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FOREWORD 

During the last nine years, several problems in the statistical 
processing of biomedical data have been encountered by the author. 

These problems had in common the fact that most of the usual 
assumptions were without any solid basis. Poor quality samples drawn 

from unknown distributions, usually non-normal and frequently 
non-stationary, were the ordinary lot; nevertheless, sophisticated 

parameters had to be reliably estimated and the scatter of the 
estimators was needed to permit comparison of the results. This has 

been partly solved by application of robust methods. 

The methods presented in this text are oriented toward the design of 
robust estimators. The primary concern is preventing any significant 

offset of the estimates due to the selection of an erroneous model or 
to spurious data in the sample. The second concern is bias reduction 
and variance estimation. The special emphasis reserved to type M 
estimators is justified by their analytical form which permits to 

assess their properties, even for small sample sizes (n=10 or 50), 
without resorting to involved arguments. 

The theoretical tools are mainly the jackknife and the influence 
function. Applied derivations are in the fields of location estimation 

and regression analysis. Due attention is devoted to computational 
aspects. 
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1. INTRODUCTION 

The term "robustness" does not lend itself to a clearcut 

statistical definition. It seems to have been introduced by G.E.P. Box 

in 1953 to cover a rather vague concept described in the following way 

by Kendall and Buckland (1971). Their dictionary states 

"Robustness : Many test procedures involving 
probability levels depend for their 
exactitude on assumptions concerning the 
generating mechanism, e.g. that the parent 
variation is Normal (Gaussian). If the 
inferences are little affected by departure 
from those assumptions, e.g. if the 
significance points of a test vary little if 
the population departs quite substantially 
from the normality, the tests on the 
inferences are said to be robust. In a 
rather more general sense, a statistical 
procedure is described as robust if it is 
not very sensitive to departure from the 
assumptions on which it depends." 

This quotation clearly associates robustness with applicability of the 

various statistical procedures. The two complementary questions met 

with can be expressed as follows : first, how large is the domain of 

applicability of a given statistical procedure or, equivalently, is it 

robust against some departure from the assumptions ? Second, how 

should we design a statistical procedure to be robust or, in other 

terms, to remain safe in spite of possible uncertainty in the available 

data set ? 

1.1. History and main contributions 

Due to the appearance of involved analytical as well as 

computational facilities, the field of robustness has received an 

increased attention during the last thirty years. Mainly, progresses 

in non-linear mathematics and in recursive algorithms have permitted 

the new developments. However, it stands in the line of many old 

studies. For instance, a mode can possibly be seen as a robust 

estimate of location, as it has been some twenty four centuries ago. 

Thucydides relates 
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"During the same winter (428 B.C.), the 
Plataeans .•• and the Athenians who were 
besieged with them planned to leave the city 
and climb over the enemy's walls in the hope 
that they might be able to force a passage 

They made ladders equal in height to 
the enemy's wall, getting the measure by 
counting the layers of bricks at a point 
where the enemy's wall on the side facing 
Plataea happened not to have been 
whitewashed, ~fany counted the layers at the 
same time, and ~hiZe some ~ere sure to make 
a mistake, the majority were ZikeZy to hit 
the true count, especially since they 
counted time and again, and, besides, were 
at no great distance, and the part of the 
wall they wished to see was easily visible. 
The measurement of the ladders, then, they 
got at in this way, reckoning the measure 
form the thickness of the bricks." 

Eisenhart (1971) has also compiled other examples of more or less 

sophisticated procedures to estimate a location parameter for a set of 

measurements. 

Historical background can also be gained by the account of the state 

of affairs around 1900 given in Stigler (1973). Briefly, it appears 

that the adoption of least squares techniques was seen as second best 

to unmanageable approaches. The dogma of normality was largely 

accepted; that is, observations in disagreement with the dogma were 

seen as erroneous and had to be discarded. At that time, an important 

effort was done in the investigation of various rejection procedures as 

well as in the assessment of their soundness. A remarkable report of 

this history up to the present time can be found in the series of 

papers written by Harter (1974-1976). With regard more specifically to 

robustness history, motivations and theoretical developments are 

surveyed in the 1972 Wald Lecture of Huber (1972-1973) and 

complementarily by Hampel (1973). We will later join them. 

To gain some more insight in what is robustness we now sketch some 

important works of the recent past : 

-The investigations of von Mises (1947) and Prokhorov (1956) have 

clarified the relations which exist between asymptotic theory of 

estimation and finite size practical situations. They provide a neat 

framework where the theory of robustness has been able to grow. 

Particularly, they provide justifications for the analytical 

derivations. 



3 

-A mathematical trick proposed by Quenouille (1956) and augmented 

by Tukey (1958), the jackknife technique, permits to reduce the bias 

and estimate the variance of most estimators without any regard for the 

distribution underlying the data set. The statistician is thus 

released of some frequently questionable distribution assumptions. 

- A review of the principles pertaining to the rejection of 

outliers by Anscombe (1960) has stimulated theoretical and experimental 

researches on how to take into account observations appearing in the 

tails of the sample distributions. 

- The famous paper of Huber, in 1964, has been at the origin of 

answers to the question on how to design robust statistical procedures. 

He considers domains of distributions; we excerpt : "A convenient 

measure of robustness for asymptotically normal estimators seems to be 

the supremum of the asymptotic variance (n + ~) when F (the 

distribution of the sample) ranges over some suitable set of underlying 

distributions". Further, he introduces M-estimators and characterizes 

a most robust family among them for the estimation of the location, 

when the underlying distribution is a contaminated normal. In this 

framework, we find the estimators obtained through minimization of some 

power p of residuals; the classical least squares estimations (p 2) 

have here their places, the pioneer work of Gentleman (1965) is 

referred to for other p-values. The maximum likelihood estimators also 

are M-estimators. 

-A thesis by Hampel (1968), related to von Mises' work, 

introduces the influence curve as a tool exhibiting the sensitivity of 

an estimator to the observation values. Thus, it permit to modify 

estimation procedures in order not to depend on outliers, or on any 

other specific feature of the observations. 

- As far as the literature of the period prior to 1970 is 

concerned, we refer the interested reader to the annotated bibliography 

prepared under arrangement with the U.S. National Center for Health 

Statistics, (N.C.H.S. - 1972). 

-To conclude the list of main theoretical contributions, it may 

be worthy to mention that many fundamental questions remain open. 

Among them, the question of what we really estimate is approached by 

Jaeckel (1971), and, whether estimators are admissible is analysed by 

Berger (1976a, 1976b). 

-Complementary to the theoretical progress, experience has been 
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gained through Monte Carlo computer runs. In this respect, the 

Princeton Study (Andrews et al. - 1972) specially deserves mention; it 

has displayed in an obvious way the need for robust statistical 

procedures. 

1.2. Why robust estimations ? 

It seems to this author that the main motivation for making use of 

robust statistical methods lies in the overwhelming power of our 

computing facilities. In short, it is so easy to perform statistical 

analysis with computers that, rather frequently, data sets are 

processed by unsuitable softwares. Comparison with results produced by 

robust methods then draws attention on possible deficiencies of the 

data sets as well as on limitations of the applied statistical 

procedures. Thus, it appears that robustness is essential because it 

is complementary to the classical statistics. One and the other must 

contribute to the elaboration and to the validation of statistical 

conclusions. 

Many statisticians do not know how poor can be the methods they 

apply when the data sets do not strictly satisfy the assumptions. 

has been brillantly illustrated by Tukey (1960) in his study of 

This 

contaminated normal distributions. We have further extended this study 

- see entry "contaminated normal distribution" of the appendix - and 

arrive at the conclusion that quite large sample sizes are required to 

justify the measurement of the scale by the standard deviation rather 

than by the mean deviation. Some eight thousand observations should be 

at disposal to guarantee (at level 0.95) that the standard deviation is 

the most efficient estimator. This fact must be kept in mind. 

In a rather incentive paper some justifications to the use of 

robustness have been layed down by Hampel (1973). Hereunder, we 

propose a long excerpt : 
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"What do those "robust estimators" intend ? 
Should we give up our familiar and simple 
models, such as our beautiful analysis of 
variance, our powerful regression, or our 
high-reaching covariance matrices in 
multivariate statistics ? The answer is no; 
but it may well be advantageous to modify 
them slightly. In fact, good practical 
statisticians have done such modifications 
all along in an informal way; we now only 
start to have a theory about them. Some 
likely advantages of such a formalization 
are a better intuitive insight into these 
modifications, improved applied methods 
(even routine methods, for some aspects), 
and the chance of having pure mathematicians 
contribute something to the problem. 
Possible disadvantages may arise along the 
usual transformations of a theory when it is 
understood less and less by more and more 
people. Dogmatists, who insisted on the use 
of "optimal" or "admissible" procedures as 
long as mathematical theories contained no 
other criteria, may now be going to insist 
on "optimal robust" or "admissible robust" 
estimation or testing. Those who 
habitually try to lie with statistics, 
rather than seek for thruth, may claim even 
more degrees of freedom for their wicked 
doings. 
"Now what are the reasons for using robust 
procedures ? There are mainly two 
observations which combined give an answer. 
Often in statistics one is using a 
parametric model implying a very limited set 
of probability distributions thought 
possible, such as the common model of 
normally distributed errors, or that of 
exponentially distributed observations. 
Classical (parametric) statistics derives 
results under the assumption that these 
models were strictly true. However, apart 
from so~e simple discrete models perhaps, 
such models are never exactly true. We may 
try to distinguish three main reasons for 
the deviations (i) rounding and grouping 
and other "local inaccuracies"; (ii) the 
occurrence of "gross errors" such as 
blunders in measuring, wrong decimal points, 
errors in copying, inadvertent measurement 
of a member of a different population, or 
just "something went wrong"; (iii) the model 
may have been conceived only as an 
approximation anyway, e.g. by virtue of the 
central limit theorem". 
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1.3. Summary 

It appears that most of the robust methods have a weak basis; this 

fact must be faced and can be related partly to some conceptual 
difficulty. When those methods are required, it is due to some 

uncertainty concerning the statistical model, the quality of the sample 

at disposal as well as, perhaps, uncertainty concerning the issues 

involved (e.g., selection of an optimal loss function). These various 

factors prohibit any clear definition of the parameter to estimate and, 

thus suppress any possibility of comparing an estimator with the 
parameter. In practice, all estimators will be analysed by reference 

to their asymptotic values obtained for infinite sample sizes. 
Furthermore, very often it is possible to compare estimators under 

given model at the asymptotic level; therefrom, we will encounter 

robust estimators which are consistent to some parameter. However what 

is estimated when the model assumption is erroneous may be unclear. 
This is the conceptual difficulty and it appears at the root of all 

robustness principles. 

Section 2 provides the few theoretical derivations which permit to 

compare an estimator to its asymptotic value. The result has the form 
of a Taylor-like expansion; an argument is presented to validate the 

obtained structure, but a strict demonstration has not been possible in 
spite of several attempts during the last thirty years. We may however 

conjecture that the needed conditions of validity are scarcely 
restrictive. This theory directly leads to a definition of robustness 

as well as to the influence function. 

Section 3 provides reduction of possible bias in estimators as well 

as estimation of the variance (or covariance) through the jackknife 
method. To the best of our knowledge, the presented derivations are 
original and permit to substantiate several conjectural results. 

Section 4 is the central part of this text. It is a detailled 

analysis of M-estimators and of simultaneous M-estimators (denoted MM), 

with emphasis on applications in regression problems. This part 

presents several generalizations of previous developments and is 
original in many respects. 

Section 5 reconsiders a few specific questions which have been 

previously met, but left on the side because they were not timely. 

Most of the questions are, so far, open. 

Section 6 is a limited bibliography. We have tried to favor recent 
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papers and surveys in the domains which are secondary to our main 

investigation. We are well aware of the fact that such selection is 

very arbitrary. Furthermore, we feel limited in readability, time and 

space. 

Throughout this text, we have not devoted much attention to the 

asymptotic properties and have placed the accent on the behaviour of 

finite sample estimators. This option results from the need of robust 

methods in applications. 



2. ON SAMPLING DISTRIBUTIONS 

2.1. Scope of the section 

Hereinafter, we intend to sketch two theories relative to the 

relationships existing between distributions for one of them, and 

relative to the relations between distributions and estimators for the 

other, 

To fix the ideas, consider the following standard set of equations 

m 

I w. 
2 

s 

II 
2 

(] 

L w. x., (i=1, ... ,n), 
]. ]. 

1 ' 

L w.(x.-m)
2

, 
]. ]. 

lim 

lim 

m, n -+ m, 
2 

s , n ~ co. 

Under appropriate conditions, it can be used to estimate the location 11 

of the one dimension sample (x 1 , ... ,xn), as well as its scale u. In 

the present formulation each observation x. has been attributed a 
]. 

relative weight wi, which could be reflecting its importance or its 

accuracy. 

To investigate the dependence of 11 and u on the distribution 

underlying the observations, we need a tool to compare distributions 

such that "closeness" between distributions lead to "closeness" of 

estimators. This will be our first concern. 

The interest will also lie in the sample distribution of m and s or, 

more specifically, in the dependence with respect to each observation 

xi' to the relative weight wi as well as to the sample size n. In the 

present case, the relations are enlightened by expansions in terms of 

the asymptotic estimators; the scale parameter is also given by 

2 2 ~ 2 2 
S = CJ + {. W. [ (X. -II) - CJ ] 

]. ]. 

which lends itself to easy analysis. This will be our second concern. 

2.2. Metrics for probability distributions 

As indicated by Munster (1974), we do not have to restrict our 

distributions to Baire functions, nor the application space to Borel 
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sets; although, in practice, we only feel at ease with the Baire class 

of functions and the Euclidean space Rn, The fundamental discontinuous 

distribution we make use of is the classical Dirac function defined 

over the n-dimension space Rn - Complementary precisions are given in 

the appendix at the section on "distribution space" - We will be only 

concerned here by ways of measuring how close distributions may be to 

one another; the assessment of closeness between estimators will later 

be reduced to the closeness of their sampling distributions and, thus, 

only distributions are of interest, 

A great number of "distance" definitions have been proposed to 

assess the closeness of distributions, however they are generally not 

acceptable in our context. Going through the review of Kanal (1974) or 

with the help of the paper of Chen (1976), the following deficiencies 

are observed for most distances 

- They provide a measure of the closeness of continuous 

distributions, but, are not appropriate to compare an empirical 

(discrete) distribution with its underlying parent. 

- They may be strictly one-dimension and, thus, are not applicable 

on Rn. 

- They rarely satisfy the triangular inequality, a very helpful 

condition to compare an empirical distribution with a continuous 

distribution differing from its parent. 

To the best of our knowledge the only distance measure suitable to 

our context has been proposed by Prokhorov (sec. 1,4, 1956), it is 

simple in its main idea although rather involved in its details - see 

"Prokhorov metric" in the appendix - To help in the understanding of 

its analytics, we now consider the three points just mentioned here 

above. The Prokhorov metric permits the comparison of a discrete 

empirical distribution with a continuous one through the association of 

each observation of the former with a subset of the sample space; the 

comparison is then performed with the help of the probability of the 

latter distribution over this subset. The distance measure is derived 

from the probability measures achieved over subsets of the sample space 

and is, therefore, independent of dimensionality considerations. In 

fact, its definition is relative to supremum of probability measures 

and, accordingly, the triangular inequality holds true. 

We only need incidentally the Prokhorov metric definition and will 

accordingly limit ourselves to the present level of information. We 

conclude, in this respect, by an illustration. 
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We estimate the distance between two distributions defined by the 

densities of probability f and g over some n-dimension space, 

Distribution g is derived from f through 

g{x) = (1-t) f(x) + t o(x-xo), 0 .:;;; t < 

where x is any point of the sample space and o(x-x
0

) is a Dirac 

function centered on x 0 , i.e. 

o(x-x 0 ) = 0, if X * XQ 

f o ( x-x
0

) dx = 1 

with the integration variable spanning the whole Rn space. For 

simplicity, we assume that f(x) satisfies the mean value theorem in x 0 
that is 

where 

F(r) f f( x) dx 

I x-x
0

1 <r 

V(r) = [1Tn/ 2 /r(1+n/2)]rn 

is the volume of the ball of radius r centered in x
0

• Then the 

distance between f and g is given by 

d(f,g) sup inf {E:G(r) .:;;; F(r+E) + E}, 
r E 

The inequality can be omitted when f(x) is sufficiently regular, 

therefrom E may be seen as a function of r in 

G(r) = F(r+E) + E 

or 

t + (1-t) f(x 0 ) V(r) = f(x 0 ) V(r+E) + E 

and the distance is given by the maximum E-value for all positive 

r-values. This supremum is realized by r=O. We obtain the recursive 

solution 

d ( f, g) = t - f ( x 0 ) V[ d ( f, g)] 

where the last term is neglegible with small t and n > 1. 

general terms we observe that 

In quite 
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d(f,g) < t.;;; 1; 

but we must warn the reader : Evaluation of this Prokhorov distances 

frequently requires fairly involved arguments. 

2.3. Definition of robustness, breakdown-point 

This paragraph essentially restates in other words the viewpoint of 

Hampel (1971) -For technical details, the reader is referred to the 

appendix. 

We consider a set of 

distribution f(x); this 

let a be the estimate. 
n 

observations {x
1

, ••• ,xn} drawn from some 

set will be used to estimate some parameter a, 

The sampling distribution of this estimate is 

noted ~(an,f) and depends upon f(x). But generally we do not know f(x) 

and only have a more or less valid model, say g(x). We say in coarse 

terms that an is robust if it is scarcely dependent upon the difference 

between f(x) and g(x); that is we expect ~(a ,f) and ~(a ,g) to be 
n n 

close. 

Hore precisely, 

g ( and to f ) if 

a is said to be robust with respect to distribution 
n 

d ( f. g ) < 0 => d[ ~ ( 8 • f) • ~ ( a • g) 1 < e: 
n n 

for small positive e: and o. It may happen that small e: be allowed 

although o is not so small but remains inferior to some critical value 

o*. This value o* is the so-called breakdown-point. If f(x) and g(x) 

are not close enough (differ more than o*), the estimates of an based 

respectively on f(x) and on g(x) may be quite different. Then, an is 

not anymore robust. 

The limited realism of these definitions must be indicated. The 

condition 

d(f,g) < 0 

covers any distribution f(x) in the a-neighbourhood of g(x) despite the 

fact that some f(x), close to g(x), can be not acceptable for 

extraneous reasons. Thus, it sometimes appears that a non-robust 

estimator is seen as robust for some subset of distributions f(x), 

particularly when f(x) is restricted to be member of some parametric 
family. Nevertheless, there exist non-robust estimators; a startling 
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case is the mean, the ordinary arithmetical mean. Effectively, small 

contaminations (small 5) can yield any large offset of the mean (large 

E < 1). In this case the breakdown-point is o* = 0. On the contrary 

the median of a one-dimension distribution exhibits extreme robustness 
* with o = 1/2. Up to a half of the sample can be outlying without 

leading to important error of estimation. An investigation of the 

breakdown-point utility has been reported by Hampel (1976) with special 

emphasis on location estimation with one-dimension samples. 

To conclude let us add that the above definition of robustness 

concurs with the minimax approach of Huber (1964), particularly 

surveyed in a group of lectures (1969). The already mentioned idea is 

to design an estimator to be the "best" with respect to the least 

favorable distribution of a distribution subset. 

2.4. Estimators seen as functionals of distributions 

In a paper on the asymptotic properties of sample distributions, von 

Mises (1947) introduces in a heuristic way some Taylor-like expansion 

of estimators in terms of the distribution of the underlying sample. 

This expansion is valid i~ a not-clearly defined context of 

"differentiable statistical functions". Hereinafter we present this 

theory and provide an original delineation of the domain of 

application. But first, let us introduce the argument of von Mises. 

The basic material is two distributions f and g, which can be viewed 

as points in a convenient distribution space, atld an estimator, or 

rather a functional, on these distributions; let it be T(f) or T(g). 

The estimators are defined over some sample space we assume common to 

both and which could be discrete as well as continuous, thus far. We 

are now interested in the difference between the two functionals T(f) 

and T(g). 

Consider the functional T(h) where h is a distribution intermediate 

between f and g, precisely 

h(x) (1-t) f(x) + t g(x) 

with 

O<t<1. 

This functional is, under suitable conditions, a continuous function of 

the real variable t and can be expanded in Taylor series, i.e. 
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2 
T (h) = T (f) + t a 1 + ( t I 2) a 2 + • • • , 

which is converging inasmuch as T(f} and T(g) are finite. The 

coefficients ai are given in terms of derivatives of T(h) with respect 

to the variable t and therefore involve the difference [ g(x)-f(x)]. 

For instance, the coefficient a 1 comes out as 

a
1 

= f u(x) [ g(x) - f(x}] dx 

or, equivalently, 

a
1 

= f ljl(x) g(x) dx. 

Before proceeding, we note that the closer h is from f, the smaller 

are the high order terms. Thus, when g and fare close, the expansion 

for t = 

1 
T(g) = T(f) + fljJ(x} g(x) dx + 2 f Jljl(x,y} g(x) g(y} dx dy + ••• 

can be truncated to its first few terms. The terms are the so-called 

"derivatives". They involve functions ljl(x), ljl(x,y}, •.• defined solely 

with the help of T(f) and f. They cancel for equal distributions g and 

f. 

It has not appeared possible, so far, to state the conditions 

required to justify the above intuitive derivation. In this respect, 

von Mises satisfies himself by refering to previous works of Volterra, 

although they do not appear helpful in practice. Moreover, while a 

proper derivation is produced in order to substantiate the expansion, 

many conditions appear which can hardly be related in an easy way to 

the function T(f) and to the distributions f and g. The conditions 

involve the Prokhorov metric, bounding of some derivatives as well as 

existence and convergence of some integrals; in short, they involve 

features which are frequently unknown in practice. -See the appendix 

at the "von Mises derivative" entry- This state of affair being met 

with, we have preferred to limit ourselves to a set of sufficient 

conditions of general applicability - This is tentative. 

We first define two distribution properties : 

Definition 1. A distribution f is "smooth" with respect to functional T 

if, and only if, {T(f.)} converges to T(f) when {f.(x)} is any 
l. l. 

Cauchy sequence of continuous distributions uniformely converging 

to f(x). 
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Definition 2, A distribution f is "domain limited" with respect to 

functional T if, and only if, 

when R tends to infinity and fR(x) is the possibly defective 

distribution 

f(x), 

0 

if I xl .,;;; R 

if lxl > R, 

It must be observed that these two definitions are constraining the 

functional T rather than the distribution f(x). They yield : 

Theorem : A Taylor-like expansion in terms of the von Hises derivatives 

is valid for a functional T defined over two distributions f 

and g, when both distributions are smooth and domain limited 

with respect to the functional. For the real variable t 

satisfying 

we have 

T[ ( 1-t) f + tg] = T(f) 

+ t J 1/1 (x) g(x) dx 

t2 
+ 2 J f 1/J ( X 0 y) g ( X ) g ( y) dX dy 

+ 

To gain further insight in this theorem, we illustrate by the 

expansion of an estimator in term o~ its asymptotic value. 

Let us say we have at disposal some sample (x 1 , ••• ,xn) drawn from a 

p-dimension sample space (p ~ 1) with continuous probability density 

function f(x). The sample population has possibly been stratified and, 

thus, we attribute to each observation a given positive weight; let 

them be noted (w 1 , ... ,wn). The empirical density functions is, 

accordingly, 

(i=1, ... ,n) 

where o(x-xi) is the Dirac function concentrated on the observation xi. 

We now introduce the parameter 6 defined by the functional T(f) and 

estimated by T(g), i.e. 



15 

e T(f) 

6 T(g) = T(x 1 , ••• ,xn; w1 , •.• ,wn); 

we further assume that T(g) is analytical with respect to the 

observations xi as well as to the weights wi. With this restriction on 

the functional T, the distributions f and g are smooth and domain 

limited, Effectively, distribution f(x) is smooth per definition and 

domain limited per existence of e, the parameter to be estimated. 
* Distribution g(x) is smooth with respect to functional T, for T(g ) 

converges to T{g) with m tending to infinity in 

and 

lim hm(x) = o(x)' m ...... 

Any sequence of continuous functions {hm(x)} uniformely converging 

to the Dirac function may be considered, The last condition for the 

theorem applicability is that distribution g{x) be domain limited; it 

is inasmuch as it has been possible to observe the sample. Thus we 

have the e~pansion 

e T(g) 

T[ ( 1-t) f + tg] , for t 

e + ( 1 /}: w. ) I w. 1jJ ( x. ) 
1 ~ 2 ~ ~ 

+ 2 <11I wi> I I wi 
+ 

w. 1jJ (x. ,x.) 
J ~ J 

with the higher order terms having neglegible importance when the 

sample is representative of the parent distribution f(x) or, in other 

terms, when f(x) and g(x) are close, 

It may be noticed that the expansion given for the variance 

estimator in section 2,1 has precisely the above structure. 

2.5. The influence function of Hampel 

Under the appropriate condition~ of regularity met in the above 

section, we see that an estimator e is related to the corresponding 

parameter 6 by the simple approximate relation 
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where the fact~r $(xi) is indicative of the influence of the value xi 
on the result e. Hampel has named function $(x), the influence 

function or, rather, the "influence curve" for he was considering only 
one-dimension samples. This is a very powerful tool to appreciate the 

robustness at one dimension - see Andrews et al. (1972) and Hampel 

(1974) -as well as at several dimensions- for instance, Rey (1975a) 

Basically it measures the sensitivity of e to each observation. 

The influence function can also be defined, and easily obtained, as 

the first von Mises derivative in the direction of a Dirac function. 

Let us first recall the tautology 

f $(x) f(x) dx 0. 

Then, for the particular distribution 

g(x) = (1-t) f(x) + t o(x-xo) 

we have, when t is small, that is when f(x) and g(x) are close to one 

another, 

T(g) T (f) + f $ (X) g (X) dx 

T(f) + t f $(x) 0 (x-x
0

) dx 

T(f) + t $(x 0 ). 

Therefrom the following definition of the influence function occurs 

$(x 0 ) = lim {[ T(g) - T(f)] /t}, t ... o. 

Observe that the above definition has a larger domain of 

applicability than the Taylor-like expansion in terms of the von Mises 
derivatives; this is due to the very particular selection of 

distribution g(x) which involves only local properties at point x 0 of 
the sample space. 

The concept ~f influence function can be immediately generalized to 
situations where several parent distributions are concerned as can be 

seen in Rey ( 1975b). 



3. THE JACKKNIFE 

3.1. Introduction 

The so-called jackknife method has been introduced by Quenouille to 

reduce possible bias in estimation and then progressively extended to 

obtain estimation of variances. It is essentially interesting by its 

power to produce estimator improvement and estimator assessment in a 

cheap way, that is to say cheap in methodology but not necessarily 

cheap in computation if this has to be considered. By all standards, 

the results obtained are impressively good in most cases; but in a few 

not very well defined circumstances, the results are either poor or 

ridiculous. 

Unfortunately the scope of application of the jackknife method is 

not easy to delineate. It may be seen, however, that it is applicable 

under suitable regularity of the estimator with respect to the 

observations. And, according to Huber (1972) "It is hardly 

worthwhile to write down precise regularity conditions under which the 

jackknife has these useful properties, more work might be needed to 

check them than to devise more specific and better variance estimate" 

As indicated in the sequel, we disagree with the above viewpoint and 

support the use of the jackknife technique for all estimators falling 

in the frame of section 2.4. 

But what is the jackknife method ? We now present the technique 

with relatively few details and with a relatively light notation used 

by Miller. More involved considerations could obscure the main ideas 

and will be reserved for the next section. 

The story starts in 1956, when Quenouille proposes to reduce the 

possible bias of statistical estimators through what ~ppears to be a 

"mathematical trick". He observes that an estimator B based on a 

sample of size n can frequently have its bias expanded in terms of the 

sample size as follows 

E(e - e) 
-1 -2 

a 1 n + a 2 n + ••• 

This form is now compared with the corresponding for the estimator ei 

based on the sample of size n-1, the same sample without the i-th 

observation. The new expansion is 
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when the observations are independent. 

proposes to consider the variates 

To redtice the bias, Quenouille 

ei = n e - (n-1) ei 

which have a similar bias expansion, except that the first order term 

cancels, It is 

E(ei - e) = - a
2

/[ n(n-1 )] + ••• 

Obviously, the same mathematical trick can be applied to the second 

leading term o~ the expansion, and so on. To avoid a loss of 

efficiency in the estimation, he suggests the definition of an average 

estimator 

e ( 1/n) I. 8. 
]. ]. 

n e- [ (n-1)/n] I e. 
]. 

For no clear reasons at that time, the jackknife estimate e frequently 

demonstrates fairly go~d statistical properties. Tukey who will soon 

appear has also named ei' the pseudo-estimates, and ei' the jackknife 

pseudo-values. 

With regard to bias reduction it seems that it could possibly be 

advantageous to modify the sample size n by deletion of more than one 

observation, say we delete h observations ( h ~ 1) and work out the 

pseudo-estimates with samples of size (n-h), There are many ways of 

constituting these subsamples and special consideration has been 

devoted to the three following schemes : first, deletion of (h 1) 

observation at a time; second, deletion of (h > 1) consecutive 

observations and computation of g = n/h pseudo-estimates; third, 

deletion of h observations in the ( n ) possible different ways, The 
n-h 

three schemes appear to be rather equivalent when the parameter h is 

moderate and the observations are strictly independent. 1-lhen there is 

some serial correlation, the second scheme can be more reliable; the 

selection of h must be such that each group of h deleted observations 

be more or less independent of the other. The third scheme appears to 
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be very valuable for theoretical derivations -see Sen (1977) -

although it has limited practical interest. The above discussion is 

experimentally supported- see Miller (1974a) for references. 

Before leaving this subject of bias reduction, it is worthy to 

mention generalizations of the jackknife method. Instead of evaluating 

the pseudo-estimates from estimators based on different sample sizes, 

it is.possible to take into account different estimators on the same 

samples. This is defended at length in the collection of papers by 

Gray and Schucany as well as in their book (1972). 

The second significant progress in the history of the jackknife 

takes place in 1958 when Tukey conjectures that the pseudo-values ei 

are essentially representative of the incidences of each specific 

observation, therefrom he proposes the jackknife variance estimate 

2 A - 2 
a ( e ) = E[ ( e i - e ) J 

This conjecture will largely be supported in the sequel. We now simply 

retain the attention on the feature which is, in fact, the most 

significant property of the jackknife method. 

Bias reduction as weLt as variance estimation can be achieved 

without detaiLed knowLedge of the sampLe distribution nor invoLved 

anaLysis of the estimation method. We onLy need a sample and an 

estimation definition. - Next section will demonstrate that the third 

central moment of e is also available. 

The computation involved by the jackknife method may be abusively 

large and, accordingly, one tends to apply it as musch as possible 

through analytical means. One interesting case is due to Dempster 

(1966). With difficulties to manipulate the deletion of one 

observation in his formulas, he states his developments with the help 

of a variable & ranging from zero, no deletion, to one, complete 

deletion, and eventually limits himself to consideration of the first 

and second order terms in the variable &. This approach is met anew 

with the infinitesimal jackknife of Jaeckel (1972a), where the above 

variable & is kept infinitesimal. It is of great concern for 

analytical derivations because, then, the differences between 

estimators can be stated in terms of derivatives. But, due to the lack 

of theoretical background, it is scarcely published so far. 

To conclude this introduction we would like to mention three papers 
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which could introduce the reader to the jackknife. Hosteller ( 1971) in 

a naive presentation pleads for its introduction in elementary courses 

of statistics at the highschool level; Bissel and Ferguson (1975) place 

also some emphasis on the robust properties but say, after having 

demonstrated how beneficial the jackknife can be : "However the general 

warning still stands - the jackknife is sufficiently sharp to wound the 

unwary". The very important review of Hiller (1974a) is possibly the 

most complete piece of information which tries to balance the 

advantages with the drawbacks of the method, 

In the line of the jackknife but with very different objectives and 

theoretical set-up, we should mention the leave-one-out method of 

Lachenbruch (1968) which has only intuitive justification, the work in 

survey sampling of Woodruff and Causey (1976) which is adapted to the 

survey context and the interesting paper of Gray, Schucany and Watkins 

(1975). The last two papers are partly related to the infinitesimal 

jackknife, 

3.2. Jackknife theory 

Hereinafter, we sketch the main points of the derivation which 

justifies the jackknife method. A few points of this original work 

being rather involved, we refer to the appendix for further details. 

Particularly, this section will be solely concerned with scalar 

estimators although vector-valued estimators and functionals could be 

taken into account, 

Assume we have at disposal a scalar estimator 6, consistent with 

respect to parameter 6 and based on the sample (x 1 , ••• ,xn)' each 

observation xi appearing with the bounded non-negative weight wi. Then 

the estimator may be seen as a transformation on the set of 

observations and weights. Let it be written as 

Then, according to section 2.4, it can frequently be expanded in the 

form 

a= 6 + (1!/:wolZ:wo wo + -
2
1 <,;z: wol 2 H wowo ~0 0 + ... 

l. l. l. l. l. J l.J 

where the coefficients 1/lo and ~0 o are functions of the transformation 
l. l.J 

T(,) and the sample (x 1 , ... ,xn)• but independent of the weights. 
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This model, limited to its first few terms, will be assumed 

throughout. We do not know whether its validity is strictly required 

but we know it constitutes a sufficient condition for the validity of 

the jackknife method. Moreover, the jackknife fails in situations 

where the above model happens to be not verified. 

Contrary to the derivation met in the introduction, we consider 

arbitrary modifications of the set of weights to derive the 

pseudo-values. In this section, however, we limit ourselves to the 

modification of one weight w., at a time (h=1, g=n). This modification 
l. 

can possibly correspond with the deletion of the observation. When the 

weight wi is modified by a factor (1 + t), the pertaining 

pseudo-estimate is 

We now define the pseudo-values by 

4 

ei = [(twi + }:wj) ei- o:wj) e]/t 

and the jackknife estimate through 

e=(1/}:w.)}:e .• 
l. l. 

The corresponding expansion has approximately the form 

e e + (1/}:w.)}:w.lj!. + -2
1 (1 + t) (1/}:w.)

2 L}:w.w.4l .. + ••• 
l. l. l. l. l. J l.J 

which nearly equates the expansion met with for e. 

The first differing item is the second order term which appears 

multiplied by the factor (1 + t); this term is also the first which can 

introduce a bias decreasing with the sample size. Therefore its 

cancellation, obtained with t = -1, usually reduces the bias. We also 

note that small t does not bring any bias reduction. 

With regard to bias reduction the following conclusions may be 

derived for a class of estimators 

- If e can be expanded according to section 2.4, 

-if the weights wi are independent of the observations xi, 

- if the g groups have the same weights, 

- if each group is independent of the others; then, 
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-the ordinary jackknife (t = -1) possibly reduces the bias, 

- the jackknife estimate a has the same asymptotic distribution as 

the original estimator a, but for a translation resulting from 

bias reduction. 

In order to obtain a variance estimate, we now consider more 

attentively the pseudovalues ai. They have the particularly simple 

expansion 

which indicates they are essentially proper to the perturbed 

observation weight w. and independent of the other weights. 
~ . 

Furthermore, the main random component of a, i.e. (1/Lwi) Ewiwi' is 

precisely the arithmetic mean of the main random components appearing 

in the pseudo-values. Thus, the second and third central moments of 

the former are, up to some factor, the homologous moments of the 

pseudo-values. This argument is the more correct, the more neglegible 

are the terms omitted in the expansions. Asymptotically, we have 

and 

The "not-quite large sample" situation is treated in the appendix 

and, in agreement with Tukey (1958), we obtain the jackknife variance 

estimate 

var(a) ""var(e) ~ - - 2 ~ 2 ~ 2 l. (e. -w. a) /[ ( l. w. ) - l. w
1
.]. 

~ ~ ~ 

Moreover the right hand expression is a fairly good approximation of 

var(a), when t = -1. This is due to the cancellation of the second 

order random component in the jackknife estimate. 

This variance estimator is obtained for the class of e which also 

tolerates bias reduction. Furthermore, its variability is low inasmuch 

as the number of groups g is sufficiently large and inasmuch as they 

are independent. Therefore, it may be safe to perturb simultaneously 

several observations when some correlation is expected. This 
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consideration is opposite to Sharot's viewpoint (1976a), who only 

considers strict independency. 

While computing the jackknife estimate, it is wise to check the 

range of the variates (;. - w. e) in order to assess the nresence of 
]. l 

possible outliers, the;v would imnair the variance estimate. \'Then 

robust estimators are jackknifed, these variates are bo~nded due to the 

limited incidence of each observation on the estimator 8• 

For analytical derivations, it appears difficult to mimic the 

procedure as described above. The partial or complete deletion of an 

observation to obtain the pseudo-estimate ei implies the use of a 

(finite) difference operator, whereas an (infinitesimal) differential 

operation would be markedly preferred. This is obtained through the 

use of a small perturbing parameter t. 

In the infinitesimal version of the jackknife, t small, the 

expansions can strictly be limited to their first leading random terms 

as follows. The pseudo-estimates are 

ei e + twi(o/owi) T(x 1 , ••• ,xn; w1 , ••• ,wn) 

e + tw i j i 

and the jackknife estimate is not bias reduced 

e e. 

The corresponding jackknife variance estimate is 

var(e) 

In his 1972 memorandum, Jaeckel has proposed to modify the jackknife 

procedure in order to obtain bias-reduction even with the infinitesimal 

version. His proposal involves the second partial derivatives of T 

with respect to wi and wj and is, in fact, as much as possible an 

analytical duplication of the computational treatment with (t = -1). 

We hesitate to recommend his derivation seeing that other appropriate 

treatments could as well be advanced to mimic the full deletion of an 

observation. -In a parallel line the paper of Sharot (1976b) is 

noteworthy, his comparison of several types of jackknife variance 

estimators leads him to conclude that 
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"On the basis of the Monte Carlo studies, it 
would appear that the desired gain in 
precision ••• is often achieved. 
Alternative estimators designed for a 
particular application may, not 
surprisingly, do better still. The 
infinitesimal jackknife is seen to yield 
just such an estimator in many cases." 

We frankly regret the infinitesimal jackknife is so little known. It 
only appears in one page of Miller's review (1974a), and there the 

reference to Jaeckel is of no great help. 

To conclude this section on the jackknife theory, we indicate that 

Thorburn (1976) enumerates the conditions to be satisfied by the 
transformation T. He eventually obtains that the Taylor-like expansion 
we have assumed is required - see page 309, last but one equation. 

Nevertheless, we conjecture that the scope of application may be 

broader than implied by section 2.4. 

3.3. Case study 

To demonstrate the jackknife power, we investigate in this section 

an estimator of mean residual life frequently met with in survivorship 

studies. The particular interest of this application lies in the fact 
that the data may be censored in an unknown fashion. The derivation 

has already been reported in Rey (19T5b) and another paper in the same 
field has been issued by Hiller (1975); the latter has possibly been 

written in connection with the former. 

Suppose we have a set of n independent items which are running from 

an initial time until they are either stopped or in failure. We will 
denote by xi (1 < i ~ m ~ n), the observed durations of them failing 
items; the (n-m) remaining items are also observed during known 
durations xi (m < i ~ n). Then, under assumption of constant hazard 
rate, the mean residual time before failure is classically given by the 

maximum likelihood estimator 

e (1/m) L xi' i= 1, ••• ,n. 

note the sum runs on all items, whereas the denominator is the number 
of failing ones. 

A question we will not rzsolve here is whether estimator e is 
consistent to the real mean life; this is not the object of the present 
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discourse. This is important seeing that we now relax the assumption 

of constant hazard rate. We keep on the estimator definition but do 

not anymore assume that the failure times are distributed according to 

a ne~ative exponential probability function. In this way, we expect 

more reliable results, derived solely from the data set, when the 

observations do not agree strictly with the exponential assumption. We 

free ourselves from distribution preconceived ideas. This is a feature 

of robustness. 

Before applying the jackknife we note that the weighted form 

e = 11/E w.) E w.x., 
J ~ ~ 

(j=1, ••• ,m; i=1, ••• ,n) 

fits in the frame of section 2.4 and, thus, we are in a good position 

to proceed. 

With all weights equal to one, we now develop the finite jackknife 

procedure. Modification of the weight w. by a factor (1 + t) produces 
~ 

the pseudo-estimate 

e. e + t 0. 
~ ~ 

with 

0. (X. 
~ ~ 

- e) /(m + t) ' if i .;; m, 

xi/m, if i > m. 

The corresponding pseudo-value is 

ei L(n + t) e. - n e] /t 
~ 

e + (n + t) 0 .• 
~ 

Therefrom, we obtain the jackknife estimate 

e J ei/n 
e + [ (n + t)/n] E oi 

e + t 1 en + tl/nl Exi/!m(m + tlJ. for i > m. 

The bias reduced estimate is the expression where t 

introduced, i.e. 

-1 has been 

n -
6 - n m (m- 1) L xi' for i > m. 

We see that the bias correction is inversely proportional to the sample 
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size, when the ratio of stopped to failing items is given. If this 

ratio is changing with size n, then the bias correction is meaningless, 

Effectively in such case the parameter e to be estimated also 

fluctuates with size n and, therefore, what should be estimated is a 

matter of opinion. 

A variance estimate is readily derived through the infinitesimal 

jackknife and this variance is correct to the first order in sample 

size for finite t-values. According to the definition 

we have in this case study 

and, immediately, the estimator follows 

var( e) L o ~I ( 1 
~ 

- n/n 2 ) 

or 

var(e) n A 2 
x~] ( j .;; m' > m). 

m2 (n-1) 
[ L ( x. -e) + L i 

J ~ 

The jackknife estimate and the jackknife variance estimate have been 

confirmed by Monte Carlo experiments. The quality of the results may 

be related to the fact that the oi-values are scarcely dependent upon 

t; this is indicative of rapid convergence of the expansion of section 

2.4. 
It is hardly possible to draw any conclusion from this simple 

illustration. However, we feel that the jackknife is worthy of 

consideration. We would like now to retain the attention more 

specifically on the covariance matrix which comes out for 

multidimensional estimators. 

Assume we want to estimate the mean vector of a sample (~ 1 , ••• ,~), 

as well as its covariance matrix, given that the multidimensional 

observations ~i are possibly incompletely known. We denote by 8 the 

estimator of the mean and its j-th component will be given by 

e. = L z.. x .. IL z .. 
J J~ J~ J~ 

to be unbiased. The coefficients zji are indices of presence or 

absence of component x ..• Per definition, we have 
J~ 



z .. 
J~ 

1 , 

o, 
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if x .. is observed, 
J~ 

if x .. is missing. 
J~ 

Before applying the jackknife method we note the need of 

independency assumptions on the z .. as well as on the~~; furthermore 
J ~ ~ 

the weighted form of a, 

a. =I w. z .. x .. 1 I w. z .. , 
J ~ J~ J~ ~ J~ 

must be sufficiently differentiable with respect to the xji and to the 

wi. These conditions are satisfied, 

Attempts to reduce the bias would here put to light the lack of 

bias. We will therefore only estimate the covariance matrix in the 

sequel. It results from the partial derivatives. 

and has the components 

w. 
~ 

z .. 
J~ 

We will write it down for the uniformly weighted estimator, that is to 

say for the unweighted mean vector, 

[ cov(ill kl 
_1L 
n-1 

A 

Izki<xki - ekl<xli - e l 
1 

This covariance estimator is a positive definite matrix. It concurs 

with the ordinary estimator when all observations are complete. It 

does not seem useful to insist on the elegancy of the method seeing the 

interest of this estimator by comparison with the structure which can 

be inferred from the classical theory, The latter estimator is not 

even positive definite; it would have been written 

[ cov(!)] kl 

where 

m = I. zk. zl. • 
~ ~ ~ 

With regard to applications, they can be found in various domains; 
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some are interesting because it has been observed that the jackknife 

apparently fails on correlated data and on order statistics. This is 

not surprising to us, However it is informative to scan the papers of 

Ferguson et al. (1975), Gray et al. (1976), ~·liller (1974b), Rey (1974) 

and Rey and Martin (1975), posterior to the review of Miller (1974a), 

3.4. Comments 

On tendency to normality, It is known that under regularity 

conditions and with large group-size h as well as finite group-number 

g, the jackknife estimate tends to have a T-distribution with g-1 

degrees of freedom. To us, this appears accidental and essentially a 

consequence of the performed m~thematical derivation, Expressing the 

estimator e in terms of the observations xi as a power series expansion 

and truncating at a low order produces necessarily pseudo-variates ei 

with normal distributions if their components are many and bounded 

(appropriately disguised in the regularity conditions). And then the 

conclusion that the jackknife estimate tends to normality is reached, 

This state of affair has been avoided in this paper by expanding in 

terms of the weights rather than in terms of the observations. It 

happens frequently that the jackknife estimate is more or less normal 

but, then, the original estimator e was also subject to application of 

the Lindeberg conditions. 

On time-series analysis. 

conditions of independency. 

Jackknifing can be applied under 

When some stationarity in variances can be 

assumed and sample size permits, grouns of relatively large sizes h 

must be assembled, All other conditions are generally fulfilled. 

On order statistics. This presentations does not justify the 

utilization of the jackknife, Effectively, the estimators are usually 

not continuous in the observation weights and the weights are not 

independent of the observation values, 

On misclassification probabilities, Numerous methods are in use to 

classify, among several classes, an extraneous sample on the basis of 

prior information, This prior information consists frequently in a set 

of observations belonging to known classes, Then, the probability of 

misclassification can be seen as a function of these known 

observations. Estimator of the misclassification probability can be 

jackknifed in "discriminant analysis", where the estimator depends 
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smoothly on observation importances; but application of the method with 

some other classification techniques, such as "nearest neighbour", is 

not justified, 

On transformations, If the jackknife method is applicable to e, it 

is also applicable to$= ~(e) inasmuch as $(,) is continuously once 

differentiable in the vicinity of e. However, the transformation may 

be useful to set confidence domains when the distribution of ~ is more 

easy to manipulate than the original distribution. 

On robustness, The pseudo-values e. are indicative of the 
1 A 

observation incidences on the estimator e and happen to be a discrete 

version of Hampel's influence curve (1974), Their inspection may 

reveal an abusively high sensitivity to some observations. 



4. M-ESTIMATORS 

4.1. Warning 

In these sections we meet with a few classical problems which are 

well-known in the theory of statistical estimation. However the 

viewpoint is rather unusual and this leads to disregard certain aspects 

which otherwise would be of great concern. 

For example, consider the estimation of a location parameter a for 

the variate x distributed according to the law f(x - a). We will 

search for the "best" estimator without feeling concerned by its 

representativity or its real meaning. We may end up with a median 

estimate or an arithmetic mean; both are invariant with respect to the 

real location under translation of the distribution; both may 

frequently be used to estimate the location, however they may differ 

from each other. 

But what are these M-estimators we investigate ? They are 

generalizations o~ the usual maximum likelihood estimates. Classically 

a is the parameter value maximizing the likelihood function, i.e. we 

have in obvious notation 

or equivalently 

L == ll f(x. 
~ 

a) max for a 

- ln L - I ln f(x. 
~ 

e) min for a. 

The estimators of type M are solutions of the more general structure 

M == L p(xi' e) ==min for e, 

where the function P(.) may be rather arbitrary. Before proceeding, we 

note that the above structure is rarely appropriate to process 

correlated observations. 

The estimators of type M have been analysed in quite many respects 

for location problems, since the initial contribution of Huber (1964); 

however, the many other estimation problems have received scarcely any 

attention - The next section is original, in this respect - We will 

meet with developments which are based on differentiability and 

independency properties which usually do not hold for the other two 
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great classes, the L-and the R-estimators. The latter are 

respectively obtained through linear combinations of order statistics 

and through rank tests. We refer to Huber (1972) for their properties 

(some are questionable), and to Scholz (1974) for their respective 

merits. 

Developping the theory of M-estimators we will need various 

functions, their derivatives, operators with vector or matricial 

structures as well as summations and integrals. In order to ease the 

reading we present the notation in use. As much as possible we have 

tried to maintain the now classical notation; further, each time we 

need a special script, we have recalled its definition. 

We will successively meet with the following scripts 

ll 

p 

f(x) 

x. 
~ 

n 

w. 
~ 

o ( x - xi) 

e. 
J 

g 

M. 
J 

pj(x,.) 

ljl. (X t • ) 
J 

<Pjk(x,.) 
n. ( x) 

J 
t 
( • ) * 
( • ) I 

.L...l 
2 a. 
J 

U t.!., E 

m 

sample space, ~P. 

dimensionality of n. 

probability density function of x, X E ll. 

observations, 1 ~ i 'n. 

sample size. 

non-negative weight of observation xi. 

Dirac function concentrated on xi. 

parameter and estimator, 1 ~ j < g. 

number of simultaneous estimators. 

function minimized by e., 1 'j <g. 
J 

contribution of x toM., 1 < j <g. 
J 

= ( a ;a e . ) p • ( x , • ) • 
J J 

= (a;aek) wj(x,.). 

Hampel's influence function, X E ll. 

t E R, 0 < t < 1. 

perturbed entities have a star superscript. 

transposed entities have a prime superscript • 

underlined entities are column vectors. 

asymptotic variance of e .• 
J 

regression model, u = .!.' ! 1 + E. 

dimensionality of.!. and!,, p = m + 1. 

(u, .!.')'En. 

(ofoE) p 1(d. 
(a/ad w(d. 

rigidity index, Ri = (o/oui) 

exponent in p 
1 
(E) = k IE I". 

E. • 
~ 
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= e1 form= 1, v = 1. 

see section 4.3.4. 
2 = a 1 , asymptotic variance of e. 

scale of £. 

Consider some sample space, say n c RP, on which a density 

distribution f(x), X E 0, is defined; possibly this distribution is 

unknown except for some sample (x 1 , ••• ,xn) and then we take into 

account the empirical distribution. 

f(x) = (1/L w.) L w. 5(x- x.) 
~ ~ ~ 

based on a set of non-negative weights (w 1 , ••• ,wn) and where 5(x- xi) 

is a Dirac function concentrated on the observation x .• In this 
~ 

section we investigate the estimation of a set of parameters 

(e 1 , ••• ,eg) which are such that they minimize the functions 

(M 1 , ••• ,Mg), that is they are such that 

Mj =min for ej, j = 1, ••• ,g 

where 

M . = J p • ( x, e 1 , ••• , e ) f ( x) dx. 
J J g 

This definition yields to identity of the parameters with their 

estimates. 

The above framework is essentially a generalization of the now 

classical M-estimator theory. It is motivated by the frequent 

interdependence of various estimators. For instance, a scale estimator 

often depends upon a previous estimation of some location estimator, 

e.g. the variance a2 may be defined through theM-structure, for p = 1, 

f [ (x- \1) 2 - a 2] 2 f(x) dx =min for 

where \l is the mean through another M-structure 

f (x - IJ)
2 f(x) dx = min for \l. 

2 
a ' 

These are in fact estimators of type Multiple-M or, as we call them, 

MM-estimators. 



33 

In the sequel we assume that the functions M. can be differentiated 
J 

under the integral sign. More precisely, we assume 

-Independence of n with respect to e 1 , ••• ,eg, 

(conditions on derivatives of f(x) at the frontier of the sample 

space n generally meet the needs), 

- •. (x,.) = (a/ae.) p.(x,.), 
J J J 

<Pjk(x,.) = (a/aek) •j(x,.), 
(existence and differentiability of derivatives). 

Accordingly, the MM-estimators can as well be defined by the following 

set of g equations 

J 1jJ j ( x, e 1 , ••• , e g) f ( x) dx o. 

In our illustration, the corresponding set has g 

for an empirical distribution f(x), 

L w i [ (Xi - )J ) 2 - (J 21 0. 

2 equations and is, 

Strictly speaking, ll is an !-!-estimator, whereas cr 2 is an MM-estimator. 

We will now be interested by the sample distributions of these 

estimators. Precisely, we first derive their influence functions, then 

we give their variances and eventually conclude this section by some 

considerations on their robustness. 

The notation is relatively difficult to select without restricting 

ourselves to certain domains of applications. In order to permit easy 

adaptations of the derivations, we will assume that the estimators e. 
J 

are column-vectors (possibly of dimension 1), The transposition will 

be denoted by a prime superscript. 

According to section 2.5, the Hampel's influence function relative 

to the estimate e. is given by 
J 

n j ( x 0 ) = 1 i m[ ( e; - e j ) It 1 , t ... o 

* where e. is defined through the perturbed distribution 
J 

f*(x) = (1 - t) f(x) + t o(x- xo) 

for a given coordinate set x 0 • Observe that the script n.(x) describes 
J 



34 

a vector-valued function on the sample space and should not be confused 
with the sample space itself; the notation n(.) is becoming standard, 

although unfortunate; it strictly corresponds with the cumbersome 

IC F(.) of Hampel (1974). 
e j' 

The g expressions 

can be expanded as follows with respect to the non-perturbed elements -
We contract the notation and only take into account the terms up to the 

first order in the perturbation. 

f 1j>~(x) 
J 
= f 

* f dx 

[ 1/>. (x) 
J 

We see that the difference (e~- e.) is the solution of a set of g 
J J 

linear equations. They may be scalar but possibly they are vectorial 
or functional depending upon the nature of the estimators. When the 

coefficients A.k (k ¢ j) are dominated by A .. , that is when the 
J J J 

estimators are relatively independent from one another, a solution can 

be derived. Under 

llh Aik 
-1 

Akk Akj 
-1 

A .. 11 
JJ 

<< 1 • k¢i, k¢j. 

we obtain 

* -1 
1/> j ( xo) Lk 

-1 -1 
1/>k(xo)l' k¢j. e. - ej = - t[Ajj - A .. Ajk Akk J JJ 

Therefrom, the influence function is given by 

where the summation runs over k = 1, ••• ,g and 



35 

When the distribution f(x) is experimental, the integrals equate the 
corresponding sums, e.g., 

(1/}: w.;) L w. cf>.k(x .• e 1 , ••• , e). 
~ ~ J ~ g 

and the perturbation of f(x) in f*(x) can be limited to a modification 
of the weight set (w 1 •••• ,wn). This is precisely what has been the 

treatment described in section 3.2 on the jackknife. Accordingly we 
meet here with the variance estimate 

var(a.) = L w~ [n.(x.)] [n.(x.))' I [ (L w.) 2 - L w~]. 
J ~ J~ J~ ~ ~ 

The notation with a prime, [ .) ', is for the transposed of the influence 

function when the latter is not a scalar. 
If and only if all observations have the same weight. the variance 

estimate is related to the asymptotic variance 

a~= f n.(x) n.(x)' f(x) dx 
J J J 

through the asymptotic expression 

var (e.) = - 1
-

J n-1 
2 

a. • 
J 

So far we have not devoted much attention to the nature of the 

solution. A natural requirement, apart from being robust. is to be 
unique or at least "locally" unique; that is we require the set of 

solutions to be discrete. A locally convex set of solutions may be 
accepted in certain contexts but this is rather troublesome and, often, 
no loss of generality happens when the indeterminacy is resolved by a 
supplementary condition. In case the indeterminacy must be preserved, 
it is appropriate to work out the solutions with the help of their 
projections on some subspace and, there, no difficulty occurs. 

Given that the solution is a minimum, and with the requirement of 
local unicity, we see that the coefficients A .. must be positive 

JJ 
definite, thus they can be inverted as was implicitely assumed in the 
derivation. 

To be robust we must also have a bounded influence function and, 
therefore, the first derivatives ~.(x,.) must be bounded for any x in 

J 
the sample space. Then, the MH-estimator e. has a finite variance and 

J 
its distribution tends to the normal law (possibly multivariate) 
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according to the Lindeberg condition (eq, 6.3 of Feller, 1966) and the 

multivariate central limit theorem (Rao, 1973, p. 128). 

An apparent conceptual difficulty should be clarified concerning the 

estimator definition. Having at disposal a distribution or a sample, 

f(x), and a mathematical rule, the minimisation of (M 1 , ••• , Mg)' we 

have defined the parameter to be estimated and its estimator as 

corresponding to the minimum and, thus, equivalent. Further, in spite 

of this "confusion", we have designed an estimator of some variance. 

What is the argument behind this mess ? 

The viewpoint is here, from beginning to end of the argument, that 

the unique information we have on the distribution is f(x), say for a 

sample 

f(x) = (1/~ w.) ~ w. 0 (x- x.), 
1.. l. 1.. l. l. 

and that it appears fictitious to introduce any parent distribution, 

say g(x), if it is not peremptory. This is opposite to the usual 

sampling theory and, thus, startling. The definition of the parameter 

to be estimated is given by reference to f(x) rather than to g(x); this 

avoids a parent distribution with unclear relations to f(x), or with 

arbitrarily cleared relations. But we implicitely assume existence of 

this parent distribution g(x), further it must fit in the frame of 

section 2.4. Then, with unique reference to f(x), it is possible to 

assess the variability of the estimators accordingly with section 3.2. 

In fact, contrary to the usual sampling theory, we do not need here any 

parent distribution in an ~xplicit form and, thus, it has been omitted, 

Before proceeding, we propose a simple illustration where all the 

concerned elements can be explicitely stated, With the above 

formalism, we study the central moment of order v, in the ordinary 

notation llv• Its definition 

JJv = f (x- JJ)v f(x) dx 

implies the knowledge of the mean 

JJ = f x f(x) dx. 

We denote these parameters respectively e
1 

and e2 and transform the 

definitions as follows 
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f [ e 1 - ( x - e 2 ) v] f ( x ) dx o , 
and 

{ ( 6 
2 

- x) f (X) dX = 0 • 

Comparing these last two expressions with the fundamental MM-estimator 

equation 

f 'I' j ( x, e 1 , ••• , e g ) f ( x ) dx o , 

we observe the correspondence and we define 

and 

These equations have the following partial derivatives 

ljl 1 1 (X t • ) 1 • v(x - e )v- 1 
2 • 

1. 
' 

which will be introduced in 

to obtain the factors 

1 • v 11v-1 • 

This material leads us to the expression of the influence function 

(x - 11)v - 11 - v 11 (x - 11) 
v v-1 

which indicates the incidence of an 9bservation x on the central moment 

llv· The asymptotic variance 

0~ f n~(x) f(x) dx 
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does not present any computational difficulty. Now we more 

specifically devote our attention on an estimation of ~v based on a 

sample of size n of equally weighted observations. We denote mv the 

estimate of ~v and the distribution is the probability density function 

f(x) = (1/n) l o(x- xi). 

The variance of mv comes out immediately, without any explicit 

reference to a parent distribution 

var(mv) - 1- f n21 (x) f(x) dx 
n-1 

This form concurs with the classical result, up to the second order in 

n. 

4.3. M-estlmators In location and regression 

In this section we specialize the above derivation to the situation 

g = 1 and obtain the conditions to be satisfied by p 1(.), or w1(.), in 

order to have robust estimates. This presentation provides means of 

assessing the robustness but, moreover, it leads to the design of the 

functions p 1 (.) and w1 (.) which produce the "best" estimators, best in 

some sense. 

4.3.1. Location and regression 

Let us first set the stage. We are concerned by the linear model 

U = V 1 ~ 1 + E 

where u and e: are scalars and~ and!, are m-dimension column-vectors. 

In case of a location problem, we simply have m = 1 and v = 1. Each 

observation consists in the set of parameters 

X = -1 

and, per definition, ~1 is the set of values minimizing 

or 
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with 

The fact that u and v are assembled in the script ~ is more than a 

writing commodity. Both are concerned at the same level and an 

observation ~i may be outlying as well because ~ is abnormal as because 

u is; one should correspond with the other. The situation of outlying 

~has been reviewed by Hill (1977) as well as Ypelaar and Velleman 

( 1977). 

As previously, we observe that ~ 1 is defined through the 

mathematical rule of minimization rather than through a statistical 

characterization of the possibly-random variable £• Inasmuch as p 1(.) 

is an increasing function of I£ I• the minimization process can also be 

seen as a way of approximating u by v' ~1 , in spite of possible 

inadequacy of the linear model. 

In location, the emphasis on the mathematical rule rather than on 

the statistical characterization has been skipped by Huber (1964), and 

partly by Jaeckel (1971), by considering symmetric distribution f(x) 

where there is a "natural" definition of ! 1 , the center of symmetry. 

Then limiting p(.) to be symmetric clears most statistical problems. 

This emphasis is underlying the discussion of what is robustness (or 

what it should be) by Huber (1972, 1973, 1977a). The minimization 

viewpoint is more critically analysed with the more recent 

investigations of regression problems; Jaeckel (1972b) and Collins 

(1976) state their concerns. But rather generally, authors ignore the 

possibility of a statistical characterization when they study finite 

samples and only take in consideration asymptotic properties, e.g. 

Maronna (1976). In most cases the finite sample properties are 

conjectured from Monte Carlo simulations. A nice case in the 

literature is the Hampel's papers (1973, 1975) pleading for the use of 

appropriate mathematical rules and which have been directly opposed by 

Dempster (1975, 1977) who only works on the statistical 

characterization in a bayesian framework. Obviously if one admits to 

select a data-dependent prior, very good and robust estimators can be 

derived. The dependence on data is often introduced in a sequential 

way (the prior is modified until obtention of "satisfactory" results) 

and frequently consists in arbitrary trimming or winsorization, see 

Yale and Forsythe (1976). This may require specific identification of 

outlying observations and many methods have been investigated in this 
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regard since Anscombe (1960); let us just mention the work of Garel 

(1976), However it seems to us a need to endure values, as does Youden 

(1972), in keeping a critical eye on what is produced, as recommend 

Mead and Pike (1975), 

After having travelled a long way between the regression seen either 

as a statistical procedure or seen as a type of approximation, let us 

resume our development of this particular M-estimator. In this 

derivation we will take into account samples of moderate sizes. For 

asymptotic properties we refer the reader to Huber (1964, 1972) and, 

more specifically for regression problems, to Huber (1973). We now 

move along section 4,2, 
Noting$(£) and~(£) for the first and second derivatives of p 1 (£) 

with respect to £, the derivatives with respect to ~1 have the simple 

expressions 

(a;a~,) p
1 

(u - v' ! 1 ) 

as well as 

The factor A11 is a generalization of the ordinary design matrix. It 

has the form 

w. 
l. 

,,;}: wil L 

(1/}: wi) L w. 
l. 

~(£.) v. v'. 
l. -J. - l. 

which must be positive definite. The influence function, at the 

observation ~i' has the form 

-1 
Q 1 ( ~i ) = W ( £ i ) A 1 1 .!.i 

and leads to a covariance estimate, here written for equal weights, 

n L 2 L -1 V ar ( 6 1 ) = --, $ ( £. ) [ ~ ( £ • ) V. VI .] 
- n- l. J -J - J 

v. v'. [1.' ~(£.) v. v.J- 1 
-J. - l. L J -J -J 

which is valid for independent observations ~i' 

Robust regressions is a field where the concern is more on getting a 
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regression certainly right in "the bulk of the data" than taking the 

risk of being misled by some odd observation. Effectively, it occurs 

that the classical methods of least squares, of maximum likelihood and 

of other probabilistic origins are very sensitive to outlying 

observations by attributing them a disproportionate importance. The 

two most obvious aspects are, on the one hand, that outlying 

observation ~k may contribute by a very important term p 1 (Ek) or, on 

the other hand, that its residual Ek may be abnormally small. The 

latter is particularly difficult to detect, although it is the most 

important : it means that the regression has been fitted on the outlier 

instead of neglecting it. This conflict between the desire of 

obtaining a not-small Ek (without having identified ~k as outlier) and 

the desire of producing small Ei through minimization is at the root of 

all robust regression methods. 

Hopefully, an appropriate choice of the function p 1 (.) should 

resolve the above conflict. We already have at disposal the influence 

function to evaluate the dependency of ~1 on any specific observation 

~i' however it usually tends to cancel for small residuals and, thus, 

cannot be used to recognize that the regression has been "locked" on 

some ~k· But other ways can be proposed to assess this dependency; we 

have particularly in view a "rigidity index" which reflects the 

modification of Ei resulting from a change of ui. 

defined by 

R. aE. I au. 
~ ~ ~ 

Specifically, it is 

and is the closer to one, the more "rigid" the regression is with 

respect to erroneous ui. Conversely, while the fit is locked on an 

outlier, the above index is close to zero. In the present framework, 

this index can be evaluated by 

R. = 1 - w. 
~ ~ 

as may be seen by differentiation of 

l w i 'iJ 1 (~, 8 1) = 0 

or of 

v'. - ~ 
v. 
-~ 

We may now infer what conditions the function p(E) must satisfy in 
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order to produce a robust estimation, robust in the sense that each 

observation x. has a bounded incidence on the estimator whatever it is 
-~ 

and whatever is its non-negative weight wi. 

Bounding the rigidity index to satisfy 

0 < R. ~ 1 
~ 

implies bounding of p-second derivative, i.e. 

~(&) ~ 0 

~(&) bounded, a.e. 

In fact ~(Ei) must be strictly positive for at least m independent 

observations ~i in order to have a positive-definite matrix A11 
Bounding the influence n 1 (~i) implies bounding of p-first derivative, 

i.e. 

~(&) bounded, a.e. 

In order to obtain an unbiased estimator, when the linear relation 

u = v' !, 

is possible (with zero residuals), we also impose 

~(0) = o. 

The fact that the bounding must be achieved for "any possible" £ is 

reminded by the almost everywhere (a.e.) indication. It does not 

matter if the derivatives are not bounded, or undefined, for some £ 

realized with probability zero, such as £ corresponding with ~ ~ n. A 

function p 1 (&) satisfying this set of conditions will be said 

"admissible". 

To conclude this discussion, we sum up : To be admissible~ the 

function p 1 (&) must be piece~ise convex (i.e., not concave), be minimum 

for £ = O, have almost every~here bounded first t~o derivatives and be 

strictly convex in the vicinity of at least m residuals £i. We further 

add to guarantee!, unicity : the function p1 (&) must be continuous and 

convex every~here. 

A natural question is whether there exists any admissible P 1(£). 

The answer is positive, but admissible p 1 (£) cannot produce scale 

invariant ~1 when the sample space is not bounded, i.e. with 
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Q = RP, p = m + 1. Effectively, assume we require ~ 1 to be independent 

with respect to the scale of the residuals, that is to be independent 

of the non-zero real variable A in 

~ w. ljJ(Ac.) v. = 0; 
[. ~ ~ -~ 

then we must have cancellation of the first derivative 

a !1.., 1 a A = o 
or 

~ w. c. $(Ac.) v. = 0. 
[. ~ ~ ~ -~ 

We now compare the last and the last but two expressions. For an 

arbitrary set of observation weights, their compatibility implies that 

£.$(A£.) is proportional to $(A£,). Therefrom we obtain that the only 
~ ~ ~ 

scale invariant structure, for~ E RP, satisfies 

£ <P(c) I $(£) = constant 

or 

£ <P ( £) ( v-1) $( £) 

and is 

with 

k * o, 

But this specific form is not admissible, seeing that the derivatives 

can be arbitrarily large. We thus face an alternative : either we must 

bound the sample space n, or we must use a scale-dependent function 

p 1 (c) in order to produce a robust estimation. The first term of the 

alternative will now retain our attention; the second will be 

investigated in section 4.4 where the scale invariant structure p 1(cls) 

is analysed and which implies the knowledge of s, the "scale" of the 

variable £. 

4.3.2. Least powers. 
In this section we further investigate the estimation of !1., 1 

minimizing 

with 
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E = u - v' 6 . - -1 

We assume that the parameter v satisfies 

v ;;. 1 

in order to have a non-concave p(E) and that some bounding of the 

sample space avoids exceedingly large residuals Ei. 

In this family of p(E) are found several well known schemes. The 

most famous method is certainly the least squares minimization with v 

2, but the Chebyshev's criterion and the absolute value minimization, 

respectively v tending to infinity and to 1, have equally received much 

attention. 

Large values of the parameter v will not be considered in the sequel 

due to the fact they do not present any interest in common statistical 

applications. In fact the smaller v is, the smaller is the incidence 

of the large residuals on the !
1 

estimate; it appears that v must be 

fairly moderate to provide a relatively robust estimator or, in other 

terms, to provide an estimator scarcely perturbed by outlying 

observations. The selection of an optimal v is investigated by Ronner 

( 1977). 

The value v = 2, corresponding with the least squares or the 

arithmetic mean, is still too large as we can appreciate by the opinion 

of the Princeton group based on Monte Carlo runs. 

(1972, p. 239), they answer the question 

In Andrews et al. 

Which was the worst estimator in the study ? 
If there is any clear candidate for such 

an overall statement, it is the arithmetic 
mean, long celebrated because of its many 
"optimality properties" and its revered use 
in applications. There is no 
contradiction : the optimality questions of 
mathematical theory are important for that 
theory and very useful, as orientation 
points, for applicable procedures. If taken 
as anything more than that, they are 
completely irrelevant and misleading for the 
broad requirements of practice. Good 
applied statisticians will either look at 
the data and set aside (reject) any clear 
outliers before using the "mean" (which, as 
the study shows, will prevent the worst), or 



45 

they will switch to taking the median if the 
distribution looks heavy-tailed." 

The difficulties have been surveyed by Huber (1972) and it may be 

concluded that only limited importance must be attributed to the most 

extreme data. For v in the vicinity of 1.2, a good estimate may be 

expected, but this is a matter of opinion 

Technically the only parameter which bounds the large residual 

incidence is v = 1. But then strict convexity is lost and an 

indeterminate solution may result. The corresponding problems are well 

known and are usually solved by linear programming techniques. However 

the indeterminacy may also be resolved in considering v = 1 as the 

inferior limit of v > 1. Inasmuch ~1 does not vary to much with v, this 

procedure appears reasonable; it has been recommended by Jackson (1921) 

who investigated the one-dimension median, - Our own experience 

totally supports this view - An interesting aspect is that this 

provides a natural extension of the one-dimension median to the 

multivariate domain. The dependency of ~ 1 on v has been the object of 

great attention recently with the present existence of computational 

facilities, Nowadays, we can compute, but is it meaningful in theory? 

The answer is positive but reluctant for most authors, a reluctancy 

related to the pertinence of the needed theoretical assumptions. 

Fletcher et al. (1974) approach the question with a computation 

oriented viewpoint, while Cargo and Shisha (1975), Hwang (1975) as well 

as Lewis and Shisha (1975) analyse topological aspects. The 

theoretical considerations have a serious impact on practice due to the 

fact that a great number of tricks are used in the algorithms to force 

their eventual convergences to possibly artificial solutions. Before 

leaving these considerations, note that instead of minimizing the sum 

of powers of residuals an immediate generalization permits to minimize 

vector norms and thus to extend ~1 from a vector to a matrix structure. 

These norm minimizations are investigated by Boyd (1974) and Rey 

(1975a); the last paper is partly oriented toward multidimensional 

location problems. 

As we said, many difficulties are encountered in the computations 

when the parameter v is in the interesting range 1 < v < 2, for zero 

residuals are troublesome. 
Several well known methods are at disposal to minimize functions. 

Let us first discard all the methods relying on some separation of 

function components (e.g., orthogonal decomposition); due to the fairly 
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involved non-linearities, it does not appear possible to us to proceed 

in this way for the parameter v in the interesting range. The search 

techniques of minimization must also be rejected because they have a 

very poor accuracy and are inclined to numerical trouble for a "flat" 

function minimum, situation which occurs quite often. Then we are left 

with relaxation and gradient methods. The former, such as used by 

Gentleman (1965), are equivalent to first order gradient methods in 

this context and will be presented at section 4.4.1 for MM-estimators. 

Unfortunately, the second order gradient algorithms cannot be 

considered due to the problems arising in the determination of the 

second order derivatives. They involve the absolute residuals, lEi I • 
to a negative power and they are responsible for hazards in the 

algorithm convergence whenever the solution ~ 1 correspond to small 

residuals. To bypass this difficulty, Forsythe (1972) recommends the 

implementation of the Davidon method (Fletcher and Powell, 1963), 

whereas Ekblom (1973, 1974) proposes the elimination of the poles by a 

quadratically perturbed method. It is noteworthy to observe that the 

Ekblom method corresponds to a somewhat restricted case of the 

generalized problem of Rey (1975a). Indeed, it consists in addition of 

a fictitious second dimension to the scalar data, ui. We have prefered 

to apply the first order gradient method with a specially chosen step 

size, that is, chosen in order to "avoid" the poles of the second 

derivatives. However, with experience progressing, we have noted that 

the algorithm to solve the highly non-linear equations met with at 

section 4.5 was the most efficient in computation time. 

With regard to computational experience, Merle and Spath (1974) 

present a clear discussion of several methods to be found in the prior 

literature. Comparison of the least powers approach with other 

techniques has been proposed in Rey (1977). 

4.3.3. Can we expand In Taylor series ? 

Whether the least power estimator ~ 1 fits in the frame of section 

2.4 may be inferred from the theoretical papers we have already 

mentioned but, seeing the importance of the question, we believe useful 

to directly demonstrate under what conditions it does fit. We will 

investigate the situation of the minimum sum of absolute residuals, 

v = 1. For larger power parameter, v > 1, the continuity of ~ 1 with 

respect to v is sufficient to demonstrate the Taylor-like expansion 

given that it is valid for least squares, v = 2. 
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In the sequel, we implicitely assume that, in situation of 

indeterminacy, the entities for v = 1 equate per definition the limit 

obtained for v tending to from above. 

Let ~1 be the solution of 

where, as previously, the integral spans the sample space n with 

:!. = (u, y_')' En. 

The probability density function f(:!,) is assumed sufficiently regular 

in the domain satisfying 

lu - !.' ~1 I small. 

When v = 1, the function~(&) becomes undefined at & = 0. Any finite 

value may be used and this will not matter as long as it is finite. 

For instance, the above limiting scheme leads to 

~(u - v' ~1) - 1. if u < !.' ~1· 
o, if u = v' ~1. 

+ 1 • if u > v' .!!.1 • 

We now perturb f(:!_) by some distribution g(:!_) and consider the 

corresponding perturbation on .l!_1 • Let the perturbation be 

* and let it produce the perturbed solution .!!.
1 

according to 

* We reorganize this integral equation in order to obtain ~, as a 

function of ,!!.1 and g(:!_). We immediately have the implicit equation 

The integrand of the first term, in fact, is non-zero in a very limited 

domain; and the integral is equal to 
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z ~ "between" the two hyperplanes 
* ~ ~· ! 1 and u = ~· ! 1 

* and is thus continuous with respect to !
1

, The second term of the 

implicit equation is relative tog(~), an unspecified distribution so 

far. We will assume that g(~) is also sufficiently regular and will 

later discuss that condition. 

are varying smoothly with i~· 
Then we have obtained that both terms 

But both are vectorial and their sum 
* only cancel for a discrete set of values ~1 , when t and g(~) are 

arbitrarily given, Moreover i~ is continuous with respect to t and 

* know the trivial solution i
1 = ~1 for t = 0. This is enough to 

conjecture the validity of the Taylor-like expansion 

can 

we 

* when t is small, that is when !
1 

remains in the vicinity of ! 1 • Strict 

demonstration would be dependent upon the regularity conditions needed 

to apply the implicit function theorem. 

What are coefficients .!!:.
1

, .!!:.
2

, , , , comes out particularly easily in 

the one-dimension problem, m = 1, v = 1, Then the median a of the 

distribution f(x) satisfies 

+oo 
f_.,. w(x- a) f(x) dx o, 

* whereas we are interested by its relation with a in 

f +oo W (X - a*) [ ( 1 - t ) f (X) + t g (X)] dX 0, -oo 

We develop as we did previously to obtain 

(1 - t) 2 fa f(y) dy + t /+"" w(x- a*) g(x) dx 0 * _.,. a 

or, approximately, 

* +oo 
( 1 - t) 2 (a - a ) f (a) + t f _.,. W (X - a) g (X) dx "' 0 

and 
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a* a + t +~ W(x - e) ) ~ 
~-~ 2f(6) g(x dx + 2 

Whether g(~) has to be differentiable everywhere is a partly open 

question. On the one hand, the limiting scheme, v ~ 1, or an 

approximation of g(x) by a differentiable function, is sufficient to 

allow the above presentation. On the other hand, a fairly rough 

function g(x) may mean a very poor convergence of the Taylor-like 

expansion. We support these remarks. 

The critical point of the derivation is the continuity of the second 

* term in the implicit equation with respect to !!.
1

• When a discontinuous 

g(~) is met with, the integral 

* f !_ 1/J ( U - !_I !!_ 1 ) g ( ~) d~ t 

* * seen as a function of !!_1 , is discontinuous at each !!.1 such that 

u = v 1 

with 

x = (u, !_ 1 ) 1 : discontinuity of g(~). 

Note the discontinuities of the integral provide a partition of the 

parameter space by a set of hyperplanes -To allow the presentation, we 

have smoothed these discontinuities; but they may be intrinsically 

present. 

Consider now variation of the parameter t, from t = 0 tot= 1. 

* That may mean that ! 1 moves through several connex parts of the above 

partition and thus has a fairly discontinuous variation. This can only 
* . be expressed by a slowly converging expansion. When !!.1 rema~ns in the 

neighbourhood of !!_1 , that is in the same part of the partition, the 

expansion can converge very rapidly and therefore be truncated at the 

level of its first order term. 

4.3.4. "Best" robust location estimator 

We design in this section the function p 1{£), or 1/J(E), which yields 

a minimum asymptotic variance given that 

- the distribution f(u) is known, except for its location, and 

continuous, for u E [u_, u+l. Moreover f(u_) = f{u+) = 0. 

- the influence curve is everywhere bounded (criterion of 

robustness). 
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-the solution e is uniquely defined (criterion of convexity), 

Although only location estimation is concerned in the sequel, the 

same type of argument could be produced in multiple regression 

estimations. However, this would be to the expense of a fairly 

involved investigation of the relationships existing between the 

distributions of u, ~and the residuals E; we have not thought this 

effort profitable seeing the limited results we already have. 

Thus, we intend to minimize the asymptotic variance 

v f [ w ( u - e ) l 2 f ( u) du 

[[ cj>(u- e) f(u) du] 2 

by an appropriate choice of the function 1/1(£), We first retain the 

attention on the fact that, for the best, the function 1/J(£) can only be 

defined up to some multiplicative factor. The latter will be selected 

in order to have a unit denominator. 

In way of introduction to the derivation, we first omit the 

constraints of robustness and convexity. We therefore fit more or less 

in the frame of Huber's paper (1964) when he investigates his minimax 

questions. However the approach will be quite different in many 

respects, 

In order to ease the analytical manipulations, we will use 

throughout this section a vectorial-matricial notation resulting from a 

discretisation of the sample space, Functions become vectors, whereas 

operators are matrices. 

Let the space coordinate be discrete. Any function y(u) will then 

be defined by the set of values{ ... , y(u. 
1
), y(u.), y(u. 1 ), ... } 

~- ~ ~+ 

taken at the regularly spaced coordinates { ••• , ui_ 1 , ui' ui+ 1 , ••• } 

with 

uj = u 0 + jn, n infinitesimal. 

- Remark the representation basis will only be an intermediate step and 

is not essential, other representations can be preferred - To the set 

of values, we associate a vector L of possibly infinite dimension. 

We will assume that functions are sufficiently differentiable, e.g., 

to (a/au) y(u), we associate DL 

where the matrix D has elements 
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1/(2n), if i 

1/(2n), if i 

j-1 

j+1 

0, otherwise, 

When z does not vanish at the frontier of the open set of 

differentiation, difficulties occur which will be taken care of by 

similarity with the ordinary infinitesimal calculus. 

We also need an integration operator. It will be of matricial type 

in order to support an operation with respect to a weight f(u) and two 

arbitrary functions y(u) and z(u), e.g., 

to f y ( u) z ( u) f ( u) d u , we associate z 1 F !. 

where the matrix F is diagonal and has elements 

F = n diag( ••• , f(u.), ••• ). 
~ 

!.' F z 

When only one function is concerned, the unit constant is substituted 

to the other, e.g., 

to z ( u) 1 , we associage ..!., 

to 1 y{u) f(u) du, we associate z' F 1 

With this formalism, we transform the function analysis problem in a 

standard minimization with equality and inequality constraints. At the 

moment, we only take into account the equalities. 

Let z be the vector associated to the ~(u- e), then it minimizes 

v = z' F z 
under constraints 

c 1 = 2 ..!.' F z 0 
and 

c 2 = 2(..!.' F D z- 1) = 0, 

Constraint c 1 indicates that e is an M-estimator, whereas constraint c 2 
stands for the denominator of the asymptotic variance. 

We solve this minimization by the method of the Lagrange 

multipliers; let them be A1 , A2 , Then, z is also minimum of 

or, after differentiation with respect to z, 



52 

F ~ + ~ 1 F 1 + ~ 2 D1 F = 0 

and 

The last transformation makes use of the antisymmetry of matrix D, and 

can be performed only if the distribution vanishes on the frontier of 

its domain of definition; i.e. 

D1 F - DF o f(u_) = f(u+) = 0. 

Introduction of ~ in c 1 and c
2 

provides the Lagrange multipliers 

~ 1 ~ 2 ..!_'DF..!_,given1 1 F..!_=1, 

~ 2 1/..!_ 1 F D F- 1 D F 1. 

The former cancels accordingly with 

1 I D F 1 

1 (a/au) f(u) du 

f(u+)- f(u_) = 0. 

We collect the results and obtain 

w(u- e) ~ 2 f(u)- 1 (a/au) f(u) 

or 

1/J(u - e) ~ 2 (il/ilu) ln f(u). 

Given c 1 , i.e. 

1 1/!(u - e) f(u) du = o, 

we see that any M-estimator which is equal to the maximum likelihood 

estimator, except for a translation constant, is admissible in the 

sense of Stein 11955), when the distribution vanishes on the sample 

space boundary. The asymptotic variance of this M-estimator is given 

by 

where 
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Although the characteristics of maximum likelihood estimators are 

classical, we illustrate the above findings in order to display the 

relations between the various elements. Let us estimate the location 

of the sample u 1 , ••• ,un drawn from the gamma distribution of density 

f(u) [1/r(v + 1)1 (u- a)\1 exp [-(u- a)], if u;;.. a 

0 , if u < a 

for strictly positif parameter v. 

Note that the restriction on parameter \1 is peremptory. 

Effectively, we have derived the minimum variance M-estimator with 

respect to a differentiable distribution vanishing on the sample space 

boundary. In the present case, it is convenient to set 

u = a and u+ 

This yields 

1/l(u - a) ). 2 {[v/(u- a)]- 1} 

and 

V = - ). 2 = v - 1 , for v > 1 . 

Therefrom, and accordingly with 

f ljl(u - a) f(u) du o, 

we can define a through 

L w. { [v/(u.- a)] - 1} = 0 
~ ~ 

or by the explicit result derived with respect to a0 , an approximation 

of a. 

This estimator is minimum in asymptotic variance but obviously is 

not robust. -By the way, note that V tends to cancel for \1 = 1; this 

is indicative of difficulties in the analytical conditions which lead 

the expansion of section 2.4 to converge too slowly. Then the variance 

of a is not anymore inversely proportional to the sample size n; the 

high order terms dominate the first in the expansion 

n var(a) = V + O(n- 1 ). 
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We now proceed in the derivation by addition of the inequality 
constraints which impose robustness to the M-estimator. We search for 

a minimum variance e and thus have to minimize 

V = y_' F y_ 

under equality constraints 

c 1 = 2 l' F y_ 0 

and 

c 2 = 2(1' F D y_- 1) = 0. 

We further limit p(.) to be convex, that is we restrict by 

for any basis vector~= (o, ••• ,o,1,0, ••• ,o)•. We also set a superior 
bound to the influence curve. This bound will be set relative to the 

mean quadratic value. Thus a second group of inequality constraints 
may be stated in the form 

Inspection reveals that the set of equations has a non trivial solution 

if, and only if, 

a > 1. 

The situation a= 1, seen as the limit of greater a-values, gives the 

median of f(u) for solution. It is the most robust e. 
We investigate this inequality constrained minimization by the 

method of Kuhn and Tucker, according to Beveridge and Schechter (1970, 
section 4.3.3). Similarly to the above derivation, the solution y_ must 

be minimun of 

but the inequalities lead the last two sums to satisfy 

with the following constraints on the Lagrange multipliers 
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for all k and 1. There is a further requirement concerning the region 

delimited by the inequalities; the minimum must be accessible and thus 

not exterior to this region. This question of accessibility will be 

considered as resolved seeing that a > 1 guarantees the existence of an 

accessible minimum. 

Consider now the condition 

Each term can only contribute in a non positive way, therefrom we 

conclude that, at the accessible minimum, we necessarily have 

either ).3k 0 and c3k "' 0 

or ).3k > 0 and c3k = o, 

as well as, 

either ).41 = 0 and c41 "' 0 

or ).41 > 0 and c41 o. 

The meaning of these alternatives is obviously that, for the first 

terms, the constraints are not binding and that, for the second terms, 

the minimum lies on the boundary of the accessibility region. In the 

sequel, we will carry the attention on the second terms; this is in the 

line of the thorough discussion of the Kuhn-Tucker approach given by 

Vajda (1961, section 12.4). 

We differentiate the combined expression, with respect to ~· in 

order to obtain the minimum. This yields to 

(1 - a l ). 41 ) F ~ + ). 1 F l + ). 2 D' F 1 

- l ).3k D' ~k + l ).41 (~ 1 1 ~) ~1 O 

and 

This is under conditions 
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D' F - DF or f(u ) 0 

and 

The latter implies that the convexity criterion cannot be constraining 

on the frontier of the sample space (A 3k must cancel on the frontier). 

The expression obtained for z in terms of the Lagrange multipliers 

will now be analysed. First, note that the multiplicative scalar 

factor (.)-
1 

can be omitted, if we accept new definitions of the 

Lagrange multipliers. Second, note that matrices F- 1 and (F- 1
D) are, 

or nearly are, diagonal. And third, assume that f(u) has a continuous 

first derivative in order to obtain a continuous ~(u - e). Then, three 

different types of behaviours of ~(u - e) can be distinguished in 

connex subsets of the sample space. They are 

Type 1 the two groups of inequalities are not binding. Then we 

obtain in corresponding subsets. 

A3k = A4l 0 

z A
2 

F-
1 

D F ..!. - A
1 

1 

or 

~(u- e) A 2 [ ( a I a u ) ln f ( u ) 1 - A 1 

with 

and 

~(u - e) ;;;. o. 

- Type 2 in subsets where the convexity criterion is binding, we have 

and 

1/l(u- e) constant 

with 
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- Type 3 : in the remaining subsets of the sample space, the robustness 

criterion is binding. Thus 

and 

w ( u - e ) = ± ..;sv . 

Observe that lji{u- e), has, at most in two subsets, a type 3 behaviour. 

The above derivation fully supports the conjecture in Huber (1972, 

section 12.3) concerning robust maximum likelihood estimators. But, 

moreover, it demonstrates how to estimate minimum variance robust 

M-estimators in the present location case. 

To illustrate the above discourse, we consider robust estimation for 

the previously met example. We estimate the location of the sample 

u 1 , ••• ,un drawn from the gamma distribution and we require that all 

observations contribute in a similar way to the estimate. In more 

precise terms, we may require that the maximum incidence be twice the 

"quadratic mean" or B = s0 with s0 = 2 2 4. 

We now determine the equation of !jJ(u- e). First, let us find its 

structure. There is certainly a type 1 subset, given B > 1. There, 

!jJ{u - e) has the expression, written with unknown coefficients b 1 and 

b2' 

Seeing that the convexity criterion is never binding, we conclude to 

the existence of a unique type 1 subset and to the absence of type 2. 

There can be one or two subsets of type 3. Noting b 1b
3 

the 

corresponding bound, we summarize the structure of w(u - e) as follows 

w(u - e) - b1b3' if u - a .;;; b4 
b 1[ 1/ (u - a) - b2] • if b4 .;;; u - a .;;; b5 

+ b1b3' if u ;;. b5 

with 

b1,b2,b3 > 0 

b4 1/(b2 + b3) 

b5 1/(b2 - b3) • if b2 > b3 .. , if b2 .;;; b3 
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- It may be noteworthy to observe that this is very nearly the result 

obtained by Huber (1964, section 6) for the contaminated normal 

distribution although the present context differs. 

The way we have parametrized the function ~(u- e) permits an easy 

determination of its coefficients. In order to produce a minimum 

variance robust M-estimator, the coefficients must be such that they 

verify the constraint c 1 , i.e. 

!"" ~(u - e) f(u) du = o, 
a 

such that they satisfy the constraint c 2 , i.e. 

f"" [ (a ;au) ~ ( u - e ) 1 f ( u) d u = 1 , 
a 

as well as such that they satisfy c 41 in the type 3 subsets, i.e. 

with 

v = !"" [~(u- e))
2 f(u) du. 

a 

Due to the absence of type 2 subset, we have omitted the inequality 

constraints c
3
k. 

This set of implicit equations can easily be solved by numerical 

means. We propose in Table 1 the results obtained for a few particular 

values of v and e. Our concern is for e = 4 and we see that the robust 

a exhibits good efficiency. With this e-value, its asymptotic variance 

is approximately V = v; it is more efficient than the non-robust 

arithmetic mean, 

relative efficiency= v/(v + 1), 

but less efficient than the non-robust minimum variance M-estimator, 

relative efficiency= v/(v- 1). 

To further illustrate, we write down the solution for the parameter 

set e = 4, v = 3. Accordingly with 

f ~(u- e) f(u) du o, 

we define a through the implicit equation 
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uj• if ui ~ 1.688 +a 

uk, if ui;:;. 1.688 +e. 

Some 9 percents of the weights lie in the type 3 subset; there the 

observations are taken into account through their weights and 

irrespectively of their exact values. 

V=2, t3=4 6.002 .4401 .4698 

t3=9 4.114 .4694 • 9171 

t3=25 3.052 .4879 1. 878 

t3=100 2.458 .4968 4.353 

V=3, t3=4 12.07 .3076 .2849 
t3=9 8.921 .3219 .5309 

t3=25 7.212 • 3297 1.031 
e=1oo 6.369 .3327 2.256 

v=4, e=4 20.27 .2360 .1959 

e=9 15.68 .2444 .3546 

t3=25 13.30 .2485 .6675 

e=1oo 12.28 .2498 1. 418 

v=10, e=4 11 4. 1 .0980 • 05 53 

t3=9 97.92 .0994 .0934 

t3=25 91.42 .0999 • 1645 

t3=100 90.06 • 1000 .3331 

">1• t3large v(v-1) 1/v * 

* Q1/2 2( 1) - 1/2 
" [ " v- 1 

Table 1 

v 

1.988 

1.582 

1.314 

1.145 

2.956 
2.492 

2.212 
2.065 

3.942 

3.435 

3.154 

3.032 

9.958 

9.295 
9.046 

9.002 

v-1 

.9006 

.9632 

.9908 

.9988 

.9086 

.9686 

.9932 

.9993 

.9144 

• 9723 

.9947 

.9996 

.9303 

.9826 

.9981 

1. 000 
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The estimator e is consistent with respect to parameter a. It may 

be applied to the assessment of the location of any sample distributed 

approximately according to f(u). However, what 8 means for other 

distributions than f(u) may present conceptual difficulties. 

4.4. MM-estlmators in regression estimation 

We have observed at section 4.3.1 that it was not possible to obtain 

robust M-estimators of regression without involving a dependence on 

some "scale" parameter - This is true even in the simple point location 

- Therefore, we are compelled to include a scale estimation whenever we 

solve robustly a regression problem. 

We will be mainly concerned by the estimation of the scale of the 

residuals but we could as well be in need of some multidimensional 

scatter estimation. This is the object of the investigation of Maronna 

(1976) who defines simultaneously location and scatter by a set of 

MM-estimators. 

But what is the "scale" of the residuals ? A partially 

disappointing answer has been proposed by Huber (1964). We excerpt 

"The theory of estimating a scale parameter 
is less satisfactory than that of estimating 
a location parameter. Perhaps the main 
source of trouble is that there is no 
natural "canonical" parameter to be 
estimated. In the case of a location 
parameter, it was convenient to restrict 
attention to symmetric distributions; then 
there is a natural location parameter, 
namely the location of the center of 
symmetry, and we could separate difficulties 
by optimizing the estimator for symmetric 
distributions (where we know what we are 
estimating) and then investigate the 
properties of this optimal estimator for 
nonstandard conditions, e.g., for 
nonsymmetric distributions. In the case of 
scale parameters, we meet, typically, highly 
asymmetric distributions, and the above 
device to ensure unicity of the parameter to 
be estimated fails. Moreover, it becomes 
questionable, whether one should minimize 
bias or variance of the estimator." 

The same author has recently investigated various approaches to 

scale and scatter definitions (1977a). For our part, at the moment we 

will only assume that, given a set of residuals e 1 , ••• ,en corresponding 

to s6me estimator !, through 
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we have a minimization rule which provides the scale s according to 

and 

with 

In order to provide a measure of the scale of the residuals, the 

function p 2 (.) must be selected such that 

is consistent with 

I ). I e 2 = scale of (A £ 1 , ••. , A £ n) , A E R . 

We now devote our attention to the MM-estimator ~,. 

that 

M
1 

min for e1 
with 

where p 1 is constrained to yield compatibility between 

~ 1 regression estimate on (~ 1 , .•• ,~n) 

and 

It will be such 

!, =regression estimate on (A~, , ••• ,A ~n)' A E R+. 

The two conditions on the p 1- and p 2-structures constrain the former 

to have the very natural form 

p 1 (~, !,. e 2 ) = p 1 (~/e 2 , !,l 
p

1 
[ (u- y_' ! 1 )/8

2
] 

= P1 (£/s). 

In the two next subsections, we present the main computational 

procedures in use to solve the set of implicit equations 
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f 1111 (!_, ~1. e2) f (!_) dx o, 
f 1112 (!_, ~1' e2) f (!_) dx o. 

The ~ast subsection indicates the main proposa~s designed in order to 

provide robust estimators. 

4.4.1. Relaxation methods 

A~though many variations are possib~e in these methods, we wi~~ on~y 

present the main a~gorithm where no damping factor appears. This will 

be sufficient to indicate where lie the difficulties. 

The algorithm is iterative and consists in a treatment which is 

repeated one or several times until the convergence is deemed 

sufficient. Each repetition, or step, will be identified by an index k 

and we wi~l assume that we have at disposal !~ and e~, approximations 

of ! 1 and e2 , when the step begins. Initially, we can enter the 

solution corresponding to the least squares method. 

In step k, we start with the approximate solution (~~. e~) and we 
( k+1 k+1 improve in .!1.1 • e2 ) by the scheme 

- Compute 6k+1 the so~ution of 2 • 

f 1112 (!_, 
k 

~1' 6k+ 1) 
2 f (!_) dx 0 • 

- Compute 0
k+ 1 the solution of -1 • 

k+ 1 k+ 1 
f 1111(!_, !1 • e2 ) f(!_) dx = 0. 

In principle these two equations could be difficult to solve, but in 

practice no great difficulty is encountered at this level. The first 

has usua~ly an explicit solution 

where s(.) is a known function of the residua~s. The second equation 

can be reorganized in order to be so~ved by any least squares 

regression a~gorithm. We detail further. 

F . t b k+ 1 . . t. . 
~rs o serve that, e

2 
be~ng already est~mated, we are es ~mat~ng 

an M-estimator of regression (g = 1). Therefore, we wi~l join the 

notation of section 4.3. Let us define the scalar function 111(£) as we 

did previously, i.e. according to 
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ljl 1 [ {u - y_ 1 ! 1 )/6 2] 

- ljl{u - v' e ) v 
- -1 -

- ljl{t) Y.· 

then the equation can be written 

for 

w. 
~ 

And, to conclude, the equation is transformed in 

or 

t k k 
t. w. £ 1jl ( e:.) I e: ·1 

~ ~ ~ 
(u.;- v'. e

1
) v. = o, 

~ - ~ - -~ 

t k k }: k k <t. w.[ ljl{e:. )/e:.J v. v'.} e1 = w.[ ljl{e:. )/&.] 
~ ~ ~ -~ - ~ - ~ ~ ~ 

this produces an improved estimate !
1 

by inversion of the last linear 

system. Whether effectively an improvement results depends upon the 

nature of the function ljl{e:). It may easily be seen that ! 1 converges 

to !~+ 1 , by repetition of the last computation, whenever ljl{e:) is 

admissible in the sense of section 4.3.1. Note that the above approach 

is quite general and that, in specific situations, well selected 

methods can be very much cheaper in computation time- see Huber (1973, 

section 8) as well as Huber and Dutter (1974). 

An important drawback of this relaxation method is that it is not 

clear whether it converges. It may be observed that sometimes the 

starting set (!~. e~) has the utmost importance on the final solution. 

Investigation of a few pathological situations has revealed to this 

author that this can be associated to the existence of several minima 

(and possibly saddle-points) in the parameter space of (~ 1 , e2 ) -This 

problem will be assessed at section 4.5 - For the time being we assume 

that, after possibly a few erratic steps, the relaxation method does 

converge. Thus, in the vicinity of the final solution, the convergence 

is linear and corresponds approximately to 

where 

We omit the argument leading to this result seeing its similarity with 

the derivation presented at section 4.2. 
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In spite of the obvious deficiencies of the above approach and 

frequently without knowledge of the possible hazards of convergence, 

most experimenters have adopted a relaxation method. This is 

understandable when taking into consideration that most computer 

centers have at disposal an efficient software to solve generalized 

least squares regression problems. The algorithms are generally 

denoted as "reweighted" least squares. Recent experience has been 

reported by Gross (1977) as well as Ypelaar and Velleman (1977), a 

software package is presented by Coleman et al. ( 1977). 

4.4.2. Simultaneous solutions 

Various methods have been proposed to estimate simultaneously the 

two sets of values ~ 1 and e2 • We will describe a fairly general method 

at section 4.5 based on a modification of the problem at hand, but, at 

the moment, we only consider the direct solution by iterations which 

simultaneously produce improved estimates of 1 1 and e 2 . In fact, we 

perform Newton-Raphson iterations in the space of (~ 1 , e 2 ). 

The argument is quite general and can be presented for any number g 

of equations defining an MM-estimator. It presents many similarities 

with the derivation of section 4.2 leading to an expression of the 

influence function n.(x). 
J * * Assume we have at disposal a set of approximations (e 1 , ••• ,eg), and 

that we want the solution (e 1 , ••• ,eg) of the set of g equations 

f 1/J j fdx = f 1/J j ( x, e 1 , ••• , e g) f ( x) dx = 0. 

* * Each equation is approximately satisfied by the set (e 1 , ••• , eg) and we 

devote our attention only to the first order terms in the following 

expansions. Under the usual conditions of differentiability, we have 

* * 
f 1/J. fdx f [ 1/1 j + L <ll • k ( 8k - ek )] fdx 

J 
f ljl. fdx +! [f <jl.k 

* fdX] (ek - ek) 
J * J 

L Ajk(ek - ek). 

* We see the difference (e. -e.) is the solution of a set of g linear 
J J 

equations. When the coefficients Ajk (k * j) are dominated by Ajj' 

that is when the estimators are relatively independent from one 

another, a solution can be derived. Under 
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):k Aik 
_, 

Akj 
_, , ' k i' k * j ' Akk A .. << * JJ 

we obtain 
* _, _, * _, * e. e. - {): A .. Ajk Akk f 1/Jk fdx - 2 A .. f 1/J. fdx} 

J J JJ JJ J 

* * e. - f Q. fdx 
J J 

* * * e . - f Q. (X' e , , ••. ' e ) f(x) dx. 
J J g 

Inspection of the mathematical treatment reveals that the last 

expression is correct even if the estimators are strongly dependent 

upon one another. 

Therefrom we conclude that robust MM-estimators are obtained through 
* finite increments e. - e .• This is important in view of the next 

J J 
section where n. becomes a continuous function of some parameter 

J 
independent from (e 1 , ••• , eg). Further if we observe large increments, 

this must lead us to suspect lack of robustness of the concerned 

MM-estimator. 

4.4.3. Some proposals 

Basically very few proposals have been advanced and their level of 

robustness is frequently difficult to appreciate. The question is what 

functions w1 and w
2 

should we select in 

and 

in order to obtain robust estimate of the regression ~, in the model 

U = .!,1 .!!., + E 

and robust scale estimate of the residuals 

s = e 2 = scale of E• 

- Let us recall that both are simultaneously robust or non-robust -

Possibly the most exhaustive set of proposals has been conceived by the 

Princeton Robustness Group (see Andrews et al., 1972) and it has been 

thoroughly described by Gross and Tukey (1973). 

Although the Princeton Study has been largely concerned by location 
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problems, many of their estimators can be adapt~d to the regression 

field. In this section, we disregard the computational procedures 

although they should be well adapted to the problem at hand. Thus, we 

will not retain the attention on the various one-step estimators which 

are obtained through a single iteration of the relaxation method seen 

at section 4.4.1. Further details can be drawn from Bickel (1975) as 

well as in the already referred work. 

There is no obvious reason to associate a given selection of w1 (.) 

to a specific selection of w2(.), although this is frequently 

performed. At the moment, we dissociate these selections. 

Assume that for known scale factor s, we estimate~, through 

with 

w. 
~ 

then the two main classes of proposals are the following 

family due to Huber 

2 
E ' 

ks ( 2 I E I - ks ) , 

if IE 1 .;; ks 

if lEI;;;. ks, 

first, a 

which is a parabola prolonged by two tangents and, second, families of 

functions becoming gradually constant for large residuals, among them a 

proposal due to Andrews 

- cos [ E/(cs )] 

2 

if lEI .;; wcs 

if lEI ;;;. wcs. 

Both classes of proposals have bounded first and second derivatives 

whatever is E and, for small residuals, are equivalent to the least 

squares method. 

Investigating robust estimation in the context of contaminated 

normal distributions, Huber demonstrated the optimality of his proposal 

as being the minimax solution (1964) for the location problem with 

known scale parameter s. His proposal can be seen as a "robustified" 

least squares. It produces good results but possibly sub-optimal when 

the reference distribution is not normal. 

In order to avoid any incidence of the outliers, Andrews (1974, 

1975) ~as suggested to use a function p(E) constant for large 
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residuals. This had also been considered by Hampel (proposals 12A to 

25A in Andrews et al. 1972) and by Gross (1977), but, using a 

continuous w(e), these approaches yield to negative~(&) for some 
e-domain. Therefore, these functions are not admissible and may 
produce unforseen results possibly in an unnoticed way. This will 
clearly appear in the illustration at the end of this section where, on 

the one hand, ~1 exhibits discontinuities with respect to parameter c 
and, on the other hand, several solutions are possible for some given 
c. 

We now turn our attention to the scale factor estimate. A seemingly 

robust definition is the median of the residuals in absolute values, 
i.e. 

s = e 2 = median ( I & 1 I , . • • , I & n I ) 
or 

62 lim e2v' for v ~ 1, v > 1 
in 

with 

This definition will be applied in the illustration. Several other 
definitions have been proposed frequently based on some order 

statistics (e.g., interquartile range) but they do not necessarily fit 
in the frame of section 2.4, furthermore they sometimes exhibit poor 

robustness. Some more insight on how to select a scale estimator can 
be gained by inspection of the tables in the appendix on contaminated 

normal distributions. 
Once the two definitions of p 1 (e) and p 2 (e) have been decided upon, 

it remains to perform the computations leading to the eventual 
estimates; as seen, this may involve rather expensive calculations. In 
order to avoid this trouble, Huber and Dutter (1974) as well as Huber 
(1977b) propose to minimize another expression than (M 1 , M2 ) such that 

they obtain simultaneously ~ 1 and e 2 • Their expression, resolved by 
Dutter (1977), 

I w. p[ ( ui - v'. ~1) /s] s + As = min for ~1 , s ;;;. 0 
~ - ~ 

does not seem very appealing to us in spite of several favorable 

properties. We feel afraid by the level of arbitrariness. 
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Quite a different approach has already been mentioned, it consists 

in directly minimizing the scale estimate instead of M1 • This is, 

among alteri, the attitude of Jaeckel (1972b) and has been recommended 

by Hampel (1975) as providing the optimum breakdown point; but the 

argument appears dubious to us. When the definition of the scale 

factor is 

the above procedure produces a ~ 1 -estimate corresponding to the 

selection of a function 

for very large power v. It may, therefore, be seen as the limit of 

M-estimators. The above function is admissible, but not convex 

everywhere. The solution is not unique. Further, after Cover and van 

Campenhout (1977) it does not seem possible to design an algorithm able 

to escape the combinatorial complexity, 

4.4.4. Illustration 

We briefly report the observations made in comparing several methods 

of regression on a classical example. 

The regression problem we are investigating has already been 

considered by many authors. It is relative to the operation of a plant 

for the oxydation of amenia into nitric acid and can be found in 

Brownlee (1965, section 13.12), Draper and Smith (1966, chapter 6), 

Daniel and Wood (1971, chapter 5), Andrews (1974) and Denby and Mallows 

( 1977). 

The data set has the size n = 21 and is of dimension p = 4. It 

consists in the regression of ui' a stack loss, against v 2i' an air 

flow, against v
3
i' a cooling water inlet temperature, as well as 

against v 4i' an acid concentration; the term v 1i = 1 introduces a 

constant in the regression 

In this example, various techniques have revealed that four 

observations (i = 1,3,4,21) are clearly outlying with respect to the 

distribution of the seventeen others which form a neat cluster. 
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Although this does not appear in the observation coordinates, this can 

be ascertained. A plot of the 21 observations is given in Figure 1 by 

a method of non-linear multidimensional scaling described in Rey 

(1976). This method produces a map of the 4-dimension space in a 

2-dimension plane while preserving the distance relationships between 

observations; distant points remain distant and close points remain 

close. In order to be independent of the coordinate dimensionalities, 

the distance d .. between two observations x. and x. has been defined 

according to 
l.J -J. -J 

v'. 
- J. 

where ~ 1 k is member of a set {~ 1 1 , ~ 1 2 , •.. } of robust regression 
t t 

solutions. The exact composition of this set of solutions seems to 

have scarcely any incidence on the metric as long as they are 

independent. 

Four different selections of the function 

to be minimized will now be considered and for each selection some 

results will be reported in Table 2, namely ~ 1 and the corresponding 

scale factor s, 

This table is correct up to the last printed digit. 

Weighted ~east squares. With p 1 (E) = &
2 , the weight of the four 

outlying observations is gradually decreased to go smoothly from size 

21 to size 17. This procedure implies prior identification of the 

outliers. In Table 2, Fit 1 is the ordinary least squares on size 21 

whereas Fit 2 corresponds with size 17. 

Least v-th power. Selecting the form 

with v between 2 and 1, a range of solutions with more or less 

incidence of the outlying observations is obtained by the algorithm of 

Rey (1975a) or, at less expense, by the method of next section. The 

result for v = 1.2 is reported as Fit 3. 

Huber's method. As seen previously, we select 
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2 
E o 

ks(2 le:l- ks), 

if e: ;;.. ks • 

if e: ;;.. ks. 

The result for k = is reported as Fit 4. Let us note that the method 

proposed by Huber is the only admissible method among the four we are 

considering. 

Method of Andrews. The selected structure is 

1 - cos[ e:/ ( c s) I , 

2, 

if le:l .;; 1TCS 

if !e:l ;> 1TCS, 

A result for c = 1.5 is reported as Fit 5. It does not correspond 

strictly with Andrews' result (1974, Table 5, last but 1 column) due to 

large inaccuracies in his computation. The claim that the result is 

the same with as without the four outlying observations is nonsense, 

seeing that the scale factor s on size 21 and on size 17 differ 

significantly. In fact, the size 21 result is a nearly correct 

solution whereas the size 17 result is not defensible. Possibly the 

most important weakness of this method is that it may produce aberrant 

results in an unnoticed way. There are discontinuities in i 1 as a 

function of the parameter c and there may be several solutions for a 

given c value. Fit 6, Fit 7 and Fit 8 are three solutions obtained 

with c = 1.8, a value intermediate between the two Andrews recommends, 

1. 5 and 2. 1. 

Fit 

2 

3 

4 

5 

6 

7 

8 

6 1 1 
' 

-39.920 

-37.652 

-38.805 

-38.158 

-37.132 

-37.334 

-41.551 

-41.990 

6 2, 1 

.71564 

.79769 

.82643 

.83800 

.81829 

.81018 

• 93911 

.93352 

6
3.1 

6 4 1 
' 

1.2953 -.15212 

.57734 -.06706 

,64760 -. 08577 

.66290 -. 10631 

.51952 -.07255 

.54199 -.07037 

.58026 -.11295 

.61946 -.11278 

Table 2 

s 

1 • 917 5 L. sq., size=21 

1. 0579 L. sq. • size=17 

1 ,2194 Lv, \1 = 1. 2 

1.1330 Huber, k = 1 

.96533 Andrews, c=1.5 

.99926 Andrews, c=1. 8 

1. 4385 Andrews, c=1. 8 

1.5710 Andrews, c=1. 8 

Each method produces a different ! 1 estimate, but there are trends 

which become apparent while comparing the respective fit residuals, Ei' 
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All methods tend to reject outliers in a similar way, but 
differently take into account the non outlying observations. 

The scale parameter s is strongly dependent upon the estimated ! 1 -
see last column of Table 2 - and fixed point solutions are peremptory. 

The method proposed by Andrews is totally deceiving. The method 
proposed by Huber wins the competition and is closely followed by the 

least v-th power method. The latter is more expensive than the former 
in computation time. 

There remains an important conceptual difficulty with regard to 
understanding exactly what has been estimated. 

4.5. Solution of fixed point and non-linear equations 

In the last section, we have seen that the methods involved in the 
computation of MM-estimators can be, and frequently are, rather 

time-consuming when the relatively obvious methods of relaxation or of 
simultaneous solution are attempted. We have also observed that 

one-step method could be inaccurate and, possibly, could dissimulate 
divergence of the otherwise-iterative process. Even with M-estimators 
difficulties can be encountered (see section 4.3.2). This section will 
be centered on fixed point considerations and application of the 

continuation method to solve non-linear equations. 
Basically all converging iterative methods can be seen as fixed 

point computations. In our context of MM-estimation, given an 
* * approximate solution (e
1

, ••• ,eg) we work out through some arithmetic 

ruleR'(.) an "improved" approximate solution. 

** ** Ce 1 , ••• ,eg) 

and repeat the process until stationarity is obtained, that is to say 
until 

* * R'(e 1, ••• ,eg). 

Then, the solution is 

* * (e 1 , ••• ,eg) "'R'(e 1 , ... ,eg). 

The solution of the general fixed point problem still presents many 
difficulties. We will first consider the situation where we know for 
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sure there is a single solution; then we will take care of multiple 

solutions. 

We note that it is equally difficult to apply the Brouwer theorem as 

to define some contracting mapping through a Lipschitz constant due to 

the impossibility of delineating a compact subset in the space of the 

parameters, except in fairly trivial situations - See Henrici (1974, 

section 6.12) in this respect- Thus, we will rather devote our 

attention to a general computational algorithm investigated by Scarf 

(1973) and further refined in Kellogg et al. (1976). A few 

complementary aspects and practical considerations are reported by Todd 

(1976). 

The algorithm is based on the "continuation method" and consists in 

following "the" solution when some parameter varies. Precisely, assume 

we want the single solution of 

e = R(e) 
with 

e = (e' 1 , ••• ,e'g)' 

and assume we know the solution for another rule R
0
(.) 

than e is the solution for A = 1 of 

The method consists in following the solution from A = 0, where it is 

e = e0 , up to A = where it is the fixed point solution desired. The 

efficiency of the method is the greater, the smoother is the implicit 

function e(A) with respect to the "variable" A. 
The continuation of the solution from A = 0 up to A = 1 presents no 

serious problem, whatever the method is, as long as the (matricial) 

expression 

remains positive definite. Predictor-corrector algorithms as well as 

involved analytical treatment can be proposed. We favor the former 

seeing their good numerical stability and they have been used in the 

illustration of section 4.4.4. When the above expression becomes 
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singular that indicates that e(A} is not differentiable for some A E 

[ 0, 1) or, in other terms, that the starting set e 0 was not appropriate. 

What is happening ? 

More involved analysis permits to see that starting a continuation 

with some e 0 may lead to a termination at some A1 (A 1 ~ 1), or to a 

discontinuity or, possibly, to an explosion of the continuation path 

into several paths. Further, with the help of a partition of the 

parameter space, it is possible to count the number of going-out paths 

for one going-in path entering a given part. A good account of the 

relevant theory can be found in Amann (1976, chapter 3); it is based on 

the Leray-Schauder degree for compact vector fields defined on the 

closure of open subsets of some Banach space. As far as we are here 

concerned, we retain the attention on a very useful property of the 

continuation method : assume that R(e) and R0 (e) are continuous 

one-to-one mappings of 6 in the space of e, further assume that e0 
6(0) = e(1), then e(A) = e 0 for A in [0,1); moreover when e 0 is in some 

neighborhood of 6(1), e(A) is continuous with respect to A. This 

property leads to very fast computations when approximate fixed point 

solutions are known. 

We now specialize the above discussion to the evaluation of 

MM-estimators. First let us split the expression 

e = R(e) 

in its components; we want a fixed point solution of 

where we must select Ri(e) according to the estimation theory, we 

select 

R . ( e ) = 9 . - f 1jJ • ( X t 9 
1 

t ••• t 9 ) f ( X ) dx . 
~ ~ ~ g 

The choice of the rule R0 (.) may be fairly trivial, say we select 

where 90i is a constant of the right magnitude or, possibly, a less 

robust estimation of 9i. With these definitions, the above factor B 

takes the form 

B ( 1 - A) 1 + AA 
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where A is the matrix of block-components 

A. . 1 4> • • ( x, e 1 , ••• , e ) f ( x) dx 
~J ~J g 

* encountered at section 4.2. When B is positive definite and when 0 is 

an approximation of 0(A) -e.g., obtained by a predictor formula- an 

improved approximation is given by the Newton-Raphson 

* 0(A) = 0 

The procedure as it has been described generally converges fairly 

rapidly but from time to time hazards have been met with, associated 

with serious difficulty to achieve the continuation from A = 0, up to A 

= 1. For instance in the computations of section 4.4.4 with the 

regression method of Andrews, it has appared that 0 = 0(c) was a 

continuous function of the parameter c from c = w down approximately to 

c = 2.35 and all computations were problem-free. Difficulties were met 

with the value c 2.3; starting with the predicted set 

00(2.3) = 2 0(2.35) - 0(2.4), 

it has been possible to realize the continuation only very slowly. 

This has produced 0(2.3). With this result as starting set 

00(2.25) = 0(2.3), 

a fast computation has given the estimator 0(2.25) for c = 2.25. Then 

we have tried to again estimate the result corresponding with c = 2.35. 

With the initialization 

00(2.35) = 2 0(2.3) - 0(2.25), 

a very rapid computation has come out with an estimate 0 close to 

00 (2.35) but totally different from the already met 0(2.35). A second 

fixed point solution had been found for c = 2.35. 

To conclude this section it may be suitable to indicate that the 

present fixed point mathematics is equivalent to the simultaneous 

solution of section 4.4.2, except that substitution of the function 

p.(x,e
1

, ••• ,e) 
~ g 

must be performed by 
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with 

Possibly the greatest advantage of the fixed point approach is to 

provide a larger insight retaining the attention on the multiplicity 

aspects as well as on the continuation method. The generality of the 

fixed point concept is well illustrated by the series of papers edited 

by Swaminathan (1976) and by Karamardian (1977) concerning mathematical 

theories as well as algorithmic features. 



5. OPEN AVENUES 

We present in this chapter a few considerations which either seem 

worthy of further research or appear to us rather weakly justified. 

5.1. Estimators seen as functional of distributions 

Section 2.4 is at the root of most derivations presented in this 

work however, and the fact must be stressed, it has been hardly 

possible to state precisely under what conditions a functional T(.), 

evaluated on distribution g, can be expanded with respect to 

distribution f according to 

1 
T(g) = T(f) + 1 ~(x) g(x) dx +~If ~(x,y) g(x) g(y) dx dy + ••• 

This state of affair is unsatisfactory although the high 

plausibility of the expansion has been demonstrated for a large class 

of functionals and distributions. As alrPady noted the attempts by 

many groups of experts to state precise conditions have failed. This 

failure can partly be attributed to the complexity of the problem but, 

possibly, also to the shortage of motivated analysts with 

top-qualification in topologies. - Furthermore, it is not clear 

whether this expansion is really required. 

What we really need is an expansion which can be truncated to the 

level of its first few terms and, possibly, this is verified even for 

some diverging infinite expansions. Moreover, the influence function 

and the jackknife theory could have been presented with a completely 

heuristic basis, as they have previously; they have their values per se 

and, in case of doubt, it may be possible to assess by simulation what 

has been derived. 

With regard to the influence function, Mallows, in an experimental 

investigation (1975), fully supports the definition based on the first 

von Mises derivative, even for moderate size samples. His criteria 

involve a few "natural" requirements (consistency, being a statistic, 

everywhere defined, ••• ). Mallows also makes use of the above expansion 

to introduce a second-order influence function; it happens to be the 

integrand ~(x,y) of the double integral and is defined as the influence 

function of the (first-order) influence function. This may be a way to 

tackle (linearly) correlated data. 
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5.2. Sample distribution of estimators 

Relatively few pieces of information are available regarding the 
sample distributions of robust estimators. We have already given with 
the jackknife method ways of assessing the possible bias, the variance 
and the symmetry (by third central moment) of their distributions. 

Furthermore, we may safely conjecture that the tendency toward the 

normal distribution is rapid whenever the influence function is 

bounded. 

This state of affair is unsatisfactory although the question has the 
utmost practical interest. Attempts by Huber (1968) to set confidence 

limits have supplied some more insight on the relations between the 
distribution of the robust location estimator and the distribution of 

the sample; but these attempts have essentially demonstrated the 
difficulty of the problem. Subsequently, he has proposed a few 

conjectures on studenti~ation of robust estimates (1970); they appear 
to us very reasonable. In the same line of tendency to normality, the 

paper on the computation of the sample distribution by Hampel (1973b) 
is noteworthy; we excerpt : 

" the third and perhaps most important 
point seems to be entirely new. It concerns 
not the question where to expand, but what 
to expand. Most papers consider the 
cumulative distribution Fn' some the density 
fn' but neither approach leads to very 

simple expressions. It shall be argued that 
the most natural and simple quantity to sudy 
is the derivative of the logarithm of the 
density, f'n/fn' and this for several 
reasons : .•• '' 

whether his approach is practical remains to be demonstrated. 
It may be seen that we feel entangled in a vicious circle : we make 

use of robust estimators because we do not know precisely the 

distribution of the sample at hand, and we should know how a sample 

departs from a given model in order to state the distribution of the 
estimator. We are afraid it is fighting for a wrong issue to try to 

derive theoretical distributions for robust estimators. We are afraid 
the only possibility is inference from the sample itself, in spite of 

the evident limitations of this method. We feel that for small sample 
si~es it is not wise to assume any strict model whereas, for moderate 
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or ~arge samp~e sizes, mode~s are not needed seeing the tendency to 

norma~ity. 

But we may also question whether we are ab~e to estimate the mean 

and the scatter to apply in studentization. The answer is positive, 

even for sma~l sizes, with the help of the jackknife method. We 

i~lustrate. 

For 5000 rep~icates of size n = 11, (u 1 , ••• ,u 11 ), drawn from the 

negative exponential distribution 

f(u) exp[ -(u - a)] 

0' 

if u ;;. a, 

if u <a, 

we have estimated the location parameter a by the method of Huber, i.e. 

we have estimated e such that 

l p(u. - e) min for e 
~ 

with 

p ( e;) 2 
if IE I .;;; k e: • 

=k{2le:l - k), if IE I ;;. k. 

When we note e 0 the asymptotic value of e, i.e. e0 satisfies 

f p(u - eo) f(u) du = min for eo, 

we have that e -e 0 is a consistent estimator of parameter a. Moreover, 

the variance of e is approximate~y 

2 cr 6 = var(e) 1 v 
"ii'""'=1 

where V is the asymptotic variance according to the jackknife theory. 

Through ana~ytica~ derivations we have obtained the expressions 

giving e 0 and cr~ as functions of the parameter k. Thus we are in a 

position to compare the theoretical and experimenta~ results for a 

re~ative~y sma~l samp~e size. 

In Table 3, we report the results for two specific values, k = .1 

and k 2. e
0 

and cre are the theoretica~ values to be compared with e 

and s
9

, the experimenta~ mean and standard deviation observed with the 

5000 rep~icates. Except for a neg~egib~e bias with k = .1, we note a 

perfect agreement between theory and simu~ation notwithstanding the 

sma~~ size of the samp~e, n = 11. 
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k = . 1 k = 2 

eo .6948 .9475 

e .7370 .9530 

cre .3055 .2768 

58 .2993 .2632 

8 - eo .0422 .0055 

(e - 8 0 ) I ( cr 
8 

JV5 0 0 0 ) 9.768 1. 405 

Table 3 

We may also compare the experimental distributions for these two 
values of k. Figure 2 is a display of the two probability density 

functions (pdf) against the relative coordinate (e - e)/cr
8

• We note 

that the positive tails are similar while the negative tails differ 
from one another in a way which could be expected. We refrain from 

further commenting due to the fact that the figure is derived from 5000 
replicates, a relatively small number in this regard. 

5.3. Adaptive estimators 

Seeing the inadequacy of some estimators when applied to 

inappropriate distributions, many authors have tried to design sets of 
estimators, each member of the sets being optimal for a specific class 

of distributions. Then, which estimator to select for a given sample 
is decided by means either of tests or by setting weights. To 
illustrate, consider the location estimator 

e w(mean) + (1- w) (median). 

Based on a sample (x
1 

, ••• ,xn), a test may indicate the high likelihood 

of a heavy-tailed distribution (e.g., see Smith, 1975). The first term 
of the above alternative consists in setting w to zero when the test 

favors the heavy-tail hypothesis, and to one otherwise; the second term 
of the alternative would be to define w as a monotonously increasing 

function of some test statistics. - A good account of the advantages 
and deficiencies of adaptive methods is presented by Hogg (1974), with 
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particular emphasis on the historical background as well as the robust 

aspects. The paper of Takeuchi (1975) has possibly a broader scope 

although being less informative; it is essentially a discussion of the 

arguments leading to robust adaptive estimators. 

Frequently, fairly subjective arguments are proposed to justify the 

choice of the estimator structures. They range from saying that most 

samples are drawn from mixtures of normal distributions to declaring 

that man-made data are unconsciously "corrected" to be closer from some 

typical value than they should. The first position favors a location 

estimator intermediate between the mean and the median, but the second 

viewpoint could lead to the midrange. For our part, we do not feel 

very happy with the composite structure 

e = w1 (midrange) + w2(mean) + (1 - w1 - w2) (median). 

The situation is not much different when the various estimator 

components are drawn from a common class. Yohai (1974) suggests to 

select the "best" estimator among a family of Huber's estimators 

corresponding to various parameters k and proves the asymptotic 

optimality of the method. 

In this context, we would rather prefer the bayesian viewpoint 

because, then, it is clear what is the origin of the arbitrariness. An 

involved treatment is proposed by Mike (1973) who introduces a family 

of prior distributions; but possibly the soundest treatment would be to 

use prior distributions only defined according to upper and lower 

bounds. This is in the line of Dempster (1968), but this author has 

not heard of any significant application in the robustness field. It 

appears important to refrain from infering too much when the sample 

provides only little evidence. 

To conclude these mixed feelings, there is the comforting 

observation of Relles and Rogers (1977) : statisticians are fairly 

robust estimators of location. 

5.4. Recursive estimators 

Mainly in time-series analysis, it is peremptory to have expressions 

which permit to work out an estimator on a sample of size (n + 1), when 

the estimator on size n as well as some summary information are given. 

Makhoul (1975) surveys the various methods relevant to forecasting with 

linear models and they appear non-robust. 
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The design of robust methods is, so far, unsatisfactory. Some 
theory for recursive estimators of type M has been developped by 

Nevel'son (1975); it presents similarities with the Robbins-Monro 
algorithm and is relative to one-step M-estimators. Whether the finite 

sample properties are satisfactory remains an open question. 
With regard to filtering, Tollet (1976) proposes a Kalman-Bucy 

approach with a gain factor selected in order to bound the sensitivity 
to gross errors or outliers. Occasional outliers have a weak 

influence, but that influence is not strictly bounded in order to 
permit tracking in presence of a large offset. A more accessible paper 

by Masreliez and Martin (1977) is partly similar. More or less the 
same strategy had been proposed by Rey (1974) with a recursive 

estimation of the "median" of serial data. That work also provides a 
robust estimation of the scale analogous with the proposal of Kersten 

and Kurz (1976), based on the paper of Evans et al. (1976). 
In general, the analysis of time series with recursive robust 

estimators is based, at least in part, on heuristic approaches derived 
from the Robbins-Monro algorithm. However, it is rare to obtain 
satisfactory convergence. The reasons are, on the one hand. that lack 
of stationarity must be coped with and that, on the other hand, it is 
hardly possible to build any appropriate compact representation of the 
past information. These difficulties are encountered even when the 
non-linearities involved in the analytical treatment are moderate as 
can be seen in Rey (1975a). 

It does not seem that robust estimation is considered in the 
investigation of point processes, except occasionally. Gaver and Hoel 

(1970) have compared several estimates of a reliability factor in a 
Poisson process with emphasis placed on bias, variance and sensitivity 
to Poisson hypothesis. They conclude that an estimate derived from the 
jackknife theory is optimal in most respects. 

In time-series as well as in point process analyses, the limited 
results can be attributed to difficulty to assess what are the key 

assumptions of the models and to the difficulty of evaluating the 
sensitivity to these assumptions. Among them, the independency 
assumption is nearly unmanageable; it is frequently opposed to linear 
correlation, but this is only one of the possible alternate hypotheses. 

This question is approached with the help of an influence function by 
Devlin et al. (1975) and by Mallows (1975); the results are too 
complicate to be very promising. 
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5.5. Other views in robustness 

In section 4, we have devoted great attention to the solution of 

"linear" regression problems without questionning the model validity. 

This question is directly addressed by Huber (1975) with a minimax 

approach partly based on the alternative, either linear or quadratic; 

this paper has been criticized and slightly augmented by Marcus and 

Sacks (1977). Even in the simplest cases, it seems that a tremendous 

amount of work is needed to cope with hidden non-linearities. More 

general polynomial structures are frequently assumed with eventual 

deletion of the "abusively" introduced terms. This is particularly 

discussed by Box and Draper (1975) as well as by Mead and Pike (1975) 

with regard to the robustness of the approach. The techniques for 

deleting variables are reviewed by Hocking (1976) and an interesting 

situation with discontinuous data is presented by Dyke (1974). We are 

here facing the general problem of the best selection of variables; the 

branch and bound method should not be disregarded when it is cleverly 

implemented (e.g~ Pearsall, 1977) in spite of its shortcomings put to 

light by Cover and van Campenhout (1977). Non-polynomial structures 

can also be concerned, when due care is taken of the possible 

non-linearities; this may be done by ridge regression (see Hoerl and 

Kennard (1976) for a recent paper on their method) or the 

non-linearities can be partly attributed to errors in the variables, as 

reviewed by Florens et al. (1974). What is the most appropriate 

attitude is very much dependent upon the problem at hand and can hardly 

be discussed in the present text. But we retain the attention on the 

fact that what is precisely estimated is not clear. Most methods can 

better be seen as approximation methods than as statistical procedures. 

To conclude let us recall that robust estimation in data analysis 

is, for us, an essential counterpart to the more classical methods. 

Robust methods help in validating computation results by providing a 

reliable comparison basis. The need for these methods is particularly 

evident while processing multivariate data, as advocated by 

Gnanadesikan and Wilk (1969) and by Gnanadesikan and Kettenring (1972). 

In the multivariate domain, the identification of outliers may present 

formidable difficulties (e.g,, Rohlf, 1975) and robust methods not 

requiring this identification are welcome. This is illustrated by 

Figures 3 and 4, the former is a classical least squares regression 

whilst the latter is a regression obtained by Huber's method as 
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described at section 4.4.3. Which is the best regression is a matter 
of opinion, but the second may be preferred and (this is the most 

important) the difference between the two results is such that the 
sample is worthy of further attention. 
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APPENDIX 

The following pages are essentially devoted to the involved derivations 

which would unduely load the main text otherwise. The various sections 

have been ranked in alphabetical order to ease the research of specific 

developments, wherever they may be required. Many cross-references are 

made between the sections of the appendix. Then, the concerned entries 

are noted in italic type. 
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Consistent estimator 

A vector estimate in is said to be consistent when it converges in 

probability, as the sample size n increases, to the parameter e of 

which it is an estimator- from Kendall and Buckland (1971). In other 

terms, in is consistent if, and only if, 

where p(.,.) is the metric in the sample space n. This is equivalent 

to the vanishing of the P~okho~ov met~ia d(.,.) between fn' the sample 

distribution of in• and f, the Dirac distribution centered on~· 

Consistency * lim d(f , f) = 0. 
n 

There may be interest in bounding the Prohkorov metric d(fn' f), 

with respect to moment of positive order a, 

The Chebyshev-like inequality 

leads to 
1/(a+1) 

ma • 
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Contaminated normal distributions 

With the desire of assessing whether the normality assumption is 

important, Tukey (1960) has investigated the performances of several 

estimators on the normal and slightly non-normal distributions. We 

recall his findings and augment them with our own observations. He 

compares estimations of location and scale performed with a sample 

drawn from a purely normal distribution N(~, a 2 ) and with a sample 

drawn from the same normal distribution but contaminated by extraneous 

observations also normally distributed. His model of contaminated 

normal distribution has the form 

2 2 (1 -E) N(~, a ) +EN(~,, a 1). 

The symmetry is maintained for ~, = ~ and, for moderate E, the 

contaminated model has shorter tails than the normal when a 1 <a and 

longer when a
1 

>a. 
The findings may appear unexpected to some readers. It is well 

known that estimation of the normal distribution location by the median 

instead of the mean leads to an efficiency loss of 36 %, but a 10 % 
contamination is sufficient to have better estimation by the median. 

Concerning scale estimation the situation is rather exceptional; a 

contamination of one or two thousandths is sufficient to balance an 

efficiency loss of 12 % between the mean deviation and the standard 

deviation. 

Precisely, in the following two tables, one will find the results 

obtained for some specific values of parameter E• Table 4 is relative 

to the symmetric model 

(1 -E) N(O, 1) + E N(O, 3 2 ), 

whereas the asymmetric model 

has given table 5. 

2 
(1 -E) N(O, 1) + E N(2, 3 ) 

Location has been estimated by the mean and the median. Their 

respective asymptotic variances (var) constitute a natural basis for 

comparison. Scale has been assessed by the three following 

estimators : the standard deviation, the mean deviation to the mean and 
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the median deviation to the median. A fourth estimator, the 

semi-interquartile range, has also been computed but has not been 

reported the results being the same as (or slightly poorer than) what 

we have with the median deviation to the median. Due to the lack of 

natural definition for the scale, it has appeared appropriate to 

compare the estimators on the basis of their respective coefficients of 

variation (c.v.), the ratio of their asymptotic standard deviations to 

their means. 

The last lines of the tables provides a "discriminatory sample size" 

at level 0.95 which is the minimum size the sample must have to test 

whether observations are drawn from a strictly normal distribution or 

from a given contaminated distribution. We have supposed that a 

likelihood ratio test was performed to test H
0 

against H1 , with 

for given E, and where ~E and oE are the mean and the standard 

deviation relative to H
1

• Numerical integrations have provided the 

size such that a sample drawn from H0 be attributed to H0 by the test 

with probability 0.95. It must be noted that our approach is very 

simple minded; more realistically we should take into account the 

estimation of the parameters and, then, the discriminatoy sample sizes 

would be larger. 

Inspection of the tables reveals that the sensitivity to the 

distribution shape is very dependent upon the nature of the estimators. 

In particular, a slight long-tail contamination is sufficient to 

significantly impair the efficiencies of the mean and of the standard 

deviation. Moreover, quite large samples must be at disposal in order 

to test the optimality of these estimators. 
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Symmetric model 

e: o.oooo 0.0018 0.0282 0. 1006 0.2436 0.5235 o. 8141 

Mean 

0.0000 0.0000 o.oooo 0.0000 0.0000 0.0000 0.0000 
var 1 .oooo 1 .o 1 4o 1 .2252 1.8047 2.9488 5.1882 7.5130 

Median 

o.oooo o.oooo o.oooo o.oooo o.oooo o.oooo o.oooo 
var 1. 5708 1.5745 1 .6315 1.8047 2.2389 3.7066 7.5130 

Standard deviation 

1.0000 1.0070 1.1069 1. 3434 1. 7172 2.2778 2.7410 
c.v. 0.7071 0.7627 1.1725 1. 3540 1.2317 0.9720 0.7929 

Mean deviation to the mean 

0.7979 0.8007 0.8428 0.9584 1.1866 1 .6333 2.0970 
c.v. 0.7555 0.7627 0.8514 0.9822 1.0461 0.9720 0.8417 

Median deviation to the median 

-
I 

0.6745 0.6754 0.6891 0.7297 0.8259 1. 1089 1 .6167 
c.v. 1.1664 1.1668 1.1725 1.1899 1.2317 1. 3435 1. 3600 

Discriminatory sample si:z;e 

0.95 I 7880 497 137 83 123 638 

Table 4 
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Asymmetric model 

E o.oooo 0.0008 o. 01,5 0.0617 0.2228 0.6246 0.6878 

Mean 

-
I 

o.oooo 0.0016 0.0230 0.1234 0.4456 , • 2492 1.3756 
var 1.0000 1.0097 , • 1377 1.7254 3.4753 6.9348 7.3613 

Median 

-
I 

o.oooo 0.0005 0.0072 0.0401 0., 657 0.7409 0.8986 
var , • 5708 1.5727 , • 5977 1.7254 2.2901 6.9348 8.7865 

Standard deviation 

: .v. I 
, • 0000 , • 00 49 1.0666 1.3136 1.8682 2.6334 2.7132 
0.7071 0.7611 1.1694 1.5176 1.2520 0.8172 o. 7837 

Mean deviation to the mean 

0.7979 0.7996 0.8222 0.9301 , .284, 2.0487 2., 355 

c.v. 0.7555 0.7611 0.8263 0.9973 , .0525 0.8077 0.7837 

Median deviation to the median 

:.v. I 
0.6745 0.6749 0.6810 0. 71,5 0.8368 1. 4726 1.6093 
, • , 664 1.1666 1. 16 94 1.1838 1.2520 1.3731 , • 3080 

Discriminatory sample size 

o. 95 I 8760 769 , 2, 51 , 19 164 

Table 5 
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Distribution space 

All probability functions, we are concerned with, are defined in a 

convex complete metric space, included in a Banach space. See Schwartz 

(1971, Ch. 11) and Hille (1959, Sec. 4.7). 

For any three functions f, g and h belonging to this space E, 

f,g,hEE, 

we define a metric by a distance function d(.,.) having the ordinary 

properties 

d(f,g) ;;. 0 

d(f,g) 

d(f,g) 

0 .. f = g 

d(g,f) 

d(f,g) ;;. d(f,h) + d(h,g). 

The space is complete or, in other terms, the limit of any Cauchy 

sequence {fn} of E belongs to E, i.e. 

{fn} E E 

lim {fn} = f • fEE. 

The space is convex, i.e. 

f,g E E, t E R, 0 .;;; t .;;; 1 

h = tf + (1-t)g • hE E. 

So far, we have not clarified what probability function we consider. 

With the usual terminology, they can be seen as being either frequency 

distributions or probability density distributions and they are related 

to some probability measure in the following way. 

Let n be the whole sample space and w C n be some subset, then we 

associate the probability measure F(w) to the probability function f by 

F ( w ) = f f ( x ) dx • 
w 

Whenever f(x) is not continuous for any x E w, the integral notation 

must be understood in the sense of the distribution theory. 

The sample space n can possibly be different for each distribution 

f, however we do not consider this possibility and we assume that it 

can be extended in order to be common to all distributions f and that 

it has a unit probability measure, i.e., 



F(n) = 1. 

This possible extension of the sample space n leads to see discrete 
distribution functions as a sum of Dirac functions rather than as 
smooth functions only defined on some discrete sample space. For 
metric construction purposes, we also require the sample space n to be 
metric. 

It must be observed that we have as much as possible avoided the 
axiomatic theory of probability introduced by Kolmogorov, as related by 

Feller (1966, Chap. 4); this is because we have found it too 
constraining and abusively heavy to manipulate. A critical appraisal 
of the Kolmogorov setup has been reported by Fine (1973, Chap. 3) and 
justifies our attitude. 

The selection of an appropriate metric is especially difficult. The 
only satisfactory proposal, to the best of our knowledge, is due to 
Prokhorov and may be seen as a multidimensional generalization of the 
Levy metric while n = RP, the p-dimension real space. The Prokhorov 
metric permits to simultaneously include continuous and discrete 
probability functions in the distribution space. - Although we have 
required the possibility of considering simultaneously both types of 
distributions, we must indicate that several papers escape this 
constraint and thus avoid the Prokhorov metric. For instance, Beran 

(1977a, 1977b) first substitutes a continuous distribution to any 
discrete data set and, then, performs estimations by minimizing the 
Hellinger distance. 

Except when n is the real axis, it is not possible to define 
cumulative distribution functions (cdf); thus most arguments in this 

work are relative to probability density functions (pdf). 
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Influence function 

For regular functional T(f) of distribution f, expansion is possible 

in the vicinity of f in terms of the von Mises derivatives• Let 

distribution g be in this vicinity, then 

T (g) = T (f) + 1 'I' ( w) g ( w) dw + ••• 

Truncation at the level of the first order term is the more valid, the 

smaller the Prokhorov distance d(f,g) is. 

The function 'l'(w), which depends upon the distribution f, has been 

named "influence" function by Hampel (1974). Its evaluation is easily 

obtained through 

1 'l'(w} cS(w-w0
) dw 

1 im { T[ ( 1 -t ) f + t cS] - T ( f ) } • t E R • t + 0 

where o(w-w0 ) is the Dirac distribution centered on w 

important role in the assessmet of robustness. 

It has an 
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Jackknife technique 

The so-called jackknife method deals with the estimation of the bias 

and with the estimation of the variance of estimators defined by 

suitably regular functionals. This section is only centered on 

justifying the derivation which leads to the ordinary as well as to the 

infinitesimal jackknife. For convenience of notation, we suppose a 

vector-value functional as well as a multidimensional sample space. 

For regular functional !(f) of distribution f, expansion is possible 

in the vicinity of f in terms of the von Misea derivatives. Let 

distribution g be in this vicinity, then 

!(g) =!(f) + f ,!.(w) g(w) dw 

+ ~ f g(w) f _t(w,w) g(w) dw dw + ••• 

In the present context, f is the distribution underlying some sample 

X and is unknown, while g is an empirical distribution. The functional 

!(.) is some recipe (an arithmetic rule or possibly an algorithm) which 

produces an evaluation of a vector denoted !o i.e. 

with 

~ !(f)' 

! !(g)' 

g ~ w. o(x- x.)/~w. 
[. ~ - -~ [.~ 

X (~1 , ••• '~n)' 
w. ;;. 0. 
~ 

The script o(~- ~i) stands for the Dirac distribution centered on 

the observation x. and to each observation x. is associated a 
-~ -~ 

non-negative weight wi. We introduce the expression of g in the 

expansion to obtain 

which can also be written in the matricial notation 

where 

w = (w 1 , ••• ,wn) 1 

1 I := ( 1 0 • • • 0 1 ) I 



110 

and ~ is a script which would denote a matricial product if vector 6 

were a scalar. Per definition, the k-th component is given by a 

bilinear form with an ordinary matricial product, i.e., 

[ w' ~ 4> @ w] = w' [ 4>1 w 
- -k - k-

where [ 4>lk is a square matrix. 

While searching for the origin of possible bias, it appears to be 

due to the quadratic term inasmuch as 

~ is consistent with respect to ! 
and 

wi is independent of ~i· 

That is 

~ 

E{6} 

Terms of order superior to two have been neglected seeing they are 

neglegible with respect to the lower orders. Observe that the first 

order term cannot introduce any bias for ~onsistent estimators. 

To derive an expression for the variance of !• we limit ourselves to 

the first order term. Thus we only consider 

and the covariance of i is approximately given by 

These preliminary results being reported, we now produce the 

derivation of the jackknife method. It consists in a clever comparison 

of an estimator based on a set of weights ~ with other estimators based 

on different sets of weights. 

To apply the method, we distribute the observations in g groups of 

size h (n = gh) and change the weights of the observations in the i-th 

group by some factor (1 + t). Then the weight-vector~ becomes 

w. = (I + tE.) w 
-l. l. -

where I is the identity matrix and Ei is diagonal with ones for the 
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i-th group and zeros otherwise. It may be appropriat: to note that the 
usual presentation is relative to a scalar estimator 8 and that t = -1 
produces the ordinary jackknife, and small t the infinitesimal 
jackknife. 

We denote by ~i the pseudo-estimate based on the weight-vector lii• 
i.e., 

The corresponding pseudo-value is given by 

and has the expansion, for small t, 

.!!.· l. (l' Ei li) .!!. + ~ Ei li 
+ l --1- [2w ~ ~~ E w + tw' E.~~~ E.w 2 l'li - 't' i- - l. 't' ]_-

1' E. w 
- 1 - w'. ~ ~ ~ _w

1
.] + l' li - l. 't' 

Averaging of these pseudo-values leads to the jackknife estimate 

it has a relatively simple expansion when .p is block-diagonal and when 
all groups are equally weighted. Thus, under conditions 

and 

1 ' li• for all i, 

we derive, for small t/g, 

Comparison with the expansion of 8 reveals that the jackknife estimate ... 
~ equates the original estimator 8 while the infinitesimal version is 
applied. Bias reduction occurs with the ordinary jackknife (t = -1) by 
cancellation of the second order term. Exact cancellation of this bias 
producing term is given b~ the solution of the equation in t 
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or, under the same conditions, by precisely 

t = -1 

whatever the value of g is. 

Estimation of the covariance of ~ is obtained after investigating 
the covariance of the variables 

The attitude is that the pseudo-value e. is essentially representative 
-]. 

of the i-th group incidence on the estimator~; ther:fore, its 
covariance could possibly lead to the covariance of !• This way will 

now be followed under two conditions. 

E('!' E. _w) (w 1 E. '!'') 
l. - J 

0, for i * j 
and 

(1' 7!) L
1
· (1' E

1
. 7!) cov('!' E. w) = }:.(1 1 E. 7!)

2 
cov('!'7!)· 

l. - l. - l. 

They imply, for the first, that the g groups are drawn independently 

from a population of group variates and, for the second, that each 

sampled group either has the same weight (_1 1 E. w) or yields a 
l. -

contribution to the total covariance proportional to its weight. 

Under these conditions, we have 

5. = '!' E. 7! - (1' E. 7!11' ,!!) '!' w 
-J. l. l. 

Ii cov(.§.i) [ 1 - L. ( 1 I E. .!!11' ,!!) 21 cov('!' 7!l 
l. - l. 

and 

It is convenient to state this last result in terms of the 

derivatives of !(X, ,!!) with respect to .!!• Let us define the Jacobian J 
such that 

then we evaluate the pseudo-estimate, the pseudo-value and, finally, 
the jackknife estimate 
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a a + J !! = !. 

while t is small and due to the homogeneity of !(X, !f:). 

becomes in the present context 

and, therefrom, 

The variate o. 
-J. 

2 L· cov(J E. !f:)/[ 1 - }:.(1' E
1
. "!!/..!.' !f:) ). 

J. J. J.-
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Prokhorov metric 

This metric induces over the distribution spaae a vague topology, 

i.e., a topology of pointwise convergence. It has been introduced by 

Prokhorov (1956), proposed by Hampel (1971) to assess robustness and 

has progressively retained the attention in probability theory to 

investigate limit theorems -e.g., see Komlos et al. (1975). 

We first define the Prokhorov metric between two functions f and g 

over a common sample space n and, then, illustrate for several 

particular distribution functions on the real axis. 

In a metric space n, to any closed subset w C n we associate an open 

n-neighborhood wn of all points at distance less than n from w. 

Formally, with p(.,.) the metric of then-space, 

wn {y : ~ x E w, p(x,y) < n}. 

Then the metric is given by the distance d(f,g) between to functions f 

and g, associated to measures F and G, in the following way 

d(f,g) max {TI(F,G), TI(G,F)} 

n = n ( E) , n ( o ) = o , n ' ( e: ) > o , for all w c n } . 

The arbitrariness in the selection of the monotonously increasing 

function n{e:) is ordinarily reduced by setting n equal to e:. This is 

performed although e: is a scalar whereas n has the dimension of a 

distance in n. A further simplification is possible while f and g are 

distribution functions; effectively, one has 

F(n) = G(n) ~ rr(F,G) = TI(G,F). 

Then the simplified Prokhorov metric can be written 

d(f,g) = inf{e: > 0 

or, equivalently, 

d(f,g) = inf{e: > 0 

It is bounded as follows 
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o ~ d(f,g) ~ F(n) = G(n) = 1. 

To provide some insight, we consider the distances between several 

distribution functions defined over the real axis, Q = R1
• They are 

f uniform in [ o,~, with a > 0 

g uniform in [ O,bJ 1 with b :> a 

h t f + (1 - t)g, with 0 ~ t ~ 

fn : a sampling of size n from f. 

Distribution h is a step function with a jump at coordinate x = a; 

it is a linear interpo.lation between f and g. 

weighted sum of Dirac functions o, 
Distribution f is a 

n 

where xi are then sampled values in the interval [O,aJ. We will later 

assume that the sample has been ranked according to 

0 < x 1 < ••• < xn <a. 

This is not restrictive and can be performed with probability one. 

The distance between f and h is given by 

d(f,h) (1 - t) (b- a)/(b + 1 - t) 

and is realized by w = [ o,~ for IT(F,H), as well as w 

rr(H,F), For t = 0 we obtain 

d(f,g) = (b- a)/(b + 1), 

Similarly, the distance between h and g is given by 

d(h,g) = t (b - a)/(b + 1) 

[a + e;, b} for 

and the triangular inequality holds true, although h is a linear 

interpolation. We have 

d(f,g) < d(f,h) + d(h,g), 0 < t < 1. 

To derive the distance between f and fn' it is convenient to make 

use of rr(F,Fn); but great care is needed to define the subset w0 
realizing the infimum, we are compelled to introduce some notations 
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for this only derivation. The general idea of the w
0 

construction is 

to sum small connex intervals ei selected in order to have 

F (e7) 
n l. 

0 and F ( ei) max. 

Then 

Denote by yi all disjoint finite intervals created by the sample of 

size n, and by li their lengths; formally 

and 

with 

l. 
]. 

x. 
]. 

The selection of ei is implicitely associated to the knowledge of €. 

In each interval yi' satisfying 

we select the intervals 

of lengths (li - 2€) and such that 

Therefore, the distance definition becomes 

or, immediately, 

and 

with 

(1/a) Ls.(l.- 2€) 
]. ]. 

si 1, if li > 2€ 

0, otherwise. 

0 + € 
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The way fn converges to f, while the size n increases, is of great 

interest and will thus be investigated. 

We assume n sufficiently large to assimilate the sample distribution 

of variate li to its continuous parent distribution 

pdf {l} = (n/a) exp(- nl/a). 

With this only condition, E is solution of the implicit equation 

e = n /;E l pdf {l} dl/(a + 2n /;E pdf {l} dl). 

This leads to a law of iterated logarithm 

E =- [a/(2n)] ln E 

and to the approximation 

d(f,fn) = E "" - [ a/(2n)] ln {[ a/(2n)] ln (2n/a)}. 

To conclude, we observe that only a fraction E of the intervals yi 

is involved in the construction of w
0

, i.e. 

lim ( 1/ n) L s . = E • 
~ 

This may contribute to explain why the convergence in Prokhorov metric 

is so much faster than with the Kolmogorov metric. 

Experimental validation of the above theoretical derivation has been 

obtained as indicated by the following results. 

Parameter a 

Sample size n 1000 10000 

Theoretical d(f,f ) n .00292 .000392 

Average u(f,fn) .00289 .000377 

Stand. dev. t!(f,fn) .00032 .000021 

Number of replicates to 

obtain the last two lines 50 20 
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Robustness 

Let f, g, ~be distributions in some distribution spaces and d(. I.) 
be a distance function such as the Prokhorov metric, then we denote by 
~(t ,g) the distribution of the estimator t based on a sample of size n n 
n drawn from distribution g. Estimator tn is robust with respect to g 
if 1 and only if, 

¥ £ > 0, ~ o > 0, ¥ f, ¥ n : 

{ d ( f, g) < o => d[ ~ ( t n, g) , ~ ( t n, f) 1 < d . 

Hampel (1971) also defines the rr- robustness in order to relate 
estimators based on different sample sizes despite lack of independency 
between the samples. 

Under some incompletely specified conditions, it is possible to 

relate £ and o when tn can be expanded in term of the first order Von 
Mises derivative. We have 

and the integral term is the more important the more differing f is 
from g at the point where ~(w) is the most important. Let w

0 
be this 

point of the sample space, i.e. such that 

then the least different f which produces an estimator bias 

is the distribution 

with 

h ltn(f) - tn(g) I 
= 1 f ~ 'w l f' w l dw 1 

f ( w) ( 1 - t ) g ( w) + t o ( w - w0 ) 

For small h, we have asymptotically (n ~ m) 

d(f,g) = t 

d[ ~ ( t 'g) ' ~ ( t 'f) 1 h n n 

and, thus, 
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von Mises derivative 

This derivative is relative to a functional of a distribution. Let 

T(f) be the functional and f, as well as g, be distributions of some 

distPibution spaee defined over some sample space 0; then the first 

order von Mises derivative (1947) is, per definition, 

lim { T[ ( 1 - t) f + t g) - T (f) } / t = f '!' ( w) g ( w) dw, t E R, t -+- 0 

where the limit is understood for positive t tending to zero and the 

integral is extended over n. 
The existence conditions for this Gateaux derivative appear to be 

essentially depending upon the functional T, seeing that the convexity 

of the distribution space has been assumed. In order to provide some 

insight on the mechanism which leads to the above expression, we derive 

a Taylor-like expansion of T(f) in the vicinity of the distribution f. 

A by-product of this derivation will be a sufficient set of conditions. 

The presentation aims at providing insight. We will see that the 

Taylor-like expansion is reasonable but we will remain unable to 

demonstrate its valitity. Considering asymptotic situations, it is 

possible to progress a few steps further as did Reeds (1976). However 

his work is not really pertinent to our needs for he is dependent upon 

intricate topologies. 

We assume that f and g are continuous with respect to the metric 

p(.,.) of the sample space n. If there are discontinuities, we 

substitute, to f and g, new distributions which are continuous, say f 0 
and g 0 • These new distributions will be defined with the help of some 

parameter c satisfying 

lim d ( f, f O) = 0, c E R, c -+- c 0 , 

where d(.,.) is the PPokhoPoV metPie, and 

lim d ( g, g0 ) = o, c E R, c .... c0 • 

We expect T(f) to fulfill the condition 

T (f), c E R, c -+- c 0 • 

With continuous f and g, the princ~ple of the derivation consists in 

performing a fine partition of the sample space n, then obtaining the 
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expansion of T as a function defined in a multidimensional space and, 
to conclude, refine the partition in order to obtain limit expressions. 

First we restrict the n-space to a ball of radius R centered on some 
point 2£o E n 

In this ball, we consider the partition in n disjoint subsets oi' 
and to each subset we associate a measure 6(wi). We have 

and 

U W• 
~ 

n o i * J. wi wj = , 

as well as 

In each subset we arbitrarily select a point 2£i and denote by fi and gi 
the corresponding values of the distributions f and g, i.e. 

and 

f . f (X. ) , X . E W • C r!R , 
~ -~ -~ ~ 

We now investigate the behaviour of the functional T(f) on the 
partitioned space. Over this ball, we denote the functional by the 

notation TR(f), whereas the script T ({f.}) denotes its approximation R ~ 
based on the n evaluations in the subsets wi. But TR({fi}) can be seen 

as a function defined over an n-dimension space and a Taylor expansion 
in the vicinity of {fi} is valid while T is sufficiently 

differentiable. We are interested by the expansion 

+}:[t(gi-fi}) hi6(wi) 
i 

+ -2
1 Hlt(g~- f~)) h .. t:.(w.) 6(w.) [t(g.- f.)) 

• • ~J ~ J J J 

+ i IH ··· · 
where h. 6(w.) stands for the first partial derivative (a;af.) TR{f.} 

~ ~ ~ ~ 

and similarly for the higher order partial derivatives. 
The last part of the derivation consists in obtaining the limit 
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expressions. We first refine the partition, letting n tend to infinity 

with all ~(w.) tending to zero. Then 
J. 

We assume existence of the limits and the integrals are understood 

in the Riemann-Stieltjes sense. The domain of integration is, thus 

far, the ball nR. We now let R tend to infinity (and also possibly c 

tend to c 0 ) in order to obtain 

T[(1- t) f + tg] = T(f) 

+ t f h(w) [g(w)- f(w)l dw 

with the whole sample space n as integration domain. 

To conclude we reorganize the integral expressions, as follows for 

the first order term, and similarly for the following ones. 

f h ( w) g ( w) dw - [ f h ( w) f ( w ) dw] 

f { h ( w) - [ f h ( w) f ( w) dw] } g ( w) dw 

f '!'(w) g(w) dw. 

Inasmuch as T(f) is a functional sufficiently regular to permit all 

the passages to limits, the Taylor-like expansion 

T[ ( 1 - t ) f + t g] = 

T ( f) + t f '!' ( w ) g ( w ) dw 

+ ~ t 2 f g ( w ) f w ( w , w ) g ( w ) dw dw + • • • 
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is valid and the expression of the von Mises derivative results 

immediately. 

When we introduce g = f in the two members of the above equality, we 

obtain a tautology for any t value, and therefore we have 

1 'l'(w) f(w) dw = 0 

as well as 

1 f(w) 1 ljJ(w, w) f(w) dw dw = 0. 

The expansion in Taylor series has been used by Fiiippova (1962) to 

obtain asymptotic properties of statistical estimators, we use it 

essentially in small sample contexts. It is the basis for the 

jaakknife study as well as for the inftuenae funation concept. 
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