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1. Introduction 

Making observations (measurements), and subsequent computations and analyses 

using them, are fundamental tasks of surveyors. Good measurements require a 

combination of human skill and mechanical/electronic equipment applied with the 

highest judgment.  

However, no matter how carefully made, observations are never exact and will 

always contain errors.  

Surveyors (Geomatics), whose work must be performed to existing standards, should 

therefore thoroughly understand the different kind of errors, their sources and 

expected magnitudes under varying conditions, and their manner of propagation. 

Only then can they select instruments and procedures necessary to reduce error sizes 

to within tolerable limits. 

Of equal importance, surveyors must be capable of assessing the magnitudes of errors 

in their observations so that either their acceptability can be verified or, if necessary, 

new ones made.  

The design of measurement systems is now practiced. Computers and sophisticated 

software are tools now commonly used by surveyors to plan measurements actions 

and to investigate and evaluate errors after results have been obtained. 

In the following paragraphs the measurement theory will be explained and practical 

examples will be offered in the field of Geomatics but the same concepts could be 

applied to each kind of measurements of physical quantities such as material 

composition, temperature, colours, mechanical properties, seismic actions, etc. 

2. Direct and indirect observations 

Observations may be made directly or indirectly.  

Direct measurements are the ones obtained by comparing the physical quantity to 

be measured with the unit of measurement and by counting how many of them are 

contained. This action could be performed by using ad-hoc instruments able to 

display in some way the number of units of measurement that are present in the 

quantity to be measured. 

Examples of direct observations are: applying a tape to a line, fitting a goniometer to 

an angle, or turning an angle with a total station. 

 

 

Figure 1 - Direct measurement examples 



Course GEOMATICS I – Measurement Theory 

 

 

Environmental Risk Assessment and Mitigation on 

Cultural Heritage assets in Central Asia 

              
ERASMUS+ CBHE Project nr. 609574 Page nr. 3 

 

Each instrument is characterized by its resolution: the resolution of an instrument is the 

minimum unit of measurement it is able to display. The operator can also try to 

increase the resolution of the instrument by estimating the portion of a unit of 

measurement (see the right image in Figure 1). 

The resolution must not be confused with the precision of the instrument: this property 

depends on many other factor that will be explained in the following chapters. 

When it is not possible to make a direct measurement (e.g. volume of a building, 

Cartesian coordinates of a point, etc.) it is necessary to use the indirect 

measurements.  

Indirect measurement are relationships between other physical quantities, which 

allow the estimation of a physical quantity by using some other physical quantities 

directly measured. 

A simple example is the measurement of the volume of a cube. By measuring directly 

the length of the side a of the cube, the volume V could be estimated by using the 

following relationship 

 

V = a3 (2.1) 

 

Many indirect observations are made in surveying, and since all measurements 

contain errors, it is inevitable that quantities computed from them will also contain 

errors. The manner by which errors in measurements combine to produce erroneous 

results is called error propagation.  

Before to continue it is necessary to point the attention to some glossary convention 

we started to use. Because of always-present errors in each kind of direct 

measurements, the results of direct measurements are called “observations” and the 

results of indirect measurements are called “estimations” of the quantity to be 

measured. 

3. Errors in measurements 

By definition an error is the difference between an observed/estimated value for a 

quantity and its true value: 

 

𝐸 = 𝑋 − 𝑋̅ (3.1) 

 

where E is the error in an observation/estimation, X the observed value and 𝑋̅ its true 

value. 

It can be unconditionally stated that:  

• no observation/estimation is exact; 

• every observation/estimation contains errors; 

• the true value of an observation/estimation is never known; 

• the error present is always unknown. 

These facts are demonstrated by the following considerations and examples. 

When a distance is directly measured with a scale divided into millimetres, the 

distance can be read only to tenth of millimetre (by interpolation). If a better scale 
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graduated in tenth of a millimetre is available and read under magnification, 

however, the same distance can be observed to hundreds of millimetres and so on. 

Obviously, the resolution of observations depends on the scale’s division size, reliability 

of the equipment used, and human limitations in estimating closer than about one-

tenth of a scale division.  

As better equipment is developed, observations more closely approach the true 

value of the measured quantity, but they can never be exact.  

Note that observations, not counts (of cars, pennies, marbles, or other objects) are 

under consideration here. 

If one try to measure (both in direct and indirect way) many times the same quantity 

(length, angle, surface, temperature, etc.) all the results are in general different.  

The physical interpretation of this phenomenon is that the measurement is not a 

number but a physical experiment which is influenced by four factors: 

• the man/woman who make the measurements: he/she could be more or less 

skilled, more or less concentrated; 

• the instrument used: could be more or less precise, offering more o less 

resolution;  

• the physical materialization of the quantity to be measured: could be defined 

in different ways. Figure 2 shows the different meaning of the length of a side 

of the polygon which has rounded corners (see. Figure 2);  

• the environmental conditions where the measurements is performed: could be 

more or less advantageous to allow the operator to work in a comfortable way, 

to allow the instrument to run in a more or less correct way. 

 

Figure 2 – Materialization of the physical quantity to be measured 

3.1 Sources of errors in  making observations 

The total error E (see eq. 3.1) can be interpreted by considering their different origin 

as follow. 

Natural errors are caused by variations in wind, temperature, humidity, atmospheric 

pressure, atmospheric refraction, gravity, and magnetic declination. An example is a 

steel tape whose length varies with changes in temperature. 

Instrumental errors result from any imperfection in the construction or calibration of 

instruments and from the movement of individual parts. For example, the graduation 
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on a scale may not be perfectly spaced or the scale may be warped. The effect of 

many instrumental errors can be reduced, or even eliminated, by adopting proper 

surveying procedures or applying computed corrections. 

Personal errors arise principally from limitations of the human senses of sight and touch. 

As an example, a small error occurs in the observed value for a horizontal angle if the 

vertical crosshair is a total station instrument is not aligned perfectly on the target, or 

if the target is the top of a rod which is being held slightly out of plumb. 

Form a statistical point of view it is not important to discuss about the causes of the 

errors but the analysis has to be concentrated on the possibility to skip or eliminate 

them in some way. 

By using this second possible classifications the total error E (see eq. 3.1) contains gross 

errors, systematic errors, and random errors. 

3.2 Gross errors  

These are observer blunders and are usually caused by misunderstanding the 

problem, carelessness, fatigue, missed communication, or poor judgment.  

Examples include: manual transcription of numbers, such as recording 73.96 instead 

of the correct value of 73.69; reading an angle counterclockwise but indicating it as 

clockwise angle in the field notes; sighting the wrong target, etc.  

They can be avoided by employing expert surveyors, who know how to pay all their 

attention and expertise during the execution of the measurements.  

Gross errors must be detected by careful and systematic checking of all work, and, in 

case, by repeating some or all of the measurements.  

Usually gross errors are easy to be individuated by expert surveyors but, sometimes, 

their amount is so small that their influence on the observations cannot be detected. 

In this case robust statistical estimators can be used to find out small gross errors1. 

3.3 Systematic errors 

Systematic errors, also known as biases, result from factors that include the “measuring 

system” and include the environment, the instrument, and the surveyor.  

So long as system conditions remain constant, the systematic errors will likewise remain 

constant. If conditions change, the magnitudes of systematic errors could also 

change.  

Conditions producing systematic errors conform to physical laws that can be 

modelled mathematically.  

Thus if the conditions are known to exist and can be observed, a correction can be 

computed and applied to observed values.  

An example of a constant systematic error is the use of a 10 m steel tape that has 

been calibrated and found to be 0.01 m too long. It introduces a 0.01 m error each 

time it is used, but applying a correction readily eliminates the error.  

An example of variable systematic error is the change in length of a steel tape 

resulting from temperature differentials that occur during the period of the tape’s use. 

If the temperature changes are observed, length corrections can be computed by a 

simple formula and then eliminated from the achieved measure. 

 
1 Olive, David J. "Applied robust statistics." Preprint M-02-006 (2008). 
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A second possibility sometime used is the adoption of specific operating strategies 

which allow the elimination of systematic errors also without knowing their amount. 

Some examples are the Bessel’s rule used for the measurement of horizontal directions 

with total stations, relative positioning in Global Navigation Satellite Systems, etc. 

3.4 Random errors 

Random errors are those that remain in measured values after gross and systematic 

errors have been eliminated.  

They are caused by factors beyond the control of the observer, and are sometimes 

called accidental errors.  

They are present in all surveying observations. The magnitude and algebraic signs of 

random errors are matter of chance. There is no absolute way to compute or 

eliminate them.  

Random errors are also known as  compensating errors, since they tend to partially 

cancel themselves in a series of observations. For example a person interpolating to 

tenths of a millimetres on a tape graduate only to millimetres will presumably estimate 

too high on some values and too low on others.  

However, individual personal characteristics may nullify such partial compensation 

since some people are inclined to interpolate high, others interpolate low, and many 

favour certain digits (e.g. 7 instead of 6 or 8, 3 instead of 2 or 4, and particularly 0 

instead of 9 or 1. 

If a big number of measurements are acquired and if all the gross and systematic 

errors are not present, the obtained results show small differences and their relative 

frequencies seems to assume a constant value when the number of observation 

increases.   

Actually each time that a new measurements are added the relative frequencies 

change but the variations are every time smaller. 

This physical phenomenon is known as the “empirical random law” and the values 

towards the relative frequencies seems to point at, are called “probabilities”. This 

trend is called “stochastic trend” and it is not similar to the well-known deterministic 

trend of a continuous functions toward its limits. 

 

 

Figure 3 – Deterministic and stochastic trends 

 

But a problem still exists!  

Which is the measure of a quantity if every time new values are obtained? In 

engineering and architecture applications we need a practical solution and just a 

number which can represent the measure of a quantity. 

If we want to solve this problem we have to find a mathematical model able to give 

us the possibility to manage this phenomenon and to find out a practical solution.  

The central theorem of the Statistics says: “If a phenomenon is affected only by 

deterministic trend stochastic trend
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random errors and no one of them has a significant difference in  magnitude against 

the others the distribution of the probabilities can be described by the Gauss’s 

distribution of probability”. 

Let us consider 100 measurements acquired by eliminating all the gross and 

systematic errors. 

 

Value Nr. Of obs. Value Nr. Of obs. Value Nr. Of obs.  classes range Abs.Freq. Rel.Freq.  

19.5 1 23.8 2 26.3 1  A 19.5-20.2 2 0.02  

20 1 23.9 3 26.5 1  B 20.3-21.0 2 0.02  

20.5 1 24 5 26.6 3  C 21.1-21.8 3 0.03  

20.8 1 24.1 3 26.7 1  D 21.9-22.6 7 0.07  

21.2 1 24.3 1 26.8 2  E 22.7-23.4 10 0.10  

21.3 1 24.5 2 26.9 1  F 23.5-24.2 17 0.17  

21.5 1 24.7 3 27 1  G 24.3-25.0 13 0.13 
Table 1 - List of the results 

of 100 measurements 

and their classification 

22.1 2 24.8 3 27.1 3  H 25.1-25.8 14 0.14 

22.3 1 24.9 2 27.4 1  I 25.9-26.6 10 0.10 

22.4 1 25 2 27.5 2  L 26.7-27.4 9 0.09 

22.5 2 25.1 3 27.6 1  M 27.5-28.2 6 0.06 

22.6 1 25.2 1 27.7 2  N 28.3-29.0 4 0.04  

22.8 2 25.4 1 28 1  O 29.1-29.8 2 0.02  

23 1 25.5 2 28.6 2  P 29.9-30.8 1 0.01  

23.1 2 25.7 3 28.7 1   ∑ 100 1.00  

23.2 2 25.8 4 29 1       

23.3 3 25.9 2 29.4 1       

23.6 2 26.1 1 29.7 1       

23.7 2 26.2 2 30.8 1       

TOTAL NUMEBR OF OBSERVATIONS 100       

 

We classified all the obtained results by using 14 different ranges of values (indicated 

above with capital letters).  

If we draw a bar diagram we obtain the following graphical description of the 

measurements. 
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Figure 4 - Graphic representation of the measurements 

Also by considering only 100 measurements it is possible to observe that a Guass’s 

probability distribution can be assumed as a mathematical model for the physical 

phenomenon. 

As a conclusion we can state that if we are sure that all the gross and systematic errors 

are eliminated from our measurements, the random errors which affect our 

measurements are normally distributed.  

It means also that the measurements is conceived, from a mathematical point of 

view, as a random extraction from an infinite set of possible values.  

To be sure that all gross and systematic errors are not present in our measurements we 

have to take care about the people and instruments involved in the measurement: 

therefore the surveyor has to know in the best possible way the instrument, its 

systematic errors, and the strategies to be adopted to eliminate them and has to pay 

the highest attention during the measurements in order to avoid gross errors. 

4. The Guass’s probability distribution 

The equation of the Gauss’s probability distribution is expressed by: 

 

𝑓(𝑥) =
1

√2𝜋𝜎2
∙ 𝑒

−
(𝑥−𝑚)2

2𝜎2  
(4.1) 

 

where m is the mean and σ2 is the variance of the population. 

 

Figure 5 – The Gauss’s distribution of probability 

The Gauss’s distribution of probability (also called normal distribution) is symmetrical 

with respect to the mean value m and therefore the mean m is the most probable 

value of the distribution itself. 

The normal distribution has an inflection point which distance from the axe of the 

symmetry is equal to the square root of the variance: this parameter is called mean 

square error (m.s.e.) 

The area defined by the function between two specific values represent the 

m 
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probability that a random extraction described by the normal distribution could be 

contained inside the considered range. As a consequence: 

 

∫ 𝑝(𝑥)
+∞

−∞

= ∫
1

√2𝜋𝜎2
∙ 𝑒

−
(𝑥−𝑚)2

2𝜎2

+∞

−∞

= 1 
(4.2) 

 

Figure 6 shows the probability of some interesting ranges for a normal distribution. 

 

 

Figure 6 - Relation between error and percentage of area under normal distribution curve 

 

By observing Figure 6 we can state: 

• the probability of a random extraction from a normal distribution inside the 

range m ± σ is equal to 68.26%  

• the probability of a random extraction from a normal distribution inside the 

range m ± 2σ is equal to 95.40% 

• the probability of a random extraction from a normal distribution inside the 

range m ± 3σ is equal to 99.74% 

As a consequence we can state that if a measurement phenomenon is described by 

a normal distribution of given m and σ, the probability to obtain a result which differs 

from the mean less than σ is of about 68.26% while the probability to obtain a result 

with a difference lower than 2σ is of about 95.4%. Finally the probability to obtain a 

result with a difference lower than 3σ is of about the 99.7%. 

From a  practical point of view, if a measurement is completely free of gross and 

systematic errors every measure gives a value that is far from the mean less than 3σ.  

This conclusion satisfy the apparent incongruence between a real measurement, 

which values are discreet due to the resolution of the used instrument and limited in 

value by the true dimension of the measured quantity, and the normal distribution 

values which can range between -∞ and + ∞ in a continuous range. 

The m.s.e. indicates in which way the possible values are distributed around the mean: 

a big value of m.s.e. indicates that the obtained values are far from their mean. 

Therefore, the m.s.e. can be assumed as an indicator of the so called “precision” of a 



Course GEOMATICS I – Measurement Theory 

 

 

Environmental Risk Assessment and Mitigation on 

Cultural Heritage assets in Central Asia 

              
ERASMUS+ CBHE Project nr. 609574 Page nr. 10 

 

measurement experiment: the lower the m.s.e. the higher the precision (see Figure 7). 

In fact the lower the m.s.e the higher is the probability that a random extraction is 

close to the mean. 

 

 

Figure 7 – Gauss’s distribution of probability with different m.s.e. 

5. Precision and accuracy 

A discrepancy (or residual) is the difference between two observed values 

(measurements) of the same quantity.  

A small discrepancy indicates there are probably no gross errors and random errors 

are small. However, small discrepancies do not preclude the presence of systematic 

errors. 

Precision refers to the degree of refinement or consistency of a group of observations 

and is evaluated on the basis of discrepancy size.  

If multiple observations are made of the same quantity and small discrepancies result, 

this indicates high precision.  

The degree of attainable precision is dependent on equipment resolution and 

surveyor skill.  

The m.s.e. of the normal distribution which describes the measurement experiment, is 

the parameter mostly used to define the precision: a small m.s.e. means high precision 

and, on the contrary, high values of m.s.e. indicate low precisions. 

 

 

Figure 8 - Examples of precision and accuracy: a) Results are precise but not accurate. b) 

Results are neither precise nor accurate. c) Results are both precise and accurate. 
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The term “accuracy” is defined as the absolute nearness of measured quantities to 

their true values.  

It is measured by means of “tolerance”: the highest the tolerance the lowest the 

accuracy of a measurement.  

While m.s.e. can be estimated starting from a set of observations (as we will see in the 

following paragraphs), the tolerance of a set of measurements can be estimated only 

by comparing the obtained results with a set of measurements characterized by an 

higher precision (e.g. to estimate the tolerance of a set of measurements with a 

precision of about 1 cm, a set of measurements with a precision of almost 1 mm has 

to be used to estimate the accuracy).  

The difference between “precision” and “accuracy” is best illustrated by Figure 8. 

By considering the definitions of precision and accuracy, it seems that a relationship 

between the two properties of the measurement do not exist but in practical surveys 

it is not true. 

Remembering that a set of observations free from gross and systematic errors give 

results at a certain probability inside a known range (see par. 4) we can say that by 

accepting a probability of about 95% the accuracy of a set of observations is two 

times the m.s.e. of the measurement, and by accepting a probability of about 99% 

the accuracy of a set of observations id three times the m.s.e. of the measurement. 

The main goal of a surveyor is to obtain measurements that are at the same time 

precise as much as needed to guarantee the required accuracy. 

The accuracy is usually fixed by the final user of the survey (e.g. engineer, architect, 

geologists, etc.); knowing it the surveyor know that he has to obtain measurement 

with a minimum precision defined by the above described conventions. 

Let us consider an example: the final user ask for an accuracy (maximum difference 

between the metric survey and the real surveyed object) of 5 cm at 95% of probability. 

The surveyor knows that he/she have to obtain the final measurements with a m.s.e. 

not greater than 2.5 cm. Considering those values the surveyor is able to select in 

which way he/she has to make the measurement (survey’s schemes, instruments to 

be used, etc.). 

As it was stated many times in previous paragraphs, the surveyor, to be able to 

guarantee that at the end of all the measurement acquisitions and treatments he/she 

will reach the foreseen precision, has to be skilled, concentrated on his work and able 

to use the ad-hoc instruments in the best possible way to be sure that no gross and 

systematic errors will affect his/her measurements. 

6. Mean and m.s.e. estimation 

The true values of the mean and m.s.e. of the normal distribution which describes a 

measurement can be exactly known only if an infinite number of measurements could 

be done.  

Therefore, in practice, the surveyor do not has the possibility to know exactly the 

values of the parameters of the normal distribution because only a limited number of 

measurements can be done in reality.  

In addition we have to consider that in real surveys the surveyor do not have time and 

money to waste, but, at the same time, they need to know in the best possible way 

the fundamental parameters of the normal distribution associated to their 
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measurements: the mean is the value that will be used in the procedures that follow 

the measurements acquisition (3D modelling) and the m.s.e. will certify the quality of 

the measurements and the achievement of the foreseen tolerances. 

After all this considerations practical procedures which allow to estimate in the best 

possible way the mean and the m.s.e of a normal distribution have to be defined by 

using only a small amount of observations. 

The mean and the m.s.e of the Gauss’s distribution of probability which describes a 

measurement can be “estimated” in the best possible way by using the so called 

“estimators”. The estimators are equations which, by considering the results of the 

achieved observations (O1, O2,…,On) are able to give back the best estimation of the 

statistical parameter (e.g. mean or m.s.e.). 

The estimators have to satisfy some conditions to be useful for the estimation of the 

Gauss’s distribution parameters. 

The estimators must be: 

• consistent 

• efficient 

• not biased 

The Statistics affirms that if each observation could be interpreted as a random 

extraction  from a normal distribution, also the estimators make a random extraction 

form a normal distribution. 

The normal distribution of the estimators has its own mean (me) and m.s.e. (m.s.e.e). 

An estimator is consistent if, by considering the possibility to use an infinite number of 

measurements, it will give the theoretical value of the estimated parameter. 

An estimator is efficient if the m.s.e.e of the normal distribution of the estimator has the 

minimum value. 

An estimator is not biased if the me of the normal distribution of the estimator coincides 

with the theoretical value of the estimated parameter (e.g. the mean of the normal 

distribution of the mean’s estimator must coincides with the theoretical value of the 

mean of the observations). 

6.1 The maximum likelihood principle 

To define a possible estimator the maximum likelihood principle is normally used. This 

principle says that the measurements that are used to estimate a parameter have the 

maximum probability. 

Let us consider the probability f(x) (see eq. 4.2) of the observations x1, x2, …, xn 

randomly extracted from a Gauss’s distribution. The probability of each value is 

expressed by the following: 

 

𝑑𝑝𝑖 = 𝑓(𝑥𝑖) ∙ 𝑑𝑥 (6.1) 

 

The probability of all the n observations is expressed by: 

 

𝑃 = 𝑓(𝑥1) ∙ 𝑓(𝑥2) ∙ 𝑓(𝑥3) ∙ ⋯ ∙ 𝑓(𝑥𝑛) ∙ 𝑑𝑥𝑛 (6.2) 

 

If the theoretical parameters are known the total probability will assume a unique 
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value P*, but actually those parameters are not known so the total probability of a set 

of observations changes its value each time a new set of observations is considered.  

Since the equation (6.2), it is possible to look for the maximum value of P and 

considering the possible estimator as the one which assumes that the obtained 

observations are “the best possible ones” (e.g. they have as a whole the maximum 

probability). 

If we assume as distribution parameter estimations the ones who maximize the 

probability of the set of observations used to estimate the parameters themselves, it 

means that the set of  n observations is considered the most probable among all the 

possible sets of n extraction. 

If the f(x) is the one of the normal distribution: 

 

𝑓(𝑥𝑖) =
1

√2𝜋𝜎2
∙ 𝑒

−
(𝑥𝑖−𝑚)2

2𝜎2  (6.3) 

 

the probability of a set of n random extraction from the normal distribution defined in 

(6.3) is: 

 

𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝑚, 𝜎2) =
1

(2𝜋𝜎2)𝑛 2⁄
𝑒

−
1

2𝜎2 ∑ (𝑥1−𝑚)2𝑛
𝑖=1 ∙ 𝑑𝑥𝑛 (6.4) 

 

The maximum of the probability P coincides with the minimum of the exponent of the 

second term. Therefore the maximum of P is reached when: 

 

∑(𝑥𝑖 − 𝑚)2 =

𝑛

1=1

∑ 𝑣2 =

𝑛

1=1

 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (6.5) 

 

The (6.5) is the analytical expression of the so called “least square principle”.  

The least squares principle says that the maximum of the probability of a set of n 

observations is reached when the sum of the squares of the differences (residuals) 

between each observed values and the theoretical mean of the Guass’s distribution 

of probability from where the observations have been extracted, is minimum. 

The respect of the least square principles do not guarantee that the obtained 

equation is a good estimator because it is not always true that the obtained equation 

is also consistent, efficient, and not biased.  

The equation obtained by applying the least square principle could be considered as 

a first tentative to obtain an estimator but the main properties of the estimators must 

be verified case by case. 

Using the least square principle (that is the application of the maximum likelihood 

principle to a Gauss’s distribution of probability) means that the survey has to 

guarantee that his/her observations are extractions from a Gauss’s distribution of 

probability. Therefore all the observations have to be free from gross and systematic 

errors. 
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In the following paragraphs we will define the best estimators (consistent, efficient and 

not biased) for the mean and the variance of the normal distribution of different kind 

of measurements (e.g. direct and indirect). 

6.2 Direct observations with same precision2 

A surveyor make n direct observations of the same physical quantity (e.g. a length) in 

the same operative conditions, by using the same instrument, with the same 

materialisation of the measured physical quantity:  x1, x2,…,xn are the results of the 

obtained observations. 

From a statistical point of view if all the gross and systematic errors have been 

eliminated and if all the random errors are of the same levels, each measurement can 

be interpreted as a random extraction of n values from a normal distribution. 

Now, the mean and the variance of the normal distribution have to be estimated. 

In order to find out an estimator for the mean, let us use the maximum likelihood 

principle (e.g. the least squares principle): in mathematical terms we have to find the 

value 𝑚̅ which make minimum the (6.5): 

 

∑(𝑥𝑖 − 𝑚)2

𝑛

1=1

= 𝑚𝑖𝑛 (6.6) 

 

As known the minimum of a function is where the its first derivative is equal to zero and 

the second derivative is positive.  

Looking for the point where the first derivative of (6.6) is null it is possible to define the 

possible estimator for the mean of the normal distribution of a set of observations with 

same precision: 

 

−2 ∑(𝑥𝑖 − 𝑚̅) = 0      →     

𝑛

1=1

∑ 𝑥𝑖 − 𝑛𝑚̅ = 0   →    𝑚̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛

𝑛

1=1

 (6.7) 

 

which is the well-known arithmetic mean of a series of numbers. 

To assume the arithmetic mean as the estimator of the mean of a set of observations 

with same precision,  the consistency, efficiency, and not biased properties have to 

be verified.  

Let us introduce the operator M which, applied to a probability distribution, extracts 

the theoretical mean.  

Applying the operator M to the (6.7): 

 

 
2 If one of the conditions listed in par.3 (surveyor, instrument, environmental conditions, and materialization of 

the quantity to be measured) changes, the observations have be considered as random extractions from different 

Gauss’s distribution of probability. The observations obtained by changing also just one of the measurement 

conditions are considered observations of different precisions (e.g. extracted from different Gauss’s distribution 

of probability). 
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𝑀(𝑚̅) =
1

𝑛
{𝑀[𝑥1] + 𝑀[𝑥2] + ⋯ + 𝑀[𝑥𝑛]} =

𝑛 ∙ 𝑚

𝑛
= 𝑚 (6.8) 

 

Therefore we can say that the arithmetic mean, if the number of observations is 

infinite, will give us the theoretical mean and it is not biased because the mean of the 

estimator is equal to the mean of the observations.  

It is also possible to demonstrate that the arithmetic mean is efficient (e.g. its variance 

is the minimum among all the possible estimators of the mean) and finally we can 

conclude by saying that: the best estimator for the mean of the normal distribution 

which describes the physical experiment of direct measurements performed by a 

unique operator, with the same instrument and in the same operative conditions, is 

the arithmetic mean. 

By considering the rules of the combination of many normal distribution we can state 

that the variance of the distribution of the means of n values is: 

 


    

m
n

n

n n

2

2 2 2

2

2

2

2

=
+ + +

= =
...

 (6.9) 

 

 

 Distribution of the 

mean of n values 

Distribution of 

single values 

x1 x2 x3 x4 

 

Figure 9 – Normal distributions of direct measurements and of the arithmetic mean 

 

This demonstrates that making n observations is equivalent to make one observation 

with a variance that is in a ratio of 1/n. Therefore the arithmetic mean, is an indirect 

measurement, and it is more precise than the extraction of a single value. 

To estimate the variance we assume as possible estimator the following equation 

extracted from (6.9) 

 

𝑠2 =
1

𝑛
∑(𝑥𝑖 − 𝑚̅)2

𝑛

𝑖=1

 (6.10) 
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If in (6.10) the theoretical mean m is added and subtracted: 

 

𝑠2 =
1

𝑛
∑(𝑥𝑖 − 𝑚 + 𝑚 − 𝑚̅)2 =

1

𝑛
∑(𝑥𝑖 − 𝑚)2 +

1

𝑛
∑(𝑚 − 𝑚̅)2 +

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

2

𝑛
∑(𝑥𝑖 − 𝑚) ∙ (𝑚 − 𝑚̅)

𝑛

𝑖=1

 

 

But: 

1

𝑛
∑(𝑚 − 𝑚̅)2 =

𝑛

𝑖=1

(𝑚 − 𝑚̅)2 

 

and: 

2

𝑛
∑(𝑥𝑖 − 𝑚) ∙ (𝑚 − 𝑚̅)

𝑛

𝑖=1

=
2

𝑛
(𝑚 − 𝑚̅) ∑(𝑥𝑖 − 𝑚)

𝑛

𝑖=1

=
2

𝑛
(𝑚 − 𝑚̅) ∙ (∑ 𝑥𝑖

𝑛

𝑖=1

− 𝑛𝑚)

=
2

𝑛
(𝑚 − 𝑚̅) ∙ (𝑛𝑚̅ − 𝑛𝑚) = −2(𝑚̅ − 𝑚)2 

Therefore: 

 

𝑠2 =
1

𝑛
∑(𝑥𝑖 − 𝑚)2

𝑛

𝑖=1

− (𝑚̅ − 𝑚)2 (6.11) 

 

Inserting the operator M it is possible to verify the mean of s2 is equal to the 

theoretical variance of the measurement’s distribution: 

 

𝑀[𝑠2] =
1

𝑛
∑ 𝑀[(𝑥𝑖 − 𝑚)2]

𝑛

𝑖=1

− 𝑀[(𝑚̅ − 𝑚)2] =
1

𝑛
𝑛𝜎2 −

𝜎2

𝑛
= 𝜎2

𝑛 − 1

𝑛
 (6.12) 

 

It is possible to observe that the theoretical mean of s2 do not coincides with σ2 

therefore the adopted estimator (6.10) is biased.  

To obtain a not biased estimator of the variance the (6.10) must be modified 

 

𝜎2̅̅ ̅ =
∑ (𝑥𝑖 − 𝑚̅)2𝑛

𝑖=1

𝑛 − 1
 (6.13) 

 

It is possible to demonstrate that this solution is consistent and efficient. 

In the same way we can state that the variance of the mean of n measurement is 

expressed in the following way: 

 

𝜎2̅̅ ̅ =
∑ (𝑥𝑖 − 𝑚̅)2𝑛

𝑖=1

𝑛(𝑛 − 1)
 (6.14) 
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Looking at (6.13) and (6.14) a variance near to 0 can happen if the extracted values 

are very close (the variance depends on the discrepancies between each 

measurements and the estimated mean) or when the number n of measurements 

used is very high.  

The last case is not true!  

Each instrument is characterized by means of a calibration certificate which define 

which is the minimum m.s.e. that it is possible to reach by using in the best possible 

way that instrument: the so called instrumental m.s.e.  

If the estimated variance computed using the (613) and (6.14) is lower than the 

instrumental variance, the instrumental m.s.e. is assigned to the set of observations. 

By concluding to directly measure a quantity the surveyor has to make n observations  

and the result of the measurement is expressed by 

 

𝐿 = 𝑚̅ ± 𝜎̅𝑚̅ (6.14) 

 

The symbol “±” has not a specific meaning: it just separates the estimated mean form 

the estimated m.s.e. of the mean: the maximum possible variation of the estimated 

mean (with a probability of 99.7%) is ±3𝜎̅𝑚̅ and the maximum possible variation ( with 

the 99.7% of probability) of a single measurement is ±3𝜎̅. 

If only one observation is achieved, the obtained value is an estimation of the mean 

but it is not possible to estimate the m.s.e.  

Sometimes this solution is adopted (e.g. in detail survey) but only when the surveyor 

has the possibility to check (by its experience and skill) that no gross or systematic 

errors can be present. 

6.3 Direct observations with different precision 

A set of direct measurements can be conceived as a random extraction from a 

unique distribution of probability if the surveyor, the instruments, and the operative 

conditions do not change.  

The observations made in different conditions are interpreted a random extractions 

from different normal distributions which have the same theoretical mean because 

they refer to the same physical quantity. 

When a set of direct measurements of the same quantity are judged coming from 

different distributions, an alternative approach to the one previously described must  

be adopted. 

Let as suppose that the measurement of a quantity has been performed n times with 

n different instruments and/or in n different operative conditions and O1, O2 …, On are 

the results of these observations.  

From a statistical point of view it is possible to say that each observation comes from 

a distribution which has the same mean but different m.s.e. and from each of them a 

set (or just one) random extraction have been done.  

In case of many extractions from a unique distribution, a first estimation of the variance 

𝜎𝑖
2 is possible while in case of only one observation from a unique normal distribution 

it is not possible. 

Each observation give a first estimation of the mean of all the distributions involved in 
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the measurement process but obviously, they offer, in general, different estimations of 

the mean.  

To solve this problem the estimations of the mean and of the variance, by considering 

all the obtained results, have to be pursued.  

These estimations have to consider the different precision of each observation: the 

bigger the precision of a single observation the bigger will be the influence of the 

observation itself inside the estimation process. 

In practical cases, two different possibilities can rise up: 

• the variance of each observation is known 

• the ratio between the different precisions is know 

In the last case, the knowledge of the ratios between the precisions of the 

observations can be solved in numerical terms by adopting the concept of “weight”.  

The weight of an observation is the ratio between the variance of an ideal distribution 

with a weight equal to 1, and the variance of the considered distribution: 

 

𝑤𝑖 =
𝜎0

2

𝜎𝑖
2 (6.15) 

 

where 𝜎0
2 is an unknown arbitrary constant and represent the variance of an ideal 

distribution to which a weight equal to 1 has been assigned: it is called the unit weight 

variance. 

It is possible to fix the weights just by considering instruments and operative conditions 

of each of the observations.  

As an example, if two observations have been realized by using two different 

instruments and the first one has an instrumental m.s.e., which is twice the instrumental 

m.s.e. of the second instrument, a weight 1 is assigned to the first observation (the one 

coming from the first instrument) and a weight 2 to the second observation. In this 

case, the second observation, coming from the best instrument, will influence more 

the final estimation than the first one.  

In the following, the best estimators for mean and variance in this particular case are 

described. 

As in previous paragraph, the maximum likelihood principle is used to obtain a possible 

estimator for the mean.  

The probability density for a single observation, by considering its weight is: 

 

𝑓(𝑂𝑖) =
1

√2𝜋𝜎𝑖
2

∙ 𝑒
−

(𝑂𝑖−𝑚)2

2𝜎𝑖
2

=
1

√2𝜋𝜎𝑖
2

∙ 𝑤
𝑖

1
2⁄

∙ 𝑒
𝑤𝑖

2𝜎0
2∙(𝑂𝑖−𝑚)2

 (6.16) 

 

Therefore, the probability of all the measurements is 
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𝑃(𝑂1, 𝑂2, ⋯ , 𝑂𝑛) =
(𝑤1, 𝑤2, ⋯ , 𝑤𝑛)

1
2⁄

(2𝜋𝜎0
2)

𝑛
2⁄

∙ 𝑒
−

1

2𝜎0
2 ∑ 𝑤𝑖(𝑂𝑖−𝑚)2𝑛

𝑖=1
∙ 𝑑𝑥𝑛 (6.17) 

 

Independently form the value of 𝜎0
2, the maximum of the probability of all the 

measurements involved in the estimation procedure is obtained when 

 

∑ 𝑤𝑖(𝑂𝑖 − 𝑚)2 = 𝑚𝑖𝑛

𝑛

𝑖=1

 (6.18) 

 

Therefore, a possible estimator of the mean 𝑚̅𝑤 (weighted mean)is: 

 

−2 ∑ 𝑤𝑖(𝑂𝑖 − 𝑚̅𝑤) = 0 → 𝑚̅𝑤 =
𝑤1𝑂1 + 𝑤2𝑂2 + ⋯ + 𝑤𝑛𝑂𝑛

𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛

𝑛

𝑖=1

 (6.19) 

 

The (6.19) is a real estimator because it is possible to demonstrate that it is consistent, 

efficient and not biased.  

The estimated mean is called “weighted mean”.  

If the weights are multiplied by a constant value, the weighted mean do not change: 

this is a corroboration to the fact that 𝜎0
2can assume any arbitrary value if the 

variances of the observations are not known at the beginning of the estimation 

process. 

By changing the set of observations O1, O2 …, On the weighted mean is a single 

random extraction from a distribution which has m as theoretical mean. 

To find out a possible estimator for the variance in this particular case, let us apply 

the composition rule of the random variables to the (6.19). 

 

𝜎̅𝑚̅𝑤

2 = (
𝑤1

∑ 𝑤𝑖
𝑛
𝑖=1

)

2

∙ 𝜎̅1
2 + (

𝑤2

∑ 𝑤𝑖
𝑛
𝑖=1

)

2

∙ 𝜎̅2
2 + ⋯ + (

𝑤𝑛

∑ 𝑤𝑖
𝑛
𝑖=1

)

2

∙ 𝜎̅𝑛
2 =

∑ 𝑤𝑖
2 ∙ 𝜎̅𝑖

2𝑛
𝑖=1

(∑ 𝑤𝑖
𝑛
𝑖=1 )

2  (6.20) 

 

The (6.20) is consistent, efficient and not biased and solve the problem of the 

weighted mean variance estimation if the variances of the single observations are 

known since the beginning (e.g. because they are the results of a set of direct 

observations with same precision). 

In the second case, when only weights are known and assigned to each observations 

by considering the different conditions under which the observations have been 

obtained,, it can be noticed that 

 

𝜎𝑖
2 =

𝜎0
2

𝑤𝑖
 

therefore: 
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𝜎̅𝑚̅𝑤

2 =
∑ 𝑤𝑖 ∙ 𝜎𝑜

2𝑛
𝑖=1

(∑ 𝑤𝑖
𝑛
𝑖=1 )

2 = 𝜎𝑜
2 ∙

∑ 𝑤𝑖
𝑛
𝑖=1

(∑ 𝑤𝑖
𝑛
𝑖=1 )

2 =
𝜎𝑜

2

∑ 𝑤𝑖
𝑛
𝑖=1

 (6.21) 

 

The 𝜎0
2 has to be estimated in some way: this is possible by using the same set of 

observations used to estimate the weighted mean. It must be noticed that by 

changing the set of n observations, also the estimation of the 𝜎0
2 will change therefore 

𝜎0
2 is a random variable described by a normal probability distribution. 

To extract a possible estimator of 𝜎0
2 the maximum likelihood principle is used.  

In this case, it is convenient to introduce the natural logarithm of the probability of the 

whole set of observations (6.17): 

 

𝑃(𝑂1, 𝑂2, ⋯ , 𝑂𝑛) =
(𝑤1, 𝑤2, ⋯ , 𝑤𝑛)

1
2⁄

(2𝜋𝜎0
2)

𝑛
2⁄

∙ 𝑒
−

1

2𝜎0
2 ∑ 𝑤𝑖(𝑂𝑖−𝑚)2𝑛

𝑖=1
∙ 𝑑𝑥𝑛 

𝑙𝑛𝑃 =
1

2
𝑙𝑛(𝑤1 ∙ 𝑤2 ∙ ⋯ ∙ 𝑤𝑛) −

𝑛

2
∙ 𝑙𝑛2𝜋 −

𝑛

2
𝑙𝑛𝜎0

2 −
1

2𝜎0
2

∑ 𝑤𝑖(𝑂𝑖 − 𝑚)2

𝑛

𝑖=1

 

(6.22) 

 

This last expression has its maximum where the first derivative of the last equation in 

(6.22) has a null point: 

 

𝜕𝑙𝑛𝑃

𝜕𝜎0
2

= −
𝑛

2𝜎0
2

+
1

2𝜎0
4

∑ 𝑤𝑖(𝑂𝑖 − 𝑚)2

𝑛

𝑖=1

= 0 

 

Introducing the weighted mean a possible estimator of the variance of the distribution 

with weight equal to 1 can be obtained: 

 

𝑠̅0
2 =

∑ 𝑤𝑖(𝑂𝑖 − 𝑚̅𝑤)2𝑛
𝑖=1

𝑛
 

 

(6.23) 

The (6.23) is consistent and efficient. To check if the (6.23) is or not biased the operator 

M (the operator that applied to a distribution of probability is able to extract the 

theoretical mean of it) is applied to the possible estimator by using the same 

approach adopted in paragraph 6.2 

 

𝑀[𝜎̅0
2] =

𝑛 − 1

𝑛
𝜎0

2 

 

Finally the best estimator for 𝜎0
2 is 

 

𝜎̅0
2 =

∑ 𝑤𝑖(𝑂𝑖 − 𝑚̅𝑤)2𝑛
𝑖=1

𝑛 − 1
 (6.24) 
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6.4 Indirect measurement of a quantity by using direct or indirect measurements 

Let us consider a quantity X and n quantities D1, D2 …, Dn; between X and the Di 

quantities a relation exists: 

 

𝑋 = 𝑓(𝐷1, 𝐷2, ⋯ , 𝐷𝑛) (6.25) 

 

This expression defines the X as a random variable which parameters (mean and 

variance) depends on the parameters of the random variables of the Di quantities. 

The Di quantities can be direct measurements (stochastically independent), and in 

this case an estimation of the mean and of the variance are known (estimated by 

one of the two processes previously described). 

If D quantities are indirect measurements, generally, they are stochastically correlated 

and they are characterized by the estimated means and by a variance-covariance 

matrix of the random distribution with n dimensions  

 

U

n

n

n n n

=

  

  

  

1

2

12 1

12 2

2

2

1 2

2

. . .

. . .

. . . . . . . . . . . .

. . .  
 

From a statistical point of view, the indirect measurement of a quantity X means the 

definition of a probability distribution of all the possible measurements of X starting 

from the probability distribution, which defines the n direct measurements Di, or from 

the n-dimensions probability distributions, which globally defines the indirect 

measurements of the Di quantities. 

The problem can be easily solved if the relationship between X and the Di is a linear 

combination: 

 

𝑋 = 𝑎1𝐷1 + 𝑎2𝐷2 + ⋯ + 𝑎𝑛𝐷𝑛 

 

If the Di quantities are not correlated, the following estimators for the mean and the 

variance of X can be used: 

 

𝑚̅𝑋 = 𝑎1𝑚̅𝐷1
+ 𝑎2𝑚̅𝐷2

+ ⋯ + 𝑎𝑛𝑚̅𝐷𝑛
 

𝜎̅𝑋
2 = 𝑎1

2𝜎̅𝐷1

2 + 𝑎2
2𝜎̅𝐷2

2 + ⋯ + 𝑎𝑛
2𝜎̅𝐷𝑛

2  
(6.26) 

 

If the Di quantities are correlated 

 

𝑚̅𝑋 = 𝑎1𝑚̅𝐷1
+ 𝑎2𝑚̅𝐷2

+ ⋯ + 𝑎𝑛𝑚̅𝐷𝑛
 

𝜎̅𝑋
2 = 𝑎1

2𝜎̅𝐷1

2 + 𝑎2
2𝜎̅𝐷2

2 + ⋯ + 𝑎𝑛
2𝜎̅𝐷𝑛

2 + 2𝑎1𝑎2𝜎1,2 + 2𝑎1𝑎3𝜎1,3 + ⋯ .2𝑎𝑛−1𝑎𝑛𝜎(𝑛−1),𝑛 (6.27) 
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If the X quantity has a general relationship f with the observed quantities D, the 

following procedure can be used.  

Let us consider a set O1, O2 …, On randomly extracted from D1, D2 …, Dn.  

Each Oi value is the result of a random extraction from the distribution, which has the 

theoretical mean Dim.  

It is possible to express the Oi in the following way 

 

𝑂1 = 𝐷1𝑚 + 𝑣1     𝑂2 = 𝐷2𝑚 + 𝑣2         ⋯ 𝑂𝑛 = 𝐷𝑛𝑚 + 𝑣𝑛       (6.28) 

 

If the discrepancies vi are small and their second powers vi
2 can be negligible, it is 

possible to linearize (6.25) by using a Taylor series around the point defined by the 

theoretical means Dim. 

 

𝑓(𝑂1, 𝑂2, ⋯ 𝑂𝑛) = 𝑓(   𝐷1𝑚 + 𝑣1, + ⋯ + 𝐷𝑛𝑚 + 𝑣𝑛 )

= 𝑓(𝐷1𝑚, ⋯ 𝐷𝑛𝑚) + (
𝜕𝑓

𝜕𝐷1
)

𝑚

∙ 𝑣1 + ⋯ + (
𝜕𝑓

𝜕𝐷𝑛
)

𝑚

∙ 𝑣𝑛 (6.29) 

 

By applying the operator M we obtain 

 

𝑀[𝑓(𝑂1, 𝑂2, ⋯ 𝑂𝑛)] − 𝑓(𝐷1𝑚, ⋯ 𝐷𝑛𝑚) = (
𝜕𝑓

𝜕𝐷1
)

𝑚

∙ 𝑀[𝑣1] + ⋯ + (
𝜕𝑓

𝜕𝐷𝑛
)

𝑚

∙ 𝑀[𝑣𝑛] (6.30) 

 

The mean of the first term is equal to 0 because the second term is a linear 

combination of discrepancy distributions, therefore the mean of f(O1, O2,...,On) is 

equal to the mean of f(D1m, D2m,...,Dnm) 

 

𝑋𝑚 = 𝑓(𝐷1𝑚, ⋯ 𝐷𝑛𝑚) (6.31) 

 

By concluding, if the discrepancies vi are smaller enough to neglect their second 

order terms (this is true if the Oi values are derived by using a correct estimation of the 

means of the distribution Di) the mean of the X quantity can be estimated by 

introducing the estimated means of the Di quantities. 

To estimate the variance we can operate in the following way.  

Given 

 

(
𝜕𝑓

𝜕𝐷1
) = 𝑎1, ⋯ , (

𝜕𝑓

𝜕𝐷𝑛
) = 𝑎𝑛  

 

and remembering 

 

𝜎𝑋
2 = 𝑀[{𝑓(𝑂1, 𝑂2, ⋯ , 𝑂𝑛) − 𝑋𝑚}2] = 𝑀[(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛)2]  
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in case the Di quantities are not correlated, the estimator of the variance of the X 

quantity is: 

 

𝜎̅𝑋
2 = (

𝜕𝑓

𝜕𝐷1
)

𝑚̅

2

∙ 𝜎̅1
2 + ⋯ + (

𝜕𝑓

𝜕𝐷𝑛
)

𝑚̅

2

∙ 𝜎̅𝑛
2 (6.32) 

 

If Di quantities are correlated, the (6.32) assumes the more general form 

 

𝜎̅𝑋
2 = (

𝜕𝑓

𝜕𝐷1
)

𝑚̅

2

∙ 𝜎̅1
2 + ⋯ + (

𝜕𝑓

𝜕𝐷𝑛
)

𝑚̅

2

∙ 𝜎̅𝑛
2 + 2 ∑ (

𝜕𝑓

𝜕𝐷𝑖
)

𝑚̅

(
𝜕𝑓

𝜕𝐷𝑗
)

𝑚̅

𝜎̅𝑖𝑗

𝑖<𝑗

 (6.33) 

 

The (6.32) and (6.33) are the analytic expressions of the “variance propagation law”. 

Looking at (6.32) and (6.33) it must be noted that every time measurements are used 

to generate new measurements the error is always greater that the one of the single 

measurement involved in the process. A simple sum of the measurements generate a 

new measurement with higher error and so lower precision. 

This simple observation can suggest to limit to the minimum possible the use of 

measurements manipulation to generate new products. 

6.5 Indirect measurements of m quantities with directly measured n quantities (m<n) 

The last case is the more general approach to indirect measurement estimation and 

the most used in all metric survey applications (terrestrial survey, GNSS, 

photogrammetry). 

Let us consider a simple example: the forward intersection (see Figure 10). 

A generic unknown point C is visible from two known points A and B.  

To find the coordinates of the point C, a possible solution is to measure two angles 

and to find out the location of the point C by intersecting the two lines AC and BC. 

From a geometric point of view, this problem has always a solution: the only critical 

case is when the two measured angles are of equal amplitude (in this case the point 

C is at infinite!).  

However, in this way if a gross error occurs it is not possible to find it out and mainly, by 

just using the minimum geometric constraints, it is not possible to estimate the reached 

precision in the point P location. 

Therefore, by using measurements, simple solutions offered by geometry are not useful 

and statistical approach must be used. 

From a statistical point of view the problem can be described as follow: we want to 

estimate the means and the variance-covariance matrix of a m-dimension probability 

distribution, depending on m indirect measurements X1, X2,…,Xm starting from a set of 

n direct measurements described by n not correlated probability distributions with 

known mean and variance D1, D2,…,Dn where m < n. 

The result we are looking for will depend on the set of direct measurements and it will 

be the result of an adjustment of the executed direct measurements. 

The indirect quantities Xi are connected to the direct quantities Di by means of generic 
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functions, which depend on geometric and/or physical conditions. 

Coming back to the simple problem of Figure 10, adding the measurement of the side 

AC it will allow to check if some gross errors exist, and the estimation of the variances 

of the two coordinates of the point P.  

Adding the measurement of the side BP a more affordable estimation of the means 

and variances of the X and Y coordinates of the point P is possible. 

 

 

Figure 10 - Forward intersection 

 

As a practical rule, if a problem has m unknowns the best number of independent 

measurements to obtain a correct estimation of the means and variances of the 

indirect quantities is 2m. 

Let us consider a system of n linear equations which join m<n unknown quantities X1, 

X2,…,Xm to the direct measured quantities D1, D2,…,Dn with the constraint that each 

equation contains one and only one direct measured quantity.    

 

{
𝑎11𝑋1 + ⋯ 𝑎1𝑚𝑋𝑚 = 𝐷1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑎𝑛1𝑋1 + ⋯ 𝑎𝑛𝑚𝑋𝑚 = 𝐷𝑛

 (6.34) 

 

where aij are known coefficients. 

In our system, the known and unknown quantities are indicated by using the 

theoretical values of the means.  

In this theoretical case, each set of m equations can give a unique solution to the 

system, which satisfy also the remaining n-m equations (geometric solution). 

Actually, it is not possible to obtain the theoretical means of the direct measurements: 

in the best case, only the correct estimation of 𝐷𝑖̅ could be obtained. The estimated 

means of the direct measurements differ from the theoretical value Di of a small 

residual 

 

𝐷𝑖 = 𝐷̅𝑖 + 𝑣𝑖 

 

Therefore, the (6.34) has to re-written: 

 

B

C
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{
𝑎11𝑋1 + ⋯ 𝑎1𝑚𝑋𝑚 = 𝐷̅1 + 𝑣1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑎11𝑋1 + ⋯ 𝑎1𝑚𝑋𝑚 = 𝐷̅𝑛 + 𝑣𝑛

 (6.35) 

 

The vi represent the discrepancies between the estimated mean and their theoretical 

values, therefore they are also unknown quantities.  

Therefore, the system has n equations but m+n unknowns and it cannot be solved by 

using mathematical approaches. 

A possible solution is given by the Statistics.  

In (6.35) the theoretical means of the indirect quantities are still indicated. More 

realistically we can think to be able to look for the best estimation of the means of the 

indirect quantities 𝑋𝑖̅ and the (6.35) becomes: 

 

{
𝑎11𝑋̅1 + ⋯ 𝑎1𝑚𝑋̅𝑚 = 𝐷̅1 + 𝑣1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑎11𝑋̅1 + ⋯ 𝑎1𝑚𝑋̅𝑚 = 𝐷̅𝑛 + 𝑣𝑛

 (6.36) 

 

To extract the estimator of the means the maximum likelihood principle is used by 

fixing that the best estimations of the means of the indirect measurements are the 

ones which minimize the sum of the squares of the residuals vi.  

To demonstrate a general solution a simple example is used. 

To estimate two quantities X1 and X2, three direct measurements D1, D2, D3 are 

considered linked to the indirect measurements by means of linear combinations: 

 

{
𝑎11𝑋1 + 𝑎12𝑋2 = 𝐷1

𝑎21𝑋1 + 𝑎22𝑋2 = 𝐷2

𝑎31𝑋1 + 𝑎32𝑋2 = 𝐷3

  

 

This system has to be re-written in the following way 

 

{

𝑎11𝑋̅1 + 𝑎12𝑋̅2 = 𝐷̅1 + 𝑣1

𝑎21𝑋̅1 + 𝑎22𝑋̅2 = 𝐷̅2 + 𝑣2

𝑎31𝑋̅1 + 𝑎32𝑋̅2 = 𝐷̅3 + 𝑣3

  

 

or, more simply, by using the matrix notation, 

 

𝑨 ∙ 𝑿 = 𝑻 + 𝑽 (6.37) 

 

where: 

𝑨 = [
𝑎11 𝑎12

𝑎21 𝑎22
𝑎31 𝑎32

]            𝑿 = [
𝑋̅1

𝑋̅2

]            𝑻 = [

𝐷̅1

𝐷̅2

𝐷̅3

]              𝑽 = [

𝑣1

𝑣2

𝑣3

] 
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A is the drawing matrix, X is the unknown vector, T the known terms vector and V the 

residual’s vector. 

The (6-37) can be expressed in the following way: 

 

𝑨 ∙ 𝑿 − 𝑻 = 𝑽 

{

𝑎11𝑋̅1 + 𝑎12𝑋̅2 − 𝐷̅1 = 𝑣1

𝑎21𝑋̅1 + 𝑎22𝑋̅2 − 𝐷̅2 = 𝑣2

𝑎31𝑋̅1 + 𝑎32𝑋̅2 − 𝐷̅3 = 𝑣3

 
(6.38) 

 

The sum of the squared residuals is 

 

∑ 𝑣𝑖
2

3

𝑖=1
= 𝑎11

2 𝑋̅1
2 + 𝑎12

2 𝑋̅2
2 + 𝐷̅1

2 + 2𝑎11𝑎12𝑋̅1𝑋̅2 − 2𝑎11𝑋̅1𝐷̅1 − 2𝑎12𝑋̅2𝐷̅1 + 

+𝑎21
2 𝑋̅1

2 + 𝑎22
2 𝑋̅2

2 + 𝐷̅2
2 + 2𝑎21𝑎22𝑋̅1𝑋̅2 − 2𝑎21𝑋̅1𝐷̅2 − 2𝑎22𝑋̅2𝐷̅2 + 

 

+𝑎31
2 𝑋̅1

2 + 𝑎32
2 𝑋̅2

2 + 𝐷̅3
2 + 2𝑎31𝑎32𝑋̅1𝑋̅2 − 2𝑎31𝑋̅1𝐷̅3 − 2𝑎32𝑋̅2𝐷̅3 

 

Applying the least square principle: 

 

𝜕 ∑ 𝑣2

𝜕𝑋̅1
= 𝑋̅1(2𝑎11

2 + 2𝑎21
2 + 2𝑎31

2 ) + 𝑋̅2(2𝑎11𝑎12 + 2𝑎21𝑎22 + 2𝑎31𝑎32)

− (2𝑎11𝐷̅1 + 2𝑎21𝐷̅2 + 2𝑎31𝐷̅3) = 0 

𝜕 ∑ 𝑣2

𝜕𝑋̅2
= 𝑋̅1(2𝑎11𝑎12 + 2𝑎21𝑎22 + 2𝑎31𝑎32) + 𝑋̅2(2𝑎12

2 + 2𝑎22
2 + 2𝑎32

2 )

− (2𝑎12𝐷̅1 + 2𝑎22𝐷̅2 + 2𝑎32𝐷̅3) = 0 

(6.39) 

 

The (6.39) is a linear system with two equations and two unknowns and it can be re-

written by using the matrix notation 

 

𝑵 ∙ 𝑿 = 𝑻𝑵 (6.40) 

 

where: 

 

𝑵 = [
𝑎11

2 + 𝑎21
2 + 𝑎31

2                               𝑎11𝑎12 + 𝑎21𝑎22 + 𝑎31𝑎32

  
𝑎11𝑎12 + 𝑎21𝑎22 + 𝑎31𝑎32                              𝑎12

2 + 𝑎22
2 + 𝑎32

2
] 

𝑿 = [
𝑋̅1

𝑋̅2

]                                                  𝑻𝑵 = [
𝑎11𝐷̅1 + 𝑎21𝐷̅2 + 𝑎31𝐷̅3

𝑎12𝐷̅1 + 𝑎22𝐷̅2 + 𝑎32𝐷̅3

] 

(6.41) 

 

The (6.41) is called the normal system and it solves the least squares adjustment of the 

direct measurements in order to estimate the indirect measurements. 

The normal matrix N is a symmetric square matrix which dimensions coincide with the 

number of the unknowns, and its terms depends only on the known coefficient of the 
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initial system.  

Also the normalized known term vector TN depends on the known coefficient of the 

original system and on the estimated means of the direct measurements. 

The estimation of the indirect quantity means is obtained by solving the normal system 

 

𝑿 = 𝑵−𝟏 ∙ 𝑻𝑵 

 

By considering the properties of the symmetric matrices, the inverse of the normal 

matrix will be also a symmetric matrix. 

Considering the (6.41), the normal matrix N and the normalized known term TN vector 

depend only on the known coefficients of the initial system.  

Computing the product between the transposed drawing matrix AT and the drawing 

matrix A it is possible to verify that the normal matrix N can be written without 

applying the long procedure above described: 

 

𝑨𝑻 ∙ 𝑨 = [
𝑎11 𝑎21 𝑎31

𝑎12 𝑎22 𝑎32
] ∙ [

𝑎11 𝑎12

𝑎21 𝑎22

𝑎31 𝑎32

]

= [
𝑎11

2 + 𝑎21
2 + 𝑎31

2 𝑎11𝑎12 + 𝑎21𝑎22 + 𝑎31𝑎32

𝑎11𝑎12 + 𝑎21𝑎22 + 𝑎31𝑎32 𝑎12
2 + 𝑎22

2 + 𝑎32
2 ] = 𝑵 

 

Computing the product between the transposed drawing matrix AT and the known 

term vector T it is possible to verify that the normalized known term vector TN can be 

computed in an analogous easy way 

 

𝑨𝑻 ∙ 𝑻 = [
𝑎11 𝑎21 𝑎31

𝑎12 𝑎22 𝑎32
] ∙ [

𝐷̅1

𝐷̅2

𝐷̅3

] = [
𝑎11𝐷̅1 + 𝑎21𝐷̅2 + 𝑎31𝐷̅3

𝑎12𝐷̅1 + 𝑎22𝐷̅2 + 𝑎32𝐷̅3

] = 𝑻𝑵 

 

The relationships just demonstrated in a small example are valid for each values of n 

and m and can therefore be used to solve adjustments where the number of 

measurements and unknows reach big values (e.g. in photogrammetry adjustment of 

thousands unknowns and thousands direct measurements are regular cases). In fact 

the matrix algebra can be easily solved using a software. 

In addition we have to consider that the direct measurements can be characterized 

by different precisions therefore, to correctly manage the adjustment we have to 

introduce the weights of each of them by multiplying each equation (which depend 

on only one direct measurement) with the weight of the direct measurement itself. 

If we assume as weight matrix  

𝑾 = [
𝑤1 ⋯ 0
0 ⋱ 0
0 ⋯ 𝑤𝑛

] 

the final, and correct, expression of the normal system which sole the problem of the 

mean estimation of a set of m indirect measurements which depend on n direct 

measurements is 
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𝑵 = 𝑨𝑻 ∙ 𝑾 ∙   𝑨                 𝑻𝑵 = 𝑨𝑻 ∙ 𝑾 ∙ 𝑻 

 

To estimate the variances of the indirect measurements, the following relations are 

valid.  

First we have to estimate the variance of the distribution which has the weight equal 

to 1 

𝜎̅0
2 =

𝑽𝑻 ∙ 𝑾 ∙ 𝑽

𝑛 − 𝑚
        𝑤ℎ𝑒𝑟𝑒     𝑽 = 𝑨 ∙ 𝑿 − 𝑻 

 

The variance-covariance matrix is defined by the following equation: 

 

𝐶𝑥𝑥 = 𝜎̅0
2 ∙ 𝑵−1 = [

𝜎̅𝑋1

2 ⋯ 𝜎𝑋1𝑋𝑚

⋮ ⋱ ⋮
𝜎𝑋𝑚𝑋1

⋯ 𝜎̅𝑋𝑛

2
] (6.41) 

 

The variance-covariance matrix is a symmetric matrix which dimensions are m x m. It 

do not depend on the measurements but only on the adopted measurement 

scheme.  

The main diagonal contains the variances of the indirect measurement; the other 

terms express the statistical correlations between the indirect measurements 

expressed by means of the co-variance coefficients σXiXj. 

If the relationships which connect the indirect measurements to the direct 

measurements are not linear combinations, the problem can be solved by means of 

Taylor’s series linearization (avoiding the terms of second power) and by considering 

an approximate solution of the problem obtained with geometric solutions.  

The first iteration define a new approximate values for the indirect measurements that 

can be used to linearise the equations for the second iteration and so on.  

When the differences between one iteration and the previous one is smaller than the 

possible precision of the indirect measurements the process could be ended. 
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QUESTIONS 

1. Define a gross error and explain the possible ways to eliminate it. 

2. Define a systematic error and explain the possible ways to eliminate it. 

3. Define a random error and the probability. 

4. Define direct measurements. 

5. Define indirect measurements. 

6. Explain the meaning of the central theorem of Statistics. 

7. Describe the Gauss’s probability distribution. 

8. Which is the meaning of the mean of a Gaussian distribution? 

9. Which is the meaning of the m.s.e. of a Guassian distribution? 

10. List the probabilities that a random extraction x in a Gaussian distribution 

can be inside a range around the mean of 1σ, 2σ, 3σ 

11. Define precision and accuracy of a measurement. 

12. Which are the fundamental properties of an estimator? Define them and 

explain their meaning. 

13. Describe the meaning of the maximum likelihood principle. 

14. Derive the least square principle for the Gaussian distribution. 

15. Demonstrate that the arithmetic mean is a good estimator for the mean 

of a direct measurement with equal precision. 

16. What is a normal system? 

17. What is the variance-covariance matrix? 

18. Does the variance-covariance matrix depend on the measurements?  

 

 


