similar manner; that is, we expand the time-dependent part of the forcing function
into Fourier series using its complex form. Thus

p(t) =
∑
m

p0meipt . (15.3.23)

Then, we repeat the above-described procedure for each individual term m of the
Fourier expansion.

An alternative approach uses the DLF obtained from Duhamel’s integral, provided
that the required circular frequencies of the corresponding free vibration have already
been determined. The response of a damped system expressed by Duhamel’s integral
is obtained in a similar manner as discussed in Sec. 14.1c for undamped structures,
with the exception that now the impulse P(t∗) �t∗ producing the initial velocity
is substituted into the corresponding equations of damped free vibrations. In this
way, one obtains the following, somewhat more complex, expression instead of the
simpler Eq.(14.1.31):

x = 1

mωD

∫ t

0
f (t∗)e−ξω(t−t∗) sin ωD(t − t∗) dt∗, (15.3.24)

where ωD is the circular frequency of the damped system, ω is the circular fre-
quency of the undamped one and ξ represents the damping ratio. The integral in
this equation can be conveniently evaluated by using one of the symbolic mathe-
matics program. Furthermore, if the damping of the system is relatively moderate,
one can even circumvent the rather tedious classical process introduced above for
determining the circular frequencies of a damped system by using the following
approximate procedure:

ž Circular frequencies of the undamped system are determined by the methods
described in Sec. 15.2.1.

ž Applying the corresponding mode shapes, the static matrix equation for the
damped system is solved for lateral deflections by using the uniformly dis-
tributed weight as the load.

ž The required circular frequencies of the damped system are calculated from
Morley’s formula (14.6.8) using the obtained static deflections.

In the case of short-pulse, transient loading, the maximum response usually occurs
before damping has had much effect; thus, damping may be completely neglected. For
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long-pulse, transient excitations, however, the effect of damping must be significant
and, therefore, must be considered.

Summary. If the vibrating system has many degrees of freedom, the procedures
described in this section will become quite cumbersome. Fortunately, in most cases
of vibration analysis, the damping of the system is so small that its effect can be
neglected. To simplify the solutions for damped systems, one can use Morley’s for-
mula to obtain approximate values for the circular frequencies of free vibrations, as
described above. To compute the maximum response to forced vibrations, the modi-
fied Duhamel integral for damped systems (15.3.24) is the recommended approach.
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Physique Présentes à L’Academie Royale des Sciences par Divers Savants Paris, 1785,
pp. 161–332.

[15.3.5] KOELLE, H. H., Handbook of Astronautical Engineering, McGraw-Hill Book Co., New
York, 1961.

[15.3.6] SCANLAN, R. H., and ROSENBAUM, R., Aircraft Vibration and Flutter, Macmillan Com-
pany, New York, 1951.

[15.3.7] HURTY, W. C., and RUBINSTEIN, M. F., Dynamics of Structures, Prentice-Hall, Englewood
Cliffs, New Jersey, 1964.
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15.4 Slab Bridges under Moving Loads

a. Human-Induced Rhythmic Loads. When a group of soldiers march in rhyth-
mic steps over a slab bridge, these rhythmic movements create a special art of
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dynamic load. In general, such periodic loading can be expressed by using Fourier
series† as

pm(t) = A0 +
N∑

n=1

[
An cos

(
2nπt

T

)
+ Bn sin

(
2nπt

T

)]

for n = 1, 2, 3, . . . , (15.4.1)

where pm(t) is the time-dependent dynamic load, m = 1, 2, 3, . . . , M is the index
number for an individual soldier representing the number of people in the group,
A0 is the weight of the average soldier, An and Bn are Fourier series coefficients
and T is the period of expansion. If we also consider the phase lag among the
soldiers, an approximation for such human-induced load may be expressed according
to Ref. [15.4.1] as

q(t, M) = 1

A

M∑
m=1

N∑
n=1

[
Amn cos

(
2nπt

T
− αm

)
+ Bmn sin

(
2nπt

T
− αm

)]
,

(15.4.2)

where q(t, M) is the intensity of the dynamic load, A represents the area occupied
by the military group and αm is the phase lag for the mth individual in the group.

In general, this phase lag is a function of the frequency of motion; its minimum
value can be taken to be 2 Hz. However, the probability distribution of the phase
angle αm can be expressed by an exponential function given in Ref. [15.4.1].

b. Vehicle-Bridge Interaction. The analysis of the dynamic response of a slab
bridge to moving heavy vehicles is of considerable interest to bridge designers. Mod-
eling the moving vehicle, which represents a highly complex dynamic system, is a
difficult task. Consequently, some simplification is required for the everyday analysis.
In our first simplification, we assume that the plate bridge is subjected to a concen-
trated load of magnitude P that has a mass m (Fig. 15.4.1). Furthermore, we assume
that this load, representing the heavy vehicle, moves with a constant velocity v. If
the bridge can be modeled as an orthotropic plate, then the corresponding differential
equation of motion without considering the damping in structure and vehicle is

Dx

∂4w

∂x4
+ 2B

∂4w

∂x2 ∂y2
+ Dy

∂4w

∂y4
+ µ

∂2w

∂t2

= δ(x − x0) δ(y − vt)

[
P − m

∂2w

∂t2

]
, (15.4.3)

where µ is the mass of the plate per unit area. If the plate is isotropic, then this
equation reduces to

D ∇4w(x, y, t) + µ
∂2w

∂t2
= δ(x − x0) δ(y − vt)

[
P − m

∂2w(x, y, t)

∂t2

]
. (15.4.4)

† See Appendix A.1.



Slab Bridges under Moving Loads 891

P

X

Y

Z,w

M

Simply supported

Simply supported

Figure 15.4.1 Slab bridge under moving load.

Both these differential equations of motions can be solved by applying the ordinary
FDM introduced in Sec. 5.1.

If we model the structure using the FEM, then the equation of dynamic equilibrium
in the global reference system without considering damping becomes†

Md̈ + Kd = p. (15.4.5)

The nodal forces for the elements are

pe = NTP, (15.4.6)

where N is the matrix of the shape functions‡ used in generating the element stiffness
matrices. The load vector p is obtained by proper summation of the element nodal
forces pe in the manner discussed in Chapter 7. Equation (15.4.5) can be solved by
applying the step-by-step direct iteration technique treated in Sec. 15.2.3.c.

In the above-given matrix equation the stiffness coefficient kv of the vehicle was
neglected. Although vehicle models with varying degrees of refinements have been
used in the past, experience shows that for vehicle representation a single mass
supported by a spring (Fig. 15.4.2) can give acceptable results. Thus, this vehicle
model represents our second simplified approach. Again, damping in the structure
and vehicle is considered to be of a negligible order of magnitude.

† Again, to simplify our notation in plate dynamics the overbars that refer to the global reference
system are omitted in this section.
‡ See Sec. 7.5.
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Figure 15.4.2 Single-DOF vehicle model on slab bridge.

If the bridge is an isotropic plate, the governing differential equation of motion
can be written as

∇4w + µ

D

∂2w

∂t2
= −mv

D

(
g + ∂2uv

∂t2

)
× f (x − vt, y), (15.4.7)

where g is the gravitational acceleration, f (·) represents a time-dependent function
describing the position of the load over the plate surface and u is the absolute dis-
placement of the spring-mass system (Fig. 15.4.2). Again, this differential equation
can be solved by using the ordinary FDM.

Neglecting the damping in the structure and vehicle, the matrix equation of motion
for finite element representation of the plate is given by

Md̈ + Kd = p̂, (15.4.8)

where the effective force vector p̂ derived from the equation of motion of the spring-
mass system (Fig. 15.4.3) is expressed by

p̂ = NT[−mvξ̈ + kv(uv − ξ) − mvg]. (15.4.9)

In this equation N represents the matrix of shape functions that relates ξ to the
displacements d. That is, as the vehicle moves along a straight line parallel to the
bridge span, the vertical displacement ξ of the vehicle contact point is expressed as
a product, ξ = Nd.

A more explicit expression for Eq. (15.4.8) according to Ref. [15.4.3] is

[
mv 0
0 M

]{
üv

d̈

}
+

[
kv −kvN

−kvNT K + kvNTN

]{
uv

d

}
= −mg

{
uv

0

}
. (15.4.10)

Since the matrix N is a function of time, these equations are nonlinear and can
be solved using the step-by-step numerical integration techniques introduced in
Sec. 15.2.3.3.

c. Unevenness in the Bridge Deck. Rough pavement surfaces exist in n most
slab bridges due to poor construction or maintenance. In addition, some ice build-ups
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Figure 15.4.3 Model of vehicle on rough pavement.

during winter can also contribute to unevenness of the bridge deck. Let us consider
a one-span plate bridge with constant flexural rigidity D and a span length L under
the load

p(t) = k[z − w(x, t) − f (x)] + mvg, (15.4.11)

where k is the combined stiffness of the tire and spring, mv is the mass of the
vehicle, the expression x = vt gives the position of the vehicle and z is the vertical
displacement of the vehicle with respect to its static equilibrium.

The expression f (x) approximates the unevenness of the deck by

f (x) ≈ �

(
1 − cos

2πx

l1

)
, (15.4.12)
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in which � is the amplitude of the unevenness and its wavelength is l1 (Fig. 15.4.3).
Thus, the equation of motion of an orthotropic plate bridge and moving vehicle upon
it becomes

Dx

∂4w

∂x4
+ 2B

∂4w

∂x2 ∂y2
+ Dy

∂4w

∂y4
+ µ

D

∂2w

∂t2
= p(t), (15.4.13)

or in the case of an isotropic plate

D ∇4w + ∂2w

∂t2
= p(t). (15.4.14)

These differential equations can be repeatedly solved for every position of the vehicle
by using the ordinary FDM. The corresponding matrix equation of motion is

Md̈ + Kd = p(t), (15.4.15)

where the load vector p(t) always has one nonzero value corresponding to the instan-
taneous location of the moving vehicle. Thus, repeated solution of Eq. (15.4.15) will
give a complete dynamic response to the unevenness of the bridge deck.

Summary. Dynamic responses of slab bridges to a group of people performing
rhythmic movements and to heavy vehicle motion were treated in this section. The
bridge was idealized either as an orthotropic slab or an isotropic plate. In addition,
the idealization of the vehicle consisted of using a simple, single spring-mass con-
figuration. Damping both in the bridge and vehicle was ignored, since in most cases
it is of a negligible order of magnitude. Experience indicates that such a simplified
approach can still deliver quite usable estimates to the dynamic behavior of slab
bridges. In addition to the bridge-vehicle interaction, poor road surface may also
produce undesirable dynamic effects in the bridge. Both the profile length of the
unevenness and its depth may be significant factors in creating excessive dynamic
responses. Although the ordinary FDM can be used for numerical solution of the
various differential equations of motion, the versatile FEM appears to be more read-
ily adaptable to the solution of such dynamic problems as slab bridges that may be
of arbitrary shape and boundary condition. Step-by-step direct numerical integration
techniques are recommended for solution of the resulting matrix equations of motion.
One should, however, not overlook the fact that radical changes in the dynamic behav-
ior of the structure can occur when near resonance is apparent. Consequently, the
designer must always consider this dangerous scenario by computing first the free
vibration of the structure using the numerical methods treated in previous sections
and only then deal with the forced-vibration problems.
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15.5 Large-Amplitude Free-Vibration Analysis

During large-amplitude flexural oscillations membrane forces nx, ny and nxy are cre-
ated in the plate. These amplitude-dependent in-plate forces are the primary cause of
nonlinearity. Other not so dominant sources of nonlinearity are

ž large curvatures developed during vibrations,
ž longitudinal inertia forces, and
ž rotary inertia forces.

Here, only the effects of the rotary inertia forces and those of the in-plane forces will
be considered, since the others, including damping, are usually of negligible order
of magnitude.

Because exact solutions of the governing differential equation are not available,
approximate and numerical methods offer the only practical approach to solution
of such difficult nonlinear vibration problems. Direct variational methods such as
the ones by Rayleigh-Ritz and Galerkin can only be applied to simple geometrical
configurations coupled with relatively easy to handle boundary conditions [15.5.1,
15.5.2]. However, the inherent complexity of “real-life” plate problems requires more
generally applicable computer-based solution techniques. Consequently, here we will
use the gridwork and the versatile finite element methods.
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The governing differential equations of motion for plates undergoing moderately
large deflections are obtained by simply adding the inertia terms µ(∂w2/∂t2) to the
large-deflection differential equations introduced in Sec. 11.1. Thus, we can write

D ∇4w = pz(x, y, t) + h

(
∂2�

∂y2

∂2w

∂x2
+ ∂2�

∂x2

∂2w

∂y2
− 2

∂2�

∂x ∂y

∂2w

∂x ∂y

)
− µ

∂2w

∂t2
,

∇4� = E

[(
∂2w

∂x ∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
,

(15.5.1)

where � represents a time-dependent Airy-type stress function and µ is the mass of
the plate per unit area.

Expressions for the membrane forces nx, ny and nxy created by large transverse
displacements are given in Eq. (11.1.2). If there are no external loads (i.e., pz = 0),
Eq. (15.5.1) becomes

D ∇4w + µ
∂2w

∂t2
= nx(t)

∂2w

∂x2
+ 2nxy(t)

∂2w

∂x ∂y
+ ny(t)

∂2w

∂y2
, (15.5.2)

where

w(x, y, t) = w(x, y)θ(t). (15.5.3)

The time dependency θ(t) of the free vibration is a cyclical function having the
following properties:

θ(t + 2π) = θ(t),
d2θ(t)

dt2
= −ω2

i θ(t)

for − 1 ≤ θ(t) ≤ +1, (15.5.4)

where ωi represents the circular frequency corresponding to the ith mode of vibration.
It can be shown [15.5.3] that by applying Galerkin’s variational method to

Eq. (15.5.1) the time-dependent membrane forces can be expressed in the form

nx(t) = nxŵ
2
n(t), ny(t) = nyŵ

2
n(t), nxy(t) = nxyŵ

2
n(t), (15.5.5)

where

ŵn(t) = w(x, y) × θ(t)

h
(15.5.6)

represents the normalized (with respect to the plate thickness) lateral displacements.
Equation (15.5.5) is now used to develop the corresponding matrix equation of

motion by adding to the small-amplitude matrix equation of motion (15.2.2) the
nonlinear term containing the time-dependent membrane forces. Thus, we obtain

M d̈ + K
L
d + ŵ2

n(t)K
NL

d = {0}, (15.5.7)
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where the nonlinear stiffness matrix KNL(d, t) is now not only the function of dis-
placements but also that of time. Furthermore

ŵn(t) = Ŵn × θ(t), (15.5.8)

where Ŵn represents the normalized (with respect to the plate thickness) amplitude
of vibration.

Let us now express the vector of displacements in the form

d = {X}θ(t). (15.5.9)

Substituting this equation into Eq. (15.5.7) and using Eq. (15.5.5), we obtain

−ω2
i M{X}i + K

L{X}i + Ŵ 2
n θ2(t)KNL{X}i = {0}. (15.5.10)

A closer look at this matrix equation reveals several important properties. First,
the nonlinear term contains Ŵ 2

n , indicating the pronounced effect of the normalized
amplitudes on the free vibration of the plate. Second, the nonlinear term has the
coefficients θ2(t). Thus, ωi is not a constant value, as is the case in linear vibrations,
but the circular frequency varies with time. When θ(t) is small, θ2(t) approaches zero.
Thus, the lower-bound value of ωi approaches that of the small-amplitude vibration.
The upper-bound value of ωi is pertinent to θ2(t) = 1. This occurs when the plate
deflections are maximum. For a comparison of the result obtained by using the above
described approach, we introduce the average value ωav at t = π/4, which gives, for
θ(t) = sin ωt , the value θ2(t) = 0.5. Consequently, Eq (15.5.10) becomes

(
−ω2

avM + K
L + 0.5Ŵ 2

n K
NL

)
{X} = {0}; (15.5.11)

hence

ω2
av = M

−1
K

L + 0.5Ŵ 2
n M

−1
K

NL
. (15.5.12)

Provided that matrices K
L
, K

NL
and M are known, this equation can be solved,

for instance, by applying Stodola’s iterative solution technique† for various values
of amplitudes. As already mentioned in Sec. 15.1, this method represents a self-
correcting, numerically stable solution procedure.

The nonlinear element stiffness properties are dependent on the membrane forces
developed during the large-deflection vibrations. According to our assumption that
the amplitudes are only moderately large, the modes of nonlinear vibrations can be
assumed to be affine to those of the linear system. Consequently, in the first step we
solve the corresponding linear eigenvalue problem represented by Eq. (15.2.2). Next,
the selected linear mode shapes at the time of investigation will be amplified by a
multiplication factor

MF ≈ c × h for c ≈ 1.0–2.5 (15.5.13)

to obtain the corresponding large-deflection, free-vibration mode.

† See Eq. (15.1.15).
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Having introduced above the nonlinear finite element formulation of circular fre-
quencies covering large-amplitude oscillations, the next step involves determining the
properties of the finite element or gridwork cells to be employed in the analysis. Lin-
ear stiffness matrices for the most commonly used finite elements are already given
explicitly in Secs. 7.6 and 7.7. The stiffness matrices for gridwork cells are treated
in Sec. 6.3. The corresponding consistent mass matrices can be found in Sec. 15.2.2.
Determining only the nonlinear element stiffness matrices appears to be somewhat
problematic, since they depend on the in-plane forces developed during the large-
amplitude oscillations. A “hybrid” finite element–finite difference approach has been
successfully employed for large-deflection analysis of structures [15.5.4]. Following
a similar solution technique, we can also use improved finite difference expressions†

to evaluate the instantaneous membrane forces at each nodal points.
In an effort to assess the obtainable accuracy of the above-described procedure for

large-amplitude free-vibration analysis, a simply supported square plate was selected
(Fig. 15.5.1). The corresponding discrete model having 3×3 gridwork cells per quar-
ter plate has been used for the first mode of large deflection vibrations with various
amplitudes. A graphical comparison of the results with those determined analytically
shows good agreement (Fig. 15.5.2).

Summary. A new approach to the inherently difficult large-amplitude free-vibration
analysis of plates is introduced. It is based on a hybrid finite element–finite differ-
ence solution technique combined with Stodola’s iterative procedure that yields the

a/2 a/2

a/2

a/2

CL

CL

Analysis
quadrant

Simply supported

Y

X
Z,w

Figure 15.5.1 Test problem for large-amplitude free vibration.

† See Sec. 5.2.
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Figure 15.5.2 Comparison of results.

required circular frequencies. The results compare favorably with those calculated
analytically [15.5.2].
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15.6 Summary and Conclusions

Chapters 14 and 15 of this book are devoted to the dynamic analysis of plates. As
in the static analysis, the classical solution of the differential equation of motion is
limited to the simplest geometry, loading and boundary conditions. Consequently,
numerical and approximate methods are treated more extensively, since they permit
the solution of dynamic plate problems, where the classical approaches fail.

The effect of structural damping is, in most cases, of a negligible order of magni-
tude; thus, solutions of undamped free and forced vibrations have been emphasized.



900 Numerical Methods in Plate Dynamics

To provide, however, a generally usable tool for the rare cases when damping
must be considered, the matrix solution of damped vibrations of discrete systems
is briefly discussed.

Since the natural frequencies of free vibration can serve as an important index
capable of describing by one quantity the dynamic characteristics of a complex struc-
ture, considerable attention is paid to the free-vibration analysis of plates. For simply
supported rectangular plates of uniform thickness, the extension of Navier’s method
yields the natural frequencies in a relatively simple manner. Also, forced vibrations
of such plates can be solved without too much difficulty by expressing the time
dependency of the dynamic forces in Fourier (sine or cosine) series. Similarly, the
extension of Lévy’s method yields solutions to the free vibrations of rectangular
plates having two opposite edges simply supported while the other two edges are
free or fixed. The solution of forced-vibration problems by Lévy’s method, however,
tends to be tedious. Similar is the case of the free-vibration analysis of rectangular
and circular plates having all the edges free or clamped.

Energy methods are more general than the so-called classical approaches and yield
remarkably accurate results even if the boundary conditions are more difficult. These
methods can also be extended to plates of various shapes and of variable thickness.
The accuracy of the solution, however, depends to a large extent on the choice of
the eigenfunctions. This need to select appropriate shape functions that satisfy the
geometric boundary conditions and approximate the modes of vibrations is the main
disadvantage of the energy methods, since it requires experience and skill on the
part of the investigator. Methods have been introduced to facilitate the selection of
suitable shape functions.

When the only information sought is the lowest natural frequency, the use of
Rayleigh’s method, which often yields very good accuracy, is highly recommended.
A modification of Rayleigh’s method by Morley uses dead-load deflections of plates.
In certain cases this method can be extended to obtain natural frequencies pertinent to
the second and third modes as well. The resulting solutions, as all energy solutions,
are upper bound.

The Ritz method is based on the principle of minimum potential. This approach is
more general than Rayleigh’s solution, since it can give information on frequencies
and modal shapes of higher modes. While the accuracy of the first and second modes
is good, it deteriorates progressively; thus, the highest frequencies and modes are, in
general, quite inaccurate, because of the nature of the assumptions involved.

Russian scientists working in the field of theory of elasticity have significantly con-
tributed to the development of energy methods. Like the method of Ritz, Galerkin’s
method assumes the solution of the modal shapes in the form of a series, terms of
which individually satisfy all boundary conditions and have fourth derivatives. The
reasoning of Galerkin, that the variation of the lateral displacements should be applied
directly to the differential equation of motion, leads to a simpler way of obtaining
eigenvalues and eigenfunctions. The problem is reduced to evaluation of definite inte-
grals of simple functions selected in advance. This integral transformation results in a
system of homogeneous linear equations that has a nontrivial solution only when the
determinant of this system equals zero. In this way, the original problem is further
reduced to an eigenvalue-eigenvector problem.

Vlasov’s method eliminates (1) the problem of selecting eigenfunctions and (2)
the solution of the above-mentioned eigenvalue problem. These simplifications are
achieved by separating the variables and by introducing linear combinations of
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eigenfunctions of transverse vibrations of beams for shape functions. An additional
advantage of this technique is that its accuracy does not deteriorate significantly
with higher modes, as is the case for the methods of Ritz and Galerkin. Although
the required mathematical operations are simple, they tend to be quite lengthy. The
method can be extended to cover forced vibration, but in the author’s opinion, numer-
ical methods using digital computers are better suited to handle arbitrary loading and
boundary conditions. Simple estimates of the dynamic response can be obtained via
the DLF, based on the circular frequencies of the plate.

While ordinary FDMs yield acceptable results, for the solution of free or forced
vibrations of plates, the application of improved finite difference techniques is rec-
ommended whenever high accuracy is required. It is of interest to note that the
Stodola-Vianello iterative approach can improve approximate results of free-vibration
analysis to any desired degree of accuracy. The economy of numerical analysis of
plate vibration problems is enhanced by the general availability of computer programs
for eigenvalue-eigenvector problems. Furthermore, reliable programs for solution of
a large number of simultaneous algebraic equations are also readily available. To
obtain high accuracy for higher modes, however, a relatively fine network is required
to permit all deformation shapes to take place. A further advantage of the improved
FDMs is their generality. The most common boundary conditions, arbitrary loads,
variable plate thickness, and so on, can be handled with relative ease. Disadvantages
of this technique are (1) the method requires a mathematically trained investigator;
(2) certain boundary conditions such as elastic support and restraints, for instance,
are difficult to handle and (3) the complete automation of the procedure to cover all
possible cases is complex, if not impossible.

The versatile FEM based on matrix displacement analysis is extremely well suited
to the computerized solution of free- and forced-vibration problems, associated with
complex plate or shell structures. Computer solutions based on FEMs are more gen-
eral and flexible than those of other numerical techniques. For example, arbitrary
geometry, loads and boundary conditions can be handled with ease. Computer pro-
grams, involving complete automation of dynamic analysis of plate and shells, are
readily available. A further advantage of the method is that it uses concepts famil-
iar to structural engineers. Although the derivation of suitable stiffness coefficients,
assuring monotonic convergence of the solution to the exact number, is a difficult
task, it needs only be done once; that is, the results are reusable. All stiffness coef-
ficients given in this book have been tested extensively and yield from acceptable
to excellent accuracy. The use of kinematically consistent mass matrices, when high
accuracy must be achieved in the vibration analysis, is considered to be mandatory.
Disadvantages of finite element techniques in dynamic analysis of plates are (1) with-
out a computer of fairly good capacity, the method is useless; (2) the accuracy of
the solution of dynamic problems depends to a certain extent on the boundary con-
ditions; (3) problems with convergence of the solution may occur and (4) operations
with large matrices may create special problems. The use of FEMs is encouraged,
provided that well-tested stiffness and consistent mass matrices for discrete elements
are readily available. Finite-element-based forced-vibration analysis of plates can be
effectively handled by either using the Fourier series approach or applying one of
the direct numerical integration techniques.

Finally, it should be mentioned that free vibrations of moderately thick plate can be
treated by Ritz’s energy method. If the plate is simply supported, even a closed-form
solution is available.
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Problems†

15.1.1. Find the lowest circular frequency of a simply supported square plate by
using the ordinary FDM. Improve the result by Stodola’s iterative technique.

15.1.2. Redo problem 15.1.1 using the improved FDM.
15.1.3. Find the two lowest circular frequencies of the plate shown in Fig. 5.2.17

using the ordinary FDM. Check your results by calculating these frequencies
from corresponding static deflections.

15.2.1. Redo problem 15.1.3 using gridwork cells and their corresponding consistent
mass matrices.

15.2.2. Using the enclosed computer program system, determine the lowest circular
frequency of a simply supported rectangular plate (a/b = 2).

15.2.3. Determine the dynamic response of the plate shown in Fig. 15.2.6 using
harmonic analysis.

15.2.4. Redo problem 15.2.3 this time using one of the direct numerical integra-
tion techniques.

† The first two numbers refer to the corresponding section.
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16
Fundamentals of Stability
Analysis

16.1 Basic Concepts

Thin-plate elements used in naval and aeronautical structures are often subjected
to normal (Fig. 16.1.1) and shearing forces acting in the plane of the plate. If these
in-plane forces are sufficiently small, the equilibrium is stable and the resulting defor-
mations are characterized by the absence of lateral displacements (w = 0, u �= 0,
v �= 0). As the magnitude of these in-plane forces increases, at a certain load inten-
sity, a marked change in the character of the deformation pattern takes place. That
is, simultaneously with the in-plane deformations, lateral displacements are intro-
duced. In this condition, the originally stable equilibrium becomes unstable and the
plate is said to have buckled. The load producing this condition is called the critical
load. The importance of the critical load is the initiation of a deflection pattern that,
if the load is further increased, rapidly leads to very large lateral deflections and
eventually to complete failure of the plate. This is a dangerous condition that must
be avoided.

The fundamental concepts of buckling of plates can be illustrated by a simple anal-
ogy involving the various states of equilibrium of a rigid sphere, shown in Fig. 16.1.2.
If the sphere is resting in a large concave bowl (case I), its equilibrium is said to be
stable. If we disturb this equilibrium condition by introducing a small displacement
δx, the sphere, after some oscillations, returns to its original position. If the sphere
rests on a plane surface (case II), the pertinent equilibrium condition is said to be
neutral ; that is, a small displacement δx does not change either the forces maintain-
ing equilibrium or the potential of the sphere. If the sphere rests on another sphere
(case III), the state of equilibrium is unstable. That is, the smallest disturbance (δx)

will create a complete loss of equilibrium and therefore a failure. It is important to
note that in the classical buckling theory the path leading from a stable to an unstable
equilibrium always passes through a neutral state of equilibrium. All mathematical
formulations of the linear-elastic stability analysis of plates are based on this impor-
tant statement. Although a plate has infinite degrees of freedom, several features of
this analogy can be used directly in connection with its stability analysis.

905Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
Copyright © 2004 John Wiley & Sons, Inc.
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Figure 16.1.1 Rectangular plate subjected to in-plane edge loading.

Case I

Case II

Case III

dx
Unstable, d(dΠ) < 0

dx
Stable, d(dΠ) > 0

dx
Neutral, d(dΠ) = 0 = minimum

Figure 16.1.2 Analogy of various states of equilibrium.

In the mathematical formulation of elastic stability problems of plates, we use
the neutral equilibrium assuming a bifurcation of the deformations. That is, at the
critical load, of the possible two paths of deformations (one associated with the
stable equilibrium and the other one pertinent to the unstable equilibrium condition,
as shown in Fig. 16.1.3), the plate always takes the buckled form. In addition to
the existence of this bifurcation of equilibrium paths, the elastic stability analysis of
plates assumes the validity of Hooke’s law.

Besides this classical buckling theory, the behavior of flat plates after buckling is of
considerable practical interest. The postbuckling analysis of plates is usually difficult,
since it is basically a nonlinear problem. Slightly curved plates subjected to simulta-
neous action of in-plane compressive forces and lateral loads exhibit a third kind of
instability behavior called snap-through buckling, which is characterized by reversal
deflections produced by the nonlinear relationship between the buckling load and the
deflections. During continuous loading the plate may begin to deflect in one direction,
but at a certain load, it buckles in the reverse direction, assuming again a stable shape.
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Figure 16.1.3 Bifurcation diagram.

Classical buckling problems of plates can be formulated using (1) the differential
equation of static equilibrium, (2) various energy methods and (3) dynamic appro-
aches.

a. Equilibrium Method. In the equilibrium method, we assume that the plate has
buckled slightly. It is of basic importance that the differential equation of equilibrium
be written for this deformed shape. Thus, the equilibrium equation is obtained by
considering the simultaneous bending and stretching of the plate. When the in-plane
edge loads are slightly above the critical load, the lateral deflections w are approaching
very large values, regardless of how small the increase in the edge loads becomes
(Fig. 16.1.3). The smallest load corresponding to this condition is the critical load.

An alternative and more general formulation of the equilibrium method transforms
the stability problem into an eigenvalue problem. For this purpose, we multiply a
reference value of the external forces (n0) by a load parameter λ. Hence, certain
terms of the differential equation of equilibrium will contain the multiplier λ. The
solution of the so-obtained homogeneous differential equation, w(x, y), will have arbi-
trary constants (C1, C2, C3, . . . , Cn) to be determined from the boundary conditions.
Equating the determinant of these equations to zero, a polynomial (characteristic)
equation in λ is obtained. The lowest eigenvalue gives λcr, and the critical load is
calculated from

ncr = λcrn0. (16.1.1)

The trivial solution (λ = 0) of the characteristic equation corresponds to the unbuck-
led (flat) state of equilibrium.

b. Energy Methods. Stability problems of plates can also be formulated by extend-
ing the various energy theorems, discussed in Secs. 4.2 and 4.3.

Applying the law of conservation of energy [Eq. (4.1.1)], for instance, we state
that as the plate passes from a stable to an unstable equilibrium, it goes through
the neutral state of equilibrium, which is characterized by conservation of energy.
The physical interpretation of this statement is the following: In the state of neutral
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equilibrium, the plate changes its original flat shape to a curved shape without gaining
or losing energy. The corresponding energy equation is

�Wi + �We = W ∗
i + W ∗

e (λ) = 0. (16.1.2)

Since the small bending is caused without stretching the middle surface, the work
done by the external compressive forces, W ∗

e , is due to the in-plane displacements
produced by bending. Similarly, the work of the internal forces, W ∗

i , is in the form of
potential energy due to bending (U ∗

b ). Furthermore, we assume that, during buckling,
the intensity of the external forces remains the same. The work of the external forces
is usually given as a function of the load parameter λ, as discussed above. It is
evident that Eq. (16.1.2) can only be used when the expression for the deflection
surface contains merely one undetermined coefficient.

More often, however, we formulate the buckling problem using the variational
principle. That is, the plate is considered to be in a state of equilibrium to which
an infinitesimally small disturbance is applied. Since the work of the external and
internal forces must vanish, Eq. (16.1.2) can be written in terms of potentials,

�0 + �� = 0, (16.1.3)

where �0 denotes the total potential of the plate load system pertinent to the stable
state of equilibrium and �� is the increment in the total potential, representing the
neighboring state of equilibrium, in which the middle surface is slightly curved due
to the small increase in the load. It is evident that for the stable equilibrium condition
the total potential must vanish (�0 = 0).

Let us now express the increment of the total potential, ��, by the Taylor series†:

�� = δ� + 1

2!
δ2� + · · · . (16.1.4)

From Eq. (16.1.3) �� must be zero, but for an equilibrium system the first variation
of potential [Eq. (4.1.11)] is zero (δ� = 0); consequently, the second variation of
the total potential must also vanish. Thus, we can write

δ2� = δ(δ�) = δ[δ�(c1, c2, c3, . . . , cn)] = 0. (16.1.5)

This more rigorous requirement for the neutral equilibrium condition is based on the
minimum potential energy principle [Eq. (4.1.11)] and involves the usual minimiza-
tion process [Eq. (4.2.2)]:

∂(��)

∂ci

= ∂�∗

∂ci

= 0 for i = 1, 2, 3, . . . , n, (16.1.6)

where �∗ = �� represents the total potential in the neighboring state of equilibrium.
Therefore, this approach can also be used when the expression of the deflected surface
contains more than one undetermined coefficient (c1, c2, c3, . . . , cn).

† The third- and higher-order terms in this expression are of negligible order of magnitude.
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To be able to reduce Eq. (16.1.6) to an eigenvalue-eigenvector problem, we again
introduce a load factor λ. First, the plate is considered to be in a state of equilibrium
under the given loads and its middle surface is assumed to be flat. Next we disturb
this equilibrium condition by increasing the load, using a load factor λ, until the
slightly curved neighboring state of equilibrium is reached (bifurcation). In this neu-
tral state of equilibrium the sum of the strain energy of the plate (due to the resulting
lateral displacements) and the potential of the edge forces should be a minimum.
The smallest nonzero solution for λ is the critical load factor λcr.

Furthermore, the type of equilibrium condition can also be determined from the
second variation of the total potential:

For stable equilibrium: δ2� > 0, δ� = 0.

For neutral equilibrium: δ2� = 0 = min, δ� = 0. (16.1.7)

For unstable equilibrium: δ2� < 0, δ� = 0.

c. Dynamic Approach. The fact that stability problems can be formulated by
dynamic methods is frequently overlooked. Again, the analogy shown in Fig. 16.1.2
can be used to explain the fundamental concepts of such an approach. It is charac-
teristic to a stable state of equilibrium that after the introduction of small oscillations
the system will return to its original position. If the state of equilibrium is unstable,
the system will not return to its initial position, since the small disturbance will be
followed by increasingly large deflections.

In setting up the differential equation of transverse vibration, the effect of the in-
plane forces must be considered; thus, the equation of motion will contain the load
factor λ. The smallest value of λ producing lateral deflections that increase without
limit is the critical load factor.

An alternative approach to the dynamic solution of stability problems of plates can
be derived by comparing the differential equations of buckling and vibration [16.1.12].
If the buckling shapes and the free-vibration modes are the same,† the critical load
and the lowest natural frequency occur under the same conditions. They differ only
by a constant, which can be obtained by comparing the two differential equations.

The investigation of the dynamic stability of plates can be reduced to the analysis
of its free vibrations and its static stability, as shown in Sec. 16.6. For nonlinear
stability problems Lyapunov’s method [16.1.19] may offer distinct advantages.

d. Buckling under Combined Loads. When plates are subjected to the simultane-
ous actions of in-plane compressive and shear forces, combined with lateral bending,
buckling occurs at lower load intensities than when these forces act individually.
The effect of the combined loading can be approximated by the so-called interaction
equation, which has the form

Rn

�1 + Rm

�2 + Rk

�3 + · · · ≤ 1, (16.1.8)

where Ri is the load ratio defined by

Ri = ith edge load acting alone

corresponding ith critical load
= ni

ncr,i
. (16.1.9)

† The extension of this concept to cases when the buckling and vibration modes are merely similar
yields usable approximations.
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Figure 16.1.4 Interaction curve.

Equation (16.1.8) represented graphically gives the interaction curves (Fig. 16.1.4)
or interaction surfaces. Buckling takes place when the plot of the forces is on or
above these limiting bounds.

Gerard [16.1.4] has derived the following interaction equations for rectangular
plates:

žSimply supported plate
subjected to biaxial compression: . . . Rx + Ry ≤ 1.

žSimply supported plate with
a/b ≥ 1 and long plates with
elastically restrained edges
subjected to longitudinal compression
and shear: . . . Rcomp + R2

shear ≤ 1.

žBending and shear: . . . R2
bend + R2

shear ≤ 1.

(16.1.10)

Summary. The objectives of this chapter on stability of plates are to formulate
the problem and to sketch the contemporary trends in solving buckling problems.
Again, generally applicable methods will be developed rather than giving solutions
for specific problems. The application of these various methods used in the stability
analysis of plates is shown on simple problems. Since the literature on the subject is
quite extensive [6.1.13], the reader is urged to consult the pertinent references given
after each section in this chapter.
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16.2 Equilibrium Method

a. Rectangular Plates. Let us investigate a flat rectangular plate subjected to the
action of in-plane forces nx, ny and nxy applied at the boundaries of the middle
surface, as shown in Fig. 16.2.1. Specifying these edge forces by their relative mag-
nitude, rather than by their absolute value, we can write†

nx = −λnx0, ny = −λny0, nxy = −λnxy0, (16.2.1)

† Sign convention: (+), tensile force; (−), compressive forces.
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Figure 16.2.1 Rectangular plate subjected to edge forces.

where the common factor λ is the load factor. A gradual increase of this factor
results in an increase of in-plane edge loads. At a certain value of λ, the deformed
configuration of the plate is no longer unique; that is, regardless of the absence of
transverse loading (pz = 0) the plate deflects laterally; thus, the originally in-plane
deformations bifurcate (Fig. 16.1.3). In the absence of lateral loads, the differen-
tial equation pertinent to this neutral state of equilibrium is the homogeneous form
of Eq. (3.3.7) (pz = 0). Consequently, the governing differential equation of plate
buckling becomes

∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+ ∂4w

∂y4
= 1

D

(
nx

∂2w

∂x2
+ 2nxy

∂2w

∂x ∂y
+ ny

∂2w

∂y2

)
. (16.2.2)

Substituting Eq. (16.2.1), we obtain an alternative form of the governing differential
equation of elastic instability of plates:

∇4w + λ

D

(
nx0

∂2w

∂x2
+ 2nxy0

∂2w

∂x ∂y
+ ny0

∂2w

∂y2

)
= 0. (16.2.3)

We seek the lowest value of λ at which bifurcation of the deflections occurs
(Fig. 16.1.3); that is, the plate can be in neutral equilibrium in a slightly bent position.

The differential equation (16.2.3) is homogeneous and linear. The load factor
appears in the coefficients of the lower-order terms. Solutions of such equations
are classified as eigenvalue problems of mathematics. The rigorous solutions w must
satisfy Eq. (16.2.3) and the given boundary conditions. Because of the homogeneous
form of Eq. (16.2.3), the order of magnitude of the deflections is undetermined; that
is, if w represents a solution, then a multiple of w is also a solution. Consequently, the
additional equations obtained from the boundary conditions are also homogeneous.

To simplify the analysis, when the plate is under the combined action of edge
forces, we usually specify the relation between them by constant ratios. If, for
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instance, the compressive edge forces in the X direction are governing, we can
define the other edge forces by

ny0 = αnx0 and nxy0 = βnx0, (16.2.4)

where α and β are constants defining the ratios between the edge forces.
A further simplification is obtained by using Euler’s buckling formulas of an

isolated plate strip (assuming that it acts as a column) for reference values. Thus, for
the problem illustrated in Fig. 16.2.2, we can write

nx0 = π2D

a2
= π2Eh3

12(1 − ν2)a2
. (16.2.5)

There are cases, however, when the use of

nx0 = π2D

b2
(16.2.5a)

as a reference value is more advantageous.
We usually seek the solution of plate buckling in the form

w(x, y) =
∑
m

∑
n

WmnXm(x) · Yn(y), (16.2.6)

which is the sum of the products of two functions each of which depends on a
single argument.

The substitution of these expressions into the governing differential equation
(16.2.3) yields the characteristic equation of the problem. A nontrivial solution exists
only if we satisfy the characteristic equation. By calculating the minimum value of
the load factor (λmin = λcr), the critical load is obtained from†

pcr = (nx)cr = λcrnx0. (16.2.7)

Pcr

−− nx 0

Pcr

−pcr = −lcrnx 0

Z, w

a

Y

X
1

Plate strip

Figure 16.2.2 Buckling of plate strip.

† Assumed that nx is the governing edge load.
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If the edges of the plate are simply supported and free from shearing forces
(nxy = 0), Eq. (16.2.6) becomes

w(x, y) =
∑
m

∑
n

Wmn sin
mπx

a
sin

nπy

b

for m, n = 1, 2, 3, . . . . (16.2.8)

Minimization of the characteristic equation directly yields λcr.
The solution for other types of boundary conditions is more complex. Provided that

at least two opposite boundaries are simply supported and the plate is not subjected
to shearing forces along the edges (nxy = 0), Lévy’s method can be used. Assuming
that the simply supported edges are at x = 0 and x = a, the mode shape of the
buckling can be represented by

w(x, y) =
∑
m

Ym(y) sin
mπx

a
. (16.2.9)

The solution follows the general pattern described in Sec. 2.3, with the notable excep-
tion that the linear algebraic equations derived from the boundary conditions are also
homogeneous. Thus, the nontrivial solution for the integration constants Am, Bm, Cm

and Dm is obtained by equating the determinant of these algebraic equations to zero.
The required mathematical operations, however, are quite tedious [16.2.1, 16.2.2].
For other boundary conditions, it is usually impossible to obtain a rigorous solution
to buckling.

When body forces (per unit area) and lateral loads are also present, Eq. (16.2.2)
becomes

D ∇4w = pz + nx

∂2w

∂x2
+ 2nxy

∂2w

∂x ∂y
+ ny

∂2w

∂y2
− px

∂w

∂x
− py

∂w

∂y
, (16.2.10)

where the last two terms represent the transverse components of these in-plane forces,
acting on the deflected plate. Since the solution of plate buckling under combined
load, even by approximate or numerical methods, can be tedious, the use of interaction
equations (16.1.10) is strongly recommended.

The effect of a small initial curvature on the buckling load and the use of large-
deflection theory in postbuckling analysis are treated in Sec. 16.10.

b. Circular Plates. The governing differential equation of a rectangular plate
(16.2.2) subjected to the same uniformly distributed loads acting in two perpendicular
directions (nx = ny = −n; nxy = 0) has the form

∇2 ∇2w = − 1

D
n∇2w, (16.2.11)

which can be used to obtain the differential equation of buckling of a circular plate
under uniform radial loading. Replacing in Eq. (16.2.11) the Laplacian operator ∇2,
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expressed in a Cartesian coordinate system [Eq. (1.2.31)], by ∇2
r , which is given in

terms of polar coordinates [Eq. (1.4.10)], we can write

D ∇2
r ∇2

r w(r, ϕ) = −n ∇2
r w(r, ϕ). (16.2.12)

Considerable simplification, however, can be obtained when the buckling shape is
rotationally symmetric. In this case, the buckling mode is independent of ϕ, and the
Laplacian operator given in Eq. (2.8.1) is applicable.

Consequently, Eq. (16.2.12) becomes

D

(
d4w

dr4
+ 2

r

d3w(r)

dr3
− 1

r2

d2w(r)

dr2
+ 1

r3

dw

dr

)
+ n

(
d2w

dr2
+ 1

r

dw

dr

)
= 0. (16.2.13)

By introducing

λ2 = n

D
and ρ = λr, (16.2.14)

we obtain a relatively simple form for the governing differential equation of buckling
of uniform circular plates under radial thrusts:

d4w

dρ4
+ 2

ρ

d3w

dρ3
+
(

1 − 1

ρ2

)
d2w

dρ2
+ 1

ρ

(
1 + 1

ρ2

)
dw

dρ
= 0. (16.2.15)

The rigorous solution of Eq. (16.2.15) for full circular plates simply supported or
fixed at the edge has the form

w(ρ) = C1 + C2J0(ρ), (16.2.16)

where C1 and C2 are integration constants and J0(ρ) is the zeroth-order Bessel
function of the first kind

Summary. The rigorous solution of a limited number of plate buckling problems
can be obtained from the equilibrium method. Following this approach, the execution
of the following computational steps is required:

1. The differential equation of the problem is set up based on the neutral state
of equilibrium, which describes the slightly bent equilibrium configuration
of an initially flat plate. In the mathematical formulation, we state that in a
plate subjected to compressive in-plane forces, lateral displacements w occur
without the presence of lateral loads (pz = 0). The differential equations so
obtained are homogeneous.

2. We seek a solution, w(x, y), that satisfies the governing differential equation
of plate buckling and the given boundary conditions. For rectangular plates,
Navier’s and Lévy’s methods yield exact solutions, provided the plate is
subjected only to compressive edge forces (nxy = 0) and the boundary condi-
tions permit the use of these approaches. For circular plates with rotationally
symmetric deflections, a rigorous solution can be obtained in the form of
Bessel functions.
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3. Since we seek the smallest load that maintains the slightly buckled shape in
equilibrium, the critical load is usually calculated from the lowest eigenvalue
(load factor) obtained through a minimization process.

Although rigorous solutions are rare, the mathematical formulation of the elastic
instability problems of plates based on the differential equations of the neutral state
of equilibrium is of fundamental importance, since these equations can be solved by
various approximate methods of higher analysis, as shown in the subsequent sections.
In all these equilibrium equations, small-deflection theory has been used.

ILLUSTRATIVE EXAMPLE I

Let us determine the critical load of a simply supported rectangular plate sub-
jected to a uniformly distributed compressive edge load acting in the X direction
(nx = −λnx0), as shown in Fig. 16.2.3.

−−nx

−nx

Z, w

a

b

h

Y

X

Nodal lines

Figure 16.2.3 Buckling of simply supported plate under compressive axial forces.

The governing differential equation is obtained from Eq. (16.2.3) by using
ny0 = nxy0 = 0. Thus, we can write

D ∇4w + λnx0
∂2w

∂x2
= 0, (16.2.17)

where

nx = λnx0 = λ
π2D

a2
, (16.2.18)

defined by Eqs. (16.2.1) and (16.2.5), respectively.
Since the plate is simply supported, the deflected surface of the buckled plate

can be expressed [Eq. (16.2.8)] by

w =
∑
m

∑
n

Wmn sin
mπx

a
sin

nπy

b

for m, n = 1, 2, 3, . . . , (16.2.19)
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which satisfies the boundary conditions (w = 0, mx = 0, my = 0) along all the
edges. By substituting Eq. (16.2.19) into Eq. (16.2.17), we obtain

D

[(mπ

a

)4 + 2
(mπ

a

)2 (nπ

b

)2 +
(nπ

b

)4
]

−
(mπ

a

)2
nx = 0; (16.2.20)

hence

nx = Dπ2 [(m/a)2 + (n/b)2]2

(m/a)2
=
(

m + n2

m
+ a2

b2

)2
Dπ2

a2
= λnx0. (16.2.21)

It is evident that the smallest value of λ can be determined by taking n = 1;
this corresponds to a buckling shape of one half-wave in the Y direction; thus

λ =
(

m + 1

m

a2

b2

)2

. (16.2.22)

For a given aspect ratio a/b, the critical load is obtained by selecting m so
that it makes Eq. (16.2.22) a minimum. For square plates, m = 1 satisfies this
requirement; thus

(nx)cr = λminnx0 = 4π2D

a2
. (16.2.23)

ILLUSTRATIVE EXAMPLE II

Determine the critical load of a rectangular plate simply supported at the x = 0,
x = a and y = 0 edges and free at y = b. The plate is subjected to uniformly
distributed edge loading nx = −λnx0, as shown in Fig. 16.2.4.

−−nx

Z, w

b

a

Y

X

Free edge

Simply supported

Figure 16.2.4 Buckling of rectangular plate.

Because of the boundary conditions, Lévy’s method can be used; thus we
seek the solution in the form

w =
∑
m

Ym(y) sin
mπx

a
, (16.2.24)
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which, substituted into (16.2.17), for a specific m value gives

d4Ym

dy4
− 2

(mπ

a

)2 d2Ym

dy2
+
[(mπ

a

)4 − λnx0

D

(mπ

a

)2
]

Ym = 0. (16.2.25)

The pertinent characteristic equation

f 4 − 2
(mπ

a

)2
f 2 +

[(mπ

a

)4 − λnx0

D

(mπ

a

)2
]

= 0 (16.2.26)

has the following real roots, provided that λnx0/D > m2π2/a2†:

f1 =
√(mπ

a

)2 + mπ

a

√
κ and f2 =

√
−
(mπ

a

)2 + mπ

a

√
κ,

(16.2.27)

where κ = λnx0/D.
We assume the general solution of Eq. (16.2.25) in the form

Ym = A sinh αy + B cosh αy + C sin βy + D cos βy, (16.2.28)

where α = f1 and β = f2.
The boundary conditions in the Y direction are, at y = 0,

w = Ym = 0,
∂2w

∂y2
= ∂2Ym

∂y2
= 0 (16.2.29)

and, at y = b,

∂2w

∂y2
+ ν

∂2w

∂x2
= 0,

∂3w

∂y3
+ (2 − ν)

∂3w

∂y∂x2
= 0. (16.2.30)

The boundary conditions at y = 0 [Eq. (16.2.29)] yield B = D = 0. Thus,
the mode shape of buckling can be written in the form

w = (A sinh αy + C sin βy) sin
mπx

a
. (16.2.31)

The boundary conditions at y = b [Eq. 6.2.30)] yield

A(
√

κ + 1 − ν) sinh αb − C(
√

κ − 1 + ν) sin βb = 0,

A

√√
κ + 1(

√
κ − 1 + ν) cosh αb − C

√√
κ − 1(

√
κ + 1 − ν) cos βb = 0.

(16.2.32)

† This is always the case, since there is a restraint along one edge of the plate strip.
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A nontrivial solution is obtained by equating the determinant of Eq. (16.2.32)
to zero; this gives

√√
κ − 1(

√
κ + 1 − ν)2 tanh mπ

√√
κ + 1

(
b

a

)

=
√√

κ + 1(
√

κ − 1 + ν)2 tan mπ

√√
κ − 1

(
b

a

)
= 0. (16.2.33)

For a specific aspect ratio b/a and Poisson ratio ν, the lowest value for
√

κ can
be determined by either a trial-and-error procedure or graphically. We assign
m = 1, 2, 3, . . . in succession and solve Eq. (16.2.23) for

√
κ . The lowest value

for
√

κ is with m = 1. The critical load for long plates (a/b ≥ 10), for instance,
assuming ν = 0.25, becomes [16.1.1]

(nx)cr ≈
(

0.456 + b2

a2

)
π2D

b2
. (16.2.34)
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16.3 Energy Methods in Stability Analysis

From the preceding section it is evident that with increasing complexity in the geo-
metrical configuration, boundary conditions and loadings, the rigorous mathematical
determination of the buckling load of the plate becomes progressively more difficult
and finally impossible. To obtain approximate analytic expressions for the critical
load, various energy methods, discussed in Secs. 4.1–4.3, can be used advanta-
geously. In the stability analysis of plates, usually the critical load is of practical
importance, that is, the minimum buckling load that corresponds to the first mode of
the buckled plate shape.
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In the mathematical formulation of classical plate buckling by the energy methods,
we again use the neutral state of equilibrium at which bifurcation of displacements
occurs, as discussed in Sec. 16.1. Furthermore, it is assumed that the in-plane dis-
placements of the plate are due to the small bending (created by the buckling) and
not due to the in-plane shortening. The reason for this assumption is clear if one
considers that our datum configuration is the stable equilibrium condition of the plate
immediately prior to buckling. Thus, up to this point, the strain energy due to com-
pression of the middle surface equals the work done by the external in-plane forces
and therefore cancels out (�0 = 0) in the energy equations.

a. Rayleigh’s Method. Rayleigh’s powerful method [16.3.1] is based on the prin-
ciple of conservation of energy [16.1.1].

In formulating the buckling problem of a flat plate by energy methods, we first
assume that the plate, subjected to

nx = −λnx0, ny = −λny0, nxy = −λnxy0 (16.3.1)

in-plane edge forces,† is in a stable equilibrium. Next, the load is gradually increased.
As we increase the load factor λ at a certain value, the plate will pass from its flat
shape to its curved shape without changing its total potential; thus

W ∗
l + λW ∗

e = U ∗
b (w) + λV ∗(w) = 0. (16.3.2)

Based on our previous discussion,‡ this expression is only a function of the lateral
deflections. As already mentioned, the total potential, corresponding to the stable state
of equilibrium, �0, has been eliminated from Eq. (16.3.2). Consequently, here we are
only concerned with the total potential pertinent to the neutral state of equilibrium.

Since expansion of Eq. (16.3.2) yields only one algebraic equation, its use is limited
to one undetermined coefficient, c, in the expression of the deflections,

w(x, y) = cf (x, y) = cX(x)Y (y). (16.3.3)

Furthermore, it is required that Eq. (16.3.3) satisfy at least the geometrical bound-
ary conditions.

In Eq. (16.3.2) U ∗
b represents the bending part of the strain energy, introduced

in Sec. 4.1. The potential of the external forces is the negative work done by the
external forces (V ∗ = −W ∗

e ), which remain constant during buckling, as previously
defined. We have assumed that as the middle surface bends no membrane stresses
are produced, but the edges draw together, creating in-plane displacements; thus, we
can neglect the membrane part of the strain energy (U ∗

m = 0). From Fig. 11.1.2 the
in-plane displacement in the X directions is

u∗ = ds − dx ≈ 1

2

(
∂w

∂x

)2

dx. (16.3.4)

† See preceding sections for the definition of nx0, ny0 and nxy0.
‡ See also Sec. 16.1.
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Consequently, the work of the nx force (acting on the dy length of the plate ele-
ment) is

dW ∗
e,x = (nx dy)u∗ = 1

2
λnx0

(
∂w

∂x

)2

dx dy. (16.3.5)

An identical expression is obtained from the membrane part of the strain energy
[Eq. (4.2.14)]. Using this alternative approach, we assume that (1) the edge force nx

remains constant and (2) the corresponding strain is exclusively due to bending. This
leads to

dU ∗
m = nxε

NL
x dx dy = 1

2
λnx0

(
∂w

∂x

)2

dx dy, (16.3.6)

and

−W ∗
e = V ∗ = −U ∗

m. (16.3.7)

Consequently, the potential of the external forces can be written in terms of the
in-plane strains εNL, εNL

y and γ NL produced by the lateral deflections:

V ∗ = −λ

∫∫
(A)

(nx0ε
NL
x + ny0ε

NL
y + nxy0γ

NL) dx dy, (16.3.8)

where

εNL
x = 1

2

(
∂w

∂x

)2

, εNL
x = 1

2

(
∂w

∂y

)2

, γ NL = ∂w

∂x

∂w

∂y
, (16.3.9)

as introduced in Sec. 11.1.
The substitution of these expressions into Eq. (16.3.8) gives

V ∗ = −λ

2

∫∫
(A)

[
nx0

(
∂w

∂x

)2

+ ny0

(
∂w

∂y

)2

+ 2nxy0

(
∂w

∂x

∂w

∂y

)]
dx dy. (16.3.10)

Using, for instance, Eq. (4.2.5) for the strain energy U ∗
b , the load factor can be

expressed as a quotient [Eq. (16.3.2)]:

λ =

∫∫
(A)

{
D

(
∂2w

∂x2
+ ∂2w

∂y2

)2

− 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2
−
(

∂2w

∂x ∂y

)2
]}

dxdy

∫∫
(A)

[
nx0

(
∂w

∂x

)2

+ ny0

(
∂w

∂y

)2

+ 2nxy0
∂w

∂x

∂w

∂y

]
dx dy

.

(16.3.11)

This expression, often called Rayleigh’s quotient, directly gives the critical load factor
(λ = λcr); therefore, its use is very convenient.
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b. Ritz Method. Ritz [16.3.2] has eliminated the restriction of Rayleigh’s method
by applying the minimum potential energy principle [Eq. (16.1.6)], which permits the
expression of the deflected plate surface as a sum of functions,

w(x, y) =
n∑

i=1

cifi(x, y) for i = 1, 2, 3, . . . , (16.3.12)

containing undetermined coefficients c1, c2, . . . , cn. The continuous functions fi(x, y)

should satisfy at least the geometrical boundary conditions but not necessarily the
governing differential equation (16.2.3). By virtue of the minimum potential energy
theorem, discussed in Secs. 4.1 and 16.1, we may state that of the several functions
satisfying the geometrical boundary conditions, the function that makes the total
potential of the plate-load system a minimum represents the best approximation to
the buckling mode and to the solution of the governing differential equation (16.2.3).

The variation of the total potential δ�∗ = 0 can be written in terms of arbitrary
variation of the undetermined expansion coefficients c1:

δ(δ�) = δ�∗ = ∂�∗

∂c1
δc1 + ∂�∗

∂c2
δc2 + · · · + ∂�∗

∂cn

δcn = 0. (16.3.13)

Thus, the necessary and sufficient conditions for ∂�∗ = 0 are

∂�∗

∂c1
= 0,

∂�∗

∂c2
= 0, . . . ,

∂�∗

∂cn

= 0. (16.3.14)

This leads to a set of linear homogeneous algebraic equations in the undetermined
coefficients ci . Other than the trivial solution (c1, c2, . . . , cn = 0), representing the
unbuckled plate, these equations have solutions only if the coefficient-determinant
of the unknowns (ci) vanishes. In this way, again, the buckling problem of plates
has been transformed to an eigenvalue-eigenvector problem of the mathematical
physics:

[A] − λ[I ] = {0}. (16.3.15)

The smallest eigenvalue, λcr, is required in Eq. (16.1.1) to obtain the minimum buck-
ling load.

The expression of the total potential of the buckled plate, called Bryan’s equation,
has the following form in the Cartesian coordinate system,

�∗ = U ∗
b + V ∗ = 1

2

∫∫
(A)

D

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

− 2(1 − ν)

×
[

∂2w

∂x2

∂2w

∂y2
−
(

∂2w

∂x ∂y

)2
]}

dx dy
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− λ

2

∫∫
(A)

[
nx0

(
∂w

∂x

)2

+ ny0

(
∂w

∂y

)2

+2nxy0
∂w

∂x

∂w

∂y

]
dx dy, (16.3.16)

which represents the sum of Eqs. (4.2.5) and (16.3.10). If the boundary conditions
permit the use of Eq. (4.2.6), Bryan’s equation can be considerably simplified.

For selection of the proper shape functions, which satisfy at least the geometrical
boundary conditions and are capable of approximating the true buckled shapes of
the plate, the reader is referred to Sec. 4.2. The required calculations can be further
simplified by choosing functions that form an orthogonal set:

w(x, y) =
∑
m

∑
n

WmnXm(x) · Yn(y). (16.3.17)

While the numerical solution of the eigenvalue problem [Eq. (16.3.15)] is readily
obtainable by means of high-speed digital computers, evaluation of the integrals in
Eq. (16.3.16) can be tedious. Fortunately, suitable one-term expressions for the buck-
ling modes usually yield sufficient accuracy (±5% discrepancy) for most practical
purposes, since the errors introduced by, for example, idealized material properties
and boundary conditions are, in general, greater than those resulting from such ana-
lytical approximations. It is of interest to note that, in this case, the expressions for
Rayleigh’s and Ritz’s methods become identical; consequently, the two methods are
often called the Rayleigh-Ritz method in the pertinent literature.

The restrictive boundary condition requirement of the Ritz method, that the geo-
metrical boundary conditions be satisfied by every term of the series expression of the
lateral deflections [Eq. (16.3.12)], can be further eased. The Lagrangian multiplier
method † [16.3.3, 16.3.4] requires merely that the total expression of the deflections
satisfies the geometrical boundary conditions. Since in this case the choice of series
expressions for w is less restricted, the Lagrangian multiplier method can offer some
computational advantages.

c. Galerkin’s Method. An alternative formulation of plate buckling in terms of
energy integrals can be obtained by Galerkin’s method [16.3.5]. The method consists
of using the governing differential equation of plate buckling (16.2.3) to express the
total potential of the system.

We assume, again, that the buckling modes are in the form of series expressions, as
in Eq. (16.3.12) or (16.3.17). The requirement in the usual application of Galerkin’s
method is that the functions fi(x, y) satisfy all boundary conditions, not merely those
imposed by the geometry of the supports. For elastic buckling of rectangular plates,
the basic variational equation (4.3.3) becomes
∫∫
(A)

[
D ∇4w + λ

(
nx0

∂2w

∂x2
+ 2nxy0

∂2w

∂x ∂y
+ ny0

∂2w

∂y2

)]
δw dx dy = 0, (16.3.18)

† See Sec. 4.4.
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the expansion of which gives

∫∫
(A)

[Diff. Eq.]f1(x, y) dx dy = 0,

∫∫
(A)

[Diff. Eq.]f2(x, y) dx dy = 0,

...

∫∫
(A)

[Diff. Eq.]fn(x, y) dx dy = 0.

(16.3.19)

If we substitute all terms of the deflection function [Eq. (16.3.12)] into the bracketed
parts of Eqs. (16.3.19), then, after evaluation of the indicated definite integrals, a
system of homogeneous algebraic equations in terms of the undetermined coefficients
(c1, c2, . . . , cn) is obtained. Equating the system determinant to zero, the characteristic
equation for λ can be calculated. The lowest eigenvalue (λmin = λcr) determines the
critical load, as per Eq. (16.1.1).

The mathematical operations required using Galerkin’s method in the stability
analysis of plates are basically identical to those discussed in Secs. 4.3 and 14.5.
The variational principle has merely been applied to a different differential equation
of equilibrium. The variational solution of the buckling problem (16.3.19) requires
the evaluation of certain simple definite integrals. The required computational work
can be further reduced by selecting orthogonal shape functions. Galerkin’s method
can be used in solving more complex stability problems of plates, when geometrical
and material nonlinearities are also to be considered. Since the differential equations
of linear and nonlinear plate buckling are readily available in the pertinent literature
and the fundamental functions of the lateral beam vibrations are known to satisfy
most boundary conditions of practical importance, the Galerkin-Vlasov method can
be considered as one of the most general approximate methods that uses analyti-
cal techniques.

Summary. The advantages of the energy methods in determining the critical buck-
ling load are obvious since the problem is reduced to (1) the determination of certain
simple definite integrals and (2) the solution of eigenvalue problems. The energy
methods require the execution of the following steps:

1. Suitable shape functions (in series form) that satisfy the boundary conditions
need to be determined, as discussed in Secs. 4.2 and 4.3.

2. The potential energy of the system is expressed either directly (Rayleigh-Ritz
method) or indirectly, by applying the variational principle to the governing
differential equation of plate buckling (Galerkin’s method).

3. In the first approach a minimization procedure leads to a set of homogeneous
algebraic equations, and in the second method these algebraic equations are
obtained by integrating the variational equations of the problem.
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4. The vanishing system determinant defines the characteristic equation. The low-
est eigenvalue is λcr.

The critical loads obtained by these energy methods are always slightly higher than
their exact values; consequently, the results are somewhat on the unsafe side. The
accuracy of the energy methods is usually high, provided that the shape function used
is capable of approximating the exact buckling modes. The orthogonal properties
of certain shape functions lead to further simplification of the required analytical
operations. Strictly speaking, the accuracy of these energy methods diminishes as
the order of the characteristic number increases. This problem, however, is rather
academic, since in stability analysis only the lowest eigenvaluë is of practical interest.

ILLUSTRATIVE EXAMPLE I

Using Rayleigh’s method, let us determine the lowest buckling load of a
rectangular plate subjected to uniformly distributed compressive edge loads
nx = −λnx0. The edges of the plate are simply supported at x = 0 and x = a,
while the other boundaries are fixed, as shown in Fig. 16.3.1.

−−nx

−nx

Z, w

a

b

Y

X

Fixed Simply supported

Nodal line

O

Figure 16.3.1 Buckling mode of rectangular plate simply supported and fixed boundary
conditions at opposite edges.

The buckling mode of the plate is approximate in the form

w(x, y) = c sin
mπx

a

(
1 − cos

2πy

b

)
, (16.3.20)

which satisfies the given static and geometric boundary conditions:

(w = 0)x=0,x=a, (∇2w = 0)x=0,x=a,

and (16.3.21)

(w = 0)y=0,y=b,

(
∂w

∂y
= 0

)
y=0,y=b

.
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Observing that ny0 = nxy0 = 0, the substitution of Eq. (16.3.20) into
(16.3.11) yields

λ = (π4/8)[(3m4b/a3) + (8m2/ab) + (16a/b3)]Dc2

(3π2/8)(m2b/a)nx0c2
. (16.3.22)

Using Eq. (16.2.5a),

nx0 = π2D

b2
; (16.3.23)

for reference value, the critical load becomes

ncr = λcr
π2D

b2
, (16.3.24)

where

λcr = 1

3

[
16

m2

(a

b

)2 + 3m2

(
b

a

)2

+ 8

]
. (16.3.25)

A comparison of this result with the exact solution of the problem [16.1.1]
indicates that the error of the derived approximate solution is always less than
5% for the aspect ratios 0.4 ≤ a/b ≤ 1. Therefore, this approximate solution
is acceptable for most design purposes.

ILLUSTRATIVE EXAMPLE II

Let us check the exact solution of Illustrative Example II in the preceding
section by the energy method.

We approximate the buckling mode by a simple, one-term expression

w(x, y) = cy sin
mπx

a
(16.3.26)

that satisfies only the geometrical boundary conditions of the given
problem; consequently, Rayleigh’s method should be applied. By substituting
Eq. (16.3.26) into (16.3.11), we obtain

λ = (π4/12)m2(b/a){[m(b/a)]2 + [6(1 − ν)/2π2]}Dc2

(π/12)m2(b3/a)nx0c2
; (16.3.27)

hence

(nx)cr =
[(

m
b

a

)2

+ 6(1 − ν)

π2

]
π2D

b2
= λcr

π2D

b2
. (16.3.28)
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If we assume that ν = 0.25 and m = 1, the critical load becomes

(nx)cr =
(

0.456 + b2

a2

)
π2D

b2
, (16.3.29)

which is the same as the solution given in Eq. (16.2.34).
This example illustrates both the simplicity and the obtainable accuracy of

the energy methods.

ILLUSTRATIVE EXAMPLE III

Let us solve the first illustrative problem (Fig. 16.3.1) by Galerkin’s method
assuming that the buckling mode has the form

w(x, y) = sin
πy

b

∑
m

∑
n

Wmn sin
mπx

a
sin

nπy

b
, (16.3.30)

which satisfies the given boundary conditions [Eq. (16.3.21)].
To illustrate the mathematical operations involved, we limit ourselves to one

term (m = 1, n = 1); thus Eq. (16.3.30) becomes

w(x, y) = W11 sin
πx

a
sin2 πy

b
. (16.3.31)

Consequently, the variational equation (16.3.19) can be written as

∫ a

0

∫ b

0

(
D ∇4w + λnx0

∂2w

∂x2

)
sin

πx

a
sin2 πy

b
dx dy = 0. (16.3.32)

The substitution of Eq. (16.3.31) into this expression leads to

W11

∫ a

0

∫ b

0
D

{[
π4

a4
sin

πx

a
sin2 πy

b
+ 4π4

a2b2

(
sin2 πy

b
− cos2 πy

b

)
sin

πx

a

+ 8π4

b4

(
sin2 πy

b
− cos2 πy

b

)
sin

πx

a

]

− λnx0
π2

a2
sin

πx

a
sin2 πy

b

}
sin

πx

a

× sin2 πy

b
dx dy = 0. (16.3.33)

Carrying out the indicated multiplication and integrating term by term,
Eq. (16.3.33) becomes

3π4b

16a3
+ π4a

b3
+ π4

2ab
− λ

nx0

D

3π2b

16a
= 0. (16.3.34)
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Let us introduce

nx0 = π2D

b2
; (16.3.35)

then the load factor becomes

λ = λcr = 1

3

[
16
(a

b

)2 + 3

(
b

a

)2

+ 8

]
, (16.3.36)

which is identical to Eq. (16.3.25) for m = 1.
Using the series expression (16.3.30) for w, the variational equation (16.3.19)

yields a system of homogeneous algebraic equations in terms of the undeter-
mined expansion coefficients Wmn, and the problem becomes an eigenvalue
problem. By considering more terms, the accuracy of the solution can be con-
siderably improved.
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[16.3.2] RITZ, W., “Über eine neue Methode zur Lösung gewisser Randwertaufgaben,” Göttingen,

Ges. d. Wiss. Nachr. (1908), 236.
[16.3.3] TREFFTZ, E., “Die Bestimmung der Knicklast gedrückter, rechteckiger Platten,” Z. Angew.

Math. Mech., 15 (1935), 339–344.
[16.3.4] BUDIANSKY, B., and HU, P. C., “The Lagrangian Multiplier Method in Finding Upper and

Lower Limits to Critical Stresses of Clamped Plates,” Report No. 848, National Advisory
Committee for Aeronautics, Washington, D. C., 1946.

[16.3.5] DUNCAN, W. J., “The Principles of Galerkin’s Method,” Rep. Memo., No. 1848, Aeron.
Research Council (Gt. Brit.), London, 1938.

[16.3.6] SOUTHWELL, R. V., “Some Extensions of Rayleigh’s Principle,” Quart. J. Mech. Appl.
Math., 6 (1953), 257–272.

[16.3.7] TAYLOR, G. I., “The Buckling Load for a Rectangular Plate with Clamped Edges,” Z.
Angew. Math. Mech., 13 (1933), 147–152.

[16.3.8] IGUCHI, S., “Allgemeine Lösung der Knickungsaufgabe für rechteckige Platten,” Ing.-
Arch., 7 (1936), 207–215.

[16.3.9] IGUCHI, S., “Die Knickung der rechteckigen Platten durch Schubkräfte,” Ing.-Arch., 9,
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16.4 Finite Differences Solution of Plate Buckling
The critical load can be determined numerically by applying the FDMs introduced
in Secs. 5.1 and 5.2. Replacing the partial derivatives in the governing differential
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equations of plate buckling by finite differential expressions and treating the spe-
cific boundary value problems in accordance with Sec. 5.1d, difficult plate buckling
problems can be handled with relative ease.

Let us consider, for instance, the buckling of rectangular plates subjected to in-
plane compressive edge forces nx, ny . The distribution of these forces (including the
boundary conditions) can be quite arbitrary, as shown in Fig. 16.4.1. The governing
differential equation (16.2.3) of the problem

D ∇4w + λ

(
nx0

∂2w

∂x2
+ ny0

∂2w

∂y2

)
= 0, (16.4.1)

written in ordinary finite difference form (�x = �y = �) becomes

D

�4
[20wm,n − 8(wm+1,n + wm−1,n + wm,n+1 + wm,n−1)

+ 2(wm+1,n+1 + wm−1,n+1 + wm+1,n−1 + wm−1,n−1)

+ wm+2,n + wm−2,n + wm,n+2 + wm,n−2]

+ λ

�2
[nx0(wm+1,n − 2wm,n + wm−1,n)

+ ny0(wm,n+1 − 2wm,n + wm,n−1)] = 0. (16.4.2)

Applying Eq. (16.4.2) to all the mesh points and observing the given boundary
conditions, we obtain a matrix equation in the form

[A]{w} − λ∗[B]{w} = {0}, (16.4.3)

where [A] and [B] are matrices of the coefficients of the deflection ordinates and λ∗
is an expression containing D, λ, nx0, ny0 = αnx0 and �.

−nx

−
Ny

∆y

∆xZ, w

Y

X

Network for
finite difference
approximation

Figure 16.4.1 Plate of arbitrary shape under arbitrary in-plane forces.
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It is evident from Eq. (16.4.3) that the problem has been reduced to a classical
eigenvalue-eigenvector problem:

[C] − λ∗[I ] = {0}. (16.4.4)

Of all the eigenvalues obtained from a computerized solution of Eq. (16.4.4), we
seek the lowest one, λmin = λcr, which, substituted into Eq. (16.1.1), gives the lowest
buckling load.

The obtainable accuracy of the ordinary FDM can usually be increased by using the
two-stage solution described in Sec. 5.1f, provided that the plate is simply supported
and loaded by uniformly distributed compressive forces nx = ny = −λnx0. In this
case, the governing differential equation (16.4.1) becomes

∇2M + λ∗M = 0, (16.4.1a)

where M is the moment-sum defined by Eq. (1.2.42) and λ∗ = λnx0/D.
Furthermore, FDMs can be used to obtain approximate solutions of more difficult

plate buckling problems that involve the consideration of variable plate thickness,
large deflections and even postbuckling behavior. Such problems, although of great
practical importance, very seldom can be solved analytically.

The critical loads so obtained can be considerably improved by means of a simple
extrapolation technique. Let us assume that the error of the computed critical load
is inversely proportional to the squares of the subdivisions (N ), used in two subse-
quent finite difference solutions (1 and 2 in Illustrative Example I below). Then, we
can write

ncr,exact − n(1)
cr = C

N2
(1)

and ncr,exact − n(2)
cr = C

N2
(2)

, (16.4.5)

where C is an unknown constant that is eliminated when solving for ncr,exact ≈
ncr, improved.

Stodola-Vianello’s iterative technique [16.4.5], described in Sec. 15.1, can also be
successfully applied to improve the results of any approximate solution of plate sta-
bility problems. Suppose that the first ordinary finite difference solution has resulted
in an approximate value for the critical load n(0)

cr = λ(0)
cr nx0, which corresponds to the

mode shape w(0); then, an improved value of the critical load can be computed from

λ(1)
cr =

∫∫
(A)

w(0) dA

∫∫
(A)

w(1) dA

≈
∑r

i=1 w
(0)
i∑r

i=1 w
(1)
i

. (16.4.6)

To obtain the required improved buckling shape w(1), however, we must solve the
differential equation

D ∇4w(1) = −λ(0)
cr L(w(0)) = p(0)

z (16.4.7)
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assuming that p(0)
z is a fictitious load. The deflections (w(0), w(1)) in Eq. (16.4.7) are

normalized. For a finite difference solution, the use of an improved load representation
in combination with a higher-order finite difference expression in the differential
operator L(·) is recommended. If required, the iterative cycle can be repeated.

Summary. By replacing the derivatives in the governing differential equations of
plate buckling by ordinary finite differences, difficult stability problems involving
arbitrary configurations, boundary conditions and loadings can be solved numerically.
With sufficient fine subdivision, the method yields acceptable accuracy (less than 5%
discrepancy). The obtained results can be improved by Stodola-Vianello’s iterative
technique. When high accuracy is required, improved FDMs [16.4.1] should be used;
their application, however, may require the development of new stencils, which is by
no means an easy task.

Finally, it should be noted that in some cases the finite difference approach to the
critical load yields nonmonotonic convergence; that is, the results may oscillate about
the true value [16.4.4].

ILLUSTRATIVE EXAMPLE I

Find the critical load of a simply supported square plate subjected to nx =
ny = −λnx0 edge forces by the ordinary FDM using a 3 × 3 grid (Fig. 16.4.2).

A

A
-A

A

a = 3∆

a
= 

3∆ ∆

Y

X

1 2

3 4

−−nx

−−ny

−−−nx = ny = −λnx 0

− n y
− n y

∆x = ∆y = ∆

Figure 16.4.2 Simply supported plate under uniform thrust.

1. The governing differential equation of the problem (16.4.1) is

D ∇4w + λnx0 ∇2w = 0. (16.4.8)
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Since the lowest buckling load is pertinent to a symmetrical buckling shape and
therefore w1 = w2 = w3 = w4 = w (Fig. 16.4.3), the finite difference form of
Eq. (16.4.8) has the following simplified form:

D

�4
(20 − 8 − 1 − 8 + 2 − 1)4w + λnx0

�2
(−4 + 1 + 1)4w = 0. (16.4.9)

Y
Z, w

4 3

1 2

X

Simply supported

(a) First mode

Y Z, w

4
3

1
2

X

Nodal line, w = 0

(b) Second mode

Figure 16.4.3 Buckling modes of square plate.

By introducing

nx0 = π2D

a2
= π2D

(3�)2
, (16.4.10)

we obtain

λcr = 18

π2
≈ 1.83; (16.4.11)



Finite Differences Solution of Plate Buckling 933

hence

ncr = λcrnx0 ≈ 1.83π2D

a2
, (16.4.12)

versus the theoretical solution [16.1.1] ncr = 2π2D/a2, which represents an
error less than 9%. The accuracy of the solution can be improved by using a
finer net combined with the extrapolation technique given in Eq. (16.4.5).

2. Since the boundary condition and in-plane loads permit the use of
Eq. (16.4.1a), let us repeat the previous calculation, but let us also determine
the buckling forces pertinent to the higher modes.

Since the moment-sum at the edges is zero, we shall deal only with M1, M2,
M3 and M4 unknown moments (Fig. 16.4.2). Using ordinary finite differences
and �x = �y = � = a/3, Eq. (16.4.1a) becomes

At point 1:
1

�2
(−4M1 + M2 + M4) + λ∗M1 =0.

At point 2:
1

�2
(M1 − 4M2 + M3) + λ∗M2 =0.

(16.4.13)

At point 3:
1

�2
(M2 − 4M3 + M4) + λ∗M3 =0.

At point 4:
1

�2
(M1 + M3 − 4M4) + λ∗M4 =0.

The system determinant of these homogeneous equations is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ∗ − 4

�2

1

�2
0

1

�2

1

�2
λ∗ − 4

�2

1

�2
0

0
1

�2
λ∗ − 4

�2

1

�2

1

�2
0

1

�2
λ∗ − 4

�2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (16.4.14)

The vanishing determinant yields the characteristic equation

(
λ∗ − 4

�2

)4

− 4

�4

(
λ∗ − 4

�2

)2

= 0, (16.4.15)

the roots of which are

λ∗
1 = 2

�2
, λ∗

2 = λ∗
3 = 4

�2
, λ∗

4 = 6

�2
. (16.4.16)

Introducing, again, the datum value

nx0 = π2D

a2
= π2D

9�2
(16.4.17)
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and using the smallest root λ∗
1 = 2/�2, the critical load factor λcr becomes

λcr = λ∗
1D

nx0
= 18

π2
, (16.4.18)

which is identical with the result obtained previously. Had we not used sym-
metry in part 1 of the solution, part 2 would have shown some improvement
in accuracy.

The first and second buckling modes are shown in Fig. 16.4.3.

ILLUSTRATIVE EXAMPLE II

The orthotropic plate shown in Fig. 16.4.4a is subjected to nx = ny com-
pressive, in-plane forces. Let us determine the critical buckling load ncr of
the plate by applying the ordinary FDM. The flexural rigidity of the plate
in the Y direction and its torsional stiffness (represented by 2B) are related
to the flexural rigidity Dx in the X direction as follows: Dy = 0.5Dx and
2B = 2.496Dx .

In this case, the governing differential equation of this stability problem is
represented by Eq. (16.4.1). The corresponding finite difference representation
of this equation is given in Eq. (16.4.2). The finite difference mesh along with
the numbering of mesh points are shown in Fig. 16.4.3b. Applying Eq. (16.4.2)
at each mesh point, we obtain the matrix equation

(
Dx

�4
A + λnx0

�2
B
)

w = {0} or

(
A + λnx0

Dx

�2B
)

w = {0}, (16.4.19)

The corresponding matrices A and B are

A =




1 2 3 4 5 6 7 8 9 10 11 12

20.2184

−6.8592 19.7184

0.5 −6.8592 20.2184

−8.8592 19.2184 Symmetric

−8.8592 −6.8592 18.7184

−8.8592 0.5 −6.8592 19.2184

1 −8.8592 19.2184

1 −8.8592 −6.8592 18.7184

1 −8.8592 0.5 −6.8592 19.2184

1 −8.8592 20.2184

1 −8.8592 −6.8592 19.7184

1 −8.8592 0.5 −6.8592 20.2184




1

2

3

4

5

6

7

8

9

10

11

12

,

(16.4.20)
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Y

a = 1.25b

nx

ny

−ny

−nx
nx = ny

Dy = 0.5Dx
2B = 2.496Dx

Z, w X

b

Fixed

Fixed

Dx

0.5Dx

(a) Plate

(b) Finite difference mesh

3 6 9 12

x

33 6 9 12 12

22 5 8 11 11

11 4 7 10

1 4 7 10

10

Z, w

∆ = a/5

Y

Figure 16.4.4 Orthotropic plate subjected to in-plane forces.
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B =



1 2 3 4 5 6 7 8 9 10 11 12

−4.5

1.25 −4.5

1.25 −4.5

1 −4.5

1 1.25 −4.5 Symmetric

1 1.25 −4.5

1 −4.5

1 1.25 −4.5

1 1.25 −4.5

1 −4.5

1 1.25 −4.5

1 1.25 −4.5




1

2

3

4

5

6

7

8

9

10

11

12

(16.4.21)
Multiplying the second equation in Eq. (16.4.19) by B−1 yields

(B−1A − λI)w = {0} or (C − λI)w = {0}, (16.4.22)

and a typical eigenvalue-eigenvector problem is created, where I represents the
identity matrix.

Since we are only interested in the lowest eigenvalue, λ1 = λmin, the Mises
inverse matrix iterative technique can be used. For this purpose, we write
Eq. (16.4.22) in the form

(
C−1 − 1

λ
I
)

w = {0}. (16.4.23)

This procedure yields λ1 = λmin = 1.8003. The corresponding eigenvector

w =




−0.2793
−0.4265
−0.2793
−0.1934
−0.2953
−0.1934

0.1934
0.2953
0.1934
0.2713
0.4265
0.2793




(16.4.24)

represents the buckling mode of the plate, shown in Fig. 16.4.5.
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b = a
1.25
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Figure 16.4.5 Buckling mode.

Using the relationships

nx0 = π2Dx

a2
and λ1 = λcrnx0

�2

Dx

, (16.4.25)

we can write

λcr = λ1Dx

nx0�2
= 1.8003Dx

(π2Dx/a2)(a/5)2
= 4.5602. (16.4.26)

Hence, the critical load of the plate becomes

ncr = λcrnx0 = 4.5602
π2Dx

a2
= 45.01

Dx

a2
. (16.4.27)

An independent check using an energy approach gives

ncr = 47.46Dx

a2
. (16.4.28)

Since our finite difference approach yields a lower-bound solution while the
energy approach is inherently upper bound, their average value

ncr = 46.23Dx

a2
(16.4.29)

results in a quite reliable solution of this stability problem.
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16.5 Finite Element and Gridwork Approach
to Stability Analysis

a. Elastic Buckling. This section extends the FEM and GWM to deal with prob-
lems of linear, elastic instability of plates. In the case of plate-type structures—often
encountered in ships and in aeroplanes—the linear instability analysis can quite
accurately define the critical buckling loads of plates under which failure occur. In
comparison with the finite difference solution of plate buckling treated in the fore-
going section, the FEM and GWM are more versatile, since they can cope with
variable loads and boundary conditions along with irregular plate geometries. The
general principles of stability analysis, as presented in Sec. 16.1, can be easily applied
to finite element and gridwork approaches, since stability analysis is a geometrically
nonlinear problem already treated in Sec. 11.2. We assume a single smooth equilib-
rium path that emerges from the undeformed state of the plate as the in-plane loads
are gradually increased from zero to the bifurcation point.

Thus, let us assume that we gradually increase the in-plane loads p0 by a load
factor λ. At a certain point, the originally flat plate defects laterally. In passing from
the flat state of equilibrium, the deformation bifurcates, as shown in Fig. 16.1.3. In
this situation, the lateral displacements will also create membrane- type of forces.
Consequently, the developments of in-plane and lateral deformations at the same
time are not separate but coupled. Assuming further that throughout the loading
range beyond the bifurcation point the loads and the displacement-dependent part of
the stiffness matrix, K

NL
(d) varies with the load factor, Eq. (11.2.5) becomes

[K
L + λK

NL
]d = λp0. (16.5.1)

The linear part of the stiffness matrix K
L

consists of two uncoupled parts, K
L =

Km + Kb, representing the corresponding membrane and bending effects, respec-
tively. In the neutral state of equilibrium, which is infinitesimally close to the
stable equilibrium, the in-plane forces p0 are equilibrated by the membrane stresses.
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Consequently, in the absence of lateral forces, we obtain the homogeneous form of
Eq. (16.5.1). Therefore, we can write

(K
L
b + λK

NL
)d = {0}, (16.5.2)

which is, in fact, the matrix version of the equilibrium statement expressed by
Eq. (16.2.3), provided that this equation is integrated over the total area of the middle
surface of the plate.

Since in this case K
NL

has a reducing effect on the bending stiffness of the plate,
Eq. (16.5.2) can be written as

K
L
b − λK

NL = {0} (16.5.3)

or, in another form,

C − λI = {0} with C = (K
NL

)−1Kb, (16.5.4)

where I represents the identity matrix. Solving this typical eigenvalue problem, λ can
be obtained. Again, we seek the lowest eigenvalue, λmin = λcr, at which bifurcation
occurs. For this purpose, we put Eq. (16.5.4) in the following form so that Mises’s
inverse matrix iteration technique can be applied:

C−1 − λ∗I = {0} for λ∗ = 1

λ
. (16.5.5)

The critical load is obtained from

pcr = λcrp0, (16.5.6)

where p0 represents some trial load, usually associated with buckling of plate strips,
as introduced in Illustrative Example II of Sec. 16.4. For the linear-elastic instability
analysis of plates, the eigenvalue formulation discussed above is more advantageous
than the incremental procedures treated in Sec. 11.2.1.

By generating the nonlinear parts of the element stiffness matrices

(KNL
e )(N) = (KNL

e,x + KNL
e,y + KNL

e,xy)
(N), (16.5.7)

we follow the same procedures described in Sec. 11.2. Consequently, the nonlinear
stiffness matrices for finite elements and gridwork cells, respectively, which are given
in explicit forms in the Sec. 16.4, can also be directly applied in the present stability
analysis. Furthermore, it is interesting to note that these nonlinear element stiffness
matrices representing the instability effects are independent from the material prop-
erties of the plate. Hence, they can be equally applied in the stability analysis of
isotropic as well as orthotropic plates.

As Fig. 16.5.1 shows, the conforming gridwork cell has far better convergence
characteristics in stability analysis than those obtained for a nonconforming finite
element with 12 DOF. Similarly, the gridwork cell also exhibits good convergence
properties in the case of rather difficult shear loading (Fig. 16.5.2); results are also
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Figure 16.5.1 Comparison of convergence properties in stability analysis.

quite good when the plate is subjected to combined in-plane compressive and shearing
forces (Fig. 16.5.3).

If required, the Stodola-Vianello iterative technique, as described in previous
sections, can be applied to improve the obtained eigenvalues. However, considering
the rapid convergence properties of conforming finite elements and gridwork cells,
such improvement should be limited to cases when (1) only computers of limited
capacity are available or (2) large plate structures are analyzed for their instability
behavior and high accuracy is required.

b. Inelastic Buckling. The inelastic stability analysis of plates represents a rela-
tively complex computational problem, since one must consider combined geometri-
cal and material nonlinearities when the critical loads are to be determined. We can
indirectly extend the finite element approach to include inelastic buckling. However,
it is important to note that such buckling analysis is sensitive to small imperfections
in the plates. Therefore, the treatment of such instability cases as pure bifurcation
problems may lead to some errors. Consequently, it is recommended that the analyst
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Figure 16.5.2 Convergence characteristics of gridwork cells subjected to shearing forces.

combine one of the incremental methods introduced in Sec. 11.4 with eigenvalue
problems to detect the critical loads.

The following simplified method may be used in inelastic stability analysis of
plates. At some trial load level, the corresponding displacements and stresses are
evaluated and the matrices Kb(Ir ) and KNL(d) are computed.† Introducing again
a load parameter λ, we formulate the instability of plates as eigenvalue problems
corresponding to the trial load level and write

(Kb(Ir ) + λK
NL

(d)) = {0}. (16.5.8)

Next, this eigenvalue problem is solved and the lowest eigenvalue λmin is examined.
If λ = 1.0, the buckling criterion is satisfied. However, if λmin is greater or less than
1, the trial load is less or greater than the critical load. In this case, the trial load
is either incremented or reduced, respectively. As mentioned, this is a simplified
procedure. For more elaborate solution procedures the reader is referred to Refs.
[16.5.4] and [16.6.8].

Summary. In the stability analysis of plates the FEM and GWM have the follow-
ing advantages:

† See Sec. 11.4.
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Figure 16.5.3 Approximation of interaction curve.

ž The mathematical formulation is straightforward.
ž Since the instability problem of plates is usually reduced to solution of clas-

sic eigenvalue-eigenvector problems, the lowest mode of buckling cannot be
missed, provided that the buckling occurs in the elastic range.

ž Because we usually seek only the lowest eigenvalue, the inverse matrix iteration
technique from Mises can be advantageously applied.

ž The FEM and GWM are able to solve a wide variety of difficult instabil-
ity problems involving arbitrary boundaries, boundary conditions and irregular
plate geometry and even anisotropic plates.

ž The results compare favorably with experimental and analytical solutions.
ž Basically, these methods can also be extended to inelastic buckling problems.

In such a case, however, an incremental solution technique should be combined
with the eigenvalue analysis.

In addition to some disadvantages of the FEM and GWM discussed earlier, another
one must be considered when these methods are used for instability analysis; that
is, the geometrically nonlinear element matrices must be computed for a variety of
loading conditions, as shown in Sec. 11.2. But these matrices are reusable; thus,
strictly speaking, this aspect constitutes only an inconvenience.
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Finally, it should be noted that the use of nonconforming shape functions in gen-
erating linear and nonlinear element matrices results in a lower-bound approach to
the theoretical value of the critical load, whereas conforming shape functions yield
upper-bound solutions, as shown in Fig. 16.5.1.

ILLUSTRATIVE EXAMPLE

Let us determine the critical buckling load of a simply supported square plate
subjected to uniformly distributed edge forces −nx , as shown in Fig. 16.5.4a.
We use the GWM in the computation.

Analysis quadrant −nx0Z, W X

Y

Lx = 4

L
y

= 
4

(a) Plate

E = 1

h = 1

v = 1/3

(b) Sustitute system

Y

X

Z, w

0.5 L

0.5
 L

4
2

3
1

4

10
7

6 93
85

12 11

nx0

Figure 16.5.4 Stability analysis of square plate by GWM.

The bending part of the linear stiffness matrix of the gridwork cell
(Fig. 16.5.5) is given in Table 6.3.3, and its nonlinear counterpart is listed in
Table 11.2.4. Since we are dealing with compressive in-plane forces, nx must
be negative in this expression. Determining the first buckling mode, the double
symmetry of the structure can be utilized. Consequently, we can subdivide
the analysis quadrant of the plate into four gridwork cells (Fig. 16.5.4b).
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Figure 16.5.5 Gridwork cell subjected to in-plane compressive forces.

The following relationship exists between the local and global numberings
of displacements:

�N 1 2 3 4 5 6 7 8 9 10 11 12

�1 6 8 7 9 10 0 1 0 0 2 0 3

�2 0 0 5 6 8 7 2 0 3 0 0 4

�3 0 0 0 0 12 0 6 8 7 0 0 5

�4 0 12 0 0 11 0 9 10 0 6 8 7

By adding stiffness components having the same indices, we obtain the linear
part of the stiffness matrix K

L
b of the total system:

K
L
b = D∗

×




15.0
−6.0 30.0

3.0 0.0 6.0
0.0 3.0 1.0 3.0
0.0 1.5 0.5 0.0 6.0 Symmetric

−3.0 −12.0 0.0 1.5 6.0 60.0
1.5 0.0 0.0 0.5 2.0 0.0 12.0

−1.5 −6.0 0.0 0.5 0.0 0.0 0.0 12.0
−6.0 −3.0 1.5 0.0 0.0 −12.0 6.0 0.0 30.0
−3.0 −1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 6.0

0.0 0.0 0.0 0.0 0.0 −1.5 0.5 0.5 −3.0 1.0 3.0
0.0 0.0 0.0 0.0 0.5 −6.0 0.0 2.0 −1.5 0.5 0.0 6.0




,

(16.5.9)

where

D∗ = Eh3

12(1 + ν)
= 0.666

Eh3

12(1 − ν2)
= 0.666D. (16.5.10)

Similarly, using Table 11.2.4 for the nonlinear parts of the gridwork cell stiff-
ness matrices along with the above-given relationships between local and global
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DOFs, The nonlinear stiffness matrix of the plate is obtained in the follow-
ing from:

K
NL = −nx0

×




0.400
−0.400 0.800

0.033 0.000 0.133
0.000 0.033 −0.011 0.067
0.000 0.017 −0.006 0.000 0.133 Symmetric

−0.200 0.400 0.000 0.017 0.067 1.600
0.017 0.000 0.000 −0.006 −0.022 0.000 0.267

−0.017 0.033 0.000 −0.006 0.000 0.000 0.000 0.000
0.200 −0.200 0.017 0.000 0.000 −0.800 0.067 0.000 0.800
0.017 −0.017 −0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 −0.017 −0.006 −0.006 0.017 0.006 0.000
0.000 0.000 0.000 0.000 −0.006 0.033 0.000 0.011 −0.017 −0.006 0.000 0.000




.

(16.5.11)

The iterative solution of the pertinent inverse eigenvalue problem

(K
L
b )−1K

NL − 1

λ
I = {0} (16.5.12)

written in another form

C − λ∗I = {0} (16.5.13)

yields the lowest eigenvalue, λmin = 3.719D∗, and the corresponding eigen-
vector

d =




1.00000
0.70756

−0.55728
−0.78954
−0.55829

0.50032
−0.39406

0.39102
0.70711
0.55269
0.78162
0.55299




. (16.5.14)

Therefore, the critical load of the plate is

ncr = 3.719D∗ = 2.476D. (16.5.15)

A comparison with the analytical solution [16.1.1] of this problem,

ncr = 4.0
π2D

L2
= 2.467D, (16.5.16)

shows an error of only 0.4%.
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16.6 Dynamic Buckling

a. Introduction. Plates used in naval and aerospace structures are often subjected
to dynamic in-plane forces. In many cases, for instance, damage to ship structures
results from buckling of the main deck during storms [16.6.1]. Dynamic buckling
of folded plate roofs under the influence of horizontal earthquake forces is another
example that illustrates the practical importance of dynamic stability analysis of
plates. These inherently difficult problems can be solved conveniently by extending
the resonance concept of forced vibration of elastic systems. By introducing the
concept of parametric resonance, a definite relation between the natural frequency
of the lateral vibration of the plate and the frequency of the external pulses can be
established [16.6.2].
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A flat plate upon which periodic in-plane forces act will usually undergo axial
vibrations, provided that the maximum intensity of the in-plane forces is less than
that of the critical load of static buckling. If this is not the case, the in-plane forces
can excite intense lateral vibrations. Such an in-plane loading is said to be para-
metric with respect to transverse deformations. When the amplitudes of the lateral
vibration become infinitely large, parametric resonance occurs. Although the mathe-
matical relationship of the frequencies is different from that which is conventionally
used in calculating resonance of forced vibration, the concept of parametric resonance
is very useful. In this way, the problem of dynamic stability of plates can be reduced
to (1) solution of free lateral vibration and (2) static stability analysis. Since several
analytical and numerical methods for solution of these plate problems have already
been introduced, it is sufficient here to limit our discussion to this generalization of
the resonance concept.

b. Parametric Resonance. Let us consider a flat plate, as shown in Fig. 16.2.1,
subjected to periodic edge forces −nx(t), −ny(t) and −nxy(t). The governing differ-
ential equation of motion can be obtained by adding the inertia term to von Kármán’s
large-deflection equations of plates (11.1.4). Thus, we can write

D ∇2 ∇2w = h

(
∂2�

∂y2

∂2w

∂x2
+ ∂2�

∂x2

∂2w

∂y2
− 2

∂2�

∂x ∂y

∂2w

∂x ∂y

)
− m

∂2w

∂t2
,

∇2 ∇2� = E

[(
∂2w

∂x ∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
,

(16.6.1)

where �(x, y, t) is the time-dependent Airy stress function and m represents the mass
of the plate per unit area. The inertia forces associated with rotation and the effect
of structural damping have been neglected, as customary in the vibration analysis
of plates.

Since the compressive external forces are independent of lateral deflection w,
Eq. (16.6.1) can be linearized, yielding

D ∇4w + nx

∂2w

∂x2
+ 2nxy

∂2w

∂x ∂y
+ ny

∂2w

∂y2
+ m

∂2w

∂t2
= 0, (16.6.2a)

∇2 ∇2� = 0. (16.6.2b)

We seek the solution of Eq. (16.6.2a) in the form

w(x, y, t) = W(x, y) · θ(t), (16.6.3)

where θ(t) represents the time dependency. Substituting Eq. (16.6.3) into (16.6.2), the
governing differential equation of the dynamic stability analysis of plates becomes

∇4W

W
+ 1

WD

(
nx

∂2W

∂x2
+ 2nxy

∂2W

∂x ∂y
+ ny

∂2W

∂y2

)
+ m

Dθ(t)

∂2θ(t)

∂t2
= 0. (16.6.4)
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To simplify the problem, let us assume, first, that the static components of the edge
forces are zero and that the time dependency of the pulsating in-plane forces can be
expressed by

nx = nt cos pt, ny = αnt cos pt, nxy = βnt cos pt, (16.6.5)

where nt represents the amplitude of the pulsating force. The constants α and β define
the ratios between the edge forces, as discussed in Sec. 16.2. It is required that the
frequency of the forcing function p be smaller than the fundamental frequency of
the axial vibration of the plate (p < ωmembr.).

Equation (16.6.4) contains the governing differential equation of the static buckling
(16.2.3) and that of the free lateral vibration (14.2.4), provided that the mode shape
functions for buckling, Wλ, and for free lateral vibration, Wω, are approximately the
same†:

[Wλ(x, y) ≈ Wω(x, y)] = W(x, y). (16.6.6)

Substitution of Eq. (16.6.3) into the differential equation of the free lateral vibration
of plates (14.2.4) yields

∇4W

W
+ m

Dθ(t)

∂2θ(t)

∂t2
= 0. (16.6.7)

If we assume that θ(t) = sin ωt , the natural circular frequencies can be determined
from

ωi = ci

√
D

m
for i = 1, 2, 3, . . . , (16.6.8)

where ci is a constant containing the effect of the boundary conditions and spans.
From (16.6.8) we obtain

m

D
= c2

i

ω2
i

. (16.6.9)

The critical in-plane load ncr is determined from Eq. (16.6.4) under the assumption
that θ(t) = const, that is, the in-plane forces act statically. Thus, using Eq. (16.6.5),
we can write

D ∇4W + λnx0

(
∂2W

∂x2
+ α

∂2W

∂y2
+ 2β

∂2W

∂x ∂y

)
= 0, (16.6.10)

which represents the governing differential equation of the static buckling of plates
(16.2.3). In Eq. (16.6.10) λ is the load factor and nx0 defines a reference value, as
described in Sec. 16.2. The lowest value of the load factor yields the critical load for
static buckling (ncr = λcrnx0), the solution of which has the general form

ncr,i = λi

π2D

b2
for i = 1, 2, 3, . . . , (16.6.11)

where i represents the modes.

† If Eq. (16.6.6) is not satisfied, an incremental approach should be used for numerical solution of
Eq. (16.6.4).
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In the case of a specific problem, we select a shape function W(x, y) that sat-
isfies the boundary conditions and the governing differential equation of the prob-
lem. The substitution of W(x, y) into Eq. (16.6.4) yields a differential equation for
∂2θ/∂t2. Using Eqs. (16.6.8) and (16.6.11), the differential equation so obtained can
be reduced to the Mathieu equation,

∂2θ(t)

∂t2
+ ω2

i

(
1 − nt

ncr,i
cos pt

)
θ(t) = 0, (16.6.12)

which is generally given in the form

∂2θ(t)

∂t2
+ 4ω2

i

p2
(1 − ηi cos 2ϑ)θ(t) = 0 for i = 1, 2, 3, . . . , (16.6.13)

where

ϑ = pt

2
and ηi = nt

ncr,i
. (16.6.14)

In these expressions ωi and ncr,i represent the circular frequencies of the free lateral
vibrations and the critical loads, respectively. Both are pertinent to the modes i =
1, 2, 3, . . . .

Similar results are obtained when the static component ns of the in-plane load is
present. In this case

nx = ns + nt cos pt (16.6.15)

and

ηi = nt

ncr,i − ns

. (16.6.16)

Furthermore, in determining the circular frequencies �i , the effect of the static in-
plane loads on the free vibration of the plates must be considered.

In a more general case, when

nx = ns + nt�(t), (16.6.17)

the problem can be reduced to the Hill equation, which has the general form

∂2θ(t)

∂t2
+ �2

i [1 − ηi�(t)]θ(t) = 0. (16.6.18)

The interesting characteristic of the Mathieu equation is that for given ηi, 2ωi/p

and ϑ → ∞ the solution will increase without limit in the zones of instability. With-
out discussing the mathematical theory of the Mathieu differential equation and its
solution [16.6.8], the important results will be set forth briefly. The zones of dynamic
instability are bounded by the following values [16.6.3]:

pcr = 2ω1√
1 ± (η/2) + (7η2/32) ± (55η3/512)

(16.6.19)
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for the first mode,

pcr = 2ω2√
4 − (η2/3)

and pcr = 2ω2√
4 + (5η2/3)

(16.6.20)

for the second mode and

pcr = 3ω3√
9 + (81η2/64) ± (9η3/8)

(16.6.21)

for the third mode. These expressions are quite general; thus they can also be used
for the dynamic stability analysis of shells [16.6.4] and folded plates [16.6.5]. The
values of 2 ωi/pcr for η = 0.2–1.8 are given in Table 16.6.1. These results can best
be illustrated by the Strutt diagram (Fig. 16.6.1), in which the regions where dynamic
instability occurs are shaded.

Summary. The investigation of the dynamic stability of plates can be reduced to the
solution of appropriate free lateral vibration and static stability problems. In the case

Table 16.6.1 Boundaries of Instability Zones

2ωi/pcr

η First Mode Second Mode Third Mode

0.2 1.054 0.9487 1.995 2.015 3.010 3.007
0.3 1.082 0.9306 1.992 2.037 3.025 3.013
0.5 1.149 0.8837 1.977 2.102 3.082 3.027
0.7 1.225 0.8491 1.957 2.195 3.162 3.040
0.8 1.265 0.8276 1.944 2.249 3.225 3.040
1.0 1.353 0.7823 1.916 2.381 3.376 3.023
1.2 1.418 0.7266 1.876 2.53 3.578 2.980
1.4 1.556 0.588 1.828 2.694 3.821 2.898
1.6 1.673 0.5657 1.775 2.874 4.099 2.762
1.8 1.797 0.4243 1.709 3.066 4.427 2.557

0

0.5

1.0

1.5

2.0

1.0 1.50.5 2.0

h1

2w1
pcr

Region of dynamic instability
pertinent to first mode

Figure 16.6.1 Strutt diagram.
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of arbitrary geometry, loading and boundary conditions, the finite difference or frame-
work methods [16.6.5] can be used advantageously for determination of the required
circular frequencies and critical buckling loads. The field of dynamic buckling is
still in the stage of development. Further research is needed to economically treat
suddenly applied loads and nonlinear problems, to name a few areas of considerable
practical interest.

ILLUSTRATIVE EXAMPLE

A square plate, shown in Fig. 16.6.2, is subjected to a nx = −nt cos pt pulsating
edge force.

Y

a

a

X

n x
= 

−n
t
co

s 
pt

Simply supported

Figure 16.6.2 Plate subjected to dynamic in-plane forces.

1. Show that the governing differential equation can be reduced to the
Mathieu equation.

2. Determine the paired critical frequencies pertinent to the first mode by
assuming that nt/ncr = 0.8.

Since the boundaries are simply supported, the shape of the first mode of
vibration and buckling can be expressed by

W(x, y) = Wλ(x, y) = Wω(x, y) = sin
πx

a
sin

πy

a
. (16.6.22)

Substituting this expression into Eq. (16.6.4) and observing that ny = nxy =
0, we obtain

m

Dθ(t)

∂2θ(t)

∂t2
+ 4π4

a4
+ nx

D

π2

a2
= 0. (16.6.23)

The critical value of nx , when it acts statically, is

ncr = λcrnx0 = 4
π2D

a2
; (16.6.24)
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hence
ncr

D
= 4π2

a2
. (16.6.25)

The circular frequency of the free lateral vibration pertinent to the first mode
is determined from

ω1 = 2π2

a2

√
D

m
, (16.6.26)

from which
m

D
= 4π4

a4 ω1
. (16.6.27)

Using Eqs. (16.6.25) and (16.6.27), Eq. (16.6.23) is easily reduced to

∂2θ(t)

∂2t
+ ω1

(
1 − nt cos pt

ncr

)
θ(t) = 0, (16.6.28)

which is the Mathieu equation sought.
For η = nt/ncr = 0.8, the paired critical frequencies of the forcing func-

tion are

pI
cr = 2ω1

1.265
and pII

cr = 2ω1

0.8276
. (16.6.29)

If the frequency p is between these limits, dynamic instability occurs.
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16.7 Buckling of Stiffened Plates

a. Basic Concepts. The relatively low in-plane load that a plate can carry without
buckling can considerably be increased by addition of stiffeners. But by increasing
the critical load, the difficulties encountered in the analysis are also increased. That is,
the number of variables to be considered becomes greater; in addition, the buckling
modes are usually more complex. Consequently, in engineering practice mostly sim-
plified formulas [16.1.16, 16.7.1] or charts [16.7.2] [16.7.3] are used for the design
of such plates.

While longitudinal stiffeners placed parallel to the in-plane load carry a portion
of the applied force, transverse stiffeners are used merely to subdivide the plate
into smaller units, since the portion of the load carried by them is relatively small.
Combination of longitudinal and transverse stiffeners results in grid-stiffened plates.
Conventional structural shapes used for stiffeners are angle, channel, T- and inverted
T-sections. In aerospace structures Z-, U- and Y-type stiffeners are also common
(Fig. 16.7.1a).

In the stability analysis of stiffened plates, usually two forms of buckling are con-
sidered. One possible mode is the local buckling of the plate between the stiffeners,
provided that the plate is reinforced with sturdy ribs. In the second case, an over-
all buckling of the plate-stiffener combination occurs. The latter is called primary
buckling in the pertinent literature.

In some structures we may require that local buckling of the plate takes place
first, without substantial distortion of the ribs themselves. In this case, there is
little structural interaction between the plate and stiffeners, and the ribs merely
enforce the nodal lines of the buckling modes of the plates. Consequently, the
problem is reduced to (1) finding the critical loads of the unstiffened panels and
(2) determination of the minimum flexural rigidity of the ribs that guarantees early
plate buckling.

The customary assumption of simply supported boundary conditions for the indi-
vidual panels yields a safe, but conservative, design. Any of the previously discussed

∼be h

(a) Typical sections for stiffeners

Direction
of load

(b) Longitudinal (c) Transverse (d) Grid

Figure 16.7.1 Various stiffner types.
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analytical or numerical methods, however, can be used for consideration of more
realistic boundary conditions. Especially, the finite element technique, as described
in the Illustrative Example of Sec. 16.5, is recommended in dealing with elastically
restrained and/or supported boundary conditions. The critical load in the stiffeners
can be determined from the appropriate column buckling formula

(Pcr)s = π2EIs

l2
cr

, (16.7.1)

which, for simply supported ends, becomes

(σcr)s ≈ π2EIs

a2As

, (16.7.2)

where (σcr)s is the critical stress in the stiffener. In the structural properties of the
stiffeners, As, Is , strictly speaking, the effective plate width for bending should also
be considered. In practical computation, however, it is sufficient to include only that
part of the plate that is attached to the flange of the stiffener.

A considerably more economical design can be obtained if we permit simultaneous
local and primary buckling at about the same stress level. Consequently, in the elastic
stability analysis of stiffened plates, the structural interaction of plate and stiffeners
should be taken into account. If the plate is reinforced with many equally spaced,
parallel stiffeners of the same size, such an assembly can effectively be approximated
by the orthotropic plate theory. In addition to this general case, more specific prob-
lems, such as stiffened plates reinforced with three or less ribs, must be treated. That
is, there is no marked difference in the critical load if the number of stiffeners is
infinite or more than 3 [16.7.4] [16.7.5].

b. Buckling of Orthotropic Plates. When the number of parallel stiffeners in
one or both principal directions is large, the critical load of stiffened plates can be
approximated by assuming that the stiffened plate acts as a homogeneous orthotropic
plate (Fig. 16.7.2).

For this case, the governing differential equation of elastic stability (16.2.3)
becomes

Dx

∂4w

∂x4
+ 2B

∂2w

∂x2 ∂y2
+ Dy

∂4w

∂y4
+ λ

(
nx0

∂2w

∂x2
+ 2nxy0

∂2w

∂x ∂y
+ ny0

∂2w

∂y2

)
= 0.

(16.7.3)

If possible, the flexural and torsional rigidities Dx, Dy and B defined in Sec. 10.1
should be determined by tests. Approximate values for these sectional properties for

h

Intermediate
stiffener

Figure 16.7.2 Closely placed ribs.
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Z, w

C2 C2 C2 C2 C2

h

X

Structural steel

Figure 16.7.3 Section of plate reinforced with multiple stiffeners in Y direction.

an isotropic plate reinforced with parallel stiffeners symmetrically distributed on both
sides of the middle surface (Fig. 16.7.3) are

B ≈ Dx = Eh3

12(1 − ν2)
, Dy = Eh3

12(1 − ν2)
+ EIy

c2
, (16.7.4)

or, in the case of grid-type stiffeners that are symmetrical about the middle surface,

Dx = Eh3

12(1 − ν2)
+ EIx

c1
, B = Eh3

12(1 − ν2)
, Dy = Eh3

12(1 − ν2)
+ EIy

c2
.

(16.7.5)
In these expressions Ix and Iy are the moments of inertia of the ribs about the middle
surface and c1 and c2 denote the spacings of the ribs in the X and Y directions,
respectively. Additional approximations for flexural rigidities, if the ribs are only on
one side of the plate, are given in Sec. 10.1.

Using Eq. (16.7.3), the required lowest load factor (λmin = λcr) can easily be
determined either by Galerkin’s variational method or by ordinary finite difference
techniques, in the same way as described in Secs. 16.3 and 16.4.

Wittrick [16.7.6] has derived critical loads for stiffened rectangular plates with
various boundary conditions using the orthotropic plate idealization of the problem.

If the longitudinal stiffeners are flexible enough to permit the overall buckling of
the plate, then the critical stress can be estimated [16.7.4] by

σcr = 4π2E

12(1 − ν2)

(
h

b

)2
{

1 +
[

1 + 12(1 − ν2)
Ix

c1h3

]1/2
}

. (16.7.6)

It is assumed that the longitudinal stiffeners run in the X direction.

c. Plates Reinforced with Three or Less Stiffeners. If the plate is reinforced
with few ribs, the convenient orthotropic plate idealization cannot be used to obtain
reliable values for the critical load. Since the stiffeners are rigidly fastened to the
plate, we should treat the plate and stiffeners as a structural unit; consequently, at
mutual points, the rib deflects and twists in the same way as the plate. The critical
load is usually determined by the Rayleigh-Ritz method [16.7.7], as discussed in
Sec. 16.3. To the already introduced strain energy of the plate (4.2.5), however, the
strain energy of the individual stiffeners must be added.
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−P2

−Pk

−nx

X
O

Figure 16.7.4 Plate reinforced with few ribs.

Contribution of the longitudinal ribs to the strain energy of the plate, compressed
by a uniformly distributed edged load (Fig. 16.7.4), is

U ∗
s = 1

2

∑
k

[
EIk

∫ a

0

(
∂2w

∂x2

)2

yk

dx + GI0

∫ a

0

(
∂2w

∂x ∂y

)2

yk

dx

]
, (16.7.7)

where Ik represents the moment of inertia of the individual rib and GI0 is its torsional
rigidity, assuming that the centroid of each stiffener cross section lies in the middle
surface of the plate.

The additional work done by the external load P k acting on the kth stiffener is

W ∗
s = 1

2

n∑
k=1

P k

∫ a

0

(
∂w

∂x

)2

yk

dx. (16.7.8)

Thus, the total work done by the external forces becomes

W ∗
e = nx

2

∫ a

0

∫ b

0

(
∂w

∂x

)2

dx dy + P k

2

n∑
k=1

∫ a

0

(
∂w

∂x

)2

yk

dx. (16.7.9)

When the stiffeners are attached to one side of the plate, the moment of inertia of
the stiffeners should be computed with respect to the neutral axis of the cross section
(Fig. 10.1.4), as described in Sec. 10.1.

This approach is straightforward, but it becomes tedious when the stiffeners are not
symmetrically placed in relation to the symmetry axes of the plate. If this is the case,
the FDMs may offer considerable advantages. In setting up the differential equation of
the problem, however, the above-discussed interaction of plate and stiffeners should
be considered. Further simplifications are obtained by neglecting the torsional stiffness
of open-section ribs, such as angles and channels made up of bent plates, and by
assuming that the plate is reinforced with sturdy ribs.
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Summary. Since elastic stability analysis of stiffened plates is usually complex, for
routine design work the use of available extensive design tables [16.3.16, 16.7.7] or
design charts [16.7.2, 16.7.3] is recommended. The most economical structure results
when local and primary buckling occur simultaneously under the critical load. If the
number of stiffeners in one or the other principal direction is large, the assumption that
the stiffened plate acts as an orthotropic plate yields good approximation for a wide
variety of stiffened plates. Based on this idealization, stiffened plates can conveniently
be analyzed either by the variational method or by finite difference techniques. When
plates are stiffened by less than four ribs, the extension of the Rayleigh-Ritz method,
which considers the interaction of plate and stiffeners, is the analytical tool generally
used. The FEM appears to be a flexible and powerful technique that can be extended
even into the plastic range [16.5.8].

ILLUSTRATIVE EXAMPLE I

Determine the critical buckling load of a simply supported rectangular plate
reinforced by a longitudinal stiffener at y = b/2 (Fig. 16.7.5). Assume that
the stiffened plate is subjected to a uniformly distributed edge load nx and
that the torsional rigidity of the rib is negligible. The plate and the rib buckle
together.

B

A
-A

A

A

Y

a

b/2

b/2

X
B

B-B

−nxnx

O

h

Figure 16.7.5 Rectangular plate with one longitudinal stiffener.

We express the deflection surface of the buckled plate in the form

w(x, y) = W sin
πx

a
sin

πy

b
. (16.7.10)
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The total potential of the stiffened plate can be written as

� = D

2

∫ a

0

∫ b

0

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

− 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2
−
(

∂2w

∂x∂y

)2
]}

dx dy

+ EI1

2

∫ a

0

(
∂2w

∂x2

)2

y=b/2

dx − nx

2

∫ a

0

∫ b

0

(
∂w

∂x

)2

dx dy

− P 1

2

∫ a

0

(
∂w

∂x

)2

y=b/2

dx, (16.7.11)

where P 1/nx = A1/h. Equation (16.7.11), after substitution of Eq. (16.7.10)
and nx = λnx0, becomes

� = π4bD

8a3

[
W 2

(
1

a2
+ 1

b2

)2

+ 2EI1

bD

(
W sin

π

2

)2
]

− π2b

8a
λnx0

[
W 2 + 2

A1

bh

(
W sin

π

2

)2
]

,

(16.7.12)

where nx0 = π2D/b2 represents the reference value of the critical load; fur-
thermore, A1 and I1 denote the cross-sectional area and the moment of inertia
of the rib, respectively. Hence, the critical load factor becomes

λ = λcr = (1 + β2)2 + 2γ

β2(1 + 2δ)
, (16.7.13)

where

β = a

b
, γ = EI1

bD
, δ = A1

bh
.

Therefore,

(nx)cr = λcrnx0, (16.7.14)

which gives usable results for square or nearly square plates and very accurate
solutions [16.1.1] for longer plates (β > 2). It is, of course, always possible to
carry more than one term in the double trigonometric series expression of the
deflection surface.

ILLUSTRATIVE EXAMPLE II

A simply supported rectangular plate, shown in Fig. 16.7.6, is reinforced with
a flexible grid-stiffening arrangement that is symmetrical about the middle sur-
face. The plate is subjected to combined bending and compression. Determine
the critical load by Rayleigh’s method.
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nx = −lnx0 (1 − a   )y
b

Figure 16.7.6 Grid-stiffened plate subjected to combined bending and compression.

Since we have assumed that the grid-stiffening system is flexible, the problem
can conveniently be treated by the orthotropic plate theory. Approximate values
for the sectional properties are given in Eq. (16.7.5).

The intensity of the edge force can be expressed as

nx = −λnx0

(
1 − α

y

b

)
. (16.7.15)

The first mode of buckling can be approximated by a one-term double trigono-
metric expression

w = W11 sin
mπx

a
sin

nπy

b
, (16.7.16)

which satisfies the simply supported boundary conditions. From our previous
discussion† we know that the smallest value of λ can be obtained when the
buckled shape has one half-sine-wave in the Y direction, which corresponds to
n = 1.

The work done by the external forces during buckling is calculated from
Eq. (16.3.10):

W ∗
e = λnx0

2

∫ a

0

∫ b

0

(
1 − α

y

b

)(∂w

∂x

)2

dx dy. (16.7.17)

The strain energy expression of the orthotropic plate follows from Eqs.
(4.1.8a), (4.2.4) and (10.1.3); thus, we can write

† See Illustrative Example I in Sec. 16.2.
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U ∗
b = 1

2

∫ a

0

∫ b

0
(mxκx + myκy + 2mxyχ) dx dy

= 1

2

∫ a

0

∫ b

0

[
Dx

(
∂2w

∂x2

)2

+ 2νyDx

∂2w

∂x2

∂2w

∂y2

+ Dy

(
∂2w

∂y2

)2

+ 4Dt

(
∂2w

∂x ∂y

)2
]

dx dy, (16.7.18)

where Dt represents the torsional rigidity of the stiffened plate, as defined by
Eq. (10.1.4b)

Substituting Eq. (16.7.16) with n = 1 into Rayleigh’s quotient (λ = U ∗
b /W ∗

e ),
we obtain

λ = π2Dxy

b2(1 − 0.5α)nx0

[(
mb

a

)2
√

Dx

Dy

+ 2B

Dxy

+
√

Dy

Dx

( a

bm

)2
]

, (16.7.19)

where Dxy = √DxDy and B are defined by Eq. (10.1.4b). For the reference
value nx0, Eq. (16.2.5a) can be used with D = Dxy . Assuming a specific
aspect ratio a/b, the smallest value of λ(λmin = λcr) can be determined by
trial and error.

It should be noted that Eq. (16.7.19) is valid only for small α, that is,
when the bending stresses are small in comparison with uniform compres-
sive stresses. If α = 0, Eq. (16.7.19) can be used for determination of the
critical load factor of uniformly compressed orthotropic plates. For pure bend-
ing (α = 2), Eq. (16.7.19) becomes meaningless. In such a case, two or more
terms should be considered in the double trigonometric series expression for
the buckling modes:

w =
∞∑

m=1

∞∑
n=1

Wmn sin
mπx

a
sin

nπy

b
. (16.7.20)

The use of this expression, however, calls for the Ritz (instead of the Rayleigh)
method, as described in Secs. 16.1 and 16.3.
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16.8 Thermal Buckling

Plate components used extensively in naval and aerospace structures or in box and
plate girders are susceptible to buckling when subjected to thermal loads. Temperature
variation in such structures may represent a predominant load that sometimes can lead
to failures. Considering an isotropic plate of uniform thickness having zero thermal
moment (mT = 0) but nonzero in-plane thermal forces, the governing differential
equation of thermal buckling is

D ∇4w = λ

(
nx

∂2w

∂x2
+ 2nxy

∂2w

∂x ∂y
+ ny

∂2w

∂y2

)
, (16.8.1)

where λ represents the load factor and

nx = ∂2�

∂y2
, ny = ∂2�

∂x2
, nxy = − ∂2w

∂x ∂y
, (16.8.2)

In Eq. (16.8.2) �(x, y) is the Airy stress function. First we must determine �(x, y),
which must satisfy the differential equation

∇4�(x, y) = −(1 − ν)∇2nT , (16.8.3)
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and the appropriate boundary conditions. Then, the critical load factor λcr can be com-
puted by solving the corresponding eigenvalue problem represented by Eq. (16.8.1).
Finding an exact solution to this complex problem is extremely difficult [16.8.4]
or even impossible. One can, however, obtain usable numerical solutions to such
general, thermally induced buckling problems by utilizing a two-stage finite differ-
ence approach. That is, first Eq. (16.8.3) is solved for � by using the FDM, then
the so-obtained values are substituted into Eq. (16.8.1), and the pertinent eigenvalue
problem is evaluated. Even such a numerical approach is quite time consuming and
tedious. Therefore, for practical applications we are forced to simplify this general
thermal buckling problem by assuming that the lateral deflections w(x, y) are small
and the in-plane stress resultants are independent of w. In addition, we solve first a
corresponding eigenvalue problem treated in the previous sections by applying any
of the already introduced analytical or numerical methods. Next, using appropriate
relationships provided by the theory of elasticity, we convert the so-obtained crit-
ical loads to thermal loads. This simplified solution technique is illustrated in the
Illustrative Example given below.

Summary. Exact solution of thermally induced general buckling problems of plates
is very difficult and in many cases even impossible. A two-stage finite difference
approach, however, can yield usable results. Even such a numerical solution appears
to be tedious and time consuming. Therefore, the use of a simplified method is
recommended.

ILLUSTRATIVE EXAMPLE

As an example for our simplified approach, let us consider a clamped rectangu-
lar plate of a × b dimensions. This plate is subjected to a uniformly distributed
temperature load. The ambient temperature of the plate is T0, which is slowly
increased to T = T0 + Tin. Let us determine the temperature at which the plate
will buckle.

Using the above-mentioned simplified approach, first we determine the crit-
ical loads nx,cr and ny,cr. Let us assume that an energy method has yielded the
following expression for these values:

[
nx +

(
a2

b2

)
ny

]
cr

= −4π2Da2

3

(
3

a4
+ 2

a2b2
+ 3

b4

)
. (16.8.4)

Next, we convert these critical loads to pertinent thermal loads. For this purpose,
we apply the two-dimensional Hook law and calculate the expansions caused
by the temperature increase. However, since all four boundaries of the plate are
fixed, no expansion can take place in the X and Y directions. Consequently,
we can write

1

E
(σx − νσy) + αT Tina = 0,

1

E
(σy − νσx) + αT Tinb = 0, (16.8.5)

from which

σx = −αT TinE(νb + a)

1 − ν2
(16.8.6)
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and

σy = −αT TinE(νa + b)

1 − ν2
. (16.8.7)

Since nx = hσx and ny = hσy , substitution of Eqs. (16.8.6) and (16.8.7) into
Eq. (16.8.4) gives

− αT TinE(νb + a)

1 − ν2
+ a2

b2

[
−αT TinE(νa + b)

1 − ν2

]

= −4π2Da2

3h

(
3

a4
+ 2

a2b2
+ 3

b4

)
. (16.8.8)

Hence

Tin = 4π2Da2(1 − ν2)(3/a4 + 2/a2b2 + 3/b4)

αT E[(νb + a) + (a2/b2)(νa + b)]
. (16.8.9)

Consequently, we can state that the plate will buckle approximately at temper-
ature T = T0 + Tin.
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16.9 Buckling of Moderately Thick Plates

As already mentioned in Sec. 1.5, Kirchhoff’s classical plate theory, which neglects
transverse shear deformation, can lead to significant errors when applied to moder-
ately thick plates. In contrast to classical plate theory, the Reissner/Mindlin theory of
moderately thick plates removes the basic assumption that normals to the undeformed
middle surface remain normal to the deformed ones due to effects of transverse shear
deformations. Consideration of the additional transverse shear effects results in added
flexibility of the plate, causing lower buckling loads.

Using, for instance, Reissner’s theory, the governing equation for buckling can be
written [16.9.2] as

∇4w =
[

1 − h2

5(1 − ν)
∇2

](
nx

∂2w

∂x2
− 2nxy

∂2w

∂x ∂y
+ ny

∂2w

∂y2

)
(16.9.1)
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and

∇4� = Eh

[(
∂2w

∂x ∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
, (16.9.2)

where �(x, y) denotes the stress function for the in-plane resultants

nx = ∂2�

∂y2
, ny = ∂2�

∂x2
, nxy = − ∂2�

∂x ∂y
. (16.9.3)

Equations (16.9.1) and (16.9.2) represent nonlinear large deflections of the plate,
including transverse shear effects. Needless to say, obtaining exact solutions of these
differential equations is quite difficult.

To simplify such complex buckling problems, Wang established an exact relation-
ship between the buckling loads of Mindlin and Kirchhoff plates [16.9.3]. For simply
supported isotropic polygonal plates subjected to uniformly distributed edge loads,
this relationship has the form

nM = nK

1 + nK/κ2Gh
, (16.9.4)

where the superscripts M and K refer to the pertinent Mindlin and Kirchhoff plate
theories, respectively. In addition, κ2 is the shear correction factor introduced in
Sec. 1.5 and G denotes the shear modulus of the plate. This simple relationship has
also been extended to plates of various shapes, including plates of elastic foundations
[16.9.4–16.9.7].

In the case of Winkler foundation, for instance, the Mindlin-Kirchhoff buckling
load relationship becomes

nM = nK

1 + nK

κ2Gh

+ kD

nK
+ Gb, (16.9.5)

where k represents the modulus of subgrade reaction for the foundation and Gb

denotes the shear modulus of the subgrade (Fig. 16.9.1).

h

Subgrade k

Moderately thick plate

Shear layer Gb

Figure 16.9.1 Moderately thick plate on elastic foundation.
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Summary. While the exact solution of moderately thick plate buckling problems is
difficult, Eqs. (16.9.4) and (16.9.5) establish simple relationships between the buck-
ling loads of Kirchhoff and Mindlin plates, including those supported by elastic
foundations. Consequently, using already available buckling solutions of simply sup-
ported Kirchhoff plates, critical buckling loads of moderately thick plates can be
readily calculated.

ILLUSTRATIVE EXAMPLE

A moderately thick, simply supported square plate shown in Fig. 16.9.2 is
uniformly compressed in the X direction. Determine the critical buckling load
of this plate.

a = 5.00 m

nx −nx b = a

X

h = 0.8 m

E = 30.106 kN/m2

G = E/2.4

n = 0.2

D = 1.333 kN/m

Figure 16.9.2 Moderately thick square plate subjected to in-plane compressive forces.

Since the plate is simply supported, we can apply the Mindlin-Kirchhoff
buckling load relationship given in Eq. (16.9.4). For this purpose, we must
determine first the critical load of the corresponding Kirchhoff plate, which,
according to Ref. [16.1.1], is

nK
x,cr = 4π2D

b2
= 2.106 × 106 kN/m. (16.9.6)

Consequently, using Eq. (16.9.4), we obtain

nM
x,cr = 2.106 × 106

1 + (2.106 × 106)/(0.8333 × 12.5 × 106 × 0.8)
= 1.6811 kN/m.

(16.9.7)

It is apparent that the critical buckling load of the moderately thick plate is
considerably less than that of the corresponding Kirchhoff plate.
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16.10 Postbuckling Behavior

a. Effects of Large Deflections. The critical loads found in the previous sections
represent merely the loads at which buckling begins. Experiments [16.10.1] indicate
that the postbuckling behavior of plates is markedly different from that of thin rods.
While a small increase in the critical load for struts will produce a complete collapse,
the critical load may be but a small fraction of the buckling load that causes failure in
plates (Fig. 16.10.1). This increased load-carrying capacity, beyond the critical load,
originates from the effect of large deflections and from the fact that the longitudinal
edges of plates are usually constrained to remain straight.

The use of this additional strength is of great practical importance in the design
of ship and aerospace structures, since by considering the postbuckling behavior of

nx

ncr

Postbuckling
load

Total deformation

Figure 16.10.1 Increased load-carrying capacity of plates beyond critical load.
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plates, considerable weight savings can be achieved. In these structures, the edges of
the plates are usually supported by stringers in such a way that they remain straight.
This construction practice permits the use of higher than critical loads as allowable
edge forces, even under service conditions. Although the postbuckling loads are
markedly different from the critical loads, the results of small-deflection theory are
not without value, since they provide a lower bound for the buckling loads and
may limit deformations provided that such a limitation is required. Furthermore, the
critical stresses produced by the critical loads give a convenient datum value in the
approximate analysis of this complex problem.

In the previous sections the determination of the critical load was based on small-
deflection theory; consequently, the membrane forces produced by large deflections
have been neglected. Increasing the edge loading beyond its critical value, however,
will result in lateral deflections eventually reaching or surpassing the order of the plate
thickness. Since, in such a condition, the strain energy due to stretching of the middle
surface can be of the same order as the strain energy due to bending, the resulting
membrane forces cannot be neglected. Furthermore, if the longitudinal edges are
constrained to remain straight, the occurrence of local bulging (Fig. 16.10.2) produces
additional membrane forces, which further increase the load-carrying capacity of
the plate.

Since in the analysis of the postbuckling behavior of plates the nonlinear, large-
deflection theory must be used, the resulting mathematical difficulties are consider-
able. Additional difficulties are encountered in assuming suitable deflection shapes.

Z, w

nx

−nx

Y

a

b

Stringer

X

(+)

(+)

(−)

Figure 16.10.2 Local bulging in plate with constrained edges.
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Figure 16.10.3 Progressive changes in buckling modes.

After reaching the first stage of buckling form, for instance, the shape of the buckled
plate may change as the load is increased beyond its critical value (Fig. 16.10.3).
These changes, however, are always progressive. That is, the first form of buckling
keeps developing until the energy stored is sufficient to carry the plate into a second
buckling form and so on.

The governing differential equation for the investigation of postbuckling behavior
of plates of constant thickness is von Kármán’s large-deflection equation (11.1.4)
derived in Sec. 11.1. Assuming that the lateral force pz is zero, we can write

D

h
∇4w = ∂2�

∂y2

∂2w

∂x2
+ ∂2�

∂x2

∂2w

∂y2
− 2

∂2�

∂w ∂y

∂2w

∂x ∂y
= L1(�, w) (16.10.1)

and

1

E
∇4� =

[(
∂2w

∂x ∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
= L2(w, w), (16.10.2)

where �(x, y) is a stress function of the middle surface, as defined in Sec. 11.1.
Since these differential equations are nonlinear, exact solutions very seldom can be
obtained [16.10.2]. The most generally used techniques for the analytical treatment
of postbuckling of plates are based on energy methods.

For simple cases, such as the one shown in Fig. 16.10.2, we can combine the vari-
ational method with the direct solution of one of the governing differential equations.
Let us assume, for instance, that the plate compressed in the X direction (Fig. 16.10.2)
is simply supported along its four boundaries. Thus, an approximate expression for
the buckled middle surface is

w(x, y) = W11 sin
πx

a
sin

πy

b
, (16.10.3)

which substituted into Eq. (16.10.2) gives

1

E
∇2 ∇2� = 1

2
W 2

11
π4

a2b2

(
cos

2πx

a
+ cos

2πy

b

)
. (16.10.4)
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If we further assume that the edge beams do not prevent the in-plane motions of the
plate in the Y direction, then the solution of Eq. (16.10.2) can be written as

� = �P + �H = EW 2
11

32

[(a

b

)2
cos

2πx

a
+
(

b

a

)2

cos
2πy

b

]
− nxy

2

2h
. (16.10.5)

The substitution of this expression into the differential equation of equilibrium
(16.10.1), to which Galerkin’s variational technique is applied, yields

∫ a

0

∫ b

0
[Diff. Eq. (16.10.1)]δw = 0; (16.10.6a)

hence,

D
π4ab

4
W11
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1
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+ 1
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− nxW11
π2
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ab

4
+ E

π4W 3
11h

64

(
1

a4
+ 1

b4

)
ab = 0,

(16.10.6b)

and finally

nx = σcrh = D
π2

b2

(
b

a
+ a

b

)2

+ E
hπ2

16b2
W 2

11

(
b2

a2
+ a2

b2

)
. (16.10.6c)

Since the first term on the right-hand side of Eq. (16.10.6c) represents the linear case
of buckling (16.2.21), it is evident that the plate can sustain greater than the linear
buckling load, and its load-carrying capacity is more pronounced when the unloaded
edges are constrained to remain straight (ny �= 0).

In a more general case, we apply Galerkin’s method for the solution of
Eqs. (16.10.1) and (16.10.2) and express the lateral deflections and stress function as
an infinite series:

w(x, y) =
∑
m

∑
n

Wmnwmn(x, y), � =
∑
m

∑
n

Fmnϕmn(x, y). (16.10.7)

The functions ϕmn(x, y) and wmn(x, y) must satisfy the static and geometrical bound-
ary conditions, but not necessarily the governing differential equations. Depending
on the given boundary conditions, trigonometric functions or linear combinations of
the fundamental functions of beam vibration are the prime choices for ϕmn(x, y) and
wmn(x, y), since these functions are orthogonal and quasi-orthogonal, respectively.
Namely, the orthogonality can lead to considerable simplification in expansion of the
variational equations, as discussed in Sec. 4.3. The basic variational equations for
solution of postbuckling problems of plates can be written in the general form

∫∫
(A)

[
D

h
∇4w − L1(�, w)

]
wij (x, y) dx dy = 0,

∫∫
(A)

[
1

E
∇4� − L2(w, w)

]
ϕij (x, y) dx dy = 0.

(16.10.8)
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It should be noted that the variations of these differential equations are not interrelated.
The general pattern for expansion of Eq. (16.10.8) and for evaluation of the definite
integrals is analogous to the procedure used in Sec. 11.1 for large-deflection analysis
of plates. Since the resulting simultaneous equations are nonlinear, usually not more
than three terms are taken in the series expressions of the stress function and lateral
displacements to avoid additional mathematical difficulties.

An alternative method for the solution of postbuckling problems is based on the
principle of minimum potential energy (Ritz method). Applying the Ritz method to
postbuckling problems, however, the nonlinear expressions of the strain components
must also be substituted into the membrane part of the strain energy expression, U ∗

m.
Furthermore, in considering the potentials of the in-plane forces, the method described
in Sec. 16.3 is applicable. Since, in the general expression of the strain energy, all
three displacement components (u, v, w) appear, the solution may be simplified by
expressing the strain energy of the plate in terms of the lateral displacement w and
that of the stress function �:

U ∗
b + U ∗

m =
∫∫
(A)

{
D

2

[
(∇2w)2 − (1 − ν)L(w, w)

− h

2E
[(∇2�)2 − (1 + ν)L(�, �)] − h

2
�L(w, w)

}
dx dy,

(16.10.9)
where the operator L(·) is defined by

L(·) = ∂2(·)
∂x2

∂2(·)
∂y2

+ ∂2(·)
∂y2

∂2(·)
∂x2

− 2
∂2(·)
∂x ∂y

∂2(·)
∂x ∂y

. (16.10.10)

This expression is valid only for plates with no lateral deflection at the edges. The
stress function �(x, y) in Eq. (16.10.9) is Airy’s stress function.

b. Effective Width Method. As the buckling load is increased beyond the critical
load, the distribution of the stresses along the loaded edges becomes progressively
nonlinear. Tests have shown [16.10.1] that the loaded edges are more heavily stressed
in the vicinity of the unloaded edges and that stresses remain virtually unchanged
at the center of the loaded edges, where the stresses are equal to (or less than) the
critical stress σcr = ncr/h (Fig. 16.10.4a). The actual distribution of these compres-
sive stresses depends on the boundary conditions and on the length-to-width ratio
a/b, provided that this ratio is less than 3. When failure of the plate is impending,
almost the total compressive force is carried by two strips located along the unloaded
edges. Based on this observation, von Kármán et al. [16.10.3] have proposed a sim-
plified approach to obtain an estimate for the ultimate load carried by the plate. This
simplified method is based on the following assumptions:

1. The unloaded plate is perfectly flat.
2. The ultimate buckling load of the plate is carried exclusively by two strips of

equal width located along the unloaded edges.
3. The maximum stress at the loaded edge, σe, is uniformly distributed over the

two plate strips.
4. The stringers, jointly with the effective width portion of the plate, act as

columns.



Postbuckling Behavior 971

se se

sx

scr or less

Straight unloded
edges

(a) Actual (b) Idealized

b

be/2be/2

Figure 16.10.4 Stress distribution at loaded edges.

From these assumptions, the effective width (Fig. 16.10.4b) is

be = 1

σe

∫ b

0
σx dy, (16.10.11)

assuming that the buckling load acts in the X direction. If the stiffeners are relatively
strong, the yield criterion can conveniently be used in connection with the effective
width concept to obtain the ultimate edge load the plate is able to carry; thus

P = σebeh = σ ∗
Y beh, (16.10.12)

provided that the stringers and the adjacent plate strips reach the yield stresses σ ∗
Y

simultaneously without buckling. If the stringers are relatively weak, they may fail
by instability before yield stresses are developed. In such a case, the maximum stress
developed in the stringer must be substituted for σe in Eq. (16.10.12).

Let us now determine the effective width be using the critical stress σcr produced
by the critical loads as a reference value. The critical stress can be given in the form

σcr = ncr

h
= λcr

D

h

(π

b

)2 = kE

(
h

b

)2

, (16.10.13)

where k = π2λcr/[12(1 − ν2)] is the buckling coefficient and λcr is the critical load
factor introduced in Secs. 16.1 and 16.2. An expression similar to Eq. (16.10.13) can
be written for the equivalent plate of width be:

σe = kE

(
h

be

)2

. (16.10.14)
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A simple comparison of Eqs. (16.10.13) and (16.10.14) gives

σe

σcr
= b2

b2
e

; (16.10.15)

hence

be = b

√
σcr

σe

(16.10.16)

In addition to von Kármán’s original formula (16.10.16), the following general
expressions are most commonly used for the effective width:

Marguerre’s formula† [16.10.4, 16.10.9]:

be = b 3

√
σcr

σe

. (16.10.17)

Sechler’s formula [16.10.5]:

be = 0.5b

(
1 + σcr

σe

)(
σcr

σe

)0.37σe/σ
∗
Y

. (16.10.18)

Marguerre’s formula for square plates and large postbuckling loads [16.10.9]:

be = b

(
0.19 + 0.81

√
σcr

σe

)
. (16.10.19)

Koiter’s formula [16.10.7]:

be = b

[
1.2

(
σcr

σe

)0.4

− 0.65

(
σcr

σe

)0.8

+ 0.45

(
σcr

σe

)1.2
]

. (16.10.20)

Equation (16.10.20) is applicable for long plates only. It gives satisfactory results for
simply supported, fixed and elastically supported longitudinal (unloaded) edges.

For small postbuckling loads having σe/σcr ≤ 5 ratios, Marguerre [16.10.9] rec-
ommends the use of the following approximate expressions:

ž rectangular plates with longitudinal (unloaded) edges free to move transversely,

be = b

[
1 + β4

1 + 3β4
+ 2β4

1 + 3β4

(
σcr

σe

)]
, (16.10.21)

where β = b/a;

† Agrees well with test results, especially for clamped unloaded edges. The recommended range of
the formula is 2 ≤ σe/σcr ≤ 20.
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ž square plates with unloaded edges free to move transversely,

be = b

(
0.5 + 0.5

σcr

σe

)
(16.10.22)

ž and square plates with constrained unloaded edges,

be = b

3 + ν

(
2 + σcr

σe

)
. (16.10.23)

Additional formulas for the effective widths of plates in compression can be
obtained from Refs. [16.10.8, 16.10.10] and from most of the pertinent works listed
in the bibliography at the end of this section. In Lévy’s report [16.10.2], the reader
will find a valuable comparison of the various most commonly used formulas.

The above-given formulas assume, a priori, the existence of very heavy stiff-
eners, customary in aerospace structures. In shipbuilding practice, however, where
the width-to-thickness ratios of plates are considerably smaller, better results can be
obtained by considering the neglected stresses in the center portion of the plate. Thus,
for this condition Eq. (16.10.12) becomes

Pu = P I
u + P II

u = σebeh + σcr(b − be)h. (16.10.12a)

Montgomerie’s semiempirical formula [16.10.11] for ultimate stress,

σu = 18

2240 + 2.36(a/h)1.75
(psi), (16.10.24)

yields acceptable results for crippling loads of plates considering stringer spacings (a)
and plate thicknesses (h) generally used in ship structures. These dimensions should
be substituted into (Eq. 16.10.24) in inches.

When the edge-supporting stringers fail in instability before the yield stress is
reached, a trial-and-error procedure should be used to obtain an estimate for the
maximum edge stresses. First, we assume an effective width b�1

e (be = 0.3b–0.8b),
from which σ�1

e is determined, considering that the stringer and the effective width
portion of the plate act as a column. Using the so-obtained σ�1

e value, a new estimate
for b�2

e can be obtained. The procedure is repeated until the interrelationship between
these two variables is satisfied.

c. Effects of Initial Imperfections. Plates used in practice are seldom perfectly
flat, as assumed in our previous investigations. Small initial imperfections have been
found to have only minor effect on the effective width [16.10.12], provided that
maximum edge stresses σe are well above (or below) the value of the critical stress
σcr. Small initial imperfections reduce somewhat the effective width in the region of
σcr/σe = 0.5–1.

The behavior of plates with initial curvature, however, can be markedly different
(Fig. 16.10.5). If the curvature parameter

Zc = b2

Rh

√
1 − ν2 (16.10.25)
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Figure 16.10.5 Postbuckling behavior of flat and curved plates.

is between 10 and 1000, the postbuckling behavior of curved plates represents a tran-
sition between flat plate and cylindrical shell [16.10.13]. If the curvature parameter
is less than 10, the postbuckling behavior of the curved plate is similar to that of
the perfectly flat plate, while beyond Zc > 1000 the plate buckles like a cylindri-
cal shell; that is, the boundary conditions do not exert significant influence on the
ultimate load.

A semiempirical formula [16.10.6, 16.10.13] for the effective width of axially
compressed, long curved plates with clamped boundary conditions along the unloaded
edges is

be = h
√

kc

√
E

σe

, (16.10.26)

where kc is the buckling coefficient of curved plate,

kc = π2λ∗
cr

12(1 − ν2)
, (16.10.27)

and λ∗
cr can be taken from Fig. 16.10.6. The usable range of Eq. (16.10.26) is 0 ≤

Zc ≤ 31 and be/b ≥ 0.45. For effective widths be/b ≤ 0.45 and for curvature param-
eters 0 ≤ Zc ≤ 125, an approximate formula,

be ≈ bλ0.43
cr

(
h

b

√
E

σe

)0.85

, (16.10.28)

can be applied. In this expression λcr is the critical load factor for flat plates. For
long clamped flat plates the use of λcr ≈ 6.3 is recommended. Since Eqs. (16.10.26)
and (16.10.27) are derived from test results, some caution should be exercised in
their use beyond Zc > 28.

Laterally loaded curved plates may exhibit snap-through buckling if they are sub-
jected to external pressure. The discussion of snap-through buckling, however, is
considered to be beyond the scope of this book.
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Figure 16.10.6 Critical load factors for axially compressed curved plates.

Summary. Considering the significant membrane stresses developed in the plate
after buckling, flat plates can support much larger in-plane loads than indicated by the
classical buckling analysis.† Because of the resulting savings in weight, the behavior
of plates beyond the critical buckling load is of great practical interest to aerospace
and shipbuilding industries. The analysis of postbuckling of plates requires the use
of large-deflection theory; consequently, the analytical solution of the problem is
inherently complex. Although the required computation is tedious, Galerkin’s method,
based on the variational principle, yields acceptable results, provided that proper
deflection shapes are assumed. The greatest difficulties, however, are encountered in
assuming these deflection shapes, since the buckling mode progressively changes as
the plate approaches failure.

For routine design purposes, simplified methods based on the concept of effective
width in compression have been introduced by numerous investigators. The most
commonly used effective width formulas are given in this section. Slight devia-
tions from flatness have little influence on the effective width at large postbuckling
load (σe/σcr ≥ 5). Some reduction occurs in the vicinity of the critical stresses
(σe/σcr = 1).

ILLUSTRATIVE EXAMPLE

Assess the ultimate edge load of a rectangular plate stiffened along both longi-
tudinal edges and uniformly compressed in the X direction (Fig. 16.10.7). Use
the effective width method. Assume that the stringer and the adjacent plate
strip simultaneously approach the compressive yield strength of the structural
steel (σ ∗

Y = 33,000 psi); the stringer, however, will not fail due to instability
before the plate buckles.

Since we have assumed that failure occurs shortly after the stresses become
equal to the yield strength of the material near the edges, we substitute σe = σ ∗

Y

in the pertinent formula for the effective width.
Next, we determine the critical stress in the plate using the conservative

assumption of simply supported boundary conditions. From Eq. (16.2.22) the

† Provided that the plate edges are rigidly supported.
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Figure 16.10.7 Axially loaded steel plate with sturdy stiffeners.

critical load factor is the minimum value of

λ =
(

m + 1

m

a2

b2

)2

.

Since the aspect ratio a/b = 2, two half-waves (m = 2) in the X direction give

λcr = λmin = 16.

Therefore, the critical stress for the plate becomes

σcr = ncr

h
= λcrnx0

h
= 16

π2E

12(1 − ν2)

h2

a2

= 16
π2(30 × 106)(0.1875)2

12(1 − 0.32)722
= 2942 psi.
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Since the ratio
σe

σcr
= 33, 000

2942
≈ 11.2

indicates a large postbuckling load, Marguerre’s formula (16.10.17) for the
effective width is applicable; therefore,

be = b
3

√
σcr

σe

= 36
3

√
2942

33, 000
= 16.08 in.

The approximate value of the collapse load carried by the two plate strips is

P ult
∼= σ ∗

Y hbe = 33,000 × 1875 × 16.08 = 99,500 lb.

The use of other empirical formulas gives somewhat different results.
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16.11 Inelastic Buckling and Failure of Plates

a. Buckling in Plastic Range. Determination of the plastic buckling load of a plate
is considerably more difficult than that of its elastic counterpart, since the stress-strain
relationship beyond the proportional limit is more complex. Additional mathematical
difficulties in the analysis originate from the stress dependence of Poisson’s ratio,
ν(σ), and that of the critical load factor, λ(σ). Consequently, numerical methods are
strongly recommended for stability analysis of plates in the plastic region.

Although the theory of plastic buckling of columns is well developed, several
aspects in the theory of plastic buckling of plates are still controversial. The primary
difficulty lies in the proper representation of the stress-strain relationship. That is, in
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the case of plastic buckling of columns the stresses are uniaxial, whereas in plate
buckling the state of stress is two or three dimensional. Furthermore, plastic buck-
ling can be analyzed using either flow [16.11.1] or deformation theories [16.11.2] of
plasticity. Since analytical investigations based on deformation theories show good
correlation with experimental results [16.11.4], the use of this approach is recom-
mended. It is evident, from what has been said above, that in the solution of plastic
buckling of plates, the formulation of suitable stress-strain laws beyond the pro-
portional limit is of basic importance. A convenient analytic expression is due to
Ramberg-Osgood [16.5.12].

Because of the inherent complexity of the plastic buckling analysis of plates,
usually a simplified method based on a rational approach to the problem is used in
engineering practice.

When the buckling stress exceedes the proportional limit of the material, the mod-
ulus of elasticity is reduced, which in turn alters the load-carrying capacity of the
plate in the plastic region. Consequently, if in a plate subjected to in-plane forces
plastic yielding occurs prior to reaching the critical load, its load-carrying capacity is
reduced. This phenomenon can be approximated by multiplying the critical load ncr
obtained from linear-elastic theory by an appropriate plasticity reduction factor η. In
this single coefficient all the effects created by exceeding the proportional limit are
incorporated. Thus, we can write

(ncr)plastic = ηλcrn0 = ηλcr
π2D

b2
. (16.11.1)

Hence, the critical stress in the plastic region is

(σcr)plastic = ηλcr
π2E

12(1 − ν2)

(
h

b

)2

. (16.11.2)

Since in the elastic range η = 1, Eq. (16.11.1) covers the elastic as well as the inelastic
buckling of plates. Recommended values for the plasticity reduction coefficients are
given in Table 16.11.1. The plastic Poisson ratio ν∗ appearing in these expressions
can be calculated [16.11.5] from

ν∗ = 0.5 − (0.5 − ν)
Es

E
, (16.11.3)

where E is Young’s modulus of elasticity and Es represents the secant modulus. For
a three-dimensional state of stress, Es and the tangent modulus Et are defined in
Sec. 11.2. While the fully plastic Poisson ratio for incompressible isotropic mate-
rials approaches the value of ν∗ = 0.5, this, however, is generally not the case for
orthotropic materials.

The inelastic interaction equation for simultaneous action of longitudinal compres-
sion and edge shear is

R2
comp. + R2

shear ≤ 1, (16.11.4)

where R represents the load ratio, as defined in Sec. 16.1.
A similar approach can be taken in the case of plastic buckling of stiffened plates,

considering that η depends on factors pertinent to the plate and stiffeners, respectively.
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Table 16.11.1 Plasticity Reduction Factor η

Loading Structure η/j

Compression Long flange, one unloaded edge simply
supported

1

Long flange, one unloaded edge clamped 0.330 + 0.335[1 + (3Et/Es)]1/2

Long plate, both unloaded edges simply
supported

0.500 + 0.250[1 + (3Et/Es)]1/2

Long plate, both unloaded edges clamped 0.352 + 0.324[1 + (3Et/Es)]1/2

Short plate loaded as a column (a/b < 1) 0.250[1 + (3Et/Es)]
Square plate loaded as a column (a/b = 1) 0.114 + 0.886(Et /Es)
Long column (a/b > 1) Et /Es

Shear Rectangular plate, all edges elastically
restrained

0.83 + 0.17(Et /Es)

Source: After Ref. [16.11.5].
Note: j = (Es/E)(1 − ν2)[1 − (ν∗)2]; a = length of plate.

The recommended plasticity reduction factor for stiffened plates subjected either to
longitudinal compression or to shear [16.11.5] is

η = (1 − ν2)Es

[1 − (ν∗)2]E
, (16.11.5)

provided that the ribs enforce the buckling modes. Equation (16.11.5) can also be
used for Z- and channel-shaped ribs subjected to compression. In both cases, the
torsional resistance of the stiffeners have been neglected.

The moment distribution technique, introduced in Sec. 12.4 for the analysis of
laterally loaded continuous plates, can also be extended to determine the inelastic
buckling loads of plates reinforced with stiffeners [16.11.8].

b. Failure of Plates. Discussing the postbuckling behavior of plates in Sec. 16.10,
we already have shown that plates can carry considerably larger in-plane loads
than the critical load, provided that the unloaded edges are constrained to remain
straight. Failure of plates is usually caused by a combination of large deflections and
plasticity effects. Consequently, in the analysis, both the geometrical and material
nonlinearities must simultaneously be included, which makes analytical solutions, in
most cases, very difficult. The variational method appears to be a usable analytical
approach [16.11.9] to obtain solutions to this complex problem. Since the calcula-
tions are performed by high-speed electronic computers, the finite element technique
can economically combine geometrical and material nonlinearities by the incremental
approach. Other nonlinear formulations generally use the Newton-Raphson method
to obtain nonlinear stiffness relations [16.11.10].

The ultimate in-plane load at which the load-carrying capacity of the flat plate
terminates depends considerably on the boundary conditions of the unloaded edges.
Gerard [16.10.6] recommends the following simple formulas for determination of the
stress level σf at which flat plates under compressive edge loads fail:

σf = ασcr

(
σcY

σcr

)n

for σcr ≤ (α)1/nσcY ,

σf = σcr for σcr > (α)1/nσcY ,

(16.11.6)
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Table 16.11.2 Coefficients α and n in Eq. (16.11.6)

Element α n

Simply supported plate with straight unloaded edges 0.78 0.80
Simply supported and clamped plate edges, free to

warp (test)
0.80 0.58

Three-bay plate (test) 0.80 0.65

where σcY represents the compressive yield stress of the structural material. Recom-
mended values for α and n are given in Table 16.11.2.

Determination of failure stresses of unstiffened and stiffened plates subjected to
edge shear is more complicated. For further study of this subject, the reader is referred
to Ref. [16.11.11].

Summary. In this section, mainly the problematics involved in calculation of inelas-
tic buckling loads and failure stresses have been treated. Because of the inherent
complexity of the problem, no attempt was made to discuss in detail any analyticál
or numerical technique that can be applied to obtain solutions. For the practicing
engineer, however, simplified design formulas are presented. Interested readers are
referred to the rather extensive literature covering the subject matter.
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16.12 Summary and Conclusions

Plates used in ship and aerospace structures are often subjected to in-plane forces.
As these forces are gradually increased, at certain values, the plate loses its stability
and deflects laterally (buckles), even in the absence of transverse loading. In the
classical stability theory the critical load is defined as the load at which bifurcation
of the deformations occurs. In the analysis, we generally use the neutral state of
equilibrium for formulating instability problems, assuming that the neighboring state
of equilibrium, corresponding to the bent form, is infinitely near the unbuckled state.
Since we deal with infinitely small deformations, most of the higher-order terms in
the expression of strains can be neglected.

In this chapter, in addition to formulating the buckling problem mathematically,
various analytical and numerical methods for analysis of instability problems of plates
have been introduced. Numerical examples illustrate the applicability and the limita-
tions of these computational techniques. Since “exact” solutions can be found only
for a limited number of buckling problems of practical interést, the use of various
approximate solutions is emphasized.

The minimum buckling load, called the critical load, is usually the value sought. By
introducing a load factor λ and a reference value of the in-plane load, n0, the solutions
of plate instability problems are reduced to determination of λmin, which corresponds
to the lowest eigenvalue of the resulting homogeneous algebraic equations.

Rayleigh’s method, based on the energy principle, expresses the equality of the
work done by the external and internal forces at the instant of transition from the sta-
ble state of equilibrium (corresponding to the straight form) into an unstable one (bent
form). Although easy to use, the method is confined to the cases in which merely one
undetermined coefficient in the expression of the lateral deflections can represent a
sufficiently close approximation of the bent shape of the plate. This limitation of the
otherwise very effective technique can be overcome by the Ritz method, based on
the minimum potential of the elastic system, which permits the use of more than one
term in the series expression of the lateral deflections. The required minimum value
of the load, factor λ is determined by equating to zero the determinant of the result-
ing homogeneous set of algebraic equations. All previously discussed requirements
concerning selections of proper shape functions are also valid for stability analysis.
Although the Ritz method appears to be one of the most generally applicable ana-
lytical tools in the solution of instability problems of plane and stiffened plates, its
practical application might become quite tedious.

Galerkin’s variational method, which operates on the governing differential equa-
tion of stability, can also be extended to solution of instability problems of plates,
even when nonlinear large-deflection theory must be applied, as in the case of post-
buckling. The somewhat more limited (in comparison with the Ritz method) selection
of admissible shape functions can easily be overcome by using the fundamental func-
tions of lateral beam vibrations, which are known to satisfy most prescribed boundary
conditions. The method is well suited for elastic stability analysis of rectangular,
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isotropic or orthotropic plates. The latter can also approximate plates stiffened by
many ribs. The procedure of finding the lowest load factor is basically similar to
that described in calculating the fundamental circular frequency of free vibration.
Although the application of Galerkin’s method is straightforward, the evaluation of
the required definite integrals can be laborious.

Other energy methods, such as the Lagrangian multiplier and the complimentary
energy techniques, which are not treated in this book, might offer some advantages
in special cases.

All energy methods are recommended for hand computation. Since in the major-
ity of practical cases it is possible to obtain good accuracy the first term of the
series expression for w(x, y), preference should be given to Rayleigh’s method. The
results, if required, can be further improved by Stodola-Vianello’s iterative tech-
nique. It should be noted that the critical loads obtained by energy methods are
always somewhat higher than the exact solutions.

Although for elastic stability analysis of rectangular plates (plane or stiffened) exten-
sive tables and charts are available for the designer, consideration of, for example,
arbitrary contours, variable thicknesses and openings in the plate calls for more gen-
erally applicable numerical techniques. The ordinary FDMs, in combination with
Stodola-Vianello’s iteration, offer usable approaches to most of the elastic stability
problems that cannot be solved analytically.

The finite element technique appears to be a flexible and powerful tool in the
stability analysis of plates of arbitrary shape and boundary condition. An excellent
convergence coupled with simple formulation can be achieved by gridwork cell rep-
resentation of the elements. Since the problem is reduced to solution of classical
eigenvalue-eigenvector problems, the lowest mode of buckling cannot be missed.
Various investigators have extended the FEM for predicting the buckling behavior
of plane and stiffened plates in the plastic range. This technique, like most of the
numerical methods, requires, however, high-speed electronic computers of consider-
able storage capacity.

The investigation of postbuckling behavior of plates is inherently complex, since
large deflections occur after buckling. Fortunately, a simplified method based on the
effective width in buckling yields usable estimates.

Similarly, a semiempirical approach that modifies the results of the elastic buckling
analyses by a plasticity correction factor gives information concerning the buckling
loads of plates in the plastic region.

With suitable boundary conditions, flat plates can support in-plane loads that are
considerably in excess of the critical loads predicted by classical buckling theory.

Problems†

16.2.1. A simply supported square plate is subjected to uniformly distributed com-
pressive in-plane loads nx = ny = −λnx0. Determine the critical load using
the equilibrium method.

16.2.2. Solve the above-given problem assuming that nx = −λnx0, ny = −0.5nx0

and nxy = −0.2nx0 compressive in-plane forces are acting on the plate.

† The first two numbers refer to the corresponding section.
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16.2.3. A rectangular plate is simply supported at x = 0 and x = a boundaries; the
other two boundaries are fixed. Determine the lowest value of the elastic
buckling load by applying the equilibrium method. Assume that the plate
is subjected to uniformly distributed compressive in-plane forces at the
simply supported edges.

16.3.1. Solve problem 16.2.1 by Galerkin’s energy method using a suitable shape
function taken from Table 4.3.1.

16.3.2. Solve problem 16.2.1 by Ritz’s method.
16.3.3. Investigate buckling of a clamped circular plate subjected to uniform radial

trust using Rayleigh’s method. Assume a w = c(r2
0 − r2)2 function for the

fundamental buckling mode.
16.3.4. Determine the critical load of a simply supported rectangular plate sub-

jected to uniform shear forces (nxy = nyx) by Galerkin’s method. Use the
following shape function:

w(x, y) =
3∑

m=1

3∑
n=1

Wmn sin
mπx

a
sin

nπy

b
.

16.4.1. Solve problem 16.2.3 using the ordinary FDM. Find also the buckling
modes and corresponding critical loads pertinent to the second and third
modes.

16.4.2. Check the results of Illustrative Example I in Sec. 16.2. by the ordinary
FDM.

16.4.3. Determine the convergence characteristics of the finite difference solution
in problem 16.4.2 by systematically reducing the mesh size.

16.4.4. Find the critical load of a simply supported square plate subjected to con-
centrated compressive forces P acting at y = b/2. Use the ordinary FDM.

16.4.5. Improve your solution of problem 16.4.4 by extrapolation and by the
Stodola-Vianello technique.

16.5.1. Find the critical load in problem 16.2.1 using the finite element approach
based on gridwork cells.

16.5.2. Check the solution of problem 16.4.4 by the FEM using gridwork cells.
16.7.1. Design a stiffened rectangular steel plate subjected to buckling by permit-

ting simultaneous loss of local and primary elastic stability at the same
stress level.

16.8.1. A square plate has three clamped edges while its fourth edge is free. This
plate is subjected to uniformly distributed temperature load. The ambient
temperature of the plate is T0, which is slowly increased to T = T0 + Tin.
Determine the temperature Tcr at which the plate will buckle.

16.9.1. A moderately thick, simply supported rectangular plate is made of rein-
forced concrete. Its dimensions are a = 6.5 m, b = 4.0 m and h = 0.7 m.
This plate is subjected to uniformly distributed, compressive, in-plane
forces in its longitudinal direction. Determine the critical buckling load
of the plate.

16.10.1. Compare the various empirical formulas for “effective width” given in
Sec. 16.10. Use a rectangular steel plate and draw your own conclusion.
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Fourier Series

Perhaps the most influential of the French mathematicians in the 1820s was J. Fourier
(Fig. A.1.1). His chief contribution to applied mathematics was the idea that any
function y = f (x) can be represented by a series in the form

y = 1
2a0 + a1 cos x + a2 cos 2x + · · · + an cos nx + · · ·
+ b1 sin x + b2 sin 2x + · · · + bn sin nx + · · · , (A.1.1)

where

a0 = 1

π

∫ π

−π

f (x) dx, an = 1

π

∫ π

−π

f (x) cos nx dx,

bn = 1

π

∫ π

−π

f (x) sin nx dx. (A.1.2)

Such a series representation† of functions affords considerable generality. That is,
even if there are many points at which the function is not continuous or at which the
derivative of the function does not exist, the function can be expanded into a Fourier
series. Consequently, the power of series expansion is greatly increased, since the
terms of such a series can individually be handled without much difficulty. Thus, the
Fourier series became an indispensable instrument in the analytical treatment of many
problems of mathematical physics, such as the solution of partial differential equations
in the theory of elasticity, vibrations, flow of heat, transmission of electricity and
electromagnetic waves. The extension of the Fourier series leads to Fourier integrals
and transforms. Although these methods are very powerful tools of higher analysis,
they are not utilized here for the solution of plate problems in order to maintain the
introductory level of this book. Many excellent texts, however, have been published
on these subjects. Some of them are listed in Refs. [A.1.1–A.1.12], consultation of
which is highly recommended for more advanced studies.

† The first use of such a series to solve certain problems connected with vibrating strings must,
however, be attributed to D. Bernoulli.
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Figure A.1.1 Joseph Fourier (1768–1830).

a. Single Fourier Series. As already mentioned, Fourier’s theorem states that any
arbitrary function y = f (x) can be expressed by an infinite series consisting of sine
and cosine terms. Thus the original function is replaced by the superposition of
numerous sine and cosine waves.† If f (x) is a periodic function,‡ Fourier’s theorem
states that

f (x) = 1

2
A0 + A1 cos

2πx

T
+ A2 cos

4πx

T
+ · · · + An cos

2nπx

T
+ · · ·

+ B1 sin
2πx

T
+ B2 sin

4πx

T
+ · · · + Bn sin

2nπx

T
+ · · · (A.1.3)

or, in more concise form,

f (x) = 1

2
A0 +

∞∑
1

An cos nωx +
∞∑
1

Bn sin nωx, (A.1.4)

† Note that certain mathematical restrictions imposed upon the use of the Fourier series are of no
consequence in this engineering application.
‡ A function f (x) is said to be periodic of period T if f (x + T ) = f (x), as shown in Fig. A.1.2.
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Figure A.1.2 Arbitrary periodic function.

where A0, An and Bn(n = 1, 2, 3, . . .) are the coefficients of the Fourier expansion,
ω represents

ω = 2π

T
(A.1.5)

and T is the period of the function (Fig. A.1.2).
Equation (A.1.4) is valid for any piecewise regular periodic function, which might

also have discontinuities, and represents the arbitrary periodic function f (x) in the
full range from x = −∞ to x = +∞; thus it is called full-range expansion.

The coefficients A0, An and Bn are obtained from [A.1.1–A.1.3]

A0 = 2

T

∫ T

0
f (x) dx, (A.1.6)

An = 2

T

∫ T

0
f (x) cos nωx dx (A.1.7)

and

Bn = 2

T

∫ T

0
f (x) sin nωx dx for n = 1, 2, 3, . . . . (A.1.8)

When the function f (x) is not given in analytical form or it is too complicated
to perform the integrations prescribed, then the so-called harmonic analysis, which
replaces the integrals by summations, can be advantageously utilized. Dividing the
period T into 2m equal intervals (Fig. A.1.3), the Fourier coefficients are deter-
mined from

A0 = 1

m

2m−1∑
k=0

yk, (A.1.9)

An = 1

m

2m−1∑
k=0

yk cos
knπ

m
(A.1.10)
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Figure A.1.3 Harmonic analysis.

and

Bn = 1

m

2m−1∑
k=0

yk sin
knπ

m

for k = 0, 1, 2, . . . , 2m, n = 1, 2, 3, . . . , m. (A.1.11)

Another approximate method for evaluating the constant of the Fourier expan-
sion consists of plotting f (x), f (x) cos(2nπx/T ) and f (x) sin(2nπx/T ) curves and
determining the area of the respective curves by planimeter.

If the function is nonperiodic, it can be made periodic by arbitrary continuation of
the function outside of its interval. This arbitrary continuation can be even harmonic,
odd harmonic (Fig. A.1.4) or even and odd (Fig. A.1.5). Since in most cases we would
like to represent the function f (x) only over a certain length L, it is convenient to use
half-range expansion, in which case the repetition interval T = 2L with the center
at the origin, as is shown in Fig. A.1.5.

Suppose that it is required to express the function f (x) by cosine terms only.
Let us make, by our arbitrary continuation, an even function in x of our originally
nonperiodic function (Fig. A.1.5a), for which the

f (x) = f (−x) (A.1.12)

relationship is valid; then the sine terms in Eq. (A.1.4) disappear during the integra-
tion. Similarly, making an odd function (Fig. A.1.5b) for which the

f (x) = −f (−x) (A.1.13)
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Figure A.1.4 Even and odd harmonic functions.

relationship holds, the cosine terms disappear during the integration and we obtain
a trigonometric series of sines by means of half-range Fourier series expansion.
The latter, since it does not contain a constant A0 [which is actually a cosine term
according to Eqs. (A.1.6) and (A.1.7)] and can describe the geometrical boundary
conditions of the simple support, can be used effectively in the solution of pertinent
boundary value problems.
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Figure A.1.5 Even and odd functions.

ILLUSTRATIVE EXAMPLE (Single Series Expansion)

Expand the function shown in Fig. A.1.6 into a Fourier series in three ways:

≤

≤ ≤

≤

Figure A.1.6 Function to be expanded into Fourier series.

1. full-range expansion containing a constant and sine and cosine terms,
2. half-range expansion containing sine terms only and
3. half-range expansion containing cosine terms only.
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(a) For a full-range expansion, the period of expansion is T = 2x0. The
constant term is obtained from Eq. (A.1.6):

A0 = 1

x0

∫ 2x0

0
f (x) dx = f0. (A.1.14)

Equation (A.1.7) yields

An = 1

x0

∫ 2x0

0
f (x) cos

nπx

x0
dx = 0 for n = 1, 2, 3, . . . . (A.1.15)

The coefficients of the sine terms are obtained from Eq. (A.1.8):

Bn = 1

x0

∫ 2x0

0
f (x) sin

nπx

x0
dx

= f0

x0

∫ x0

0
sin

nπx

x0
dx + 0 = − f0

nπ
(cos nπ − 1), (A.1.16)

which gives

Bn =



2f0

nπ
for n = 1, 3, 5, . . . ,

0 for n = 2, 4, 6, . . . .

(A.1.17)

Substituting these values into Eq. (A.1.4), the full-range Fourier series expan-
sion of the function can be written as

f (x) = 1

2
f0 + 2f0

π

(
sin

πx

x0
+ 1

3
sin

3πx

x0
+ 1

5
sin

5πx

x0
+ · · ·

)
. (A.1.18)

The plot of the first three terms of Eq. (A.1.18) is shown in Fig. A.1.7a.
(b) Let us develop the same function (Fig. A.1.6) into a trigonometric series

containing sine terms only. For this expansion the half-range expansion with
period T = 4x0 will be used. The function is arbitrarily continued beyond the
origin so that an odd function is obtained (Fig. A.1.5b). Since the integrands
f (x) and f (x) cos nωx are each odd, Eqs. (A.1.6) and (A.1.7) yield A0 =
An = 0. But f (x) sin nωx = F(x) is even, and for even functions

∫ T

0
F(x) dx = 2

∫ L

0
F(x) dx, (A.1.19)

where T = 2L. Thus Eq. (A.1.8) becomes†

Bn = 2

L

∫ L

0
f (x) sin

nπx

L
dx. (A.1.20)

† See the footnote on p. 993.
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Figure A.1.7 Graphical representation of Fourier series expansions.

Substituting the specific values of our example into Eq. (A.1.20), we obtain

Bn = 2

2x0

∫ 2x0

0
f (x) sin

nπx

2x0
dx = 1

x0

∫ x0

0
f0 sin

nπx

2x0
dx + 0

= −f0

x0

[
2x0

nπ
cos

nπx

2x0

]x0

0

= −2f0

nπ

(
cos

nπ

2
− 1

)
, (A.1.21)

which, for various value of n, yields

Bn =




2f0

nπ
for n = 1, 3, 5, . . . ,

4f0

nπ
for n = 2, 6, 10, . . . ,

0 for n = 4, 8, 12, . . . .

(A.1.22)
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It follows from these values and from Eq. (A.1.4) that

f (x) =
∞∑
1

Bn sin nωx

= 2f0

π

(
sin

πx

2x0
+ sin

πx

x0
+ 1

3
sin

3πx

2x0
+ 1

5
sin

5πx

2x0
+ · · ·

)
. (A.1.23)

The graphical representation of the summation of these various terms is shown
in Fig. A.1.6b.

(c) Next, we expand the same function (Fig. A.1.6) into a trigonometric series
containing cosine terms only. Again, a half-range expansion will be used with
a period of T = 2L = 4x0. In this case, however, we obtain an even function
by arbitrary continuation beyond the origins, as shown in Fig. A.1.5a.

Now the integrands f (x) and f (x) cos nωx in Eqs. (A.1.6) and (A.1.7) are
even, while f (x) · sin nωx in Eq. (A.1.8) is odd. Thus, we may conclude that
Bn = 0, and from Eqs. (A.1.6) and (A.1.7), we obtain

A0 = 2

L

∫ L

0
f (x) dx and An = 2

L

∫ L

0
f (x) cos

nπx

L
dx.† (A.1.24)

Hence the Fourier expansion for any even function f (x) of period 2L takes
the form

f (x) = 1

2
A0 +

∞∑
1

An cos
nπx

L
. (A.1.25)

Solving for the coefficients, we obtain

A0 = f0

x0

∫ x0

0
dx = f0

x0
[x]x0

0 = f0 (A.1.26)

and

An = 1

x0

∫ x0

0
f0 cos

nπx

2x0
dx + 0 = f0

x0

[
2x0

nπ
sin

nπx

2x0

]x0

0

(A.1.27)

= 2f0

nπ

(
sin

nπ

2
− 0

)
,

which, for various values of n, becomes

An =




2f0

nπ
, for n = 1, 5, 9, . . . ,

0 for n = 2, 4, 6, . . . ,

−2f0

nπ
for n = 3, 7, 11, . . . .

(A.1.28)

† This equation can be expressed in terms of polar coordinates by substituting x = ϕ and
L = π .
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The substitution of these values into Eq. (A.1.25) gives

f (x) = f0

2
+ 2f0

π

(
cos

πx

2x0
− 1

3
cos

3πx

2x0
+ 1

5
cos

5πx

2x0
+ · · ·

)
. (A.1.29)

The summations of these various terms are plotted in Fig. A.1.7c.

b. Double Fourier Series. In the static and dynamic analysis of plates, a given
function f (x, y) is often expanded into the sine series of two variables x and y using
the expression

f (x, y) =
∞∑

m=1

∞∑
n=1

Fmn sin
mπx

a
sin

nπy

b
. (A.1.30)

Equation (A.1.30) represents a half-range sine expansion in x multiplied by a half-
range sine expansion in y using for the period of expansion T = 2a and T =
2b, respectively. To obtain the coefficient Fmn, we first multiply Eq. (A.1.30) by
sin(kπy/b) dy and then integrate between the limits zero and b. Thus, we can write

∫ b

0
f (x, y) sin

kπy

b
dy =

∞∑
m=1

∞∑
n=1

Fmn sin
mπx

a

∫ b

0
sin

nπy

b
sin

kπy

b
dy. (A.1.31)

If n �= k, then ∫ b

0
sin

nπy

b
sin

kπy

b
dy = 0. (A.1.32)

If n = k, then ∫ b

0
sin2 nπy

b
dy = b

2
. (A.1.33)

Utilizing a similar approach for the variable x, we obtain
∫ a

0
sin2 mπx

a
dx = a

2
. (A.1.34)

Thus Eq. (A.1.30) becomes

Fmn

a

2

b

2
=

∫ a

0

∫ b

0
f (x, y) sin

mπx

a
sin

nπy

b
dx dy. (A.1.35)

Hence the coefficient of the double Fourier expansion is

Fmn = 4

ab

∫ a

0

∫ b

0
f (x, y) sin

mπx

a
sin

nπy

b
dx dy. (A.1.36)

In Table A.1.1 the reader will find double Fourier expansions of the most impor-
tant loads, which can be directly used in Navier-type solutions of the pertinent
plate problems.
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Table A.1.1 Double Trigonometric Series Expansion of Loads

Load
Number

Load

pz(x, y) =
∑
m

∑
n

Pmn sin
mπx

a
sin

nπy

b

Expansion Coefficients
Pmn

[Determined from
(Eq. A.1.36)] Notes

1

0

Pmn = 16p0

π2mn
for m, n = 1, 3, 5, . . .

Eq. (A.1.37)

2

0

Pmn = − 8p0 cos mπ

π2mn
for

m, n = 1, 2, 3, . . .

Eq. (2.2.19)

3

0

Pmn = 16p0

π2mn
sin

mπξ

a
sin

nπη

b

× sin
mπc

2a
sin

nπd

2b
for m, n = 1, 2, 3, . . .

Eq. (2.4.30)

4 Pmn = 4P

ab
sin

mπξ

a
sin

nπη

b
for m, n = 1, 2, 3, . . .

Eq. (2.4.37)

5

0

Pmn =


8p0

π2mn
for m, n = 1, 3, 5, . . .

16p0

π2mn
for

{
m = 2, 6, 10, . . .
n = 1, 3, 5, . . .

(continued overleaf )
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Table A.1.1 (continued)

Load
Number

Load

pz(x, y) =
∑
m

∑
n

Pmn sin
mπx

a
sin

nπy

b

Expansion Coefficients
Pmn

[Determined from
(Eq. A.1.36)] Notes

6

0

Pmn = 8p0

πan
sin

mπξ

a

for

{
m = 1, 2, 3, . . .
n = 1, 3, 5, . . .

The latest development concerning the Fourier series is the introduction of the
so-called fast Fourier transforms (FFT) by Cooly and Tukey [A.1.15]. This new
numerical algorithm, based on the complex form of the Fourier series, is especially
efficient for determination of the dynamic response of structures in the frequency
domain. A considerable reduction in computer time (Fig. A.1.8.) is achieved by
breaking down the computation of discrete Fourier transform coefficients into two
parts and introducing a new way of evaluating the equations obtained. By realiz-
ing that a sequence of n elements may be divided into two shorted sequences of
n/2 elements each by placing the even-numbered elements into the first sequence
and the odd-numbered ones into the second [A.1.16], the required computer time is
drastically reduced.

2.5

2.0

1.5

1.0

0.5

0.5
2000 4000 6000 8000 Number of

data

Fast Fourier transform (FFT)

Discrete Fourier transform (DFT)

Figure A.1.8 Approximate time requirements for DFT and FFT procedures.
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Readily usable computer programs for FFT are available in Refs. [A.1.17–A.1.21].
The user of these programs, however, must consider that the definition for the FFT
is in many instances different from the one used in this section. In such a case, the
factors and the signs of the exponents must be changed accordingly.

Summary. Expansion of a function into single or double Fourier series is an impor-
tant mathematical tool. Calculation of the required coefficients, however, can be quite
laborious. To facilitate the analytical evaluation of the required definite integrals, one
may use integral formulas given in Refs. [A.1.13] and [A.1.14]. Nowadays, computer
programs using “symbolic mathematics” can perform this tedious task quite easily
[A.1.17–A.1.21]. Some programs even offer complete Fourier sine or cosine trans-
formations of analytically given functions. If the function is not given in analytical
form, discrete Fourier transform (DFT) can be performed [A.1.18].

ILLUSTRATIVE EXAMPLE † (Double Trigonometric Series Expansion)

Let us expand into a function that is constant over the whole area double Fourier
series, bounded by x = 0, x = a and y = 0, y = b in a rectangular Cartesian
coordinate system.

Thus the expression of the function is f (x, y) = f0; then from Eq. (A.1.36)
the coefficients of expansion can be calculated:

Fmn = 4f0

ab

∫ a

0
sin

mπx

a
dx

∫ b

0
sin

nπy

b
dy

= 4f0

ab

a

mπ

[
− cos

mπx

a

]a

0
· b

nπ

[
− cos

nπy

b

]b

0

=



16f0

π2mn
for odd m, n,

0 otherwise.
(A.1.37)

Substituting Eq. (A.1.37) into Eq. (A.1.30), we obtain

f (x, y) = 16f0

π2

∑
m

∑
n

1

mn
sin

mπx

a
sin

nπy

b

for m, n = 1, 3, 5, . . . . (A.1.37)
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[A.1.8] ZURMÜHL, R., Praktische Mathematik für Ingenieure und Physiker, 5th ed., Springer-
Verlag, Berlin, 1965.

[A.1.9] KANTOROVICH, L. V., and KRYLOV, V. I., Approximate Methods of Higher Analysis, John
Wiley & Sons (Interscience Division), New York, 1958.

[A.1.10] DEBNATH, L., Integral Transforms and Their Applications, CRC Press, Boca Raton,
Florida, 1995.

[A.1.11] BRACEWELL, R., The Fourier Transform and Its Applications, McGraw-Hill Book Co, New
York, 1986.

[A.1.12] GARCIA-GUERVA, J., et al. (Eds.), Fourier Analysis and Partial Differential Equations,
CRC Press, Boca Raton, Florida, 1995.

[A.1.13] BRONSTEIN, I., and SEMENDJAJEW, K., Taschenbuch der Mathematik, 7th ed., Teubner Ver-
lagsgesellschaft, Leipzig, 1960.
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Appendix A.2

Conversion from One
Poisson Ratio to Another

If the deflections or the internal forces of a plate are known for a Poisson ratio ν1,
then these values can easily be calculated for ν2.

The conversion formula for deflections is

w2 = w1
D1

D2
= w1

1 − ν2
2

1 − ν2
1

, (A.2.1)

provided that the Poisson ratio does not appear in the boundary conditions.
Similarly, if the bending and torsional moments are known for ν1, then these

internal forces can also be calculated for ν2 by using the following expressions:

mx2 = 1

1 − ν2
1

[
(1 − ν1ν2)mx1 + (ν2 − ν1)my1

]
,

my2 = 1

1 − ν2
1

[
(1 − ν1ν2)my1 + (ν2 − ν1)mx1

]
, (A.2.2)

mxy2 = 1 − ν2

1 − ν1
mxy1.

The shear forces are independent from ν; consequently,

qx2 = qx1 and qy2 = qy1. (A.2.3)

If ν1 = 0, we can write Eq. (A.2.2) in a simplified form:

mx2 = mx1 + ν2my1,

my2 = my1 + ν2mx1, (A.2.4)

mxy2 = (1 − ν2)mxy1.
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Formulas for the conversion of the edge forces are

vx = qx2 + 1 − ν2

1 − ν1
· ∂

∂y
mxy1,

vy = qy2 + 1 − ν2

1 − ν1
· ∂

∂x
mxy1.

(A.2.5)

Again, for the special case of ν1 = 0, we can write

vx2 = qx2 + (1 − ν2) · ∂

∂y
mxy1,

vy2 = qy2 + (1 − ν2) · ∂

∂x
mxy1.

(A.2.6)

These expressions can also be used to estimate the error caused by neglecting
Poisson’s ratio. Since the deflections are inversely proportional to the plate stiff-
ness D, consequently, the error created by using ν = 0 is approximately 2% for
reinforced-concrete slabs with ν values of 0.15–0.2. This can of course be neglected.
Considerably larger discrepancies (10–15%), however, are created by assuming ν = 0
for the bending and torsional moments. As Eq. (A.2.3) shows, the shear forces are
independent from Poisson’s ratio.
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Units

In the numerical examples, the new SI† metric units and symbols have been used.
Accordingly, the basic units of length and mass are the meter (m) and kilogram (kg),
respectively. The basic unit for time is the second (s) and that for temperature is the
kelvin(K). Wide use is also made of degrees celsius (◦C). Derived units are formed
by combining basic units. Consequently, the unit of force is Newton (N = kg·m/s2),
representing the force required to accelerate a 1-kg mass over one meter per second
squared. Other derived units in structural engineering are the hertz (Hz = cycles/s) for
frequency and the pascal (Pa = N/m2) for pressure and stress, respectively. Energy
and work are measured in joules (J = N·m). The SI unit for velocity is meters per
second (m/s), and that for angular velocity is radians per second (rad/s). In order to
avoid very large or very small numbers in the computations, multiples and submulti-
ples of the base units are often employed. The most used multiple of the SI units in
structural engineering is kilo (k = 103), while centi (c = 10−2) and milli (m = 10−3)
represent frequently utilized submultiples. Table A.3.1 lists the pertinent prefixes.

Useful conversion factors from U.S. Customary System (USCS) to SI units are
provided in Table A.3.2. Conversions for the SI units are given in Table A.3.3.

Table A.3.1 SI Unit Prefixes

Prefix Symbol Factor

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10−1

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

† International System of Units (the modernized metric system), Système International d’Unités.

1001Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods.  R. Szilard
Copyright © 2004 John Wiley & Sons, Inc.



1002 Units

Table A.3.2 Conversion Factors from USCS to SI Units

To Obtain Multiply By the Factor

Millimeters Inches 25.4
Millimeters Feet 304.8
Centimeters Inches 2.54
Centimeters Feet 30.48
Centimeters Yards 91.44
Meters Inches 0.0254
Meters Feet 0.3048
Meters Yards 0.9144
Square millimeters Square inches 645.16
Square millimeters Square feet 92903.04
Square centimeters Square inches 6.4516
Square centimeters Square feet 929.0304
Square meters Square feet 0.092903
Square meters Square yards 0.836127
Kilograms Pounds 0.453592
Kilograms Short tons 907.1847
Kilograms Long tons 1016.047
kg/cm2 lb/in.2 0.070307
kg/cm2 lb/ft2 4.8824 × 10−4

N/m2 lb/in.2 6894.757
N/m2 lb/ft2 47.88026
m kg Foot pounds 0.138255
m/s ft/s 0.3048
m/s ft/min 0.00508

Table A.3.3 Conversion Factors in SI System

A. Forces

N kN MN

1 N = 1 10−3 10−6

1 kN = 103 1 10−3

1 MN = 106 103 1
1 kp = 10 10−2 10−5

1 Mp = 104 10 10−2

N newton
kN kilonewton
MN meganewton
kp kilopond
Mp megapond

B. Pressure or Surface Loads

N/mm2 N/cm2 kN/mm2 kN/cm2 kN/m2 MN/cm2 MN/m2

1 N/mm2 = 1 102 10−3 10−1 103 10−4 1
1 N/cm2 = 10−2 1 10−5 10−3 10 10−6 10−2

1 kN/mm2 = 103 105 1 102 106 10−1 103

1 kN/cm2 = 10 103 10−2 1 104 10−3 10
1 kN/m2 = 10−3 10−1 10−6 10−4 1 10−7 10−3

1 MN/cm2 = 104 106 10 103 107 1 104

1 MN/m2 = 1 102 10−3 10−1 103 10−4 1



Appendix A.4

About the CD

A.4.1 Plate Formulas

Although the present trend in engineering is to use computers and pertinent software
to obtain numerical solutions of various plate problems, readily usable plate formulas
still do have their place in modern-day engineering practice. That is, there are some
instances when the engineer may need them. These are, for example, (a) to obtain
quick results of a specific problem that cannot be handled by the engineer’s software;
(b) when neither a computer nor software is readily available; (c) when the reader
of this book wants to test the accuracy and convergence characteristics of his or her
commercially available program system by using more exact analytical solutions and
(d) when formulas can provide quicker solutions than computers. A carefully selected
collection of plate formulas can therefore be an asset to engineers who frequently
deal with various plate problems in everyday practice.

For this reason, 170 plate formulas are included on the accompanying CD-ROM
in PDF format. These include static and dynamic solutions of circular, rectangular,
triangular, trapezoidal and continuous plates with various boundary conditions sub-
jected to diverse lateral loads in the elastic range. To cover also the plastic region,
yield lines and ultimate moments of such plates are also listed. In addition, circular
frequencies of numerous rectangular and circular plates are given in explicit forms.
Finally, elastic stability of rectangular and stiffened plates are also briefly treated.

The PDF is organized into 15 tables describing the various formulas. A sample
of such a table is shown in Fig. A.4.1. Using these tables, the reader can quickly
select the plate problem of special interest. Then, clicking on the selected file number,
one readily obtains the desired plate formula. Selecting files numbers 163–164 from
Table 15 shown in Fig. A.4.1, for instance results in Fig. A.4.2. If for some computers
this convenient hyperlink does not work, one can also scroll directly to the desired
formula. Although the so-obtained screen pictures fill the full screen, the possibility
also exists to further enlarge a specified part of them.
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File
Number

In-Plane Loading

Uniformly distributed
compressive forces in X

direction
Uniformly distributed

compressive forces in X and Y
directions

Triangular compressive and
tensile forces in X direction;

maximum at b = 0, b, zero at b/2

Concentrated force acting at a/2
center of edges b = 0, b

In-plane shear forces acting
along edges

All edges simply
supported

Do

Do

Do

Do

Do

Do

Do

In-plane shear forces acting
along edges

In-plane shear forces acting
along edges

Linearly varying compressive
forces in X direction

Linearly varying compression
forces in X direction

Triangular compressive and
tensile forces in X direction;

maximum at b/2, zero at center

Triangular compressive and
tensile forces in X direction,

maximum at b = 0, b zero at b/2

Boundary
Conditions

Simply supported
or free

Simply supported

All edges simply
supported or
clamped; two
opposite edges

simply supported or
clamped

Simply supported
or clamped; two
opposite edges

simply supported
others clamped

Do

158

159−160

Do

161

162

163−164

165−166

167−168

169−170

Do

Do

Do

Do

Do

Do

Geometrical Shape

Rectangular

Rectangular

Rectangular with
stiffener at b/2

Rectangular with
stiffener at a/2

Multiple panels with
vertical stiffeners

Rectangular with
stiffener at b/2

Rectangular with
stiffener at arbitrary

distance y

Rectangular and
orthotropic

Do

Do

Do

Do

Do

Case
Number

158

159

160

161

162

163

165

167

169

164

166

168

170

Figure A.4.1 Table 15 in file Plate Formulas.

A.4.2 WinPlatePrimer Program System

a. General Description. Along with the Plate Formulas, the CD-ROM accompa-
nying this book also contains the WinPlatePrimer (WPP) program system for static
and dynamic analysis of plates. Since this system is considerably interactive, all
its programs are very user friendly. The WPP is based on the widely used finite
element analysis technique and is capable of handling even moderately sized plate
problems encountered in everyday engineering practice. Because the versatile FEM
was employed, this program system can treat a wide variety of boundary and loading
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conditions, as described in Chapters 6 and 7. To be consistent with these chapters,
the same notation and sign conventions employed there have also been used in these
programs. For rectangular plate elements the higher-order element with 16 DOF, as
described in Sec. 7.7.1, was selected, whereas for triangular finite elements the DKT
element, as described in Sec. 7.7.2, was used. Both these elements have from very
good to excellent convergence characteristics, as documented in Chapters 6 and 7.
Thus, even with a relatively crude subdivision of the plate continuum, good results
can be obtained. Although use of the modernized metric system (SI) is recommended,
the customary U.S. units can also be employed. However, care must be taken that
all inputs use consistent units. For example, if the centimeter (cm) and newton (N)
are selected as primary units, the corresponding input for the modulus of elasticity
E must be in newtons per centimeter squared. Accordingly, the lateral dimensions
will be computed in centimeters and the nodal forces and internal stress components
will also carry the pertinent units.

In addition to the readily applicable EXE files, which can be run by simply click-
ing on the WPP icons located on the corresponding WPP folders, FORTRAN source
codes are also listed on the CD-ROM. These codes serve a dual purpose. First,
they can teach the reader how to write a finite element program system. The large
number of “comment lines” makes these FORTRAN codes very readable for the
user. Second, they can serve as a basis if the engineer must develop programs
to suit some specific need, and such programs are not covered in the commer-
cially available program systems. Both the static and dynamic parts have a detailed
and illustrated User’s Guide leading the engineer step by step in the application of
these programs.

Although nowadays the finite element meshes are usually generated by com-
puter, with the exception of simple routines, such mesh generators, according to
the author’s opinion, cannot successfully take over this complex task. As discussed
in detail in Sec. 7.12, modeling of a fine element plate analysis cannot be effec-
tively automated in the foreseeable future. Consequently, in this case, the manual
design of suitable finite element meshes represents an important part of the FEM
of plates, which will affect the accuracy of the results. That is, a badly designed
mesh may lead to inaccurate results. The mesh design will be influenced by the
following factors:

ž shape of the boundary,
ž prescribed boundary conditions,
ž zones of rapid variation of external forces,
ž locations of expected stress concentrations, and
ž locations of openings in the plate continuum.

Thus, it is recommended that the engineer first prepare a drawing (preferably to
scale) using pencil and paper. Then, he or she should follow the rules discussed in
Sec. 6.4.2 to create a suitable finite element mesh and to number the created finite
elements accordingly. It should be noted, however, that a combination of triangular
elements with rectangular ones is not permitted in this program system. In numbering
the nodal points, one should go clockwise in the pertinent finite elements starting at
the left-hand side of the horizontal X or Y axis of the global reference system XYZ,
where Z is always pointing downward. One common mistake made by novices to the
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FEM is to design meshes that are not properly connected. Fortunately, the interactive
nature of the WPP program system will notice such mistakes and ask for correction.
That is, during the preprocessing phase, after “new” is selected from the file menu,
the mesh and the nodal and element numberings subsequently appear at the right-
hand side of the computer screen and grow along with the input of the geometry as
the input table on the left-hand side is filled in. However, it should be noted that all
small rectangular cells in the input table must be filled in; otherwise the user cannot
continue with the input procedures. Consequently, when no data are present, a zero
(0) should be used as a substitute input. When the input procedure is completed, the
geometrical configuration of the plate along with the given loadings and prescribed
boundary condition are graphically presented on the right-hand side of the screen.

After completion of the input, the analysis part can be activated by clicking on the
SAVE AND COMPUTE command located in the menu bar at the top of the screen.
Depending on the size of the problem and the random-access memory (RAM) and
clock speed of the computer, it takes usually only a few seconds to complete the
entire plate analysis. Of course, in the case of larger plate problems, this process may
take minutes.

The postprocessing part of the analysis can be started by subsequently clicking
on the DEFLECTION, NODAL INTERNAL FORCES and STRESS AT THE CEN-
TER OF ELEMENT commands located under the menu bar. In this way, the user
obtains not only the computed numerical data but also the pertinent two-dimensional
presentations of these results with contour lines (regions) in color, as subsequently
discussed and illustrated in more detail. The input and output data are saved as text
files with the extensions .dat and .out after the corresponding filenames. These input
and output files can be printed with any text program such as MS Word or WordPad,
for instance.

b. Static Module. Since the static module of the WPP program system cannot be
run directly from the CD-ROM, it is required that the user create a folder (say
WPP-S) on the hard disk of the computer and subsequently copy the files Solved
Problems, Source Codes, User’s Guide and WPP into this folder. Before trying to run
the WPP programs, it is strongly recommended that the User’s Guide be printed. This
file contains information on the hardware and software requirements for the static
module of WPP, along with detailed and well-illustrated step-by-step instructions
concerning application of this program. Similarly, it is also useful to print out the
table of Solved Problems given in the corresponding file. That is, the learning process
of how to use the static part of WWP can be significantly shortened by starting with
the application of one of these solved problems. This table contains 16 solved plate
problems. The pertinent plate geometries are represented graphically along with the
loading and boundary conditions of the plates. Furthermore, the obtained maximum
lateral deflections are compared with their analytically calculated counterparts. When
such analytical results do not exists, numerical values of wmax are checked against
computer results obtained from one of the commercially available program systems,
such as ANSYS. In all cases good agreements were achieved.

The static module of the WPP program system can be activated by clicking on the
WinPlatePrimer icon in the WPP folder. As already mentioned above, when using the
program for the first time, it is recommended to start by practicing with one of the test
problems listed in the Solved Problems file. Although the User’s Guide gives step-by-
step information on how to deal with such solved problems, we intend to summarize
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Figure A.4.3 Input and finite element discretization of triangular plate.

here only the highlights of the required procedure. In the File menu we select the
OPEN command and click on one of the test problems appearing on the right-hand
side of the screen. Let us assume that we selected Test301; then Fig. A.4.3 appears.
The left-hand side of this picture contains the already filled-in input table, while the
right-hand side shows in two-dimensional form the geometrical configuration of the
plate in question along with its boundary and loading conditions. Next, SAVE AND
COMPUTE in the menu bar is activated. In this case, the analysis of this plate problem
takes only a few seconds. To obtain the computed results, we click first on the DIS-
PLACEMENT button. Then, the numerical values of all nodal displacements appear
in table form on the left-hand side of the screen. Simultaneously, a two-dimensional
color presentation of the lateral nodal deflections is shown by means of corresponding
contour lines and regions (Fig. A.4.4). A similar approach is taken for the internal
nodal forces (Fig. A.4.5) and for stresses at the center of the finite elements.

After the engineer has already become familiar with the introductory procedure,
he or she is ready to solve a new plate problem. In this respect, we refer again
to the User’s Guide for detailed step-by-step instructions. It is recommended that,
at the first trial, the user selects a plate problem with known analytic solution for
checking purposes. The folder PLATE FORMULAS contains a large number of such
analytical solutions covering various plate problems for easy selection. However,
before the program can be applied, manual creation of a suitable finite element mesh
is required, as described in the first part of this section. After starting the program, in
the File menu the word “new” should be highlighted and confirmed with the Enter
button. Subsequently, the input table appears at the left-hand side of the screen. Based
on the already prepared finite element mesh, either triangular or rectangular elements
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Figure A.4.4 Resulting nodal deflections.

Figure A.4.5 Corresponding nodal forces.
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must be chosen. This selection is carried out by using the number of nodes/element
input. It should be noted, however, that the global coordinate system is different for
rectangular and triangular finite element subdivisions. In filling out the input table,
the user is interactively guided step by step. It is important that all rectangular boxes
be filled in; otherwise the input cannot proceed, as already mentioned. When there
is no input, zero must be used. As the engineer begins to fill out the input table,
a two-dimensional graphical representation of the finite element mesh will appear
on the right-hand side of the screen. This picture grows as the input proceeds. The
final graphical representation of the finite element mesh will be similar to that shown
in Fig. A.4.3. This also includes loading and boundary conditions of the plate in
question. Beyond that, all the following steps are identical to those already discussed
in connection with the use of solved problems.

Finally, it should be mentioned that the practical capacity of the static part of
the WPP program system is approximately 1000 elements. Although, theoretically,
11,000 elements can be used, the required manual input procedure puts the above
given limit on the element numbers.

All the solved test problems deal with single panel plates, but continuous plates
can also be easily solved by applying the familiar procedures used in the FEM or, in
the case of continuous beams, when the matrix displacement method is applied.

c. Dynamic Module1 (Free Vibration). This part of the WPP system deals with
the free-vibration problems of rectangular plates neglecting damping. This programs
determines the first mode shape of the freely vibrating system along with the pertinent
lowest circular frequency ω1 (in radians per second). Again, it is required that the
folder of the Dynamic Module be copied from the CD-ROM into a corresponding
folder (say WPP-D1) created for this purpose on the hard disk of the computer. The
folder in the CD-ROM contains the following files: Solved Problems, Source Code,
WPP free vibration, and User’s Guide. The latter contains, again, detailed step-by-
step instructions for the application of the corresponding programs amply illustrated
with numerous screen shots. We assume that the user is already familiar with the use
of the static part of WPP. Since the general procedure of the free-vibration analysis
of plates is quite similar to that treated above in connection with the static part of this
program system, we will concentrate here mostly on the small differences unique to
free-vibration analysis. Our previous recommendation concerning printing the User’s
Guide and the table of Solved Problems remains the same. Similarly, we recommend,
again, that the first-time user of the Dynamic Module1 start with the implementation
of one of the solved problems. In the corresponding Table 12 the user will find
cases of plate vibrations. The geometrical configurations of these plates including
their boundary conditions are graphically presented along with the computed lowest
circular frequencies. Comparison of these results with their analytically calculated
counterparts shows very good agreement. Again, when analytical solutions were not
available, this comparison was based on results obtained by using the independent
ANSYS computer program system.

Activation of the winplateprimerD.exe program is carried out by clicking on the
winplateprimerD icon in the above-mentioned WPP free. . . file. To open and recom-
pute an already solved test problem, we activate the File menu and select the OPEN
option. Next, the list of the already solved problems appears on the right-hand side of
the screen. Clicking, for instance, on Dtest41, the computer shows the already filled
in input table on the left-hand side of the screen, while on the right appears the geo-
metrical configuration of the selected plate along with its finite element subdivision
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Figure A.4.6 First mode shape of freely vibrating plate.

and boundary conditions. Before we proceed any further, it is wise to opt in the View
menu for “axonometric” and “wire frame” presentation of the resulting deflections to
obtain a more appealing picture of the resulting nodal deflections. By activating the
SAVE AND COMPUTE and subsequently the DEFLECTION commands, we obtain
Fig. A.4.6, which shows the lowest natural frequency ω1 of the plate and the corre-
sponding first mode shape in three-dimensional form. A similar approach should be
taken when a new plate will be analyzed for free vibration. Logically, in this case
the user must opt for New in the File menu and subsequently the empty input table
must be filled in. This process is similar to that already treated in connection with
the static part of the WPP program system. Again, for detailed information we refer
readers to the User’s Guide.

Finally, it should be mentioned that the lowest circular frequency, ω1, of the
freely vibrating plate serves as a quasi finger print or DNA for the system. Conse-
quently, all dynamic load factors (DLF)† are based on this vital characteristic which
describes, to a certain extent, the dynamic behavior of plates. In engineering practice,
the forced vibration of plates is usually treated by simply multiplying the maximum
static deflections and internal forces by the so-calculated DLF.

d. Dynamic Module2 (Forced Vibration). As mentioned above, applying the
dynamic load factor (DLF) yields valuable estimates for determining the maximum
dynamic response of plates subjected to transient loads. However, for a more exact
computation one should utilize a more direct approach. For this purpose, the Har-
monic Analysis procedure (page 871–873) was selected for the WPP program system.

† See Sec. 14.1.



1012 About the CD

The conforming 16-DOF rectangular finite element† was employed in the pertinent
FORTRAN programs. It was also assumed that all nodal forces have the same time
dependency. The forcing function is expanded by using half-range Fourier series
expansion containing only sine terms (see Sec. A.1), as required in the harmonic
analysis procedure.

Again, it is recommended that the user of WPP forced vibration programs first
prints the corresponding User’s Guide, which gives detailed well-illustrated step-by-
step instructions for their application. As is the case with the static and free vibration
parts of WPP, the forced vibration cannot be run directly from the CD-ROM. Thus,
it must first be installed on one of the hard disks of the user’s computer by creating
a special folder for this purpose. Like the other parts of WPP, the Dynamic Module2
(folder WPP df) contains the following files: User’s Guide, FORTRAN source codes,
solved test problems, and WinPlatePrimer DF file. To activate the harmonic analysis
procedure, the user should click on the pertinent WPP df icon.

A first-time user of WPP DF should start with one of the solved test problems to
get familiarized with the application of programs. For this purpose, one should select
the OPEN command from the File menu and click on a solved program. Following
this action, on the left-hand hand side of the screen appears the input table filled with
corresponding node numbers, nodal coordinates, loading and boundary conditions,
etc. Simultaneously, the graphical representation of the plate problem in question is
shown on the right-hand side of the screen. The input data for the time dependency
of the forcing function includes the number of Fourier terms and the time steps used
in the corresponding expansion. Scrolling down to the end in the Time Dependency
column the user finds a command for PREVIEW FOURIER TRANSFORMATION
AND TERMS. By activating this command the result of this procedure is graphically
illustrated at the bottom of the screen.

Next, the SAVE AND COMPUTE command in the menu bar should be activated.
By clicking on DISPLACEMENTS in the menu bar, we obtain at the left-hand
side the results of the corresponding computation. However, to obtain the pertinent
graphical illustrations of the lateral displacements of the plate, one must click on
the dotted line at the left-hand side of the screen located right below the menu bar.
This dotted line graphically represents the time interval of the forcing function. As a
default, the results of the last time step are presented graphically on the right-hand
side of the screen, as shown in Fig. A.4.7. By clicking at some other location on this
dotted line, however, the results pertinent to the corresponding time step are presented.
The very same procedure should be used for obtaining the NODAL FORCES and
STRESS AT THE CENTER OF ELEMENTS. Figure A.4.7 illustrates the resulting
screen picture of such a computation. As in the case of static computation, one can
select in the View file the desired way for a graphic presentation. To obtain a hard
copy of the numerical results, the user should consult the User’s Guide.

In general, the procedure for solution of the dynamic response of a new problem
follows the above-described steps. Consequently, it sufficient to deal here only with
the apparent differences. Again, the user should click on the NEW in the File menu.
The fundamental deviation in the input procedure involves the consideration of the
time dependency of the forcing functions. For this purpose, the user should fill in the
table of Time Dependency, the activation command of which is under the menu bar
at the left-hand side of the screen. The required inputs are the number of time steps

† See Sec. 7.7.1.
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Figure A.4.7 Screen picture of the results.

and the pertinent ordinates of the time-dependent forcing function and the number
of Fourier terms to be used in the Fourier expansion. Please note that the first time
step must be zero. Again, it must be remembered that all cells in the input tables
must be filled in; otherwise the user cannot continue with the program. If there is
no input data, zero must be used. After completion of the inputs, [enter] should be
pressed to transfer these data to the computer. Click also on PREVIEW OF FOURIER
TRANSFORMATION to see the result of the already executed Fourier expansion of
the forcing function in graphical form. Then, activate SAVE AND COMPUTE to
solve the dynamic response of the plate in question. All other steps are identical to
those already described above.
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circular plates for, 51
higher order, 49–51
Mindlin, 47–49
Reissner, 49–51
Speare and Kemp simplification,

47
Moderately thick plates, solutions

of
buckling of, 963–965
conjugate plate analogy with,

124–125, 308–310,
450–452

Donnell’s approximation for,
310–312

energy methods with, 231–233
finite difference method with,

308–310
finite strip method for, 606–609
free vibration for, 839–831
Lévy’s approach with, 121–124
Navier method with, 120–121
Wang’s formula for, 841

Moment diagrams
approximate, 686, 713, 720, 731
reduction of, 582, 586, 684

Moments, internal
Kirchhoff plates in, 31, 44
moderately thick plates in,

46–48
orthotropic plates in, 509
sandwich plates of, 536
thermal bending in, 567,
Moment-sum, 34, 550, 930

Morley’s formula, 825, 880

N

Nádai, Á., 15, 16
Navier, L., 13

lecture notes of, 18
Newmark method, 873
Nonlinearity

combined, 656–661
geometric, 614–644
material, 645–655

Nonlinear solutions,
incremental-iterative
techniques, 657–661

Numbering of joint-points, 339
Numerical integration, 456–462

O

Orthogonality of functions, 201,
480

Orthotropic plates, 507–529

Note: The following letters refer to the boundary conditions of the plates: C = clamped, F =
free edge, S = simple supported edge.
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analysis procedures with
affine transformation, 766
buckling, 954–955
finite element method,

519–523, 528
finite difference method,

515–517, 526–528
gridwork method, 516
Lévy’s method, 524
Navier’s method, 523

differential equation of, 510
flexural rigidities of, 511–515
theory of, 508

P

Patch test, 591
Periodic functions, 987

even or odd harmonic, 989
Plate strips, 99–109

CS, uniform load, 106
S, concentrated force, 109
S, uniform load, 63, 107

Plate theories, static
elastic, 26–26
moderately thick, 45–51
thick, 53–57

Plates on elastic foundation, 129
Lévy solution, 132–135

S,concentrated force, 136–137
Navier solution, 130–132, 136

Poisson ratio, conversion of, 999
Polynomials for

rectangular finite elements,
396–406

triangular finite elements,
394–396

Postbuckling, 966–977
Potential energy. See also Energy

minimum of, 187, 384, 908
nonlinear, 627
postbuckling, in, 970
stiffened plates of, 958

Principal stresses, 34

Program system on CD-ROM
forced vibration, 1011–1013
free vibration, 1010–1011
static analysis, 1007–1010

Punching shear, 583, 747

R

Rayleigh’s method
quotient, with, 817, 825, 859,

921, 960
stability analysis, in, 920, 926,

958
vibration analysis, in, 816

Rectangular plates, free vibrations
of. See also Cases 146–154 of
Plate formulas on
accompanying CD

C, 821–823, 867
S, 805–807, 809, 828–830,

868–870
Rectangular plates, static solutions

of. See also Cases 74–105 of
Plate formulas on
accompanying CD

C, concentrated force, 229, 415,
430, 442

C, thermal load, 569
C, uniformly loaded, 194, 206,

223
S, concentrated force, 89, 348,

430
S, hydrostatic load, 74
S, parabolic load, 84
S, partially loaded, 90, 756
S, prismatic load, 269, 296
S, small area loaded, 88
S, triangular load, 192
S, uniformly loaded, 72, 79, 355
SC, sinusoidal load, 81
SC, uniformly loaded, 208, 218,

221, 271, 298
SF, concentrated force, 491

Note: The following letters refer to the boundary conditions of the plates: C = clamped, F =
free edge, S = simple supported edge.
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Rectangular plates, static solutions
of (continued )

SF, line load, 310
thermal load, 569

Reinforced concrete
models of, 662–667
orthotropy of, 508
rigidity of, 511

Reissner, E., 15, 18
Resonance, 792, 834
Richardson’s extrapolation formula,

265
Rigid body motions, 390
Ritz method in

dynamic analysis, 817–818, 821
large-deflection analysis, 620
postbuckling, 970
stability analysis, 922
static analysis, 187–195, 381

Robinson’s test, 593
Rotation of coordinate systems, 32,

330, 345, 382

S

Shape functions for finite elements
computed, 605
conforming, 390, 399, 403
finite plate strips, for, 478–481
moderately thick plates, for,

446–450, 456, 607
nonconforming, 390, 396, 407
polynomials, 392–405
requirements of, 389–392
triangular elements, for,

394–396, 424, 443
Shear correction factor, 48
Shear modulus, orthotropic, 509
Shear stresses, forces

inplane, 27–28
moderately thick plates of,

46–47, 49–50
orthotropic plates of, 510
sandwich plates of, 536

thermal, 564
transverse, 46–47, 49

Sign conventions, 7, 347, 387
Singularity, 65, 572
Skew plates, 546–559

analytical solution of, 547–548
numerical solution, approximate

methods for, 730–736
numerical solutions of, 549–559

Solution methods, classical
exact, 63, 66–67
generalization of Navier’s

approach, 92
homogeneous part of, 63
Lévy’s approach, 75–83, 85–87,

89–92
Navier’s approach, 69–75,

83–85, 87–89
particular part of, 65, 76

Spline finite strip method, 598–605
element stiffness matrix of, 603
formulation of, 600–604
load vector, for, 604
spline function, for, 598–600

Stress-strain curve, bilinear, 657
Stability analysis, analytical

approaches
basic concepts of, 905–910
bifurcation, in, 906
circular plates of, 914
dynamic approach, for, 909
energy methods for, 907–909,

919–928
equilibrium method for, 907,

911–919
snap-through in, 906
thermal buckling in, 961
under combined loads, 909–910

Stability analysis, numerical
methods

dynamic buckling in, 946–952
finite difference method with,

928–938

Note: The following letters refer to the boundary conditions of the plates: C = clamped, F =
free edge, S = simple supported edge.
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finite element method with,
938–943

gridwork method with, 943–946
Stiffened plates, buckling. See also

Cases 163–170 of Plate
formulas on accompanying CD

othotropic plates of, 954,
959–960

three or less stiffeners with, 955,
957

Stiffness matrices, explicit
finite strips of, 485–486
gridwork of, 333–334
membrane finite element of,

669
nonlinear for, 628–630
orthotropic finite element of,

520
rectangular finite elements of,

409, 420–422
spline strip of, 603
triangular finite element, 427

Stodola-Vianello iteration, 827,
848, 855, 897, 930, 940

Strain energy, 182
bending, in, 184, 187, 188
equivalence of, 324–328
membranes for, 184, 189–190,

620
sandwich plates of, 535

Strains, 29–30, 187, 373, 508
large deflections of, 616
spline strip method, in, 602
thermal, 563
vector for, 382, 388, 454, 482,

666
Stress

matrices, 436, 438, 439, 483,
521, 669

orthotropic, 509
resultants, 372, 378, 436–445,

509
sandwich plates, of, 536

spline strips of, 603
thermal, 563
vector, 384, 364

Strutt diagram, 950
Stüssi, F., 16, 285
Szilard, R., 65, 214, 226, 657

T

Taylor series, 263, 277
Thermal bending, 561–570

governing equations of, 562–566
methods of solution of, 566–570
thermal loads, for, 564
thermal stretching, 566

Thermal buckling, 961–963
Thermal expansion coefficient, 562
Thick plate elements, 453–457
Timoshenko, S. P., 15, 18, 19, 570,

657
Transformation matrices. See also

Rotation of coordinate systems
matrices, 330–345, 376, 382
rotation matrices, 32, 376

Triangular plates, analysis of. See
also Cases 108–110 of Plate
formulas on accompanying CD

exact, 63
finite difference method with,

274–275
gridwork method with, 351–355

U

Ultimate load technique. See also
Yield-line method

Unit motions of nodal points,
374–375, 403.

Units, SI
conversion factors, for, 1002
prefixes of, 1001

Use of plates in engineering
3–6

Note: The following letters refer to the boundary conditions of the plates: C = clamped, F =
free edge, S = simple supported edge.
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V

Variable thickness
circular plates of, 140–146
rectangular plates of, 139–140

Variational methods, 185–186
equation of plate bending in, 199
stability analysis in, 908.

Vehicle-bridge interaction,
890–892

Vibration, forced, analytical
solutions for, 830–834

irregular surface, due to, 835,
892–894

moving loads, due to, 835–836
Navier method 831–833
pulsating loads, due to, 837

Vibration, forced, numerical
methods. See also Dynamic
Module2, 1011–1013

finite element method, with,
870–878

harmonic analysis, 871–873,
880–882

Newmark’s method, 873–875
numerical integration,

873–882
Wilson’s method, 875–877

Vibration, free, numerical methods.
See also Dynamic Module1,
845–848, 1010–1011

finite difference, 845–856
finite element, 856–882
large amplitude, 895–899

Vibrations of plates, analytical
procedures

energy methods, 815–823
forced, 830–838
free, 789, 815–823
moderately thick plates of,

839–841
Morley’s formula, with, 825

Stodola-Vianello iteration, 827
using static deflections, 824–830

Vibrations of membranes
circular, 812–814
rectangular, 810–811

Vlasov’s method in
dynamic analysis, 818–821
large-deflection analysis,

619–621
static analysis, 200–206,

208–211

W

Wang, C. M., 126, 312, 841, 964
Wilson’s method, 875–877
Work

external forces of, 182, 215
internal forces of, 182, 215
virtual, 182, 383

Y

Yield-line analysis. See also Cases
120–136 of Plate formulas on
accompanying CD

assumptions, 742–747
concentrated forces, in, 770–780
continuous slabs, for, 764–769
combined loadings, for, 763
deflections, estimating, in,

748–750
equilibrium method, in,

758–763
nodal forces in, 760–761
superposition theorem in, 747,

763
work methods in, 751–757

Z

Zienkiewicz, O. C., 17, 366, 414,
518, 653

Note: The following letters refer to the boundary conditions of the plates: C = clamped, F =
free edge, S = simple supported edge.
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