Теория балок – Расчет перемещений в статически

неопределимых конструкций

Продвинутая строительная механика

Проект ЭРАМКА

Оценка экологических рисков и их снижение в отношении объектов культурного наследия в Центральной Азии

V2022317

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Оглавление

Преподаватель/задачи студентов

Введение

Расчет перемещений (метод удельной нагрузки)

Статически неопределимые конструкции

Дополнительное чтение

Преподаватель/задачи студентов

Преподаватель/задачи студентов

Представить метод расчета перемещений и решения статически неопределимых конструкций с использованием теоремы о виртуальной работе.

Рассчитать перемещения для простых схем и решать простые статически неопределимые конструкции.

Введение

Теорема о виртуальной работы балки утверждает, что $\mathcal{L}_{\textit{Ve}} = \mathcal{L}_{\textit{Vi}}$:

• внешняя работа (всех сил, действующих на балку):

$$\mathcal{L}_{ve} = \int_{o}^{L} (p_a w_b + q_a v_b) dz + \\ + (N_a w_b + T_a v_b + M_a \varphi_b)|_{L} + (-N_a w_b - T_a v_b - M_a \varphi_b)|_{o} = \\ = \int_{o}^{L} (p_a w_b + q_a v_b) dz + (N_a w_b + T_a v_b + M_a \varphi_b)|_{o}^{L}$$

• внутренняя работа (внутренними силами):

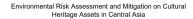
$$\mathcal{L}_{\mathsf{v}\mathsf{i}} = \int_{\mathsf{o}}^{\mathsf{L}} (\mathsf{N}_{a}\,arepsilon_{b} + \mathsf{T}_{a}\,\gamma_{b} + \mathsf{M}_{a}\,\chi_{b})\,\mathsf{d}z$$

- Теорема о виртуальной работе справедлива, если система а находится в равновесии, а система b кинематически допустима.
- Две системы независимы

далее...

... работой нормальной силы и сдвига пренебрегают, так что

 \mathcal{L}_{vi} = $_{o}$ M_{a} χ_{b} dz, i.e., учитывается деформируемость только на изгиб



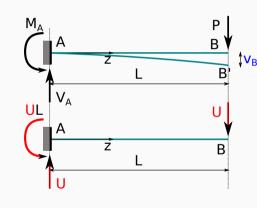
Вычисление перемещений (метод единичной загрузки

Конструкция загружена:

- внешними нагрузками (обоз." г")
- единичной силой U в точке и в направлении смещения, которое необходимо найти

В виртуальной работе реальные перемещения (синий цвет) связаны с силами конструкции, нагруженной единичной силой (красный цвет), таким образом, что искомое перемещение является единственным неизвестным уравнения.

Вертикальное перемещение точки В с жесткостью($EI_x = const$):

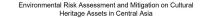

$$(U)v_{A}^{\bullet,\bullet}(UL)\varphi_{A}^{\bullet,\bullet}(O)w_{A}^{\bullet,\bullet}(U)v_{B} =$$

$$\int_{o}^{L} M_{U}\chi_{r}dz =$$

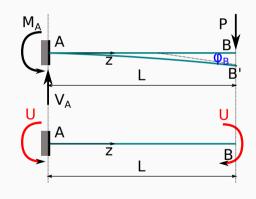
$$\int_{o}^{L} M_{U}\frac{M_{r}}{EI_{x}}dz = \int_{o}^{L} \frac{M_{r}M_{U}}{EI_{x}}dz =$$

$$\frac{1}{EI_{x}}\int_{o}^{L} [-P(L-z)][-U(L-z)]dz =$$

$$\frac{PU}{EI_{x}}\int_{o}^{L} (L-z)^{2}dz \quad \text{i.e.,} \quad v_{B} = +\frac{PL^{3}}{3EI_{x}}$$



Поворот точки В с равномерной жесткостью (Е Іх = const):


$$(0)y_{A} + (U)\varphi_{A} + (O)y_{A} + (U)\varphi_{B} =$$

$$\int_{0}^{L} M_{U}\chi_{r}dz =$$

$$\int_{0}^{L} M_{U}\frac{M_{r}}{E I_{x}}dz = \int_{0}^{L} \frac{M_{r}M_{U}}{E I_{x}}dz =$$

$$\frac{1}{E I_{x}} \int_{0}^{L} [-P(L-z)][-U]dz =$$

$$\frac{PU}{E I_{x}} \int_{0}^{L} (L-z)dz \quad i.e., \quad \varphi_{B} = +\frac{PL^{2}}{2E I_{x}}$$

Статически неопределимые конструкции

Статически неопределимые конструкции

Выбор статически определяемой конструкции и:

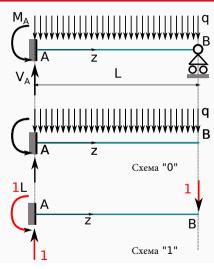
- статически определимая конструкция, нагруженная внешними нагрузками («0»)
- статически определяемая конструкция, нагруженная силой, равной 1 нагрузке ("1")

В виртуальной работе реальные перемещения (синий цвет) связаны с силами статически определенной конструкции, нагруженной избыточной силой, равной 1 (красный цвет).

Superposition principle

Внешние реакции, нормальная сила, сдвиг, момент. . . для заданной конструкции находятся как $F = F_0 + X_1 F_1$

Момент и кривизна исходной конструкции равны:


$$M_r = M_0 + X_1 \frac{M_1}{M_1}$$

$$\chi_r = \frac{M_r}{E I_x} = \frac{M_0 + X_1 M_1}{E I_x}$$

таким образом TWV является:

$$(1)y_{A}^{*} + (1L)y_{A}^{*} + (0)y_{A}^{*} + (1)y_{B}^{*} = \int_{0}^{L} M_{1} \frac{M_{r}}{E I_{x}} dz$$

Из этого имеем:

$$0 = \int_{0}^{L} \frac{M_{1} M_{0} + X_{1} M_{1}}{E I_{X}} dz = \int_{0}^{L} \frac{M_{0} M_{1}}{E I_{X}} dz + X_{1} \int_{0}^{L} \frac{M_{1}^{2}}{E I_{X}} dz$$

где:

$$\int_{0}^{L} \frac{M_{0} M_{1}}{E I_{X}} dz = \dots = + \frac{qL^{4}}{8E I_{X}} \qquad \int_{0}^{L} \frac{M_{1}^{2}}{E I_{X}} dz = \dots = + \frac{1L^{3}}{3E I_{X}}$$

т.е.

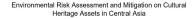
$$O = +\frac{qL^4}{8E I_X} + X_1 \frac{1L^3}{3E I_X}$$
 so that $X_1 = -\frac{3}{8}qL$

Окончат. для данного прим: $M_A = M_O^A + X_1 M_1^A = (2 - \frac{3}{8}qL)(-1L) = -\frac{qL^2}{8}$

Некоторые замечания:

- опр. $+ \frac{qL}{8} \frac{4}{4}$ представляет собой перемещение точки В из-за внешней нагрузки q, i.e., $v_{p}^{(q)}$
- опр. $+\frac{1}{3}\frac{L^3}{FI}$ представляет собой смещение точки В из-за $X_1 = V_B = 1$, i.e., $V_B^{(1)}$
- Окончательное уравнение $v_{p}^{(q)} + v_{p}^{(X_1)} = v_{p}^{(q)} + X_1 v_{p}^{(1)} = 0$ (совместимость перемещения в точке В)
- отрицательное значение, полученное для $X_1 = -\frac{3}{8} qL$ означает что V_B противоположено силе 1 приложенной в точке В

Если степень неопределенности п больше единицы, можно применить аналогичную процедуру (получается система линейных уравнений размера $n \times n$)



Дополнительная информация

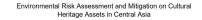
Численный интегральный расчет

Правило Симпсона для численного интегрирования:

$$p_i = \int_a^b f(z) \, g(z) dz =$$
 $= rac{b-a}{6} \left[f(a) \, g(a) + 4 \, f\left(rac{a+b}{2}
ight) \, g\left(rac{a+b}{2}
ight) + f(b) \, g(b)
ight]$

Эта формула дает точные результаты. ..

 \ldots если f(z) и g(z) полиномы такие, что сумма их степеней \leq 3



Численный интегральный расчет – пример

Если обе эпюры треугольные:

$$p_{i} = \int_{a}^{b} f(z) g(z) dz =$$

$$= \frac{b-a}{6} \left[f(a) g(a) + 4 f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) + f(b) g(b) \right] =$$

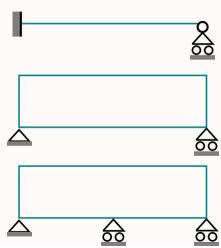
$$\frac{L}{6} \left[(0)(0) + 4 \left(\frac{M}{2}\right) \left(\frac{M'}{2}\right) + (M)(M') \right] = \frac{M M'}{3} L$$

это тот же результат строки 3, стойки 3 из таблицы слайда 14. Если M=-P L и M' = -U L (упражнение 1, слайд 6) $\frac{PU}{3}$ получается.

<u> </u>	м	М	M, M	м	M 2 2	Male M
и принци	м м	1 M' M	$\frac{1}{2} M'(M_I + M_I) .$	0	1 M'M	1 M' M
M	1 M'M	-1 M' M	$\frac{1}{6}M^{\epsilon}(M_{I}+2M_{I})$	- 1 M' M	. 0	1 M'M (1+a)
M	$\frac{1}{2}M^*M$,	1 M' M	$\frac{1}{6}M^{*}(2M_{I}+M_{I})$	1 6 M'M	- 1 M' M	$\frac{1}{6}M'M(1+\beta)$
и, ет в темм,	$\frac{1}{2}M\langle M'_{i}+M'_{i}\rangle$	1 M (M', + 2 M',)	$\begin{aligned} &\frac{1}{6} \left[M'_{A} (2 M_{I} + M_{I}) + \right. \\ &\left. + M'_{B} (M_{A} + 2 M_{I}) \right] \end{aligned}$	$\frac{1}{6}M(M'_I-M'_I)$	1 M'1 M	$-\frac{1}{6}M\left[M',(1+\beta)+\right.$ $+M',(1+\alpha)\right]$
A Million March March 1981	•	- 16-M'M	$\frac{1}{6} M'(M_t - M_t)$	1 M' M	1 M' M	$\frac{1}{6}M^{\prime}M\left(1-2\alpha\right) \times$
d Branch Ad	1 M'M	0	1 M'M,	1 M' M	1 M'M	1/4 M° Mβ
M's M'	1 M' M	1 M' M	1 M' M,	- 1 M'M	- 1 M' M	1 M'M a
1/2 -	1 M'M	1 M' M	$\frac{1}{4}M'\langle M_I+M_\delta\rangle\;.$	0	1 M' M	$\frac{M'M}{12\beta} (3-4\alpha!)$
M 1 - 81 -	1/2 M'M	$\frac{1}{6}M^*M(1+\gamma)$	$\frac{1}{6} M^* \Big[M_I (1 + \delta) + \\ + M_2 (1 + \gamma) \Big]$	$\frac{1}{6}M^{\epsilon}M\left(1-2\gamma\right)$	1 M'M \$	$\frac{M'M}{6\beta\gamma}(2\gamma-\gamma^{s}-\alpha^{s})$ $\gamma \geq \alpha$
Market	2 M'M'	1 M' M	$\frac{1}{3}M^*(M_1+M_2)$	0	1 M'M -	$\frac{1}{3}M'M(1+\alpha\beta)$

ALCUNI VALORI DI $\frac{1}{I}\int M^{\alpha}M dx$								
	м	м	м, шингийм,	м при на	M Blazza M	ul n -		
M	2 3 M M	1 M'.M'	$\frac{1}{12}M'(5M_1+3M_2)$	1 M'M	7 24 M' M	$\frac{1}{12} M^* M (5 - \alpha - \alpha^g)$		
M.	2 3 M'M	5 M' M	$\frac{1}{12}M''(3M_s+5M_s)$	- 1/6 M'M	1 M' M	$\frac{1}{12} M^* M (5 - \beta - \beta^*)$		
W.	-1-M'M	-1-M'M	$\frac{1}{12}M^{\circ}(M_1 + 3M_2)$	- 1/6 M'M	$=\frac{1}{24}~M^{\prime}M$	$\frac{1}{12}$ 'M'M (1 + a + b)		
M'ESSE	1 M' M	1 M M	$\frac{1}{12} M' (3M_1 + M_2)$	1 M' M	5 M' M	$\frac{1}{12}$, M° M (1 + \$.+ \$P)		
-H'1/2 -M'	$\frac{1}{6}M^{\alpha}M$	-1 M' M	1 M' Ma	$-\frac{1}{6}M'M$	- 12 M' M	$\frac{1}{6}M^{\circ}M \propto (1+2\beta)$		
- 1/2 - M	$\frac{1}{6}M^{\circ}M$	0	1 M'M;	1 M*M	1 M' M	$-\frac{1}{6}M^*M\#(1+2\alpha)$		
- 1/2 - M; M; M;	1 M (M' ₈ + 4 M' ₂ + + M' ₃)	1 M (2 M' & + M' §)	$\frac{1}{6} \left[M_s^r M_s + 2 M_s^r \right]$ $\langle M_s + M_s \rangle + M_s^r M_s$	$\frac{1}{6}M(M'_J-M'_b)$	1 M (2 M'z+2 M'z- - M'z)	$\begin{aligned} &\frac{1}{6}M\left[\begin{array}{c} M'_{I}\beta + 2M'_{I}\\ &+ M_{J}\alpha - \alpha\beta(M'_{I}\\ &- 2M'_{I} + M'_{J})\end{array}\right] \end{aligned}$		
bacapage copies	1 M'M	-1 M'M	$\frac{1}{20} M'(M_I + 4M_I)$	- 3 M' M	$-\frac{1}{20}M^*M$	$\frac{1}{20}$ M*M (1 + o) (1 +		
M HIGHEST PARTY AND PARTY	1 M'M	1 M' M	$\frac{1}{20}M'(4M_2+M_2)$	3 M' M	7 M' M	1 M'M (1+4) (1+		
probab subject	1 M'M J	2 15 M* M	$\frac{1}{60}M^{*}(7M_{t} + 8M_{t})$	- 1/40 M* M	1 M' M ·	$\frac{1}{20} M^* M (1+a) \left(\frac{7}{3} \right)$		
M Parabeta subject	1 M M	7 60 M* M	$\frac{1}{60}$ M° (8 M ₃ + 7 M ₂)	1 M' M	3 M' M	$\frac{1}{20}$ M'M (1 + β) $\left(\frac{7}{3}\right)$		

Внешне на внутренне статически неопределимых конструкциях


Возможные неопределенные конструкции

 внешне статически неопределимая (верхняя)

 внешне статически определимая и внутренне статически неопределимая (средняя)

 внешне и внутренне статически неопределимы (внизу)

